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Abstract

Computed Tomography (CT) as a computer-aided tomographic imaging technique has
been widely used for medical diagnostic and becomes prevailing in industrial applications
such as quality control and metrology. Comparing to natural images, CT images are
usually prone to inferior spatial resolution and more severe noise due to the inherent
nature of CT imaging systems. Improving the spatial resolution in the presence of noise is
hence a necessary and relevant task for CT imaging.

Super-resolution (SR) is an algorithm-based approach dedicated to spatial resolution
enhancement. This work focuses SR for CT from different aspects. Firstly, an iterative
multi-image SR algorithm dedicated to joint resolution enhancement and noise removal has
been proposed. Besides, a multi-GPU accelerated SR approach based on data parallelism
has been presented and it has been seamlessly integrated into the CT system by super-
resolving projections acquired by subpixel detector shift such that SR reconstruction is
performed on the fly without introducing extra computation time. Additionally, a CNN-
based resolution enhancement module (REM) is developed which can be easily plugged
in other vision tasks and it is shown that the embedding of REM in image registration
not only improves the registration accuracy but also produces resolution-enhanced images
which can be used in successive analysis. Last but not least, an extremely fast hardware-
efficient video SR model based on recurrent neural network (RNN) is proposed and
it reveals a great potential for the application of hardware-embedded SR in fast CT
acquisition.
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Zusammenfassung

Die Computertomographie (CT) als computergestütztes tomographisches Bildgebungsver-
fahren ist sowohl in der medizinischen Diagnostik als auch in der industriellen Anwendungen
wie der Qualitätskontrolle in der Produktionstechnik und Messtechnik weit verbreitet. Im
Vergleich zu natürlichen Bildern haben CT-Bilder normalerweise ein stärkeres Rauschen
und eine geringere Auflösung. Die Verbesserung der räumlichen Auflösung bei Rauschen ist
daher eine relevante Fragestellung für die CT-Bildgebung.

Super-Resolution (SR) ist ein Verfahren für die räumliche Auflösungserhöhung. Diese
Arbeit umfasst verschiedenen Fragestellungen in diesem Kontext. Zunächst wurde ein iter-
ativer Multi-Image-SR-Algorithmus vorgeschlagen, der die Auflösung verbessert und das
Rauschen reduziert. Außerdem wurde ein Multi-GPU-beschleunigter SR-Ansatz vorgestellt,
der auf Datenparallelität basiert und nahtlos in das CT-System integriert wurde. Dabei wer-
den Projektionen höher aufgelöst, die durch eine Subpixel-Detektorverschiebung erfasst wur-
den. Dies erfolgt während der laufenden Aufnahmen der Projektionsbilder ohne zusätzliche
Rechenzeit. Darüber hinaus wurde ein CNN-basiertes Modul zur Auflösungsverbesserung
(REM) entwickelt, das leicht in andere Bildverarbeitungsalgorithmen integriert werden
kann. Es wird gezeigt, dass die Einbettung von REM in die Bildregistrierung nicht
nur die Registrierungsgenauigkeit verbessert, sondern auch auflösungsverbesserte Bilder
erzeugt. Zu guter Letzt wird ein extrem schnelles, hardware-effizientes Video-SR-Modell
auf der Grundlage eines rekurrenten neuronalen Netzwerks (RNN) vorgeschlagen, das ein
großes Potenzial für den Einsatz von in Hardware eingebetteter SR in den verschiedensten
Anwendungen wie der industriellen Computertonograhie hat.
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Introduction

1.1 Spatial Resolution of Digital Imaging Systems

In digital imaging systems, the object information conveyed by visible light and X-ray
photons, is converted into digital signals by image sensors and recorded for processing and
vision. Typical digital imaging systems include but are not limited to digital cameras,
microscope, computed tomography (CT) scanners, and radars. One of the determinant
quality indicators of imaging systems is the spatial resolution which characterizes the
finest structure the system can distinguish. For optical imaging systems, such as a digital
camera which composes of optical components and a sensor array, spatial resolution is
inherently limited by diffraction due to finite aperture size [1] and discrete sampling grid
caused by limited pixel size of the sensors [2]. For CT systems, the spatial resolution is
mainly effected by the focal spot size of the X-ray tube and the pixel size of the X-ray
sensitive detector [3].

The enhancement of spatial resolution is desired in most of the applications as technical
systems have not reached the resolution of the human visual system jet. Common to both
optical and CT imaging systems, pixel resolution of the sensor array plays an important
role on the spatial resolution of digital imaging systems. According to the Nyquist-Shannon
sampling theorem [4], the sampling frequency needs to at least double the highest frequency
of the incoming signal to maintain the fidelity of the recovered signal and avoid aliasing
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effect. The most straightforward way to increase the pixel resolution is to reduce the pixel
size. However, the decrease of the pixel size will lead to a reduction of the collected photons
in the sensors and degrade the image quality by a worse signal-to-noise ratio (SNR). In
principle, there are two ways to improve the spatial resolution, instrumental-based by
hardware upgradation and computational-based using image processing techniques [5].
The instrumental-based solution might cause higher cost in price and maintenance which is
especially not feasible for low-end products. In this work, we focus on a hybrid hardware-
software based approach which can be integrated into the current setup of imaging systems
without or with limited effort on the hardware side such as shifting the detector by a
fraction of a pixel.

1.2 Super-Resolution on Computed Tomography

Super-resolution (SR) is an algorithm-based image enhancement technique dedicated to
improving the spatial resolution of the imaging systems by exploiting the low-resolution
(LR) acquisitions. SR has been an attractive research field for decades and has been
applied to different scientific disciplines [5–8]. Image SR can be grouped into two cat-
egories: single-image SR (SISR) which exploits self-similarity in the single input LR
image [9–12] or employs similarity match from external example database [13–22] and
multi-image SR (MISR) [23–40] which explicitly leverages the correlation existing between
the reference LR image and the other neighboring input LR images. Comparing to SISR,
MISR requires the relative offsets of the multiple input images, either by performing
motion estimation as preprocessing or by jointly estimating motion parameters and the
expected SR image. Generally, under an appropriate motion compensation, MISR out-
performs SISR by exploiting the additional acquired information from neighboring LR
images.

Different from natural images on which the majority of the SR algorithms are applied, CT
images usually suffer from less spatial resolution and stronger noise due to the limitation
of physical imaging systems such as finite focal spot size and low number of photons [41].
In the literature, the SR methods dealing with CT images can be classified into two
branches: optimization-based [33–35, 42–47] and learning-based [48–54]. Usually, the
optimization-based methods perform SR reconstruction using multiple LR inputs in an
iterative fashion and the learning-based approaches manipulate on the single input image.
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Specially, to improve the spatial resolution of CT systems, [33–35,42,43] perform SR in the
projection domain based on the imaging model. Several work [44–47] achieves the resolution
enhancement along with the CT reconstruction. Other work [48–54] performs the SR
reconstruction in the CT image domain by manipulating the LR input volume. Despite the
advances of the existing SR methods, super-resolving CT images contaminated with real-
world strong noise could still be a challenging task in practice.

1.3 Scientific Contributions and Applications

The contributions of this work are mainly four-fold. Firstly, an iterative MISR algo-
rithm based on mixed Poisson–Gaussian noise model and bilateral spectrum weighted
total variation is proposed to cope with noisy images such as X-ray projections [33, 34].
Secondly, a real-time multi-GPU accelerated MISR method based on data parallelism
is developed which runs on the fly during the CT acquisition without introducing extra
computation time. Thirdly, the impact of SR on image registration is investigated and
demonstrated. Lastly, an extremely fast hardware-efficient video super-resolution (VSR)
model based on recurrent neural network (RNN) implemented on field-programmable
gate array (FPGA) is introduced which shows a great potential for applying embedded
SR module on fast CT systems. The contributions of this thesis are summarized as
follows:

• MISR algorithm based on mixed Poisson–Gaussian noise model and bilateral spec-
trum weighted total variation. Most of the SR methods in the literature assume an
additive white Gaussian noise (AWGN) model [5–7] to simplify the system model and
computation complexity. However, in reality, the composition of noise in digital imag-
ing systems is much more sophisticated, which extremely holds true for CT. There
are mainly two sources of noise dominating in CT imaging: the intensity-independent
readout noise and reset noise which can be modeled as an additive Gaussian noise
and the intensity-dependent photon shot noise arising from the stochastic nature of
the photon-counting process which obeys a Poisson distribution [55–57]. In order to
better cope with noisy images, an imaging system model based on more accurate
statistical noise description [33,34] for SR is proposed and adopted. Specially, the
proposed method is based on the maximum a posteriori (MAP) estimator. The
likelihood function is derived from the mixed Poisson–Gaussian noise model. The
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image prior is formulated based on the spectrum of the covariance matrix of the
adaptively weighted image gradients dedicated to preserving sharpness and suppress-
ing the remaining noise at the edges. The overall objective function is decomposed
and solved by the modified alternating direction method of multipliers (ADMM)
algorithm in a gradual-refinement-based fashion. Experiments demonstrate that the
proposed SR algorithm outperforms 14 investigated SR methods by an average gain
of 0.2dB in PSNR on the publicly available real-world dataset SupER [58].

• Real-time multi-GPU accelerated MISR based on data parallelism for CT. Dealing
with large- scale multi-image input can be computationally expensive and time
consuming especially for optimization-based MISR methods which usually suffer
from the iterative manner. In order to achieve real-time SR for CT imaging, a
multi-GPU accelerated MISR framework based on data parallelism [35] is presented.
Specially, each GPU deals with an allocated partition of the expected SR image and
the final SR image is obtained by image fusion. To synchronize the convergence rate
of all the GPUs, we allow communication between GPU and CPU to unify the local
variables of the scaled conjugate gradient (SCG) algorithm. In order to avoid border
discontinuity, an inner-outer-border exchange mechanism is introduced and adopted.
During the CT acquisition, SR is performed on-the-fly following a capture-reconstruct
fashion on the projections acquired by subpixel detector shift. Experiments show
that the proposed SR method can effectively improve the spatial resolution of CT
systems in modulation transfer function (MTF) and visual perception. Besides,
comparing to a multi-core CPU implementation, the proposed SR approach achieves
a more than 50× speedup on an off-the-shelf 4-GPU system.

• SR-enhanced registration. SR is desired in most of the applications by increasing the
visibility of fine structures and improving the visual quality. What would happen
when connecting SR with image registration? Firstly, a novel CNN-based image
registration model FDRN [59] is proposed. Secondly, a simple yet effective CNN-
based resolution enhancement module (REM) is presented, which is a general purpose
network and can be easily plugged into different vision model. REM is pretrained
and coupled with the registration model FDRN in a cascade manner. To tighten the
coupling and increase the robustness, an auxiliary loss acting on the raw LR input
is introduced. In the experiments, it is shown that the cascaded network not only
improves the registration accuracy but also generates resolution-enhanced images
which can be used for successive diagnosis.
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• Hardware-efficient RNN-based VSR. A novel residual recurrent neural network (RNN)
ERVSR is proposed for real-time VSR on FPGA [60]. Unlike the existing FPGA-
based VSR methods which perform SISR over the video sequence, the proposed
ERVSR exploits the LR input and the temporal information of the previous frames
entailed in the hidden state to reconstruct the HR frame in a residual framework.
Concerning the limitation of the hardware resources, slow feature fusion is performd
and a channel modulation coefficient is introduced to reduce the model parameters.
In order to reduce the memory consumption, the hidden state is compressed by
a statistical normalization scheme followed by a fixed-point quantization. The
proposed ERVSR is evaluated on multiple public datasets and it is shown that
ERVSR outperforms the other state-of-the-art FPGA-based VSR methods by an
average gain of 0.28dB in PSNR and supports a real-time output of size 3860×2160
at 76 fps. By resorting to the compact and efficient network architecture, ERVSR
shows a great potential for the employment of embedded SR in extreme fast CT.

1.4 Outline

This thesis consists of six chapters which includes introduction and ends with sum-
mary. Each of the remaining four chapters presents one of the contributions aforemen-
tioned.

Chapter 2 introduces the novel iterative MISR method derived from a mixed Poisson–
Gaussian noise model and a bilateral spectrum weighted total variation prior. Extensive ex-
perimental results demonstrate the superior performance quantitatively on the public bench-
mark dataset and visually on the real-world projections.

Chapter 3 presents the real-time multi-GPU accelerated MISR method based on subpixel
detector shift for CT imaging systems. Evaluation of the proposed method is conducted
to illustrate both the effectiveness on resolution enhancement and the computational
speedup comparing to multi-core CPU implementation. The modulation transfer function
(MTF) is applied for quantitative assessment at different magnification factors based on
the standard ASTM-E1695. Besides, the visual improvement is illustrated by using the
QRM bar pattern phantoms.
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Chapter 4 demonstrates the impact of resolution enhancement on image registration. A
CNN-based image registration network FDRN, a resolution enhancement module REM, and
their cascaded network ReFDRN are presented. Experiments on public medical datasets
exhibit the effectiveness of REM on image registration.

Chapter 5 describes a hardware-efficient VSR model ERVSR based on the residual RNN.
Extensive experiments are conducted on multiple publicly available video and image
SR datasets. The proposed ERVSR establishes the state-of-the-art for FPGA-based
VSR.

Chapter 6 summarizes the main findings of the thesis.
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Multi-Image Super-Resolution on Noisy
Images

In CT imaging systems, there are mainly two sources of noise dominating in the acquisition
process: the pixel-dependent photon shot noise originated from the discrete character
of photons and the pixel-independent readout noise and reset noise due to the intrinsic
thermal and electronic fluctuations in the sensors. The former one can be represented by
a Poisson distribution [57, 61] and the latter one arising from the readout circuitry can be
modeled as a Gaussian distributed noise. In this chapter, a novel MISR algorithm built
on the mixed Poisson–Gaussian (MPG) noise model and bilateral spectrum weighted total
variation (BSWTV) is introduced which is presented in the following publications [33, 34].
Specially, in section 2.2, the data fidelity term named MPG is derived from the mixed
noise model and solved in the ADMM framework. In section 2.3, the regularization term
BSWTV is proposed where an adaptive weighting map of TV is estimated based on the
eigenvalues of the weighted-gradient covariance matrix. In conjunction with the data
fidelity term introduced in section 2.2, the overall objective function MPG+BSWTV
is decomposed and solved by the modified ADMM algorithm where the update of the
weighting map is embedded into the standard ADMM framework and follows a momentum-
based manner.

27
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2.1 Previous Work of Super-Resolution

Super-resolution (SR) is an algorithmic approach dedicated to improving the spatial
resolution of the imaging systems beyond the intrinsic capability of the physical devices.
Consequently, object structures are visible with better sharpness without hardware upgrade
of the imaging systems. This advantage makes SR extremely attractive in many applications
such as remote sensing, video surveillance, smartphone camera, and medical diagnostic [5–8].
Usually, SR restores the HR image by exploring information from single LR or multiple
LR images of the same scene with relative scene motions. In general, an observed LR
image can be modeled as a degraded representation of the corresponding HR image by
taking account of downsampling, blurring, motion effects and the exisiting noise in image
acquisition. Therefore, SR reconstruction is considered as an inverse problem [5, 6, 62,
63].

Typically, the observation model can be formulated as following in the pixel domain:

y = Ax+nnn, (2.1)

x ∈ Rn×1,y ∈ Rm×1 being respectively the latent and captured image rearranged in lexi-
cographic order. The system matrix A ∈ Rm×n is usually interpreted as A = DBM with
D ∈ Rm×n,B ∈ Rn×n, and M ∈ Rn×n describing the decimation, blurring caused, e.g., by
the camera lens, the detector crosstalk, atmospheric turbulence [27], and motion effects,
respectively. The vector nnn ∈ Rm×1 indicates the additive noise during image acquisi-
tion [5, 6].

In the last three decades, SR has been intensively investigated from frequency domain [23,64,
65] to image domain [9–22, 24–30, 30–34, 36–40, 60, 66–72], from conventional optimization-
based methods [9–12,24–30,30–34,67–72] to more recently emerged deep learning-based
approaches [13–22, 36–40, 60, 73]. In the category of conventional methods, some most
representative branches include frequency-based [23,64,65], projection onto convex sets
(POCS) [24, 68], and maximum a posteriori (MAP) [26, 27, 29, 30, 32–34, 69–72, 74, 75].
The pioneering work of frequency-based MISR methods is proposed by Huang et al. [23].
They build the relation between the discrete Fourier transform of the LR images and
the contineous Fourier transform of the HR image based on the shift property of Fourier
transform. The linear equations in the frequency domain is solved by Least Squares
algorithm. Kim et al. extend Huang’s work by considering system noise and blur [64, 65].
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The POCS-based algorithms [24, 68] address the SR problem from the perspective of
set theory. Each LR image or a priori knowledge constructs a constraining convex set
which embodies the latent HR image. The intersection of these constraining sets is
found iteratively and considered as the reconstructed SR image. The majority of the
conventional SR methods adopt the MAP framework where a regularization term derived
from an image prior is incorporated with a data fidelity term. Based on different noise
models [26,30,34,76], the data fidelity term comes with different formulations. The additive
Gaussian noise model which describes the statistical nature of sensors results in a `2 error
norm and the additive white Laplacian noise model accounting for impulse noise (Salt
& Pepper noise) arising from faulty memory locations, transmission in noisy channels,
etc. [77, 78] leads to a `1 error norm. Typically, `2 error norm has the advantage of
producing lower variance than `1 norm. However, `2 norm is sensitive to outliers because
it penalizes the errors quadratically. In contrast, `1 norm is robust to pixel outliers and
motion errors but nondifferentiable at zero. In [29, 30, 70], adaptive norm data fidelity
terms are introduced to compensate the individual drawback of the `1 and `2 error norms.
In [26,69], Lorentzian error norm is applied to SR reconstruction to increase the robustness
to outliers by bounding the influence function for large errors. In [79], the performances of
Tukey, Lorentzian and Huber norm are studied concerning outliers and compared to `1
error norm. To describe the real-world noise more accurately, mixed Poisson–Gaussian
noise model is applied to SR reconstructionin in [80–82]. Nevertheless, [80, 81] only
consider single image for the SR reconstruction. Traonmilin et al. [82] investigate the
acquisition strategy and reconstruction error of high dynamic range SR imaging without
regularization.

In recent years, learning-based methods have achieved great success in many applica-
tions. Recently emerging learning-based SR methods [13–22, 83, 84] mainly apply deep
convolutional neural networks (DCNN) which are trained with a set of LR and HR patch
pairs. Particularly, Dong et al. [13] introduce a convolutional neural network (CNN) for
single-frame SR. Afterwards, a series of work [14–22,83,84] has achieved noticeable perfor-
mance based on such as residual learning, deeper structure, recursive convolution, dense
connection, channel attention, and generative adversarial network (GAN). Lim et al. [17]
propose a deep and compact residual network EDSR by effectively removing unnecessary
modules in the conventional residual networks. Kim et al. [84] present a deeply-recursive
convolutional network which repeatedly utilizes the same convolutional layer up to 16
times. It exploits a large image context due to the network deepth without introducing
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more paramters. Tong et al. [84] propose a densely connected deep convolutional network
which applies short connection between nonadjacent layers. The idea of dense connection
originates from [85] proposed for classification tasks and it allows an efficient training even
for a very deep network. In [83], the authors propose an iterative network structure by
cascading three residual convolutional networks for super-resolving noisy images contami-
nated by an additive white Gaussian noise (AWGN). The iterative network structure is
very similar to a joint network with deep supervision and skip connection. Common to all
the aforementioned learning-based SR methods, the well-trained model reconstructs the
HR image from a single LR image by hallucinating the missing high-frequency details using
the learned relationship between LR and HR pairs exclusively from the external example
database. As a matter of fact, the quality and the feasibility of the training datasets play an
important role on the performance of the SR reconstruction. In order to have a better visual
perception, some patterns might be fabricated in the reconstructed HR image, especially
using GAN, which may result in critical issues to many applications such as metrology
and non-destructive testing (NDT). On the contrary, the conventional optimization-based
methods are mainly driven by the objective function and the optimization scheme explicitly
using the multiple acquired LR images.

In the literature, most of the models are derived based on the assumption that the LR
images are corrupted by an AWGN. However, in reality, the composition of noise in imaging
systems is more sophisticated. Besides the dominant photon shot noise, readout noise, and
reset noise as described at the beginning of this chapter, there is some other noise existing
in complementary metal-oxide-semiconductor (CMOS) and charge-coupled device (CCD)
detectors such as the Poissonian dark current shot noise which is negligible for exposure time
less than one second and the quantization noise which is uniformly distributed with variance
equal to 1/12 and can be neglected compared to the readout noise except in low-illumination
conditions [55, 56]. Under low-illumination conditions, the pixel-independent reset noise
dominates the Poissonian photon shot noise, while in high-illumination situations, the
primary noise is the photon shot noise. Therefore, neither purely Gaussian nor Poisson
noise model can formulate the imaging system comprehensively. In the literature, digital
image acquisition is generally modeled by mixed Poisson–Gaussian noise [55,86–88]. To the
best of our knowledge, despite the importance of adopting an accurate noise description
in the imaging model, the literature on SR based on a mixed Poisson–Gaussian noise
model is limited [57, 61, 82]. In this section, a multi-frame SR reconstruction model which
is derived from the statistical perspective on the noise properties of imaging systems is
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proposed and the performance improvement by applying a more accurate noise model on
noisy image SR is demonstrated.

2.2 Super-Resolution Based on Mixed Poisson–Gaussian Noise
Model

2.2.1 Observation Model

In digital imaging systems, due to the existence of pixel-dependent and pixel-independent
noise, a mixed Poisson–Gaussian noise model is more appropriate to describe the system
model. The imaging system can be formulated as following:

yi = zi +np(zi)+ng, (2.2)

where yi stands for the intensity value at the ith pixel of the observed image y contam-
inated by a mixed Poisson–Gaussian noise and zi indicates the associated clean pixel
value. np(zi) is an intensity-dependent noise with (zi +np(zi))/α ∼ P(zi/α) where α is a
scalar accounting for quantum efficiency and analog gain [89]. ng represents an additive
Gaussian noise with ng ∼ N(µi,σ

2
i ). np(zi) describes mostly photon shot noise and ng

embodies mainly readout noise and reset noise. As described in Eq. (2.1), the system
matrix is defined as A = DBM with z = Ax and x = [x1, . . . ,xN ] being the vectorized latent
image.

Since SR is an ill-posed problem, involving a well-defined image prior can effectively
constrain the solution domain. Therefore, MAP estimator is preferably adopted for SR
reconstruction. The posterior probability P(x|y) of the SR image x is formulated based on
the Bayes’ theorem:

P(x|y) = P(y|x)P(x)
P(y)

(2.3)

where P(y|x) is the likelihood function and P(x) is the image prior. The denominator P(y)
is not related to the unknown x and will be omitted from the optimization point of view
in the latter formulations.
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The likelihood function P(y|x) is derived from the mixed noise model and acts as the
data fidelity term in the SR objective function. Assuming that np and ng are mutu-
ally independent, the mean and the variance of the intensity of pixel i are obtained as

E(yi) = E(zi +np)+E(ng) = [A]ix+µi

Var(yi) = Var(zi +np)+Var(ng) = α[A]ix+σ
2
i ,

(2.4)

where [A]i indicates the ith row of the matrix A. It should be noted that the degradation
matrix A, the scalar α and the Gaussian noise parameters µi and σi are assumed to
be known. According to the Central Limit Theorem (CLT), P(zi/α)' N(zi/α,zi/α) as
zi/α being sufficiently large. Hence, the observed value yi can be approximated by a
Gaussian distribution. Based on Eq. (2.4), yi∼N ([A]ix+µi,α[A]ix+σ2

i ). The probability
mass function (PMF) of yi conditioned on the expected image x can be expressed as

P(yi|x) =
1√

2π(α[A]ix+σ2
i )

exp
−(yi− [A]ix−µi)

2

2(α[A]ix+σ2
i )

. (2.5)

As the pixels in the image y are independent, the negative log-likelihood is formulated as

− logP(y|x) =− log
n

∏
i=1

P(yi|x)

=
1
2
(
‖ y−Ax−µµµ ‖2

W +〈log(αAx+σσσ
2),1〉

)
+ c,

(2.6)

where log(·) is the elementwise logarithm, 〈·, ·〉 indicates the inner product and c is a
constant. For the sake of brevity, the constant c is omitted in the rest of the work. The
intensity-dependent diagonal weight matrix W is written as

W = diag{ 1
α[A]ix+σ2

i
}. (2.7)

For MISR, instead of having one observed low-resolution (LR) image y, there are m
LR images yi with the individual system matrix Ai and additive noise ni. Assuming
the LR images are independent, the formulation in Eq. (2.6) is extended as below:
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− logP(y1 . . .ym|x) =−
m

∑
i=1

logP(yi|x)

=
1
2

m

∑
i=1

(
‖ yi−Aix−µµµ i ‖2

Wi
+〈log(αiAix+σσσ

2
i ),1〉

)
.

