
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Predicting User Intent During
Teleoperation Using Neural Networks

Shao-Wen Wu

Course of Study: INFOTECH

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: Ph.D. Jim Mainprice,
M.Eng. Yoojin Oh

Commenced: May 27, 2019

Completed: November 27, 2019

Abstract

The goal of the thesis is to develop a method to predict user intent during robot teleoperation using
machine learning methods. Teleoperation refers to controlling a robot through an interface when
the robot is located distant from the user. Traditionally the robot can be teleoperated by giving
commands that are directly mapped to robot actions. However, this can lead to intensive workload
for the human operator and can be prone to operational mistakes. Teleoperation can be mitigated by
combining user control and robot autonomy, where the robot can be semi-autonomously operated
towards mid-level goals. Here, predicting the user intent can increase the performance of the robot
by allowing the robot to anticipate and disambiguate user commands. In this thesis, we develop
methods to predict the user intent while the user is controlling the robot using hand motion. In
addition to predicting the intent, we model the uncertainty of how confident the robot is towards
the prediction. We consider robot reaching tasks where human intent is represented as the object
to be grasped or the final grasping position on the surface of the object. We use neural networks
to predict the intent and estimate the uncertainty using Beta distribution and mixture multivariate
Gaussian distribution and further learning the grasp densities. The positive results show that we can
predict the user intent before the robot grasps and can be utilized in shared autonomy scenarios to
provide better assistance.

3

Contents

1 Introduction 13

2 Background and Related Work 15
2.1 The Concept of Shared Autonomy . 15
2.2 Modeling Uncertainty with Probability Distributions 16
2.3 Learning Grasp Densities . 19

3 Method 23
3.1 Virtual Environment and Data Collection . 24
3.2 Target Object Prediction Model . 26
3.3 Point of Grasp Prediction Model . 30

4 Evaluation 35
4.1 Target Object Prediction Results . 35
4.2 Point of Grasp Prediction Results . 37

5 Conclusion 43
5.1 Limitation . 43
5.2 Future Work . 43

Bibliography 45

5

List of Figures

2.1 The probability density function Beta distribution. 18
2.2 An example of LSTM-MDN model. 19
2.3 The relationships of affordances. 20
2.4 The affordances model for task-specific grasping. 21
2.5 Grasping point labels. 22

3.1 Pipeline of the general human intent prediction model 23
3.2 Environment setup. 25
3.3 Target object inference in two time instances. 26
3.4 The architecture of the LSTM model. 27
3.5 The architecture of the blended model. 29
3.6 The architecture of the CNN-BiLSTM autoencoder. 31
3.7 The architecture of the point of grasp prediction model. 32
3.8 Block diagram of the point of grasp prediction model. 33

4.1 Prediction results of target object prediction models. 36
4.2 An example of prediction over time in an episode. 37
4.3 Reconstructed images of the autoencoder. 38
4.4 Correct rate of the grasping point prediction. 39
4.5 Cosine similarity of palm normal vector prediction. 40
4.6 An example of the LSTM-MDN model result. 40
4.7 Grasp densities in four time instances. 41

7

List of Tables

4.1 Feature selection and comparison. 36
4.2 Results obtained for the target object prediction models. 36
4.3 Results of target object average correct rate. 37
4.4 Training results of the CNN-BiLSTM autoencoder. 37
4.5 Training results of the LSTM-MDN model. 38
4.6 Correct rate of the point of grasp prediction. 39

9

Acronyms

LSTM Long Short-Term Memory

CNN Convolutional Neural Network

MDN Mixture Density Network

BiLSTM Bidirectional LSTM

ROS Robot Operating System

NLL negative log-likelihood

MLP Multi-Layer Perceptron

11

1 Introduction

Nowadays robots are becoming more capable and robust enough to substitute or assist humans to
achieve certain complex tasks. With the deployment of robots, humans can achieve complex tasks
that exceed their physical capabilities in dangerous conditions or inaccessible environments without
risking their lives. However, the difference between the kinematic morphology between humans
and robots makes it difficult to directly manipulate a robot. This can require extensive training
hours and still become easily prone to human errors.

Humans are yet better than robots when it comes to interpreting complex and dynamic scenes and
making high-level decisions whereas robots can take advantage of their high computational power to
optimize low-level tasks. Shared autonomy is an active field of research [AS16], [DS13], [NZHS17]
and is introduced to utilize the best of both worlds. Rather than the robot directly executing the
human operator’s commands, the robot can predict their intention and accomplish the task following
an optimized trajectory such that the robot eventually performs what the human wants rather than
what the human commands.

Shared Autonomy can be broadly divided into two phases: predicting user’s target and blending the
human commands with robot actions to provide assistance towards the predicted target [AS16],
[DS13]. The robot predicts the goal that the user is operating towards through signals from user
interface commands such as joysticks or keyboard commands. By knowing the goal, the robot can
anticipate future commands and can compute an optimal path towards the goal. When the robot
reaches a certain level of confidence of a goal, the robot can then provide assistance by blending
user intent and robot autonomy to reach the target [FRPG04].

Predicting human intent is challenging, especially when human’s intentions are not explicit. The
intentions must instead be inferred through user interface commands. However, these commands
can be indirect and noisy and can also contain errors due to controlling a high degree of freedom
robot arm with limited number of controller inputs [AS16]. Other interaction methods can be
utilized during teleoperation, such as using motion capture systems to capture motion commands
[SBR12].

The thesis focuses on predicting the human operator’s intentions while the operator is teleoperating
the robot’s end-effector through hand gestures in a virtual workspace. We not only infer the human
intent but are also interested to know how we can model the confidence during prediction. Here, the
human intent is represented as the object to be grasped and also the final grasping position on the
surface of the object. We use neural networks to predict the intent and estimate the uncertainty
using Beta distribution and mixture multivariate Gaussian distribution and further learning the
grasp densities.

The thesis is structured as follows: In Chapter 2, we provide the background information of
shared autonomy related to human intent prediction and uncertainty. In Chapter 3, we propose the
developed human intent prediction models for pick-and-place tasks and the design of the neural

13

1 Introduction

networks frameworks. We present the evaluation of the models in Chapter 4 and also the prediction
results while executing the system at run-time. Finally, we discuss limitations and future possible
improvements in Chapter 5 and conclude the thesis.

14

2 Background and Related Work

In this chapter, we provide explanations and understanding of the concept of human intent prediction
in the field of robot teleoperation and shared autonomy. Furthermore, we emphasize uncertainty
estimation methods using machine learning and grasp densities related to grasp affordances.

