
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Dynamic Safe Active Learning
with NARX Gaussian Processes

Veronica Crespi

Course of Study: Computer Science

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: Dr. -Ing. Duy Nguyen-Tuong

Commenced: 15. April 2019

Completed: 15. October 2019

Abstract

Black-box modelling using Gaussian Processes has been widely and successfully studied
and applied to model complex dynamic systems. So far, however, very little attention
has been paid to the processes of obtaining the necessary data to train such systems in
an efficient and safe manner. Zimmer et al. [ZMN18] proposed a Safe Active Learning
framework for Time-Series Modeling with Gaussian Processes, which can be used to learn
a Nonlinear Exogenous (NX) representation of a dynamic system in an efficient manner
while considering safety constraints. In this masters’ thesis, the problem of efficiently
and safely learning a Nonlinear Autoregressive Exogenous (NARX) representation of
a dynamic system is addressed. With this purpose, an extension of the framework by
Zimmer et al. was designed and implemented. Finally, the developed framework was
evaluated in a real-world application. The results show an improvement on the original
framework performance, as well as the suitability of the approach for real-world dynamic
system modelling.

3

Acknowledgments

This work would not have been possible without the financial support of the Bosch
Center for Artificial Intelligence.

I would like first to thank my advisors Prof. Dr. rer. nat. Marc Toussaint and Dr. -Ing.
Duy Nguyen-Tuong for offering me this thesis and for their guidance and support.

I am profoundly grateful to my tutor, Christoph Zimmer, for his mentoring and support
throughout the semester.

Special thanks also go to Mark Schillinger for providing me with the needed analytical
models to run my experiments and being always available for questions and requests.

I would also like to thank my colleagues from the Bosch Center for Artificial Intelligence
for the interesting discussions and feedback about my work.

5

Contents

1 Introduction 15

2 Literature Review 17
2.1 Dynamic Modelling . 17
2.2 Active Learning . 18
2.3 Safe Active Learning . 19

3 Theoretical Background 21
3.1 Supervised Machine Learning . 21
3.2 Gaussian Processes . 21
3.3 Active Learning . 24
3.4 Time Series . 27

4 Methods 29
4.1 Problem Statement . 29
4.2 Proposed solutions . 35

5 Evaluation 47
5.1 Application . 47
5.2 Experiments . 48
5.3 Results . 50

6 Discussion, Conclusions and Outlook 57

A Implementation details 59

B Extra Experiments 61
B.1 Safe Active Learning vs Random Safe Exploration 61
B.2 Impact of observational noise in the feedback loop in NARX models . . . 61
B.3 Information Metric Approximations . 61

Bibliography 65

7

List of Figures

3.1 Active Learning System . 24
3.2 Active Learning vs random sampling strategy 26
3.3 System structures for modeling and predicting Time Series 28

4.1 Trajectory prediction with NX models . 33
4.2 Trajectory prediction with NARX models 34

5.1 High-Pressure Injection System (taken from [ZMN18]) 47
5.2 Analytical Models used to model the High-Pressure Injection System . . 48
5.3 Experiments settings . 49
5.4 Root Mean Square Error (RMSE) for the Safe Active Learning exploration

using an NX Gaussian Process (GP) . 51
5.5 RMSE for the Safe Active Learning exploration using a NARX model with

the Naive approximation by mean value 52
5.6 RMSE for the Safe Active Learning exploration using NX and NARX GPs 52
5.7 RMSE for the Safe Active Learning exploration using a NARX model with

Moment Matching approximation . 53
5.8 RMSE for the Safe Active Learning exploration using a NARX model with

different approximations . 54
5.9 Trajectory prediction with NARX model 55

B.1 RMSE for Safe Exploration using a NARX model 62
B.2 RMSE for Safe Active Learning exploration using a NARX model with and

without observational noise . 63
B.3 Reported percent error for different approximations of I(τ) 64

9

List of Algorithms

4.1 Safe Active Learning for Time Series modeling 29
4.2 Find next trajectory . 31
4.3 Naive predictions . 37
4.4 Moment Matching Predictions . 42
4.5 Monte Carlo Predictions . 44

11

List of Abbreviations

GP Gaussian Process. 9

ML Machine Learning. 21

NARX Nonlinear Autoregressive Exogenous. 3

NRMSE Normalized Root Mean Square Error. 20

NX Nonlinear Exogenous. 3

RMSE Root Mean Square Error. 9

13

1 Introduction

Black-box dynamic Modelling plays an important role in addressing the issue of inter-
acting, controlling and optimizing the functioning of physical systems that cannot be
accurately and fully represented by a white-box model. Recently, researchers have shown
an increased interest in modelling these systems using supervised Machine Learning
techniques. In particular, Gaussian Processes have been successfully applied in this
area [CDD+17; KMRG04; NSP09; PKPB07; RAO+15; RD16]. However, obtaining an
informative data set is of particular concern in this scenario, since annotations and
measurements of the physical system are usually expensive. Furthermore, safety consid-
erations need to be taken when running these measurements in order not to damage
the system.

Safe Active Learning deals exactly with the above mentioned problem of generating a
small, informative and safe data set with which to train the desired Machine Learning
algorithm without incurring in high measurement costs or compromising the systems’
integrity. A Safe Active Learning exploration is characterized by its iterative choosing
the best points to be tested in the system, performing the measurements in the system,
adding the obtained information to the training data set and retraining the Machine
Learning algorithm with the extended data set. Consequently, the key component of such
a framework is the acquisition function used to choose the next exploration iteration.
Previous research [SNE+15; ZMN18] have used the entropy criterion subject to some
safety constraints to drive the exploration.

Zimmer et al. [ZMN18] addressed the Safe Active Learning with Gaussian Processes
problem in the context of Time Series Modeling. In their work, a Safe Active Learning
Framework that plans parameterizable trajectories to test on the system at each iteration
was developed. Much of their research focused on identifying and evaluating the chosen
acquisition function and safety guarantees. Conversely, the study did not focus on the
choice of the learnt model structure. As a result, a Nonlinear Exogenous model was
used, which is usually suboptimal when modelling stateful dynamic systems. Nonlinear
Exogenous models consider the output of the system to be dependent only on the inputs,
disregarding the dependency with previous outputs.

The purpose of this masters’ thesis is to extend the framework developed by Zimmer et
al. to consider Nonlinear Autoregressive Exogenous models. Nonlinear Autoregressive

15

1 Introduction

Exogenous models differ from Nonlinear Exogenous in that they also consider the
dependency of the system’s output on previous outputs and is, therefore, believed to
better explain real dynamic systems. This work also compares the different methods
that can be used in order to make this modification in the model’s structure possible.

The main contributions of this thesis can be summarized as:

• This work extends the Safe Active Learning with Gaussian Processes for Time Series
Modelling framework developed by Zimmer et al. [ZMN18] by incorporating
Nonlinear Autoregressive Exogenous Gaussian Processes to learn the model.

• This work assesses the impact of modelling dynamic systems with different model
structures (Nonlinear Autoregressive Exogenous and Nonlinear Exogenous ones).

• This work considers the implications of different approximations of multi steps
ahead predictions in the context of a Safe Active Learning framework. Approxima-
tion by mean value, Moment Matching and Monte Carlo Sampling are considered.

• This work empirically evaluates the proposed framework and compares it with the
work by Zimmer et al. [ZMN18].

Outline

The remainder of this thesis is structured as follows:

Chapter 2 – Literature Review: provides an overview of the related work relevant for
this thesis.

Chapter 3 – Theoretical Background: addresses the main theoretical topics related to
this work, such as supervised Machine Learning and Active Learning foundations.

Chapter 4 – Methods: is concerned with the concrete modifications made to the work
by Zimmer et al. [ZMN18] and its implications.

Chapter 5 – Evaluation: Here, the experiments on a real world problem, together with
their results are presented.

Chapter 6 – Discussion, Conclusions and Outlook: summarizes this work and pro-
vides an overview of its applications and open challenges.

16

2 Literature Review

2.1 Dynamic Modelling

Many physical systems are so complex or uncertain that they cannot be accurately and
fully represented by a mathematical model. However, we still need to be able to define
these systems’ behaviour in a way that we can create them and interact with them. For
this reason, there has been an increasing interest in Intelligent Systems that can help
design, optimize and control such physical systems without the need for a mathematical
model [SX17].

Many efforts have been made in the robotics community to find model learning methods
that serve for control purposes. A detailed survey of the different methods and algorithms
used for model learning in this field can be found in the work of Nguyen-Tuong & Peters
[NP11]. Some of the most popular algorithms in this area are: Reinforcement Learning
[ACQN07; AMS97; NCD+06], Neuronal Networks [ÅT06; CYD+06; GH02; PCK02]
and Gaussian Processes [KMRG04; NSP09; PKPB07]. In the case of Reinforcement
Learning [SB18], the agent learns the model as it interacts with the environment and
can, therefore, decide at each iteration what to explore next. On the contrary, in the
case of plain Neural Networks or Gaussian Processes, like the ones used in the above
mentioned works, the Machine Learning algorithm is trained only after the complete set
of training data is collected. As a result, the training set is redundant and sub-optimal.
Variations of these algorithms can be made to guide the data collection and make the
training set smaller and less redundant. This approach is called Active Learning and is
discussed in the following section. In this thesis, an active learning framework is used in
order to perform a more efficient data collection.

Using Gaussian Processes to model Time Series of Dynamic Systems [ROE+13] has
also been a topic of interest lately. This allows us to model a wide variety of systems
[CDD+17; RAO+15; RD16], where the time and order of the inputs play an important
role. In their work, Girard et al. [GRCM03] addressed the problem of multi-steps ahead
Time Series forecasting with GPs, which is of high interest for this thesis. Particularly,
they study multi-steps predictions in NARX models, where the output of the model
is used as part of the input for the next time steps. Because of this model structure,
an approximation is needed to be able to propagate the uncertainty in the inputs,

17

2 Literature Review

which is caused by the feedback loop. In their work, they proposed to use moment
matching, which was proven to perform comparably to Monte Carlo approximations and
to outperform the naive approach. For this reason, their approach will be considered in
this master’s thesis when computing multiple steps ahead predictions.