(2.8)

With regard to the image prior P(x), there are several representative priors such as
Gaussian Markov random field (MRF), Huber MRF [90], total variation (TV) [76], and
bilateral TV (BTV) [27]. MRF is constructed based on the Gibbs density function:

P(x) =
1
Z

exp(− 1
λ

∑
c∈C

Vc(x)), (2.9)

where Z is a normalizing constant and λ denotes the “temperature” parameter. Vc(·) is
interpreted as the potential of the configuration of x. c represents a local group of pixels
called clique and C indicates the set of all the cliques [71]. Different choices of potentials
can lead to distinct image estimations.

The well-known Gaussian MRF is formulated as

P(x) =
1

2π
N
2 |Cx|

1
2

exp(−1
2

xTC−1
x x), (2.10)

where C−1
x is a symmetric positive matrix and is often defined as ΓT Γ where Γ performs

some first or second derivative on image x which is the well-known Tikhonov regularization:

∑
c∈C

Vc(x) = ‖Γx‖2
2 (2.11)

Although Gaussian MRF provides desirable results for denoising purpose, a common
criticism is oversmoothing especially on edges because it tends to suppress the discontinu-
ities.

Another popular prior is Huber MRF with the potential of Gibbs distribution as

Vc(a) =

a2, |a| ≤ T,

2T |a|−T 2, |a|> T.
(2.12)
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where a is the first or second derivative of the image x. As Huber MRF is heavier-tailed
than Gaussian MRF, it performs better for preserving the sharpness at discontinuities
such as edges but is non-quadratic.

TV is another widely used prior model. The isotropic TV is defined as the magnitude
of the tuplewise gradient in x- and y-axis, while the anisotropic TV is formulated as

∑
c∈C

Vc(x) = ‖∇x‖1 . (2.13)

In comparison to `2 norm, `1 norm favors usually sparse gradients and preserves deep gra-
dients. As shown in [76], TV prior is successfully applied on different noise models. However,
it encourages artificial edges which makes the reconstructed image blocky.

Farsiu et al. [27] propose the bilateral TV (BTV) which considers an extended neighborhood
of TV and weights their impacts with decaying factors γ(d):

∑
c∈C

Vc(x) = ∑
d

γ(d) ‖ x−Sdx ‖1, d = (dx,dy) (2.14)

where d ∈ N2 is of size w2 and w interprets the window size accounting for neighbors in
x and y directions. Sd represents the shifting operator along x and y axis by dx and dy

pixels. γ(d) := αdx+dy embodies the spatial decaying effect with a constant α less than
one.

For this section, BTV is integrated into the objective function as the regularizer to cope
with the ill-posedness of the inverse problem. Combining the data fidelity term derived
from the likelihood function P(y1 . . .ym|x) with the BTV prior model, the MAP estimator
can be formulated as

argmax
x

P(x|y1 . . .ym)

= argmin
x
− log(P(y1 . . .ym|x)P(x))

= argmin
x

J(x)

= argmin
x

1
2

m

∑
i=1

(
‖ yi−Aix−µi ‖2

Wi
+〈log(αiAix+σ

2
i ),1〉

)
+λ ∑

d
γ(d) ‖ x−Sdx ‖1

(2.15)
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with J being the objective function and λ being the weighting factor to adjust the
smoothness of the estimated HR image x.

2.2.2 Optimization Method

The objective function J in (2.15) is nonconvex and the BTV regularizer is not everywhere
differentiable which makes it difficult to be directly solved using naive gradient-based
algorithms. In fact, the proposed objective function J can be decomposed and the refor-
mulated one can be attacked by means of constrained optimization, e.g., dual ascent and
ADMM [91]. Since dual ascent is based on Lagrangian and usually has inferior convergence
properties comparing to ADMM which benefits from the augmented Lagrangian, ADMM
is adopted to solve the objective function. Particularly, the objective function can be split
by

J(x,z) =
m+w2

∑
i=1

gi(zi)

subject to Tix− zi = 0, ∀i ∈ [1,m+w2]

(2.16)

with zi ∈ RN and Ti being a matrix:

Ti =

IN×N , i ∈ [1,m]

IN×N−Sd , i ∈ [m+1,m+w2].
(2.17)

Specially, the subfunctions gi(·) are defined as

gi(zi) :=
1
2
(
||yi−Aizi−µi||2Wi

+ 〈log(αiAizi +σ
2
i ),1〉

)
, i ∈ [1,m],

gi(zi) := λγ(d)||zi||1, i ∈ [m+1,m+w2].
(2.18)

The augmented Lagrangian is formulated by integrating a quadratic penalty on the equality
constraint function into the standard Lagrangian function. Mathematically, it is written
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as

LH(x,z,p) :=
m+w2

∑
i=1

LHi(x,zi,pi)

:=
m+w2

∑
i=1

(
gi(zi)+ 〈pi,Tix− zi〉+

1
2
||Tix− zi||2Hi

) (2.19)

where pi is the dual variable associated with the constraint and matrix Hi is defined as

Hi := diag[ρi, . . . ,ρi], ∀i ∈ [1, · · · ,m+w2] (2.20)

with ρi being some positive value acting as the update step size for the dual variable
pi.

Unlike the method of multiplier (MM) which updates the primal variables jointly, ADMM
updates the primal variables x,zi in an alternating fashion which enables the decomposabil-
ity of the objective function J when it is separable. Specially, the decomposed objective func-
tion rewritten in Eq. (2.16) can be solved in the following iterative scheme:

xk+1 = argmin
x

m+w2+1

∑
i=1

ρi

2
||Tix− zk

i +
pk

i
ρi
||22 (2.21a)

zk+1
i = argmin

zi

gi(zi)+
ρi

2
||zi−Tixk+1−

pk
i

ρi
||22 (2.21b)

pk+1
i = pk

i +ρi(Tixk+1− zk+1
i ). (2.21c)

Since Eq. (2.21a) is quadratic and differentiable, it can be easily solved by conjugate gradi-
ent (CG) algorithm. The gradient of Eq. (2.21a) is expressed as

Vi(x) : =
ρi

2
||Tix− zk

i +
pk

i
ρi
||22,

∇Vi(x) = ρiT T
i (Tix− zk

i +
pk

i
ρi
).

(2.22)

To update zk+1
i with i ∈ [1,m], gi(zi) can be solved using, e.g., Newton’s method, L-
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BFGS [92] and scaled conjugate gradient (SCG). For clarity, we define:

gi(zi) := fi(zi)+hi(zi),

fi(zi) :=
1
2
‖ yi−Aizi−µi ‖2

Wi
,

hi(zi) :=
1
2
〈log(αiAizi +σ

2
i ),1〉,

ui(zi) :=
ρi

2
||zi−Tixk+1−

pk
i

ρi
||22.

(2.23)

The gradient of LHi(xk+1,zi,pk
i ) on zi with i∈ [1,m] can be calculated by

∇LHi(x
k+1,zi,pk

i ) = ∇ fi(zi)+∇hi(zi)+∇ui(zi)

=
1
2

(
−2AT

i
yi−Aizi−µi

αiAizi +σ2
i
−αiAT

i
(yi−Aizi−µi)

2

(αiAizi +σ2
i )

2

+αiAT
i

1
αiAizi +σ2

i

)
+ρi(zi−Tixk+1−

pk
i

ρi
)

(2.24)

where division and square are elementwise operations.

Newton’s method or L-BFGS requires the calculation of the step size by applying line search
algorithm like Wolfe conditions. In addition, Newton’s method requires the calculation of
the Hessian matrix of LHi(xk+1,zi,pk

i ) which demands more computation time. In the fol-
lowing experiments, SCG is used to update zk+1

i for i∈ [1,m].

For calculating zk+1
i associated with the BTV prior, i.e., i ∈

[
m+1,m+w2], gi(zi) can be

calculated via the proximal operator of the `1 norm:

zk+1
i = argmin

zi

λγ(d)||zi||1 +
ρi

2
||zi−Tixk−

pk
i

ρi
||22

= proxλγ(d)(ρi)−1||·||1(Tixk +
pk

i
ρi
)

(2.25)
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Cameraman Lena Coffee Text

Figure 2.1: 8-bit grayscale natural images for quantitative analysis.

[zk+1
i ] j =



[Tixk +
pk

i
ρi
] j−

λγ(d)
ρi

, [Tixk +
pk

i
ρi
] j ≥

λγ(d)
ρi

,

0, |[Tixk +
pk

i
ρi
] j| ≤

λγ(d)
ρi

,

[Tixk +
pk

i
ρi
] j +

λγ(d)
ρi

, [Tixk +
pk

i
ρi
] j ≤−

λγ(d)
ρi

.

(2.26)

In order to improve the convergence and reduce the dependency of the initialization, the
penalty parameters ρi can be updated adaptively at each iteration k by synchronizing
the convergence of the primal residual rk

i and the dual residual sk
i with the scheme [91]:

ρ
k+1
i =


cincρk

i , ||rk
i ||2 > c||sk

i ||2,
ρk

i /cdec, ||sk
i ||2 > c||rk

i ||2,
ρk

i , otherwise,

(2.27)

where cinc,cdec,c are constants greater than one. The primal and dual residuals rk
i , sk

i are
calculated as

rk+1
i := Tixk+1− zk+1

i

sk+1
i :=−ρ

k
i TT

i (z
k+1
i − zk

i ).
(2.28)

The pseudocode for solving the decomposed objective function of MPGSR based on the
ADMM framework is demonstrated in Algorithm 2.1.
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Algorithm 2.1 MPGSR Algorithm
1: Initialize λ ,w,µ,σ ,ρ,α, iter_admm,cinc,cdec,c,ε1,ε2.
2: Calculate DiBiMi system matrix.
3: Load LR images yi, i ∈ [1, · · · ,m].
4: procedure Solving MPGSR by ADMM
5: z0

i =U pscaling(y1), i ∈ [1,m].
6: z0

i = 0, i ∈
[
m+1,m+w2].

7: p0
i = 0, i ∈

[
1,m+w2].

8: x0 = 0.
9: while k < iter_admm do

10: CG(xk) . by 2.21a, 2.22
11: for i = 1 to m+w2 do
12: if i < m+1 then
13: SCG(zk

i ) . by 2.21b, 2.24
14: else if i < m+w2 then
15: Prox(zk

i ) . by 2.21b, 2.25, 2.26
16: else
17: Prox(zk

i ) . by 2.21b
18: end if
19: Update pk

i . . by 2.21c
20: Update ρk

i . . by 2.27, 2.28
21: end for
22: if ∑i ||rk

i ||22 < ε1 and ∑i ||sk
i ||22 < ε2 then

23: break
24: end if
25: k = k+1
26: end while
27: end while
28: return Reconstructed HR image x.
29: end procedure

2.2.3 Experiments and Results

This section demonstrates the performance of the proposed MPGSR algorithm evaluated
by the synthetic 8-bit natural images under different noise levels and on the captured
16-bit X-ray images. Besides, the effect of inaccurate motion and blur estimations is
evaluated.To demonstrate the merits of the proposed data term, a comparison with
`1 and `2 data terms under Tikhonov and BTV regularizations was carried out. It is



40 2. Multi-Image Super-Resolution on Noisy Images

Table 2.1: Methods and optimization parameters
Methods Regularization Optimizer α w

`1-Tik. Tikhonov ADMM (CG) - -

`2-Tik. Tikhonov ADMM (CG & SCG) - -

MPGSR-Tik. Tikhonov ADMM (CG & SCG) - -

`1-BTV BTV ADMM (CG) 0.4 2

`2-BTV BTV ADMM (CG & SCG) 0.4 2

SR-PG† [81] TV ADMM (CG & SCG) - -

DPSR [22] SRResNet+ Adam - -

MPGSR BTV ADMM (CG & SCG) 0.4 2

necessary to note that the regularization term of the proposed MPGSR is BTV and
the notation MPGSR-Tik is used to distinguish from MPGSR by replacing BTV with
Tikhonov prior. Besides, the multi-frame SR-PG† was extended for comparison, which
originally applies generalized Anscombe transform on the single-frame mixed Poisson–
Gaussian noise model and employs TV regularization [81]. All the optimization-based
methods mentioned above were implemented using the ADMM framework. Furthermore,
MPGSR was compared with the state-of-the-art CNN-based plug-and-play SR method
DPSR [22].

Experiments with Natural Images

1) Effect of different levels of mixed Poisson–Gaussian noise: For quantitative evaluation,
four 8-bit natural images illustrated in Fig. 2.1 are considered as the reference images.
RGB images were converted to YCrCb channels and solely the Y channel was used.
The gray-value LR images corrupted by different levels of mixed Poisson–Gaussian noise
were generated according to Eq. (2.2). In particular, each reference image was firstly
rescaled to peak intensity 120 and considered as the ground truth (GT). The rescaled
image was then shifted by (0,0),(1,0),(1,1) and (0,1) pixel to obtain four images. These
four images were blurred by an isotropic 3×3 Gaussian filter and then subsampled by
factor 2. Each of the degraded LR images was corrupted by a Poisson noise and then
an AWGN with σ = 1.2. The same scenario was performed on generating another set of
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Figure 2.2: Comparison of different SR methods on Cameraman with mixed noise 120+1.2.
(a-1) GT image, (b-1) LR image, (c-1) `1+Tikhonov, (d-1) `2+Tikhonov, (e-1)
MPGSR-Tikhonov, (f-1) `1+BTV, (g-1) `2+BTV, (h-1) SR-PG†, (i-1) DPSR,
(j-1) MPGSR, (c-2)∼(j-2) residual images and (a-3)∼(j-3) ROI.

LR images with peak intensity 180 and σ = 1.8. To quantitatively assess the estimated
images, PSNR calculated by Eq. (2.29) was utilized where x∗ and x̂ denote the GT image
and the estimated HR image respectively and Imax represents the maximum intensity of
the GT image.

PSNR(x̂,x∗) = 10log10(
I2
max

MSE(x∗, x̂)
) (2.29)

To implement the Tikhonov regularization, a commonly used Laplacian kernel was adopted
defined by

Γ =
1
8

1 1 1
1 −8 1
1 1 1

 .
As the update step size ρi of the dual variable pi has a direct impact on the convergence
of the ADMM algorithm. Generally, larger ρ emphasizes less on minimizing the objective
function while smaller ρ penalizes less on the violation of the primal feasibility. In the
following experiments, ρ was updated iteratively according to Eq. (2.27). The weighting
parameter λ was chosen carefully as a constant by sweeping over [0.01,0.05, · · · ,50,100].
Stopping criteria based on the primal and dual residuals [91] was applied and the maximum
iterations was limited up to 400. A wide parameter sweep for DPSR was carried out and
the parameters providing the highest PSNR were selected. The detailed implementation
parameters are listed in Table 3.1
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Figure 2.3: Comparison of different SR methods on Lena with mixed noise 180+1.8. (a-1)
GT image, (b-1) LR image, (c-1) `1+Tikhonov, (d-1) `2+Tikhonov, (e-1)
MPGSR-Tikhonov, (f-1) `1+BTV, (g-1) `2+BTV, (h-1) SR-PG†, (i-1) DPSR,
(j-1) MPGSR, (c-2)∼(j-2) residual images and (a-3)∼(j-3) ROI.

A comparison of different methods on Cameraman with mixed noise 120+1.2 is depicted
in Fig. 2.2. The residual images between the reconstructed images and the GT are shown
in the second row. The error distribution and the mean absolute error (MAE) of different
methods are quantitatively analysed and exhibited in the histogram. The third row focuses
on the marked region of interest (ROI). As shown, SR-PG† produces a plausible HR
estimation but inclines to a positive bias in the error distribution. DPSR tends to suppress
the noise aggressively but compromises the sharpness of the edges in return. The proposed
MPGSR outperforms the others visually and possesses a light-tailed error distribution. In
the residual and ROI images, it is shown that the flat regions reconstructed by MPGSR
are smoothed, while the sharpness of the edges is preserved. In Fig. 2.3, Lena with mixed
noise 180+1.8 is demonstrated. DPSR seems to overreact to the noise and sacrifices the
high-frequency information. The proposed MPGSR produces a clear delineation of Lena
with the best error distribution. The quantitative evaluations of four test images are
summarized in Table 2.2. Furthermore, aiming for analysing the robustness of the proposed
method, five realizations of the mixed noise 180+1.8 on Cameraman, Lena, Coffee and
Text were carried out and the performance is listed in Table 2.3. It is shown that although
the performance differs over five realizations, the proposed MPGSR generates a stabilized
superior performance overall.

2) Effect of inaccurate estimations of motion and blur: In order to evaluate the effect
of motion uncertainty, five experiments on Cameraman contaminated with mixed noise
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Table 2.3: PSNR (dB) of five realizations of Cameraman, Lena, Coffee and Text contami-
nated with 180+1.8 mixed Poisson–Gaussian noise.

ID Bicubic `1+BTV `2+BTV SR-PG† DPSR MPGSR

Camera #1 23.94 26.40 26.62 25.54 26.06 27.33
Camera #2 23.93 26.38 26.71 25.45 26.14 27.38
Camera #3 23.94 26.41 26.67 25.45 26.10 27.37
Camera #4 23.99 26.41 26.77 25.46 26.20 27.42
Camera #5 23.96 26.43 26.74 25.43 26.00 27.42

Mean 23.95 26.41 26.70 25.47 26.10 27.38
SEM 0.010 0.007 0.024 0.017 0.030 0.015

Lena #1 24.86 26.51 26.87 26.09 26.27 27.34
Lena #2 24.89 26.52 26.82 26.07 26.27 27.29
Lena #3 24.84 26.48 26.81 26.08 26.23 27.32
Lena #4 24.85 26.47 26.85 26.07 26.19 27.32
Lena #5 24.88 26.52 26.83 26.12 26.32 27.34
Mean 24.86 26.50 26.84 26.09 26.26 27.32
SEM 0.008 0.009 0.010 0.008 0.020 0.008

Coffee #1 24.10 25.14 25.29 24.57 25.24 25.64
Coffee #2 24.06 25.12 25.30 24.58 25.09 25.64
Coffee #3 24.11 25.12 25.30 24.59 25.20 25.65
Coffee #4 24.06 25.12 25.30 24.57 25.10 25.64
Coffee #5 24.11 25.15 25.30 24.57 25.06 25.65
Mean 24.09 25.13 25.30 24.58 25.14 25.64
SEM 0.010 0.006 0.002 0.004 0.031 0.002

Text #1 24.86 27.30 27.73 27.13 28.14 28.80
Text #2 24.85 27.33 27.70 27.13 28.10 28.77
Text #3 24.83 27.32 27.71 27.09 28.18 28.79
Text #4 24.85 27.29 27.68 27.09 28.07 28.74
Text #5 24.85 27.27 27.66 27.08 28.05 28.74
Mean 24.85 27.30 27.70 27.10 28.11 28.77
SEM 0.004 0.010 0.011 0.010 0.021 0.011
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Figure 2.4: Comparison of different methods on Cameraman contaminated with mixed
noise 180+1.8, inaccurate estimations of motion and blur. (a-1) GT image,
(b-1) LR image, (c-1) bicubic interpolation, (d-1) `1+BTV, (e-1) `2+BTV, (f-1)
SR-PG†, (g-1) DPSR, (h-1) MPGSR, (i-1) MPGSR∗ with accurate estimations
of motion and blur, (c-2)∼(i-2) residual images and (a-3)∼(i-3) ROI.

180+1.8 and inaccurate motion were conducted. Particularly, four LR images were
generated by unexpected motion with an uniformly distributed additive random offset
R2 ∈ [−0.1,0.1]. Additionally, to model the situation where an inaccurate blurring kernel
Bi is applied, the synthetic LR images were blurred by a 5x5 Gaussian filter, while the
HR image was reconstructed by a 3x3 Gaussian kernel. The mean and the SEM of the
PSNR of five realizations are demonstrated in Table 2.4. As exhibited, the proposed
MPGSR generates the highest PSNR with strong robustness against inaccurate motion.
Besides, it is shown that the inaccuracy of blur kernel has a significant impact on the SR
performance. The reconstructed images by different approaches are illustrated in Fig. 2.4.
As shown in the residual images, all the methods generate larger deviations on the edges
in contrary to the one reconstructed with the accurate estimations of motion and blur.
Regardless of that, the proposed MPGSR produces the best MAE and narrowest error
distribution.

Experiments with X-ray Images

As mentioned in Section 2.1, mixed Poisson–Gaussian noise model is derived based on
the statistical properties of imaging systems equipped with electronic devices, such as
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Table 2.4: The mean and SEM of the PSNR(dB) obtained by different methods on
Cameraman 180+1.8 with inaccurate estimations of motion and blur.

Mean & SEM `1+BTV `2+BTV SR-PG† DPSR MPGSR MPGSR∗a

Mean (Inaccu. M) 26.31 26.87 25.78 25.86 27.23 27.28
SEM (Inaccu. M) 0.023 0.013 0.018 0.042 0.020 0.025

Mean (Inaccu. M&B) 23.96 24.08 24.04 24.36 24.50 27.89
SEM (Inaccu. M&B) 0.067 0.077 0.077 0.089 0.086 0.015

a MPGSR∗ denotes the results with accurate estimations of motion and blur.

a) b) c)

Figure 2.5: CT scanner equipped with mounted linear stages. a) side view; b) X-ray tube
and rotatable object (aluminium cylindrical phantom); (c) X-ray detector
mounted on the controllable linear stages.

CCD and CMOS sensors. In this section, the effectiveness of MPGSR on real-world X-ray
images is validated. The X-ray imaging process can be described in the following steps:
X-ray photons are generated by hitting the accelerated electrons on the target. A spectrum
of X-ray photons with different energies, known as polychromatic beam, interact with
the objects. Some of the photons are absorbed by the object and the rest arrive at the
X-ray detector. For the current widely used energy-integrating detectors, the arriving
X-ray photons are converted into light photons in the detector scintillator. The number
of generated light photons follows a probability distribution which is proportional to the
energy of the incident X-ray photons. These light photons strike the silicon photodiodes
and in turn release photoelectrons. The cumulative photoelectrons are amplified and
recorded by analog-to-digital (A/D) converters leading to an intensity value. Actually,
the noise existing in the above mentioned process is from two sources: the additive
electronic noise arisen from the X-ray detector assuming to be Gaussian distributed, and
the compound Poisson distributed noise due to the nature of the polyenergetic photon-
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Table 2.5: Measurement setup for capturing X-ray images.
Test objects Voltage (kV) Current (uA) Exposure time (s)

Resolution target 100 60 0.33

Hard disk drive 100 70 2

(a) (b) (c) (d) (e) (f) (g)

Figure 2.6: Comparison of different SR methods on the X-ray image of a resolution target.
ROIs: (a) LR images, (b) bicubic interpolation, (c) `1+BTV, (d) `2+BTV,
(e) SR-PG†, (f) DPSR and (g) MPGSR.

counting statistics [93–96]. In [94, 97], the compound Poisson can be approximated by a
scaled Poisson distribution. Therefore, according to the current research, the statistical
property of CT imaging can be approximately modeled by a mixed Poisson–Gaussian
noise which coincides with [61, 89, 98].

The LR images were acquired by the Nikon HMX ST 225 CT scanner as shown in Fig. 2.5.
The CT scanner is equipped with a flat panel Varian PaxScan@4030E detector which has
a pixel size of 127µm×127µm. The detector is mounted on the controllable linear stages,
Newport M-IMS400CCHA and Newport M-IMS300V respectively for x- and y-positioning
so that the detector can be shifted to a predefined position with movement accuracy up to
1µm. A resolution target made of lead and a hard disk drive were taken as test specimens.
Four 16-bit X-ray images for each specimen were captured by shifting the detector with
half a pixel rightwards, downwards, leftwards, and upwards. The detailed parameter setup
is depicted in Table 2.5.

The reconstructed images of the resolution target and the hard disk drive by different
methods with the closeup views are demonstrated in Fig. 2.6 and Fig. 2.7, respectively. In
practice even inaccurate estimations of motion and blur are not avoidable, in Fig. 2.6 it is
shown that the edges of the vertical bar patterns reconstructed by the proposed MPGSR
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.7: Comparison of different SR methods on the X-ray image of a hard disk drive.
ROIs: (a) LR images, (b) bicubic interpolation, (c) `1+BTV, (d) `2+BTV,
(e) SR-PG†, (f) DPSR and (g) MPGSR.

are more sharpened and meanwhile, the noisy air-regions between the bars are smoothed
in both marked regions. In Fig. 2.7, the vias and stripes in the hard disk drive can be
better visualized by MPGSR, while the other methods either blur the edges or emphasize
the noise in the flat regions.