2.1 The Concept of Shared Autonomy

2.1.1 Robot Teleoperation

Teleoperation has been proven to be capable of dealing with complex manipulation tasks. Traditional
direct teleoperation converts the low-dimensional control input to the non-anthropomorphic
characteristics of high degree of freedom robot arms. However, the control needs high cognitive
loads and adequate practice. Although indirect control interfaces (e.g., eye gaze) can provide
high-level action commands and additional benefits. Users still implicitly communicating their aim
to the robot because the indirect control is not intuitive and requires more awareness. In this case,
combining the operator intention and capabilities of the robot is desirable [BLB14]. The autonomy
or intelligence on the robot is one method to improve the performance of teleoperation. Some
autonomy-based methods include adjustable autonomy [BSA+03], mixed initiatives [BDM02] and
safeguarded control [KSCK96] have been proposed. Shared autonomy is an active approach in
autonomy-based methods [NZHS17], [AA19], [JAP+18]. Share Autonomy integrates human intent
with robot autonomy instead of only depend on control inputs from the operator.

2.1.2 Shared Autonomy

The shared autonomy system consists of two components:

1. Human intent prediction.

2. Operator and robot autonomy blending.

Unlike many common methods on human-robot interacted collaboration. Only robot actions can
change the state in the scene in shared autonomy and goals are not entirely observable [NZHS17].
In other words, the robot does not know which goal users want to grasp a prior.

15

2 Background and Related Work

Human intent prediction

Huang and Mutlu propose to predict user intent by using the support vector machine (SVM) classifier
to infer the next goal and confident score based on gaze patterns [HM16]. Admoni and Srinivasa
use partially observable Markov decision process (POMDP) [AS16] to infer probability over user
goals with eye gaze and joystick. Razin et al. use layered hidden Markov models with surface
electromyography measurements to predict human intent [RPUF17]. Javdani et al. use hindsight
optimization to solve the POMDP by modeling user intent in the latent space [JSB15]. Reddy et al.
use model-free deep reinforcement learning with a separate recurrent LSTM network to predict
the goal [RDL18]. Human intent prediction is one of the main determinants of shared autonomy.
In this thesis, we focus on the first part of shared autonomy to predict human intent using neural
networks.

2.2 Modeling Uncertainty with Probability Distributions

2.2.1 Uncertainty in Machine Learning

In most practical uses, people are satisfied with machine learning to simply produce predictions.
Given an unseen input x, the model is expected to infer a certain output y. However, there is another
estimation is interested to be known:

How confident is the model about a particular prediction?

The objective of machine learning is to minimize the expected loss. In the loss minimization, there
are two types of uncertainties [DGQ+13]:

1. Aleatoric uncertainty: The natural randomness in a process associated with a physical system
or environment, modeled by random variables or stochastic processes, namely, uncertainty in
data.

2. Epistemic uncertainty: The scientific uncertainty in the model of the process due to
incomplete knowledge about a physical system or environment, namely, uncertainty in the
model.

The most common method to model uncertainty is the Bayesian approach [DD09], using statistical
distributions by characterized weights instead of just predicting constant values. Likewise, the
predicted result is as well as a statistical distribution which can be represented by means, standard
deviations and densities. Bayesian models are slow to train in practical because sampling can
be prohibitive with the high number of dimensions. Gal and Ghahramani in [GG16], [GG15]
proposed modeling dropout to evaluate uncertainty concerning certain observed samples. In
Bayesian neural networks, each weight is obtained from a certain distribution instead of having fixed
weights. When dropout is applied to all weights in neural networks, essentially, each weight can be
drawn from a Bernoulli distribution. In real-time performance, estimating epistemic uncertainty is
time-consuming by processing multiple forward passes through networks and nearly impractical.
An approach to estimate aleatoric uncertainty is using probability distribution to model the data
from neural networks. In the following sections, we will introduce two probability distributions we
used to model uncertainty in our models.

16

2.2 Modeling Uncertainty with Probability Distributions

2.2.2 Beta Distribution

The Beta distribution is a continuous probability distribution that is commonly used to model
uncertainty about the probability of success in the experiment. A distinct characteristic of Beta
distribution is that it can be shifted and rescaled to create new distributions over any finite range.
The Beta distribution has two positive shape parameters, denoted by α and β, that control the shape
of the distribution and appear as exponents of the random variable. Equation 2.1 shows the Beta
distribution and usually described by Gamma function as shown in Equation 2.2.

B(α, β) =
Γ(x)Γ(y)
Γ(x + y)

(2.1)

Γ(x) =
∫ 0

∞

tx−1e−tdt (2.2)

Assuming a probabilistic experiment has only two outcomes, success, and failure, which probability
denote as X and 1-X respectively. Suppose the X is unknown and all possible values are considered
equally likely. The uncertainty can be described in the interval [0, 1] by assigning X as a uniform
distribution because X is a probability, can only take values between 0 and 1. Next, assume we
perform n times independent repetitions and observed k successes and n-k failures. The result of
calculating the conditional distribution of X is a Beta distribution with parameters k+1 and n-k+1.
The probability density function for a Beta X ∼ Beta(α, β) is shown in Equation 2.3, with condition
0 < x < 1, otherwise f (x) = 0.

f (x) =
xα−1(1 − x)β−1

B(α, β)
(2.3)

The variance of Beta random variable X is shown in Equation 2.4.

V AR[X] =
αβ

(α + β)2(α + β + 1)
(2.4)

17

2 Background and Related Work

Figure 2.1: The probability density function of Beta distributions with different α and β [CMS17].

2.2.3 Mixture Density Networks

Mixture Density Network (MDN) is a type of neural networks proposed by Bishop [Bis94]. In
general, the MDN is very similar to standard neural networks with the only difference that the output
of the model is mapped to a mixture distribution, combining a neural network with a mixture density
model. In this case, MDN has the ability to model conditional density functions. For each input x,
we predict a probability density function of P(Y = y |X = x), which is a probability-weighted sum
of all Gaussian distribution kernels presented in Equation 2.5, µk(x) denotes the mean and σk(x)
denotes the standard deviation in each kernel. One restriction is that the sum of all probability
density function should be one, to ensure the integration of probability density function is 100%.
Another restriction is that the σk(x) term must be strictly positive due to the exponential operator.

P(Y = y |X = x) =
K−1∑
k=0

∏
k

(x)φ(y, µk(x), σk(x)),
K−1∑
k=0

∏
k

(x) = 1 (2.5)

The loss function is using negative log-likelihood (NLL) to minimize the logarithm of the likelihood
of predicted mixture density distribution and ground truth as shown in Equation 2.6. Eventually,
the output of MDN is a set of parameters contains mean µ, covariance σ and weight π for each
Gaussian component.

Cost Function(y |x) = −log[
K−1∑
k=0

∏
k

(x)φ(y, µk(x), σk(x))] (2.6)

One advantage is that there are variant distributions can be used in MDN, for example, Bishop [Bis94]
uses 1D Gaussian distribution to perform the inverse problem involving robot inverse kinematics,
Graves [Gra13] uses Long Short-Term Memory (LSTM) networks and 2D Gaussian distribution to
predict the text sequence on handwriting synthesis and Ellefsen et al. combine autoencoder with

18

2.3 Learning Grasp Densities

LSTM networks to investigate the role of different mixture components when networks predict the
future using multivariate Gaussian distribution with standard diagonal covariance in [EMT19]. In
this thesis, we also use multivariate Gaussian distribution to model the point of grasp uncertainty.