2.2 Active Learning

The goal of Active Learning is to optimize the choice of points for the training set, so that
the time and cost of unnecessary measurements performed in the real physical system
can be spared. For the purpose of this master’s thesis, this section focuses only on Active
Learning using GPs, but analogous literature can be found for other Machine Learning
techniques [Set09].

Seo et al. [SWGO00] addressed this topic and presented two different metrics to guide
the exploration, both based on the optimal experiment design [FH12]. The first metric,
proposed by Cohn [Coh94] aimed to minimize the generalization error, while the second
one, presented by MacKay [Mac92], aimed to maximize the information gain, which
translates into choosing the point with the highest the expected variance. As expected,
both metrics performed better than random exploration. In their work, however, they
considered the GP parameters to be known and could, therefore, use an a priori design
of the experiment (choose the complete training set before performing the measurement
in the physical system).

Krause et al. [KG07] considered the problem when the GP parameters are unknown
and a sequential approach is needed. In this case, they considered entropy and mutual
information as metrics and chose each next point to add to the training set, taking into
account the measurements for the previous ones. This approach was then compared to
the a priori one and proved to work better in the case of unknown GP parameters.

Although these Active Learning approaches address the problem of efficient exploration,
they do not consider the risk of exploring without safety considerations, which is crucial
in dynamic modelling. Disregarding safety in this context can lead to a breakdown and
in-utilization of the physical system and can even compromise the safety of the people
operating it. Therefore, the main focus of this thesis is to find a way of performing an
efficient exploration, while guarding the system’s safety throughout the process.

18

2.3 Safe Active Learning

2.3 Safe Active Learning

Safe Exploration has been studied in depth in the context of Reinforcement Learning and
is still an ongoing field of research. Geibel et al. [GW05], for example, defined the risk
as the probability of ending in some pre-defined unsafe states and then tried to minimize
this risk. Constraints on the probability of constraints violations were also considered
[Gei06]. Learning by demonstration has also been explored by different authors [ACN10;
PR11]. Garcia & Fernandez [GF12] used a predefined safe but suboptimal policy as a
starting point for the learning process and then improved it using safe exploration using
a risk function. Gillulay & Tomlin [GT11] used a reachability analysis to obtain safety
guarantees. For a more detailed overview and comparison of these methods, please refer
to this survey by Garcia & Fernandez [GF15].

Safe Exploration in the context of Bayesian Optimization and Active Learning with GPs
has also been considered. However, it has not yet been so extensively explored.

Srinivas et al. [SKKS09; SKKS12] studied the case of GP optimization for the ban-
dit setting with bounded regrets. Building upon their work, Sui et al. developed
SafeOpt[SGBK15] and StageOpt [SZBY18] algorithms for Safe Exploration for Opti-
mization with GPs in static bandit-like environments. In their algorithms, they used
the prediction uncertainty to guide exploration and confidence bounds to predict the
safety of unexplored areas. The output of the system was modelled with a GP and the
safety constraint could only be defined as a lower bound on the system’s output, which
makes this algorithm unsuitable for more complex problems, like the one addressed
by this thesis. In a later work by Berkenkamp et al. and by Kirschner et al., modified
versions of the SafeOpt algorithm were successfully applied to optimize the controller’s
parameters of a quadrotor vehicle [BKS16; BSK16], and the beam intensity of the Swiss
Free Electron Laser [KMH+19], avoiding expensive and dangerous system failures.

Berkenkamp et al. [BMSK16] explore and lay the theoretical foundations for the Safe
Learning of Regions of Attraction with GPs using a first approximation of the model and
a corresponding Lyapunov function.

2.3.1 Safe Active Learning with Gaussian Processes (GPs)

Schreiter et al. [SNE+15] developed a framework for Safe Exploration for Active
Learning with GPs. This algorithm consisted of training a GP Classifier to distinguish
safe and unsafe areas and using the differential entropy criterion [KG07] to guide the
exploration. In their work, they include a theoretical analysis on the safety of the
exploration, providing an upper bound to the probability of exploring unsafe areas.
Additionally, they tested their framework with the inverse pendulum hold up problem.

19

2 Literature Review

Contrary to the above presented research, this approach allowed the system to learn
domain-specific safety regions that are more complex than just a threshold on the
system’s output. However, their approach was still a stationary one, unsuited for the
modelling of dynamic systems.

Building upon Schreiter et al.’s work [SNE+15], Zimmer et al. [ZMN18] addressed the
Safe Active Learning with GPs problem in the context of Time Series Modeling. In their
proposed algorithm, two GPs were trained to learn simultaneously the system model and
a system safety metric function (a function that takes positive values inside safe areas and
negative ones everywhere else and can, therefore, be used to distinguish between this
areas). Both GPs had a NX structure, taking as input a fixed number of previous inputs
to the physical system. Using the aforementioned GPs, a Safe Active Learning algorithm
was introduced, corresponding to the following constraint optimization problem:

x∗ = arg max
x

I(x), st P (g(x) ≥ 0) ≥ 1 − α (2.1)

Here, I(x) corresponds to the optimality criterion that drove the exploration, while g(x)
represents the learnt safety metric function. Then, the constraint of this problem forced
the x∗ to be safe with a probability higher than 1 − α, being α the customizable risk
probability tolerance.

Finally, Zimmer et al. tried the proposed algorithm in the learning of a surrogate model
of a high-pressure fluid system, which will be taken as a comparative baseline for this
master’s thesis. It is important to mention, though, that Zimmer et al. used an NX
analytical model of the real system as ground truth, so the real RMSE and safety accuracy
that is obtained when compared with the real physical system is not reported in the
paper.

In this thesis, a more realistic approach is taken, using a NARX analytical model of the
real system as ground truth. Such a structure for the model is believed to be more
accurate as it incorporates the previous outputs of the system in the current input
and can, therefore, model the system state, while in the NX case, the system state is
discarded, as the outputs are only considered to be a function of the actual and previous
inputs. Particularly, in the case of study, the analytical NX model of the system reported
higher Normalized Root Mean Square Errors (NRMSEs) (22.2%, 15.6% and 10.2%)
than the NARX one (8.3%, 13.4% and 8.4%), when compared with the real physical
system for 3 different data sets. Additionally, given the aforementioned arguments in
favour of NARX models, a NARX structure will be used for the learnt GPs in this thesis.
As a result, better modelling of the system, measured by lower RMSE, is expected.

20

3 Theoretical Background

3.1 Supervised Machine Learning

In Supervised Machine Learning, a Machine Learning (ML) algorithm is trained on a
predefined set of labelled data D =

{(
xi, yi

)}i=n

i=1
to obtain a representation or model:

f : x 7→ y, that explains the data and can predict new unknown points. Consequently,
for the algorithm to learn a meaningful model, a good amount of representative labelled
data is needed. The main drawback of this approach is that obtaining the necessary
labelled data can be very expensive and time consuming depending on the scenario. For
this reason, it is important to find a way of obtaining a representative and small training
set that allows us to train the model with a low number of representative labelled data.
Active Learning proposes a way to tackle this issue.

3.2 Gaussian Processes

3.2.1 Problem Statement

Gaussian processes are stochastic processes used to model systems characterized by
Equation (3.1). Where f(x) denotes the scalar output of the system (also called target)
and y the observed output, which differs from f(x) by some additive noise (ϵ), which is
normally distributed with mean 0 and variance σ.

y = f(x) + ϵ, ϵ ∼ N (0, σ2) (3.1)

There are two different ways of understanding Gaussian Processes: the weight-space
view and the function view. In the weight-space view, the GP is considered simply
as a linear regression with Gaussian noise. This can be represented by the following
equations:

21

3 Theoretical Background

f(x) = wTϕ(x)
y = f(x) + ϵ, ϵ ∼ N (0, σ2)

(3.2)

Where f(x) is constructed as a linear combination of some predefined features ϕ(x) of
the input x.

In the function-space view, the GP describes a distribution over functions:

f(x) ∼ GP
(
m(x), k(x, x′)

)
(3.3)

Defined by its mean and covariance functions:

m(x) = E
[
f(x)

]
k(x, x′) = E

[(
f(x) −m(x)

)(
f(x′) −m(x′)

)] (3.4)

From here on, only the function-space view will be considered to explain the learning
and predicting phases. For an equivalent explanation for the weight-space view, please
refer to [Ras03].

3.2.2 Training

A GP is a non-parametric Supervised Machine Learning Method. This means, that:

• A GP is trained using a training set D =
{(
xi, yi

)}i=n

i=1
, where each pair (xi, yi) is

obtained from the model from Equation (3.1).

• There are no predefined parameters to be learnt. Instead, the whole training set is
used in the mapping function.

As seen in Equation (3.3) and Equation (3.6), a GP is characterized by 2 functions:
m(x) and k(x, x′). Commonly a constant mean is used (frequently m(x) = 0) and the
covariance matrix is set to be the Gaussian Squared Exponential (also called Radial
Basis) Function, shown in Equation (3.5).

kRBF (xi, xj) = e− 1
2 (xi−xj)T θ−1(xi−xj) (3.5)

Therefore, training such a GP implies computing the mean and covariance matrix of the
training set as follows:

22

3.2 Gaussian Processes

m(x) = 1
n

n∑
i=1

yi

Ki,j = kRBF (xi, xj) = e− 1
2 (xi−xj)T θ−1(xi−xj)

(3.6)

As a result, the probability of the observed targets given the inputs can be expressed
as in Equation (3.7), with a covariance matrix that also takes the additive noise of the
observations into account.

