
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Vision Assisted Biasing for
Robot Manipulation Planning

Puang En Yen

Course of Study: Computer Science

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: PD Dr. habil. Rudolph Triebel

Commenced: March 19, 2018

Completed: August 22, 2018

Abstract

Sampling efficiency has been one of the major bottlenecks of sampling-based motion planner.
Although being more reliable in complex environments, Rapidly-exploring Random Tree
for example often requires longer planning time than its optimisation-based counterpart.
Recent developments have introduced numerous methods to bias sampling in configuration-
space. Gaussian mixture model, in particular, was proposed to estimate feasible regions
in configuration-space for low-variance task. Unfortunately this method does not adapt
its biases according to individual planning scene during inference. Therefore, this work
proposes vision assisted biasing to adapt biases by changing the weights of Gaussian
components upon query. It uses autoencoder to extract features directly from depth image,
and the resulted latent code is then used for either nearest neighbours search or direct
weights prediction. With a modified pipeline, these extensions show improvements on not
only the sampling efficiency but also path optimality of simple motion planner.

3

Contents

1 Introduction 9

2 Related Work 11
2.1 Motion Planning . 11
2.2 Biased Sampling . 11

2.2.1 C-space Oriented Bias . 12
2.2.2 Fixed Task-space Oriented Bias . 12
2.2.3 Adaptive Task-space Oriented Bias 13

2.3 Similarity Search . 14
2.3.1 Feature Extraction . 14
2.3.2 Similarity Learning . 15

3 Background 17
3.1 Sampling-based Motion Planner . 17
3.2 C-Space Biasing . 19
3.3 Convolutional Neural Network . 20
3.4 Autoencoder Dimension Reduction . 22

4 Methodology 23
4.1 Database . 24

4.1.1 Path Collection . 24
4.1.2 Scene Collection . 25

4.2 Nearest Neighbours Retrieval . 26
4.2.1 Network Architecture . 26
4.2.2 Data and Augmentations . 28
4.2.3 Adversarial Augmentation . 30
4.2.4 Loss Functions . 31
4.2.5 Database Search . 33

4.3 Biased GMM Sampling . 33
4.3.1 GMM Fitting . 33
4.3.2 Vision Biasing . 35

5 Evaluation 37
5.1 Database Creation . 37

5.1.1 Scene Construction . 38
5.2 Scene Retrieval Accuracy . 40

5.2.1 Experiment Condition . 40
5.2.2 Semantic Scene Similarity . 41

5

5.3 Biased Sampling Efficiency . 44
5.3.1 Experiment Condition . 44
5.3.2 Weights Aggregation . 46
5.3.3 Weights Prediction . 46
5.3.4 Benchmark . 47

6 Discussion and Conclusion 49
6.1 Results . 49

6.1.1 Improved Repetition Sampling . 49
6.1.2 Image Retrieval . 49
6.1.3 Vision Assisted Biasing . 50

6.2 Insights . 50
6.3 Alternatives . 51
6.4 Conclusion . 52

Bibliography 53

6

List of Abbreviations

AAE Adversarial Autoencoder. 21

AE Autoencoder. 10

AIMM Autonomous Industrial Mobile Manipulator. 37

AUCf Area Under Cumulative Frequency. 45

CNN Convolutional Neural Network. 10

DoFs Degrees of Freedom. 17

FGSM Fast Gradient Sign Method. 21

GAN Generative Adversarial Network. 21

GMM Gaussian Mixture Model. 9

KDE Kernel Density Estimation. 12

KL Kullback–Leibler. 20

KOMO k-order Markov path Optimisation. 11

OMP Optimisation-based Motion Planner. 9

PCA Principle Component Analysis. 14

PRM Probabilistic RoadMaps. 11

RGB Red-Green-Blue. 15

RRT Rapidly-exploring Random Tree. 9

S3 Semantic Scene Similarity. 41

SLC Small Load Carrier. 37

SMP Sampling-based Motion Planner. 9

TCP Tool Center Point. 17

VAE Variational Autoencoder. 13

WNA Weight-Norm-Activate. 22

7

1 Introduction

In the pursue of Industrie 4.0, industrial robots nowadays are embedded with more and
more autonomy[1]. Modern industrial robots are able to not just carry out commands
but also make decisions in less heavily engineered workspace. For manipulation task in
"smart factory", robots are often equipped with vision system and motion planner for
understanding the workspace and generating feasible plan in achieving its task. In this
context, speed has become an important criteria in judging the feasibility of the system.
Hence, efficient combination between perception and manipulation has become one of the
major research directions in the field.

Sampling-based Motion Planner (SMP) is known for its extraordinary capacity in solving
planning problem in complex environments. This is an advantage over Optimisation-based
Motion Planner (OMP) which can get stuck in local minimals. Rapidly-exploring Random
Tree (RRT), a type of SMP, however, still take considerable amount of time to find a
solution as it searches the complete configuration space (C-space), which is unnecessary in
many robotic applications. Inefficient random sampling especially in high dimensional C-
space is a very common problem faced by almost all SMP, and it becomes more pronounced
when motion constraints are involved.

Figure 1.1: Joints configurations at
the mean of Gaussian
components for table-
top pick-place task.

Among the efforts in improving sampling efficiency
of SMP, repetition sampling[2] proposed a 2-stages
C-space biasing method. With bounded variance, it
first collects a pool of paths for a particular task or a
set of similar tasks. Gaussian Mixture Model (GMM)
is then used to estimate the configuration density
across C-space from the collection. Each Gaussian
components represent a task relevant region in C-
space. The first stage of biasing involves sampling
from within these regions, while the second stage
involves the ranking or weighting among Gaussian
components. When queried, a sample is drawn by
first sample one Gaussian component according to
their weights before having a Gaussian sampling
within the chosen Gaussian component.

Repetition sampling offers a task-oriented, and one-
size-fits-all C-space biasing method. It does not
update or adapt its bias according to situation of query, hence involve no vision system
that aims to improve the performance of motion planner. In this work, a combination

9

1 Introduction

of vision system and motion planner is proposed specifically to improve the applicability
of repetition sampling. The objective is to further improve the sampling efficiency of
repetition sampling by introducing a third stage of biasing using vision that adapts the
bias according to planning scene, enhancing the overall performance.

The vision system involves an Autoencoder (AE) that is trained to understand depth image
directly. Its encoder transforms a depth image from a depth sensor into latent code, a
lower dimensional representation of the planning scene. With this latent code, efficient
search can be carried out in database. The solutions of the similar looking scenes retrieved
from the search are then used to estimate a new set of weights for all Gaussian components,
re-rank them so that they fit to the queried scene.

Nonetheless, vanilla AE has limited capacity in the task, and original repetition sampling
is inefficient in the fitting of GMM. Below are the main contributions of this work in
providing a better SMP for industrial robot manipulations:

1. A new way of building database and fitting GMM is proposed to reduce redundancies
in collected paths and configurations, hence improving the optimality of solution.

2. To improve the accuracy of nearest neighbour retrieval, several techniques have been
proposed to improve the quality of the information encoded in latent code.

3. With the improved repetition sampling and nearest neighbours search, an aggregation
method is proposed to output a new set of Gaussian components’ weight.

4. A simplified alternative is proposed to speed up the process by predicting the weights
distribution directly, hence skipping the database search.

Chapter 2 continues by discussing the literature reviews for both motion planning and
Convolutional Neural Network (CNN). Chapter 3 discusses the basic of motion planning
and CNN, while Chapter 4 discusses the methodology used in biasing a sampling. Lastly,
Chapter 5 demonstrates the experiments’ results and discusses their implications.

10

2 Related Work

2.1 Motion Planning

Robot motion planning can be formulated as a search problem for a sequence of configu-
rations that fulfil multiple constraints. These constraints include target pose difference,
obstacle clearance, kinematic and dynamic limits etc. OMP handles these by explicitly
formulating these constraints into cost functions and solves it iteratively until convergence.
OMP local method, although finds sub-optimal solution, is able to do so efficiently even in
higher dimensionality. Differential Dynamic Programming[3], iterated Linear Quadratic
Gaussian[4] and Approximate Inference COntrol[5] are examples that use dynamic pro-
gramming and Bayesian inference method. Popular OMP library for robotics includes
TrajOpt[6] that uses sequential convex optimisation procedure, and k-order Markov path
Optimisation (KOMO)[7] that uses classical methods such as Gauss-Newton and augmented
Lagrangian.

Although being known as fast and less susceptible from the curse of dimensionality, local
methods can get stuck in local optimal, and unable to work in complex situations. As an
alternative for cost gradient information, SMPs were introduced to solve complex problem
using random samplings. Probabilistic RoadMaps (PRM)[8] and RRT[9] are examples of
SMP that plan by building traversable graph using random sampling in C-space. Despite
being robust in complex situation, the major disadvantages of SMP are the extra time
needed for graph/tree building, and the post-processing needed for local optimisation.

2.2 Biased Sampling

To reduce the planning time of SMP, RRT-connect[10] was proposed to reduce tree building
time by having multiple trees growing toward each other at the same time. In reducing
time for post-processing, RRT*[11] was proposed to improve the optimality of path by
rewiring the nodes and edges of the tree while it is growing. [12] proposed extension in
expanding tree by reducing Voronoi region of existing vertices in order to achieve better
exploration. However, these improvements do not really solve the major bottleneck i.e.
sampling efficiently in C-space.

11

2 Related Work

(a)

(b)

(c)

Figure 2.1: Examples of 2D C-space biasing. Sampling are biased toward (a)boundary or
obstacle [13, 14]©2003 IEEE, (b) task-space heat-map[2]©2017 IEEE, and (c)
generated samples by sampling in latent code of VAE[16]©2017 IEEE.

2.2.1 C-space Oriented Bias

[13, 14] proposed to bias sampling by only accepting samples that are close to obstacle
or boundary. These samplers are more informative compared to those located at wide
empty spaces, and therefore improve sampling density for difficult narrow passages while
maintaining a smaller graph. [15] proposed to solve the same low sampling density problem
using quite the opposite. By approximating the medial axis of C-space, samples drawn
around it are away from obstacle and boundary, at the same time sparse at open free space.
These methods are easy to implement in 2D-space but not anymore straight forward in
high dimensional C-space as the definition of closeness becomes more complex.

2.2.2 Fixed Task-space Oriented Bias

[2, 17] proposed to compute the feasible region in C-space for a repetitive and low-variance
task. It is done by first collecting a pool of demonstrated paths and/or previous planner’s
solutions, and then, based on the collection, compute the C-space heat-map using GMM
and Kernel Density Estimation (KDE) respectively. The advantage of using GMM over
KDE is that during inference GMM need not to select a kernel for drawing samples, which
is an important hyperparameter for KDE-based biases.

[18, 19] proposed biased raodmap planner by introducing cost on every edges in the graph
that was built using the same path collection. A discrete planner A*[20] is then used to
compute the optimal path with minimal cost within the graph when queried. Reinforcement
learning has also been introduced in sampling biasing. [21] proposed to first extract feature

12

2.2 Biased Sampling

from discretised workspace using discrete planner Dijkstra’s algorithm[22]. Then Policy
Gradient is used to updates a set of weights that make up the workspace bias distributions,
using shorter planning time as the reward.

The clear disadvantage among these methods is the descretisation of C-space. In contrast
[2, 17] run in continuous C-space and learn the bias distribution directly from data without
using workspace feature. Our work build on top of [2], and give it the ability to adapt bias
according to situations to enhance the effect.

2.2.3 Adaptive Task-space Oriented Bias

Instead of having medial axis that stay away from obstacles, [23] proposed to compute an
auxiliary path based on Euclidean distance to goal on discretised C-space, using discrete
planner similar to [21]. Then the sampling are biased toward the auxiliary path for that
query. Contrary to our work biases are suggested in the form of mixture of Guassians in
continuous C-space without additional planner.

[16] proposed a deep learning solution by making use of both the collection of paths, as
well as the current query into biasing. Conditional Variational Autoencoder (VAE)[24] is
used to encode solution path into latent code with defined distribution, conditioned on the
planning scene. During inference, new sampling is generated simply by sampling on latent
code distribution and pass it down to the decoder, which was trained to reconstruct solution
given latent code and a planning scene. This new method offer promising algorithm but
did not address cases in which the planning scenes are in high dimension i.e. image.

Figure 2.2: Lighting framework[25]©2012
IEEE.

To make full use of previously collected or
generated solutions for new queries, [19,
25] proposed frameworks to interact with
database for efficient planning, retrieval and
repair of path. While the Planning-From-
Scratch module runs in parallel for explo-
ration, its Retrieve-Repair module searches
for suitable paths in the database based
on task similarity (proximity of start and
end points) and adaptability (amount of
collision and constraint violation) in query
scene. These works offered good algorithms
that addressed the problem well but lacking
completeness in practicality of data retrieval. Our work improves the database search with
more efficient and informative scene description which will then improve the efficiency of
Repair.

Repair and adapt for retrieved path is the second major part of using database. [26]
proposed to blend several segments of path retrieved from database into a smooth one.
[27] proposed to penalise a squared difference term in its inverse kinematic in order to stay
within the proximity of retrieved path. This can be seen as optimising the null-space of

13

2 Related Work

Figure 2.3: Localised feature extraction and matching[31].

inverse kinematic with preferred configurations. These methods have similar approach
with the one proposed in our work, the differences lay in the final path optimisation used
for smoothing.