2.3 Super-Resolution Based on Bilateral Spectrum Weighted
Total Variation

In last section, the data fidelity term based on the mixed Poisson–Gaussian noise model
was presented. As X-ray images are usually much more noisy than natural images, a
regularization technique is proposed, named bilateral spectrum weighted total variation
(BSWTV), aiming at effectively suppressing the noise and meanwhile preserving the
sharpness of fine structures for noisy image super-resolution.

2.3.1 Previous Work of Image Priors for Noise Removal

Due to the ill-posedness of the SR problems, the existing methods employ either explicitly
handcrafted image priors or implicit priors. The majority of the optimization-based
traditional methods utilize the handcrafted priors. Specially, Rudin et al. [76] introduce
the total variation (TV) as the regularization for image denoising. In [27], bilateral
total variation (BTV) is proposed by concerning photometric and geometric distance in
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an extended neighborhood. Yuan et al. [28] propose a regional spatially adaptive total
variation (RSATV) based on spatial information filtering and clustering which partition
the image into multiple segments. However, pixels within each segment are limited to an
equal weight.

Besides the above gradient-based priors, nonlocal-means (NL-means) [99] based on the
self-similarity exploits the natural redundancy of image patterns aiming to average the
pixels which are surrounded by similar textures. Specially, the NL-means algorithm is
formulated as

x(i) = ∑
j∈Ri

w(i, j)x( j), (2.30)

where x(i) is the estimated image pixel. Weight w(i, j) depicts the similarity between pixel
i and j with ∑ j w(i, j) = 1, j ∈ Ri where Ri denotes the search window of pixel i. The weight
w(i, j) is measured by

w(i, j) =
1

Z(i)
exp

(
−
||N(i)−N( j)||22,σ

η2

)
. (2.31)

N(i),N( j) indicate respectively the square neighborhood of pixel i and j. ||N(i)−N( j)||22,σ
is the weighted Euclidean distance with σ being the standard deviation of the Gaussian

kernel. Z(i) denotes the normalizing constant Z(i) = ∑ j exp
(
− ||N(i)−N( j)||22,σ

η2

)
with η being

the constant filtering parameter. In [100], Protter et al. generalize the use of NL-means in
MISR without performing explicit motion estimation by applying the patch extraction
operation in the data term.

To overcome the performance decline caused by contrast losses, Gilboa et al. [101] propose
a variational regularization, nonlocal TV (NLTV), based on the self-similarity which can
be formulated as

Vc(x) = ∑
D=(Dx,Dy)

||ΦD(SSSD− III)x||1, (2.32)

where (Dx,Dy) indicates the shift vector with Dx,Dy ∈ [−(R−1)/2,(R−1)/2] and R is the
window size. Matrix SSSD acts as the shift operator and ΦD represents the weighting map
associated with the shift vector D defined as

ΦD(i, j) = exp
(
−
||N(i, j)−N(i+Dx, j+Dy)||22

η2

)
. (2.33)
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N(i, j) denotes the neighbors of the center pixel (i, j) in the similarity patch of size r and η

is the filtering parameter which controls the smoothness. However, NLTV usually suffers
from the drawback of remaining noise in the surroundings of the edges especially when
the image is not oversmoothed.

2.3.2 Bilateral Spectrum Weighted Total Variation

As TV performs smoothing without concerning the features, it is prone to oversmoothness,
staircasing effect, and contrast losses. In order to alleviate the contrast losses, inspired
by [102], the information entailed in the gradient covariance matrix is exploited to distin-
guish patterns. For images contaminated by a mixed Poisson–Gaussian noise, according
to Proposition 2.3.1, the gradients in the flat regions follow a white isotropic Gaussian
distribution with a limited variance which theoretically enables us to differentiate the
mixed noise in flat areas from the edges.

Proposition 2.3.1. Let us define an observed digital image y : N2
0→ R contaminated by

a mixed Poisson–Gaussian noise as y = z+ np(z) + ng where (zi + np(zi))/α ∼ P(zi/α)

with zi being the expected pixel value and α being a scalar. ng is an independent
additive Gaussian noise with ng(i)∼ N(µi,σ

2
i ). If we have a homogeneous region Ω⊂ N2

0,
where ∀i, j ∈ Ω, |zi + µi− z j − µ j| < ε1, |αzi + σ2

i −αz j − σ2
j | < ε2,∀ε1,ε2 > 0, then the

gradient of each element i in Ω has the same isotropic white Gaussian distribution
∇xy(i),∇yy(i) ∼ N(0,(αzi +σ2

i )/2) and a collection of the gradients obeys an isotropic
white Gaussian distribution.

Proof. Considering a digital image y : N2
0→R contaminated by a mixed Poisson–Gaussian

noise as y = z+np(z)+ng where (zi, j +np(zi, j))/α ∼ P(zi, j/α) with zi, j being the noiseless
intensity value at pixel (i, j) and α being a scalar. ng is an additive Gaussian noise with
ng(i, j) ∼ N(µi, j,σ

2
i, j). According to the Central Limit Theorem (CLT), when zi, j/α is

sufficiently large, we have (zi, j +np(zi, j))/α ∼ P(zi, j/α)' N(zi, j/α,zi, j/α). Therefore, we
have zi, j +np(zi, j)∼ N(zi, j,αzi, j). As np and ng are independent, we yield y(i, j)∼ N(zi, j +

µi, j,αzi, j +σ2
i, j). As element (i+1, j) and (i−1, j) are independent, we have E(∇xy(i, j)) =

(zi+1, j+µi+1, j−zi−1, j−µi−1, j)/2 and Var(∇xy(i, j)) = (αzi+1, j+σ2
i+1, j+αzi−1, j+σ2

i−1, j)/4.
If elements (i−1, j),(i, j),(i+1, j) ∈Ω where ∀(m,n),(p,q) satisfying |zm,n +µm,n− zp,q−
µp,q|< ε1, |αzm,n+σ2

m,n−αzp,q−σ2
p,q|< ε2,∀ε1,ε2 > 0, then we have ∇xy(i, j)∼N(0,(αzi, j+

σ2
i, j)/2). The derivation holds also for ∇yy(i, j). In the homogeneous region Ω, a collection
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of the gradients with the same isotropic white Gaussian distribution can be considered as
multiple realizations of an isotropic white Gaussian distributed variable at different image
locations.

The proposed BSWTV is based on the spectrum of the weighted-gradient covariance matrix
as formulated in Eqs. (2.34) (2.35) (2.36). BSWTV possesses the merit that it adopts
a gradually refined weighting map by introducing an inhomogeneous shrink coefficient.

BSWTV (x) := ||Φ∇x||1,Φ = diag[φ1, · · · ,φn] (2.34)

The ith diagonal element of the weighting map Φ is defined as

φi = exp(−|λi1−λi2|/η
2), (2.35)

where η is the smoothing parameter which controls the dynamic range of Φ. λi1,λi2 are
the eigenvalues of the covariance matrix of the bilateral weighted gradients Gi which is
formulated as

Gi =

[
ω1g1

x , . . . ,ω jg
j
x, . . . ,ωqgq

x

ω1g1
y , . . . ,ω jg

j
y, . . . ,ωqgq

y

]
, ω j = ξ

d(i, j)
j

with ξ
k
j = ξ

k−1
j

γ +
(1− γ)

1+ exp
(

f (Φk−1
N j

)
)
 , j ∈ Ni.

(2.36)

g j represents the gradient at pixel j and is expressed as g j := (g j
x,g

j
y) = (∇xx j,∇yx j).

The square patch centered at pixel i has the amount of q = r2 pixels and is defined as
Ni = { j : |i− j| ≤ (r−1)/2} with r being the odd size of the patch. ω j acts as the weight
assigned to each individual neighbor in Ni and indicates the significance of the neighbor j
to the center pixel i which depends on the distance d(i, j) := |dx(i, j)|+ |dy(i, j)| along x
and y axis with dx,dy ∈ [−(r−1)/2,(r−1)/2] and the local adaptive shrink coefficient ξ j.
The superscript of ξ k

j depicts the kth iteration of the ADMM algorithm and the decay
scalar γ ∈ [0,1] serves for the shrinkage of the spread of the gradients within the patch.
The intuition of introducing ξ and γ is to adaptively “squeeze” the gradient matrix G such
that the discrepancy between eigenvalues λi1 and λi2 decreases as the algorithm converges
and the mask of the edges in the weighting map Φ becomes thinned. ΦN j denotes the
neighbors of pixel j in the weighting map Φ. f is a function of ΦN j which controls the
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a) HR image b) weighting map c) ROI

Figure 2.8: Impact of the decay parameter γ on the SR performance (2×). Top: γ = 1,
PSNR = 30.35dB, SSIM = 0.8577; Bottom: γ = 0.8, PSNR = 30.47dB, SSIM
= 0.8607.

whitening based on the image content and enables an inhomogeneous decay of ξξξ . Specially,
for flat regions, f is supposed to be a large positive value such that the shrink coefficient
ξ j is decreased by γ and the weighting map gets further whitened, while for fine structures,
f should be a large negative value so that the shrink coefficient ξ j is not attenuated. A
simple choice of f (x) could be an affine function f (x) := a(x̄− b) where x̄ denotes the
mean of vector x and the positive scalars a,b are the amplitude and shift parameters,
respectively. Therefore, based on the previous Φ, map ξξξ is inhomogeneously shrinked by
factors in the range of (γ,1).

In Fig. 2.8, the effectiveness of leveraging the decay parameter γ is demonstrated. The
top row illustrates the weighting map Φ and the SR image without decaying the shrink
coefficient. The bottom row exhibits the results with γ = 0.8. As shown, the weighting
map Φ in the bottom row has much thinned mask for edges than the counterpart in
the top row under the same smoothing parameter η . Consequently, the SR image
has much cleaner and pleasant contours without oversmoothing the fine structures. A
detailed analysis of the effectiveness of the decay scalar γ, the smoothing parameter
η , and the shift parameter b on the reconstruction performance is demonstrated in
Section 2.3.4.



2.3. Super-Resolution Based on Bilateral Spectrum Weighted Total Variation 53

The update of the weighting map Φ is embedded in the ADMM framework as described in
Algorithm 2.3 in Section 2.3.3. For the sake of suppressing the outliers and enhancing the
convergence stability in the ADMM update scheme, the weighting map Φ is smoothed by
a Gaussian filter with an iteratively decreased kernel width and updated in a momentum-
based fashion in each ADMM iteration. A detailed description of the update of the
weighting map Φ is given in Section 2.3.3.

Combining the regularization term expressed in Eq. (2.34) with the data fidelity term intro-
duced in Eq. (2.8), the overall objective function is expressed as

J= 1
2

m

∑
i=1

(
‖ yi−Aix−µµµ i ‖2

Wi
+〈log(αiAix+σσσ

2
i ),1〉

)
+λ ||Φ∇x||1, (2.37)

with λ being the weight of the regularization term. Due to the fact that the data fidelity
term is derived from a mixed Poisson–Gaussian noise model, the above algorithm is named
as MPG+BSWTV.

2.3.3 Optimization Method

Decomposition and ADMM

Similar to Section 2.2, the ADMM algorithm is employed to solve the decomposed
objective function. Particularly, the anisotropic TV is adopted in the implementation:
||Φ∇x||1 = ||Φ(SSSx− III)x||1 + ||Φ(SSSy− III)x||1 where matrices SSSx,SSSy perform respectively the
shift operation along x and y axis by one pixel. Therefore, the overall optimization
problem can be split into m + 2 subproblems with the corresponding constraints as

argmin
x,zi

J =
m+2

∑
i=1

gi(zi)

subject to Tix− zi = 0, ∀i ∈ [1,m+2]

(2.38)
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with zi ∈ RN and Ti being a matrix:

Ti =


IIIN×N , i ∈ [1,m],

Φ(SSSx− IIIN×N), i = m+1,

Φ(SSSy− IIIN×N), i = m+2.

(2.39)

The subfunctions gi(·) are defined as following:

gi(zi) :=
1
2
(
||yi−Aizi−µµµ i||2Wi

+ 〈log(αiAizi +σσσ
2
i ),1〉

)
, i ∈ [1,m],

gi(zi) := λ ||zi||1, i ∈ [m+1,m+2].
(2.40)

Therefore, the augmented Lagrangian is formulated as

LH(x,z,p) =
m+2

∑
i=1

LHi(x,zi,pi) =
m+2

∑
i=1

(
gi(zi)+ 〈pi,Tix− zi〉+

1
2
||Tix− zi||2Hi

)
, (2.41)

where pi is the dual variable associated with the individual constraint and matrix Hi is
defined as

Hi := diag[ρi, . . . ,ρi], ∀i ∈ [1, · · · ,m+2] (2.42)

with ρi being a positive scalar acting as the update step size of the dual variable
pi.

The decomposed objective function formulated in Eq. (2.38) is solved in the following
iterative scheme:

xk+1 = argmin
x

m+2

∑
i=1

ρi

2
||Tix− zk

i +
pk

i
ρi
||22 (2.43a)

zk+1
i = argmin

zi

gi(zi)+
ρi

2
||zi−Tixk+1−

pk
i

ρi
||22 (2.43b)

pk+1
i = pk

i +ρi(Tixk+1− zk+1
i ). (2.43c)

The update of xk+1 is performed by the conjugate gradient (CG) algorithm. gi(zi) with
i ∈ [1,m] is solved by scaled conjugate gradient (SCG). To update zk+1

i associated with
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the BSWTV prior, i.e., i ∈ [m+ 1,m+ 2], the proximal operator of the L1-norm is uti-
lized:

zk+1
i = argmin

zi

λ ||zi||1 +
ρi

2
||zi−Tixk−

pk
i

ρi
||22

= proxλ (ρi)−1||·||1(Tixk +
pk

i
ρi
)

(2.44)

and the closed-form solution can be obtained as

[zk+1
i ] j =



[Tixk +
pk

i
ρi
] j−

λ

ρi
, [Tixk +

pk
i

ρi
] j ≥

λ

ρi
,

0, |[Tixk +
pk

i
ρi
] j| ≤

λ

ρi
,

[Tixk +
pk

i
ρi
] j +

λ

ρi
, [Tixk +

pk
i

ρi
] j ≤−

λ

ρi
.

(2.45)

The penalty parameter ρi is updated iteratively by means of synchronizing the con-
vergence of the primal residual rk

i and the dual residual sk
i with the scheme in [91]:

ρ
k+1
i =


c1ρk

i , ||rk
i ||2 > c||sk

i ||2,
ρk

i /c2, ||sk
i ||2 > c||rk

i ||2,
ρk

i , otherwise,

(2.46)

where c1,c2,c are constants with c1 > 1,c2 > 1,c > 1. The primal and dual residuals rk
i , sk

i

are calculated as

rk+1
i = Tixk+1− zk+1

i ,

sk+1
i =−ρ

k
i TT

i (z
k+1
i − zk

i ).
(2.47)

An early stopping criteria based on the primal and dual residuals is used as depicted in
Algorithm 2.3.
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Update of Weighting Map

The weighting map Φ is updated iteratively within the ADMM framework. In particu-
lar, in order to enhance the convergence stability and update efficiency, two additional
steps are performed following Eqs. (2.35) and (2.36). Firstly, the weighting map Φ is
smoothed by convolving with an isotropic 2D Gaussian kernel G(σΦ) to alleviate the effect
of outliers on the weighting map. Secondly, the smoothed weighting map is updated in
a momentum-based manner to avoid strong fluctuation of the objective during conver-
gence. In particular, a decay scalar γ is employed to iteratively decrease the Gaussian
parameter σΦ and the momentum coefficient β . Consequently, the mask of the edges in
the weighting map is thinned and sharpened in a moderate manner and the remaining
noise surrounding the edges is gradually and effectively suppressed. The update frame-
work of the weighting map Φ in the kth ADMM iteration is formulated as following in
Algorithm 2.2.

Algorithm 2.2 Update of Weighting Map
1: Initialize Φ,ξξξ ,γ,η ,β ,r,σΦ,σmin.
2: procedure Calculating Weighting Map
3: Calculate ξξξ

k
(ξξξ

k−1
,Φk−1,γ) . by Eq. (2.36)

4: Φk← Calculate Φ(xk−1,ξξξ
k
,η) . by Eq. (2.35)

5: σ k
Φ
= max(σmin,γσ

k−1
Φ

)
6: Φk = G(σ k

Φ
)∗Φk

7: β k = γβ k−1.
8: Φk = β kΦk−1 +(1−β k)Φk

9: end procedure

Overall Optimization Framework

The update of the weighting map as described in Algorithm 2.2 needs to be integrated
into the ADMM framework. As the weighting map Φ is coupled with the latent image
x as expressed in Eq. (2.43a) and is used for the update of the variables zi and pi for
i ∈ [m+ 1,m+ 2] as formulated in Eqs. (2.44) and (2.43c), Φ is updated with x being
fixed as the first step of the ADMM iteration. The pseudocode for solving the overall
objective function is presented in Algorithm 2.3. As depicted, there are four main steps
performed in sequence to respectively update Φ,x,z, and p in each ADMM iteration.
Specially, the computational complexity for updating the weighting map Φ in each ADMM
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Figure 2.9: 8-bit gray-scale natural images for quantitative analysis.

iteration is O(r2w2N) with r2 being the patch size and w2 being the Gaussian kernel size.
x is iteratively solved by CG which has a computational complexity of O(kxN2) with
kx being the amount of iterations of CG. For solving zi with respect to the data term
with i ∈ [1,m], SCG is employed which has the computational cost of O(mkzN2) with kz

being the number of iterations for SCG. For zi associated with the regularization term,
the proximal operator is utilized which has the complexity of O(N2). The last step is
to solve the dual variables p. For pi with i ∈ [1,m], Ti denotes the identity matrix and
the computational cost is O(N) and for i ∈ [m+ 1,m+ 2], the update of pi has O(N2)

computational complexity. Hence, the overall computational complexity for each ADMM
iteration is O((kx +mkz)N2).

2.3.4 Experiments and Results

In this section, extensive experiments are conducted to evaluate the proposed method on
the synthetic and the real-world images. The introduced approach is benchmarked with the
state-of-the-art methods on the public real-world dataset SupER [58].

Super-Resolution on Synthetic Images

The proposed MPG+BSWTV is evaluated on the gray-value reference images as shown in
Fig. 2.9. Specially, the system matrix A is assumed to be known and the scalar α is set as 1.
Four LR images corrupted by a mixed Poisson–Gaussian noise with peak intensity 200 and
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Algorithm 2.3 Proposed Algorithm
1: Initialize Φ,ξξξ ,σσσ ,λ ,r,η ,β ,γ,σΦ,σmin,ρ, iter,α,c,c1,c2
2: Load observed images yi i ∈ [1, · · · ,m]
3: procedure Solving ADMM
4: z0

i = y1 for denoising, Bicubic(y1) for SR, i ∈ [1,m]
5: z0

i = 0, i ∈ [m+1,m+2]
6: p0

i = 0, i ∈ [1,m+2]
7: x0 = 0
8: while k < iter do
9: Update weighting map Φ . by Alg. 2.2

10: CG(xk) . by Eq. (2.43a)
11: for i = 1 to m+2 do
12: if i ∈ [1,m] then
13: SCG(zk

i ) . by Eq. (2.43b)
14: else
15: Prox(zk

i ) . by Eqs. (2.43b), (2.44), (2.45)
16: end if
17: Update ρk

i . by Eqs. (2.46), (2.47)
18: Update pk

i . by Eq. (2.43c)
19: end for
20: if ∑i(||rk−1

i ||22 − ||rk
i ||22)/∑i(||rk−1

i ||22) < ε1 and ∑i(||sk−1
i ||22 −

||sk
i ||22)/∑i(||sk−1

i ||22)< ε2 then
21: break
22: end if
23: k = k+1
24: end while
25: end while
26: return reconstructed image x.
27: end procedure

σ = 2 were generated for each reference image as described in Section 2.2.3. The proposed
method was compared with L1+BTV [27], L2+NLTV [101], MPGSR [33], L2+BSWTV,
EDSR [17], RBPN [40], and DPSR [22]. Note that the notation L2+NLTV indicates the
L2-norm data term in conjunction with NLTV as the regularizer and the same notation
manner is employed for L1+BTV and L2+BSWTV. All the above TV-based methods were
implemented by the ADMM algorithm. For a better interpretation, MPGSR is denoted
as MPG+BTV in the latter formulation. EDSR and DPSR are well-known CNN-based
single-frame SR methods and RBPN is one of the state-of-the-art video SR (VSR) networks
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a-1) Bicubic
(24.82dB, 0.5771)

b-1) L1+BTV
(28.13dB, 0.9000)

d-1) L2+NLTV
(30.37dB, 0.9579)

e-1) L2+BSWTV
(30.62dB, 0.9552)

h-1) DPSR
(28.59dB, 0.9170)

i-1) MPG+BSWTV
(31.07dB, 0.9660)

a-2) Bicubic b-2) L1+BTV d-2) L2+NLTV e-2) L2+BSWTV h-2)  DPSR i-2) MPG+BSWTV

g-1) BM3D+RBPN
(28.11dB, 0.8969)

f-1) BM3D+EDSR
(27.55dB, 0.8920)

g-2) BM3D+RBPNf-2) BM3D+EDSR

c-1) MPG+BTV
(28.76dB, 0.9291)

c-2) MPG+BTV

Figure 2.10: Comparison of different SR methods for 2× on PPT3 contaminated by a
mixed Poisson–Gaussian noise with peak intensity 200 and σ = 2: (a) bicubic,
(b) L1+BTV, (c) MPGSR, (d) L2+NLTV, (e) L2+BSWTV, (f) EDSR, (g)
RBPN, (h) DPSR, and (i) MPG+BSWTV.

which uses multiple LR frames as input. Since EDSR and RBPN are originally trained on
noiseless images, EDSR and RBPN were retrained using their original source code on the
datasets which were contaminated by the mixed Poisson–Gaussian noise as the same noise
level as the testing images. For all the investigated methods, the parameters producing
the best PSNR performance were adopted. The reconstructed image PPT3 by different
approaches is demonstrated in Fig. 2.10. It is shown that the proposed MPG+BSWTV
provides a remarkable improvement quantitatively and qualitatively by jointly enhancing
the image resolution and suppressing the residual noise surrounding the characters. The
VSR method RBPN generates better result than EDSR as expected by exploiting the
information entailed in the neighboring frames. The DPSR tends to suppress the noise
aggressively which leads to an oversmoothness of the detailed structures. The quantitative
results are summarized in Table 2.6.

Super-Resolution on Real-World Images

To validate the proposed method, experiments on the publicly available SupER dataset [58]
which contains images of 14 scenes were conducted. Each of the 14 scenes is captured
under multiple modes including motion types, binning factor, and compression levels. Each
mode contains 40 LR images by capturing stop-motion videos. SR reconstruction was
performed on images captured by binning factor of 2 under global motion which includes
translation in 3D space and panning in a joint sinusoidal and circular moving trajectory.
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Following [58], a sliding window of size 5 centered at the 10th LR image was selected and
other 14 SR methods [5, 13, 15,16,18,27,29,32,103–108] implemented in [58] were taken
into comparison. Since the LR images are not severely contaminated by noise, λ was
set as 0.1 for all the 14 scenes. The scalar α and the Gaussian noise parameter σσσ were
estimated in Eq. (2.37) by [89] and the mean µµµ was assumed as 0. The estimated negative
parameters were clamped to 10−6. Besides, the decay scalar γ was set as 0.95 and the
penalty parameter ρ was chosen as 103 for a smooth convergence over 16 iterations. The
smoothing parameter η was set as 3 to make the flat regions and edges distinguishable in
the weighting map. The shift parameter b was tuned as 1 so that the fine structures can be
preserved. The original implementation and parameters in [58] were employed for the other
14 SR methods. The performance of the 15 SR methods is assessed by PSNR and SSIM
as summarized in Fig 2.11. Single-frame and multi-frame SR methods are respectively
marked by red and blue. It is shown that most of the multi-frame SR methods perform
better than the single-frame ones under global motion. The proposed approach achieves
considerable improvement comparing to the other methods in both PSNR and SSIM. In
Fig. 2.12, the computation time of different approaches is demonstrated. It is necessary
to note that all the other methods were implemented in Matlab and some of them were
accelerated by C++. The proposed method was implemented in Python without C/C++
speedup. In Fig. 2.13 and Fig. 2.14, the reconstructed images of some representative
methods were illustrated. As shown in Fig. 2.13, the proposed MPG+BSWTV generates
more distinguishable characters and cleaner background. In Fig. 2.14, it is shown that the
proposed method provides a more pleasant visual perception and resembles the GT image
most.

