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Abstract

When interacting with their environment, humans model the action possibilities directly in
the product space of their own capabilities using the spatial configuration of their body and
the environment. This idea of the existence of an intuitive and perceptual representation
of the possibilities in an environment has been hypothesized and discussed by psychologist
JJ Gibons, and is called affordances. The goal of this thesis is to build an algorithmic
framework to learn and encode human object affordances from motion capture data. In this
regard, we collect motion capture data, wherein, the human subjects perform pick and place
activities in the scene. Using the collected data, we develop models using neural network
architecture to learn graspability and placeability affordances, while also capturing the
uncertainty in predictions. We achieve this by modeling affordances within the probabilistic
framework of Deep Learning. Our models predict grasp densities and place densities
accurately, in the sense that the ground truth is always within the confidence interval.
Furthermore, we develop a system and integrate our models for real-time application, in
order to produce affordance features in live setting and visualize the densities as heatmaps
in real-time.
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1 Introduction

The pursuit of understanding the fundamentals of human intelligence, in terms of his
ability to perceive and interact with the world around is a long seeking research question
posed in the world of robotics. Robots might eventually blend in and operate in the same
workspace as humans. Building a solid human motion prediction system that can be used
by robots to effectively collaborate with humans, while not harming or interfering with
them is necessary. One key aspect in this regard is decoding the manner in which humans
model the action possibilities in their environment. When tasked with performing certain
actions such as grasping an object in the scene, humans subconsciously tend to create
a map in their mind about the future and final state they need to be in, to successfully
perform that action, and plan their motion accordingly to reach that state. This idea that
there exists an intuitive and perceptual representation of the possibilities in an environment
is termed as Affordances and was introduced by Gibson[Gib66].

Affordances in a broader sense define the relationship between an agent and the environment
in terms of the actions that can be undertaken on objects and the corresponding effects
caused by it. In our scenario, we model affordances from the perspective of humans. Most
of the work on human affordances have been mainly into solving computer vision problem
involving RGB or RGB-D inputs [KGS12],[KS16],[RT16]. We explore the possibility of
using motion capture data in our scenario.

The goal of this thesis is to design and implement a system to understand human object
affordances using motion capture data. In particular, we concentrate on graspability and
placeability affordances, and model them using neural network framework in continuous
space. Additionally, we also capture the uncertainty in predictions. Modeling them this
way gives action potentials in product space pertaining to how the objects can be interacted
with. Based on the active affordance, for all the objects in the scene, our system outputs
the probability density to undertake that affordance successfully. These features can be
exploited to improve human motion prediction system and human-robot collaboration
system, where the robots can predict and anticipate user intent, and act accordingly.

For grasp affordance, we model it as the dynamic human state in terms of the hand position.
For place affordance, it is modeled as the position on the surface where the object is most
likely to be placed. Using the output distribution maps of the final state, efficient planning
can be performed for motion prediction.

We structure this thesis as follows: In Chapter 2, we provide a comprehensive explanation
on the concept of affordance and discuss the state-of-the-art in affordance reasoning and
other related work, followed by describing relevant and necessary background information
required for modeling uncertainty in deep learning framework. In Chapter 3, we describe
our motion capture environment and the data processing pipeline. Once all the necessary
concepts are discussed, we move on to Chapter 4, where we propose our general affordance
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1 Introduction

model, followed by the techniques involved in designing the machine learning frameworks
and baselines based on heuristics to encode affordances. The evaluation of our frameworks
is presented in Chapter 5, where custom metrics are used to showcase the results, followed
by real-time performance evaluation. Based on the evaluation results, we discuss the
limitations, possible improvements and finally conclude the thesis in Chapter 6.
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2 Background and Related Work

In this chapter, we provide thorough definitions and understanding regarding the concept
of affordances from various fields of research and link it to the work done in robotics field.
We then discuss the related work done in the field of robotics corresponding to affordance
learning, followed by a comprehensive overview on the topic of deep learning, with an
emphasis on the uncertainty estimation techniques.

2.1 The Concept of Affordance

Affordances refer to the action possibilities of an object in a given environment, that
depends not on only the environment, but also strongly depends on the perception and
motor capabilities of an agent. To illustrate this definition, consider a tennis ball which
is within the reach of biological agents. In the case of human beings, this object affords
graspability, as the presence of hands allows us to grasp it. The same is not true in the
case of four-legged animals, where their limitation in motor capabilities in terms of absence
of hands, restricts them from perceiving grasp affordance. Affordances also change with
respect to the configuration of the environment and the agent. The same graspability
affordance which is active for humans if it is within the reach, is no longer active if the
same ball is resting 20 ft above the ground and is generally out of reach from average built
humans.

The concept of affordances took shape in the field of psychology once it was proposed by
Gibson in [Gib66],[Gib86], and over time numerous explanations came up in different fields
such as neuroscience, cognitive science and eventually caught up in the field of robotics.
Jamone et al. present a survey on affordances elegantly in [JUC+18], where they provide a
multidisciplinary perspective on affordances, namely in the field of psychology, neuroscience,
and robotics. We summarize the contents of the survey in the following subsections.

2.1.1 Evidence from Psychology

Ecological Psychology view of affordances relates to the detection of action possibilities by
animals offered by the objects in various conditions. This field of work provides information
relating to the strong correlation between the affordance detection and the body dimensions
of agents. For example, the climb-ability affordance of staircase with respect to humans,
i.e. the ability to climb the stairs, does not depend on the size of the step, but depends on
the ratio of the step with respect to the leg-length[War84]. However, it does not answer
questions related to how affordances are perceived by animals.
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2 Background and Related Work

In Psychophysics view, the relationship between the affordance perception and action
execution is studied. For a given object, the reaction times of an action differs, depending
upon the configuration of objects, in terms of its position and orientation. Direct perception
of affordance, ultimately resulting in faster reaction time, is possible when the object is in
preferred orientation within the peripersonal space of the humans[CAT+10]. Even if the
representation of objects suggest an affordance action, the actual will to act upon it might
be inhibited if there is no conscious will to undertake that action.

Developmental psychology view discusses the mechanisms involved in learning affordances,
in terms of how they are perceived and developed over time. The human ability to perceive
affordances in an environment is not fixed, it changes over their lifetime. New motor
skills pave way for new action possibilities. A simple example can be seen in infants at
early stages, where once they learn to sit, their hands are freed up, with which they start
manipulating the surrounding objects, eventually learning affordance related to it[SAJ10].
This body of research also suggests that exploration of such actions by infants increases
the predictability and efficiency of affordance perception and eventually, learns to start
predicting the effects of undertaking certain actions.

In summary, ecological psychology discusses the affordances as the perception of action
possibilities of objects in an environment, which is studied in adult humans, at a fixed age
in their lifetime. Developmental psychology answers an important question related to how
affordances are perceived, by looking into the development stages of infants. Psychophysics
view talks about how depending on the environment configuration, activation of affordances
differs.

