
Concepts and Methods for the Design,

Configuration and Selection of Machine

Learning Solutions in Manufacturing

Von der Graduate School of Excellence advanced Manufacturing

Engineering der Universitąt Stuttgart zur Erlangung der Würde eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Alejandro Gabriel Villanueva Zacarias
aus Puebla, Mexiko

Hauptberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Mitberichter: Prof. Dr.-Ing. Norbert Ritter

Tag der mündlichen Prüfung: 21.12.2021

Institut für Parallele und Verteilte Systeme (IPVS)

der Universitąt Stuttgart

2021

2

Acknowledgements

"Tů que todo lo sabes y lo que no

lo inventas..."

(You, who knows it all and what

you don’t know, you invent...)

Back when I was a kid, my classmates used to precede any question

they had for me with the quote above. Throughout the years that sentence

has reminded me that the answers to some questions may still need to be

invented and that I, perhaps, could be able to do just that if I learn enough

about them. This is my way to make justice to my classmates’ claims.

This dissertation is the result of my doctoral project at the Graduate School

of Excellence advanced Manufacturing Engineering (GSaME), in collabora-

tion with the Application Software department from the Institute of Parallel

and Distributed Systems at the University of Stuttgart. The interdisciplinary

nature of GSaME offered me the perfect platform to combine my research

interest in computer science, statistics, quality control, machine learning and

manufacturing and to orient them towards industrial applications. My doc-

toral project would not have reached its potential without the help, resources

and opportunities that GSaME, its professors and staff offered me.

3

Several people assisted me throughout the years on the path to develop

my research skills in order to complete this dissertation. Special thanks to

my supervisor Prof. Dr. Bernhard Mitschang for his unwavering support right

from the start of the doctoral project. His guidance and encouragement to

explore, but without forgetting to remain positive and productive, proved

key to complete this dissertation as well as the project in the context of the

Software Campus initiative. I would also like to extend my sincere thanks to

Prof. Dr. Norbert Ritter for the supervision of this dissertation, as well as for

his collaboration as examiner during the doctoral defense.

Many thanks to Dr. Sylvia Rohr, Hans-Friedrich Jacobi, Prof. Alfred Katzen-

bach, Prof. Dr. Georg Herzwurm and Dr. Laura Gern for their valuable

contributions to my development as a researcher. Your input, questions and

advice has helped me expand my horizons.

I am also grateful to the many colleagues at the department of Application

Software for their daily collaboration and valuable lessons. In particular,

I would like to thank Peter Reimann, Christian Weber, Michael Behringer,

Manuel Fritz, Cornelia Kiefer and Rachaa Ghabri for their feedback, help and

collaboration at different stages of the research project. Special thanks to

Peter Reimann and Christian Weber for proofreading the first drafts of this

dissertation. I also had the pleasure to work with Holger Schwarz, Pascal

Hirmer, Julian Ziegler, Corinna Giebler, Vitali Hirsch, Marco Spieß, Dennis

Przytarski, Yannick Wilhelm and Jan Königsberger. Their advice, company

and sometimes patience made the daily work at university more interesting

and enjoyable.

I also wish to thank my cooperation partner within the Software Campus

project, Ingo Sawilla. His insights, conversation and feedback regarding

leadership and project management were invaluable input not just for the

development of the GUACAMOLE prototypes, but also for my future career.

I cannot begin to express my thanks to my family, who has stood and

continues to stay by my side offering me love, support and freedom to follow

my dreams, wherever they may take me. To my brother for his company

throughout the games, years and circumstances. Life would not be the same

without you and your talent to bring out the playful kid I still carry around.

4

Thank you for listening to my ideas in their rawest form. To my father for

opening my eyes to life abroad, with its highs and lows. I recognize your

influence in me as I face challenges similar to the ones you must have faced

back then during your travels, especially when the line between visitor and

local starts to blur. I draw inspiration from you whenever I need to recollect

myself. To my mother for teaching me to remain curious, courageous and

disciplined regardless of whatever life brings. Throughout the years, you

taught me many of the research skills I use now. From the reading sessions

on your lap, the fruit experiments to understand homework, the leisure

visits to the laboratories, libraries and bookshops, to the creative high school

projects with complicated executions. It all led to this. While working on

this dissertation, I began to finally understand your interest in research. My

deepest thanks to you, my first and greatest supervisor.

Stuttgart, November 2021

Alejandro Gabriel Villanueva Zacarias

5

Contents

1. Introduction . 15

1.1. Motivation . 16

1.2. Application Context of ML Solution Development in

Manufacturing . 19

1.2.1. Definition of Machine Learning Solution 19

1.2.2. The Project Scope . 20

1.2.3. The Development Process . 21

1.2.4. Roles in the Development Team . 23

1.2.5. Data and Available Tools . 25

1.3. Research Challenges . 26

1.3.1. Design Challenge. 27

1.3.2. Configuration Challenge . 28

1.3.3. Selection Challenge . 29

1.3.4. Process Challenge . 30

1.4. Research Contributions . 30

1.4.1. Research Contribution for the Design Challenge 32

1.4.2. Research Contribution for the Configuration Challenge . 32

1.4.3. Research Contribution for the Selection Challenge. 33

1.4.4. Research Contribution for the Process Challenge 34

7

1.5. Dissertation Outline . 35

2. Theoretical Background . 37

2.1. Characteristics of Production System Design 37

2.1.1. Production System Design within the Product

Conception Phase . 38

2.1.2. Classification Systems . 39

2.1.3. Feature Technology . 40

2.1.4. Model-based Systems Engineering . 41

2.2. Data in Manufacturing Use Cases . 42

2.3. Machine Learning . 45

2.4. Approaches to Design ML Solutions . 47

2.5. Approaches to Configure ML Solutions . 48

2.6. Approaches to Select ML Solutions . 49

3. ML Solution Framework . 51

3.1. Related Work . 53

3.1.1. Challenges of ML Solutions in Manufacturing 53

3.1.2. Empirical Evaluation of Machine Learning Algorithms . . 54

3.1.3. Automated Machine Learning . 54

3.2. Design Requirements. 55

3.2.1. Specification of a Domain-specific Problem Definition . . 55

3.2.2. Efficient and Accurate Data Utilization 56

3.2.3. Consideration of Available IT Resources 56

3.2.4. Property-based and Performance-based Selection and

Configuration of ML Algorithms . 57

3.2.5. Enhanced ML Solution Comprehensibility. 58

3.3. ML Solution Framework. 58

3.3.1. ML Solution Development Process . 59

3.3.2. Metadata Profiles . 63

3.3.3. ML Solution Viewer . 66

3.4. Prototypical Implementation and Discussion 67

3.5. Summary and Future Work. 71

8 Contents

4. Axiomatic Design for Machine Learning . 73

4.1. Problem Context and Requirements . 75

4.1.1. Use Case: Fault Detection in a Production Line 75

4.1.2. Feasibility Requirements in the Design of ML Solutions . 76

4.2. Main Concepts of Axiomatic Design. 78

4.3. Axiomatic Design for Machine Learning (AD4ML). 82

4.3.1. Adaptations to Axiomatic Design for ML Solutions. 82

4.3.2. AD4ML Specification for the Fault Detection Use Case . . 85

4.3.3. Visualization of ML Solution Specifications 91

4.3.4. Reusability of Specification Components 94

4.3.5. Agile Design of ML Solutions . 95

4.4. Approaches to Validate and to Assess ML solution

Specifications During the Design Process. 96

4.4.1. Validation of ML Solution Specifications. 96

4.4.2. Assessment of ML Solution Specifications 99

4.5. Prototypical Implementation . 101

4.6. Discussion and Assessment . 105

4.6.1. R1. Enablement of Systematic Experimental Learning . . 105

4.6.2. R2. Clear and Objective Documentation of the Design

Intention . 106

4.6.3. R3. Support of End-to-end Traceability and Consistency 107

4.7. Related Work . 107

4.8. Summary and Future Work. .111

5. AssistML. .113

5.1. Application scenario for ML Solution recommendations 115

5.1.1. Reusing ML Solutions for Predictive Use Cases 115

5.1.2. Practical Requirements . 116

5.2. Related Work . 118

5.2.1. AutoML Systems . 118

5.2.2. Meta-Learning . 119

5.2.3. Explainable AI . 121

5.3. AssistML Metadata Repository .122

Contents 9

5.4. AssistML: A Concept to Recommend ML Solutions 126

5.4.1. Step 1: Select ML Solutions on Data Similarity127

5.4.2. Step 2: Identify Acceptable/Nearly Acceptable ML

Solutions. .130

5.4.3. Step 3: Find ML Solution Patterns . 134

5.4.4. Step 4: Generate List of Recommendations136

5.5. Prototype and Evaluation . 137

5.5.1. Prototypical Implementation . 137

5.5.2. Evaluation Approach . 140

5.5.3. Evaluation Results .143

5.5.4. Assessment . 153

5.6. Summary and Future Work. .154

6. Conclusion and Future Work . 157

6.1. Assessment of the Research Contributions . 157

6.2. Future Research Directions . 162

6.2.1. ML Solution Assessment Function. .162

List of Author Publications. .163

Bibliography . 169

List of Figures . 179

List of Tables . 185

Appendices 188

A. Sample metadata profiles . 189

B. System Requirements and Installation Guide for AssistML 191

10 Contents

Zusammenfassung

Die Anwendung von Verfahren des maschinellen Lernens (ML) findet in

Produktionsunternehmen immer hąufiger statt. Entwicklungsteams werden

beauftragt, ML-Lösungen zur Unterstützung individueller Anwendungsfąlle

umzusetzen. Mit dem Begriff ML-Lösung bezeichnen wir eine Menge an

Softwarekomponenten und Lernalgorithmen, die eine prądiktive Fąhigkeit

bieten. ML-Lösungen basieren auf Anwendungsfalldaten, (Hyper) Parame-

tern und technischen Konfigurationen.

Aktuell sind Entwicklungsteams mit vier Herausforderungen konfrontiert,

welche den Entwicklungsprozess für ML-Lösungen erschweren. Erstens, es

mangelt an einem formellen Ansatz zur Spezifikation von ML-Lösungen,

der die Auswirkung einzelner Lösungskomponenten auf domąnenspezifi-

sche Anforderungen nachweist. Zweitens, es mangelt an einem Ansatz zur

Dokumentation von ML-Lösungskonfigurationen, mit welchen die erzielten

Ergebnisse reproduzierbar werden. Drittens, es mangelt an einem Ansatz

zur Empfehlung und Auswahl von ML-Lösungen, der für nicht ML-Experten

intuitiv ist. Viertens, es mangelt an einer ausführlichen Schrittreihenfolge,

die den Einsatz von Best Practices sowie die Betrachtung technischer und

domąnenspezifischer Aspekte wąhrend des Entwicklungsprozesses gewąhr-

leistet. Die Nichtbeachtung obiger Herausforderungen führt insgesamt zu

11

ląngeren Entwicklungszeiten und höheren Kosten, sowie zu ungeeigneten

ML-Lösungen, welche schwer zu verstehen und wiederzuverwenden sind.

Diese Dissertation stellt Konzepte vor, um diese Herausforderungen zu

bewąltigen. Dies sind das axiomatische Design für maschinelles Lernen

(AD4ML), das Profiling-Rahmenwork für ML-Lösungen und AssistML.

Axiomatisches Design für maschinelles Lernen (AD4ML) ist ein Konzept

zum strukturierten und agilen Entwurf von ML-Lösungsspezifikationen.

AD4ML sorgt für einen eindeutigen Bezug zwischen domąnenspezifischen

Anforderungen und konkreten Softwarekomponenten. AD4ML-Spezifika-

tionen können somit vor der Implementierung hinsichtlich der Anforderun-

gen von Domąnenexperten validiert werden.

Das Profiling-Rahmenwerk für ML-Lösungen dokumentiert Metadaten

von ML-Lösungen zur Beschreibung der Datenmerkmale, technischen Konfi-

gurationen und Parameterwerte von Softwarekomponenten sowie mehrere

Leistungsmetriken. Die Metadaten stellen die Basis für die Reproduzierbar-

keit entwickelter ML-Lösungen dar.

Das Konzept AssistML empfiehlt ML-Lösungen für neue Anwendungsfąlle.

AssistML sucht aus dokumentierten ML-Lösungen diejenigen, die die Leis-

tungsanforderungen des neuen Anwendungsfalls am besten erfüllen. Die

ausgewąhlten Lösungen werden dann den Entscheidungstrągern einfach

und intuitiv vorgestellt.

Jedes dieser Konzepte wurde ausgewertet und prototypisch umgesetzt. Zu-

sammen bieten diese Konzepte einen technologieunabhąngigen Ansatz zur

Entwicklung von ML-Lösungen. Dadurch können ML-Lösungskomponenten

schnell identifiziert und wiederverwendet werden. Aussagekrąftige Erkląrun-

gen für Experten und Nicht-Experten werden ebenso bereitgestellt. Diese Vor-

teile führen zu kürzeren Entwicklungszeiten, geringerem Ressourceneinsatz

pro Entwicklungsprojekt und fundierten Entscheidungen zur Entwicklung

und Auswahl von ML-Lösungen.

12 Contents

Abstract

The application of Machine Learning (ML) techniques and methods is com-

mon practice in manufacturing companies. They assign teams to the develop-

ment of ML solutions to support individual use cases. This dissertation refers

asML solution to the set of software components and learning algorithms to

deliver a predictive capability based on available use case data, their (hyper)

paremeters and technical settings.

Currently, development teams face four challenges that complicate the

development of ML solutions. First, they lack a formal approach to specify

ML solutions that can trace the impact of individual solution components on

domain-specific requirements. Second, they lack an approach to document

the configurations chosen to build an ML solution, therefore ensuring the

reproducibility of the performance obtained. Third, they lack an approach

to recommend and select ML solutions that is intuitive for non ML experts.

Fourth, they lack a comprehensive sequence of steps that ensures both best

practices and the consideration of technical and domain-specific aspects

during the development process. Overall, the inability to address these

challenges leads to longer development times and higher development costs,

as well as less suitable ML solutions that are more difficult to understand

and to reuse.

13

This dissertation presents concepts to address these challenges. They are

Axiomatic Design for Machine Learning (AD4ML), the ML solution profiling

framework and AssistML.

AD4ML is a concept for the structured and agile specification of ML so-

lutions. AD4ML establishes clear relationships between domain-specific

requirements and concrete software components. AD4ML specifications can

thus be validated regarding domain expert requirements before implemen-

tation.

The ML solution profiling framework employs metadata to document

important characteristics of data, technical configurations, and parameter

values of software components as well as multiple performance metrics.

These metadata constitute the foundations for the reproducibility of ML

solutions.

AssistML recommends ML solutions for new use cases. AssistML searches

among documented ML solutions those that better fulfill the performance

preferences of the new use case. The selected solutions are then presented

to decision-makers in an intuitive way.

Each of these concepts was evaluated and implemented. Combined,

these concepts offer development teams a technology-agnostic approach to

build ML solutions. The use of these concepts brings multiple benefits, i. e.,

shorter development times, more efficient development projects, and better-

informed decisions about the development and selection of ML solutions.

14 Contents

C
h
a
p
t
e
r

1
Introduction

The increasing complexity of products and production processes demands

the use of new technologies to continue manufacturing high-quality products

with financially efficient production costs (Westkąmper and Löffler, 2016).

Machine Learning (ML) is one such technology. Manufacturing companies

apply ML to handle the complexity of their production systems (Wuest et

al., 2016). ML is not applied in isolation. It has to be deployed within

bigger software systems, which are in turn embedded in the production sys-

tem (Kuwajima et al., 2020; Sculley et al., 2015). This complex deployment

environment, i. e., in a system of systems, along with other factors make the

current development of software systems with ML software error-prone and

time-consuming. As a consequence, it is difficult to derive benefits from ML

deployment in the production system and to speed up ML adoption to meet

the demand of manufacturing companies.

This dissertation identifies and addresses four main challenges that come

up during the development of ML solutions. In response to these challenges,

it provides concepts and methods to facilitate the design, configuration and

selection of ML solutions in manufacturing use cases.

15

The remainder of this chapter is organized as follows: Section 1.1 intro-

duces the current state of developing systems with ML for manufacturing

cases that motivate this dissertation. Section 1.2 introduces the application

context that all contributions consider, particularly its characteristic compo-

nents. It also introduces the concept of ML solutions. Section 1.3 introduces

the four research challenges that this dissertation addresses. Section 1.4

summarizes the four contributions of this dissertation to address the research

challenges. Section 1.5 describes the outline of the remaining dissertation.

