
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Hierarchical Inverse Reinforcement
Learning from Motion Capture Data

Rohit Prakash

Course of Study: INFOTECH

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: Dr. Jim Mainprice,
Philipp Kratzer, M.Sc.

Commenced: April 29, 2019

Completed: October 29, 2019





Abstract

A human motion generally consists of multiple low-level tasks which are performed in a defined
order or in parallel to achieve a high level task. For example, making pizza dough consists of several
low-level tasks such as measuring water, adding yeast, measuring flour, etc. And these activities
must be performed in a definite order to make the dough. For a system to imitate these sequence
of activities of a long horizon task with one global reward function is a lot of work. This process
can be made easier if there is hierarchical state representation of the task and learning of local
rewards for the hierarchies. In this thesis, we have learned to imitate a general day to day human
activity of ’setting table for one person’. This work adopts a framework called Hierarchical Inverse
Reinforcement Learning (HIRL), which is a model to learn sub-task structure from demonstrations.
With this framework, the activity is decomposed into multiple lower level tasks which are performed
in a sequence using learned policies. In this work, Maximum Entropy Inverse Reinforcement
Learning (MaxEnt-IRL) is used to learn local rewards for the sub-tasks. Together with hierarchical
state space representation and local reward functions, the model encodes the high level task objective
based on human demonstrations of full body motion performing the high level task. The model
achieves a success rate of 84% on average for middle levels and 83% for the top level in the cross
validation tests. For visualization, the model is simulated in a 2D representation that takes current
environment state as input and runs till the completion of the task.
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1 Introduction

Recently, there has been a number of advancements in the field of Reinforcement Learning. The
coming of age Alpha Go AI by DeepMind proves how far we have come in development of an
artificial intelligence. Alpha Go is arguably the best Go player in the world. It went on to defeat
the Go world champion in global arenas[Dee19]. These achievements are the direct result of years
of research and application in various scenarios using reinforcement learning. From learning and
mastering of Atari games to performing complex real world tasks, reinforcement learning has
showed its usefulness and capabilities on various situations.

However, reinforcement learning has its limitations when it comes to complex environments. In a
complex environment, state and action space is huge and widespread. Therefore, scaling of task
from initial state to terminal state will take forever. The length of the path would be a very long
combination of sequences of states and actions. As a result, the reward for an activity is delayed
since it takes a long time for completion of an activity. Hierarchical Reinforcement Learning (HRL)
tries to reform this problem in a much smaller state space with the use of hierarchies. A complex
task can be broken down to hierarchies and provide state and temporal abstractions which could
simplify the problem. The use of HRL to solve classic Atari games is an example of such application.
The figure 1.1 shows two classic game domains solved using HRL. The first one is the Montezuma’s
Revenge, where the agent learns the complex task of acquiring the key shown within the blue
boundary and leaving out the door shown within the red boundary. For the agent to leave to next
stage, he must first go down the ladder, jump to the right, down the ladder again, over the obstacle,
up the ladder on the left and acquire the key. Then he must retrace his steps back to the top. And
then finally, walk to the door.

Figure 1.1: Montezuma’s Revenge and Taxi domain
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1 Introduction

The other example is the Taxi domain, where the agent picks up the passenger from one of the four
locations(red, green, blue or yellow), goes to the destination location and drops the passenger.

The hierarchies defined has to work in tandem between the levels for the agent to reach its goal.
For instance, given the task of cutting a cucumber, human may perform lower level actions such as
picking the cucumber, cleaning it and holding knife in stipulated fashion and then cutting it. This is
quite analogous to HRL framework and what this framework is trying to achieve by simplifying a
long horizon task by breaking down into hierarchies.

In spite of this success, still the learning of the tasks takes a huge number of trials before an agent
learns the optimal path or behaviour. Even though the framework could be a benchmark in learning
complex scenarios, this is quite inefficient when compared to a human for the same activity. One
drawback is that the reward of the states is not already known and agent learns this with various
trials of exploration and exploitation like in case of Montezuma’s revenge. If the reward could be
already known beforehand, our problem reduces to finding an optimal path in the given state space.
Also, the reward which the agent receives by performing desired behaviour is defined by experts,
such that agent learns from it. This is an additional overhead when defining an environment for a
reinforcement learning task. In case of the Atari games or tasks with lower complexities, defining
rewards in the environment is easy. But for a real world long horizon task, it is a lot of work. So
how will an expert define rewards for a task of self driving in cars?

Inverse Reinforcement Learning (IRL) is another sub field of reinforcement learning, where reward
is learned from expert demonstrations. It is also known as Inverse Optimal Control (IOC). The
Human expert is a benchmark we are trying to keep up with, and a demonstration of an activity by
him can be considered to be viable path to a target state. So learning the reward from a demonstration
from a human would make sense as human in most cases is expected to choose states and actions
which is most or near efficient.

The objective of this thesis is to learn reward from human demonstration for various activities in the
environment defined and learn to plan the same activities in an efficient manner with hierarchical
states using the learned rewards and features of the environment. This work attempts to combine
HRL and IRL techniques to imitate a human demonstration.

Chapter 2 gives insight into the background literature for the techniques used in this thesis. In
chapter 3, existing works present in the domains of human motion prediction, hierarchical learning
and hierarchical inverse learning are discussed. The following chapter 4 discusses the core imple-
mentation of the model proposed. All the methods and steps involved in the development of the
model is explained in detail. In chapter 5, the results of the thesis are discussed with respect to
cross validation tests and comparison with ground truth. In the chapter 6, some of the pointers for
future works and improvements are mentioned and finally chapter 7 presents the conclusion of the
thesis.
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2 Background

2.1 Markov Decision Process and Reinforcement Learning

Markov Decision Process (MDP) [Bel57][SB98] is defined as a mathematical framework that
models decision making in the environment of an agent. The MDP can be defined using four-tuple
M = (S, A, Pa(s |s′),Ra(s, s′)).

• S is the finite set of states in the environment.

• A is the finite set of actions in the environment.