P (Y |X) = N (m(x), K + Iσ2) (3.7)

3.2.3 Predictions

Considering a zero mean GP, its joint probability over the observed noisy outputs and
predicted targets is given by:

[
y

f∗

]
∼ N

0,
[
K(X,X) + Iσ2 K(X,X∗)
K(X∗, X) K(X∗, X∗)

] (3.8)

The GP prediction of the targets f∗ conditioned by the training set and the given inputs
X∗ of the system can be derived from Equation (3.8) and results in Equation (3.9) (Refer
to [Ras03] for the complete derivation).

f∗|X, y,X∗ ∼ N (f∗, cov(f∗))

f∗ = E
[
f∗|X, y,X∗

]
= K(X∗, X)

[
K(X,X) + Iσ2

]−1
y

cov(f∗) = K(X∗, X∗) −K(X∗, X)
[
K(X,X) + Iσ2

]−1
K(X,X∗)

(3.9)

3.2.4 Hyperparameter tuning

Choosing different parameters for a given covariance function or choosing completely
different covariance functions results in different GPs. The covariance function and its
parameters are the hyperparameters of the GP.
In the above mentioned case, the lengthscale (θ) is the hyperparameter of the GP with
covariance function kRBF (Equation (3.5)). When tuning the hyperparameters, different
hyperparameters are considered in order to find the most suitable ones for a given

23

3 Theoretical Background

problem. This can be done using different methods, such as Grid and Random Search,
and Bayesian Optimization.

3.3 Active Learning

Figure 3.1: Active Learning System

Active Learning is a subfield of Supervised Machine Learning, where the ML algorithm
decides on which data it will be trained. The typical configuration of an Active Learning
system is depicted in Figure 3.1. Here the ML algorithm is first trained with a small initial
set of labelled data D =

{(
xi, yi

)}i=n

i=1
. Subsequently, the algorithm defines the queries:

Q =
{(
xi

)}i=m

i=1
. These queries correspond to the data points that the algorithm considers

will help most to improve the actual model. After the query (or set of queries) is executed
and a new labelled data point (or set of them) is obtained, the algorithm recomputes the
learned representation based on the complete data set D∗ =

{(
xi, yi

)}i=n

i=1
∪

{(
xj, yj

)}j=m

j=1
and decides on the next queries to execute. This process goes on until a certain goal is
reached (e.g. error or convergence criterion) or for a fixed number of iterations.

The core of every Active Learning system is the criterion used to select the next most
informative query to be executed. After this criterion (I) is defined, the maximization
problem can be stated as in Equation (3.10). Commonly, the most informative query
is chosen as the one corresponding to the point with the highest entropy, which is

24

3.3 Active Learning

the point with the most uncertain prediction. Consequently, (I) can be defined as in
Equation (3.11) or Equation (3.12).

Q = arg max
x

I(x) (3.10)

I(Σ(x)) = det(Σ(x)) (3.11)

I(Σ(x)) = trace(Σ(x)) (3.12)

A comparison of the Active Learning approach with randomly sampling the input space
can be seen in Figure 3.2. Here both algorithms are initialized with 2 labelled data
points, a Gaussian Process is used to make the predictions, and the criterion from
Equation (3.11) is used to define the next query in the Active Learning system. In
this example, one can clearly see that the Active Learning system obtains far better
predictions than random sampling in every iteration.

3.3.1 Safe Active Learning

In theory, Active Learning can improve any Machine Learning training to make it more
query efficient (i.e. obtain more information with fewer queries), but in practice, this
alone is a rather naive approach as we often need care for the safety of the system in
which we run the queries.

Safety considerations play a key role when modelling physical systems with a ML
algorithm. In this scenario, one needs to make sure that the physical system will not be
broken, in order to be able to continue executing queries. To this end, a set of safety
constraints are predefined (or learnt) and used to restrict the set of queries that the
Active Learning system can select.

The Safe Active Learning optimization problem results in the constrained version of
Equation (3.10), that is:

Q = arg max
x

I(x)

st gi(x) ≥ 0 for i = 1, ..., n
(3.13)

Where the n safety constraints are modeled by some functions gi, which are greater or
equals to zero when x is safe and negative otherwise.

25

3 Theoretical Background

(a) Active Learning, iteration 3 (b) Random sampling, iteration 3

(c) Active Learning, iteration 4 (d) Random sampling, iteration 4

(e) Active Learning, iteration 8 (f) Random sampling, iteration 8

(g) Active Learning, iteration 20 (h) Random sampling, iteration 20

Figure 3.2: Active Learning vs random sampling strategy26

3.4 Time Series

3.4 Time Series

A Time Serie refers to a sequence of discrete time data points. For example, measure-
ments of temperature carried out every hour for 2 days, or a person’s weight recorded
every month for his or her entire life. When analysing and predicting Time Series,
different models can be used. The two models relevant to this work are explained
below.

3.4.1 Nonlinear Exogenous Model

An NX system is one where the output depends on a nonlinear manner on the last d
exogenous inputs, as well as on the current one. As illustrated in Figure 3.3a, the input
xk of the system at time step k is composed by the exogenous variables starting form the
time step k−d up to the current time step (uk−d, ..., uk−1, uk), which relate in a nonlinear
way to the output yk.

uk = (uk,1, uk,2, ..., uk,l), uk ∈ Rl

xNX
k = (uk, uk−1, ..., uk−d), xk ∈ R(d+1)×l

(3.14)

3.4.2 Nonlinear Autoregressive Exogenous Model

In the case of NARX systems, the output depends non linearly not only on the d+1 exoge-
nous variables but also on the last q system outputs, as stated in Equation (3.15). This
can be clearly seen in Figure 3.3b, where the output yk is a function of uk−d, ..., uk−1, uk

and yk−1, yk−2, ..., yk−q.

xNARX
k = (yk−1, .., yk−q, uk, uk−1, ..., uk−d), xk ∈ Rq+((d+1)×l) (3.15)

27

3 Theoretical Background

(a) NX System Structure (b) NARX System Structure

Figure 3.3: System structures for modeling and predicting Time Series

28

4 Methods

4.1 Problem Statement

The aim of this work is to design and implement a Safe Active Learning framework for
Time Series Modeling using NARX Gaussian Processes. Such a framework should be able
to learn a physical model by exploring the most informative trajectories while taking the
safety of the system into consideration.

This thesis builds upon the previous work by Zimmer et al. on "Safe Active Learning
for Time-Series Modeling with Gaussian Processes" [ZMN18], where only NX GPs were
considered, and extends it by considering the case of NARX GPs.

The framework presented in [ZMN18] can be illustrated by Algorithms 4.1 and 4.2.

Algorithm 4.1 shows a high-level representation of the Safe Active Learning framework
developed in [ZMN18]. To start this framework the following inputs are required: α:
Represents the allowed probability to enter an unsafe area during the Safe Exploration;

Algorithmus 4.1 Safe Active Learning for Time Series modeling

1: function SAFEAL(α, iterationsNumber, initialSafeTrays, initialPoint)
2: (trainingSetX, trainingSetY , trainingSetSafety) = initialSafeTrays

3: modelGP = TRAINGP(trainingSetX, trainingSetY)
4: safetyGP = TRAINGP(trainingSetX, trainingSetSafety)
5: start = initialPoint

6: for iterationsNumber do
7: nextTray = FINDTRAY(modelGP , safetyGP , α, start)
8: outputTray, safetyTray = EXECUTEINSYSTEM(nextTray)
9: modelGP = UPDATEGP(nextTray, outputTray)

10: safetyGP = UPDATEGP(nextTray, safetyTray)
11: start = nextTray.last

12: end for
13: return modelGP , safetyGP
14: end function

29

4 Methods

iterationsNumber: Number of iterations of the framework. This is the number of new
trajectories that will be collected during the Safe Exploration; initialSafeTrays: Initial
set of trajectories that are known to be safe and were already explored; initialPoint:
Starting point for the Safe Exploration.

Before starting the Safe Exploration, 2 GPs are trained using the initial data, the first
one representing the physical model and the second one to model the safety constraints
of the system (Lines 2-4). Afterwards, the starting point of the Safe Exploration is set
to the given initial point (Line 5). At each iteration: The next trajectory to explore is
chosen (Line 7) and tested in the system, obtaining the system output and the safety
information for the given trajectory (Line 8). Then, this system output and the safety
information are used to update the model and safety GPs (Lines 9-10). Finally, in order
to continue the exploration, the starting point of the next iteration is set to be the last
point of the actual trajectory (Line 11).

The key component of the Safe Exploration is the one that chooses the next trajectory τ ∗

to be explored (Line 7).

A trajectory τ of length s is characterized by the s consecutive inputs xk of the system,
as stated in Equation (4.1).

uk = (uk,1, uk,2, ..., uk,l), uk ∈ Rl

xk = (uk, uk−1, ..., uk−d), xk ∈ R(d+1)×l

τ = (xk+1, ..., xk+s), τ ∈ Rs×(d+1)×l

(4.1)

The function that chooses the next trajectory is defined in Algorithm 4.2 and corre-
sponds to the constraint optimization problem stated in Equation (4.2), with I(τ) being
the optimality criterion that drives the exploration and g(τ) being the safety metric
function.

τ ∗ = arg max
x

I(τ), st P (g(τ) ≥ 0) ≥ 1 − α

I : Rs×(d+1)×l → R
α ∈ R, 0 < α < 1
g : Rs×(d+1)×l → R

(4.2)

The optimality criterion I(τ) represents the predictive information gain that will be
obtained if the trajectory τ is explored, and is calculated by the function objective (Lines
7-12).

30

4.1 Problem Statement

Algorithmus 4.2 Find next trajectory

1: function FINDTRAY(modelGP , safetyGP , α, start)
// Find optimum end for the trajectory starting at start

2: endTray = FINDMIN(OBJECTIVE(modelGP , start), SAFETYCON-
STRAINT(safetyGP , start, α))
// Reconstruct trajecory from start and end points

3: nextTray = TRAYFROMTO(start, endTray)
4: return nextTray

5: end function
6: function OBJECTIVE(modelGP , start)

// This function takes the model and the start point of the trajectory and returns the
objective function for this specific optimization problem

7: return function EVALUATEOBJECTIVE(endTray)
8: tray = TRAYFROMTO(start, endTray)
9: Σ = modelGP .PREDICTIVECOVARIANCE(tray)

10: return I(Σ)
11: end function
12: end function
13: function SAFETYCONSTRAINT(safetyGP , start, α)

// This function takes the model, the start point of the trajectory and the predefined
α, and returns the constraint function for this specific optimization problem

14: return function EVALUATESAFETYCONSTRAINT(endTray)
15: tray = TRAYFROMTO(start, endTray)
16: µ = safetyGP .PREDICTIVEMEAN(tray)
17: Σ = safetyGP .PREDICTIVECOVARIANCE(tray)
18: probDistSafety = N (µ,Σ)
19: cumulativeProbSafe = probDistSafety.CUMULATIVEPROB(x > 0)
20: constraint = cumulativeProbSafe - (1-α)
21: return constraint

22: end function
23: end function

31

4 Methods

The corresponding constraint is computed by safetyConstraint (Lines 13-22). Here,
the safety metric g(τ) returns positive values for trajectories that remain inside the safe
area, and negative values otherwise. This function is the one learnt by the safety GP.
Consequently, the mean and variance of the safety GP’s prediction are used to compute
the distribution over g(τ), and afterwards to compute the probability of the trajectory
being safe (Lines 16-19) Summarizing, this constraint optimization problem is solved by
finding the most informative trajectory that is safe with a probability higher than 1 − α.
For this specific implementation, the trajectories are defined by their start and endpoint,
but other parameterizations are also possible.

