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1. Introduction

1. Introduction
One of the major current scientific endeavors is to understand and especially being able to
synthesize what one would call intelligent behavior. Most species in our world that exhibit
intelligent behavior have in common that theymove. The ability to generate motion in our
environment requires many different aspects of research in artificial intelligence, machine
learning and robotics at the same time. First, the world and its properties have to be
perceived via suitable sensors to gain an understanding of the world, including the state of
the intelligent entity itself. In order to follow own objectives, decisions have to be taken,
the necessary motions be planned and finally executed via suitable controllers. During
the execution, adjustments to the plan in a feedback mechanism or complete replanning
on a higher level are import to compensate for unforeseen events. A curious intelligent
entity has to interact with the environment by trying things out, learning from failures
and success to memorize experience for its own improvement. All this is implied by the
need to generate motion. Therefore, a central path to understand intelligent behavior is
to generate moving artificial systems that interact and manipulate our real environments.
As robotic research over many decades has shown, synthesizing movements for locomo-

tion or manipulation of the environment is highly nontrivial. One could even say that the
majority of robotic research deals in one way or another with the question how movements
can be generated. In contrast, intelligent species found in nature seem to perform these
tasks – perception, planning, control, movement, interaction with the environment – with
ease. Furthermore, many animals (including humans) also show a high adaptability to
new situations, implying their ability to learn from experience outside their predefined
capabilities.
Since the motion apparatus and the nervous system of a biological organism has not

evolved separately, the question arises whether the motion apparatus exhibit properties
that are in some sense favorable for the nervous system to generate and learn motions in
our environments.
When modeling the musculoskeletal system of vertebrates, it turns out that the dy-

namics from muscle stimulations to movements is highly complex [31], [17], [13], [3], [22].
Nonlinearities [17], delays [33], hidden states etc. make it difficult to design controllers for
such systems with classical techniques. Since muscles can only actively produce forces in
contraction direction, at least two muscles in an antagonistic setup are required to artic-
ulate one degree of freedom. Furthermore, musculoskeletal systems also include so-called
biarticular muscles that drive more than one joint at the same time. Therefore, in addi-
tion to kinematic redundancy, musculoskeletal systems have a high actuator redundancy
[42], further increasing the complexity and dimensionality of the system.
This redundant antagonistic setup together with the dynamical properties of the mus-

cles has, however, also two important consequences. First of all, the passive and active
elasticity of the muscle tendon units (MTUs) is favorable for interaction with the envi-
ronment, since contact and impact forces are absorbed to a certain degree. Generating
technical systems that are able to safely interact with uncertain environments through
contacts are difficult to create [12], [11]. Secondly and more relevant for the present work,
the antagonistic setup of the muscles with their characteristic force length/force velocity
curves [17] imply a certain intrinsic stability [6] and small perturbations are compensated
without the need of any control.
As shown in a previous work of the author of this document [13], this intrinsic stability

is favorable for learning, since the learning algorithm does not have to learn a stabilizing
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1. Introduction

controller first. Indeed, applying learning methodologies to real robotic systems is often
problematic, since taking explorative actions during the learning process often lead to
unstable and hence possibly dangerous system states. In contrast, as considered in [13], a
musculoskeletal system can be controlled by applying constant muscle stimulations, which
correspond to certain equilibrium states.
The goal of the present work is to learn a controller for a redundant musculoskeletal

system that is able to predict muscle stimulations that lead to desired configurations of
the system. Such a controller will be called an inverse model.
However, despite the advantages of a musculoskeletal system with respect to its intrinsic

stability, the high actuator redundancy implies that there are infinitely many muscle
stimulations leading to the same configuration in equilibrium. Therefore, direct learning of
an inverse model with standard regression techniques is not possible or leads to undesirable
effects. This non-uniqueness problem of learning inverse models has extensively been
studied in robotics in the context of inverse kinematics, e.g. [14], [5], [40], [9], [24], [27].
However, an essential aspect missing in most existing approaches is to systematically
and efficiently estimate the reachable set of the system, i.e. to know which parts of the
workspace can be reached at all. The reachable set is essential for several reasons: First
of all, an inverse model is well-defined only over the reachable set. In contrast, the
function approximators used in most learning methods can be queried everywhere. Thus,
a proper inverse model must represent where it even is reasonable to query it. Secondly,
without knowing the domain of the inverse, it is not possible to define a suitable metric
that measures the quality of an inverse model globally. In this respect, when defining
an objective for learning an inverse model, points outside the reachable set should be
neglected, which also requires to have an estimate of the reachable set. Finally, in an
active learning setting, the aim should be to find a controller that is able to reach all
possible points of the system, which is directly associated with estimating the reachable
set.

1.1. Goals and Contributions
The goal of this work is to learn an inverse model to a redundant system, in particular
motivated for control of musculoskeletal systems. The problem of learning an inverse
model is inherently linked with the estimation of the reachable set. Hence, learning the
inverse model and estimating its reachable set should be treated jointly and performed
simultaneously within one framework. Due to the high dimensionality of the involved
control input space, sampling the data from the real system has to be performed efficiently
with the ambition of being able to both learn an accurate inverse model and estimate the
reachable set. In the present work, a complete methodology, where bounds on the real
performance error of the inverse are the central piece, is developed to achieve all three
aims: inverse model learning, estimation of the reachable set and active exploration for
data collection.
First, by formalizing more rigorously what it actually means to learn an inverse model,

a methodology is derived where the inverse model, represented as a neural network, is
learned by minimizing an upper bound on the real performance error. This upper bound
is provided through a forward model (kernel regression), which is trained on the currently
available data.
Determining the reachable set is a challenging problem that has been studied mainly for

known analytical models. In many learning based methods, the problem of the reachable
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set is either ignored or it is assumed that the reachable set is known a priori. To overcome
this, the present work secondly proposes a method to estimate the reachable set based on
the derived error bound of the current learned forward and inverse model. This estimated
reachable set is represented in a way that allows to decide whether a point is part of
the estimated workspace easily. Therefore, the estimated reachable set is also efficient to
compute.
Thirdly, an active exploration strategy is developed to efficiently generate the training

set of the forward model with the goal of thereby improving the inverse model. This is
realized by maximizing a lower bound on the true fill-distance of the real workspace (the
domain of the inverse model), which is again provided through the error estimate. This
strategy inherently trades-off exploration and exploitation. Since it explores in the low
dimensional workspace instead of the high dimensional control input space, efficient data
generation is possible.
A key feature of the proposed framework is that the learned inverse model provides

guaranteed upper bounds on its performance when applied to the real system. These
bounds are easy to compute and, as it is shown in the experiments, are also suitable in
practice.

To summarize, the main methodological contributions of this work are

• Formalization of inverse model learning as minimization of an upper bound on the
real performance of the inverse

• Inverse model learning framework with model quality estimation

• Estimation of the reachable set

• Active exploration strategy

• Error estimate for regularized kernel regression

and from an application point of view

• Control of a simulated musculoskeletal model of a human arm with 6 muscles and
2 joints to reach desired positions in its complete reachable workspace

• Lambda control learning for monosynaptic reflex

• Control of a real muscle driven robot with 2 joints and 5 pneumatic muscles mim-
icking the human arm model.
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2. Related Work

2.1. Inverse Model Learning
Models play a central role in robotics and many other disciplines. In general, one can
distinguish between so-called forward models, which describe how a system reacts to
control inputs, and inverse models, which predict the necessary actions that lead to a
desired change of the state of the system [34]. In most situations, forward models are
unique in the sense that given the current state of the system and the control input, the
next state is deterministically determined, if noise or other disturbances are neglected.
Therefore, learning a forward model in continuous spaces in this situation is a supervised
regression problem, which has been studied extensively in the machine learning commu-
nity. In contrast, especially in robotics, there are infinitely many inverse models for the
same system in nearly all relevant and interesting situations. Therefore, learning inverse
models is much more challenging than learning forward models, since standard regression
techniques cannot directly be applied.
This non-uniqueness of inverse models naturally arises in inverse kinematics. For re-

dundant and even also for non-redundant kinematic chains, there are multiple (sometimes
infinitely many) joint configurations that lead to the same task value. If a dataset contains
such multiple solutions from sampling from the system, simple regression methods would
average over those multiple configurations that correspond to the same task value. The
average, however, is in most situations not a configuration that leads to the desired task
value [14], [24], [34]. In some cases, the average would even be a completely invalid joint
configuration that for example violates the joint limits. Since inverse kinematics is a basic
and fundamental problem in robotics, many methods have been developed that address
the non-uniqueness of inverse models specifically in the context of inverse kinematics.
One way to handle this averaging is to weight the data samples according to some

objective [14], [40], [35]. If the joint configuration samples in the dataset that correspond
to the same task value are weighted differently, a regression method would be driven
towards those samples with higher weight. For example, the authors of [14] consider joint
configurations as more important that are closer to a homing position of the robot. This
allows to resolve the redundancy and also to influence which of the infinitely many inverses
would be learned. A key insight of [35], where operational space control is learned, is to
choose the weighting in accordance to the rigid body dynamics of the torque controlled
robot. In contrast, for musculoskeletal systems, the choice of a suitable weighting objective
is unclear and in [13], it was shown that such weightings therefore do not perform well
for musculoskeletal systems.
Another method to resolve the non-uniqueness is to first learn a forward model, for

which, as mentioned above, standard regression techniques can be used. The inverse itself
is then obtained as a right inverse to the learned forward model [24], [34]. This way, the
redundancy is resolved implicitly through the learned forward model. Such learning of
the inverse through a forward model is also called distal teacher learning [24].
While the original distal teacher formulation in [24] considers one global inverse model,

another approach is to learn multiple paired forward and inverse models [19], [27], [9]. The
main idea of those approaches is that each forward-inverse pair represents different, smaller
parts of the space. This is especially interesting in situations where the solution sets are
not connected. Having multiple paired forward-inverse models, the question arises how
from the multiple inverse models an actual prediction is performed, which is also called
the module selection problem [19]. To this end, one way is to select the responsibility
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of the different inverse models depending on the current context. This context could
for example be the state of the system or even a learned responsibility predictor. In an
online setting, another way is to select the inverse models based on the current prediction
errors of their corresponding forward models [19]. Instead of a hard selection, in those
approaches typically multiple inverses contribute at the same time to the final prediction
with different weightings based on their responsibility [19].
One disadvantage of these methods that use the forward model to guide the learning

of the inverse model is that it is usually not taken into account that the learned forward
model is imperfect. If the data for the forward model is sparse, as we show in the
experiments, the forward model could guide the inverse unreasonably and therefore could
lead to undesired results.
Speaking of data, most works mentioned so far also consider mainly given datasets

or specify the data generation manually. Generating the data efficiently is, however,
an important problem for the success of an inverse learning method. Due to the high
dimensionality of the control input space, dense sampling is prohibitive. To address
this issue, several authors propose to explore in the workspace/goal space instead of the
control input space [40], [38], [2], [13]. By bootstrapping the iteratively learned inverse
model, so-called goal babbling approaches [40], [38], [13] showed to generate the data to
obtain an inverse model sample efficiently in high dimensional control input spaces. For
example, in [40] inverse models for hyper-redundant kinematic chains are obtained. The
idea behind bootstrapping the inverse model is that a target in the goal space is chosen.
Then the control input is determined by the current learned inverse model, which is used
to iteratively sample the next point.
The main limitation of those goal babbling methods is that either the exploration

targets in the goal space are manually specified or chosen heuristically by knowing the
true workspace. A more systematic approach to generating targets for the exploration in
the goal space is intrinsic motivation, for example by estimating the competence progress
[2], which also shows impressive results for challenging tasks.
These methods, however, also do not systematically estimate the reachable set. The

only work the author of this document is aware of that deals with estimating the reachable
set for learning inverse models is [39]. However, there is no representation of the reachable
workspace which could be computed easily and the exploration in one direction stops if
an heuristically chosen criteria indicates the end of the workspace. As it is discussed in
section 5, where the main methodology of the present work is presented, estimating the
reachable set is, however, an essential and inherent part of learning an inverse model.
Therefore, the present work develops an approach to systematically estimate the reach-
able set in form of a representation that is also computationally feasible to determine
simultaneously to learning the inverse model.

2.2. Active Learning in Robotics
So-called active learning deals with collecting data in a most informative manner. Es-
pecially in robotics the data collection procedure often involves real world experiments.
Therefore, sampling necessary data while avoiding uninformative samples is of great im-
portance for learning methodologies in robotics. One instance where active learning
methodologies have successfully been applied in robotics is the use of Bayesian opti-
mization [32] to tune controller parameters [12], [30], [4]. The main idea behind Bayesian
optimization is to learn a surrogate cost function as a probabilistic model, most common a
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Gaussian process [37]. Based on the information encoded in the learned Gaussian process,
through a so-called acquisition function the next query location is selected to either find
a better optimum or to explore unobserved parameter regions.
Most active learning methods are derived under the assumption that the unknown

function can be queried at any chosen location. For example, in Bayesian optimization
it is assumed that one can test the parameter the acquisition function recommends on
the system. In the case of inverse model learning, when exploring in the workspace to
circumvent the high dimensionality of the input space as described above, it is not possible
to query an arbitrary desired location in the workspace, since this would require an already
known perfect inverse. In [10] and [11] this problem of not being able to query desired
targets directly has been addressed in the context of active tactile exploration.
In the present work, an active learning principle to generate the data for the forward

model, while exploring in the low dimensional workspace and taking the imperfection of
the learned forward model into account, is derived.

2.3. Learning to Control Musculoskeletal Systems
Several authors consider learning controllers for pneumatically driven robots [21], [44],
[8], [13], [7], [18]. In [21] and [44] the redundancy problem is circumvented since only
one control signal for an antagonistic muscle pair is learned. The other one is calculated
such that both sum up to a constant. This is limiting, since not only the co-contraction
can not be altered, depending on the chosen constant, it is even not possible to exhaust
the complete possible motion range with this parameterization. Reinforcement learning is
utilized in [8] to learn a controller for a finger with 2 joints driven by 4 muscles. However,
the approach is limited to reach one single target position after learning, which means
that no general controller is learned.
In [13] and [7] the non-uniqueness is resolved by only learning a forward model. The

actual inverse query is then obtained by solving a non-convex optimization problem.
Both [13] and [7] include a term in the optimization objective that ensures that the
optimization problem stays close to the collected data. In the present work, a similar
term is derived more rigorously, see section 5.2. With respect to the data generation in
[13], the targets in the workspace are specified manually, but the current learned inverse
model is then bootstrapped to sample the system to generate the data for the forward
model. In contrast, the approach of [7] requires a preexisting controller to generate the
data. Furthermore, the authors of [7] consider only one pair of muscles, which simplifies
the problem due to the greatly reduced dimensionality. The present work and [13], in
contrast, consider 6 muscles and a two dimensional workspace. However, [7] learns a full
dynamics model, whereas [13] and the present work consider a static inverse only.

2.4. Control of Musculoskeletal Systems
Apart from learning based approaches, model based optimal control techniques have been
studied to obtain a controller for musculoskeletal systems. In [29] a seven degree of free-
dom musculoskeletal arm model is controlled with a hierarchical optimal control method-
ology. Scaling up, in [28] 120 muscles for bipedal locomotion are controlled. While leading
to impressive results, these works rely on an exact model of the musculoskeletal system.
In addition, it is assumed that the algorithm has access to the full state information. As
discussed in section 3, a biological system does not have access to all states.
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3. Biomechanical Models of Musculoskeletal Systems
In its most fundamental form, a biological motion apparatus can be described by sup-
porting passive structures and active elements that are influenced by the nervous system.
In the following, the computational methods to model musculoskeletal systems for the
purpose of this work are introduced. Furthermore, properties of such systems and their
consequences are discussed.

3.1. Skeletal Model
As a first important part, the question arises how the supporting skeleton of a biological
organism can be modeled. Due to the mechanical properties of the bones [3], [31], it is
common to assume rigid body dynamics for the skeletal apparatus. Let q ∈ Rdq denote
the joint configuration of a musculoskeletal system with dq joints. The Euler-Lagrange
equations

M(q)q̈ + C(q, q̇) + G(q) = R(q)fMTU, (3.1)

relate the joint acceleration q̈ with the exerted forces fMTU ∈ Rm from the muscles. Here,
M(q) ∈ Rdq×dq is the positive definite inertia matrix, C(q, q̇) ∈ Rdq and G(q) ∈ Rdq

denotes the Coriolis/centripetal and gravity force vector, respectively.
The term R(q) ∈ Rdq×m is a nonlinearly on the current joint configuration depending

matrix that represents the moment arms through which the linear force of the muscle
actuators is translated to rotational torques in the joints. These moment arms are of great
importance for the physiological accuracy. To model this nonlinear relationship, several
methods have been proposed. This work uses a quadratic polynomial with parameters
adjusted to fit experimental data [3].
Soft tissues like wobbling masses are also important to understand biological motion,

especially for the correct modeling of impact dynamics [16]. However, since in this work
mainly arm movements with low dynamics are considered, wobbling masses are not taken
into account.

3.2. Muscle Models
One of the most essential aspects of computational methods for musculoskeletal systems
is the muscle model itself. Experiments reveal that biological muscles exhibit a charac-
teristic nonlinear force-length and force-velocity relation [17]. In order to recreate this
behavior, vertebral muscles have been studied on various scales, ranging from atomistic
over continuum mechanical models to macroscopic lumped models. Lumped muscle mod-
els not only give insights in the macroscopic behavior of muscles, they are also efficient to
compute, which is important for the success of this work in finite time. The most common
lumped muscle model is the so-called Hill-type model [22], which consists of a contractile
element (CE), a parallel elastic element (PEE) and a serial elastic element (SEE). In [17]
this model has been extended to include a serial damping element (SDE), which is used in
this work. The four elements form a so-called muscle tendon unit (MTU). A visualization
of the elements is shown in figure 3.1. The exerted force of this Hill-type MTU model
with serial damping element is described by a differential equation

l̇CE = fCE
(
lMTU, l̇MTU, lCE, a

)
(3.2)
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and an algebraic equation

fMTU = fF
(
lMTU, l̇MTU, lCE, a

)
. (3.3)

Here, lCE is an internal state that corresponds to the length of the contractile element,
lMTU and l̇MTU is the length of the complete MTU and its velocity, respectively. The
quantity a denotes the muscle activity, which influences the contraction of the contractile
element and the damping characteristics of the serial damping element. The forces exerted
by each of the m MTUs are summarized in the vector

fMTU =
(
fMTU

1 , . . . , fMTU
m

)
∈ Rm. (3.4)

PEE

CE

SEE

SDE

lMTU
lCE

Figure 3.1: Hill-type model of a muscle tendon unit consisting of a contractile element
(CE), a parallel elastic element (PEE), a serial elastic element (SEE) and a
serial damping element (SDE).

3.3. Activation Dynamics
So far, the produced forces of the muscle tendon units depend on their activation state
a. The so-called excitation-contraction coupling relates actual motor commands from
the nervous system, the muscle stimulations, to the muscle activity. According to the
Hatze approach [20], this excitation-contraction coupling is modeled with an additional,
nonlinear first order dynamical system for each MTU, summarized in vector form

ȧ = fa(a, lCE,u), (3.5)

where a = (a1, . . . , am)T ∈ Rm is the vector of all muscle activations, lCE ∈ Rm the vector
of the contractile element lengths and u ∈ U = [0, 1]m denotes the normalized muscle
stimulation of all muscles. This activation dynamics introduces additional delays [33],
increases the state dimension for each muscle and acts as a low pass filter.