• Pa(s |s′) = Pr(st+1 = s′ |st = s,at = a) is the transitional probability that an action a in state
s at time t leads to a state s′ at time t+1,

• Ra(s, s′) is the immediate reward (or expected immediate reward) received after transition
from state s to state s′, due to action a.

Policy π, can be defined as a mapping of states to actions which informs what action to perform in
a given state s.

In an MDP, there is a decision maker called the agent who interacts with the environment. Given a
state s, from the set of states S of the environment, the agent selects an action a, from set of actions
A. The environment then transitions into a new state and agent receives a reward r, as a result of
the action. This process happens sequentially and agent jumps from one state to another creating
a trajectory. If the states and actions involved are finite, the MDP is defined as a finite MDP. An
important property of MDP is that agent only has to consider the current state it is in for selecting
an action. This property is known as Markov property.

Figure 2.1: Agent-environment interface
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2 Background

Based on the rewards in the environment, the objective of the agent is always to maximize cumulative
rewards over time. We can define return G at time t as

Gt = rt+1 + rt+2 + rt+3 + .... + rT (2.1)

where T is the final step. If T is finite, then this definition works well. However if T is ∞, a
discounting factor γ is introduced since return is no longer guaranteed to be finite. And we can
rewrite the above equation as

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
i=0
γirt+i+1 (2.2)

where discount rate γ is between 0 and 1.

An important thing for an agent in the environment is to understand how good it is to be in a given
state or to know how good it is to perform a given action in the given state. This notion is made clear
with the value functions. There are two types of value functions used in reinforcement learning: the
state value function, denoted as V(s), and the state action value function, denoted as Q(s,a).

The state value function is the expected return when starting from state s acting according to our
policy π:

Vπ(s) = Eπ [rt+1 + γrt+2 + γ2rt+3 + ...|st = s] = Eπ [
∞∑
i=0
γirt+i+1 |st = s] (2.3)

This equation can be rewritten as

Vπ(s) = Eπ [rt+1 + γ
∞∑
i=0
γirt+i+2 |st = s]

= Eπ [rt+1 |st = s] + γEπ [
∞∑
i=0
γirt+i+2 |st = s

′]

=
∑
s′

P(s′ |s, π(s))[R(s′ |s, π(s)) + γVπ(s′)]

(2.4)

If the policy is a stochastic policy,

Vπ(s) =
∑
a

π(a|s)
∑
s′

P(s′ |s,a)[R(s′ |s,a) + γVπ(s′)] (2.5)

Similarly, the state-action value function or Q function gives the expected return for performing
action a in state s when following our policy π. It can be derived to the following equation,

Qπ(s,a) =
∑
s′

P(s′ |s,a)[R(s′ |s,a) + γQπ(s′, π(s′)] (2.6)
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2.1 Markov Decision Process and Reinforcement Learning

If the policy is a stochastic policy,

Qπ(s,a) =
∑
s′

P(s′ |s,a)[R(s′ |s,a) + γ
∑
a′

π(a′ |s′)Qπ(s′,a′)] (2.7)

A policy π is optimal if the expected return for π is greater than or equal to the expected return of
π′ for all states. In other words,

π ≥ π′ if and only if Vπ(s) ≥ Vπ′(s) for all s ∈ S.

The optimal state value function with their corresponding optimal policy can be written as below,

V∗(s) = max
a

[
∑
s′

P(s′ |s,a)(R(s′ |s,a) + γV∗(s′))] (2.8)

π∗(s) = argmax
a

[
∑
s′

P(s′ |s,a)(R(s′ |s,a) + γV∗(s′))] (2.9)

The optimal state action value function and corresponding optimal policy can be written as below,

Q∗(s,a) =
∑
s′

P(s′ |s,a)[R(s′ |s,a) + γmax
a

Q∗(s′,a′)] (2.10)

π∗(s) = P(a|s) = argmax
a

(Q∗(s,a)) (2.11)

Any basic reinforcement learning problem can be modeled as MDP. In classic reinforcement learning,
the learning takes place based on a feedback system. Unlike supervised learning, where we have the
solution in the dataset while training, reinforcement learning algorithm learns via interaction with
the environment. There are two broad possibilities of the policy learning algorithms: Model-free
algorithm and model-based algorithm.

In model-free algorithm, the agent is not aware of transitional probabilities and learns optimal
behaviour with trial-error method with application of different action. Q learning is an example of
model-free method. Q learning is an off policy algorithm that evaluates which action to be taken in
a state based on action-value function. Learning takes place with exploration of the environment
and action-value for a state is updated as algorithm goes along.

Q(st,at)← Q(st,at) + α(rt + γmax
a

Q(St+1,a) −Q(st,at) (2.12)

At each step, Q table is updated with new approximated value for best action in a state. Function
approximation can also be used for the same purpose. This is known as Deep Q network. This is
widely used nowadays for a number of application. It can also be extended with hierarchies for HRL
tasks.

Value Iteration is a model based algorithm which uses transitional probabilities. The algorithm
estimates the value function for all the states. Thus, policy for each state would be the action
whichever gives the highest value for a state. Value iteration can be considered as an update rule
which converges to optimal V∗. With reference to Bellman optimality equation, it can written as
below:

Vk+1 = max
a

∑
s′,r

p(s′,r |s,a)[r + γVk(s′)] (2.13)
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2 Background

2.2 Hierarchical Reinforcement Learning

The notion of Hierarchical Reinforcement Learning was developed to address some of the problems
of the reinforcement learning in a complex environment. Solving a reinforcement learning problem
in a high dimensional state space and action can be problematic due to very long sequences of
actions to reach a defined goal. The idea of HRL is basically to subdivide a problem into hierarchy of
tasks and solve them on different levels of temporal abstraction.There are broadly three approaches
for HRL, namely Options Framework, Hierarchical Abstract Machines and MAXQ Value Function
Decomposition.