2.1.2 Evidence from Neuroscience

The claims regarding affordances made in the field of psychology are verified from the
physiological standpoint within the field of neuroscience. A number of studies have tried
to understand affordance perception by observing the neural representation in brain. In
the cerebral cortex of primates, there are two separate pathways for visual information
processing[Nor02], namely the ventral pathway and the dorsal pathway. The ventral
pathway is responsible for complete object recognition and has a longer latency, while
the dorsal pathway is responsible for edge detection, depth processing, surface, and axis
representations and has a shorter latency. A prominent research[Nor01] suggests that the
dorsal pathway is responsible for affordance perception. This is inline with the psychological
view, which says that the affordance detection is fast. Additionally, this body of research
also suggests that the object recognition and semantic reasoning are not required for
affordance perception. This idea, that the object recognition is not necessary for affordance
perception is further solidified by the works[PG97][Hum01], in which they show that people
can perceive affordances related to objects, despite not being able to recognize those
objects.
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2.1.3 Affordances in Robotics

A number of works in robotics research were influenced by affordances. Following the
concepts of affordances discussed related to psychology and neuroscience, if affordance
learning has to be achieved within a robot in the true sense, developmental psychology
perspective must be followed. Accordingly, the below mentioned properties are to be
satisfied

• In order to perceive affordances, robots must learn from its own sensorimotor inter-
actions with the world

• Object representation for affordance learning should be achieved using low level
object features, in order to generalize the affordance reasoning on novel objects

• Each affordance should be represented as a set, consisting of object features, action
and effect, wherein taking a possible action based on the object features, results in a
specific effect

• Many objects have multiple affordances associated with them and the robot should
be able to perceive and choose the right affordance at a given moment, depending
upon the environment, object and robot configuration

A number of papers in robotics[MLBS08][GSJB14][DJKS16] closely follow the points
mentioned above. In the next section, we discuss these works while also discussing other
prominent researches done in affordance modeling.

2.2 Related Work

Montesano et al. [MLBS08] model grasping, tapping and touching actions, and represent
objects using a set of visual descriptors. The effects caused by performing an action, in
terms of change in position, velocity and tactile information related to contact, is captured
by the agent by processing the data from its sensors. Bayesian networks(BN) are used
to encode the probabilistic dependencies between actions, object features and the effects
caused by it in discrete space. Figure 2.1(a) shows the affordance model used. Once the
BN is trained, they can predict different entities conditioned on the inputs. For instance,
their model can predict the resulting effect(E), that can occur on taking an action(A) on
object(O), or predict action(A) to be taken, in order to achieve effect(E) on object(O) and
so on.

Goncalves et al. [GSJB14] extend the work in[MLBS08] by modeling tools that can be
used to interact with objects. In particular, they are interested in multi-object affordances,
where object interaction using tools are learnt as affordances. They use objects of different
shapes, such as sphere, cube and cylinder. The tools used in their scenario are a stick
and a rake. Using these tools and objects, they model actions such as tap from left, tap
from right, push and draw. The structure of their architecture is shown in figure 2.1(b).
Probabilistic dependencies are learnt between the objects, tools, actions, and effects using
BN. Interesting inferences are possible, for instance, in planning, given an object(cylinder)
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2 Background and Related Work

(a) Affordance model in[MLBS08] (b) Affordance model in [GSJB14]

Figure 2.1: Affordance model following developmental psychology. Images are taken from
[GSJB14].

and a desired effect(bring closer), the model can infer about the possible tool to be used
and the action to be performed in order to achieve it. In the best case scenario, the model
returns tool as rake and action as draw with a high probability.

Dehban et al. in [DJKS16], which is the extension of [GSJB14], use denoising Autoen-
coder[VLBM08] to encode similar relationships in continuous space, rather than encoding
them in discrete space. The input to denoising Autoencoder is the corrupted version of the
object and tool features, action and effects, where one of these four modalities is forced to a
value of 0.5 by random Bernoulli experiment during training. The output of the network is
the uncorrupted version of the input. During inference, they can query a required modality
by corrupting the corresponding input vector, feeding correct inputs for the other three
modalities, and then, observing the output vector produced for the required modality.

Since grasp operation is one of the most common manipulation tasks in robotics, there
are numerous work done specifically on grasp affordance. Detry et al. [DBP+09] work
is one such example, where grasp action is learnt as an affordance and is parameterized
as 6D pose of gripper, relative to the object. Objects are represented using the Early-
Cognitive-Vision system, which creates short edge segments in 3D space from stereo images.
Grasp affordances are modeled in a probabilistic framework as success conditional grasp
densities. They use Kernel Density Estimation(KDE) method, which is a non-parametric
density estimation technique, and use two kernels to represent gripper pose; one, for
representing translation and the other, to represent orientation. Empirical densities are
learnt by allowing the robot to perform grasp actions multiple times, and learn from only
the successful grasps. Similar to this work, we model grasps as densities from human
demonstration, in terms of the 3D position of the hand.
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2.2.1 Visual Affordances

Visual affordance is a research field that deals with learning affordances as a computer
vision problem. Hassanin et al. [HKT18] survey provides a good overview on the related
work done in this field. Roy et al. in [RT16], use NYUv2 dataset, which is extended to
include pixel-wise affordance ground truth. With RGB images used as inputs, a Convolution
Neural Network (CNN) based architecture is designed to extract semantic segmentation
relating to a number of affordances in the scene. Figure 2.1(a) shows the model architecture
used for this approach and the corresponding output affordance maps obtained. Nguyen et
al. in [NKCT16], model 7 affordances namely: contain, support, cup, w-grasp, scoop, grasp
and pound. UMD dataset with RGBD data is used, and the network is designed using
autoencoder architecture, with the final output producing k channel image of probabilities,
k being the number of affordance classes. Figure 2.1(b) shows the detection results of their
model.

Chuang et al. in [CLTF17], use spatial gated graph neural network for affordance reasoning.
They use the ADE30k dataset, and build affordance features on top of it for actions such as
run, grasp and sit. For every object in the scene, the model outputs whether an affordance
can be taken or not. If it cannot be taken, it provides an explanation as to why it is not
possible, along with the consequence of taking that action. An example showcasing their
affordance reasoning and model architecture is shown in figure 2.1(c) and figure 2.1(d)
respectively. In contrast to all these works, we learn affordances without using visual inputs
and instead, rely only on the analytical representation of the scene.
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2 Background and Related Work

(a) Visual affordance prediction model used in [RT16]. It reasons over possible human actions in a
scene.

(b) Outputs of visual affordance model used in [NKCT16].

(c) Affordance reasoning in a given scene employed in [CLTF17]. For affordances in the scene which
has negative relationship, an explanation and consequence of taking that affordance is given
and learnt.

(d) Model architecture used in [CLTF17]

Figure 2.2: Examples of Interesting research done in visual affordance field.
22
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2.2.2 Human Affordances

Human affordance modeling plays an important part in Human Robot Interaction (HRI).
As the name suggests, the idea is to learn affordances as actions that objects afford to
humans. Using such reasoning, robots can better collaborate with humans in a shared
space. Popular works in this regard are [KGS12] and [KS16]. Koppula et al. in [KS16], use
RGB-D video as input, track full body human pose and anticipate human activities using
object affordances. Considering a particular affordance is active, they define affordances as
potential functions depending upon how the object will be interacted with. The potentials
are modeled as a combination of distance potential and relative angular potential, using
Gaussian and von Mises distribution respectively. These distributions are learnt using
maximum likelihood estimation. Depending on the affordance, the interactions considered
also varies. For affordances that depend on target object such as pourable, the potentials
are defined with respect to target object position. For affordances such as placeable and
openable, that depends on the environment, potentials are defined with respect to the closest
surface and head orientation. For other affordances such as drinkable and reachable, that do
not depend on the environment or target location, and has to do more with the body itself,
the potentials are defined with respect to the skeleton. Heatmaps are generated for each
affordance by evaluating points in space with the help of the defined potential functions.
Using the affordance features, they detect and anticipate human activities using a model
presented by them called Augmented Temporal Conditional Random Field(ATCRF).

Our work is very closely related to [KS16] in terms of learning affordances, with an
exception that we completely rely on an analytical representation of the world using motion
capture setup. We use deep learning methods to implicitly learn the underlying distribution
parameters representing affordances as potentials. Using deep learning to characterize
uncertainty is a relatively new topic, details of which are provided in the next section.
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2 Background and Related Work

2.3 Uncertainty in Deep Learning

Before we discuss the uncertainty modeling in deep learning, we review the concepts
involved in solving regression problems using deep learning. The universal approximation
theorem states that a feed forward neural network containing at least one hidden layer with
nonlinear activation function, and a linear output layer(no activation), can approximate
any continuous function with arbitrary accuracy.