Figure 2.2: The LSTM-MDN model proposed by Ellefsen et al. [EMT19].

2.3 Learning Grasp Densities

Affordances can provide useful information about how robots can interact with objects when
performing object manipulation tasks. Grasping previously unknown objects is challenging, the
failure could be caused by small localization errors on the surface, especially when performing
grasping on unmodeled objects. It is also demanding to have an intention when performing a grasp
in cluttered and novel environments. In this section, we first introduce the concept of affordances
and give a sense of affordances in grasping, then represent related previous works using vision-based
techniques for learning grasp affordance densities.

2.3.1 The Concept of Grasp Affordances

The original affordances were first introduced by a psychologist Gibson [Gib14] to explain how
things in the environment can be perceived and the possibilities of how this information can be
mapped to the action from the agent [ŞÇD+07]. Affordances are useful to create the relationships
between available objects and actions performed by the agent. It became one of the active fields in
the human-robot interaction area.

Affordances in Robotics

In the field of robotics, affordances describe the relationship between agent and agent’s actions
effected by its environment. Recently, many robotics researchers have focused on the learning of
affordances in robotics since they obtain the essential object and environment properties. All these
studies can be categorized into two major aspects [ŞÇD+07]:

1. Learning the results of certain actions in a given situation [FMN+03].

2. Learning invariant properties of environments that afford a certain behavior [CHC04].

19

2 Background and Related Work

Figure 2.3: Affordances relationships between actions, objects and effects described in [MLBS08].

Affordances in Grasping

Recently in the field of robot grasping, grasp affordances have appeared. In this case, the agent
usually denotes to a gripper or arm parameters. Here, grasp affordances can be interpreted as the
success (effect) of grasp solutions (action) performed to an object (environment) [DKK+11].

Most of the early research works use geometry representation to perform a stable grasp [BK00].
After that, several approaches were proposed extracting visual information to find the relation
between action and perception based on 2D images [MSD02], [Jia95], using range information
[TK02] or approximating the unknown shape of objects [MKCA03].

Localizing Graspable Geometries

The technique for localizing graspable geometries has been known as an approach to understanding
affordances in grasping. Klingbeil et al. use raw depth data from a 3D sensor as input and search
for geometries by a parallel-jaw gripper to autonomously grasp unknown objects [KRC+11]. Jiang
et al. search regions in RGBD image using orientated grasping rectangle which takes into account
orientation, location, and opening width [JMS11]. Fischinger and Vincze perform a 3 DOF search
in a heightmap generated from a point cloud, they propose a new type Height Accumulated Features
(HAF) and extend binary classification machine learning structure based on point cloud to generate
grasp hypothesis [FV12]. Unlike using depth data or heightmap, another approach introduced by
Ten Pas and Platt directly operates on the point cloud, which is allowed to be searched in different
ways [TP16].

20

2.3 Learning Grasp Densities

2.3.2 Related work

The vision-based method is an active research field for learning grasp affordance densities. Detry
et al. in [DKK+11] use continuous probability density functions to model grasp affordances on
previously unknown objects and infer object-relative grasp pose and success rates. The empirical
evaluation shows how learning increases success probability. Grasp densities are obtained by
non-parametric kernel density estimation method. Visual cues are also used to generate the grasp
hypotheses, unlike most popular 3D point cloud approaches, they projected various grasp densities
on the 2D color image. Saxena et al. [SWN08] also show a machine learning approach can be
successfully performed to grasp novel objects using depth sensor sampled 2D images from a
different angle of the same object to learn the shape representation.

The 2.5D or 3D vision-based techniques are the most popular approaches to be used in this field.
Kokic et al. [KSHK17] using Convolutional Neural Network (CNN) to model affordance for
task-specific grasping on the point cloud. The specific tasks are cut, poke, pound, pour, and support.
They describe an object on the surface point cloud, the inputs are the point cloud and one of the
tasks. In the first stage, they estimate object affordances and in parallel, they also classify object
and estimate the orientation, each branch employs different CNN architecture, Figure 2.4 shows
the pipeline of the process. To deal with influences with different tasks, they model a one-hot
encoding mask for contact constrain, each object type has its affordance. Another approach
direction constraint limits the robot hand approaching direction with estimated orientation.

Figure 2.4: Affordances modeling for task-specific grasping [KSHK17]. The inputs are point cloud
O and task t, the model in the first row detects object affordances, the output of this
model indicates contact locations for grasping in a binary map Ot , the model in the
second row classifies the type of object and infer the orientation.

In the paper presented by Boularias et al. [BKP11], the vision-based technique for predicting success
rates on point cloud on the surface of the object is also used. The aim is to predict the success
probability when performing a grasp at a given point on the surface using Markov Random Fields
for the learning method to find a reasonable grasping point. The grasping points are manually
labeled in the training point cloud as shown in Figure 2.5. They mentioned that the inadequate
orientation of gripper would cause the most failed grasps.

21

2 Background and Related Work

Figure 2.5: Grasping points are manually labeled in training, blue points indicate possible bad
grasp locations, while red points denote likely good grasp locations [BKP11].

Unlike most research methods estimate possible grasp affordances on the whole object, Ten Pas and
Platt [TP16] localize the important types of grasp affordances on the partial surface of the object.
They propose the handle-like grasp affordances first localize handle area from point cloud then infer
the success rates, which is very practical and can easily adapt to different scenarios.

22

3 Method

In this chapter, we propose our method to predict human intent and to estimate the uncertainty for
sequential user input. Figure 3.1 shows the pipeline of our proposed model. We collect time-series
data of human commands and virtual depth images from the robot’s workspace. Since human intent
and the robot’s action are time-variant, we use an LSTM network to capture hidden representations.
LSTM network is a type of recurrent neural network (RNN) that is capable of learning long-term
dependencies. The output of the LSTM network is connected to probability models to estimate the
uncertainty of prediction. The method in the thesis includes two models:

1. Low-dimensional: Target object prediction model.

2. High-dimensional: Point of grasp prediction model.

In the low-dimensional method, we model uncertainty using Beta distribution in the finite interval.
The inference is a one-dimensional continuous probability on a line. In the high-dimensional
method, the prediction in continuous space could be multi-valued. Fitting an uni-modal distribution
to a multi-valued data can generate erroneous results. Therefore, we use MDN to model the
uncertainty from the mixture distribution.

Before we introduce our intent prediction models, we first give a brief introduction of our system,
experimental scenario and the way how we conducted the user study.

Figure 3.1: Pipeline of the general human intent prediction model.