Options Framework [SPS99] is a well known HRL framework. In this framework, high level actions
or macro-actions are options. An option consists of an initiation set, Io, which describes the low
level state in which option can be executed; an option policy πo, which is the policy that gets
executed and a termination condition, βo, which as the name suggests, provides the condition for
termination of the particular option policy. Thus here, the classical definition of MDP needs to
be altered by replacing the agents’ low level action with options. This is known as Semi-Markov
Decision Process (SMDP) which can be described by the tuple:

M = (S,O,P,R, γ)

where S is the original state space, O is the set of options defined, P is the transitional probability
for jumping to a state after execution of an option and R is the reward received after executing an
option.

MAXQ decomposition [Die00][Yan19] is a framework where hierarchy is created by decomposing
the value function of an MDP into combinations of value functions of smaller MDPs. It can be
represented as sum of two components Q(p, s,a) = V(a, s) + C(p, s,a) where V(a,s) is the total
expected reward gained when executing an action a in state s and C(p,s,a) is the reward expected
from the performance of the parent task after taking action a.

Hierarchical Abstract Machines (HAM) [PR98][Yan19] is framework that constitutes of non-
deterministic finite state machines whose transitions lead to lower level machines and back again.
There are four machine states: action, call, choice and stop. In this approach, the states are complex
to design and implement. Hence it is the least popular among the frameworks.

2.3 Inverse Reinforcement Learning

The initial basic algorithm for IRL was introduced in Ng and Russell [NR00]. Many of the future
works such as Ziebart et al. [ZMBD08] and Ramachandran and Amir [RA07] on IRL is based
on this approach. The main issue with IRL is that a policy can be optimal for multiple reward
functions,i.e, even if we have a actions from an expert there might exist multiple reward functions
for the particular action. The IRL problem is modeled as an optimization problem. In the paper,
it is stated that a policy π given by π(s) ≡ a1 is optimal if and only if all the actions and reward
function satisfies the condition:

(Pa1 − Pa)(1 − γPa1)−1R ≥ 0 (2.14)
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2.4 Maximum Entropy Inverse Reinforcement Learning

Algorithm 2.1 Abstract algorithm for IRL
procedure

Input : feature matrix, expert trajectories D = τi Ni=1
Initialize reward function, r
repeat

compute soft value function, V
compute policy, π0
evaluate state visitation frequency µ for the current policy π0
evaluate objective function L and its derivative 5θL by comparing µ and state action

distribution implied by D.
update reward parameter θ

until gradient 5θL converges
return reward function,r for the optimum policy,π0

end procedure

The problem is reduced to simple optimization using linear programming algorithms. However,
there is a problem which is quite apparent. R = 0 is always a solution and there could be many
options for R that could meet the condition. An additional constraint is introduced to possibly
reduce the number of solutions to the above equation. The solution would be chosen that maximizes
the following condition.∑

s∈S

(Qπ(s,a1) − max
a∈A\a1

Qπ(s,a)) (2.15)

The intuition is that any deviation from optimal policy should eventually result in reduction of the
total reward. This work also introduces the concept of having reward function as linear combination
of feature vectors. This was mainly done for approximation in large state spaces. An abstract
algorithm for IRL is described in algorithm 2.1[OPN18].

2.4 Maximum Entropy Inverse Reinforcement Learning

MaxEnt-IRL [ZMBD08] is a methodology to learn the reward function from observed demonstra-
tions of an optimally behaving agent. In addition to Abbeel & Ng’s [AN04] approach, along with
matching feature counts of the observed path and optimal path, principle of maximum entropy
[Jay57] is used. With having only the matching of feature counts, the problem is ambiguous since
there can be multiple policies for the observed feature counts. In this work, they adopt a probabilistic
approach to resolve this ambiguity. Thus, in process handling uncertainty and noise as well. This
yields soft maximum version of Markov decision process(MDP). The softened version of MDP
equation is as follows[ZRG+09]

Q≈(s,a) = R(s,a) + V≈(T(s,a)) (2.16)
V≈(s) = softmaxaQ≈(s,a) (2.17)
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2 Background

The reward function is defined as a linear sum of weighted combinations of feature responses
f (s) = [ f1(s)... fk(s)]T . θ is the set of reward weights for the corresponding features. The reward
function is applicable to any configuration of environment.

r(s; θ) = θT f (s)

The policy for the MDP is probabilistic with distribution: π(a|s) = eQ
≈(s,a)−V≈(s). From all the

observed paths from train set, the empirical feature count is calculated as average over total feature

counts by number of demonstrations, f˜ = 1
M

M∑
m

f (s) where M is the total number of demonstrations.

The gradient is calculated as difference of empirical feature counts f˜ and expected feature counts fˆ
θ ,

which is average features accumulated by trajectories. The expected feature counts are calculated in
two step process - backward pass and forward pass. And the parameters θ are learned with each
iteration until the feature counts are matched.
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3 Related Work

3.1 Human Motion Prediction

There has been quite a lot of work on prediction of motion of an agent in an environment. Ziebart
et al. [ZRG+09] is a follow-up of Maxent-IRL. This work presents an uncertainty based planning
approach to assign cost function for different features of each state and action in the space. The
method employs softened version of MDP and gradient based optimization to come up with cost
function for the states of the environment. Activity forecasting [KZBH12] is an extension of Ziebart
et al. [ZRG+09]. The objective of the paper is to forecast future action of people from a noisy
input. The destination forecasting and understanding of user preferences with respect to physical
environment is one of the major focus of the paper. The scene of the environment is semantically
extracted to produce features such as cars, pavements, grass, sidewalk, curb, etc. The observed
trajectory of the person in the scene is recorded, which along with the physical scene features gives
the empirical feature count to be matched with, for IRL part of the problem. Using MaxEnt IRL,
the reward weights for each semantic features are learned. And naturally those physical attributes
in environment which human tend to prefer is calculated as higher reward weight than others. For
instance, sidewalk has higher reward than a car in the scene. This understanding of reward for the
semantics of environment helps to predict future probable motion of a person. Even if there are
changes, like rearrangement of objects in physical environment, the learned reward weights are still
valid since they are separately learned for each feature responses. Hirakawa et al. [HYY+17] also
adopts activity forecasting model for predicting non goal directed trajectories of sea bird. There has
also been work on the motion prediction of human in a group. Rudenko et al. [RPLA18] presents
an approach by considering constraints from the environment and social forces. The work employs
the group social force model [MPG+10] to come up with future paths taking in repulsive forces
from other people in the surroundings and intra-group forces. There has also been work done to
combine the social forces with IRL to get a path in a dynamic environment. Vasquez et al. [VOA14]
adopts IRL techniques with features that change over time. Thus re-planning is done in an optimal
fashion to factor in on the changing features. This approach uses density features, speed-orientation,
velocity and social forces to plan a path for a robot in a dynamic environment.