Consider a supervised machine learning problem consisting of a dataset D = {xi, yi}Ni=1,
with xi as input and yi as ground truth. The true distribution underlying the data p(x, y)
is not known. Neural networks are used to predict the approximation q(y |x; θ) of the true
distribution. This is achieved by the learning parameters of the model that minimizes the
Kullback-Leibler(KL) divergence between the true distribution and the approximation,
DKL(p| |q). Under the assumption that the data generating distribution is fixed, minimizing
the KL divergence is analogous to minimizing the cross entropy H(p, q). Furthermore,
if the true distribution p(x, y) is considered to be the empirical distribution, then the
cost function in terms of cross entropy reduces to equation 2.1, where θ represents the
parameters of the network.

L(θ) =
1

N

N∑
i=1

− ln q(yi |xi; θ) (2.1)

In most of the regression problems, a Gaussian distribution of spherical structure is placed
over the output with the neural network estimating the mean of the distribution. If f (xi; θ)
is the output of the neural network, then

q(yi |xi; θ) ∼ N( f (xi; θ), σ2I) (2.2)

Equation 2.2 reduces equation 2.1 to Negative Log Likelihood (NLL) of Gaussian distribution
which is given by equation 2.3. Since traditional neural networks model point estimates,
the variance parameter of the distribution is ignored that reduces the formulation to
equation 2.4, which corresponds to the Mean Squared Error (MSE) loss.

L(θ) =
1

N

N∑
i=1

1

2σ2

����yi − f (xi; θ)
����2 + 1

2
lnσ2 (2.3)

L(θ) =
1

N

N∑
i=1

����yi − f (xi; θ)
����2 (2.4)

Despite learning only point estimates from the data using MSE, deep learning models
are powerful predictors and have been vastly successful in solving a variety of problems
spanning a wide spectrum of fields.
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2.3.1 Why Uncertainty?

If deep learning models act as powerful predictors, a question arises as to why uncertainty
quantification is required. One way to think about the predictions from deep learning
models is to reason them as always providing overconfident predictions. Suppose a trained
deep learning model is fed with erroneous data because of a corrupted sensor, the model
will still take a random guess with full confidence, which in crucial cases, might lead to
drastic consequences. However, if the same is done in a Bayesian framework setting with
uncertainty quantification, the resulting predictions will have high uncertainty, and the
system can digress from taking the normal flow of operation.

Uncertainty information is vital for the safety aspect of robots of the future, sharing
same workspace as humans. With uncertainty information, agents can qualitatively decide
whether a particular action, in a given scenario can be taken or not. Considering the recent
trend in the success of deep learning, research in machine intelligence for robotic field
will inevitably shift towards using deep learning methods. Ultimately, when using neural
network models in the decision process of an intelligent system, it is important for it to
have a notion of confidence.

2.3.2 Types of Uncertainty

Uncertainty information, in general, is broadly categorized into two types: aleatoric and
epistemic uncertainty [DD09].

• Aleatoric uncertainty specifies the inherent noise in the data. It is further classified
into homoscedastic uncertainty, where the observation noise is constant for every
input, and heteroscedastic uncertainty, where noise is assumed to be a function of
inputs. Aleatoric uncertainty is modeled by placing a distribution over the network
outputs.

• Epistemic uncertainty describes the uncertainty arising due to model parameters.
Epistemic uncertainty generally exists due to the lack of data. With a sufficiently
large dataset, this uncertainty in model parameters vanishes.

2.3.3 Popular Works in Uncertainty Modeling in Deep Learning

In recent years, there has been gaining interest in modeling uncertainty within deep learning
framework. Most of the formalism takes Bayesian approach, where a prior distribution is
placed over the network weights and posterior distribution to extract predictive uncertainty
over the parameters, is computed using the training data. However, as exact Bayesian
inference is computationally intractable for neural networks, a variety of appropriation
methods have been used to approximate the posterior. We discuss two popular approaches
that follow Bayesian formalism to provide good uncertainty estimates, while requiring only
minor changes in the implementation side to the standard neural network modeling.
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Gal et al. in [GG15],[KG17],[Gal16] proposed to use Dropouts[SHK+14] as Bayesian
approximation. They model aleatoric uncertainty by including the variance in output
predictions. Concretely, in case of regression, instead of minimizing the standard MSE
loss, they consider output observations as sampling from a Gaussian distribution with
both mean and variance parameters, and minimize the NLL given by equation 2.5. Notice
that the variance parameter is a function of the input data, ergo modeling heteroscedastic
aleatoric uncertainty. Using NLL instead of MSE for neural network was first formulated
by Nix et al. in [NW94].

LNN (θ) =
1

N

N∑
i=1

1

2σ(xi)2
����yi − f (xi)

����2 + 1

2
lnσ(xi)2 (2.5)

To capture epistemic uncertainty, they place a prior distribution over the weights, such as a
Gaussian prior W ∼ N(0, I), and train the network. To evaluate the posterior, approximate
inference technique in the form of dropout variational inference is used. To elaborate,
dropout layers exist after every layer in the network, and these dropouts are kept active
during test time. Multiple forward passes with the dropouts active is seen as sampling from
approximate posterior, and is termed as Monte Carlo dropout(MC dropout). If { ŷt, σ̂

2
t }

T
t=1

are a set of T samples obtained from T stochastic forward passes of the network, where ŷt
is the mean and σ̂2

t is the variance obtained from tth forward pass, then the total predictive
variance of output y that includes both aleatoric and epistemic uncertainty is approximated
using:

Var(y) ≈
1

T

T∑
t=1

ŷ2t −

(
1

T

T∑
t=1

ŷt

) 2
+

1

T

T∑
t=1

σ̂2
t (2.6)

Lakshminarayanan et al. [LPB16] take a similar approach to model aleatoric uncertainty
by learning the variance implicitly from the data using the cost function in Equation 2.5.
This technique differs in the way of capturing epistemic uncertainty by using the technique
of ensembles. Randomization based approach is used to achieve ensembles. In particular,
they use bootstrap aggregating strategy. However, unlike a traditional bootstrap method
where individual models learn from a randomized subset of the data, they use the entire
training set for each network with random shuffling and random initialization of parame-
ters. The authors observed better performance when using the entire dataset instead of
bagging. Additionally, they employ Adversarial training[GSS14] to smooth out predicted
distributions.

The overall results from this work matched or outperformed the results obtained in [GG15].
If { ŷm, σ̂

2
m}

M
m=1 are a set of M samples obtained from the output of M different networks

belonging to the ensembles, where ŷm is the mean output and σ̂2
m is the variance output

from the mth network, then the mean and predictive variance of the ensembles are given
by equation 2.7 and 2.8 respectively.
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µ =
1

M

M∑
m=1

ŷm (2.7)

σ2 =
1

M

M∑
m=1

(σ̂2
m + ŷ2m) − µ

2 (2.8)

Both the approaches involve querying the model multiple times which inadvertently increases
the computation time. In scenarios where real time performance is desired, capturing
epistemic uncertainty is infeasible. Learning aleatoric uncertainty does not have much
impact during test or inference phase. An obvious extension of aleatoric uncertainty
modeling is to use complex distribution such as mixture models to learn the data and a
class of neural networks exist to model them, as described in the next subsection.