Since NARX GP structures are considered in this thesis, the above described framework
needs to be modified accordingly. The main difference between using an NX- and
a NARX-structure to predict trajectories is that, while in the NX case n-steps ahead
predictions can be computed in a straight forward manner, uncertainties in the GP’s
inputs have to be considered in order to make these predictions using a NARX structure.
This problem is explained in detail in the next subsection.

To tackle the problem of predicting a trajectory using a NARX GP some modifications
in Algorithm 4.2 need to be introduced. In particular, the trajectory predictions for the
objective and safetyConstraint functions in Lines 9 and 16-17 have to be modified.

4.1.1 Trajectory predictions using NARX models

As explained in Section 3.4, the output of a NARX model depends not only on some
inputs of the system but also on some previous outputs. This dependency on previous
outputs differentiates the NARX structures from the NX ones (see Equation (4.3)) and
plays a big role when using GPs with this structure to predict trajectories. Figures 4.2
and 4.1 clearly illustrate this difference.

xk = (yk−1, .., yk−q, uk, uk−1, ..., uk−d), xk ∈ Rq+((d+1)×l)

τ = (xk+1, ..., xk+s), τ ∈ Rs×(q+((d+1)×l)) (4.3)

Figure 4.1 shows that in the case of an NX model the output of the system at each
time step only depends on some known inputs, which makes it possible to predict every
step of the trajectory independently. In contrast, the output of the NARX model also
depends on the previous outputs of the model (as shown in Figure 4.2), which causes
the step-wise prediction of the trajectory dependent on the previous steps’ outputs.
Considering that these models are approximated using GPs, the output at each time-step
is a Gaussian distribution characterized by its mean and covariance matrix (as stated in

32

4.1 Problem Statement

(a) First step (time-step t = T + 1)

(b) Second step (time-step t = T + 2)

(c) Third step (time-step t = T + 3)

Figure 4.1: Trajectory prediction with NX models - Predictions corresponding to a 3-step
trajectory, using a NX model that takes as input the last d inputs. The
trajectory to be predicted starts from the starting point yT , having its first
step at time-step t = T + 1 and following input history: uT −d+1, .., uT .

33

4 Methods

(a) First step (time-step t = T + 1)

(b) Second step (time-step t = T + 2)

(c) Third step (time-step t = T + 3)

Figure 4.2: Trajectory prediction with NARX models - Predictions corresponding to a
3-step trajectory, using a NARX model that takes as input the last q outputs
and the last d inputs. All the past outputs (outputs up to the time-step
t = T) are known. The trajectory to be predicted starts from the starting
point yT , having its first step at t = T + 1 and the following input history:
uT −d+1, .., uT and output history: yT −q+1, .., yT .

34

4.2 Proposed solutions

Equation (4.4)). As this output is then used to predict the next steps of the trajectory,
the inputs of our models are no longer known values, but probabilities distributions.
This setting is known as noisy inputs or uncertainty propagation in GPs.

yt ∼ N (µt, Σt) (4.4)

4.2 Proposed solutions

There are many different approaches to handle uncertainty propagation in GPs that can
be applied to the trajectory prediction problem. The most widely used for this purpose
are:

• Naive Approximation by mean: Consists of replacing the complete distribution,
only by its mean value. This is the easiest approach, but also the one discarding
the most information.

• Linearization of the posterior mean [KF09]: Here, the Gaussian Process is approxi-
mated by its first term of the Taylor Expansion. This technique still discards a lot
of information on the real distribution, as it approximates the GP linearly.

• Moment Matching Approximation [Gir04]: This approach is slightly more complex
than the previous approaches, but the results can be derived analytically. It
approximates the resulting distribution with a Gaussian distribution. As a result,
this approximation is not very accurate if the distribution differs significantly from
a Gaussian.

• Approximation by Quadratures [Vin18]: This method is more complex and compu-
tationally more expensive than the previous ones, but yields better results for non
Gaussian distribution and allows for error analysis of its approximations.

• Monte Carlo Approximation [RC13]: This method, when run with a sufficiently
large number of samples, is widely used as ground truth when evaluating distribu-
tions approximations.

For the purpose of this thesis, only the naive, Moment Matching and Monte Carlo
approximations are considered. Linearization was disregarded, as better results can be
obtained using Moment Matching, without much difference in computational time and
complexity. Furthermore, as the optimality criterion depends on a Gaussian covariance
function, only Gaussian distribution are considered. Therefore, approximations by
quadratures were also left out. The chosen approaches have different compromises
between accuracy and computation time, which are two key characteristics for the

35

4 Methods

problem at hand, as the trajectory predictions need to be executed multiple times when
solving the constraint optimization problem, and also on their accuracy will depend the
efficiency and safety of the exploration.

4.2.1 Naive Approximation by Mean

The naive approach consists of simply approximating the given distribution by its mean
value. This approach for handling the uncertainty in the inputs is the easiest and fastest
one to compute but also the one that discards the most information, as the complete
distribution is only represented by one value.

A trajectory prediction of length s using this approach looks as follows:

• t = T + 1

Straightforward prediction with the known inputs: yT +1 ∼ N (µT +1, σ
2
T +1)

• t = T + 2

Input of the GP prediction:
[
µT +1 yT · · · yT −q+2 uT +2 · · · uT −d+2

]T

Prediction: yT +2 ∼ N (µT +2, σ
2
T +2)

• t = T + 3

Input of the GP prediction:
[
µT +2 µT +1 yT · · · yT −q+3 uT +3 · · · uT −d+3

]T

Prediction: yT +3 ∼ N (µT +3, σ
2
T +3)

• t = T + s

Input of the GP prediction:
uT +s =

[
µT +s−1 · · · µT +1 yT · · · yT −q+s uT +s · · · uT −d+s

]T

Prediction: yT +s ∼ N (µT +s, σ
2
T +s)

When applying this approach in the trajectory prediction for the NARX model, the
algorithm needs to be modified as shown in Algorithm 4.3. In particular, predictions
need to be made step-wise, and the outputs’ means saved to be input in the following
time-steps predictions (function naivePrediction). Only after all predictions are made
the covariance matrix of the trajectory can be computed (Lines 5 and 13).

36

4.2 Proposed solutions

Algorithmus 4.3 Naive predictions

1: function OBJECTIVE(modelGP , start)
2: return function EVALUATEOBJECTIVE(endTray)
3: tray = TRAYFROMTO(start, endTray)
4: trayOutputs = NAIVEPREDICTION(modelGP , tray)
5: Σ = modelGP .PREDICTIVECOVARIANCE(tray, trayOutputs)
6: return I(Σ)
7: end function
8: end function
9: function SAFETYCONSTRAINT(safetyGP , start, α, endTray)

10: return function EVALUATESAFETYCONSTRAINT(endTray)
11: tray = TRAYFROMTO(start, endTray)
12: trayOutputs = NAIVEPREDICTION(safetyGP , tray)
13: µ = trayOutputs

14: Σ = safetyGP .PREDICTIVECOVARIANCE(tray, trayOutputs)
15: probDistSafety = N (µ,Σ)
16: cumulativeProbSafe = probDistSafety.CUMULATIVEPROB(x > 0)
17: constraint = cumulativeProbSafe - (1-α)
18: return constraint

19: end function
20: end function
21: function NAIVEPREDICTION(GP , tray)
22: trayOutputs = []
23: for tray.STEPS()do
24: µ = GP .PREDICTIVEMEAN(tray, trayOutputs)
25: trayOutputs.ADD(µ)
26: end for
27: return trayOutputs

28: end function

37

4 Methods

4.2.2 Moment Matching Approximation

Using Girard’s equations for Moment Matching [Gir04], the prediction of a GP at a noisy
(or uncertain) input can be approximated by a normal distribution using the exact mean
and covariance of the real distribution.

These Moment Matching equations can be derived given the GP that makes noise-free
predictions (Equation (4.5)) and the probability distribution over the input (Equa-
tion (4.6)).

The GP with noise-free predictions is defined by:

µG(ν) =
N∑

i=1
βiCG(ν, xi)

σ2
G(ν) = CG(ν, ν) −

N∑
i,j=1

K−1
ij CG(ν, xi)CG(ν, xj)

β = K−1t

t =
[
y1 y2 · · · yN

]T

CG(xi, xj) = e− 1
2 (xi−xj)T W −1(xi−xj)

(4.5)

where xi is the ith input, t is the N × 1 vector of observed outputs, K is the N × N

covariance matrix, and CG(xi, xj) is the Gaussian covariance function, with given length-
scale W 2.