3.2 Hierarchical Learning

There has been quite a number of works in HRL for learning favourable behaviour in a complex
environment. Many of these works are inspired from the basic HRL architectures explained in
section 2.2. Kulkarni et al. [KNST16] adopts a hierarchical DQN framework to solve the Atari
game called Montezuma’s Revenge. Here, there are only two levels of hierarchies controlled by
meta-controller for top level and controller for bottom level. The goal of the agent is to acquire a key
which is situated at a location in the environment. The agent is required to learn multiple sequences
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3 Related Work

of actions to acquire the key first and then go to an exit door. The meta-controller takes in the state
of the environment and its Deep Q Network (DQN) learns to choose the best meta-action, which
here is a destination in the environment. The bottom level controller is responsible for primitive
actions of motion and grasp and has its own separate DQN which chooses the best primitive action
for a combined input of state and subgoal. In this case, as one can perceive, both levels have to
work in tandem to reach the terminal state. There is temporal abstraction for the subgoals and since
the reward from the environment is delayed, the sub actions performed by lower level controller
is provided with intrinsic motivation. In spite of the simplification of state space for the complex
environment, the learning of ideal sequence of actions from exploration and exploitation is a tedious
task. Konidaris et al. [KKL18] argues that it is difficult for an agent to come up with high level
plan from a low level domain of the world. Abstract representations of an environment is created
for planning in high dimensional space.The agent learns these representations on its own using its
sensory inputs and models a high level plan for a simple task in a particular environment.

3.3 Hierarchical Inverse Learning

Combining HRL with IRL is coming up as viable options in dealing with long horizon problems for
practical applications. In [KGL+16], a long horizon task is decomposed into linear sub-goals and
sequence of local rewards are learned with MaxEnt-IRL algorithm. The local rewards guide the
agent to the given sub-goals which happen to be more efficient than the sparse true reward. The Q
learning technique is used to learn the policies for the augmented state space for the problem. The
paper proves that HIRL converges much better than other alternatives for the same experiment. This
work is quite close to the work presented in this thesis as it deals with a long horizon task for setting
up of a table. The task presented in this thesis is composed of multiple MDPs that transition among
themselves and the switching is also modelled by another MDP at top level. Another alternative
that can be modeled for the scenario of this thesis is the guided cost learning[FLA16]. Though the
work explicitly does not mention the use of hierarchies, however it deals with high dimensional state
space problem. The work presents a model that can learns a non-linear cost function using neural
networks for a state space with unknown dynamics. This approach uses sample based approximation
of MaxEnt-IRL and can be applied to a variety of real world challenges. As an experiment in the
paper, the robot learns to carefully arrange plates in a dish rack from a human demonstration.
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4 Methods

In this chapter, the focus is on the methods involved in setup and development of the system. The
first section discusses the environment and process of data collection for the tasks involved. The
second section gives an overview of the implementation for obtaining trajectories. The third section
gives a brief picture of the system developed with hierarchies for planning and the final section
provides more information into the different features used for the development.

4.1 Environment and Data Collection

The environment of the experiment includes 4m*4m area consisting of rigid objects such as table,
a couple of identical chairs, a small shelf and a big shelf. An OptiTrack1 motion capture system
with 12 cameras is used to capture the demonstrations and a motion capture suit to be worn by the
demonstrator. The cameras and the skeleton of the demonstrator in the suit are calibrated before
experiment.

There were 16 different type of tasks performed in the dataset as defined in table 4.1. For these tasks,
there were 4 coloured plates, 4 coloured cups, 1 bowl and 1 jug. The environment also consists
of rigid objects as table, big shelf, small shelf and couple of chairs as depicted in figure 4.1. For
instance, the task of setting table for three person, would mean the demonstrator should make sure
he or she picks one object at a time from an initial spot (e.g. big Shelf) and place it to destination
(e.g. table). In the end of this particular task, there must be 3 plates, 3 cups and either of jug or
bowl must be on the table.

Figure 4.1: Demonstrator performing action

1https://optitrack.com/
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S.No Task description
1 setting table for one person
2 setting table for two persons
3 setting table for three persons
4 setting table for four persons
5 clear table
6 place jug and bowl on small shelf
7 place all cups on small shelf
8 place blue and pink objects on big shelf
9 place blue and red objects on big shelf
10 place blue and green objects on big shelf
11 place pink and red objects on big shelf
12 place pink and green objects on big shelf
13 place red and green objects on big shelf
14 place all cups on big shelf
15 place bowl and jug on big shelf
16 place all plates on big shelf

Table 4.1: Tasks performed in the dataset

For the data collection, the various tasks were performed in sequence without any particular order.
Each of the objects in the scene including rigid objects have markers to track their position in space.
Also the motion capture suit is accompanied with 50 markers to map the motion of the demonstrator
in the space. For this work, the 2D positions and quaternion angles were mainly used.

Figure 4.2: 2D representation of environment
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4.2 Trajectory Formulation in 2D Map of Environment

Using this information, precise 2D interface of the environment was developed in PyQT where the
activity performed can be viewed in 2D in parallel with 3D visualization in RViz 2 as depicted in
figure 4.2.

4.2 Trajectory Formulation in 2D Map of Environment

A part of the thesis is to be able to navigate in the environment defined previously, by avoiding
obstacles and making it to goal with efficiency. The Kitani et al. [KZBH12], uses Maxent IRL to
learn the reward weights for the physical attributes in the environment. The linear sum of reward
weights with feature responses of the physical attributes, provides the reward function for the states
in the environment. With optimal control, a viable trajectory can be forecasted from an initial state
to destination.

