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Abstract

This dissertation is concerned with the stability of mechanical systems with frac-
tional damping and the numerical treatment of fractional constitutive laws in the
finite element method. It provides a reformulation of the infinite state representa-
tion of fractional derivatives, which leads to a numerical scheme for the solution
of quite general fractional-order problems and contributes to the formulation of a
Lyapunov stability framework for fractionally damped systems. The approach is
motivated by the advantages of using fractional calculus to describe viscoelastic
material behavior over large timescales.

The mathematical foundations of fractional calculus are presented and partic-
ularly formulated on unbounded intervals. This leads to a correct initialization of
fractional-order problems and the consideration of the full material history in the
applied context of viscoelasticity. Furthermore, several numerical methods for
the solution of fractional-order differential equations are studied and compared
to the novel scheme based on the reformulated infinite state representation, which
is implemented, analyzed and tested.

An introduction to the theory of linear viscoelasticity is given and the use
of fractional calculus in this respect is motivated. The functional character of
fractional-order operators requires some generalizations of the mechanical theory
and computational methods. In the field of stability theory, a generalization of the
direct method of Lyapunov for the case of fractional damping is provided and em-
bedded in the theory of functional differential equations. Particularly, Lyapunov
functionals are formulated in terms of the (reformulated) infinite state representa-
tion and the method is applied to linear mechanical and a class of controlled non-
linear dynamical systems. In the field of structural mechanics, a formulation of
the finite element method for the case of fractional constitutive behavior is intro-
duced. The novel numerical scheme is implemented and some initial benchmark
problems are studied.





Zusammenfassung

Diese Dissertation befasst sich mit der Stabilität von mechanischen Systemen mit
fraktionaler Dämpfung und der numerischen Behandlung fraktionaler Stoffge-
setze in der Methode der finiten Elemente. Es wird eine neue Formulierung der
infinite-state-Darstellung fraktionaler Ableitungen vorgestellt, die einerseits zu
einem numerischen Verfahren zur Lösung relativ allgemeiner Probleme fraktio-
naler Ordnung führt und andererseits zur Formulierung eines Stabilitätskonzepts
im Sinne von Lyapunov für fraktional gedämpfte Systeme beiträgt. Der gewählte
Ansatz ist motiviert durch die Vorteile von fraktionaler Analysis zur Beschrei-
bung von viskoelastischem Materialverhalten über lange Zeiträume.

Die mathematischen Grundlagen der fraktionalen Analysis werden eingeführt
und insbesondere auf unbeschränkten Intervallen formuliert. Dies führt zu einer
korrekten Initialisierung von Problemen fraktionaler Ordnung und ermöglicht
die Berücksichtigung der kompletten Materialhistorie im Kontext von Viskoelas-
tizität. Des Weiteren werden einige numerische Methoden zur Lösung fraktiona-
ler Differentialgleichungen betrachtet und mit dem neuen Verfahren basierend
auf der umformulierten infinite-state-Darstellung verglichen.

Die klassische Theorie der linearen Viskoelastizität wird vorgestellt und die
Verwendung fraktionaler Analysis in diesem Kontext wird motiviert. Der funk-
tionale Charakter fraktionaler Operatoren erfordert einige Verallgemeinerungen
von mechanischer Theorie und Rechenmethoden. Auf dem Gebiet der Stabilitäts-
theorie wird eine Verallgemeinerung der direkten Methode von Lyapunov für
den Fall fraktionaler Dämpfung eingeführt und eingebettet in die Theorie von
Funktionaldifferentialgleichungen. Insbesondere werden dabei Lyapunov-Funk-
tionale im Sinne der (umformulierten) infinite-state-Darstellung genutzt. Die Me-
thode wird auf lineare mechanische Systeme sowie eine Klasse nichtlinearer dy-
namischer Regelsysteme angewendet. Als Beitrag auf dem Gebiet der Struktur-
mechanik wird eine Formulierung der Methode der finiten Elemente für fraktio-
nal viskoelastische Stoffgesetze eingeführt. Die Implementierung des neuen nu-
merischen Verfahrens wird vorgestellt und dessen Anwendbarkeit anhand von
ersten Beispielen nachgewiesen.





Notation

General
a, B scalars
a, B vector or matrix
i, j, k, l, m, n integer numbers and indices
t time
x, q, f , V real-valued functions
x, q, f vector-valued functions
lim limit
min, max minimum, maximum
inf, sup infimum, supremum
Re, Im real and imaginary part of a complex number

s(β,γ)
n , w(β,γ)

n nodes and weights of Gauss-Jacobi quadrature
dist(x, M) distance between a point x and a set M

Sets and spaces

E, M, Q sets
Q̄ closure of the set Q
∈ member of
⊂, ⊃ subset or superset of
N, N0 positive or nonnegative integers
R, C real or complex numbers
Rn n-dimensional space of real-valued vectors
∥ · ∥2 Euclidean norm on Rn

L1[t0, T] integrable functions on [t0, T]
An[t0, T] functions with (n − 1)th-order absolutely continuous

derivative
C0(−∞, T] continuous functions vanishing at −∞
BV[0, ∞) functions of bounded variation on compact subintervals
CB((−∞, 0]; Rn) Rn-valued bounded continuous functions
BU((−∞, 0]; Rn) Rn-valued bounded uniformly continuous functions
∥ · ∥∞ uniform norm on function spaces



xiv NOTATION

Operators

It0 , In
t0

integral and n-fold iterated integral with initial time t0

D, (·)′, Dn, (·)(n) first-order and nth-order derivative
d
dt , ˙(·) time derivative
Iα
t0

fractional Riemann-Liouville integral
RLDα

t0
, CDα

t0
fractional Riemann-Liouville or Caputo derivative

CDα Liouville-Weyl type of Caputo derivative
O Landau notation
L, L−1 (inverse) Laplace transform
AT matrix transpose
Ker(A) kernel of a matrix A
Res(·, s) residual at the pole s

Special functions

Γ(α) Euler Gamma function
B(α, β) Euler Beta function
Eα(·) one-parameter Mittag-Leffler function
Z(η, ·), z(η, ·) infinite states
µα kernel of infinite state representation
Kω(α, ·) kernel of reformulated infinite state representation
Θ, δ Heaviside step function and Dirac distribution

Mechanics
σ, ε Cauchy stress and linear strain tensors
σij, σyz, εij, εyz components of stress and strain
σ̃, ε̃ Voigt notation of stress and strain
u(x, t) displacement field
Gijkl , G, Gh, Gd relaxation function
Jijkl , J, Jh, Jd creep function
τσ, τε relaxation or retardation time
Rσ, Rε, Sσ, Sε relaxation or retardation spectra
E∗, J∗ complex modulus or complex compliance

Abbreviations
ODE, FODE (fractional-order) ordinary differential equation
DAE differential algebraic equation
FDE functional differential equation
PC predictor-corrector scheme
ISS, RISS (reformulated) infinite state scheme



CHAPTER 1
Introduction

This thesis deals with two different aspects in modeling viscoelastic material be-
havior described by fractional derivatives, namely the stability of mechanical sys-
tems with fractional damping and the numerical treatment of fractional constitu-
tive laws in the finite element method. Both topics involve challenging tasks as
the associated mechanical models include the entire material history, leading to
functional equations. The following introductory chapter serves as a motivation
and outline for this thesis. An overview of the relevant literature is given and the
objective, aims and contributions of the thesis are presented.

1.1 Motivation for fractional calculus in mechanics

Most materials in nature and technical applications cannot exclusively be iden-
tified as solid or fluid. Their actual behavior is something in between these two
theoretical concepts related to elasticity and viscosity. This means particularly that
a material sample under constant loading does not only show an instantaneous
elastic deformation but an additional time-dependent strain, called creep and that
an imposed constant deformation of a specimen results in a stress that is decreas-
ing from its initial value, known as relaxation. More generally, the current mate-
rial response possibly depends on the history of stress and strain inputs. Such
phenomena are summarized under the term viscoelasticity and are typically ob-
served for polymers, rubber, concrete, soils, tissues and many other materials.
It is a natural question in mechanics, how this behavior can be modeled, quanti-
fied and predicted. When the time-dependent material response occurs on a small
time range, the viscoelastic behavior is well represented by exponential functions.
However, if long-term creep or relaxation (over years) is observed, the exponen-
tial approach is not suitable any more and a much slower power law behavior
yields a better representation, see Figure 1.1. The latter case links viscoelasticity
to the mathematical theory of fractional calculus, which is the theoretical founda-
tion and main theme of this thesis.
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Figure 1.1: Fitting of concrete creep data over two years using exponential and
fractional models.

Fractional calculus1 deals with integrals and derivatives of non-integer order
which can be described by convolution integrals with weakly singular (power
law) kernels. Accordingly, fractional-order operators take account of the history
of a function, which directly represents the inherent memory property in vis-
coelasticity. This functional character, combined with the weak singularity of the
kernel, leads to several difficulties in numerical computation and requires theo-
retical generalizations in applications. Two such application areas are considered
subsequently.

Many problems in industrial applications result from a loss of stability in dy-
namical systems, i.e., a desired equilibrium or steady-state behavior of a system
can be lost under small perturbations and is substituted by unwanted (possibly
destructive) vibrations. These problems can be solved through improved design,
vibration absorbers or feedback control, which require methods to prove stability
of the augmented systems. Particularly for the nonlinear case, the direct method of
Lyapunov is a powerful tool in this respect. The method, which was originally de-
veloped for ordinary differential equations (ODEs), yields a stability statement by
using certain storage and comparison functions, for which no explicit knowledge
of the system solution is required. In order to apply this method to viscoelastic

1The mathematical theory dates back to a conversation of Leibniz and l’Hospital in 1695 and its
foundation has been developed in the 19th century. Since the 1970s, fractional calculus has regained
much interest in the scientific community leading to many advances in theory and applications, see
Mainardi (2010, Sec. 1.5).
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materials described by fractional constitutive laws, it has to be generalized in the
context of functional differential equations (FDEs) and new storage functionals have
to be developed.

Another problem in fractional viscoelasticity is the structural analysis in terms
of the finite element method (FEM). The FEM is a numerical method for the solution
of boundary value problems. In structural analysis, it is used to approximate the
deformation of arbitrary continuous bodies under special loading conditions by
discretization in small spatial elements. The implementation of a viscoelastic con-
stitutive law in the FEM requires a suitable formulation, which can be even more
challenging in the fractional case. An effective numerical solution of fractional-
order differential equations in the FEM context is an ongoing research problem.

1.2 Literature overview

Basic theory and numerical approaches

The modern era of fractional calculus is based on several books, starting with
Oldham and Spanier (1974), and followed (among others) by Samko et al. (1993);
Miller and Ross (1993); Podlubny (1999); Hilfer (2000); Diethelm (2010). Therein,
many major problems in theory and applications of fractional calculus are (im-
plicitly) formulated and (partly) solved, including existence, uniqueness and con-
tinuity results as well as numerical approaches for certain fractional-order dif-
ferential equations. Especially, these books have raised the discourse about dif-
ferent definitions of fractional derivatives, among which the Grünwald-Letnikov,
Riemann-Liouville and Caputo approach are the most popular. Connected to the
choice of definition is the question how associated differential equations are ini-
tialized. Particularly, the idea of initializing a fractional differential equation by
a single initial datum, as it is known from ordinary differential equations, has
generated a lot of interest for the fractional Caputo derivative. Yet, it has been
argued by Kempfle and Schäfer (2000); Lorenzo and Hartley (2008); Trigeassou
et al. (2011a); Hartley et al. (2013) that the entire history of a function has to be
known and used for a correct initialization of fractional differential equations,
leading to a fractional calculus on unbounded intervals. This insight, however,
appears to be mostly ignored in the applied literature. Formal contributions to
fractional calculus on unbounded intervals are among others given by Miller and
Ross (1993, Chap. VII); Samko et al. (1993, Chap. 2) and recently by Kleiner and
Hilfer (2019a,b) with an application to dielectric relaxation, see Kleiner and Hilfer
(2021).

Another important issue in fractional calculus is the numerical solution of
fractional-order differential equations. This problem is particularly delicate due
to the non-local character of integral operators in combination with weakly singu-
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lar kernels. The classical numerical methods can be divided mainly into product
integration rules and fractional linear multistep methods, which both act on Volterra
integral equations, see Diethelm et al. (2020). A popular and well-examined
representative of the first class is the predictor-corrector scheme by Diethelm
et al. (2002, 2004). The second class of methods is based on the approach by Lu-
bich (1986), which particularly includes the frequently-used Grünwald-Letnikov
scheme, see Podlubny (1999, Chaps. 7, 8). Both types of methods lead to computa-
tionally expensive algorithms with large memory requirements as the entire func-
tion history is considered for the approximation of fractional derivatives or inte-
grals. There is, however, a third class of methods which circumvents the above
problems by approximating fractional-order through high-dimensional integer-
order differential equations, i.e., the non-local problem is replaced by a system
of local problems which can be solved by standard integrators. Such methods
are in the following referred to as infinite state schemes2, being based on the infi-
nite state representation of fractional derivatives, see Trigeassou et al. (2012a,b).
There are various possibilities to formulate such methods and several technical is-
sues. The pioneering work by Yuan and Agrawal (2002); Chatterjee (2005) shows
certain drawbacks mentioned by Schmidt and Gaul (2006) and was improved by
Diethelm (2008). Further improvements or variations are given by Birk and Song
(2010); Li (2010); Jiang et al. (2017); Baffet (2019). Another branch of fractional-
order numerical analysis deals with the computation of the Mittag-Leffler function,
see Gorenflo et al. (2014), which represents the eigenfunction of certain fractional-
order differential operators. Numerical methods in this respect were given by
Gorenflo et al. (2002); Hilfer and Seybold (2006); Seybold and Hilfer (2009) and
later by Garrappa (2014, 2015).

Fractional viscoelasticity and FEM

For the application of fractional calculus to the description of viscoelastic materi-
als, the kernel of fractional derivatives and integrals is used to model long-term
creep and relaxation processes. Early contributions identify a power-law behav-
ior of viscoelastic media, see Gemant (1936); Scott Blair (1947); Gerasimov (1948);
Rabotnov (1948); Nolle (1950). Later, the empirical method has been connected di-
rectly to the theory of fractional calculus, see Caputo and Mainardi (1971); Koeller
(1984); Bagley and Torvik (1985) and the physical consistency of fractional vis-
coelastic models has been discussed by Bagley and Torvik (1986); Lion (2001). In
most applications of fractional viscoelasticity, the mechanical behavior of rubber

2The infinite states are approximated by a finite number of states, each satisfying an ordinary dif-
ferential equation. There is no standard notation for this class of schemes in the literature. Alternative
names are nonclassical methods, see Diethelm (2008) or kernel compression schemes, see Baffet (2019) and
Diethelm et al. (2020).
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and polymers is investigated, see e.g. Schmidt and Gaul (2002). Recently, frac-
tional viscoelastic models have been used to model asphalt and concrete creep,
see Celauro et al. (2012) and di Paola and Granata (2016), respectively.

In order to simulate the mechanical behavior of viscoelastic structures, a finite
element formulation of fractional constitutive laws is required, which has to be
combined with a suitable solver of fractional-order differential equations. A first
formulation is given by Bagley and Torvik (1983) in the Laplace domain. This ap-
proach has been generalized for the time domain by Bagley and Calico (1991); Fe-
nander (1996). Therefore, the equations of motion are transformed to order 2 + α

and solved in terms of a fractional-order state space vector. Enelund and Josefson
(1997) derive the three-dimensional generalization of a fractional viscoelastic con-
stitutive law for the isotropic case and introduce a finite element approach solving
fractional-order equations of order 2 using the Grünwald-Letnikov scheme. The
formulation is generalized for the anisotropic case by Enelund et al. (1999). Both
methods use an internal variable approach, given in general form by Simo and
Hughes (1998). Another formulation by Padovan (1987) incorporates the consti-
tutive law in a slightly different way, using the Grünwald-Letnikov scheme as
well. The method is adapted and improved by Schmidt and Gaul (2002). All
authors mentioned so far consider the geometrically linear case. Formulations in
the context of large deformations are given by Adolfsson and Enelund (2003) and,
recently Zopf et al. (2015); Zhang et al. (2020). Both of the latter contributions use
an infinite state scheme similar as Birk and Song (2010) for the time integration.
Zhang et al. (2020) include an additional accuracy optimization.

Lyapunov theory for systems with fractional damping

The introduction of fractional damping in (controlled) nonlinear systems asks for
a generalization of the Lyapunov stability framework, which is well-known for
ODEs. The stability of linear fractional-order systems is determined by the spec-
tral condition of Matignon (1996). Furthermore, there exist results e.g. on gen-
eralized linear matrix inequalities by Sabatier et al. (2010) and fractional-order
control, see Monje et al. (2010). The direct method of Lyapunov for the fractional-
order case is examined by several authors, see Lakshmikantham et al. (2009); Li
et al. (2010); Duarte-Mermoud et al. (2015); Agarwal et al. (2015); Burton (2011).
Thereby, typically a fractional-order derivative of Lyapunov functions is studied
in order to obtain a stability statement. A different approach connected to the
infinite state representation of fractional derivatives is considered by Trigeassou
et al. (2011b, 2016a,b); Trigeassou and Maamri (2019). The method uses Lyapunov
functionals given in terms of infinite states and examines their evolution in time.
The approach is particularly useful for mechanical systems with additional frac-
tional damping.
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1.3 Objective, aims and contributions

The objective of the thesis is to improve and contribute to the mathematical foun-
dation, nonlinear analysis and numerical simulation of fractionally damped me-
chanical systems. In the following section, certain open problems in the literary
canon are seized and the corresponding aims of the thesis are derived. The par-
ticular contributions of subsequent chapters in order to tackle and solve some of
these problems are summarized.

Fractional calculus on unbounded intervals

An overall aim, that is linked to the correct initialization of fractional derivatives,
is a consistent description of fractional calculus on unbounded intervals. The
topic is not only rarely studied in theoretical contributions on fractional calculus
but even less in applied contexts due to technical difficulties and the simplicity of
the classical bounded approach connected to simple initial data. It is, however,
important for a consistent description of fractional viscoelasticity and the stability
theory for fractionally damped systems. Accordingly, this aim, which contributes
to strengthen the mathematical foundation of fractionally damped mechanical
systems, is pursued in all chapters of the thesis. Section 2.2 provides a classifica-
tion of fractional-order differential equations on unbounded intervals and relates
them to other well-known types of differential and integral equations. Further, in
Section 2.3, it is shown how fractional derivatives and integrals on unbounded in-
tervals can be understood in the context of the infinite state representation. This
insight is used in Chapters 3 and 6 for the formulation of associated numerical
schemes. The fractional Zener model in Section 4.2 is also given on unbounded
intervals3. In Chapter 5, the stability of fractionally damped systems (with infi-
nite memory) is studied, which naturally leads to an embedding in the theory of
FDEs with infinite delay. In summary, the thesis provides a consistent formulation
of fractional calculus considering infinite memory in theory, numerical analysis
and applications.

Numerical solution of fractional-order problems

A second aim of the thesis is the development of an efficient numerical scheme
for fractional-order systems based on the infinite state representation, thereby cir-
cumventing some of the drawbacks of the classical approaches mentioned above.
The advantages of such methods are accompanied by the issue to find an ap-

3Including the entire history of stress and strain is actually a natural approach in viscoelasticity.
However, the initialization time instant is typically set to zero (instead of −∞) without cause, when
fractional operators come into play, see Mainardi (2010, Sec. 3.1.1).
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propriate quadrature rule to approximate the occurring integral of infinite states.
The major difficulty is thereby to handle the weak singularity of the integrand. A
new strategy to tackle this problem is given in Chapter 3 by introducing a refor-
mulated infinite state representation, see Hinze et al. (2019). This approach leads to
an integral of infinite states with a new kernel which is integrable and vanishes
asymptotically. An associated algorithm, called reformulated infinite state scheme
(RISS), is derived and a full error analysis is given. The results of RISS for several
benchmark problems are shown and compared to the predictor-corrector method
by Diethelm et al. (2002, 2004) and a classical infinite state scheme. Moreover, the
new method is used to solve the problems in the examples of Chapters 5 and 6.

Fractional constitutive laws and FEM

The reformulated infinite state representation leads to another contribution in a
field of applied fractional calculus, namely the formulation of fractional constitu-
tive laws within the finite element method. As finite element schemes are inher-
ently computationally expensive, it is even more important to provide fast and
accurate time-stepping schemes when fractional viscoelastic constitutive laws are
considered. In this respect, it is the aim to implement RISS in the finite ele-
ment method. In Chapter 6, a fractional Zener model is given in terms of the
reformulated infinite state representation. This formulation is generalized for a
three-dimensional, homogeneous, isotropic and viscoelastic continuum and in-
troduced in the principle of virtual work in order to obtain a scheme to solve the
discretized structural dynamic equations. The procedure is tested for a one- and
a two-dimensional example and the results are compared to the associated closed
form solutions.

Lyapunov stability framework for fractionally damped systems

A large part of the thesis deals with a generalization of the Lyapunov stability
framework for systems of ODEs with additional fractional damping. As this con-
cept leads to FDEs, the classical stability definition has to be adapted together
with the known methods to obtain stability statements including the direct method
of Lyapunov. In view of this setting, it is the aim to introduce a theoretical founda-
tion for the direct method of Lyapunov and to formulate Lyapunov functionals in
the context of fractionally damped systems. To tackle this problem, the Lyapunov
stability theory for FDEs with infinite delay is elaborated in Section 5.2 and ap-
plied to Lyapunov functionals in infinite state representation adapted from Trige-
assou et al. (2011b, 2016a,b) in Sections 5.3 and 5.4. It is a particular contribution
to use and refine the mentioned Lyapunov functionals in the theoretical context
of FDE stability. Moreover, the stability framework is established in the following
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steps in Sections 5.3 and 5.4, see Hinze et al. (2020a,b). The basic construction of
Lyapunov functionals is performed for the single degree-of-freedom fractionally
damped oscillator. Considering additional non-negative viscous damping, it is
shown that the potential energy of a springpot derived in Section 4.4 is the key to
formulate Lyapunov functionals for the proof of asymptotic stability. For the case
of additional negative viscous damping, a detailed spectral analysis is performed
to obtain stability criteria. Furthermore, it is shown that the reformulated infinite
state representation leads to a stability proof with the help of a Lyapunov func-
tional. The method is generalized at first for linear finite-dimensional mechanical
systems with fractional damping and, secondly, for a class of controlled nonlinear
dynamical systems. The latter application requires a generalized theory of con-
vergent dynamics as well as the use of an invariance principle for asymptotically
autonomous FDEs.

1.4 Outline

The introductory chapter is followed by some theoretical foundations of fractional
calculus in Chapter 2. Section 2.1 provides the definitions of fractional integrals
and derivatives and explains the correspondence between the Riemann-Liouville
and the Caputo derivative as well as the associated Liouville-Weyl generaliza-
tions. Moreover, the Laplace transform of the Caputo derivative and the Mittag-
Leffler functions as eigenfunctions of the Caputo operator are introduced. A clas-
sification of different types of fractional-order ordinary differential equations (FODEs)
is given in Section 2.2. The equations are particularly related to Volterra inte-
gral and more general functional differential equations, which are frequently met
throughout the thesis. The infinite state representation of fractional integrals and
derivatives is given in Section 2.3. This representation forms the basis for numer-
ical schemes to solve FODEs, provides a mechanical interpretation of fractional
derivatives and is the starting point for the formulation of Lyapunov functionals.
Numerical schemes based on the infinite state representation together with the
classical predictor-corrector scheme are presented in Section 2.4.

The reformulated infinite state scheme introduced in Chapter 3 is a modifica-
tion of numerical schemes based on the infinite state representation. The novel
formulation of fractional derivatives is given in Section 3.1 and the associated
scheme RISS is illustrated in Section 3.2. A full error analysis of the method is
given in Section 3.3 and the performance is studied on the basis of several bench-
mark problems in Section 3.4. Particularly, the results of RISS are compared to a
usual infinite state scheme and the predictor-corrector scheme.

The rest of the thesis deals with different (but connected) applications of the
(reformulated) infinite state representation and associated numerical schemes.
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Chapter 4 provides a motivation for the use of fractional calculus in mechanics
as it introduces fractional viscoelasticity. In Section 4.1, the basic properties of
classical linear viscoelastic constitutive laws are given in terms of exponential
relaxation and creep functions, which correspond to discrete relaxation and re-
tardation spectra. Moreover, the dynamic properties of viscoelastic models are
expressed by complex modulus and complex compliance functions. The funda-
mental component of fractional viscoelastic models known as springpot is intro-
duced in Section 4.2. It is shown that a springpot yields a continuous relaxation
spectrum and the correspondence of its complex modulus and the reformulated
infinite state representation is explicated. Additionally, the fractional Zener model
representing a viscoelastic solid is given by Mittag-Leffler creep and relaxation
functions. An application of the fractional Zener model to describe the creep of
salt concrete is provided in Section 4.3. The model parameters are identified from
the experimental data of a compression test. The advantages of fractional over
classical viscoelastic models are discussed. Finally, Section 4.4 contains a mechan-
ical interpretation of a springpot by an infinite number of springs and dashpots.
The approach emphasizes that a springpot leads to a continuous relaxation spec-
trum and it yields a useful potential energy expression for the springpot.

The use of fractional calculus in material modeling requires a generalization of
mathematical methods in mechanics. In this respect, two different fields, namely
stability theory and the finite element method are addressed in Chapters 5 and 6,
respectively. The classical theory of stability in the sense of Lyapunov for ODEs is
given in Section 5.1. Particularly, the direct method of Lyapunov is introduced
including the basic Lyapunov theorem as well as the invariance principle for
(asymptotically) autonomous systems. The approach is generalized in Section 5.2
for the less-standard case of FDEs with infinite delay and it is shown that me-
chanical systems with additional fractional damping belong to this class. Several
examples of such systems are considered in Section 5.3 and Lyapunov function-
als based on the (reformulated) infinite state representation are examined in order
to prove stability statements. The approach is generalized in Section 5.4 for cer-
tain controlled nonlinear systems with fractional damping. Thereby, a tracking
control problem is solved with the help of an incremental Lyapunov function.

In Chapter 6, an implementation of the fractional Zener model in the finite
element method is presented. The formulation of the constitutive law for a 3D
continuum is introduced in Section 6.1 using an internal variable model and the
reformulated infinite state representation. An associated finite element formula-
tion is given in Section 6.2. The numerical implementation using RISS is described
in Section 6.3. Two examples are given as initial benchmarks.

The results of the thesis are concluded in Chapter 7. Some remarks and an
outlook on further questions and future work are given.
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1.5 Embedding of the thesis in the project ProVerB

The research presented in this thesis is part of the project ProVerB: Prognosewerk-
zeuge für das mechanische Verhalten von Beton über lange Zeiträume zur Sicherheits-
analyse von Verschlusssystemen für Endlagerstätten, which is financed by the pro-
gram KMU-innovativ of the German Federal Ministry of Education and Research
(Grant No. 01IS17096B). It is a joint project of the Institute for Nonlinear Mechan-
ics and the Materials Testing Institute (MPA) of the University of Stuttgart to-
gether with the Gesellschaft für numerische Simulation (GNS) in Brunswick.

The objective of this program is the development of tools for the prediction of
the mechanical behavior of salt concrete over long time spans in order to use this
material in structures for sealing final disposal sites. The outstanding operational
lifetime and security aspects for these structures lead to special requirements for
the material models used and it is the aim to analyze, whether a fractional consti-
tutive law is capable of representing the long-term creep and relaxation processes
of salt concrete. Moreover, the project goal is to develop fast algorithms for the
implementation of fractional viscoelastic constitutive laws in a user subroutine for
the commercial FEM software Abaqus. The results of this project are particularly
reported in Chapters 3, 4 and 6 of this thesis. The parameters of a fractional Zener
model are calibrated in Section 4.3 using experimental data of creep tests with
salt concrete. These tests were performed at MPA as part of ProVerB. Further-
more, the finite element formulation in Chapter 6 forms the basis for the Abaqus
user subroutine written at GNS.



CHAPTER 2
Fractional calculus

The present chapter deals with fractional calculus - the mathematical theory of
differentiation and integration to an arbitrary (non-integer) order. The basic terms
and properties regarding fractional derivatives and integrals as well as the related
differential and integral equations mentioned here, can be found in the classical
textbooks by Oldham and Spanier (1974); Samko et al. (1993); Podlubny (1999);
Diethelm (2010) in similar notation but much more detail. Additionally, an inter-
pretation of certain fractional-order differential and integral equations as Volterra
functional equations or functional differential equations, see Burton (1985, 2005);
Hale (1977); Volterra (1959), is provided. Special consideration is given to the
infinite state representation of fractional derivatives and integrals as introduced
by Matignon (1998); Montseny (1998) and elaborated by Trigeassou et al. (2011a,
2012a,b). An associated numerical scheme together with a classical method to
solve certain fractional-order differential equations is presented according to the
explanations by Hinze et al. (2019).

2.1 Definitions and properties

Fractional integral and derivatives

Consider a real-valued function x : [t0, T] → R, t 7→ x(t), where the argument t
is referred to as time. For an integrable function x ∈ L1[t0, T], denote by

It0 x(t) :=
∫ t

t0

x(τ)dτ, t ∈ [t0, T] (2.1)

the (first-order) integral of x in [t0, t] and for a differentiable function x, identify

Dx(t) = ẋ(t) :=
dx
dt

(t), t ∈ [t0, T] (2.2)
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as the (first-order) derivative1 of x at time t. The basic idea of fractional calculus is
the generalization of (2.1) and (2.2) to integrals and derivatives of arbitrary order.
Classically, the n-fold iterates of the operators I and D for n ∈ N are defined
recursively as

I1
t0

:= It0 , In
t0

:= It0 In−1
t0

, n ≥ 2,

D1 := D, Dn = DDn−1, n ≥ 2

and are called nth-order integral and derivative, respectively. For brevity, the
common notation

Dnx(t) = x(n)(t), n ∈ N

is used for the nth-order derivative of x. Moreover, the nth-order integral is given
by the explicit formula

In
t0

x(t) =
∫ t

t0

(t − τ)n−1

(n − 1)!
x(τ)dτ, n ∈ N, (2.3)

which can be shown by induction. In order to deduce an arbitrary-order integral
from (2.3), a generalization of the factorial function is needed, which is given by
the so-called Euler Gamma function

Γ(α) =
∫ ∞

0
uα−1e−udu, α > 0, (2.4)

see Erdélyi (1953, Chap. 1) for a vast collection of properties of Γ. Indeed, the
Gamma function fulfills

Γ(1) =
∫ ∞

0
e−udu = lim

b→∞

[
−e−u]b

0 = lim
b→∞

(1 − e−b) = 1,

and

Γ(1 + α) =
∫ ∞

0
uαe−udu = lim

a→0+
b→∞

[
−uαe−u]b

a +
∫ ∞

0
αuα−1e−udu = αΓ(α)

such that
Γ(n) = (n − 1)! , n ∈ N (2.5)

holds. Two other properties of the Gamma function are utilized within this thesis,
namely the reflection formula

Γ(α)Γ(1 − α) =
π

sin(απ)
, α ∈ (0, 1), (2.6)

1For the derivative of a function with respect to its argument which is different from t, the usual
notation (·)′ is used instead of ˙(·).
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see Erdélyi (1953, Eq. 1.2(6)) and the identity

B(α, β) :=
∫ 1

0
sα−1(1 − s)β−1ds =

Γ(α)Γ(β)

Γ(α + β)
, α, β > 0, (2.7)

known as the Euler Beta function B(α, β), see Erdélyi (1953, Sec. 1.5). The use of
(2.5) in (2.3) justifies the following definition.

Definition 2.1. Let x ∈ L1[t0, T] and α > 0. Define

Iα
t0

x(t) =
∫ t

t0

(t − τ)α−1

Γ(α)
x(τ)dτ (2.8)

for t ∈ [t0, T] as the fractional Riemann-Liouville integral of order α of x at time t.
For α = 0, set I0

t0
x := x.

The integral in (2.8) exists for almost all t ∈ [t0, T] according to Tonelli’s theo-
rem, as it is a convolution of integrable functions, see Diethelm (2010, Thm. 2.1).
Moreover, in view of (2.5), (2.8) coincides with the classical definition (2.3) for
integer orders α ∈ N. To define an associated generalized derivative operator,
consider the fundamental theorem of classical calculus in the form

DIt0 x = x almost everywhere in [t0, T]

for x ∈ L1[t0, T]. Moreover, if x ∈ An[t0, T] for n ∈ N, i.e., x has an absolutely
continuous (n − 1)th-order derivative and Dnx ∈ L1[t0, T] exists almost every-
where in [t0, T], it follows for some m ∈ N, m > n

Dnx = DmIm−n
t0

x.

This idea may be generalized as follows.

Definition 2.2. Let α ≥ 0, m ∈ N such that m − 1 ≤ α < m and x ∈ Am[t0, T].
Define

RLDα
t0

x(t) = DmIm−α
t0

x(t) =
dm

dtm

∫ t

t0

(t − τ)m−α−1

Γ(m − α)
x(τ)dτ

for t ∈ [t0, T] as the fractional Riemann-Liouville derivative of order α of x at time t.

Remark 2.3. The assumptions on x given in Definition 2.2 are sufficient but not
necessary for the existence of the fractional Riemann-Liouville derivative. How-
ever, these conditions allow for the representation in the subsequent proposition.

To get across Remark 2.3, consider the function

x(t) = (t − t0)
β, −1 < β < 0,
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which does not have a derivative that is integrable in [t0, T] for some T > t0 but
for α ∈ (0, 1 + β), the fractional Riemann-Liouville derivative results in

RLDα
t0

x(t) =
d
dt

∫ t

t0

(t − τ)−α

Γ(1 − α)
(τ − t0)

βdτ

=
1

Γ(1 − α)

∫ 1

0
(1 − s)−αsβds

d
dt

(t − t0)
1+β−α,

=
1

Γ(1 − α)

Γ(1 − α)Γ(1 + β)

Γ(2 + β − α)
(1 + β − α)(t − t0)

β−α

=
Γ(1 + β)

Γ(1 + β − α)
(t − t0)

β−α,

where the substitution s = τ−t0
t−t0

and (2.7) are used.

Proposition 2.4. Consider the assumptions in Definition 2.2 and m − 1 < α < m.
Then, RLDα

t0
x exists almost everywhere in [t0, T] and

RLDα
t0

x(t) =
m−1

∑
k=0

(t − t0)
k−α

Γ(k − α + 1)
x(k)(t0) +

∫ t

t0

(t − τ)m−α−1

Γ(m − α)
x(m)(τ)dτ.