The inputs’ probability distribution is defined by its mean ν and covariance Σx, as
follows:

x ∼ N (ν, Σx) (4.6)

The exact mean mexG(ν,Σx) and variance vexG(ν,Σx) of the GP with uncertain input can
be computed using Moment Matching and result in Equations 4.7 and 4.8. For a detailed
derivation of these equations please refer to Girard’s work [Gir04].

mexG(ν,Σx) =
N∑

i=1
βiCG(ν, xi)Ccorr(ν, xi)

Ccorr(ν, xi) = 1
|I +W−1Σx|2

e

[
1
2 (ν−xi)T ∆−1(ν−xi)

]
∆−1 = W−1 − (W + Σx)−1

(4.7)

38

4.2 Proposed solutions

vexG(ν,Σx) = σ2
G(ν) +

N∑
i,j=1

K−1
ij CG(ν, xi)CG(ν, xj)(1 − Ccorr2(ν, x̄ij))

+
N∑

i,j=1
βiβjCG(ν, xi)CG(ν, xj)(Ccorr2(ν, x̄ij) − Ccorr(ν, xi)Ccorr(ν, xj))

Ccorr2(ν, x) = 1
|
(

W
2

)−1
Σx + I|2

e

[
1
2 (ν−x)T Λ−1(ν−x)

]

Λ−1 = 2W−1 −
(1

2W + Σx

)−1

x̄ij = xi + xj

2

(4.8)

This procedure can be applied iteratively to predict multiple steps ahead of a NARX GP,
as explained by Girard et al. [Gir04; GM05; GRCM03]. At each time-step, the input
distribution is computed and then the output is approximated by a normal distribution
with the mean and variance calculated using Equations 4.7 and 4.8.

To illustrate this procedure, one can take the general NARX model depicted in Figure 4.2
as an example, where the history of inputs and outputs up to time t = T are known
and the trajectory to be predicted starts at time t = T and has length s. At the first step
(t = T + 1), the original noise-free prediction can be used, as all the inputs are known.
For the following steps the uncertainty introduced by the inputs yT +h (with 1 ≤ h ≤ s)
has to be considered when computing the input distribution as follows:

• t = T + 1

Straightforward prediction: yT +1 ∼ N (µT +1, σ
2
T +1)

• t = T + 2

The input distribution is characterized by:

νT +2 =

µT +1

yT

...
yT −q+2

uT +2
...

uT −d+2

and ΣxT +2 =

σ2

T +1 0 · · · 0
0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

39

4 Methods

• t = T + 3

The input distribution is characterized by:

νT +3 =

mexG
T +2

µT +1

yT

...
yT −q+3

uT +3
...

uT −d+3

and ΣxT +3 =

vexG
T +1 Cov(yT +2, yT +1) 0 · · · 0

Cov(yT +1, yT +2) σ2
T +1 0 · · · 0

0 · · · · · · · · · 0
...

...
...

...
0 · · · · · · · · · 0

• t = T + s

The input distribution is characterized by:

νT +s =
[
mexG

T +s−1 mexG
T +s−2 · · · µT +1 yT · · · yT −q+s uT +s · · · uT −d+s

]T

and ΣxT +s
=

vexG
T +s−1 Cov(yT +s−1, yT +s−2) · · · Cov(yT +s−1, yT +1)

Cov(yT +s−2, yT +s−1) vexG
T +s−2 · · · Cov(yT +s−2, yT +1)

...
...

...
...

Cov(yT +1, yT +s−1) Cov(yT +1, yT +s−2) · · · σ2
T +1

0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

Where the following abbreviations were used:

µt = µG(νt)

σ2
t = σ2

G(νt)

mexG
t = mexG(νt,Σxt)

vexG
t = vexG(νt,Σxt)

Moreover, not only the mean and variances of the previous outputs are needed to com-
pute this predictions, but also the covariances between these outputs. These covariances
can be computed using Equation (4.9), that serves to compute the covariance between
the input and output of the GP. This equation gives us a vector with the covariance

40

4.2 Proposed solutions

between each of the inputs and the output, so the covariance between the output and
each of the previous outputs can be obtained from this vector. For a detailed derivation
of Equation (4.9) please refer to [Gir04].

Cov[yT +h, xT +h] =
N∑

i=1
βiC(νT +h, xi)(I +WΣ−1

T +h)−1xi

xT +h =
[
yT +h−1 · · · yT −q+h uT +h · · · uT −d+h

]T

Cov[yT +h, xT +h] =
[
Cov[yT +h, yT +h−1] · · · Cov[yT +h, yT −q+h]

Cov[yT +h, uT +h] · · · Cov[yT +h, uT −d+h]
]

(4.9)

Algorithm 4.4 shows the modified algorithm using Moment Matching for the trajectory
predictions. In this case, the predictive mean and covariance are computed by the
functionMomentMatchingPrediction. As mentioned before, the key to this procedure is
to keep computing the input distribution and then, apply the Moment Matching formulas
to obtain the predictions. At the beginning of the trajectory the inputs are all known, so
there is no underlying distribution, but just the known values (Lines 18-20). Then, for
the first step, the prediction is exactly the noise-free one from the GP (Line 23). For the
following steps, the input mean and covariance needs to be updated with the output
distribution of previous time-steps, so after each step mean, variance and covariances
are stored (Lines 24-25 and 32-34). The input’s mean and covariance are computed
taking into account the step’s inputs and the previous outputs (Lines 27-28). And finally,
the predictions are computed using the Moment Matching equations presented above
(Lines 29-31). The mean (mexG) is computed with Equation (4.7), the variance (vexg)
with Equation (4.8) and the covariance between outputs with Equation (4.9).

41

4 Methods

Algorithmus 4.4 Moment Matching Predictions

1: function OBJECTIVE(modelGP , start)
2: return function EVALUATEOBJECTIVE(endTray)
3: tray = TRAYFROMTO(start, endTray)
4: µ, Σ = MOMENTMATCHINGPREDICTION(modelGP , tray)
5: return I(Σ)
6: end function
7: end function
8: function SAFETYCONSTRAINT(safetyGP , start, α, endTray)
9: return function EVALUATESAFETYCONSTRAINT(endTray)

10: tray = TRAYFROMTO(start, endTray)
11: µ, Σ = MOMENTMATCHINGPREDICTION(safetyGP , tray)
12: probDistSafety = N (µ,Σ)
13: cumulativeProbSafe = probDistSafety.CUMULATIVEPROB(x > 0)
14: constraint = cumulativeProbSafe - (1-α)
15: return constraint

16: end function
17: end function
18: function MOMENTMATCHINGPREDICTION(GP , tray)
19: outputMeans = tray.OUTPUTHISTORY

20: outputV ariances = 0
21: outputCovariance = 0
22: for step in tray.STEPS()do
23: if (step is first) then
24: µG, σ2

G = GP .PREDICT(step)
25: outputMeans.ADD(µG)
26: outputV ariances.ADD(σ2

G)
27: else
28: u = INPUMEANFORSTEP(step.INPUT , outputMeans)
29: Σx = INPUTCOVFORSTEP(outputV ariances, outputCovariance)
30: mexG = MOMENTMATCHINGMEAN(GP , u, Σx)
31: vexG = MOMENTMATCHINGVAR(GP , u, Σx)
32: Cov = MOMENTMATCHINGVAR(GP , u, Σx)
33: outputMeans.ADD(mexG)
34: outputV ariances.ADD(vexG)
35: outputCovariance.ADD(Cov)
36: end if
37: end for
38: Σtray = PREDCOVARIANCE(outputV ariances, outputCovariance)
39: return outputMeans, Σtray

40: end function

42

4.2 Proposed solutions

4.2.3 Monte Carlo Approximation

This method consists of drawing S samples from the output distribution of the GP at
the first step of the trajectory and then using these samples to obtain predictions for the
following steps. Resulting in S predictions for the output at each time-step, that can be
used to reconstruct the underlying probability distribution.

A trajectory prediction of length s using this approach looks as follows:

• t = T + 1

Predict using the known inputs: yT +1 ∼ N (µT +1, σ
2
T +1)

Draw N samples from the obtained distribution

• t = T + 2

For each drawn sample yi
T +1:

Use the following input for the GP prediction:[
yi

T +1 yT · · · yT −q+2 uT +2 · · · uT −d+2

]T

Prediction: yi
T +2 ∼ N (µi

T +2, σ
2
T +2

i)
Draw one random sample from each obtained distribution.

• t = T + 3

For each pair of drawn samples (yi
T +1, y

i
T +2):

Use the following input for the GP prediction:[
yi

T +2 yi
T +1 yT · · · yT −q+3 uT +3 · · · uT −d+3

]T

Prediction: yi
T +3 ∼ N (µi

T +3, σ
2
T +3

i)
Draw one random sample from each obtained distribution.

• t = T + s

For each tuple of drawn samples (yi
T +1, y

i
T +2, ..., yT +s−1):

Use the following input for the GP prediction:
uT +s =

[
µT +s−1 · · · µT +1 yT · · · yT −q+s uT +s · · · uT −d+s

]T

Prediction: yi
T +s ∼ N (µi

T +s, σ
2
T +s

i)
Draw one random sample from each obtained distribution.

Finally, with all the drawn samples the mean and covariance of the trajectory is com-
puted.

For this approach the procedure is modified as illustrated by (Algorithm 4.5). A major
difference is that a new parameter needs to be defined. This is the number of samples

43

4 Methods

Algorithmus 4.5 Monte Carlo Predictions

1: function OBJECTIVE(modelGP , start, N)
2: return function EVALUATEOBJECTIVE(endTray)
3: tray = TRAYFROMTO(start, endTray)
4: µ, Σ = MONTECARLOPREDICTION(modelGP , tray, N)
5: return I(Σ)
6: end function
7: end function
8: function SAFETYCONSTRAINT(safetyGP , start, α, endTray, N)
9: return function EVALUATESAFETYCONSTRAINT(endTray)

10: tray = TRAYFROMTO(start, endTray)
11: µ, Σ = MONTECARLOPREDICTION(safetyGP , tray, N)
12: probDistSafety = N (µ,Σ)
13: cumulativeProbSafe = probDistSafety.CUMULATIVEPROB(x > 0)
14: constraint = cumulativeProbSafe - (1-α)
15: return constraint

16: end function
17: end function
18: function MONTECARLOPREDICTION(GP , tray, N)
19: samples = [][]
20: for step in tray.STEPS()do
21: if (step is first) then
22: µG, σ2

G = GP .PREDICT(step)
23: samples[step] = SAMPLESFROMNORMDIST(µG, σ2

G, N)
24: else
25: for i in range(N) do
26: µG, σ2

G = GP .PREDICT(step, samples[:][i])
27: samples[step][i] = SAMPLESFROMNORMDIST(µG, σ2

G, 1)
28: end for
29: end if
30: end for
31: µtray = PREDMEAN(samples)
32: Σtray = PREDCOVARIANCE(samples)
33: return µtray, Σtray

34: end function

44

4.2 Proposed solutions

used to approximate the real distributions. The larger this number, the more precise
the approximation will be, but also the more time consuming the calculation. The
function monteCarloPrediction uses samples to approximate the predictions and then
takes the best fitting Normal approximation of these predictions (Lines 30-31). To
obtain the samples, at the first step of the trajectory N samples are drawn from the
GP prediction (Lines 21-22). Then, these samples are used as inputs for the following
time-steps’ predictions (Line 25). Afterwards, from each of the predictions generated by
a sample history, a new sample is drawn from the prediction distribution and added to
the corresponding history (Line 26). Finally, the trajectory prediction is approximated
using the samples mean and covariance (Lines 30-31).