Figure 4.3: Trajectory prediction

The environment has obstacles in the form of chairs, tables and shelves. The way around these
rigid objects would obviously be the user preferred path. In the Kitani et al. [KZBH12], top down
visual images of a public location were used and features of physical attributes were generated after
semantic labeling. A stride away from this approach, instead of the top down actual images, the
images were extracted from the 2D representation of the environment, defined in section 4.1. This
made semantic labeling easier as well and the trajectory was available from the motion capture
setup. The figure 4.3 shows the prediction of trajectory between two points in the environment. The
start being the lower left point to a point in the upper right, a path is predicted around the obstacles
using corresponding reward map of the environment.

2https://github.com/ros-visualization/rviz
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Figure 4.4: Feature maps of the environment
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4.2 Trajectory Formulation in 2D Map of Environment

4.2.1 Feature Map

As defined in the Ziebart et al. [ZRG+09] and in Kitani et al. [KZBH12], four feature maps were
generated for each physical attribute in the scene. The first feature is the probability map which
indicates the presence of an object in the cell. The rest three are exponentiated distance function
with variance, σ2 = 3,5,10. Each feature map is of the size 100 pixel*100 pixel. As total, there are
25 feature maps for the 6 different physical attributes and an additional constant function. Each of
the feature map is normalized in the range between [-1, 0]. The figure 4.4 depicts the feature maps
used to generate the reward function. The 2D interface of the environment also generates feature
tensor for a scene of the environment.

4.2.2 Learning Reward for the 2D Map

The trajectory logged from demonstrations, the image of the scenes and its corresponding feature
maps, becomes the input for the model. The model uses the trajectory over the corresponding
feature maps to calculate the empirical mean feature count of the demonstrations. The backward
pass algorithm followed by forward pass algorithm learns state visitation frequency to calculate
expected feature counts [ZMBD08][KZBH12]. This is repeated until the expected feature counts
matches up to the empirical feature counts. The calculated reward weights is the information that
would correspond to user preference in the environment.

The figure 4.5 depicts the final reward function obtained for a scene of the environment. The yellow
surface has higher reward and the dark blue has lower reward. The reward weights for each of the
feature maps were calculated using MaxEnt-IRL. The reward weights were highest for the feature
maps of path and its three blurs. The rest of the feature maps had negligible reward weights in
comparison to the path. Thus, the final reward function looks more like a combination of feature
maps of the path.

Figure 4.5: Reward function of a scene
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4.3 Hierarchical Structure and State Representations

In this section, the hierarchies involved for the high level planning is explained for each level. The
below section explains basic setup and prerequisites. The sections following correspond to each of
the hierarchies in the system developed. Each of these subsection would describe deeper into the
state and action spaces of the corresponding levels. For this thesis, the task of ’setting table for one
person’ is considered. Therefore, all the levels defined here are not applicable for other tasks in the
dataset. The middle levels and the navigation level can be re-purposed for other tasks. However, top
level cannot be used for other tasks.

4.3.1 Basic Setup and Prerequisites

The tasks for setting table for one person is quite complex compared to simple Atari games or
taxi domain. There are three items- table, big shelf and small shelf as rigid objects which can
accommodate other movable objects such as 4 plates, 4 cups and jug or bowl on them in different
combinations at any point in time. There is also one additional possibility. The human demonstrator
can also be handling one of the objects. Therefore, in any given instance, the movable objects can be
in any of the four locations - table, big shelf, small shelf or human. In figure 4.6, couple of scenario
from real demonstration is visualized in RViz. As it can be seen, table is set with red plate & cup
with bowl in the first image and green plate & cup with jug in the second image.

Figure 4.6: Different possibility of arrangement of table for one person

Thus to define this complex environment into a simpler format, the zones are defined. The environ-
ment is divided in to 4 zones namely:

• near the table

• near the big shelf

• near the small shelf

• away
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4.3 Hierarchical Structure and State Representations

Figure 4.7: Zones of the environment

The movement of the demonstrator is tracked with respect to these zones. The zone values are
enumerated starting from 0 to 3. The zones cover a circular patch of region around the rigid objects.
The extent of circular region was decided based on the demonstrations and also making sure that
zones do not overlap as depicted in figure 4.7. It is only possible to grasp or release within the first
three zones. The fourth zone covers a larger region than others. The demonstrator continues to hold
the object in this region. The location of movable objects are defined similarly, namely:

• on table

• on big shelf

• on small shelf

• with demonstrator

The location values are enumerated starting from 0 to 3. Any object placed on these rigid objects
will have one of the location values.

Finally, putting the individual location of movable objects and location of demonstrator together,
we can define the state of environment as vector of size 11(10 objects and demonstrator).

state - [cup1, cup2, cup3, cup4, plate1, plate2, plate3, plate4, jug, bowl, demonstrator]

As seen above, each value in the state correspond to the position of object in the scene based on
locations defined and zone for the demonstrator. At any point in time, maximum of only one object
is held by the human. For instance, state - [0,1,1,2,2,3,1,0,0,1,3], state[0] to state[3] gives location
of all the cups; state[4] to state[7] gives location of all the plates ; state[8] to state[9] gives location
of jug and bowl respectively; and finally state[11] gives location of human in terms of zone. As one
can perceive, human is in zone 3 with a plate in his hand.
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Action for this setup is very basic like move, grasp and release. From the actual motion capture
dataset, the state of the environment is extracted in the format defined with respect to time. This
sequence of state forms the basis for upcoming sections for defining their corresponding states and
actions.

Figure 4.8: Hierarchical structure of the system

4.3.2 Level H1

This is the top level of the system. Here the state is defined with respect to number of cups, plates
and jug or bowl on the table and shelves (both the shelves are considered as one entity). The state
structure for this level is defined as below:

state = [cupTable, cupShelves, plateTable, plateShelves, jugbowlTable, jugbowlShelves]

Macro-actions for this level are presented in table 4.2

For instance, if the state = [1,3,1,3,0,2]. It means there is 1 cup on table, 1 plate on table. Rest of
the cups, plates, jug and bowl are on either of the shelves.