3.4. Antagonistic Setup – Redundancy
Since a biological muscle can only actively produce forces in contraction direction, at
least two muscles are required to articulate a joint. A muscle pair that drives one joint
is called a monoarticular muscle. In addition, biological systems found in nature also
have so-called biarticular muscles that drive multiple joints at the same time. There-
fore, a musculoskeletal system has significantly more actuators and hence control inputs
than kinematic degrees of freedom [42]. One advantage of the antagonistic setup is that
through different co-contraction levels the stiffness of the system can be adjusted. The
consequences of this property are discussed in more detail in the next paragraph.
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3.5. Attractor and Equilibrium Points
The rigid body, internal muscle and activation dynamics form a system of differential
equations

ẏ = f(y,u) (3.6)

that is driven by the muscle stimulation input u ∈ U ⊂ Rm. The state vector is

y =




q
q̇

lCE

a


 ∈ R2m+2dq , (3.7)

where dq is the number of kinematic degrees of freedom and m the number of muscles. Al-
gebraic equations complete (3.6) to a complete description of the system. The dynamical
system (3.6) is in an equilibrium state (y∗,u∗) if

f(y∗,u∗) = 0. (3.8)

Such equilibria can have different kind of stability properties. The redundant, antagonistic
muscle setup, together with their characteristic force-length and force-velocity relations
now have an important consequence to the stability properties of equilibrium points of
the system. In figure 3.2, which is taken from [13], the resulting torque generated from
two antagonistic muscles for one joint is shown for different static activation levels. As
one can see, the resulting joint torque is zero at different joint angles, depending on the
activation level. In case of an external perturbation, for example an increase in the joint
angle, the passive properties of the MTUs generate a torque opposing the perturbation
[13]. If the activation is increased in both muscles at the same time, which is called co-
contraction, the joint stiffness, as seen by the slope of the violet line in figure 3.2, increases,
while the equilibrium angle remains the same. Therefore, through the dynamics and the
antagonistic setup of the MTUs, the joint behaves like a spring-damper system with
tunable equilibrium angle and stiffness/damping properties [13].
This behavior implies that for a constant muscle stimulation, the musculoskeletal system

reaches, under some assumptions, a certain stable equilibrium configuration. The question
remains how large the attractor region for such an equilibrium point is. To formalize this,
for an equilibrium point (y∗,u∗), i.e. f(y∗,u∗) = 0, the set

A(y∗,u∗) =
{

ξ ∈ R2m+2dq : lim
t→∞

y(t) = y∗ for y(·) solution of ẏ = f(y,u∗),y(0) = ξ
}

(3.9)

defines all initial conditions of the musculoskeletal system that converge to y∗ for the
constant control input u∗. In this work, for the considered systems, it is assumed that for
all equilibrium points (y∗,u∗) it holds

A(y∗,u∗)
∣∣∣
X

= X , (3.10)

where X ⊂ Rdq denotes the set of all possible joint configurations. This means that
independent from the start configuration, the musculoskeletal system can be controlled
with a static muscle stimulation to a desired target configuration.
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Figure 3.2: Relation between static muscle activity a and equilibrium states (green
points) for an exemplary musculoskeletal model with one joint and two an-
tagonistic muscles. Plot and data from [13].

3.6. Monosynaptic Reflex – Lambda Control and Hybrid Control
One hypothesis in animal motor control is that muscle stimulations are generated through
a monosynaptic feedback loop for desired lengths λ = (λ1, . . . , λm)T ∈ Rm of the contrac-
tile elements, so-called lambda control [15]. The actual measured lengths lCE are provided
through the muscle spindels [23].
A basic feedback loop to realize this is a PD control scheme

ucl = Kp

(
LCE

opt

)−1 (
lCE − λ

)
−Kd

˙lCE, (3.11)

where Kp ∈ Rm×m and Kd ∈ Rm×m are the (diagonal) gain matrices. The matrix LCE
opt

acts as a normalization. Note that this is not a feedback on a desired configuration like
position or joint angles of the system. It is a feedback on an internal state of the system.
Combining static open loop muscle stimulations u with this feedback on the length

of the contractile elements is known as hybrid control. In this case, the desired lengths
λ correspond to the lengths of the contractile elements in the equilibrium state that is
reached through u alone. This way, the static open loop muscle stimulation defines the
final configuration, the feedback on lCE is used for both disturbance rejection and the
dynamic behavior towards the equilibrium configuration.
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3.7. Simulated Model of a Human Arm with Two Joints and Six
Muscles

The actual simulated musculoskeletal system that is used throughout this work is a model
of the human arm consisting of the upper and lower arm segment that are connected by
the elbow joint. The upper arm segment is attached to the static torso by a revolute
shoulder joint. Thus, the model is able to perform movements in the sagittal plane. The
two joints are articulated by 6 MTUs in total. For each joint there is a pair of monoar-
ticular MTUs. The two elbow muscles perform elbow flexion and extension, the two
monoarticular shoulder muscles anteversion and retroversion. Additionally, two biarticu-
lar MTUs articulate both joints simultaneously. For simplicity and since only movements
are possible in a 2 dimensional plane, the shoulder and biarticular muscles are also called
flexors and extensors in this work. The model and its parameters have been developed in
[43], which itself is based on [3].
Figure 3.3 left visualizes the simulation model, including the muscles. In figure 3.3 right,

the true reachable set X of the arm model is shown. Two aspects have to be mentioned
here. First, the true workspace is also only an estimation based on the kinematic data of
the simulation model. This estimation does not take into account that the joint limits are
modeled as linear damped springs. Secondly, the reachable space of a real human arm is
larger. In the simulation model, the motion range has been reduced to ensure that the the
attractor property holds everywhere in X and that the model stays within its validated
range.

−0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

x [m]

y
[m

]

true reachable set X

Figure 3.3: Left: Simulation model of human arm with elbow and shoulder joint to per-
form movements in the sagittal plane. Red lines are the two monoarticular
shoulder muscle tendon units (MTUs), orange the two biarticular ones and
blue depicts the two monoarticular elbow MTUs. The X -space is the po-
sition of the hand of the arm in the sagittal plane. Right: True reachable
set/workspace of the simulated arm model. The term “true” means that it
is estimated based on the kinematics of the simulation model, not taking
the way the joint limits are modeled as linear damped springs into account.
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3.8. Real Bio-Inspired Muscle-Driven Robot Mimicking a Human
Arm

In addition to the simulation model, the whole methodology is also evaluated on a real
muscle-driven robot that mimics the simulation model of a human arm. Recreating the
properties of biological muscles in a technical actuator is challenging. So-called pneu-
matic artificial muscles (PAMs) exhibit a similar nonlinear force-length and force-velocity
relation as found in biology [26]. Figure 3.4 shows the real robot that is driven by 5 pneu-
matic muscles. Similar to the simulation model, the robot consists of the shoulder and
elbow joint to allow movements in the sagittal plane. To further enhance the biological
characteristics of the technical system, springs are added in series to the PAM actuators
to form so-called muscle spring units (MSUs). As in the simulation model, two pairs of
monoarticular MSUs drive each joint separately. A fifths MSU acts as a biarticular drive.
The control input u ∈ [0, 1]5 corresponds to pressures for the pneumatic muscles of 0 to
5 bar.
One of the biggest differences that is relevant for the present work between the biological

MTU and the technical MSU is that the pneumatic muscles have very limited stretch and
contract capabilities. More specifically, PAM actuators can only contract to 75% of their
rest length, compared to the biological muscle, which is able to contract to 40% and be
stretched to 170% of its rest lengths. Therefore, the possible motion range of the real
robot is much smaller than of the simulated model. For further details about this robot
refer to [13].

Figure 3.4: Real muscle-driven robot model mimicking the human arm model. The two
joints (shoulder and elbow) are articulated by 5 pneumatic muscle spring
units (MSUs), allowing movements in the sagittal plane. Two monoarticular
MSUs drive each joint separately. The fifth MSU articulates both joints at
the same time as a biarticular muscle to perform shoulder anteversion and
elbow flexion [13].
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4. Methodological Foundations

4. Methodological Foundations
One purpose of this section is to introduce the necessary background about the main
function approximation methods utilized in this work as well as to introduce the corre-
sponding notation. More importantly, the central error estimate for regularized kernel
regression is derived here in section 4.1.1.

4.1. Kernel Regression
A central part of this work is to learn a function φ : U → X , U ⊂ Rm, X ⊂ Rd from
data describing the input-output mapping, while additionally, under some assumptions,
being able to estimate the error between the true function and the learned approximate.
Kernel based methods are a suitable choice for this task, since the underlying theory
of reproducing kernel Hilbert spaces enables to derive such error estimates elegantly.
However, kernel methods also have disadvantages, which are discussed in sections 7.3 and
7.4. First, basic definitions and properties are introduced.

Definition 4.1 (Kernel). Let U be an arbitrary, non-empty set. Then a symmetric
function k : U × U → R is called a kernel. Symmetry means ∀u,u′∈U : k(u,u′) = k(u′,u).

Definition 4.2 (Positive Definite Kernel). A kernel k : U × U → R is called positive
definite, if for all w ∈ N and all {ui}wi=1 ⊂ U , the kernel matrix K = (k(ui,uj))wi,j=1 ∈
Rw×w is positive semi definite.

Definition 4.3 (Strictly Positive Definite Kernel). A kernel k : U × U → R is called
strictly positive definite, if for all w ∈ N and all {ui}wi=1 ⊂ U , ui 6= uj, i 6= j the kernel
matrix K = (k(ui,uj))wi,j=1 ∈ Rw×w is positive definite.

A very popular choice of a kernel is the Gaussian, which is sometimes also called squared
exponential kernel.

Proposition 4.4 (Gaussian Kernel). For a symmetric positive definite matrix Σ ∈ Rm×m,
the Gaussian or squared exponential kernel is defined as

k(u,u′) = exp
(
−1

2 (u− u′)T Σ−1 (u− u′)
)
. (4.1)

This kernel is strictly positive definite. Often Σ = diag(l21, . . . , l2m), lm > 0.

Proof. See [45].

Definition 4.5 (Reproducing Kernel Hilbert Space (RKHS)). Let U 6= ∅. The Hilbert
space Hk of functions φ : U → R with inner product 〈·, ·〉Hk

is called a Reproducing Kernel
Hilbert Space (RKHS) if and only if there exists a function k : U × U → R such that

∀u∈U : k(u, ·) ∈ Hk (4.2)
∀φ∈Hk

∀u∈U : 〈φ, k(u, ·)〉Hk
= φ(u). (4.3)

The latter is called reproducing property.

Theorem 4.6 (Kernel from RKHS). The function k : U ×U → R from the definition 4.5
of the RKHS is a positive definite kernel.
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Proof. Symmetry: Using the reproducing property (4.3) and the symmetry of an inner
product

k(u,u′) = 〈k(u, ·), k(u′, ·)〉Hk
= 〈k(u′, ·), k(u, ·)〉Hk

= k(u′,u). (4.4)

Positive definiteness: Choose ϕ : U → Hk, ϕ(u) = k(u, ·) (so-called feature space repre-
sentation). Then

k(u,u′) = 〈k(u, ·), k(u′, ·)〉Hk
= 〈ϕ(u), ϕ(u′)〉Hk

, (4.5)

which is positive definite.

Theorem 4.7 (RKHS from Kernel). Let k be a (strictly) positive definite kernel. Then
there exists an RKHS Hk with reproducing kernel k.

Proof. See [45]

An important class of functions φ ∈ Hk are finite linear combinations of kernels. In
this case, the RKHS inner product can easily be calculated as a quadratic form.

Proposition 4.8 (RKHS Inner Product). Let φ1 = ∑n1
i=1 b

1
i k(u1

i , ·) and φ2 = ∑n2
i=1 b

2
i k(u2

i , ·)
be two functions φ1 ∈ Hk, φ2 ∈ Hk. Then

〈φ1, φ2〉 = bT1 K1,2b2 (4.6)

with K1,2 =
(
k(u1

i ,u2
j)
)n1,n2

i,j=1
∈ Rn1×n2 , b1 = (b1

i )
n1
i=1 ∈ Rn1 , b2 = (b2

i )
n2
i=1 ∈ Rn2 .

Proof. This relies on the reproducing property (4.3) and bilinearity of a scalar product.

〈φ1, φ2〉 =
〈
n1∑

i=i
b1
i k(u1

i , ·),
n2∑

j=1
b2
jk(u2

j , ·)
〉

=
n1∑

i=1

n2∑

j=1
b1
i b

2
j〈k(u1

i , ·), k(u2
j , ·)〉 (4.7)

=
n1∑

i=1

n2∑

j=1
b1
i b

2
jk(u1

i ,u2
j) = bT1 K1,2b2. (4.8)

Proposition 4.9 (RKHS Norm). Let φ = ∑n
i=1 bik(ui, ·). Then the RKHS norm of φ

admits the form

‖φ‖Hk
=
√

bTKb (4.9)

with K = (k(ui,uj))ni,j=1 ∈ Rn×n, b = (bi)ni=1 ∈ Rn.

Proof. Clear from proposition 4.8.

The next theorem is of great importance for applications in machine learning and
explains why finite dimensional linear combinations of kernels are an important class of
functions.
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Theorem 4.10 (Representer). Let k : U × U → R be a positive definite kernel. J :
[0,∞) → R a monotonically increasing function and C : (U × R× R)n → R ∪ {∞}. For
the set D1 = {(ui, xi)}ni=1 (which will be called dataset later), if the (infinite dimensional)
optimization problem

min
φ∈Hk

C ((u1, x1, φ(u1)), . . . , (un, xn, φ(un))) + J
(
‖φ‖2

Hk

)
(4.10)

has a solution, then there exists a solution which can be written as

φ =
n∑

i=1
bik(ui, ·) (4.11)

with bi ∈ R, i = 1, . . . , n.

Proof. An elegant proof is due to [41].

The representer theorem implies that the solution of the infinite dimensional optimiza-
tion problem can be expressed in terms of a finite combination of kernels located at the
data inputs. This property is the key to use many kernel methods in practice. In the
following, finally, based on the representer theorem, a kernel regression method is derived
to learn a function from data.

Proposition 4.11 (Kernel Regression with RKHS Norm Regularization). Let a dataset
D1 = {(ui, xi)}ni=1 be given, where ui ∈ U are the inputs and xi ∈ R are the outputs. For
the positive definite kernel k : U ×U → R with associated RKHS Hk and a regularization
parameter σ ≥ 0, the kernel regression problem is defined as the optimization problem

min
φ∈Hk

n∑

i=1
|xi − φ(ui)|2 + σ2 ‖φ‖2

Hk
. (4.12)

If the kernel k is positive definite and σ > 0 or if the kernel is strictly positive definite
and σ ≥ 0, the unique solution of the kernel regression problem (4.12) is given by

φ(u) = xTG−1κ(u), (4.13)

where G = K + σ2I ∈ Rn×n, K = (k(ui,uj))n×ni,j=1 ∈ Rn×n, κ(u) = (k(ui,u))ni=1 ∈ Rn,
x = (xi)ni=1 ∈ Rn.

Proof. According to the representer theorem 4.10, the solution of (4.12) can be written as
φ(u) = bTκ(u) for some b ∈ Rn. Therefore, (4.12) is equivalent to the finite dimensional,
convex optimization problem

min
b∈Rn

‖x−Kb‖2
2 + σ2

∥∥∥bTKb
∥∥∥

2

2
(4.14)

which has the unique solution

b = G−1x, (4.15)

since if k is positive definite and σ > 0, G is positive definite or if k is strictly positive
definite (and only σ ≥ 0), G is positive definite as well.
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Proposition 4.12 (Kernel Interpolation). If σ = 0 and k is strictly positive definite,
then φ(ui) = xi, i.e. the estimated function φ interpolates at the training input points.
This implies that the optimal value of the objective 4.12 is zero.

Proof. For σ = 0, G = K. Furthermore, κ(ui) = K:,i, which implies G−1κ(ui) = ei.

Proposition 4.13 (RKHS Norm for Kernel Regression). The RKHS norm of the kernel
regression solution from proposition 4.11 can be calculated as

‖φ‖Hk
=
√

bTKb =
√

xTG−1KG−1x. (4.16)

Remark 4.14. The RKHS norm of a kernel regression solution is a function of both the
observed support points ui and their function values xi.

Especially if using Gaussian kernels or other radial kernels, the value of the learned
kernel regression function φ approaches zero where there is no data. Sometimes this
would lead to undesired results. Therefore, one can introduce a mean prior function. For
simplicity, only constant mean priors are considered here, although the extension to mean
functions is straightforward.

Proposition 4.15 (Mean Prior). Under the assumptions of proposition 4.11, the kernel
regression problem with mean prior m ∈ R is defined es

min
φ∈Hk

n∑

i=1
|xi − (φ(ui) +m)|2 + σ2 ‖φ‖2

Hk
(4.17)

with the unique solution for a strictly positive definite kernel

φ(u) = (x−m)T G−1κ(u) +m, (4.18)

where G = K + σ2I ∈ Rn×n, K = (k(ui,uj))n×ni,j=1 ∈ Rn×n, κ(u) = (k(ui,u))ni=1 ∈ Rn,
x = (xi)ni=1 ∈ Rn.

Proof. Analog to the proof of proposition 4.11.

These were the main important definitions and properties of kernel based methods as
required in this work. For more details about kernel theory, refer to [41], [45].

4.1.1. Error Estimate

As mentioned above and as will become clear later in section 5, a crucial aspect of this work
is to estimate how well a learned function approximates the true one from which the data
is generated. There are different kinds of error estimates. One type are asymptotic error
bounds that measure the difference between the true and the learned function globally
in terms of a specific function norm. These are typically used to investigate convergence
rates. More useful for the purpose of this work are point-wise error estimates, which
try to estimate the error between the true and learned function in a norm of their co-
domains at a specific location in the input domain. If it is assumed that the true function
comes from the same RKHS as the learned approximate, a point-wise error estimate can
be derived elegantly. In the following such a point-wise error estimate for a regularized
kernel regression (proposition 4.11) is stated. To the knowledge of the author of this
document, this specific result has not been reported in the literature yet. However, both
the structure of the error estimate and its proof are very similar to a well-known result
from [45], where the unregularized case has been studied.
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Theorem 4.16 (Kernel Regression Error Estimate). If the true function φ̂ : U → R
comes from the same RKHS Hk as the kernel approximator φ from proposition 4.11, i.e.
φ̂ ∈ Hk and fulfills

∥∥∥φ̂
∥∥∥
Hk

<∞, then for all u ∈ U it holds

∣∣∣φ̂(u)− φ(u)
∣∣∣ ≤

∥∥∥φ̂
∥∥∥
Hk

s(u), (4.19)

where

s(u) =
√
k(u,u)− κ(u)TG−1κ(u)− σ2κ(u)TG−2κ(u). (4.20)

Before the proof can be given, two little lemmata are needed. First, the often helpful
Woodbury identity.

Lemma 4.17 (Woodbury Matrix Inversion Formula). Let A ∈ Rn×n,U ∈ Rn×k,C ∈
Rk×k,V ∈ Rk×n, det(A) 6= 0, det (A + UCV) 6= 0, then

(A + UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1. (4.21)

Proof. See [36].

Next a compact representation of the solution of the kernel regression problem is stated.

Lemma 4.18. Define p = (p1, . . . ,pn) : U → Rn as

p(u) = G−1κ(u), (4.22)

where G and κ are defined as in proposition 4.11. Then the kernel regression solution
(4.13) can be written as

φ(u) =
(
φ̂(u1), . . . , φ̂(un)

)
p(u). (4.23)

For σ = 0, the elements of p are a Lagrange basis of the corresponding interpolation
problem.