Proof. For abbreviation, introduce the function

w(t) :=
tm−α−1

Γ(m − α)

with antiderivative W (for which W(0) exists) and prove the equation

dm

dtm

∫ t

t0

w(t − τ)x(τ)dτ =
m−1

∑
k=0

w(m−k−1)(t − t0)x(k)(t0) +
∫ t

t0

w(t − τ)x(m)(τ)dτ

(2.9)
by induction over m. Confine to the initial step

d
dt

∫ t

t0

w(t − τ)x(τ)dτ =
d
dt

(
[−W(t − τ)x(τ)]tt0

+
∫ t

t0

W(t − τ)x′(τ)dτ

)

=
d
dt

(
W(t − t0)x(t0)− W(0)x(t) +

∫ t

t0

W(t − τ)x′(τ)dτ

)

= w(t − t0)x(t0) +
∫ t

t0

w(t − τ)x′(τ)dτ,

where partial integration is used. The induction step is straightforward. The
property

w(m−k−1)(t) =
tk−α

Γ(k − α + 1)

together with (2.9) complete the proof.
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The claim in Proposition 2.4 relates the fractional Riemann-Liouville derivative
to another possible definition of a fractional derivative.

Definition 2.5. Let α > 0, m ∈ N such that m − 1 < α ≤ m and x ∈ Am[t0, T].
Define

CDα
t0

x(t) = Im−α
t0

Dmx(t) =
∫ t

t0

(t − τ)m−α−1

Γ(m − α)
x(m)(τ)dτ (2.10)

for t ∈ [t0, T] as the fractional Caputo derivative of order α of x at time t and for
α = 0, set CD0

t0
x := x.

The use of Definition 2.5 in Proposition 2.4 yields the relation

RLDα
t0

x(t) =
m−1

∑
k=0

(t − t0)
k−α

Γ(k − α + 1)
x(k)(t0) +

CDα
t0

x(t), α /∈ N0. (2.11)

For the integer-order case α ∈ N0, both fractional derivatives coincide with the
classical definition. In the general case α /∈ N0, the difference between the Rie-
mann-Liouville and the Caputo definition is given by (2.11). Thereby, in view of
Remark 2.3, note that the fractional Riemann-Liouville operator has a wider do-
main than the Caputo derivative. Accordingly, (2.11) can even be considered as
a more general definition of the Caputo derivative. There are two possible situa-
tions leading to coincidence of both definitions. The finite sum on the right-hand
side of (2.11) vanishes either if x(k)(t0) = 0 for k = 0, . . . , m − 1 or, if an infinite
lower bound, i.e., the limit case t0 → −∞ is considered, which is sometimes re-
ferred to as Liouville-Weyl fractional derivative, see Mainardi (2010, Chap. 1.4). The
latter case asks for an analysis on unbounded intervals and will be of major inter-
est in this thesis. The proof of Proposition 2.4 reveals that it is sufficient for x(t)
to fulfill

x(t) = O
(
|t|α−m−ε

)
, t → −∞, ε > 0

such that (2.11) is still valid for t0 → −∞ as W(t − t0)x(t0) remains bounded.
An extensive analysis of the Liouville-Weyl case is given by Samko et al. (1993,
Chap. 2).

Before restricting the further studies on a certain type of fractional derivatives,
another general property related to (an aspect of) a generalized fundamental the-
orem is stated.

Proposition 2.6. Let x ∈ A1[t0, T] and α > 0. It holds

a) RLDα
t0

Iα
t0

x = x almost everywhere and

b) CDα
t0

Iα
t0

x = x almost everywhere.

Accordingly, both definitions of fractional derivatives represent a left inverse of the frac-
tional Riemann-Liouville integral.



16 2. FRACTIONAL CALCULUS

Proof. The integer-order case is given by the fundamental theorem. For the case
m − 1 < α < m, m ∈ N the semigroup property of the fractional integral is used,
see Diethelm (2010, Thm. 2.2). For a), consider

RLDα
t0

Iα
t0

x = DmIm−α
t0

Iα
t0

x = DmIm
t0

x = x.

For b), define the function y(t) := Iα
t0

x(t). For k = 0, . . . , m − 1, it holds α − k > 0
and, using Definition 2.1 leads to

Dky = Iα−k
t0

x and y(k)(t0) = Iα−k
t0

x(t0) = 0.

In view of (2.11) and a), one obtains

CDα
t0

Iα
t0

x = CDα
t0

y = RLDα
t0

y = RLDα
t0

Iα
t0

x = x.

In the following, (almost exclusively) fractional Riemann-Liouville integrals
and Caputo derivatives of order α ∈ (0, 1) and with initial time t0 = 0 or t0 → −∞
are studied. As the latter case is the most important one, the simplified notation

Iα := Iα
−∞ , CDα := CDα

−∞ .

for the Liouville-Weyl integral and derivative (of Caputo type) is introduced. For
this case and α ∈ (0, 1), the fractional derivatives of some elementary functions
are studied in the following example. Apparently, the results are related to the
integer-order case.

Example 2.7.

a) x(t) = const. ⇒ CDαx ≡ 0.

b) x(t) =

{
(t − t0)

β, t > t0,
0, t ≤ t0

for some t0 ∈ R, β > 0

⇒ CDαx(t) = CDα
t0

x(t) =
∫ t

t0

(t − τ)−α

Γ(1 − α)
β(τ − t0)

β−1dτ

= (t − t0)
β−α β

Γ(1 − α)

∫ 1

0
(1 − s)−αsβ−1ds

(2.7)
=

Γ(1 + β)

Γ(1 − α + β)
(t − t0)

β−α .

c) x(t) = eλt, λ ∈ C, Re(λ) ≥ 0

⇒ CDαx(t) =
∫ t

−∞

(t − τ)−α

Γ(1 − α)
λeλτdτ = λαeλt 1

Γ(1 − α)

∫ ∞

0
s−αe−sds

(2.4)
= λαeλt .



2.1. DEFINITIONS AND PROPERTIES 17

d) The case c) with λ = iω, ω > 0 yields

CDα
{

eiωt
}
= CDα {cos(ωt)}+ i CDα {sin(ωt)}
c)
= (iω)αeiωt = ωαei(ωt+α π

2 )

= ωα
(

cos
(

ωt + α
π

2

)
+ i sin

(
ωt + α

π

2

))

⇒ CDα {cos(ωt)} = ωα cos
(

ωt + α
π

2

)
,

CDα {sin(ωt)} = ωα sin
(

ωt + α
π

2

)
.

Note that the Liouville-Weyl operator CDα, when applied to a function, consid-
ers its entire history. Hence, in order to solve an associated differential equation,
an initial function instead of initial values are required. This approach empha-
sizes the nonlocal character of fractional operators. Different formulations and the
advantages over an initial-value approach are discussed by Kempfle and Schäfer
(2000); Lorenzo and Hartley (2008); Trigeassou et al. (2011a). The latter formula-
tion is used in this thesis, beginning in Section 2.3. It turns out in Section 2.2 and
Chapter 5 that initial functions are a natural condition in the context of functional
differential equations.

Laplace transform

In subsequent chapters, several types of differential equations containing frac-
tional Caputo derivatives of system states are studied. As for the integer-order
case, the Laplace transform represents a valuable method to solve linear fractio-
nal-order differential equations. Therefore, the Laplace transform of fractional
Caputo derivatives (with t0 = 0) of functions is determined, which requires some
general properties of the Laplace transform, see Doetsch and Nader (1974).

Definition 2.8. Let x : [0, ∞) → R. Define the function

X(s) = L {x(t)} (s) :=
∫ ∞

0
x(t)e−stdt, s ∈ C (2.12)

as the Laplace transform of x whenever the integral exists.

Proposition 2.9. Let x, x1, x2 : [0, ∞) → R be such that x is differentiable and the
Laplace transforms of all functions exist for all s, Re(s) > δ for some δ > 0. Further, let
a1, a2 ∈ R and β > −1.

a) The Laplace transform is linear,

L {a1x1 + a2x2} (s) = a1L {x1} (s) + a2L {x2} (s).
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b) Power functions transform as

L
{

tβ
}
(s) =

Γ(1 + β)

s1+β
.

c) The convolution (x1 ∗ x2)(t) :=
∫ t

0 x1(t − τ)x2(τ)dτ of x1 and x2 is transformed
to the product of L {x1} (s) and L {x2} (s), i.e.,

L {x1 ∗ x2} (s) = L {x1} (s) · L {x2} (s).

d) The derivative of a function transforms as

L {ẋ} (s) = sL {x} (s)− x(0).

e) The Laplace transform of sine and cosine is given by

L {sin(ωt)} (s) = ω

s2 + ω2 , L {cos(ωt)} (s) = s
s2 + ω2 .

Using properties from Proposition 2.9, the Laplace transform of the fractional
Caputo derivative with zero lower bound can be deduced as

L
{

CDα
0 x(t)

}
(s) = L

{
t−α

Γ(1 − α)
∗ ẋ(t)

}
(s) = sα−1 (sL {x(t)} (s)− x(0))

⇒L
{

CDα
0 x
}
(s) = sαL {x} (s)− sα−1x(0). (2.13)

Definition 2.10. The inverse Laplace transform is given by the complex integral

L−1 {X(s)} (t) = 1
2πi

∫ δ+i∞

δ−i∞
X(s)estds, t ≥ 0,

where δ ∈ R is greater than the largest real part of any singularity of X.

Mittag-Leffler functions

The solutions of linear integer-order ordinary differential equations are deter-
mined by the exponential function, which is the eigenfunction of the (first-order)
derivative operator. An analogue function for fractional differential operators and
a generalization of the exponential function is given in the following definition.

Definition 2.11. Let α > 0. The function

Eα(t) :=
∞

∑
k=0

tk

Γ(αk + 1)

is called the one-parameter Mittag-Leffler function with parameter α, whenever the
series converges.
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Proposition 2.12. Let α > 0 and γ, s ∈ C such that Re(s) > |γ| 1
α . It holds the formula

L {Eα(γtα)} (s) = sα−1

sα − γ
.

Proof. Consider for k ∈ N the integral

∫ ∞

0
e−st (γtα)k

Γ(αk + 1)
dt =

γk

Γ(αk + 1)

∫ ∞

0
e−sttαkdt

=
γk

Γ(αk + 1)
s−αk−1

∫ ∞

0
e−τταkdτ = s−1

( γ

sα

)k
,

where (2.4) is used. An infinite sum over k leads to a geometric series that con-
verges for Re(s) > |γ| 1

α as

s−1
∞

∑
k=0

( γ

sα

)k
= s−1 1

1 − γ
sα

=
sα−1

sα − γ
.

As both limits (of integration and summation) exist, they can be interchanged,
which, in view of Definition 2.11 completes the proof.

The Laplace transform in (2.13) together with Proposition 2.12 finally lead to
the eigenfunctions of the fractional Caputo derivative with zero lower bound, i.e.,
for γ ∈ C

CDα
0 x(t) = γx(t) L

=⇒ sαL {x} (s)− sα−1x(0) = γL {x} (s)

⇒ L{x} (s) = x(0)
sα−1

sα − γ

L−1

=⇒ x(t) = x(0)Eα(γtα) .
(2.14)

The section is concluded with another property of Mittag-Leffler functions,
which turns out to be important in Section 4.2.

Definition 2.13. A function x : (0, ∞) → R is called completely monotonic if it is
differentiable of any order n ∈ N0 and the derivatives are alternating in sign, i.e.,

(−1)nx(n)(t) ≥ 0, t > 0.

The complete monotonicity property holds for the Mittag-Leffler function with
negative argument as shown by Pollard (1948).

Proposition 2.14. The Mittag-Leffler function with negative argument Eα(−t) is com-
pletely monotonic for α ∈ (0, 1).
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2.2 Fractional-order ordinary differential equations

The models considered in the subsequent chapters of this thesis are described by
ordinary differential equations that additionally contain fractional Caputo deriva-
tives of system states. In this section, such equations are introduced in a quite
general form and are related to other types of functional equations that are fre-
quently met in the literature.

An equation

Aq(n)(t) + B CDαn−1 q(n−1)(t)

= F
(

t, q(t), CDα0 q(t), q̇(t), . . . , CDαn−2 q(n−2)(t), q(n−1)(t)
) (2.15)

is denoted as an (explicit) fractional-order ordinary differential equation (FODE) of
order n ∈ N (or n − 1 + αn−1 for the case A = 0), with A, B ∈ R, A ̸= 0 or B ̸= 0
and fractional orders α0, . . . , αn−1 ∈ (0, 1). In contrast to the integer-order case,
an FODE is equipped with an initial function instead of initial values at one time
instant, i.e., the initial condition is provided by an n-times differentiable function
φ such that

q(s) = φ(s), s ≤ 0. (2.16)

Accordingly, the fractional derivatives in (2.15) can as well be considered with
zero initial time as

CDαi
0 q(i)(t) = CDαi q(i)(t)−

∫ 0

−∞

(t − τ)−αi

Γ(1 − αi)
φ(i+1)(τ)dτ, i = 0, . . . , n − 1.

A solution of the problem (2.15) together with (2.16) is an n-times differentiable
function q that fulfills (2.16) for nonpositive values and (2.15) in [0, T) for some
T > 0. Depending on the parameters in (2.15), different cases of FODEs can be
distinguished, each related to different theoretical fields.

If A = 0, (2.15) can be formulated as

CDαn−1
0 q(n−1)(t) =

1
B

F
(

t, q(t), CDα0 q(t), q̇(t), . . . , CDαn−2 q(n−2)(t), q(n−1)(t)
)

−
∫ 0

−∞

(t − τ)−αn−1

Γ(1 − αn−1)
φ(n)(τ)dτ

=: F̃
(

t, q(t), CDα0
0 q(t), q̇(t), . . . , CDαn−2

0 q(n−2)(t), q(n−1)(t)
)

.

(2.17)

Therein, the influence of the initial function (2.16) is included in the first argument
of F̃. The most simple case of (2.17) is given by

CDα
0q(t) = f (t, q(t)), t ≥ 0, α ∈ (0, 1), (2.18)
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which is often studied in the literature and known as fractional differential equation,
see e.g. Podlubny (1999); Diethelm (2010). The FODE (2.18) is equivalent to a
Volterra integral equation of the second kind

q(t) = φ(0) + Iα
0{ f (·, q(·))}(t) = φ(0) +

∫ t

0

(t − τ)α−1

Γ(α)
f (τ, q(τ))dτ, (2.19)

as shown by Diethelm (2010, Lem. 6.2). The representation (2.19) is the starting
point to prove existence and uniqueness of a solution of (2.18) together with (2.16)
via the method of successive approximations and a fixed point theorem if f is
bounded and fulfills a Lipschitz condition with respect to the second argument,
see Diethelm (2010, Thms. 6.1, 6.5). In an analogue fashion, (2.17) can be related
to a Volterra functional equation. Therefore, introduce the state

x = [x0 x1 . . . xn−1]
T =

[
q q̇ . . . q(n−1)

]T
(2.20)

and obtain

x0(t) = φ(0) + I0x1(t)

x1(t) = φ̇(0) + I0x2(t)
...

xn−2(t) = φ(n−2)(0) + I0xn−1(t)

xn−1(t) = φ(n−1)(0)

+ Iαn−1
0

{
F̃
(
·, x0(·), I1−α0

0 x1(·), x1(·), . . . , I1−αn−2
0 xn−1(·), xn−1(·)

)}
(t).

(2.21)

The system of equations (2.21) is of the form

x(t) =

{
φ(t), t ≤ 0,
φ(0) +

∫ t
0 F(τ, x(·))dτ, t > 0,

(2.22)

where x is given by (2.20), φ =
[

φ φ̇ . . . φ(n−1)
]T

and F(t, x(·)) operates as

a functional on x in (0, t). Such equations are studied e.g. by Volterra (1959) and
Burton (2005).

Similarly, if A ̸= 0, (2.15) can be reformulated as

q(n)(t) =
1
A

F
(

t, q(t), CDα0 q(t), q̇(t), . . . , CDαn−2 q(n−2)(t), q(n−1)(t)
)

− B
A

(∫ 0

−∞

(t − τ)−αn−1

Γ(1 − αn−1)
φ(n)(τ)dτ + CDαn−1

0 q(n−1)(t)
)

=: F̂
(

t, q(t), CDα0
0 q(t), q̇(t), . . . , CDαn−2

0 q(n−2)(t), q(n−1)(t)
)

− B
A

CDαn−1
0 q(n−1)(t),
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which can together with (2.20) be written as

x0(t) = φ(0) + I0x1(t)

x1(t) = φ̇(0) + I0x2(t)
...

xn−2(t) = φ(n−2)(0) + I0xn−1(t)

xn−1(t) = φ(n−1)(0)

+ I0

{
F̂
(
·, x0(·), I1−α0

0 x1(·), x1(·), . . . , I1−αn−2
0 xn−1(·), xn−1(·)

)}
(t)

− B
A

I1−αn−1
0

{
xn−1(·)− φ(n−1)(0)

}
(t).

(2.23)

The system (2.23) is another example of a Volterra functional equation (2.22).
A proof for existence and uniqueness of solutions similar as for a Volterra inte-
gral equation such as (2.19) is given by Driver (1962, Thm. 2) and Burton (1985,
Thm. 8.1.3) in the context of functional differential equations (FDEs). They represent
a special type of functional equations of the form

ẋ(t) = f(t, xt), t ≥ 0, (2.24)

where xt(s) = x(t + s) for s ∈ (−∞, 0] and f : [0, ∞) × B → Rn is a continu-
ous map defined in its second argument on an open subset B ⊂ X of a certain
space X of Rn-valued functions on (−∞, 0]. Integration of (2.24) directly leads
to an equation of the form (2.22). However, FDEs gave rise to an independent
theoretical field, see Burton (1985); Hale (1977); Kolmanovskii and Nosov (1986).
As FDEs play an essential role for the description of mechanical systems with
fractional damping in Chapter 5, they are explicitly mentioned here. Particularly,
using (2.20), the case B = 0 in (2.15) leads to the FDE

ẋ0(t) = x1(t)

ẋ1(t) = x2(t)
...

ẋn−2(t) = xn−1

ẋn−1(t) =
1
A

F
(

t, x0(t), CDα0 x0(t), x1(t), . . . , CDαn−2 xn−2(t), xn−1(t)
)

.

(2.25)

Thereby, each fractional derivative in (2.25) is considered as a functional acting on
xt, as a reparametrization s = τ − t in the fractional Caputo derivative leads to

CDαi xi(t) =
∫ 0

−∞

(−s)−α

Γ(1 − α)
x′i(t + s)ds

=
∫ 0

−∞

(−s)−α

Γ(1 − α)
(xi+1)t(s)ds, i = 0, . . . , n − 2

such that (2.25) matches (2.24).
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2.3 Infinite state representation

An alternative description of fractional Liouville-Weyl integrals is given by the
so-called infinite state representation

Iαx(t) =
∫ ∞

0
µα(λ)Z(λ, t)dλ, t ≥ 0,

Ż(η, t) = x(t)− ηZ(η, t), η > 0, t ≥ 0,

Z(η, 0) =
∫ 0

−∞
eητ x(τ)dτ, η > 0

(2.26)

with infinite states Z(η, t), where

µα(η) =
sin(απ)

π
η−α (2.27)

as introduced by Matignon (1998); Montseny (1998); Trigeassou et al. (2012b). To
see the correspondence between (2.8) and (2.26), use (2.27) and (2.4) to obtain

tα−1

Γ(α)
=

1
Γ(α)Γ(1 − α)

∫ ∞

0
tα−1u−αe−udu =

∫ ∞

0
µα(λ)e−λtdλ, (2.28)

where u = λt is substituted and the property (2.6) is used. One obtains (2.26)
by inserting (2.28) in (2.8), using Fubini’s theorem and the solution of the initial
value problem in (2.26), viz.

Z(η, t) =
∫ t

−∞
e−η(t−τ)x(τ)dτ, η > 0, t ≥ 0

such that

Iαx(t) =
∫ t

−∞

∫ ∞

0
µα(λ)e−λ(t−τ)dλ x(τ)dτ

=
∫ ∞

0
µα(λ)

∫ t

−∞
e−λ(t−τ)x(τ)dτ dλ

=
∫ ∞

0
µα(λ)Z(λ, t)dλ.

Accordingly, an infinite state representation of the fractional derivative CDα for
α ∈ (0, 1) is given by

CDαx(t) = I1−α ẋ(t) =
∫ ∞

0
µ1−α(λ)z(λ, t)dλ, t ≥ 0,

ż(η, t) = ẋ(t)− ηz(η, t), η > 0, t ≥ 0,

z(η, 0) =
∫ 0

−∞
eητ x′(τ)dτ, η > 0

(2.29)
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with infinite states z(η, t). The two kinds of infinite states are related by the fol-
lowing equations, which may be obtained by using the solutions of the initial
value problems in (2.29), (2.26) and partial integration as

z(η, t) =
∫ t

−∞
e−η(t−τ)x′(τ)dτ

= lim
a→−∞

[
e−η(t−τ)x(τ)

]t

a
− η

∫ t

−∞
e−η(t−τ)x(τ)dτ

= x(t)− ηZ(η, t) = Ż(η, t), η > 0, t ≥ 0,

(2.30)

whenever x is bounded.
The infinite state representation translates fractional integrals and derivatives

to integer-order at the cost of a continuum of state variables. Correspondingly, the
history of the function x is transferred to initial conditions of the infinite states

Z(η, 0) =
∫ 0

−∞
eητ x(τ)dτ, z(η, 0) =

∫ 0

−∞
eητ x′(τ)dτ.

The approximation of the improper integrals of infinite states in (2.26) and (2.29)
by sums transforms FODEs to ordinary differential equations (ODEs) or differ-
ential algebraic equations (DAEs) and indicates a possible starting point for the
formulation of numerical schemes to solve FODEs.

2.4 Classical numerical schemes

The following section provides an introduction to the classical predictor-corrector
scheme and some infinite state based numerical schemes to solve (special types
of) FODEs. In the next chapter, these methods are compared to a novel scheme
based on a reformulated infinite state representation.

Predictor-corrector scheme

A deeply examined method to solve fractional differential equations (2.18) is the
predictor-corrector scheme (PC) proposed by Diethelm et al. (2002) and extensively
analyzed by Diethelm et al. (2004). The method considers the associated Volterra
integral equation (2.19) and approximates the emerging integrals by two different
quadratures in a predictor and a corrector step. The scheme is formulated for the
more general case α > 0, i.e., for an initial-value problem of the form

CDα
0 x(t) = f (t, x(t)), m − 1 < α ≤ m, m ∈ N,

x(k)(0) = x(k)0 , k = 0, 1, . . . , m − 1

Section 2.4 is based on Hinze et al. (2019, Sec. 3)
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for t ∈ [0, T] or, equivalently for the Volterra integral equation

x(t) =
m−1

∑
k=0

x(k)0
tk

k!
+
∫ t

0

(t − τ)α−1

Γ(α)
f (τ, x(τ))dτ. (2.31)

The integral in (2.31) is approximated by a composite trapezoidal rule with fixed
time-step h = tj − tj−1, j = 1, . . . , N = ⌊ T

h ⌋, which leads to

x̃(tn+1) =
m−1

∑
k=0

x(k)0
tk
n+1
k!

+
hα

Γ(α + 2)

n+1

∑
j=0

aj,n+1 f (tj, x̃(tj)) (2.32)

with coefficients

aj,n+1 =





nα+1 − (n − α)(n + 1)α j = 0,
(n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1 1 ≤ j ≤ n,
1 j = n + 1.

To avoid solving the nonlinear equation (2.32) for x̃(tn+1), the solution is esti-
mated in a predictor step with the help of the (explicit) rectangular rule as

x̃p(tn+1) =
m−1

∑
k=0

x(k)0
tk
n+1
k!

+
1

Γ(α)

n

∑
j=0

bj,n+1 f (tj, x̃(tj))

with coefficients

bj,n+1 =
hα

α
((n + 1 − j)α − (n − j)α)

and corrected by (2.32) as

x̃(tn+1) =
m−1

∑
k=0

x(k)0
tk
n+1
k!

+
hα

Γ(α + 2)
f (tn+1, x̃p(tn+1))

+
hα

Γ(α + 2)

n

∑
j=0

aj,n+1 f (tj, x̃(tj)).

The scheme leads to an error estimation

max
j=0,1,...,N

∣∣∣x(tj)− x̃(tj)
∣∣∣ = O(hp), p = min(2, 1 + α), (h → 0). (2.33)

The method may be directly applied to FODEs (2.15) with rational differentiation
orders α0, . . . , αn−1. To this end, (2.15) is transferred to a vectorial version of (2.18),
where α is the greatest common divisor of α0, . . . , αn−1. In the general case, the
irrational differentiation orders in the set {α0, . . . , αn−1} have to be approximated
by rational ones. The details are given by Diethelm and Ford (2004) and Diethelm
et al. (2002, Sec. 4). The algorithm may be improved, e.g. by using several correc-
tor iterations or applying a Richardson extrapolation, see Diethelm et al. (2002,
Sec. 3). In Chapter 3, this algorithm is tested using the MATLAB implementation
fde12.m by Garrappa (2012).
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Infinite state schemes

Methods based on the infinite state representation of fractional integrals and
derivatives usually start with a discretization of the infinite states and a related
quadrature of the improper integral in (2.26) or (2.29), which leads to approxima-
tions

Iαx(t) ≈
N

∑
n=0

Zn(t)wn,

Żn(t) = x(t)− ηnZn(t), n = 0, . . . , N

(2.34)

with Zn(t) = Z(ηn, t) or

CDαx(t) ≈
N

∑
n=0

zn(t)w̃n,

żn(t) = ẋ(t)− ηnzn(t), n = 0, . . . , N

(2.35)

with zn(t) = z(ηn, t). Thereby, the discrete values ηn and wn, w̃n, n = 0, . . . , N
are the nodes and weights of the chosen quadrature, respectively, where the ker-
nel µα (resp. µ1−α) in (2.27) is incorporated in the weights wn (resp. w̃n). The
approximations (2.34) and (2.35) bring forth two difficulties: The upper bound of
the integral is infinite and the kernel is weakly singular at zero. Both facts have
to be considered when choosing the quadrature. Furthermore, the substitution
of (2.35) into an FODE (2.15) leads to a stiff ODE (while the substitution of (2.34)
in a fractional integral equation leads to a stiff DAE), asking for a dedicated stiff
solver. Originally, an infinite state scheme of the form (2.34) is used by Trige-
assou et al. (2012a,b) together with an adapted version of Oustaloup’s filter, see
Oustaloup (1995), to perform the quadrature. The parameters ηn are in this case
chosen to be geometrically distributed, i.e., equidistant on a logarithmic scale. In
the much-debated articles by Chatterjee (2005); Yuan and Agrawal (2002), trans-
formed representations similar to (2.35) are introduced. The quadrature used by
Yuan and Agrawal (2002) is of Gauss-Laguerre type, which is adapted to the im-
proper integral in (2.29). However, the weak singularity is not treated appropri-
ately in this approach and the asymptotic decay of the integrand for λ → ∞ is
rather slow, which leads to slow convergence of the scheme, see Diethelm (2008).
A significant improvement may be obtained using a Gauss-Jacobi quadrature for
a transformed infinite state integral as proposed by Diethelm (2008); Birk and
Song (2010), which considers the weak singularity at zero. Alternatively, the use
of a Galerkin method was suggested by Singh and Chatterjee (2006); Diethelm
(2008). Recently, several schemes using composite quadrature rules have been
introduced, e.g. by Li (2010) (composite Gauss-Legendre) and Jiang et al. (2017);
Baffet (2019) (composite Gauss-Jacobi). These schemes use the advantage that
particular subintervals, usually distributed over many decades, may be chosen
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in advance to perform the quadrature on each interval (whereas in a single Gaus-
sian quadrature the nodes are only determined by the zeroes of certain orthogonal
polynomials).

In the following, a composite Gauss-Jacobi quadrature for (2.34) similar to the
quadrature of the scheme in Baffet (2019) is described in order to compare its re-
sults to the method proposed in Chapter 3. When using this scheme, it will be
referred to as infinite state scheme (ISS). In general, a Gauss-Jacobi quadrature is
an approximation of an integral over the interval [−1, 1] of a continuous func-
tion f weighted by an algebraic function with (possibly) weak singularities at the
boundaries of the integration interval. It has the form

∫ 1

−1
(1 + x)β(1 − x)γ f (x)dx ≈

N

∑
n=0

f
(

s(β,γ)
n

)
w(β,γ)

n

with β, γ > −1, nodes s(β,γ)
n and weights w(β,γ)

n such that polynomials of de-
gree 2N − 1 are integrated exactly. The details on determining the nodes and
weights may be found e.g. in the book of Davis and Rabinowitz (1984, Chap. 2.7).
In the present case, a composite version of this idea is used, i.e., consider η0 = 0,
η1, . . . , ηK in (0, ∞) and perform a Gauss-Jacobi quadrature in each interval

(η0, η1), . . . , (ηK−1, ηK) with nodes ηk,j ∈ (ηk, ηk+1) and weights w(βk ,γk)
j ,

j = 1, . . . , J, k = 0, . . . , K − 1. One can use a substitution

∫ b

a
(x − a)β(b − x)γ f (x)dx

=

(
b − a

2

)1+β+γ ∫ 1

−1
(1 + s)β(1 − s)γ f

(
b − a

2
s +

a + b
2

)
ds

≈
(

b − a
2

)1+β+γ N

∑
n=0

f
(

b − a
2

s(β,γ)
n +

a + b
2

)
w(β,γ)

n

to adapt to the integration boundaries a < b. Applying this procedure to the
integral in (2.26) leads for the first interval (η0, η1) to

∫ η1

0
µα(λ)Z(λ, t)dλ =

sin(απ)

π

∫ η1

0
λ−α Z(λ, t)dλ

=
sin(απ)

π

( η1
2

)1−α ∫ 1

−1
(1 + s)−α Z

( η1
2
(1 + s), t

)
ds

≈ sin(απ)

π

( η1
2

)1−α J

∑
j=1

Z

(
η1
2

(
1 + s(−α,0)

j

)

︸ ︷︷ ︸
=:η0,j

, t

)
w(−α,0)

j

(2.36)
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and for the other intervals, using the abbreviation ηk(s) =
ηk+1−ηk

2 s + ηk+ηk+1
2 , to

∫ ηk+1

ηk

µα(λ)Z(λ, t)dλ =
ηk+1 − ηk

2

∫ 1

−1
µα(ηk(s))Z(ηk(s), t)ds

≈ ηk+1 − ηk
2

J

∑
j=1

µα

(
ηk

(
s(0,0)

j

))
Z
(

ηk

(
s(0,0)

j

)
, t
)

w(0,0)
j

=
ηk+1 − ηk

2

J

∑
j=1

µα(ηk,j)Z(ηk,j, t)w(0,0)
j

(2.37)

for k = 1, . . . , K − 1, where ηk,j = ηk

(
s(0,0)

j

)
. Hence, only one set of nodes and

weights (
s(−α,0)

j , w(−α,0)
j

)
j=1,...,J

has to be computed for the quadrature in (2.36) and another set
(

s(0,0)
j , w(0,0)

j

)
j=1,...,J

for the case (2.37), which is independent of k ∈ {1, . . . , K − 1}. Actually, the weak
singularity only has to be considered in (2.36), while more specifically (2.37) repre-
sents a Gauss-Legendre quadrature. In summary, one obtains the approximation

∫ ∞

0
µα(λ)Z(λ, t)dλ ≈ sin(απ)

π

( η1
2

)1−α J

∑
j=1

Z(η0,j, t)w(−α,0)
j

+
K−1

∑
k=1

ηk+1 − ηk
2

J

∑
j=1

µα(ηk,j)Z(ηk,j, t)w(0,0)
j

of the integral in (2.26), which may be used in (2.34), where N = K · J. To use
this approximation for solving a fractional integral equation, an appropriate DAE
solver still has to be chosen. As the coefficients ηn of Zn in the ODEs of (2.34)
become huge numbers for large n, the resulting DAEs will usually be stiff such
that explicit time stepping methods fail, see Diethelm (2008, Sec. 3.2). Therefore,
in subsequent numerical examples, MATLAB’s stiff solver ode15s.m is chosen,
which uses an implicit (backward differentiation) method.



CHAPTER 3
Reformulated infinite state scheme

The reformulation of the infinite state representation as introduced by Hinze et al.
(2019) is the fundamental instrument in this thesis. It leads to a numerical method
to solve fractional-order ordinary differential equations and is applied in stability
theory as well as for a finite element formulation of fractionally damped systems
in the subsequent chapters. This chapter provides the formulation and the associ-
ated numerical scheme together with a detailed error analysis. The performance
of the method is demonstrated for several benchmark problems and compared to
the methods described in the previous chapter.

3.1 Reformulated infinite state representation

The reformulated infinite state representation is introduced as an expansion of the
integration kernel in (2.29) by the term λ2 + ω2 for a real number ω > 0. The
following properties will prove to be useful in the proposed reformulation.

Proposition 3.1.

∫ ∞

0

µα(λ)

λ + s
dλ = s−α, s ∈ C\R−, α ∈ (0, 1). (3.1)

Proof. Making use of the Laplace transform of e−λt

L
{

e−λt
}
(s) =

∫ ∞

0
e−λte−stdt =

∫ ∞

0
e−(λ+s)tdt

=

[
− 1

λ + s
e−(λ+s)t

]∞

0
=

1
λ + s

,

Chapter 3 is based on Hinze et al. (2019, Sec. 4).
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one obtains Equation (3.1) using Fubini’s theorem, (2.4) and (2.6) as
∫ ∞

0

µα(λ)

λ + s
dλ =

sin(απ)

π

∫ ∞

0
λ−α

∫ ∞

0
e−(λ+s)tdtdλ

=
sin(απ)

π

∫ ∞

0
e−st

∫ ∞

0
λ−αe−λtdλdt

=
sin(απ)

π

∫ ∞

0
e−stΓ(1 − α)tα−1dt

=
sin(απ)

π
Γ(1 − α)Γ(α)s−α = s−α.

Remark 3.2. The result of Proposition 3.1 is also used by Trigeassou et al. (2012b)
(without proof). A similar proof as the one given here may be found in the article
of Wei et al. (2016).

Proposition 3.3. For α ∈ (0, 1) and ω > 0, the identities
∫ ∞

0

µ1−α(λ)

λ2 + ω2 dλ = cos
(απ

2

)
ωα−2, (3.2)

∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 dλ = sin
(απ

2

)
ωα−1 (3.3)

hold.

Proof. Substitute η = λ2 and dη = 2λ dλ in the integral and obtain

∫ ∞

0

µ1−α(λ)

λ2 + ω2 dλ =
sin(απ)

π

∫ ∞

0

λα−1

λ2 + ω2 dλ =
sin(απ)

2π

∫ ∞

0

η
α
2 −1

η + ω2 dη

=
sin(απ)

2 sin
(

απ
2
)
∫ ∞

0

µ1− α
2
(η)

η + ω2 dη.

Using the sine-double-angle formula and (3.1) directly yields (3.2). The proof of
(3.3) is analogous.

Remark 3.4. Similar assertions as in Proposition 3.3 are proven by Trigeassou
et al. (2016b).