2.3.4 Mixture Density Network

In specific problems pertaining to regression in continuous space, the ground truth mapping
might be multi-valued and the underlying distribution could be multi-modal. In such
scenarios, fitting a standard uni-modal Gaussian will not explain the data and will often
give erroneous results. Mixture Density Network (MDN) are a class of neural network
model that was introduced by C. M. Bishop[Bis94], which is designed to solve such issues.
The conditional probability density of the target data in a mixture model is represented by
equation 2.9.

p(t |x) =
m∑
i=1

αi(x)φi(t |x) (2.9)

where m indicates the count of the components in mixture model, αi(x) are called the
mixing coefficients, considered as prior probabilities(conditioned on data), for the output
t being generated from ith component of the mixture. φi(x) are functions representing
conditional density of t for the ith kernel. Most commonly used kernels are Gaussian, which
is given by φi(x) ∼ N(µi(x), σi(x)2), where µi(x) and , σ2

i (x) are the mean and variance of
ith Gaussian kernel. MDN network is shown in figure 2.3 , where z is the output of MDN
network. In case of using Gaussian kernel with spherical covariance, the total number of
output parameters are (c + 2) × m with t ∈ Rc. If Gaussian kernel of diagonal covariance is
used, then the total number of parameters increases to (2c + 1) × m.

Output parameters of MDN network should additionally satisfy the following constraints:

• Mixing coefficients must satisfy equation 2.10 in order to consider them as probabilities.
This is achieved by using softmax activation for output neurons corresponding to
mixing coefficients

m∑
i=1

αi(x) = 1 (2.10)
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• Output neurons representing variances σ2
i (x) should always be positive. This is

possible by using exponential activation for the corresponding neurons

• Output neurons corresponding to mean of Gaussian kernels have no activation and
remain similar to the standard regression setting

Figure 2.3: MDN network taken from [Bis94]. z denotes output parameters from the
network corresponding to a Gaussian Mixture Model.

The loss function for MDN is negative log likelihood of equation 2.9. From the output
parameters of MDN network, a mixture model based on equation 2.9 is constructed and
the negative log likelihood is evaluated at ground truth data.

In the original paper, several optimizations are mentioned in order to efficiently calculate
the gradients during back propagation. However, due to the advent in recent deep learning
libraries, auto-differentiation can take care of optimizations to compute gradients efficiently.
Selecting the number of kernels for MDN is completely specific to data and can be treated
as hyperparameter optimization problem. As a guideline, the author mentions to consider
the mixing coefficients to be at least the number of mappings possible, by observing the
data. Choosing higher number of kernels will not have much impact, as the network will
most likely switch off all the additional modes.

Learning aleatoric uncertainty from data is not restricted to using only Gaussian distribution.
In practice, we can choose a distribution that best explains the dataset. For instance,
if the ground truth of a dataset contains only unit norm vectors, instead of employing
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2.3 Uncertainty in Deep Learning

Gaussian, we can model it using a distribution that is defined only for unit vectors. One
such distribution is von Mises-Fisher (vMF), which is used to model one of our networks.
A short introduction is given in the next subsection.

2.3.5 Von Mises-Fisher distribution

In the field of Directional statistics that deals with directions using unit vectors, vMF is
one of the most commonly used distributions. A good overview of directional statistics
is given by S. Sra in [Sra16]. vMF distribution can be considered as being analogous to
multivariate Gaussian distribution on a hypersphere in Rp. For a vector x with unit norm,
von Mises-Fisher distribution is defined by equation 2.11,

pvmf (x; µ, κ) = Cp(κ) exp(κµT x) (2.11)

where µ ∈ Rp, | |µ| | = 1 is the mean direction and κ ≥ 0 is the concentration parameter,
which defines the spread of distribution on the surface the hypershere in the direction of µ.
Cp(κ) is the normalizing constant given by equation 2.12,

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)’
(2.12)

where Is denotes the modified Bessel function of the first kind at order s. When p = 3,
Cp(κ) reduces to Equation 2.13.

Cp(κ) =
κ

4π sinh κ
(2.13)

When κ = 0, the density reduces to uniform distribution on the hypersphere and when
κ → ∞, vMF distribution reduces to point density. An example showcasing this scenario is
shown in figure 2.4.

Figure 2.4: Example of vMF distribution on S2 taken from [Jul17]. κ is 1, 10 and 100
respectively for the three spheres.
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Modeling vMF distribution using neural network

A deep learning model to learn vMF distribution should have its final layer output as
the parameters of vMF distribution. If c is the dimension of ground truth data, then the
number of output neurons representing vMF model to learn the data are (c + 1), where
the additional 1 neuron corresponds to the kappa term κ. The output layers should satisfy
the following constraints:

• Output neurons corresponding to the mean direction µ should satisfy the unit norm
constraint

• Output neurons representing kappa κ should always be positive. This is possible by
using exponential activation for the corresponding neuron

The cost function for training this vMF model is obtained by substituting vMF distribution
as the approximating distribution q(y |x; θ) in equation 2.1, i.e. NLL of vMF distribution
is the loss against which the model has to be trained.

2.3.6 Summary

We discussed in this section how in a typical regression setting of deep learning, Gaussian
distribution is assumed as the data generating distribution, and how upon simplification,
we arrive at the MSE loss by ignoring the variance parameter. We then looked at why
uncertainty information might be necessary even in deep learning field and discussed the
recent advancement done in this regard. From the two types of uncertainty that can
be extracted within deep learning, capturing epistemic uncertainty is computationally
expensive and involves multiple sampling of a given model. Since, real-time performance is
required from our system, we develop our models considering only aleatoric uncertainty.
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Before we propose our affordance models, we give a short introduction of the motion capture
system and the environment used in our scenario. This is followed by the preprocessing
techniques used to extract affordances from the collected data.

3.1 Motion Capture Setup

Motion capture system used in our setup is from Optitrack1. The environment has a total
size of 4 × 4 meters. A snapshot of the setup is shown in figure 3.1. For data handling, we
use Robot Operating System(ROS)2 environment, and 3D visualization is fulfilled using
RViz3 tool .

Figure 3.1: Motion capture environment with a subject wearing the tracking suit.

The human subjects were asked to wear a motion capture suit that contained 50 markers
over it. There are objects in the scene that are each attached with markers for tracking
and can be categorized into two types. The first type of objects are the ones that the
users can directly interact with, such as cups, plates, jug and bowl. The second type of
objects remain stationary in a given recording session and also acts as supporting bodies
over which the first type of objects can be placed, namely a table, big shelf and small shelf.
We model affordances for the first type of objects.

1https://optitrack.com/
2https://www.ros.org/
3https://github.com/ros-visualization/rviz
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For each object, the motion capture system assigns a unique identifier and provides tracking
information as pose in 7D, consisting of 3D position and 4D quaternion. For the human
skeleton, a total of 21 joint information is passed, which is then stitched together as a
human model and visualized in RViz tool.

The data recorded is part of the long term human motion prediction system data set.
Participants were asked to perform tasks related to setting up the table and clearing them.
In the collected data, the users were subject to two affordances, namely graspability and
placeability. For instance, setting the table for one person involved the subject to locate
relevant objects lying on shelves, grasp it, move to the table and place it.