In addition to the SupER dataset which contains 8-bit natural images, experiments on 16-
bit X-ray images which were captured by the Nikon HMX ST 225 CT scanner were carried
out. Two objects were taken as test specimens: a resolution target and a printed circuit
board (PCB). Specially, four 16-bit X-ray images were captured by shifting the detector
with a half pixel distance rightwards, downwards, and leftwards for both the specimens.
The SR reconstructed images by different methods are demonstrated in Fig. 2.15 and
Fig. 2.16. It is shown that the proposed method achieves better visual quality than the
others by jointly sharpening the edges and suppressing the noise in the flat regions which
coincides with the observations in the other SR experiments.
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Figure 2.11: Comparison with other 14 SR methods on the SupER dataset [58] in average
PSNR and SSIM for 2×. Red color map denotes the single-frame SR methods
and the blue one represents the multi-frame SR methods.
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one represents the multi-frame SR methods.
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a) GT
(PSNR/SSIM)

b) LR c) L1+BTV
(24.34/0.7793)

e) DRCN
(24.42/0.8079)

d) SRCNN
(24.53/0.8118)

f) A+
(24.67/0.8140)

g) VDSR
(24.26/0.8026)

h) MPG+BSWTV
(24.73/0.8298)

Figure 2.13: Comparison of different SR methods on the Coffee dataset (2×). Top: recon-
structed SR images; Bottom: ROI

a) GT
(PSNR/SSIM)

b) LR c) L1+BTV
(38.70/0.9303)

e) DRCN
(38.50/0.9274)

d) SRCNN
(38.48/0.9276)

f) A+
(38.56/0.9286)

g) VDSR
(38.41/0.9261)

h) MPG+BSWTV
(40.84/0.9557)

Figure 2.14: Comparison of different SR methods on the Dolls dataset (2×). Top: recon-
structed SR images; Bottom: ROI

a) Resolution target b) Bicubic c) L1+BTV d) L2+NLTV e) L2+BSWTV f) MPG+BSWTV

Figure 2.15: Comparison of different SR methods for 2× on the 16-bit X-ray image of a
resolution target: (a) X-ray image of the resolution target, (b) bicubic, (c)
L1+BTV, (d) L2+NLTV, (e) L2+BSWTV, and (f) MPG+BSWTV.
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a) PCB b) Bicubic c) L1+BTV d) L2+NLTV e) L2+BSWTV f) MPG+BSWTV

Figure 2.16: Comparison of different SR methods for 2× on the 16-bit X-ray image of a
printed circuit board (PCB): (a) X-ray image of the PCB, (b) bicubic, (c)
L1+BTV, (d) L2+NLTV, (e) L2+BSWTV, and (f) MPG+BSWTV.

Weighting Map and Parameter Analysis

In the following experiments, the effectiveness of the shrink coefficient on the weighting
map Φ is demonstrated and the impact of the penalty parameter ρ , the decay scalar γ , the
smoothing parameter η , and the shift parameter b on the performance of MPG+BSWTV
is analyzed.

Refinement of weighting map: We demonstrate the refinement of the weighting map

L2+NLTV 
(36.43dB, 0.9886)

NLTV weighting
 map[1]

NLTV weighting
 map[2]

NLTV weighting
 map[3]
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MPG+BSWTV 
(37.98dB, 0.9954)BSWTV weighting map over iterations
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Figure 2.17: Illustration of the effectiveness of the shrink coefficient on the weighting map
of BSWTV and the reconstructed image comparing to L2+NLTV by denoising
an 8-bit gray-value image contaminated by a mixed Poisson–Gaussian noise
with peak intensity 200 and σ = 10.
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Figure 2.18: Impact of the initial penalty parameter ρ on the convergence. Left: PSNR
over iterations; Right: objective over iterations.

in MPG+BSWTV over ADMM iterations and compare with the resultant weighting
maps of L2+NLTV. The synthetic image contains multiple basic shapes including ellipses,
rectangles, and bars as shown in Fig. 2.17. The image was contaminated by a mixed
Poisson–Gaussian noise with peak intensity 200 and σ = 10. A search window of size
R = 3 was chosen for NLTV and hence NLTV generates R2− 1 weighting maps. For a
fast convergence, the decay parameter was set as γ = 0.3 and the momentum coefficient
was selected as β = 0.5. The smoothing parameters η and the weighting parameters
λ for both NLTV and BSWTV were tuned to achieve the best PSNR performance.
As illustrated in Fig. 2.17, both approaches converge over iterations and the proposed
method outperforms L2+NLTV quantitatively and qualitatively. It is shown that the
mask of the edges in the weighting map of BSWTV becomes thinner and sharper along
with the convergence. Consequently, the noise surrounding the edges is significantly
suppressed.

Penalty parameter ρ : Experimental analysis has been conducted to study the influence
of different initial ρ on the convergence of the algorithm. As shown in Fig 2.18, the
magnitude of ρ has noticeable impact on the convergence rate although ρ is iteratively
updated. Large ρ stabilizes the convergence and tends to slow down the convergence
rate. On the contrary, small ρ accelerates the convergence but may cause overshoot of the
objective function and lead to an undesirable image quality. Depending on the expected
convergence rate and the noise level, an empirical choice of ρ may vary in a range of
[10−3,103] for 8-bit images.

Decay parameter γ: The decay parameter γ refines the weighting map Φ iteratively by
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Figure 2.19: Left: impact of the decay scalar γ on the convergence; Right: impact of the
smoothing parameter η on the convergence.

thinning the mask of the edges. We investigated γ in the range of [0.01,1] where γ = 1
indicates no decay. As shown in the left graph of Fig. 2.19, extremely small γ attenuates
the shrink coefficient ξ aggressively so that the weighting map of regions containing fine
low-contrast structures also gets whitened and the fine structures might be smoothed. In
contrast, γ = 1 prevents the weighting map from whitening which limits the performance
of the algorithm. To obtain gradual refinement of the weighting map, usually the decay
parameter is chosen in a range of [0.5,0.95].

Smoothing parameter η : The smoothing parameter η is employed to control the impact of
the eigenvalue discrepancy on the weighting map. As depicted in the right graph of Fig. 2.19,
small η can not brighten the weighting map and results in a deteriorated performance.
However, too large η causes saturation of the weighting map and the proposed regulariza-
tion term acts as the standard TV. Depending on the dynamic range of the image, a proper
choice of η for 8-bit images would be in the interval of [2,6].

Shift parameter b: The flat regions and strong edges can be easily tackled by a homogeneous
shrink coefficient. The shift parameter b is introduced to deal with fine structures with
relative low contrast. It behaves as a threshold and masks the fine textures in the
weighting map by inhomogeneously shrinking the coefficient ξ . Specially, ξ is expected
to be shrinked by γ in flat regions while maintain the same in fine-structured regions.
Consequently, the fine structures are masked out in the weighting map and are not
smoothed by TV. As illustrated in Fig. 2.20, b has a noticeable impact on SSIM and
might have limited influence on PSNR because PSNR perfers slightly oversmoothed
images.
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Figure 2.20: Impact of the shift parameter b on the convergence. Left: PSNR over
iterations; Right: SSIM over iterations.

2.4 Conclusion

In this chapter, an objective function for noisy image super-resolution is proposed based
on mixed Poisson–Gaussian noise model and the eigenvalues of the covariance matrix of
the adaptively weighted image gradients. The proposed objective function is decomposed
and solved based on the adapted alternating direction method of multipliers (ADMM)
algorithm. Specially, the weighting map of the proposed regularizer is updated as the
first step in the ADMM algorithm by considering the other variables as constants. In
order to remove the outliers in the weighting map and facilitate the stability of the
convergence of the objective function in the modified ADMM, the estimated weighting
map is smoothed by a Gaussian filter with an iteratively decreased kernel width and
updated in a momentum-based fashion. The proposed approach is benchmarked with
other 14 state-of-the-art SR methods on the publicly available real-world dataset SupER.
Experimental results demonstrate that the proposed MPG+BSWTV achieves an average
gain of 0.2dB in PSNR and better visual perception compared to the investigated SR
methods.
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Multi-GPU Accelerated Super-Resolution for
Computed Tomography

In last chapter, an MISR algorithm based on the mixed Poisson–Gaussian noise model
and bilateral spectrum weighted total variation was presented. Although it outperforms
many well-known SR methods, the computational complexity might impede the deploy-
ment for real-time computing especially for Mpixel input images in practice. In this
chapter, a multi-GPU framework for large-scale MISR named FL-MISR is proposed based
on data parallelism, which is published in the work [35]. The presented FL-MISR has
been seamlessly integrated into our CT system by super-resolving multiple projections of
the same view acquired by subpixel detector shift. Since the SR reconstruction can be
complete on the fly during the CT acquisition, FL-MISR achieves real-time performance.
In section 3.4, experimental results are demonstrated in terms of resolution enhance-
ment measured by MTF and computational speedup compared to the multi-core CPU
implementation.

3.1 Previous Work of Fast MISR

In the literature, most of the optimization-based iterative MISR methods focus on the
reconstruction accuracy and only few concern the performance in computation time [25,

69
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27, 109, 110]. Specially, Elad et al. [25] propose a fast MISR algorithm concerning the
special case of pure translation and space invariant blur. In [27], Farsiu et al. present
a robust MISR method based on MAP using the L1-norm data fidelity term and the
BTV regularization. Jens et al. [109] introduce a GPU-accelerated MISR approach for
image-guided surgery which supports a 2× SR reconstruction from 4 LR images of size
200×200 in 60 ms. However, due to the GPU memory limit, their method can not handle
large sized images. In [110], the authors propose a fast MISR method which composes
registration, fusion, and sharpening for satellite images using high-order spline interpolation.
Nevertheless, purely image fusion is performed on a GPU and the rest two steps are on the
CPU which results in a degraded performance in runtime.

Comparing to the traditional iterative methods, CNN-based SR approaches focus on
super-resolving single LR image by exploiting the relation learned exclusively from the
LR-HR image pairs in the external example database. The learning-based MISR models are
mainly proposed for video applications [36,39,40,111]. Although some work is intended for
real-time applications using GPU or FPGA [39, 60, 112], the video SR (VSR) performance
highly relies on the fidelity of the synthesized LR-HR frame pairs and the quality of the
training datasets. Furthermore, the supervised learning scheme requires the ground truth
(GT) HR images during the training phase, the performance of the trained model will
hence be limited by the available quality of the GT acquired in practice which is especially
true for CT imaging due to the lack of publicly available high-quality HR datasets like
DIV8K [113] for natural images.

To the best of our knowledge, the literature on GPU-accelerated MISR methods for
large-scale images is very limited despite of its importance. In this chapter, a generalized
accelerator for large-scale MISR based on data parallelism on multi-GPU systems is
introduced. It is shown that the exchange of local variables and overlapped regions between
neighboring GPUs has limited impact on the overall performance of runtime and leads to
a consensus convergence over multi-GPUs without introducing border effects. Besides, it
is shown that super-resolving four input images of size 4096×4096 by an upscaling of 2×
can be achieved within 2.4s on a 4-GPU system.
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3.2 Distributed Optimization Based on Data Parallelism

As described in Chapter 2, the SR model is usually presented as

y = Ax+n (3.1)

with x∈Rn×1,y∈Rm×1 being respectively the latent and captured image rearranged in lexi-
cographic order. To simplify the calculation, in this chapter n is assumed to be an intensity-
independend additive noise and the system matrix A is known.

Assuming the noise ni ∈ n in each pixel i is white Gaussian and i.i.d where ni∼N(0,σ2) and
P(ni)=

1√
2πσ2 exp

(
− n2

i
2σ2

)
, the likelihood function is expressed as

P(y|x) =
m

∏
i=1

P(yi|x) =
(

1√
2πσ2

)m

exp
(
−
||Ax−y||22

2σ2

)
(3.2)

Taking the natural logarithm, the associated negative log-likelihood can be formulated as

−log(P(y|x)) = 1
2σ2 ||Ax−y||22 + c (3.3)

where c is a constant. For brevity, the weight 1
2σ2 and the constant c will be omitted in

the latter formulation.

For MISR with k independent LR images yi where i ∈ [1 . . .k], the data fidelity term is
hence formulated by

−log

(
k

∏
i=1

P(yi|x)

)
=

k

∑
i=1
||Aix−yi||22. (3.4)

It should be noted that in case of additive white Laplacian noise which models the impulse
noise (Salt & Pepper noise), it turns out to be the L1-norm data fidelity term [114].
Usually, L1-norm data term has better robustness against pixel outliers [27]. Without loss
of generality, the data fidelity term can be formulated as

−log

(
k

∏
i=1

P(yi|x)

)
=

k

∑
i=1
||Aix−yi||pp (3.5)

with the Lp norm 1≤ p≤ 2.
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Table 3.1: List of the consensus variables in SCG algorithm.
Param. Description
fc, fc_new consensus of the objective function

pc consensus of the conjugate weight vector
rc,rc_new consensus of the steepest descent direction

σc,λc consensus of the scalars
δc,µc consensus of the variables in step size

αc consensus of the update step size

Aiming for reducing the computational complexity, BTV is leveraged as the image prior.
Hence, the overall objective function based on the MAP framework is rewritten as following:

J(x) =
k

∑
i=1
||Aix−yi||pp +λ ∑

d
γ(d) ‖ x−Sdx ‖1 (3.6)

where the scaling factor of the fidelity term 1/2σ2 in Eq. (3.3) is actually absorbed into the
weighting parameter λ . In the experiment section 3.4, the L1-norm data term is used for
a better robustness.

In order to circumvent the limitation of GPU memory resources and distribute the computa-
tional demand over multi-GPUs, data parallelism under a consensus-based convergence man-
ner is performed to guarantee a centralized solution. The expected SR image x is obtained
by data fusion. In particular, Eq. (3.6) can be rewritten as

J(x) =
k

∑
i=1

Di(x)+λR(x) (3.7)

with Di representing the corresponding data term and R indicating the regularization
term. In this regard, the subfunction associated with the hth GPU can be expressed by

Jh(xh) =
k

∑
i=1

Di(xh)+λR(xh), s.t.
g⋃

h=1

xh = x, (3.8)

where xh is a fraction of the latent image x assigned to the hth GPU and g denotes the
number of employed GPUs. To enforce the distributed optimization towards a centralized
solution, we allow communication between the local GPU node and the host CPU for a
consensus update decision. Specially, we utilize the SCG algorithm [115] to iteratively
solve the subproblem described in Eq. (3.8) in each GPU. Instead of using the handcrafted
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Figure 3.1: Demonstration of the exchange scheme of the overlapped regions for 4 GPU
nodes.

step size or performing line search, SCG employs a step size scaling mechanism based on
an adaptive scalar which achieves a faster and more robust convergence than the widely
used approaches such as conjugate gradient with line search (CGL) and Broyden-Fletcher-
Goldfarb-Shanno (BFGS).

Aiming for synchronizing the update of the individual xh towards a centralized solution,
we unify the local SCG scalar variables σ ,λ ,δ ,µ,α by data communication. As these
variables are calculated based on the inner product of vectors, we can obtain the consensus
variables by the aggregate of the broadcast local ones. By means of consensus variables,
the subfunctions can converge synchronically and a homogeneous resolution among multi-
GPUs is guaranteed. In Table 3.1, we list the unified scalar variables and vectors (in bold)
of SCG.

In addition, to avoid border discontinuity of neighboring partitions, region overlapping
between neighboring GPUs is required. Instead of the naive averaging of the overlapped
regions which sacrifices the sharpness and visual quality, we perform an inner-outer border
exchange in each SCG iteration as shown in Fig. 3.1. A 4-GPU system is demonstrated
and each GPU deals with the allocated image partition xh. The overlapped regions marked
in violet are exchanged between neighboring GPUs. Particularly, since the inner borders
can be correctly calculated only in case that the outer borders are consistent with the
neighboring GPUs, the outer borders are replaced by the received ones and the inner borders
are broadcast to the neighbors as exhibited in Fig. 3.1b). Consequently, an agreement
in the overlapped regions is achieved as shown in Fig. 3.1c) without compromising the
image sharpness. Without loss of generality, assuming g GPU nodes are employed, the
architecture of the proposed multi-GPU framework for SR is illustrated in Fig. 3.2. The
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local variables and overlapped regions are interchanged in each SCG iteration over the
host CPU and updated in a consensus scheme.
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Figure 3.2: Architecture of the proposed multi-GPU framework for MISR where g GPU
nodes are employed.

In Algorithm 3.1, a detailed description of the proposed distributed optimization framework
is presented based on the SCG approach. The local GPU computation is marked by red
and the centralized computation in the host CPU is denoted in blue. The local variables,
overlapped regions, and consensus variables are exchanged after the local and central
update. The SR image x is obtained when the predefined number of SCG iterations is
complete.

In the implementation, the OpenCL framework was used. In order to optimize the data
deployment on GPU memory, local memory was exploited in the kernel functions to the
most extent. Sparse matrix was employed to calculate the system matrix Ai = DiBiMi

and the transpose AT
i due to the sparseness of the downsampling, blurring, and mo-

tion matrices Di, Bi, and Mi. Although memory transfer of the local variables and the
overlapped regions between local GPU and host CPU is intended to hold the consensus
convergence, transfer of large amounts of data is obviated during the SR reconstruc-
tion.

It is necessary to note that the proposed distributed optimization framework is based on
data parallelism and SCG algorithm which is not confined to a specified objective function
or a certain application.
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Algorithm 3.1 Distributed SR Reconstruction
1: Partition and load LR images yi, i ∈ [1 . . .k] into each

GPU node h ∈ [1 . . .g].
2: Calculate system matrix Ai, i ∈ [1 . . .k] of each GPU.
3: Initialize each GPU node with Ai,γ(d),λ , fh, fc,ph,rh,

δc,µc,αc,σh,niter.
4: procedure Estimate latent image x according to Eqs. (3.6) and (3.8) using SCG [115]
5: while iiter < niter do
6: Local : Calculate ||ph||22,h ∈ [1 . . .g].
7: Central: Update ||pc||22 = ∑

g
h ||ph||22.

8: Local : Calculate xh_tmp = xh +σcph.
9: Central: Exchange overlapped regions of xh_tmp

with neighboring nodes.
10: Local : Calculate δh according to SCG.
11: Central: Update δc = ∑

g
h δh.

12: Local : Calculate µh,αh according to SCG.
13: Central: Update µc = ∑

g
h µh,αc = ∑

g
h αh.

14: Local : Calculate xh_new = xh +αcph.
15: Central: Exchange overlapped regions of xh_new

with neighboring nodes.
16: Local : Calculate fh_new according to Eq. (3.8).
17: Central: Update fc_new = ∑

g
h fh_new.

18: Local : Calculate ||rh_new||22, inner product
〈rh,rh_new〉.

19: Central: Update ||rc_new||22 = ∑
g
h ||rh_new||22,

〈rc,rc_new〉= ∑
g
h〈rh,rh_new〉.

20: Local : Update ph.
21: Central: iiter = iiter +1.
22: end while
23: end while
24: Central: Fuse x with xh,h ∈ [1 . . .g].
25: return reconstructed image x.
26: end procedure
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3.3 Real-Time MISR Based on Subpixel Detector Shift

The proposed FL-MISR was applied on the Nikon HMX ST 225 CT scanner as shown in
Fig. 2.5. The mechanism of enhancing the resolution by subpixel detector shift can be
interpreted in Figure 3.3 and Figure 3.4. The basic idea is to displace the LR detector by
subpixel level to increase the sampling rate and generate X-ray projections of the same
amount of pixels as a HR detector.

Cone beam
X-ray 

X-ray 
Source

LR detector

Cone beam
 X-ray

X-ray 
Source

0.5 pixel 
 shiftHR pixel 

LR pixel 

LR detector
HR detector

Figure 3.3: Schematic illustration of the resolution enhancement mechanism.
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Figure 3.4: Realization of the detector shift by half a pixel.

During the CT acquisition, the object is rotated by 360◦ and at each rotation angle,
four LR projections (X-ray images) are captured based on the detector shift rightwards,
downwards, leftwards, and upwards by half a pixel as illustrated in Figs. 3.4 and 3.5.
When four LR projections of the same view are collected, SR reconstruction is launched as
denoted in green. The capture-reconstruct fashion repeats until the whole CT acquisition
is accomplished. Since the four LR projections at different rotation angles have the same
clockwise movement pattern, the system matrices Ai with i ∈ [1,4] are calculated once at
the beginning of the scan and shared by all the following projections. Due to the fact that
SR reconstruction takes less time than the accumulated time of projection acquisition and
table rotation as illustrated in Fig. 3.5, SR can be performed in real-time during the CT
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Figure 3.5: Schematic illustration of the application of FL-MISR in CT imaging based on
the controlled subpixel detector shift.

acquisition without introducing additional computation time. Utilizing the super-resolved
projections, the reconstructed CT volume yields an improved spatial resolution due to the
increased detector sampling rate and the results are demonstrated in Section 3.4. It is
worthy noting that for an upscaling of 3 or 4, 9 projections or 16 projections would be
taken by shifting the detector by 1/3 or 1/4 pixel, respectively.

3.4 Experiments and Results

In this section, extensive experiments are conducted to evaluate the proposed FL-MISR for
real-time SR in CT. The CT measurements were carried out on the Nikon HMX ST 225
CT scanner as shown in Fig. 2.5. The focal spot size of the tungsten X-ray tube is power
dependent and for the power under 7 W which was utilized in the experiments, the effective
focal spot size was measured as about 6 µm by the JIMA RT RC-04 micro chart. As the
spatial resolution in CT systems depends on the magnification of the measurement (the
ratio between the source-detector distance and the source-object distance), the effectiveness
of FL-MISR was evaluated on the resolution enhancement of CT at magnifications of 5,
10, and 25.

The calculation of the system matrix Ai is thoroughly described in the previous work [33].
For an upscaling of 2× with half pixel detector shift and a 3×3 Gaussian blur Bi, a 12-row
block area in the HR grid was set as the overlapped region between two neighboring
GPUs. The weighting parameters λ and α were respectively set as 0.05 and 0.4 and the
iteration number of SCG was selected as 20. In practice, larger λ should be opted in case
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of strong noise and fewer SCG iterations, such as 5, could be used for fast CT acquisitions.
The SR reconstruction was performed on a cluster of Nvidia GeForce GTX 1080 GPUs
with 11GB of RAM for each and the Intel Xeon Gold 6148 CPU equipped with 56 Cores
and 755GB memory. To quantify the resolution enhancement, the modulation transfer
function (MTF) of the CT system was measured according to the standard ASTM-E
1695. Apart from the quantitative assessment, the QRM bar pattern phantoms were
employed to visually verify the resolution improvement. Lastly, a practical case of the
application of FL-MISR on a dry concrete joint is presented. The resolution-enhanced
CT of the concrete joint would benefit the successive analysis such as evaluation of load
capacity.

3.4.1 Evaluation of FL-MISR on Spatial Resolution Enhancement

CT scanner mainly consists of two components: the X-ray tube and X-ray sensitive
detector. The spatial resolution of the CT system is primarily limited by the focal spot
size of the X-ray tube and the detector pixel size. Usually, the spatial resolution of the
imaging system is assessed by the MTF which is calculated as the normalized magnitude
of the Fourier Transform of the point spread function (PSF). Nonstrictly speaking, MTF
describes the smallest visually distinguishable line pairs per mm. The MTF of the CT
system is formulated by MT Fsys = MT Ff s ·MT Fdet ·MT Fothers, where MT Ff s and MT Fdet

respectively denote the MTF of the focal spot and the detector. Other components such
as the reconstruction algorithm, X-ray beam hardening, and display monitor are usually
of less influence on the overall MT Fsys. In this work, subpixel detector shift is utilized to
improve the MTF of the detector by increasing the sampling rate which will lead to an
effective improvement of the MT Fsys when MT Fdet dominates the MT Ff s, which is usually
the case in many CT applications.

Evaluation on Synthetic CT Images

In order to analyze the effectiveness of subpixel detector shift on the spatial resolu-
tion enhancement of CT system, the impact of MT Fdet on the MT Fsys is demonstrated.
To simplify the system model, only the primary components are considered, namely
MT Fsys := MT Ff s ·MT Fdet . The MT Ff s is modeled by a Gaussian function and the MT Fdet

is represented by a sinc function because of the assumed rectangular shape of the pixel.
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Figure 3.6: Influence of improved detector MTF on the system MTF based on one-
dimensional synthetic analysis. a) when MT Ff s dominates, MT Fsys rarely
improves; b) in case of MT Fdet dominating, MT Fsys improves significantly.