Expansion of the integral in (2.29) by the term λ2 + ω2 for a fixed ω > 0 leads
together with the infinite states in (2.26), (2.30) and Proposition 3.3 to

CDαx(t) =
∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 λz(λ, t)dλ + ω2
∫ ∞

0

µ1−α(λ)

λ2 + ω2 z(λ, t)dλ

=
∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 dλ ẋ(t)−
∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 ż(λ, t)dλ

+ ω2
∫ ∞

0

µ1−α(λ)

λ2 + ω2 dλ x(t)− ω2
∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 Z(λ, t)dλ,
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CDαx(t) = sin
(απ

2

)
ωα−1 ẋ(t)−

∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 ż(λ, t)dλ

+ cos
(απ

2

)
ωαx(t)− ω2

∫ ∞

0

µ1−α(λ)λ

λ2 + ω2 Z(λ, t)dλ.
(3.4)

The advantage of the reformulated infinite state representation in (3.4) is the new
kernel with parameter ω > 0

Kω(α, η) :=
µ1−α(η)η

η2 + ω2 =
sin(απ)

π

ηα

η2 + ω2 ,

which is integrable in (0, ∞) and fulfills

lim
η→0

Kω(α, η) = lim
η→∞

Kω(α, η) = 0, α ∈ (0, 1).

Furthermore, (3.4) contains only first-order derivatives of x and the infinite states
Z(η, ·) and z(η, ·), being key to the subsequent numerical scheme, which is based
on the solution of high-dimensional ODEs. Regarding (2.15), which contains sev-
eral fractional orders αi ∈ (0, 1), one can generalize (3.4) to

CDαi q(i)(t) = sin
(αiπ

2

)
ωαi−1q(i+1)(t)−

∫ ∞

0
Kω(αi, λ)Ż(i+1)(λ, t)dλ

+ cos
(αiπ

2

)
ωαi q(i)(t)− ω2

∫ ∞

0
Kω(αi, λ)Z(i)(λ, t)dλ

(3.5)

for i = 0, . . . , n − 1 together with

Ż(i)(η, t) = q(i)(t)− ηZ(i)(η, t), Z(i)(η, 0) =
∫ 0

−∞
eητq(i)(τ)dτ, (3.6)

i = 0, . . . , n, which is related to (2.26) and (2.29).
For a fixed value of α, the function Kω(α, ·) has a maximum at

ηmax =

√
α

2 − α
ω.

Hence, the position of ηmax may be adjusted by the magnitude of ω. The graphs
of Kω(α, η) for different values of α ∈ (0, 1) and

ηmax = 1 ⇔ ω :=

√
2 − α

α
(3.7)

are displayed in Figure 3.1. Thereby and in the following, (if not otherwise indi-
cated) the abbreviation K(α, ·) := Kω(α, ·) with ω as in (3.7) is used.
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Figure 3.1: K(α, η) for different values of α ∈ (0, 1).

3.2 Derivation of the scheme

The key idea of the following scheme is to approximate the integrals of the infinite
states Z(i) and their derivatives in Equation (3.5) by sums of a finite number of
states

Z(i)
k,j , k = 0, . . . , K − 1, j = 1, . . . , J

performing a composite Gaussian quadrature. The discretization of the infinite
states creates two sources of error, namely the error in consequence of neglecting
a part of the integration interval and the approximation error of the quadrature
itself. In particular, one obtains an approximation

∫ ∞

0
K(αi, λ)Z(i)(λ, t)dλ =

K−1

∑
k=0

J

∑
j=1

K(αi, ηk,j)Z(i)
k,j (t)wk,j

+ Err1

(
Z(i)(·, t)

)
+ Err2

(
Z(i)(·, t)

) (3.8)

for the integral of infinite states as in (3.5) with errors

Err1

(
Z(i)(·, t)

)
=
∫ ∞

ηK

K(αi, λ)Z(i)(λ, t)dλ, (3.9)

Err2

(
Z(i)(·, t)

)
=
∫ ηK

0
K(αi, λ)Z(i)(λ, t)dλ −

K−1

∑
k=0

J

∑
j=1

K(αi, ηk,j)Z(i)
k,j (t)wk,j .(3.10)
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Thereby, similar as in Section 2.4, choose η0 = 0, η1, . . . , ηK in (0, ∞) and perform a
Gaussian quadrature in each interval (η0, η1), . . . , (ηK−1, ηK) with shifted Gauss-
Legendre nodes

ηk,j =
ηk+1 − ηk

2
s(0,0)

j +
ηk + ηk+1

2
∈ (ηk, ηk+1), j = 1, . . . , J, k = 0, . . . , K − 1

and weights

wk,j =
ηk+1 − ηk

2
w(0,0)

j , j = 1, . . . , J, k = 0, . . . , K − 1

related to the standard Gauss-Legendre nodes and weights

s(0,0)
j and w(0,0)

j , j = 1, . . . , J.

To abbreviate, denote

Z(i)
k,j (t) := Z(i)(ηk,j, t), j = 1, . . . , J, k = 0, . . . , K − 1.

Accordingly, in an arbitrary FODE (2.15), a fractional derivative CDαi q(i)(t) can
be approximated with (3.5) and (3.8) as

CDαi q(i)(t) = sin
(αiπ

2

)
ωαi−1q(i+1)(t)−

K−1

∑
k=0

J

∑
j=1

K(αi, ηk,j)Ż(i+1)
k,j (t)wk,j

+ cos
(αiπ

2

)
ωαi q(i)(t)− ω2

K−1

∑
k=0

J

∑
j=1

K(αi, ηk,j)Z(i)
k,j (t)wk,j .

(3.11)

Hence, approximate (2.15) by a system

(
A + B sin

(αn−1π

2

)
ωαn−1−1

)
q(n)(t)− B

K−1

∑
k=0

J

∑
j=1

K(αn−1, ηk,j)Ż(n)
k,j (t)wk,j

= F̃
(

t, q(t), q̇(t), . . . , q(n−1)(t),
(

Z(0)
k,j

)
k,j

, . . . ,
(

Z(n)
k,j

)
k,j

)

− B cos
(αn−1π

2

)
ωαn−1 q(n−1) + Bω2

K−1

∑
k=0

J

∑
j=1

K(αn−1, ηk,j)Z(n−1)
k,j (t)wk,j

(3.12)

together with

Ż(i)
k,j (t) = q(i)(t)− ηk,jZ

(i)
k,j (t), i = 0, . . . , n, j = 1, . . . , J, k = 0, . . . , K − 1,

(3.13)
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related to (3.6). The system (3.12) may be transformed into a first-order ODE,
which together with (3.13) can be solved by a standard ODE solver. Correspond-
ingly, the initial function φ(s), s ≤ 0 of the original FODE (2.15) has to be trans-

lated to initial values Z(i)
k,j (0) for the approximating ODE through

Z(i)
k,j (0) =

∫ 0

−∞
eηk,jτ φ(i)(τ)dτ, i = 0, . . . , n, j = 1, . . . , J, k = 0, . . . , K − 1.

In the following, the method proposed here is referred to as reformulated infinite
state scheme (RISS).

Remark 3.5. The kernel K(α, η) decays algebraically of order α to zero for η → 0
such that the integrand is not differentiable at zero and the Gauss-Legendre ap-
proximation is of low order. However, the error may be controlled by choosing
a small value for η1 as shown in the next section. The advantage of a Gauss-
Legendre quadrature in all subintervals (instead of a Gauss-Jacobi quadrature in
(0, η1)) is that only one set of weights and nodes can be used to discretize the
infinite states Z(i), i = 0, . . . , n. Therefore, the number of states in (3.12) does not
depend on the number of fractional derivatives in (2.15). Furthermore, an explicit
FODE (2.15) leads to an explicit ODE (3.12) as approximation.

3.3 Error analysis

The following analysis provides an estimation of the error resulting from the dis-
cretization of the infinite states, i.e., (3.9), (3.10). For the truncation error Err1,
estimate the infinite states Z(i) using the solution of (3.6) in [ηK , ∞) as

∣∣∣Z(i)(η, t)
∣∣∣ =

∣∣∣∣Z(i)(η, 0)e−ηt +
∫ t

0
e−η(t−τ)q(i)(τ)dτ

∣∣∣∣

≤ Ce−ηK t +
∥∥∥q(i)

∥∥∥
∞

∫ t

0
e−ηK(t−τ)dτ = Ce−ηK t +

∥∥∥q(i)
∥∥∥

∞
ηK

(3.14)

for some constant C > 0 and the uniform norm ∥ · ∥∞ in [0, t]. Using (3.14) for
fixed t ≥ 0, one can obtain the estimation

∣∣∣Err1

(
Z(i)(·, t)

)∣∣∣ ≤

Ce−ηK t +

∥∥∥q(i)
∥∥∥

∞
ηK



∫ ∞

ηK

K(αi, λ)dλ

≤

Ce−ηK t +

∥∥∥q(i)
∥∥∥

∞
ηK


 sin(αiπ)

π

∫ ∞

ηK

λαi−2dλ

=


Ce−ηK t +

∥∥∥q(i)
∥∥∥

∞
ηK


 sin(αiπ)

π

ηαi−1
K

1 − αi
= O

(
ηαi−2

K

)
,

(3.15)
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which shows an algebraic decay of the truncation error for growing ηK . Further-
more, because of the exponential term in (3.15), one can expect larger contribu-
tions of this term to the total error for time instants t ≪ 1

ηK
.

To estimate the quadrature error, decompose

Err2

(
Z(i)(·, t)

)
=

K−1

∑
k=0

Err2,k

(
Z(i)(·, t)

)

with

Err2,k

(
Z(i)(·, t)

)
=
∫ ηk+1

ηk

K(αi, λ)Z(i)(λ, t)dλ −
J

∑
j=1

K(αi, ηk,j)Z(i)
k,j (t)wk,j ,

k = 0, . . . K − 1

and introduce another estimation for Z(i) of the form
∣∣∣Z(i)(η, t)

∣∣∣ =
∣∣∣∣Z(i)(η, 0)e−ηt +

∫ t

0
e−η(t−τ)q(i)(τ)dτ

∣∣∣∣

≤ C +
∥∥∥q(i)

∥∥∥
∞

∫ t

0
dτ = C +

∥∥∥q(i)
∥∥∥

∞
t,

(3.16)

for some constant C > 0 and the uniform norm ∥ · ∥∞ in [0, t]. For the first interval,
as the integrand is not differentiable at zero, use (3.16) to estimate for fixed t ≥ 0

∣∣∣Err2,0

(
Z(i)(·, t)

)∣∣∣ ≤ sin(αiπ)

π

(
C +

∥∥∥q(i)
∥∥∥

∞
t
)
×



∫ η1

0

λαi

λ2 + ω2 dλ +
J

∑
j=1

ηαi
0,j

η2
0,j + ω2

w0,j




≤ sin(αiπ)

π

(
C +

∥∥∥q(i)
∥∥∥

∞
t
) ηαi

1
ω2



∫ η1

0
dλ +

J

∑
j=1

w0,j




= 2
sin(αiπ)

π

(
C +

∥∥∥q(i)
∥∥∥

∞
t
) η1+αi

1
ω2 = O(η1+αi

1 ),

(3.17)

where the next-to-last equality holds as the quadrature is exact for constant func-
tions. The estimation (3.17) shows an algebraic decay of |Err2,0| for decreasing η1
and the time-linear term in (3.17) leads to a larger contribution of this term to the
total error for time instants t ≫ 1

η1
.

As the integrand is smooth in the other intervals, an approximation theorem
according to Jackson can be used, see Davis and Rabinowitz (1984, Chap. 4.8)
and Diethelm (2008, Thm. 9). As stated by Davis and Rabinowitz (1984), an l-
times continuously differentiable function f ∈ Cl [a, b] may be approximated by a
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polynomial pJ of degree ≤ J as

∣∣ f (x)− pJ(x)
∣∣ ≤ C(l)

(
b − a

J

)l ∥∥∥ f (l)(x)
∥∥∥

∞

for a constant C(l) > 0 and the uniform norm ∥ · ∥∞ in [a, b]. As pJ can be inte-
grated exactly using Gauss-Legendre quadrature, one can obtain
∣∣∣Err2,k

(
Z(i)(·, t)

)∣∣∣ ≤
∫ ηk+1

ηk

∣∣∣K(αi, λ)Z(i)(λ, t)− pJ(λ)
∣∣∣dλ

+
J

∑
j=1

∣∣∣K(αi, ηk,j)Z(i)
k,j (t)− pJ(ηk,j)

∣∣∣wk,j

≤ 2C(l)(ηk+1 − ηk)
l+1

∥∥∥∥∥
dl

d(·)l

(
K(αi, ·)Z(i)(·, t)

)∥∥∥∥∥
∞

J−l .

(3.18)

As η1, . . . , ηK are chosen equidistant on a logarithmic scale, the interval length is
given by

ηk+1 − ηk =

((
ηK
η1

) 1
K−1

− 1

)
ηk, k = 1, . . . , K − 1 (3.19)

and it can be adjusted by the parameter K. The estimation (3.18) shows a rapid
decay of the error for growing J but fixed K, η1, ηK . However, if the ratio ηK

η1
is

increased, the parameter K has to be chosen large enough to bound the interval
lengths (3.19) for large values of k.

Remark 3.6. To obtain small errors in (3.17) and (3.18), the infinite states Z(i)(η, ·),
i = 0, . . . , n have to be sufficiently smooth with respect to η ∈ (0, ∞). This require-
ment restricts the set of admissible initial functions. Let φ(i), i = 0, . . . , n have a
support in [−a, 0] for some a ∈ (0, ∞). For this case, there is no limitation for
bounded initial functions as

∣∣∣Z(i)(η, 0)
∣∣∣ ≤ sup

t∈[−a,0]

∣∣∣q(i)(t)
∣∣∣
∫ 0

−a
eητdτ = sup

t∈[−a,0]

∣∣∣q(i)(t)
∣∣∣ 1 − e−ηa

η
,

which is finite even for η → 0. If however φ(i) is non-zero almost everywhere
on the interval (−∞, 0] for some l ∈ {0, . . . , n}, the infinite states Z(l)(η, ·) can be
singular. One example is a constant past φ ≡ C, which leads to Z(0)(η, 0) = C

η

showing a strong singularity at η = 0 such that Gauss-Legendre quadrature of∫ ∞
0 K(α, λ)Z(0)(λ, 0)dλ fails.

In summary, the total error resulting from the discretization of the infinite
states is given by the estimations (3.15), (3.17) and (3.18) which can be controlled
by the quadrature parameters ηK , η1 and J, K, respectively. The total error of
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the reformulated infinite state scheme results from the combined error of the in-
finite state discretization and the time-stepping method. The latter depends on
the ODE solver used, which can be chosen independently from the infinite state
discretization.

3.4 Benchmark problems

In this section, a number of benchmark problems is studied, which are mainly of
the form (2.15) equipped with initial functions. Most of the problems are inspired
by those from Xue (2017); Xue and Bai (2017) sometimes with adapted initial con-
ditions as the original problems do not fit the initial function approach or the fact
mentioned in Remark 3.6 leads to modification of the problems. For all numeri-
cal examples, the reformulation (3.11) is applied and the quadrature parameters
K = 25 and J = 10 are chosen, where η1, . . . , ηK are logarithmically spaced in
[10−5, 105], i.e.,

η1 = 10−5, ηK = 105, ηk = η1

(
ηK
η1

) k−1
K−1

, k = 2, . . . , K.

The resulting ODEs are stated and solved using MATLAB’s solver ode15s.m (ab-
solute and relative tolerance at 10−8), which uses backward differentiation for-
mulas, see Shampine and Reichelt (1997). The results are compared to those of
the methods PC and ISS mentioned in Section 2.4.

Benchmark Problem 1. Consider the simple fractional differential equation with
zero initial function given by

CDαq(t) = 1 − q(t),

q(t) = 0, t ≤ 0
(3.20)

with the closed form solution q(t) = 1 − Eα(−tα), see Figure 3.2. Using (3.12),
this problem may be approximated as

sin
(απ

2

)
ωα−1q̇(t)−

K−1

∑
k=0

J

∑
j=1

K(α, ηk,j)Ż(1)
k,j (t)wk,j

= 1 −
(

1 + cos
(απ

2

)
ωα
)

q(t) + ω2
K−1

∑
k=0

J

∑
j=1

K(α, ηk,j)Z(0)
k,j (t)wk,j

(3.21)

together with (3.13) and zero initial conditions in all states. The solution of (3.21)
can be compared to the closed form solution of (3.20) for which the Mittag-Leffler
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Figure 3.2: Benchmark 1: Analytical solution of (3.20) for various values of α.

function is computed with the help of the MATLAB function ml.m by Garrappa
(2014). The absolute errors

∆(0)(t) = |q(t)− q̃(t)|

between the exact solution q(t) and its numerical approximation q̃(t) are shown in
Figure 3.3 for many time scales. The results are generally good but show increas-
ing static errors for small values of α for very small and very large time scales, i.e.,
the method leads to a wrong approximation of the asymptotic behavior of the so-
lution. This phenomenon is in agreement with the estimations (3.15) and (3.17),
which reveal increasing errors for small and large t, respectively. In Figure 3.4,
the solution of (3.21) for α = 0.1 is compared to a scaled version of it, where the
last term in (3.21) is multiplied by a factor

cos
(

απ
2
)

ωα

ω2 ∑K−1
k=0 ∑J

j=1 K(α, ηk,j)
1

ηk,j
wk,j

such that the asymptotic behavior of the solution is correctly estimated. Unfor-
tunately, the scaling leads to a larger error for smaller time scales and does not
improve the approximation. It can be concluded that RISS provides a good ap-
proximation of the solution of (3.20) only in a certain time interval. However,
this interval can be extended by decreasing η1 and increasing ηK together with an
appropriate choice of J and K as explained in Section 3.3.

Furthermore, for t ∈ (0, 100) the results of RISS, ISS (applied to the frac-
tional integral equation equivalent to (3.20)) and PC are compared in Figure 3.5.
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Figure 3.3: Benchmark 1: Absolute error of the numerical solution of (3.20) using
RISS for various values of α.
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Figure 3.4: Benchmark 1: Analytical and numerical solution using RISS and a
scaled version of RISS with correct approximation of the asymptotic behavior of
the solution for α = 0.1.
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Thereby, the choice J = 20 is made for ISS such that the dimensions of the ap-
proximating ODEs in RISS and ISS are equal and, a fixed step size h = 5 · 10−4

is used for PC as this leads to a similar computation time as for RISS with the
parameters specified above. Figure 3.5 shows a good performance of RISS for all
chosen values of α while ISS works well only for large α ∈ (0, 1) and large time
scales. The main reason for that seems to be the truncation error for ISS, which
can be approximated similar as in (3.15), by
∣∣∣∣∣
∫ ∞

ηK

µα(λ)Z(λ, t)dλ

∣∣∣∣∣ ≤ C
∫ ∞

ηK

µα(λ)e−λtdλ + ∥1 − q∥∞

∫ ∞

ηK

µα(λ)

λ
dλ

≤ C
tα−1

Γ(α)
+ ∥1 − q∥∞

sin(απ)

απ
η−α

K

(3.22)

for some constant C > 0 and the uniform norm ∥ · ∥∞ in [0, t] while the quadra-
ture error for ISS can be estimated similar to (3.18). The error term in (3.22) has
a large influence for small time scales, especially for α → 0 and is of lower or-
der in ηK than the error in (3.15). In the article of Baffet (2019), such large errors
can be avoided by splitting a local part of the fractional integral (2.8) before in-
troducing the infinite state representation. The local part is then treated by an
approximation method for Volterra integrals. For PC, notice the improvement of
the convergence behavior with increasing values of α corresponding to (2.33). Es-
pecially for large t, the absolute errors become smaller than for RISS. However,
the computational costs for the used implementation of PC, see Garrappa (2012),
behave like O

(
n · log(n)2) with n = T

h while RISS seems to work much more ef-
ficient. To see this, the relation between computation time and the mean absolute
error ∆̄(0) for the three methods are presented in Figure 3.6. Therefore, the num-
ber J of quadrature nodes is increased for fixed parameters K = 25, η1 = 10−5

and ηK = 105 for RISS (J = 1, 2, 3, . . . , 10) and ISS ( J̃ = 2J) such that the dimen-
sions of the resulting ODEs for RISS (2KJ + 1) and ISS (KJ̃ + 1) are equal. Further,
the time step h for PC is decreased as h = 10−

J
4 . For ISS, one obtains almost no

reduction of the mean error for growing J. Apparently, the truncation error (3.22)
is larger in magnitude than the quadrature error, which is reduced by increasing
J. For RISS, a steep decay of the mean error until J = 7 can be observed. For larger
values of J, the mean error remains almost the same as the error terms in (3.15)
and (3.17) seem to predominate. For PC, a slow decay of the error with increasing
computation time is visible and RISS works more efficiently in the example given.

Remark 3.7. A slight change of (3.20) leads to an FODE with a non-zero constant
initial function

CDαq(t) = −q(t),

q(t) = 1, t ≤ 0
(3.23)



3.4. BENCHMARK PROBLEMS 41

10−2 100 102

10−13

10−9

10−5

10−1

t

∆(0)

α = 0.1

10−2 100 102
10−11

10−8

10−5

10−2

t

∆(0)

α = 0.3

10−2 100 102

10−10

10−8

10−6

10−4

10−2

t

∆(0)

α = 0.5

10−2 100 102

10−13

10−10

10−7

10−4

t

∆(0)

α = 0.7

10−2 100 102

10−14

10−11

10−8

10−5

α = 0.9

t

∆(0)
RISS
ISS
PC

Figure 3.5: Benchmark 1: Absolute error of the numerical solution of (3.20) using
RISS, ISS and PC for various values of α.
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Figure 3.6: Benchmark 1: Work-precision diagram for RISS, ISS and PC for
α = 0.5.

with the closed form solution q(t) = Eα(−tα). As q̇(t) = 0 for t < 0, the fractional
differential operator in (3.23) can as well be initialized at zero which leads to a
classical non-zero initial condition q(0) = 1. As explained in Remark 3.6, RISS
is not suitable for such a problem, especially for α → 0 (Figure 3.7). However,
with the objective of modeling real systems, an infinite non-zero history seems
inappropriate.

Benchmark Problem 2. Another one-term fractional differential equation with
zero initial function adapted from Xue and Bai (2017) has the form

CD0.7q(t) = f (t),

q(t) = 0, t ≤ 0
(3.24)

with a piecewise defined right-hand side

f (t) =

{ 1
Γ(1.3) t0.3, 0 ≤ t ≤ 1,

1
Γ(1.3) t0.3 − 2

Γ(2.3) (t − 1)1.3, t > 1.

The analytical solution of (3.24) is given by

q(t) =

{
t, 0 ≤ t ≤ 1,
t − (t − 1)2, t > 1
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Figure 3.7: Benchmark 1: Absolute error of the numerical solution of (3.23) using
RISS for various values of α.

in the interval (0, 2). The approximation of (3.24) using (3.12) has the form

sin
(

7π

20

)
ω−0.3q̇(t)−

K−1

∑
k=0

J

∑
j=1

K(0.7, ηk,j)Ż(1)
k,j (t)wk,j

= f (t)− cos
(

7π

20

)
ω0.7q(t) + ω2

K−1

∑
k=0

J

∑
j=1

K(0.7, ηk,j)Z(0)
k,j (t)wk,j .

Again, the absolute errors using RISS, ISS and PC (h = 5 · 10−5) have been com-
puted and the results may be found in Figure 3.8. The step size for PC is again
chosen such that the computation time of PC and RISS are similar. As in Bench-
mark 1, the best results can be obtained using RISS.

Benchmark Problem 3. Consider a third-order FODE adapted from the second
problem by Xue and Bai (2017) of the form

...
q (t) + CD0.5q̈(t) + q̈(t) + 4q̇(t) + CD0.5q(t) + 4q(t) = 6 cos(t),

q(t) =
√

2 sin
(

t +
π

4

)
, t ≤ 0,

(3.25)

which has the closed form solution q(t) =
√

2 sin(t + π
4 ) for t > 0. For the re-

formulation of (3.25), the infinite states Z(i), i = 0, . . . , 3 that fulfill (3.6) are intro-
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Figure 3.8: Benchmark 2: Absolute error of the numerical solution of (3.24) using
RISS, ISS and PC.

duced. One can apply (3.11) in (3.25) to obtain
(

1 +
1√
2r

)
...
q (t)−

K−1

∑
k=0

J

∑
j=1

K(0.5, ηk,j)Ż(3)
k,j (t)wk,j

+

(
1 +

√
2r
2

)
q̈(t)− ω2

K−1

∑
k=0

J

∑
j=1

K(0.5, ηk,j)Z(2)
k,j (t)wk,j

+

(
4 +

1√
2r

)
q̇(t)−

K−1

∑
k=0

J

∑
j=1

K(0.5, ηk,j)Ż(1)
k,j (t)wk,j

+

(
4 +

√
2r
2

)
q(t)− ω2

K−1

∑
k=0

J

∑
j=1

K(0.5, ηk,j)Z(0)
k,j (t)wk,j = 6 cos(t).

The initial function in (3.25) may be transferred to the initial values

Z(0)(η, 0) =
∫ 0

−∞
eητq(τ)dτ =

η − 1
1 + η2 ,

Z(1)(η, 0) =
∫ 0

−∞
eητq′(τ)dτ =

η + 1
1 + η2 ,

Z(2)(η, 0) =
∫ 0

−∞
eητq′′(τ)dτ = − η − 1

1 + η2 ,

Z(3)(η, 0) =
∫ 0

−∞
eητq′′′(τ)dτ = − η + 1

1 + η2
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of the infinite states. In Figure 3.9, the absolute error

∆(2)(t) = |q(t)− q̃(t)|+ |q̇(t)− ˙̃q(t)|+ |q̈(t)− ¨̃q(t)|

is shown for t ∈ (0, 1000), which has a maximal value ∆(2)
max ≈ 10−6. Furthermore,

the results of RISS and PC (h = 10−4) on the interval t ∈ (0, 100) are compared.
Apparently, RISS works slightly better than PC in this example while the compu-
tation time for PC is by a factor 3 higher than for RISS.
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Figure 3.9: Benchmark 3: Absolute error of the numerical solution of (3.25) using
RISS for t ∈ (0, 1000) (left), t ∈ (0, 100) (right) and PC for t ∈ (0, 100).

Benchmark Problem 4. The nonlinear explicit FODE

CD
√

2−1q̇(t) = 2
√

2−0.5e−2tq(t)CD0.5q(t) + 4e4t − q̇2(t)

q(t) = e2t, t ≤ 0
(3.26)

with closed form solution q(t) = e2t is adapted from the third problem by Xue
and Bai (2017). The associated ODE of the form (3.12) and the initial conditions of
the infinite states can be derived as for the previous examples. The relative error

∆(1)
r (t) =

∣∣∣∣
q(t)− q̃(t)

q(t)

∣∣∣∣+
∣∣∣∣
q̇(t)− ˙̃q(t)

q̇(t)

∣∣∣∣ (3.27)

using RISS is presented in Figure 3.10.

Benchmark Problem 5. The nonlinear implicit FODE

CD0.2q(t) CD0.8q̇(t) + CD0.3q(t) CD0.7q̇(t) = 8e4t

q(t) = e2t, t ≤ 0
(3.28)
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Figure 3.10: Benchmark 4: Relative error of the solution of (3.26) using RISS.

similar to the fourth problem by Xue and Bai (2017) with closed form solution
q(t) = e2t is not of the form (2.15). Nevertheless, the reformulation (3.5) can be
introduced, which leads to an implicit ODE that can be solved using MATLAB’s
ode15i.m. The relative error (3.27) is shown in Figure 3.11.
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Figure 3.11: Benchmark 5: Relative error of the solution of (3.28) using RISS.



CHAPTER 4
Fractional calculus in viscoelasticity

The present chapter provides an introduction to the linear theory of viscoelas-
ticity and reveals the role of fractional calculus in this field. The classical part
mainly follows the reasoning in the books of Christensen (2013); Creus (1986);
Gross (1953) and the references cited therein. The use of fractional derivatives
in constitutive laws is shown to be a special case of continuous (relaxation or re-
tardation) spectra. Moreover, a correspondence between the associated complex
modulus and complex compliance function and the reformulated infinite state
representation is deduced. Finally, the parameters of a fractional viscoelastic con-
stitutive model are identified for a creep test with salt concrete and the advantages
of fractional over classical models are discussed.

4.1 Classical linear viscoelasticity

Principal assumptions and integral representation

The mechanical behavior of a deformable body is, aside from the general princi-
ples of mechanics (i.e., equilibrium and compatibility equations), determined by
a characteristic material behavior specified by constitutive equations, which relate
forces and deformations. Assuming only small displacements of the body, forces
and deformations can be described by the Cauchy stress tensor σ and the infinites-
imal strain tensor ε as defined in any textbook on continuum mechanics, see e.g.
Gurtin (1981). The characteristic property of a viscoelastic constitutive equation is
the dependence of stress at a certain time instant on the entire history of strain
and vice versa (which is different from the elastic theory where only the current
stress and strain state affect each other). Besides this memory hypothesis, which is
motivated by empirical data of materials like polymers and concrete, three further
assumptions can be formulated to obtain a general viscoelastic constitutive equa-
tion. The first and self-evident property is causality or non-retroactivity, meaning
that no future strain (resp. stress) state can affect the current stress (resp. strain)
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state. The other two assumptions which have to be verified for a certain mate-
rial in an application, are the principle of superposition or linearity and translation-
invariance or non-aging. The principle of superposition implies that if two strain
states ε1 and ε2 lead to stresses σ1 and σ2, respectively, then the strain a1ε1 + a2ε2
leads to the stress a1σ1 + a2σ2 for arbitrary a1, a2 ∈ R. Translation-invariance
means that for any time instant t a strain ε(t) leading to a stress σ(t) implies that
ε(t− s) leads to σ(t− s) for any s > 0, i.e., the material behavior is independent of
shifts in the time scale. Finally, the above requirements result in the formulation
of the constitutive relation as

σij(t) =
∞
Lij
s=0

(εkl(t − s), εkl(t)), t ∈ (−∞, T), (4.1)

where Lij are the components of a linear tensor functional mapping a continuous
strain history

εkl ∈ C0(−∞, T]

that vanishes at the negative time limit to the corresponding stress history

σij ∈ C0(−∞, T]

for some T > 0. The bounds of the functional correspond to the considered time
range of the argument function. Particularly, the lower bound s = 0 and the
time argument t − s represent causality and translation-invariance, respectively.
The Latin indices (attaining 1,2,3) indicate the usual Cartesian tensor notation
and the summation convention for repeated indices. An additional continuity
assumption on Lij and a proposition by König and Meixner (1958, Thm. 3) lead to
the representation of the linear functional in (4.1) by a Stieltjes integral

σij(t) =
∫ ∞

0
εkl(t − s)dGijkl(s), (4.2)

where Gijkl ∈ BV[0, ∞) are functions of bounded variation on every closed subin-
terval in (0, ∞). The proof by König and Meixner (1958) assumes the strains εkl
to be continuous and defined on a bounded interval and is based on Riesz’ rep-
resentation theorem in its original form, see Riesz and Sz.-Nagy (1955, §§ 50-52).
A generalization by Rudin (1986, Thm. 2.14) leads to the result on C0(−∞, T]. Al-
ternative formulations of (4.2) for continuously differentiable Gijkl are given by

σij(t) = Gijkl(0)εkl(t) +
∫ ∞

0
εkl(t − s)G′

ijkl(s)ds (4.3)

and for differentiable εkl , using integration by parts and the substitution τ = t − s
in (4.3) by

σij(t) =
∫ t

−∞
Gijkl(t − τ)ε′kl(τ)dτ. (4.4)
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Another generalization for εkl vanishing in (−∞, 0) and with a step discontinuity
at zero is given by

σij(t) = εkl(0)Gijkl(t) +
∫ t

0
Gijkl(t − τ)ε′kl(τ)dτ, (4.5)

see Gurtin and Sternberg (1962, Thms. 3.1, 3.4), where the discontinuous strain
functions are approximated by sequences of continuous functions.

The functions Gijkl are known as relaxation functions that describe the stress
relaxation of a material under unit step strain. Particularly, from (4.5) follows

εkl(t) = ε0
klΘ(t) ⇒ σij(t) = ε0

kl Gijkl(t), (4.6)

where Θ is the Heaviside step function. An alternative derivation of the general
form of viscoelastic constitutive laws results from reversing the roles of stress
and strain in (4.1), leading especially to the analogues

εij(t) =
∫ t

−∞
Jijkl(t − τ)σ′

kl(τ)dτ. (4.7)

and

εij(t) = σkl(0)Jijkl(t) +
∫ t

0
Jijkl(t − τ)σ′

kl(τ)dτ, (4.8)

of (4.4) and (4.5) respectively with so-called creep functions Jijkl ∈ BV[0, ∞) that
describe the strain answer of a material under unit step loading, i.e.,

σkl(t) = σ0
klΘ(t) ⇒ εij(t) = σ0

kl Jijkl(t), (4.9)

which results from (4.8).
The general tensorial constitutive equations (4.4) and (4.7) can be simplified by

using intrinsic and material symmetries. The intrinsic symmetries of stress and
strain tensor imply

Gijkl(t) = Gjikl(t) = Gijlk(t),

Jijkl(t) = Jjikl(t) = Jijlk(t).

As material symmetry, consider the most simple case of isotropic material behav-
ior, meaning that the constitutive equations remain unchanged under any time-
independent rotation of the coordinate system. Let R = (Rij)i,j be a rotation (i.e.,
RikRjk = δij and det(R) = 1) such that stresses σ̄mn and strains ε̄pq in the new
(rotated) coordinate system may be expressed as

σ̄mn = RmiRnjσij , εkl = RpkRql ε̄pq ,
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which leads together with (4.4) to

σ̄mn(t) =
∫ t

−∞
RmiRnjRpkRqlGijkl(t − τ)ε̄′pq(τ)dτ.

The isotropy assumption forces the material law to remain invariant under rota-
tion such that

Gmnpq(t) = RmiRnjRpkRql Gijkl(t), t > 0

for arbitrary R, meaning that the values of G = (Gijkl)i,j,k,l at certain time instants
are isotropic fourth-order tensors which are known to be determined by two inde-
pendent variables, see Temple (1960). Particularly, the relaxation functions can be
stated as

Gijkl(t) = λ(t)δijδkl + µ(t)(δikδjl + δilδjk), (4.10)

where the functions λ and µ correspond to the Lamé moduli known from elasticity
theory, see Truesdell (1973, Chap. 1.C.III.22). Finally, a decomposition of stress
(resp. strain) tensor in hydrostatic (resp. volumetric)

σh :=
1
3

σii , εh :=
1
3

εii (4.11)

and deviatoric components

σd := σ − σhI, εd := ε − εhI (4.12)

results using (4.10) in two independent constitutive equations

σh(t) =
∫ t

−∞
Gh(t − τ)ε′h(τ)dτ, Gh := 3λ + 2µ, (4.13)

σd(t) =
∫ t

−∞
Gd(t − τ)ε′d(τ)dτ, Gd := 2µ. (4.14)

Accordingly, the material behavior of an isotropic viscoelastic medium is com-
pletely described by the two one-dimensional integral representations (4.13) and
(4.14) with relaxation functions in isotropic compression Gh and shear Gd. The
brief derivation from above is given in more detail by Gurtin and Sternberg (1962,
Thms. 2.3 - 2.5). An obvious alternative formulation of the creep type is given by

εh(t) =
∫ t

−∞
Jh(t − τ)σ′

h(τ)dτ, (4.15)

εd(t) =
∫ t

−∞
Jd(t − τ)σ′

d(τ)dτ (4.16)

with creep functions in isotropic compression Jh and shear Jd. The correspon-
dence between relaxation and creep functions and further properties will be dis-
cussed in the following paragraph. For a simplified notation in one dimension,
the indices of creep and relaxation functions as well as stress and strain will be
omitted meanwhile. The formulation in (4.13) - (4.16) of the isotropic viscoelastic
constitutive equations is revisited in Section 4.3.
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Properties of relaxation and creep functions

The following derivation of further properties of relaxation functions, which is a
summary of the exposition by Christensen (2013, Chap. 3), is based on the two
fundamental postulates of thermodynamics, i.e., balance of energy and the en-
tropy production inequality. The starting point for a one-dimensional isothermal
constitutive law is the assumption of a non-negative free energy function of the
form

ψ(t) :=
1
2

∫ t

−∞

∫ t

−∞
G(2t − τ − s)ε′(τ)dτ ε′(s)ds ≥ 0, (4.17)

implying
G(t) ≥ 0, t ≥ 0, (4.18)

which is in perfect agreement with experimental results. Moreover, the energy
balance principle together with the assumption of a positive entropy rate leads to
the Clausius-Duhem inequality

−ψ̇(t) + σ(t)ε̇(t) ≥ 0.