3.2 Affordance Preprocessing

For affordance modeling, we are interested in extracting the state of the system when
aforementioned actions are undertaken. The objects in the scene move only when they
are displaced by subjects using grasp and place actions. Following this, a simple auto-
segmentation algorithm is used to extract the grasp and place sequence instances from the
data:

• For every object that users can directly interact with, change in position is checked
every 100ms

• If the change in position measured over 100ms window is above a certain threshold,
that instance or array index corresponds to the beginning of grasp action

• Once grasp action is detected, the person will move and eventually place the grasped
object on a surface, at which point, the delta position change over 100ms window
falls below the threshold and settles to 0. The corresponding time instance refers to
the place action

Additionally, a couple of noise handling measures are introduced:

• Tiny movements in objects which could either be because of the motion capture noise,
or unintended taps, gets classified as a valid grasp-place sequence. To eradicate this,
only the grasp-place sequence that lasts longer than 500ms are considered as valid

• Due to occlusion of markers on objects, the system loses tracking momentarily, freezes
the object’s position in space, and continues thereafter, once tracking is restored.
Such patterns get detected as multiple grasp-place actions. To overcome this problem,
sequences whose grasp point is less than 300ms of previous place point, are merged
as one grasp-place sequence

Once we have the precise indices corresponding to grasping and placing, we fetch relevant
information required to create features for affordance reasoning. Individual models are
built for each affordance and comparison is made against baseline heuristic approaches.
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With all the necessary background information covered, and the data processing part
discussed, we present in this chapter, the complete description of our affordance modeling,
starting with an abstract design to encode and learn affordances, followed by individual
model designs for each affordance using neural networks and heuristic approaches.

4.1 General Affordance Model

We model affordances by building a relationship between action, agent and environment by
taking inspiration from subsection 2.1. However, our focus is to model human affordances,
with the aim of using the learnt affordances to improve human motion prediction and
robot collaboration tasks. The formulation varies in this scenario, considering we learn
affordances from the ecological context, where the emphasis is on detecting and reasoning on
affordances that are already encoded in adult humans. This varies from the developmental
psychology viewpoint, where the focus is on decoding the learning process of perceiving
affordances during a child’s development.

Figure 4.1: General Affordance Model Structure.

Figure 4.1 shows the block diagram of our proposed affordance model. The agent in our
case is the skeleton model of human within the motion capture environment. We encode
the movement of skeleton in the environment as the agent information. For representing
the environment, we do not use any visual information, but instead use only the analytical
representation in terms of object position, their unique types, and surface identification on
which the objects rest. This encoding also informs the object for which a given affordance
is active. From the skeleton data and the environment, we identify the active affordance,
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which in our case is either graspability or placeability. Neural networks are used to learn
the latent space representation of the relationship between the agent and the environment,
and using them, it learns the manifolds in 3D space representing affordance densities.

Separate networks of similar structure are used for modeling graspability and placeability
affordances. This is because of the difference in the formulation of manifolds representing
these two affordances. Grasp density is a property of the agent, in terms of the region
around the objects where the hand should be, for initiating grasps. Place density, on the
other hand, is a property of the environment in terms of where an object can be placed,
which is specific to the surfaces. This density exists in a 2D manifold in 3D space.

In the following sections, we elaborate on the specifics related to modeling of these individual
affordances.

4.2 Graspability Affordance

For understanding graspability affordance from a human’s perspective, we model it as
follows: Given that the subject wants to grasp an object of a particular type from its current
resting surface, predict the likelihood of the right wrist position for successful grasp action.
The model can then be queried for every object in the scene to get the complete dynamic
mapping of the grasp affordance from a human’s perspective. Figure 4.2 illustrates this,
by visualizing the grasp densities of the objects in the scene obtained from one of our
models.

Figure 4.2: Green colored curved regions above the objects indicate grasp densities
obtained from our model for all the objects on the table.
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4.2 Graspability Affordance

4.2.1 Features

The following features are considered for modeling graspability:

• The skeleton state relating to human motion encodes the agent information. To keep
the model from not overfitting to a particular scene arrangement, we do not use
world frame of reference, but instead consider object reference frame. This defines
the inter-relationship between the agent and the environment. Since, the position
of skeleton joints change over time, we use Long Short-Term Memory (LSTM) to
capture hidden representations. Adopting full state representation of human (a total
of 21 joints) using all joints was an option, but considering only the upper portion
of the skeleton(total of 9 joints), was sufficient. We use the position of joints and
discard the orientation information. Trajectories of these joints of window length 1 s
are used, which are each spaced out 50 ms, comprising a total of 20 time steps

• The dynamics of grasping vary among different objects; for example, grasping a
small cup is different from grasping a jug. Additionally, grasping action for the same
object differs for different support planes. For instance, grasping a cup from the
top compartment of the big shelf is distinct from grasping the same cup from the
table. To distinguish the dynamics of skeleton, we encode the object type and the
corresponding plane it is currently resting on, in a one-hot encoding vector. In our
setting, we have 4 object types, and 10 distinct planes. The one-hot encoding vector
is therefore of length 14 and represents the environment data

• We allow the model to see grasping possibilities at different time instances before the
actual grasp. For the same target grasp point, we train the network with time series
data ranging between 0.1 s and 1 s before grasping

Ground truth for graspability network is the property of the agent in terms of the position
of right wrist in object frame of reference at grasp point. We take two approaches to
model the right wrist dynamics: one, to use the position as a 3D point in Euclidean
space, and the other, to model the position by defining a unit vector for direction, and
scale for distance. Accordingly, all the features and ground truth are extracted from
auto-segmentation described in section 3.2.

4.2.2 Model design

The structure of our base graspability model is shown in figure 4.3. It closely follows the
structure of the affordance model shown in figure 4.1. The final layer of our network differs
for the two approaches mentioned in previous section.

Solving the standard regression problem of minimizing mean squared loss is ruled out,
since we are interested in capturing the inherent uncertainty by modeling the conditional
probability distribution. Owing to the computation time, we restrict ourselves to model
only aleatoric uncertainty, as capturing epistemic uncertainty with either Monte Carlo
Dropouts or ensemble strategy requires multiple forward passes of the network.
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Figure 4.3: Base graspability model architecture; the final layer depends on the type of
approach used.

Gaussian model

In the first network type, wrist position is modeled as a 3D position in Euclidean space
and the final layer of this network outputs the parameters of Gaussian distribution having
diagonal covariance structure. The cost function is NLL, given by equation 4.1, where d is
3 and covariance matrix C(xi) has a diagonal structure.

LGaus(θ) =
1

N

N∑
i=1

(
d
2

ln(2π) + 1

2
ln(

��C(xi)
��) + 1

2
(y − µ(xi))TC−1(xi)(y − µ(xi))

)
(4.1)

The number of output neurons are 6, owing to 3 dimensional mean and variances in each
of the 3 dimensions. We then tried the multi-modal approach by using MDN. However,
despite training it with different possible values of mixing modes, in every scenario the
output predictions always collapsed to one distinct mode. This meant that the hidden
representation was uni-modal and using a single Gaussian to represent the distribution
was apt.

vMF model

The intention for vMF formulation is to model grasp points as a distribution on a 2D
manifold defined on the surface of a sphere. Since unit vectors form directional data, we
model it using vMF distribution defined by equation 2.11, which describes a probability
distribution on a hypersphere. In this scenario, the dimension is 3. The distance part of the
ground truth that describes the scale measure, to retrieve the actual grasp point, is modeled
as a standard regression problem using mean squared loss function. The number of output
neurons for vMF model are 4; 3 for the mean direction and 1 for the kappa term that
defines the spread. Additionally, the output neurons corresponding to the mean direction
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Figure 4.4: Top picture refers to graspability network with Gaussian output, while the
bottom one shows vMF model.

should satisfy the unit norm constraint. The network is trained on two loss functions
simultaneously, one, NLL of vMF distribution, evaluated at ground truth direction and
the other, mean squared loss for distance parameter. Figure 4.4 shows the final layers and
output shape of Gaussian and vMF approaches.