Proof. The representation (4.23) is clear. For σ = 0, it holds

p(u) = G−1κ(u) = IK−1κ(u) (4.24)

and hence with proposition 4.12

p(ui)j = eTj K−1κ(ui) = eTj ei = δij. (4.25)

Now finally the error estimate can be proven.
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Proof of theorem 4.16. For the error between the true function φ̂ and the learned approx-
imate φ at an arbitrary u ∈ U it holds
∣∣∣φ̂(u)− φ(u)

∣∣∣
2

=
∣∣∣∣
〈
φ̂, k(u, ·)

〉
Hk

− 〈φ, k(u, ·)〉Hk

∣∣∣∣
2

(4.26)

=
∣∣∣∣∣∣

〈
φ̂, k(u, ·)

〉
Hk

−
〈

n∑

i=1
φ̂(ui)pi, k(u, ·)

〉

Hk

∣∣∣∣∣∣

2

(4.27)

=
∣∣∣∣∣
〈
φ̂, k(u, ·)

〉
Hk

−
n∑

i=1

〈〈
φ̂, k(ui, ·)

〉
Hk

pi, k(u, ·)
〉

Hk

∣∣∣∣∣

2

(4.28)

=
∣∣∣∣∣
〈
φ̂, k(u, ·)

〉
Hk

−
n∑

i=1

〈
φ̂, k(ui, ·)

〉
Hk

〈pi, k(u, ·)〉Hk

∣∣∣∣∣

2

(4.29)

=
∣∣∣∣∣
〈
φ̂, k(u, ·)

〉
Hk

−
n∑

i=1

〈
φ̂, k(ui, ·)

〉
Hk

p(u)i
∣∣∣∣∣

2

(4.30)

=
∣∣∣∣∣∣

〈
φ̂, k(u, ·)−

n∑

i=1
k(ui, ·)p(u)i

〉

Hk

∣∣∣∣∣∣

2

(4.31)

≤
∥∥∥φ̂
∥∥∥

2

Hk

∥∥∥∥∥k(u, ·)−
n∑

i=1
k(ui, ·)p(u)i

∥∥∥∥∥

2

Hk

(4.32)

=
∥∥∥φ̂
∥∥∥

2

Hk


k(u,u)− 2

n∑

i=1
k(ui,u)p(u)i +

n∑

i=1

n∑

j=1
k(ui,uj)p(u)ip(u)j




(4.33)

=
∥∥∥φ̂
∥∥∥

2

Hk

(
k(u,u)− 2κ(u)Tp(u) + p(u)TKp(u)

)
(4.34)

=
∥∥∥φ̂
∥∥∥

2

Hk

(
k(u,u)− 2κ(u)TG−1κ(u) + κ(u)TG−1KG−1κ(u)

)
. (4.35)

The right term on the right of (4.35) can further be simplified. To do so, the Woodbury
identity (4.21) is applied to the term G−1KG−1, which yields

G−1KG−1 = G−1K
(
K + σ2I

)−1
= G−1K

(
K−1 −K−1

( 1
σ2 I + K−1

)−1
K−1

)
(4.36)

= G−1−G−1
(
K
( 1
σ2 I + K−1

))−1
= G−1−G−1

(
σ2

σ2

( 1
σ2 K + I

))−1

(4.37)

= G−1− σ2G−1
(
K + σ2I

)−1
(4.38)

= G−1− σ2G−2. (4.39)

Inserting this into (4.35) gives
∣∣∣φ̂(u)− φ(u)

∣∣∣
2 ≤

∥∥∥φ̂
∥∥∥

2

Hk

(
k(u,u)− κ(u)TG−1κ(u)− σ2κ(u)TG−2κ(u)

)
. (4.40)

By taking the square root, the proposition follows. The first part of this proof followed a
similar idea as in [45].

Readers familiar with Gaussian processes might recognize a similarity between the term
(4.20) in the error estimate and the variance of a Gaussian process regression model. To
show where this similarity comes from, we need the following lemma.
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Lemma 4.19. G−2 = G−1G−1 is positive definite. This also holds for σ = 0, if the kernel
is strictly positive definite.

Proof. Let a ∈ Rn\{0}, then

aTG−2a = aTG−1G−1a =
∥∥∥G−1a

∥∥∥
2

2
> 0. (4.41)

Proposition 4.20 (Relation to Gaussian Process Variance Estimate). Let

V(u) = k(u,u)− κ(u)TG−1κ(u) (4.42)

be the variance estimate of a Gaussian process model [37] for the regression problem
defined in proposition 4.11. Then it holds

∣∣∣φ̂(u)− φ(u)
∣∣∣ ≤

∥∥∥φ̂
∥∥∥
Hk

s(u) ≤
∥∥∥φ̂
∥∥∥
Hk

√
V(u). (4.43)

Proof. Follows directly from lemma 4.19 and theorem 4.16.

Remark 4.21. Proposition 4.20 means that the bound derived in theorem 4.16 is tighter
than an error estimate that is based on the variance of the Gaussian process.

Example 4.22 (Error Estimates). To demonstrate the derived error estimate, figure 4.1
shows the true error between the true function and the learned kernel approximate as well
as the estimated error for two different regularization parameters σ. In order to ensure
that φ̂ ∈ Hk, φ̂ is constructed as a linear combination of 7 Gaussian kernels at different
locations with length scale l = 0.2. The true function has a RKHS norm of

∥∥∥φ̂
∥∥∥
Hk

= 7.32,
the learned approximate ‖φ‖Hk

= 2.48 for σ = 0.3 and ‖φ‖Hk
= 2.69 for σ = 0.01. One

can see the regularizing effect on the RKHS norm of the parameter σ.
For σ = 0.3 (figure 4.1b) the derived bound from theorem 4.16 is more tight than the

bound based on the variance of a Gaussian process. For lower regularization (σ = 0.01,
figure 4.1d), the difference is not visible.
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Figure 4.1: Visualization of the proposed error estimate for two different regularization
parameters σ as well as comparison to the error estimate based on the vari-
ance of a Gaussian process.
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4.2. Neural Networks
For representing the inverse model, this work utilizes feedforward neural networks. This
section provides the basic notational background about neural networks necessary for the
understanding of the rest of this work.
In general, one can think of a standard feedforward neural network as a parameterized

function π : X ⊂ Rd → Rm. These parameters are also called the weights.

Definition 4.23 (Notation of Weights/Parameters). Let W ⊂ Rw be the space of all
admissible parameters/weights of the neural network π. This is denoted by

π(x) = π(x; w). (4.44)

A standard feedforward neural network now consists of multiple layers. In each layer,
the input yl ∈ Rnl is first affinely transformed Wlyl + bl with W ∈ Rnl×nl+1 , b ∈ Rnl+1 .
The result is then processed element wise with a non-linear activation function a

yl+1 = a(Wlyl + bl), (4.45)

leading to the output of this layer l. The dimensionality of the internal vectors of a
specific layer is called the number of units of this layer. The matrices Wl and bias terms
bl of each layer are collected in the parameter w ∈ W . With respect to the activation
functions, this work uses so-called ReLU functions.

Definition 4.24 (ReLU Activation Function). The Rectified-Linear-Unit (ReLU) is de-
fined as

aReLU(y) = max(0, y). (4.46)

Since π is used to predict muscle stimulations, it has to be ensured that π maps into
the normalized muscle stimulation space [0, 1]m, according to section 3. To this end, a
so-called sigmoid activation function is used.

Definition 4.25 (Sigmoid Activation Function). The sigmoid is defined as

asig(y) = 1
1 + e−y

. (4.47)

Since asig(R) = (0, 1), when using the sigmoid activation function for the output layer
of π, it holds π(Rd) ⊂ (0, 1)m ⊂ [0, 1]m.
A complete neural network with 2 hidden ReLU layers and a sigmoid output layer

would, for example, look like

π(x) = asig

(
W3aReLU

(
W2aReLU (W1x + b1) + b2

)
+ b3

)
. (4.48)

This structure is used for the experiments in this work to represent the inverse model π,
as described in section 5. The extension to arbitrary many layers is straightforward.
Now the major question remains how the weights of such a network can be optimized

to solve a desired task. Assume that the objective of this task is defined in terms of a
sum of the same objective L evaluated at a dataset D = {(xi,yi)}ni=1, i.e. the weights of
the neural network should optimize

min
w∈W

n∑

i=1
L(xi,yi,π(xi; w)). (4.49)

23
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Due to the often extremely high number of parameters, it is usually impossible to use
second order optimization methods. Furthermore, there are many local minima, which
makes (4.49) a challenging optimization problem. However, it turns out that gradient
based methods like stochastic gradient descent work for many difficult problems. The
main idea behind stochastic gradient descent is do gradient steps not on the complete
dataset, but only on mini batches, i.e.

w← w− α
nb∑

i=j
∇wL(xi,yi,π(xi; w)), (4.50)

where 1 ≤ j ≤ n− nb + 1 with a batch size of 1 ≤ nb ≤ n and the so-called learning rate
α > 0. A popular extension to stochastic gradient descent is Adam [25], which empirically
can solve many difficult problems. There the idea is to maintain running averages of the
gradients and their second moments for future gradient steps. For details, refer to [25].
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5. Active Inverse Model Learning
From an abstract point of view, the goal of this work is to learn an inverse of a non-
injective function. This function will be called the forward model and its inverse the
inverse model. The forward model, in general, encodes how a system reacts to control
inputs. More specifically, within the context of the control of musculoskeletal systems,
the forward model describes the equilibrium configuration of the musculoskeletal system
for a specific choice of muscle stimulations, the control input. The inverse model would
then predict the necessary control inputs/muscle stimulations that leads to the desired
state/configuration of the system.
In the following, it is first stated precisely what this work actually understands as learn-

ing an inverse model (section 5.1.2) and the involved challenges are identified. Based on
the insights of formalizing the inverse model learning problem, concrete algorithms are de-
rived that address these challenges. This includes learning the inverse model itself (section
5.2), a way to estimate the reachable set (section 5.3) and the active exploration strategy
(section 5.4). The complete framework is then summarized in section 5.5, together with
practical remarks. After the main methodology has been established, an extension to pa-
rameter dependent inverse models is developed in section 5.6. In section 5.7, it is shown
how lambda control can be learned within this framework.

5.1. Formalization of Inverse Model Learning
5.1.1. Motivation

Before the actual inverse model learning problem is defined, it is first motivated why
simply learning a function from data directly is not the answer to all questions.
A function is a mathematical object that is defined by its domain, which is a set, and

the way it uniquely associates elements of the domain to another set, which is called the
codomain. This association is usually termed as the mapping of the function. Therefore,
the two functions f and g, which are defined by f : [0, 1]→ R, f(x) = x2 and g : [−1, 1]→
R, g(x) = x2 are not the same mathematical object.
Machine learning, approximation theory etc. study how to infer a function from col-

lected data. This data, however, only describes the mapping itself. Therefore, strictly
speaking, most machine learning algorithms do not learn a function, they only learn a part
of it. While this distinction seems to be artificial for the two functions f and g mentioned
a few lines above, consider the arcsin function. When sampling from this function and
using for example a standard feedforward neural network to explain the data, one can also
query the neural network at a value of 2. Here, the arcsin is not defined (real numbers),
but the neural network would still predict a value, which could lead to many undesirable
effects. Therefore, a neural network alone will never be able to represent the function as
a whole properly. The same holds true for most function approximation techniques, since
they are usually defined on the complete real hyper axis.
Apart from the problem of the unknown domain of a function, collecting samples from

a data source does not necessarily mean that the underlying data generator is a function
at all. As has been discussed in the related work section 2, this problem naturally occurs
for example in inverse kinematics of robot arms. A dataset from such a robot arm could
contain multiple joint configurations that lead to the same task value. If a regression
method is utilized that is based on the squared error, the averaging over those multiple
configurations that correspond to the same task value leads invalid results.

25



5. Active Inverse Model Learning

5.1.2. Problem Definition

First, the true forward model is formalized.

Definition 5.1 (Control Inputs). The set

U ⊂ Rm (5.1)

denotes the set of admissible control inputs. It is assumed that U is a compact set.

Definition 5.2 (True Reachable Set/Workspace). The true reachable set or the workspace
is denoted by

X ⊂ Rd. (5.2)

It is assumed that X is compact or at least bounded as well.

Definition 5.3 (Redundancy). This work assumes that d ≤ m, which corresponds to
redundancy in the sense that there are more control inputs than state dimensions (d < m).

Definition 5.4 (True Forward Model). The true system

φ̂ : U → X (5.3)

is a function that statically and uniquely maps a control input u ∈ U to a point x ∈ X of
the reachable set. More specifically, it describes how the real system uniquely, in absence
of external disturbances, reacts to control inputs in the sense of a static mapping.

Remark 5.5. General forward models are usually functions from both the control input
and the current state of the system (including external influences), either as state evolution
equations or as differential equations. In contrast, this work only considers static and
state-independent forward models.

Definition 5.6 (True Forward Model and Sets for Musculoskeletal Systems). In the
context of musculoskeletal systems as considered in this work, the control inputs are the
normalized muscle stimulations, i.e.

U = [0, 1]m, (5.4)

where m ∈ N is the total number of muscles of the system that can be stimulated inde-
pendently. The reachable set X ⊂ Rd is the set of all possible equilibrium configurations
the system can reach, which could be, for example, the position of the hand of the arm
model from section 3 or also its joint configuration. As has been discussed in section 3, it
is assumed that each muscle stimulation u ∈ U uniquely leads to a configuration x ∈ X
in equilibrium, independent from the start configuration. This is what is expressed by
the true forward model φ̂. Therefore, the reachable set as X = φ̂(U) is also the set of all
possible equilibrium positions.

Remark 5.7. Since the true forward model φ̂ is a static mapping, the dynamical behavior
between equilibrium states is not represented by φ̂.

Remark 5.8 (Surjectiveness). To simplify the discussion,

X = φ̂(U), (5.5)

which means that the true forward model is surjective. This is not a limiting assumption,
it just removes the need for technical details mentioned repeatedly.
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After the true forward model has been formalized, the central description what this
work considers as learning an inverse model can be stated.

Definition 5.9 (Inverse Model Learning). For a true forward model φ̂ : U → X , U ⊂ Rm,
X ⊂ Rd, d ≤ m, the inverse model learning problem is defined as learning both

1. the reachable set X

2. the inverse model π : X → U such that

∀x∈X : φ̂(π(x)) = x. (5.6)

While X is unknown, it is assumed that the set of admissible control inputs U is known.
Further, the only information about the true forward model φ̂ available is the possibility
to query it at a control input, which could involve a (costly) simulation or even a real
robot experiment. In particular, no derivatives of φ̂ are available.

Proposition 5.10 (Existence of Inverse Model). Under the assumptions of definition 5.4
and remark 5.8, such a (right) inverse π from definition 5.9 exists.

Proof. By defining X = φ̂(U) according to remark 5.8, φ̂ is trivially surjective by defini-
tion, which is sufficient for the existence of a right inverse.

Proposition 5.11 (Inverse Model as Optimization Problem with Known True Forward
Model). Under the assumptions of definition 5.4 and remark 5.8, an inverse model π :
X → U can be defined as the solution of

π(x) = argmin
u∈U

∥∥∥φ̂(u)− x
∥∥∥ (5.7)

for each x ∈ X , which always exists and has optimal value zero.

Proof. From proposition 5.10 it follows that ∀x∈X∃u∈U : φ̂(u) = x.

Defining an inverse this way has two main disadvantages. First, as stated in definition
5.9 of the inverse model learning problem, the true forward model is not available in terms
of a mathematical expression. Therefore, solving (5.7) with derivative free methods is not
only challenging methodologically, but also querying φ̂(u) is very time consuming. The
second problem, even if one would have φ̂ as a mathematical expression, is that (5.7) is
a potentially non-convex optimization problem which would have to be solved for each
desired target x ∈ X again.
Instead, the goal of the present work is to represent the inverse model in a form that

can be calculated efficiently for each desired target x ∈ X . In order to do so, the inverse
model π is represented as a standard feedforward neural network, as described in section
4.2. In principle, other function approximators that are defined with a finite number of
parameters could also be used. By using an output layer such that π maps into U and
continuous activation functions, it holds π ∈ C(X ,U). The condition (5.6) is not yet in a
manageable form for consideration of learning an inverse represented as a neural network,
since one could not train the neural network on all x ∈ X .
If it is further assumed that the true forward model is continuous as well, the condition

(5.6) can be reformulated in a way that is more suitable for learning.
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Proposition 5.12. Let φ̂ ∈ C(U ,X ) and π ∈ C(X ,U). Further assume that X does not
contain isolated points. Then

∀x∈X : φ̂(π(x)) = x (5.8)
⇔

∫

X

∥∥∥φ̂(π(x))− x
∥∥∥ dx = 0. (5.9)

Proof. ⇒ is clear. To see ⇐, assume that there exists a x ∈ X such that

φ̂(π(x)) 6= x, (5.10)

which implies
∥∥∥φ̂(π(x))− x

∥∥∥ > 0. (5.11)

Since X does not contain isolated points and due to the fact that
∥∥∥φ̂(π(x))− x

∥∥∥ is
continuous, since φ̂◦π ∈ C(X ,X ) and norms are continuous, there exists a neighborhood
Uε(x) of x such that Uε(x) ∩ X 6= ∅ and

∀x̃∈Uε(x)∩X :
∥∥∥φ̂(π(x̃))− x̃

∥∥∥ > 0. (5.12)

Therefore, it follows
∫

Uε(x)∩X

∥∥∥φ̂(π(x̃))− x̃
∥∥∥

︸ ︷︷ ︸
>0

dx̃ > 0, (5.13)

which is a contradiction. Therefore

∀x∈X :
∥∥∥φ̂(π(x))− x

∥∥∥ = 0, (5.14)

from which the proposition follows.

Remark 5.13. Due to U = [0, 1]m for a musculoskeletal system (definition 5.6), X =
φ̂(U) (remark 5.8) and φ̂ ∈ C(U ,X ), the assumption that X does not contain isolated
points is automatically fulfilled.

However, inverses are, even for continuous true forward models, in general not con-
tinuous. Therefore, one cannot expect that the integral condition (5.9) can be fulfilled
exactly for a continuous class of inverse models π such as neural networks. Therefore, the
parameters w ∈ W of the inverse model π, i.e. the weights of the neural network in this
case (section 4.2), would be chosen to minimize (5.9). Neural networks are also known for
approximating discontinuities reasonably well, which justifies to use neural networks for
representing the inverse model. This leads to the central (ideal) inverse model learning
problem formulation.

Definition 5.14 (Ideal Inverse Model Learning Problem). For the true forward model
φ̂ ∈ C(U ,X ), the parameters (weights) of the inverse model π ∈ C(X ,U) are determined
as the solution of the optimization problem

min
w∈W

∫

X

∥∥∥φ̂(π(x; w))− x
∥∥∥ dx. (5.15)
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Here one can also see that the reachable set X is essential to even define a proper metric
to measure the quality of an inverse model.
Unfortunately, in this work, it is neither assumed to know the true reachable set X , nor

the true forward model φ̂ is available, as mentioned before, in terms of a mathematical
expression. The only way to acquire knowledge about the true system is to evaluate φ̂(u)
for a specific control input u ∈ U . Therefore, the ideal inverse model learning formulation
(5.15) is of little use.
To overcome this, the first idea would be to collect data from φ̂ and then learn a

surrogate model φ. If the dataset is rich enough, one could set X ≈ φ(U) and replace
the true forward model φ̂ in (5.15) with the learned φ. Since a function approximator
used for φ provides also derivatives, (5.15) could be solved with gradient based training
methods for neural networks as described in section 4.2. While seeming reasonable first,
this approach has several shortcomings. First of all, as mentioned before, evaluating φ̂(u)
involves a costly numerical simulation or even a real robot experiment, which, together
with the high dimensionality of the control input space U , prohibits dense sampling in U
to build a rich dataset. Especially if φ is learned based on little data, one cannot expect
that φ approximates φ̂ everywhere in U . At the same time, the optimization problem
(5.15) would treat the forward model as exact and hence an unreasonable inverse could
be learned.
Indeed, as it is shown in the experiments in section 6.8.1, simply using (5.15) with

an iteratively learned φ from little data compared to the size of the control input space
is not sufficient and leads to bad performance. Furthermore, in addition to the fact
that calculating φ(U) is not only computationally demanding, for such a forward model,
estimating the reachable set as X ≈ φ also has misleading effects (section 6.7).