2.3 Similarity Search

The key of using path database is the ability to retrieve relevant data when queried.
Simply comparing the differences between start and goal points is insufficient due to the
possible appearance and disappearance of obstacle in queried planning scene. [28] proposed
to represent the 3D workspace with voxel grid, and then compress it using Principle
Component Analysis (PCA) to lower dimensional descriptor. Similarity score is computed
with a similarity function whose weight are optimised by minimising the effort required to
adapt retrieved path to query scene. Our work does not involve hand-crafting feature for
training descriptor in representing planning scene.

Classical hand-crafted feature descriptor for 2D image or 3D point cloud include Scale-
Invariant Feature Transform(SIFT), Speeded-Up Robust Feature(SURF), Histogram of
Oriented Gradient(HOG) and Fast Point Feature Histograms(FPFH), and they are often
used together with Support Vector Machine(SVM), Bag-of-Words(BoW) and Fisher Vector
for predictions. These methods make-up low-level representations but lack the ability to
represent high-level semantic concept. For better robustness and computational efficiency,
the alternative for scene descriptor and similarity measure is deep learning method. [29,
30] show the competitiveness of properly trained CNN compared to classical methods in
image classification, object detection and visual retrieval tasks.

2.3.1 Feature Extraction

Pre-trained networks trained on large dataset i.e. [32] are popular when it come to feature
extraction. Many use it for extracting low and intermediate level features for high level
tasks that are different from what the network was originally trained for. According to
applications, features can be extracted from different layers with different sizes. Weighted
Sum-pooling[30] and spatial Max-activation of Convolutions[31] are some examples of
direct features usage. [30, 33] proposed to further compress extracted features with PCA.
To acquire detection and localisation ability, features can also be extracted from patches

14

2.3 Similarity Search

Figure 2.4: Bag of Local Convolutional Features pipeline[44]©2016 ACM.

of single input image[31, 34]. In this case detailed features at specified locations can be
extracted more accurately. To improve the efficiency in searching in large database, [35, 36]
proposed to fine-tune features and project them into binary form. The main drawback of
using pre-trained network is that the exact network must be reimplemented and they are
usually very large and offer limited architecture flexibility. Our method trains a relatively
smaller network from scratch with full control in its architectural design.

AE is another popular way of extracting features. It is done by using latent code as low
dimensional representation of the input. To improve robustness, heavy data augmentations
are normally used to keep the AE invariant to certain influences such as background,
lighting and occlusions. [37, 38, 39] are examples that proposed to encode image patches for
object pose estimation. Using the information aggregated at its bottleneck, [40] proposed an
encoder-decoder architecture for scene understanding by doing semantic segmentation with
decoder’s output. [41] proposed an affordance detection for objects in tabletop scenario.
It uses an Encoder-Decoder architecture, using Red-Green-Blue (RGB) and HHA[42]
encoding for depth data as inputs, and VGG16-based network[43] to produce softmax of
affordance types pixel-wise. The same idea of aggregating information in latent code is
adopted in our method, but applied without HHA depth image encoding.

[34, 44] proposed Bag of Deep Local Convolutional Features for visual retrieval task. After
gathering features extracted from images and patches of images, K-Means clustering is used
to quantise features in continuous space into distinct clusters, represented by respective
cluster center. Feature of an input is then the histogram that contains the frequencies
of occurrence of each clusters. Figure 2.4 depicts the feature extraction pipeline. These
methods have good accuracy in image retrieval task but lack the real-time performance
required in robotic application. Our method uses entirely CNN that compute latent code
in a single forward-pass.

2.3.2 Similarity Learning

Cosine similarity is a method for measuring the directional similarity between vectors. Due
to the normalisation by vectors’ magnitude, it is usually more preferable than L2-Norm to
be used in comparing high dimensional deep feature vectors or histograms. To improvement
retrieval performance, [31, 44] proposed a 2 stages ranking refinement that uses cosine
similarity in first retrieving nearest images, and then re-rank them according to regional
similarities. For fast retrieval, our method does not refine the ranking because regional
details are not very important in our application.

15

2 Related Work

(a) Siamese network (b) Similarity network

Figure 2.5: Differences between 2 architectures used in image similarity prediction
task[45]©2017 IEEE.

The limitation of using standard similarity measures is that it lacks the ability to model non-
linear dependencies, hence unable to map high-level visual appearances with human-level
semantic concepts. One way to close this semantic-gap is to project deep feature into linear-
space where standard metric can be useful in calculating linear distance. Siamese[46] was
proposed to fine-tune the feature extraction network so that the similarity energy/L1-loss
is lower for features came the same class. Based on the same idea, Triplet architecture[47]
proposed to maintain a margin in squared Euclidean distance between features of positive-
positive pair and positive-negative pair. These methods require paired training data with
defined relationship which is not applicable in general similarity search.

[48, 49] proposed an end-to-end methods that map paired-input images into probability
of them being in the same class. It is done by simply having an binary/softmax layer
concatenated to the 2 feature extraction in the form of Siamese architecture. For image
retrieval task, [45] proposed to have a continuous output that predict the cosine similarity
between input pair. Besides the requirement of paired inputs, these methods do not
transform input into smaller representations and hence, in our application, require run
through the entire database for each query.

16

3 Background

3.1 Sampling-based Motion Planner

Configuration-space, or C-space, is defined by the Degrees of Freedom (DoFs) of robot. One
configuration point q in C-space, in this case, has J dimensions, representing J different
joints in the robot with respective joint limits. A path T with T steps is a sequence of T
configuration points.

q =
[
q1, · · · , qJ

]T
∈ RJ

T =
[
q0, · · · , qT

]T ∈ RT ×J
(3.1)

A valid path is a path that is able to link its initial configuration q0 with its target, while
respecting constraints C in kinematics and dynamics. Target Tq ← qT can be defined in
many forms, in this case it is defined as the 6D pose of end-effector/Tool Center Point
(TCP). Figuring out the qs in T require a planner that searches through Cfree, which is
region in C obtained after excluding collision Cobs between robot R and obstacles O, as
well as fulfilling all constraint Ccon.

Cobs =
{

q ∈ C
∣∣∣R(q) ∩ O ≠ ∅

}
Ccon =

{
q ∈ C

∣∣∣R(q) ∈ C
}

Cfree = (C \ Cobs) \ Ccon

(3.2)

SMP have shown promising performances in searching in complex environments. In contrast
to OMP which has explicit modelling of Cfree, SMP performs collision check and constraint
projection only upon sampling. RRT in particular is a type of incremental SMP in which qs
or vertexes are incrementally added into a search tree while the planner exploring C-space.
It is made out of several components:

• RAND_CONF(env, C) performs collision in env and random sampling in C-space uni-
formly across all dimension, followed by C constraint projection.

• NEAREST(G, q) search for the nearest vertex in tree G to point q, using algorithms
such as kd-tree with suitable distance metric.

• LOCAL(qnear, qrand) is a local planner that perform simple interpolation in Cfree

between 2 points.

• ARRIVED(G, Tq) is a distance metric that measures the proximity between vertexes of
tree G and target pose Tq.

17

3 Background

• CONNECT(q0, qT) traces all edges that link q0 and qT , then return the respective list
of vertexes.

• RAND_SHORTCUT(T) looks for new edges by applying LOCAL randomly among q ∈ T
to shorten T

• SMOOTHING(T) smooths T with joint-space interpolation.

RMPL1 is used here as the RRT library : env×task → T , where env is robot workspace/ob-
stacle definition. In this work, env contains the 3D model and 6D pose of all objects, hence
the planner has full knowledge of the workspace geometry. Whereas task consists of the
initial joint values q0, TCP target pose Tq, kinematic constraint C and allocated time for
planning tplan and optimisation topt. Algorithm 3.1 depicts the algorithm of RRT1.

Algorithm 3.1 Rapidly-Exploring Random Tree (RRT) motion planner1. env is robot
workspace definition. q0 and Tq are initial joint values and requested/query TCP target
pose. C is kinematic constraint on robot. G is the search tree consists of vertexes and edges.
tplan and topt are the time allocated for path planning and optimisation.

procedure RRT(env, q0, Tq, C, tplan, topt)
G.init(q0)
repeat

if time > tplan then
return ∅

end if
qrand ← RAND_CONF(env, C)
qnear ← NEAREST(G, qrand)
qnew ← LOCAL(qnear, qrand)
G.add_vertex(qnew)
G.add_edge(qnear, qnew)

until ARRIVED(G,Tq)
qT ←NEAREST(G, Tq)
T ← CONNECT(q0, qT)
while time < topt do
T ← RAND_SHORTCUT(T)
T ← SMOOTHING(T)

end while
return T

end procedure

1 Robot Motion Planning Library (RMPL) is a software used within DLR Robotics and Mechatronics
Center: https://wiki.robotic.dlr.de/Rmpl

18

3.2 C-Space Biasing

3.2 C-Space Biasing

[2, 17] have proposed methods to bias the sampling in C-space to improving sampling
efficiency and the overall execution time. Both methods start by building a database D
with paths generated for a particular repetitive task domain. Key-configuration points Qs
are then extracted from the database D for building biasing mechanism.

D =
[
T0, · · · , Tm

]T
∈ Rm×T ×J

Q =
{

Ψ (Ti)
∣∣∣ i ∈ m} ∈ R

∑m

i
|Ψ(Ti)|×J

(3.3)

Kernel Density Estimation In [17], all T in D are first optimised using Ψ[·] which
interpolates T into denser Qs and adds all of them into Q. KDE K is used to determine
regions of workspace where feasible paths are more likely to happen, according to the
distribution in Q. The kernel used is a multivariate Gaussian N , with 0 mean µ and
uncorrelated covariance Σ = I · σ2 where σ2 is the variance on dispersity of Q.

N (Q |µ,Σ) = 1√
(2π)J∥Σ∥

exp
(
−(Q− µ)TΣ−1(Q− µ)

2

)

K(Q) = 1
M

M∑
i=1
N
(
Q−Qi

h

) (3.4)

Gaussian Mixture Model In repetition sampling[2], T are not smoothed and Ψ[·] merely
takes the raw vertexes Q and adds then into Q. With the similar concept of estimating
regions with higher feasibility, GMM is used to approximate density distribution in Q. It
uses Expectation-Maximisation algorithm to estimate the mean µk, covariance Σk and
weight wk of each Gaussian components g ∈ G where G is the number of components.

Expectation:
pi,g = wgN (Qi |µg,Σg)∑G

j wj N (Qi |µj ,Σj)
(3.5a)

Maximisation:

µg = 1
ng

|Q|∑
i

pi,g Qi wg = ng

|Q| (3.5b)

Σg = 1
ng

|Q|∑
i

pi,g (Qi − µg)(Qi − µg)T ng =
|Q|∑

i

pi,g (3.5c)

Both methods, during inference, select a Gaussian kernel/components to draw samples
from. Moreover, repetition sampling utilises the weights of each components in GMM as
its second biasing mechanism. The chances of a component being selected for sampling is
proportional to its weight wg, therefore providing a feasibility ranking in C-space.

19

3 Background

Figure 3.1: Truncated ResNet-34 and DenseNet[53, 54]©2016 IEEE. The major different
between these two architectures is that Resnet’s skipped connections ended
with addition to the new channels; DenseNet’s skipped connections ended
with cascade to the new channels and therefore the number of output channel
increases without explicitly increasing the number of parameter.

3.3 Convolutional Neural Network

Over the years, there have been many modifications made since LeNet[50], an application
of CNN, was applied to recognise digits. AlexNet[51] revolutionised computer vision
community by bringing Multi Layer Perceptron back to life. GoogLeNet[52] improved
efficiency by using inception structure and bottleneck. ResNet[53] mitigated vanishing
gradient and proved that number of layers is somehow proportional to performance.
These are examples of contributions that have made machine surpassed human level in
ImageNet[32]. To further improve efficiency, DenseNet[54] proposed feature reuse by
having densely connected CNN and have shown to achieved the state of the art with lesser
parameters. Figure 3.1 depicts a comparison between ResNet and DenseNet.

Convolutional Autoencoder AE was first introduced by [55] and it was used for trans-
forming high dimensional input into low dimensional latent code representation. Convolu-
tional AE combined CNN and AE for transforming images. Modifications made on top of
AE are mainly to acquire various invariance properties and avoid over-fitting. Regularized
AE proposed to impose weight decay which favours small weights to avoid over-fitting.
Denoising AE [56] proposed to add random noise to the input image while maintaining a
clean reconstruction target, so is to train an encoder that is robust to wider range of input.
Contractive AE [57] on the other hand explicitly minimise the gradient of latent code with
respect to input to achieve the same robustness.

VAE [24] proposed to impose prior distribution on latent code by minimising Kull-
back–Leibler (KL) divergence between latent code and a prior distribution of choice.
To be able to back-propagate the KL divergence loss, the exact functional form of the prior
distribution need to be accessible. Therefore, simple prior distribution e.g. unit Gaussian
is always preferred than complex distribution e.g. Swiss roll.

20

3.3 Convolutional Neural Network

Figure 3.2: Before the attack the classifier was correct with 57%. After adding some very
subtle noise (adversarial attack) that is imperceptible by human, the classifier
changed it prediction to a wrong class with very high confidence[58].

Generative Adversarial Network Generative Adversarial Network (GAN) [59] was first
introduced to train generative model in unsupervised fashion e.g. [60]. Traditional generative
model such as directed or undirected graphical models often involve intractable computation
and require Markov chains. GAN is computationally more efficient by just training a
generator-discriminator pair. Moreover, the model design is also simplified since GAN
takes in theoretically any differentiable function. Its discriminator is trained to differentiate
between real and generated data point, whereas its generator is trained to generate realistic
data and confuses the discriminator.