1.1. Motivation

The application of ML is common in manufacturing companies (Choudhary

et al., 2009; Pham and Afify, 2005). It is also known to be rapidly evolving

over the years. Several factors, technological and economical, have led

to a wide diversification in the approaches to apply ML in manufacturing.

This dissertation focuses on the development aspects of applying ML in

manufacturing. Thus, this section describes the factors that characterize ML

development projects in manufacturing companies.

Increased complexity of production systems. Companies set up more

complex production systems to produce more complex products as de-

manded (Westkąmper and Löffler, 2016). The complexity in the production

system can be reflected in e. g., more production steps, additional equipment

required, or higher quality requirements (Moyne and Iskandar, 2017). This

additional complexity demands a higher skill level from workers to perform

their tasks correctly. Besides training, which is time-consuming and expen-

sive, systems with ML can also reduce the complexity for workers in multiple

ways.

This technological factor however increases the complexity of ML devel-

opment projects. The complexity of the production systems also complicates

the integration of ML into these production systems.

16 1 | Introduction

Increased availability of manufacturing data. Data is produced in vast

quantities at many steps in a production system (Moyne and Iskandar, 2017;

Pham and Afify, 2005) and is stored in multiple formats (Gupta, 2018;

O’Donovan et al., 2015). Examples include product catalogs, production

scheduling, production orders, part and material stocks. They are stored

in relational databases, data lakes, data warehouses or (distributed) file

systems (O’Donovan et al., 2015). These data sources can contain relational

data, images, video, time series or unstructured text (Mąkinen et al., 2021).

This diversity in manufacturing data can be characterized with the five V’s of

big data (Gandomi and Haider, 2014; Moyne and Iskandar, 2017; Tao et al.,

2018). The acronym stands for five characteristics of so-called big data sets,

i. e., volume, variety, velocity, veracity and value. Each characteristic imposes

challenges to the use of data to inform decision-making (see Section 2.2).

Overall, the increased availability of data has a mixed impact on ML

development projects. On the one hand, comprehensive data collection

about customers, employees, suppliers, products, equipment, and processes

facilitates the training of comprehensive ML models. On the other hand,

the heterogeneous data structures, proprietary systems and closed data

formats (O’Donovan et al., 2015) complicate the implementation of data

preprocessing pipelines and data analysis. This is because general purpose

data analysis software may not be ready (O’Donovan et al., 2015) to in-

tegrate heterogeneous proprietary data sources. This leads to additional

development efforts and overall to more complex software systems.

Increased availability of ML software and tools. ML software and tools

are released constantly (Atwal, 2020). They cover a wide spectrum of

software, from programming or scripting languages, execution platforms,

middleware, and ML libraries. Also, some of this new software specializes

in a particular task, e. g., data collection, data processing, model training,

or deployment. This means that ML development projects need to combine

many tools to produce a working software system that spans all these differ-

ent tasks. In that situation, some components handle, e. g., data preparation,

1.1 | Motivation 17

while others train an ML model and others trigger communications with

other systems based on the ML model’s predictions. Additionally, integration

code is required to make all these components work together.

Therefore, the specialization of software components leads to more com-

plex software systems, i. e., a so-called technical debt (Sculley et al., 2015).

This is manifested in additional efforts to implement and maintain the soft-

ware system due to the many compatibility checks needed. It also makes

it difficult to unify the technological choices of different ML development

projects, as development teams can use components that only fulfill their

own specific use case needs.

Scarcity of ML experts. The ever-growing number and complexity of

available tools and the new algorithms that research develops makes it hard

to train enough experts to apply ML tools (Zaharia et al., 2018). This factor

leads to a scarcity of ML experts (Flaounas, 2017), i. e., data scientists and

data engineers. This slows down the execution of development projects or the

depth of the analysis carried out for each individual project. Companies have

created new roles to cope with this lack of experts. Citizen data scientists

are domain experts with some knowledge of data science and machine

learning (Gröger, 2018). Workers in this role are first and foremost domain

experts, but also complement the work of data scientists. They can apply

existing ML solutions and assess the utility of ML solutions for the use case,

but cannot develop complex ML solutions independently.

The unequal level of knowledge and skills between ML experts and citizen

data scientists presents a problem for the standardization of software com-

ponents across multiple development projects. Citizen data scientists may

give preference to custom ML solutions that are easily applicable to their use

case over more complex and generic ones (Xin et al., 2021). As a result, the

scarcity of ML experts has a negative impact on ML development projects.

18 1 | Introduction

1.2. Application Context of ML Solution Development in

Manufacturing

This section presents an exemplary application context in which manufactur-

ing companies develop ML solutions. The first part defines the concept of an

ML solution to detail the output that manufacturing companies expect from

ML development projects. Subsequent parts of this section elaborate on other

application context elements needed to build an ML solution. This includes

the project scope, the development process, the team roles, the available

resources and systems. Thereby, this application context becomes a source

of valid assumptions to define concrete research challenges. Information

about all elements in the application context are based on relevant literature

to ensure its correctness and applicability.

1.2.1. Definition of Machine Learning Solution

Development projects are launched to build a software system that can

deliver predictive insights for a specific use case (Braschler et al., 2019). Such

a system must be able to read the available data and produce predictions that

can help the use case, i. e., any of the supervised machine learning outputs,

e. g., classification or regression (for more, see Section 2.3). This dissertation

proposes the concept of ML solution to refer to the complete end-to-end

software system that is built in the development project. Specifically, an

ML solution is a coherent sequence of deployed software components, ML

algorithms, their configurations, and domain-specific specifications that are

necessary to deliver a predictive capability at a use case based on available

data. Figure 1.1 exemplifies this conceptual definition of an ML solution.

The most commonly known core components of the ML solution are shown

with double line borders. These include (1) components for data collection,

(2) data feature encoding and selection, (3) a trained ML model, and (4)

data post-processing or reporting. All these components have custom values

specific for their intended use case. In addition to them, other components

are still required for the ML solution to be functional. These (5) extended

1.2 | Application Context of ML Solution Development in Manufacturing 19

Figure 1.1.: Elements of an ML solution. Core components have double line
borders.

components (shown in light gray and with sigle line borders) include software

dependencies, e. g., specific libraries and execution platforms from which

generic ML algorithms are used. The ML solution also needs to integrate

with other existing systems that are available at the use case. This requires

communication components, e. g., middleware. Moreover, the ML solution

can be expected to perform within the constraints of the overall production

system. To verify this, monitoring or reporting components need to be

included as well. Underlying all software components is (6) the hardware

infrastructure platform on which the ML solution is deployed. Overall, this

example ML solution illustrates that solutions include many more software

components in addition to a trained ML model (Sculley et al., 2015).

1.2.2. The Project Scope

ML solution development projects can have different scopes. Multiple au-

thors (Monostori, 2003; Sharp et al., 2018) agree that most projects apply

ML on individual production steps. Sharp et al., 2018 takes the hierarchy

proposed in the the ISA-95 framework to illustrate the granularity of ML

applications. The ISA-95 framework covers five levels from the low-level

20 1 | Introduction

ML solution development process

• De✁ne domain-speci✁c
problem
• Specify ML components
• Plan integration in use case

DESIGN STEP

• Identify and process useful data
• Train ML models with di✂erent se✄ings
• Evaluate ML solution performance

CONFIGURATION STEP

• Compare candidate ML solutions
•Assess the ML solution

suitability
• Select ✁nal ML solution(s)

SELECTION STEP

Figure 1.2.: Typical ML solution development process.

manufacturing problems (level 0) to the most abstract, high-level ones (level

4). Sharp et al., 2018 and Monostori, 2003 agree that ML applications focus

on single production steps, e. g., predicting machine failures to schedule

maintenance or automatically detecting product defects. Bigger scopes, e. g.,

production scheduling or operations management, although possible, have

not seen widespread adoption. Therefore, the application context in this

dissertation focuses on use cases for single production steps. Concretely, the

application context focuses on predictive use cases that can be addressed

with supervised learning.

1.2.3. The Development Process

The application context distinguishes three main steps in the ML solution

development process, i. e., design, configuration and selection steps. This

division combines the viewpoints from academia (Ashmore et al., 2021;

Mikkonen et al., 2021; Pham and Afify, 2005; Weber et al., 2019) and

industry (Bernardi et al., 2019; Flaounas, 2017) about ML development

projects in industry. The three steps group activities that all projects perform

when building an ML solution, regardless of the development methodology

they follow. Figure 1.2 shows the three steps in sequence along with brief

descriptions of their main activities.

The design step concerns the definition of a domain-specific problem that

guides ML solution development. This first step determines which problem

from the production system can be solved with ML. It sets the scope for the

whole project (Bernardi et al., 2019). The domain-specific problem becomes

1.2 | Application Context of ML Solution Development in Manufacturing 21

a guideline to assess which ML solution components can be useful, and

how they should be integrated in the use case. Depending on the approach,

the problem definition may be done more or less formally. For instance,

CRISP-DM requires the problem to be stated as a series of business goals

and plans (Shearer, 2000). Meanwhile, practitioners may simply assess

the cost-benefit ratio of implementing an ML solution given the resources

available for the use case (Flaounas, 2017).

The configuration step refers to the technical development of the ML solu-

tions. This step is characterized by the iterative training of several ML models

using different settings. For this purpose, available data sources are explored

and analyzed to obtain a set of useful data features. These data features are

then used together with an ML algorithm to train a predictive model, e. g., a

classifier or regressor. This step requires multiple attempts and adaptations

to make the available data and ML components work together (Flaounas,

2017). In this process, different settings, i. e., seed values, hyper-parameter

values, or sampling techniques are used. As a consequence, multiple candi-

date ML solutions are developed for the same use case, each one with small

differences in the data features, the software libraries, the learning algo-

rithms or the settings it uses. Only ML solutions with performance suitable

for the use case can be considered candidates. Therefore, the performance

evaluation is fundamental to complete the model training (Ashmore et al.,

2021; Bernardi et al., 2019; Weber et al., 2019).

The selection step refers to the assessment of multiple candidates and the

selection of an ML solution. During the configuration step, the performance

of each ML solution is tested against the use case expectations. In the se-

lection step, all candidate ML solutions are compared with one another to

determine which one is more suitable for the use case. Use case suitability

is a complex question that cannot be measured with a single performance

metric (Paleyes et al., 2020). Additional aspects like scalability, explainabil-

ity, reliability or even a combination of many performance metrics can be

equally decisive. This selection step is typically addressed indirectly during

deployment (Ashmore et al., 2021; Bernardi et al., 2019; Flaounas, 2017).

In the end, only the most suitable ML solution(s) are selected for use.

22 1 | Introduction

Figure 1.3.: Typical roles in ML solution development team.

1.2.4. Roles in the Development Team

ML solution development projects are executed by a multi-disciplinary team.

Each team member plays a role during the development process according

to his/her specialized knowledge and interests. Figure 1.3 shows the four

roles present in the application context. Please notice that each role can be

assigned to multiple people depending on the size of the project.

Domain expert. This role is considered the direct user of the ML solution.

It is assumed by people who operate the use case activities. This applies to

any person involved in productive processes throughout the product lifecycle.

Thus, production engineers, assembly line workers, or quality assurance

specialists typically assume this role. Domain experts are involved in the

development project of an ML solution during the design and selection steps.

They help define the task that the ML solution must fulfill to support the use

case. They also are the ultimate source regarding the interpretation of use

case data and of its semantics. Domain experts desire an ML solution that

delivers explainable results with overall good performance.

Decision maker. This role leads and takes responsibility over the ML

solution development project. Therefore, the role can only be assumed

by people with decision power in the organization, e. g., product owners,

1.2 | Application Context of ML Solution Development in Manufacturing 23

production managers, or c-suite executives. They are involved in the selection

step of the development process. Their decision power determines the overall

project constraints, i. e., the available financial budget and time frame for

the development. Decision makers also set the performance preferences that

the resulting ML solution should fulfill. These preferences correspond to

the domain-specific goals that the use case needs to meet to be considered

productive. For instance, the decision maker may decide to accept a running

time of 5 seconds per prediction in order to keep the use case under control

in takt time. Finally, decision makers desire ML solutions that can support

the use case in a cost-effective manner. Also important for them is the ability

to explain the functioning of the ML solution, particularly when its results

contradict the judgment of domain experts.

Data scientist. This role is the main designer of the ML solution. The

role is assumed by people with knowledge of machine learning and its

related disciplines, like data engineering and statistics. They carry out most

activities in the configuration step and collaborate with other roles in the

other two steps. They contribute their knowledge to design the ML solution,

either to implement it themselves afterwards or to provide a specification

for the software developers to follow. Therefore, their main interest is to

find highly-performing ML solutions, e. g., ML solutions that deliver as many

correct predictions as possible in the shortest possible time. A second interest

for data scientists is the reproducibility of the results they obtain. The ML

solutions they design should perform in production in the same way as they

did during development. For this reason, data scientists are interested in

making sure that the designs they propose are reliable and robust.

Software developer. This role is mainly responsible for building and

deploying the software system of an ML solution, i. e., implementing ML

solution designs. This role is assumed by software engineers, programmers

or IT specialists, i. e., people with knowledge of the company’s hardware and

software resources. The software developer is involved in the configuration

step of the development process in collaboration with the data scientist.

Besides implementing ML solutions, the software developer also verifies the

viability of the designs proposed by the data scientists. He or she verifies

24 1 | Introduction

Figure 1.4.: Common elements in ML solution development.

that ML solutions can be deployed in the hardware and software available

to the use case. In order to do that, he or she is interested in a complete

specification of all hardware, software and data dependencies of the ML

solution. Therefore, he or she is interested in developing ML solutions that

are easy to deploy and monitor.

1.2.5. Data and Available Tools

Every development project must secure a data source to developML solutions.

The application context assumes that use case data consists of records from

multiple sources consolidated into a single one. This excludes any data

discovery that takes place before beginning the development process. Yet,

the consolidated data set can contain different data types, e. g., qualitative

and quantitative data from relational databases, unstructured text from

document archives or time series data from sensors. These data features

may also present quality problems, such as missing values, badly-formatted

text, outliers, or invalid values. Moreover, the application context assumes

that data features may have semantics that cannot be directly captured in

the data source. For instance, encoding dates in UNIX format gives them

the appearance of numerical data. Also, the use case data can be difficult to

1.2 | Application Context of ML Solution Development in Manufacturing 25

manage after a certain dimension, e. g., if historical data from several years

is collected.

Finally, the application context assumes that companies carry out multiple

developments (Bernardi et al., 2019), as they seek to support many use cases

with ML solutions. The application context thus assumes that finished ML

solutions, i. e., its documentation and components, are stored and available.

This includes the source code or software components of previous ML solu-

tions, some description about them and samples of the data used to train its

ML model. Beyond these contents, the application context does not assume

any standardization in the way the solutions were developed or validated.

This assumption reflects the limited scope of development projects, which

only consider one use case at the time.

1.3. Research Challenges

The application context described in the previous section characterizes typi-

cal situations and approaches to ML solution development in manufacturing.

This dissertation identifies four challenges in this application context that

render ML solution development ineffective. Ineffective ML solution devel-

opment projects are characterized by longer development times, duplicate

tasks, duplicate software implementations and/or duplicate data sources,

unclear team collaboration, and difficulties to understand, compare and

integrate ML solutions or their components to their target use case. The lack

of methods and concepts to address the four challenges represents a problem

for ML solution development. This dissertation addresses the problem of

ineffective ML solution development by proposing concepts and methods to

conquer the design, configuration, selection and process challenges.

This section formulates the four unaddressed research challenges that

constitute the research problems in focus here. Figure 1.5 shows the scope

of all challenges in the context of the ML solution development process.

26 1 | Introduction

Figure 1.5.: Detail of the research challenges occurring during the develop-
ment process of ML solutions.