To summarize, learning an inverse model requires

• A surrogate objective to formulate the inverse model learning problem in a way that
takes into account that the forward model is learned from little data

• A way to estimate the reachable set X that is also efficient to compute

• An exploration strategy to efficiently generate the data in the high dimensional
input space in order to learn the forward model with the aim of reducing the error
of the inverse model.

Solutions for each of these three requirements are derived in one unifying methodology in
the following.
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5.2. Learning the Inverse Model π

During the learning process, in each iteration, a control input u ∈ U is applied to the real
system, which leads to a configuration x ∈ X . This data is added to a dataset as defined
as follows.

Definition 5.15 (Dataset). For ui ∈ U the value of the true forward model xi = φ̂(ui) ∈
X is stored in the dataset

D = {(ui,xi)}ni=1 . (5.16)

The control input part is denoted by

DU = {ui}ni=1 (5.17)

and the corresponding configurations as

DX = {xi}ni=1 = φ̂(DU). (5.18)

Remark 5.16 (Ordered Set and Indexing Notation). For technical reasons these datasets
D, DU and DX are ordered, i.e. one can think of

D ⊂
(
Rm × Rd

)n
, DU ⊂ (Rm)n , DX ⊂

(
Rd
)n
. (5.19)

Furthermore, to access the elements of these datasets, the following notation is used

D(i) = (ui,xi), i = 1, . . . , n. (5.20)

Similar to many software packages, indexing (i : j), 1 ≤ i < j ≤ n means

D(i : j) = ((uo,xo))jo=i . (5.21)

For DU and DX the access is defined analogously. With this notation, one can also write

D(i) = (DU(i),DX (i)) (5.22)

to make the correspondence and the ordering more explicit.

Based on this currently available data, the forward model is learned.

Definition 5.17 (Learned Forward Model). Let kj : U × U → R, j = 1, . . . , d be d
many, potentially different, (strictly) positive definite kernels with associated RKHSs
Hkj

. Further, assume a mean prior mj ∈ R and regularization parameter (σj > 0) σj ≥ 0
for each Hkj

. Given the dataset D from definition 5.15, the forward model φ : U → Rd

φ(u) =
(
φ1(u), . . . , φd(u)

)T ∈ Rd (5.23)

is learned, where each component φj is a solution of the kernel regression problem from
proposition 4.11, 4.15 in Hkj

on the data Dj =
{
(ui, (xi)j)

}n
i=1

.

Definition 5.18 (Parameterized Inverse Model). The inverse model π : X → U that
should be learned is represented as a parameterized function π( · ; w), where w ∈ W are
the parameters. More specifically, in this work, π is a feedforward neural, i.e. w ∈ W are
its weights (refer to section 4.2). Furthermore, it is assumed that π can also be evaluated
on the set X ⊂ Rd with X ⊂ X, which is automatically fulfilled for feedforward neural
networks where X = Rd.
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As discussed above, simply replacing φ̂ in (5.15) with this learned φ and then optimizing
the parameters w of π is not reasonable. Therefore, the goal is to derive an upper bound
on the quality of the inverse model, when only a learned forward model is given. As a
first step, the central error estimate for an arbitrary inverse model is derived under the
assumption that the true forward model is an element of the RKHS.

Theorem 5.19 (Upper Bound on True Reaching Error / Error Estimate). Assume that
for the true forward model φ̂ =

(
φ̂1, . . . , φ̂d

)T
it holds φ̂i ∈ Hki

with
∥∥∥φ̂i

∥∥∥
Hki

< ∞,
i = 1, . . . , d. Let π : X → U be an arbitrary inverse model according to definition 5.18,
i.e. it can also be evaluated on X with X ⊂ X meaning π : X ⊂ Rd → U . Then the true
reaching error in the X -space for this arbitrary π can be bound by

∥∥∥φ̂(π(x))− x
∥∥∥ ≤ ε(x), (5.24)

where the error estimate is defined as

ε(x) = ‖φ(π(x))− x‖+

√√√√
d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(π(x))2. (5.25)

This bound holds for all x ∈ X, i.e. in particular for all x ∈ X . In the case of the present
work where π is a standard feedforward neural network, X = Rd (refer to definition 5.18),
hence this bound is also true on complete Rd.

Proof. By inserting a zero and using the triangle inequality, the true error of the inverse
model at x ∈ X can be estimated as

∥∥∥φ̂(π(x))− x
∥∥∥ =

∥∥∥φ̂(π(x))− φ(π(x)) + φ(π(x))− x
∥∥∥ (5.26)

≤ ‖φ(π(x))− x‖+
∥∥∥φ̂(π(x))− φ(π(x))

∥∥∥ . (5.27)

The first term describes how well the inverse model is a right inverse to the learned forward
model and can be computed, since all involved quantities are available as mathematical
expressions. The second term is the error between the true and the learned forward model
at π(x) ∈ U . Using the kernel ridge regression error estimate (4.16) derived in section
4.1.1, the error between each component of the true forward model and the learned one
can be upper bounded as

∣∣∣φ̂i(π(x))− φi(π(x))
∣∣∣ ≤

∥∥∥φ̂i
∥∥∥
Hki

si(π(x)) (5.28)

for i = 1, . . . , d. Plugging this into the definition of the Euclidean norm gives

∥∥∥φ̂(π(x))− φ(π(x))
∥∥∥

2
=

d∑

i=1

∣∣∣φ̂i(π(x))− φi(π(x))
∣∣∣
2 ≤

d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(π(x))2. (5.29)

With this, the second term in (5.27) can be bound and the proposition follows.

This theorem 5.19 is of crucial importance for the whole active inverse model learning
framework and will come back several times in the following. As a first important part,
this bound now allows to establish a connection between the quality of the inverse model,
measured with a learned forward model, and the real quality, when measured with the
true forward model. In order to do so, a small simple lemma is needed.
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Lemma 5.20. For all a, b ∈ R it holds

(a+ b)2 ≤ 2a2 + 2b2. (5.30)

Proof.

(a+ b)2 = a2 + 2ab+ b2 ≤ 2a2 + 2b2 ⇔ 2ab ≤ a2 + b2 (5.31)
⇔ (a− b)2 ≥ 0 (5.32)

Using the derived error estimate (5.24) and lemma 5.20, it follows for the integral
condition (5.9) of π being a right inverse of φ̂ that

∫

X

∥∥∥φ̂(π(x))− x
∥∥∥

2
dx ≤

∫

X
ε(x)2 dx (5.33)

≤ 2
∫

X
‖φ(π(x))− x‖2 +

d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(π(x))2 dx. (5.34)

This upper bound does not require the true forward model in terms of a mathematical
expression, only its RKHS norm. If further an upper bound on this norm is assumed, i.e.∥∥∥φ̂i

∥∥∥
Hki

≤ βi, i = 1, . . . , d, the quality of the inverse model can be estimated as

∫

X

∥∥∥φ̂(π(x))− x
∥∥∥

2
dx ≤ 2

∫

X
‖φ(π(x))− x‖2 +

d∑

i=1
β2
i si(π(x))2 dx, (5.35)

where no quantity of the true forward model involved. Of course the tightness of this
bound depends on the tightness of

∥∥∥φ̂i
∥∥∥
Hki

≤ βi. This derivation has established the
desired connection in the sense that the quality of the inverse model for the true system
is measured based on the learned forward model.

Theorem 5.21 (Upper Bound on Quality of Inverse Model). Assume that
∥∥∥φ̂i

∥∥∥
Hki

≤ βi

for i = 1, . . . , d. Then an upper bound on the quality (5.15) of the inverse model π is
given by

∫

X

∥∥∥φ̂(π(x))− x
∥∥∥

2
dx ≤ 2

∫

X
‖φ(π(x))− x‖2 +

d∑

i=1
β2
i si(π(x))2 dx. (5.36)

As discussed before, there are potentially infinitely many inverse models. One might
be interested in influencing which inverse would be learned. To this end, the following
inverse regularizer is introduced.

Definition 5.22 (Inverse Regularizing Function). A positive, monotone function l : U →
R+ is called an inverse regularizing function.

Example 5.23. The choice

l(u) = ‖u‖2 (5.37)

would encourage to learn inverses with low control inputs.
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Finally, everything can be plugged together, which leads to the central inverse model
learning optimization problem.

Definition 5.24 (Inverse Model Learning Optimization Problem Formulation). The in-
verse model π is learned by optimizing

min
w∈W

∫

X
‖φ(π(x; w))− x‖2 +

d∑

i=1
β2
i si(π(x; w))2 + η l(π(x; w)) dx. (5.38)

Intuitively, the optimization problem tries to find an inverse to the learned forward model,
while, which is expressed with the second term in this objective, staying close to the data.
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5.3. Learning the Reachable Set X
The integral formulation (5.38) in the central inverse model learning optimization problem
(definition 5.24) assumed that the true reachable set X is known. In some situations it
might be reasonable to assume this, for example if X is a hyperrectangle with a priori
known limits in each dimension. However, the reachable set has, in general, a more
complex shape, which is not known in terms of a mathematical description. As derived
in proposition 5.12 and as can be seen in the integral formulation (5.38), the reachable
set is essential to define the objective to learn the inverse model at all. Therefore, this
work considers estimating the reachable set X as an inherent part of learning an inverse
model, which should not be treated separately.
The requirements for an estimate of X are

• A computationally feasible estimation

• A clear representation which easily allows to decided whether a point belongs to the
workspace or not

• The estimated set should not overestimate the real set unreasonably.

As a first idea, one could think of using the learned surrogate forward model φ and then
approximate the reachable set as

X ≈ φ(U), (5.39)

which could, in theory, be calculated, since it is assumed that the control input space
U is known. This, however, has two main disadvantages. Similar to the discussion in
section 5.1.2, (5.39) does not take into account that the learned forward model does not
approximate φ̂ everywhere in U precisely, probably leading to a highly overestimated
reachable set. But even if one could sample φ̂ densely enough to build a dataset for
learning φ everywhere in U , it is not straightforward how the reachable set would then
be represented based on φ in a computationally efficient way, since for example asking
whether a point x is part of the workspace would require to decided whether φ(u)−x = 0
has a solution u ∈ U , which is a non-trivial problem in its own. To overcome these issues,
the main idea is to again utilize the error estimate from section 5.2 to estimate X based
on the current learned forward and inverse model.
It is clear that one cannot expect to approximate X exactly by only learning from

sampled data. Therefore, the following defines a notion of an approximate reachable set.

Definition 5.25 (True Reachable Set with Error Certainty). For the true reachable set
X ⊂ Rd, the set

X̂c =
{
x ∈ Rd : dist(x,X ) < c

}
(5.40)

defines the true reachable set with error certainty c > 0.

Intuitively, X̂c is the set X enlarged by c, meaning that it overestimates X exactly by
the value of c. Figure 5.1 visualizes X̂c in comparison to X . With this, the present work
defines the problem of estimating the workspace as approximating X̂c for a given c.

Definition 5.26 (Reachable Set Estimation Problem). For a given error certainty c > 0,
estimating the true reachable set X ⊂ Rd is defined finding a set Xc ⊂ Rd, such that

Xc ⊂ X̂c. (5.41)
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Figure 5.1: Visualization of the true reachable set with error certainty X̂c for c = 0.02
of the simulated arm model from section 3.7.

Utilizing the error estimate of the inverse model from theorem 5.19, the following theo-
rem provides a solution to this estimation problem based on the current learned forward
and inverse model.
Theorem 5.27 (Estimated Reachable Set). The reachable set with error certainty c > 0
for the current learned forward and inverse model is determined by

Xc = {x ∈ X : ε(x) < c} , (5.42)

for which it holds

Xc ⊂ X̂c. (5.43)

In the case of π being a neural network, according to definition 5.18, X = Rd.
Proof. It is φ̂(π(x)) ∈ X for every x ∈ X, since π(X) ⊂ U . Therefore,

dist(x,X ) = inf
x′∈X
‖x′ − x‖ ≤

∥∥∥φ̂(π(x))− x
∥∥∥ (5.44)

by definition of dist and the infimum. By using the error estimate (5.24) from theorem
5.19, it follows

dist(x,X ) ≤ ε(x). (5.45)

Therefore, ε(x) < c implies dist(x,X ) < c and hence the proposition.
Remark 5.28 (Interpretation). Defining the domain of the inverse model as Xc has the
interpretation that for every x ∈ Xc it holds

∥∥∥φ̂(π(x))− x
∥∥∥ < c, (5.46)

meaning that the true reached point has a guaranteed accuracy of c.

35



5. Active Inverse Model Learning

Remark 5.29 (Computational Feasibility and Representation). Checking whether a
point x belongs to the estimated workspace reduces to calculate ε(x), which can be
done efficiently (see section 5.5.2 for a discussion of the computational complexity of the
proposed framework). Furthermore, since the X -space is assumed to be low dimensional,
Xc can also be represented by dense grid evaluation of ε.

Remark 5.30. Theorem 5.27 ensures that the estimated set never overestimates the
true reachable set with the specified error certainty. Therefore, the third requirement
for the estimation is fulfilled. However, it is not guaranteed that for a given c the set
Xc is nonempty, which means that Xc could also underestimate the true reachable set
significantly.

Remark 5.31 (Trade-Off). It is clear that there is a trade-off for the parameter c. If c is
large, then the true reachable set is typically overestimated. If c is small, the estimation
is accurate, but probably too conservative and hence underestimated.

One problem with estimating the reachable set according to theorem 5.27 is that it
relies on the quality of the current learned inverse model π. Improving the quality of the
inverse model, in turn, also depends on the quality of the estimated reachable set Xc. An
alternative to define the estimated reachable set without the inverse model would be the
following.

Proposition 5.32 (Estimated Reachable Set Forward Model Based). For c > 0 define

X Uc =
{

φ(u) : u ∈ U ∧
d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(u)2 < c2
}
, (5.47)

for which it holds

X Uc ⊂ X̂c. (5.48)

Proof. This proof has a similar idea than the proof of theorem 5.27. For notational
simplicity, abbreviate

s̃(u)2 =
d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(u)2. (5.49)

Assume that x ∈ X Uc . This implies ∃u∗∈U : φ(u∗) = x and s̃(u∗) < c. Since φ̂(u) ∈ X for
all u ∈ U , it holds for this specific u∗ that

dist(x,X ) = inf
x′∈X
‖x′ − x‖ ≤

∥∥∥φ̂(u∗)− x
∥∥∥ =

∥∥∥φ̂(u∗)− φ(u∗)
∥∥∥ ≤ s̃(u∗) < c, (5.50)

which means that x ∈ X̂c.
Approximating X̂c with X Uc has the advantage that it only relies on the forward model

and not the quality of the inverse model. Furthermore, the definition of X Uc takes into
account that the forward model is learned on potentially little data. As shown in the
experiments (see section 6.7), X Uc leads indeed to good results for estimating the reachable
set. However, one main disadvantage remains, namely that it is not clear how one could
check efficiently whether a point x is an element of X Uc . While it is for example possible
to calculate φ

(
Ũ
)
on a discretized version Ũ of U with modern hardware in finite time,

the computation time is far away from being practical. In comparison, checking if a point
is an element of Xc is, as discussed above, easily realizable.
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5.4. Active Exploration Strategy
So far, both the inverse model learning optimization problem (5.38) and the estimation
of the reachable set (5.42) assumed that the data D = {(ui,xi)}ni=1 (definition 5.15) for
learning the forward model φ is already collected. As mentioned several times in this
work before, the high dimensionality of U prohibits dense sampling of the true system to
generate this dataset. Therefore, as a final step, a methodology is developed to collect
the data for the forward model sample efficiently. However, the goal of the active inverse
model learning framework is not to learn a particularly good forward model, instead, the
interest is in learning a good inverse model. This means that the data should be collected
in a way that is particularly useful for determining a better inverse model. As discussed in
section 5.3, knowing the reachable set is essential to even define the quality of an inverse
model. Therefore, the exploration strategy should aim at selecting points such that they
become dense in the complete unknown reachable set X . This can be expressed in terms
of the so-called fill-distance.

Definition 5.33 (Fill Distance). For compact X the fill distance is defined as

max
x∈X

min
xi∈DX

‖x− xi‖. (5.51)

Intuitively, the fill distance is the radius of the largest ball with center in X that
does not contain any already sampled data points from DX . An ideal active exploration
strategy would therefore select a new x∗ that maximizes the fill distance. In most active
learning methodologies one could maximize the so-called acquisition function, which in
this case would be the fill distance, and then sample the true system at the location
x∗ that maximizes the acquisition function. However, in this work, one can only query
control inputs u and not directly points in the X -space, in which the acquisition function
is defined, since finding a u such that φ̂(u) = x∗ would require an already perfectly known
inverse. This fact is made more explicit with the following, where a notion of the true fill
distance of the system, as considered in this work, is defined.

Proposition 5.34 (True Fill Distance). For the true forward model φ̂ : U → X the true
fill distance

max
u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi
∥∥∥
)

(5.52)

is well-defined.

Proof. Since U is assumed to be compact (definition 5.1) and φ̂ be continuous (proposition
5.12), the maximum over u ∈ U is well-defined.

The true fill distance (5.52) measures how large unexplored parts in the true X are.
Since this is defined in terms of the (high dimensional) control input space and the true
forward model, it is not possible to use (5.52) as an exploration criteria. Therefore, the
goal of this section is to derive a computationally feasible lower bound on the true fill
distance which is based on the current learned forward and inverse model, while taking
into account that the learned models are not perfect.

Proposition 5.35 (Lower Bound on Real Distance to Data). Given an inverse model
π : X → U with X ⊂ X ⊂ Rd, the real distance of a desired target x∗ ∈ X reached with
the inverse model π to the data points is lower bounded by

min
xi∈DX

‖x∗ − xi‖ − ε(x∗) ≤ min
xi∈DX

∥∥∥φ̂(π(x∗))− xi
∥∥∥ . (5.53)
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‖x∗ − xi‖
ε(x∗ ) ‖x

∗ − xi‖ − ε(x∗ )

x∗

xi

Figure 5.2: Visualization of the lower bound on the real distance to the data from propo-
sition 5.35.

Proof. By inserting a zero and using the triangle inequality, it follows for all x∗ ∈ X

‖x∗ − xi‖ =
∥∥∥x∗ − φ̂(π(x∗)) + φ̂(π(x∗))− xi

∥∥∥ (5.54)

≤
∥∥∥x∗ − φ̂(π(x∗))

∥∥∥+
∥∥∥φ̂(π(x∗))− xi

∥∥∥ (5.55)

≤
∥∥∥φ̂(π(x∗))− xi

∥∥∥+ ε(x∗), (5.56)

where the error estimate (5.24) of theorem 5.19 is used. Bringing ε(x∗) to the other side
and taking the minimum over xi ∈ DX , the proposition follows.

This lower bound (5.53), which is visualized in figure 5.2, holds on X, i.e. in the case of
the present work where π is a neural network it holds on complete Rd. Therefore, since
additionally

φ̂(π(X)) ⊂ φ̂(U) (5.57)

it follows

sup
x∈X

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
≤ sup

x∈X

(
min

xi∈DX

∥∥∥φ̂(π(x))− xi
∥∥∥
)

(5.58)

≤ max
u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi
∥∥∥
)
. (5.59)

This has proven the following important result.

Theorem 5.36 (Lower Bound on Real Fill Distance).

sup
x∈X

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
≤ max

u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi
∥∥∥
)

(5.60)

Looking at figure 5.2, maximizing this lower bound on the real fill distance has the
intuitive interpretation of finding a target point in the X -space, whose error ball has the
largest distance to all already sampled data points. This way, it is explicitly taken into
account that it is not expected to reach a desired target with the current learned inverse
model exactly.
Although, as mentioned above, this bound (5.60) is true on complete X or Rd, it is not

guaranteed that the maximum in 5.60 is attained on X. There are several possibilities,
which will be presented in the following, to modify X such that the maximum in (5.60) is
attained and can therefore be used as an exploration strategy.
Ideally, one would use the exploration criteria

x∗ = argmax
x∈X

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(5.61)
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obtained by maximizing over the true reachable set X , which would be well-defined, since
X is assumed to be compact. Since, again, the true reachable set is not known a priori,
one approach is to replace X in (5.61) with the closure of the current estimated reachable
set, leading to

x∗ = argmax
x∈Xc

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
, (5.62)

which also exists if Xc is bounded, which is, except in pathological cases, always fulfilled.
However, exploring only inside the current estimated reachable set Xc can be too con-

servative, since the exploration strategy should also try to explore outside of Xc to expand
the reachable set. In order to overcome this, two further possibilities are considered. First,
the idea is to find a compact subset of X ⊂ Rd. A simple choice for such a set would be
a hyperinterval.