45

5 Evaluation

5.1 Application

The particular case of study in this thesis is the safe active learning of the high-pressure
injection system addressed in [ZMN18] and depicted in Figure 5.1.

Figure 5.1: High-Pressure Injection System (taken from [ZMN18])

In this system the engine speed vk and fuel pump actuation nk are the controllable inputs
and the rail pressure ψk is the system’s output. The sub-fix k represent the time-step
number of the input/output.

Due to lack of access to the real physical system for experiments, an analytical model of
the system was used as a ground truth. This model is illustrated in Figure 5.2b. Here,
the inputs s and f can be controlled, while ti is fixed during the experiments. When

47

5 Evaluation

tested on the physical system this NARX model reported a NRMSE of 8.3%, 13.4% and
8.4% for 3 different test sets, while the analytical NX model used by Zimmer et al. as
a ground truth (Figure 5.2a) reported NRMSEs of 22.2%, 15.6% and 10.2% for the
same test sets. As the analytical NARX model is closer to the real physical system, it is
considered to be more suitable to be used as a ground truth.

(a) NX model used in [ZMN18] (b) NARX model

Figure 5.2: Analytical Models used to model the High-Pressure Injection System - Mod-
els that result from the Principal Component Analysis of the system (courtesy
of Mark Schillinger)

5.2 Experiments

Four different settings were developed and tested with two main goals: first, to compare
the performance of NX GPs against NARX ones when learning a physical model with a
NARX structure, and second, to compare the chosen different approaches for the NARX
scenario (described in Section 4.2).

In all experiments the mathematical model of Figure 5.2b was used as a ground truth
and 5-steps trajectories were planned at each iteration of the Safe Exploration.

The chosen experiment settings were the following:

1. NX GPs structure: This experiment is designed to test the performance of the
framework developed by Zimmer et al. [ZMN18] when the real system has an
underlying NARX structure and is used as benchmark for evaluating the results’
of this masters’ thesis. Consequently, NX GPs were used to learn the model and

48

5.2 Experiments

(a) Safe Active Learning using NX GP - The framework starts with some initial training set, that is
used to train the NX GPs for modelling the system and the safety constraint. Afterwards, the next
trajectory is chosen and executed in the analytical model used as ground truth (analytical NARX
model), and then the model’s output and safety information are added to the training set. The
procedure starts again now, using the new training set.

(b) Safe Active Learning using NARX GP - The framework starts with some initial training set, that is
used to train the NARX GPs for modelling the system and the safety constraint. Afterwards, the
next trajectory is chosen and executed in the analytical model used as ground truth (analytical
NARX model), and then the model’s output and safety information are added to the training set.
The procedure starts again now, using the new training set.

Figure 5.3: Experiments settings
49

5 Evaluation

the safety metric, using the mathematical model of Figure 5.2b as ground truth, as
depicted in Figure 5.3a. The chosen NX structure used here is the same one used by
Zimmer et al., which is the best NX structure found for this problem according to
its Principal Component Analysis (courtesy of Mark Schillinger) (see Figure 5.2a).

A similar experiment was done by Zimmer et al. with the difference, that in their
work they have also used an mathematical model with the same structure as
ground truth.

2. NARX GPs structure: To evaluate the methods described in Chapter 4, NARX GPs
were used to learn the model and the safety metric, using the mathematical model
of Figure 5.2b as ground truth (see Figure 5.3b).

For this case, the underlying NARX structure is assumed to be known and therefore
used the learnt GP also has the structure depicted in Figure 5.2b.

In this scenario, the following chosen approaches for uncertainty propagation
estimation were tested:

a) Naive trajectory predictions using mean value (described in Section 4.2.1)

b) Trajectory predictions using Moment Matching (described in Section 4.2.2)

c) Trajectory predictions using Monte Carlo (described in Section 4.2.3)

For implementation details plese refer to Appendix A.

5.3 Results

5.3.1 NX GP structure (Figure 5.3a)

When training NX GPs to learn the mathematical NARX model, the results from Figure 5.4
were obtained. In this case, one can see that the NX GP cannot adapt well to the ground
truth model, even when a high risk of entering the unsafe region is allowed (α = 0.9)
and many iterations of the Safe Active Learning framework are run. Moreover, if a very
low risk of entering the unsafe area is chosen (α = 0.2), the algorithm is not able to
explore enough trajectories, as to improve the first approximation of the model.

50

5.3 Results

Figure 5.4: Reported RMSE accross 50 iterations of the Safe Active Learning framework
for NX GPs [ZMN18] with different risk allowances of entering the unsafe
area (α = 0.9 and α = 0.2).

5.3.2 NARX GP structure (Figure 5.3b)

For the case of the NARX GPs the experiments are separated into three, corresponding
to the three different approximations methods used for uncertainty propagation in the
trajectories’ prediction:

1. Naive trajectory predictions using mean value

Figure 5.5 reports the obtained RMSE for this method, over 50 iterations of the Safe
Active Learning algorithm. Here, it can be observed that varying the allowed risk
to enter an unsafe area has an impact on the exploration performance, as higher
risk allows wider exploration, whereas lower risk requires a more conservative
exploration. However, the allowed risk does not have such significant impact on
the performance of the exploration as one would expect. This approach, despite
using the simplest and fastest one of the approximations, still performed better
than the chosen benchmark. The significant improvement over using an NX GP to
learn the model can be seen in Figure 5.6.

51

5 Evaluation

Figure 5.5: Reported RMSE accross 50 iterations of the Safe Active Learning framework
using a NARX model with the Naive approximation by mean value with
different risk allowances of entering the unsafe area (α = 0.9 and α = 0.5).

Figure 5.6: Reported RMSE error for the Safe Active Learning framework using NX
GPs and NARX ones with naive approximation by mean value, across 50
iterations with allowed risk of entering the unsafe area of α = 0.9

52

5.3 Results

2. Trajectory predictions using Moment Matching

When using Moment Matching approximations, the results of the Safe Active
Learning algorithm show a similar performance to the naive approximation by
mean value. A comparison between these two approximations can be seen in
Figure 5.8. In this scenario, when the exploration risk is modified a similar effect
to the one reported for the naive approximation can be observed (Figure 5.7).

Figure 5.7: Reported RMSE across 25 iterations of the Safe Active Learning framework
for NARX GPs using the Moment Matching approximation with different
risk allowances of entering the unsafe area (α = 0.9 and α = 0.5).

3. Trajectory predictions using Monte Carlo

Monte Carlo approximation are commonly used as ground truth when approximat-
ing a distribution. As expected, results show that this is the approximation that
produces a better performance (see Figure 5.8). However, it is interesting to see
that the above mentioned approximations produce a fair result with significantly
less computational time.

53

5 Evaluation

Figure 5.8: Reported RMSE across 25 iterations of the Safe Active Learning framework
for NARX GPs using the Naive approximation by mean value, Moment
Matching approximation, and Monte Carlo Sampling approximation (using
100 samples) with risk allowances of entering the unsafe area of (α = 0.5).

From the above presented results, one can observe that despite the used approximation
method for the trajectories’ predictions, changing the allowed risk probability does not
have such a large impact on the exploration performance as one would expect. To
analyse this phenomenon, one can start looking at the characteristics of the optimization
problem that guides the exploration (Equation (4.2)). While in the work by Zimmer et
al. [ZMN18], all 10 input variables were controllable and optimizable , this is not the
case when the learnt model has a NARX structure.

Looking at Figure 5.2b it is clear that for this model only 3 input variables out of 6 are
controllable at each step. Furthermore, when considering the case of a 3-step trajectory
as the objective of the optimization problem only 3 inputs can be optimized in the whole
trajectory. As depicted in Figure 5.9, to plan the complete 3-step trajectory only the
inputs sT +1, fT +1, iT +1 can be optimized, since the other controllable inputs correspond
to past time-steps and are no longer controllable.

Then, when considering a 5-steps trajectory, as the one used for these experiments, only
9 input variables out of 30 can be optimized for the complete trajectory. In contrast, in
the case of a 5-step trajectory with an NX model, all 50 input variables of the 5-step

54

5.3 Results

(a) First step (time-step t = T + 1)

(b) Second step (time-step t = T + 2)

(c) Third step (time-step t = T + 3)

Figure 5.9: Trajectory prediction with NARX model (specific case of Figure 4.2) - Pre-
dictions of the High Pressure Injection System corresponding to a 3-step
trajectory, using a NARX model. Here, it can be seen that all the control-
lable inputs tuples (sk, fk, ik) but one correspond to the previous trajectory
(k ≤ T). As a result, only the inputs sT +1, fT +1, iT +1 can be optimized for
the 3-step trajectory.

55

5 Evaluation

trajectory can be optimized. This difference plays a key role when solving the constraint
optimization problem. The search space for the NARX case is smaller than the complete
input space of the system, which makes it more complicated to fully explore the safe area
until its frontiers with the unsafe area. And it is exactly near the frontiers of the unsafe
area, where different allowed risk probability would decide differently on continuing to
expand the exploration towards the unsafe area or not. Therefore, higher allowed risk
probability does not imply such a big performance boost in the NARX variant of the Safe
Active Learning framework, as they do in the NX case.

In addition to the above mention experiments, the following extra experiments were
run (details can be found in Appendix B):

1. Test the performance of the Safe Active Learning algorithm compared to random
exploration: Results in Appendix B.1 show that the Safe Active Learning algorithm
outperforms the random exploration, as expected.