Using (4.17) and a scalar version of the constitutive law (4.4), i.e.,

σ(t) =
∫ t

−∞
G(t − τ)ε′(τ)dτ, (4.19)

the Clausius-Duhem inequality reads as

−
∫ t

−∞

∫ t

−∞
G′(2t − τ − s)ε′(τ)dτε′(s)ds ≥ 0. (4.20)

Finally, choosing a single-step strain in (4.20) leads to

Ġ(t) ≤ 0, t ≥ 0. (4.21)

Similar relations for creep functions can be obtained by using the correspon-
dence between the constitutive equation (4.19) in relaxation form and the associ-
ated relation in creep form

ε(t) =
∫ t

−∞
J(t − τ)σ′(τ)dτ (4.22)

according to (4.7). Substitution of the specific stress history

σ(t) =

{
0, t ≤ 0
t, t > 0

in (4.22) and the resulting strain rate ε̇(t) = J(t) in (4.19) leads to
∫ t

0
G(t − τ)J(τ)dτ = t ≥ 0. (4.23)
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A direct consequence of (4.23) together with (4.18) is

J(t) ≥ 0, t ≥ 0. (4.24)

Furthermore, the time-derivative of (4.23), viz.

G(0)J(t) +
∫ t

0
G′(t − τ)J(τ)dτ = 1 (4.25)

results in
J̇(t) ≥ 0, t ≥ 0, (4.26)

as the integral term in (4.25) is non-positive and non-increasing due to (4.21) and
(4.24).

Two other factors that influence the properties of relaxation and creep func-
tions are the hypothesis of fading memory and the distinction between viscoelastic
fluids and solids, see Christensen (2013, Chap. 1.3). The assumption of fading
memory implies that the current stress (resp. strain) is affected stronger by the
more recent strain (resp. stress) history. From this point of view, the relaxation
and creep representations in the form

σ(t) = G(0)ε(t) +
∫ t

−∞
G′(t − τ)ε(τ)dτ, (4.27)

ε(t) = J(0)σ(t) +
∫ t

−∞
J′(t − τ)σ(τ)dτ (4.28)

obtained by partial integration of (4.19) and (4.22), express a weighting of the
strain (resp. stress) history and a decreasing dependence on past values neces-
sitates decreasing weighting functions |Ġ| and | J̇| in (4.27) and (4.28), which to-
gether with (4.21) and (4.26) leads to

G̈(t) ≥ 0, J̈(t) ≤ 0, t ≥ 0. (4.29)

Moreover, a distinction between solids and fluids influences the asymptotic be-
havior of relaxation and creep functions. A fluid in a constant state of deforma-
tion shows a stress relaxation to zero and, on the contrary, when subjected to a
constant stress, a lasting increase in strain will occur such that

lim
t→∞

G(t) = 0, lim
t→∞

J(t) = ∞.

A solid under constant strain will relax to a constant state of stress whereas a con-
stant stress results in a finite long-term strain response, which can be expressed
as

lim
t→∞

G(t) = G∞ > 0, lim
t→∞

J(t) = J∞ < ∞.
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The previous steps to identify properties of viscoelastic constitutive equations
are mainly based on general physical principles, viz. the memory hypothesis,
translation-invariance, causality, the fundamental laws of thermodynamics and
the fading memory principle. Together with assumptions on linearity and con-
tinuity, one obtains a full description of viscoelastic material behavior by a non-
negative, non-increasing, convex relaxation function G or, alternatively by a non-
negative, non-decreasing, concave creep function J. Both functions are thereby
connected through (4.23). A typical shape of these functions under the additional
assumption of a solid material, which will be the case of interest in the further
course, is shown in Figure 4.1. These graphs show another characteristic prop-
erty of solid materials, namely an instantaneous elastic behavior which is evoked
by G(0) = G0 < ∞ and J(0) = J0 > 0.

Figure 4.1: Typical shape of relaxation (left) and creep functions (right) for a vis-
coelastic solid.

Relaxation and retardation spectra

The most simple relaxation and creep functions that satisfy the above require-
ments are given by

G(t) = G∞ + (G0 − G∞)e−
t

τσ , 0 < G∞ < G0 < ∞, τσ > 0 (4.30)

and

J(t) = J0 + (J∞ − J0)
(

1 − e−
t

τε

)
, 0 < J0 < J∞ < ∞, τε > 0, (4.31)

where τσ and τε are the characteristic relaxation and retardation time constants. As
mentioned before, the correspondence of the parameters in (4.30) and (4.31) is
given by (4.23) such that

J0 =
1

G0
, J∞ =

1
G∞

, τε =
G0
G∞

τσ



54 4. FRACTIONAL CALCULUS IN VISCOELASTICITY

must hold. The models (4.30) (or (4.31)) show a relaxation (or creep) behavior
only in a quite narrow time range around τσ (or τε), see the graphs with loga-
rithmic time scale in Figure 4.2. However, the relaxation and creep behavior of

Figure 4.2: Sketched graphs of relaxation function (4.30) (left) and creep function
(4.31) (right) using a logarithmic time scale.

real materials covers many decades in time, i.e., more than one characteristic time
affects the constitutive law. The most general description of relaxation and creep
even includes a continuous spectrum of characteristic time constants such that
(4.30) and (4.31) are generalized as

G(t) = G∞ + (G0 − G∞)
∫ ∞

0
Rσ(τ)e−

t
τ dτ, (4.32)

J(t) = J0 + (J∞ − J0)
∫ ∞

0
Rε(τ)

(
1 − e−

t
τ

)
dτ (4.33)

with the relaxation spectrum Rσ and the retardation spectrum Rε in time, that fulfill
∫ ∞

0
Rσ(τ)dτ = 1,

∫ ∞

0
Rε(τ)dτ = 1,

see Gross (1953), Mainardi (2010, Chap. 2.5). The degree of generality of the rep-
resentations (4.32) and (4.33) becomes obvious by introducing the relaxation (or
retardation) frequency λ = 1

τ together with the relaxation spectrum Sσ and the
retardation spectrum Sε in frequency, given by

Sσ(λ) := (G0 − G∞)
Rσ

(
1
λ

)

λ2 , Sε(λ) := (J∞ − J0)
Rε

(
1
λ

)

λ2

such that (4.32) and (4.33) can be rewritten as

G(t) = G∞ +
∫ ∞

0
Sσ(λ)e−λtdλ, (4.34)

J(t) = J0 +
∫ ∞

0
Sε(λ)

(
1 − e−λt

)
dλ = J∞ −

∫ ∞

0
Sε(λ)e−λtdλ. (4.35)
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Hence, the relaxation and creep function are given as Laplace transforms (2.12)
of relaxation and retardation spectrum and the spectra are in turn determined by
the inverse Laplace transform of the relaxation function or the rate of the creep
function, respectively.

Prony series, mechanical network models and the differential operator
representation

The spectra defined above denote the starting point to consider specific viscoelas-
tic constitutive laws. An explicitly given spectrum results in a relaxation or creep
function with certain parameters that can be fitted to experimental relaxation
or creep data. The choice of discrete spectra leads to a class of classical multi-
parameter models that consider a finite number of relaxation (or retardation)
times or frequencies described by a Prony series. Particularly, a relaxation spec-
trum

Sσ(λ) =
m

∑
i=1

Gi δ(λ − λi),
m

∑
i=1

Gi = G0 − G∞ , (4.36)

where δ represents the Dirac distribution, leads using (4.34) to a relaxation function

G(t) = G∞ +
m

∑
i=1

Gie
−λit. (4.37)

Analogously, a retardation spectrum

Sε(λ) =
n

∑
j=1

Jj δ(λ − λ̄j),
n

∑
j=1

Jj = J∞ − J0

results together with (4.35) in a creep function

J(t) = J0 +
n

∑
j=1

Jj

(
1 − e−λ̄jt

)
. (4.38)

The case m = n = 1 in (4.37) and (4.38) directly yields (4.30) and (4.31).
The Prony series approach is linked to a mechanical interpretation of viscoelas-

tic constitutive equations as networks consisting of springs and dashpots, see
Mainardi (2010, Chap. 2.4). Thereby, a spring is considered as a perfectly elas-
tic element that fulfills Hooke’s law

σ(t) = Eε(t) ⇒ G(t) = E, J(t) =
1
E

with a constant elastic modulus E > 0 and a dashpot is meant to behave like a
viscous Newtonian fluid such that

σ(t) = ηε̇(t) ⇒ G(t) = η δ(t), J(t) =
t
η
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with a constant damper viscosity η > 0, see Figure 4.3(a). The most obvious
networks result from a connection of spring and dashpot in series such that

σ(t) +
η

E
σ̇(t) = ηε̇(t), σ(0) = Eε(0) ⇒ G(t) = Ee−

E
η t, J(t) =

t
η
+

1
E

,

known as Maxwell model or a connection in parallel such that

σ(t) = Ēε(t) + η̄ε̇(t) ⇒ G(t) = Ē + η̄ δ(t), J(t) =
1
Ē

(
1 − e−

Ē
η̄ t
)

,

named Kelvin(-Voigt) model, see Figure 4.3(b). Furthermore, the connection of a
Maxwell model in parallel to a spring leads to

σ(t) +
η

E1
σ̇(t) = E0ε(t) +

η

E1
(E0 + E1)ε̇(t), σ(0) = (E0 + E1)ε(0)

⇒ G(t) = E0 + E1e−
E1
η t, J(t) =

1
E0 + E1

+
E1

E0(E0 + E1)

(
1 − e−

E0 E1
η(E0+E1)

t
)

,

which is equivalent to a Kelvin model connected in series to a spring such that

(Ē0 + Ē1)σ(t) + η̄σ̇(t) = Ē0Ē1ε(t) + Ē0η̄ε̇(t), σ(0) = Ē0ε(0)

⇒ G(t) =
Ē0Ē1

Ē0 + Ē1
+

Ē2
0

Ē0 + Ē1
e−

Ē0+Ē1
η̄ t, J(t) =

1
Ē0

+
1

Ē1

(
1 − e−

Ē1
η̄ t
)

.

Both models (Figure 4.3(c)) are referred to as Zener model or standard linear solid,
see Zener (1948), which represents the most simple mechanical model of a vis-
coelastic solid, as it is related to (4.30), (4.31). If more Kelvin elements in series or
Maxwell elements in parallel are added (Figure 4.3(d)), the associated relaxation
and creep functions are just of the form (4.37) and (4.38) with m = n.

Another description of viscoelastic constitutive laws that is also derived from
the Prony series approach is the differential operator representation. It results from a
Laplace transform (2.12) of (4.37) and (4.38) given by

G̃(s) := L {G(t)} (s) = G∞

s
+

m

∑
i=1

Gi
s + λi

, (4.39)

J̃(s) := L {J(t)} (s) = J∞

s
−

n

∑
j=1

Jj

s + λ̄j
. (4.40)

The terms in (4.39) and (4.40) represent partial fraction expansions of complex
rational functions with simple poles and zeros in (−∞, 0]. Some algebraic calcu-
lation leads to representations

sG̃(s) =
G∞ + ∑m

i=1 aisi

1 + ∑m
i=1 bisi =

∑m−1
i=0 āisi + G0sm

∑m−1
i=0 b̄isi + sm

,

s J̃(s) =
1 + ∑n

j=1 cjsj

1/J∞ + ∑n
j=1 djsj =

∑n−1
j=0 c̄jsj + sn

∑n−1
j=0 d̄jsj + sn/J0

.

(4.41)
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(a) Spring (left) and dashpot (right).

(b) Maxwell model (left) and Kelvin model (right).

(c) Zener models.

(d) Generalized Zener models.

Figure 4.3: Mechanical representation of constitutive laws.
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If (4.37) and (4.38) represent the same constitutive equations, consider the Laplace
transform of (4.23) using Proposition 2.9 c), viz.

G̃(s) J̃(s) =
1
s2 ⇔ sG̃(s) =

1
s J̃(s)

, (4.42)

which particularly yields by comparison of coefficients in (4.41)

m = n, G0 =
1
J0

, G∞ =
1
J∞

,

ai = di , āi = d̄i , bi = ci , b̄i = c̄i .
(4.43)

Furthermore, considering zero histories σ(t) = 0, ε(t) = 0 for t < 0, the Laplace
transforms

σ̃(s) = G̃(s)sε̃(s), ε̃(s) = J̃(s)sσ̃(s)

of the constitutive equations (4.19) and (4.22) lead, together with (4.41) and (4.43),
to (

1 +
m

∑
i=1

bisi

)
σ̃(s) =

(
G∞ +

m

∑
i=1

aisi

)
ε̃(s).

This results by inverse Laplace transform in the differential operator representa-
tion

σ(t) +
m

∑
i=1

biD
iσ(t) = G∞ε(t) +

m

∑
i=1

aiD
iε(t) (4.44)

under assumption of compatible initial conditions

m

∑
i=k

biσ
(i−k)(0) =

m

∑
i=k

aiε
(i−k)(0), k = 1, . . . , m,

see Christensen (2013, Chap. 1.4).
The mechanical models in Figure 4.3 and the differential operator represen-

tation (4.44) are two alternative starting points for the formulation of viscoelas-
tic constitutive equations. However, the derivations above emphasize that both
approaches are derived from (4.37) (or (4.38)), which are obtained from discrete
relaxation (or retardation) spectra and hence represent a special case. One major
disadvantage of models that assume a finite number of relaxation (or retardation)
times is the poor extrapolation of material behavior. The model parameters, in-
cluding characteristic time constants obtained from relaxation and creep tests, can
only fit the experimental curves in the measured time ranges and will predict a
fast decay of creep and relaxation phenomena outside the measured time span.
But many materials show a long-term viscoelastic behavior instead, which can
only be described using continuous relaxation and retardation spectra. One pos-
sibility to formulate continuous spectra is related to fractional calculus and will
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be given in Section 4.2 and the drawbacks of discrete spectra in material modeling
are shown for real material data in Section 4.3. A collection of further candidate
functions for spectra that have been used to identify real material behavior is
listed by Gross (1953, Chap. XIII).

Complex modulus and complex compliance functions

Whereas relaxation and creep functions are quantities that represent viscoelas-
tic material behavior under static deformation or loading conditions in the time
domain, there are also observables that describe the dynamic properties in the
frequency domain, named the complex modulus and the complex compliance. These
quantities determine the response of a linear viscoelastic model to an oscillatory
input. Particularly, the complex modulus E∗ relates the stress σ̂(t) to an oscilla-
tory strain ε̂(t) = eiωt. Together with (4.19) and the decomposition

G(t) = G∞ + Ĝ(t),

one obtains the representation

σ̂(t) = E∗(iω)ε̂(t),

E∗(iω) = G∞ + iω
∫ ∞

0
Ĝ(s)e−iωsds = G∞ + iωL

{
Ĝ
}
(iω),

(4.45)

in which E∗ can be separated into real and imaginary part

E∗(iω) = E∗
1 (ω) + iE∗

2 (ω),

E∗
1 (ω) = G∞ + ω

∫ ∞

0
Ĝ(s) sin(ωs)ds, E∗

2 (ω) = ω
∫ ∞

0
Ĝ(s) cos(ωs)ds.

(4.46)

The quantities E∗
1 and E∗

2 are sometimes referred to as storage and loss modulus,
respectively, see Christensen (2013, Chap. 1.6) and Lakes (1999, Chap. 3). This
nomenclature becomes clear by using (4.46) in (4.45) such that

σ̂(t) = E∗
1 (ω)ε̂(t) +

E∗
2 (ω)

ω
˙̂ε(t).

An equivalent representation given by the imaginary part of (4.45), namely

ε(t) = sin(ωt) ⇒ σ(t) = E∗
1 (ω) sin(ωt) + E∗

2 (ω) cos(ωt),

illustrates that E∗
1 is the component of the modulus in phase to the applied strain,

whereas E∗
2 represents the anti-phase part. Equation (4.46) allows the calculation

of the complex modulus from the creep function such that dynamic properties can
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be computed from static experimental data. Vice versa, the relaxation function
can be obtained from dynamic data by Fourier inversion of (4.46), i.e.,

Ĝ(t) =
2
π

∫ ∞

0

E∗
1 (ω)− G∞

ω
sin(ωt)dω =

2
π

∫ ∞

0

E∗
2 (ω)

ω
cos(ωt)dω. (4.47)

The complex modulus can alternatively be given in terms of the relaxation spec-
trum. Substituting (4.34) in (4.46), interchanging integrals and using the Laplace
transforms of sine and cosine, see Proposition 2.9, leads to

E∗
1 (ω) = G∞ + ω2

∫ ∞

0

Sσ(λ)

λ2 + ω2 dλ, (4.48)

E∗
2 (ω) = ω

∫ ∞

0

Sσ(λ)λ

λ2 + ω2 dλ, (4.49)

as given by Gross (1953, Chap. V.3). For the example of a discrete relaxation spec-
trum (4.36) in (4.48) and (4.49), one obtains

E∗
1 (ω) = G∞ + ω2

m

∑
i=1

Gi

λ2
i + ω2

, E∗
2 (ω) = ω

m

∑
i=1

Giλi

λ2
i + ω2

. (4.50)

A sketch of the above storage and loss moduli for the case m = 1 is given in Fig-
ure 4.4. Particularly, the moduli in (4.50) show the predominantly elastic behavior
of a viscoelastic solid for very small frequencies as

lim
ω→0

E∗
1 (ω) = G∞ > 0, lim

ω→0
E∗

2 (ω) = 0

and for extremely large frequencies because

lim
ω→∞

E∗
1 (ω) = G∞ +

m

∑
i=1

Gi = G0 > 0, lim
ω→∞

E∗
2 (ω) = 0.

Similar as in previous sections, the role of stress and strain can be swapped for
an equivalent representation, i.e., one can consider the strain response ε̂ to an
oscillatory stress history σ̂(t) = eiωt, which is given by the complex compliance J∗.
Equation (4.22) together with the decomposition

J(t) = J∞ − Ĵ(t)

leads to the representation

ε̂(t) = J∗(iω)σ̂(t),

J∗(iω) = J∞ − iω
∫ ∞

0
Ĵ(s)e−iωsds = J∞ − iωL

{
Ĵ
}
(iω)

(4.51)
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Figure 4.4: Frequency dependence of storage and loss modulus for a Zener model.

together with the decomposition

J∗(iω) = J∗1 (ω)− iJ∗2 (ω),

J∗1 (ω) = J∞ − ω
∫ ∞

0
Ĵ(s) sin(ωs)ds, J∗2 (ω) = ω

∫ ∞

0
Ĵ(s) cos(ωs)ds.

A comparison of (4.45) and (4.51) reveals using (4.42) the correspondence

J∗(iω) =
1

E∗(iω)

between complex modulus and complex compliance. Similar formulas as (4.47),
(4.48) and (4.49) hold for J∗ as well and are given by Gross (1953, Chap. VI).

4.2 Fractional linear viscoelasticity

A possible choice of a continuous relaxation spectrum is given by

Sσ(λ) := p
sin(απ)

π
λα−1 = pµ1−α(λ), p > 0, α ∈ (0, 1). (4.52)

This spectrum is the starting point for the formulation of a class of viscoelastic
constitutive laws, that are related to fractional calculus. Indeed, using (4.34) and
(2.28), the associated relaxation function

G(t) = p
t−α

Γ(1 − α)
(4.53)

can be identified, which leads in view of (4.19) and Definition 2.5 to the linear
constitutive equation

σ(t) = pCDαε(t). (4.54)
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(a) Springpot.

(b) Fractional Maxwell model (left) and fractional Kelvin model (right).

(c) Fractional Zener models.

(d) Generalized fractional Zener models.

Figure 4.5: Mechanical representation of fractional constitutive laws.
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Fractional calculus has been used by several authors in the 1930s and 1940s as
an empirical method to describe viscoelastic material behavior, see the references
in Mainardi (2010, Chap. 3). Particularly, Scott Blair (1947) introduced (4.54) to
model intermediate material behavior interpolating between Hooke’s and New-
ton’s law. Later, Koeller (1984) related (4.54) to a new rheological element to be
used in mechanical network models, besides the spring and the dashpot element.
The fractional rheological element was named springpot1 and depicted as a rhom-
bus, see Figure 4.5(a). In view of (4.53), a springpot shows a long-term relaxation
behavior. It fulfills the necessary conditions (4.18), (4.21) and (4.29) to represent
a linear viscoelastic medium properly. However, a springpot by itself cannot de-
scribe solid behavior as

lim
t→0

G(t) = ∞, lim
t→∞

G(t) = 0.

The most simple way to bound the initial value of the relaxation function is
adding a spring in series to the springpot, which is known as fractional Maxwell
model (Figure 4.5(b)) and given by the equation

CDαε(t) =
1
E

CDασ(t) +
1
p

σ(t). (4.55)

The associated relaxation function G can be obtained by assuming a unit-step
strain ε(t) = Θ(t) and an elastic initial relaxation G(0) = E (due to the spring
with modulus E). This translates (4.55) into

CDα
0 G(t) = −E

p
G(t), G(0) = E, (4.56)

where (4.6) and the properties

CDαΘ(t) =
∫ t

−∞

(t − τ)−α

Γ(1 − α)
δ(τ)dτ =

t−α

Γ(1 − α)
,

CDαG(t) = CDα{G(0)Θ(t)}+ CDα
0{G(t)− G(0)} = G(0)

t−α

Γ(1 − α)
+ CDα

0 G(t)

are used. Thus, (4.56) is solved by a Mittag-Leffler function, see (2.14), as

G(t) = E Eα

(
−E

p
tα

)
.

For the Mittag-Leffler function, (4.18), (4.21) and (4.29) still hold according to
Proposition 2.14. Furthermore, an additional spring in parallel to a fractional

1Originally, Koeller (1984) used the spelling spring-pot. The author prefers an unhyphenated nota-
tion.



64 4. FRACTIONAL CALCULUS IN VISCOELASTICITY

Maxwell model (Figure 4.5(c)) leads to a non-zero asymptotic relaxation, i.e.,

G(t) = E0 + E1Eα

(
−E1

p
tα

)
. (4.57)

The relaxation function (4.57) finally fulfills all properties of a constitutive law
describing linear viscoelastic solids. The associated mechanical model is referred
to as fractional Zener model. Omitting the mechanical interpretation, (4.57) can be
reformulated with new parameters as

G(t) = G∞ + (G0 − G∞)Eα(−γσtα) , 0 < G∞ < G0, γσ > 0, α ∈ (0, 1). (4.58)

A fractional relaxation (4.58) also corresponds to a continuous relaxation spec-
trum. To see this, the Laplace transform of the Mittag-Leffler function in Proposi-
tion 2.12 is expedient. More precisely, the inverse transform

Eα(−γtα) =
1

2πi

∫ δ+i∞

δ−i∞

sα−1

sα + γ
estds, δ > 0

can be obtained by an integral along a Bromwich contour in the complex plane
and using the residue theorem2. The only non-vanishing contributions to this
integral stem from the sides of the branch cut along the negative real axis. The
result is given by

Eα(−γtα) = − 1
π

∫ ∞

0
Im

(
sα−1

sα + γ

∣∣∣∣∣
s=λeiπ

)
e−λtdλ. (4.59)

Using (4.59) together with (4.58) in (4.34) leads to the relaxation spectrum

Sσ(λ) = (G0 − G∞)
γσµ1−α(λ)

λ2α + 2γσλα cos(απ) + γ2
σ

, (4.60)

which is shown in Figure 4.6 for various values of α ∈ (0, 1). Particularly, the
graphs lead to the proposition

lim
α→1

Sσ(λ) = (G0 − G∞)δ(λ − γσ),

which represents the case m = 1 in (4.36).
The fractional Zener model can, of course, also be represented by a creep func-

tion. Hereto, consider a spring in parallel to a springpot leading to a fractional
Kelvin model (Figure 4.5(b)) described by

σ(t) = Ēε(t) + pCDᾱε(t). (4.61)

2The details are omitted here. A more complicated example using this procedure is described in
detail in Chapter 5.
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Figure 4.6: Relaxation spectrum Sσ(λ) for different values of α ∈ (0, 1).

A unit-step stress and the assumption of zero initial strain transform (4.61) into

CDᾱ
0 J(t) =

1
p̄
− Ē

p̄
J(t), J(0) = 0,

which is again solved by a Mittag-Leffler function as

J(t) =
1
Ē

(
1 − Eᾱ

(
− Ē

p̄
tᾱ

))
.

Adding another spring in series finally yields the creep representation of the frac-
tional Zener model (Figure 4.5(c))

J(t) =
1

Ē0
+

1
Ē1

(
1 − Eᾱ

(
− Ē1

p̄
tᾱ

))
. (4.62)

Alternatively, the creep function is in view of (4.58) and in analogy to (4.30) and
(4.31) given as

J(t) = J0 + (J∞ − J0)
(
1 − Eᾱ

(
−γεtᾱ

))
. (4.63)

Thereby, the relation (4.42) leads to a correspondence of parameters in (4.58) and
(4.63) given by

J0 =
1

G0
, J∞ =

1
G∞

, γε =
G∞

G0
γσ , ᾱ = α,
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which yields in view of (4.57) and (4.62)

Ē0 = E0 + E1 , Ē1 =
E0
E1

(E0 + E1), p̄ =

(
E0 + E1

E1

)2
p, ᾱ = α. (4.64)

A creep function as in (4.62) has been used for instance by Schmidt and Gaul
(2002) to describe the material behavior of a polymer. Another application on
creep of salt concrete is explicated in Section 4.3. Moreover, using (4.59) in (4.63)
yields the retardation spectrum

Sε(λ) = (J∞ − J0)
γεµ1−α(λ)

λ2α + 2γελα cos(απ) + γ2
ε

similar to (4.60). A further generalization of fractional Zener models as in Fig-
ure 4.5(d) is analogously to (4.37) and (4.38) given by

G(t) = G∞ +
m

∑
i=1

GiEαi

(
−γσ,itαi

)
,

m

∑
i=1

Gi = G0 − G∞ ,

J(t) = J0 +
m

∑
i=1

Ji
(
1 − Eαi

(
−γσ,itαi

))
,

m

∑
i=1

Ji = J∞ − J0 .

However, the applications in the following chapters are confined to simple frac-
tional Zener models.

To conclude this section, the dynamic properties of fractional constitutive laws
are studied. For the springpot, one obtains the storage and loss moduli by substi-
tuting (4.52) in (4.48) and (4.49) to obtain

E∗
1 (ω) = ω2

∫ ∞

0

pµ1−α(λ)

λ2 + ω2 = p cos
(απ

2

)
ωα, (4.65)

E∗
2 (ω) = ω

∫ ∞

0

pµ1−α(λ)λ

λ2 + ω2 = p sin
(απ

2

)
ωα, (4.66)

where the right-hand expressions result from Proposition 3.3. Accordingly, the
storage and loss moduli of the springpot can be rediscovered in the reformulated
infinite state representation (3.4). Particularly, the constitutive law (4.54) can be
described by

σ(t) = pCDαε(t) = E∗
1 (ω)ε(t) +

E∗
2 (ω)

ω
ε̇(t)

− p
∫ ∞

0
Kω(α, λ)(ω2Z(λ, t) + ż(λ, t))dλ,

Ż(η, t) = ε(t)− ηZ(η, t),

ż(η, t) = ε̇(t)− ηz(η, t),

(4.67)
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where E∗
1 and E∗

2 are assumed to fulfill (4.65) and (4.66). The representation (4.67)
will prove to be useful in Section 5.3. Alternatively, for the case of a fractional
Zener model, the complex modulus is obtained by substituting (4.58) in (4.45)
and using Proposition 2.12 such that

E∗(iω) = G∞ + iω(G0 − G∞)L {Eα(−γσtα)} (iω)

= G∞ + (G0 − G∞)
(iω)α

(iω)α + γσ

⇒ E∗
1 (ω) = G∞ + (G0 − G∞)

ω2α + γσωα cos( απ
2 )

ω2α + 2γσωα cos( απ
2 ) + γ2

σ
,

E∗
2 (ω) = (G0 − G∞)

γσωα sin( απ
2 )

ω2α + 2γσωα cos( απ
2 ) + γ2

σ
.

(4.68)

The graphs of storage and loss moduli as in (4.68) are shown in Figure 4.7. As
expected, the case α → 1 yields (4.50) with m = 1. The complex modulus in (4.68)
and the associated relaxation spectrum (4.52) have initially been proposed by Cole
and Cole (1941) to describe experimental results regarding dielectric relaxation.
Augmented spectra with improved fitting properties are introduced by Havriliak
and Negami (1966) and Hilfer (2002, 2019). Applications to viscoelastic material
behavior are among others given by Nolle (1950); Caputo and Mainardi (1971);
Bagley and Torvik (1983, 1985, 1986); Schmidt and Gaul (2002).

4.3 Identification of a fractional Zener model for salt concrete

As a part of the project “ProVerB”, it is the aim to model and predict the vis-
coelastic behavior of the salt concrete M2, as introduced in Section 1.5. Therefore,
experimental results from creep tests are considered for a parameter calibration
of a fractional Zener model. The results are illustrated subsequently.

Test record and data

A test series is considered run at the Materials Testing Institute (MPA) of the Uni-
versity of Stuttgart starting in January 2019 and lasting for about two years. The
experiments included creep and shrinkage tests for three specimens of the con-
crete M2 each. The cylinder-shaped concrete bodies were produced at the Ma-
terials Testing Institute in Brunswick (Germany) and the tests at MPA Stuttgart
started at an age of the specimens of 56 days. Just before starting the tests, the
compressive strength of M2 was determined to 25 MPa on average. The creep
tests were driven at a constant compressive axial load of 8.3 MPa, which is about
1
3 of the compressive strength and hence small enough such that no cracking oc-
curred during the test. The shortening of the specimens in axial direction has
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Figure 4.7: Storage modulus E∗
1 (ω) (top) and loss modulus E∗

2 (ω) (bottom) for
the case G0 = 2G∞ in (4.68) and different values of α ∈ (0, 1).
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been measured with the help of three dial gauges, the lateral strain has been de-
termined using two strain gauges3, see Figure 4.8. The deformation has been
measured in the central part of the specimens, where it is assumed that boundary
effects have decayed and stress and strain states are homogeneous. In parallel to

Figure 4.8: Experimental setup of creep tests. The dial gauges measure the axial
strain in the central part of the cylindrical specimens. Strain gauges are used to
measure the circumferential strain in the middle of the specimen.

the creep tests, the autogenic shrinkage of unloaded specimens has been deter-
mined by dial gauges, as shrinkage is not covered by the constitutive model and
has to be subtracted from the measured data to obtain elastic and creep strain.
The deformation data have been recorded in logarithmic time steps, which is im-
portant for the parameter identification. All details regarding the test series are
summarized in Table 4.1.

The results of the measurements at MPA are depicted in Figure 4.9. For each of
the three specimens, the average strains measured by the dial and strain gauges
are given. The bottom right graph shows the averages of axial and lateral strain
of the three specimens as well as the mean shrinkage together with error bars that
represent an uncertainty of one empirical standard deviation.

Modeling, parametrization and parameter identification

It is assumed that the concrete M2 can be represented on the given time and length
scale by an isotropic viscoelastic material, i.e., the constitutive law is fully de-
scribed by (4.15) and (4.16) for certain creep functions in isotropic compression Jh
and shear Jd. In the following, both creep functions are chosen to be of fractional

3The average axial and lateral strain data are used for the further analysis in order to compensate for
slightly asymmetric strain of the specimens.
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Figure 4.9: Measured absolute values of axial and lateral strain of all specimens
at MPA, mean strains and shrinkage with error bars representing one empirical
standard deviation.



4.3. IDENTIFICATION OF A FRACTIONAL ZENER MODEL FOR SALT CONCRETE 71

test series creep test (3 specs.), shrinkage test (3 specs.)

geometry cylindrical, height ≈ 300 mm, diameter ≈ 150 mm

compressive strength 25 MPa at the age of 55 days

start January 29, 2019 at the age of 56 days

compressive load 8.3 MPa

measured data total axial and lateral strain, shrinkage

climate θ = (20 ± 2)◦C, RH = (65 ± 5)%

Table 4.1: Details of the test series with concrete M2 at MPA Stuttgart.

Zener type (4.62) such that

Jh(t) =
1

Ē0,h
+

1
Ē1,h

(
1 − Eᾱh

(
− Ē1,h

p̄h
tᾱh

))
, (4.69)

Jd(t) =
1

Ē0,d
+

1
Ē1,d

(
1 − Eᾱd

(
− Ē1,d

p̄d
tᾱd

))
. (4.70)

Accordingly, the constitutive law is determined by the parameters Ē0,h, Ē1,h, p̄h,
ᾱh, Ē0,d, Ē1,d, p̄d and ᾱd.

To identify the parameters from the given creep tests, a constant load is as-
sumed that is brought up instantaneously at the beginning of the test at t = 0.
This results in the stress history in the form of a step function

σ(t) = σ0Θ(t),

where σ0 is the initial stress with hydrostatic part σ0,h and deviatoric part σ0,d.
For this case, one obtains, in view of (4.9) and using the constitutive laws (4.69)
and (4.70), the response of the strain components

εh(t) = σ0,h

(
1

Ē0,h
+

1
Ē1,h

(
1 − Eᾱh

(
− Ē1,h

p̄h
tᾱh

)))
, t ≥ 0,

εd(t) = σ0,d

(
1

Ē0,d
+

1
Ē1,d

(
1 − Eᾱd

(
− Ē1,d

p̄d
tᾱd

)))
, t ≥ 0.

(4.71)

For the specific compression test performed at MPA, one can consider stress and
strain tensors expressed in the principal coordinate system I of the test cylinders
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Figure 4.10: Model of a cylindrical specimen with stress and strain state expressed
in the inertial coordinate system.