23

3 Method

3.1 Virtual Environment and Data Collection

We built a virtual environment using Robot Operating System (ROS) 1, and Gazebo for generating
2.5D depth images using a virtual depth camera. The human perceives the robot’s workspace from a
perspective view set up in Rviz, which is a 3D visualization tool for ROS and sampled at 60 frames
per second.

To interact with the virtual environment, we use the Leap Motion 2, a hand gesture motion-sensing
hardware to teleoperate either a robot end-effector or the hand skeleton for each specific task
respectively. To match the hand movement to the robot action, we track the velocity of the hand
movement as well as the rotation angle of the wrist and update the robot’s state at each time step.

We consider a teleoperation task to achieve pick-and-place motion by controlling the robot’s
end-effector or the hand skeleton. As shown in Figure 3.2, the environment consists of graspable
objects (cylinders in red or yellow), obstacles to avoid (cylinders in blue), and a goal position (green
circle). The task is to grasp a target object (yellow cylinder) among multiple objects (red cylinders)
and retrieve the object to the goal position, participants are asked not to collide the obstacles during
teleoperation. The robot does not have prior knowledge of the target object.

The two models we proposed in this thesis have a slightly different setup. The setup of the target
object prediction model as shown in Figure 3.2a predicts which object at the scene will be the
intended goal with the highest probability. The robot gripper can be manipulated over a 2D plane,
in which the height of the gripper is fixed and predefined according to the placement of all the
objects. To perform the more flexible movement for avoiding the collision with the obstacle in the
scene, the gripper can be given rotation around the Z-axis. In this scenario, all graspable objects are
aligned on a line.

The point of grasp prediction model goes a step further to predict which part of the goal will be the
grasping point as illustrated in Figure 3.2b. Instead of manipulating the Baxter robot, we use the
hand skeleton to perform the grasping task to have more various trajectories and fewer constraints
of the robot’s physical morphology. The hand skeleton is captured by the Leap Motion as well.
Unlike the previous experiment on the robot, the hand skeleton has six degrees of freedom and has
information at each segment of the finger (e.g., translation and rotation). Also, unlike the previous
setup, the objects are not aligned over a line. To obtain information about the environment we set
up a virtual camera to capture depth images of the scene.

1https://www.ros.org/
2https://www.leapmotion.com/

24

3.1 Virtual Environment and Data Collection

(a) Target object prediction scenario.

(b) Point of grasp prediction scenario.

Figure 3.2: Environment setup.

25

3 Method

3.2 Target Object Prediction Model

In the target object prediction model, the aim is described as follows: Predict the most likely goal
and model the uncertainty as a one-dimensional probability distribution given time-series data.
When reaching an object, in the beginning the uncertainty over the objects should be relatively
similar and as the robot reaches for an object the robot should gain more confidence about the
object being the goal. We train the model to learn the parameters of Beta distribution and allocate
the probability over the line where the objects locate. Figure 3.3 illustrates the uncertainty and
trajectory changes during different time steps.

Figure 3.3: Target object inference in two time instances, in the earlier state of the episode the
distribution is flat (left), while gripper approaching the goal, the distribution is getting
steeper (right).

3.2.1 Features

The following features are used for the target object prediction model:

• Inputs:

1. Grab status: The status of whether the user has grasped the object or not. The feature is
used to distinguish the state of picking and placing in the pick-and-place tasks.

2. Hand velocity: The velocity data of the XY-plane captured from the Leap Motion device,
the user teleoperates the robot based on velocity control.

26

3.2 Target Object Prediction Model

3. Hand position: The relative position based on the initial hand position in each time step. This
feature is recorded directly from the Leap Motion device not from the robot’s movement, in
order not letting the robot’s movement affect human intent. Only use data in the XY-plane.

4. Hand pointing angle: The yaw angle of palm from the Leap Motion, to give the model
more clear cue of hand motions.

• Outputs: Parameters of Beta distribution (α and β).

• Ground truth: Parameters of Beta distribution generated based on the distance between the
gripper position and the goal.

3.2.2 LSTM Model Design

We use LSTM to learn the latent space representation of the relationship between cumulative
information and the environment. To model the distribution over the objects, we represent it using
the Beta distribution. As shown in Figure 3.4, the model predicts a set of parameters that comprise
the Beta distribution given sequential user commands. After modeling the distribution using the
predicted parameters, the object is predicted as the target with the highest probability.

Figure 3.4: The architecture of the LSTM model.

The model takes as input sequential user command data captured from the Leap motion such as
grab, hand velocity, hand position, and the angle in which the hand is pointing. Here, we use an
LSTM layer to capture any relationships in the sequential data. The LSTM layer has 100 outputs
followed by three dense layers comprising 50, 20, 2 outputs respectively. The outputs from the last
Dense layer are two parameters of the Beta distribution, α and β. In order to train the network
in a supervised manner, we represent a Beta distribution with variance (VAR) given the distance
between the gripper and the object, as shown in Equation 3.1 and 3.2. To have a single-modal
probability density function of the Beta distribution, a restriction is that k should be greater or equal
to two. The variance of the Beta distribution is proportional to the reciprocal of k. The targets α
and β are obtained through the relationship between the parameters and k.

k = C ×
1

dist(gripper,object)
, where k = α + β and 2 ≤ k, C is a constant (3.1)

V AR[X] ∝ k−1 (3.2)

27

3 Method

With these two parameters, we can estimate the uncertainty of the prediction by the Beta distribution
and infer the maximum likelihood using the mode (Equation 3.3) given the position of the objects.

Mode =
α − 1

α + β − 2
, f or α, β > 1 (3.3)

3.2.3 Baseline

We use the goal prediction method in [DS13] as the baseline. Given initial gripper position, object
positions, and current position, the baseline predicts the target object that maximizes its posterior
probability. The baseline method is a very simplified memory-based prediction, which takes into
account the trajectory from initial point to the current state.

We denote the gripper’s initial point as S, a set of potential goals in each episode as G. U denotes
the current state of the gripper, here means the velocity captured from the Leap Motion. We denote
g∗ as the most likely goal and ξS→U as the trajectory from the initial point to the current state.

The goal prediction can be formulated as shown in Equation 3.4, the predicted goal g∗ is the
maximizes posterior probability calculated by trajectory ξS→U .

g∗ = arg max
g∈G

P(g |ξS→U) = arg max
g∈G

P(ξS→U |g)P(g) (3.4)

To calculate the P(ξS→U |g) term above, we use a cost function Cg to optimize the user inputs
[ZMBD08]. Then the P(ξS→U |g) can be expressed as Equation 3.5.

P(ξS→U |g) =
exp(−Cg(ξS→U))

∫
ξU→g

exp(−Cg(ξU→g))∫
ξS→g

exp(−Cg(ξS→g))
(3.5)

The integral over trajectories can be approximated by Laplace’s method, and the cost function
C(ξX→Y) can be approximated by its second-order Taylor series expansion shown in Equation 3.6.