2. Impact of the observation noise introduced by the feedback loop: Results in
Appendix B.2 show that the noise introduced by the feedback loop, characteristic
of NARX models degrades the performance of the learnt GP.

3. Accuracy of the information metric approximated by different methods: Ap-
pendix B.3 shows how accurate the naive approximation by mean value, Moment
Matching approximation, and Monte Carlo Sampling approximation (with differ-
ent number of samples) can approximate the information metric. Monte Carlo
Sampling approximation outperformed both Moment Matching and the Naive
approximation by mean value only after a couple of iterations. Also, Moment
Matching was shown to be a better approximation than the Naive approximation
by mean value, as expected from ??.

In summary, using the Safe Active Learning framework with a NARX GP, independent
of the approximation method used to predict trajectories, outperformed the previous
work by Zimmer et al. [ZMN18]. Moreover, results show that Safe Active Learning
exploration obtained better and faster convergence when compared with safe random
exploration. Finally, different methods were used to approximate the multiple steps
ahead predictions, all resulting in similar exploration performance.

56

6 Discussion, Conclusions and Outlook

Discussion

In this masters’ thesis, the aim was to assess the problem of Safe Active Learning for
Time Series Modelling using Nonlinear Autoregressive Exogenous Gaussian Processes.
Consequently, the Safe Active Learning framework proposed by Zimmer et al. [ZMN18]
was extended to be able to learn Nonlinear Autoregressive Exogenous models.

The results of this study indicate that the newly designed and implemented framework
for Dynamic Safe Active Learning with NARX GPs outperformed the work by Zimmer et
al. It is interesting to note that even when using the simplest and fastest approximation
(the Naive approximation by mean value) this Safe Active Learning Framework for NARX
GP still showed a faster convergence and lower RMSE than the framework developed by
Zimmer et al.

Regarding different approximations for multiple steps ahead predictions with NARX GPs,
the current study found that the Monte Carlo Sampling approximation (with 100 sam-
ples) resulted in a better performance of the framework than the Naive approximation
by mean value and Moment Matching. Moreover, the framework performed similarly
when using Moment Matching or the Naive approximation by mean value. These results
are in agreement with those obtained by the extra experiment in Appendix B.2. This
experiment indicates that the better information metric approximations are obtained by
Monte Carlo approximations with more than 5 samples, and that the approximation by
Moment Matching was slightly more accurate than the Naive approximation by mean
value. This implies that a higher accuracy can be obtained by using the most computa-
tionally complex approach (Monte Carlo Sampling), resulting in a better performance of
the Safe Active Learning algorithm. If the computational complexity is to be regarded,
however, a more simple approach (the Naive approximation by mean value or Moment
Matching) can be employed and still obtain a better performance than the Safe Active
Learning framework with NX GPs.

Contrary to expectations, this study did not find a significant difference when running the
developed framework with different allowed risk probabilities. These results are likely
to be related to the structure of the NARX trajectory, as discussed in Section 5.3.2.

57

6 Discussion, Conclusions and Outlook

Extra experiments in Appendix B indicate that the developed Safe Active Learning
framework performs better than a safe random exploration and that the observational
noise has a significant negative impact when learning a NARX model.

Conclusion

The results of this study indicate that the developed framework can be applied in the
real-world to model physical systems in an efficient and safe manner. Moreover, results
show that this work outperforms the original framework developed by Zimmer et al.,
as well as random exploration, when learning dynamic systems with an underlying
NARX structure. Furthermore, results regarding the different trajectories prediction
approximations indicate that good results can be obtained with the naive approximation
by mean value, as well as by the moment matching approximation.

Outlook

• For this study, the real systems’ NARX structure was assumed to be known. A
further study could assess the problem of learning a NARX model with an unknown
structure.

• In this work, different approximations are presented to predict multiple steps
ahead using a NARX GP. However, the use of a multi-output GP, to be able to
predict n-steps ahead in one shot, was not considered. Further studies regarding
the implementation of such a model would be worthwhile.

• Contrary to expectations, this study did not find a significant difference in the
exploration performance when varying the allowed risk probability. A possible
explanation for this might be that the number of optimizable variables when
planning a trajectory was too low. A natural progression of this work is to analyse
whether increasing the number of optimizable variables shows a more favorable
result. This could be achieved, for example, by increasing the number of steps
of the planned trajectory or by modifying the NARX structure to include more
variables from system inputs that could be optimized.

• Results show that the observational noise in the feedback loop of the model
degrades the performance of the predictions, how to better handle this noise could
be usefully explored in further research.

58

A Implementation details

The complete implementation was made in Python version 3 and the following libraries
were used:

• GPyTorch [GPB+18]: used for the training, update and prediction of Gaussian
Processes.

• PyTorch [PGC+17]: used for the tensor representation of the GP’s inputs and
outputs required by GPyTorch.

• SciPy [JOP+01]: its SLSQP minimize module was used with 25 different starts as
blackbox optimization method to solve the constrained optimization problem, and
its stats module was used for computing cumulative probabilities.

• NumPy [VCV11]: used for the arrays and matrices manipulation.

• Matplotlib [Hun07]: used for results plotting.

All experiments were run using 5 different random seeds, and from there mean and
variances of the plots are calculated.

59

B Extra Experiments

B.1 Safe Active Learning vs Random Safe Exploration

Figure B.1 shows a comparison between the performance of the developed Safe Active
Learning framework and a Random Safe Exploration. Random Safe Exploration is
performed by choosing random trajectories that fulfill the safety constraint. Results
show that the Safe Active Learning framework performs better than the Random Safe
Exploration.

B.2 Impact of observational noise in the feedback loop in
NARX models

A distinctive characteristic of the NARX models is that previous outputs of the system
are input to the model through a feedback loop. Since observational noise in the outputs
of physical system is usually considered, in the case of NARX models, these feedback
loops introduced noisy inputs to the model. Figure B.2 shows the improvement in the
performance of the Safe Active Learning framework when there is no observational
noise.

B.3 Information Metric Approximations

To test the accuracy of the three different chosen approximations for multi steps ahead
predictions the following test was conducted: Predictions of the information metric for
5-steps trajectories were made using the Naive approximation by mean value, Moment
Matching and Monte Carlo Sampling approximations. Results can be seen in Figure B.3.
As expected, Moment Matching approximations outperformed the Naive approximation
by mean value. Moreover, Monte Carlo approximations outperformed both of the
previous mentioned methods with only a couple of samples.

61

B Extra Experiments

(a) Allowed risk of entering the unsafe area α = 0.5

(b) Allowed risk of entering the unsafe area α = 0.9

Figure B.1: RMSE for Safe Exploration using a NARX model - Reported RMSE for the
developed Safe Active Learning framework and a Random Safe Exploration.
For the Random Safe Exploration: Trajectories are chosen randomly and
tested with the safety constraint, until one fulfills it, then that is the chosen
trajectory of the iteration.

62

B.3 Information Metric Approximations

(a) Allowed risk of entering the unsafe area α = 0.5

(b) Allowed risk of entering the unsafe area α = 0.9

Figure B.2: RMSE for Safe Active Learning exploration using a NARX model with and
without observational noise

63

B Extra Experiments

Figure B.3: Reported percent error for different approximations of I(τ) - Reported error
for the information metric of 10 different 5-step trajectories using the Naive
approximation by mean value, Moment Matching approximation and Monte
Carlo Sampling approximation with different number of samples. These
trajectories were predicted using the same NARX GP. As the metric seems
to converge for the Monte Carlo approximation using 150 samples, this was
used as the real value of the metric to compute the percent error (y-axis).
The x-axis corresponds to the number of samples used and is only relevant
for the Monte Carlo approximations.

64

Bibliography

[ACN10] P. Abbeel, A. Coates, A. Y. Ng. “Autonomous helicopter aerobatics through
apprenticeship learning.” In: The International Journal of Robotics Research
29.13 (2010), pp. 1608–1639 (cit. on p. 19).

[ACQN07] P. Abbeel, A. Coates, M. Quigley, A. Y. Ng. “An application of reinforcement
learning to aerobatic helicopter flight.” In: Advances in neural information
processing systems. 2007, pp. 1–8 (cit. on p. 17).

[AMS97] C. G. Atkeson, A. W. Moore, S. Schaal. “Locally weighted learning for
control.” In: Lazy learning. Springer, 1997, pp. 75–113 (cit. on p. 17).

[ÅT06] B. M. Åkesson, H. T. Toivonen. “A neural network model predictive con-
troller.” In: Journal of Process Control 16.9 (2006), pp. 937–946 (cit. on
p. 17).

[BKS16] F. Berkenkamp, A. Krause, A. P. Schoellig. “Bayesian optimization with
safety constraints: safe and automatic parameter tuning in robotics.” In:
arXiv preprint arXiv:1602.04450 (2016) (cit. on p. 19).

[BMSK16] F. Berkenkamp, R. Moriconi, A. P. Schoellig, A. Krause. “Safe learning
of regions of attraction for uncertain, nonlinear systems with gaussian
processes.” In: 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE. 2016, pp. 4661–4666 (cit. on p. 19).

[BSK16] F. Berkenkamp, A. P. Schoellig, A. Krause. “Safe controller optimization for
quadrotors with Gaussian processes.” In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2016, pp. 491–496 (cit. on
p. 19).

[CDD+17] L.-F. Cheng, G. Darnell, B. Dumitrascu, C. Chivers, M. E. Draugelis, K. Li,
B. E. Engelhardt. “Sparse multi-output Gaussian processes for medical time
series prediction.” In: arXiv preprint arXiv:1703.09112 (2017) (cit. on
pp. 15, 17).

[Coh94] D. A. Cohn. “Neural network exploration using optimal experiment design.”
In: Advances in neural information processing systems. 1994, pp. 679–686
(cit. on p. 18).

65

Bibliography

[CYD+06] H. Cao, Y. Yin, D. Du, L. Lin, W. Gu, Z. Yang. “Neural-network inverse
dynamic online learning control on physical exoskeleton.” In: International
Conference on Neural Information Processing. Springer. 2006, pp. 702–710
(cit. on p. 17).