(Figure 4.10) as

Iσ =




0 0 0
0 0 0
0 0 σzz


 , Iε =




εxx 0 0
0 εyy 0
0 0 εzz


 , (4.72)

where σzz, εzz < 0 and εxx = εyy > 0. The assumptions in (4.72) are justified by
the uniaxial loading in eI

z-direction, the axisymmetry and the purely axial stretch
in principal directions of the specimens observed in the experiments, at least in
the central area of the concrete bodies, where the measurements are taken. All of
the magnitudes σzz, εxx = εyy and εzz that occur in (4.72) are measured during the
experiments. A connection between (4.71) and (4.72) can be derived using (4.11)
and (4.12) as

Iσh =
1
3

σzz, Iσd = −1
3

σzz




1 0 0
0 1 0
0 0 −2


 ,

Iεh =
1
3
(2εxx + εzz), Iεd =

1
3
(εxx − εzz)




1 0 0
0 1 0
0 0 −2


 .

(4.73)

Particularly, using (4.73), the constitutive law for the deviatoric components re-
duces to a scalar equation with

Iσd = −1
3

σzz , Iεd =
1
3
(εxx − εzz).
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Finally, using (4.71) and (4.73) together with the measured data, the parameters
in (4.69) and (4.70) can be identified.

To illustrate the influence of its parameters, consider the creep function (4.62)
of the fractional Zener model in log-log plots and study the resulting S-shaped
graphs. Clearly, the initial value of the creep function corresponding to the purely
elastic component of the material response is given by Ē0 as

J(0) =
1

Ē0
.

The slope of the central part of the graph, i.e., the velocity of creep, is determined
by the parameter ᾱ (Figure 4.11). Changing the springpot coefficient p̄ results in
a shift of the graph along the time axis (Figure 4.12), whereas the parameter Ē1
determines the asymptotic behavior as

lim
t→∞

J(t) =
1

Ē0
+

1
Ē1

,

see Figure 4.13.
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Figure 4.11: Creep function of a fractional Zener model for Ē0 = Ē1 = 1 GPa,
p̄ = 1 GPa · dᾱ and various values of ᾱ ∈ (0, 1).

The parameter identification is finally obtained from a weighted nonlinear
least-squares optimization applied to the mean experimental data. Therefore, the
squared residuals of (εxx(ti), εzz(ti))i=1,...,n, where ti, i = 1, . . . , n are the time in-
stants of measurement, are weighted by the inverse empirical variances 1

s2 . The
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variances are obtained from the data, see Figure 4.9, as

s2 =
(

0.1
mm
m

)2
for (εxx(ti))i=1,...,n ,

s2 =
(

0.5
mm
m

)2
for (εzz(ti))i=1,...,n .

Results and discussion

The least-squares calibration yields the optimal parameters

Ē0,h = 14.34 GPa, Ē1,h = 3.32 GPa, p̄h = 17.59 GPa dᾱh , ᾱh = 0.62,

Ē0,d = 8.00 GPa, Ē1,d = 2.04 GPa, p̄d = 4.08 GPa dᾱd , ᾱd = 0.42

and the resulting predicted curves for hydrostatic and deviatoric components to-
gether with experimental data are shown in Figure 4.14. The fitted curves pro-
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Figure 4.14: Results of the parameter identification using the method of weighted
nonlinear least squares.

vide a good representation of the experimental results and it is shown that the
slow creep process of the concrete M2 is well described by the fractional Zener
model. Small deviations due to measurement errors just after the loading of the
specimens are visible. The fitting of the deviatoric strain component is slightly
better than for the hydrostatic part. A deeper analysis of the parameter identifi-
cation (in terms of probability distributions) is given by Hinze et al. (2021). The
article discusses the identifiability of the parameters by the given experimental
setup and reveals comparably large parameter uncertainties.

To conclude this section, the advantages of fractional models in modeling
viscoelastic material behavior are discussed by the example of the given con-
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crete creep data. As mentioned earlier, if creep or relaxation data are well rep-
resented by a fractional model, an alternative modeling by spring-dashpot net-
works would require a large amount of parameters for a good fitting, which is
inconvenient. Moreover, an extrapolation of the material behavior outside the
measured time range is impossible with spring-dashpot models. Both effects oc-
cur due to the short time-range in which exponential functions grow. To illustrate
these arguments, the creep data of M2 are used once again for a model calibra-
tion. This time, the results for three different constitutive models are compared.
Consider a generalized Zener model with one or three Kelvin elements for hydro-
static and deviatoric stress and strain components (six or fourteen parameters)
and, alternatively, as above a fractional Zener model for each component (eight
parameters). For the parameter identification, only the data of the first ten days
are considered. The results are shown in Figure 4.15. As conjectured above, the
Zener model with one Kelvin element yields a limited curve fitting for the first
ten days and a poor extrapolation, whereas the Zener model with three Kelvin el-
ements leads to a good fit for small time ranges but a bad extrapolation, too. The
fractional Zener model shows a good fit and a much better extrapolation (which
is yet not as good as in Figure 4.14 because of the narrow time range for fitting)
with comparatively few parameters.

4.4 Mechanical representation of springpots

Although mechanical network models consisting of springs and dashpots restrict
viscoelastic constitutive laws to discrete spectra, they allow at least for a mechan-
ical interpretation and provide simple representations of stored and dissipated
energy. It will be shown hereafter that a springpot can be interpreted as a gen-
eralized Maxwell model with an infinite number of parallel Maxwell elements,
see Hinze et al. (2018, 2020b) and similarly Schiessel and Blumen (1993); Papou-
lia et al. (2010). This derivation yields three new insights. First, it reveals the
similarity and differences of fractional and mechanical network models, second,
it provides a mechanical interpretation of the infinite state representation, and,
third, it leads to a potential energy expression of a springpot, which will be used
in Chapter 5.

For the generalized Maxwell model in Figure 4.16, consider the stress σ(t) to
result from a stress distribution g(λ, t)dλ, λ ∈ (0, ∞), allocated to the individual
Maxwell elements such that

σ(t) =
∫ ∞

0
g(λ, t)dλ. (4.74)

The springs of the Maxwell elements are characterized by their strain εsp(λ, t)
together with their distributed modulus E(λ)dλ and the dashpots by the strain
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Figure 4.15: Fit of concrete creep data using a generalized Zener model with one
(top) or three (middle) Kelvin elements and a fractional Zener model (bottom).
Only the first ten days have been considered for fitting.
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Figure 4.16: Schematic mechanical representation of a springpot.

εdp(λ, t) together with the distributed viscosity η(λ)dλ such that the entire strain
ε(t) of the network appears as

ε(t) = εsp(λ, t) + εdp(λ, t), λ > 0. (4.75)

The stress density is thereby related to the internal strains by the constitutive laws

g(λ, t)dλ = E(λ)dλ εsp(λ, t) = η(λ)dλ ε̇dp(λ, t). (4.76)

Differentiation of (4.75) and substitution of (4.76) leads to

ġ(λ, t)
E(λ)

= ε̇(t)− g(λ, t)
η(λ)

. (4.77)

Comparison of (4.74) and (4.77) to the infinite state representation of the springpot

σ(t) = p
∫ ∞

0
µ1−α(λ)z(λ, t)dλ,

ż(λ, t) = ε̇(t)− λz(λ, t), λ > 0,

results in the identification

g(λ, t) = pµ1−α(λ)z(λ, t), E(λ) = pµ1−α(λ),

η(λ) =
pµ1−α(λ)

λ
, λ =

E(λ)
η(λ)

.
(4.78)

Furthermore, one obtains using (4.78) and (4.76) an interpretation of the infinite
states z(λ, t) of the springpot as the strain of the internal springs, since

z(λ, t) =
g(λ, t)

pµ1−α(λ)
=

g(λ, t)
E(λ)

= εsp(λ, t). (4.79)



4.4. MECHANICAL REPRESENTATION OF SPRINGPOTS 79

As the potential energy Epot of the generalized Maxwell element is given by the
energy stored in its springs, i.e.,

Epot(t) =
1
2

∫ ∞

0
E(λ)ε2

sp(λ, t)dλ,

the potential energy of the springpot is in view of (4.78) and (4.79) given by

Epot(t) =
p
2

∫ ∞

0
µ1−α(λ)z2(λ, t)dλ. (4.80)

The above representation relates springpots and mechanical spring-dashpot
networks. The crucial difference between both types of models is the infinite
number of states for springpots leading to distributed stiffness (E(λ)) and vis-
cosity (η(λ)) quantities, which is related to continuous relaxation and retardation
spectra, whereas spring-dashpot networks only have a finite number of internal
states (e.g. the strains of a finite number of springs) governed by discrete stiff-
ness and viscosity parameters. The awareness of this difference reveals a great
advantage of fractional constitutive models as discussed in Section 4.3.

The benefit of fractional viscoelastic models is accompanied by a more so-
phisticated analysis and associated computational methods. This fact demands
for a generalization of many aspects in viscoelastic material description. Two of
those are considered in the following chapters, namely the stability of mechani-
cal systems with fractional damping (Chapter 5) and the (numerical) solution of
boundary value problems for arbitrarily shaped viscoelastic bodies within the fi-
nite element method (Chapter 6). The methods developed by the author for both
aspects are based on the (reformulated) infinite state representation of fractional
derivatives.





CHAPTER 5
Stability and the direct method of Lyapunov

The following chapter is concerned with a generalization of the well-known di-
rect method of Lyapunov (1892) for dynamical systems with fractional damp-
ing. The reader is guided by classical results for ordinary differential equations
(ODEs) and known generalizations for functional differential equations (FDEs). It
is shown that fractionally damped (mechanical) systems represent a special class
of FDEs and certain Lyapunov functionals for different stability statements are
presented.

5.1 Ordinary differential equations

Basic properties and stability

An ordinary differential equation (ODE) is given by

ẋ = f(t, x), (5.1)

where f : D → Rn is a continuous function defined on an open subset D ⊂ Rn+1,
n ∈ N. The variable t is usually referred to as time and x denotes the state repre-
senting certain quantities of a physical system. Given an initial value x0 at time t0
such that (t0, x0) ∈ D, a function x : [0, T) → Rn is called a solution of (5.1) with
initial value

x(t0) = x0 , (5.2)

if it fulfills (5.2) and (5.1) on a subset [0, T)× B ⊂ D for a neighborhood B ⊂ Rn

of x0, 0 ≤ t0 < T. In order to explicitly indicate the initial conditions of a solution,
the notation x(t) = x(t, t0, x0) is sometimes used. An introduction to ODEs can be
found e.g. in the books of Hirsch and Smale (1974); Burton (2005); Khalil (2002).
Therein, classical results regarding existence, uniqueness and continuous depen-
dence on initial conditions can be found, which are summarized in the following
theorems.

Section 5.3 and Section 5.4 are based on Hinze et al. (2020a,b).
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Theorem 5.1 (Existence and Uniqueness). Let f : D → Rn be a continuous function
that fulfills a local Lipschitz condition w.r.t. the second argument, i.e., for each compact
subset K ⊂ D there exists an L > 0 such that for all (t, x), (t, y) ∈ K

∥f(t, x)− f(t, y)∥2 ≤ L∥x − y∥2 .

Then there exists one and only one solution of the initial value problem (5.1), (5.2) at least
for t ∈ [t0, t0 + δ] for some δ > 0.

Proof. One possible proof uses Picard’s successive approximations of the equiva-
lent integral equation

x(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ

given by
x1(t) = x0,

xm+1(t) = x0 +
∫ t

t0

f(τ, xm(τ))dτ m = 1, 2, . . . .
(5.3)

The Lipschitz condition renders the mapping

T(x) := x0 +
∫ t

t0

f(τ, x(τ))dτ

contractive for t ≥ t0 small enough, where T is defined on a space of continuous
functions together with the uniform norm ∥ · ∥∞ . Indeed, one obtains

∥T(x)− T(y)∥∞ = sup
t∈[t0,t0+δ]

∥∥∥∥
∫ t

t0

f(τ, x(τ))dτ −
∫ t

t0

f(τ, y(τ))dτ

∥∥∥∥
2

≤ sup
t∈[t0,t0+δ]

∫ t

t0

∥f(τ, x(τ))− f(τ, y(τ))∥2 dτ

≤ sup
t∈[t0,t0+δ]

L
∫ t

t0

∥x(τ)− y(τ)∥2 dτ ≤ δL∥x − y∥∞

such that the choice δ < 1
L yields contractivity. According to Banach’s fixed point

theorem, the iteration (5.3) has a unique fixed point, which completes the proof.

Remark 5.2. If it is additionally known that solutions of (5.1), (5.2) lie entirely in
a compact set K ∋ (t0, x0), then there exists a unique solution for all t ≥ t0, see
Khalil (2002, Thm. 3.3).
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Theorem 5.3 (Continuous dependence on initial conditions). Let f fulfill the con-
ditions in Theorem 5.1 with a uniform Lipschitz constant L > 0. For two solutions
x(t, t0, x0) and y(t, t0, y0) of the initial value problem, the inequality

∥x(t)− y(t)∥2 ≤ ∥x0 − y0∥2 eL(t−t0)

holds for t ≥ t0 as long as the solutions exist.

Proof. The Lipschitz condition and Gronwall’s lemma yield the proof.

The properties mentioned in the above theorems are essential for an ODE to
represent a useful mathematical description of a deterministic physical system
as identical initial conditions have to lead to a reproducible evolution of system
states and arbitrarily small changes of the initial data should not result in an im-
mediate large deviation of solutions. A question associated to a much stronger
condition than continuous dependence on initial conditions is, whether solutions
starting nearby will remain nearby for all future times. Such a property usually
only holds for certain distinguished solutions and is denoted by the term stabil-
ity. When there exist stable solutions, then the qualitative behavior of the system
(5.1) is mainly determined by them, making stability an important attribute. For
a definition of stability, consider a solution x̄(t) of (5.1) existing in [0, ∞) such that
a neighborhood

[0, ∞)× QH := {(t, x) | t ≥ 0, ∥x − x̄(t)∥2 < H}, H > 0

of the solution is contained in D.

Definition 5.4 (Stability). The solution x̄(t) is called stable, if for all ε > 0 and all
t0 ∈ [0, ∞) there exists a δ = δ(ε, t0) > 0 such that for all t ≥ t0

∥x0 − x̄(t0)∥2 < δ ⇒ ∥x(t, t0, x0)− x̄(t)∥2 < ε.

If x̄(t) is not stable, it is called unstable.

When solutions do not only remain nearby x̄(t) but approach it for t → ∞, the
following term is used.

Definition 5.5 (Asymptotic stability). The solution x̄(t) is called (locally) asymp-
totically stable, if it is stable and for all t0 ∈ [0, ∞) there is a γ = γ(t0) > 0 such
that for x0 with ∥x0 − x̄(t0)∥2 < γ, the solution x(t, t0, x0) exists for all t ≥ t0 and
it holds that

lim
t→∞

∥x(t, t0, x0)− x̄(t)∥2 = 0.

The set of all x0 ∈ Rn with the above property is called the domain of attraction
(depending on t0). When this domain is the entire Rn, x̄(t) is called globally asymp-
totically stable.
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Remark 5.6. Equivalently, asymptotic stability can be characterized by the fol-
lowing statement: For all t0 ≥ 0, there exists γ = γ(t0) > 0 and, for all ε > 0 and
a given x0, there exists T = T(ε, t0, x0) such that

∥x0 − x̄(t0)∥2 < γ ⇒ ∥x(t, t0, x0)− x̄(t)∥2 < ε for all t > t0 + T. (5.4)

In general, δ in Definition 5.4 and γ and T in (5.4) cannot be chosen independently
of t0 and x0. If this is the case though, stronger stability notions arise. If δ in Defi-
nition 5.4 is independent of t0, x̄(t) is called uniformly stable. If, additionally, γ and
T in (5.4) are independent of t0 and x0, then x̄(t) is called uniformly asymptotically
stable.

Especially interesting is the stability of constant solutions of (5.1), called equi-
libria, that fulfill x̄(t) ≡ x∗ and hence f(t, x∗) = 0 for all t ≥ 0. Particularly, the
stability of a special solution x̄(t) is related to the stability of the zero solution,
often called trivial equilibrium, of a translated ODE. To see this, consider the trans-
lation

y(t) := x(t)− x̄(t)

in (5.1), leading to

ẏ = f(t, y + x̄(t))− f(t, x̄(t)) =: f̃(t, y). (5.5)

The definition of f̃ in (5.5) directly yields f̃(t, 0) = 0 for all t ≥ 0 such that (5.5)
has the zero solution as equilibrium which is (asymptotically) stable if and only
if the solution x̄(t) of (5.1) is (asymptotically) stable. Therefore, all conditions
for stability given in the rest of this chapter are related to the trivial equilibrium.
The formulation of stability criteria is the major aim in the following paragraphs
and the conditions strongly depend on whether the function f in (5.1) is explicitly
time-dependent. If this is the case, (5.1) is called nonautonomous, whereas the
system

ẋ = f(x) (5.6)

is called autonomous. Particularly, if (5.6) has an equilibrium x∗, the translated
system (5.5) with y = x − x∗ is still autonomous and has the trivial solution as
equilibrium. The current part is concluded with a simple mechanical example.

Example 5.7. Consider a weakly damped harmonic oscillator (with mass m > 0,
damping coefficient d, stiffness k > d2

4m ), see Figure 5.1, which is through New-
ton’s law given by the equation of motion

mq̈ + dq̇ + kq = 0, (5.7)

where q is the position of the mass. Equation (5.7) is equivalent to the linear



5.1. ORDINARY DIFFERENTIAL EQUATIONS 85

Figure 5.1: Damped harmonic oscillator.

autonomous ODE

ẋ = Ax, A =

[
0 1

− k
m − d

m

]
, x =

[
q
q̇

]
(5.8)

whose solution is given by

x(t, t0, x0) = eγ(t−t0) (cos(ω(t − t0)) + C sin(ω(t − t0))) x0 ,

γ = − d
2m

, ω2 =
k
m

− γ2 > 0, C = −C−1 =
1
ω
(A − γI).

(5.9)

As the trigonometric terms in (5.9) are bounded, it follows immediately from the
asymptotic behavior of the exponential function that the trivial solution of (5.8) is
stable for γ ≤ 0 and even asymptotically stable for γ < 0.

The direct method of Lyapunov for nonautonomous systems

For a general (nonlinear) ODE (5.1), it is usually not possible to analytically de-
termine solutions as in Example 5.7 and thereby obtain a stability statement. An
approach that provides sufficient conditions for (asymptotic) stability for which
it is not necessary to know the solutions in closed form has been introduced by
Lyapunov (1892) and is known as the direct method of Lyapunov. It uses the proper-
ties of so-called Lyapunov functions to prove (uniform asymptotic) stability of the
trivial equilibrium (i.e., assume f(t, 0) ≡ 0) as given by the following theorem,
see e.g. Burton (2005, Chap. 6); Hahn (1967, § 42); Khalil (2002, Chap. 4.5); Slotine
and Li (1991, Chap. 4.2).

Theorem 5.8 (Direct method of Lyapunov). Let f : D → Rn in (5.1) be such that
[0, ∞)× QH ⊂ D and f(t, 0) = 0 for t ≥ 0. Denote ui : [0, ∞) → [0, ∞), i = 1, 2, 3
some scalar, continuous, strictly increasing functions such that ui(0) = 0 and ui(r) > 0
for r > 0. If there exists a continuously differentiable function V : [0, ∞)× Q̄H → R,
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V(t, 0) ≡ 0 such that

u1(∥x∥2) ≤ V(t, x) ≤ u2(∥x∥2), (5.10)

V̇(t, x) =
∂V
∂t

+
∂V
∂x

· f(t, x) ≤ 0 (5.11)

for all t ≥ 0, x ∈ QH , then the trivial solution of (5.1) is uniformly stable. If additionally

V̇(t, x) ≤ −u3(∥x∥2) (5.12)

holds for all t ≥ 0, x ∈ QH , then the trivial solution of (5.1) is uniformly asymptotically
stable. Moreover, if QH = Rn and

u1(r) → ∞ for r → ∞, (5.13)

the trivial solution is globally uniformly asymptotically stable.

Remark 5.9.

a) The function V is called Lyapunov function. The left-hand inequality in (5.10)
is defined as positive definiteness of V, the right-hand inequality makes V de-
crescent. The total time derivative of V can be expressed as in (5.11) using the
dynamics (5.1). The inequality (5.11) reveals that V is nonincreasing along
solutions of (5.1). If the stronger condition (5.12) holds, V̇ is called negative
definite. The statement (5.13) renders V radially unbounded.

b) The conditions in Theorem 5.8 reveal that the direct method of Lyapunov uses
certain storage and comparison functions for a stability proof but no explicit
information about solutions of (5.1).

c) If the function V can be chosen to be not explicitly time-dependent and fulfills
V(0) = 0, V(x) > 0 for x ∈ QH\0, then (5.10) is automatically fulfilled.

Proof. The left-hand relation in (5.10) together with (5.11) are sufficient for stabil-
ity. To see this, given ε ∈ (0, H] and t0 ≥ 0, choose δ > 0 such that ∥x0∥2 < δ

implies V(t0, x0) < u1(ε). (This is possible as V is continuous and V(t0, 0) = 0).
This results for x(t) = x(t, t0, x0) in

u1(∥x(t)∥2) ≤ V(t, x(t)) ≤ V(t0, x0) < u1(ε)

and hence ∥x(t)∥2 < ε.
For uniform stability and a given ε ∈ (0, H], select δ > 0 small enough such

that u2(δ) < u1(ε). For t0 ≥ 0, ∥x0∥2 < δ and x(t) = x(t, t0, x0), t ≥ t0, one
obtains

u1(∥x(t)∥2) ≤ V(t, x(t)) ≤ V(t0, x0) ≤ u2(∥x0∥2) < u2(δ) < u1(ε)
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or ∥x(t)∥2 < ε.
To prove uniform asymptotic stability, let ∥x0∥2 < γ, with γ obtained from a

uniform stability estimation, i.e., u2(γ) < u1(ρ) for some ρ > 0. Let ε ∈ (0, γ)

and find a δ = δ(ε) such that u2(δ) < u1(ε). Define

T :=
u2(γ)

u3(δ)

and assume that ∥x(t)∥2 > δ for all t ∈ [t0, t0 + T]. Then, one obtains

0 < u1(δ) ≤ V(t0 + T, x(t0 + T)) ≤ V(t0, x0)−
∫ t0+T

t0

u3(∥x(s)∥2)ds

≤ V(t0, x0)− u3(δ)T

≤ u2(γ)− u3(δ)T = 0,

which is a contradiction. Hence, there must exist t∗ ∈ [t0, t0 + T] such that
∥x(t∗)∥2 ≤ δ and thus for all t ≥ t∗

u1(∥x(t)∥2) ≤ V(t, x(t)) ≤ V(t∗, x(t∗)) ≤ u2(δ) < u1(ε)

which finally results in ∥x(t)∥2 < ε for t ≥ t0 + T ≥ t∗.
If u1 is additionally radially unbounded, ρ can be found such that an inequality

u2(γ) < u1(ρ) used in the steps above can be fulfilled for any γ > 0 and γ can be
made arbitrarily large leading to global uniform asymptotic stability.

A problem regarding the direct method of Lyapunov is that there does not
exist a general technique for construction of Lyapunov functions and finding such
a function is difficult for many applications. Particularly, to prove asymptotic
stability, the requirement (5.12) in Theorem 5.8 is often difficult to meet. There
are large classes of systems though, for which weaker conditions are sufficient for
asymptotic stability, as will be shown in the following.

LaSalle’s invariance principle for autonomous systems

For autonomous ODEs (5.6) with f defined on a neighborhood B ⊂ Rn, QH ⊂ B,
fulfilling a Lipschitz condition and f(0) = 0, the assumptions in Theorem 5.8 can
be weakened. To this end, the notion of invariant sets is introduced. Previously
note that a solution of (5.6) with (5.2) does not explicitly depend on the initial
time t0 but on the time lapse t − t0 passed. Hence, without loss of generality,
choose t0 = 0 and denote the solution x(t, x0) instead of x(t, 0, x0). This implies
the relation

x(t, t0, x0) = x(t − t0, x0) for t ≥ t0 and x0 ∈ B.

Definition 5.10. Let x(t) = x(t, x0) be a solution of (5.6) existing for t ∈ R.
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a) A point p is called positive limit point of x(t), if there exists a nonnegative se-
quence {tn}n∈N with tn → ∞ as n → ∞ such that

lim
n→∞

∥x(tn)− p∥2 = 0.

b) The set Ω(x) of all positive limit points of x(t) is called positive limit set.

c) A set Q ⊂ Rn is called (positively) invariant, if x(t, x0) ∈ Q for all x0 ∈ Q and
all (t ≥ 0 resp.) t ∈ R.

The following theorem according to LaSalle (1968) uses certain properties of
invariant sets to prove asymptotic stability.

Theorem 5.11 (Invariance principle). Let V : Q̄H → R be a continuously differen-
tiable function such that V̇(x) ≤ 0 in Q̄H . Let

E := {x ∈ Q̄H | V̇(x) = 0}

and M be the largest invariant set in E. Then every bounded solution x(t) of (5.6) starting
and existing in QH for t ≥ 0 approaches M for t → ∞, i.e.,

lim
t→∞

dist(x(t), M) = 0.

To prove the invariance principle, a fundamental property of limit sets formu-
lated in the following proposition is needed. The proof (of the proposition) is
given by Khalil (2002, App. C.3).

Proposition 5.12. Let x(t) be a bounded solution of (5.6) belonging to QH . The positive
limit set Ω(x) is a nonempty, compact, invariant set and x(t) approaches Ω(x), i.e.,

lim
t→∞

dist(x(t), Ω(x)) = 0.

Proof of Theorem 5.11. Let x(t) be a solution of (5.6) starting and existing in QH for
t ≥ 0. As V̇(x) ≤ 0 in Q̄H , V(x(t)) is a continuous, decreasing function of time,
defined on a compact set Q̄H . It is bounded from below and therefore has a limit
V(x(t)) → c for t → ∞. The positive limit set Ω(x) (which is nonempty according
to Proposition 5.12) is in Q̄H and for any p ∈ Ω(x), there is a sequence tn with
tn → ∞ and x(tn) → p as n → ∞. As V is continuous,

V(p) = lim
n→∞

V(x(tn)) = c,

i.e., V(x) = c in Ω(x). Since Ω(x) is invariant due to Proposition 5.12, V̇(x) = 0
in Ω(x) and hence Ω(x) ⊂ M ⊂ E. Finally, as x(t) approaches Ω(x) for t → ∞, it
has to approach M.
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A special case in Theorem 5.11 leads to a variation of Theorem 5.8 with weaker
assumptions to prove asymptotic stability of the trivial equilibrium.

Corollary 5.13. Let f(0) = 0 and V : Q̄H → R be a continuously differentiable
function such that

V(0) = 0 and V(x) > 0 for x ∈ Q̄H\0,

V̇(x) ≤ 0 for x ∈ Q̄H .

If M = {0} is the largest invariant set in E (as defined in Theorem 5.11), then the
trivial equilibrium is asymptotically stable. If V is defined on Rn and V(x) → ∞ for
∥x∥2 → ∞, then the trivial equilibrium is globally asymptotically stable.

Proof. Stability of x ≡ 0 follows from Theorem 5.8. Particularly, if x0 is suffi-
ciently small, x(t) exists for t ≥ 0, is bounded and approaches M according to
Theorem 5.11. The global statement follows using the same argument as in the
proof of Theorem 5.8.

Example 5.14. Revisit the weakly damped harmonic oscillator from Example 5.7
and consider the Lyapunov function

V(x) =
1
2

(
k +

d2

2m

)
x2

1 +
d
2

x1x2 +
m
2

x2
2 =

k
2

x2
1 +

m
4

x2
2 +

(
d

2
√

m
x1 +

√
m

2
x2

)2

being positive definite and radially unbounded. Its time-derivative along solu-
tions fulfills

V̇ =

(
k +

d2

2m

)
x1 ẋ1 +

d
2
(ẋ1x2 + x1 ẋ2) + mx2 ẋ2

=

(
k +

d2

2m

)
x1x2 +

d
2

(
x2

2 + x1

(
− k

m
x1 −

d
m

x2

))
− kx1x2 − dx2

2

= − k
m

x2
1 −

d
2

x2
2 ,

i.e., V̇ is negative definite for d > 0 such that all conditions in Theorem 5.8 are
fulfilled and the trivial solution is globally asymptotically stable. The above Lya-
punov function is derived from another, more natural Lyapunov function, namely
the total mechanical energy of the system

Vmech(x) =
k
2

x2
1 +

m
2

x2
2

with derivative
V̇mech = −dx2

2 ≤ 0.
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Although V̇mech is not negative definite, no other solution than the trivial equilib-
rium remains in the set E = {x ∈ R2 | x2 = 0} and Corollary 5.13 yields global
asymptotic stability.

The examples considered so far deal with linear autonomous systems

ẋ = Ax. (5.14)

For ODEs of the form (5.14), there exists a methodology to find Lyapunov func-
tions which can be generalized for certain nonlinear systems as shown below.
Consider the general solution

x(t, t0, x0) = exp(A(t − t0))x0

of (5.14), which can be expressed in terms of the eigenvalues λj, j = 1, . . . , k with
algebraic multiplicity µj and generalized eigenvectors zj, j = 1, . . . , k of the matrix
A ∈ Rn×n as

x(t, t0, x0) =
k

∑
j=1

eλj(t−t0)
µj−1

∑
m=0

(t − t0)
m

m!
(A − λjI)

mzj (5.15)

such that

x0 =
k

∑
j=1

zj, zj ∈ Ker(A − λjI)
µj ,

see Knobloch and Kappel (1974, Chap. II.8). A stability statement can be obtained
directly from (5.15) using the properties of the exponential function, see Khalil
(2002, Thm. 4.5)

Proposition 5.15. The trivial equilibrium is stable if and only if all eigenvalues of A
satisfy Re(λj) ≤ 0 and for every eigenvalue with Re(λj) = 0, algebraic and geometric
multiplicity coincide. The trivial equilibrium is globally asymptotically stable if and only
if all eigenvalues of A satisfy Re(λj) < 0.

A matrix A for which Re(λj) < 0 holds for all eigenvalues is called a Hurwitz
matrix. For this case, a Lyapunov function can be constructed by solving a linear
equation.

Proposition 5.16. A matrix A is Hurwitz if and only if for any given positive definite
symmetric matrix Q there exists a positive definite symmetric matrix P such that

ATP + PA = −Q (5.16)

holds.
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Proof. Consider only the sufficiency part of the proof by Khalil (2002, Thm. 4.6)
as it shows the origin of the so-called Lyapunov equation (5.16). Let P positive
definite and symmetric be given such that (5.16) is fulfilled for a positive definite
symmetric matrix Q. The Lyapunov function

V(x) = xTPx ≥ λmin(P)∥x∥2
2

is positive definite and radially unbounded as the minimal eigenvalue λmin(P)
of P is positive due to the properties of P. Furthermore, the time-derivative of V
along solutions of (5.14) is given by

V̇ = ẋTPx + xTPẋ = xT (ATP + PA) x = −xTQx ≤ −λmin(Q)∥x∥2
2

such that V̇ is negative definite as λmin(Q) is the minimal eigenvalue of Q which
is positive. Accordingly, Theorem 5.8 yields global asymptotic stability of the
trivial equilibrium and, by Proposition 5.15, A has to be a Hurwitz matrix.

The idea of solving a Lyapunov equation (5.16) for a stability proof in linear
systems does not lead to a computational advantage compared to an eigenvalue
analysis according to Proposition 5.15. However, it leads to a stability statement
even in the nonlinear case. To see this, consider (5.6) with f(0) = 0, f continuously
differentiable and study the Taylor expansion

f(x) = Ax + g(x)

with the Jacobian matrix

A =
∂f
∂x

∣∣∣∣
x=0

(5.17)

and the nonlinear part g of f which fulfills

lim
∥x∥2→0

∥g(x)∥2
∥x∥2

= 0,

which is equivalent to the statement that for all γ > 0, there exists δ > 0 such that

∥x∥2 < δ ⇒ ∥g(x)∥2 < γ∥x∥2 . (5.18)

Proposition 5.17. Let f in (5.6) be continuously differentiable and f(0) = 0. The trivial
equilibrium is asymptotically stable if the Jacobian matrix (5.17) is a Hurwitz matrix.

Proof. The proof is according to Khalil (2002, Thm. 4.7). As in the proof of Propo-
sition 5.16, choose the Lyapunov function

V(x) = xTPx
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with the solution P of (5.16). The derivative of V along solutions of (5.1) is given
by

V̇ = ẋTPx + xTPẋ = [Ax + g(x)]T Px + xTP [Ax + g(x)]

= xT (ATP + PA) x + 2xTPg(x) = −xTQx + 2xTPg(x)

To estimate the last term, use the Cauchy-Schwarz inequality, the spectral norm

∥P∥2 := sup
x ̸=0

∥Px∥2
∥x∥2

= λmax(P)

and choose

γ <
λmin(Q)

2λmax(P)

in (5.18) to obtain for ∥x∥2 < δ

2xTPg(x) ≤ 2 |xTPg(x)|
≤ 2∥x∥2∥Pg(x)∥2 ≤ 2∥x∥2λmax(P)∥g(x)∥2 < 2γλmax(P)∥x∥2

2

and hence

V̇ < − (λmin(Q)− 2γλmax(P)) ∥x∥2
2 < 0 for ∥x∥2 < δ, x ̸= 0

such that Theorem 5.8 yields (at least local) asymptotic stability of the trivial equi-
librium.

In view of Theorem 5.11, the matrix Q can even be chosen positive semi-
definite to prove global asymptotic stability of the trivial solution, if it is addi-
tionally guaranteed that {0} is the largest invariant set in {x ∈ Rn | V̇(x) = 0}.
Further, note that Proposition 5.17 yields a stability statement by an eigenvalue
analysis of the Jacobian matrix (if it is a Hurwitz matrix) and no explicit Lyapunov
function is required. Proposition 5.17 is known a the indirect method of Lyapunov.

Example 5.18. Revisit the Lyapunov function for the weakly damped oscillator
in Example 5.14. It has the form

V(x) = xTPx,

where

P =
1
2

[
k + d2

2m
d
2

d
2 m

]

is the solution of (5.16) for

Q =

[
k
m 0
0 d

2

]
.
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Consider now the oscillator with a cubic spring such that the equation of motion

mq̈ + dq̇ + k1q + k3q3 = 0 (5.19)

holds, see Figure 5.2 with mass m > 0, damping coefficient d > 0, stiffness coeffi-
cients k1 > 0, k3 < 0 and position q. The system (5.19) (transformed in first-order

Figure 5.2: Damped nonlinear oscillator with a cubic spring.

form) has three equilibria

x∗1 = 0, x∗2/3 =

(
±
√

k1
−k3

0

)
.

As the linearization of (5.19) at x∗1 coincides with (5.7), the asymptotic stability
result from Example 5.7 and Example 5.14 leads in view of Proposition 5.17 to
local asymptotic stability of the trivial equilibrium x∗1 of (5.19). Nevertheless, an-
other Lyapunov function will be studied here, which again represents the total
mechanical energy of the system, viz.

Vmech(x) =
k1
2

x2
1 +

k3
4

x4
1 +

m
2

x2
2 ,

which has positive values and is strictly increasing for

x2
1 <

k1
−k3

, x ̸= 0

and it holds that

Vmech

(
±
√

k1
−k3

, 0

)
=

k2
1

−4k3
.