As shown in Fig. 3.6, the left plot indicates the case where MT Ff s dominates MT Fdet ,
for instance when the object is extremely close to the X-ray source and the right one
depicts the situation where MT Fdet dominates. The MTF of the detector with full pixel
size and with half pixel size is respectively denoted as DetectorLR and DetectorHR. Usu-
ally, the MTF at 10% is considered as the visible limit in practice and it is marked by
gray dotted line. It is clearly shown that halving the detector pixel size doubles the
MT Fdet since the sampling rate is doubled by substituting 2x with x in the sinc func-
tion. Consequently, the overall MT Fsys is effectively improved when MT Fdet dominates
(right figure), while for the case MT Ff s dominates (left figure), MT Fsys has a negligible
improvement.

Based on the analysis above, FL-MISR is evaluated on the CT images quantitatively and
qualitatively. Specially, CT scans of an aluminium cylindrical phantom with a diameter of
20 mm were performed as shown in Fig. 2.5b) which was fixed perpendicular to the rotation
table and a QRM bar pattern resolution phantom at the magnification of 10. Considering
them as the ground truth (GT), four sets of 0.5× LR projections were simulated by
shifting the GT projections rightwards, downwards, leftwards, and upwards by one pixel
followed by a 2×2 binning. The downscaled LR projections were fused by interpolation
and by FL-MISR. As the inter-image offset is assumed to be half a pixel and accurate,
for interpolation-based fusion the pixel values of the LR images were inserted into the
corresponding integer location in the HR grid. The super-resolved projections were then
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Figure 3.7: Evaluation of MTF on the CT cross section of an aluminium cylindrical
phantom. Left: a) LR, b) multi-image interpolation, c) FL-MISR, d) GT;
Right: MTF.

used for CT reconstruction by filter backprojection (FBP). The CT cross sections of the
aluminium cylindrical phantom and the associated MTF are demonstrated in Fig. 3.7. The
LR CT was reconstructed by the reference (upper left) set of the downscaled projections.
As shown, the FL-MISR resembles the MTF of the GT extremely well and almost doubles
the MTF of the LR image. For visual comparison, the LR images of the QRM target
were generated following the same scenario as the aluminium cylindrical phantom and
the CT images of the QRM bar pattern target are depicted in Fig. 3.8. It is shown
that FL-MISR provides a more pleasant result with sharper structures and better visual
quality.

Evaluation on Real-World CT Images

In this section, FL-MISR is evaluated on the real-world CT scans of multiple objects at
different magnifications. Particularly, multiple CT measurements were conducted including
the aluminium cylindrical phantoms with diameters of 10 mm and 20 mm, QRM bar pattern
phantom with spatial resolution ranging from 3.3 l p/mm to 100 l p/mm, QRM bar pattern
nano phantom covering resolution from 50 l p/mm to 500 l p/mm, and a cylindrical dry
concrete joint with a diameter of 50 mm. The aluminium cylindrical phantoms and the
QRM targets were both scanned at magnifications of 5 (voxel size of 25.4 µm), 10 (voxel
size of 12.7 µm), and 25 (voxel size of 5.08 µm) and the concrete joint was acquired at
magnifications of 3 (voxel size of 42.3 µm) and 5. The detailed measurement setup is listed
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a) b) c) d)

Figure 3.8: CT images of the QRM bar pattern phantom. The ROIs are marked by red
rectangle and zoomed in. a) LR; b) multi-image interpolation; c) FL-MISR; d)
GT.

in Table 3.2. As shown in Fig. 3.5, the X-ray detector was repeatedly displaced clockwise
by half a pixel in a precisely controlled way. The projection at each detector position took
3 s, namely at each rotation angle 4×3 s was required for the acquisition. The object table
rotated over 360◦ with 0.1 degree resolution following a stop-move manner and hence in
total 4×3600 projections were taken. Besides, aluminium filters were utilized to absorb the
soft X-ray beam and suppress the beam hardening artifact. FL-MISR is compared with
the multi-image interpolation and with the standard CT without detector shift where the
exposure time was set as 12 s which is the same as FL-MISR.

The MTF measured by the aluminium cylindrical phantoms at different magnifications is
illustrated in Fig. 3.9. It it shown that FL-MISR performs significantly better than the
standard CT at all the investigated magnifications covering voxel size from 25.4 µm to
5.08 µm. The multi-image interpolation behaves worse than FL-MISR as expected due to
the naive manner of image fusion.

The CT images of the QRM bar pattern phantom and QRM bar pattern nano phantom

Table 3.2: Parameter setup for CT measurements.
Phantoms Volt. (kV ) Curr. (µA) # of Proj. Exp. (s) Det. Shift (px) Filter (mm)

Al. Cylinder 200 34 3600 3 0.5 Al 2.5
QRM targets 80 86 3600 3 0.5 None
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Figure 3.9: Evaluation of MTF at different magnifications. a) magnification of 5; b)
magnification of 10; c) magnification of 25.
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Figure 3.10: CT images of QRM bar pattern phantom. Left (marked in green): magni-
fication of 5; Right (marked in blue): magnification of 10; a) standard CT
without detector shift; b) multi-image interpolation; c) FL-MISR.

are illustrated in Fig. 3.10 and Fig. 3.11 with the corresponding closeup views. Com-
paring to the standard CT measurements, it is shown that FL-MISR and multi-image
interpolation both improve the spatial resolution by exploiting the additional information
captured via subpixel detector shift. However, multi-image interpolation is less robust
than the optimization-based FL-MISR. It is shown that FL-MISR generates sharper edges
than the multi-image interpolation and provides more pleasant results in visual percep-
tion. In fact, the spatial resolution estimated by the visibility of the QRM bar patterns
coincides with the MTF measured by the aluminium cylindrical phantoms extremely
well.

In Fig. 3.12, the CT images of a dry concrete joint are exhibited with the zoomed-in region
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a) b) c)

Figure 3.11: CT images of QRM bar pattern nano phantom at magnification of 25. a)
standard CT without detector shift; b) multi-image interpolation; c) FL-
MISR.

Figure 3.12: CT images of a dry concrete joint with the ROI in the closeup views. a)
standard CT without detector shift at magnification of 3; b) FL-MISR with
an upscaling of 2× at magnification of 3; c) standard CT without detector
shift at magnification of 5.
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a) SR Projection b) Zoomed-in CT image
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Figure 3.13: Evaluation on the border effect. First row: on the synthetic volume as utilized
in Fig. 3.8; Second row: on the real-world volume as used in the middle graph
of Fig. 3.10. Red dotted line marks out the border of the partitions allocated
to the GPUs.

of interest (ROI) marked by red rectangles. Fig 3.12a) and Fig 3.12b) represent respectively
the results of the standard CT without detector shift and FL-MISR at magnification of 3.
Fig 3.12c) exhibits the results of standard CT at magnification of 5 which is considered as
the reference image. It is shown that comparing to the standard CT with a voxel size of
42.3 µm at magnification of 3, FL-MISR generates sharper contours with more detailed
structures which resembles the CT measurement at magnification of 5 with a voxel size of
25.4 µm.

Evaluation on Border Effect and Consensus Convergence

As explained in Fig. 3.1, we exchange the overlapped regions between neighboring GPUs
to avoid border discontinuity. In Fig 3.13, we demonstrate the super-resolved projections
and the associated CT images of the synthetic (top row) and the real-world measurements
(bottom row). For the synthetic image, we employed four GPUs and for the real-world
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Figure 3.14: Evaluation on consensus convergence based on the objective function. Left:
convergence curve obtained using single GPU; Right: convergence curves
obtained using 4 GPUs.

one, two GPUs were in use. The individual xh of each GPU is partitioned by the red
dotted line. As we can observe that the overlapped regions, a 12-row block surrounding
the borders (the red dotted lines), are of inherent sharpness without intensity discontinuity
and the border effect is fundamentally obviated. Besides, in order to avoid inhomogeneous
resolution in different partitions, we synchronize the update of the partitioned xh among
all the GPUs by exchanging the local variables of SCG. In Fig. 3.14, we illustrate the
convergence curve of the centralized objective of Eq. 3.6 running on a single GPU and
the distributed objective of Eq. 3.8 running on four GPUs. The consensus convergence
is reflected in two aspects. First, the four GPUs have exactly the same convergence
trend, where they are almost overlaid, due to the share of the SCG variables. Second,
the distributed objective follows the same convergence trend as the centralized one and
moreover, the sum of the four distributed objectives equals the centralized one by resorting
to the scheme we adopt for the calculation of the consensus variables of SCG as described
in Section 3.2. In addition, we can observe that the objective function is almost converged
after 5 SCG iterations.



86 3. Multi-GPU Accelerated Super-Resolution for Computed Tomography

Table 3.3: Evaluation of computation time in terms of input image size,
number of SCG iterations, and CPU/GPU platforms for the
upscaling of 2× where four input images were utilized. (N/A

indicates not applicable.)
Input image SCG iterations CPU* (s) 1 GPU (s) 4 GPU (s)

512×512
5 1.06 0.08 0.07
10 2.24 0.13 0.12
20 4.48 0.25 0.22

1024×1024
5 4.08 0.22 0.25
10 8.64 0.42 0.44
20 17.37 0.78 0.79

2048×2048
5 16.21 0.70 0.52
10 34.89 1.30 0.76
20 69.02 2.43 1.32

2300×3200
5 23.86 N/A 0.79
10 50.68 N/A 1.20
20 113.96 N/A 2.33

4096×4096
5 49.67 N/A 2.38
10 105.71 N/A 3.02
20 250.82 N/A 4.33

*CPU experiments were conducted on the Intel Xeon Gold 5120 CPU equipped
with 56 cores.

3.4.2 Evaluation of FL-MISR on Acceleration

To demonstrate the performance of FL-MISR in computation acceleration, SR reconstruc-
tions of different sized inputs ranging from 512×512 to 4096×4096 for an upscaling factor
of 2× were conducted on a multi-core CPU, single GPU, and multi-GPU systems. In
particular, the CPU experiments were performed on the Intel Xeon Gold 5120 CPU which
contains two nodes and each is equipped with 28 cores. The GPU experiments were carried
out on the Nvidia GeForce GTX 1080 GPUs with 11GB memory. Since FL-MISR is based
on the iterative SCG algorithm, the runtime is evaluated also with regard to the number
of SCG iterations. The performance of different configurations was calculated based on an
average of 100 runs and depicted in Table 3.3 where N/A indicates not applicable due to
the large GPU memory footprint. As illustrated, comparing to the 56-core CPU variant,
the single GPU implementation accelerates the computation by more than 25× for LR
images of size 2048×2048 and the multi-GPU implementation which uses 4 GPUs achieves
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Figure 3.15: Runtime distribution for the local and centralized computation for super-
resolving images of different sizes by an upscaling of 2× under 20 SCG
iterations on 4 GPUs.

a speedup up to 50×. For large-scale images of size 2300×3200 and 4096×4096, FL-MISR
running on 4 GPUs obtains a more than 55× speedup than the CPU implementation,
while single GPU can not satisfy the memory demand. For small sized inputs like 512×512
and 1024×1024, single GPU implementation has similar performance as multi-GPU and
achieves a 20× speedup comparing to the multi-CPU one.

Apart from the evaluation of the overall computation time, the runtime distribution for
the local and centralized computation on a 4-GPU system is analyzed. It should be noted
that the data communication time is aggregated into the centralized computation. The
average runtime distribution over 100 runs for input images of different sizes is exhibited in
Fig. 3.15. It is shown that the consumed time for consensus computing is almost negligible
comparing to the local computation, while it is fundamentally necessary to avoid border
effects between neighboring GPUs and guarantee a consensus convergence over multi-GPU
systems.
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3.5 Conclusion

In this chapter, a multi-GPU accelerated large-scale MISR approach based on data
parallelism is presented. Specially, each GPU node accounts for a designated region of
the latent HR image by applying the SCG algorithm to the distributed subproblem. The
determinant variables of the local SCG algorithm are communicated and unified to impose
a synchronized convergence rate among all the GPUs. The overlapped regions between
neighboring GPUs are broadcast based on the inner-outer-border exchange mechanism
to avoid border effects. The proposed FL-MISR is applied to our CT system by super-
resolving projections captured via subpixel detector shift. The SR reconstruction is
performed on the fly along with the CT acquisition so that no additional computation
time is induced. Extensive experiments based on simulated data and real CT of various
objects were conducted to quantitatively and qualitatively evaluate the proposed FL-MISR.
Experimental results demonstrate that the spatial resolution of CT systems can be signif-
icantly improved by the application of FL-MISR. Furthermore, FL-MISR achieves a more
than 50× speedup on a 4-GPU system in comparison to the multi-core CPU implementation.
It is shown that the exchange of local variables and overlapped regions between neighboring
GPUs has limited impact on the overall runtime.
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Super-Resolution for Image Registration

In previous chapters, two optimization-based MISR methods MPG+BSWTV and FL-
MISR were presented from the aspects of performance in PSNR and performance in
reconstruction speed, respectively. In this chapter, the application of SR on image
registration is investigated and demonstrated. Specially, a novel deformable registration
network FDRN [59] is proposed in Section 4.1. A light-weight resolution enhancement
module (REM) based on residual CNN is introduced and evaluated in Section 4.2. REM is
plugged in the registration network in a cascaded manner. The impact of REM on image
registration is thoroughly evaluated on two registration networks FDRN and VoxelMorph
at upscaling factors of 2× and 4× in Section 4.3.

4.1 FDRN: Fast Deformable Registration Network

4.1.1 Previous Work of Image Registration

Deformable image registration is an approach to establish dense spatial correspondence
between a pair of digital images based on local structures. Deformable registration is widely
applied to many medical applications such as detecting temporal anatomical changes of

89
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individuals, analyzing variability across populations, and multi-modality fusion. In recent
decades, several advancements in deformable image registration have been made [116–119].
Most of the existing conventional algorithms optimize an objective function J formulated
as following:

J = D(F(X),φ ◦M(X))+λR(φ). (4.1)

The data term D measures the alignment between the fixed image F and the transformed
moving image φ ◦M with φ being the dense deformation field which maps the coordinates
of F to the coordinates of M and ◦ being the resampling operation. X denotes the 3D
spatial coordinate in domain {Ω | Ω⊂R3}. The most commonly used data terms are, e.g.,
L2 error norm [120], mutual information [121], and cross-correlation [122]. As deformable
registration is a highly ill-posed problem, regularization R is used to constrain the solution
field. In general, the deformation field φ is modeled either by the displacement vector
field (DVF) d(x) or the velocity vector field v(X, t). The former category models the
spatial transformation as a linear combination of the identity transform X and the DVF:
φ = X+d(X) with d(X) being the DVF which represents the spatial offsets between the
corresponding voxels in the fixed and the moving images. Particularly, [123–125] estimate
the deformation based on the linear elastic models. In [126–128], the deformation field is
described by cubic B-spline. Thirion proposes Demons [129] by introducing diffusion model
in image registration. Generally, the DVF-based deformation model can not guarantee
an inverse consistency, namely when interchanging the order of the two input images,
the obtained transformation may not match the inverse of the counterpart. In contrast
to the displacement-based vector field, the latter one concerns the invertibility of the
transformation. Specially, deformable registration is considered as a variational problem
and φ is formulated as an integral of a velocity vector field v(X, t). Many variants have
been proposed [120, 122, 130, 131] imposing biomedical constraints such as diffeomorphism,
topology preservation, inverse consistency, and symmetry on the deformation field. In [120].
Beg et al. present the Large Deformation Diffeomorphic Metric Mapping (LDDMM) to
solve a global variational problem in the space of smooth velocity vector field. Avants et
al. [122] propose the symmetric normalization method (SyN) using cross-correlation as
the similarity measure. However, due to the huge computational demand for volumetric
medical images, tackling practical problems by conventional methods could be extremely
slow.

In contrast to the traditional methods which adopt iterative updating scheme, learning-
based methods are usually trained offline based on a large-scale dataset. As long as the
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models are well-trained, predicting the transformation between unseen images performs
solely forward propagation and consumes significantly less computation time. In other
words, the learning-based methods transfer the burdens of computation to offline training
and the well-trained model is dedicated to the specific application learned from the
training dataset. Abundant learning-based studies on medical image registration have
been conducted in the last two decades [132–138]. Particularly, Kim et al. [137] present a
patch-based deformation model using sparse representation. In [136], Gutiérrez-Becker et
al. formulate the prediction of the transformation parameters as supervised regression
using the gradient boosted trees. More recently, deep learning has attracted increasing
attention in the field of medical image registration due to the prominent capability of
feature extraction [119]. Based on the supervision type, the existing deep learning models
can be categorized into supervised, unsupervised/self-supervised, weakly supervised, deeply
supervised, and dual supervised. Specially, [139–142] adopt deep convolutional neural
network (CNN) in a supervised manner which require the ground truth of the deformation
field during the training phase. However, supervised models usually suffer from the
inaccuracy of the ground truth deformation field in the training datasets. In contrast to
supervised learning, weak supervision employs higher-level correspondence information such
as anatomical structural masks or landmark pairs which are more practical to obtain [143].
Some works [86, 144, 145] propose to optimize the similarity match between the fixed
image and the transformed moving image in an unsupervised fashion by resorting to the
spatial transformer network (STN) [146]. Specially, Balakrishnan et al. [145] introduce a
CNN framework based on the UNet structure [147] adopting local cross-correlation as the
similarity measure. In [86], Li et al. construct a multi-resolution registration model which
contains three losses constraining the DVF at different spatial resolutions to maximize the
similarity at different resolutions. In [148], the authors extend their previous work [145]
by employing average Dice score of the segmented regions as the auxiliary loss. Fan et
al. [139] present a modified UNet named BIRNet which uses multi-channel input and
hierarchical loss based on dual supervision. Particularly, the loss consists of a supervised
part which measures the deviation of the deformation field and an unsupervised part which
drives the similarity match between the fixed and the warped moving image. However,
due to the computational complexity, BIRNet requires 17.4s to register a pair of images of
size 220×220×184.

Autoencoder network has achieved promising performance in multiple medical image
processing applications such as lesion detection, tumor segmentation, and image denoising.
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By propagating the high-frequency information from the encoder path directly to the
decoder path, autoencoder architecture is able to preserve local information and meanwhile
obtain large receptive field. In this work, a fast deformable registration network FDRN is
proposed based on the autoencoder backbone. One challenge of 3D image registration is
the huge memory consumption which prohibits the deepening of the network. In order
to address the issue, instead of using channel concatenation as VoxelMorph [148], an
elementwise additive forwarding between the encoder and the decoder layer is utilized and
the saved memory is exploited to deepen the network. In order to enhance the learning
efficiency of the proposed deep model, deep supervision is leveraged at the bottom layer of
smallest resolution to guide the convergence of the network and adopt skip connection
in both encode and decoder stages to enable residual learning. Aiming for utilizing the
available segmentation prior, a multi-label segmentation loss is proposed which improves
the registration accuracy efficiently without inducing additional memory cost. Experiments
show that the proposed FDRN achieves better performance than the investigated state-of-
the-art registration methods for brain MR images. Although FDRN is evaluated on the
brain MRI datasets, in fact, FDRN is a generalized registration model and is not limited
to a particular type of image or anatomic structure.

4.1.2 Registration Method

The proposed FDRN is based on a compact encoder-decoder structure as demonstrated
in Fig. 4.1. FDRN has a two-channel input which consists of a fixed and moving image
pair and outputs a three-channel DVF. Based on the output d(X), the moving image M is
resampled at the transformed nonvoxel location φ(X) = X+d(X) and a similarity match
between the fixed image F and the transformed moving image φ ◦M is measured and
optimized. Therefore, the registration network can be trained in an unsupervised scheme
regardless of the ground-truth DVF. Particularly, the encoder path extracts the features at
different resolutions and meanwhile enlarges the receptive field by convolutions with stride
2. Each convolution is followed by the instance normalization and PreLU. Skip connection
is utilized at each encoder and decoder stage to enable residual learning and prevent from
gradient vanishing. Besides, due to the fact that the registration of low-resolution (LR)
images is easier to learn, an auxiliary loss is involved at the bottom of the encoder path to
punish the misalignment of the LR image pairs. In addition, the weight of the LR loss is
gradually decayed along with the training and the model is fine tuned in the end fully
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Figure 4.1: Schematic illustration of the structure of the proposed FDRN. Some feature
maps are demonstrated beside the layers. Variable c depicts the amount of
channels in the first layer and k represents the number of convolutions at each
encoder-decoder stage. For the baseline model, c = 8,k = 1 and for FDRN,
c = 16,k = 2.

based on the main loss in high-resolution (HR) grid such that the LR auxiliary loss guides
the convergence of the network in the early training phase which imitates the coarse-to-fine
registration strategy applied in the conventional multi-resolution registration methods.
On the decoder side, the extracted features are fused and the feature maps are enlarged to
restore the original image dimension. To circumvent the checkerboard artifacts induced
by deconvolution, nearest neighbor (NN) interpolation is combined with 3D convolution
as the upsampling operation. In order to save memory and preserve the high-frequency
features, additive forwarding is performed from the encoder path to the corresponding
decoder path. Last but not least, a multi-label segmentation loss (SL) is introduced to
further boost the performance of the registration. Comparing to the average Dice score
adopted in [148], the proposed SL does not require additional memory during the training
regardless of the number of classes.

For the sake of clarity, different structure variants of the proposed architecture are indicated
by c - k in the latter formulation where c represents the amount of channels in the first
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layer and k denotes the number of convolutions at each encoder and decoder stage.
Aggregating the loss functions of different resolutions, the overall loss is formulated as

Loverall = (1−λ )LHR +λLLR. (4.2)

The parameter λ is exponentially decreased from 0.5 to 0 so that the HR loss dom-
inates the learning gradually in the training phase. The LHR and LLR are defined as

LHR =−D(FHR(X),φHR ◦MHR(X))+α1R(φHR)+α2SL(φHR),

LLR =−D(FHR(X), [φLR ◦MLR(X)]↑)+α3R(φLR),
(4.3)

where D denotes the data term, φHR and φLR indicate respectively the deformation field
in the HR and LR grid. Inspired by [148], local normalized cross-correlation (LNCC)
is adopted as expressed in Eq. (4.4) to quantify the similarity measure. Comparing to
normalized cross correlation (NCC), it turns out that LNCC converges faster and better for
large training patchsize. [ · ]↑ represents the upscaling operation and in this work, trilinear
interpolation is in use. α1,α3 are the weights of the regularization terms and α2 indicates
the weighting parameter of the segmentation loss.

D(F,φ ◦M) =
Ω

∑
Xi

(
∑

Ωi
X (F(X)−FΩi)(φ ◦M(X)−φ ◦MΩi

)
)2

(∑
Ωi
X (F(X)−FΩi)

2)(∑
Ωi
X (φ ◦M(X)−φ ◦MΩi

)2)
(4.4)

In the formulation of LNCC by Eq. (4.4), FΩi denotes the mean of the local region Ωi

centered at voxel Xi with size of n3. φ ◦MΩi
represents the mean of the corresponding

region in the transformed moving image. In this work, the window size is chosen as
n = 9.

The regularization R imposes smoothness on the deformation field φ . As φ is a linear
combination of the identity transform X and the expected DVF, the constraint is directly
applied on the DVF d(X) by

R(d(X)) = ∑
Sk

||d(X)−Skd(X)||22, (4.5)

where Sk indicates the shifting operator along (u,v,w) direction by vector k with k =

{(u,v,w) | u,v,w ∈ {0,1}} and || · ||22 represents the L2-norm. Comparing to the L1-norm
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total variation (TV), L2-norm is differentiable at 0 and leads to a considerable faster
convergence.

The segmentation loss SL serves to punish the misalignment between the labels of the
fixed image LF and the transformed moving image φ ◦LM. In [148], average Dice score
(ADS) is adopted to regularize the DVF based on the segmentation labels. In fact,
multi-label dice score is originally used for segmentation applications. Acting as the
regularization for volumetric deformable registration, ADS has two major drawbacks.
Firstly, the leverage of ADS for large 3D image induces noticeable additional memory
cost during the training which prohibits the deepening of the network. Secondly, the
memory consumed by ADS increases linearly with the number of segmentation classes.
For instance, a label volume of size 160×208×176 with 56 classes as brain MRI dataset
LPBA40 requires 1.3GB during training. In order to tackle this issue, a multi-label SL is
proposed as

SL(φ) =
(c1 +1)|LF −φ ◦LM|1

|LF |1 + |φ ◦LM|1 + c1|LF −φ ◦LM|1 + c2
, (4.6)

where LF and LM represent respectively the labels of the fixed image and the moving image.
c1 and c2 are nonnegative constants. c1 weights the punishment of the inconsistency
between LF and φ ◦LM and c2 serves to prevent zero division. Comparing to ADS, the
proposed segmentation loss does not require extra memory but depends on the value of
the individual label.