Adversarial Autoencoder Adversarial Autoencoder (AAE) [61] proposed to combine
AE and GAN. It has a discriminators, a decoder and an encoder which also acts as a
generator. The generator-discriminator pair impose prior distribution to latent code,
while the encoder-decoder pair does dimension reduction and input reconstruction. Exact
functional form of prior distribution is no longer needed for back-propagation because
the discriminator acquires positive and negative samples directly without penalising KL
divergence. Dimensionality handled by the generator-discriminator pair is also smaller e.g.
R128 latent code compare to images e.g. R128×128, which makes the training of AAE easier
than image generating GAN.

Adversarial Examples Adversarial examples was first introduced as a reliability and
security threats for models trained with machine learning techniques. [62] and many other
have proved that neural networks and other techniques are highly vulnerable to adversarial
attacks. Adversarial attacks refers to techniques that generate slightly perturbed input
which then causes huge and destructive changes on the output. Figure 3.2 depicts an
example of the effect of adversarial attack on an image classifier.

[58] proposed Fast Gradient Sign Method (FGSM) as a way to generate adversarial examples.
[63] proposed an algorithm to train robust model against adversarial examples with variant
of attacks such as iterative and least-likely FGSM. [64] proposed to add noise to input data
before performing FGSM as to better estimate the local gradient of a data point.

21

3 Background

q μ σ x(μ, σ | x) , σ | x) | x))

x

μ ~ q(μ, σ | x)μ)

z ~ N μ σ(μ, σ | x) , σ | x))

σ ~ q σ(μ, σ | x))

(a)

(b)

Figure 3.3: (a) VAE and (b) AAE architecture [61].

3.4 Autoencoder Dimension Reduction

AE consists of an encoder and a decoder. The encoder Enc: x→ z transforms input x ∈ RI

into latent code z ∈ RL, where I ≫ L. Whereas the decoder Dec: z → x does the inverse
by transforming latent code back to input. This configuration requires the bottleneck
latent code in much lower dimensions to encapsulate all essential information needed
to reconstruct the input. Convolutional AE normally consists of multiple combinations
of Weight-Norm-Activate (WNA). Weight is a layer of trainable parameters such as
Convolutional Conv and Fully Connected layer fc. Norm is Batch Normalisation function.
Activate is non-linear activation function such as Rectified Linear Unit and Sigmoid.

Classical AE that relies only on minimising reconstruction loss ∥x−Dec(Enc(x))∥ often
maps inputs into distinct locations in latent space. This rather random latent code
scattering causes ‘holes’ in latent space where decoder has never been trained. As the
result, latent codes become meaningless outside a particular encoder-decoder pair, and
sampling in latent space becomes harder[65].

[24] proposed to regularise the distribution of latent space into Unit-Gaussian by first
transforming input into latent mean and variance Enc(µz, σz |x), then enforces Unit-
Gaussian distribution using KL divergence. [61] enforces latent space distribution with
adversarial discriminator D. This additional binary classifier D : z → [0, 1] is trained
to distinguish between samples from target distribution and latent code generated from
encoder. Figure 3.3 depicts the architecture of VAE and AAE. [66] proposed to use
maximum mean discrepancy with radial-basis-function and inverse multi-quadratics kernel
to regularise latent code’s mean within each mini-batch.

22

4 Methodology

The processes pipeline consists of 3 major segments: recording, training and inference, as
depicted in Figure 4.1. On top of the original pipeline from repetition sampling in [2],
vision modules are added in training and inference segments.

Recording Using a simulated environment, thousands of simulated planning scenes from
the targeted workspace scenario are created. The respective RGB and depth images are
paired with low variance paths generated by RRT for multiple pick and place tasks, and
stored in the database.

Training Key-configurations are extracted from the paths database, and they are then
used for fitting a GMM. Through the process, assignment probabilities among Gaussian
components are computer for each key-configurations. They are then stored in the database
together with the GMM definitions.

The AE that is designed to retrieve image from database AE-WA is then trained with only
images. While the AE that is designed to predict GMMs’ weights AE-WP is trained with
both images and assignments of key-configurations.

inference Upon query, the encoder from AE-WA is used to encode query scene and the
generated latent code is then used to search for K nearest neighbours in the database.
Those assignments from the nearest neighbours are aggregated to produce a new set of
weights for GMM, used by repetition sampling in the RRT. The other option is to use the
encoder and predictor from AE-WP to predict GMM’s weights directly.

Record
Images

Plan
Motion

 Image & Path

DB

Planning
Query

KNN
Search

Plan
Motion

Weights
Prediction

Path

Weights
Aggregation

Train
AE-WA

CNN

Compute
Key-Config

Fit
GMM

Key-Config & GMM

DB

Train
AE-WP

CNN

1. Recording

2. Training

3. Inference
image

image

assignment

assignment

GMM

path

encoder

encoder + predictor

weights

codebook

Figure 4.1: Processes pipeline.

23

4 Methodology

4.1 Database

Database is a collection of scenes. Each scene contains information regarding the workspace,
task and planned paths. It provides all information needed for the subsequence processes.
Diversity of this database, which is built entirely in simulated world, is designed to reflect
scenarios of the targeted real applications e.g. pick and place task for mobile robot.

4.1.1 Path Collection

Given a pair of scene and task, a path T with T step is generated using the RRT planner:

T ← RRT(env, task) (4.1a)

Since RRT planner has no guarantee in its optimality, due to a trade-off between quality and
speed, an evaluation metric is introduced to ensure the quality of generated paths collected
in the database. Through experiments, it is observed that the biggest sub-optimality
came from path variance in Cartesian-space. Reducing variance is especially important for
SMP in improving motion predictability and operational safety. The evaluation ,therefore,
projects T and determines whether it can be fitted by a simple straight line on the xy
Cartesian-plane. This left TCP’s Cartesian z-axis and rotation the only DoFs for obstacle
avoidance, which is acceptable in certain type of scene i.e. tabletop.

At first the path time-steps are converted into polynomial features with degree 1, whereas
joint values are converted into TCP xy Cartesian-coordinate using forward kinematic ϕ.
Then a ridge regression is formulated and the straight line parameters β are solved using
pseudo inverse.

X =

1 t0
1 t1
...

...
1 tT

 ∈ RT ×2 Y =

ϕ(q0)x ϕ(q0)y

ϕ(q1)x ϕ(q1)y

...
...

ϕ(qT)x ϕ(qT)y

 ∈ RT ×2 (4.1b)

min
β

∥∥∥Xβ − Y ∥∥∥2

2
+ λ

∥∥∥β∥∥∥2

2
−→ β∗ =

(
XTX + λI

)−1
XTY (4.1c)

R2 is a measure of goodness-of-Fit between data and prediction, range (-∞, 1]. It is used
to evaluate path’s simplicity by comparing it to the regressed straight line. RRT, hence,
generates simple paths by rejecting those with R2 < αT where αT = 0.9. Figure 4.2 depicts
paths with different R2.

RRT(env, task) =

RRT(env, task) if R2 ≥ αT

repeat otherwise
(4.1d)

R2 = 1−

∥∥∥Y −Xβ∥∥∥2

2∥∥∥Y − E[Y]
∥∥∥2

2

(4.1e)

24

4.1 Database

0.6 0.4 0.2 0.0 0.2 0.4 0.6

x
0.6

0.4

0.2

0.0

0.2

0.4

0.6

y

TCP Trajectory in xy-plane
Actual
Prediction

0.6 0.4 0.2 0.0 0.2 0.4 0.6

x
0.6

0.4

0.2

0.0

0.2

0.4

0.6

y

TCP Trajectory in xy-plane
Actual
Prediction

0.6 0.4 0.2 0.0 0.2 0.4 0.6

x
0.6

0.4

0.2

0.0

0.2

0.4

0.6

y

TCP Trajectory in xy-plane

Actual
Prediction

Figure 4.2: Comparisons between the simplicities of generated paths for 3 different scenes.
Upper row are the paths in Cartesian-space, lower row are the respective
comparison between its xy-plane projection and the regressed straight line.
From left to right the R2 scores are: 0.96, 0.98 and 0.64.

To further ensure paths collected in database are free from redundancy as much as possible
while using the simple RRT, the base axis is frozen at first until the planner consecutively
fails for several attempts. This is to make sure that the target is out of reach or block from
initial location, and moving the base is the only option to fulfil the task.

4.1.2 Scene Collection

Planning scene is perceived from robot’s perspective through 2 types of data: RGB and
depth images. Both data are produced from a simulated sensor tuned to match with the
hardware used in the targeted application. In addition, RGB images are used as free
semantic segmentation labelling for every pixel in every scene, which is something depth
data alone cannot provide easily. To do so, all objects appear in scene are colour-coded
based on their role: green for table, blue for obstacle, aqua for pick-target and black
for everything else. Hence, the semantic class size ρ ← 4. To provide more information
regarding the identity of individual object, each of them has small colour difference even
among the same class.

In order to avoid ambiguity in semantic labelling, RGB images are post-processed by
re-assigning distorted pixels, especially those at image edges, to its nearest non-distorted
neighbour. Figure 4.3 depicts the raw sensor data and the effect of RGB refinement.

25

4 Methodology

(a) Depth image (b) RGB image (c) Pixel refinement

Figure 4.3: (a) and (b) are the images captured from robot’s perspective, (c) depicts the
effect of refinement on RGB image for tabletop scene.

4.2 Nearest Neighbours Retrieval

The purpose of having a database is to improve planning time by simply reusing a ready
solution when queried. However, the degree of improvement rely heavily on whether the
right data is fetched at the right time. AE is proposed for this task, by reducing the
dimension of scene in the form of 2D depth image x ∈ Rw×h, into latent code z ∈ RL

with length L, where w × h≫ L. AE constructed with neural network requires no hand-
crafted feature and yet learn to represent high dimensional input using low dimensional
representation. Through supervised training, the resulted latent code is a useful descriptor
in database. Its small dimension makes efficient database search. Together with fast
network forward-pass, the overall planning time of a SMP is expected to improve.

4.2.1 Network Architecture

The encoder Enc(z |x) is responsible to, given an input x, output a set of continuous latent
code z ∈ RL. Input x refers to depth image that has been scaled to R64×64. With latent
code z as input, the decoder Dec(x̂c, x̂s, x̂b | z) produces a clean reconstruction x̂c, semantic
segmentation x̂s and object boundary prediction x̂b of the input x. Since the objective
is to have high quality latent code that encode the spatial relation of objects in a scene,
there is no skip connections linking between encoder and decoder. All information must
go through the only latent code bottleneck. DenseNet[54] architecture is the backbone of
this AE and it consists of mainly dense-layers and transition-layers. A dense-layer is a
set of WNA combination. This proposed combination is different from the original NAW
combination adopted from ResNet[67]. Due to the difference in the construction of skip
connection, i.e. addition vs concatenation, the original combination concatenates output of
Weight and therefore, required to repeatedly computes the same Norm-Activate in every
subsequence dense-layer. Since Norm-Activate make no difference when placed before or
after feature concatenation, our proposed combination prevents unnecessary computations
by concatenates activated feature directly.

26

4.2 Nearest Neighbours Retrieval

Conv 1x1

BatchNorm

ELU

Conv 3x3

BatchNorm

ELU

Concat

w x h x c

w x h x k

w x h x (c+k)

w x h x 4k

(a) Dense layer

Dense-Layer

Dense-Layer

Dense-Layer

. . .

w x h x (c+k)

w x h x (c+2k)

w x h x (c+nk)

w x h x c

Dense Block i

Conv 1x1

AvgPool 2x2

BtachNorm

ELU

w x h x

 x x

c+nk
2

w
2

h
2

c+nk
2

Conv 1x1

BatchNorm

Dropout

w x h x
c+nk

2

Transition Layer i Encoder Decoder

Dense Block i+1

. . .

Dense-Layer

UpSample 2x 2w x 2h x
c+nk

2

Dropout ELU

(b) DenseNet configuration

Figure 4.4: (a) is the configuration of Dense layer with bottleneck. (b) depicts the
formation of Dense block and the configurations in Transition layer for
Encoder and Decoder separately.

A dense-layer produces k = 40 new channels, known as growth rate. When the number of
channel c of input feature map is large, namely c ≥ 5k, dense-layer deploys a bottleneck
between two WNA combinations. The first WNA’s Weight has 1× 1 kernel and serves
mainly as dimension reduction by reducing the number of channel to 4k. While the second
WNA generates new k new channels with input channel c < 5k. This is different from [54]
where bottleneck WNA always exists regardless of the size of input channels. Figure 4.4(a)
depicts a dense-layer with bottleneck WNA.

Dense-block is an aggregation of dense-layers whose output are concatenated. To improve
perception range, dilated convolution[68] is adopted in every dense-layer in a dense-block.
The amount of dilation in each Conv of dense-layer grows from 1 to 3 and repeat until the
end of dense-block. This configuration provides a wider range of feature scale dense-block
can learn from as it gets deeper.

While dense-layers increase the number of channel in constant spatial size, transition-
layer changes the spatial size between dense-blocks. Pooling and up-sampling are used in
transition-layers in encoder and decoder to up and down-scale feature map respectively.
Besides, transition-layer also does bottleneck dimension reduction with 1× 1 kernel Conv
to reduce the number of channel accumulated from the preceding dense-block. Dropout[69]
is also performed here, instead of in dense-layers, with drop probability 0.2. Figure 4.4(b)
depicts the spatial configuration between dense-layer, dense-block and transition-layer.