4.2.3 Baseline

In order to evaluate our model, we create a baseline method based on distance measure to
predict graspability:

• From the training data, we take the ground truth 3D positions of the right wrist
and calculate the distance to grasped objects. Since the grasp position varies for
different combination of object and planes, a look up table is created for all possible
combinations of object types and planes. A total of 40 table entries are possible from
the data, and distances are populated in each of the respective groups, based on the
object type and the plane it is currently resting on

• Mean distances for each of the groups are then calculated and stored in the lookup
table

• During test time, based on the object type and the plane it is placed on, the mean
distance is indexed from the lookup table. To get the actual prediction position, we
calculate the unit vector along the direction of right wrist, starting from object, and
compute the 3D position from this unit vector and the distance
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4.3 Placeability Affordance

Placeability affordance is designed in the following manner: Given the subject currently
holds an object of certain type and wants to place it on a particular surface, predict the
most likely region on the plane as a probability distribution where the object can be placed.
The model can then be queried for every surface in the scene to get the complete dynamic
mapping of the place affordance from a human’s perspective. Figure 4.5 illustrates this, by
visualizing the place densities for placing a cup on the table and the big shelf.

Figure 4.5: Place densities queried from our model for placing a cup on the table and the
big shelf. Brighter regions correspond to higher densities.

4.3.1 Features

Placeability affordance is modeled using the features described below:

• The time series skeleton state data is the strongest feature in this case as well. The
joints, sliding window and number of time steps remain the same as graspability
network. However, the positions are now in plane frame of reference rather than
object reference frame. We also include positions of the object in hand for which the
placeability affordance is active

• The one-hot encoding input remains identical to graspability network and encodes
the environment details

• We allow the model to see placing possibilities at different time instances before the
actual place action. For the same target place point, we train the network with time
series data ranging between 0.1 s and 3 s before placing

• Ground truth for placeability affordance is the 2D position of the object on the
surface, in plane frame of reference
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Plane features

Modeling placeable regions on a surface is intricate compared to modeling grasp densities.
The model output depicting the place density which is defined on a 2D manifold, cannot be
anywhere on the surface of the plane. The following violations are possible when considering
valid placeable regions:

C1. Region outside the plane’s surface

C2. Region within the objects that are already placed on the surface

Environment encoding for placeability model needs additional features to represent the
plane. This is achieved by creating hand crafted raw visual features which are then fed
to the part of our analytical model depicting the environment. The properties of the
objects in the scene are known in prior, in terms of their geometrical shapes and physical
dimensions. Using this information, we create 2D features; a 24 × 24 image of plane’s top
view by projecting the objects to 2D space, based on their shape, size and position on the
plane. In the actual scene, this 24 × 24 grid covers 1 m2 area. We consider the following
features:

• Binary occupancy map where the pixels correspond to value 1, if they are in the valid
regions and 0, if the pixels are in invalid zones based on conditions C1 and C2

• In order to keep the network consistent to have similar data types, pixels in the valid
region of binary occupancy map are converted to 2D position in the plane reference
frame. Pixels in the invalid region are mapped to (0,0) value. This gives us 2 feature
maps, one each in x and y dimension, and can be considered as features informing on
the placeable points on the plane

• From the binary occupancy map, we also create a Signed Distance Field (SDF) map.
The sign indicates if a given point lies in the valid or invalid region. For valid regions,
the sign is negative and for invalid region, the sign is positive. The value is nothing
but the distance of a pixel to its closest boundary

Figure 4.6: An example showing plane features for table occupancy, created from data.
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Figure 4.6 shows an example of top view of the table in RViz and the corresponding
generated binary occupancy map and SDF. In total, we have 4 feature maps of size 24×24
to represent the plane. CNN network is used to capture hidden environment representation
from the feature maps.

4.3.2 Model design

Placeability network is shown in figure 4.7 and closely follows the model structure proposed
in figure 4.1. Notice that in this case, there are two branches to capture environment
dependencies, namely the one-hot encoding part and the CNN block. Like the graspability
model, we capture conditional probability distribution from the placeability network and
concentrate on aleatoric uncertainty. Placeability problem is multi-valued; for instance,
consider the possibilities of placing a plate on the table when the subject is 2 m away, and
the table is empty. Since the table in our scene can seat four people, there are four possible
locations where he can place it. Mapping is multi valued for the same configuration and
the network should be able to understand this. MDN best fits this scenario for modeling
multi-modal distribution, and we design it by using multivariate Gaussian kernel with
diagonal covariance. Choosing the number of kernels to represent the data was done based
on observing the data. We find that 7 kernels best explained the data.

Figure 4.7: Placeability model architecture.

We further improve our placeability model with the intention of making it more robust
against violating valid placement condition C2. We design two models in this regard, one
with the addition of a constrain function to penalize the predictions in invalid regions and
the other, using transfer learning technique wherein, environment features related to plane
occupancy are learnt separately.
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Constraint approach

We modify the cost function to include a penalty term. If the mean sampled from the
output mixture model is in the invalid region, we penalize the network by adding a positive
value to the loss, while if the mean is in the valid region, the network is incentivized with a
negative value added to the loss term. This is achieved by using the corresponding SDF
map for that training sample, as SDF has positive values in invalid regions and negative
for valid points. From the predicted mixture model parameters, 2D mean is sampled and
transformed into pixel coordinates corresponding to 2D feature maps. Value of the SDF is
indexed at that transformed position and added to the loss function, after scaling it by a
factor.

Transfer learning approach

In order to learn stronger environmental representations from the 2D feature maps, we
train the CNN part separately with a different target and loss function, and then, use it in
the main network. To achieve this, we build an autoencoder type of network with input
being the 4 feature maps and one-hot encoding vector as mentioned in section 4.3.1. The
output is the binary occupancy map of the plane after the object is placed on the plane.
The model is trained with the standard mean squared loss. The network architecture is
shown in figure 4.8.

Figure 4.8: Autoencoder network architecture used to learn plane features.

The pre-trained encoder model is connected to the main placeability model by replacing the
CNN part. The encoder model weights are made non-trainable when the overall placeability
network is trained. The intuition here is that, with the autoencoder, we capture the latent
representation that are unique for different combinations of the occupancy map. With
the pre-trained encoder network producing distinctive feature representation, the main
model should learn to not predict outputs in invalid regions. The model architecture of
placeability network with encoder connected is shown in figure 4.9.
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Figure 4.9: Modified placeability network with pre-trained encoder connected.

4.3.3 Baseline

A heuristic approach to solve placeability is based on distance map and SDF. The intuition
is that, the subject will always select a region on the surface which is closest to him and
that fits the object in hand, without obstructing the already placed objects on the plane.
We use the following steps to predict the place position using heuristics:

• A 24 × 24 distance map is created where the entries are Euclidean distances between
valid points on the plane and the skeleton position. Distance for all the invalid points
are set to infinity

• Each value in SDF signifies the distance between a point and its nearest border. For
valid points, the absolute value tells us how far either the plane boundary or the
object boundary is. The positions on the surface of the plane where negative SDF
value is greater than the object in hand, forms the candidate place points set

• From the distance map and the candidate points, the point which has the smallest
distance is selected as the place position

An example showing SDF and the corresponding distance map created is shown in figure 4.10.
The white parts in the distance map indicates the invalid points, which are set to infinity.
Notice that the user is approaching the big shelf from top right direction as the distance is
smallest in that region.
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Figure 4.10: Distance map and SDF map features used in baseline for placeability. This
image corresponds to a plane on the big shelf.
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Following the techniques and implementation presented in the previous chapter, results
obtained and the metrics used to quantify them are analyzed and presented in this chapter.
The affordance sub-system integration with the complete system is discussed and the
behavior in live recording is showcased.

A total of 5 users participated in recording session, with each session being approximately
25 minutes long. From the auto-segmentation algorithm for extracting grasp-place sequence,
a total of 1551 samples were detected. The extracted sequences were verified to be accurate,
by playing back the data in RViz and observing that the grasp-place sequences occurred at
the detected indices.