For the transformation of the moving image φ ◦M(X), trilinear interpolation of M(X) is
performed at the transformed nonvoxel locations φ . Mathematically, the resampling of
M(X) at the transformed location φ is formulated as

φ ◦M(X) = ∑
n∈N(φ(X))

M(n)∏
m∈{u,v,w}

(1−|φm(X)−nm|), (4.7)

where N(φ(X)) denotes the coordinates of the neighbors of the transformed nonvoxel
location in the moving image M(X) and n represents the coordinates of the individ-
ual neighbor. m is an indicator and iterates over the dimensions of the moving im-
age.
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4.1.3 Experiments and Results

In this section, the proposed FDRN is evaluated from different aspects. Particularly,
in Section 4.1.3 FDRN is trained on the LONI LPBA40 dataset [149] which contains
T1-weighted brain MR images. FDRN is compared with the state-of-the-art registration
methods including the traditional method symmetric image normalization SyN [122], the
deep learning-based methods Li et al. [150], and VoxelMorph [145]. In Section 4.1.3, the
well-trained FDRN is evaluated on other unseen MRI datasets including CUMC12 [151],
MGH10 [151], ABIDE [152] and ADNI [153]. Section 4.1.3 consists of the model analy-
sis.

Datasets and Preprocessing

The LPBA40 dataset contains brain MR images of 40 neurologically intact nonepileptic
subjects with segmentation labels for 56 brain regions. All of these MR images were firstly
registered to the Montreal Neurological Institute (MNI) space using affine transformation
based on the ICBM152 template [154] as preprocessing. The registered images were then
cropped to the size of 160×208×176. The 40 cropped images were partitioned into 30,
4, and 6 for training, validation, and testing, respectively. In addition, experiments were
conducted on the unseen CUMC12, MGH10, ABIDE and ADNI MRI datasets to evaluate
the generalizability of the well-trained FDRN. Specially, CUMC12 contains 12 MR images
with 128 labeled regions and MGH10 consists of 10 subjects with 74 segmented regions. 10
random images were individually selected from ABIDE and ADNI which do not contain
segmentation labels. The experimental results are demonstrated in Section 4.1.3 and
Section 4.1.3.

Evaluation Metrics

Apart from NCC which measures the cross correlation based on intensity values, the
registration performance is evaluated using Dice score [155] to quantify the overlap of
labels for each segmented region by

Dice(A,B) =
2|A∩B|1
|A|1 + |B|1

, (4.8)
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where A and B indicate binary images which represent the individual label in the fixed
and moving image, respectively. Furthermore, the perception-based metric, structural
similarity index measure (SSIM) [156], is adopted to aid the assessment in visual quality
in terms of luminance, contrast and structure defined by

SSIM(A,B) =
(2µAµB + c1)(2σAB + c2)

(µ2
A +µ2

B + c1)(σ
2
A +σ2

B + c2)
, (4.9)

where µA,µB,σA,σB denote the mean and standard deviation of the image A and B. σAB

indicates the covariance between image A and B. c1,c2 are small positive constants to
stabilize the division with weak denominator. An SSIM of 1 indicates a perfect anatomical
match.

Implementation Details

FDRN was implemented with a Pytorch backend. As FDRN is trained in an unsupervised
manner, in order to ensure the existence of the corresponding voxels in the input pair
especially at the image boarders, the network is fed with the whole image of size 160×
208×176. Due to the memory limitation, a mini-batch of size 1 was used. Adam with
β1 = 0.9,β2 = 0.999 was used as the optimizer. The initial learning rate was set as 0.002
and multiplied by 0.9 every 1000 iterations until decreased to 0.0001 over 70 epochs. The
weighting parameters α1,α3 for the regularization R were set as α1 = 1×10−8,α3 = 8α1.
The weight λ of LLR was implemented as 0.5(1+i/1000) with i being the index of the iteration
and 0.5 as the initial weight. The weight of the segmentation loss SL was tuned as α2 = 0.2
and the parameters in SL were set as c1 = 10,c2 = 10−9. A detailed analysis of the
hyperparameters α2 and c1 is carried out in Section 4.1.3. It is worthy noting that the
above-mentioned hyperparameters were tuned in a trial-and-error manner on the validation
dataset and the ones generating the best Dice score were selected. The experiments were
performed on the NVIDIA GeForce GTX 1080 Ti with 11GB GDDR5X and the Intel(R)
Xeon(R) E5-2650 v2 CPU.

Evaluation on LPBA40 Dataset

A comparison with the state-of-the-art deformable registration methods SyN [122], Li et
al. [86], and VoxelMorph [148] on the public LPBA40 dataset was conducted. Li’s model



98 4. Super-Resolution for Image Registration

L s
up

er
ior

 fr
on

ta
l g

yr
us

R 
su

pe
rio

r f
ro

nt
al 

gy
ru

s

L m
idd

le 
fro

nt
al 

gy
ru

s

R 
m

idd
le 

fro
nt

al 
gy

ru
s

L i
nf

er
ior

 fr
on

ta
l g

yr
us

R 
inf

er
ior

 fr
on

ta
l g

yr
us

L p
re

ce
nt

ra
l g

yr
us

R 
pr

ec
en

tra
l g

yr
us

L m
idd

le 
or

bit
of

ro
nt

al 
gy

ru
s

R 
m

idd
le 

or
bit

of
ro

nt
al 

gy
ru

s

L l
at

er
al 

or
bit

of
ro

nt
al 

gy
ru

s

R 
lat

er
al 

or
bit

of
ro

nt
al 

gy
ru

s

L g
yr

us
 re

ct
us

R 
gy

ru
s r

ec
tu

s

L p
os

tc
en

tra
l g

yr
us

R 
po

stc
en

tra
l g

yr
us

L s
up

er
ior

 p
ar

iet
al 

gy
ru

s

R 
su

pe
rio

r p
ar

iet
al 

gy
ru

s

L s
up

ra
m

ar
gin

al 
gy

ru
s

R 
su

pr
am

ar
gin

al 
gy

ru
s

L a
ng

ula
r g

yr
us

R 
an

gu
lar

 g
yr

us

L p
re

cu
ne

us

R 
pr

ec
un

eu
s

L s
up

er
ior

oc
cip

ita
l g

yr
us

R 
su

pe
rio

ro
cc

ipi
ta

l g
yr

us

L m
idd

le 
oc

cip
ita

l g
yr

us
0.

3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Dice score

Af
fin

e
Sy

N 
(A

NT
s)

Li 
et

 a
l.

Vo
xe

lM
or

ph
FD

RN

Fi
gu

re
4.
2:

B
ox

pl
ot
s
of

th
e
av
er
ag
e
D
ic
e
sc
or
es

of
54

la
be

le
d
an

at
om

ic
al

re
gi
on

s
fo
r
th
e
30

te
st
in
g
im

ag
e
pa

irs
fr
om

th
e
pu

bl
ic
ly

av
ai
la
bl
e
LP

B
A
40

br
ai
n
M
R
Id

at
as
et
:
Pa

rt
I.



4.1. FDRN: Fast Deformable Registration Network 99

R 
m

idd
le 

oc
cip

ita
l g

yr
us

L i
nf

er
ior

 oc
cip

ita
l g

yr
us

R 
inf

er
ior

 oc
cip

ita
l g

yr
us L c

un
eu

s
R 

cu
ne

us

L s
up

er
ior

 te
m

po
ra

l g
yr

us

R 
su

pe
rio

r t
em

po
ra

l g
yr

us

L m
idd

le 
te

m
po

ra
l g

yr
us

R 
m

idd
le 

te
m

po
ra

l g
yr

us

L i
nf

er
ior

 te
m

po
ra

l g
yr

us

R 
inf

er
ior

 te
m

po
ra

l g
yr

us

L p
ar

ah
ipp

oc
am

pa
l g

yr
us

R 
pa

ra
hip

po
ca

m
pa

l g
yr

us

L l
ing

ua
l g

yr
us

R 
lin

gu
al 

gy
ru

s

L f
us

ifo
rm

 g
yr

us

R 
fu

sif
or

m
 g

yr
us

L i
ns

ula
r c

or
te

x

R 
ins

ula
r c

or
te

x

L c
ing

ula
te

 g
yr

us

R 
cin

gu
lat

e g
yr

us L c
au

da
te

R 
ca

ud
at

e
L p

ut
am

en
R 

pu
ta

m
en

L h
ipp

oc
am

pu
s

R 
hip

po
ca

m
pu

s
0.

3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Dice score

Af
fin

e
Sy

N 
(A

NT
s)

Li 
et

 a
l.

Vo
xe

lM
or

ph
FD

RN

Fi
gu

re
4.
3:

B
ox

pl
ot
s
of

th
e
av
er
ag
e
D
ic
e
sc
or
es

of
54

la
be

le
d
an

at
om

ic
al

re
gi
on

s
fo
r
th
e
30

te
st
in
g
im

ag
e
pa

irs
fr
om

th
e
pu

bl
ic
ly

av
ai
la
bl
e
LP

B
A
40

br
ai
n
M
R
Id

at
as
et
:
Pa

rt
II
.



100 4. Super-Resolution for Image Registration

and VoxelMorph were reproduced and trained in Pytorch according to their original paper.
Specially, for Li’s method, the full image was used as the input with a mini-batch of one
and tuned the weight of the TV regularization as λ = 1×10−9 for best Dice performance.
With regard to VoxelMorph, NLCC was utilized as the main loss, L2-norm smoothness as
the regularization, and average Dice score as the auxiliary loss. The weight of the Dice loss
was tuned as 0.1 and the model was trained over 70 epochs. ANTsPy, the Python wrapper
for the Advanced Normalization Tools (ANTs) [157], was employed to implement SyN.
Particularly, cross correlation (CC) was adopted as the similarity measure and instead of
using the default iterations (40,20,0), the iterations were set as (100,40,10). To achieve
a better accuracy, the sampling bins were set as 60 instead of the default 32. 30 MR
images were used as the training data and the remaining 10 images were utilized for
validation and testing. Every permutation of pairs out of the 30 images (total of 870
permutations) was used as the input during the training. In the testing phase, each of the
6 images was chosen as the fixed image and the rest 5 images were registered to it (total
of 30 pairs of images). The performance of SyN, Li’s method, VoxelMorph, the baseline
model, and FDRN was quantified using Dice score, NCC, and runtime as summarized
in Table 4.1. Particularly, VoxelMorph with and without the ADS loss were used in
comparison. As depicted, all the CNN-based methods perform hundreds times faster than
the traditional SyN. Comparing to VoxelMorph, the baseline model obtains comparable
Dice and nearly halves the inference time by discarding the channel concatenation. FDRN
extends the baseline model and improves the Dice and NCC efficiently by enlarging the
network capacity. Comparing to VoxelMorph with ADS, 16-2 consumes similar training
memory (about 10.8GB) and inference time and achieves a performance gain of 1.46% in
Dice score. It is worth noting that the runtime is accumulated purely for the registration
step without concerning the preprocessing and image loading. Additionally, the Dice score
of each anatomical structure labeled in LPBA40 is depicted in the boxplots in Fig. 4.2
and Fig. 4.3. It is shown that FDRN performs best among the investigated methods for
nearly all the labeled regions.

In order to evaluate FDRN visually, one image from the 6 testing images in LPBA40 was
selected as the fixed image and the remaining 5 images were registered to it. The average
of the 5 registered images was illustrated along with the transformed labels, the mean
Dice score, NCC and SSIM of different methods in Fig. 4.4. In addition, to visualize the
individual registration performance, the deformation field and the corresponding DVF of an
image pair were demonstrated for Li’s method, VoxelMorph, and FDRN. It is shown that
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Table 4.1: Comparison of different registration methods on the testing images with size of
160×208×176 in the LPBA40 MRI dataset by average Dice score, NCC, and
runtime. ADS: Average Dice score; SL: Segmentation loss. Best results are in
bold.

AffineSyN [122]Li et al. [86]VoxelMorph [145] Baseline(8-1) FDRN(16-2)

– – – – w/o ADSw/ ADSw/o SLw/ SLw/o SLw/ SL

Dice 0.6079 0.6805 0.6689 0.6746 0.6897 0.6764 0.6898 0.6882 0.7043

NCC 0.9506 0.9876 0.9962 0.9973 0.9971 0.9969 0.9966 0.9978 0.9975

GPU/CPU(s) –/– –/5658.19 0.37/24.06 0.26/18.02 0.14/7.93 0.29/25.62
SyN was conducted by ANTsPy and executed on the Intel(R) Xeon(R) E5-2650 v2 CPU.

the average images of affine and SyN are severely blurred which indicates an inaccurate
registration and a weak robustness against different variants of the moving image. Compar-
ing to VoxelMorph, FDRN provides a sharper average image and more reliable registered
labels which resemble the labels of the fixed image better.

Evaluation on Unseen Brain MRI Datasets

The generality of the pretrained FDRN is evaluated on different unseen brain MRI datasets
including CUMC12, MGH10, ABIDE and ADNI. Particularly, a standard preprocessing
was conducted as mentioned in Section 4.1.3 and performed subject-to-subject registration
for all the datasets where each of the images behaved as the fixed image and the remaining
ones were registered to it. Experimental results are quantitatively summarized in Table 4.2.
It is shown that FDRN performs best in Dice and NCC in all the unseen datasets by
resorting to the large network capacity and efficient learning.

Model Analysis

Model variants: In order to analyze the network structure, experiments on different model
variants in terms of model depth and width were conducted. As illustrated in Fig. 4.5, the
green, blue, and magenta markers represent different variants of the proposed network
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g) Fixed image
Dice: −
NCC: −
SSIM: −

a) Affine
Dice: 0.5982 
NCC: 0.9496
 SSIM: 0.6980

c) Li et al.
Dice: 0.6506
NCC: 0.9964
SSIM: 0.8807

d) VoxelMorph
Dice:  0.6791
NCC:  0.9966
SSIM: 0.9181

b) SyN (ANTs)
Dice: 0.6756
NCC: 0.9877
SSIM:  0.7989

e) FDRN
Dice: 0.6900
NCC: 0.9973
SSIM: 0.9302

Figure 4.4: Visual evaluation of different registration methods on LPBA40 MRI dataset.

architecture. Following the same notation manner in Section 4.1.2, the VoxelMorph in
Table 4.1 without and with ADS is respectively denoted as VM (16-0) and VM (16-0-ADS).
The one with double features is indicated as VM(32-0) and Li’s method is represented by
Li (32-0). As expected, deepening and widening the network increase the model capacity
and improve the Dice score. It is shown that deepening the model from 8-1 to 8-2 improves
the Dice less than widening the channel to 16-1 because 16-1 has 2.4 times parameters as
8-2. Additionally, the performance of using channel concatenation (CC) instead of additive
forwarding is presented. It is shown that comparing to 8-1, 8-1 (CC) indeed improves
Dice but it nearly doubles the training memory (about 10.2GB) with which 16-2 (about
10.8GB) could be almost adopted, while 8-2 (CC) uses more than 13GB. Comparing to
VM (16-0-ADS), the baseline model 8-1 achieves comparable Dice with nearly half of the
runtime. 16-2 consumes similar runtime and training memory as VM (16-0-ADS) but
contains 7.1 times model parameters. In Table 4.3, the amount of parameters required in
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Table 4.2: Comparison of different deformable registration methods on the unseen
MGH10, CUMC12, ABIDE and ADNI MRI datasets. Average Dice score of
CUMC12 and MGH10 were calculated based on 7 segmented structures. 10
randomly chosen samples individually from ABIDE and ADNI were used for
evaluation. Best results are in bold. (ADS was used in VoxelMorph.)

Dataset Metrics Affine SyN [122] Li et al. [86] VoxelMorph [145] FDRN

MGH10 Dice 0.6474 0.6699 0.6726 0.6678 0.6865
NCC 0.7176 0.8615 0.8918 0.9049 0.9075

CUMC12 Dice 0.6111 0.6531 0.6617 0.6517 0.6669
NCC 0.6603 0.7931 0.8300 0.8486 0.8603

ABIDE NCC 0.7793 0.8739 0.9011 0.9203 0.9324
ADNI NCC 0.8078 0.8852 0.9127 0.9279 0.9399

Table 4.3: Number of required parameters in different networks. VM: VoxelMorph; CC:
Channel concatenation. (8-1: Baseline, 16-2: FDRN)

Models 8-1 8-1(CC) 8-2 8-2(CC) 8-4 16-0 16-1 16-2 Li(32-0)VM(16-0)VM(32-0)
#Params 285K 665K 466K 1.0M 830K397K1.1M1.8M 695K 252K 1.0M

different model variants is listed.

Deep supervision: The effectiveness of deep supervision on the convergence of FDRN is
evaluated. Particularly, the proposed FDRN is compared with the variant without the LR
loss. As mentioned in Section 4.1.2, the LR loss is weighted by an exponentially decayed
weighting factor λ so that FDRN learns a rough registration in the beginning from LR
images and subsequently improves the registration accuracy fully based on the HR loss.
In Fig. 4.6 a), it is shown that the convergence rate of FDRN is noticeable faster than
the one without deep supervision since the early training phase. In the right figure, the
impact of the deep supervision on the Dice score over epochs is demonstrated. Comparing
to adopting larger learning rate, the proposed deep supervision accelerates the convergence
and meanwhile improves the registration accuracy.

Segmentation loss: The impact of the weighting factor α2 and the parameter c1 of the
segmentation loss on the Dice and NCC is evaluated. As depicted in Fig. 4.7 a), when
α2 increases, the segmentation loss gradually dominates the loss function which leads to
a high Dice score. However, NCC drops severely when α2 > 1 which indicates that the
segmentation loss might have overfitted the Dice score and result in an unrealistic DVF.
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Figure 4.5: Dice performance and runtime of different model variants on LPBA40 dataset
with α2 = 0.3. (8-1: Baseline, 16-2: FDRN)

In the experiment, α2 was set as 0.2 for good performance of both Dice score and NCC.
In the right figure, it is shown that the Dice is fine tuned by c1 and NCC seems rarely
effected.

Ablation Study: In the ablation study, the behavior of the different network variants is
analyzed, including the removal of additive forwarding (AF) linking the encoder path to
the decoder counterpart, the residual learning (RL) within the encoder and decoder stages,
the LR loss for deep supervision (DS), and the segmentation loss SL. The experiments
were performed on the LPBA40 dataset and evaluated by average Dice score and NCC
as depicted in Table 4.4. It is shown that AF improves both the Dice score and NCC by
directly forwarding the extracted fine features. RL seems to contribute less to the Dice
score and NCC than AF but it alleviates the gradient vanishing during the convergence.
DS mainly accelerates the convergence rate and has a strong impact on the Dice score
especially in the early training epochs. The proposed SL improves the Dice score by 1.93%.
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Figure 4.6: Impact of deep supervision on the model convergence (α2 = 0.3): a) Loss
function over epochs; b) Dice score over epochs.
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Figure 4.7: Effectiveness of the segmentation loss: a) Weight α2 of the segmentation loss
(c1 = 5); b) Parameter c1 of the segmentation loss (α2 = 0.3).

4.1.4 Discussion

The huge memory demand for 3D medical images limits the capacity of the registration
network. In order to more efficiently exploit the memory resource, a compact deformable
registration network FDRN is proposed based on the autoencoder backbone which achieves
better performance in both registration accuracy and runtime comparing to the investigated
state-of-the-art methods including symmetric image normalization (SyN), Li’s method,
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Table 4.4: Ablation study of the proposed FDRN based on average Dice score and NCC
over all the segmented structures on the LPBA40 dataset with model 16-2
(α2 = 0.3,c1 = 5). AF: Additive forwarding; RL: Residual learning; DS: Deep
supervision; SL: Segmentation loss.

AF 7 3 3 3 3

RL 3 7 3 3 3

DS 3 3 7 3 3

SL 3 3 3 7 3

Dice/NCC 0.7001/0.9955 0.7046/0.9972 0.7048/0.9974 0.6882/0.9978 0.7075/0.9973

and VoxelMorph for brain MR images. Specially, the baseline model achieves comparable
Dice as VoxelMorph and consumes nearly half of the runtime. FDRN improves the
registration accuracy by enlarging the model capacity and obtains a performance gain
of 1.46% in average Dice in comparison to VoxelMorph. Experiments show that the
average of the registered images by FDRN contains sharper anatomical structures than the
other methods and the average transformed labels resemble the labels in the fixed image
most which indicate that FDRN has a better registration accuracy and strong robustness
against different variants of the moving image. With regard to the computation time, the
learning-based methods accomplish deformable registration of images of size 160×208×176
within 0.5s on the GPU and perform hundreds times faster than the traditional SyN on
the CPU. Comparing to VoxelMorph, the baseline model halves the inference time and
achieves comparable Dice. FDRN consumes similar runtime as VoxelMorph and contains
7.1 times parameters. It is necessary to mention that FDRN is a generalized model for
deformable registration and is not limited to brain MR images. It can also be applied to
other anatomical structures or CT images.

4.2 REM: Resolution Enhancement Module

Deep learning brings up a new generation of SR. Since the emergence of SRCNN [13],
learning-based SR has been intensively studied for different applications from different
aspects such as perceptual quality and upscaling factor. Many representative models [17–
22,84] advance the state-of-the-art by adopting residual learning [18], dense connection [84],
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Figure 4.8: Structure of the proposed REM.

GAN [19, 21, 158], enhanced depth [17], channel attention [20], plug-and-play [22] to count
a few. As a matter of fact, all the abovementioned deep learning-based SR models benefit
from the extremely distinguished capability of CNN for feature extraction. Inspired by
the work of Dai et al. [159], we intend to combine SR with registration task and propose a
cascaded network for enhancing the performance of image registration. To this end, our
resolution enhancement module (REM) serves as an auxiliary network and is desired to be
a handy plug-in which is simple yet effective.

4.2.1 Architecture of REM

The structure of the proposed REM is schematically illustrated in Fig. 4.8. In order to
circumvent the architecture design with a predefined upscaling factor, REM processes the
input image of the same size as the output image. The neat structure contains successive
3D convolutional layers with Rectified Linear Unit (ReLU) inbetween. Residual learning
is adopted to improve the learning efficiency and achieved by skip connection. The 3D
kernel size is set as 3×3×3. The number of intermediate convolutional layers is indicated
by n and the amount of filters in convolutional layers is denoted by k. Usually, the larger
n and k are, the better the performance is. To hold a compact design, based on empirical
observations n≤ 16 and k≤ 16 are adopted since larger n and k bring limited performance
gain for brain MR images while consume much resources. Due to the fact that REM does
not alter the dimension of the input, it can be straightforwardly embedded into other
vision tasks.
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4.2.2 Evaluation of REM

Firstly, an experimental study of the configuration of REM is performed. Due to the
extremely large memory consumption of dense connection for 3D images, the usage of
dense connection is avoided and two types of residual learning are explored: residual
on image and residual on features as illustrated in Fig. 4.9. REM-Variant1 draws skip
connection directly from the input to the output so that the CNN model purely learns
the high-frequency information, while REM-Variant2 applies residual learning on the
intermediate feature maps. The same amount of convolutional filters and convolutional
layers are used for both variants. In addition, for each variant, two configurations are
constructed: k8n6 and k12n4. Each of the variants is well trained on the same LPBA40
dataset over 1000 epochs. The performance of each variant is evaluated quantitatively
by PSNR and SSIM as summarized in Table 4.5. It is shown that variant1 performs
better than variant2 in PSNR and SSIM. In fact, variant1 converges also much faster than
variant2. It is worthy noting that usually the model capacity increases when the network
goes deeper and wider. Depending on the performance requirement and data complexity,
REM is not confined to a specific configuration.

Secondly, the performance of REM (16-8) for the upscaling of 2× (marked by blue rectangle)
and upscaling of 4× (marked by green rectangle) on LPBA40 dataset is demonstrated in
Fig. 4.10. Rows from top to bottom represent axial, coronal, and sagittal view, respectively.
REM is compared with the trilinear interpolation. It is shown that REM improves the
visual quality significantly by generating sharper contours and providing better visibility
of the detailed structures. Besides, the quantitative assessment for both methods in PSNR
and SSIM is depicted and REM achieves significantly better results for both upscaling
factors which coinsides with the visual perception.

Thirdly, a wide parameter sweep of the configurations is performed. We set the channel
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Figure 4.9: Two REM variants with the same number of model parameters. REM-Variant1:
residual on image; REM-Variant2: residual on extracted features. (Best viewed
in color.)



4.2. REM: Resolution Enhancement Module 109

Table 4.5: Evaluation of different REM configurations in PSNR and SSIM. The notations
k8n6 and k12n4 indicate the configuration of k = 8,n = 6 and k = 12,n = 4,
respectively.