Both encoder and decoder has 4 dense-blocks, each contains 2/3/4/5 dense-layers. Decoder
is a mirrored version of encoder in most of its configuration. After the 4th dense-block in

27

4 Methodology

Dense Layer Transition Layer
Conv / ConvT 8x8 Transition Layer without pooling / upsampling
BatchNorm + ELU Conv 3x3
Latent Code Input / Output

64

64 32

32
16

16

8

8

8

8

1
1

16

16

32

32

64

64

1 41
80

120

80
64

80 120

80

41
40

1

1

1

x

xrec

xseg

xbouz

Figure 4.5: AE architecture.

encoder, latent code z is produced by a Conv with 8× 8 kernel. The spatial size becomes
1× 1 and the number of channel c = L = 64 where L is the length of latent code z ∈ RL.
Latent code is then fed into decoder following the WNA sequence. The end of decoder
consists of 3 output heads with 3× 3 kernel Conv respectively.

4.2.2 Data and Augmentations

There are in total 5 types of data used in the training of this network:

• xxx is depth image the network is expected to receive as the only input. It should be
either come directly (after scaling) from depth sensor of real robot during inference,
or realistically rendered in simulation during training.

• xexexe is embedding input used for latent code embedding in Equation (4.4) during
training. It has less data augmentation than x, but maintain a sense of realism in
its rendering. The discrepancies between x and xe tell the network which features it
should stay invariant of. It is used as input during codebook writing in Section 4.2.5.

• xcxcxc is clean input or reconstruction target used for reconstruction loss in Equation (4.2).
It has no data augmentation and contains only related pixels. The discrepancies
between x and xc tell the network which ‘objects’ it should be paying attention on.

• xsxsxs is semantic segmentation label used for cross-entropy loss in Equation (4.2). It
contains ρ = 4 semantic classes: tabletop(green), obstacle(blue), target object(aqua)
and background/anything-else(black).

• xbxbxb is object boundary label in binary form used for binary-cross-entropy in Equa-
tion (4.2). While semantic segmentation provides spatial arrangement among different
classes, boundary prediction provides additional distinctions among adjacent objects
with the same semantic class.

28

4.2 Nearest Neighbours Retrieval

(a) x (b) xe (c) xc (d) xs (e) xb

Figure 4.6: Types of data used in training.

Since the entire training involves no real data (from real sensor), realism and diversity of
synthetic training data is curial for generalisation in real-world scenario. Training data
generation should takes into account the hardware properties of the targeted application.
Here, for example, the properties of depth image acquired by passive stereo camera is used
as realism standard and artificially added as mush as possible into synthetic data.

• Baseline Shift. The first property is the blind region at image horizontal boundary
caused by cameras baseline shift. This blind region grows as object’s distance shorten.
To implement this synthetically, left most columns are nullified according to the
depth values of its’ left most pixel in respective rows.

• Depth Shadow. Occlusion is another property that defines stereo vision. To
implement it, depth shadow is added right next to edges in depth image. Pixels
are nullified in the opposite direction of horizontal image gradient with amount
proportional to gradient magnitude. Since the main camera is the one on the left,
shadows can only be chased to the left where right camera cannot see.

• Homogeneous Dropout. One of the major obstacle for passive stereo camera is
homogeneous region. Features cannot be extracted from texture-less region which
causes feature-matching to fail. To simulate failure in stereo-matching, pixels are
randomly nullified according to their distance to nearest image edge with gradient
larger than certain threshold. Perlin[70] noise is used to mask the homogeneous
region so that the nullification looks more realistic. Figure 4.7 depicts each step of
augmentation for depth image.

Techniques such as flip, in-plane rotation and affine-transformation are not suitable as
they change the spatial labelling of training data in this case. Below are some other image
augmentation techniques used for depth image.

• Crop & Inverse. Distance cropping is used to ensure that only relevant values are
retained and distanced value are discarded to avoid confusion. Inverting distance
values has the effect of providing higher weighting for closer object and lower weighting
for distanced object.

• Gaussian Noise. Gaussian noise is added to all valid pixels to simulate sensor’s
accuracy and repeatability. Besides, noise with higher magnitude also motivate
denoising ability in AE as proposed in [56].

29

4 Methodology

Figure 4.7: Data augmentations on depth image. The original depth image is first inverted,
followed by baseline shift, depth shadow and homogeneous dropout on objects
and table.

• Perturbed Normalisation. Data normalisation is a common pre-processing step
for neural network. By randomly perturbing the normally fixed mean and standard
deviation values, normalisation not only can whiten input data but also augment
scale and contrast of depth value.

All augmentations above are applied on noisy input x during training as pre-processing.
Embedding input xe only has baseline shift, depth shadow, removal of all background pixel
and fixed normalisation as pre-processing. Clean input xc on the other hand only has
removal of all background pixel and fixed normalisation as pre-processing.

4.2.3 Adversarial Augmentation

Adversarial examples is used here to improve the robustness of encoder by further avoiding
synthetic feature over-fitting. Hand-crafted data augmentations are useful up to point
because they offer rather predictable modifications. Adversarial examples on the other
hand provide a dynamic and adaptive approach in generating modifications on input data.
It automatically discovers the weakness of the network with respect to a loss function, and
then modify the input data accordingly to exploit the weakness. The aim here, however,
is to widen the synthetic training data domain and hope that it increases its intersection
with real data domain.

Algorithm 4.1 depicts the proposed algorithm. It is a randomised combination of multiple
type of attacks: FGSM, iterative FGSM and least-likely FGSM. The idea of FGSM is to
compute the gradient of loss with respect to input x, and then modify x with this gradient.
Least-likely FGSM changes the training targets and modification operation i.e. + to −.
Whereas iterative FGSM repeats the process with bounded augmentation strength.

Most adversarial attacks have been applied on classification tasks, hence the major difference
here is the replacement of cross-entropy loss with multiple type of loss functions. Unlike the
algorithm proposed in [63], the entire batch of input data is involved in the augmentation

30

4.2 Nearest Neighbours Retrieval

due to the randomisation and the different in its purpose. The only drawback here is the
additional computations which involve multiple forward and backward-passes.

Algorithm 4.1 Randomised Adversarial Examples as Data Augmentation. Ub,i,f are
uniform samplings for boolean, integer and float. n is the batch size of input data
x = {xd}nd=1. ρ is the number of semantic classes. Inputs are noisy depth image x, clean
depth image xc, semantic segmentation xs and object boundary xb of the respective depth
image. Hyperparameter ε controls the augmentation strengths. The output is a batch of
augmented training data.

procedure AdversarialAugmentation(x, xc, xs, xb, ε)
l← Ub(0, 1)
if l then

x̄c ← xc

x̄s ← xs

x̄b ← xb

else
ϱ ∈ Rn ← Ui(1, ρ− 1)
x̄c ← −xc

x̄s ← (xs + ϱ) mod ρ
x̄b ← (xb + 1) mod 2

end if
k ← Ui(1, 4)
ω ∈ Rn ← ε

k · Uf (0, 1)
xadv

0 ← x

for i ∈ [0, ..., k − 1] do
x̂c

i , x̂
s
i , x̂

b
i ← Dec

(
Enc

(
xadv

i

))
∇L ← ∇xadv

i
Lrec

(
x̂c

i , x̄
c
)

+∇xadv
i
Lseg

(
x̂s

i , x̄
s
)

+∇xadv
i
Lbou

(
x̂b

i , x̄
b
)

if l then
xadv

i+1, j ← xadv
i, j + ωj · sign∇Lj , ∀j ∈ n

else
xadv

i+1, j ← xadv
i, j − ωj · sign∇Lj , ∀j ∈ n

end if
end for
return xadv

k

end procedure

4.2.4 Loss Functions

There are 3 losses for 3 decoder outputs Dec(x̂c, x̂s, x̂b | z) respectively. The first loss
function is designed for decoder to reconstruct a clean version of depth image. Since all
inputs are normalised, the reconstruction loss Lrec function is a Huber or Smooth L1 loss
which is less sensitive to outliers. The second and third loss functions are cross-entropy

31

4 Methodology

Lseg for multi-class classification in semantic segmentation, and binary cross-entropy Lbou

for binary classification in object boundary prediction.

Lrec

(
x̂c, xc

)
= 1
n ·K

n∑
i

K∑

1
2
(
x̂c

i − xc
i

)2
if

∣∣∣x̂c
i − xc

i

∣∣∣ < 1∣∣∣x̂c
i − xc

i

∣∣∣− 0.5 otherwise

K

Lseg

(
x̂s, xs

)
= −1
n ·K

n∑
i

K∑log

 exp
(
x̂s

i, xs
i

)
∑ρ

j exp
(
x̂s

i, j

)

K

Lbou

(
x̂b, xb

)
= −1
n ·K

n∑
i

K∑[
xb

i log
(
σ
(
x̂b

i

))
+
(
1− xb

i

)
log

(
1− σ

(
x̂b

i

))]
K

(4.2)

[71] proposed online bootstrapping in the context of semantic segmentation, a method in
which only the top K pixels with largest loss are selected for gradient computation and
update during back-propagation. It neglects easy pixels and focuses the updates on solving
difficult regions. It is implemented in all 3 decoder losses, [·]K above depict the set of top
K pixels with largest loss within a spatial size Rw×h of each output image.

In order to avoid training GAN with discriminators as in [61], or having to predict mean
and standard deviation as in [24], distribution properties of latent code generated by
encoder are directly evaluated in the loss function. Lsty simply enforces properties of unit
Gaussian on latent code by penalising mean and standard deviation with L2 loss at 0 and
1, which is different from directly cultivating latent code in true Gaussian distribution.

Lsty

(
z
)

= 1
L

L∑
i

mean ([zi]n)2 + (1− std ([zi]n))2 (4.3)

where mean and std are mean and standard deviation operation, whereas [zi]n is the set
of ith latent code across entire mini-batch.

Embedding loss Lemb ∈ Rn penalises deviation of latent codes between noisy input x and
cleaner embedding input xe. The aim is to reduce variance in the AE bottleneck so that the
generated latent code contain only essential information, regardless of the augmentations
applied on x. Cosine similarity is used to compute similarity between 2 latent codes.

Lemb

(
z, ze

)
= 1− z · ze∥∥z∥∥2

∥∥ze
∥∥

2
(4.4)

Lemb is constructed with a modified focal loss[72] scaling which further diminishes contribu-
tions of nicely predicted inputs and focus more on input it still cannot predict properly. αf

is a hyper-parameter, 0 means no scaling. The way it differ from online bootstrapping used
in Equation (4.2) is that focal loss includes all instance of losses, which is more suitable
in the domain of Rn compared to Rw×h where n≪ (w × h). The final AE loss function
is the combination of all losses with scaling hyper-parameters αs and αe that control the
contribution of Lsty and Lemb.

LAE = Lrec + Lseg + Lbou + αsLsty + αe
1
n

n∑
i

Lemb, i exp(−Lemb, i)αf (4.5)

32

4.3 Biased GMM Sampling

4.2.5 Database Search

After AE training has completed, all scenes from database in the form of depth images
are transformed into latent code. This is done by using the embedding input xe as input,
forward-pass it through encoder. The generated latent code(codebook) are then appended
back into database accordingly.

Retrieving nearest neighbours of an query scene is performed in 2 steps. First, depth image
of the query scene is forward-passes into encoder to get its latent code zq. Second, cosine
similarity ∡ is computed between query latent code zq and all latent code recorded in
database. The K nearest neighbours S of the query scene is then the top K [·]K scenes in
the database with the highest similarity score.

S =
[{

∡ (zq, zi)
∣∣∣ i ∈ D}]

K

∡ (zq, zi) = zq · zi∥∥zq∥∥2
∥∥zi
∥∥

2

(4.6)

4.3 Biased GMM Sampling

This work proposes the third biasing mechanism for GMM-based sampling, on top of
Gaussian partitioning in C-space and importance weighting among Gaussian components.
The main idea is to change the, otherwise fixed, weights of Gaussian components according
to information deduced from query scene. This allow the fixed task-space oriented biasing
in [2] to have the ability to adapt according to situation posted in every queries.

4.3.1 GMM Fitting

In improving the quality of C-space density estimation by GMM, a new key-configuration
extraction technique is proposed to first improve the quality of data used in fitting GMM.
Given a low variance path from RRT, a group of corresponding straight line paths T are
constructed with linear equation a = bm+c, where b is path time-steps, c is the a-intercept,
and m is the different between start and end point in the dimension of a. These straight
line paths are constructed with TCP’s translation and rotation in Cartesian-space using
forward kinematic ϕ.

T ← RRT(env, task) (4.7a)

T j =
[(
ϕ(TT)j − ϕ(T0)j

)
i+ ϕ(T0)j

]T

i=0
(4.7b)

Discrepancies between actual and straight line path in Cartesian-space indicate the likeli-
hood of informative configuration. The farther the actual path deviates from the optimal
path, the more informative its configurations become. These deviations are, therefore, used
as a measure to extract key configurations Q from a path.

33

4 Methodology

0 10 20 30 40 50 60

time step
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

m
et

er

Straight line and Actual TCP Trajectory
base_x
tcp_x
tcp_y
tcp_z
tcp_r

0 10 20 30 40 50 60

time step
0.6

0.4

0.2

0.0

0.2

0.4

0.6

m
et

er

Trajectory Discrepancy and Key-Config Density

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ns

ity

0 20 40 60 80 100 120 140 160

time step
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

m
et

er

Straight line and Actual TCP Trajectory

base_x
tcp_x
tcp_y
tcp_z
tcp_r

0 20 40 60 80 100 120 140 160

time step
0.6

0.4

0.2

0.0

0.2

0.4

0.6

m
et

er

Trajectory Discrepancy and Key-Config Density

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

de
ns

ity

Figure 4.8: 2 paths in the process of key-configuration extraction.