ξ∗X→Y = arg min
ξX→Y

C(ξX→Y) (3.6)

In the end, the predicted goal can be approximated and formulated in Equation 3.7.

g∗ = arg max
g∈G

exp(−Cg(ξS→U) − Cg(ξ
∗
U→g))

exp(−Cg(ξ
∗
S→g
))

P(g) (3.7)

28

3.2 Target Object Prediction Model

3.2.4 Blended Model

We found out that the LSTM model which we previously proposed has a better inference performance
when avoiding the obstacle collision, and the baseline method can have a more accurate prediction
in beginning stages. To combine their strengths in each method, we further trained a blended model
that can take advantage of each method regarding the given state. The structure of the blended
model is shown in Figure 3.5 and is similar to the model structure we proposed in Figure 3.4, but
combines the results of both methods and use Multi-Layer Perceptron (MLP) to distinguish the best
prediction. The three inputs to the MLP is the output of the LSTM network, baseline predictions,
and information of the environment. The MLP outputs a predicted object given each prediction
results.

Figure 3.5: The architecture of the blended model.

29

3 Method

3.3 Point of Grasp Prediction Model

When referring to grasp affordances in our pick-and-place task, the agent denotes the hand skeleton.
Grasp affordances can be explained as the success effect of a grasp action performed to an object.
Grasp density is concerned to the region where the hand would be in contact to the object. In this
section, we propose a framework to predict the point of grasp on the most likely goal where the
states of the objects are not given but must be inferred. We use virtual depth images as input to
infer where the user will grasp and further predict the uncertainty for grasp densities of the object in
the 2D manifold, which can be converted to points in 3D space.

The grasping point prediction framework can be divided and discussed in two parts:

1. CNN-BiLSTM autoencoder.

2. LSTM-MDN model.

3.3.1 CNN-BiLSTM Autoencoder

In this model, the states of objects and obstacles are not directly given. Instead, the network should
interpret the scene given depth images of the environment. Thus, obtaining information from the
scene is primacy. We use an autoencoder-like structure which consists of CNN layers to extract
features from the image and Bidirectional LSTM (BiLSTM) layers to support prediction using
temporal data.

Features

• Inputs: Sequential depth images of seven time steps.

• Outputs: Binary-like mask images.

• Ground truth: Binary images which segmented the object from the scene.

Model Structure

To deal with sequential images, we propose an autoencoder that includes BiLSTM structure as
shown in Figure 3.6. The encoder part of the model is used in the following point of grasp prediction
model to reduce the feature dimensions and learn stronger environment representations.

We first crop the raw depth image into 360 × 360 region of interest in the center, then downsample to
100 × 100 one channel image. The look-back size of the BiLSTM is seven as well. The autoencoder
consists of the encoder and decoder. The encoder part compresses the input into a latent space
representation. The decoder part aims to reconstruct the inputs to mask images from the latent
space. We use CNN to extract and learn image features in both encoder and decoder parts. At the
bottleneck, we use the repeat vector layer to give the decoder a sequential input. The outputs of the
autoencoder are mask images, we trained the model with standard mean squared loss.

30

3.3 Point of Grasp Prediction Model

Figure 3.6: The architecture of the CNN-BiLSTM autoencoder.

3.3.2 LSTM-MDN Model

In this section, the LSTM-MDN model is proposed to infer the uncertainty of grasp densities
over the intended goal object as well as the normal vector of the final grasping orientation. The
time-series hand skeleton data is also used in this case, combining with the trained encoder in 3.3.1.
The uncertainty of grasp density is modeled by MDN. The probability distribution for expected
points of grasp is multi-valued; for instance, when the user’s hand is far away from all the objects,
the potential points of grasp could be multi-valued on the highly likely objects. The MDN is an
approach to deal with this multi kernels distribution circumstance.

Features

• Inputs:

1. Hand velocity: The velocity data of the XY-plane captured from the Leap Motion
device.

2. Hand position: The relative position to the initial point described in the target object
prediction model.

3. Palm vector: The three-dimensional unit normal vector from the center of palm,
denotes the grasping direction of the action.

• Outputs:

1. MDN parameters: A set of parameters of Gaussian distribution. For each two-
dimensional Gaussian kernel, it contains five parameters: mean, variance and weight.
In this thesis, we choose to use five kernels.

2. Palm vector: A three-dimensional vector.

• Ground truth:

1. Grasping position: The final contact point between the hand and the object.

2. Palm vector: The final unit normal vector from hand.

31

3 Method

Model Structure

We use a multi-task transfer learning technique to infer the probability distribution and the grasping
orientation as illustrated in Figure 3.7. The model has two branches of inputs and outputs.

Figure 3.7: The architecture of the point of grasp prediction model.

The first input branch is the pre-trained encoder described in section 3.3.1, which learns the
significant environment representations from 2.5D depth images. The weights of the encoder are
taken from the autoencoder that was trained in advance to predict masks. The weights of the
encoder are no longer trained in the model. The intuition is to capture the latent space and the
network should learn to distinguish the objects from the background. The second branch takes the
sequential features of the hand (look-back size = 7) as input and connected to an LSTM layer. The
two branches of input are then concatenated. The model predicts two different data: the parameters
of MDN and the normal vector of the hand.

We design MDN to map with multivariate Gaussian distribution with diagonal covariance. The
number of kernels is chosen from observation, we found that using five kernels to represent the
MDN is enough in this case. Thus, the output of MDN are five sets of Gaussian distribution
parameters. The other output is the final contact vector when the hand grasped the object. Each
output is optimized based on different loss functions, NLL of mixture Gaussian distribution for
MDN and mean squared error for palm vector.

3.3.3 Baseline

To evaluate our model, we create a baseline method to predict the point of grasp based on hand
movement. We calculate the point of intersection between an object and the line extended from the
hand direction vector at each time step. The intuition is that the user will take a sub-optimal path
towards objects and the prediction is depended on hand’s moving direction. The baseline method
does not take the grasping orientation into account. Thus, we only compare the grasping point with
this method.

32

3.3 Point of Grasp Prediction Model

3.3.4 Block diagram

Figure 3.8 shows the architecture of the final prediction model. Notably, the outputs of the MDN
are five sets of parameters in our model, we use mixture Gaussian distribution that derived from the
collection of these predicted kernels. The density of the mixture distribution can also be visualized
in RViz as the grasp probability.

Figure 3.8: Block diagram of the point of grasp prediction model.

33

4 Evaluation

In this chapter, we evaluate and discuss the results of the methods. Section 4.1 shows the result of
the target object prediction model proposed in section 3.2, section 4.2 shows the result of the point
of grasp prediction model proposed in section 3.3.

To evaluate the target object prediction model, the user studies were conducted with 16 participants.
Before each experiment, participants were allowed to practice the whole experiment in less than ten
episodes to have a basic knowledge of the teleoperating system. The control inputs are captured
by the Leap Motion sensor. Each participant was asked to perform a sequence of pick-and-place
tasks for 30 episodes. The final effective data contains 467 episodes in 113,790 samples. To fairly
validate the model performance, we classified the trajectories into five groups and collected ten
episodes respectively, resulting in a total of 50 episodes.