[FH12] V. V. Fedorov, P. Hackl. Model-oriented design of experiments. Vol. 125.
Springer Science & Business Media, 2012 (cit. on p. 18).

[Gei06] P. Geibel. “Reinforcement learning for MDPs with constraints.” In: Euro-
pean Conference on Machine Learning. Springer. 2006, pp. 646–653 (cit. on
p. 19).

[GF12] J. Garcia, F. Fernández. “Safe exploration of state and action spaces in
reinforcement learning.” In: Journal of Artificial Intelligence Research 45
(2012), pp. 515–564 (cit. on p. 19).

[GF15] J. Garcıa, F. Fernández. “A comprehensive survey on safe reinforcement
learning.” In: Journal of Machine Learning Research 16.1 (2015), pp. 1437–
1480 (cit. on p. 19).

[GH02] D. Gu, H. Hu. “Neural predictive control for a car-like mobile robot.” In:
Robotics and Autonomous Systems 39.2 (2002), pp. 73–86 (cit. on p. 17).

[Gir04] A. Girard. “Approximate methods for propagation of uncertainty with
Gaussian process models.” PhD thesis. Citeseer, 2004 (cit. on pp. 35, 38,
39, 41).

[GM05] A. Girard, R. Murray-Smith. “Gaussian processes: Prediction at a noisy
input and application to iterative multiple-step ahead forecasting of time-
series.” In: Switching and learning in feedback systems. Springer, 2005,
pp. 158–184 (cit. on p. 39).

[GPB+18] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, A. G. Wilson. “GPy-
Torch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Ac-
celeration.” In: Advances in Neural Information Processing Systems. 2018
(cit. on p. 59).

[GRCM03] A. Girard, C. E. Rasmussen, J. Q. Candela, R. Murray-Smith. “Gaussian
process priors with uncertain inputs application to multiple-step ahead
time series forecasting.” In: Advances in neural information processing
systems. 2003, pp. 545–552 (cit. on pp. 17, 39).

[GT11] J. H. Gillulay, C. J. Tomlin. “Guaranteed safe online learning of a bounded
system.” In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2011, pp. 2979–2984 (cit. on p. 19).

[GW05] P. Geibel, F. Wysotzki. “Risk-sensitive reinforcement learning applied to
control under constraints.” In: Journal of Artificial Intelligence Research 24
(2005), pp. 81–108 (cit. on p. 19).

66

Bibliography

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing in
science & engineering 9.3 (2007), p. 90. URL: https://matplotlib .org/
(cit. on p. 59).

[JOP+01] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools
for Python. 2001–. URL: http://www.scipy.org/ (cit. on p. 59).

[KF09] J. Ko, D. Fox. “GP-BayesFilters: Bayesian filtering using Gaussian process
prediction and observation models.” In: Autonomous Robots 27.1 (2009),
pp. 75–90 (cit. on p. 35).

[KG07] A. Krause, C. Guestrin. “Nonmyopic active learning of gaussian processes:
an exploration-exploitation approach.” In: Proceedings of the 24th interna-
tional conference on Machine learning. ACM. 2007, pp. 449–456 (cit. on
pp. 18, 19).

[KMH+19] J. Kirschner, M. Mutn, N. Hiller, R. Ischebeck, A. Krause. “Adaptive and
Safe Bayesian Optimization in High Dimensions via One-Dimensional
Subspaces.” In: arXiv preprint arXiv:1902.03229 (2019) (cit. on p. 19).

[KMRG04] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, A. Girard. “Gaussian process
model based predictive control.” In: Proceedings of the 2004 American
control conference. Vol. 3. IEEE. 2004, pp. 2214–2219 (cit. on pp. 15, 17).

[Mac92] D. J. MacKay. “Information-based objective functions for active data selec-
tion.” In: Neural computation 4.4 (1992), pp. 590–604 (cit. on p. 18).

[NCD+06] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
E. Liang. “Autonomous inverted helicopter flight via reinforcement learn-
ing.” In: Experimental robotics IX. Springer, 2006, pp. 363–372 (cit. on
p. 17).

[NP11] D. Nguyen-Tuong, J. Peters. “Model learning for robot control: a survey.”
In: Cognitive processing 12.4 (2011), pp. 319–340 (cit. on p. 17).

[NSP09] D. Nguyen-Tuong, M. Seeger, J. Peters. “Model learning with local gaussian
process regression.” In: Advanced Robotics 23.15 (2009), pp. 2015–2034
(cit. on pp. 15, 17).

[PCK02] H. D. Patino, R. Carelli, B. R. Kuchen. “Neural networks for advanced
control of robot manipulators.” In: IEEE Transactions on Neural networks
13.2 (2002), pp. 343–354 (cit. on p. 17).

[PGC+17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer. “Automatic differentiation in PyTorch.”
In: (2017). URL: https://pytorch.org/ (cit. on p. 59).

67

https://matplotlib.org/
http://www.scipy.org/
https://pytorch.org/

Bibliography

[PKPB07] C. Plagemann, K. Kersting, P. Pfaff, W. Burgard. “Heteroscedastic gaussian
process regression for modeling range sensors in mobile robotics.” In:
Snowbird learning workshop. 2007 (cit. on pp. 15, 17).

[PR11] F. J. G. Polo, F. F. Rebollo. “Safe reinforcement learning in high-risk tasks
through policy improvement.” In: 2011 IEEE Symposium on Adaptive Dy-
namic Programming and Reinforcement Learning (ADPRL). IEEE. 2011,
pp. 76–83 (cit. on p. 19).

[RAO+15] V. Rajpaul, S. Aigrain, M. A. Osborne, S. Reece, S. Roberts. “A Gaussian
process framework for modelling stellar activity signals in radial velocity
data.” In: Monthly Notices of the Royal Astronomical Society 452.3 (2015),
pp. 2269–2291 (cit. on pp. 15, 17).

[Ras03] C. E. Rasmussen. “Gaussian processes in machine learning.” In: Summer
School on Machine Learning. Springer. 2003, pp. 63–71 (cit. on pp. 22,
23).

[RC13] C. Robert, G. Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013 (cit. on p. 35).

[RD16] N. S. Raghavendra, P. C. Deka. “Multistep ahead groundwater level time-
series forecasting using Gaussian process regression and ANFIS.” In: Ad-
vanced Computing and Systems for Security. Springer, 2016, pp. 289–302
(cit. on pp. 15, 17).

[ROE+13] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, S. Aigrain. “Gaus-
sian processes for time-series modelling.” In: Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences
371.1984 (2013), p. 20110550 (cit. on p. 17).

[SB18] R. S. Sutton, A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018 (cit. on p. 17).

[Set09] B. Settles. Active learning literature survey. Tech. rep. University of
Wisconsin-Madison Department of Computer Sciences, 2009 (cit. on p. 18).

[SGBK15] Y. Sui, A. Gotovos, J. Burdick, A. Krause. “Safe exploration for optimization
with Gaussian processes.” In: International Conference on Machine Learning.
2015, pp. 997–1005 (cit. on p. 19).

[SKKS09] N. Srinivas, A. Krause, S. M. Kakade, M. Seeger. “Gaussian process opti-
mization in the bandit setting: No regret and experimental design.” In:
arXiv preprint arXiv:0912.3995 (2009) (cit. on p. 19).

[SKKS12] N. Srinivas, A. Krause, S. M. Kakade, M. W. Seeger. “Information-theoretic
regret bounds for gaussian process optimization in the bandit setting.”
In: IEEE Transactions on Information Theory 58.5 (2012), pp. 3250–3265
(cit. on p. 19).

68

[SNE+15] J. Schreiter, D. Nguyen-Tuong, M. Eberts, B. Bischoff, H. Markert, M. Tous-
saint. “Safe exploration for active learning with Gaussian processes.” In:
Joint European conference on machine learning and knowledge discovery in
databases. Springer. 2015, pp. 133–149 (cit. on pp. 15, 19, 20).

[SWGO00] S. Seo, M. Wallat, T. Graepel, K. Obermayer. “Gaussian process regression:
Active data selection and test point rejection.” In: Mustererkennung 2000.
Springer, 2000, pp. 27–34 (cit. on p. 18).

[SX17] Y. C. Shin, C. Xu. Intelligent systems: modeling, optimization, and control.
CRC press, 2017 (cit. on p. 17).

[SZBY18] Y. Sui, V. Zhuang, J. W. Burdick, Y. Yue. “Stagewise safe bayesian optimiza-
tion with gaussian processes.” In: arXiv preprint arXiv:1806.07555 (2018)
(cit. on p. 19).

[VCV11] S. Van Der Walt, S. C. Colbert, G. Varoquaux. “The NumPy array: a struc-
ture for efficient numerical computation.” In: Computing in Science &
Engineering 13.2 (2011), p. 22. URL: https://numpy.org/ (cit. on p. 59).

[Vin18] J. Vinogradska. “Gaussian Processes in Reinforcement Learning: Stability
Analysis and Efficient Value Propagation.” PhD thesis. Technische Univer-
sität, 2018 (cit. on p. 35).

[ZMN18] C. Zimmer, M. Meister, D. Nguyen-Tuong. “Safe Active Learning for Time-
Series Modeling with Gaussian Processes.” In: Advances in Neural Informa-
tion Processing Systems. 2018, pp. 2730–2739 (cit. on pp. 3, 15, 16, 20,
29, 47, 48, 51, 54, 56, 57).

All links were last followed on October 1st, 2019.

https://numpy.org/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Literature Review
	2.1 Dynamic Modelling
	2.2 Active Learning
	2.3 Safe Active Learning

	3 Theoretical Background
	3.1 Supervised Machine Learning
	3.2 Gaussian Processes
	3.3 Active Learning
	3.4 Time Series

	4 Methods
	4.1 Problem Statement
	4.2 Proposed solutions

	5 Evaluation
	5.1 Application
	5.2 Experiments
	5.3 Results

	6 Discussion, Conclusions and Outlook
	A Implementation details
	B Extra Experiments
	B.1 Safe Active Learning vs Random Safe Exploration
	B.2 Impact of observational noise in the feedback loop in narx models
	B.3 Information Metric Approximations

	Bibliography