Definition 5.37 (Bounding Box of True Reachable Set). The set

X = [l1, u1]× · · · × [ld, ud] (5.63)

with li, ui ∈ R, li < ui, i = 1, . . . , d such that

X ⊂ X (5.64)

is called the bounding box of the true reachable set X , which is a compact set.

Although it corresponds to some kind of prior knowledge, finding such a bounding box
is usually possible. With this bounding box, the exploration criteria

x∗ = argmax
x∈X

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(5.65)

is well-defined. An alternative idea to X is to introduce a trust region around the already
sampled data points in the X -space. This leads to the criteria

x∗ = argmax
x∈Rd

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(5.66a)

s.t. dist(x,DX ) ≤ dX , (5.66b)

where dX > 0 denotes the maximum distance of the candidate points to the data points in
DX . Usually, one chooses dX > c to enable the exploration criteria to choose target points
outside the current estimated reachable set Xc (otherwise one could use (5.62)). Since
dist(x,DX ) ≤ dX defines a compact feasible set, the criteria (5.66) is also well-defined.
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5.5. Complete Active Inverse Model Learning Methodology
In this section, the complete active inverse model learning framework is summarized as
well as all assumptions are stated again. Furthermore, there are still some details missing
before the methodology can be implemented in concrete, practical algorithms, which is
the goal of this section as well.

Theorem 5.38 (Active Inverse Model Learning). Let U ⊂ Rm be the compact set of
control inputs without any isolated points. The true forward model φ̂ : U → X is a
continuous, surjective mapping from the control input space to the reachable set X =
φ̂(U) ⊂ Rd. Further assume that the true forward model φ̂ =

(
φ̂1, . . . , φ̂d

)T
fulfills

φ̂i ∈ Hki
with

∥∥∥φ̂i
∥∥∥
Hki

< ∞, i = 1, . . . , d for the reproducing kernel Hilbert spaces Hki

corresponding to the strictly positive definite kernels ki : U × U → R. Let βi > 0 be
given such that

∥∥∥φ̂i
∥∥∥
Hki

≤ βi, i = 1, . . . , d. The inverse model π : X → U is assumed
to be a parameterized class of continuous functions, e.g. standard feedforward neural
networks with continuous activation functions, which can also be evaluated on the set X
with X ⊂ X ⊂ Rd. Based on the dataset D = {(ui,xi)}ni=1, consisting of control inputs
ui ∈ U that have been applied to the true forward model leading to the configuration
xi = φ̂(ui) ∈ X , the forward model φ : U → Rd, φ = (φ1, . . . , φd)T is learned, where each
component φj, j = 1, . . . , d is a solution of the kernel regression problem in the RKHS
Hkj

with mean prior mj ∈ R as well as regularization parameter σj ≥ 0 on the dataset
Dj = {(ui, (xi)j)}ni=1.
The parameters of the inverse model, denoted by w ∈ W are then trained to minimize

the inverse model learning optimization problem

min
w∈W

∫

Xc

‖φ(π(x; w))− x‖2 +
d∑

i=1
β2
i si(π(x; w))2 + η l(π(x; w)) dx, (5.67)

where Xc is the estimated reachable set with error certainty c > 0, given by

Xc = {x ∈ X : ε(x) < c} . (5.68)

This estimated reachable set fulfills

Xc ⊂
{
x ∈ Rd : dist(x,X ) < c

}
= X̂c, (5.69)

i.e. it is guaranteed that the true reachable set is never overestimated more than specified
by the error certainty c. The ε term is the error estimate, defined as

ε(x) = ‖φ(π(x))− x‖+

√√√√
d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(π(x))2 (5.70)

as well as

εβ(x) = ‖φ(π(x))− x‖+

√√√√
d∑

i=1
β2
i si(π(x))2, (5.71)

which allows to upper bound the true reaching error
∥∥∥φ̂(π(x))− x

∥∥∥ ≤ ε(x) ≤ εβ(x), (5.72)
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when the learned inverse π is used to predict the control input u = π(x) for a desired
target x ∈ X. With this error estimate, the quality of the inverse model, i.e. how well the
learned π is a right inverse to the true forward model φ̂ can be upper bounded as

∫

Xc

∥∥∥φ̂(π(x))− x
∥∥∥

2
dx ≤

∫

Xc

ε(x)2 dx ≤
∫

Xc

εβ(x)2 dx, (5.73)

which does not require φ̂.
To generate the data D for the forward model, the whole framework is an iterative

process. Starting with a manually specified initial control input and the corresponding
resulting configuration when applied to the real forward model, the inverse model is
trained on this single data point only. All subsequent data points in the n+1-th iteration
are generated by selecting a target x∗n+1 in the X -space, the current learned inverse model
is used to predict a control input un+1 = π(x∗n+1), which is applied to the true forward
model, leading to xn+1 = φ̂(π(x∗n+1)). This new data point is added to the dataset

D ← D ∪ {(un+1,xn+1)} . (5.74)

Then the forward model φ is learned on this new dataset, the new reachable set Xc is
estimated and finally the parameters of the inverse model π are adjusted according to
(5.67) to take the new information about the system into account.
To select the exploration targets x∗, the exploration strategies

x∗ = argmax
x∈Xc

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(5.75)

or

x∗ = argmax
x∈Rd

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
(5.76a)

s.t. dist(x,DX ) ≤ dX , (5.76b)

are well-defined. Both try to maximize a lower bound on the true fill distance of the
system, i.e. it holds for the exploration target x∗ determined by (5.75)

min
xi∈DX

‖x∗ − xi‖ − ε(x∗) = max
x∈Xc

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
≤ max

u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi
∥∥∥
)

(5.77)

or by (5.76)

min
xi∈DX

‖x∗ − xi‖ − ε(x∗) = max
x∈Rd

(
min

xi∈DX
‖x− xi‖ − ε(x)

)
≤ max

u∈U

(
min

xi∈DX

∥∥∥φ̂(u)− xi
∥∥∥
)
.

s.t. dist(x,DX ) ≤ dX (5.78)
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5.5.1. Practical Considerations

In practice, calculating 5.67 with the estimated workspace is computationally infeasible,
since the integral over Xc cannot be expressed in closed form. However, since it is assumed
that the workspace is low dimensional, the integral can efficiently be approximated by
a rectangular rule. In order to do so, a discretized version of the bounding box from
definition 5.37 is defined.

Definition 5.39 (Discretized Bounding Box of True Reachable Set). The set

X̃ =
{
l11, . . . , u1nh1

}
× · · · ×

{
ld1, . . . , udnhd

}
(5.79)

is the discretized version of the bounding box X of the true reachable set X with nhi

many equidistant points per dimension i = 1, . . . , d and li1 = li, uinh1
= ui for li, ui,

i = 1, . . . , d from definition 5.37.

With this, the discretized version of the estimated reachable set can be defined as

X̃c =
{
x ∈ X̃ : ε(x) < c

}
, (5.80)

which can also be calculated by evaluating ε on the finite X̃ . Especially in the beginning of
the exploration, Xc and hence also X̃c is often empty. Therefore, the already sampled data
points DX are included to the estimated workspace. This is also reasonable, since actual
reached data points are guaranteed to be part of the true workspace. These considerations
lead to the final, practical optimization problem for learning the inverse model.

Definition 5.40 (Practical Inverse Model Learning Optimization Problem). The weights
of the inverse model are obtained through minimization of

min
w∈W

∑

x∈X̃c∪DX

(
‖φ(π(x; w))− x‖2 +

d∑

i=1
β2
i si(π(x; w))2 + η l(π(x; w))

)
. (5.81)

All involved quantities are finite and known in terms of mathematical expressions includ-
ing their derivatives. Thus, the objective (5.81) and its gradient can be calculated.

In practice, it turned out that sometimes the exploration strategy suffers from the
problem that it tries to reach the same target point repeatedly. Assume that this target
is denoted as x∗T . Since the corresponding muscle stimulations are generated through
the current learned inverse model, it sometimes happens that the two predicted muscle
stimulations π(i)(x∗T ) = u1, π(i+1)(x∗T ) = u2 for this same target are also nearly identical.
The superscript for π indicates that the network is updated between the two predictions.
Having two nearly identical muscle stimulations in the dataset for learning the forward
model deteriorates the forward model at this location, since the condition number of the
kernel matrix mainly depends on the separation distance of the data points [45]. To ad-
dress this problem, the robustness of the exploration strategy can be further improved by
restricting the exploration strategy to only search for target points that have a minimum
distance to a certain number of old selected target points. More formally, this leads to
the two practical exploration strategies

x∗ = argmax
x∈X̃c

(
min

xi∈DX
‖x− xi‖ − εβ(x)

)
(5.82a)

s.t. dist(x,DXT
(n− nXT

: n)) ≥ dXT
(5.82b)
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in the estimated reachable set X̃c (discretized version) or with trust region around the
collected data points

x∗ = argmax
x∈X̃

(
min

xi∈DX
‖x− xi‖ − εβ(x)

)
(5.83a)

s.t. dist(x,DX ) ≤ dX (5.83b)
dist(x,DXT

(n− nXT
: n)) ≥ dXT

, (5.83c)

where dXT
> 0 denotes the minimum distance to a number of nXT

old target points and

DXT
= {x∗i }ni=1 (5.84)

denotes the set of all chosen targets by the exploration strategy. Please note that this
modification is a condition on the exploration targets and not the observed values, which
are still all included in the dataset. Therefore, the actual reached points can still be closer
than dXT

. It has also to be stated that in most situations the methodology is successful
without this modification, but not as reliable. The error estimate ε in (5.82) and (5.83)
has been replaced by εβ, since this only requires an upper bound on the RKHS norm
of the true forward model and not the correct actual value, which is more practical. Of
course, with εβ all derived properties of the exploration strategy still hold.
Such max-min optimization problems as those of the exploration strategies are usually

difficult to solve. However, since the X -space is assumed to be low dimensional and the
optimization problems are already defined on a discretized version of it (the set X̃ ), both
optimization problems (5.82) and (5.83) can be solved easily by grid evaluation, utilizing
additionally nearest neighbor trees for the sets DX and DXT

. Generally, compared to the
time required to run the simulations, i.e. querying φ̂ and training the neural network,
the computation time for solving these exploration strategy optimization problems by the
grid evaluation method combined with the nearest neighbor trees is neglectable in the
experiments considered in this work.
From a software point of view, the whole framework is implemented in tensorflow [1].

5.5.2. Computational complexity

If the dataset contains n samples, learning the forward model has O(n3) complexity.
Calculating the objective (5.81) and its derivative for one single xi has O(n2) complexity.
If the discretization contains nh many points per dimension, calculating the complete
objective (5.81) and its derivative, i.e. also one gradient step for optimizing the neural
network, requires

O
(
ndhn

2 + n3
)

(5.85)

many operations.
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5.6. Parameter Dependent Inverse Model
So far, the result of the developed active inverse model learning framework is one learned
inverse function π. However, for a redundant system, it might be beneficial to utilize the
redundancy. For example, a kinematically redundant robot arm could use its additional
degrees of freedom to realize secondary tasks. In the context of musculoskeletal systems,
as discussed in section 3.4, a musculoskeletal system uses the redundancy to alter its
co-contraction to realize different passive stiffnesses of the system. In the following, first
a general method for parameter dependent inverse models is presented. Then a concrete
realization for controlling the co-contraction and hence the stiffness of the musculoskeletal
system is developed.
Assume that there is a parameter p ∈ P ⊂ Rr, P compact, which in some sense

specifies further desired properties of the inverse model in addition to be a right inverse
of the true forward model. This way, the inverse model becomes a function of both the
desired configuration x and the parameter p

π : X × P → U . (5.86)

The inverse condition then is

∀p∈P∀x∈X : φ̂(π(x,p)) = x. (5.87)

Analogously to proposition 5.12, if π ∈ C(X ×P ,U), P does not contain isolated points,
and φ̂ is continuous as well, the condition (5.87) is equivalent to

∫

P

∫

X

∥∥∥φ̂(π(x,p; w))− x
∥∥∥

2
= 0. (5.88)

The forward model is learned exactly as before, according to definition 5.17, on the dataset
D = {(ui,xi)}ni=1 from definition 5.15. Therefore, all other parts of the active inverse
learning methodology can be derived completely analogously to the last sections with
the only difference that everything is defined on the extended set X × P . For technical
reasons, assume that π as defined in (5.86) can be evaluated on the set XP ⊂ Rd × Rr

with X × P ⊂ XP, which, if π is a standard neural network as defined in section 4.2, is
automatically fulfilled. Now starting with the error estimate, it holds for all (x,p) ∈ XP

∥∥∥φ̂(π(x,p))− x
∥∥∥ ≤ ε(x,p) (5.89)

with

ε(x,p) = ‖φ(π(x,p))− x‖+

√√√√
d∑

i=1

∥∥∥φ̂i
∥∥∥

2

Hki

si(π(x,p))2, (5.90)

which is proven exactly the same as theorem 5.19. This error estimate allows to define
the inverse model learning optimization problem for a parameter dependent inverse model
similar to the derivation in section 5.2 as

min
w∈W

∫

P

∫

X
‖φ(π(x,p; w))− x‖2 +

d∑

i=1
β2
i si(π(x,p; w))2 + η l(π(x,p; w),p) dx dp.

(5.91)

Here, the function l : U × P → R+ is the central part that distinguishes the different
inverses according to their parameter p.
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As a next step, the reachable set with error certainty c > 0 can be estimated as

XPc = {(x,p) ∈ XP : ε(x,p) < c} . (5.92)

Plugging this into the inverse model learning objective (5.91) leads to the final objective
to learn the parameter dependent inverse model

min
w∈W

∫∫

XPc

‖φ(π(x,p; w))− x‖2 +
d∑

i=1
β2
i si(π(x,p; w))2 + η l(π(x,p; w),p) dx dp.

(5.93)

For the exploration strategy, a similar reasoning as in section 5.4 can be made to find a
lower bound on the real distance to the data DXP = {(xi,pi)}ni=1

∥∥∥∥∥

(
x∗
p∗
)
−
(

xi
pi

)∥∥∥∥∥ =
∥∥∥∥∥

(
x∗
p∗
)
−
(

φ̂(π(x∗,p∗))
p∗

)
+
(

φ̂(π(x∗,p∗))
p∗

)
−
(

xi
pi

)∥∥∥∥∥ (5.94)

≤
∥∥∥∥∥

(
φ̂(π(x∗,p∗))

p∗
)
−
(

xi
pi

)∥∥∥∥∥+
∥∥∥∥∥

(
φ̂(π(x∗,p∗))

p∗
)
−
(

x∗
p∗
)∥∥∥∥∥ (5.95)

≤
∥∥∥∥∥

(
φ̂(π(x∗,p∗))

p∗
)
−
(

xi
pi

)∥∥∥∥∥+ ε(x∗,p∗) (5.96)

which holds for all (x∗,p∗) ∈ XP. This leads to the exploration criteria for compact XP

(x∗,p∗) = argmax
(x,p)∈XP

(
min

(xi,pi)∈DXP

∥∥∥∥∥

(
x
p

)
−
(

xi
pi

)∥∥∥∥∥− ε(x,p)
)
. (5.97)

The other variants from section 5.4 can be defined analogously. This exploration strategy
explores in both the reachable set space X and the parameter space P simultaneously.

5.6.1. Controlling the Stiffness via Co-Contraction

The passive stiffness of a musculoskeletal system can be influenced by altering the co-
contraction. The goal is to learn an inverse model which not only achieves a desired
configuration in equilibrium, but additionally also has a parameter to control the co-
contraction level. The main idea to achieve this is that there is a scalar parameter
p ∈ P = [0, pmax], which defines a certain ground level for the muscle stimulations of
each muscle. The function π(x, p) : X × P → U , which is a neural network, should then
predict the delta to this ground level to actually reach the desired configuration. More
formally, the inverse model is

π̃(x, p) = π(x, p) + p. (5.98)

This function π̃ should not only be a right inverse to the true forward model for every
p ∈ P , the predicted muscle stimulations should in addition be as close to the ground
level on each muscle as possible, i.e.

‖π̃(x, p)− p‖2 (5.99)

should be minimal, which can be realized by

l(u, p) = ‖u− p‖2 (5.100)
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5. Active Inverse Model Learning

in (5.93). Plugging everything together leads to the optimization problem for the weights
of π

min
w∈W

∫

P

∫

X
‖φ(π(x, p; w) + p)− x‖2 +

d∑

i=1
β2
i si(π(x, p; w) + p)2 + η ‖π(x, p; w)‖2 dx dp,

(5.101)

which tries to find a right inverse to the forward model for each p ∈ P and staying close
to the muscle stimulation ground level. Having learned this π, the actual inverse is then
given by (5.98).
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5.7. Learning Hybrid Control - Lengths of Contractile Elements
In this section, a method to predict the lengths lCE ∈ Rm of the contractile elements
of the muscles for an equilibrium configuration is presented. This can then be used for
realizing a monosynaptic reflex as described in section 3.6.
The goal is to find a model Ω : X → Rm that for a desired configuration x ∈ X in

equilibrium predicts the corresponding targets lengths λ = Ω(x). The difficulty of this
is two fold. First, also in this case there are infinitely many lengths of the contractile
element that correspond to the same configuration in equilibrium. Secondly, the length
of the contractile element must correspond to an equilibrium state for a static muscle
stimulation, as discussed in section 3.6.
However, since the redundancy problem has already been approached by learning the

inverse model, obtaining a model to predict the necessary targets lengths of the contractile
elements can be framed as a standard supervised regression problem, which addresses the
first problem. For the second problem, the data collection process does not involve hybrid
control. Instead, the data is collected with the active inverse model learning methodology
by applying constant muscle stimulations. If the equilibrium is reached, the lengths of
the contractile elements lCE for the muscle stimulation u are stored in a dataset

Dλ =
{(

ui, lCE
i

)}n
i=1

. (5.102)

Based on this data, a function Λ : U → Rm, represented as a neural network, is learned
to minimize the standard squared error regression objective

min
w∈W

n∑

i=1

∥∥∥lCE
i −Λ(ui; w)

∥∥∥
2

(5.103)

with common stochastic gradient neural network training techniques (refer to section 4.2).
The final predictor of the lengths of the contractile elements for a desired position x is
then

λ = Ω(x) = Λ(π(x)) (5.104)

with the learned inverse model π from section 5.2. Since the data for Λ is generated
through the inverse model π, one can expect that Ω(x) shows good approximation capa-
bilities.
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5.8. Alternative: Represent Reachable Set with GP Classifier
During the development of the active inverse model learning framework, an alternative to
present the reachable set has been explored. The idea is to learn a discriminative function
that indicates

g(x)



> 0 if x ∈ X
≤ 0 if x /∈ X (5.105)

as a Gaussian process classifier (for details about GP classification refer to [37]). The
reachable set is then estimated as

Xg =
{
x̃ ∈ Rd : g(x̃) > 0

}
. (5.106)

With this, the active inverse model learning optimization problem would be

min
w∈W

∫

{x̃∈Rd:g(x̃)>0}
‖φ(π(x; w))− x‖2 +

d∑

i=1
β2
i si(π(x; w))2 + η l (π(x; w)) dx. (5.107)