In the point of grasp prediction model, the training data was collected from 60 different environment
settings. In each setting, participants were asked to perform two grasp types (top grasp and side
grasp) for all four objects separately. A mount of eight types of grasping categories was equally
collected. The final effective data contains 467 episodes corresponding to 75,485 samples. The
model was validated on 40 episodes.

We implemented our network using Keras library 1 and TensorFlow 2 framework as back-end.

4.1 Target Object Prediction Results

In this section, we explain the feature selection process and evaluate the results of each model.
We assert not to use the action from the robot, but only use motion directly from hand movement
detected by the sensor. With the predefined initial position of the gripper and the velocity data
received from gesture sensor, we can calculate the user command for the robot action [AA19].
We intended to train the model using less environment information as possible. Thus, selecting a
subset of relevant features is a key aspect. We conduct a feature selection procedure to discover the
crucial features. Table 4.1 shows the results of different combinations of features and pre-processing
methods. The results are obtained from the model where the yaw angle of the gripper is not
considered. The difference between 7 and 13 features is whether the position of the objects is
included or not. The absolute hand position uses the raw hand position data as input and the relative
hand position refers to the current hand position subtracted by the initial position of the hand. As
shown in Table 4.1, the model trained with the relative hand position and unknown object positions
has the highest validation result.

1https://keras.io/
2https://www.tensorflow.org/

35

4 Evaluation

Method Feature Numbers Hand Position Object Positions Validation Result
Beta Distribution 13 absolute known 83.38%
Beta Distribution 7 absolute unknown 84.08%
Beta Distribution 13 relative known 98.29%
Beta Distribution 7 relative unknown 98.59%

Table 4.1: Feature selection and comparison.

In Table 4.2, we show the training results of our two models. These two models contain dropout
layers, therefore, the test set loss is lower than train set loss.

Model Epochs Batch size Train set loss Test set loss
LSTM model 279 512 0.0997 0.0805
Blended model 278 512 0.0163 0.0141

Table 4.2: Results obtained for the target object prediction models.

Figure 4.1a shows the correct rate of the three methods averaged over episodes. The baseline
method (orange) appears to correctly predict the goal object during the last 40% of the episode
duration usually the gripper has passed the obstacle. The LSTM network (blue) has the lowest
correct rate at the beginning but increases drastically during 40 ∼ 60% of the episode duration, at
this period the user is usually trying to avoid the obstacle. This shows the LSTM network has the
strength to deal with the obstacle avoidance situation. Finally, the blended model (green) combines
the strengths of these methods to infer quicker in the first 20% of the episode duration. Even though
the model may incorrectly predict during the middle of the episode, it still shows good performance
at the beginning of the episode with the highest overall correct rate. Figure 4.1b illustrates the
probabilities of the intended object over the episode.

(a) Average correct rates of the predicted target. (b) Probabilities of the predicted target.

Figure 4.1: Prediction results of target object prediction models.

Table 4.3 shows the average correct rate of our LSTM intent prediction model is 81.1%, the baseline
is 72.7% and our blended model has the highest correct rate with 86.6%.

36

4.2 Point of Grasp Prediction Results

Average correct rate
LSTM model Baseline method Blended model

81.1% 72.7% 86.6%

Table 4.3: Results of target object average correct rate.

An example of the prediction over time in an episode is shown in figure 4.2. The model only has a
few wrong steps of prediction while the gripper is avoiding the obstacle then gives a correct and
stable prediction until the end.

Figure 4.2: An example of prediction over time in an episode.
Left: Gripper trajectory. Right: Prediction in time step.

4.2 Point of Grasp Prediction Results

In the case of the point of grasp prediction model, we first evaluate results of the pre-trained
autoencoder, then analyze results of the point of grasp and palm vector inference.

For the transfer learning technique, we trained an autoencoder-like network to extract relevant
environment dependencies. Table 4.4 shows the autoencoder training results.

Model Epochs Batch size Train set loss Test set loss
Autoencoder 165 64 5.43E-05 1.20E-04

Table 4.4: Training results of the CNN-BiLSTM autoencoder.

37

4 Evaluation

Examples of the input depth image, ground truth, and corresponding reconstructed output image
are shown in Figure 4.3. The hand is represented as a circle in the image. As can be seen from the
figures, the output images are almost identical to the ground truth, which means the network has
learned representation and is capable to reconstruct an image from the latent space.

Figure 4.3: Reconstructed images of the autoencoder. The first row shows the input images, the
second row shows the ground truth, the third row shows the reconstructed images.

The model infers the point of a grasp as well as the normal vector of the palm. Table 4.5 shows
the results with the lowest achieved loss. The output of the MDN branch is a set of multivariate
Gaussian distributions. We sampled the mean of mixture Gaussian distribution and trained with
NLL loss. The mean position corresponds to the predicted location of the point of grasp. The palm
vector branch is trained by MSE loss using the normal vector of the final contact point as the ground
truth.

Train set loss Test set loss
Model Epochs Batch size NLL MSE NLL MSE
LSTM-MDN 45 32 -0.6562 2.23E-04 -0.2086 2.24E-04

Table 4.5: Training results of the LSTM-MDN model.

38

4.2 Point of Grasp Prediction Results

For evaluating the point of grasp inference, we first convert the mean point position of the mixture
Gaussian distribution in the depth image to a 3D environment coordinate. We then divide each object
into two segments for point of grasp detection. We have four objects in this scenario, equivalent to
eight components in total. The baseline method is introduced in section 3.3.3. The validation set is
captured fairly from four objects individually with two grasping poses, top grasp, and side grasp.

Figure 4.4 shows the result of the point of grasp prediction in two different postures. In figure 4.4a,
we show the result throughout the whole episode from start to finish when the user is confident
enough to grasp the object. Because our system does not have haptic feedback, the user needs to aim
the goal by observing the hand skeleton gesture and object position in the visualization tool, which
would cause noise and fluttering during this procedure. By observing the all episode time condition,
our deep learning model has better performance at the beginning of an episode, while the baseline
method lags when the hand is far away from the object. As long as the hand approaches the object
and starts focusing on the grasping action, the correct rate of the baseline increases and eventually
performs better than the deep learning model. To have a deeper understanding of the early steps in
each episode, we also compare the correct rate from start until the time before the hand first contacts
the object as shown in 4.4b. Table 4.6 shows the statistical data of correct rate results.

(a) Average correct rate (b) Average correct rate before contact

Figure 4.4: Correct rate of the grasping point prediction.

Correct rate of the point of grasp prediction
All episode time Duration before contact

Network model Baseline method Network model Baseline method
50.1% 58.1% 39.5% 36.9%

Table 4.6: Correct rate of the point of grasp prediction.