1.3.1. Design Challenge

The first challenge pertains to the design step in the ML solution development

process. Typically, the data scientist is in charge of the problem definition for

the new ML solution. Existing specification methods (see Section 2.4) make

it difficult to distinguish between the technical specification of components

and the domain-specific needs that motivate the use of ML (Viaene and Van

den Bunder, 2011). This is partly due to the fact that the different roles

of the development team, domain experts in particular, lack a clear way to

collaborate with data scientists to provide useful input for the ML solution

specification. Moreover, specification documents tend to be unstructured in

nature. This makes it difficult to understand the functioning of its software

components, i. e., the need of certain software components to solve the

1.3 | Research Challenges 27

domain-specific problem. It also makes it hard to compare and reuse existing

specifications. The lack of structure also removes the possibility to support the

development team in the specification of newML solutions by recommending

existing specifications.

To address the Design Challenge (CH-1), there is a need for concepts and

methods that introduce formalism to ML solution specifications. Through

formalization, ML solution can be processed by software systems. There also

needs to be a defined way of collaboration for all roles in the development

team. Similarly, concepts and methods need to offer a full trace of domain-

specific goals and requirements and how they lead to concrete software

components. This allows a better integration of the new ML solution with

systems available at the use case.

1.3.2. Configuration Challenge

The second challenge pertains to the configuration step in the ML solu-

tion development process. Data scientists and software developers build

different ML solutions with different ML algorithms, training settings, hyper-

parameter values, data preprocessing techniques and IT resources. The

search space, i. e., all combinations with the elements mentioned above,

quickly becomes too large to be explored exhaustively (Xin et al., 2021). Yet,

software developers and data scientists typically try every tool combination

they have available (Zaharia et al., 2018). This opens the risk of incurring

in many training iterations in search for a better performing ML solution.

Moreover, as the number of iterations grows, it becomes increasingly difficult

to determine the exact combination of software components and settings

used to build a good performing ML solution. This problem is exacerbated if

there is no standard procedure to evaluate the ML solution’s performance.

It is thus important to be systematic during this highly creative step of the

development process.

To address the Configuration Challenge (CH-2), there is a need for concepts

and methods to ensure comprehensive documentation of ML solution con-

figurations. This documentation should ensure the complete reproducibility

28 1 | Introduction

of ML solutions. In this context, reproducibility covers the observed perfor-

mance and the software component configuration. Data scientists and/or

software developers should be able to rebuild an ML solution based on its

documentation and obtain the same performance as documented. Moreover,

as more ML solutions are developed, it is important that this documentation

has a systematic format to allow the concentration of all documents in a

single source.

1.3.3. Selection Challenge

The third challenge pertains to the selection step in the ML solution develop-

ment process. Decision makers review the candidate ML solutions developed

in the previous step to choose which alternative is most suitable for the

use case. However, use case suitability depends on multiple criteria, e. g.,

development and deployment costs, execution time. Not all of these criteria

are reported through ML metrics. Decision makers have difficulties select-

ing ML solutions because of the expert knowledge required to understand

them (Baier et al., 2019). For instance, they may be confronted with ML

metrics, e. g., RMSE or F1 Score, whose scale and values are of little utility

without expert interpretation. This is particularly problematic when the ML

tools themselves offer little information about the trained ML model (Xin

et al., 2021).

To address the Selection Challenge (CH-3), there need to be concepts and

methods to facilitate understanding and comparing ML solutions for non-

experts. These methods should allow domain experts and decision makers

to understand the overall performance of an ML solution beyond single ML

metrics. Additionally, the methods should make it easy for non-experts to

understand the performance trade-offs of choosing one ML solution over

others. As the number of ML solutions increases, it becomes important to be

able to compare multiple ML solutions in a reasonable time.

1.3 | Research Challenges 29

1.3.4. Process Challenge

The fourth challenge pertains to the overall ML solution development process.

The interaction of all roles needs coordination to carry out all steps. Coordi-

nation implies clearly-defined responsibilities and step sequences. Without

clear responsibilities, different roles working together, e. g., in the design

step, may duplicate activities. Another possibility is that by not involving a

certain role, e. g., the domain expert, some activities are omitted and their

absence noticed only much later. Moreover, performing the three steps in

the development in exclusive sequence may become very inefficient for large

scale projects where some ML solution components will be finished before

others.

To address the Process Challenge (CH-4), there need to be concept and

methods to organize the sequence of activities and steps in the development

process. The methods should determine the complete list of activities that

every role must perform to complete every step. This list of steps should

ensure not only that development is complete and time-efficient, but also that

it is reproducible and that domain-specific concerns are satisfied. Methods

should also devise the correct sequence of activities to eliminate unnecessary

iterations and to parallelize some activities to reduce overall development

time. Moreover, there has to be a proper documentation of the progress

throughout the process, so that the resulting ML solution is reproducible and

and its performance understandable. This can help establish best practices

that can later be applied on any new ML solution development project.

1.4. Research Contributions

This section presents four research contributions to address the research

challenges introduced in Section 1.3. Figure 1.6 shows the research con-

tributions across the typical ML solution development process to indicate

the challenges they address. Preliminary versions of the research contri-

butions have been published in different proceedings of conferences and

in a journal (Villanueva Zacarias et al., 2020; Villanueva Zacarias, Ghabri,

30 1 | Introduction

Figure 1.6.: Contributions to address the challenges in the development of
ML solutions.

et al., 2021; Villanueva Zacarias, Reimann, et al., 2018; Villanueva Zacarias,

Weber, et al., 2021; Villanueva Zacarias. et al., 2017). They have been edited

and expanded to be included in this dissertation. All contributions taken

from these publications and described in this dissertation are the original

work of the dissertation author. Additionally, software implementations of

these contributions have been made publicly-available online 1.

To obtain these contributions, research was conducted following the design

science approach of Hevner et al., 2004. This research methodology is

suitable for contexts where people, organizations and technology interact.

Design science proposes the creation of research artifacts as a way to know

and solve a certain problem domain. Research artifacts can be a construct

or concept, a model, a method or an instantiation (Hevner et al., 2004).

These artifacts are developed iteratively in build-and-evaluate cycles. In

each cycle, knowledge is applied on an artifact, and the artifact is evaluated

in a practical use case. This research thus develops concepts and methods

1https://github.com/al-villanueva

1.4 | Research Contributions 31

as contributions for each identified research challenge. The research then

assesses their effectiveness with prototypical implementations on concrete

use cases, i. e., instantiation artifacts in the context of design science.

1.4.1. Research Contribution for the Design Challenge

The design methodology Axiomatic Design for Machine Learning (AD4ML)

addresses the design challenge CH-1. AD4ML adapts the Axiomatic Design

methodology (Suh, 2001) to enable the specification of ML solutions. ML

solution specifications made with AD4ML are based on a mathematical for-

malism that allows them to be processed by software systems. They are also

built in a modular manner, which facilitates coordination and collaboration

of the development team and increases their reusability. This contribution

enables the systematic consideration of domain-specific requirements from

the very beginning of ML solution development. It also enables the docu-

mentation of ML solutions at a domain-specific level in order to trace the

function of each solution component to a domain-specific requirement. This

contribution is composed of the following sub-contributions:

Requirements (RC-1.1) A set of feasibility requirements for the design of

ML solutions in manufacturing.

Concept (RC-1.2) AD4ML – An adaptation of Axiomatic Design to specify

ML solutions.

Implementation (RC-1.3) Prototypical implementation of AD4ML as a

REST service available via a web interface.

1.4.2. Research Contribution for the Configuration Challenge

The ML solution framework addresses the configuration challenge CH-2. The

ML solution framework offers a comprehensive yet flexible format to collect

all information needed to develop and reproduce ML solutions. The frame-

work includes information about the domain-specific task and preferences,

the use case data properties, hardware and software configurations, ML

32 1 | Introduction

algorithm and training settings, and the observed performance. The compre-

hensiveness of the metadata collected makes it possible to standardize the

documentation of ML solutions with considerably different configurations.

For instance, it can be used to document ML solutions developed with visual

tools, e. g., KNIME or RapidMiner, ML solutions with ML models for re-

gression, binary classification or multi-class classification. This contribution

improves the reproducibility of ML solutions by documenting more than the

ML model and its settings. This improves the ability of development teams

to share their results with each other. This contribution is composed of the

following sub-contributions:

Requirements (RC-2.1) A set of requirements regarding the combination

and configuration of ML solution components.

Concept (RC-2.2) A conceptual ML solution framework consisting of four

metadata profiles.

Implementation (RC-2.3) Prototypical implementation of metadata pro-

files for exemplary use cases as well as a visualizer.

1.4.3. Research Contribution for the Selection Challenge

AssistML addresses the selection challenge CH-3. AssistML is a recommenda-

tion concept to find suitable ML solutions that can be adapted to be reused

in new use cases. With AssistML, users can easily search for and compare

many ML solutions without the need of expert knowledge. The concept

takes into account performance preferences and presents users, i. e., citizen

data scientists and decision makers, intuitive reports of each candidate ML

solution. The reports they obtain from AssistML allow users to understand

the performance trade-offs of employing each candidate and select the ML

solution that best meets the use case needs. This contribution improves the

ability of development teams to implement ML solutions for new use cases

by reducing the iterations needed to find suitable solution components or

configurations. It also empowers citizen data scientists to take up devel-

opment projects on their own, thus reducing the demand for expert data

1.4 | Research Contributions 33

scientists in the company. This contribution is composed of the following

sub-contributions:

Requirements (RC-3.1) A set of requirements regarding the complexity of

recommending reusable ML solutions to non-expert users.

Concept (RC-3.2) Assisted Machine Learning (AssistML) – A concept to

recommend and select ML solutions with consideration of performance

preferences.

Implementation (RC-3.3) Prototypical implementation of AssistML and

the metadata repository.

1.4.4. Research Contribution for the Process Challenge

The development process of the ML solution framework together with a

metadata repository address the process challenge CH-4. The development

process determines a comprehensive list of activities for the design, configu-

ration and selection steps. It guides all members in the development team to

carry out their activities in the right order and ensures that reproducibility,

standardization and good practices are in place.

Because the development process spans over many activities and involves

different roles, any progress made, e. g., implemented software, prepro-

cessed data and domain-specific decisions, has to be properly documented.

Proper documentation of every activity allows stakeholders to understand

and reproduce the results obtained throughout the development process.

A metadata repository was conceived to address this aspect of CH-4. The

repository is designed to collect and organize metadata of relevant inter-

mediate results during the development project. These include the manner

in which data is preprocessed, the settings used to train the ML model(s),

the performance evaluation procedure followed as well as the performance

scores obtained. This metadata repository is conceived to document ML

development projects regardless of the technology stacks used to allow the

consistent documentation of diverse ML solutions. This also allows the meta-

34 1 | Introduction

data repository to serve as data foundation for the recommendation concept

AssistML.

This contribution is composed of the following sub-contributions:

Concept (RC-4.1) A conceptual guidance process to develop ML solutions.

Concept (RC-4.2) An extensible, technology-agnostic metadata repository

to document progress during the ML solution development process.

Implementation (RC-4.3) A metadata repository to concentrate all docu-

mentation, source code, and data to reproduce the ML solution devel-

oped, explain its performance and serve as basis to recommend ML

solutions for new use cases.

1.5. Dissertation Outline

This dissertation is organized in five logically ordered chapters.

Chapter 2 – Theoretical Background gives an overview of the concepts

and theories that underpin the contributions of this dissertation. This in-

cludes an introduction to data-driven machine learning, production systems,

applications of ML in manufacturing and existing approaches to the design,

configuration and selection of ML solutions.

Chapter 3 – ML Solution Framework discusses the ML solution framework

and ML solution development process. These contributions structure the

complete ML solution development project. They also form the basis for the

contributions presented in the following chapters, i. e., AD4ML in Chapter 4

and AssistML in Chapter 5. This chapter proposes these contributions in

response to a set of requirements extracted from a literature review. The

chapter also describes the application of the framework on an exemplary use

case for end-of-line fault detection. The chapter closes with a prototypical

implementation of the metadata profiles.

Chapter 4 – Axiomatic Design for Machine Learning discusses the use of

the Axiomatic Design methodology to specify ML solutions. The chapter

first discusses the requirements that the specification of ML solutions for

1.5 | Dissertation Outline 35

manufacturing use cases imposes on any design methodology. It then intro-

duces a reference use case to serve as a guiding example for the adaptations

that constitute AD4ML. Afterwards, the chapter discusses further relevant

aspects of using AD4ML to specify ML solutions. Concretely, it discusses a

visualization method for AD4ML specifications, methods to assess the quality

of design decisions and overall AD4ML specifications, and an approach to

carry out the specification with AD4ML following agile principles.

Chapter 5 – AssistML discusses AssistML, a concept to recommend existing

ML solutions for new predictive use cases. The chapter first determines the

requirements that the concept must fulfill to support its target users, i. e.,

the citizen data scientist and the decision maker. It then introduces the

metadata repository as a key requirement for the AssistML recommendation

process. The chapter discusses the steps of the recommendation process in

detail and evaluates its ability to recommend useful ML solutions with two

exemplary use cases. The chapter closes with a prototypical implementation

of the recommendation process and the metadata repository.

Chapter 6 – Conclusion and Future Work summarizes the contributions

presented in this dissertation and discusses the extent to which they address

the research challenges from Section 1.3. The chapter closes with an overview

of the directions in which the research can continue. A list of publications,

supervised theses and projects as well as publicly released software can be

found at the end of the dissertation.

36 1 | Introduction

C
h
a
p
t
e
r

2
Theoretical Background

In order to delimit the scope, this chapter introduces concepts related to

the main research contributions. The first section discusses the process

of designing new production systems, as this is the context in which the

specification of ML solutions takes place. The second section describes

the characteristics of data collected or generated within such production

systems to determine the data sets that can be expected to be used for

machine learning. Then, the third section characterizes Machine Learning

and discuss the common applications of this kind of ML in manufacturing

use cases. The last three sections give a brief overview of existing approaches

to design, configure and select ML solutions that serve as context for the

contributions presented in Chapters 3 to 5.

2.1. Characteristics of Production System Design

This section first describes production system design in the context of the

product conception phase according to Eigner (Eigner and Stelzer, 2009)

and the Smart Engineering initiative by Acatech (Anderl et al., 2012). Af-

terwards, three elements of production system design are further detailed.

37

Figure 2.1.: Overview of the product conception phase. After descriptions
from (Anderl et al., 2012) and (Eigner and Stelzer, 2009)

These are (1) classification systems (Grabowski et al., 2002), (2) feature

technology (Haasis et al., 2003), and (3) model-based systems engineering

(Eigner, 2013).

2.1.1. Production System Design within the Product Conception Phase

Product conception is part of the product life cycle (Eigner and Stelzer,

2009). It covers processes to develop a business idea into viable product and

production system concepts (see Figure 2.1). Using these concepts, the mass

production phase can be launched.

The activities in product conception are grouped into three processes: the

strategic product planning, the product development and the production system

design. These processes do not occur in isolation. They interact with each

other as their corresponding results get further detailed. In this sense, they

do not follow a traditional process sequence (Anderl et al., 2012). The goal

of strategic product planning is to ensure the economic viability of the new

product. This requires verifying the existence of a business need, business

models, a market segment and the potential for the company (Anderl et

al., 2012). During product development, the product is conceived from me-

chanical, electrical and electronic, and software standpoints. The resulting

product concept contains exact and binding specifications of the product’s

technical functionality, costs, and quality levels (Anderl et al., 2012). As for

the production system design, the goal is to determine how to manufacture

the product according to its product concept. For this purpose, the product

38 2 | Theoretical Background

concept is broken down into manufacturing operations. Each manufactur-

ing operation is responsible for a product characteristics or functionality.

Manufacturing equipment, facilities, and resources are assigned to each

manufacturing operation (Anderl et al., 2012). Depending on the viability

to manufacture the product, either the product concept or the production

system concept can be adapted to better suit each other.

The product conception phase ends with complete and viable specifications

of the product and the production system. The product concept is a complete

digital description of the product, referred to as Digital Master (Eigner and

Stelzer, 2009), Virtual Product or Virtual Prototype (Anderl et al., 2012).

The production system concept, also referred to as Digital Factory or Virtual

Production (Anderl et al., 2012) contains, e. g., the work plan, the layout for

the production and assembly lines, and the design of working stations.

The need for interdisciplinary efforts to develop both product and produc-

tion system concepts is satisfied through Cross Enterprise Engineering (Eigner

and Stelzer, 2009). This concept implies cooperation and coordination

across disciplines, organizations and systems spanning throughout product

conception and the later phases of the product life cycle (Eigner and Stelzer,

2009).