Based on the uncertainty of the classifier, one can also define an active exploration strategy

x∗ = argmax
x∈Rd

ν(x) s.t. g(x) = 0 (5.108)

that explores at the boundary of the classifier where the uncertainty ν provided by the
GP of the discriminative function is maximal.
The main question is, however, how the data for the classifier can be generated. It

is clear that every reached position x during the exploration process is added to the
dataset with a positive value for the discriminative function. How negative samples,
which indicate certain parts that are not reachable, can be added to the dataset is not
straightforward. Two different approaches have been tested. First of all, the mean prior
of the discriminative function is set to a negative value. This indicates that in distance
to the data points the classifier predicts unreachability. The reachability margin around
the data points mainly depends on the kernel for the classifier and its hyperparameters.
Without any method to generate negative samples, this method turned out to have a good
performance in the beginning, since it explores rapidly. However, since never negative
samples are added, the exploration strategy always tries to expand the reachable set,
without knowing the boundary of the reachable set. Therefore, the performance at some
point does not increase anymore. In contrast, the proposed active exploration strategy
from section 5.4 and the reachable set estimation from section 5.3 automatically trade-off
expanding the reachable set and improving the inverse inside the already estimated set.
The second approach is to assume that there are sensors that indicate if the boundary
of the workspace is reached. With this information, negative samples could be added
to the dataset of the classifier, enabling to stop trying to expand the reachable set at
the boundary of the true reachable set. Please note that this sensor information does
not correspond to knowing the true X a priori, since the sensor only gives information
during sampling of the true system. Having such sensors, however, corresponds to further
knowledge this work would like to avoid.
An other disadvantage of using a separate classifier for representing the reachable set is

that there is no coupling between the learned inverse model and the estimated reachable
set. In contrast, the reachable set estimate Xc from theorem 5.27 is directly coupled to
the inverse and tells also whether the current learned inverse is actually able to reach the
points at all.
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6. Experiments
The main aim of this section is to show experimentally that the developed active inverse
model learning framework is not only able to accurately learn an inverse model of a highly
redundant biomechanical system (section 6.4, 6.2, 6.3), but also to estimate its reachable
set (section 6.7, 6.2). On the other hand, it is investigated in section 6.8 and 6.9 which
parts of the developed methodology have which influence on the learning performance.
Furthermore, the behavior of the musculoskeletal system, e.g. in terms of trajectories,
when controlled with the learned inverse model, is studied in various experiments. For
example, in section 6.5, out-of-center reaching experiments are performed. Section 6.6
investigates the attractor property of the musculoskeletal system discussed in section 3.5.
The experiments of sections 6.2 – 6.11 are all performed using the simulated human

arm model, consisting of two joints (shoulder and elbow) that are driven by 6 muscles.
Refer to section 3.7 for details about this model. The goal of the inverse model is to
predict the 6 necessary muscle stimulations u ∈ U = [0, 1]6 such that the arm reaches a
desired hand position x ∈ X ⊂ R2 in equilibrium.
In section 6.12, the same methodology is applied to a real bio-inspired robot that is

driven by five pneumatic muscles, mimicking the simulation model of a human arm with
two joints, see section 3.8 for more details about this robot. Here, the goal of the inverse
model is to predict the 5 necessary pressure values for the pneumatic muscles such that
the arm reaches a desired joint angle configuration x ∈ X ⊂ R2 in equilibrium.

6.1. Hyperparameters
If not stated differently for a specific experiment, the hyperparameters are as follows:
The learning rate of the inverse model π is απ = 0.0005, the learning rate of the lambda-
controller is αΛ = 0.001. The mean prior of the forward model is m = (m1,m2) =
(0.4,−0.3), which has been chosen such that it is roughly in the middle of X . The
regularization parameter of each component of the forward model is σi = 0.001. The
length-scale of the kernels of the forward model for each dimension and each component
is l = 0.2. The initial muscle stimulation is u0 = (0.22, 0.05, 0.12, 0.05, 0.15, 0.12)T ∈ R6.
The inverse model and the lambda-controller are trained for 30 episodes every time a new
data point has been added. The first 22 data points are sampled with noise according to
the antagonistic noise generation proposed in [13] with parameters σ1 = 1

15 and σ2 = 1
30 .

A total of 1200 data points are collected. The error certainty to estimate the reachable
set is c = 0.02. The bound on the RKHS norm of each component of the true forward
model is set to βi = 2, i = 1, 2. This has been tuned by testing a value of 1,

√
2 and 2.

With exception to one experiment in section 6.9, the exploration strategy (5.83) with the
trust region is used. The parameters of the exploration strategy are dX = 0.1, dXT

= 0.02,
nXT

= 200. To solve the exploration optimization problem, X̃ from definition 5.39 is a
100×100 equidistant grid. The estimated reachable set Xc for the integral is calculated on
a 30× 30 grid for X̃ . The corresponding bounding box is X = [−0.2, 0.65]× [−0.7, 0.2].
The muscle-stimulation trade-off parameter is η = 10−5. This first seems small, but has
the same magnitude than the squared desired accuracy of the inverse model.
Each simulated experiment is repeated 5 times with the same parameters but different

random seeds. If a mean value with shaded error bars is drawn in the plots of this section,
the shaded error bars depict one standard deviation.
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6.2. Exploration Behavior

Figure 6.1 shows exploration result after a total of 1200 collected data points DX (blue)
in the X space, i.e. the reached hand positions of the arm model, as well as the estimated
Xc (orange) and true X (green), X̂c (green dashed) workspace. These workspaces are
visualized by drawing their outer boundaries as lines. There is a close match between
the dashed green line and the orange one, indicating that the developed methodology
has estimated the reachable set with error certainty c accurately. This error certainty is
set to c = 0.02, which means that for all points inside the learned Xc, the inverse model
guarantees to reach the desired point with an error of less than 2 cm. One can also see
that the true reachable set in solid green is also only an estimation based on the analytical
model (refer to section 3.7, figure 3.3) and therefore not completely correct, since there
are data points outside X . This is due to the fact that joint limits are modeled as damped
springs (refer to section 3.1), allowing a slight violation of the joint limits depending on
the exerted torques from the muscles. Furthermore, it seems that the inverse model is
not able to reach the lower left part of the true workspace. The reason for this is that
in this area, again due to modeling the joint limits as springs, the simulator starts to

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
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−0.5

−0.4
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x [m]

y
[m
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collected data points DX
estimated workspace Xc

true reachable set X
true reachable set with error certainty X̂c

Figure 6.1: Exploration result after a total of 1200 collected data points. Blue points
denote the reached hand positions of the arm. The dashed green line visu-
alizes the boundary of set X̂c for c = 0.02, the orange line the corresponding
learned estimate Xc of the reachable set.
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oscillate, not reaching an equilibrium. Hence, this is not a deficiency of the inverse model,
in contrary, the inverse model recognizes this problem. For a more detailed discussion
about the estimation of the reachable set refer to section 6.7.
Next, figures 6.2 – 6.6 have to purpose to visualize the exploration behavior. Figure 6.2

shows the exploration process for a growing number n of collected data points in terms of
both the distribution of the collected data points as well as the evolution of the learned
reachable set. The first 22 data points are sampled with noise. At 10 collected data points
(figure 6.2a), the estimated reachable set is still nearly empty. Starting from figure 6.2b,
where 23 data point have been collected, the data is generated only using the exploration
strategy and the current learned π, without noise. One can also see in figure 6.2b that the
estimated reachable set is not just an alpha shape of the data points, since there are some
data points that are not included in Xc yet. After only 150 collected data points (figure
6.2j), nearly the complete reachable set is explored. With respect to a 6 dimensional
control input space, 150 data points are very sparse. Many active learning methodologies
have to deal with the so-called exploration/exploitation trade-off. The proposed active
inverse model learning framework automatically deals with this: Whereas in the beginning
of the procedure, up to about 150 data points (figure 6.2a – 6.2j), most collected data
points expand the reachable set and therefore focus on fast exploration. From there on
(figure 6.2k – 6.2x), the algorithm focuses on improving inside the estimated reachable set.
As one can see, even in the beginning of the exploration, the distribution of the collected
data points is relatively uniform in the sense that there is a comparably large and equal
separation distance between the reached hand positions. This also indicates that the
developed exploration strategy (section 5.4) empirically leads to good lower bounds on
the true fill distance. Furthermore, the fact that the method can explore so quickly shows
that the learned inverse model is able to extrapolate. Note that in all subfigures of figure
6.2 the number n does not count the first collected data point.
To further investigate the exploration behavior, figure 6.3, 6.4 and 6.5 show the way

the exploration strategy (section 5.4) works. In figure 6.3a, three possible, exemplary
exploration targets in the X -space are shown. The error estimate circles of the red and
violet target have a positive distance to the nearest data points. This distance of the
circle to the data points is the lower bound on the true fill distance. The error estimate
circle of the light blue target contains data points, therefore, the model believes that this
target does not improve the true fill distance. The red target is actually the one that
has the highest lower bound on the real fill distance of all possible targets. The actual
reached position for this target is shown in figure 6.3b. One can also see that the reached
position is inside the error estimate. Figure 6.4 and 6.5 shows a similar situation at an
earlier stage of the exploration. Furthermore, between figure 6.4a and 6.4b, one can see
how the reachable set updates after the new data point has been added and the model is
retrained.
To further support the claim that the exploration strategy automatically and inherently

trades of exploration and exploitation, figure 6.6 visualized how many target points the
exploration strategy has chosen inside and outside the current estimated reachable set
Xc over the number of collected data points. One can see that in the beginning more
data points are chosen outside of Xc, indicating that the exploration strategy focuses on
expanding the reachable set. After 183 data points, the great majority of targets are
chosen inside of Xc, which means that from now on the focus is on improving the model
inside Xc. Indeed, as seen in figure 6.2, after 150 data points the workspace has nearly
completely been explored, which the exploration strategy recognizes.
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(a) n = 10 (still including noise) (b) n = 23 (no noise anymore) (c) n = 30

(d) n = 40 (e) n = 50 (f) n = 60

(g) n = 70 (h) n = 80 (i) n = 100

(j) n = 150 (k) n = 175 (l) n = 200

Figure 6.2: Exploration behavior. Subplots show different number n of collected data
points so far. Same axis limits and legend as in figure 6.1.
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(m) n = 250 (n) n = 300 (o) n = 350

(p) n = 400 (q) n = 500 (r) n = 600

(s) n = 700 (t) n = 800 (u) n = 900

(v) n = 1000 (w) n = 1100 (x) n = 1199

Figure 6.2: (continued) Exploration behavior. Subplots show different number n of col-
lected data points so far. Same axis limits and legend as in figure 6.1.
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(a) Multiple possible targets with their error estimates
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(b) Chosen target that maximizes the lower bound on the real fill distance

Figure 6.3: Visualization of the exploration strategy as lower bound on the real fill dis-
tance. 84 data points in data set before the new one is added.
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(a) Reachable set before new data point is added
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(b) Reachable set after new data point is added

Figure 6.4: Visualization of the exploration strategy as lower bound on the real fill dis-
tance. 29 data points in data set before the new one is added.
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Figure 6.5: Visualization of the exploration strategy lower bound on the real fill distance.
55 data points in the data set before the new one is added.
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Figure 6.6: Visualization of the exploitation/exploration behavior of the proposed active
exploration strategy. If an exploration target is chosen outside of Xc, the
orange line is increased by one, if an exploration target is chosen inside of
Xc, the blue line is increased by one.
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6.3. Learned π

The goal of this section is to visualize the learned inverse model π : Xc → U . Figure 6.7
shows each component of π(Xc), i.e. the muscle stimulations for each of the six muscles, as
a function of the desired x = (x, y) hand position of the arm at the end of the exploration
with 1200 collected data points. The color depicts the actual muscle stimulation, blue low,
red high. One can see that the learned inverse is smooth. The estimated workspace Xc is
also implicitly visualized in figure 6.7, since, as discussed in section 5.1.2, the domain of
the inverse model is part of its mathematical definition. One can already see an intuitive,
antagonistic and gravity compensating distribution of the muscle stimulations to reach
the different parts of the workspace.
To further visualize this antagonistic behavior, figure 6.8 shows the stimulations π(Xc)

for each antagonistic muscle pair in a separate plot. For example, one can see the anti-
correlation between the muscle stimulations of the elbow flexor and extensor (figure 6.8a)
as well as of the shoulder flexor and extensor (figure 6.8b). As seen both in figure 6.7d
and 6.8c, the biarticular extensor muscle is not used much, the biarticular flexor 6.7c,
however, is important to reach the top left part of X and also has the highest predicted
muscle stimulation at a certain location among all others. In addition, figure 6.8d, 6.8e
and 6.8f show the collected muscle stimulations DU on top of the predicted stimulations
by π(Xc). Since the data is collected by bootstrapping π, there is a relatively close match
between the sampled and predicted stimulations.
Similarly to figure 6.8, figure 6.9 visualizes the antagonistic behavior of π after 150

collected data points. Figure 6.10 visualizes both learned inverse models after 1200 and
150 collected data points at the same time. Although 150 collected muscle stimulations
DU are much more sparse, the predicted muscle stimulations π(Xc) look already similar
to the ones shown in figure 6.8, which can be explained by the fact that, as discussed in
section 6.2, after 150 data points, the majority of the true reachable set is explored, which
can be seen figure 6.2j.
Finally, figure 6.11 visualizes the error estimate εβ(x) of the learned inverse model

as a function of the desired x = (x, y) hand position after 1200 collected data points.
One can see that for the majority of the estimated reachable set the model predicts a
low error below 3 mm. Then beyond the boundary of the true reachable set, the error
estimate increases approximately linearly. For an ideal error estimate, this behavior is
totally expected, since the true error outside the true reachable set would at least linearly
increase, since a point outside the true reachable set cannot be reached and hence would
have an error that is at least as high as the closest distance of the target point to the
boundary. According to (5.40) from definition 5.25, the true reachable set X̂c with error
certainty c would also show this error distribution. Therefore, the derived error estimate
is also in practice close to the ideal behavior.
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Figure 6.7: Learned π : Xc → U with estimated workspace Xc for c = 0.02. Colors
indicate muscle stimulations u = (u1, . . . , u6)T ∈ R6. Dark red means a
muscle stimulation larger than 0.3 (maximum 0.52).58
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Figure 6.8: Visualization of antagonistic behavior of the learned inverse model π at the
end of the exploration with 1200 collected data points.
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Figure 6.9: Visualization of antagonistic behavior of the learned inverse model π after

150 collected data points.
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Figure 6.10: Comparison of learned π after 150 and 1200 collected data points.
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6.4. Point Reaching Evaluation
This experiment aims at testing the accuracy of the learned inverse model, when applied
to the true system. The blue points in figure 6.12 show the desired target points. To
achieve comparable results, these target points also serve as references for the ablation
study in section 6.8 and the exploration strategy comparison in section 6.9 and 6.10.
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Figure 6.12: Target points for evaluating the point reaching accuracy, 137 in total.

Figure 6.13 shows the actual reached points (orange), when using the learned inverse
model from section 6.3, 6.2 at the end of the exploration (1200 collected data points).
As one can see, the orange points are visually hardly distinguishable from the targets in
blue. Quantitatively, the mean error between the targets and the actual reached points is
1.63± 1.0 mm. Figure 6.14 shows a histogram of the reaching errors of this experiment.
The evolution of the mean reaching error as well as the mean error estimate is shown in
figure 6.15. The predicted mean error estimate after 1200 point is 1.79± 0.47 mm. One
can see that in the beginning of the exploration, the error estimate is more conservative
and the bound becomes tighter the more data is observed. Note that, since the inverse
model is trained on 30 episodes each time a new data point is added, the total number
of episodes the neural network is trained also increases over the number of collected data
points.
Figures 6.13, 6.14, 6.15 all show the reaching error of one specific run of the experiment.

To investigate the reproducibility of the point reaching accuracy, figure 6.16 visualizes the
evolution of the mean and standard deviation of the mean reaching error of 5 repeated
experiments with same parameters, but different random seeds over the number of col-
lected data points. With an actual mean error after 1200 data points of 1.50± 0.42 mm
and a mean predicted error estimate of 2.07 ± 0.40 mm, the point reaching accuracy is
reproducibly low. In figure 6.16, one can also see that first, the error estimate is more con-
servative, both in terms of its mean and standard deviation. The more data is collected,
the tighter the bound, again in terms of its mean and standard deviation. Therefore,
the error estimate is also in practice a good measure for the performance of the learned
inverse model.
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Figure 6.13: Point reaching evaluation with learned inverse π from section 6.3, 6.2.
Actual reached points in orange with a mean error of 1.63± 1.0 mm.
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Figure 6.15: Evolution of the mean reaching error and the mean error estimate over the
number of collected data points. The values correspond to one experiment
shown in figure 6.13 with learned inverse π from section 6.3, 6.2. The final
actual error after 1200 data points is 1.63 ± 1.0 mm, the error estimate
predicts 1.79± 0.47 mm.
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Figure 6.16: Evolution of the mean and standard deviation of the mean reaching error
and the mean error estimate of 5 repeated experiments with the same
parameters, but different random seeds over the number of collected data
points. Final actual error after 1200 data points is 1.50 ± 0.42 mm, the
error estimate predicts 2.07± 0.40 mm.
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6.5. Out-Of-Center Reaching Trajectories
So-called out-of-center reaching motions are often studied in neuroscience when perform-
ing motor control experiments with humans and other animals. In this section, such
out-of-center reaching experiments are performed with the learned inverse model from
section 6.3, 6.2. It is investigated how the behavior changes the more data points are
collected.
Figure 6.17 shows the starting position (blue), which is in the middle of the real

workspace of the simulated arm model (green). The orange points denote the goal posi-
tions, which are spread around the starting position in a square with length of 20 cm. The
arm is first moved to the start position by applying u = π((0.4,−0.2)) to the system until
the equilibrium is reached. From this center position, a new muscle stimulated ui = π(xi)
for each of the targets xi, i = 1, . . . , 8 is applied.
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Figure 6.17: Out-of-center reaching experiment setup. The arm should reach the or-
ange goal positions, starting from the blue position in the middle of the
workspace each time.