To evaluate the predicted vector, we calculate the cosine similarity between ground truth and the
predicted vector. Figure 4.5 illustrates the result statistically analyzed on 40 validation data equally
sampled from every object. The cyan color line shows the average trend over time, the red color
line represents the overall average. The overall cosine similarity average is 0.948 corresponding to

39

4 Evaluation

18.55 degrees. In the last around 5% of episode time, the performance decreased to around 0.8.
This is because our system does not contain the perception of physical properties when the user is
aiming to the object and will cause a drifting phenomenon.

Figure 4.5: Cosine similarity of palm normal vector prediction.

Figure 4.6: An example of the LSTM-MDN prediction result. Left: The prediction plotted on
depth image, circles show the confident area of the predicted point of grasp. Middle:
The probability value calculated from weight over each pixel. Right: The prediction of
palm normal vector, the red arrow represents the ground truth, the blue arrow denotes
the predicted vector.

In Figure 4.7 we show the MDN changing trends in an episode, the time sequence is from (a) to
(d). On the left side of each sub-figure is the depth image taken from the virtual depth camera
and overlapped with the MDN result at run-time. The multivariate Gaussian distributions can be
visualized as a green cluster accompanying with its weight. To make it simple and less noisy, we
use a sphere to represent the hand skeleton in the view of the depth image. On the right side of each
sub-figure, we present the virtual environment to see the actual movement in the scene, the cyan
color line from the center of palm denotes the predicted normal vector.

40

4.2 Point of Grasp Prediction Results

(a)

(b)

(c)

(d)

Figure 4.7: Grasp densities examples sampled in four time instances.

41

5 Conclusion

We proposed a framework using neural networks to predict human intent in pick-and-place scenarios
capturing human control from the gesture sensor. We first estimate the low-dimensional uncertainty
using the Beta distribution by capturing implicit intents. Further, we predict which object at the
workspace is the most likely goal given the position of objects. Next, we model the high-dimensional
grasp uncertainty using multivariate Gaussian probability distributions as possible graspable regions.
We not only predict the human intent of grasping point on the surface of the object and also the
grasping orientation. The models are implemented and evaluated at run-time.

5.1 Limitation

A limitation of the target object prediction model is that we model uncertainty with the Beta
distribution, which is a one-dimensional probability distribution. This is sufficient when applying
to the plane scenario where the objects are not overlapping. While moving to higher dimensional
circumstances, multi-dimensional probability distribution should be considered. Another limitation
is that the Beta distribution is a single-modal distribution it can not be applied to multi-valued
situations or the network should be also trained as the MDN type of mixture model.

One limitation of our point of grasp prediction model is that we obtained the scene information
and trained the neural networks only from one perspective of view, which will limit the range of
activity, especially when we want to perform grasping on unmodeled objects. Also, the data we
trained on the model only contains the right-hand movement. It would need more features or data
when moving to both hands manipulation tasks.

5.2 Future Work

Future work includes performing the grasping tasks in cluttered and novel environments. In this
case, the network first has to be capable of segment variant unseen objects from the scene and
then predict the movability on the whole item. The grasping orientation can not only be obtained
from the normal palm vector but also should include each orientation of the fingers to have a better
understanding of grasp affordances. A hand haptic feedback device or multiple gesture sensors
could be considered to improve the prediction precision since the fluttering would cause additional
noise interference.

43

Bibliography

[AA19] R. M. Aronson, H. Admoni. “Semantic gaze labeling for human-robot shared manipu-
lation”. In: Proceedings of the 11th ACM Symposium on Eye Tracking Research &
Applications. ACM. 2019, p. 2 (cit. on pp. 15, 35).

[AS16] H. Admoni, S. Srinivasa. “Predicting user intent through eye gaze for shared autonomy”.
In: 2016 AAAI Fall Symposium Series. 2016 (cit. on pp. 13, 16).

[BDM02] D. J. Bruemmer, D. D. Dudenhoeffer, J. L. Marble. “Dynamic-Autonomy for Urban
Search and Rescue.” In: AAAI mobile robot competition. 2002, pp. 33–37 (cit. on
p. 15).

[Bis94] C. M. Bishop. “Mixture density networks”. In: (1994) (cit. on p. 18).
[BK00] A. Bicchi, V. Kumar. “Robotic grasping and contact: A review”. In: Proceedings

2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1. IEEE. 2000,
pp. 348–353 (cit. on p. 20).

[BKP11] A. Boularias, O. Kroemer, J. Peters. “Learning robot grasping from 3-d images with
markov random fields”. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2011, pp. 1548–1553 (cit. on pp. 21, 22).

[BLB14] P. Birkenkampf, D. Leidner, C. Borst. “A knowledge-driven shared autonomy human-
robot interface for tablet computers”. In: 2014 IEEE-RAS International Conference
on Humanoid Robots. IEEE. 2014, pp. 152–159 (cit. on p. 15).

[BSA+03] J. M. Bradshaw, M. Sierhuis, A. Acquisti, P. Feltovich, R. Hoffman, R. Jeffers,
D. Prescott, N. Suri, A. Uszok, R. Van Hoof. “Adjustable autonomy and human-agent
teamwork in practice: An interim report on space applications”. In: Agent autonomy.
Springer, 2003, pp. 243–280 (cit. on p. 15).

[CHC04] I. Cos-Aguilera, G. Hayes, L. Canamero. “Using a SOFM to learn object affordances”.
In: Procs 5th Workshop of Physical Agents (WAF’04). University of Edinburgh. 2004
(cit. on p. 19).

[CMS17] P.-W. Chou, D. Maturana, S. Scherer. “Improving stochastic policy gradients in
continuous control with deep reinforcement learning using the beta distribution”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org. 2017, pp. 834–843 (cit. on p. 18).

[DD09] A. Der Kiureghian, O. Ditlevsen. “Aleatory or epistemic? Does it matter?” In:
Structural Safety 31.2 (2009), pp. 105–112 (cit. on p. 16).

[DGQ+13] J.-Y. Dantan, N. Gayton, A. J. Qureshi, M. Lemaire, A. Etienne. “Tolerance analysis
approach based on the classification of uncertainty (aleatory/epistemic)”. In: Procedia
CIRP 10 (2013), pp. 287–293 (cit. on p. 16).

45

Bibliography

[DKK+11] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger, J. Piater.
“Learning grasp affordance densities”. In: Paladyn, Journal of Behavioral Robotics
2.1 (2011), pp. 1–17 (cit. on pp. 20, 21).

[DS13] A. D. Dragan, S. S. Srinivasa. “A policy-blending formalism for shared control”. In:
The International Journal of Robotics Research 32.7 (2013), pp. 790–805 (cit. on
pp. 13, 28).

[EMT19] K. O. Ellefsen, C. P. Martin, J. Torresen. “How do Mixture Density RNNs Predict the
Future?” In: arXiv preprint arXiv:1901.07859 (2019) (cit. on pp. 18, 19).