Local extremal detector X : {δ} → {e}, where e is a local extrema. e has a collection of
extrema with magnitude at least the lower extrema threshold αxl. The density distribution
of these somehow noisy key configuration candidates are then estimated with KDE K. The
final key configurations are the local maxima of the density function with magnitude at
least the upper extrema threshold αxu.

e =
{
X
(
ϕ (T)j − T j

) ∣∣∣ |e| ≥ αxl, j ∈
{

basex, tcpx,y,z,r

}}
(4.7c)

Ψ(T) =
{
X
(
K
(
e
)) ∣∣∣ e ≥ αxu

}
(4.7d)

Besides 2 magnitude thresholds, there are another 3 bandwidth parameters for 2 extrema
detectors and 1 KDE. The extracted key configuration Qs in joint space are then stored
in Q for building GMM as [2] in Equation (3.5). Figure 4.8 depicts the process of this
extraction in plots and their implications in Cartesian-space.

34

4.3 Biased GMM Sampling

4.3.2 Vision Biasing

Weights Aggregation Besides scene similarity score Si that ranges [−1, 1] computed
with cosine similarity between latent codes, target pose proximity ψ that ranges [0, 1] is
also applied on x, y, and r of TCP in Cartesian-space. ψ is an additional weightings used
to scale the contribution of each paths contained in all K nearest neighbours’ scenes, based
on the differences between query xyrq and recorded xyrj target poses.

S ′ =
{
Si · ψ(xyj , xyq |αxy) · ψ(rj , rq |αr)

∣∣∣ j ∈ |T |i, i ∈ K
}

(4.8a)

ψ(a, b |α) = 1
2cos

(
min(π, α ∥a− b∥2)

)
+ 1

2 (4.8b)

S ′ is the new set of similarity score that has taken both scene and task similarities into
account, for all paths in K nearest neighbours. The proposed new weights for each Gaussian
components w′

g is a weighted average of assignment probabilities pi,g of all key-configurations
Q contained in all paths in S ′, according to Equation (3.5).

w′
g = 1

W

|S′|∑
j

|Q|j∑
i

S ′
j · pi,g W =

G∑
g

w′
g (4.8c)

w∗
g = αw supS ′w′

g +
(
1− αw supS ′)wg (4.8d)

In calculating the final weight w∗
g , the supremum of similarity score supS ′ is used to

adaptively scale the update factor αw, reducing update when there is no good match
found. High αw allows vision biasing to takeover based on the current scene and ignores
the statical ranking of components derived from database, and vice-versa. Therefore, this
method has αw and αxy, r as experimental hyper-parameters.

Weights Prediction In addition to the original AE, a weight predictor W(w′ | z, task)
is built to predict the weights of Gaussian components directly from latent code z and
task description task. W is constructed as an output head branches out at AE bottleneck
with 2 additional fully-connected layers, and produces w′ ∈ [0, 1]G after a softmax layer.
Figure 4.9 depicts the new AE architecture.

LW = DKL(w′ |w)K

= 1
n

n·K∑
i

[
wi log wi

w′
i

]
K

LAE ← LAE + αWLW

(4.9)

Weights predictor loss LW is a KL divergence loss that minimises the differences in
probability distribution between predicted weights w′ and actual weight w. The top K
operator [·]K bootstraps/includes only the top K components’ weight out of G in computing
losses and gradient updates for every data in a mini-batch of size n. The target distribution
wg came from the assignment probability pi,g of key-configuration {Q} ← Ψ(T) from a

35

4 Methodology

Dense Layer Transition Layer
Conv / ConvT 8x8 Transition Layer without pooling / upsampling
BatchNorm + ELU Conv 3x3
Latent Code Input / Output
Fully Connected Task

64

64 32

32
16

16

8

8

8

8

1
1

16

16

32

32

64

64

1 41
80

120

80
64

80 120

80

41
40

1

1

1

4 5G G

xrec

xseg

xbou
z

x

w’

Figure 4.9: Network architecture of AE with direct components’ weight prediction.

path T randomly chosen in scene. pi,g are summed component-wise and re-normalised if
there exists more than one Q in the selected path. The corresponding task description
task ∈ R4 comprises: 1. task type: either pick or place, represented in -1 and 1; 2. target
pose in x, y, and in-plane rotation of TCP in Cartesian-space.

Due to the very peaked weight distributions pi,g, the top K of KL divergence across G
components normally only consist of those undershoot wg

w′
g
> 1 and a lot of those with

wg = 0. Those overshoot wg

w′
g
< 1 are then indirectly excluded. Since the network has the

tendency to bias itself into learning only the empirical weight distribution of the entire
dataset D, penalising only the undershoots has the implication of learning scene specific
knowledge while preserving the background information.

w∗
g = αwW (zq, taskq)g + (1− αw)wg (4.10)

During inference, weight predictor W is supplied with latent code zq ← Enc(xq) and queried
target pose xyrq, and produces new weight w′. With the update factor αw, the final weight
w∗ is computed similar to Equation (4.8) but without adaptive scaling.

36

5 Evaluation

5.1 Database Creation

The selected application scenario for evaluation is a tabletop pick and place scene with Small
Load Carrier (SLC) as object and Autonomous Industrial Mobile Manipulator (AIMM)[73]
as manipulator. Table, the platform that serves all objects in a scene, is placed at a fixed
position with a variable height vertical extension. Whereas SLC, the only type of object,
can appear in 3 forms: obstacle, pick or place-target. An obstacle is a constellation of
SLCs in either horizontal, vertical or both directions, arranged in shoulder to shoulder
manner. Whereas pick-target is an individual isolated SLC, oriented in the way where it
can be pick-up directly. Place-target, in contrast, is just a vacant place on the table where
new SLC can be placed on.

AIMM as depicted in Figure 5.1, is a mobile platform (3 DoFs) with a robotic arm (7 DoFs)
and a gripper (2 DoFs). It is equipped with one stereo camera mounted on a pan-tilt unit
(2 DoFs) elevated from its base. This sensor produces depth image in, here defined as, the
robot’s perspective, used as the main sensor in perceiving robot workspace.

Figure 5.1: AIMM1in simulated robot workspace using Gazebo and ROS2.

1DLR AIMM: www.dlr.de/rm/en/desktopdefault.aspx/tabid-11409

37

5 Evaluation

5.1.1 Scene Construction

There are 7 steps in constructing a scene for the targeted planning scenario in simulated
workspace2. U(lb, ub) or U(±b) depicts uniform random sampling between lower and upper
bound. Procedure:

1. Robot base joints are randomly sampled, around a fixed relative distance with table
(δxtable, δytable).

• base x-axis, basex ← U(±0.8m) + δxtable

• base y-axis, basey ← U(±0.05m) + δytable

• base in-plane rotation, baser ← U(±0.1rad)

2. Camera pan-tilt joints are randomly sampled around a default viewing direction
(camp0, camt0).

• camera pan, camp ← U(±0.05rad) + camp0

• camera tilt, camt ← U(±0.05rad) + camt0

3. Table height changes while xy position remain constant.

• table height, tablez ← U(±0.05m)

4. Scene background is randomly generated with extruded perlin noise.

5. Pick-target placement.

• Number of pick-target ← U(1, 2)

• Pose on tabletop relative to robot base

– slcx ← U(±0.35m) + δxbase

– slcy ← U(±0.12m) + δybase

– slcr ← U(±0.7rad)

• Check table occupancy before inserting

• Add load in SLC with extruded perlin noise

6. Obstacle placement.

• Number of obstacle ← U(2, 7)

• Type of obstacle ← U(1, 5)

• Layer of obstacle ← U(1, 3)

• Pose on tabletop.

2Gazebo+ROS: gazebosim.org/tutorials?tut=ros_overview

38

5.1 Database Creation

Robot base
boundary

Robot

Camera

Tabletop

Task
boundary

Background

(a) Scene Layout

(b) Scene breakdown

(c) Tabletop occupancies

Figure 5.2: (a) is the robot workspace configuration. (b) breakdowns each task comprised
in (1st). When one pick-target (upper aqua) is active, the second pick-target
is treated as obstacle and vise-versa(2nd, 3rd). Place-target (orange) does not
play any obstacle role(4th). (c) is the free space detection for place-targets.

– slcx ← U(lengthtablem)

– slcy ← U(widthtablem)

– slcr ← U(2π rad)

• Check table occupancy before inserting

• Add load in SLC with extruded perlin noise

7. Place-target placement.

• Search for free space

• Insert one at the centroid of each blob.

Perlin noise[70] is used in generating uneven surfaces for background and SLC load.
To do that, a 2D perlin noise image is first generated, followed by an upward extru-
sion(multiplication) and conversion into mesh surface. Figure 5.1(b) depicts perlin loads
and background with different texture.

There are 2 types of manipulation targets for robot TCP pose: pick and place. Both targets
are located within the task boundary, which roughly represents the robot perception range
at its initial location. This initial robot base location is randomly assigned within the
robot base boundary as depicted in Figure 5.2(a). Moreover, SLCs’ roles switch according
to the current planning task. Figure 5.2(b) depicts the breakdown of an occupancy map.

39

5 Evaluation

Free space detection is done by convolving/correlating the tabletop occupancy map with
kernels the size of a SLC, gripper and arm footprints, rotated in multiple orientations.
Full kernel return indicates collision-free SLC placement at that specific orientation. Each
blob of free-space is assigned one place-target at the centroid. Figure 5.2(c) depicts the
free-space detections and occupancy maps of the tabletop scene at different scenarios.

RGB and depth images are produced from a simulated depth sensor, designed according
to the specifications of rc-visard3. It is a stereo camera that is installed on the pan-tilt
unit of the real AIMM. With 65mm baseline, it is suitable for tabletop scenario. There are
in total 14000 training data generated using these settings. The first half of them contain
all training labels i.e. image-path pairs, and the second half contain only images. With full
information, the former form the database D with 7000 scenes, and it is able to train the
all networks in the pipeline. Whereas the latter, which were acquired in relatively easier
and faster pace, is excluded from updating weights prediction head in Equation (4.9).

5.2 Scene Retrieval Accuracy

5.2.1 Experiment Condition

Every data needs to go through several augmentations before being used in training. As
mentioned in Section 4.2.2, the intensities of each augmentations are depicted in Table 5.1.
Distance crop is applied pixel-wise. Nullified pixels are then excluded from noise addition.
Adversarial augmentation in Algorithm 4.1 is applied at the end on normalised values.

Augmentation Intensity

Distance Crop x←

0 if x < 200mm
0 if x > 1200mm
x otherwise

Gaussian Noise x← x+N (0, Uf (0, 0.02))
Perturbed Norm µx ← µx + U(±0.05)

σx ← σx + U(±0.03)
Adversarial Example ε = 0.3

Table 5.1: Data augmentations.

Parameter Value
Lrec : K w×h

10
Lseg : K w×h

10
Lbou : K w×h

10
Lsty : αs 0.005

Lemb : αe 0.01
αf 2

Table 5.2: Hyper-parameters for
networks’ training.

The original image has spatial size 240× 320. After data augmentations, it is scaled to
w × h = 64× 64 and form a training mini-batch with batch size n = 128. Training is then
ran for 210 epochs. Weight initialisations for the network is done with [74]. AMSGrad[75],
the improved Adam[76] is used for gradient descent during back-propagation. The first and
second moment parameter β1, β2 is fixed at 0.9 and 0.999 with no weight decay. Cosine
learning annealing with warm restart [77] is used to schedule the learning rate for every

3roboception rc_visard 3D Sensor: roboception.com/de/rc_visard

40

5.2 Scene Retrieval Accuracy

0 50 100 150 200
Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Le
ar

ni
ng

 ra
te

Learning rate schedule
Cosine Annealing + Warm Restarts
Cosine Annealing
Steps

Figure 5.3: Comparison of learning rate annealing methods.

epoch during training. It has initial learning rate 10−3 and 3 warm restarts throughout
the training epochs. Figure 5.3 depicts the comparison between multiple learning rate
scheduling schemes. The number of trainable network parameters is 1.9M, which split
equally (0.95M) among encoder and decoder.

5.2.2 Semantic Scene Similarity

Performance Metric There are 3 losses used in evaluating the performance of decoder
in Equation (4.2), but none of them are suitable as the performance metric in the context
of nearest neighbours retrieval. To evaluate the similarity between query xq scene and K
retrieved scenes S from Equation (4.6), their respective semantic segmentation labels xs

are used for direct comparison.

sim(as, bs) =
∑

k∈w×h

1 if as
k ∧ bs

k

0 otherwise

S3 = 1
w × h

1
t

1
K

t∑
i=1

K∑
j=1

sim(xs
qi , x

s
Sj)

(5.1)

Semantic Scene Similarity (S3) is computed across the entire test set t with 500 test scenes,
averaging the averaged similarity of semantic label between queries and their respective K
nearest neighbours, where K = 5. It is then normalised with total number of pixel w × h
per scene to get a scalar output ranging [0, 1]. This score represents the performance of
nearest neighbour retrieval, but it depends very much on the size of the database. Larger
database will always have higher chances in getting more similar matches. To be consistent,
all S3 stated below are measured using the same database with 7000 complete scenes.

Multi-Tasked Network This experiment is designed to investigate the effects of multi-
tasking a single network. Specifically, the effects of each decoder’s losses in Equation (4.2)
and their combinations are investigated below by judging on network abilities in nearest
neighbours retrieval using S3. ✓represents the present of the loss function during training.

41

5 Evaluation

Figure 5.4: Encoder’s inputs (first column) and three
types of decoder’s outputs.

rec seg bou S3

✓ 0.7540
✓ ✓ 0.7533
✓ ✓ 0.7900
✓ ✓ ✓ 0.7929

Table 5.3: Four combinations of de-
coder’s losses and their
corresponding S3.