REM-Variant1 REM-Variant2

k8n6 k12n4 k8n6 k12n4

Scale 2× 44.98/0.9951 45.19/0.9953 44.57/0.9945 44.92/0.9950

Scale 4× 37.23/0.9660 37.26/0.9661 36.99/0.9639 36.89/0.9636

# Parameters [K] 10.8 16.2 10.8 16.2

Train/Test Memory [GB] 6.30/1.69 6.85/2.05 6.30/1.69 6.85/2.05

Table 4.6: Number of network parameters and required inference memory of
different variants.

Models 8-8 16-8 16-16 32-8 32-16 64-8 64-16
#Params. 14.3K 56.3K 111.7K 223.2K 444.6K 888.8K 1.7M

Test Memory [GB] 1.7 2,4 2.4 3.8 3.8 6.7 6.7

number k = 8,16,32,64 and the number of intermediate convolutional layers n = 8,16. The
model variants are trained on a patch size of 64×64×64 and mini-batch size of 2. The
performance of all the investigated variants is demonstrated in Fig. 4.11. It is shown that
when k > 16, the benefit margin of PSNR and SSIM is not evidently increased. In addition,
we summarize the number of parameters and the consumed inference memory of the studied
configurations in Table 4.6. In practise, we have chosen k = 16,n = 8 as the configuration
of REM to balance the SR performance and memory usage.
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b) Trilinear 2x
38.49/0.9794

c) REM 2x
46.05/0.9957

a) Ground Truth
PSNR(dB)/SSIM

d) Trilinear 4x
34.11/0.9219

e) REM 4x
38.45/0.9712

Figure 4.10: Visual evaluation of REM for upscaling factors of 2× and 4× on LPBA40
brain MRI dataset. Red: ground truth; Blue: upscale of 2×; Green: upscale
of 4×
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Figure 4.11: Performance evaluation of different REM configurations in PSNR and SSIM
on LPBA40 MRI dataset.
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4.3 ReFDRN and ReVoxelMorph: Resolution-Enhanced FDRN
and VoxelMorph

SR is favored in most of the applications due to the improvement of visual quality. In [159],
Dai et al. demonstrate the effectiveness of resolution enhancement by SR on other vision
tasks including edge detection, semantic image segmentation, digit recognition, and scene
recognition. Some works take advantage of the HR features extracted by SR for specific
vision tasks such as semantic segmentation [160], face recognition [161] and pedestrian
identification [162]. However, these methods require a highly specialized SR approach for
the individual task which makes the embedding of SR less convenient. In this section, a
general framework which combines SR with vision tasks coping with LR input is presented.
To evaluate the framework, the proposed REM is applied on two registration networks
FDRN [59] and VoxelMorph [148] and we denote the resolution enhanced networks as
ReFDRN and ReVoxelMorph. Note that the proposed cascaded framework is not confined
to image registration, it can also be applied to other vision tasks such as image segmentation,
object detection, and scene recognition.

4.3.1 Architecture of ReFDRN

The architecture of the proposed ReFDRN is demonstrated in Fig. 4.12. REM is
connected with FDRN in a cascaded manner. ReFDRN takes LR images as input and
outputs the corresponding SR images and the DVF. The dotted lines in different colors
denote the dataflow for the individual component of the loss function as formulated
in Eq. 4.11. Mathematically, the SR image y and the DVF z can be expressed as

y = REM(x), x ∈ R2×1×L×W×H ,y ∈ R2×1×L×W×H

z = FDRN(ỹ), ỹ ∈ R1×2×L×W×H ,z ∈ R1×3×L×W×H
(4.10)

where ỹ is the rearrangement of y by switching the batch size and the number of channels
since REM needs to treat both input images seperately, while FDRN considers them as an
image pair. The overall loss composes of three components: the main loss Lossmain based
on LNCC, the auxiliary loss Lossaux formulated in Eq. 4.13, and the regularization term
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only during training. Input: LR images; Output: SR images and DVF. (Best
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Lossreg in Eq. 4.14. The weighting parameters λ1 and λ2 serve as a tradeoff between the
main loss and the rest.

Losstotal = Lossmain +λ1Lossaux +λ2Lossreg (4.11)

In particular, the main loss Lossmain focuses on the original vision task, i.e., image
registration, and LNCC is used as in FDRN. The difference is that instead of pro-
cessing on LR input, it performs on the super-resolved SR images as formuated in
Eq. 4.12.

Lossmain =−LNCC
(
φ ◦REM(MLR),REM(FLR)

)
(4.12)

In order to strengthen the fidelity of the output, an auxiliary loss which imposes similarity
constraint directly on the raw input is involved as expressed below based on the Huber
loss.

Lossaux = Huber
(
REM(φ ◦MLR),REM(FLR)

)
(4.13)

Note that the auxiliary loss presented above is elaborately devised for unsupervised image
registration to facilitate the coupling of the cascade and in fact, for other tasks if a proper
design of the auxiliary loss is not available, the two networks can be straightforwardly con-
nected by feeding the output of REM into the following one.
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Besides, following the loss function of FDRN 4.3, regularization on the smoothness of the
DVF is applied:

Lossreg = ∑
Sk

||z−Skz||22, (4.14)

where Sk indicates the shifting operator along (u,v,w) direction by vector k with k =

{(u,v,w) | u,v,w ∈ {0,1}} and || · ||22 represents the L2-norm.

4.3.2 Experimental Results

In order to evaluate the effectiveness of resolution enhancement on image registration,
REM with configuration of 16-8 is plugged into two investigated registration networks
FDRN [59] and VoxelMorph [148]. As described in Section 4.3.1, the same cascade scenaro
is performed for ReVoxelMorph by replacing FDRN with VoxelMorph. The performance
of ReFDRN and ReVoxelMorph are evaluated at scaling factors of 2 and 4 on the brain
MRI dataset LPBA40 [149].

Network training: In order to improve the training efficiency, the REM model is pretrained
on the same LPBA40 dataset as FDRN. In particular, 30 samples out of 40 in LPBA40 are
utilized for training, the rest 4 and 6 are respectively used for validation and testing. The
hyperparameters including the number of convolutional layers and the amount of channels
are tuned in a trial-and-error manner. The fine-tuned REM is then cascaded with the
fresh FDRN. To maintain the visual fidelity of the SR images and ease the training, the
weights of REM are frozen during the training of ReFDRN. The batchsize is set as one
and Adam is utilized as the optimization algorithm. The learning rate is set as 0.002 and
decayed by 0.9 every 1000 iterations until delined to 10−4.

Results: As the proposed REM has shown great performance for spatial resolution
enhancement as depicted in Section 4.2, how does the improved image quality influence
the performance of image registration? The impact of REM on two registration methods
FDRN [59] and VM (short for VoxelMorph [148]) are evaluated following the cascade
scenario as depicted in Fig. 4.12. Specially, FDRN (16-1) and VM (16-0) as denoted in
Table 4.3 are selected in this experiment. The GT volumes are firstly downscaled based
on trilinear interpolation by a factor of 0.5. The image dimension is then restored by a
trilinear upscaling of factor 2. The trilinearly upscaled volume is passed to FDRN and VM
and denoted by FDRN↓↑ and VM↓↑. The same scenario is performed for the scale of 4×.
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Table 4.7: Summary of performance evaluation in Dice and NCC. The subscript ↓↑ denotes
trilinear downsampling the input followed by the trilinear upsampling of the
same scale and ↓ indicates NN downsampling without upsampling. VM is short
for VoxelMorph [148].

Scale Metrics Affine↓ FDRN↓ VM↓ FDRN↓↑ ReFDRN↓↑ VM↓↑ ReVM↓↑

1× Dice 0.6079 0.6810 0.6746 0.6810 – 0.6746 –
NCC 0.9506 0.9976 0.9973 0.9976 – 0.9973 –

2× Dice 0.6001 0.6369 0.6350 0.6797 0.6796 0.6722 0.6741
NCC 0.9511 0.9923 0.9920 0.9963 0.9977 0.9960 0.9970

4× Dice 0.5546 0.5536 0.5551 0.6676 0.6736 0.6593 0.6676
NCC 0.9396 0.9693 0.9695 0.9920 0.9962 0.9916 0.9932

FDRN↓↑ and VM↓↑ are compared with the proposed ReFDRN↓↑ and ReVM↓↑. Besides,
the impact of image dimension on the registration accuracy is also demonstrated. We
perform image registration on the downscaled images and denote them by FDRN↓ and
VM↓. The performance of the affine transformation is set as the baseline. The results
are summarized in Table 4.7. Comparing the columns of FDRN↓↑ and ReFDRN↓↑, VM↓↑
and ReVM↓↑, it is obvious that image sharpness does have strong impact on registration
accuracy and the phenomenon becomes more evident when the input images are more
severely blurred such as for the scale of 4×. Comparing FDRN↓ with FDRN↓↑ and VM↓
with VM↓↑, it is shown that not only the sharpness, but also image dimension plays an
important role on the registration performance.

In Fig. 4.13, we illustrate the visual comparison between the registration performance
using trilinear interpolated images (marked in blue) and the ones using SR images (marked
in green). Firstly, it is shown that the SR images have much sharper structures than
trilinear interpolation with significant improvement in PSNR and SSIM. Since ReFDRN
and ReVM produce not only the DVF but also the super-resolved images, the resolution
enhanced images can be employed for successive medical diagnosis. Secondly, ReFDRN↓↑
and ReVM↓↑ respectively achieve better registration performance than FDRN↓↑ and VM↓↑
in visual perception and quantitatively in Dice and NCC. Additionally, the deformation
fields of the studied methods are exhibited and we do observe noticable differences between
the REM embedded methods and the ones without REM.
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Figure 4.13: Visual evaluation of the impact of REM on registration performance for
scaling factor of 4×. Red: GT; Blue: Trilinear interpolated image and the
corresponding registration result; Green: SR image and the corresponding
registration result.
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4.4 Conclusion

In this chapter, the use of resolution enhancement by SR for image registration is demon-
strated. Firstly, a state-of-the-art CNN-based deformable registration network FDRN
which bases on an encoder-decoder backbone is proposed. Secondly, a light-weight resolu-
tion enhancement module (REM) is presented and evaluated. Finally, a cascade scheme
for REM and the registration network is introduced. The cascaded network copes with
images of undesirable resolution and provides not only the DVF but also the resolution
enhanced images. In the experiments, the cascade scheme is evaluated on two regis-
tration networks FDRN and VoxelMorph at scaling factors of 2× and 4× on LPBA40
brain MRI dataset. It is shown that the embedding of REM not only provides a more
accurate registration by resorting to the improved image quality, not only significantly
improves the visual quality of the input images, which can be utilized for successive
analysis.
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Real-Time RNN-based Super-Resolution

In the previous chapters, SR methods MPG+BTVSW and FL-MISR were presented based
on iterative optimization and GPU acceleration. In this chapter, a hardware-accelerated
deep learning-based SR model is proposed using residual recurrent neural network (RNN)
implemented on field programmable gate array (FPGA) [60]. In Section 5.4.5, it is
shown that the FPGA implementation performs more than 5× faster than the GPU
variant. The proposed ERVSR has a compact RNN structure and supports a SR output
of 3840×2160 at 76 fps which shows a great potential for the use of hardware-embedded
SR in fast CT applications such as inline-CT. Specially, the proposed ERVSR leverages
the input frame and the temporal information of previous frames entailed in the hidden
state to reconstruct the high-resolution counterpart. To reduce the network parameters,
the low-resolution input branch and the hidden state branch are convolved individually
and a channel modulation coefficient is proposed to explicitly guide the network to
allocate the amount of output feature channels to each branch. Additionally, in order
to reduce the memory consumption, a dedicated lightweight compression of the hidden
state is performed by introducing a statistical normalization scheme followed by a fixed-
point quantization. Besides, group convolution and depthwise separable convolution are
adopted to further compact the network. The proposed ERVSR is evaluated on multiple
public datasets from different aspects. Experimental results demonstrate that ERVSR
performs better than the other state-of-the-art FPGA-based VSR methods by a large
margin.

117
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5.1 Previous Work of FPGA-Based Super-Resolution

In the literature, FPGA implementations of multi-frame VSR are mainly built on the tradi-
tional iterative methods such as iterative back projection (IBP) [163,164] and L1BTV [165].
Due to the computationally expensive inter-frame registration and the iterative opti-
mization scheme, the traditional FPGA-based VSR implementations have difficulty in
challenging applications such as upscaling FHD to 4K UHD. In contrast to multi-frame
VSR algorithms, single-frame interpolation-based scaling methods [166–168] reduce the
computational complexity significantly but the reconstruction performance is limited by
the lack of high-frequency details. To exploit the high-frequency information entailed in
external database, Yang et al. [169] propose a learning-based SISR system using anchored
neighborhood regression (ANR) which achieves an output resolution of 1920×1080 (FHD)
at 60 fps. Kim et al. [170] introduce a hardware-friendly architecture based on the edge-
orientation analysis and linear mapping which supports a real-time reconstruction of 4K
UHD video streaming at 60 fps.

More recently, the deep learning-based VSR methods have achieved the state-of-the-art
performance. Particularly, Manabe et al. [171] introduce the FPGA implementation of
a CNN-based SR model SRCNN [13]. Afterwards, a series of works [172–174] propose
CNN accelerators for SR reconstruction based on FSRCNN [14]. He et al. [172] propose
a block-based SR strategy that each frame is cropped into blocks and depending on the
total variation of the blocks, they are either dispatched to FSRCNN or upscaled by simple
interpolation. Based on the work of [172], Shi et al. [174] propose a fast transposed
convolution approach using Winograd algorithm and achieve a frame rate of 120 fps for
upscaling FHD videos to 4K UHD. In [173], Chang et al. present a CNN accelerator for
SISR based on FSRCNN which supports parallelization by transforming the transposed
convolution to standard convolution using their proposed TDC method. Different from
the aforementioned CNN accelerators which are built on SRCNN or FSRCNN, Kim et
al. [112] propose a residual convolutional neural network which employs depthwise separable
convolution to reduce the network parameters. Besides, instead of using 2D convolution,
they adopt 1D horizontal depthwise convolution followed by pointwise convolution to save
the line memories. Their hardware-efficient SR model supports upscaling from FHD to
4K UHD at 60 fps. Comparing to the FPGA implementations of the traditional iterative
multi-frame VSR methods, the DCNN-based implementations achieve significantly higher
PSNR and data throughput. However, due to the limited hardware resources, the existing
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FPGA-based CNN accelerators perform SISR on the video sequence without taking
advantage of the underlying information entailed in the neighboring frames which leads to
temporal inconsistency.

In order to preserve long-term frame information and improve the temporal consistency,
Sajjadi et al. [39] introduce a frame-recurrent VSR network FRVSR which utilizes the
HR estimation of the previous frame to super-resolve the current frame based on motion
compensation. To circumvent the computationally expensive motion estimation, Huang et
al. [38] present a directional recurrent convolutional network which employs 3D feedforward
convolution to capture spatio-temporal patterns for short-term fast-varying motions.
Although they adopt weight-sharing in the recurrent convolutions, due to the complex
network structure, there are still about 42K parameters for the variant with smallest
temporal step which requires 0.48s to perform 2× upscaling for each frame of the Vid4
dataset [108]. Fuoli et al. [175] propose a recurrent latent space propagation (RLSP)
algorithm which uses high-dimensional hidden states to propagate the temporal information
without extra motion compensation. Particularly, multiple LR frames are concatenated
with the previous HR output and the hidden state as the model input. Based on the
shallow and wide network architecture, RLSP can produce 25 fps of FHD video. To the
best of our knowledge, the existing RNN-based VSR approaches are implemented on the
GPU due to the network complexity and have difficulty to fulfill the challenging real-time
requirements of applications such as UHD video services.

Although multi-frame VSR methods have achieved promising performance, registration or
explicit motion compensation of multiple LR frames is extremely resource consuming for
FPGA implementation. In order to preserve the temporal consistency without compro-
mising the data throughput, a residual recurrent convolutional neural network ERVSR is
proposed based on single LR input. It is shown that by resorting to a compact recurrent
network design and efficient residual learning, a hardware-friendly implementation for
VSR on FPGA can exploit temporal information over 30 frames and achieve a frame rate
of 76 fps.
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ERVSR ERVSRERVSR
ht-1

xt-1

yt-1

xt xt+1

yt yt+1

ht ht+1ht-2

Figure 5.1: Schematic illustration of the proposed RNN model. At time t, the network
ERVSR is fed with the LR frame xt and the recurrent input ht−1 and outputs
the HR frame yt with the hidden state ht .

5.2 RNN-Based Video Super-Resolution Method

The proposed hardware-efficient VSR model ERVSR is built on the residual recurrent
convolutional neural network. The overview of the proposed model is illustrated in
Fig. 5.1. As shown, the hidden state is propagated forward along the temporal dimension.
Combining the LR frame with the recurrent input which conveys the temporal information
of the previous frames, ERVSR reconstructs the HR frame along with the associated
hidden state.

5.2.1 ERVSR Architecture

The proposed ERVSR is a fully convolutional recurrent network based on residual learning.
A schematic illustration of ERVSR for an upscaling of r is demonstrated in Fig. 5.2. It
should be noted that only the luminance channel of the LR frame is super-resolved by
ERVSR and the labels above the arrows indicate the number of channels. At time t,
ERVSR is fed with the LR frame xt of dimension W ×H×1 and the HR recurrent input
ht−1 of size W ×H× r2. A sequence of hardware-efficient operations are performed to
generate the hidden state ht and the reconstructed HR frame yt . The network model is
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mathematically formulated as follows:

ht = Netr(xt ,ht−1)

yt = Neto(xt ,ht),
(5.1)

where Netr represents the hidden function of ERVSR which contains most of the func-
tional blocks and Neto indicates the output function. Specially, residual learning is
employed to improve the learning efficiency and prevent from gradient vanishing. Based
on the skip connection embedded in Neto, the reconstructed HR frame yt is expressed as

yt = yn
t + yr

t . (5.2)

yr
t denotes the HR residual image of size rW × rH× 1 and yn

t is the upscaled LR frame
by nearest neighbor (NN) interpolation. It is worthy noting that yr

t is the rearranged
multi-channel ht in the HR grid by pixel shuffle [176] and the upscaling factor r is set as
2.

In order to reduce the network parameters, slow fusion is applied on the two input branches
of the hidden function Netr by performing convolution individually before channel concate-
nation. Additionally, inspired by [112], depthwise separable convolution is adopted instead
of the standard convolution. Specially, 1D horizontal depthwise convolution is performed
followed by a pointwise convolution to achieve large receptive field in the horizontal dimen-
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Table 5.1: Amount of parameters in RB using standard convolution and group
convolution (# of Groups = 2 ).

1×5 DWa 1×1 PWb 1×5 DWc 1×1 PWd Total of MUL

Stand. Conv (32,1,5,32) (32,1,1,16) (16,1,5,16) (16,1,1,32) 1264

Group Conv (32,1,5,32) (16,1,1,8)
(16,1,1,8) (16,1,5,16) (8,1,1,16)

(8,1,1,16) 752

a: 1st DW in RB; b: 1st PW in RB; c: 2nd DW in RB; d: 2nd PW in RB.

sion and reduce the vertical receptive field for saving line memories. To further compact
the network, instead of using standard pointwise convolution, pointwise group convolution
is leveraged in the residual block (RB). Particularly, the number of groups is set as two and
channel shuffle is utilized to enable crosstalk between groups. Comparing to the standard
pointwise convolution, group convolution effectively reduces the amount of parameters by
approximately 40% within the RB as depicted in Table 5.1.

5.2.2 Channel Modulation Coefficient

As depicted in Fig. 5.2, the hidden function Netr consists of two input branches: the LR
frame xt and the hidden state ht−1. It is intuitive to early fuse them by concatenation
along the channel dimension which generates the feature maps of size W ×H× (r2 +1).
However, this is computationally expensive and demands more hardware resources. We
perform slow fusion and introduce a channel modulation coefficient q which addresses the
above deficiency from two aspects. Firstly, the network is explicitly guided to allocate
the feature channel resources to the LR frame and the hidden state branches which
improves the model efficiency. Secondly, convolution is performed individually on each
branch and depending on the coefficient q, a noticeable amount of parameters is reduced.
Specially, the LR branch obtains b32qc feature channels and the hidden state yield the
remaining 32−b32qc channels. The output feature maps are aggregated to 32 channels
and propagated to RB. It is necessary to note that the channel modulation coefficient is a
hyperparameter which needs to be tuned in the range of 1/32≤ q < 1 during the training
phase. In the implementation, the channel modulation coefficient is set as q = 0.65 for
a tradeoff between the quality of the reconstructed SR frame and the model complexity.
Comparing to the naive early fusion, the number of parameters is decreased significantly
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Figure 5.3: Proposed row-based compression scheme for the hidden state. An efficient
normalization is performed rowwise on each channel of the hidden state based
on the estimated Laplacian scale parameter b followed by a fixed-point quanti-
zation.

from 1440 to 612 for the upscale factor of 2×. It should be noted that q is in the range
of 1/32≤ q≤ 1 because there are totally 32 output channels and at least one channel is
required for the input LR image, while q = 1 makes the network non-recurrent which suits
the cases of independent static scences such as image SR. A detailed analysis of q is shown
in Section 5.4.6.

5.2.3 Hidden State Compression

In real-time applications such as UHD video services, the memory required for the
hidden state is fairly considerable for the FPGA implementation. In order to reduce the
memory consumption induced by the recurrent input, a dedicated lightweight compression
scheme is proposed which efficiently quantizes the 16-bit fixed-point hidden state to 4-bit
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Figure 5.4: Demonstration of the effectiveness of the proposed normalization scheme on
archpeople_001 from UDM10 [178]: (a) The hidden state; b) Average of the
histograms of the row profiles and the average distribution fitting; (c) Average
of the histograms of the normalized row profiles; d) Average of the histograms
of the quantized row profiles.

representations so that the memory cost is decreased dramatically. As shown in Fig. 5.3, the
proposed row-based compression strategy consists of two steps: a statistical normalization
followed by a fixed-point quantization. Different from the Min-Max normalization, the
proposed normalization scheme is derived from a statistical model of the hidden state
which behaves more robust to outliers. Particularly, from the experimental observations
it is found that the elements of each row of the hidden state approximately follow a
Laplacian distribution which can be described by a location parameter µ and a positive
scale parameter b. As the hidden state conveys the high-frequency information which
usually centers around zero, for computational efficiency µ is set as 0. In fact, most of
the µ is less than 10−4. The scale parameter bi of the ith row can be predicted by the
maximum likelihood estimation (MLE) [177] as below:
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b̂i =
1

W

W

∑
j=1
|xi j|, (5.3)

where xi j denotes the jth element of the ith row in one feature map of the hidden state
and W indicates the length of the row. As the scale parameter bi is not necessarily the
same for each row, it should be predicted individually. Based on the estimated b̂i, each
element of the ith row xi j is normalized by

xn
i j =

xi j

β ·max(b̂i,bmin)
, (5.4)

where β is a positive scalar which controls the spread of the normalized values and bmin

is used to prevent zero division. As 4-bit fixed-point representations of the hidden state
are required, the word length (WL) is set as 4 and the integer length (IL) as 1 in the
quantization step which covers the dynamic range of [−1,1]. In order to preserve the
high-frequency information in the quantized value xq

i j, β is chosen as 8 to locate the vast
majority of the normalized elements in the interval [−1,1]. In Fig. 5.4, the effectiveness
of the proposed normalization scheme is demonstrated. Specially, Fig. 5.4a shows one
feature map of the hidden state. In Fig. 5.4b, the average histogram of the row profiles of
the hidden state is depicted in blue and the average estimated fitting by Gaussian and
Laplacian distribution in green and orange, respectively. It is shown that the average
histogram of the row profiles closely matches the Laplacian distribution. In Fig. 5.4c, we
illustrate the average histogram of the normalized row profiles by the modified Min-Max
normalization proposed by Kim et al. [112] named Max for brevity in this chapter, the
Z-Score normalization, and the proposed Laplacian normalization. It is shown that for
β = 8, the proposed normalization scheme spreads all the elements naturally in the range
of [−1,1]. Fig. 5.4d demonstrates the average histogram of the quantized row profiles
with WL = 4, IL = 1. It is shown that the Max normalization squeezes most of the values
centered at zero so that it tends to lose the data fidelity due to the quantization effect
especially in the presence of outliers. On the contrary, Z-Score normalization distributes
the values sparsely over a wide range which severely truncates the high-frequency details to
the limit ±1 during the quantization step and degrades the compression performance. The
proposed Laplacian normalization scheme exploits the normalization potential based on
the distribution of the image residuals in the hidden state and preserves the data fidelity
to the best extent during the compression.
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Since the estimated Laplacian parameter b̂i is required to restore xi j in the decompression
step as formulated in Eq. (5.5), b̂i is quantized and stored along with the hidden state.
In the implementation, we set WL = 12, IL = 1 for the quantization of the parameter b̂i.

xd
i j = β · b̂i · xq

i j (5.5)

5.2.4 Loss Function

In this work, Huber loss with δ = 1 is adopted as the loss function because it overcomes
the drawbacks of the L1 and L2 loss. Specially, comparing to the L1 loss, Huber loss
is differentiable at 0 and leads to a faster convergence, while in contrast to the L2 loss,
Huber loss tends to be more robust to outliers. Usually, Huber loss is formulated as

Loss(x, x̂) =
N

∑
i=1

f (xi, x̂i), (5.6)

with x, x̂ being respectively the ground truth (GT) and the estimated image. N denotes
the number of pixels in the image x and f is expressed by

f (xi, x̂i) =

0.5 · (xi− x̂i)
2/δ , |xi− x̂i| ≤ δ ,

|xi− x̂i|−δ/2, |xi− x̂i|> δ .
(5.7)
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5.3 Hardware Implementation

5.3.1 Overview

In this section, the hardware implementation of ERVSR is outlined as illustrated in
Fig. 5.5 where the blue and red arrows indicate respectively the LR frame flow and the
recurrent hidden state flow. The proposed ERVSR architecture was implemented using
Vitis HLS 2020.1. The C/RTL co-simulation is performed in HLS and place-and-route
is conducted in Vivado to verify the functionality and evaluate the resource utilization
and timing of the design. Particularly, the network implementation contains several main
blocks including the standard convolution, depthwise convolution, pointwise convolution,
rectified linear unit (ReLU), channel shuffle, pixel shuffle, NN interpolation, RGB/YCbCr,
YCbCr/RGB, line buffer, weight buffer, and hidden state buffer. The incoming LR frame
is processed line-by-line in a stream-based manner. Odd and even line buffers are utilized
to store the coming streams for performing 3×3 convolutions. The convolution operations
are parallelized along the channel dimension such that the elements at the same spatial
location across feature maps in each layer can be obtained simultaneously and hence, the
required amount of multiplications equals the number of network parameters. The overall
design is pipelined within and between layers so that the proposed system can output r2

reconstructed HR pixels in each clock cycle.
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5.3.2 Implementation Details

Firstly, the model parameters are loaded from the register buffer. The RGB pixels are
converted to YCbCr ones. To perform 3×3 convolution for the Y channel, two line buffers
combining with the input stream are required. As the hidden state has four channels for
r = 2 and each channel needs two line buffers so that ten line buffers are utilized for the
two 3×3 convolutions. The output of the two branches are concatenated and propagated
to RB and the other sequential blocks following Fig. 5.2. The hidden state is passed to
the pixel shuffle and meanwhile compressed and stored in the UltraRAM (URAM). The
NN interpolated Y channel is added to the output of the pixel shuffle to construct the
super-resolved luminance channel. Combining the super-resolved Y channel with the NN
interpolated CbCr channels, YCbCr pixels are converted to RGB ones. Note that the
fixed-point quantization of the weights is conducted offline and the quantization of the
activations is performed on the fly in the HLS implementation. Particularly, we choose
WL = 12, IL = 3 for the weights and WL = 16, IL = 5 for the activations based on the
simulation results shown in Section 5.4.6.