2.1.2. Classification Systems

The design of production systems considers a wide range of system com-

ponents. Components include manufacturing equipment, manufacturing

operations, production facilities, resources, and production technologies.

Their technical descriptions are stored in different data sources (Grabowski

et al., 2002). These can include reports, specification sheets, and test re-

sults. Besides, each component has a distinct relationship with the rest of

the production system. These relationships are also kept in data sources.

For instance, a specification sheet can describe the type of material that a

machine can handle, thus linking the material to the machine. Designing

a production system without an organizing structure impacts the process

2.1 | Characteristics of Production System Design 39

efficiency. This is due to the extra effort to organize and find data (Grabowski

et al., 2002). The possibility to reuse specifications is also reduced.

Classification systems provide a structure for components in a production

system. They assign each component a compact classification code that de-

scribes its key properties. Examples of classification systems are eCl@ss, the

European Article Numbering EAN and North American Industry Classification

System NAICS (Grabowski et al., 2002).

Classification codes are built out of a hierarchy of key properties. Each key

property is a level in this hierarchy, its values encoded with a few letters and

numbers (Grabowski et al., 2002). The combination of key property values

uniquely identifies a component with a standard, meaningful represenation.

For example, a classification system can be built using three key properties.

The first property can distinguish the type of system component. The second

property can state the product line in which the component is used. The

third property can identify the revision number of that component.

Without a classification system, systems component can only be found

via search techniques. This implies issuing custom search queries that often

produce many slightly relevant results. Besides, it is not guaranteed that the

query finds the desired component (Grabowski et al., 2002).

2.1.3. Feature Technology

Feature technology was introduced at the beginning of the 2000’s by Daimler

Chrysler and Dassault Systěmes to address the need to integrate data about

the product, the production system and the resources used for production

(Haasis et al., 2003). Features are uniform carriers of descriptive and se-

mantic information to ensure a continuous dataflow throughout the product

life cycle. Depending on the kind of data they capture, they can have one of

four different types: design, manufacturing, assembly and inspection.

The use of feature technology in product conception begins with the design

of product parts. A product part is composed of design features. Each design

feature has a specific function associated to it. This allows designers to

choose features according to the functions that the new part should have

40 2 | Theoretical Background

Figure 2.2.: Feature tree showing the connection between part feature, pro-
cess and resources. After (Haasis et al., 2003)

(Haasis et al., 2003). This promotes standardization of design features,

which in turn results in cost efficiencies.

During production system design, design features are mapped to manufac-

turing and inspection processes. This is called feature mapping and is shown

in Figure 2.2. Afterwards, inspection processes are mapped into specific

operations. Then, these operations are linked to the machines capable of

doing them (Haasis et al., 2003).

Thanks to this linking from part to machine, the production costs, machine

capacities, and supply logistics can be more accurately estimated. This end-

to-end linkage also offers the possibility to trace any changes to either the

product, the production system or the machines.

2.1.4. Model-based Systems Engineering

With products incorporatingmore electronic and software functionality, there

has been a growing need to make product conception more interdisciplinary.

In response to this need, a new discipline called Systems Engineering was

born. In Systems Engineering, both the product and the production system

are considered systems as they are "sets of elements (...) that accomplish a

2.1 | Characteristics of Production System Design 41

defined objective." (Walden et al., 2015). Moreover, their interactions make

it necessary to consider them parts of a system of systems that is designed

during the product conception phase.

Model Based Systems Engineering (MBSE) is an approach in systems

engineering that aims to develop systems through the construction and

refinement of a unified, coherent, digital systemmodel (Eigner, 2013; Ramos

et al., 2011). The system model, its constituent models and model elements

are developed using appropriate modeling languages and modeling tools,

e.g., SysML in Artisan Studio (Ramos et al., 2011). The resulting models are

stored and managed in a model repository (Ramos et al., 2011). The models

in the repository become a single coherent data source for all activities in

product conception and for later phases in the product lifecycle. Models

describe systems, i. e., the product and production system, in a formal,

complete and consistent manner.

In contrast to models, documents change the textual specifications as

they are exchanged throughout the product conception. Furthermore, mod-

els contain interconnected information about the requirements, structure,

behavior and parameters of the systems (Ramos et al., 2011). The intercon-

nections are made possible thanks to a data model supporting hierarchies,

cross-references between model aspects and typed connections within the

models (Eigner, 2013).

2.2. Data in Manufacturing Use Cases

The widespread adoption of software systems throughout the production

system has grown over the years (Tao et al., 2018). This includes infor-

mation systems to manage aspects of the product lifecycle, e. g., Customer

Relationship Management (CRM), Manufacturing Execution System (MES),

Enterprise Resource Planning (ERP), Supply Chain Management (SCM)

and Product Data Management (PDM) systems. Also included are software

systems to handle product data, e. g., Computer Aided Design (CAD), Com-

puter Aided Engineering (CAE) and Computer Aided Manunfacturing (CAM)

42 2 | Theoretical Background

systems. All these systems generate data and store them using their own

databases or data formats for all members of an organization to access (Tao

et al., 2018). Recently, the amount of data to analyze the production system

has grown significantly. This is due to the use of digital sensors at production

system facilities, the access to open data sets online and to customer data

from social media channels (Tao et al., 2018). Therefore, distributed data

storage systems, e. g., data lakes or cloud services, are required to store the

larger data sets (Giebler et al., 2019).

This has led organizations to cope with the challenges of big data (Gan-

domi and Haider, 2014; Grover and Kar, 2017; Moyne and Iskandar, 2017;

O’Donovan et al., 2015; Tao et al., 2018). Besides the sheer size of collected

data, other characteristics have been adopted to define big data. These

characteristics have been summarized in five V’s, namely volume, variety,

velocity, veracity and value (Gandomi and Haider, 2014; Grover and Kar,

2017; Moyne and Iskandar, 2017). Each of these characteristics indicate

potential challenges that industry practitioners need to address to use their

data in the development of ML solutions.

Volume refers to the magnitude of the data relative to the available ca-

pacity storage (Gandomi and Haider, 2014; Grover and Kar, 2017). This

characteristic is mainly relevant to assess the scalability of the data stor-

age in the production systems. For instance, the addition of sensors in the

production system can have a big impact in the amount of data storage

needed.

Variety refers to the different data types collected in the production sys-

tem (Gandomi and Haider, 2014). This characteristic is of particular rele-

vance in production systems given the high heterogeneity of data sources,

which go from traditional databases of MES or ERP systems (Grover and Kar,

2017; Moyne and Iskandar, 2017) to semi-structured or unstructured data

of Internet of Things (IoT) sensors. Currently, the most common industry

data types are structured data, e. g., contained in relational databases, time

series data, and unstructured text (Mąkinen et al., 2021). Assessing this

characteristic helps to determine the type of preprocessing needed to analyze

the data and obtain meaningful information from it (Grover and Kar, 2017).

2.2 | Data in Manufacturing Use Cases 43

For example, unstructured text requires some type of representation before

being used by an ML model. Representations include n-grams, bag of words

or word embeddings (Sebastiani, 2002).

Velocity refers to the rates at which data is generated, collected, analyzed

or acted upon (Gandomi and Haider, 2014). This characteristic is reflected

in production systems in the execution models of different software systems.

Some software systems may process data in batches, e. g., at the end of

a production shift, whereas others process data in real-time as products

advance the assembly line. This characteristic is specially challenging for

data scientists (Grover and Kar, 2017), who need to take into account the

different speeds of data sources for their preprocessing.

Veracity refers to the reliability of data sources, i. e., how correct the facts

stated by the data source are (Gandomi and Haider, 2014). This characteris-

tic is closely related to the assessment of the data quality, i. e., assessing how

accurate, complete, truthful, or objective a data source is (Grover and Kar,

2017; Moyne and Iskandar, 2017). The higher the data quality, the better is

the veracity of the data source. This is of particular importance in production

systems to assess customer data or unstructured text data where judgments

are made upon, e. g., social media excerpts or quality assurance reports.

Assessing this characteristic and having good mitigation strategies to handle

bad quality data is critical to increase the adoption of ML solutions (Moyne

and Iskandar, 2017).

Value refers to the degree of usefulness of a data source based on the

insights that can be extracted from it (Gandomi and Haider, 2014; Grover

and Kar, 2017). In general, big data is expected to have low-density value,

i. e., that an individual data point is of little utility compared to the analysis

of many data points (Gandomi and Haider, 2014). An alternative stance is

that from a large data source, analysis has to be carried out to extract the

valuable data that can be acted upon (Grover and Kar, 2017), e. g., extract a

few representative performance or configuration patterns from a big data

set. Taking this characteristic into account is important as it is the value

extracted from data by ML solutions that justifies the investments made to

develop them.

44 2 | Theoretical Background

Figure 2.3.: General operation of Machine Learning

2.3. Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence that aims to

develop algorithms that learn and improve their performance in the execution

of a specific task (Kashyap, 2018; Mitchell, 1997). The general operation

of Machine Learning is shown in Figure 2.3. A machine learning algorithm

identifies and learns patterns contained in a data set D regarding a given

learning task T. These patterns indirectly represent knowledge which is

generalized in a trained model following the ML algorithm logic. The trained

model performs the task with a certain performance P (Mitchell, 1997),

which can be measured using different metrics, e.g., accuracy for supervised

learning tasks. This learning task consists of making an inference for an

unseen case based on the learned patterns from the data. Depending on the

type of learning task, the algorithms to train models andmake inferences vary.

This includes supervised learning, unsupervised learning, reinforcement

learning and association rules (Alpaydin, 2009). This dissertation focuses

on supervised learning.

In supervised learning, the data set D is composed of input features X

and a class data feature Y . A supervised learning algorithm trains a model

m(X |θ) that makes inferences or predictions Y ′ based on the input data

features X and the learning parameters θ (Alpaydin, 2009). The model thus

aims to map certain values of X to values of Y ′, so that the error between Y ′

and Y is minimized.

2.3 | Machine Learning 45

Depending on the data type of Y , i. e., the type of prediction, supervised

learning tasks are subdivided in classification, for categorical data, or re-

gression, for numerical data (Alpaydin, 2009). The specific learning task

determines the type of learning algorithms that can be applied to it. Repre-

sentative examples include Decision Trees, Random Forests, Naive Bayes,

Logistic Regression, Support Vector Machines and Artificial Neural Networks.

Each learning algorithm has a set of assumptions that make use of certain

properties in the input feature X . For instance, certain variants of the De-

cision Trees algorithm rely on the concept of gini impurity to determine

which data feature from X can classify all observations in the data set best.

(Kotsiantis, I. Zaharakis, et al., 2007) and (Kotsiantis, I. D. Zaharakis, et al.,

2006) give a comprehensive overview of established learning algorithms.

ML models can be further divided depending on the types of labels they

produce. Some models produce single class predictions, i. e., a class out of

two or many is selected for each observation in X . ML models trained with

probabilistic algorithms produce prediction probabilities (Bishop, 2006).

Finally, ML models can produce multiple simultaneously correct class predic-

tions, i. e., produce a multi-label output (Kubat, 2017).

Supervised learning algorithms have been widely used to support produc-

tion processes since the early 2000s, as a review of Wuest et al., 2016 shows.

The technology is applied by developing a Machine Learning (ML) solution

for a concrete use case in the production process.

A ML solution denotes the set and sequence of software components and

algorithms necessary to deliver a predictive capability needed at a use case.

As shown in Figure 1.1, a ML solution has to include (1) software components

to read data from relevant data source(s), (2) software components to

preprocess data, (3) one or more machine learning algorithms to train

a machine learning model, e. g., a decision tree, and (4) postprocessing

components to communicate the prediction to the use case. Furthermore,

a ML solution includes (5) software components to deploy the machine

learning model in the use case to make predictions. Finally, the ML solution

also includes the (6) computing resources all the previously mentioned

software components can operate on.

46 2 | Theoretical Background

From the perspective of feature technology, ML solutions are machines

performing inspection operations (Sharp et al., 2018). They are, for instance,

deployed at test stations as part of an intelligent quality control system. They

can trigger triage operations in an assembly line to send potentially defective

assemblies into a more detailed inspection. Moreover, they can be part of

monitoring dashboards to provide warnings of potential machine outages.

Depending on the specific use case in which it is deployed, the ML solution

needs to be integrated with different systems. Just like regular machines and

equipment, the linking of ML solutions with specific inspection operations

has to be reflected in the production system concept.

2.4. Approaches to Design ML Solutions

The first step in the development process has the goal of specifying the ML

solution to be developed (see Section 1.2.3). For this purpose, different

design methodologies have been adapted or proposed to partially address

this step.

The most prominent methodology is the Cross Industry Standard Process

for Data Mining (CRISP-DM) (Chapman et al., 2000; Shearer, 2000). CRISP-

DM is a high-level reference process to manage data mining projects in

industry (Shearer, 2000). It is widely adopted by industry practitioners to

develop data mining, data analytics, business intelligence and ML projects.

CRISP-DM covers the whole development process in six phases, the first one

of which addresses, among other things, the design of the ML solution. The

result of this first phase is the data mining problem definition which, along

with a project plan, outlines the project scope and goals (Chapman et al.,

2000).

The Quality Function Deployment (QFD) methodology (Akao and King,

1990) has been adapted to design ML solution-like systems. QFD was origi-

nally conceived to design complex products based on customer preferences,

the so-called voice of the customer. Based on an iterative mapping between re-

quirements on one side and means to fulfill them on the other, QFD deduces

2.4 | Approaches to Design ML Solutions 47

the product and production process specifications from customer require-

ments (Crowe and Cheng, 1996). This methodology has been adapted for

software development (Herzwurm, Schockert, et al., 2015) and more spe-

cific application domains, e. g., cloud computing (Herzwurm, Pietsch, et al.,

2012).

Other methodologies have been proposed to deal explicitly with the design

of ML solutions. One is the Analytics Canvas (Kühn et al., 2018). This

methodology is meant to facilitate communication and planning before

the development process. The canvas offers a one-page-long overview of

the IT infrastructure, data and stakeholders required for a concrete use

case (Kühn et al., 2018). Another methodology is the conceptual modelling

framework by Nalchigar and Yu, 2020. The framework aims to model an

ML solution-like system using three modeling views or sub-models. These

are the business, analytics design and data preparation views. Each view

corresponds to a specific group of team members, i. e., business analysts,

data scientists and data engineers, who are responsible for building and

updating them (Nalchigar and Yu, 2020). Contrary to the Analytics Canvas,

the modeling framework sacrifices visibility of the resulting model for a

comprehensive specification based on predefined meta-models.

2.5. Approaches to Configure ML Solutions

The second step in the development process refers to the assembly of data,

software components, hardware and software resources, and ML algo-

rithms and their configuration to implement different ML solutions (see

Section 1.2.3). Given the explorative and iterative nature of this step, there

is a risk to follow brute-force and/or trial-and-error approaches, i. e., the

development team tries all available implementation options (Zaharia et al.,

2018). Configuration approaches thus are needed to provide structure to

this step’s iterations.

There are two methodologies that guide the process of combining data and

solution components. First, Knowledge Discovery in Databases Process (KDD)

48 2 | Theoretical Background

is another established methodology (Fayyad et al., 1996). KDD structures

the process of building ML solutions in five steps. Through these steps,

data is selected, preprocessed, and transformed to make it accessible to

data mining techniques. Then, data mining techniques, among them ML

algorithms, can be applied to extract patterns, i. e., useful observations that

can be applied to new data with some degree of certainty (Fayyad et al.,

1996). The process ends with an evaluation of all extracted patterns. In

this sense, the KDD process organizes ML solution configuration around

data exploration rather than domain-specific goals. Second, is the process

developed by the SAS institute: Sample, Explore, Modify, Model, Assess

(SEMMA) (Azevedo and Santos, 2008). Its goal is to guide users through

the exploration of data samples to build and assess an ML model. SEMMA

focuses on the data analysis, data preprocessing and modeling aspects of the

solution configuration. Thus, it leaves aside domain-specific or deployment

aspects, e. g., performance preferences or deployment constraints.

Besides these methodologies, other approaches have been conceived to

track the ML solution configuration. These approaches offer a common

data structure or platform to document every relevant characteristic of the

developed ML solutions. ML Model Scope supports deep learning models

from different software libraries on different operative systems and hardware

platforms (Li et al., 2019). MLflow is a platform for tracking the parameter

values and resulting performance of ML models via a REST API (Zaharia

et al., 2018). OpenML is designed to be a repository of data sets and the

ML models that are trained on them (Vanschoren et al., 2014). Its goal is to

enable comprehensive comparisons between ML models built for the same

data set.