There is only one terminal state for this level - [1,3,1,3,1,1] which corresponds to 1 cup, 1 plate
and either jug or bowl on table. There is a point to note that jug and bowl are considered in same
category like cups or plates since they are interchangeable in setting up of table. Total number of
possible states are 75. These states are extracted from the state and actions defined in section 4.3.1.
An example of a sequence for this level is shown in table 4.3.
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4.3 Hierarchical Structure and State Representations

Macro-actions
Sub-
level

Name Description

H21 MoveCupTabletoShelves move the cup on the table to either of the
shelves

H22 MovePlateTabletoShelves move the plate on the table to either of the
shelves

H23 MoveJBTabletoShelves move the jug or bowl on the table to either of
the shelves

H24 MoveCupShelvestoTable move the cup to the table from either of the
shelves

H25 MovePlateShelvestoTable move the plate to the table from either of the
shelves

H26 MoveJBShelvestoTable move the jug or bowl to the table from either
of the shelves

Table 4.2: Macro-actions

Level H1
S.No. States Meaning
1. [4, 0, 1, 3, 0, 2] initial state
2. [4, 0, 1, 3, 1, 1] jug moved to table from shelf
3. [3, 1, 1, 3, 1, 1] cup moved from table to shelf
4. [2, 2, 1, 3, 1, 1] cup moved from table to shelf
5. [1, 3, 1, 3, 1, 1] cup moved from table to shelf

Table 4.3: Example- sequence of states for Level H1

These possible states encapsulates all possibilities of arrangement of 10 movable objects in the
environment with focus to table alone. The shelves are considered as single entity which separates
only in the lower levels.

There were different types of tasks performed in sequence, for instance, setting table for three
persons followed by setting table for one person. In such a scenario, the planning has to be done
in a manner that objects have to be removed from the table to set for one person. Precisely in this
case, two cups and two plates have to be removed. Such a structure of states also enables to learn to
remove objects from the table to come to the defined terminal state rather than just add objects on
to the table.

4.3.3 Level H2

This is the middle level of the system. In this level, the macro-actions from top level dictates the
state structure and actions are more primitive. Since there are 6 macro-actions defined for top level,
there are 6 branches in this level for each of them as depicted in the table 4.2
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The state structure and actions for each of these branches are mostly identical. So therefore, for
purpose of explanation, only the branch H21 would be the point of interest. However, there are
some exceptions present amongst branches, which will be explicitly addressed.

Below is the state structure for the branches in this level.

state = [cupOntable, cupOnBigShelf, cupOnSmallShelf, skeletonLocation, objectCapturedIndication]

State defines the number of cups on each of the rigid objects, location of the person in the scene
and an indication if cup is captured.

Actions of this branch are:

• MovetoBigShelf - move to a point near big shelf

• MovetoSmallShelf - move to a point near small shelf

• MovetoTable - move to a point near table

• GraspCupTable - grasp cup from the table

• ReleaseCupShelf - release cup on the shelf

It can be perceived that the states have direct link with the macro-action from top level. Similarly,
each of the branches in this level are specific to type of movable objects like cups, plates or jug
bowl. It is to be noted that the location of person with respect to zones is accounted here for the first
time in this level.

There are a total of 100 states possible for this branch which are identical with branches H22, H24
and H25. Intuitively, it can be realised that, the branches H23 and H26 will have only 36 possible
states (since only two objects - jug and bowl, comparing to four in other branches).

Regarding terminal states, there are multiple possibilities for each of the branches. For instance, for
branch H21, the cups can be taken from the table to either of the shelves and there could multiple
combination of other cups present on any of the rigid objects. This creates a number of possible
terminal states.

This type of framework can be found analogous to Option Framework. The top level performs
SMDP with options instead of actions and the middle levels are analogous to those options. Just
like in case of options, the middle levels perform its policies until a termination condition. It has a
sole purpose which it tries to fulfil and returns control to the top level. An example of a sequence
for this branch H21 is shown in table 4.4.

Level H21
S.No. States Meaning
1. [3, 0, 1, 2, 0] initial state of cups
2. [3, 0, 1, 0, 0] person moves near table from small shelf
3. [2, 0, 1, 0, 1] grasps cup
4. [2, 0, 1, 2, 1] person moves near small shelf from table
5. [2, 0, 2, 2, 0] release cup

Table 4.4: Example- sequence of states for Level H21
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4.4 Integration and Visualization

Basically, a cup from the table is moved to the big shelf. Similarly, other branches also perform
their specific policies.

4.3.4 Level H3

This is the lowest level of the system which is responsible for navigation from one point to another
in the environment. As defined in the section 4.2, this level uses the reward weights learned and
feature map to formulate trajectory around the obstacles in the environment.

The actions from middle level dictates the motion in this level. There are 4 location points defined
which are offset from each of the rigid objects. Thus any movement requested from above levels is
planned between these points. For formulating paths, Dijkstra’s algorithm [Dij59] is used over the
cost map.

4.3.5 Features

There were two types of features used separately. The first one being euclidean distance to each
of the rigid objects combined with indication of grasp or release. The second being the trajectory
lengths to reach destination points near rigid objects combined with indication of grasp or release.
For both the types of feature sets, the performance was compared for the policy generated for each
of the branches in the middle level. From the position of demonstrator, euclidean distances or
trajectory lengths would be calculated for the corresponding states in middle level. For grasp or
release, the state in which it happens is set as 1. Trajectory lengths were calculated using Dijkstra’s
algorithm based on the reward map generated for the navigation level.

4.4 Integration and Visualization

In the previous section, the states and action for the levels were explained. However, the planning
for a task is only successful when each of the levels work together in conjunction. The success of
lower levels propagates to success of the planning by the top level. The policies learned for each of
the level and branches are integrated such that there is transfer of control between the levels.