In figures 6.18 – 6.25 the trajectories, actual reached positions and the corresponding error
estimate are shown at different stages of the exploration, i.e. after a different number of
collected data points. Furthermore, as a reference, these collected data points for training
the forward and hence the inverse model are also visualized.
Starting with figure 6.18, where only 23 data points are collected, one can see that all

trajectories move in the right direction. For targets 1, 2, 5, 7, 8, the actual error is already
low. For target 4, the error and the error estimate is large, since there is no observed data
in the vicinity of the target, but still the arm moves into the right direction, showing the
extrapolation quality of the inverse model. For most targets, the error estimate is also
large at this stage of the exploration. After 50 collected data points (figure 6.19), the
error estimates for all targets are already much smaller. Target 3 and 6 also have a low
error now. There is still the largest error on target 4, since in this area no new data has
been observed. This trend continuous for 75 collected data points (figure 6.20). For 100
collected data points (figure 6.21), the error for target 4 is finally also small, since now
there is observed data in its vicinity. From this stage of exploration on, mainly the error
estimate gets smaller, see figures 6.22 – 6.25.
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To further quantify these trends, figure 6.26 shows the reaching errors and their esti-
mates for each target and each exploration stage. For example, one can see the decrease of
both the error and error estimate of target 4. Generally, the decrease of the error estimate
for all targets can be seen. Please note the different ordinate axis scales between figure
6.26a and 6.26b. With respect to the actual error, for most target points, one can also
see a monotonic decrease in the actual error. However, looking at 6.26b, one can see that
after 200 data points the reached errors for these 8 targets are lower then after 1200 data
points. One has to take into account that the inverse model is a neural network, for which,
since it is trained with stochastic gradient descent, one cannot expect monotonicity. The
differences where this monotonicity is violated, compare 200, 300 and 1200 data points,
are, however, not significant at all.
Furthermore, in figure 6.26 one can see that the error estimate is always an upper

bound, which in the end, see figure 6.26b purple line, is even very tight. However, since
the assumption that the true forward model, i.e. the musculoskeletal system, comes from
the same RKHS as the kernel used for this experiment is extremely unrealistic, one cannot
expect that the error estimate is always a true upper bound for the real error in practice.
This out-of-center reaching experiment has been performed in addition to the shown
results for 18 different stages of the exploration. In 5 of the 18 · 8 = 144 point reaches,
the error estimate was slightly smaller than the true error, which corresponds to 3.5%,
meaning that, although the assumption is unrealistic, in practice, the error estimate is a
reasonable upper bound.
Looking at the trajectories of figures 6.18 – 6.25, one can see that the shape of the tra-

jectories is nearly identical over the curse of the exploration procedure. This implies that
the actual predicted muscle stimulations are only slightly changing over the exploration
process, indicating a stable learning.
Finally, figure 6.27 shows the velocity profiles over time of the point reaching trajectories

for the different targets with the inverse model after 1200 collected data points. One can
see a characteristic accelerating and decelerating shape of the velocity.
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Figure 6.18: Out-of-center reaching experiment after 23 collected data points.
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Figure 6.19: Out-of-center reaching experiment after 50 collected data points.
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Figure 6.20: Out-of-center reaching experiment after 75 collected data points.
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Figure 6.21: Out-of-center reaching experiment after 100 collected data points.
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Figure 6.22: Out-of-center reaching experiment after 150 collected data points.
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Figure 6.23: Out-of-center reaching experiment after 200 collected data points.
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Figure 6.24: Out-of-center reaching experiment after 300 collected data points.
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Figure 6.25: Out-of-center reaching experiment after 1200 collected data points.
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Figure 6.26: Out-of-center reaching error and error estimate for the target points spec-
ified in figure 6.17. The different colors correspond to the out-of-center
reaching experiment after a different number of data points are collected.
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(a) Velocity in x-direction
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Figure 6.27: Velocity profiles of out-of-center reaching experiment for the different tar-
gets with the inverse model learned after 1200 collected data points.
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6.6. Attractor Property
The whole methodology of this work was derived under the assumption that indepen-
dent of the start configuration the musculoskeletal arm model always reaches a certain
equilibrium configuration for a statically applied muscle stimulation. Abstractly, this was
expressed by the fact that the true forward model φ̂ is a static, unique and state inde-
pendent mapping from U to X . In this experiment, it is shown that for the considered
arm model of the present work, this property is indeed fulfilled. Furthermore, the behav-
ior of the system, e.g. the concrete trajectory, between such switchings of static muscle
stimulations is investigated.
Figure 6.28 shows 4 different attractor target positions as well as 6 different starting

positions. The arm is first moved to the starting positions by applying the constant
muscle stimulations predicted by the learned inverse model from section 6.3, 6.2. When
the equilibrium is reached, the muscle stimulations are switched to a new constant one as
predicted by learned inverse model to reach an attractor target position.
In figure 6.29, the resulting trajectories in the x, y-space of this experiment are visu-

alized. As one can see, independent from the starting position, the attractor targets are
reached. For attractor point 1 (figure 6.29a), which is in the middle of the workspace,
there is little to no overshot. For attractor point 2 (figure 6.29b), which is at the top of
the workspace, there is again little to no overshoot for all starting positions, except for
starting position 1, which starts from the bottom left of the workspace and therefore has
the highest distance to the target. A similar observation holds true for attractor point 3
(figure 6.29c). Looking at the trajectories for attractor point 4 (figure 6.29d), which is
at the lower part of the workspace, especially if starting from the top of the workspace
(starting position 4 and 5), one can see a larger overshoot. This can be explained by
looking at the muscle stimulation distribution predicted by the learned inverse model as a
function of the desired position as shown in figure 6.7. When switching from a position at
the top of the workspace to the attractor target 4, the stimulations in the flexor muscles
change from high to low, while in the extensor muscles the stimulation is increased (from
a low value). Together with gravity, this leads to an acceleration towards the bottom of
the workspace. However, the visco-elastic properties of the MTUs, as discussed in section
3, will then counteract this acceleration such that, despite the overshoot, the attractor
point is reached without any further control action.
To further quantify also the temporal behavior of these trajectories, figure 6.30 plots

the trajectories of figure 6.29 over time. Here the behavior described above can be seen
more clearly. For attractor target 1, 2 and 3, it takes between 0.5 s and 1.0 s to reach the
equilibrium. For attractor target 4, one can see the larger overshoot when starting from
start position 3, 4 and 5. For those it takes about 1.5 s to reach the equilibrium.
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Figure 6.28: Attractor property experiment. Black crosses are target points which
should be reached from the different start positions (colored points).
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Figure 6.29: Observed trajectories from the starting positions to the attractor targets.
Learned inverse model π from section 6.3, 6.2.
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Figure 6.30: Trajectories of figure 6.29 plotted over time.
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6.7. Reachable Set

This experiment aims at investigating the estimation of the reachable set in more depth.
The evolution of the estimated reachable set over the number of collected data points has
already been visualized in figure 6.2, where the error certainty is c = 0.02, meaning that
for each desired target position x ∈ Xc, the learned inverse model is able to predict a
muscle stimulation u = π(x) such that when applied to the system, the arm will reach
a position that has a maximum distance to the desired target of 20 mm. As has been
evaluated in section 6.4, the point reaching accuracy for the target points of figure 6.12
with a mean of 1.50±0.42 mm is much better than 20 mm. Indeed, as shown in figure 6.11
and as discussed in section 6.3, the error estimate for the majority of the reachable set is
below 3 mm. More explicitly, figure 6.31 shows the boundary of the estimated reachable
set Xc for different values of the error certainty c. One can see that up to c = 0.003, i.e.
3 mm error certainty, the estimated reachable set is nearly the complete true X , except
for the lower left corner, which corresponds to the observation of figure 6.11. For even
smaller values of c like c = 0.0015 or c = 0.002, i.e. 2 mm and 1.5 mm error certainty,
the estimated reachable set Xc starts to get smaller and contain holes. But still for these
low values, Xc covers a large part of X . This indicates that the learned inverse model is
able to minimize the upper bound on the quality of the inverse model 5.67 tightly and
uniformly over the complete reachable set.
Note that according to the theory about the estimated workspace (section 5.3), it

must hold Xc ⊂ X̂c. However, it is not realistic to assume that the true musculoskeletal
system as φ̂ is an element of the RKHS with a Gaussian kernel and its hyperparameters.
Therefore, one cannot expect that the subset property strictly holds. Indeed, in figure
6.1 one can see that in the upper right part there is a slight violation of the subset
property. However, this violation is very tiny, which is another indicator for the fact
that the made assumptions can reasonably well be fulfilled in practice without extensive
parameter tuning of for example βi. Furthermore, similar to the discussion in section 6.4,
the error estimate is also tight and hence the estimated reachable set Xc is close to X̂c.
As has been discussed in section 5.3, proposition 5.32 provides a different way to obtain

the reachable set based on the available information of the learned forward model only.
The idea is to directly evaluate the learned forward model in the complete muscle stimula-
tion space U and then use the error estimate of the forward model (theorem 4.16) to define
the set X Uc for the error certainty c. To calculate this set, U = [0, 1]6 is discretized with
25 points per dimension, meaning that φ is evaluated for a total of 244140625 ≈ 244 · 106

muscle stimulations. The evaluation of the learned φ on this discretized U can be done
on modern hardware in a few hours. To put this into perspective, doing these many
simulations to evaluate the true forward model φ̂ on this muscle stimulation grid on the
computer of the author of this document would take about 8 years.
Figure 6.32, 6.33 and 6.34 show X Uc after 1200, 100 and 150 collected data points for

different values of c as well as φ(U). One can see three aspects. First, looking at figure
6.32a, 6.33a and 6.34a, only using X ≈ φ(U) without taking into account that φ is learned
on very little data compared to the dimensionality of U leads to a heavily overestimated
and hence completely wrong estimation of the reachable set. One reason for this is that at
the boundary of the true reachable set some data points in the U -space are close to each
other. If the separation distance of the data points is small, the coefficients of the kernel
linear combination (see section 4.1) become very large, leading to oscillations outside
the observed data points. Secondly, using X Uc leads to a reasonable estimation of the
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reachable set which is very similar to Xc, as can be seen in figure 6.32d for c = 0.02. In
principle, X Uc has the chance of being a better estimate than Xc, since it uses the complete
information encoded in the learned forward model and not only the predictions through
the current learned inverse model, since π(X) ⊂ U . However, thirdly, the representation
of Xc is not only much more useful, since it can be computed very quickly, compared to
the computational demand of X Uc , the estimation quality of Xc is at least the same as of
X Uc . Furthermore, as can be seen for example in figure 6.34d or 6.33d, X Uc on this already
relatively dense gird of U still contains many empty spots, compared to Xc, which could
be evaluated on a much finer scale and hence does not suffer from this.
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Figure 6.31: Estimated reachable set Xc for different values of the error certainty c after
1200 collected data points.
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Figure 6.32: Reachable set X Uc , calculated by evaluating φ(U) on a grid in U , where φ
is trained on 1200 collected data points.
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Figure 6.33: Reachable set X Uc , calculated by evaluating φ(U) on a grid in U , where φ
is trained on 100 collected data points.
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Figure 6.34: Reachable set X Uc , calculated by evaluating φ(U) on a grid in U , where φ
is trained on 50 collected data points.
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6.8. Ablation Study
In this section, the importance and influence of the various parts of the proposed active
inverse model learning framework on the point reaching performance is investigated. The
point reaching targets are the same as for the point reaching evaluation experiment (sec-
tion 6.4), see figure 6.12. Except for the part that is changed or left out, the rest of the
methodology stays the same with the same parameters.

6.8.1. Neglecting the Upper Bound in the Inverse Learning Objective

Here the claim from section 5.2 is supported that a learned forward model can be mis-
leading for learning an inverse, if it is not taken into account that a learned forward model
does not approximate the true forward model everywhere in the control input space. In
order to do so, it is considered what happens if the inverse model is not learned by op-
timizing the upper bound (5.38) on the real performance, but only as an inverse to the
learned forward model. Formally, this means that the optimization problem for learning
the inverse π is

min
w∈W

∫

Xc

‖φ(π(x; w))− x‖2 + η ‖π(x; w)‖2 dx (6.1)

or in its actual implementation

min
w∈W

∑

x∈X̃c∪DX
‖φ(π(x; w))− x‖2 + η ‖π(x; w)‖2 , (6.2)

i.e. the inverse model π is optimized such that it is a right inverse to the current learned
forward model φ. In the objectives (6.1) and (6.2) the integral over the estimated set Xc
is still included, where Xc is estimated based on the error estimate as developed in section
5.3. The exploration strategy as the lower bound on the real fill distance with trust region
(refer to section 5.4) still uses the error estimate. All parameters are the same as stated
in section 6.1.
Figure 6.35 shows the mean reaching error and its standard deviation for the same

test points as used for the point reaching evaluation experiment of section 6.4, see figure
6.12, over the number of sampled data points. Furthermore, two different learning rates
α for optimizing the inverse model are considered. As one can see, there is nearly no
learning progress at all and the error is very high. With an error of 72 ± 60 mm for
α = 0.0005 after 1200 sampled data points, the performance is about 47 times worse than
if the inverse is learned based on minimizing the upper bound on the real performance.
If the learning rate is twice as high (α = 0.001), then the reaching error of 245± 145 mm
is even about 163 times worse after 1200 data points. One can also see that more data
points do not necessarily imply a monotonic decrease in the reaching error, indeed, for
α = 0.001, the error after 1200 data points was even higher than after only 100 data
points. The main reason for this is that there are large parts of the reachable set which
remain unexplored, since, when neglecting the upper bound, the inverse model does not
have good extrapolation and hence exploration capabilities. But also in explored parts
of the workspace, the error is considerably higher than if the upper bound is included.
Therefore, including the error estimate in the objective is crucially important.
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Figure 6.35: Neglecting the upper bound in the inverse learning objective. Therefore,
the inverse model is only trained to be a right inverse of the current learned
forward model without taking the imperfection of the forward model into
account. Point reaching evaluation error over number of data points for
two different learning rates of π.
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6.8.2. Integral

Next the influence of the value of c for estimating the reachable set for the integral over
Xc in the inverse model learning objective (5.38) is investigated. One could argue that
the objective (5.38) would also be reasonable when the integral is replaced by the sum
over the observed data points only. Therefore, the case where there is no integral at all
is additionally considered. In this case, the objective would be

min
w∈W

∑

x∈DX

(
‖φ(π(x; w))− x‖2 +

d∑

i=1
β2
i si(π(x; w))2 + η ‖π(x; w)‖2

)
. (6.3)

Figure 6.36 visualizes the evolution of the point reaching error over the number of collected
data points. As one can see, if c is decreased from 0.02 to 0.01, the error is higher in the
beginning. The reason for this is that if c is larger, the model extrapolates better. After
about 500 collected data points, there is no statistically relevant difference, since then
mainly the exploration focuses on the inside of Xc. However, if c is made too large (in
this case 0.05), the reaching error increases. This is caused by the fact that for large c,
Xc contains points that are too far away from X and hence irritate the inverse learning,
since the objective (5.38) would still try to find an inverse where no inverse exists.
In case the integral is neglected completely, i.e. the inverse is trained according to 6.3,

the performance significantly drops and the final point reaching error after 1200 collected
data points is about 3 times higher than if the integral is included (and c = 0.02).
To summarize, the integral is of great importance for high accuracy, but also requires

some care for the choice of c. The influence of the presence of the integral is also further
investigated in section 6.9 and 6.10 for different exploration strategies.
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Figure 6.36: Influence of the presence of the integral as well as different error certainty
values c to estimate the reachable set Xc for the integral in the inverse
model learning optimization objective (5.38).
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6.9. Exploration Strategy Comparison
In figure 6.37 different exploration strategies, with and without the integral in the learning
objective, are compared to the proposed exploration strategy (in the variant with trust
region 5.83) in terms of the point reaching performance over the number of collected data
points. Random sampling in X (orange and green line) means uniform sampling in the
bounding box of X (definition 5.37). Random in Xc denotes uniform sampling in the
current estimated reachable set. Table 6.1 summarizes the point reaching errors after
1200 collected data points.
As one can see, the simple random sampling method in X has an about 4.1 times

higher error than the proposed method. This is due to the fact that many targets are
chosen outside of the true reachable set, which means that those points do not contribute
to increasing the performance of the inverse model where it is defined, namely inside the
reachable set.
With a final reached accuracy of 1.86± 0.54 mm, random sampling inside the current

estimated reachable set Xc is competitive at the end of the exploration to the proposed
strategy, which has an error of 1.50±0.42 mm. One has to note that through the estimated
reachable set a similar effect as the lower bound on the real fill distance is achieved, since
both are derived based on the error estimate, which explains why random sampling in
Xc also works well. The proposed exploration strategy is, however, in the beginning
significantly faster than random sampling in Xc.
For both random sampling methods, the performance significantly drops if no integral

is considered (refer also to the discussion of section 6.8.2). This especially holds true for
random sampling in X , which has an 7.1 times higher error than the proposed method,
since the integral helps for compensating areas inside Xc where no or little data has been
observed.
In figure 6.38 the two variants of the proposed active exploration strategy are compared

with each other. The one variant (5.83), which is used in all experiments so far and in all
following experiments, is based on maximizing the lower bound on the real fill distance
with a trust region around the already sampled data points. The other variant (5.82)
maximizes the lower bound on the real fill distance inside the current estimated reachable
set Xc. As one can see, in the beginning, the first variant with the trust region is slightly
better. This can be explained by the fact that with the chosen parameters of dXT

= 0.1
and c = 0.02, the trust region variant is allowed to sample outside of the current Xc
and is therefore more explorative. However, the difference between those variants is not
significant.

Table 6.1: Point reaching error after 1200 data points for different exploration strategies.
Exploration Strategy Mean reaching error [mm]
proposed exploration strategy with trust region 1.50 ± 0.42
proposed exploration strategy in Xc 1.66 ± 0.47
random in X 6.19 ± 2.63
random in X without integral 10.72 ± 4.97
random in Xc 1.86 ± 0.54
random in Xc without integral 6.90 ± 4.87
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Figure 6.37: Exploration strategy comparison in terms of point reaching accuracy.
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Figure 6.38: Exploration strategy comparison between (5.83) and (5.82) in terms of
point reaching accuracy.
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6.10. Exploration with Known True Reachable Set X
In this experiment, it is investigated what happens if the true reachable set X is known for
an exploration strategy. In one case, the lower bound on the real fill distance is maximized
over X , i.e. the exploration targets are chosen via

x∗ = argmax
x∈X

(
min

xi∈DX
‖x− xi‖ − εβ(x)

)
. (6.4)

In the other case, the exploration strategy samples targets uniformly in the true reachable
set X . In both cases, the integral in the inverse model learning objective (5.38) is still
computed over the current estimated reachable set Xc.
Figure 6.39 shows the evolution of the point reaching error over the number of collected

data points. As one can see, if the true reachable set is known, both the random and
fill distance (6.4) based exploration strategies are able to achieve a better performance at
the end of the exploration than if X is unknown. In the beginning, the random strategy
is faster, while in the end the strategy based on the lower bound of the real fill distance
leads to the lowest error overall. With a final reached error of 0.78 ± 0.07 mm, the
fill distance based exploration strategy (6.4) has an extremely low error. However, the
proposed method that does not rely on knowing the true X is very competitive both in
terms of exploration speed and final reached error, indicating that the derived bounds are
useful in practice for compensating the lack of knowing the true reachable set X a priori.
In figure 6.40 the evolution of the reaching error for the random and fill distance based

strategy with known true X but without the integral in the inverse model learning objec-
tive (5.38) is visualized. If the integral is neglected, both the final reached error and the
exploration speed in the beginning is worse. In this case, the final reached error is even
higher than with the proposed method, which means that the integral is also important
even if X is known for the exploration. However, compared to the results of section 6.8.2
and 6.9, the error increase if the integral is neglected for a known X for the exploration
strategy is less pronounced than if the true reachable set is not available for the explo-
ration. Interestingly, similar to the findings in section 6.9, the integral term especially
seems to be important for random based strategies also in this case where X is known.
Table 6.2 summarizes the point reaching errors at the end of the exploration after 1200

collected data points.