Accordingly, as
V̇mech = −dx2

2 ≤ 0,

the set

Q =

{
x ∈ R2 | x2

1 <
k1
−k3

, Vmech(x) ≤
k2

1
−4k3

}



94 5. STABILITY AND THE DIRECT METHOD OF LYAPUNOV

is bounded, positively invariant and hence, a solution starting in Q approaches
the largest invariant set in E = {x ∈ R2 | x2 = 0} from Theorem 5.11, which
is {0} as in Example 5.14. This shows another potential of the direct method
of Lyapunov, as the set Q represents a conservative estimate of the domain of
attraction of the trivial equilibrium, see Figure 5.3.

Figure 5.3: Phase portrait with solutions (blue) of (5.19) and a Lyapunov estimate
Q of the domain of attraction of the trivial equilibrium (red).

Generalized invariance principle for asymptotically autonomous
systems

For the general nonautonomous case, the terms positive limit point and positive
limit set in Definition 5.10 are still well-defined and the positive limit set Ω(x)
of a bounded solution x(t) is nonempty and compact, whereas the invariance
property is lost. This leads to a much weaker assertion according to LaSalle (1968)
than the invariance principle in Theorem 5.11.

Theorem 5.19. Let V : [0, ∞) × Q̄H → R be a continuously differentiable function
such that V(t, x) is bounded from below for all t ≥ 0 and all x ∈ Q̄H and let there exist
a continuous, nonnegative function W : Q̄H → R such that

V̇(t, x) ≤ −W(x) for all t ≥ 0, x ∈ QH .

If, additionally, f(t, x) is bounded for all t ≥ 0 and all x ∈ Q̄H , then every bounded
solution x(t) of (5.1) starting and existing in QH for t ≥ 0 approaches the set

E := {x ∈ Q̄H | W(x) = 0},

i.e., Ω(x) ⊂ E.

The following example by Haddock (1997) shows that, in contrast to the au-
tonomous case, solutions do not in general approach the largest invariant set in E.
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Example 5.20. Consider the system

ẋ1 = x2 ,

ẋ2 = −x1 −
(
2 + et) x2 .

For the Lyapunov function

V(x) =
1
2

x2
1 +

1
2

x2
2

one obtains
V̇(t, x) = −

(
2 + et) x2

2 ≤ −2x2
2 = −W(x)

such that E = {x ∈ R2 | x2 = 0} and the largest set that remains identically in E
is {0}. However, one solution of the system is given by

x(t) =
[
1 + e−t,−e−t]T

,

which approaches E but not {0}.

If additional assumptions on the time evolution of the function f in (5.1) are
made, an invariance property of the positive limit set can be regained. The most
simple situation where this is possible occurs for asymptotically autonomous sys-
tems as introduced by Markus (1956) and elaborated e.g. by Artstein (1977) and
Yoshizawa (1963). The basic idea is that the function f = f(t, x) in (5.1) converges
in some sense for t → ∞ to a function f∗(x) independent of time, leading to an
autonomous system

ẋ = f∗(x), (5.20)

which is called limiting equation. Subsequently, the main result regarding asymp-
totically autonomous systems is given. It is formulated according to Yoshizawa
(1963, Thm. 3) but the convergence of f to f∗ in the sense of Markus (1956) is
used. Generalizations can be found e.g. in the books of LaSalle and Artstein (1976,
App. A) and Rouche et al. (1977, Chap. VIII).

Theorem 5.21. Let f in (5.1) and f∗ in (5.20) be continuous and for each compact set
K ⊂ Rn where f is defined and for each ε > 0, there is a T(K, ε) > t0 such that

∥f(t, x)− f∗(x)∥2 < ε for all x ∈ K, t > T.

For every bounded solution x(t, t0, x0) of (5.1) belonging to QH , the positive limit set
Ω(x) is an invariant set of (5.20).

Corollary 5.22. Assume the conditions in Theorem 5.19 and Theorem 5.21. Every
bounded solution x(t) of (5.1) starting and existing in QH for t ≥ 0 approaches the
largest invariant set of (5.20) in E.
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5.2 Functional differential equations

Basic properties and stability

A natural generalization of ODEs is obtained, when the function f in (5.1) is in its
second argument not defined on a subset of Rn but on a certain function space. To
be more precise, one can consider so-called retarded functional differential equations
(FDEs)

ẋ = f(t, xt), (5.21)

where f : [0, T)× B → Rn for a neighborhood B ⊂ X is defined on a space X of
Rn-valued functions defined on [−a, 0] for some a ∈ (0, ∞]1 and

xt(s) := x(t + s), s ∈ [−a, 0].

As opposed to an ODE for which the initial data are given by an initial point x0
and initial time t0 ∈ [0, T), the initial data of an FDE are determined by an initial
function φ ∈ X such that

xt0 (s) = φ(s), s ∈ [−a, 0]. (5.22)

Accordingly, a solution x(t) = x(t, t0,φ) with initial function φ ∈ X is a continuous
function defined on the interval [−a, T) such that xt ∈ B for t ∈ [t0, T), (5.22)
holds and x(t) satisfies (5.21) for t ∈ [t0, T). The broad class of FDEs includes
particularly ODEs (5.1) (a = 0), differential difference equations

ẋ(t) = g(t, x(t), x(t − a)),

and integro-differential equations

ẋ =
∫ 0

−a
h(t, xt(s))ds.

For the case a ∈ (0, ∞), the setting described so far does not require special prop-
erties of the function space X to obtain quite general existence and uniqueness re-
sults, which can be found in the work of Driver (1962); Hale (1977); Burton (2005);
Kolmanovskii and Nosov (1986). The situation becomes a little more delicate,
when an FDE with infinite delay, i.e., the case a → ∞, is considered. In that case,
which is of major interest for subsequent applications, some special requirements
on X have to be fulfilled, see Hale and Kato (1978); Kappel and Schappacher
(1980); Sawano (1982). For the purposes of this thesis, the Banach space

X := BU((−∞, 0]; Rn)

1For the special case a → ∞, the interval [−a, 0] is thought of as (−∞, 0].
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of bounded uniformly continuous functions mapping (−∞, 0] to Rn is chosen
together with the uniform norm ∥ · ∥∞ defined by

∥φ∥∞ = sup
s≤0

∥φ(s)∥2 , φ ∈ X.

The crucial property of the space X is thereby that the mapping

t 7→ xt is continuous on [t0, T) if x(t, t0,φ) is continuous on [t0, T). (5.23)

This property is, for example, not fulfilled for the space of bounded continuous
functions CB((−∞, 0]; Rn), see the example φ(s) = sin(s2), s ≤ 0 in Sawano
(1982) and Kappel and Schappacher (1980, Rem. 2.3). If the continuity prop-
erty (5.23) is fulfilled, one obtains the following assertions regarding existence,
uniqueness and continuous dependence on initial conditions.

Theorem 5.23. Let f : [0, T)× B → Rn be a continuous function that fulfills a Lipschitz
condition, i.e., assume that there exists a constant L > 0 such that

∥f(t,φ)− f(t, ψ)∥2 ≤ L∥φ− ψ∥∞ for t ∈ [0, T), φ, ψ ∈ B ⊂ X.

Then there exists one and only one solution of (5.21) with (5.22) and there exists a con-
tinuous function l(t) such that

∥xt(t0,φ)− xt(t0, ψ)∥∞ ≤ l(t − t0)∥φ− ψ∥∞ , t ≥ t0 .

Proof. The proof by Hale and Kato (1978, Thms. 2.1, 2.2) considers the equivalent
integral relation

xt0 = φ,

x(t) = φ(0) +
∫ t

t0

f(s, xs)ds, t ≥ t0
(5.24)

for the existence part. The property (5.23) ensures that the integral term in (5.24)
maps into the space of continuous functions. Additionally, the Lipschitz condi-
tion yields a contractive mapping such that a generalized fixed point theorem and
Gronwall’s lemma conclude the proof.

Further, (5.23) guarantees the following compactness property of bounded or-
bits of f in (5.21), which will be used to formulate a generalized invariance prin-
ciple later. For the proof, see Hale (1969); Hale and Kato (1978).

Proposition 5.24. Let f in (5.21) map bounded sets in its second argument into bounded
sets. Every orbit {xt | t ≥ 0} in the space X generated by a solution x of (5.21) with x(t)
bounded on [0, ∞) belongs to a compact subset of X.
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Similar as for ODEs, a generalized definition of stability of solutions of FDEs
can be given. As in the ODE case, stability of a solution is related to the stability
of the trivial equilibrium of a translated FDE (i.e., f(t, 0) = 0 for all t ≥ 0). Hence,
stability is defined only for the trivial equilibrium and the set B on which f is
defined, is assumed to contain

QH := {φ ∈ X | ∥φ∥∞ < H}, H > 0.

Further, let f be defined in its first argument for all t ≥ 0.

Definition 5.25. The trivial solution of (5.21) is called

a) stable, if for all ε > 0 and all t0 ≥ 0 there exists δ = δ(ε, t0) > 0 such that for all
t ≥ t0

φ ∈ Qδ ⇒ ∥x(t, t0,φ)∥2 < ε.

b) asymptotically stable, if it is stable and for all t0 ≥ 0 there exists γ = γ(t0) > 0
such that for φ ∈ Qγ, the solution x(t, t0,φ) exists for all t ≥ t0 and it holds

lim
t→∞

∥x(t, t0,φ)∥2 = 0.

Generalizations of the terms uniform (asymptotic) stability can be given similar
as in Remark 5.6.

Generalized Lyapunov methods

A generalization of the direct method of Lyapunov for FDEs is based on the
works of Razumikhin (1956) using Lyapunov functions and Krasovskii (1956) us-
ing Lyapunov functionals for a stability proof. The latter method is used to ob-
tain the subsequent results. The following assertion for FDEs with infinite delay,
which is the analogue to Theorem 5.8, can be found in the books of Burton (1985,
Thm. 4.4.1) and Kolmanovskii and Nosov (1986, Chap. 2, Thm. 5.4).

Theorem 5.26 (Direct method of Lyapunov for FDEs). Let f : D → Rn in (5.21) be
such that [0, ∞)× QH ⊂ D and f(t, 0) = 0 for t ≥ 0. Denote ui : [0, ∞) → [0, ∞),
i = 1, 2, 3 some scalar, continuous, strictly increasing functions such that ui(0) = 0 and
ui(r) > 0 for r > 0. If there exists a continuous functional V : [0, ∞) × Q̄H → R,
V(t, 0) ≡ 0 such that

V(t,φ) ≥ u1(∥φ(0)∥2), (5.25)

V(t,φ) ≤ u2(∥φ∥∞), (5.26)

V̇(t, xt) =
∂V
∂t

+
∂V
∂φ

· f(t, xt) ≤ 0,
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for all t ≥ 0, φ ∈ QH , then the trivial solution of (5.21) is uniformly stable. If, addition-
ally, there is an l > 0 such that ∥f(t,φ)∥2 ≤ l for t ≥ t0, φ ∈ QH and

V̇(t, xt) ≤ −u3(∥x(t, t0,φ)∥2) (5.27)

holds for all t ≥ t0, xt ∈ QH , then the trivial solution of (5.21) is asymptotically stable.
Moreover, if QH = X and

u1(r) → ∞ for r → ∞, (5.28)

the trivial solution is globally asymptotically stable.

The functional V in Theorem 5.26 is called Lyapunov functional. If the properties
in (5.25), (5.26) and (5.28) are fulfilled, the Lyapunov functional is, similar as for
ODEs, called positive definite, decrescent or radially unbounded, respectively.

Aside from the general method, weaker conditions on Lyapunov functionals
can be given for autonomous FDEs

ẋ = f(xt). (5.29)

Hereto, the notion of limit sets and invariant sets have to be recast.

Definition 5.27. Let x(t) = x(t,φ) be a solution of (5.29) existing for t ∈ R.

a) A function ψ ∈ X is called positive limit function of x(t), if there exists a non-
negative sequence {tn}n∈N with tn → ∞ as n → ∞ such that

lim
n→∞

∥xtn − ψ∥∞ = 0.

b) The set Ω(x) of all positive limit functions of x(t) is called positive limit set.

c) A set Q ⊂ X is called (positively) invariant, if xt(φ) ∈ Q for all φ ∈ Q and all
(t ≥ 0 resp.) t ∈ R.

The counterpart of Proposition 5.12 can be formulated as follows, see Hale and
Kato (1978, Thm. 3.2).

Proposition 5.28. Let x be a solution of (5.29) and assume {xt | t ≥ 0} belongs to a
compact subset of QH , then Ω(x) is nonempty, compact, invariant and

dist(xt, Ω(x)) → 0 as t → ∞.

The result of Proposition 5.24 and Proposition 5.28 is an invariance principle
for FDEs.
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Theorem 5.29 (Invariance principle). Let V : QH → R be a continuous functional
such that V̇(xt) ≤ 0 in QH . Let

E := {φ ∈ QH | V̇(φ) = 0}

and M be the largest invariant set in E. Then every bounded solution x(t) of (5.29)
starting and existing in QH for t ≥ 0 approaches M for t → ∞, i.e.,

lim
t→∞

dist(xt, M) = 0.

Proof. Proposition 5.24 ensures that V is defined on a compact set. The further
argumentation is the same as for Theorem 5.11.

Corollary 5.30. Let f : B ⊃ QH → Rn mapping bounded sets into bounded sets be
such that f(0) = 0 and denote u : [0, ∞) → [0, ∞) some scalar, continuous, strictly
increasing function such that u(0) = 0 and u(r) > 0 for r > 0. Let there exist a
continuous functional V : QH → R such that

V(0) = 0 and V(φ) ≥ u(∥φ(0)∥2) for all φ ∈ QH , (5.30)

V̇(xt) ≤ 0 for all t ≥ 0, xt ∈ QH . (5.31)

If M = {0} is the largest invariant set in E, then the trivial equilibrium is asymptotically
stable. If V is defined on X and u(r) → ∞ for r → ∞, then the trivial equilibrium is
globally asymptotically stable.

Finally, one more generalization for FDEs, viz. an invariance result for asymp-
totically autonomous systems with limiting equation

ẋ = f∗(xt) (5.32)

is stated, being a special case of a theorem by Andreev (2009, Thm. 65).

Theorem 5.31. Let V : [0, ∞) × QH → R be a continuous functional and denote
u : [0, ∞) → [0, ∞) some scalar, continuous, strictly increasing function such that
u(0) = 0 and u(r) > 0 for r > 0 and

V(t, 0) = 0, V(t,φ) ≥ u(∥φ(0)∥2) for t ≥ 0, φ ∈ QH .

Further, let there exist a continuous, nonnegative functional W : QH → [0, ∞) such that

V̇(t,φ) ≤ −W(φ) ≤ 0 for t ≥ 0, φ ∈ QH

and let f∗ with f∗(0) = 0 in (5.32) be the limiting equation of f in (5.21), i.e., for each
compact set K ⊂ X, where f is defined and for each ε > 0 there is a T(K, ε) > t0 such
that

∥f(t,φ)− f∗(φ)∥2 < ε for all φ ∈ K, t > T.
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If no other solution of the limiting equation (5.32) than the trivial solution remains in the
set

E := {φ ∈ QH | W(φ) = 0},

then the trivial solution of (5.21) is asymptotically stable.

5.3 Fractionally damped mechanical systems

The considerations in Section 4.2 reveal that damping mechanisms of mechanical
systems described by fractional derivatives are of interest from a modeling per-
spective. The present section deals with stability problems for certain systems
of such type using Lyapunov theory for FDEs. Particularly, consider a finite-
dimensional mechanical system with fractional damping described by the equa-
tions of motion

M(t, q)q̈ − h
(

t, q, CDαq, q̇
)
= 0, (5.33)

with generalized coordinates q ∈ R f , f := n
2 ∈ N, a nonsingular symmetric

mass matrix M(t, q) and a vector h
(
t, q, CDαq, q̇

)
including (non-)potential, gy-

roscopic and external forces as well as forces of springpots (α ∈ (0, 1)). In view of
Section 2.2, (5.33) represents an FODE of the form (2.25), when (5.33) is premulti-
plied by the inverse of M(t, q) and given in first-order form

q̇ = v,

v̇ = (M(t, q))−1h
(

t, q, CDαq, v
)

.
(5.34)

Therein, a reparametrization of the fractional derivative (2.10) leads to the expres-
sion

CDαq(t) =
∫ 0

−∞

(−s)−α

Γ(1 − α)
q′(t + s)ds =

∫ 0

−∞

(−s)−α

Γ(1 − α)
vt(s)ds (5.35)

such that (5.34) can be reformulated as an FDE (5.21) with infinite delay

q̇ = v,

v̇ = h̃ (t, q, vt) .
(5.36)

Subsequently, Lyapunov functionals for several examples of (5.33) are examined
to obtain stability results. It turns out that already the linear case requires a rela-
tively complex construction of such functionals. The starting point to search for
appropriate functionals is the total mechanical energy.

Section 5.3 is based on Hinze et al. (2020a,b).
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Single degree-of-freedom oscillator

Consider a single degree-of-freedom, fractionally damped oscillator (Figure 5.4)
that fulfills the equation of motion

mq̈(t) + dq̇(t) + c CDαq(t) + kq(t) = 0, t ≥ 0 (5.37)

with mass m > 0, elongation q, damping coefficient d ≥ 0, stiffness k > 0, spring-
pot coefficient c > 0 and differentiation order α ∈ (0, 1) and a given continuously-
differentiable initial function φ such that φ, φ′ ∈ BU((−∞, 0]; R) and

q(s) = φ(s), s ≤ 0.

In view of (5.35) and (5.36), (5.37) results in an FDE

Figure 5.4: Single degree-of-freedom oscillator with viscous and fractional damp-
ing.

q̇(t) =v(t),

v̇(t) =− k
m

q(t)− d
m

v(t)− c
m

∫ 0

−∞

(−s)−α

Γ(1 − α)
vt(s)ds.

(5.38)

Using the infinite state representation in (2.29) or, equivalently, inserting (2.28)
and

z(η, t) =
∫ t

−∞
e−η(t−τ)v(τ)dτ =

∫ 0

−∞
eηsvt(s)ds (5.39)

in the last term of (5.38), it can be reformulated equivalently as

q̇(t) =v(t),

v̇(t) =− k
m

q(t)− d
m

v(t)− c
m

∫ ∞

0
µ1−α(λ)z(λ, t)dλ,

ż(η, t) = v(t)− ηz(η, t), η > 0.

(5.40)

As all the Lyapunov functionals used for the following stability proofs are for-
mulated with the help of the infinite states z and Z from (2.29) and (2.26), the
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formulation (5.40) is preferred. Nevertheless, it is useful to keep in mind that
(5.37) can be interpreted as an FDE (5.38).

In the following, asymptotic stability of the trivial equilibrium of (5.38) for
several cases using Theorem 5.26 and Corollary 5.30 is proven. Hence, to be sure
that the right-hand side of (5.40) is bounded for bounded inputs, the improper
integral is estimated by splitting the interval of integration for λ in two parts
which yields
∣∣∣∣
∫ ∞

1
µ1−α(λ)

∫ 0

−∞
eλsvt(s)ds dλ

∣∣∣∣ ≤
∫ ∞

1
µ1−α(λ)

∫ 0

−∞
eλsds dλ∥vt∥∞

=
sin(απ)

π

∫ ∞

1
λα−2dλ∥vt∥∞ =

sin(απ)

(1 − α)π
∥vt∥∞

(5.41)

and
∣∣∣∣
∫ 1

0
µ1−α(λ)

∫ 0

−∞
eλsq′t(s)ds dλ

∣∣∣∣ ≤
∫ 1

0
µ1−α(λ)

∣∣∣∣q(t)− λ
∫ 0

−∞
eλsqt(s)ds

∣∣∣∣dλ

≤
∫ 1

0
µ1−α(λ)

(
∥qt∥∞ + λ

∫ 0

−∞
eλsds∥qt∥∞

)
dλ

= 2
∫ 1

0
µ1−α(λ)dλ∥qt∥∞ = 2

sin(απ)

απ
∥qt∥∞ . (5.42)

Further, as a first example, consider the case d = 0 in (5.37), i.e., viscous damp-
ing is absent and all dissipation is due to the springpot c > 0, and use the total
mechanical energy

V1(qt, vt) =
k
2

q2
t (0) +

m
2

v2
t (0) +

c
2

∫ ∞

0
µ1−α(λ)z2(λ, t)dλ,

as a Lyapunov functional, which contains the potential energy term (4.80) of the
springpot. Asymptotic stability of the trivial solution is proven with the help of
Corollary 5.30. It is obvious that inequality (5.30) holds for V1. Furthermore, as

V̇1 = kqt(0)q′t(0) + mvt(0)v′t(0) + c
∫ ∞

0
µ1−α(λ)z(λ, t)ż(λ, t)dλ

= vt(0)
(

mq′′t (0) + kqt(0) + c
∫ ∞

0
µ1−α(λ)z(λ, t)dλ

)

− c
∫ ∞

0
µ1−α(λ) λ z2(λ, t)dλ

= −c
∫ ∞

0
µ1−α(λ) λ z2(λ, t)dλ ≤ 0,

(5.43)

inequality (5.31) is fulfilled such that the trivial solution is stable. Moreover, ex-
amine the largest invariant set in E = {φ ∈ X | V̇1 = 0}. From (5.43), one can
conclude in E

z(η, ·) = 0 for almost all η ≥ 0
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and substitution in the z-dynamics of (5.40) results in

q̇ = v = 0,

which together with (5.37) implies that {0} is the largest invariant set in E. Finally,
all conditions of Corollary 5.30 are fulfilled and the trivial solution is globally
asymptotically stable. Note that V̇1 in (5.43) can be interpreted as internal power
losses of the springpot, see Hinze et al. (2018); Papoulia et al. (2010); Schiessel and
Blumen (1993) or, for an analogue electrical system Hartley et al. (2015); Trigeas-
sou and Maamri (2019).

Second, consider the case d > 0 in (5.37), i.e., dissipation due to the viscous
damper as well as the springpot. Using the energy functional V1 again leads to a
nonpositive rate of V1

V̇1 = −dv2(t)− c
∫ ∞

0
µ1−α(λ) λ z2(λ, t)dλ ≤ 0,

which proves asymptotic stability of the equilibrium using the invariance argu-
ment as for the case without viscous damping. Alternatively, study an augmented
candidate Lyapunov functional inspired from Example 5.14, which contains the
potential energy term (4.80) to prove asymptotic stability with the help of Theo-
rem 5.26. Therefore, the functional includes an additional term using the infinite
states from (2.26). It has the form

V2(qt, vt) =
k
2

q2
t (0) +

m
2

v2
t (0) +

d2

4m
q2

t (0) +
d
2

qt(0)vt(0)

+
c
2

∫ ∞

0
µ1−α(λ)z2(λ, t)dλ +

cd
4m

∫ ∞

0
µ1−α(λ) λ Z2(λ, t)dλ.

(5.44)

Check the assumptions in Theorem 5.26. For (5.25), one can estimate

V2(qt, vt) ≥
k
2

q2
t (0) +

m
2

v2
t (0) +

d2

4m
q2

t (0) +
d
2

qt(0)vt(0)

=
k
2

q2
t (0) +

m
4

v2
t (0) +

(
d

2
√

m
qt(0) +

√
m

2
vt(0)

)2

≥ k
2

q2
t (0) +

m
4

v2
t (0)

such that (5.25) and (5.28) are fulfilled. Moreover, computing the rate of V2 along
solution curves yields

V̇2 = kqt(0)q′t(0) + mvt(0)v′t(0) +
d
2

q′t(0)vt(0) +
d
2

qt(0)v′t(0) +
d2

2m
qt(0)q′t(0)

+ c
∫ ∞

0
µ1−α(λ)z(λ, t)ż(λ, t)dλ +

cd
2m

∫ ∞

0
µ1−α(λ) λ Z(λ, t)Ż(λ, t)dλ,
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V̇2 = −dv2
t (0)− cvt(0)

∫ ∞

0
µ1−α(λ)z(λ, t)dλ +

d
2

v2
t (0)

+
d
2

qt(0)
[
− k

m
qt(0)−

d
m

vt(0)−
c
m

∫ ∞

0
µ1−α(λ)z(λ, t)dλ

]

+
d2

2m
qt(0)vt(0) + c

∫ ∞

0
µ1−α(λ)z(λ, t) (vt(0)− λ z(λ, t))dλ

+
cd
2m

∫ ∞

0
µ1−α(λ) (qt(0)− z(λ, t)) z(λ, t)dλ

= − kd
2m

q2
t (0)−

d
2

v2
t (0)− c

∫ ∞

0
µ1−α(λ)

(
λ +

d
2m

)
z2(λ, t)dλ

≤ − kd
2m

q2(t)− d
2

v2(t),

which proves (5.27) and hence, Theorem 5.26 leads to global asymptotic stability
of the trivial equilibrium without using an invariance argumentation. The par-
ticular structure of the functional V2 in (5.44) is revisited for a stability proof in
Section 5.4.

Single degree-of-freedom oscillator with viscous anti-damping

For the case d < 0, whose physical interpretation is explained and motivated in
an example at the end of the present section, the trivial equilibrium of (5.37) is
expected to remain stable only for certain values of d. This will be examined by a
spectral analysis (as the system is linear) using the method of Laplace transforms
in the following. Moreover, it turns out that the reformulated infinite state repre-
sentation of fractional derivatives yields a Lyapunov functional to prove asymp-
totic stability. Finally, the quality of both results will be compared.

Spectral analysis

The asymptotic behavior of solutions of linear autonomous ODEs is determined
by the eigenvalues of the system matrix, see Proposition 5.15. A similar assertion
is valid for (5.40), which will be shown by studying the Laplace transform of
(5.40) and using the residue theorem. Therefore, using Proposition 2.9, consider
the Laplace transform of (2.29)

L
{

CDαq(t)
}
(s) =

∫ ∞

0
µ1−α(λ)L {z(λ, t)} (s)dλ,

sL {z(η, t)} (s)− z(η, 0) = sL {q(t)} (s)− q(0)− ηL {z(η, t)} (s).
(5.45)

Substituting the second equation of (5.45) in the first results in

L
{

CDαq(t)
}
(s) =

∫ ∞

0
µ1−α

sL {q(t)} (s)− q(0) + z(λ, 0)
λ + s

dλ,
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which can, using Proposition 3.1 and in view of (2.13), be written as

L
{

CDαq(t)
}
(s) = sαL {q(t)} (s)− sα−1q(0) +

∫ ∞

0
µ1−α(λ)

z(λ, 0)
λ + s

dλ

= L
{

CDα
0q(t)

}
(s) +

∫ ∞

0
µ1−α(λ)

z(λ, 0)
λ + s

dλ.
(5.46)

Accordingly, the Laplace transform of (5.37) is given by

m
(

s2L {q(t)} (s)− sq(0)− q̇(0)
)
+ d (sL {q(t)} (s)− q(0))

+ c
(

sαL {q(t)} (s)− sα−1q(0) +
∫ ∞

0
µ1−α(λ)

z(λ, 0)
λ + s

dλ

)
+ kL {q(t)} (s) = 0

and can be solved for

L {q(t)} (s) = m(sq(0) + q̇(0))
ms2 + ds + csα + k

+ c
sα−1q(0)−

∫ ∞
0 µ1−α(λ)

z(λ,t)
λ+s dλ

ms2 + ds + csα + k

+
dq(0)

ms2 + ds + csα + k
.

(5.47)

The inverse Laplace transform can be obtained by integrating along a Hankel
contour and using the residue theorem, similar as described by Kempfle et al.
(2002); Liu and Duan (2015); Naber (2010). The entire derivation is accomplished
later to see that, similar to the classical case, stability of the equilibrium depends
on the real part of the poles of (5.47), i.e., the equation

ms2 + ds + csα + k = 0 (5.48)

has to be studied. Let s = reiθ and compute the real and imaginary part of (5.48)
as

mr2 cos(2θ) + dr cos(θ) + crα cos(αθ) + k = 0,

mr2 sin(2θ) + dr sin(θ) + crα sin(αθ) = 0.
(5.49)

It is the aim to derive conditions from (5.49) such that the roots of (5.48) are located
in the left-half complex plane. Therefore, consider the critical case for stability
θ = ±π

2 (i.e., s is on the imaginary axis) first, which turns (5.49) into

−mr2 + crα cos
(απ

2

)
+ k = 0,

dr + crα sin
(απ

2

)
= 0.

(5.50)

For fixed m, c, k and α, the first equation of (5.50) has a unique solution r = ω > 0,
which may be inserted in the second equation to compute a critical d < 0 for
stability

dcrit = −c sin
(απ

2

)
ωα−1.
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By numerical solution of (5.50), one obtains the critical negative damping param-
eter dcrit depending on the value of α ∈ (0, 1) and the parameters m, c, k, see
Figure 5.5. The value |dcrit| is a measure for the damping capability of the spring-
pot. As expected, it holds that dcrit → 0 for α → 0, as in this case the springpot
degenerates to a spring, which stores energy and dcrit → −c for α → 1, as the
springpot becomes a dashpot. The dependency of dcrit on α for α ∈ (0, 1) may
change drastically for different parameters m and k.
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Figure 5.5: Critical negative damping parameter depending on α ∈ (0, 1) for dif-
ferent parameters.

From the critical case for stability, the following inequality conditions on r can
be derived such that a solution s = reiθ of (5.48) is located in the left-half complex
plane. More specifically, the following proposition is proven.
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Proposition 5.32. Let the inequalities

−mr2 + crα cos
(απ

2

)
+ k ≤ 0, (5.51)

dr + crα sin
(απ

2

)
> 0 (5.52)

have a non-empty solution set for r > 0. Then there exists a pair of complex conjugate
roots s = reiθ , s̄ = re−iθ of (5.48) such that π

2 < θ < π
2−α . Furthermore, there exists no

solution outside the sectors
{

θ ∈
(

π
2 , π

)}
and

{
θ ∈

(
−π,−π

2
)}

.

Remark 5.33. To depict the solution set of inequalities (5.51) and (5.52), consider
Figure 5.6 below, where ω < ω̄ has to hold.

Figure 5.6: Representation of the solution set of inequalities (5.51) and (5.52).

Proof of Proposition 5.32. From (5.49), one can see that for each root s = reiθ of
(5.48), its complex conjugate s̄ = re−iθ is another root. Therefore, consider only
θ ∈ [0, π]. The following cases are examined.

• Case 1: θ = 0
In this case, (5.48) degenerates to one equation

mr2 + dr + crα + k = 0. (5.53)

Using (5.51) and (5.52), it can be estimated

mr2 + dr + crα + k > crα
(

1 + cos
(απ

2

)
− sin

(απ

2

))
+ 2k.

As the function

h(α) := 1 + cos
(απ

2

)
− sin

(απ

2

)
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fulfills

h(0) = 2, h(1) = 0,

h′(α) = −π

2

(
sin
(απ

2

)
+ cos

(απ

2

))
< 0 for all α ∈ (0, 1),

one obtains
mr2 + dr + crα + k > 0

and there exists no solution of (5.53).

• Case 2: θ = π

The second equation of (5.49) in this case reads as

crα sin(απ) = 0,

which has no solution for α ∈ (0, 1) except r = 0, which does not solve the
first equation of (5.49)

mr2 − dr + crα cos (απ) + k = 0.

• Case 3: 0 < θ < π
2

Multiplying the first equation of (5.49) by cos(θ) and the second by sin(θ)
sums up as

mr2 cos(θ) + dr + crα cos((1 − α)θ) + k cos(θ) = 0. (5.54)

The left-hand side of (5.54) may be estimated with (5.51) and (5.52) as

mr2 cos(θ) + dr + crα cos((1 − α)θ) + k cos(θ)

> crα
(

cos(θ) cos
(απ

2

)
+ cos((1 − α)θ)− sin

(απ

2

))
+ 2k cos(θ) > 0,

because
cos(θ) cos

(απ

2

)
> 0

and

cos((1 − α)θ)− sin
(απ

2

)
= cos((1 − α)θ)− cos

(
(1 − α)

π

2

)
> 0.

Hence, there is no solution of (5.48) for θ ∈
(
0, π

2
)

and α ∈ (0, 1).

• Case 4: π
2 < θ < π

Multiplying the second equation of (5.49) by cos(αθ) and subtracting the
first equation multiplied by sin(αθ) leads to

mr2 sin((2 − α)θ) + dr sin((1 − α)θ)− k sin(αθ) = 0,
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which may be solved for r > 0 as

r(θ) = − d
2m

sin((1 − α)θ)

sin((2 − α)θ)
+

√(
d

2m
sin((1 − α)θ)

sin((2 − α)θ)

)2
+

k
m

sin(αθ)

sin((2 − α)θ)
.

(5.55)
Furthermore, multiplying the first equation of (5.49) by sin(2θ) and sub-
tracting the second equation multiplied by cos(2θ) leads to

dr sin(θ) + crα sin((2 − α)θ) + k sin(2θ) = 0. (5.56)

As the first and the last term on the left-hand side of (5.56) are negative for
θ ∈

(
π
2 , π

)
, the second term has to be positive to solve the equation, i.e.,

sin((2 − α)θ) > 0 ⇒ π

2
< θ <

π

2 − α
.

Further, consider the left-hand side of (5.56) as a function of θ

g(θ) := dr(θ) sin(θ) + crα(θ) sin((2 − α)θ) + k sin(2θ), θ ∈
(

π

2
,

π

2 − α

)

with r(θ) given by (5.55). The function g is continuous for θ ∈
(

π
2 , π

2−α

)
and

it holds that

g
(π

2

)
= dr + crα sin

(
(2 − α)

π

2

)
= dr + crα sin

(απ

2

)
> 0

as follows from (5.52). Furthermore, it can be seen from (5.55) that there
exists a constant C > 0 such that

lim
θ→ π

2−α

r(θ) = lim
θ→ π

2−α

C
sin((2 − α)θ)

= ∞

so that

lim
θ→ π

2−α

g(θ) = lim
θ→ π

2−α

[
d

C
sin((2 − α)θ)

sin
(

π

2 − α

)

+ c
(

C
sin((2 − α)θ)

)α

sin((2 − α)θ) +k sin
(

2π

2 − α

)]
= −∞.

Therefore, there is at least one root of g, i.e., one pair of complex conjugate
solutions of (5.48) such that θ ∈

(
π
2 , π

2−α

)
.