For instance, top level policy decides to move a plate from big shelf to table. The middle level
branch for the corresponding macro-action, H24 gets the control. The policy of this branch runs
until a terminal state is reached. For each of the steps involving motion, there is a transfer of control
to the navigation level H3, which holds control until its task is completed.
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Figure 4.9: Simulation setup of the model

To realise these policies visually, the environment is simulated in 2D. As shown in figure 4.9,the
planning can be viewed in parallel. The input for the simulation is simple initial state of the
environment as defined in section 4.3.1. The simulation will plan as per the policies until the table
is set for a person. The simulation was done for the actual cases from the dataset to see if planning
done by the policies is similar to the demonstration.
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5 Evaluation

In this chapter, evaluation of the policies learned for each level is discussed. This is done by using
cross validation and ground truth comparison. The first section gives a brief idea about the cross
validation test performed for the policies. It must be noted that the cross validation tests were
performed for top and middle levels. For the navigation level, the comparison of the simulated
navigation routes and ground truth is done in the second section. The second section also covers
the comparison with ground truth and the whole simulation system for some of the demonstration
scenarios for the task of setting up table for one person.

5.1 Cross Validation

To understand how good the policies are, leave-one-out cross validation was performed for each
of the levels and branches defined in the system. Thus for each of the tests, one sample from the
dataset was left out, IOC was performed to get reward values for the states and then using these new
reward values, policy was generated. The left out sample was tested on this policy and its results
were compared with actual trajectory. This was performed for all the trajectories from dataset for
each of the policies used in the setup.

Also for understanding how good the policies work for the states in any level which were not covered
in demonstrations, another test was performed where all the states were tested against the final
obtained policy. This was to make sure if any given state could converge to one of the terminal state.
As there were cases, the policy gets blocked and jumps between states.

For the validation of middle levels with respect to features used, a comparison is showed in the
figure 5.1. In the figure, the blue bar is the result when no features were included, red bar for the
features1 as euclidean distance and orange bar for the feature2 as trajectory lengths. As one can
perceive, when features are used, the cross validation results are significantly better. Comparing
euclidean distance and trajectory length as features, the latter performs in most cases, equal or
better than the former. Also intuitively, we can understand that length of the path to a destination
is a matter of concern for us humans as compared to direct euclidean distance, provided all other
parameters are same for both cases. However, we cannot neglect the fact that there can be multiple
parameters for making a decision between destinations. Euclidean distance and trajectory lengths
are just two of many for the given scenario. For instance, given the task to pick a plate from table
to one of the shelves, the human have to decide which shelf to go to. But the small shelf cannot
accommodate a plate because of its small size. Therefore even if trajectory lengths to reach small
shelf may be less, it is not a viable destination. Similarly there can be more parameters involved in
decision making.
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Figure 5.1: Cross validation result for different features

The top level of the system was not integrated with any features and it has 83% success rate with
cross validation. Also the middle levels achieve a success rate of 84% on average.

5.2 Comparison with Ground Truth

It is imperative to compare the motion dynamics of the model with the actual demonstration path.
Additionally, the decision making sequence of the model has to be compared to the ground truth.
There were a total of 21 demonstrations for the task of setting table for one person. All these
demonstrations were quite varied in their sequences and lengths. Some of the cases just had couple
of steps while some were much longer. All the scenarios were tested in the model and their motion
dynamics and decision making sequences were compared. For purpose of distinction of trajectories,
colors were used. The description for each of the step is also provided for better comparison. In
the simulation model, trajectories tend to overlap since the paths are formulated between set points
only. Under this section, only three examples are discussed.

5.2.1 Example 1

The initial state of the environment is [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2] as define in section 4.3.1. All the
movable objects are on the shelves and there is no entity on the table. The person starts from zone 2
which includes the small shelf. The simulated sequence from the model is shown in the table 5.1
and ground truth in table 5.2.
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S.No. States Meaning
1. [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2] Initial state
2. [0, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0] cup from small shelf to table
3. [0, 2, 2, 2, 0, 1, 1, 1, 1, 1, 0] plate from big shelf to table
4. [0, 2, 2, 2, 1, 1, 0, 1, 1, 0, 0] jug from big shelf to table

Table 5.1: Example1 - Simulated sequence from the model

S.No. States Meaning
1. [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2] Initial state
2. [2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 0] plate from big shelf to table
3. [0, 2, 2, 2, 1, 1, 0, 1, 1, 1, 0] cup from small shelf to table
4. [0, 2, 2, 2, 1, 1, 0, 1, 1, 0, 0] jug from big shelf to table

Table 5.2: Example1 - Ground truth sequence from the demonstration

Comparing the sequences, it can be seen that steps 2 and 3 differ in order of execution. Otherwise
all the steps are identical in terms of location from which objects were grasped. Also it can be
inferred that, though the human was near the small shelf, he decided to pick first plate from big shelf
rather than cup from small shelf. Perhaps, orientation of the person could also be a reason for this
disparity. Orientation as a feature could also be an option. Figure 5.2 depicts the ground truth path,
the simulated path and heat map. The ground truth portrays the actual trajectory of the demonstrator
between the table and shelves. Each coloured line shows start and end of a sub-task. In the simulated
path, the paths of sub-tasks are superimposed and hence it is not visible distinctly. However, one
distinction which is visible is that of the first sub-task which is of the line with color magenta. In the
ground truth, the plate is first grasped from big shelf which is denoted by the magenta line moving
towards left from a point near small shelf and acquiring it. While in the simulation, a cup is first
grasped from small shelf, the magenta line extends from small shelf towards the table. The heat
map shows the cost function of the environment with yellow having higher cost than dark blue. The
path simulated follows the lower cost trajectory using Dijkstra’s algorithm.
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Figure 5.2: Example1 - Ground truth, Simulation path, Heat map

5.2.2 Example 2

The initial state of the environment is [2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1] as defined in section 4.3.1. Most
of the objects are on the shelves except for the jug on the table. This is easier scenario where only a
cup and a plate has to be placed on the table. The simulated sequence from the model is shown in
the table 5.3 and ground truth in table 5.4.