[FMN+03] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, G. Sandini. “Learning about objects
through action-initial steps towards artificial cognition”. In: 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422). Vol. 3. IEEE. 2003,
pp. 3140–3145 (cit. on p. 19).

[FRPG04] A. Fagg, M. Rosenstein, R. Platt, R. Grupen. “Extracting user intent in mixed initiative
teleoperator control”. In: AIAA 1st Intelligent Systems Technical Conference. 2004,
p. 6309 (cit. on p. 13).

[FV12] D. Fischinger, M. Vincze. “Empty the basket-a shape based learning approach for
grasping piles of unknown objects”. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2012, pp. 2051–2057 (cit. on p. 20).

[GG15] Y. Gal, Z. Ghahramani. “Bayesian convolutional neural networks with Bernoulli
approximate variational inference”. In: arXiv preprint arXiv:1506.02158 (2015)
(cit. on p. 16).

[GG16] Y. Gal, Z. Ghahramani. “Dropout as a bayesian approximation: Representing model
uncertainty in deep learning”. In: international conference on machine learning. 2016,
pp. 1050–1059 (cit. on p. 16).

[Gib14] J. J. Gibson. The ecological approach to visual perception: classic edition. Psychology
Press, 2014 (cit. on p. 19).

[Gra13] A. Graves. “Generating sequences with recurrent neural networks”. In: arXiv preprint
arXiv:1308.0850 (2013) (cit. on p. 18).

[HM16] C.-M. Huang, B. Mutlu. “Anticipatory robot control for efficient human-robot
collaboration”. In: The eleventh ACM/IEEE international conference on human robot
interaction. IEEE Press. 2016, pp. 83–90 (cit. on p. 16).

[JAP+18] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, J. A. Bagnell. “Shared auton-
omy via hindsight optimization for teleoperation and teaming”. In: The International
Journal of Robotics Research 37.7 (2018), pp. 717–742 (cit. on p. 15).

[Jia95] Y.-B. Jia. “On computing optimal planar grasps”. In: Proceedings 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human Robot Interaction
and Cooperative Robots. Vol. 3. IEEE. 1995, pp. 427–434 (cit. on p. 20).

[JMS11] Y. Jiang, S. Moseson, A. Saxena. “Efficient grasping from rgbd images: Learning
using a new rectangle representation”. In: 2011 IEEE International Conference on
Robotics and Automation. IEEE. 2011, pp. 3304–3311 (cit. on p. 20).

[JSB15] S. Javdani, S. S. Srinivasa, J. A. Bagnell. “Shared autonomy via hindsight optimiza-
tion”. In: Robotics science and systems: online proceedings 2015 (2015) (cit. on
p. 16).

46

[KRC+11] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y. Ng, O. Khatib. “Grasping
with application to an autonomous checkout robot”. In: 2011 IEEE international
conference on robotics and automation. IEEE. 2011, pp. 2837–2844 (cit. on p. 20).

[KSCK96] E. Krotkov, R. Simmons, F. Cozman, S. Koenig. “Safeguarded teleoperation for lunar
rovers: From human factors to field trials”. In: IEEE Planetary Rover Technology and
Systems Workshop. Vol. 21. 1996 (cit. on p. 15).

[KSHK17] M. Kokic, J. A. Stork, J. A. Haustein, D. Kragic. “Affordance detection for task-specific
grasping using deep learning”. In: 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids). IEEE. 2017, pp. 91–98 (cit. on p. 21).

[MKCA03] A. T. Miller, S. Knoop, H. I. Christensen, P. K. Allen. “Automatic grasp planning
using shape primitives”. In: (2003) (cit. on p. 20).

[MLBS08] L. Montesano, M. Lopes, A. Bernardino, J. Santos-Victor. “Learning object affor-
dances: from sensory–motor coordination to imitation”. In: IEEE Transactions on
Robotics 24.1 (2008), pp. 15–26 (cit. on p. 20).

[MSD02] A. Morales, P. J. Sanz, A. P. Del Pobil. “Vision-based computation of three-finger
grasps on unknown planar objects”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Vol. 2. IEEE. 2002, pp. 1711–1716 (cit. on p. 20).

[NZHS17] S. Nikolaidis, Y. X. Zhu, D. Hsu, S. Srinivasa. “Human-robot mutual adaptation in
shared autonomy”. In: 2017 12th ACM/IEEE International Conference on Human-
Robot Interaction (HRI. IEEE. 2017, pp. 294–302 (cit. on pp. 13, 15).

[RDL18] S. Reddy, A. D. Dragan, S. Levine. “Shared autonomy via deep reinforcement
learning”. In: arXiv preprint arXiv:1802.01744 (2018) (cit. on p. 16).

[RPUF17] Y. S. Razin, K. Pluckter, J. Ueda, K. Feigh. “Predicting task intent from surface
electromyography using layered hidden Markov models”. In: IEEE Robotics and
Automation Letters 2.2 (2017), pp. 1180–1185 (cit. on p. 16).

[SBR12] C. Stanton, A. Bogdanovych, E. Ratanasena. “Teleoperation of a humanoid robot
using full-body motion capture, example movements, and machine learning”. In:
Proc. Australasian Conference on Robotics and Automation. 2012 (cit. on p. 13).

[ŞÇD+07] E. Şahin, M. Çakmak, M. R. Doğar, E. Uğur, G. Üçoluk. “To afford or not to afford: A
new formalization of affordances toward affordance-based robot control”. In: Adaptive
Behavior 15.4 (2007), pp. 447–472 (cit. on p. 19).

[SWN08] A. Saxena, L. L. Wong, A. Y. Ng. “Learning grasp strategies with partial shape
information.” In: AAAI. Vol. 3. 2. 2008, pp. 1491–1494 (cit. on p. 21).

[TK02] G. Taylor, L. Kleeman. “Grasping unknown objects with a humanoid robot”. In: Proc.
2002 Australasian Conference on Robotics and Automation. Vol. 27. 2002, p. 29
(cit. on p. 20).

[TP16] A. Ten Pas, R. Platt. “Localizing handle-like grasp affordances in 3d point clouds”.
In: Experimental Robotics. Springer. 2016, pp. 623–638 (cit. on pp. 20, 22).

[ZMBD08] B. D. Ziebart, A. Maas, J. A. Bagnell, A. K. Dey. “Maximum entropy inverse rein-
forcement learning”. In: (2008) (cit. on p. 28).

All links were last followed on November 27, 2019.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background and Related Work
	2.1 The Concept of Shared Autonomy
	2.2 Modeling Uncertainty with Probability Distributions
	2.3 Learning Grasp Densities

	3 Method
	3.1 Virtual Environment and Data Collection
	3.2 Target Object Prediction Model
	3.3 Point of Grasp Prediction Model

	4 Evaluation
	4.1 Target Object Prediction Results
	4.2 Point of Grasp Prediction Results

	5 Conclusion
	5.1 Limitation
	5.2 Future Work

	Bibliography