This experiment shown that the network is capable of multi-tasking, and because of
multi-tasking by including all reconstruction rec, semantic segmentation seg and boundary
prediction bou it out-performed those did not. Since the training objective is to improve S3,
their hyper-parameters are not tuned in perfecting decoder’s outputs. Figure 5.4 depicts
rather poor decoder outputs by the best performing combination.

Latent Space Regularisation This experiment is designed to investigate the effects of
regularising latent code. Specifically, the effect of each AE bottle-neck’s regularisations in
Equation (4.5) and their combinations are investigated below by judging on network abilities
in nearest neighbours retrieval using S3. ✓represents the present of the regularisation loss
function during training.

4 2 0 2 4
z

0

2500

5000

7500

10000

12500

15000

17500

20000

fre
qu

en
cy

Regularised

40 20 0 20 40 60
z

0

2500

5000

7500

10000

12500

15000

17500

20000

fre
qu

en
cy

Unregularised

Figure 5.5: Regularised and unregularised latent
code distribution.

sty emb S3

✓ ✓ 0.7906
✓ 0.7886

✓ 0.7914
0.7929

Table 5.4: Four combinations of
latent code regularisa-
tions and their corre-
sponding S3.

42

5.2 Scene Retrieval Accuracy

This experiment shown that regularising latent code by penalising mean and standard
deviation sty, and clean input embedding emb do not help in improving S3. The effect of
regularising latent code, as shown in Figure 5.5, is obvious in restricting the variance of
latent code distribution but hindered the quality of encoding and eventually worsen S3.

Adversarial Augmentation This experiment is designed to investigate the effects of
augmenting training data using adversarial example. Specifically, the effect of different
augmentation strength ε in Algorithm 4.1 are investigated below by judging on network
abilities in nearest neighbours retrieval using S3.

Figure 5.6: Inputs (first column) and their respective
scaled augmentations.

ε S3

0 0.7891
0.1 0.7918
0.3 0.7929
0.5 0.7914

Table 5.5: Four different augmenta-
tion strength and their
corresponding S3.

This experiment shown that adversarial augmentation for this application indeed improved
the performance, and tuning is required to maximise the improvement. Figure 5.6 depicts
the actual augmentation applied on 4 example scenes, the first column is the normalised
input image x and the subsequence columns are xadv

k −x where [l = 0, k = 1], [l = 1, k = 1],
[l = 0, k = 3], [l = 1, k = 3]. For visualisation, ω ← εs

2 and the augmentations are then
scaled from [−ω, ω] to [0, 255].

inference This experiment demonstrates properties of the network during inference.
Specifically, time required for each steps in the inference pipeline is determined as depicted
in Table 5.6. During the experiment, real depth images with size 640 × 480 are used as
inputs. Data pre-processing includes image scaling, distance crop, invert and normalisation.
The total time required for transforming raw sensor data to nearest neighbours is ∼9.2ms.

Pre-processing 0.5
Encoder 8.0

KNN Search 0.7
Total 9.2ms

Table 5.6: Time required
in each step of
the inference
pipeline.

43

5 Evaluation

(a) Simulated queries (b) Real queries

Figure 5.7: The first columns are the queried scenes; the subsequence columns are the
retrieved neighbours in decreasing similarity score, labelled at the bottom.

The ability of applying knowledge learned in simulated environment onto real world is also
investigated. Figure 5.7 depicts the examples of nearest neighbours retrieval in simulated
and real planning scenes. The latter were captured with some offset in robot and camera
pose compared to those in database, resulted in lower overall similarity scores. Despite the
differences, this network is still able to function accurately for the nearer half of the scene.

5.3 Biased Sampling Efficiency

5.3.1 Experiment Condition

Out of all 14 DoFs, only 8 of them are included in motion planning. Robot is allowed to
move its base along the x-axis (1 DoFs) and arm (7 DoFs) while reaching for target. The
rest are set during scene construction and stay fixed during motion planning. There is one
kinematic constraint that require the z-axis of TCP to align and pointing upward all the
time. Moreover, TCP’s x, y, z translations and rotation around z-axis and base’s x-axis are
used in Section 4.3.1 for key-configuration extraction.

All experiments were conducted on a same test-set which were generated from the same
scenario with training data. This test-set, which is not part of the database, consists of 200
scenes, each of them contain 1 to 2 pick-tasks and 0 to 3 place-tasks. In total it contains
295 and 233 tasks respectively. The values that are being evaluated tsearch is the time
needed by planners in constructing its search tree G. In another words, tsearch is the time
needed for planner to ARRIVED, upper bounded by tplan as depicted in Algorithm 3.1.

44

5.3 Biased Sampling Efficiency

For final path optimisation, a constant time topt ← 0.3s is allocated for RAND_SHORTCUT and
SMOOTHING. The total planning time should include both tsearch, topt and inference time for
vision modules, but the latter are excluded when comparing among SMPs.

Performance Metric Area Under Cumulative Frequency (AUCf) is proposed to be the
main metric in comparing performances among SMPs. It represents the area under curve
of cumulative frequency of planning time histogram. At first, a histogram is constructed
with |t| = 528 instances of planning time took to solve the test-set. Trapezoidal rule is
then used to integrate the cumulative frequency Cf spanning from t = δt where δt← 0.1s
is the step for histogram, to t = T where T ← 5s is the threshold for failed attempt.

Cf(t) =
|t|∑
i

1 if ti < t

0 otherwise

AUCf = 1
|t|
(

T
δt − 1

) T
δt

−1∑
j=1

Cf(jδt) + Cf((j + 1)δt)
2 δt

(5.2)

The advantage of AUCf is that it is less susceptible to outlier compared to other performance
metrics such as mean, standard deviation and extrema used in [2]. Normalisation in AUCf
provides stabilities over changes of T and |t|, which differ according to applications. The
output value ranges from 0 meaning the planner failed the entire test-set, to 1 meaning
the planner solved each and every query in test-set with tsearch < δt.

Baseline Performance This experiment defined the baseline for all subsequence experi-
ments by determining the performances of RRT that uses uniform sampling U . Besides
AUCf , other planner’s properties are also determined: "R2" represents the averaged R2

scores of optimised paths; "Failure" represents the number of query planner failed to
solve within T ; "Median" and "Min" are the statistical median and minimum planning
time (in second) for solving the test-set. Moreover, performances of repetition sampling
with improved pipeline are evaluated through 3 planners with different number Gaussian
component G. Table 5.7 depicts the results of these 4 baseline planners.

U GMM
15G 30G 45G

R2 0.921 0.964 0.964 0.964
Failure 26 6 4 5
Median 0.057 0.056 0.057 0.059

Min 0.039 0.038 0.039 0.041
AUCf 0.906 0.966 0.967 0.970
∆AUCf (%) 6.0 6.1 6.4

Table 5.7: Baseline performances from RRT planners using uniform U and GMM sampling
with 15, 30 and 45 Gaussian Components.

45

5 Evaluation

The results reinforced the claims made in [2] that C-space biasing using GMM improve
sampling efficiency, in term of AUCf and number of failure. On top of that, the improve-
ments on R2 show that the proposed redundancy reduction measures helped not only in
collecting training data, but also improved the path optimality during inference.

5.3.2 Weights Aggregation

This experiment is designed to investigate the effects of vision assisted biasing by weights
aggregation of retrieved nearest neighbours. Specifically, the effects of proximity αxy,r

and weight update αw parameters as depicted in Equation (4.8) are investigated below by
judging on sampling efficiency using AUCf . The performance of uniform sampling U in
Table 5.7 is used as the baseline in calculating the difference ∆AUCf .

αxy αr αw
∆AUCf (%)

15G 30G 45G
5.0 2.0 1.00 6.8 6.4 4.5
7.0 2.5 1.00 7.0 7.0 4.7
12.0 3.3 1.00 6.6 6.7 4.2

Table 5.8: Search in proximity parameters.

αxy αr αw
∆AUCf (%)

15G 30G 45G

7.0 2.5
0.25 6.8 6.3 4.7
0.50 6.8 6.7 4.7
0.75 6.8 7.1 4.8

Table 5.9: Search in update parameter.

The best performing parameters combinations for each GMM are depicted in Table 5.8 and
5.9. All GMMs have improved results compared to U and their respective baselines, except
GMM with 45 Gaussian components which has worse performance with vision assisted
biasing using weight aggregation.

5.3.3 Weights Prediction

This experiment is designed to investigate the effects of vision assisted biasing by direct
weights prediction. Specifically, the effects of loss αW and weight αw update parameters as
depicted in Equation (4.9) are investigated below by judging on sampling efficiency using
AUCf . The performance of uniform sampling U in Table 5.7 is used as the baseline in
calculating the difference ∆AUCf .

αW αw
∆AUCf (%)

15G 30G 45G
1.0 1.0 6.7 7.4 7.7
1.5 1.0 6.5 7.3 8.1
2.0 1.0 7.1 7.3 7.8
3.0 1.0 7.5 7.4 7.5
4.0 1.0 7.2 7.4 7.2

Table 5.10: Search in loss parameter.

αW αw
∆AUCf (%)

15G 30G 45G

1.5 0.6 6.6 7.2 7.4
0.8 7.0 7.1 7.2

3.0 0.6 6.6 6.9 7.6
0.8 6.7 7.1 7.8

Table 5.11: Search in update parameter.

46

5.3 Biased Sampling Efficiency

The best performing parameters combinations for each GMM are depicted in Table 5.10.
All GMMs have improved results compared to U and their respective baselines. Moreover,
they also have the best performances over vanilla GMM and weight aggregation method.
Using weights prediction, GMM with 45 Gaussian components turned out to be the best
performing one, contradicting the results in weights aggregation.

5.3.4 Benchmark

When comparing overall planning efficiency between SMP and OMP, all aspects of the
planning pipeline are included. Table 5.12 depicts the time for path post optimisation and
vision modules needed by SMPs. Given the same planning conditions OMP, in contrast,
requires none of these extra steps.

Pre Encoder Weights KNN Weights Post Total
Processes Predict Search Aggregate Optim (ms)

U - - - - - 300.0 300.0
GMM - - - - - 300.0 300.0
WA 0.5 8.0 - 0.7 0.5 300.0 309.7
WP 0.5 8.0 1.0 - - 300.0 309.5

Table 5.12: Extra time needed by SMPs.

KOMO[7]4 is the OMP selected for this benchmarking due to the user-friendly interface and
minimal setup dependencies. With augmented Lagrangian, this method solves the planning
problem by minimising 2 type of costs: transitional cost penalises squared accelerations
to maintain path’s smoothness; task related costs penalises sum of squared errors from
TCP target 6D pose and motion alignment. Additional inequality constraints are used for
collision and joint limits. All trajectories has 1 phase and 20 time slices in 5 seconds.

Figure 5.8: KOMO planner, Task-cost histogram and AUCf -threshold plot.

4KOMO source code: github.com/MarcToussaint/KOMO

47

5 Evaluation

In order to use the same AUCf metric on KOMO, additional parameters are required
to define planning failure by thresholding the resulted costs. First, collision constraint
is limited at 0.01, anything more than that indicates a failure by collisions. Task-cost
threshold, on the other hand, represents the tolerance for not fulfilling the requested tasks.
It is therefore set to 1 where the corresponding AUCf in test-set starts to saturate as
depicted Figure 5.8. All path with costs within the thresholds are regarded as valid solution,
the new performance metric "task-cost" is then derived from the averaged task-cost of all
valid solutions.

U GMM KOMO
45G WA WP

R2 0.921 0.964 0.965 0.964 -
task-cost - - - - 0.119
Failure 26 5 4 1 26
Median 0.357 0.359 0.365 0.365 0.140

Min 0.339 0.341 0.348 0.348 0.080
AUCf 0.856 0.917 0.924 0.934 0.933

Table 5.13: Motion planners benchmark.

Table 5.13 depicts the performances comparison between RRT with uniform sampling U ,
repetition sampling with 45 Gaussian components 45G, best performing weights aggregation
WA, best performing weights prediction WP and KOMO with the defined thresholds.

By observing "Median" and "Min", it is clear that KOMO is able to plan faster than all
SMPs. However, KOMO has higher number of failure, yielding lower success rate ∼0.951%
as compared to ∼0.998% from WP. As the result, KOMO and WP achieved comparable
AUCf , one based-on faster optimisation cycles, the other one based-on higher reliability.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Planning time (s)

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

WP
KOMO

350

375

400

425

450

475

500

525

550

Cu
m

ul
at

iv
e

Fr
eq

ue
nc

y

Figure 5.9: Comparison between WP and KOMO in AUCf .

48

6 Discussion and Conclusion

6.1 Results

6.1.1 Improved Repetition Sampling

While [2] only improves sampling efficiency, our proposal for repeating vanilla RRT based-on
R2 score during training has yielded not only higher success rate, but also improvements
in solution’s optimality. This nice property was inherited from training data to the
fitted GMMs that are used during inference. It reduced RRT’s dependency on path
post-optimisation and eventually improved overall speed.

Moreover, performances remained competitive among GMMs with huge difference in
number of components i.e. ∆30G indicates that the redundancies of collected paths are at
minimal. Together with the proposed key-configuration extraction technique, GMM with
large number of Gaussian components is able to discover accurate and detailed density
distributions in C-space instead of over-fitted to noise.