2.6. Approaches to Select ML Solutions

The third step in the development process focuses on the comparison of dif-

ferent ML solutions to determine the most suitable ones for deployment (see

Section 1.2.3). Currently, the comparison is made based on ML metrics com-

2.6 | Approaches to Select ML Solutions 49

puted on benchmark data sets (Wagstaff, 2012). In this context, Bourrasset

et al., 2019 have proposed a series of metrics for enterprise benchmarks.

They propose metrics to benchmark model training, hyperparameter opti-

mization, and the execution time for an ML to make predictions. Yet, their

proposed metrics have not been completely covered by existing benchmark-

ing approaches (Bourrasset et al., 2019).

Other ML Benchmarking approaches devise standard evaluation approa-

ches, rank ML solutions based on the measured values, and assign scores

to each implemented ML solution. MLPerf (Mattson et al., 2020) is an

industry-led benchmarking platform that defines reference tasks, metrics,

and categories to compare deep learning models using different ML software

libraries and hardware architectures. DeepOBS (Schneider et al., 2019) is a

benchmarking suite exclusively tailored for deep learning optimizers using

TensorFlow.

50 2 | Theoretical Background

C
h
a
p
t
e
r

3
ML Solution Framework

A team tasked with the development of ML solutions faces difficulties related

to the configuration (CH-2) and process challenges (CH-4) (see Section 1.3).

As shown in Figure 3.1, the team may start the development with access

to use case data and a domain-specific problem definition. Yet, there is

no systematic methodology to structure the interactions between domain

experts and other team roles in a development team to configure suitable

ML solutions for their particular problem (H.H. Hoos et al., 2017; Pham and

Afify, 2005; Wuest et al., 2016). Furthermore, ML solutions are made of

several software components, which are difficult to understand by domain

experts and decision makers. Specifically, these roles lack adequate docu-

mentation to comprehend and compare different solutions and to finally

select the solution that matches their requirements. This challenge is further

aggravated given the need to be able to reproduce the ML solution and its

measured performance later in a productive environment.

This chapter proposes a framework to develop ML solutions based on a

process that systematically profiles solution components. Domain experts

can define their domain-specific problem in terms they are familiar with, e. g.,

in terms related to quality control of production. The ML solution framework

51

Figure 3.1.: General contribution: Development teams can systematically
develop and review ML solutions built for their data and use
case.

structures the development of suitable ML solutions and contributes to their

reproducibility. In the end, the framework presents the domain experts with

the resulting ML solutions using concise and relevant information. Users

can compare the ML solutions taking into account their individual needs

via a visual, easy-to-use ML solution viewer. Altogether, the ML solution

framework provides a systematic approach that brings transparency in a

situation that is highly-technical for domain experts.

The contents of this chapter are an edited version of a separate publication

(Villanueva Zacarias, Reimann, et al., 2018). All concepts extracted from it

and used in this dissertation are the original work of the dissertation author.

This chapter is organized as follows: Section 3.1 discusses related work

and current limitations with respect to the development of ML solutions in

manufacturing. Section 3.2 derives five design requirements that a frame-

work supporting the development of ML solutions has to achieve. Section 3.3

introduces the framework components and discusses how each of these

components contributes to the fulfillment of the design requirements. Sec-

tion 3.4 presents a prototypical implementation of the solution framework

52 3 | ML Solution Framework

and evaluates it on the basis of representative use cases. Finally, Section 3.5

concludes and lists possible future work.

3.1. Related Work

This dissertation surveyed related work in three research areas: (1) chal-

lenges in applications of machine learning (ML) algorithms in manufacturing,

(2) empirical evaluation of ML algorithms, and (3) automated machine learn-

ing.

3.1.1. Challenges of ML Solutions in Manufacturing

Langley and Simon are among the first to list machine learning applications

from several domains (Langley and Simon, 1995), with the oldest one in

manufacturing dating back to 1985. According to them, the main challenge

for a successful use of ML is to specify a correct domain problem formulation,

regardless of the algorithms used.

A decade later, Pham and Afify, 2005 confirm the importance of problem

formulation and recognize two additional challenges: firstly, the need for

techniques to handle bigger amounts and more varied types of data and,

secondly, the need to combine multiple algorithms in order to increase the

quality of an analytics solution (Pham and Afify, 2005). Recently, Wuest

et al. (Wuest et al., 2016) have verified these challenges to be even more

important now. One consequence is a high complexity for acquiring, under-

standing, and preparing data as needed by the desired analytics solution.

Furthermore, it is now very difficult to select suitable algorithms from the

many available ones and to properly configure them. For classification prob-

lems alone, candidate algorithms can include Decision Trees (logic-based),

Naive Bayes (statistical learning), k-Nearest Neighbors (instance-based),

Deep Learning (perceptron-based), Support Vector Machines, as well as the

sub-variants and combinations thereof (Kotsiantis, I. D. Zaharakis, et al.,

2006).

3.1 | Related Work 53

A work in recent years handled the above-mentioned challenges with an

established methodology, offering guidelines throughout the process (Lieber

et al., 2013). Yet little detail is given on how a particular algorithm is selected

and how its parameters are configured. Only low-level ML evaluation aspects

(cross validation or feature selection) are taken into consideration. This not

only makes the comparison of techniques difficult for domain experts, it also

neglects other relevant issues, such as the practical feasibility or execution

costs, which should play a role in the decision.

3.1.2. Empirical Evaluation of Machine Learning Algorithms

The evaluation of different ML algorithms on the same or multiple data sets

is a common practice to identify appropriate algorithms for a certain kind of

problem or for certain kind of data. Several studies have been carried out for

this purpose (Demšar, 2006; Dogan and Tanrikulu, 2013; Olson, La Cava,

et al., 2017; Sokolova and Lapalme, 2009). Such an evaluation of algorithms

is usually done based on predefined performance metrics, e. g., accuracy or

precision. While these metrics constitute the undeniable baseline for ML

research, they do not directly reflect the actual goals domain experts pursue

when applying ML. For instance, these domain experts are rather interested

in reducing costs or increasing quality of their products.

3.1.3. Automated Machine Learning

A novel research area that is related to the ML solution framework is auto-

mated machine learning or AutoML (Feurer, Klein, et al., 2015). Its main

goal is to automatically generate and configure ML solutions through empir-

ical testing under predefined conditions on a target data set. Furthermore,

it aims to leverage human expertise by allowing users to restrict the types

of algorithms, as well as the performance metrics to evaluate candidate

algorithms (H.H. Hoos, 2008).

The framework proposed in this chapter focuses on two major tasks of

AutoML: (1) algorithm selection, i. e., which type of algorithm fits the appli-

54 3 | ML Solution Framework

cation problem, and (2) parameter tuning, dealing with the question of how

algorithm parameters should be configured to achieve satisfactory results.

Various methods have been proposed for both tasks (Bischl et al., 2016;

Hutter et al., 2009; Snoek et al., 2012). However, the area of AutoML still

faces several challenges. In particular, algorithm selection and parameter

tuning considering multiple objectives is a tedious and sophisticated prob-

lem. Furthermore, related work lacks systematic methodologies to guide

the selection and configuration of algorithms for concrete real-world use

cases (H.H. Hoos et al., 2017).

3.2. Design Requirements

In response to the challenges discussed above, the research derived a set

of design requirements for a framework to assist in the configuration and

selection of ML solutions. These requirements concern (1) the specification

of a domain-specific problem, (2) the efficient and accurate data utilization,

(3) the consideration of available IT resources, (4) the property-based and

performance-based configuration and selection of ML algorithms, and (5) the

enhanced ML solution comprehensibility.

3.2.1. Specification of a Domain-specific Problem Definition

The framework needs to enable domain experts to specify the problem or

task to be solved by analytics in terms they are familiar with. For instance,

quality engineers should be able to literally define their problem such as:

Identify steps of the assembly line that cause severe quality issues and most of the

rework for products A and C. This allows domain experts to abstract from all

technicalities of the formal optimization problem of finding and configuring

adequate ML solutions. Instead, they can focus on the domain-specific goals

and principles to be fulfilled, as well as on the priorities between possibly

conflicting goals (e. g., quality of the results vs. processing time). Once

established, this set of goals and principles act as constraints of the solution

space the framework has to explore.

3.2 | Design Requirements 55

This kind of domain-aware approach enables a principled development

of ML solutions, where not only technical components of the solution are

considered, but also domain-specific reasons and decisions behind them.

Fulfilling this requirement entails multiple benefits. First, domain experts

can specify and compare ML solutions based on goals and principles they

are familiar with, and not just in ML-related technical terms. Second, past

ML solution implementations, including their domain-specific descriptions,

can serve as a knowledge base offering ML solutions for the company. Third,

the documentation of principles can serve as evidence for regulatory or

compliance affairs.

3.2.2. Efficient and Accurate Data Utilization

Manufacturing data are heterogeneous in many ways. Each process gener-

ates different amounts of data in varying formats (e. g., free text, images,

sensor data), and with different quality levels. Yet in all cases, these data

characteristics influence how a certain ML solution performs in terms of

both its execution time and the quality of its results. Hence, the framework

has to be aware of all diverse data characteristics to ensure an efficient

and accurate data utilization. To get the necessary information about data

characteristics, the framework may for instance investigate relevant data

sources and metadata describing these sources. In this way, it can identify

ways (potential best practices) to preprocess data in order to improve the

data characteristics and thus also the effectiveness of an ML solution. Fur-

thermore, this also helps to better reflect the original data properties in the

selection and configuration of ML solutions (see Section 3.2.4).

3.2.3. Consideration of Available IT Resources

ML algorithms can be implemented in different ways, each one having

positive and negative aspects regarding processing speed, robustness, or exe-

cution costs. Thus, the choice of the ML algorithm implementation affects the

number of IT resources needed, i. e., computing infrastructure and software.

56 3 | ML Solution Framework

It is thus important that the framework takes into consideration the available

IT resources and the capabilities that these resources offer. This information

can be used to determine which ML solutions can be implemented with the

resources available for the use case. Moreover, the documentation of the IT

resources needed by different ML solutions allows their comparison at an

implementation-oriented level. This means that implementation-oriented

aspects, e. g., implementation effort, can be added to the analysis criteria in

the decision-making process. Besides, it can contribute over time to a ho-

mogenization of ML solutions, allowing them to run on a common platform

for all use cases in a company.

3.2.4. Property- and Performance-based Selection and Configuration

of ML Algorithms

ML algorithms are at the core of an ML solution. One important step towards

making their selection and configuration transparent to domain experts is

establishing a base set of criteria that justify a given result. To this end, the

framework must be able to select and configure an ML algorithm that is

compatible with the identified domain-specific problem, data characteristics,

and available IT resources, as described in Sections 3.2.1 to 3.2.3. These

three aspects have to be matched with known properties of ML algorithms,

e. g., the ability to produce correct and understandable rules or to handle

many classification categories.

Furthermore, the framework must establish relationships between specific

configurations of ML algorithms and their observed performance. Thereby,

performance not only covers execution time or result quality of an ML

algorithm. Instead, it also (or even mainly) has to consider whether the

user’s domain-specific problem has been solved by applying the algorithm.

Altogether, this enables the target-oriented selection of a suitable algorithm,

as well as its proper configuration for the use case at hand.

3.2 | Design Requirements 57

3.2.5. Enhanced ML Solution Comprehensibility

By considering all these different aspects as described so far, a framework

may also risk reducing the ease for users to perceive differences among sev-

eral candidate ML algorithms. Even when comparing two almost identical ML

solutions, e. g., which use the same data sets and run on similar IT resources,

finding a single difference responsible for a considerable performance change

can quickly become error-prone and time-consuming. Hence, the framework

needs to present many ML solutions simultaneously and to make their explo-

ration and comparison as intuitive as possible. This includes explaining the

user individual ML solution components in an easy-to-understand manner

for domain experts and decision makers.

Thereby, the framework especially has to reflect both the goals and skills of

a typical domain expert in manufacturing. Such domain experts are usually

not interested in technical aspects such as parameter values of algorithms or

used IT resources. Instead, they rather focus on the performance of applying

an ML algorithm, measured in multiple dimensions, e. g., execution time,

prediction quality, or development costs. For that purpose, the framework

must (1) present ML solutions in terms of their relative performance differ-

ences, (2) offer meaningful descriptions of these performance differences,

and (3) indicate patterns that most influence performance.

3.3. ML Solution Framework

The ML solution framework addresses the design requirements presented

in the previous section via a structured development process, metadata

profiling of solution components and an ML solution viewer to review the

implemented ML solutions. The development process defines the sequence

of activities to develop solution components and to create the corresponding

metadata profiles. The metadata profiles define the information that needs

to be documented to ensure reproducibility and improve cooperation among

members of the development team. Finally, the ML solution viewer makes it

easy to review and compare the developed ML solutions, thus facilitating the

58 3 | ML Solution Framework

Figure 3.2.: ML Solution Development Process: A structured approach to
create anML solution, where experts are supported on particular
topics

selection of a suitable ML solution. The following three subsections describe

each part of the framework in more detail.

3.3.1. ML Solution Development Process

The development process proposes a structured approach to building ML

solutions for different use cases with a common structure. An overview of the

process is shown in Figure 3.2. It consists of seven steps that a development

team carries out not only to develop ML solution components, but also to

generate the necessary metadata that is needed to understand, compare,

reproduce, deploy and manage ML solutions later. The development process

defines responsibilities for each of four team roles, i. e., domain expert, data

scientist, software developer and decision maker. It also specifies the input

that each team role has to provide (shown as gray boxes beneath the team

roles) and the expected output metadata of each step (shown as gray icons

beneath the process steps). The development process thus serves as a kind

of ML solution production line that generates ML solutions for specific use

cases.

3.3 | ML Solution Framework 59

Specify domain-specific task. In the first step, the domain expert (and to

a lesser extent the decision maker) must provide information to define the

problem that the ML solution must address. The information for the problem

definition includes general constraints set by the decision maker for the de-

velopment project, e. g., allocated financial budget, time frame, or manpower.

With the general boundaries of the development project defined, domain

experts provide domain-specific requirements and preferences regarding

use case data and the different solution components. The requirements and

preferences specify how the domain experts expect the use case data to be

read and processed, as well as the type of results they obtain from the ML

solution once available. It is important that the information collected at this

step focuses on domain-specific aspects and is documented as such, i. e., that

the metadata identifies this as domain-specific information, in contrast to

software specifications. For this reason, the output of this step is the analytics

task profile (ATP). This profile groups the metadata collected thus far.

Preprocess use case data. In the second step, the data scientist examines

the data available at the use case and devises the preprocessing steps needed

to retain only relevant data features and present them in a format that can

be used to train a ML model. For this purpose, the data scientist consults the

domain experts to determine the correct meaning and representation of the

use case data based on the domain-specific semantics of each data feature.

This implies, e. g., distinguishing between dates, timestamps and sensor

values, all of which can be stored as float values. Prior to any preprocessing

task, the data scientist must set and document common seed values in all

data preprocessing libraries to be used in order to avoid inconsistencies

with non-deterministic functions. This can include, e. g., data sampling or

hashing functions. Each data feature is then preprocessed according to its

type to make it usable for ML algorithms.

The data scientist must document the sequence of data transformations

performed for each feature type, i. e., numeric, categorical, unstructured

text and time data. With data features preprocessed into usable formats, the

60 3 | ML Solution Framework

remaining data features are sampled and split into training and test data.

This ensures that the ML model is trained on data different to the one used

to test its performance. The step’s outputs include: the stored data splits, a

specification of a data preprocessing pipeline to be used by ML models, and

the step’s metadata, collected with an identification code in a data quality

profile (DQP).

Provision hardware and software resources. The third step is performed

by the software developer, who knows which IT resources are available to

the use case and can assess whether these suffice for the development. The

software developer first collects the metadata about data processing from

the data scientist to determine the system requirements needed. These

metadata also restrict the types of ML algorithms, i. e., the compatible ML

implementations, that can be applied to the resulting data set. This enables

the software developer to allocate and document the computing infrastruc-

ture to handle the data volume of the use case. This should also consider the

speed at which data is generated and preprocessed. The software developer

can then install and document the software to handle the different data

types on the allocated computing infrastructure. The step’s first output is

the supplied hardware and software stacks. The metadata describing these

stacks is stored in the step’s second output, the analytics infrastructure profile

(AIP).