The above proposition provides conditions for solutions of the characteristic
equation (5.48) to be in the left-half complex plane. This will be used subsequently
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to prove asymptotic stability of the trivial solution by inverse Laplace transform
using fundamental ideas of complex analysis. Therefore, reformulate (5.47) as

L {q(t)} (s) = ms + d + csα−1

ms2 + ds + csα + k
q0 +

m
ms2 + ds + csα + k

v0

− c
ms2 + ds + csα + k

∫ ∞

0
µ1−α(λ)

z(λ, 0)
λ + s

dλ.
(5.57)

Similar as Liu and Duan (2015), consider the function

Ξ(s) :=
ms + d + csα−1

ms2 + ds + csα + k

and compute the inverse Laplace transform ξ(t) of Ξ(s) = L{ξ(t)}(s). As

ξ(0) = lim
s→∞

sΞ(s) = 1,

one obtains

L{ξ̇(t)}(s) = sΞ(s)− ξ(0) =
ms2 + ds + csα

ms2 + ds + csα + k
− 1 = − k

ms2 + ds + csα + k
,

which together with (5.57) leads to the solution

q(t) = q0ξ(t)− m
k

v0 ξ̇(t) +
c
k

∫ ∞

0
µ1−α(λ)z(λ, 0)

∫ t

0
e−λ(t−τ)ξ ′(τ)dτdλ (5.58)

of (5.37). Accordingly, the asymptotic behavior of q can be examined from ξ and
ξ̇. Therefore, determine the inverse Laplace transform

ξ(t) =
1

2πi

∫ δ+i∞

δ−i∞
Ξ(s)estds, δ > 0

with the help of the residue theorem, see Knopp (1945, §33)

1
2πi

∫

Σ
Ξ(s)estds = ∑

j
Res

(
Ξ(s)est, sj

)
,

where sj are the roots of (5.48) and the closed curve Σ (Figure 5.7) is split up in six
parts such that

ξ(t) = ∑
j

Res
(

Ξ(s)est, sj

)
− 1

2πi
lim

R→∞
ε→0

∫

II−VI
Ξ(s)estds.

First, compute the residues for a pair of complex conjugate roots s1, s2 = s̄1 of
(5.48). As s1/2 are simple poles of Ξ, one obtains the residue by derivation of the
denominator as

Res
(
Ξ(s)est, s1

)
+ Res

(
Ξ(s)est, s2

)

=
ms1 + d + csα−1

1

2ms1 + d + cαsα−1
1

es1t +
ms2 + d + csα−1

2

2ms2 + d + cαsα−1
2

es2t.
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As the two addends are conjugate, one obtains with s1 = a + ib = reiθ

Res
(
Ξ(s)est, s1

)
+ Res

(
Ξ(s)est, s2

)
= 2Re

(
ms1 + d + csα−1

1

2ms1 + d + cαsα−1
1

es1t

)

= 2eat cos(bt)
f1(r, θ)

f3(r, θ)
+ 2eat sin(bt)

f2(r, θ)

f3(r, θ)

with

f1(r, θ) = 2m2r2 + d2 + 3mrd cos(θ) + (1 + α)cdrα−1 cos((1 − α)θ)

+ (2 + α)mcrα cos((2 − α)θ) + c2αr2(α−1),

f2(r, θ) = (2 − α)mcrα sin((2 − α)θ) + mdr sin(θ) + (1 − α)cdrα−1 sin((1 − α)θ),

f3(r, θ) = 4m2r2 + d2 + 4mdr cos(θ) + 2cdαrα−1 cos((1 − α)θ)

+ 4mcαrα cos((2 − α)θ) + c2α2r2(α−1).

Figure 5.7: Curve Σ used for integration to apply the residue theorem.

Continue by considering the contribution of the integral along the paths II − VI
to the value of ξ. There is no contribution of II, because

∣∣∣∣
1

2πi

∫

II
Ξ(s)estds

∣∣∣∣ =
∣∣∣∣

1
2πi

∫ π

π
2

Ξ
(

δ + Reiφ
)

eδteR cos(φ)teiR sin(φ)tiReiφdφ

∣∣∣∣

≤ 1
2π

C1(t)e−C2RtR · π

2
R −→

R→∞
0
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with C1, C2 > 0 as Ξ(s) → 0 for s → ∞ and cos(φ) < 0 for φ ∈ (π
2 , π). The same

argumentation holds for path VI. For path IV, one obtains

1
2πi

∫

IV
Ξ(s)estds = − 1

2πi

∫ π

−π
Ξ
(

εeiφ
)

eεt(cos(φ)+i sin(φ))iεeiφdφ −→
ε→0

0,

as sΞ(s) → 0 for s → 0. Finally, paths III and V yield a contribution

1
2πi

∫

III,V
Ξ(s)estds =

1
2πi

∫ ∞

0

(
Ξ
(

λeiπ
)
− Ξ

(
λe−iπ

))
e−λtdλ

=
1
π

∫ ∞

0
Im
(

Ξ
(

λeiπ
))

e−λtdλ

with

1
π

Im
(

Ξ
(

λeiπ
))

= − 1
π

kcλα−1 sin(απ)

(mλ2 − dλ + k)2 + 2cλα cos(απ)(mλ2 − dλ + k) + c2λ2α

= − µ1−α(λ)kc
(mλ2 − dλ + k)2 + 2cλα cos(απ)(mλ2 − dλ + k) + c2λ2α

.

This leads to the inverse Laplace transform of Ξ

ξ(t) = ∑
j odd

(
2eajt cos(bjt)

f1(rj, θj)

f3(rj, θj)
+ 2eajt sin(bjt)

f2(rj, θj)

f3(rj, θj)

)

+
∫ ∞

0
µ1−α(λ)H(λ)e−λtdλ

(5.59)

for roots sj/j+1 = aj ± ibj = rje±iθj of (5.48), where

H(λ) =
kc

(mλ2 − dλ + k)2 + 2cλα cos(απ)(mλ2 − dλ + k) + c2λ2α
.

The asymptotic behavior of ξ is determined by the exponential functions in the
first addends of (5.59), which decay, as aj < 0 for all j, if the inequalities (5.51)
and (5.52) have a non-empty solution set. Furthermore, the asymptotic behavior
of the last term in (5.59) may be estimated as follows. It holds that

(mλ2 − dλ + k)2 + 2cλα cos(απ)(mλ2 − dλ + k) + c2λ2α

> (mλ2 − dλ + k − cλα)2 ≥ 0.

Hence, H is continuous and bounded in [0, ∞) and by the mean value theorem,
there exists C3 > 0 such that

∫ ∞

0
µ1−α(λ)H(λ)e−λtdλ = C3

∫ ∞

0
µ1−α(λ)e−λtdλ = C3

t−α

Γ(1 − α)
,
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which leads to algebraic decay of order α for the last term in (5.59) for t → ∞. For
ξ̇, one obtains the expression

ξ̇(t) = ∑
j odd

2
eajt

f3(rj, θj)

(
(aj f1(rj, θj) + bj f2(rj, θj)) cos(bjt)

+ (aj f2(rj, θj)− bj f1(rj, θj)) sin(bjt)
)
−
∫ ∞

0
µ1−α(λ)H(λ)λe−λtdλ,

where the first terms again describe an exponentially decaying oscillation and the
last term fulfills

−
∫ ∞

0
µ1−α(λ)H(λ)λe−λtdλ = −αC3

t−α−1

Γ(1 − α)
,

which again implies algebraic decay, this time of order 1 + α for t → ∞. To con-
clude asymptotic stability of the trivial solution of (5.37) from the asymptotic be-
havior of ξ, the last term in (5.58) still has to be considered. Therefore, recall from
(5.39) that the initial infinite state z(η, 0) has the form

z(η, 0) =
∫ 0

−∞
eητq′(τ)dτ,

which may be estimated as

|z(η, 0)| =
∣∣∣∣
∫ 0

−∞
eητq′(τ)dτ

∣∣∣∣ =
∣∣∣∣[eητq(τ)]0−∞ − η

∫ 0

−∞
eητq(τ)dτ

∣∣∣∣

≤ ∥q∥∞ + η
∫ 0

−∞
eητdτ∥q∥∞ = 2∥q∥∞ ,

which is bounded if q ∈ BU((−∞, 0]; R). Furthermore, consider the reformula-
tion ∫ t

0
e−λ(t−τ)ξ ′(τ)dτ =

d
dt

∫ t

0
e−λ(t−τ)ξ(τ)dτ − ξ(0)e−λt (5.60)

of the inner integral in the last term of (5.58). The last term in (5.60) results in a
term ∣∣∣∣

∫ ∞

0
µ1−α(λ)z(λ, 0)e−λtdλ

∣∣∣∣ ≤ 2∥q∥∞
t−α

Γ(1 − α)
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in (5.58). Substitution of the exponential terms of ξ in the last term of (5.58) using
(5.60) leads to the estimation

∣∣∣∣
∫ ∞

0
µ1−α(λ)z(λ, 0)

d
dt

∫ t

0
e−λ(t−τ)esjτdτdλ

∣∣∣∣

≤ 2∥q∥∞

∣∣∣∣∣
∫ ∞

0
µ1−α(λ)

1
λ + sj

(
sje

sjt + λe−λt
)

dλ

∣∣∣∣∣

≤ 2∥q∥∞

( ∣∣∣∣∣sj

∫ ∞

0

µ1−α(λ)

λ + sj
dλ

∣∣∣∣∣ eRe(sj)t +
∫ ∞

0
µ1−α(λ)e−λtdλ

)

= 2∥q∥∞

(∣∣∣sα
j

∣∣∣ eRe(sj)t +
t−α

Γ(1 − α)

)

with roots sj of (5.48). For the algebraic decay part in ξ one obtains, again using
the mean value theorem, a constant C4 > 0 and the term

∣∣∣∣
∫ ∞

0
µ1−α(λ)z(λ, 0)

d
dt

∫ t

0
e−λ(t−τ)

∫ ∞

0
µ1−α(η)H(η)e−ητdηdτdλ

∣∣∣∣

≤ C4

∣∣∣∣
d
dt

∫ ∞

0
µ1−α(λ)

∫ t

0
e−λ(t−τ) τ−α

Γ(1 − α)
dτdλ

∣∣∣∣

= C4

∣∣∣∣∣
d
dt

CDα
0

(
t1−α

Γ(2 − α)

)∣∣∣∣∣ = C4|1 − 2α| t−2α

Γ(2 − 2α)
.

in the last term of (5.58). In summary, sufficient conditions (5.51) and (5.52) for
global asymptotic stability of the equilibrium of (5.37) have been obtained, which
can be formulated in the following assertion.

Proposition 5.34. Let m, k, c > 0, α ∈ (0, 1) and let r = ω > 0 be the solution of

−mr2 + crα cos
(απ

2

)
+ k = 0. (5.61)

Let d ∈ R be such that the inequality

dω + cωα sin
(απ

2

)
> 0

holds. Then the trivial solution of (5.37) is globally asymptotically stable.

Remark 5.35. It is even possible to obtain a purely exponential solution of (5.37)
without algebraic decay. Choose the initial function q(τ) = esjτ for τ ∈ (−∞, 0]
(which is not in BU((−∞, 0]; R)) for a root sj of (5.48). This leads to initial condi-
tions

q′(τ) = sje
sjτ , z(η, 0) =

∫ 0

−∞
eητsje

sjτdτ =
sj

η + sj
.



116 5. STABILITY AND THE DIRECT METHOD OF LYAPUNOV

Using this function in the Laplace transform (5.57) leads to

L {q(t)} (s) = ms + d + csα−1

ms2 + ds + csα + k
+

msj

ms2 + ds + csα + k

−
csj

ms2 + ds + csα + k

∫ ∞

0

µ1−α(λ)

(λ + s)(λ + sj)
dλ

=
ms + d + csα−1 + msj

ms2 + ds + csα + k
− csj

∫ ∞
0

µ1−α(λ)
λ+sj

dλ −
∫ ∞

0
µ1−α(λ)

λ+s dλ

(s − sj)(ms2 + ds + csα + k)

=

(
ms + d + csα−1 + msj

)
(s − sj)

(s − sj)(ms2 + ds + csα + k)
− csj

sα−1
j − sα−1

(s − sj)(ms2 + ds + csα + k)

=
1

s − sj
.

Hence, the solution is
q(t) = esjt for all t,

which shows that the integral term in (5.46) should in general not be omitted.

Lyapunov functional

For an alternative proof of Proposition 5.34 with the help of the direct method
of Lyapunov, the energy functional is not usable any more, as anti-damping can
lead to an increasing energy in some time intervals, see Trigeassou et al. (2016b).
Therefore, a different Lyapunov functional has to be introduced, which is mo-
tivated by the reformulated infinite state representation (3.4) of the fractional
derivative

CDαq(t) = sin
(απ

2

)
ωα−1q̇(t)−

∫ ∞

0
K(α, λ)ż(λ, t)dλ

+ cos
(απ

2

)
ωαq(t)− ω2

∫ ∞

0
K(α, λ)Z(λ, t)dλ,

in which ω is assumed to be the solution of (5.61) and K(α, ·) := Kω(α, ·). This
leads to a reformulation of the equation of motion (5.37) as

mq̈(t) = −
(

k + c cos
(απ

2

)
ωα
)

q(t)−
(

d + c sin
(απ

2

)
ωα−1

)
q̇(t)

+ cω2
∫ ∞

0
K(α, λ)Z(λ, t)dλ + c

∫ ∞

0
K(α, λ)ż(λ, t)dλ,

(5.62)

which contains modified stiffness and damping parameters

k̃ := k + c cos
(απ

2

)
ωα, d̃ := d + c sin

(απ

2

)
ωα−1. (5.63)
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Obviously, the parameter k̃ is positive, while d̃ becomes nonpositive for d ≤ dcrit.
A coordinate transformation to modified positions

q̃(t) = q(t)− c
k̃

ω2
∫ ∞

0
K(α, λ)Z(λ, t)dλ

=
k
k̃

q(t) +
c
k̃

ω2
∫ ∞

0

K(α, λ)

λ
z(λ, t)dλ

(5.64)

and modified velocities

ṽ(t) = q̇(t)− c
m

∫ ∞

0
K(α, λ)z(λ, t)dλ (5.65)

transforms (5.62) to a reformulated system

˙̃q(t) = ṽ(t),

˙̃v(t) = − k̃
m

q̃(t)− d̃
m

ṽ(t)− d̃c
m2

∫ ∞

0
K(α, λ)z(λ, t)dλ

ż(η, t) = ṽ(t) +
c
m

∫ ∞

0
K(α, λ)z(λ, t)dλ − ηz(η, t), η > 0

(5.66)

in first-order form. Note that the first equation in (5.66) holds because mω2 = k̃,
as ω is the solution of (5.61). At this point, the Lyapunov proof of asymptotic
stability can be accomplished, see Hinze et al. (2020a).

Proof of Proposition 5.34. Again, prove that all conditions in Corollary 5.30 are ful-
filled. Consider the candidate Lyapunov functional

V3(qt, vt) =
k̃
2

q̃2
t (0) +

m
2

ṽ2
t (0) +

d̃c
2m

∫ ∞

0
K(α, λ)z2(λ, t)dλ (5.67)

and prove inequality (5.30) for V3 w.r.t. the functions qt and vt. Hereto, consider
the split of the integral term in (5.67)

∫ ∞

0
K(α, λ)z2(λ, t)dλ =

∫ 1

0
K(α, λ)z2(λ, t)dλ +

∫ ∞

1
K(α, λ)z2(λ, t)dλ

and use the mean value theorem for the first term and the inequality λ ≥ 1 in the
second term to find a constant C̃ ∈ (0, 1] such that

∫ ∞

0
K(α, λ)z2(λ, t)dλ ≥ C̃

∫ ∞

0

K(α, λ)

λ
z2(λ, t)dλ.

Moreover, use Hölder’s inequality and Proposition 3.3 to obtain
(∫ ∞

0

K(α, λ)

λ
z(λ, t)dλ

)2
≤
∫ ∞

0

K(α, λ)

λ
dλ ·

∫ ∞

0

K(α, λ)

λ
z2(λ, t)dλ

= cos
(απ

2

)
ωα−2

∫ ∞

0

K(α, λ)

λ
z2(λ, t)dλ

(5.68)
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and
(∫ ∞

0
K(α, λ)z(λ, t)dλ

)2
≤
∫ ∞

0
K(α, λ)dλ ·

∫ ∞

0
K(α, λ)z2(λ, t)dλ

= sin
(απ

2

)
ωα−1

∫ ∞

0
K(α, λ)z2(λ, t)dλ.

(5.69)

By splitting the third term in (5.67) in two equal parts, estimating the first with
(5.68) and the second with (5.69), (5.67) can be estimated as

V3(qt, vt) ≥
k̃
2

q̃2
t (0) +

d̃cC̃
4m cos

(
απ
2
)

ωα−2

(∫ ∞

0

K(α, λ)

λ
z(λ, t)dλ

)2

+
m
2

ṽ2
t (0) +

d̃c
4m sin

(
απ
2
)

ωα−1

(∫ ∞

0
K(α, λ)z(λ, t)dλ

)2
.

(5.70)

Finally, applying the general relation

(a + b)2 + γb2 =
γ

1 + γ
a2 +

(
a√

1 + γ
+
√

1 + γb
)2

for a, b, γ ∈ R, γ > 0 on the first two and the last two terms of (5.70) using (5.64)
and (5.65), one obtains inequality (5.30) for V3. Furthermore, the rate of V3 can be
computed as

V̇3 = k̃q̃t(0)q̃′t(0) + mṽ′t(0)ṽt(0) +
d̃c
m

∫ ∞

0
K(α, λ)z(λ, t)ż(λ, t)dλ.

Inserting the dynamics from (5.66) yields

V̇3 = ṽ(t)
(
−d̃ṽ(t)− d̃c

m

∫ ∞

0
K(α, λ)z(λ, t)dλ

)
+ ṽ(t)

d̃c
m

∫ ∞

0
K(α, λ)z(λ, t)dλ

+
d̃c2

m2

(∫ ∞

0
K(α, λ)z(λ, t)dλ

)2
− d̃c

m

∫ ∞

0
K(α, λ) λ z2(λ, t)dλ

= −d̃ṽ2(t) +
d̃c2

m2

(∫ ∞

0
K(α, λ)z(λ, t)dλ

)2
− d̃c

m

∫ ∞

0
K(α, λ) λ z2(λ, t)dλ.

Again, Hölder’s inequality and Proposition 3.3 lead to
(∫ ∞

0
K(α, λ)z(λ, t)dλ

)2
≤
∫ ∞

0

K(α, λ)

λ
dλ ·

∫ ∞

0
K(α, λ) λ z2(λ, t)dλ

= cos
(απ

2

)
ωα−2

∫ ∞

0
K(α, λ) λ z2(λ, t)dλ

(5.71)

and finally results in

V̇3 ≤ −d̃ṽ2(t)− d̃c
m

(
1 − c

m cos
(

απ
2
)

ωα−2
) ∫ ∞

0
K(α, λ) λ z2(λ, t)dλ,
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where, due to (5.61)

mω2 − c cos
(απ

2

)
ωα = k > 0 ⇒ 1 − c

m
cos

(απ

2

)
ωα−2 > 0.

Hence, (5.31) holds for d > dcrit and, using the same arguments as for the case
d > 0, one can conclude that {0} is the largest invariant set in {φ ∈ X | V̇3(φ) = 0}
such that all conditions of Corollary 5.30 are fulfilled. This leads to the proof of
global asymptotic stability of the trivial equilibrium.

Finally, a Lyapunov functional V3 could be found such that V̇3 ≤ 0, which
has the form of an energy functional w.r.t. the new coordinates q̃t and ṽt. Hinze
et al. (2020b) used Theorem 5.26 for the stability proof by introducing the more
elaborate Lyapunov functional

V4(qt, vt) =
k̃
2

q̃2
t (0) +

m
2

ṽ2
t (0) +

d̃2

4m
q̃2

t (0) +
d̃
2

q̃t(0)ṽt(0)

+
d̃c
2m

∫ ∞

0
K(α, λ)z2(λ, t)dλ +

d̃2c
4m2

∫ ∞

0
K(α, λ)λZ2(λ, t)dλ

− d̃2c
4m2

c
k̃

ω2
(∫ ∞

0
K(α, λ)Z(λ, t)dλ

)2
,

which fulfills (5.27) for d > dcrit, see Hinze et al. (2020b) for the details. How-
ever, the invariance principle renders the use of V4 redundant for the proof. In
summary, the Lyapunov proofs in this section lead to the following conclusions.

Remark 5.36.

a) The energy of a springpot (4.80) and the infinite states z(η, ·) in (2.29) and
Z(η, ·) in (2.26), η > 0 are valuable expressions for the formulation of Lya-
punov functionals for fractionally damped systems.

b) The conditions for asymptotic stability in Proposition 5.34 are equivalent to
the necessary and sufficient conditions obtained by the spectral analysis. Fur-
thermore, it is possible to obtain the same conditions using the energy balance
principle as it was done by Trigeassou et al. (2016a,b) for an electrical sys-
tem. As such, the choice of the functional V3 is optimal to estimate the critical
negative damping parameter. Moreover, the direct method of Lyapunov has
advantages over a spectral analysis or the energy balance principle, as it can
lead to global stability results in the nonlinear case, avoids the cumbersome
computation of eigenvalues and may even give results in the non-hyperbolic
case where an eigenvalue analysis fails.

c) The reformulated infinite state representation (3.4) does not only lead to a nu-
merical scheme for the solution of FODEs but also yields a Lyapunov func-
tional for a stability proof. Moreover, it extracts the stiffness and viscous
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damping behavior of a springpot through the parameters k̃ and d̃ in (5.63)
leading to an improved mechanical interpretation of fractional damping.

Fractionally damped stick-slip oscillator

The following example describes a mechanical system for which effective nega-
tive viscous damping occurs in the linearization of the equation of motion around
an equilibrium. Sufficient conditions for local asymptotic stability of the equi-
librium using Proposition 5.34 are examined. As opposed to the classical single
degree-of-freedom stick-slip oscillator, see Galvanetto et al. (1995); Ibrahim (1994);
Leine and Nijmeijer (2004), the dashpot is replaced here by a springpot element.
Consider a mass m suspended by a spring with spring coefficient k, and a spring-

Figure 5.8: Fractionally damped oscillator with dry friction.

pot with coefficient c and differentiation order α ∈ (0, 1), which is sliding on a
conveyor belt as in Figure 5.8. By q, denote the displacement of the mass. The belt
moves in the contact area with a constant velocity vdr > 0 in positive q-direction
and friction between the mass and the belt is assumed, which leads to a friction
force FT such that the equation of motion reads as

mq̈(t) = FT − c CDαq(t)− kq(t). (5.72)

A set-valued Coulomb friction law may be considered, which correctly describes
stiction, see Leine and Nijmeijer (2004). However, here, the focus is on the local
behavior in the vicinity of the equilibrium residing in the slip phase. For the
friction force FT in the slip phase, consider the force law

FT = −µ(vrel)FN sign(vrel), vrel ̸= 0,

where
vrel(t) = q̇(t)− vdr
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is the relative velocity between mass and belt,

FN = mg

is the constant normal force acting on the mass and µ : R → R, µ(vrel) = µ(−vrel)

is the friction coefficient depending on the relative velocity, where the function µ

decreases (at least) for small magnitudes of vrel, i.e.,

µ′(vrel) < 0 for vrel > 0, |vrel| ≪ 1

and, correspondingly,

µ′(vrel) > 0 for vrel < 0, |vrel| ≪ 1,

which is known as the Stribeck effect. Consider the equilibrium q∗ of (5.72) in slip

Figure 5.9: Graphs of a set-valued force law describing the Stribeck effect and the
related friction coefficient µ, see Leine and Nijmeijer (2004).

(i.e., vrel = −vdr)

0 = FT − kq∗,

−FT = µ(−vdr)FN sign(−vdr) = −µ(−vdr)mg,

which implies

q∗ =
µ(−vdr)mg

k
. (5.73)

By introducing a new coordinate

q̄ = q − q∗,

the FDE (5.72) can be reformulated in terms of q̄ as

m ¨̄q(t) + c CDα q̄(t) + k(q̄(t) + q∗) = −µ( ˙̄q(t)− vdr)mg sign( ˙̄q(t)− vdr). (5.74)
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Linearizing the right-hand side of (5.74) near the equilibrium leads to

m ¨̄q(t) + c CDα q̄(t) + k(q̄(t) + q∗) = µ(−vdr)mg + µ′(−vdr)mg ˙̄q(t) +O
(

˙̄q2
)

,

which together with (5.73) leads to the linearized equation

m ¨̄q(t)− µ′(−vdr)mg ˙̄q(t) + c CDα q̄(t) + kq̄(t) = 0,

where µ′(−vdr) > 0. Hence, using Proposition 5.34, one obtains the condition

cωα−1 sin
(απ

2

)
> µ′(−vdr)mg

for local asymptotic stability of the slip equilibrium q∗, where again ω is the solu-
tion of (5.61).

Linear finite-dimensional mechanical systems

The proposed Lyapunov approach for the one-dimensional case can be extended
to a general linear mechanical system

Mq̈ + (D + G)q̇ + Kq − Wν = 0, −ν = c CDαg (5.75)

with generalized coordinates q ∈ R f , mass matrix M, damping matrix D, gyro-
scopic matrix G, stiffness matrix K, springpot coefficient c > 0 and differentiation
order α, where M = MT, D = DT and K = KT are constant symmetric positive
definite matrices and G = −GT is a constant skew-symmetric matrix in R f× f .
Furthermore, consider a generalized force Wν with constant generalized force di-
rection W ∈ R f×1 and a force law ν of a springpot with elongation g that fulfills
the linear geometric relation

g = WTq.

To prove stability of the trivial equilibrium, proceed as in the one-dimensional
case using infinite states (2.29) and the energy Lyapunov functional

V5(qt, q′
t) =

1
2

qt(0)TKqt(0) +
1
2

q′
t(0)

TMq′
t(0) +

c
2

∫ ∞

0
µ1−α(λ)z2(λ, t)dλ,

which fulfills (5.30) as K, M are positive definite and (5.31) as

V̇5 = −q̇TDq̇ − c
∫ ∞

0
µ1−α(λ) λ z2(λ, ·)dλ ≤ 0.

As D is positive definite and c > 0, again {0} is the largest invariant set in
{φ ∈ X | V̇5(φ) = 0} and asymptotic stability of the trivial equilibrium can be
concluded using Corollary 5.30 as before.
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Moreover, the case of anti-damping can be generalized for finite dimensions.
Therefore, let M and K be symmetric and positive definite as before, whereas
G = 0 and D is symmetric but has one (possibly) nonpositive eigenvalue

d > −c sin
(απ

2

)
ωα−1

with normalized eigenvector W, WTW = 1, where ω solves the generalized eigen-
value problem

(
KM−1 + c cos

(απ

2

)
WTM−1Wrα − r2

)
W = 0 (5.76)

such that W is an eigendirection of K (with eigenvalue k) and M (with eigenvalue
m) as well, i.e., ω is the solution of (5.61) as in the one-dimensional case. This
means particularly that the force direction of anti-damping and of the springpot
have to be collinear. Using the reformulated infinite state representation (3.4) of
the fractional derivative and the infinite states (2.29), (5.75) can be reformulated
as

0 = Mq̈ + D̃q̇ + K̃q − cW
∫ ∞

0
K(α, λ)ż(λ, ·)dλ − cω2W

∫ ∞

0
K(α, λ)Z(λ, ·)dλ

with new stiffness and damping matrices

K̃ := K + c cos
(απ

2

)
ωαWWT,

D̃ := D + c sin
(απ

2

)
ωα−1WWT,

which both are symmetric and positive definite. Again, a coordinate transforma-
tion

q̃ = q − cM−1W
∫ ∞

0
K(α, λ)Z(λ, ·)dλ

results, using (5.76) in the modified equations of motion

0 = M ¨̃q + D̃ ˙̃q + K̃q̃ + cD̃M−1W
∫ ∞

0
K(α, λ)z(λ, ·)dλ. (5.77)

The assumptions above directly yield

D̃M−1W =
(

d + c sin
(απ

2

)
ωα−1

)
m−1W =:

d̃
m

W,

which leads to the Lyapunov functional

V6(qt, q′
t) =

1
2

q̃t(0)TK̃q̃t(0) +
1
2

q̃′
t(0)

TMq̃′
t(0) +

cd̃
2m

∫ ∞

0
K(α, λ)z2(λ, t)dλ.
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Similar as for V3, (5.30) can be shown for V6 as K̃, M are positive definite and its
time derivative can be estimated by inserting the dynamics (5.77) and using (5.71)
and (5.76) as

V̇6 = − ˙̃qTD̃ ˙̃q +
cd̃
m

cWTM−1W
(∫ ∞

0
K(α, λ)z(λ, ·)dλ

)2

− cd̃
m

∫ ∞

0
K(α, λ) λ z2(λ, ·)dλ

≤ − ˙̃qTD̃ ˙̃q − cd̃
m

(
1 − c

m cos
(

απ
2
)

ωα−2
) ∫ ∞

0
K(α, λ) λ z2(λ, ·)dλ

= − ˙̃qTD̃ ˙̃q − cd̃k
m2ω2

∫ ∞

0
K(α, λ) λ z2(λ, ·)dλ ≤ 0

such that (5.31) holds and {0} is the largest invariant set in {φ ∈ X | V̇6(φ) = 0}.
Corollary 5.30 yields asymptotic stability as usual. A further generalization for
several springpot elements is straightforward.

5.4 Controlled systems with fractional damping

In the following section, the Lyapunov approach derived for fractionally damped
mechanical systems is applied to a more general tracking control problem with
fractional and nonlinear damping. The basic ideas for the construction of Lya-
punov functionals are similar to those presented so far.

Classical formulation of a Lur’e system and convergence

The following paragraph summarizes well known results regarding the stability
of Lur’e systems, see e.g. Khalil (2002) for a more in-depth exposition. Moreover,
it is meant as an introduction to certain controlled dynamical systems and the
notion of convergence, see Pavlov et al. (2006), before these concepts are general-
ized for the fractionally damped case in subsequent sections. A Lur’e system, in
the classical sense, is the connection of a linear system and an output dependent
nonlinearity of the form

ẋ = Ax + Bw + DΛ,

y = Cx,

−Λ = φ(y),

(5.78)

where x ∈ Rn is the system state, w ∈ R the (single) input and y ∈ R the (single)
output of the system. Furthermore, the system matrices A, B, C, D are considered

Section 5.4 is based on Hinze et al. (2020a).
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to be constant and the pair (A, B) is controllable, (A, C) is observable. The non-
linearity φ = φ(y) is a continuous function of the output y with φ(0) = 0. The
uniform asymptotic stability of the origin of (5.78) (in the absence of the input w)
for a certain class of nonlinearities φ is called absolute stability, named after Lur’e
who originally formulated the problem, see Khalil (2002, Chap. 7). A related task
considered by Yakubovich (1964) is the formulation of conditions on (5.78) such
that for a class of inputs w(t) asymptotic stability of all solutions is guaranteed.
This leads to the more general notion of convergent systems as defined by Pavlov
et al. (2006).

Definition 5.37 (Convergence). A nonlinear system

ẋ = f(x, w)

is called (uniformly) convergent for a class of piecewise continuous and bounded
inputs N , if there exists a solution x̄w(t) that is defined and bounded for all t ∈ R

and globally (uniformly) asymptotically stable for every input w ∈ N .

Hence, for a (uniformly) convergent system, the solution x̄w(t) is the unique
steady-state solution. For a uniformly convergent system, it is known that a con-
stant input w(t) leads to a constant steady-state solution and a periodic input
w(t) with period time T results in a periodic steady-sate solution with the same
period time T, see Pavlov et al. (2006). A specific task using known results on con-
vergence is to solve the tracking problem for (5.78), i.e., to design a control law
w(t) such that a desired solution xd(t) is globally asymptotically stable for a cer-
tain class of nonlinearities φ. Particularly, consider monotonically nondecreasing
functions φ with φ(0) = 0 such that

(y1 − y2)(φ(y1)− φ(y2)) ≥ 0 for all y1, y2 ∈ R. (5.79)

For this case it can be shown, see Pavlov et al. (2006, Sec. 5.4), that the tracking
problem can be solved using a combination of linear tracking error-feedback and
feedforward control in the form

w = K(x − xd) + wff , (5.80)

where K ∈ R1×n is the feedback gain matrix and wff the feedforward control.
Together with (5.78), the closed-loop dynamics are given by

ẋ = Aclx + B(wff − Kxd) + DΛ,

y = Cx,

−Λ = φ(y),

(5.81)

where
Acl = A + BK. (5.82)
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The feedforward wff(t) in (5.80) is chosen such that xd(t) is a solution of (5.81)
and the control gain K is designed such that all solutions of (5.81) approach xd(t),
i.e., (5.81) is a convergent system. To give sufficient conditions for convergence of
(5.81), consider the incremental Lyapunov function of two solutions x1 and x2 as

V7(x1 − x2) =
1
2
(x1 − x2)

TP(x1 − x2), (5.83)

where P is symmetric and positive definite. The application of Theorem 5.8 leads
to the following absolute stability result of Yakubovich (1964) (see also Pavlov
et al. (2004) for a historic review).

Theorem 5.38. Consider the system (5.81) with (5.79), (5.82), where wff is chosen such
that xd is a bounded continuous solution of (5.81). If there exists a symmetric, positive
definite matrix P and a feedback gain K such that the relations

AT
clP + PAcl < 0, (5.84)

DTP = C (5.85)

hold, then all solutions of (5.81) asymptotically approach xd(t).

Proof. The Lyapunov function (5.83) is a positive definite and radially unbounded
function of the error between two solutions

e := x1 − x2 ,

i.e., (5.83) can be reformulated as

V7(e) =
1
2

eTPe.

The associated error dynamics can be derived from (5.81) as

ė = Acle − D(φ(Cx1(t))− φ(Cx1(t)− Ce)),

which represents a nonautonomous ODE. The time-derivative of V7 along solu-
tions yields

V̇7 = ėTPe = (Acle − D(φ(Cx1(t))− φ(Cx1(t)− Ce)))T Pe

=
1
2

eT
(
AT

clP + PAcl
)

e − (φ(Cx1(t))− φ(Cx1(t)− Ce))DTPe

=
1
2

eT
(
AT

clP + PAcl
)

e − (φ(Cx1(t))− φ(Cx1(t)− Ce))Ce,

where (5.85) is applied in the last line. The monotonicity condition (5.79) and
(5.84) reveal that V̇7 is negative definite and hence, according to Theorem 5.8,
the tracking error dynamics is globally asymptotically stable and particularly, the
bounded solution xd of (5.81) is asymptotically approached by all solutions of
(5.81).
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Generalization for the case of fractional damping

The above results will be generalized for a class of fractionally damped nonlinear
systems of the form

ẋ = Ax + Bw + DΛ + Fν,

y = Cx,

−Λ = φ(y),

−ν = c CDαg, g = E0x, ġ = E1x,

(5.86)

where again x ∈ Rn is the system state, w ∈ R the (single) input, y ∈ R and g ∈ R

the outputs of the linear system and A, B, C, D, E0, E1, F are constant matrices
that fulfill

E1 = E0A, E0B = E0D = E0F = 0.