Table 6.2: Point reaching error after 1200 data points.
Exploration Strategy Mean reaching error [mm]
proposed exploration strategy 1.50 ± 0.42
lower bound on real fill distance in true X 0.78 ± 0.07
lower bound on real fill distance in true X without integral 1.70 ± 1.14
random in true X 1.28 ± 0.32
random in true X without integral 2.35 ± 0.96
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Figure 6.39: Comparison of the evolution of the mean reaching error over the number
of collected data points in case the true reachable set X is known for the
exploration strategy.
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Figure 6.40: Comparison of the evolution of the mean reaching error over the number
of collected data points in case the true reachable set X is known for the
exploration strategy. Same plot as in figure 6.39, but with two additional
situations where no integral in the inverse learning objective is included.
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6.11. Hybrid Control
In this experiment, the behavior of the system if the learned lambda controller developed
in section 5.7 is utilized together with the learned inverse model π to generate the muscle
stimulations, which is known as hybrid control as described in section 3.6. For a desired
target x ∈ Xc the muscle stimulations are calculated by

u = π(x) + Kp

(
LCE

opt

)−1 (
lCE −Ω(x)

)
−Kd

˙lCE, (6.5)

consisting of the static open-loop part π(x) and the monosynaptic feedback on the current
measured length of the contractile element lCE with predicted target Ω(x) = Λ(π(x)) by
the learned Λ.
As discussed in section 3.6, the predicted lengths Ω(x) of the contractile element must

correspond to the equilibrium lengths determined by the static muscle stimulation π(x).
Since Λ is learned, one cannot expect that this is perfectly fulfilled. In figure 6.41 the
reached points with the hybrid controller after 1200 collected data points (the inverse
π is the same of section 6.4) for the the same targets as in figure 6.12 are shown. As
one can see, the difference between the targets and the actual reached points is hardly
visible. Quantitatively, the mean error of 1.90± 1.11 mm is slightly higher than without
the lambda control part, where the error was 1.63 ± 1.0 mm (see figure 6.13). In this
experiment, the gains of the monosynaptic feedback are Kp = 0.1 · I ∈ R6×6 and Kd =
0.05 · I ∈ R6×6.
To study the influence of the additional feedback on the system, figure 6.42 shows a

point-to-point reaching trajectory for different gains Kp = 0.1 · I, Kp = 0.2 · I, Kp = 0.3 · I
and the case without lambda control. As one can see in figure 6.42c, if the monosynaptic
reflex is included, the target position is reached more quickly than with π alone. However,
for Kp = 0.2 · I a slight overshoot and for Kp = 0.3 · I a greater overshoot is observed.
Furthermore, with the monosynaptic reflex the velocity profiles (see figure 6.42e) have a
shape that is more similar to ones observed in human experiments [3].
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Figure 6.41: Point reaching evaluation with hybrid control. Mean reaching error 1.90±
1.11 mm.
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Figure 6.42: Hybrid control trajectories for point-to-point reaching experiment.
90



6.12. Real Pneumatic Muscle-Driven Robot

6.12. Real Pneumatic Muscle-Driven Robot
The goal of this experiment is to show that the proposed active inverse model learning
framework also works with a real system, the muscle-driven robot, which mimics the
simulated human arm. For details about the robot refer to section 3.8.
In comparison to the simulated experiments, the X -space in this experiment is not

the position of the hand of the arm, but its joint configuration. The reason for this is
mainly since the forward kinematics of the real robot significantly differs from the CAD
construction specification, implying that a calibration would be required first, which is
not the scope of this work. Furthermore, the experiment has been tried once in the end-
effector space with a roughly calibrated forward kinematics. Here it turned out that the
performance was inferior compared to the joint configuration space as presented in this
section. Since this was tried only once, it is expected that with tuning the parameters
and calibrating the forward kinematics, good performance can also be achieved in the
end-effector space.
Speaking of parameters, most of the hyperparameters (even the kernel parameters) of

the real robot experiments are the same as described in section 6 with the following excep-
tions: Since the real robot only has five muscles, m = 5. The initial muscle stimulation
is u0 = 1

5(1, 2, 1, 2, 0.5)T ∈ R5, corresponding to a pressure of (1, 2, 1, 2, 0.5) bar. The
upper bound on RKHS norm of the true forward model, i.e. the robot, for the inverse
learning objective and the reachable set estimate is βi =

√
3. With this value, however,

the exploration turned out to be a bit too conservative. Therefore, for the exploration
strategy this bound on the RKHS norm is set to a smaller value of βi = 1.
Compared to the simulated human arm, a much wider range of the muscle stimulation

space has to be utilized in order to move the arm through its complete possible joint
space. To account for this fact, it turned out to be favorable to increase the number of
data points that are sampled with noise to 50 and to also increase the amount of noise
by a factor of 10.
All data points are collected by applying the muscle stimulation from the exploration

strategy from the state of the robot where it has zero muscle stimulation. In total,
collecting one data point takes 10 seconds.
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6.12.1. Exploration Behavior

Figure 6.43 shows the exploration result after a total of 651 collected data points DX
(blue) in the X space, i.e. the reached joint angle configurations of the real arm robot,
as well as the estimated reachable set Xc (orange) for c = 0.02. This value for the error
certainty means that for each desired joint configuration x ∈ Xc, the real robot should
reach these angles within a accuracy of 0.02 rad or 1.15◦, when using the learned inverse
model. Refer to the next section for an evaluation of the actual accuracy. Looking at the
shape of the estimated reachable set and the collected data points, one can see that for
this muscle-driven system, the reachable set is not just a rectangle, as one may expect
from an X space as a joint space. This is partly caused by the one biarticular muscle.
Due to the limitations of the pneumatic muscles as discussed in section 3.8, the reachable
set is smaller than of the one of the simulated human arm.
In figure 6.44, the exploration process for a growing number n of collected data points

in therms of both the distribution of the collected data points as well as the evolution of
the learned reachable set is visualized. After 60 collected data points (figure 6.44b), the
estimated reachable set is still nearly empty. When 120 data points have been collected
(figure 6.44c), the reachable set is mainly spread along the shoulder angle. Generally,
it seems that the exploration in the shoulder angle is much faster than in the elbow
angle. One reason to explain this is that the elbow pneumatic muscles have a significantly
lower actuation range than the shoulder muscles and therefore also higher pressures are
required to move the elbow the same amount as the shoulder. Despite this difficulty, the
methodology is able to explore in the elbow angle direction successfully. Similar to the
simulated experiments (see section 6.2), the exploration with the real robot also shows
a uniform distribution of the collected data points with a comparably good separation
distance.
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Figure 6.43: Exploration result after a total of 651 collected data points with the real
muscle driven robot. Blue points denote the reached joint angle configura-
tions of the robot. The orange line visualizes the boundary of the estimated
reachable set Xc for c = 0.02.
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(a) n = 30 (b) n = 60

(c) n = 120 (d) n = 150

(e) n = 180 (f) n = 210

(g) n = 240 (h) n = 270

(i) n = 300 (j) n = 330
Figure 6.44: Evolution of the collected data points and estimated reachable set. Same

legend and axis limits as in figure 6.43. 93
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(k) n = 360 (l) n = 390

(m) n = 420 (n) n = 450

(o) n = 480 (p) n = 510

(q) n = 540 (r) n = 570

(s) n = 600 (t) n = 651
Figure 6.44: (continued) Evolution of the collected data points and estimated reachable

set. Same legend and axis limits as in figure 6.43.94
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6.12.2. Point Reaching Evaluation

Figure 6.45 shows the 100 target points, i.e. the target angles of the shoulder and elbow
joint, to test the accuracy of the learned inverse model. This point reaching evaluation
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Figure 6.45: Target joint angles for evaluating the point reaching accuracy, 100 in total.

experiment is performed two times. In experiment 1, the active inverse model learning
framework has collected 651 data points. The learned π is then used twice to reach the
target points of figure 6.45. The reached points for both evaluations are shown in figure
6.46. For experiment 2, the learning framework is started from scratch with the same
parameters. This time, only 435 data points are collected and the evaluation of the 100
target points is performed only once. The point reaching results are visualized in figure
6.47. Table 6.3 summarizes the accomplished accuracies for both experiments with the
three evaluations in total. The error in the elbow joint is very consistent between the
three different evaluation runs, in the shoulder joint, it shows more variation. Taking
into account that this is a real system with friction, which is controlled open-loop, the
accuracy between 0.3◦ and 0.5◦ in the shoulder and about 0.3◦ in the elbow is better than
the expectation of the author of this work.
In contrast to the simulation where the true forward model, i.e. the system itself, is

independent of its current state, the pneumatic muscles of the real robot as well as other
friction effects imply that the true forward model of the real robot is not state independent
[13]. Therefore, the evaluation accuracy reported in figure 6.46, 6.47 and table 6.3 is
only valid when starting the motion from the resting state of the robot corresponding
to zero muscle stimulations. To investigate the impact of these effects, figure 6.48 shows
an experiment where 6 joint configurations are reached both starting from the resting
position as in training and starting from the last reached configuration. As one can see,
there is a difference in the accuracy, but except for the joint configuration in the lower
right corner of figure 6.48, the difference is small. Table 6.4 quantifies the concrete errors
of this experiment. The mean error in the shoulder joint increases by 34 %, in the elbow
by 84 %, but are still low. In figure 6.49, the goal is to only move the elbow joint back
and forth while keeping the shoulder angle constant. Table 6.5 reports the errors of each
configuration. As one can see, the configuration where the elbow is flexed has a low error,
independent from the reaching order, while the error in the extended position depends on
the configuration history. This can again be explained by the way the robot is constructed
and the deficiencies of pneumatic muscles with respect to their contraction range.
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−1.2 −1 −0.8 −0.6 −0.4 −0.2
1.2

1.3

1.4

1.5

Shoulder angle q1 [rad]

El
bo

w
an

gl
e

q 2
[ra

d]

(b) Evaluation run 2

Figure 6.46: Actual reached joint angles for point reaching evaluation with real robot.
Experiment 1 with 651 collected data points. Subplots (a), (b) show two
evaluation runs for the same learned π.
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Figure 6.47: Actual reached joint angles for point reaching evaluation with real robot.
Experiment 2 with 435 collected data points.

Table 6.3: Mean errors and standard deviations of point reaching evaluation experiment.

Experimenta Evaluationb Mean shoulder
angle error [◦]

Mean elbow
angle error [◦]

1 1 0.51± 0.24 0.31± 0.21
1 2 0.30± 0.33 0.32± 0.23
2 0.40± 0.33 0.29± 0.19

a Experiment means complete run of learning methodology
b Evaluation means same π, but different evaluation run
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Figure 6.48: Comparison between point reaching accuracy if each configuration is ap-
proached from the starting configuration with zero muscle stimulation as
in training (orange) versus starting from the last reached configuration
(green), where the movement order starts from the lower left.

Table 6.4: Mean errors and standard deviations for experiment of figure 6.48.

Reaching mode Mean shoulder
angle error [◦]

Mean elbow
angle error [◦]

from u0 = 0 0.47± 0.19 0.25± 0.14
from last u 0.63± 0.33 0.46± 0.43

1.2 1.25 1.3 1.35 1.4 1.45 1.5
−0.8

−0.75

−0.7

−0.65

−0.6

1

2
3

4

Elbow angle q2 [rad]

Sh
ou

ld
er

an
gl
e

q 1
[ra

d]

target angles
1 – 4 reached angles

elbow flexion

Figure 6.49: Accuracy if elbow joint should move back and forth while the shoulder
angle should be kept constant. Numbers 1 – 4 indicate the movement
order. Please note the switched axis.

Table 6.5: Mean errors and standard deviations for experiment of figure 6.49.

Configuration Shoulder angle
error [◦]

Elbow angle
error [◦]

1 0.32 0.10
2 0.31 0.20
3 1.60 0.88
4 0.002 0.49
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7. Discussion

7.1. Performance
In general, the resulting performance of the learned inverse model with a mean point
reaching error of 1.50± 0.42 mm is more than sufficient, especially for a musculoskeletal
system that is controlled open-loop. The proposed framework is able to learn an accurate
inverse model data efficiently and to cover the true reachable set quickly.

7.2. Assumptions in Practice
The active inverse model learning framework is derived under the assumption that the true
forward model comes from the same RKHS as used for the learned forward model. This
allows to derive the error estimate which is central to define the inverse model learning
optimization problem, the estimation of the reachable set and finally the exploration
strategy. It is, however, completely unrealistic that the true forward model, i.e. the
musculoskeletal system, is an element of the RKHS for a Gaussian kernel with finite RKHS
norm. Even if this would be true, one still cannot expect that the correct hyperparameters
would be chosen. Therefore, the question arises whether the assumptions and hence
the derived bounds are useful in practice at all. As shown in the experiments, without
extensive tuning of the hyperparameters, the derived bounds not only hold true (with
minor exceptions), they are also tight enough to be useful in practice, for example to
estimate the real point reaching error. Furthermore, if neglecting the upper bound in the
exploration objective, the performance drops significantly, which is another indication for
the usefulness of the bounds and the underlying theory for practical applications.
The main limitation of the present work is that the learned inverse models are state-

independent, static mappings. While for the investigated systems, the attractor assump-
tion holds in the complete workspace, this is not necessarily true for all musculoskeletal
systems like a complete human body.

7.3. Scalability
This work considered problems where the input space is 6 dimensional and the workspace
is 2 dimensional. When scaling to higher dimensional workspaces, three problems arise.
First, as mentioned in section 5.5.2, the computational complexity of performing one gra-
dient step on the complete data set with size n is O

(
ndhn

2 + n3
)
. Therefore, training the

neural network becomes computationally demanding both for a growing dataset size and
also in the dimensionality of the workspace, which causes the term ndh to grow exponen-
tially. Indeed, it turned out that training the neural network through the kernel method
and considering the integral formulation takes by far the most computational time. Sec-
ondly, increasing the workspace dimension also requires exponentially more data points
to cover the complete workspace. Thirdly, the exploration optimization problem is solved
via grid evaluation, which becomes prohibitive in higher dimensions as well.
However, scaling to higher dimensional input spaces does not seem to be a problem,

although this has not been evaluated thoroughly in this work yet.
Considering the fact that in most experiments after about 200 data points an already

accurate inverse model is learned that covers the complete reachable set is impressive
when taking into account that 200 data points in a 6 dimensional input space is extremely
sparse.
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7.4. Forward Model
In the present work, the forward model is represented as a linear combination of Gaussian
kernels. In distance to any observed data points, a Gaussian kernel approaches a zero value
rapidly, hence the forward model approaches its constant prior mean value. This, however,
is not realistic for a musculoskeletal system (and many other systems as well). Therefore,
it is expected that a slightly more informed prior mean than a constant could increase
the extrapolation capabilities of the forward model and hence also of the inverse model.
With respect to the scalability as discussed in the last paragraph, better extrapolation
capabilities are important if one would like to increase the workspace dimension.
The by far biggest problem of the forward model is, however, that a kernel method

deteriorates if two data points are too close to each other in relation to the kernel width
(for many radial kernels). Indeed, the condition number of the kernel matrix mainly
depends on the separation distance of the data [45]. This can be counteracted to some
extend by using a higher regularization parameter, which, if it is too high, also deteriorates
the quality of the forward model, which is then less useful for learning the inverse.
In this regard, one can think of using other regression methods for learning the forward

model. However, a crucial aspect to derive the whole methodology is the ability to
estimate the error between a learned and the true function for the forward model. Thus,
an alternative regression method would have to provide similar estimates, not at least to
be able to state theoretical guarantees of the method.

7.5. Estimation of the Reachable Set
Estimating the reachable set turns out to be an essential aspect of learning an inverse
model, not only from a theoretical side in order to be able to even properly define the
inverse model and to evaluate its the quality, but also from a practical perspective. An
estimation of the reachable set enables to define what it means to learn an inverse model
in terms of an integral formulation. This integral term is important to not only achieve
the low point reaching error of the learned inverse model, but also for the extrapolation
and hence exploration capabilities of the model.
The way the reachable set is estimated turns out to be close to the true one and

especially, its representation through the error estimate is fast to compute, since one can
check efficiently whether a point belongs to the estimated reachable set or not.
In contrast, simply setting X ≈ φ(X ) without taking the imperfection of the learned

forward model into account leads to completely unreasonable results and is also compu-
tationally demanding.
From a theoretical point of view, under the stated assumptions, it is guaranteed that

the estimated reachable set Xc does not overestimate the true reachable set X̂c with
error certainty c. Two things have to be taken into account here. First, the true X̂c
overestimates the true reachable set X exactly by the value of c. Therefore, since Xc tries
to approximate X̂c and it is only guaranteed that Xc ⊂ X̂c, Xc is allowed to potentially also
overestimate X by c. If the value of c is now too large, the inverse learning optimization
problem through the integral term would try to find an inverse for unreachable parts of the
true workspace, i.e. where no inverse exists. Therefore, the parameter c should be chosen
carefully, since making it too small also leads to little advantage from the integral term.
Actually, choosing this parameter c turns out to be not too difficult for the situations
considered in this work, not at least since it has a clear interpretation.
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7.6. Exploration Strategy
In order to generate useful data for the forward model efficiently in the high dimensional
control input space, the current learned inverse model is bootstrapped by choosing explo-
ration targets in the low dimensional target space.
Overall, the proposed active exploration strategy that is based on maximizing a lower

bound on the real fill distance of the system leads to the lowest point reaching error and
the fastest error decrease compared to different random strategies. The random strategy
inside the current estimated reachable set is competitive at the end in terms of the point
reaching error, but is slower in the beginning. Through constraining the exploration inside
the current estimated reachable set, a similar effect as with the lower bound on the real fill
distance is achieved. For all exploration strategies, the integral formulation is important,
since it increases the extrapolation quality of the inverse model and hence the inverse
model is better suited for exploration. In particular, the random based strategies rely on
the presence of the integral term. The proposed exploration strategy is even competitive
to a strategy that knows the true reachable set.
An interesting aspect of the proposed exploration strategy is that it inherently trades-

off exploration and exploitation. In the beginning, most exploration target points are
chosen outside of the current estimated reachable set for fast expansion of the estimated
reachable set. At a later stage of the procedure, the majority of the targets are selected
inside the estimated reachable set, which means that the exploration strategy recognizes
that the reachable set has been explored and then focuses on improving the quality of the
inverse model inside the reachable set.

7.7. Future Work
From an application point of view, in addition to the static predicted muscle stimulation
from the inverse model, the developed method to learn the monosynaptic reflex could be
applied to the real robot as well. It is assumed that by integrating feedback on the lengths
of the pneumatic muscles, the impact of the hysteresis and friction of the real robot could
be reduced. Furthermore, another interesting direction with respect to applications would
be to increase the dimensionality both of the control input space and the workspace. As
discussed above, it is expected that the method has no difficulties with an increased
control input space size.
The active inverse model learning framework developed in this work has been evaluated

on musculoskeletal systems only. Since it is a general method, future work could include
applications to other inverse learning scenarios. Since the proposed methodology provides
a guaranteed (under the mentioned assumptions) bound on the real performance error of
the inverse model, one could also embed the framework into approaches that learn multiple
paired forward-inverse models.
One limitation of the present work with respect to application for musculoskeletal sys-

tems is that the learned inverse is a static mapping and therefore is not able to directly
influence the dynamics between the equilibrium states. Although with the monosynaptic
reflex, as shown, this dynamics can already be influenced for example to reach the desired
target more quickly, further extensions to this end are possible. For example, one can
think of using the learned inverse within a trajectory planning framework. Furthermore,
as mentioned before, the assumption that every point in the reachable set is an attractor
point is also not fulfilled for every musculoskeletal system. To address this issue, one way
would be to learn a state dependent inverse model.
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8. Conclusion
In the present work, a novel methodology to learn an inverse model for redundant systems
was developed. By formalizing what it actually means to learn an inverse model, a
method was derived where the inverse model, represented as a neural network, is learned
by minimizing an upper bound on the real performance error, which is provided through
a learned forward model. Including this upper bound in the learning objective turned out
to be very important for the performance. An essential aspect of the whole framework
was to estimate the reachable set of the system. This allows to properly formulate the
inverse learning objective in integral formulation, which showed to further increase the
accuracy. A key feature of the proposed framework is that the learned models provide an
estimate of the true reaching error. With the proposed active exploration strategy, which
is based on maximizing an lower bound on real fill-distance, the necessary data to learn
a forward model that is useful to learn the inverse could efficiently be generated in the
high dimensional control input space.
The developed framework was evaluated both on a simulated musculoskeletal model

of a human arm with 2 joints and 6 muscles as well as on a real muscle-driven robot
which mimics the human arm model. The real robot has 2 joints and is articulated by 5
pneumatic muscle spring units. In both situations, the proposed method could efficiently
learn an accurate inverse model and is able to estimate the reachable set to control the
systems to a desired configuration in the complete possible workspace.
Despite the fact that it is unrealistic to assume that the true forward model comes from

the same RKHS as induced by the chosen kernel and its hyperparameters, it turned out
in the experiments that also in practice the assumptions of the theoretical derivations
can be fulfilled reasonably well, without extensive tuning of the parameters. Therefore,
the derived bounds are actually useful in practice, can be computed easily and give tight
predictions.
It is fascinating that in most experiments after about 200 data points an already ac-

curate inverse model was learned that covers the complete reachable set, considering the
fact that 200 data points in a 6 dimensional input space are extremely sparse.
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