Train ML model. In the fourth step, the data scientist experiments with

different component configurations, ML algorithms and its parameters to

find good-performing ML models. This step begins an iteration loop that

continues to the following two steps, as data scientist and software developer

iterate over possible combinations of data features, software components

and ML algorithms and techniques. The data scientist defines at least one ML

algorithm, the corresponding training settings and hyperparameter values

in order to train an ML model. Among the training settings is included

the number of folds to use on the training data split. The strategy that he

3.3 | ML Solution Framework 61

or she uses to determine each of these elements is subject to his or her

experience and the use case conditions. This is to contemplate complex ML

techniques, e. g., AutoML systems, model ensembles, parameter optimizers

or reinforcement learning approaches. It is important that the metadata

documenting the ML model characteristics is generated, e. g., through code

annotations or code profilers. These metadata is later required to produce

the analytics configuration profile (ACP). This step’s only output is the ML

model code.

Integrate MLmodel into the ML solution. In the fifth step, the data scien-

tist and the software developer integrate the trained ML model with the data

preprocessing pipeline developed earlier and with any software components

that trigger actions based on the model predictions. For this purpose, they

transform the ML model from the previous step into a deployable software

component. This can be in the form of Docker images, serializable files, e. g.,

pickle files in Python, or export formats, such as PMML and ONNX. Also

during this step, the software developer documents any new software depen-

dencies that results from this transformation with corresponding metadata

to be included in the ACP. At this step, the ML solution is complete.

Evaluate ML solution. In the sixth step, the data scientist and the software

developer evaluate the performance of the complete ML solution. For this

purpose, the data scientist first defines an evaluation procedure and perfor-

mance metrics that correspond to the use case requirements stated by the

domain experts in the DQP. The ML solution performance is then evaluated

following the evaluation procedure and the training data split created in

step two. In the case that this step has already been performed as part of

previous iterations, the evaluation procedure must be expanded to include

comparative evaluations against the other ML solutions. This is to produce

comparison data that facilitates the review of multiple ML solutions later. In

all cases, the performance measured through the evaluation procedure must

be documented with comprehensive metadata. The step’s output groups

62 3 | ML Solution Framework

these metadata with that of the previous two steps to produce the analytics

configuration profile (ACP).

Select ML solution. The seventh and final step is responsibility of the de-

cision maker. Based on the metadata collected throughout the development

process, he or she decides which ML solution(s) are to be deployed in the

use case. For this purpose, he or she needs to review and compare the char-

acteristics, advantages and disadvantages that each candidate ML solution

entails. To facilitate these tasks, the ML solution framework provides the

ML solution viewer. The step’s output is then the selected ML solution.

3.3.2. Metadata Profiles

An ML solution is documented with four metadata profiles: Analytics Task

Profile (ATP), Data Quality Profile (DQP), Analytics Infrastructure Profile

(AIP), and Analytics Configuration Profile (ACP). Each profile documents a

specific ML solution component as it is developed. An overview of the meta-

data profiles and the components that they describe is shown in Figure 3.3.

They address the design requirements discussed in Sections 3.2.1 to 3.2.4.

The following paragraphs explain each metadata profile in more detail.

ATP: Analytics Task Profile. This profile specifies the problem to be ad-

dressed by theML solution, thus dealing with the requirement domain-specific

problem definition (see Section 3.2.1). Domain experts, e. g., production

planners, workers of the production line, or quality control engineers, define

the task to be executed, the domain-specific goals to be achieved, as well as

the conditions and principles to be observed. In this context, the ATP can

only be specified using terms or concepts that are familiar to the experts. A

specification process based on the well-known QFD (Akao and King, 1990)

can serve this purpose. The elements covered in this profile and the way they

relate to concepts in the QFD methodology can be exemplified as follows:

3.3 | ML Solution Framework 63

Figure 3.3.: Metadata Profiles of the ML Solution Framework

Task. This corresponds to the product definition for which a QFD process

can be started, e. g., reduce the time it takes to diagnose defective units

while performing the final quality check in the production line A6.

Goals. These express the product functions and quality characteristics

(Hows), and their corresponding target values, e. g., decrease the time to

determine the kind of defect by at least 10%.

Conditions. These state the manner in which the ML solution (product)

has to fulfill its task to satisfy the domain expert’s need (Whats), e. g., provide

more than one suggestion for the kind of defect to identify, use only the

computers available for the quality check process.

Principles. They represent the trends observed in the correlations be-

tween whats and hows and the interactions between hows, e. g., for similarly

fast detection methods, prefer those with higher quality over affordable ones.

Domain experts can furthermore set priorities among different goals or

principles by using methods such as the Analytic Hierarchy Process (Saaty,

1987).

64 3 | ML Solution Framework

DQP: Data Quality Profile. This profile describes the characteristics of

the available use case data as well as any data preprocessing techniques

applied on it. This addresses the requirement efficient and accurate data

utilization (see Section 3.2.2). Thereby, the DQP summarizes all data charac-

teristics as analyzed by the data scientist for later related steps, i. e., model

training and evaluation of the ML solution. For instance, this includes the

amount of data in individual sources, different source formats and their

heterogeneity, as well as the actual data quality. The DQP thereby describes

data characteristics at the level of a whole data set (data set summary) and

at a more detailed level, e. g., considering also individual data features.

Continuing with the use case introduced earlier, the DQP may contain the

following elements:

Data summary description Number of defective units described in the

data set, number of features (variables) describing each unit, number and

share of data types of the features (numerical, categories, unstructured text),

file sizes, or storage type.

Individual features Data type, percentage of missing values, median or

average value of the measurement, or number of outliers.

AIP: Analytics Infrastructure Profile. Concerning the requirement con-

sideration of available IT resources (see Section 3.2.3), this metadata profile

specifies information about the available IT resources on the computing infras-

tructure (CPU cores, storage space), platform (operating systems, database

management systems), and software (ML libraries, data preprocessing soft-

ware) levels (Mell, Grance, et al., 2011). Especially cloud-based platforms

have many configuration management tools that can be used to enact this

profile, such as Chef and Puppet or OpenStack’s Heat1.

Nevertheless, an AIP not only describes these available IT resources. In

addition, this profile also specifies the capabilities of these resources with re-

spect to handling data with different characteristics, as well as ML algorithms

and their varying properties.

1https://www.chef.io/chef/, https://puppet.com, and https://github.com/openstack/heat
respectively

3.3 | ML Solution Framework 65

ACP: Analytics Configuration Profile. This profile completes an ML so-

lution specification. In this context, it is important to note that, given the

iteration loops in the ML solution development process (see Section 3.3.1),

several candidate ACP profiles can be created for the same use case. This

means that multiple ML solutions can be used to support the use case. Each

of these candidate ACP profiles fulfills the fourth requirement property-

based and performance-based selection and configuration of ML algorithms

(see Section 3.2.4). The ACP includes a description of how data has to be

transformed so that it may be used as input for the relevant ML algorithm

(feature generation). Additionally, an ACP has to specify the methods that

may be used to remove unnecessary, redundant, or low-quality data (feature

selection). The most important part of an ACP is the parameterization of the

selected ML algorithm itself (algorithm configuration). In the context of the

use case discussed earlier, the ACP profile may contain elements like:

Feature Generation. Method to read the variables from the data set (e. g.,

identify failure descriptions in the worker’s report: "pressure too low in

injector VRM-001").

Feature Selection. The technique to filter out variables that do not help

distinguish the defect type (e. g., correlation-based, principal component

analysis).

Algorithm Configuration. The ML algorithm to use and the values to use

for its parameters (e. g., decision trees with a Gini impurity of 0.42).

Furthermore, the ACP stores results of evaluating predefined performance

metrics. These performance metrics are chosen based on their ability to

contribute to the achievement of domain-specific goals defined in the ATP.

Thereby, the ACP also documents the evaluation procedure in which these

measurements were obtained. This information enables the reproducibility

of performance results.

3.3.3. ML Solution Viewer

In the end, decision makers compare ML solutions using the ML Solution

Viewer, which is a dashboard with easy-to-understand information for ML

66 3 | ML Solution Framework

non-experts. The viewer facilitates the comparison of candidate ML solutions,

and thus the final selection of the most suitable solution. It hence addresses

the requirement enhanced ML solution comprehensibility (see Section 3.2.5).

The ML Solution Viewer processes metadata from all generated profiles.

It then presents domain-oriented visualizations and information to decision

makers so that they can explore and understand ML solutions intuitively.

This does not mean that the ML solution viewer only serves a showcasing

purpose. It also analyzes how decision makers use the interface in order to

identify patterns in their usage behaviors. This way, the viewer can learn

the users’ preferences and adapt its visualizations to be more useful.

Similarly, the ML solution viewer can retrieve and provide ML experts with

the original technical specification of each of the displayed ML solutions.

This is done to provide additional transparency and to open the possibil-

ity to further tune the ML solution beyond the options considered by the

framework.

3.4. Prototypical Implementation and Discussion

This framework was developed into a prototype using the R and Python

programming languages, as well as JSON as the file format to write the

profiles (see Section 3.3). Implementations of ML algorithms are provided

by the WEKA data mining software 1 and the python library scikit-learn 2.

The ML solution viewer was implemented as a web client composed of

three modules. The prototype’s module architecture is shown in Figure 3.4.

The first module enables the web interface and was implemented using the

python library Dash 3. The visualizations shown in the web client were

implemented using plotly 4. The third module parses the data contained

1https://www.cs.waikato.ac.nz/ml/weka/
2https://scikit-learn.org/stable/
3https://plotly.com/dash/
4https://plotly.com/python/

3.4 | Prototypical Implementation and Discussion 67

Figure 3.4.: System Architecture of the ML Solution Viewer

in JSON files to populate the web interface and visualizations. It uses the

standard python module json 1, and the libraries numpy 2 and pandas 3.

As ML solutions are evaluated in the ML solution development process,

the executed solution code stores the profile metadata as JSON files at

a predetermined directory. An example of the metadata stored in these

JSON files is provided in Appendix A. Upon its deployment, the document

parser module of the ML solution viewer parses all available JSON files in

the directory mentioned above. As a result, the ML solution viewer can be

accessed through a web browser (see Figure 3.5).

The viewer offers three drop-down controls on the left side to access the

metadata for a specific ML solution. The first drop-down lists the ML algo-

rithm implementations documented in the profiles. The implementation

also includes solutions based on the following algorithms: decision trees

(DTR), naive bayes (NBY), random forests (RFR), k-nearest neighbors classi-

fier (KNN), deep learning (DLN), and logistic regression (LGR). The second

drop-down lists the acronyms of all the use cases for which ML solutions

have been developed. The third drop-down lists the numeric identifiers of

the solutions developed for that use case and ML algorithm combination.

The concatenation of the three values constitutes the identification code of

an ML solution and all its corresponding metadata profiles. In the example

shown in Figure 3.5, the values of the drop-down lists point to the solution

1python libraries
2https://numpy.org
3https://pandas.pydata.org

68 3 | ML Solution Framework

3.5. Summary and Future Work

This chapter introduced an ML solution framework to systematically develop

ML solutions. This framework reflects relevant design requirements via a

common development process, four metadata profile types and an ML solu-

tion viewer. For a concrete use case, the ML solution framework ensures that

the development of the ML solution truly responds to the domain-specific

requirements set by domain experts. It also devises a comprehensive devel-

opment process to develop all solution components, with the collaboration of

the relevant stakeholders and in observation of the necessary reproducibility

practices. Finally, the ML solution viewer provides easy-to-use means to

visually compare the developed ML solutions, making it easier for decision

makers to make an informed selection.

The framework was implemented in an experimental prototype and evalu-

ated against publicly available data sets. Thus, the prototype can validate the

framework’s feasibility and usefulness. In particular, it results in a systematic

approach that significantly helps domain experts from manufacturing to

configure and select an ML solution that best matches their requirements.

It also serves as the basis for the remaining contributions. Specifically, the

framework establishes the need for a dedicated design step to ensure that

domain-specific needs truly steer ML solution development (see Chapter 4).

Additionally, the ML solution framework generates metadata that can be

consolidated in an ML solution repository to recommend and reuse ML

solutions (see Chapter 5).

Future research includes the extension and evaluation of the framework

to cover other kinds of use cases, e. g., for scrap reduction. This may also

require adding support for further data formats or ML algorithms, as needed

by the respective use cases.

3.5 | Summary and Future Work 71

C
h
a
p
t
e
r

4
Axiomatic Design for

Machine Learning

As ML solutions grow in size and complexity (Sharp et al., 2018), an ML

solution specification becomes necessary to prescribe how to implement the

ML solution. This specification includes a description of the required data

input and output and the functionality that the solution shall provide. The

ML solution specification also describes software requirements, as well as

internal settings, e. g., the hyperparameters to tune the ML algorithms.

ML solution specifications are the result of a design process. Yet, this

design process is not straight-forward (see the design challenge CH-1 in

Section 1.3). Concretely, it faces three feasibility requirements: (1) the

creation of a specification through systematic experimental learning; (2) the

clear documentation of the design intention behind this specification; (3) the

end-to-end traceability and consistency of design choices. Existing related

approaches do not fully address these requirements (see Section 4.7), thus

rendering the design process more complex and its outcome less predictable.

73

Axiomatic Design is a methodology to systematically design complex prod-

ucts (Suh, 2001). This chapter proposes several adaptations to Axiomatic

Design that enable the design process to handle the feasibility requirements.

This adapted design methodology is called AD4ML. This chapter shows the

use of AD4ML to specify an ML solution for a fault detection use case and

discuss the improvements that the approach brings to the design process.

These improvements include the visualization of ML solution specifications,

the agile design of ML solutions, and the reutilization of specification compo-

nents in different use cases. Thereby, the chapter demonstrates how AD4ML

tackles the feasibility requirements. The chapter also shows how AD4ML

can be leveraged to early validate and assess ML solution specifications. This

allows the identification of design flaws already while the specifications are

being created.

The contents of this chapter are an edited version of separate publica-

tions (Villanueva Zacarias et al., 2020; Villanueva Zacarias, Ghabri, et al.,

2021). All concepts extracted from them and used in this dissertation are

the original work of the dissertation author.

This chapter is organized as follows: Section 4.1 introduces a fault detec-

tion use case and details the three feasibility requirements. Section 4.2 gives

an overview of Axiomatic Design. Section 4.3 discusses the adaptations to

Axiomatic Design that constitute AD4ML and the improvements that AD4ML

brings to the design process. Section 4.4 outlines how AD4ML can be lever-

aged to validate and assess ML solution specifications. Section 4.5 describes

a prototypical implementation of AD4ML called the ML solution designer.

Section 4.6 discusses and assesses how AD4ML addresses the three feasibility

requirements. Section 4.7 discusses the related work whereas Section 4.8

concludes.

74 4 | Axiomatic Design for Machine Learning

Figure 4.1.: Overview of the example use case for Fault Detection

4.1. Problem Context and Requirements

This section first describes a common use case of supervised learning in

manufacturing, and then discuss the feasibility requirements for designing

ML solution specifications.

4.1.1. Use Case: Fault Detection in a Production Line

Figure 4.1 shows the use case taking place in the final quality check at the

end of a production line. In this production line, different types of nozzles

are produced. At every step, measurement data for each nozzle is collected.

These measurements can be numeric, e. g., a flow rate, or categorical, e. g.,

leak test approved. At the end of the production line, an inspector reviews

the measurement data to decide if the nozzle is functional or defective. This

is commonly called fault detection (Isermann, 2017).

Manually reviewing the data leads to a big overhead for the inspector.

Instead, an ML solution can be designed and implemented to predict the

defects automatically. This corresponds to a binary classification task. The

ML solution can read and process all measurement data to identify which

measurements and which of their values correlate with the presence of

defects. A supervised learning algorithm can be used to train a machine

learning model that predicts the existence of defects based on these correla-

tion patterns. In the end, the ML solution can report the measurements that

triggered the decision for each potentially defective nozzle.