Furthermore, CDαg is the fractional derivative of the elongation g of a springpot
and φ = φ(y) is a nonlinear function of the output y that fulfills (5.79). Again,
consider the problem of tracking a desired solution xd(t) of (5.86) using a control
law of the form (5.80), which leads to the closed-loop dynamics

ẋ = Aclx + B(wff − Kxd) + DΛ + Fν,

y = Cx,

−Λ = φ(y),

−ν = c CDαg, g = E0x, ġ = E1x

(5.87)

with Acl as in (5.82). As before, the feedforward wff(t) in (5.80) is chosen such that
xd(t) is a solution of (5.87) and the control gain K is designed to render (5.87) con-
vergent. Sufficient conditions for that will be given with the help of a Lyapunov
functional inspired from (5.83) and adapted to the fractional derivative terms in
(5.87). Hereto, consider the infinite states

ż(η, t) = ġ(t)− ηz(η, t), η ≥ 0,

z(η, 0) =
∫ 0

−∞
eητ g′(τ)dτ, η ≥ 0

of a springpot as in (2.29) such that

CDαg(t) =
∫ ∞

0
µ1−α(λ)z(λ, t)dλ

and the second kind of infinite states

Ż(η, t) = z(η, t) = g(t)− ηZ(η, t), η ≥ 0,

Z(η, 0) =
∫ 0

−∞
eητ g(τ)dτ, η ≥ 0
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as in (2.26). This leads together with (5.87) to the reformulated system

ẋ = Aclx + B(wff − Kxd) + DΛ − cF
∫ ∞

0
µ1−α(λ)z(λ, ·)dλ,

Ż(η, ·) = z(η, ·) = E0x − ηZ(η, ·),
ż(η, ·) = E1x − ηz(η, ·),

y = Cx,

−Λ = φ(y).

(5.88)

To give sufficient conditions for convergence of (5.88), consider the incremental
Lyapunov functional of two solutions x1 and x2 as

V8(x1,t − x2,t) =
1
2
(x1,t(0)− x2,t(0))TP(x1,t(0)− x2,t(0))

+
δ0
2

∫ ∞

0
µ1−α(λ) λ (Z1(λ, t)− Z2(λ, t))2dλ

+
δ1
2

∫ ∞

0
µ1−α(λ)(z1(λ, t)− z2(λ, t))2dλ,

(5.89)

where P is symmetric, positive definite and δ0 ≥ 0, δ1 > 0. Similar as for the clas-
sical case, the functional (5.89) can be reformulated in terms of the error between
two solutions, which now includes the infinite states, namely

e = x1 − x2,

eZ(η, ·) = Z1(η, ·)− Z2(η, ·),
ez(η, ·) = z1(η, ·)− z2(η, ·).

Thus, V8 is given by

V8(et) =
1
2

et(0)TPet(0) +
δ0
2

∫ ∞

0
µ1−α(λ) λ e2

Z(λ, t)dλ

+
δ1
2

∫ ∞

0
µ1−α(λ)e2

z(λ, t)dλ,

which represents a Lyapunov functional for the nonautonomous error dynamics
derived from (5.88) as

ė = Acle − D(φ(Cx1(t))− φ(Cx1(t)− Ce))− cF
∫ ∞

0
µ1−α(λ)ez(λ, ·)dλ,

ėZ(η, ·) = ez(η, ·) = E0e − ηeZ(η, ·),
ėz(η, ·) = E1e − ηez(η, ·). (5.90)
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The time-derivative of V8 along solutions of (5.90) results in

V̇8 = ėTPe + δ0

∫ ∞

0
µ1−α(λ) λ eZ(λ, ·)ėZ(λ, ·)dλ

+ δ1

∫ ∞

0
µ1−α(λ)ėz(λ, ·)ez(λ, ·)dλ,

=

(
Acle − D(φ(Cx1(t))− φ(Cx1(t)− Ce))− cF

∫ ∞

0
µ1−α(λ)ez(λ, ·)dλ

)T

Pe

+ δ0

∫ ∞

0
µ1−α(λ)(E0e − ez(λ, ·))ez(λ, ·)dλ

+ δ1

∫ ∞

0
µ1−α(λ)(E1e − λ ez(λ, ·))ez(λ, ·)dλ

=
1
2

eT(AT
clP + PAcl)e − (φ(Cx1(t))− φ(Cx1(t)− Ce))DTPe

+
∫ ∞

0
µ1−α(λ)ez(λ, ·)dλ (δ0E0 + δ1E1 − cFTP) e

−
∫ ∞

0
µ1−α(λ)(δ0 + δ1λ)e2

z(λ, ·)dλ.

(5.91)

From the terms in (5.91), conditions for convergence of (5.88) can be extracted,
which are formulated in the following theorem.

Theorem 5.39. Consider the system (5.88) with (5.79) and (5.82), where wff(t) is chosen
such that xd(t) is a bounded continuous solution of (5.88). If there exists a symmetric,
positive definite matrix P, coefficients δ0 ≥ 0, δ1 > 0 and a feedback gain K such that the
relations

AT
clP + PAcl ≤ 0, (5.92)

DTP = C, (5.93)

δ0E0 + δ1E1 = cFTP, (5.94)

ker(E1) ∩ ker(E1Acl) ∩ ker(AT
clP + PAcl) = {0} (5.95)

hold, then all solutions of (5.88) asymptotically approach xd(t).

The condition (5.92) is weaker than the classical Lyapunov inequality (5.84) in
Theorem 5.38. Hence, for the theorem to hold, the generalized invariance princi-
ple in Theorem 5.31 is applied to prove asymptotic stability.

Proof of Theorem 5.39. Initially, it has to be guaranteed that the right-hand side of
(5.90) is bounded for bounded inputs. The proof results from (5.41) and (5.42) as
for the single degree-of freedom oscillator. The second step is to determine the
limiting equation (5.32) of (5.90). Therefore, consider the Lyapunov functional V8,
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being bounded from below and defined on a compact set in X, which contains
{et | t ≥ 0} such that the limit

lim
t→∞

V8(et) = a ≥ 0 (5.96)

exists. Further, consider the time derivative (5.91) of V8, which in view of (5.93)
and (5.94) fulfills

V̇8 =
1
2

eT(AT
clP + PAcl)e − (φ(Cx1)− φ(Cx1 − Ce))Ce

−
∫ ∞

0
µ1−α(λ)(δ0 + δ1λ)e2

z(λ, ·)dλ.
(5.97)

A further estimation of (5.97) yields

V̇8 ≤ −(φ(Cx1(t))− φ(Cx1(t)− Ce))Ce.

Assume that
φ(Cx1(t))− φ(Cx1(t)− Ce) (5.98)

would not vanish for t → ∞. Then, V̇8 would have a negative limit, which con-
tradicts (5.96). Accordingly, the term (5.98) has to vanish for t → ∞, which leads
to the limiting equation of (5.90)

ė = f∗(et) = Aclet(0)− cF
∫ ∞

0
µ1−α(λ)ez(λ, ·)dλ,

ėZ(η, ·) = ez(η, ·) = E0e − ηeZ(η, ·),
ėz(η, ·) = E1e − ηez(η, ·).

(5.99)

Hence, Theorem 5.31 can be applied. Therefore, consider another estimation of
(5.97), viz.

V̇8 ≤ 1
2

et(0)T(AT
clP + PAcl)et(0)−

∫ ∞

0
µ1−α(λ)(δ0 + δ1λ)e2

z(λ, ·)dλ =: W(et)

(5.100)
and examine the largest invariant set w.r.t. (5.99) in E := {φ ∈ X | W(φ) = 0}.
The integral term in (5.100) yields

ez(η, t) = 0 for almost all η ≥ 0, t ≥ 0, et ∈ E (5.101)

and substitution of (5.101) in the ez-dynamics of (5.99) leads to

E1e = 0 for et ∈ E, t ≥ 0. (5.102)

Moreover, using (5.102) in the e-dynamics of (5.99) results in

E1ė = 0 = E1Acle for et ∈ E, t ≥ 0.

Considering the first term in (5.100) and using condition (5.95), one obtains that
{0} is the largest invariant set in E. From Theorem 5.31, one can conclude that all
solutions of (5.88) converge to each other. As xd is a bounded solution of (5.88),
all solutions asymptotically approach xd.
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Tracking control of a motor-load archetype system

Consider a typical motor-load configuration where the nonlinear damping Λ and
the actuation w are non-collocated (Figure 5.10), inspired from the example by
Leine and van de Wouw (2008, Sec. 8.4.2). Herein, the translational motion of two
interconnected masses, representing motor and load, is considered being mechan-
ically equivalent to its rotational counterpart. The aim in this tracking problem
is to track the (translational resp. rotational) velocity of the load and not its posi-
tion. Following Leine and van de Wouw (2008), consider two masses m1 and m2
with coordinates q1 and q2 which are linked by a spring (stiffness k). The first
mass is actuated by a control force w and on the second mass acts a nonlinear
damping force −Λ = φ(q̇2) that fulfills (5.79). The results by Leine and van de
Wouw (2008) are generalized by replacing the dashpot between the two masses
by a springpot (coefficient c > 0, differentiation order α ∈ (0, 1)). Using the law
of linear momentum, one obtains a system of the form (5.86), where

A =




0 −1 1
k

m1
0 0

− k
m2

0 0


 , B =




0
1

m1

0


 , D =




0
0

− 1
m2


 ,

F =




0
− 1

m1
1

m2


 , CT =




0
0

−1


 , ET

0 =




1
0
0




(5.103)

and x =
[
q2 − q1 q̇1 q̇2

]T
. Note that this state vector does not contain the

absolute positions q1 and q2 as velocity tracking is the aim of this control strategy.
Initially, a stationary solution with desired velocity vd (for both masses) shall be

Figure 5.10: Typical motor-load configuration with non-collocated nonlinear
damping and actuation.

tracked. Therefore, introduce a control law (5.80) and reformulate the system as
in (5.88). Related to the desired solution of constant velocity is an equilibrium of
(5.87)

xd =
[
− 1

k φ(vd) vd vd

]T
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when a feedforward control
wff = φ(vd)

is used. When choosing

P =




2k −√
km1 0

−√
km1 m1 0

0 0 m2


 , δ0 = c

√
k

m1
, δ1 = c

together with the feedback gain

K =
[
−k −2

√
km1

√
km1

]
, (5.104)

all conditions in Theorem 5.39 are fulfilled. In particular,

AT
clP + PAcl = −2

√
km1




0 0 0
0 1 0
0 0 0


 ≤ 0,

ker(E1) =

〈


1
0
0


 ,




0
1
1



〉

,

ker(E1Acl) =

〈


0
1
2


 ,



−m2

0√
km1



〉

,

ker(AT
clP + PAcl) =

〈


1
0
0


 ,




0
0
1



〉

.

The control law given above is implemented in order to simulate the solutions
of the closed loop system (5.88) with (5.103), parameters

m1 = m2 = 1 kg, k = 100
N
m

, c = 1
Nsα

m
, α = 0.5, (5.105)

desired velocity vd = 1 m
s and a nonlinearity

φ(y) = b tanh
(

y
vd

)
, b = 1 N,

that models regularized Coulomb friction for the second mass. The reformulated
infinite state scheme from Chapter 3 is used and tracking is depicted in Figure 5.11
for the initial conditions

x(0) =
[
0 5 5

]T
, Z(η, 0) = 0, z(η, 0) = 0, η ≥ 0. (5.106)
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Figure 5.11: Tracking of vd = 1 m
s for both masses with feedforward (left) or

feedback and feedforward control (right).

It can be observed that, even without feedback control, tracking is achieved (al-
though much slower), as the nonlinearity contributes to the attractivity of xd.

In a second step, it will be shown that the feedback gain (5.104) can be used
to stabilize any bounded time-varying desired solution xd. However, for a non-
constant desired solution the determination of the associated feedforward wff be-
comes cumbersome and generally has to be computed numerically. Here, an ex-
ample with solution in closed form is provided. Consider the nonlinear damping

φ(y) = dy3, d > 0

and a desired oscillating velocity of the second mass

q̇2,d(t) = AΩ cos(Ωt). (5.107)

Using the harmonic balance method, the associated desired trajectory xd with
components

xd,1(t) = Ps sin(Ωt) + Pc cos(Ωt) + Rs sin(3Ωt) + Rc cos(3Ωt),

xd,2(t) = (A − Ps)Ω cos(Ωt) + PcΩ sin(Ωt)− 3RsΩ cos(3Ωt) + 3RcΩ sin(3Ωt),

xd,3(t) = AΩ cos(Ωt)

is obtained together with the feedforward

wff(t) = (m1(Ps − A)− m2 A)Ω2 sin(Ωt) +
(

m1Pc +
3
4

dA3Ω
)

Ω2 cos(Ωt)

+ 9m1RsΩ2 sin(3Ωt) +
(

9m1Rc +
1
4

dA3Ω
)

Ω2 cos(3Ωt)
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with coefficients

Ps =

(
m2

(
k + c cos

(απ

2

)
Ωα
)
− 3

4
dA2Ωc sin

(απ

2

)
Ωα

)
AΩ2/L1 ,

Pc = −
(

3
4

dA2Ω
(

k + c cos
(απ

2

)
Ωα
)
+ m2c sin

(απ

2

)
Ωα

)
AΩ2/L1 ,

L1 =
(

k + c cos
(απ

2

)
Ωα
)2

+
(

c sin
(απ

2

)
Ωα
)2

,

Rs = −1
4

dA3Ω3c sin
(απ

2

)
(3Ω)α/L3 ,

Rc = −1
4

dA3Ω3
(

k + c cos
(απ

2

)
(3Ω)α

)
/L3 ,

L3 =
(

k + c cos
(απ

2

)
(3Ω)α

)2
+
(

c sin
(απ

2

)
(3Ω)α

)2
.

Using parameters as in (5.105) together with

d = 0.2
Ns3

m3 , A = 1 m, Ω = 1
1
s

and initial conditions (5.106), tracking is achieved (with and without feedback) as
shown in Figure 5.12. The addition of feedback greatly ameliorates the tracking
speed.
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Figure 5.12: Tracking of q̇2,d from (5.107) with feedforward (left) or feedback and
feedforward control (right).



CHAPTER 6
Finite element method

The following chapter introduces a method which incorporates a fractional Zener
model (for hydrostatic and deviatoric components) of a three-dimensional contin-
uum (assuming small deformations) in the finite element method. The algorithm
uses the reformulated infinite state representation and the associated numerical
scheme introduced in Chapter 3.

6.1 Formulation of the fractional Zener model for a 3D
continuum

Initially, consider once again a (one-dimensional) fractional Zener model (Fig-
ure 6.1) as introduced in Section 4.2. As an alternative to the relaxation function

Figure 6.1: Fractional Zener model.

(4.57), the model is described by the equations

σ(x, t) = (E0 + E1)ε(x, t)− E1εf(x, t),

p CDαεf(x, t) = E1(ε(x, t)− εf(x, t)),
(6.1)

where the internal variable εf denotes the strain of the springpot in Figure 6.1.
This representation is according to the state variables approach for classical vis-
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coelastic constitutive laws introduced by Creus (1986, Chap. VII) and Marques
and Creus (2012, Chaps. 3 and 9) or the internal variable model by Simo and
Hughes (1998, Chap. 10). In the formulation (6.1), the position dependence of
stress and strain is explicitly taken into consideration. Thus, the model parame-
ters are assumed to be independent of the position variable x, i.e., a homogeneous
material is considered. Further, plugging the reformulated infinite state represen-
tation (3.4) of the fractional derivative of εf in (6.1) yields

σ(x, t) = (E0 + E1)ε(x, t)− E1εf(x, t),

p sin
(απ

2

)
ωα−1 ε̇f(x, t)− p

∫ ∞

0
K(α, λ)ż(λ, x, t)dλ

= E1ε(x, t)−
(

E1 + p cos
(απ

2

)
ωα
)

εf(x, t)

+ pω2
∫ ∞

0
K(α, λ)Z(λ, x, t)dλ,

Ż(η, x, t) = εf(x, t)− ηZ(η, x, t),

ż(η, x, t) = ε̇f(x, t)− ηz(η, x, t).

(6.2)

Similar as in Section 4.3, for the three-dimensional isotropic case, assume a frac-
tional Zener model (6.2) for hydrostatic and deviatoric components each. To for-
mulate the associated relations, use the Cauchy stress tensor

σ̃ =
[
σxx σyy σzz σxy σyz σzx

]T (6.3)

and the linear strain tensor

ε̃ =
[
εxx εyy εzz γxy γyz γzx

]T (6.4)

in Voigt notation. The separation in hydrostatic and deviatoric parts is, equivalent
to (4.11) and (4.12), given by

σ̃ = σ̃h + σ̃d = Thσ̃ + Tdσ̃,

ε̃ = ε̃h + ε̃d = Thε̃ + Tdε̃
(6.5)

with

Th =




1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, Td =




2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 − 1

3
2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,
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similar as introduced by Schmidt and Gaul (2002). Finally, adding up the hydro-
static and deviatoric versions of (6.2) results using (6.5) in the constitutive law

σ̃(x, t) =
(
(E0,h + E1,h)Th + (E0,d + E1,d)Td

)
ε̃(x, t)

−
(
E1,hTh + E1,dTd

)
ε̃f(x, t),

(
ph sin

(αhπ

2

)
ωαh−1

h Th + pd sin
(αdπ

2

)
ωαd−1

d Td

)
˙̃εf(x, t)

−
∫ ∞

0
(phK(αh, λ)Th + pdK(αd, λ)Td) ˙̃z(λ, x, t)dλ

= (E1,hTh + E1,dTd)ε̃(x, t)−
( (

E1,h + ph cos
(αhπ

2

)
ωαh

h

)
Th

+
(

E1,d + pd cos
(αdπ

2

)
ωαd

d

)
Td

)
ε̃f(x, t)

+
∫ ∞

0

(
phω2

hK(αh, λ)Th + pdω2
dK(αd, λ)Td

)
Z̃(λ, x, t)dλ,

˙̃Z(η, x, t) = ε̃f(x, t)− ηZ̃(η, x, t),
˙̃z(η, x, t) = ˙̃εf(x, t)− ηz̃(η, x, t).

(6.6)

6.2 FEM formulation

The equilibrium equations for a deformable body represented by a spatial do-
main Ω ⊂ R3 can be formulated in terms of the displacement field u = u(x, t)
being kinematically related to the linear strain ε. In case of a Cartesian coordinate
system, the strain-displacement relation is given by

εxx =
∂ux

∂x
(x, t), εyy =

∂uy

∂y
(x, t), εzz =

∂uz

∂z
(x, t), γxy =

∂ux

∂y
(x, t) +

∂uy

∂x
(x, t),

γyz =
∂uy

∂z
(x, t) +

∂uz

∂y
(x, t), γzx =

∂uz

∂x
(x, t) +

∂ux

∂z
(x, t). (6.7)

The principle of virtual work

0 = δWdyn + δWint + δWext

including the virtual work of inertia δWdyn, of internal forces δWint and of external
forces δWext yields the equation

0 = −
∫

Ω
δuT(x, t)ρ(x)ü(x, t)dV −

∫

Ω
δε̃T(x, t)σ̃(x, t)dV

+
∫

Ω
δuT(x, t)b(x, t)dV +

∫

∂Ω
δuT(x, t)t(x, t)dA,

(6.8)

which is valid for all smooth virtual displacement fields δu. Thereby, ρ is the (vol-
umetric) mass density in Ω, b is the volume density of external forces in Ω and t is
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the surface density of external forces on the boundary ∂Ω. For the displacement
field u, consider a finite element discretization

u(x, t) = H(x)v(t), (6.9)

where the matrix H contains the chosen shape functions and v the associated
nodal displacements. Furthermore, the linear strain field is discretized as

ε̃(x, t) = B(x)v(t), (6.10)

where the matrix B contains certain spatial derivatives of the shape functions used
in H according to a strain-displacement relation such as (6.7). Assume similar
relations for the internal variables ε̃f, Z̃ and z̃ in the form

ε̃f(x, t) = B(x)vf(t), Z̃(η, x, t) = B(x)Z(η, t), z̃(η, x, t) = B(x)z(η, t) (6.11)

with generalized internal nodal displacement variables vf, Z and z. Using (6.9)
and (6.10) in the principle of virtual work (6.8) results in

0 = δvT(t)

[
−
∫

Ω
ρ(x)HT(x)H(x)dVv̈(t)−

∫

Ω
BT(x)σ̃(x, t)dV

+
∫

Ω
HT(x)b(x, t)dV +

∫

∂Ω
HT(x)t(x, t)dA

]
for all δv.

(6.12)

Hence, inserting the constitutive law (6.6) in (6.12) leads to the equations of mo-
tion

Mv̈(t) + Kv(t)− Cvf(t) = f(t), (6.13)

where

M =
∫

Ω
ρ(x)HT(x)H(x)dV,

K = (E0,h + E1,h)Qh + (E0,d + E1,d)Qd ,

C = E1,hQh + E1,dQd ,

f(t) =
∫

Ω
HT(x)b(x, t)dV +

∫

∂Ω
HT(x)t(x, t)dA (6.14)

and the generalized system matrices

Qh :=
∫

Ω
BT(x)ThB(x)dV, Qd :=

∫

Ω
BT(x)TdB(x)dV (6.15)
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have been introduced. Furthermore, multiplying the differential equations in (6.6)
by BT, using (6.11) and integration leads to
(

ph sin
(αhπ

2

)
ωαh−1

h Qh + pd sin
(αdπ

2

)
ωαd−1

d Qd

)
v̇f(t)

−
∫ ∞

0
(phK(αh, λ)Qh + pdK(αd, λ)Qd) ż(λ, t)dλ

= (E1,hQh + E1,dQd)v(t)−
( (

E1,h + ph cos
(αhπ

2

)
ωαh

h

)
Qh

+
(

E1,d + pd cos
(αdπ

2

)
ωαd

d

)
Qd

)
vf(t)

+
∫ ∞

0

(
phω2

hK(αh, λ)Qh + pdω2
dK(αd, λ)Qd

)
Z(λ, t)dλ,

Ż(η, t) = vf(t)− ηZ(η, t),

ż(η, t) = v̇f(t)− ηz(η, t).

(6.16)

The equations of motion (6.13) together with (6.16) represent a reformulated sys-
tem of FODEs, which can be solved numerically, given certain initial and bound-
ary conditions. The states of the system include the nodal displacements v as well
as internal states vf and infinite states Z, z.

6.3 Numerical implementation

As (6.13) and (6.16) result from an FODE, the reformulated infinite state scheme
can be used to solve associated initial and and boundary value problems. There-
fore, the equations (6.16) are approximated using (3.11) as

(
ph sin

(αhπ

2

)
ωαh−1

h Qh + pd sin
(αdπ

2

)
ωαd−1

d Qd

)
v̇f(t)

−
K−1

∑
k=0

J

∑
j=1

(
phK(αh, ηk,j)Qh + pdK(αd, ηk,j)Qd

)
żk,j(t)wk,j

= (E1,hQh + E1,dQd)v(t)−
( (

E1,h + ph cos
(αhπ

2

)
ωαh

h

)
Qh

+
(

E1,d + pd cos
(αdπ

2

)
ωαd

d

)
Qd

)
vf(t)

+
K−1

∑
k=0

J

∑
j=1

(
phω2

hK(αh, ηk,j)Qh + pdω2
dK(αd, ηk,j)Qd

)
Zk,j(t)wk,j ,

Żk,j(t) = vf(t)− ηk,jZk,j(t),

żk,j(t) = v̇f(t)− ηk,jzk,j(t).
(6.17)

The integration of (6.13) and (6.17) can be performed as described in Chapter 3.
The following examples provide basic insight in the application of the method.



140 6. FINITE ELEMENT METHOD

Example 6.1. Consider the one-dimensional example of a two-node rod element
of length l and cross sectional area A that is fixed at one end and loaded by a
constant force F at initial time t = 0 at the other end, see Figure 6.2. For this simple
case, the quantities of stress (6.3) and strain (6.4) become scalar and the finite
element scheme can be derived directly from (6.2). For the FEM discretization,

Figure 6.2: Fractional viscoelastic rod (left) described as a two-node one-
dimensional finite element (right).

consider linear shape functions such that

H(x) =
[
1 − x

l
x
l

]
, B(x) =

[
− 1

l
1
l

]
, v(t) =

[
v1(t) v2(t)

]T
, (6.18)

where v1 and v2 represent the displacement of left and right node, respectively.
Neglecting inertia effects, (6.13) and (6.16) can be formulated for the given case as

(E0+E1)A
∫ l

0
BT(x)B(x)dx v(t)− E1 A

∫ l

0
BT(x)B(x)dx vf(t) = [ f1 FΘ(t)]T ,

p sin
(απ

2

)
ωα−1v̇f(t)− p

∫ ∞

0
K(α, λ)ż(λ, t)dλ

= E1v(t)−
(

E1 + p cos
(απ

2

)
ωα
)

vf(t) + pω2
∫ ∞

0
K(α, λ)Z(λ, t)dλ,

Ż(η, t) = vf(t)− ηZ(η, t),

ż(η, t) = v̇f(t)− ηz(η, t).
(6.19)

The numerical solution of (6.19) is carried out using RISS with quadrature param-
eters as in Section 3.4. As boundary conditions, consider the clamped left-hand
side, i.e., v1 = 0 and the force F acting on the right-hand side of the rod. Further,
the rod is assumed fully relaxed initially such that all system states fulfill zero
initial conditions.

The numerical solution can be evaluated by the closed form solution resulting
from the creep function of the fractional Zener model. In view of the spatially
constant unit-step stress field

σ(x, t) =
F
A

Θ(t), x ∈ (0, l)

and the creep function J from (4.62) together with (4.64), one obtains

v2(t) = u(x = l, t) = ε(l, t)l =
F
A

lJ(t)

=
F
A

l
E0 + E1

(
1 +

E1
E0

(
1 − Eα

(
− E0E1

p(E0 + E1)
tα

)))
, t ≥ 0.
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The relative error ∆ over time t between numerical and closed form solution for
various values of α is shown in Figure 6.3. Therein, the Mittag-Leffler function
has been computed as proposed by Garrappa (2014).
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Figure 6.3: Relative error of the numerical solution of (6.19) using (6.18).

Example 6.2. As a second benchmark problem, a quadratic plate is modeled as
a two-dimensional finite element under plane strain conditions (Figure 6.4). Ac-
cordingly, consider a reduced strain state

ε̃ =
[
εxx εyy γxy

]T ,

resulting in a reduced stress state

σ̃ =
[
σxx σyy σxy

]T . (6.20)

Thereby, the stress σzz in normal direction does not vanish but may be expressed
depending on the plane stress variables in (6.20). A finite element discretization
can be given by

H(x, y) =

[
h1 0 h2 0 h3 0 h4 0
0 h1 0 h2 0 h3 0 h4

]
(x, y),

B(x, y) =

[
∂

∂x 0 ∂
∂y

0 ∂
∂y

∂
∂x

]T

H(x, y),

v(t) =
[
v1x v1y v2x v2y v3x v3y v4x v4y

]T

(6.21)
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Figure 6.4: Fractional viscoelastic plate element in undeformed (left) and de-
formed configuration (right).

with displacements v1x, . . . , v4y in axial directions of the reference frame for the
four nodes and bilinear shape functions

h1(x, y) =
1
4
(1 + x)(1 + y), h2(x, y) =

1
4
(1 − x)(1 + y),

h3(x, y) =
1
4
(1 − x)(1 − y), h4(x, y) =

1
4
(1 + x)(1 − y).

Further, in order to obtain a closed form solution of the problem, consider bound-
ary conditions such that a purely deviatoric deformation occurs. In particular,
nodes 3 and 4 on the bottom are clamped, nodes 1 and 2 are fixed in y-direction
and there is a constant distributed shear loading τ in x-direction on the face be-
tween nodes 1 and 2 applied as a step function at time t = 0. This leads to an
external force vector

f =
[

f1x f1y f2x f2y f3x f3y f4x f4y
]T ,

where, according to (6.14),

f1x(t) =
∫ 1

−1
h1(x, 1)τΘ(t)dx = τΘ(t), f2x(t) =

∫ 1

−1
h2(x, 1)τΘ(t)dx = τΘ(t).
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Again, neglecting inertia, (6.13) and (6.16) can be formulated as

(E0,d + E1,d)Qdv(t)− E1,dQdvf(t) = f(t),

pd sin
(αdπ

2

)
ωαd−1

d v̇f(t)− pd

∫ ∞

0
K(αd, λ)ż(λ, t)dλ

= E1,dv(t)−
(

E1,d + pd cos
(αdπ

2

)
ωαd

d

)
vf(t)

+ pdω2
d

∫ ∞

0
K(αd, λ)Z(λ, t)dλ,

Ż(η, t) = vf(t)− ηZ(η, t),

ż(η, t) = v̇f(t)− ηz(η, t),

(6.22)

where Qd is computed as in (6.15) with a reduced matrix

Td =




2
3 − 1

3 0

− 1
3

2
3 0

0 0 1


 .

Note that the parameters of the hydrostatic part of the constitutive law may be
neglected due to the purely deviatoric deformation. Inserting the displacement
boundary conditions v1y = v2y = v3x = v3y = v4x = v4y = 0, one can solve (6.22)
for v1x and v2x.

Moreover, a closed form solution can be obtained from the spatially constant
stress boundary condition

σxy(x, 1, t) = τΘ(t), x ∈ (−1, 1)

and a deviatoric creep function Jd similar as in (4.62) with (4.64). The resulting
nodal displacement is given by

v1x(t) = v2x(t) = 2γxy(x, 1, t) = 2τ Jd(t)

=
2τ

E0,d + E1,d

(
1 +

E1,d

E0,d

(
1 − Eαd

(
− E0,dE1,d

pd(E0,d + E1,d)
tαd

)))
, t ≥ 0.

The relative error ∆ over time t between the numerical and the closed form solu-
tion is depicted in Figure 6.5.
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Figure 6.5: Relative error of the numerical solution of (6.22) using (6.21).



CHAPTER 7
Conclusions and outlook

This thesis presents a formulation of fractional calculus based on the (reformu-
lated) infinite state representation with applications in numerical analysis, vis-
coelasticity, Lyapunov stability theory and the finite element method, thereby
meeting the objective to strengthen the mathematical foundation, nonlinear anal-
ysis and numerical simulation of fractional dynamical systems. The two main
results are given by a generalization of the direct method of Lyapunov for frac-
tionally damped mechanical and controlled dynamical systems and, by the re-
formulated infinite state scheme (RISS), which is incorporated in a finite element
formulation for fractional constitutive laws. A summary of the particular contri-
butions of this thesis and an outlook on possible future research are given in the
following.

Formulation of fractional calculus on unbounded intervals

The fractional-order operators used in the preceding chapters consider the entire
history of the functions to which they are applied. This choice corresponds to
the application in fractional viscoelasticity, where all past stress or strain values
influence the current mechanical state of the material. This infinite-memory ap-
proach is consistently pursued throughout the thesis and particularly formulated
in terms of the infinite state representation as the initial data of infinite states. The
benefit and interpretation of this formulation in viscoelasticity and stability the-
ory are presented. Especially, in stability theory of fractionally damped systems,
the approach renders the fractional damping term an autonomous contribution
to the functional differential equation, which allows for the use of a generalized
invariance principle in order to obtain a stability statement. This advantage is ac-
companied by the necessity of a careful choice of the state space of functions. The
associated theoretical subtleties of functional differential equations with infinite
delays are preprocessed for the applied context of fractional damping. Gener-
ally, the provided infinite-memory approach is intended for applied problems. A
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more formal strategy would study fractional calculus on unbounded intervals for
various spaces of (generalized) functions as given by Kleiner and Hilfer (2021).

Development of the RISS scheme for fractional-order problems

The numerical solution of fractional-order problems is tackled in this thesis by
exploiting the reformulated infinite state representation, being an original con-
tribution of this thesis. The resulting scheme RISS, proposed here and by Hinze
et al. (2019), is motivated by the mechanical stiffness and damping capabilities of
springpots. The method is introduced in Chapter 3 and an error analysis as well
as several benchmark problems are given. There are thus a lot of further investi-
gations needed to evaluate the scheme. This includes an analysis of the combined
error of the infinite state quadrature and the chosen time-stepping scheme and a
more detailed comparison to other recent infinite state schemes, see Birk and Song
(2010); Li (2010); Jiang et al. (2017); Baffet (2019); Zhang et al. (2020). Furthermore,
the influence of the parameter ω in (3.11) on the performance of the method has
to be examined and the question arises, whether an optimization with respect to
ω is possible, similar as proposed in the scheme by Zhang et al. (2020). Finally, the
method still has to be tested in the context of high-dimensional problems, which
is related to the contribution discussed hereafter.

Implementation of fractional constitutive laws in FEM

The achievements in Chapter 6 provide an implementation of the fractional Zener
model in the finite element method. The theoretical and motivational basis for
fractional constitutive models is given in Chapter 4. Therein, it is particularly
shown, how the infinite state representation of fractional constitutive laws can be
interpreted in terms of viscoelasticity theory and a mechanical interpretation of
a springpot as the continuous generalization of spring-dashpot models is given.
Moreover, as an example for a viscoelastic material, the creep behavior of salt con-
crete is studied. It is shown that the deformation of the concrete under a constant
load is well represented by a fractional Zener model over several time decades.

In contrast to most of the existing schemes, the method in Chapter 6 is not
based on a Grünwald-Letnikov formulation but uses an infinite state scheme,
namely RISS. Accordingly, the history of stress and strain magnitudes do not
have to be stored and used in every computational step but are implicitly given
in terms of the internal infinite states. The scheme, although given for a fractional
Zener model, can be generalized for any other fractional constitutive law. So far,
the method has been applied to simple problems for one- and two-dimensional
finite elements. An application to more complex problems and different element
types and loading conditions are necessary in the future to evaluate the method.
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Development of a Lyapunov stability framework for fractionally
damped systems

The stability of finite-dimensional systems with additional fractional damping is
discussed in great detail in Chapter 5 and a generalized direct method of Lya-
punov is introduced in the context of FDEs with infinite delay. The used Lya-
punov functionals are deduced from the potential energy of springpots and a
class of augmented Lyapunov functionals is obtained in terms of the reformu-
lated infinite state representation. The latter functionals are especially useful for
a stability proof in the case of anti-damping, which can be induced by certain
non-monotone friction laws (Stribeck effect). The method is established for a
single degree-of-freedom oscillator and generalized for linear multidimensional
mechanical systems and the solution of a tracking problem for a class of nonlin-
ear dynamical systems with fractional damping. Particularly, the stability proof
for the tracking problem employs an invariance principle for asymptotically au-
tonomous FDEs and a more detailed and elaborate explanation than given by
Hinze et al. (2020a) is presented.

Further investigations of the proposed formalism are necessary to tackle re-
lated more general stability and control problems. One possible way could be the
introduction of set-valued Coulomb friction laws in combination with fractional
damping. Therefore, a generalized Lyapunov theory for FDE control systems
with set-valued inputs is required. Another interesting question is, whether the
method is still applicable for non-monotone friction laws in the general finite-
dimensional case. As shown in Section 5.4, the method is not only accessible for
mechanical but also for general fractional-order control problems with different
applications.

Each of the individual merits of the thesis, as discussed above, contributes to
the overall objective to provide a mathematically sound and practically tangible
framework for fractional damping in mechanical systems. However, in retro-
spect, one also sees how the individual contributions are linked to each other. In-
terestingly, the development of Lyapunov stability techniques has led to insights
that helped to come to an improved numerical scheme. Also, it becomes appar-
ent, how stability results are beneficial for control purposes. Furthermore, the
infinite state representation reveals the embedding of fractional-order differential
equations in the context of more general functional differential equations.

As a last remark, the reader is invited to ponder over the applicability of the
results, which have been developed for the study of viscoelasticity, to other ap-
plication fields of fractional calculus.
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