S.No. States Meaning
1. [2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1] Initial state
2. [2, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0] plate from big shelf to table
3. [2, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0] cup from big shelf to table

Table 5.3: Example2 - Simulated sequence from the model

S.No. States Meaning
1. [2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1] Initial state
2. [2, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0] cup from big shelf to table
3. [2, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0] plate from big shelf to table

Table 5.4: Example2 - Ground truth sequence from the demonstration
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5.2 Comparison with Ground Truth

In this scenario, again the order of picking cup and plate is different compared to the ground truth.
Otherwise all the steps are identical in terms of location from which objects were grasped. Since
the paths are planned between already defined points, they overlap going back and forth in the
model. Nevertheless, the number of up and down motions are same between the two. The figure
5.3 shows the ground truth, simulated path and heat map. The ground truth depicts the motion of
the demonstrator between the table and big shelf back and forth. In comparison to ground truth, the
simulated path takes a different route since the model is working with only single fixed points near
a rigid object. The heat map depicts the cost function and lower cost path taken simulated using
Dijkstra’s algorithm.

Figure 5.3: Example2 - Ground truth, Simulation path, Heat map
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5.2.3 Example 3

The initial state of the environment is [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1] as described in section 4.3.1.
This scenario is quite different from previous cases since there are tasks to remove objects from the
table. Initially, there are 4 cups on the table, plates on the big shelf, jug on the big shelf and bowl on
the table. The simulated sequence from the model is shown in the table 5.5 and ground truth in
table 5.6.

S.No. States Meaning
1. [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1] Initial state
2. [2, 0, 0, 0, 1, 1, 1, 1, 1, 0, 2] cup from table to small shelf
3. [2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] plate from big shelf to table
4. [2, 2, 0, 0, 0, 1, 1, 1, 1, 0, 2] cup from table to small shelf
5. [2, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1] cup from table to big shelf

Table 5.5: Example3 - Simulated sequence from the model

S.No. States Meaning
1. [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1] Initial state
2. [0, 2, 0, 0, 1, 1, 1, 1, 1, 0, 2] cup from table to small shelf
3. [0, 2, 2, 0, 1, 1, 1, 1, 1, 0, 2] cup from table to small shelf
4. [0, 2, 2, 2, 1, 1, 1, 1, 1, 0, 2] cup from table to small shelf
5. [0, 2, 2, 2, 1, 1, 1, 0, 1, 0, 0] plate from big shelf to table

Table 5.6: Example3 - Ground truth sequence from the demonstration

There are a few differences in this case. In step 3, the model decides to pick plate from big shelf to
table which happens only in step 5 for the ground truth. In ground truth, all cups were placed in the
small shelf while in simulation, all except one were placed in small shelf. The figure 5.4 shows the
ground truth, simulated path and the heat map. The ground truth depicts the actual trajectory of the
demonstration between the table and the shelves. The simulated path again formulates trajectory
similar to the first example in section 5.2.1 as the cost map is almost identical. Also the heat map is
identical with respect to the cost function.
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Figure 5.4: Example3 - Ground truth, Simulation path, Heat map

As a conclusion, the model is successful in predicting the sequence of tasks similar if not identical
to a human in the environment. The simulated path is also successful in avoiding obstacles of the
environment and reaching to the destination requested. The model can be improved further with
more offset points around the objects so as to travel more in the environment. Additional features as
described in section 5.1 can be incorporated to improve the results. With incorporation of affordance
in the model, the prediction of where to place an objects on the surface of a rigid object can be
extended.
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6 Discussion and Future Work

This work opens up quite a few possibilities for expansion of the idea. The work can be extended for
other similar tasks in the environment with few tweaks in the state structure and actions. The middle
level can be shared among the tasks since most of the tasks performed can be encoded with such
macro-actions. The navigation level too, can be re-purposed. The top level can be updated for other
tasks, for example, the task for setting table for three person. The policy can be learned with a new
terminal state that encodes the goal. It is possible to further increase the hierarchy levels for certain
purposes. For instance, the different racks on the shelves can be encoded and a policy can be learned
to decide which rack to choose to pick or place an object. Here, combining with affordances, the
system can decide the viable regions in a plane to place an object. Currently, the system randomly
places the movable objects inside the boundary confinements of the rigid objects. Affordances can
be made use for grasp action as well. This would actually complete the task. Merely, it is not just to
have set of objects on the location but also in an arrangement which human would do.

As mentioned in earlier chapters, further features can be included in the model to enhance the results.
Orientation of the person, physical attributes of the objects, occupancy metric, etc. can be used as
features. Orientation of person can play a role in planning. Humans perceive things that are in front
of them and in their field of view. Though a favourable action may be a possibility in a state, it may
not be pursued if it is out of the human’s perception as explained in 5.2.1.

The physical build of the objects can be a feature as well. For instance, with the height of the jug, it
could not be placed on the second rack of the big shelf. Also, plates could not be placed on the
small shelf due to its small surface. Such factors can be encoded as features since they act as a
hindrance to an action.

With the inclusion of these features, planning can be improved further. When a human makes a
plan, a number of factors are considered before a decision is concluded. Quite analogous to this,
any kind of planning in the environment will require features and its innate rewards.
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7 Conclusion

This thesis presents a model of HIRL which works to imitate a high level task from demonstrations.
The long horizon task of setting table for one person is decomposed into sub-tasks. The latent
hierarchical state representation for the task is structured in three levels of hierarchy and local
rewards for states of each levels are learned. The challenge is in defining the hierarchical state
structures for the activity and adopting the right features that encodes the high level task. The
proposed framework addresses the problem of learning local sub-tasks and working in tandem
with other levels for the common final goal. This work also adopts activity forecasting framework
[KZBH12] to learn the rewards for semantics in the environment which is part of the navigation
level of the model. The comparison with ground truth in section 5.2 proves that the model is
successful in imitating human for the particular task. It is also to be noted that there is still a room
for improvement for the model in terms of using of different features which could enhance the
results.
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