4.1 | Problem Context and Requirements 75

4.1.2. Feasibility Requirements in the Design of ML Solutions

Figure 4.2 depicts a sequence of three milestones in the design process of an

ML solution. For the first milestone, domain experts state their requirements

by defining a design intention. This is a domain-specific description of the

functionality that an ideal solution should have, and the conditions in which

the solution should operate. These conditions include the use case needs,

goals, assumptions, operational or budget constraints, and performance

priorities. For the second milestone, a multidisciplinary team creates a ML

solution specification. This is different from the design intention in that it

describes a working and viable implementation of the ML solution. The

third milestone is the actual implementation of the selected ML solution

specification. This design process faces three concrete requirements (shown

in gray in Figure 4.2). These feasibility requirements are additional to the

well-known requirements of training ML models, e. g., collecting enough

high-quality data that are statistically relevant.

R1. Enablement of systematic experimental learning. This requirement

affects the creation of theML solution specification, i. e., the second milestone

of the design process (see Figure 4.2). Traditional software systems are

based on clear information requirements and technology specifications that

are available upfront (Marchand and Peppard, 2013). ML solutions, on the

contrary, need extensive experimentation in their design and development

(Viaene and Van den Bunder, 2011). A ML solution is the combination of

three types of components (see white boxes in Figure 4.2). The first type are

software components for processing input or output data. The second type

is the ML algorithm used to train a model with certain hyperparameters.

The third type is the computing infrastructure needed to deploy the ML

solution. There are many possible combinations of these components. Iden-

tifying which combinations of components fulfill the design intention needs

experimentation. Experimentation is however costly and time-consuming,

as it involves implementing and evaluating different prototypical solutions.

76 4 | Axiomatic Design for Machine Learning

Figure 4.2.: Overview of the milestones (in black) and requirements (in gray)
in the design process of Machine Learning Solutions

Without a plan or structure, the amount of experimentation required to

design a viable specification becomes burdensome.

The team designing the ML solution specification must follow a systematic

process that allows them to learn from experimentation. For this purpose,

the design process must support the comprehensive documentation of exper-

iments with different ML solution components. Having this documentation

makes it easy to decide how to change, extend or reduce the components in

the specification. For such modifications to be practicable, the specification

must also provide an easy way to identify the impact of those modifications

on the rest of the specification components.

R2. Clear and objective documentation of the design intention. This

requirement highlights the need for a documented design intention. An ML

solution specification can only describe a concrete implementation of the

required functionality. However, this is no substitute for the design intention.

The latter describes required functionality in a use case context. Maintaining

a complete description of a design intention offers a clear and objective

reference for several purposes. First, it makes the intention of an ML solution

explicit. This eliminates the subjectivity when interpreting the use of a

4.1 | Problem Context and Requirements 77

software component. Second, it allows domain experts to understand an

ML solution based on its usefulness for the use case. Third, it provides an

objective evaluation basis to select suitable ML solution specifications.

R3. Support of end-to-end traceability and consistency. This require-

ment refers to the need of knowing the end-to-end line of thought that turns

a design intention into an implemented ML solution. Experimenting with

different component combinations produces many ML solution specifications.

However, none of them is guaranteed to completely fulfill the given design

intention. There are cases where compromises need to be made to obtain the

desired functionality. Such compromises have to be satisfactory for everyone

in the multidisciplinary team of data scientists, software developers, and

domain experts.

There needs to be a trace of the decisions that lead to a complete ML

solution specification. Having the line of thought documented from end-

to-end of the design process offers multiple benefits. First, it is easier to

verify which functionalities have been fulfilled and which have been left

out. Second, it is possible to identify at which point of the design process

compromises were made. Third, stakeholders can check if their decisions

are consistent with one another, and with the decisions of their colleagues.

4.2. Main Concepts of Axiomatic Design

Axiomatic Design (AD) is a methodology that aims to systematically general-

ize the design process of complex products (Rauch et al., 2016; Suh, 2001),

such as domestic appliances, industrial machinery, and manufacturing sys-

tems. This section gives a summary of the main concepts of this methodology

in their original context.

To generate a product design, four different roles engage in the design

process as shown in Figure 4.3. Each role creates a certain kind of design

element to contribute to the product specification. A product owner in the

customer domain formulates desired Customer Attributes (CAs) to outline the

78 4 | Axiomatic Design for Machine Learning

Figure 4.3.: Conceptual overview of Axiomatic Design along with the roles
involved in their definition.

scope of the product. These customer attributes can be physical properties

of the product like withstanding certain temperatures without deformation.

Afterwards, industrial designers in the functional domain match these CAs to

Fehlerrates (FRs). The functional requirements can be product functionality

to achieve the attribute like thermal dissipation. Production engineers in the

physical domain convert FRs to Design Parameters (DPs) that are matched to

Process Variables (PVs) by domain experts in the process domain. The design

parameters can be product parts that enable the functionality, like layers

of different materials. Process variables can be key values that characterize

well-made product parts, like thickness of the material layers. All design

elements matched from the same initial CA constitute a module (see black-

framed grouping box in Figure 4.3). Besides design elements, a product

specification can also have input constraints. They set boundary conditions

applicable to the overall design (Suh, 2001), e. g., maximum production

costs. Constraints are set on the functional domain and apply for this and

other domains afterwards.

4.2 | Main Concepts of Axiomatic Design 79

Design elements also need to be decomposed into more concrete elements.

For that decomposition, the design elements of neighboring roles have to

be considered. The design process and the product specification are fin-

ished when all kinds of design elements have been decomposed in sufficient

detail so that the desired product may be manufactured. This process of

matching and decomposing design elements is called zigzagging. It goes

over the four kinds of design elements: CAs in the Customer Domain, FRs in

the Functional Domain, DPs in the Physical Domain and PVs in the Process

Domain(Suh, 2001). The specifics of the zigzagging process are explained

later in Section 4.3.

Matches between design elements are represented in design matrices, as

shown in Figure 4.3. In each matrix, neighboring design elements form the

rows and columns of the matrix. Matched elements are given a coefficient

different than zero in their intersection. With this information, relationships

between design elements can be expressed as mathematical equations. Ax-

iomatic Design calls them design equations. For instance, assume a matrix

A that relates two CAs (rows) and two FRs (columns). This is shown in

equation form in Equation (4.1).

¨

CA1

CA2

«

=

�

A1,1 A1,2

A2,1 A2,2

�¨

FR1

FR2

«

(4.1)

Two design equations describe the relationships in this matrix

CA1 = A11FR1 + A12FR2 (4.2)

CA2 = A21FR1 + A22FR2 (4.3)

where Ai j are the coefficients in row i and column j of design matrix A. In

general, a design equation to describe a CA is:

CAi =

n
∑

j=1

Ai j FR j (4.4)

80 4 | Axiomatic Design for Machine Learning

where n is the number of FRs. This can also be written as

−→
CA= A×

−→
FR (4.5)

where
−→
CA and

−→
FR are vectors of CAs and FRs. Similar equations exist for FRs

in design matrix B and DPs in design matrix C.

In an ideal design specification, there should only be one-to-one matches

in the design matrices. In other words, each design matrix should be a

diagonal matrix. This simplifies the design equations, hence reducing the

complexity of the product specification. Matrices with one-to-many matches

are redundant designs. If the one-to-many matches can be arranged in a

triangular matrix, the specification has a decoupled design. Decoupled designs

require the product specification to be implemented in a specific sequence

to work. If the design matrix is non-triangular, non-diagonal, or full, the

specification is a coupled design. This term denotes a specification where

neighboring design elements have many-to-many matches between them,

making the design very complex.

Axiomatic Design relies on two axioms to prescribe ideal designs. Firstly, the

independence axiom states that design elements should be satisfied without

affecting other design elements of the same domain. So for example, the FRs

satisfying one CA must be independent from other FRs and not satisfy other

CAs. This excludes the possibility of producing coupled designs. Exceptions

of this axiom are constraints (Suh, 2001), e. g., a constraint on the total

weight of a product. If many design specifications fulfill the first axiom,

the information axiom states that the design with the smallest information

content is the best. This refers to the design with the least number of design

elements that still satisfies all desired customer attributes. Formal definitions

of these axioms and more details on Axiomatic Design are described by Suh,

2001.

4.3 | Axiomatic Design for Machine Learning (AD4ML) 81

Table 4.1.: Comparison of Axiomatic Design and AD4ML

Axiomatic Design AD4ML

Domains Design Layers

Customer Domain Domain-specific Design

Customer Attribute (CA) Domain Request (DR)

Functional Domain Analytics Design

Functional Requirement (FR) Analytical Concept (AC)

Physical Domain Technology-specific Design

Design Parameter (DP) Technological Resource (TR)

Process Domain –

Constraint Constraint

Module Component

– Type of design element

Design Matrix Design Matrix

4.3. Axiomatic Design for Machine Learning (AD4ML)

The section first discusses the proposed adaptations of Axiomatic Design for

ML solutions. Afterwards, the design of a specification for the fault detection

use case is demonstrated. Thereby, the section explains the design elements

that are part of this specification. This specification exemplifies the details

of the zigzagging process to come up with an implementable ML solution.

This section closes by discussing three improvements to the design process.

The first improvement is the visualization of AD4ML specifications. The

second improvement is an approach to reutilize specification components.

The third improvement is an approach for the agile design of ML solutions

with AD4ML.

4.3.1. Adaptations to Axiomatic Design for ML Solutions

The design of ML solutions requires several adaptations to Axiomatic Design

(AD). Table 4.1 compares the concepts of AD with their AD4ML equivalents.

Figure 4.4 gives an overview of the resulting AD4ML concepts.

The first adaptation consists in adapting the terminology of AD concepts to

increase familiarity for domain experts, data scientists, and other software

82 4 | Axiomatic Design for Machine Learning

Figure 4.4.: Overview of AD4ML concepts.

developers. In AD4ML, domains become design layers based on the concept

of layers in software frameworks. AD4ML design layers and design elements

are also renamed based on the stakeholders they address. The customer

domain becomes the Domain-specific design layer. Domain experts formulate

Domain Requests (DRs) instead of Customer Attributes. DRs describe domain-

specific needs to be fulfilled by the ML solution. The functional domain

becomes the Analytics design layer. Data scientists specify Analytical Concepts

(ACs) instead of Functional Requirements. ACs describe the data analytics

functionality needed to satisfy DRs. This includes methods for loading

and handling data, data set descriptions, or data analytics capabilities as

defined by Gröger (Gröger, 2018), i. e., descriptive, diagnostic, predictive

and prescriptive. Together, they constitute a conceptual architecture of the

4.3 | Axiomatic Design for Machine Learning (AD4ML) 83

data analytics functionality. The physical domain becomes the Technology-

specific design layer. Software developers define Technological Resources

(TRs) instead of Design Parameters. TRs describe concrete software libraries,

execution platforms or technology stacks that materialize ACs. Depending on

the level of decomposition, TRs can include system and version requirements,

or function names and arguments. Together, they constitute a technical

software specification of the ML solution.

The Process Domain in AD focuses on monitoring the production process of

the created design (Suh, 2001). It could thus be mapped into a deployment

design layer to monitor the operation of the implemented ML solution.

Nevertheless, the focus of this chapter is on proposing an approach to specify

the design of ML solutions before they can be deployed. Therefore, this

chapter considers such a layer out of scope.

Constraints are set in the functional domain in AD to impose general

restrictions on the specification. In manufacturing use cases, this is a task of

domain experts. AD4ML thus relocates constraints in the domain-specific de-

sign layer. For example, domain experts may set maximum total development

costs for an ML solution.

The module of AD is called component in AD4ML in correspondence to

actual software components. One component comprises all design elements

matched from the same initial Domain Request (DR).

Unlike Axiomatic Design, AD4ML assigns components one of three types

based on the data-driven nature of ML solution solutions. All ML solutions

are composed of input, processing, and output software components. Input

components load, format, and preprocess data as preparation for processing

components (e. g., feature extraction). Processing components then apply al-

gorithms to learn patterns from the data they receive and to build a machine

learning model, e. g., a classifier or a regression model. Output components

generate results or trigger actions based on the prediction made by the ma-

chine learning model. AD4ML reflects this composition of ML solutions with

the types: input (i), processing (p) and output (o). ML solution specifications

in AD4ML have at least one component of each type.

84 4 | Axiomatic Design for Machine Learning

Figure 4.5.: List of initial Domain Requests for the use case example.

Matches between design elements are represented in design matrices A

and B (see Figure 4.4). Matrix A captures matches between Domain Requests

and Analytical Concepts. Matrix B does the same between Analytical Concepts

and Technological Resources. The independence and information axioms from

Axiomatic Design continue to apply to ML solution specifications created

with AD4ML.

4.3.2. AD4ML Specification for the Fault Detection Use Case

As mentioned above, the design of an ML solution specification begins by

defining initial DRs in the domain-specific design layer. Figure 4.5 shows

four DRs for the fault detection use case. Each one is given a code for easy

reference. The code states the kind of design element (DR), its type (i for

input) and a numeric identifier.

These initial DRs specify abstract functionality attributes that domain

experts desire. They have a strong domain-specific context. They are for-

mulated as endings to the phrase "The ML solution is requested to...". For

example, in the use case, DR-i-1 and DR-i-2 detail how domain experts

expect data to be loaded, i. e., they want the ML solution to use all data

that is available at involved production steps (DR-i-1). Additionally, they

request to use the most significant data for each nozzle type (DR-i-2). DR-p-3

describes the ML solution’s analytics task, i. e., which kind of predictions

domain experts require from the solution to support their use case. In the

4.3 | Axiomatic Design for Machine Learning (AD4ML) 85

example, they want an accurate detection of faulty nozzles at the end of the

production line. DR-o-4 may express desired attributes of the data output.

Here, domain experts want the ML solution to notify an inspector about the

predictions of defective nozzles.

These four initial DRs set the scope for the whole specification. This

means that the example ML solution specification will finally consist of

four components, each one representing one initial DR. Nevertheless, these

components need to be detailed to arrive at an implementable ML solution

specification. This is done through zigzagging processes of matching and

decomposition. Each initial DR triggers zigzagging processes to create initial

ACs and TRs via matching, as well as to detail all DRs, ACs, and TRs via

decomposition. An ML solution specification is complete when all DRs, ACs

and TRs have been sufficiently decomposed so that their corresponding

software components can be implemented. To illustrate this idea, Figure 4.6

shows the details of the zigzagging processes for DR-i-2. Zigzagging for the

other three initial DRs works in a similar way.

Matching always occurs across design layers, following a top-to-bottom

sequence in Figure 4.4. The logic to match any two design elements is

that elements from the upper design layer state demands whereas elements

in the lower design layer provide means to fulfill them. In the example,

a zigzagging process hence begins by matching DR-i-2 to an Analytical

Concept (see step 1 in Figure 4.6). Such an AC describes data analytics

functionality on a conceptual level. It represents a technology-independent

proposal of data scientists to fulfill the request of a domain expert. For DR-i-2,

a data preprocessing pipeline can be suggested. Here, the data scientist

specifies in AC-i-2 at an abstract level that such a pipeline should determine

which data is significant for each nozzle type. The details about individual

pipeline steps that assess and filter the data appropriately are specified in

later decomposition and matching steps.

86 4 | Axiomatic Design for Machine Learning

Figure 4.6.: Example of the zigzagging processes to specify details of the initial and abstract DR-i-2. Match-

ing arrows are dashed and black-headed. Decomposition arrows are dotted and white-headed.

Decomposed design elements are shown as white boxes.

4
.3

|
A

x
io

m
a

tic
D

e
s
ig

n
fo

r
M

a
c
h

in
e

L
e

a
rn

in
g

(A
D

4
M

L
)

8
7

This match between DR-i-2 and AC-i-2 is reflected in the design matrix

A. Provided that other DRs also have one AC matched to them, the design

matrix A can be expressed as:











DRi1

DRi2

DRp3

DRo4











=











A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4





















ACi1

ACi2

AC p3

ACo4











(4.6)

The design equation for DR-i-2 thus is:

DRi2 = A21ACi1 + A22ACi2 + A23AC p3 + A24ACo4 (4.7)

where A jk are the coefficients of row j and column k in design matrix A. Note

that, different to Equation (4.4), this design equation uses indices j and k to

avoid confusion with the newly introduced type i for input components. In

general, the equation that represents design matrix A is:

DR j =

n
∑

k=1

A jkACk (4.8)

where n is the total number of ACs.