5.3.3 Buffer Allocation

The skip connection yn
t embodied in function Neto is implemented using a FIFO buffer in

the block RAM (BRAM) and the local skip connection in RB is realized with a shift register.
The quantized weights and the scale parameters b are stored in the register and BRAM,
respectively. The hidden state buffer is a crucial component in the hardware design where
parallel read/write access is required. Since the elements in each channel of the hidden state
are read and written sequentially, r2 FIFO buffers are used and each contains N =W ×H
elements. Due to the memory limitation of the BRAM in the target device, the on-chip
URAM is employed for the storage of the hidden state.

5.4 Experiments and Results

In this section, the proposed ERVSR is analyzed and evaluated from different aspects. It
should be noted that all the experiments employed the configuration of q = 0.65, namely
20 feature channels reserved for the LR input and the remaining 12 channels for the hidden
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state. In particular, ERVSR is compared with the state-of-the-art FPGA-based VSR
methods on the public VSR and SR datasets. In order to deal with static images using
the pretrained ERVSR model, an inference strategy named self-initiation is introduced in
Section 5.4.3. In Section 5.4.6, the effectiveness of the channel modulation coefficient, the
statistical normalization scheme, and the recurrent hidden state are individually analyzed.
Last but not least, an ablation study of the critical components of ERVSR is conducted
and the results are shown in Section 5.4.6.

5.4.1 Datasets

Training Dataset: ERVSR was trained based on the publicly available VSR dataset Vimeo
90K [179] which consists of 91701 sequences with the frame resolution of 448×256 and
the sequence length of 7 frames. Due to the lightweight structure of ERVSR, a reduced
version of Vimeo 90K was utilized by randomly selecting 2× 104 sequences as the GT
where 1.4×104 sequences were employed for training and the rest were used for validation.
Specially, random regions of size 128× 128 were cropped from the GT sequences and
downsampled the cropped regions using bicubic interpolation by a scaling factor of r = 2
to generate the LR counterparts. Standard data augmentation techniques such as flipping,
rotation, and scaling were employed during the training to improve the generalizability of
the network.

Testing Datasets: In the testing phase, multiple public VSR datasets were utilized including
Vid4 [108], SPMCS30 [180], and UDM10 [178]. Particularly, Vid4 consists of four sequences
and each of the sequences contains around 30 to 50 frames with the image resolution
of 720× 576. SPMCS30 is composed of 30 sequences with the frame size of 960× 540.
UDM10 is a recently published VSR dataset which contains 10 sequences with the frame
resolution of 1272×720. As image SR can be considered as the specific VSR case with
the sequence length of one, to explore the potential of the pretrained ERVSR for static
image SR, the well-trained ERVSR was applied on the widely used SR datasets Set5 [181],
Set14 [182], BSDS100 [183], Urban100 [184], and Manga109 [185] by using the introduced
self-initiation strategy.



130 5. Real-Time RNN-based Super-Resolution

5.4.2 Training Details

During the training phase, Adam with β1 = 0.9, β2 = 0.999 was utilized as the optimization
algorithm. The initial learning rate was set as 5×10−4 and multiplied by 0.2 every 10
epochs over 150 epochs until it declines to 1×10−6. The mini-batch size was set as 4. The
model was trained on a NVIDIA GeForce GTX1070 GPU and Intel(R) i5 2500 CPU and
the training took approximately 12 hours.

5.4.3 Self-Initiation for Image SR

The proposed ERVSR is devised to make use of the high-frequency information of the
previous frames to estimate the current residual based on a recurrent architecture. As
proposed in the pioneering work [39,175], the recurrent input for the first frame is initialized
with zero indicating no prior information. The initialization scheme performs well for VSR
but seems to be inefficient for image SR reconstruction. In order to achieve promising
performance for single image SR using ERVSR which is pretrained on the video dataset,
an inference strategy named self-initiation which leverages the generated high-frequency
information in the hidden state as the residual prior for itself is introduced. Specially, the
LR image is duplicated to construct a dummy video stream of two frames. The first frame
is dedicated to generating the high-frequency details which are propagated forward by
the hidden state and serve as the image prior for the second frame. The output of the
second frame is the estimated HR image. In fact, it is found that employing more than two
frames makes no further performance improvement. In Section 5.4.6, it is demonstrated
that comparing to the well-trained non-recurrent architecture dedicated to image SR,
the proposed self-initiation scheme enables the pretrained ERVSR for static image SR to
achieve an even improved image quality.

5.4.4 Evaluation Metrics

To quantitatively assess the image quality reconstructed by ERVSR, peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM) are adopted as the
evaluation metrics. Besides, the behavior of the investigated VSR methods on tempo-
ral consistency is demonstrated and evaluated based on visual perception. It should
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be noted that all the quantitative evaluations are performed on the luminance chan-
nel.

5.4.5 Comparison with State-of-the-Arts

The proposed ERVSR is compared with the recently published hardware-efficient VSR
methods including Lee et al. [186], Yang et al. [169], Kim et al. [170], Chang et al. [173],
and Kim et al. [112] quantitatively in PSNR and SSIM, qualitatively in visual perception,
and also in hardware implementations.

Quantitative Evaluation

In order to benchmark the proposed ERVSR with the existing state-of-the-art methods,
experiments on multiple public VSR and SR datasets were carried out. Since the state-
of-the-art FPGA-based VSR methods are only evaluated on the SR datasets in their
original papers and there is no source code available, to conduct comparison on the
VSR datasets, the models of Kim et al. [112] and Chang et al. [173] were reimplemented
in Pytorch and their networks were trained carefully on a GPU following their papers.
The results of the investigated VSR methods are summarized in Table 5.2 where their
published results are marked by asterisks. It is shown that although ERVSR utilizes the
recurrent architecture, due to the compact network design, it has even fewer parameters
than Kim [112]. The fidelity of the reimplementations were validated and the performance
of the reimplemented model of Kim [112] is demonstrated by the 32-bit floating point
representations. It is shown that the reproduced model of Kim [112] generates almost
the same performance as their published ones on the SR datasets. More importantly,
the proposed ERVSR performs better on the VSR datasets than the other representative
methods by a large margin in PSNR and SSIM. With regard to the SR datasets, by means
of the proposed self-initiation scheme, ERVSR performs better especially on the recently
published dataset Manga109. In fact, comparing to the floating-point performance, there
is limited degradation in the hardware implementation due to the quantization effect in
the fixed-point representations.



132 5. Real-Time RNN-based Super-Resolution

Table 5.2: Benchmark comparison on different VSR/SR datasets in average PSNR/SSIM.
32-bit Floating-point (FlP) experiments were conducted by PyTorch on a GPU
device. Fixed-point (FxP) results were obtained from the Vitis HLS C simulation
on a CPU device. The asterisk symbols represent the published results in their
original papers.

Method Yang [169] Kim [170] Kim [112] Chang [173] ERVSR

# Parameters - - 2.56K 2.32K 2.54K

Weight FlP FxP FxP FlP 10bit FxP FlP 13bit FxP FlP 12bit FxP

Activation FlP FxP FxP FlP 14bit FxP FlP 13bit FxP FlP 16bit FxP

VSR datasets PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR
SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM

Vid4 - - - 30.62 - 30.63 - 30.99 30.94
- - - 0.9169 - 0.9159 - 0.9222 0.9209

SPMCS30 - - - 35.16 - 34.98 - 35.30 35.26
- - - 0.9527 - 0.9501 - 0.9535 0.9529

UMD10 - - - 42.08 - 41.67 - 42.40 42.32
- - - 0.9840 - 0.9823 - 0.9843 0.9840

SR datasets PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR
SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM

Set5 34.00* 33.83* 34.78* 36.67 36.64* 36.47 36.40* 36.80 36.76
- - 0.9460* 0.9552 0.9543* 0.9532 0.9527* 0.9556 0.9553

Set14 29.97* 29.77* 31.63* 32.51 32.47* 32.38 32.21* 32.53 32.51
- - 0.9083* 0.9076 0.9070* 0.9059 0.9047* 0.9079 0.9076

BSDS100 - - 30.48* 31.33 31.31* 31.23 31.15* 31.32 31.31
- - 0.8776* 0.8887 0.8877* 0.8873 0.8858* 0.8891 0.8887

Urban100 - - - 29.30 29.32* 29.05 - 29.32 29.30
- - - 0.8954 0.8939* 0.8891 - 0.8957 0.8952

Manga109 - - - 35.37 - 35.03 - 35.83 35.78
- - - 0.9676 - 0.9639 - 0.9684 0.9682
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Figure 5.6: Visual comparison on different video sequences for an upscaling factor of
2. Top row: Region of interest of the reconstructed HR frames by multiple
representative FPGA-based VSR methods. Bottom row: Temporal profiles. a)
Nearest neighbor interpolation; b) Kim et al. [112]; c) Chang et al. [173]; d)
The proposed ERVSR; e) Ground truth.
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Figure 5.7: Power breakdown and DSP block usage of ERVSR.

Temporal Consistency

For VSR applications, an important evaluation criteria is the temporal consistency which
significantly influences the visual perception of the video streams. In order to demonstrate
the effectiveness of the recurrent architecture on the temporal consistency, The temporal
profile of multiple video sequences is shown in Fig. 5.6. Specially, a row profile from a
chosen region in each frame of the sequence is extracted and all the extracted profiles are
stacked along the temporal dimension as depicted in the orange rectangles. Generally,
flickering in video streams appears as jitter and jagged lines in the temporal profile. Sharp
and continuous stacked profiles indicate good temporal consistency. It is shown that
comparing to the other investigated approaches, the proposed ERVSR improves not only
the temporal consistency but also provides a pleasant visual perception with sharper
structures.

Hardware Efficiency

The proposed ERVSR was implemented using Vitis HLS 2020.1 targeting a Kintex Ultra-
Scale FPGA XCKU15P. The hardware configurations of all the studied methods are listed
in Table 5.3. As shown, based on the efficient pipe-line design discussed in Section 5.3,
ERVSR achieves a target operating frequency of 160 MHz and a throughput of 637 Mpixel/s
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Table 5.3: Characteristics of hardware implementations of multiple investigated VSR
methods.

Lee [186] Yang [169] Kim [170] Kim [112] Chang [173] ERVSR

FPGA device /
CMOS Tech. 13µm Altera

EP4SGX530
Kintex

XCKU040
Kintex

XCKU040
Kintex

XC7K410T
Kintex

XCKU15P

Implementation - - - System
Verilog

Vivado HLS
2016.4

Vitis HLS
2020.1

Supported Scales 2, 3 2 2 2 2, 3, 4 2

Methods Sharpening
Lagrange ANR HSI CNN CNN RNN

Output resolution 3840x2160 1920x1080 3840x21603840x2160 2880x1280 3840x2160

Max. Frequency(MHz) 431 136 150 150 130 160

DSP Usage - - 108 1920 1512 1820

LUTs Usage - - 3395 110K 167K 98K

FFs Usage - - 1952 102K 158K 57K

Memory
Size

BRAM(Bytes) - 232K 92K 392K 945K 666K
URAM(Bytes) - - - - - 4176K

Cycles - - - - 2074K 2083K

Power (W) - - - 4.79 5.38 5.47

Throughput
(Mpixels/s) 431 124 600 600 520 (S=2) 637

Power Efficiency
(Mpixels/J) - - - 125.2 96.3 111.0

which supports 76 fps for UHD videos. The power breakdown was evaluated using Xilinx
Report Power by isolating the sub-blocks including RB, 3×3 DS Convs, 3×3 Convs, and
URAM. In Fig. 5.7, the power breakdown and the DSP block usage of the sub-blocks are
depicted. According to the vector (SAIF) based power estimation in Xilinx Report Power,
the total on-chip power dissipation is 5.47W which is comparable to Chang et al. [173]
although ERVSR contains the recurrent hidden state stored in the URAM. Specially, the
power dissipation of 3× 3 DS Convs and RB are respectively 44.1% and 28.3% of the
overall on-chip power consumption and the URAM consumes 3.6%. Besides, it is shown
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Figure 5.8: Analysis of q with 1/32 ≤ q ≤ 1 on the VSR dataset SPMCS30 [180]. Left:
Performance in average PSNR; Right: Number of model parameters.

that the DSP blocks are mostly utilized by the 3×3 DS Convs (42.9%), RB (33.0%), and
3×3 Convs (23.3%). Comparing to the GPU implementation of ERVSR which takes 13
ms for an UHD output on a NVIDIA GeForce GTX1070 device, the proposed FPGA
implementation achieves a speed-up of more than 5×.

5.4.6 Model Analysis

Channel Modulation Coefficient

In order to evaluate the effectiveness of the proposed channel modulation coefficient q,
experimental analysis on a wide spread of q in the range of [1/32,1] was performed. In
Fig. 5.8, we demonstrate the impact of q on the image quality assessed in PSNR and
the model complexity depicted by the number of network parameters. The blue curve
represents the performance of ERVSR with different q and the green dotted line denotes
the model variant without recurrent architecture (q = 1). As shown in the left graph, the
PSNR is not monotonically related with q which indicates that a balanced allocation of
the feature channels to the input frame and the hidden state is important. In the right
graph, it is shown that as q increases, the overall amount of network parameters declines.
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Figure 5.9: Analysis of the proposed normalization scheme under different WL with IL = 1
in PSNR on the sequence jvc_009_001 from SPMCS30 [180].

In the implementation, q was set as 0.65 for a tradeoff between the image quality and the
model complexity.

Normalization and Quantization

An efficient compression of the hidden state plays an important role for the hardware
implementation of ERVSR. In Fig. 5.9, we demonstrate the effectiveness of the proposed
normalization scheme comparing to the Max normalization and without normalization.
Besides, the floating-point implementation without compression is involved as the reference.
It should be noted that IL was set as 1 for all the WL variants. It can be seen that
normalization has a noticeable influence. The proposed normalization scheme performs
better than the others especially for lower WL. For WL≥ 6, there is almost no deviation
from the floating-point reference. In this work, WL was chosen as 4 to fit the size of
the URAM in the target FPGA device. The impact of the quantization of the weights
and the activations on the FPGA implementation is illustrated in Fig. 5.10. To preserve
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Figure 5.10: Performance of different quantization variants of the weights and the activa-
tions on the sequence jvc_009_001 from SPMCS30 [180]. Left: Quantization
of the weights; Right: Quantization of the activations.

the model accuracy, WL = 12, IL = 3 are for the weights and WL = 16, IL = 5 are for the
activations.

Information Flow

In order to analyze the effectiveness of the recurrent input, the information flow is
demonstrated in Fig. 5.11. Particularly, the black curve and the red curve indicate the
PSNR of a video sequence reconstructed from the 1st and the 10th frame, respectively. It
can be clearly observed that the black curve performs better than the red one and the
gap between the two curves still exists at the 30th frame because the black curve has
accumulated temporal information over 10 more frames. From another perspective, it can
be inferred that the hidden state transmits the temporal dependency over 30 frames. In fact,
ERVSR improves the temporal consistency and visual perception silently without explicitly
using additional LR frames and motion compensation.
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Figure 5.11: Information flow over time on the sequence hdclub_008_007 from
SPMCS30 [180]. The black curve starts at the 1th frame and the red one
begins 10 frames later.

Table 5.4: Ablation study of ERVSR on the VSR dataset SPMCS30 with q = 0.65, WL =
4, IL = 1.

SPMCS30

Recurrent 7 3 3 3

Normalization 7 7 7 3

Quantization 7 7 3 3

PSNR/SSIM 35.21/0.9524 35.29/0.9533 35.08/0.9515 35.26/0.9529
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Table 5.5: Ablation study of ERVSR on the SR datasets BSDS100 and Manga109 with
q = 0.65, WL = 4, IL = 1.

BSDS100 Manga109

Recurrent 7 3 3 7 3 3

Self-Initiation 7 7 3 7 7 3

PSNR/SSIM 31.30
0.8883

31.27
0.8881

31.31
0.8887

35.63
0.9673

35.53
0.9672

35.78
0.9682

Ablation Study

An ablation study was carried out to quantify the impact of the recurrent architecture
and the proposed normalization scheme based on the dataset SPMCS30. The results are
depicted in Table 5.4. Comparing the first two columns, it is shown that the recurrent
architecture improves the performance by 0.08dB in average PSNR. Observing the last
two columns, it can seen that the proposed normalization scheme achieves an average
gain of 0.18dB. The second column obtains a slightly better PSNR than the last column
because it employs 16-bit fixed-point representations and no data compression is performed.
Additionally, the recurrent structure and the proposed self-initiation were evaluated on
the SR datasets BSDS100 and Manga109. The results of both datasets are summarized
in Table 5.5. From the first two columns of both datasets, it is observed that without
self-initiation, the recurrent network performs slightly worse than the non-recurrent one
since the recurrent input is initialized with zero. Comparing the last two columns in
each dataset, it is shown that self-initiation improves the performance of ERVSR silently
by estimating the HR residuals from the input frame itself. Besides, it is shown that
for BSDS100, ERVSR with self-initiation achieves comparable image quality as the non-
recurrent variant which is dedicated to image SR. In Manga109, ERVSR obtains an average
performance gain of 0.15dB in PSNR by self-initiation.

5.5 Conclusion

In this chapter, a hardware-efficient residual recurrent neural network ERVSR for real-time
VSR on FPGA is presented. Different from the current state-of-the-art FPGA-based
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VSR methods which perform SISR in a sliding-window fashion over the video sequence,
the proposed ERVSR exploits the input frame and the inter-frame temporal correlation
encoded in the recurrent hidden state to preserve temporal consistency. ERVSR is intended
to have a compact recurrent architecture to fulfill the hardware requirements. Experimental
results demonstrate that ERVSR outperforms the investigated state-of-the-art FPGA-based
VSR models by an average gain of 0.28dB in PSNR over multiple VSR datasets without
compromising the data throughput. It is shown that ERVSR improves the temporal
consistency and visual perception silently without using additional LR frames or motion
compensation by exploiting the recurrent input which conveys the long-term temporal
information of more than 30 previous frames.
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Conclusion

This thesis covers the proposal of SR algorithms which are appropriate for CT imaging
and image processing mainly from the perspective of SR reconstruction in the pres-
ence of noise, SR acceleration for high-resolution images, and influence of SR on image
registration.

The contribution of this thesis starts with the proposal of an iterative multi-image super-
resolution (MISR) algorithm MPG+BSWTV for noisy images. To jointly super resolve the
image and suppress the noise, a SR model which more accurately describes the noise charac-
teristics is proposed and evaluated. Based on the Maximum A Posteriori (MAP) estimation,
an objective function is derived from a Poisson-Gaussian noise model and an adaptive
noise removal regularizer which leverages the gradual refinement mechanism. Extensive
experiments show that the proposed method can effectively improve the spatial resolution
of noisy images. We have benchmarked the proposed method on the public real-world
dataset SupER. Comparing to the other 14 investigated optimization-based or learning-
based SR methods, MPG+BSWTV achieves an average gain of 0.2dB in PSNR compared
to the second best and provides better visual perception.

The contribution of the second chapter is the deployment of SR algorithm for real-time CT
imaging by resorting to multi-GPU acceleration. The proposed FL-MISR approach can be
seamlessly integrated into industrial CT scanners by super-resolving projections acquired
by subpixel detector shift. SR reconstruction is performed in a distributed manner by data
parallelism over multi-GPU systems which supports an on-the-fly resolution enhancement
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of the projections without introducing extra computation time. Experiments show that
FL-MISR can effectively improve the spatial resolution of CT systems. Comparing to a
56-core CPU implementation, FL-MISR achieves a more than 50× speedup on an off-the-
shelf 4-GPU system. Besides, it is shown that super-resolving four input projections of size
4096×4096 by an upscaling of 2× can be achieved within 2.4s.

In addition to the above iterative MISR methods, a CNN-based light-weight resolution
enhancement module (REM) is proposed to enhance the performance of other vision tasks
such as image registration, semantic segmentation. Specially, REM can be easily plugged
into other networks either by a straightforward cascade or by employing other coupling
techniques such as auxiliary loss. REM has been applied to two registration networks FDRN
and VoxelMorph at different scaling factors. Experiments on brain datasets show that the
employment of REM enhances both the registration accuracy and visual quality especially
when the input images suffer from poor spatial resolution.

Apart from the aforementioned optimization-based MISR methods and the CNN-based
REM, which can be implemented on GPU systems, a hardware-efficient SR method ERVSR
is proposed based on the residual recurrent neural network (RNN). The architecture of
ERVSR is highly adapted to low-complexity hardware and supports an implementation on
the field programmable gate array (FPGA). Comparing to a GPU implementation, the
FPGA one achieves a speedup of more than 5×. Extensive experiments show that ERVSR
performs better than the state-of-the-art FPGA-based SR methods by an average gain of
0.28dB in PSNR over multiple public datasets. In addition, ERVSR supports SR output of
8 Mpixel at 76 fps which shows a great potential for the deployment of hardware embedded
SR in extreme fast CT applications such as inline-CT.

To summarize the contributions, this thesis focuses on SR enhancement for CT imaging
and image processing. The acquired images of commercial CT scanners usually suffer
from undesirable spatial resolution and noticable noise. Super-resolving noisy images
is of indisputable significance for CT imaging. A dedicated SR algorithm concerning
noisy images is presented in this thesis. Furthermore, the feasibilty of super-resolving
projections acquired by subpixel detector shift for resolution enhancement of the CT system
is demonstrated and a seamless integration of real-time SR into CT imaging has been
achieved by multi-GPU acceleration. Additionally, it is shown that SR can be considered
as a preprocessing routine for other tasks such as image registration, especially when
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input images suffer from degraded resolution. Last but not least, a great potential for the
employment of FPGA-based SR in CT imaging is revealed.
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