For training the models, we split the data based on the subjects. From the 5 users who
participated in the experiment, they were split into train and test sets, such that the ratio
between the training and the test set in terms of the number of samples was approximately
7:3. Considering we use sequential data (skeleton position, body position) at multiple time
steps, the number of samples for train set and test set increases by a factor of the number
of time steps used.

We implemented our models using Keras[Cho+15] functional API, with Tensor-
Flow[AAB+16] as backend. To develop the loss functions used to train our custom
models, we used Tensorflow distributions[DLT+17] package.

5.1 Learning Results

Since, the cost function is NLL for all the models and as such, does not have a physical
significance, standard mean squared loss is used to compare the error between the ground
truth and predicted mean for evaluating network performance.

Graspability

The vMF model for graspability has two loss functions, and the network is trained with
both the losses simultaneously. For vMF output parameters, the loss is NLL of vMF
distribution, while for distance output parameter, the loss is MSE. In Table 5.1, the value
under NLL loss for vMF model is the sum of both losses.

For calculating MSE with the Gaussian model, output parameters of the network that
correspond to 3D mean are considered as prediction point, and this is used to compare
against the ground truth grasp point. For the vMF model, based on the predicted mean
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direction and distance, we calculate the 3D position and consider it as the prediction point.
Table 5.1 shows the best results obtained from the network. Results obtained from baseline
is also listed, computed at 1s before grasping.

Train set Test set

Models epochs batch size NLL MSE NLL MSE

Gaussian Model 200 25 −6.9783 0.0025 −4.5167 0.0043

vMF model 200 32 −1.2721 0.0042 0.2487 0.0070

Baseline − − − 0.0188 − 0.0250

Table 5.1: Results obtained for Graspability models.

By observing MSE, we can see that both the neural network models are quite on par in
terms of performance, while beating the baseline by a significant margin. These models
however digress in the manner of uncertainty estimation. With Gaussian model, we get a
spherical covariance structure indicating the confidence interval around the mean position.
This interval gives the possible locations in 3D space, where the human wrist should
position, in order to grasp the object. In case of the vMF model, uncertainty is defined on
a 2D manifold, i.e. the surface of a sphere with its center at object centroid, and radius
being the predicted distance. Output vMF parameters inform on the direction and spread
of the distribution on this manifold. Since this gives a density on a surface around the
object, it reflects on the possible approach angle of the wrist for successful grasping.

Figure 5.1: Prediction of grasp point over time for the three methods.

Figure 5.1 shows the performance of our deep learning models and baseline as time
progresses towards actual grasping. In terms of predicting the mean position, along the
time axis, Gaussian model always performs better than the vMF model. Baseline method
lags significantly when the subject is far away, but as he approaches the object and starts
doing the grasp action by moving the hand, direction of the wrist aligns to the actual grasp
point, bringing down the error and eventually, performing better than the deep learning
models.
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Placeability

In case of placeability affordance, we show the results obtained from different variants of
our MDN networks. To sample the mean from MDN output, a mixture component is first
chosen by drawing j from categorical distribution with probabilities, defined by the mixing
modes. Mean of j th component is the mean of MDN and corresponds to the predicted place
point for our calculation. Table 5.2 shows the best results obtained from the networks.
Results obtained from our baseline method is also listed. The loss listed for MDN+penalty
is the sum of NLL and penalty function.

Train set Test set

Models epochs batch size NLL MSE NLL MSE

MDN+no CNN features 120 128 −3.1769 0.0184 −2.6904 0.0239

MDN+CNN features 150 128 −4.3029 0.0136 −2.6378 0.0213

MDN+CNN+penalty 150 128 −3.7081 0.0151 −1.6122 0.0245

MDN+transfer learning 120 128 −4.1168 0.0115 −2.7793 0.0194

MDN+transfer+penalty 150 128 −4.2717 0.0107 −2.4688 0.0196

Baseline − − − 0.0799 − 0.2415

Table 5.2: Results obtained for Placeability models.

For MDN model with transfer learning approach, we trained the autoencoder network to
extract meaningful representations. MSE loss was used for training, and the results are
listed in the Table 5.3.

Model epochs batch size Train set MSE Test set MSE

Autoencoder 1000 128 0.0060 0.0127

Table 5.3: Results obtained for Autoencoder network.

Figure 5.2: Autoencoder network prediction on a test set example.

An example of the input fed to network and the corresponding ground truth is shown in
Figure 5.2. Although the resemblance of predicted binary occupancy map is not quite
similar to the ground truth in terms of finer details, on a coarser level, the addition of
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new object on the plane at a similar position as in ground truth, is detected by the model.
This means that the encoder part has learnt distinct representation for different plane
occupancy configurations in the latent space.

Algorithm 1: Accuracy metric for valid placement

Data: Predicted mean array: pred array, Occupancy map array: occup array
Result: Valid placement rate: acc
count = 0;
while Arrays not empty do

pred px = convertToPixel(pred);
contour plane, contour objs list = extractContours(occup);
if pred px inside contour plane ∧ pred px outside c, ∀c ∈ contour objs list then

count = count + 1;
end

end
acc = count/len(pred array)

For placeability affordance, invalid region performance cannot be concluded using mean
squared error, as it does not reflect on whether the predictions are valid or not. A custom
metric is created to decide if placement is in the valid region. For this purpose, during
preprocessing phase, along with the normal 24 × 24 binary occupancy map that is used for
our models, we also create a higher resolution map of 240 × 240 pixel density. Using this
map as input to Algorithm 1, we create a measure of the percentage of predictions that
satisfy the conditions of validity.

We use this metric to compare different placeability models by observing the performance
over time. For the baseline approach, the accuracy from our metric is 100%, since it is
purely based on logic and not learnt from data. Figure 5.3 shows the accuracy based on
our metric and the distance error respectively, for models with and without CNN features,
as well as considering the additional constrain approaches.

Without 2D plane features, the performance of the model is significantly lower compared
to approaches with CNN network added. However, as the user approaches the plane and
performs placing action to place the object, error falls lower than CNN based networks.
This is because of the strong correlation between the data types of skeleton joints used
for LSTM, and the target position on the plane. With CNN features added, performance
definitely improves when the person is far away from the plane, but there still exists
ambiguity in a number of cases, where the predictions are still in the region of invalidity.
If we only think of the model in terms of learning CNN features with target being 2D
position, there is no direct correlation between the input and output, as they do not exist
in the same space. Consider two scenarios, where the object being placed, trajectory taken
by the human, and the plane on which object will be placed, remains the same, and the
only differentiating factor is the plane occupancy map, in terms of number of objects
currently placed; the output from CNN part fails to learn and provide strong feature vector
to differentiate these two occupancy maps.

Transfer learning approach improves the result by a margin of 5% consistently, along the
time axis. This is because, our Autoencoder model inherently learnt unique latent space
representation from the CNN features, since it was trained to produce binary occupancy
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(a) Plots of valid placement rate.

(b) Plots of distance error.

Figure 5.3: Prediction performance of placeability over time for all the models.

map, that exists in the same space as input feature maps. When the trained encoder is
connected to the main network, its only purpose is to create hidden representations, that
should have helped the decoder to reconstruct the target occupancy map after placing
action. Note that, when we train the main network, the encoder part is made non-trainable.
For the same scenario we mentioned, pre-trained encoder part produces unique features
for the two plane occupancy configurations, thereby forcing the model to predict in the
free regions. We observe that including penalty function to the cost function, in order
to enforce it to predict in the valid regions does not have much impact on the network
predictions. It slightly improves the generalization capacity of the model as it performs
better than the models without penalty on the test set.