6.1.2 Image Retrieval

The proposed multi-tasked decoder has proven to be better in image retrieval task compared
to vanilla AE that only reconstruct its inputs. The additional semantic segmentation
and boundary prediction tasks required the latent code to be more informative without
increasing its size. This is beneficial because smaller latent code size L = 64 not only have
higher efficiency in similarity search but also more robust to noise in latent-space.

Regularising latent code have turned out to be impairing for image retrieval task in the
proposed architecture. Cosine similarity and BatchNorm layer have elevated the regulated
magnitude of latent code from being the reasons of the deteriorations. Therefore, the
negative effects of enforcing unit-Gaussian should be the results of bad implementation of
regulariser loss function. Since the decoder was never treated as generative model, a well
defined latent code distribution seem unnecessary anyway.

On the other hand, the attempt to reduce noise in latent-space by imposing embedding
loss did not yield positive results. Although being less destructive that unit-Gaussian
regularisation, this form of regularisation has the similar effects in diverging the learning.

When applied on real data, the proposed network that was trained entirely with synthetic
data works reasonably well. This is due to the realistic depth image degradation and

49

6 Discussion and Conclusion

input data augmentations. Moreover, the proposed adversarial example generation further
improved the network’s robustness on input variations, hence bridged the reality-gap.

Unfortunately, network’s robustness does not directly extend to outside of what it was
trained for. The network was able to handle unexpected variations in camera pose and
unseen objects up to certain degree. Depending on the definition of individual applications
and workspace scenarios, training data can always be customised accordingly. It is, however,
always desirable to have better transferability without re-training.

6.1.3 Vision Assisted Biasing

With good image retrieval from database, weights aggregation method is able to collect
related information from previous solutions and bias GMM adaptively. Compared to vanilla
repetition sampling, it achieved better performance on GMMs with smaller number of
Gaussian components. The deterioration in performance of GMM with large number of
Gaussian components seem to be caused by the inability of representing highly non-linear
similarity score by the simple cosine similarity and target proximity function.

Weights prediction method circumvented the similarity problems by output directly the
weights for each Gaussian components. Built on top of the same network but without
the hand-crafted similarity score, this method yielded better results than the previous.
Besides, it utilised the detailed density estimation provided by GMM with larger number
of Gaussian components and produced the best performance boost so far.

Despite the drawbacks, weights aggregation method is able to generate path with lower
variance. By utilising existing solutions in database as lower bound, the resulted R2

score is slightly better than weights prediction method that has no safety-net for worst
performance.

Altering the upper bound for planning time T , as well as task-cost threshold do changes the
resulted AUCf landscape when comparing between SMP and OMP. The purpose, however,
is to show their respective strengths and weaknesses. The proposed weights prediction
repetition sampling in RRT has the highest success rate and maintained competitive overall
planning efficiency.

6.2 Insights

Divide and conquer was the original idea for this work. By divide it means dividing the
planning scenes into multiple clusters base on scene similarity; by conquer it means fitting
one GMM for each clusters. During inference, the cluster the queried scene belong to
is determined before its respective GMM is deployed in the repetition sampling planner.
While scene clustering can be done by e.g. K-Mean on latent code, or using AAE with
class discriminator. Unfortunately, there is no direct correlation between scene and path
similarity. 2 identical scenes can have 2 different manipulation tasks, which yielded 2

50

6.3 Alternatives

different paths. GMM fitted using a subset of dataset can contain the same amount of
variance compared to GMM fitted using the entire dataset, hence provides no benefits.

The direct alternative was to cluster planning scenes base on path similarity. This can be
done by having a classification output head at the end of encoder, right next to latent code.
The classification uses target labels from parametrising each joint path with curve fitting
method e.g. ridge regression, and then perform e.g. Agglomerative clustering base on those
parameters. For this method to work, 2 conditions need to be fulfilled: there exists only
one task per scene, and the task has only one solution. However, both condition cannot be
fulfilled due to the nature of targeted robot workspace and stochasticity in SMP. Relaxing
the second condition by reducing the number of parameters only lead to clustering that is
based only on path’s final pose and missed out all the important detours needed to get
there.

It is possible to cluster planning scenes using all scene, task and path similarities, but number
of clusters becomes an additional hyper-parameter to tune in this complex relationship. In
contrast methods proposed in this work are more straight forward and easy to implement.
In providing precise density estimation, large number of Gaussian components are used to
fit one GMM using the entire dataset. Adaptively changing their weights resembled the
effect of having multiple GMMs deployed at different time. The key-configurations used to
fit GMM are extracted based-on the amount of detour contained in path, whose optimality
is guarded by the R2 score.

6.3 Alternatives

To further improve information encoding/transformation from image into latent code,
object detection task can be used to multi-task the encoder. Additional prediction heads at
multiple levels, as described in Single-shot multibox detector[78], can be added to encoder
to improve scene understanding by increasing its sensitivity to localised features. Without
extra overhead during runtime, this could be a faster alternative to [31, 34] which requires
additional matchings for image patches when used for latent code generation.

In simplifying the entire pipeline, it will be interesting to adopt [16] by encoding all
planning scene, task and path/key-configurations directly into latent codes. The conditional
generative decoder plays the roles of: 1. a density estimator in solution-space and 2.
solution sampler at the same time. Eventually it will eliminate the needs for GMM and
repetition sampling.

Optimality of path generated from RRT can be further improved by replacing the SMOOTHING
routine which perform joint-space interpolation with OMP local-methods[27]. Besides
path optimisation, local-methods could also instil additional dynamic properties desirable
according to applications. This upgrade could improve the overall optimality in the
database, which will then benefit all subsequence processes in the pipeline.

From the perspective of industrial practicality, this work still lacks the last-mile in manipu-
lation task. Target-poses in pick-tasks described in this work are actually just the pre-grasp

51

6 Discussion and Conclusion

TCP pose. Object pose estimation[39] and grasp planning are additional modules needed
to complete the manipulation task.

6.4 Conclusion

This work introduces vision assisted biasing for adaptive C-space biased sampling in SMP.
It is an extension for repetition sampling[2], which uses GMM to partition C-space into
feasible regions and offers fixed task oriented biases for a particular low-variance robot
manipulation task. Our proposed methods use autoencoder to transform high dimensional
planning scene in the form of depth image into low dimensional latent code. Weights
Aggregation method then uses this latent code to search for nearest neighbours in the
database and aggregates their solutions for a new set of GMM’s weights. Weights prediction
method, on the other hand, predicts the weights distribution directly at the bottleneck.
Together with an improved pipeline for collecting training data and fitting GMM, this work
not only enhances the performance of the vanilla repetition sampling, but also improved
the solution’s optimality without introducing significant overhead during inference. The
results show a clear improvements from its predecessor and the competitiveness with its
optimisation-based counterpart KOMO.

52

Bibliography

[1] M. Hermann, T. Pentek, B. Otto. “Design principles for industrie 4.0 scenarios.”
In: System Sciences (HICSS), 2016 49th Hawaii International Conference on. IEEE.
2016, pp. 3928–3937 (cit. on p. 9).

[2] P. Lehner, A. Albu-Schäffer. “Repetition sampling for efficiently planning similar
constrained manipulation tasks.” In: Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on. IEEE. 2017, pp. 2851–2856 (cit. on pp. 9,
12, 13, 19, 23, 33, 34, 45, 46, 49, 52).

[3] D. H. Jacobson. “New second-order and first-order algorithms for determining optimal
control: A differential dynamic programming approach.” In: Journal of Optimization
Theory and Applications 2.6 (1968), pp. 411–440 (cit. on p. 11).

[4] E. Todorov, W. Li. “A generalized iterative LQG method for locally-optimal feedback
control of constrained nonlinear stochastic systems.” In: American Control Conference,
2005. Proceedings of the 2005. IEEE. 2005, pp. 300–306 (cit. on p. 11).

[5] M. Toussaint. “Robot trajectory optimization using approximate inference.” In:
Proceedings of the 26th annual international conference on machine learning. ACM.
2009, pp. 1049–1056 (cit. on p. 11).

[6] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, P. Abbeel. “Finding Locally Op-
timal, Collision-Free Trajectories with Sequential Convex Optimization.” In: Robotics:
science and systems. Vol. 9. 1. Citeseer. 2013, pp. 1–10 (cit. on p. 11).

[7] M. Toussaint. “Newton methods for k-order Markov constrained motion problems.”
In: arXiv preprint arXiv:1407.0414 (2014) (cit. on pp. 11, 47).

[8] L. Kavraki, P. Svestka, M. H. Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. Vol. 1994. Unknown Publisher, 1994 (cit. on
p. 11).

[9] S. M. LaValle. “Rapidly-exploring random trees: A new tool for path planning.” In:
(1998) (cit. on p. 11).

[10] J. J. Kuffner, S. M. LaValle. “RRT-connect: An efficient approach to single-query
path planning.” In: Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on. Vol. 2. IEEE. 2000, pp. 995–1001 (cit. on p. 11).

[11] S. Karaman, E. Frazzoli. “Sampling-based algorithms for optimal motion planning.”
In: The international journal of robotics research 30.7 (2011), pp. 846–894 (cit. on
p. 11).

53

Bibliography

[12] C. Urmson, R. Simmons. “Approaches for heuristically biasing RRT growth.” In:
Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on. Vol. 2. IEEE. 2003, pp. 1178–1183 (cit. on p. 11).

[13] V. Boor, M. H. Overmars, A. F. Van Der Stappen. “The Gaussian sampling strategy
for probabilistic roadmap planners.” In: Robotics and automation, 1999. proceedings.
1999 ieee international conference on. Vol. 2. IEEE. 1999, pp. 1018–1023 (cit. on
p. 12).

[14] D. Hsu, T. Jiang, J. Reif, Z. Sun. “The bridge test for sampling narrow passages with
probabilistic roadmap planners.” In: Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on. Vol. 3. IEEE. 2003, pp. 4420–4426
(cit. on p. 12).

[15] Y. Yang, O. Brock. “Adapting the sampling distribution in PRM planners based
on an approximated medial axis.” In: Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on. Vol. 5. IEEE. 2004, pp. 4405–4410
(cit. on p. 12).

[16] B. Ichter, J. Harrison, M. Pavone. “Learning sampling distributions for robot motion
planning.” In: arXiv preprint arXiv:1709.05448 (2017) (cit. on pp. 12, 13, 51).

[17] T. F. Iversen, L.-P. Ellekilde. “Kernel density estimation based self-learning sampling
strategy for motion planning of repetitive tasks.” In: Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE. 2016, pp. 1380–1387
(cit. on pp. 12, 13, 19).

[18] M. Phillips, B. J. Cohen, S. Chitta, M. Likhachev. “E-Graphs: Bootstrapping Planning
with Experience Graphs.” In: Robotics: Science and Systems. Vol. 5. 1. 2012 (cit. on
p. 12).

[19] D. Coleman, I. A. Şucan, M. Moll, K. Okada, N. Correll. “Experience-based planning
with sparse roadmap spanners.” In: Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE. 2015, pp. 900–905 (cit. on pp. 12, 13).

[20] M. Likhachev, G. J. Gordon, S. Thrun. “ARA*: Anytime A* with provable bounds
on sub-optimality.” In: Advances in neural information processing systems. 2004,
pp. 767–774 (cit. on p. 12).

[21] M. Zucker, J. Kuffner, J. A. Bagnell. “Adaptive workspace biasing for sampling-based
planners.” In: Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on. IEEE. 2008, pp. 3757–3762 (cit. on pp. 12, 13).

[22] E. W. Dijkstra. “A note on two problems in connexion with graphs.” In: Numerische
mathematik 1.1 (1959), pp. 269–271 (cit. on p. 13).

[23] L. Krammer, W. Granzer, W. Kastner. “A new approach for robot motion planning
using rapidly-exploring randomized trees.” In: Industrial Informatics (INDIN), 2011
9th IEEE International Conference on. IEEE. 2011, pp. 263–268 (cit. on p. 13).

[24] D. P. Kingma, M. Welling. “Auto-encoding variational bayes.” In: arXiv preprint
arXiv:1312.6114 (2013) (cit. on pp. 13, 20, 22, 32).

54

Bibliography

[25] D. Berenson, P. Abbeel, K. Goldberg. “A robot path planning framework that learns
from experience.” In: Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE. 2012, pp. 3671–3678 (cit. on p. 13).

[26] L.-P. Ellekilde, H. G. Petersen. “Motion planning efficient trajectories for industrial
bin-picking.” In: The International Journal of Robotics Research 32.9-10 (2013),
pp. 991–1004 (cit. on p. 13).

[27] N. Jetchev, M. Toussaint. “Fast motion planning from experience: trajectory predic-
tion for speeding up movement generation.” In: Autonomous Robots 34.1-2 (2013),
pp. 111–127 (cit. on pp. 13, 51).

[28] N. Jetchev, M. Toussaint. “Trajectory prediction in cluttered voxel environments.” In:
Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE.
2010, pp. 2523–2528 (cit. on p. 14).

[29] A. Sharif Razavian, H. Azizpour, J. Sullivan, S. Carlsson. “CNN features off-the-shelf:
an astounding baseline for recognition.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops. 2014, pp. 806–813 (cit. on p. 14).

[30] A. Babenko, V. Lempitsky. “Aggregating local deep features for image retrieval.” In:
Proceedings of the IEEE international conference on computer vision. 2015, pp. 1269–
1277 (cit. on p. 14).

[31] G. Tolias, R. Sicre, H. Jégou. “Particular object retrieval with integral max-pooling
of CNN activations.” In: arXiv preprint arXiv:1511.05879 (2015) (cit. on pp. 14, 15,
51).

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei. “ImageNet Large Scale Visual
Recognition Challenge.” In: International Journal of Computer Vision (IJCV) 115.3
(2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y (cit. on pp. 14, 20).