An interesting observation in placeability, is to check the uncertainty in network predictions
at different time instances before place action. This can be seen by checking the mixture
components predicted by MDN network and the corresponding density. Figure 5.4 visualizes
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Figure 5.4: MDN prediction at 4s, 1s and 0.5s respectively. Top images show all 7
Gaussian kernels, though most of them have low probability as verified by
the density images below.

the same on a test set example for placing a cup on the table at three time instances. The
model has clearly understood the spatial aspect of the environment in that, it has identified
the potential and most likely placing positions on the table. Also, when the subject is far
away from the table, there are multiple possibilities of potential placeable regions and as
the subject moves towards the table, that uncertainty reduces and confines to one dense
most likely region. It is clear that this behavior would not have been possible to learn with
standard uni-modal conditional density.
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5.2 Sub-system Integration

5.2 Sub-system Integration

A sub-system is designed in ROS that processes information and produces affordance
features in real time and is integrated with the overall human motion prediction system.
Active affordance in our setup is detected based on the current state of the subject’s
wrist; if the hand is free, it means that the subject is planning to grasp an object close
to his proximity and if there is an item in hand, the subject is planning to place that
object on surfaces close to his vicinity. Accordingly, neural network models are queried for
objects and planes in proximity for grasp and place affordances, respectively. The system
is designed based on Algorithm 2.

Algorithm 2: Affordance sub-system

Data: Mocap bodies position, skeleton positions at 20 Hz
Result: Affordance density functions + visualization
Initialize gridpoints_grasp, gridpoints_place;
while new mocap frame observed do

if buffers not filled then
FillBuffers(bodies bu f f er, skeleton bu f f er);

else
UpdateBuffers(bodies bu f f er, skeleton bu f f er);
if CheckObjInHand() is True then

// Active affordance is placeability

sur f aces list = getPlanesInProximity() ;
for plane in sur f ace list do

createLSTMfeatures(plane, skeleton bu f f er); // following section 4.3.1

createCNNfeatures(plane, bodies bu f f er); // following section 4.3.1

mdn params = predictPlaceability();
createHeatmaps(mdn params, gridpoints_place);

end

else
// Active affordance is graspability

bodies list = getObjsInProximity() ;
for obj in bodies list do

createLSTMfeatures(obj, skeleton bu f f er) // following section 4.2.1

output params = predictGraspability();
createHeatmaps(output params, gridpoints_grasp);

end

end

end

end

Using predictions from the models, we visualize the distributions by publishing them as
marker topics in RViz. For graspability, we have two models, and visualizing them differs
from one another. In case of Gaussian network, from the output parameters, we construct
ellipsoids in RViz, with centroid at the mean of distribution and variances in each of the
three directions, scaled to 95% confidence interval values, defines the shape and spread of
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the ellipsoid. For vMF model, the distribution is defined on the surface of a unit sphere.
Accordingly, we create heatmaps based on the probability density function created from
the model output parameters. A specific number of points on a unit sphere defined with
the object centroid as centre are created, and these points are queried for density using
the vMF distribution. The points on this sphere are then scaled to the output distance
parameter from the model, in order to get the true distance of the hand to the object. The
resulting heatmaps are displayed in RViz. Figure 5.5 and Figure 5.6 shows visualization of
grasp densities for a test set example using vMF model and Gaussian model respectively.
Notice that, for both the approaches, the uncertainty reduces as the subject approaches
the object.

Figure 5.5: Visualization of grasp densities as heatmaps for vMFmodel at 3 time instances.

Figure 5.6: Visualization of grasp densities as spherical markers for Gaussian model at 3
time instances.

For placeability visualization, from the output MDN parameters, a mixture model is created.
A 2D grid with sufficient number of points covering the surface of the plane, where the
network was queried is created. The points are then queried for probability density using
the mixture model. The end result is visualized in RViz as markers. We showcase the
behavior of our best placeability model under different scenarios. Figure 5.7 shows an
example of a subject placing a blue plate on the table and figure 5.8 shows an example of
a subject placing a pink cup on the table. In both these scenarios, we can see the multiple
possibilities(4) predicted by the network in terms of place densities when the person is far
away from the table. As he approaches the table, this uncertainty reduces and concentrates
to one dense region, where the object is being placed.
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5.2 Sub-system Integration

Figure 5.7: Visualization of place densities as heatmaps at 3 time instances: plate on
table.

Figure 5.8: Visualization of place densities as heatmaps at 3 time instances: cup on table.

Figure 5.9 shows an example of a subject placing a jug on the table. In this case, we can
see a single dense region at the center of the table even when the subject is far away. This
is because, in our experiments related to setting the table for a number of persons, the jug
was almost always kept at the center of the table. With the help of environment features,
our affordance model has clearly picked up the distinction that when it comes to jug and
bowls, humans always tend to place it at the center of the table. Figure 5.10 shows an
example of a subject placing a pink plate on the big shelf. We can see a different density
pattern predicted on the big shelf than that on the table, which is also because of the
environment features.

Figure 5.9: Visualization of place densities as heatmaps at 3 time instances: jug on table.
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Figure 5.10: Visualization of place densities as heatmaps at 3 time instances: plate on
big shelf.
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6 Discussion

We presented a system to learn human object affordances using motion capture data. A
user study was conducted with human subjects to collect data for this purpose in which,
the actors were subjected to two affordances, namely graspability and placeability. The
intention of the thesis was to use this data and encode the dynamic action possibilities in
the environment, by modeling affordances as density functions.

We modeled the two affordances as conditional probability distributions using deep learning
methods by capturing the implicit uncertainty. For grasp affordance with vMF model,
the uncertainty encodes the possible approach angles of the human hand for successful
grasp action. For place affordance with MDN model, the uncertainty is encoded as possible
regions on the surface where the object can be placed. Within our experimental framework,
the results achieved were quite good, with the error in predictions in terms of mean
of the predicted distribution was minimal, while the ground truth was always enclosed
in the uncertainty regions. The affordance prediction models were then packaged as a
sub-subsystem, with the purpose being, to produce action possibilities from human’s point
of view, in real-time, for efficient modeling of human motion prediction.

6.1 Alternatives and Limitations

An alternative approach to model the affordances would have been to use point cloud
data sampled from mesh models of objects in the simulated world. For grasp affordance,
the potential would be defined on the surface of objects, rather than density around the
position of the wrist for grasping. This could have helped to achieve better semantics, in
case the models are used directly for robots with the intention of performing imitation
tasks. With the current semantics, for graspability, additional learning has to be dealt
with to achieve the same.

A limitation of our models is with respect to scalability in terms of objects in the scene.
While adding new objects of existing type does not pose a problem, adding a different
object would require the model to be re-trained. However, the implementation is robust,
in the sense, there would only be changes in configuration files to add new objects, and the
rest, including pre-processing and real-time integration, remains the same. For graspability
network, our data contained grasps using only the right hand. Modeling both hands would
require additional input to distinguish between left or the right hand.
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6.2 Future Work

As mentioned in the previous sections, a number of improvements can be made to generalize
the models to handle more cases. A natural extension of this work is to integrate it with
the long-term human motion prediction system, where the human motion is broken down
into hierarchies, consisting of multiple low-level and mid-level tasks. These tasks have to be
performed in a defined order or parallelly to achieve a high-level task. The dense potentials
of action possibilities in the environment obtained from our affordance model can act as
mid-level features for high-level task planning. Another field of research where this work
looks promising, is in human robot collaboration. The affordance densities can also act as
features informing on the possible human intentions. This in turn, can be integrated into
a robot’s intelligence framework to anticipate and collaborate safely with humans in the
same shared environment.
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