[33] A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky. “Neural codes for image
retrieval.” In: European conference on computer vision. Springer. 2014, pp. 584–599
(cit. on p. 14).

[34] Y. Liu, Y. Guo, S. Wu, M. S. Lew. “Deepindex for accurate and efficient image
retrieval.” In: Proceedings of the 5th ACM on International Conference on Multimedia
Retrieval. ACM. 2015, pp. 43–50 (cit. on pp. 15, 51).

[35] V. Erin Liong, J. Lu, G. Wang, P. Moulin, J. Zhou. “Deep hashing for compact
binary codes learning.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 2475–2483 (cit. on p. 15).

[36] K. Lin, H.-F. Yang, J.-H. Hsiao, C.-S. Chen. “Deep learning of binary hash codes for
fast image retrieval.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition workshops. 2015, pp. 27–35 (cit. on p. 15).

[37] W. Kehl, F. Milletari, F. Tombari, S. Ilic, N. Navab. “Deep learning of local rgb-d
patches for 3d object detection and 6d pose estimation.” In: European Conference on
Computer Vision. Springer. 2016, pp. 205–220 (cit. on p. 15).

55

https://doi.org/10.1007/s11263-015-0816-y

Bibliography

[38] H. Zhang, Q. Cao. “Combined Holistic and Local Patches for Recovering 6D Object
Pose.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 2219–2227 (cit. on p. 15).

[39] M. Sundermeyer, E. Y. Puang, Z.-C. Marton, M. Durner, R. Triebel. “Learning
Implicit Representations of 3D Object Orientations from RGB.” In: Proceedings of
the IEEE conference on robotics and Automation workshops. Best Demo Award. 2018
(cit. on pp. 15, 52).

[40] A. Kendall, V. Badrinarayanan, R. Cipolla. “Bayesian segnet: Model uncertainty in
deep convolutional encoder-decoder architectures for scene understanding.” In: arXiv
preprint arXiv:1511.02680 (2015) (cit. on p. 15).

[41] A. Nguyen, D. Kanoulas, D. G. Caldwell, N. G. Tsagarakis. “Detecting object af-
fordances with convolutional neural networks.” In: Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE. 2016, pp. 2765–2770
(cit. on p. 15).

[42] S. Gupta, R. Girshick, P. Arbeláez, J. Malik. “Learning rich features from RGB-D
images for object detection and segmentation.” In: European Conference on Computer
Vision. Springer. 2014, pp. 345–360 (cit. on p. 15).

[43] K. Simonyan, A. Zisserman. “Very deep convolutional networks for large-scale image
recognition.” In: arXiv preprint arXiv:1409.1556 (2014) (cit. on p. 15).

[44] E. Mohedano, K. McGuinness, N. E. O’Connor, A. Salvador, F. Marqués, X. Giro-i-
Nieto. “Bags of local convolutional features for scalable instance search.” In: Proceed-
ings of the 2016 ACM on International Conference on Multimedia Retrieval. ACM.
2016, pp. 327–331 (cit. on p. 15).

[45] N. Garcia, G. Vogiatzis. “Learning Non-Metric Visual Similarity for Image Retrieval.”
In: arXiv preprint arXiv:1709.01353 (2017) (cit. on p. 16).

[46] S. Chopra, R. Hadsell, Y. LeCun. “Learning a similarity metric discriminatively, with
application to face verification.” In: Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 539–546
(cit. on p. 16).

[47] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, Y. Wu.
“Learning fine-grained image similarity with deep ranking.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 1386–1393
(cit. on p. 16).

[48] W. Li, R. Zhao, T. Xiao, X. Wang. “Deepreid: Deep filter pairing neural network
for person re-identification.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 152–159 (cit. on p. 16).

[49] X. Han, T. Leung, Y. Jia, R. Sukthankar, A. C. Berg. “Matchnet: Unifying feature and
metric learning for patch-based matching.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015, pp. 3279–3286 (cit. on p. 16).

56

Bibliography

[50] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. “Gradient-based learning applied to
document recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324
(cit. on p. 20).

[51] A. Krizhevsky, I. Sutskever, G. E. Hinton. “Imagenet classification with deep con-
volutional neural networks.” In: Advances in neural information processing systems.
2012, pp. 1097–1105 (cit. on p. 20).

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich. “Going deeper with convolutions.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9 (cit. on
p. 20).

[53] K. He, X. Zhang, S. Ren, J. Sun. “Deep residual learning for image recognition.” In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778 (cit. on p. 20).

[54] G. Huang, Z. Liu, K. Q. Weinberger, L. van der Maaten. “Densely connected convo-
lutional networks.” In: arXiv preprint arXiv:1608.06993 (2016) (cit. on pp. 20, 26,
27).

[55] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning internal representations by
error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive
Science, 1985 (cit. on p. 20).

[56] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol. “Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion.” In: Journal of Machine Learning Research 11.Dec (2010), pp. 3371–3408
(cit. on pp. 20, 29).

[57] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio. “Contractive auto-encoders:
Explicit invariance during feature extraction.” In: Proceedings of the 28th International
Conference on International Conference on Machine Learning. Omnipress. 2011,
pp. 833–840 (cit. on p. 20).

[58] I. J. Goodfellow, J. Shlens, C. Szegedy. “Explaining and harnessing adversarial
examples.” In: arXiv preprint arXiv:1412.6572 (2014) (cit. on p. 21).

[59] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio. “Generative adversarial nets.” In: Advances in neural infor-
mation processing systems. 2014, pp. 2672–2680 (cit. on p. 21).

[60] A. Radford, L. Metz, S. Chintala. “Unsupervised representation learning with deep
convolutional generative adversarial networks.” In: arXiv preprint arXiv:1511.06434
(2015) (cit. on p. 21).

[61] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey. “Adversarial autoencoders.”
In: arXiv preprint arXiv:1511.05644 (2015) (cit. on pp. 21, 22, 32).

[62] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
F. Roli. “Evasion attacks against machine learning at test time.” In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer.
2013, pp. 387–402 (cit. on p. 21).

57

Bibliography

[63] A. Kurakin, I. Goodfellow, S. Bengio. “Adversarial machine learning at scale.” In:
arXiv preprint arXiv:1611.01236 (2016) (cit. on pp. 21, 30).

[64] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, P. McDaniel. “Ensemble Adversarial
Training: Attacks and Defenses.” In: arXiv preprint arXiv:1705.07204 (2017) (cit. on
p. 21).

[65] Y. Bengio, A. Courville, P. Vincent. “Representation learning: A review and new
perspectives.” In: IEEE transactions on pattern analysis and machine intelligence
35.8 (2013), pp. 1798–1828 (cit. on p. 22).

[66] I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf. “Wasserstein Auto-Encoders.” In:
arXiv preprint arXiv:1711.01558 (2017) (cit. on p. 22).

[67] K. He, X. Zhang, S. Ren, J. Sun. “Identity mappings in deep residual networks.”
In: European Conference on Computer Vision. Springer. 2016, pp. 630–645 (cit. on
p. 26).

[68] F. Yu, V. Koltun. “Multi-scale context aggregation by dilated convolutions.” In: arXiv
preprint arXiv:1511.07122 (2015) (cit. on p. 27).

[69] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. “Dropout: A
simple way to prevent neural networks from overfitting.” In: The Journal of Machine
Learning Research 15.1 (2014), pp. 1929–1958 (cit. on p. 27).

[70] K. Perlin. “Improving noise.” In: ACM Transactions on Graphics (TOG). Vol. 21. 3.
ACM. 2002, pp. 681–682 (cit. on pp. 29, 39).

[71] Z. Wu, C. Shen, A. v. d. Hengel. “Bridging category-level and instance-level semantic
image segmentation.” In: arXiv preprint arXiv:1605.06885 (2016) (cit. on p. 32).

[72] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár. “Focal loss for dense object
detection.” In: arXiv preprint arXiv:1708.02002 (2017) (cit. on p. 32).

[73] A. Dömel, S. Kriegel, M. Kaßecker, M. Brucker, T. Bodenmüller, M. Suppa. “Toward
fully autonomous mobile manipulation for industrial environments.” In: International
Journal of Advanced Robotic Systems 14.4 (2017), p. 1729881417718588 (cit. on
p. 37).

[74] K. He, X. Zhang, S. Ren, J. Sun. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification.” In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034 (cit. on p. 40).

[75] S. J. Reddi, S. Kale, S. Kumar. “On the convergence of adam and beyond.” In: (2018)
(cit. on p. 40).

[76] D. Kingma, J. Ba. “Adam: A method for stochastic optimization.” In: arXiv preprint
arXiv:1412.6980 (2014) (cit. on p. 40).

[77] I. Loshchilov, F. Hutter. “Sgdr: Stochastic gradient descent with warm restarts.” In:
arXiv preprint arXiv:1608.03983 (2016) (cit. on p. 40).

[78] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg. “Ssd:
Single shot multibox detector.” In: European conference on computer vision. Springer.
2016, pp. 21–37 (cit. on p. 51).

58

Appendix

Figure .1: Database latent code 2D t-SNE plot.

Test-set results when failure are excluded.

U 45G WA WP KOMO
0

1

2

3

4

5

Pl
an

ni
ng

 ti
m

e
(s

)

Figure .2: Box plot.

U 45G WA WP KOMO
0

1

2

3

4

5

Pl
an

ni
ng

 ti
m

e
(s

)

Figure .3: Violin plot.

U 45G WA WP KOMO

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pl
an

ni
ng

 ti
m

e
(s

)

Figure .4: Zoomed box plot.

mean std max
U 0.591 0.700 5.217

45G 0.467 0.377 3.680
WA 0.448 0.335 3.866
WP 0.426 0.216 3.097

KOMO 0.181 0.092 0.590

Table .1: Planning time(s) statistic.

Test-set results when failure are included with planning-time ← 5s.

U 45G WA WP KOMO
0

1

2

3

4

5

Pl
an

ni
ng

 ti
m

e
(s

)

Figure .5: Box plot.

U 45G WA WP KOMO
0

1

2

3

4

5

Pl
an

ni
ng

 ti
m

e
(s

)

Figure .6: Violin plot.

U 45G WA WP KOMO

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pl
an

ni
ng

 ti
m

e
(s

)

Figure .7: Zoomed box plot.

mean std max
U 0.808 1.173 5.000

45G 0.510 0.577 5.000
WA 0.483 0.517 5.000
WP 0.435 0.294 5.000

KOMO 0.418 1.047 5.000

Table .2: Planning time(s) statistic.

0
1

2
3

4
5

Pl
an

ni
ng

 ti
m

e
(s

)

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

Frequency

U 45
G

W
A

W
P

KO
M

O

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

Cumulative Frequency

Figure .8: Planning time histograms and corresponding cumulative frequencies.

Scene
U ▷◁ ▷◁ ∼ ▷◁ ▷◁ ▷◁ ▷◁ ▷◁ ▷◁

45G ▷◁ ▷◁ ∼
WA ▷◁ ▷◁ ▷◁

WP ▷◁ ∼
KOMO ⊓ ≍ ⊓ ⊓ ⊓

Scene
U ∼ ∼ ∼ ∼ ∼ ∼ ▷◁ ∼

45G ▷◁ ▷◁

WA ▷◁

WP ∼
KOMO ≍ ⊓ ≍ ≍ ≍ ≍

Scene
U ∼ ▷◁ ▷◁ ∼ ∼ ∼

45G ▷◁ ∼
WA
WP ∼ ∼

KOMO ⊓ ≍ ≍ ≍ ≍ ≍

tsearch > 5s ▷◁

R2 < 0.9 ∼
task-cost > 1 ⊓

collision-constraint > 0.01 ≍

Table .3: Test-set failure analysis. For detailed scene breakdown refer Figure 5.2.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Datum und Unterschrift:

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any
other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure. I have not published this
work in whole or in part before. The electronic copy is consistent with all submitted
copies.

Date and Signature:

	1 Introduction
	2 Related Work
	2.1 Motion Planning
	2.2 Biased Sampling
	2.2.1 C-space Oriented Bias
	2.2.2 Fixed Task-space Oriented Bias
	2.2.3 Adaptive Task-space Oriented Bias

	2.3 Similarity Search
	2.3.1 Feature Extraction
	2.3.2 Similarity Learning

	3 Background
	3.1 Sampling-based Motion Planner
	3.2 C-Space Biasing
	3.3 Convolutional Neural Network
	3.4 Autoencoder Dimension Reduction

	4 Methodology
	4.1 Database
	4.1.1 Path Collection
	4.1.2 Scene Collection

	4.2 Nearest Neighbours Retrieval
	4.2.1 Network Architecture
	4.2.2 Data and Augmentations
	4.2.3 Adversarial Augmentation
	4.2.4 Loss Functions
	4.2.5 Database Search

	4.3 Biased GMM Sampling
	4.3.1 GMM Fitting
	4.3.2 Vision Biasing

	5 Evaluation
	5.1 Database Creation
	5.1.1 Scene Construction

	5.2 Scene Retrieval Accuracy
	5.2.1 Experiment Condition
	5.2.2 Semantic Scene Similarity

	5.3 Biased Sampling Efficiency
	5.3.1 Experiment Condition
	5.3.2 Weights Aggregation
	5.3.3 Weights Prediction
	5.3.4 Benchmark

	6 Discussion and Conclusion
	6.1 Results
	6.1.1 Improved Repetition Sampling
	6.1.2 Image Retrieval
	6.1.3 Vision Assisted Biasing

	6.2 Insights
	6.3 Alternatives
	6.4 Conclusion

	Bibliography