This equation includes coefficients that match the data preprocessing

pipeline (AC-i-2) with all initial DRs. However, the data scientist proposed

the use of a data pipeline to only satisfy DR-i-2. This means that coefficients

A21, A23 and A24 are zero. Only A22 has a non-zero coefficient. In other

words, DR-i-2 and AC-i-2 have a one-to-one relationship. This fulfills the

independence axiom. The design equation for DR-i-2 thus becomes:

DRi2 = A22ACi2 (4.9)

After this matching step, the rather abstract DR-i-2 has to be decomposed

into more specific DRs (DR-i-2/1 and DR-i-2/2). Note the use of a slash

in the design element codes to distinguish the numeric identifiers of each

88 4 | Axiomatic Design for Machine Learning

decomposition level. This indicates they are decompositions of DR-i-2. It

also prevents confusion with the potential initial DRs DR-i-21 and DR-i-

22. Numeric identifiers count all design elements in a given decomposition

level within the same sequence. This means, e. g., that all DRs in Figure 4.5,

regardless of their type, belong to the same numbering sequence. The decom-

position shown in step 2 of Figure 4.6 must take into account the previously

matched design element AC-i-2. This is indicated by the decomposition arrow.

This means, the details of DR-i-2/1 and DR-i-2/2 have to be consistent with

AC-i-2. This is the case if they later match to decomposed ACs of AC-i-2 and

they yield the complete functionality of AC-i-2. First, the pipeline must be

able to assess the significance of each data feature. This requires establishing

metrics to do the assessment. Second, the pipeline must also be able to

manipulate data easily. This requires using a data structure that supports the

assessment of significance and any further operations of the preprocessing

pipeline. Together, they fulfill the need of using the most significant data for

each nozzle type (DR-i-2).

To continue the design process, a new zigzagging process begins with

AC-i-2. Step 3 of Figure 4.6 shows AC-i-2 being matched to a corresponding

Technological Resource (TR-i-2). In this case, matching takes place between

the analytics and technology-specific design layers. The goal is to materialize

the analytics functionality defined by Analytical Concepts with concrete

software libraries or technology stacks that fit the company’s IT landscape.

In the case of matching AC-i-2, the resulting TR-i-2 has to be software capable

of implementing data pipelines. A common choice for this is the Python

package scikit-learn. It has multiple data transformation functions and a

pipeline class to bind them together. Thus, TR-i-2 specifies scikit pipelines

in an Ubuntu host to materialize AC-i-2.

The match between AC-i-2 and TR-i-2 belongs to design matrix B. Just

like in design matrix A, it is assumed that each AC is matched to a single

TR. This yields a design matrix with a form like that in Equation (4.6). From

that design matrix, the design equation for AC-i-2 can be obtained:

4.3 | Axiomatic Design for Machine Learning (AD4ML) 89

ACi2 = B21TRi1 + B22TRi2 + B23TRp3 + B24TRo4 (4.10)

where Bkl are the coefficients in design matrix B. In general, the equation to

represent design matrix B is:

ACk =

m
∑

l=1

Bkl TRl (4.11)

where m is the total number of TRs. Since the scikit pipeline is specified only

for the materialization of AC-i-2, coefficients B21, B23 and B24 are zero. The

only non-zero coefficient, B22, remains in the design equation:

ACi2 = B22TRi2 (4.12)

Step 4 on Figure 4.6 shows the decomposition of AC-i-2 into more specific

ACs (AC-i-2/1 and AC-i-2/2). However, these decomposed ACs are at the

same time matches of the previously decomposed DRs, i. e., DR-i-2/1 and

DR-i-2/2. Because of this, step 4 shows matching and decomposition arrows

going into AC-i-2/1 and AC-i-2/2. This indicates the need for coordination

between stakeholders and across all design layers. This requires to engage

in a concurrent engineering design process (Suh, 2001). To fulfill the request

to assess significance of data (DR-i-2/1), a data scientist can propose to

perform feature selection based on statistical tests (AC-i-2/1). Similarly, the

same data scientist can suggest to use data frames (AC-i-2/2) to facilitate

analysis (DR-i-2/2). These two ACs are at the same time consistent with

the matching TR-i-2 provided by the developer. This is because they can be

materialized by functions of scikit-learn or other Python packages compatible

with it.

The two new matches further detail design matrix A. This affects the row

of DRi2 and the column of ACi2 in Equation (4.6). They are replaced by the

90 4 | Axiomatic Design for Machine Learning

new decomposed elements DR-i-2/1, DR-i-2/2, AC-i-2/1 and AC-i-2/2. As a

result, the following matrix results (new design elements in bold):

















DRi1

DRi2/1

DRi2/2

DRp3

DRo4

















=















A1,1 A1,2/1 A1,2/2 A1,3 A1,4

A2/1,1 A2/1,2/1 A2/1,2/2 A2/1,3 A2/1,4

A2/2,1 A2/2,2/1 A2/2,2/2 A2/2,3 A2/2,4

A3,1 A3,2/1 A3,2/2 A3,3 A3,4

A4,1 A4,2/1 A4,2/2 A4,3 A4,4































ACi1

ACi2/1

ACi2/2

AC p3

ACo4

















(4.13)

It is known that the data scientist proposed exactly one AC for one DR. This

simplifies the design equations for DR-i-2/1 and DR-i-2/2. Most coefficients

in each design equation become zero, except for A2/1,2/1 and A2/2,2/2, which

are at the diagonal of the matrix:

DRi2/1 = A2/1,2/1ACi2/1 (4.14)

DRi2/2 = A2/2,2/2ACi2/2 (4.15)

At this point, the component specification for DR-i-2 contains 7 design

elements. Beyond step 4, the zigzagging processes continue to decompose all

design elements similarly until all solution components can be implemented.

This occurs when design elements describe fully-configured, readily-available

software. For AC-i-2/1, this is the case when the scikit-learn functions and

the threshold values to determine statistical relevance are specified.

4.3.3. Visualization of ML Solution Specifications

ML solution specifications may become very complex after several decompo-

sition steps. It is thus useful to have a visual representation of the complete

ML solution specification. AD4ML uses design matrices A and B to create a

flow diagram for the specification. For this purpose, both matrices must have

consistent matching and decomposition relationships. The resulting flow

diagram shows the specification components and the relationships among

4.3 | Axiomatic Design for Machine Learning (AD4ML) 91

Figure 4.7.: Flow diagram of the ML solution specification introduction in
Section 4.3.2

them. The flow diagram from Axiomatic Design (Suh, 2001) is extended

to support the design process. This includes depicting every specification

component as a form with a header and up to two sections. The first sec-

tion displays matched design elements, while the second section displays

decomposed components.

After the four steps in Figure 4.6, the design matrix A is described by Equa-

tion (4.16). Design matrix B has consistent non-zero coefficients, because

AC-i-2 is matched only to TR-i-2, as shown in Equation (4.12). This means

that both matrices are consistent. Figure 4.7 thus shows the flow diagram

for the example specification from Section 4.3.2. As previously mentioned,

the complete specification consists of four components. Each component

corresponds to one of the initial DRs (see Figure 4.5) and contains all design

elements derived from it. Each component in an AD4ML flow diagram has

a header and a match section with the codes of the design elements that

belong to it. Any nested components are shown in the second decomposition

section. Expanding these nested components recursively displays the same

92 4 | Axiomatic Design for Machine Learning

layout as in the parent component, i. e., with a header, match and decom-

position sections. DR-i-1, DR-p-3 and DR-o-4 have not been decomposed so

far. Therefore, they are shown as one plain component, only with a header

and the match section containing one DR code. Input component 2 contains

the input components 2/1 and 2/2. These components group the design

elements derived from DR-i-2 through zigzagging processes (see Step 4

in Figure 4.6 earlier). Specifically, the parent input component 2 contains

DR-i-2, AC-i-2 and TR-i-2. The child input component 2/1 contains DR-i-2/1

and AC-i-2/1, and child input component 2/2 has DR-i-2/2 and AC-i-2/2.

















DRi1

DRi2/1

DRi2/2

DRp3

DRo4

















=















A1,1 0 0 0 0

0 A2/1,2/1 0 0 0

0 0 A2/2,2/2 0 0

0 0 0 A3,3 0

0 0 0 0 A4,4































ACi1

ACi2/1

ACi2/2

AC p3

ACo4

















(4.16)

There are two types of connections in a flow diagram (Suh, 2001). The

summation junction connects uncoupled components. These are components

that can be executed in any order as long as their results are ready at the

junction point. The control junction connects decoupled components. These

are components that need to be executed in a specific order to function. The

types of design elements introduced in AD4MLmake it easy to verify the logic

of these junctions. They refer to the logic of data-driven machine learning.

Input components 1 and 2 must prepare the training data before processing

component 3 can learn on it. Also, processing component 3 must make a

prediction before output component 4 can notify workers at the shopfloor.

The summation junction between input components 2/1 and 2/2 joins the

assessment of data significance and the data representation. This means

that the two components can be executed in sequence or in parallel. The

only condition is that preprocessing is finished before the learning process

begins.

4.3 | Axiomatic Design for Machine Learning (AD4ML) 93

The AD4ML flow diagram can serve as an interactive digital document

among stakeholders. It offers an intuitive overview of the team’s progress in

the design process. In Figure 4.7, it is easy to identify which components

are missing ACs and TRs. These are the ones displaying only a DR code in

the match section. It is also easy to identify which components have not

been decomposed yet. These components lack a decomposition section. After

successive zigzagging processes, each component in the diagram will fill up.

In that case, any component in the diagram can be expanded to zoom in

into its contents. For example, clicking on input component 2/1 can reveal

the design elements it contains: DR-i-2/1 and AC-i-2/1.

4.3.4. Reusability of Specification Components

The reusability of specification components is very relevant in the man-

ufacturing domain. It improves the economic viability of designing and

developing ML solutions. This subsection discusses how AD4ML enables the

reuse of specifications components.

AD4ML specification components group all design elements describing an

ML solution component. This includes all DRs, ACs and TRs derived from

the same initial DR. If they have been decomposed, they also contain nested

specification components.

For a specification component to be reusable, it must fulfill the indepen-

dence axiom. This axiom requires specification components to be either

uncoupled or decoupled. This can be verified using both design matrices.

Compliant specification components can then be transformed into loose,

reusable specification components.

The transformation of a reusable specification component adds sub-matrices

of design matrices A and B corresponding to its design elements, as well as

a reference to the original ML solution specification. Decomposed specifi-

cation components need to be recursively transformed to extract its nested

specification components. This recursive transformation of specification com-

ponents makes it possible to recommend reusable specification components

of different complexities.

94 4 | Axiomatic Design for Machine Learning

For example, top input components, i. e., with an initial DR not referenced

on any other reusable component, can be useful when designing a new ML

solution to specify how to read data from a known source. Another example

would be to use the most nested processing components, i. e., without any

outward decomposition links, as reference to specify the training settings of

a new ML model.

4.3.5. Agile Design of ML Solutions

Two characteristics of AD4ML support setting up the design process as an

agile development project. First, components are specified across design

layers, which relate to distinct roles. Second, each design layer contains

design elements arranged in hierarchies. These hierarchies always expand

via zigzagging one level at the time.

In an agile approach, design elements of the upper design layers become

tasks for which design elements of the lower design layers have to be devel-

oped (i. e. matched). Team members specifying the elements of an upper

layer thus adopt the agile role of product owners, whereas team members

on a lower layer become the agile development team. The first sprint sets

the scope of the ML solution specification by identifying all components

with initial and abstract design elements in all design layers. This means

the concurrent matching of DRs, ACs and TRs, triggering many zigzagging

processes simultaneously. Subsequent sprints may decompose all or some

of these design elements, one abstraction level at a time. During any given

sprint, stakeholders need to specify DRs, ACs, and TRs for the same set of

components. During the first sprints, the set may include all components.

After several decomposition sprints, choosing which component set to decom-

pose has to be decided at the sprint planning. The ML solution specification

that emerges throughout sprint iterations and several decompositions can be

seen as the product backlog in SCRUM (Schwaber and Sutherland, 2017).

This way of dividing the design process allows domain experts to contribute

to the ML solution specification in a familiar manner. From their perspective,

4.3 | Axiomatic Design for Machine Learning (AD4ML) 95

they need to list down requirements as they would do for a specification

sheet to comission the development of the ML solution.

4.4. Approaches to Validate and to Assess ML solution

Specifications During the Design Process

This section discusses two contributions that build upon the use of AD4ML

in the design process. The section first discusses how AD4ML enables the

validation of specifications while they are being designed. It then discusses

how AD4ML provides ways to assess available specifications.

4.4.1. Validation of ML Solution Specifications

Typically, many ML solutions are designed, developed and tested using

training and test data. The validity of their specifications is indirectly tested

based on performance results. Any design flaws are noticed late, after the

design process, when the ML solution is tested.

Instead, AD4ML embeds an axiomatic validation approach in the de-

sign process. This contribution allows a much earlier recognition of design

flaws. Specifically, validation occurs during matching or decomposition steps.

AD4ML validates design choices against the independence and information ax-

ioms. A comparison between the example specification of Section 4.3.2 (see

Figure 4.8a) and a flawed one (see Figure 4.8b) illustrates this contribution.

The comparison shows when the axioms prevent bad design choices.

Validation first occurs during the matching step of the zigzagging process.

In the example specification, the data scientist proposes a data preprocessing

pipeline as AC-i-2 to match DR-i-2 (see Figure 4.8a). It is also assumed that

the other initial DRs are matched to their own specific ACs. This situation

leads to a one-to-one match between DR-i-2 and AC-i-2, as shown in Equa-

tion (4.9). All other pairs of initial DRs and ACs have one-to-one matches.

This fulfills the independence axiom. However, the data scientist may want

to use the same pipeline to fulfill DR-i-1. This DR is also of type input and

states the need to collect all available data. Thus, the data scientist may

96 4 | Axiomatic Design for Machine Learning

(a) Design elements derived from DR-i-2 after the four steps shown in Figure 4.6

(b) Design elements for DR-i-2 following a flawed design process

Figure 4.8.: Comparison between correctly and incorrectly designed ML
solution specifications

want to match both DR-i-1 and DR-i-2 to AC-i-2, as shown in Figure 4.8b.

Doing so produces the following design matrix A:











DRi1

DRi2

DRp3

DRo4











=











A1,2 0 0

A2,2 0 0

0 A3,3 0

0 0 A4,4

















ACi2

AC p3

ACo4







(4.17)

This results in a coupled design, which violates the independence axiom.

This specification works, but it is less robust and more complex than the

example specification. Thus, the functionality for DR-i-1 may interfere

with the functionality for DR-i-2, producing a performance bottleneck. For

example, the collection of new data may need to wait until the preprocessing

4.4 | Approaches to Validate and to Assess ML solution Specifications During the Design

Process
97

of other previous data finishes. A design matrix with this form should be

avoided by stakeholders, as no diagonal can be formed.

A similar situation occurs at the matching between AC-i-2 and TR-i-2.

In the example specification, this is a one-to-one match (see Figure 4.8a).

Scikit learn provides all functionality required by the data preprocessing

pipeline. However, the software developer may prefer a combination of

Python packages to materialize AC-i-2. For example, s/he can choose to

replace Scikit learn with the SciPy and Pandas packages. These are rep-

resented by TR-i-2 and TR-i-3 in Figure 4.8b. This decision produces the

following design matrix B:











ACi1

ACi2

AC p3

ACo4











=











B4,4 0 0 0 0

0 B2,2 B2,3 0 0

0 0 0 B3,4 0

0 0 0 0 B4,5



























TRi1

TRi2

TRi3

TRp4

TRo5

















(4.18)

This produces a redundant design and hence conflicts with the information

axiom. The implementation in Figure 4.8b works, but requires maintaining

more software dependencies. This can mean an extra need to specify the

interactions between the two packages. Similarly, future versions of these

packages may become incompatible with each other. A design matrix in

this form shows stakeholders where to improve the specification in order to

create a diagonal.

The design choices to decompose design elements may also be validated

easily. This prevents inconsistencies between decomposition levels. For

example, DR-i-2 may be matched only to AC-i-2, as shown in Figure 4.8a.

This one-to-one match respects the independence axiom. Even so, matches

between their decomposed elements may become inconsistent. For example,

the data scientist may want to match DR-i-2/2 with AC-i-1/1 and AC-i-2/2

(see Figure 4.8b). DR-i-2/2 demands data to be in a format easy to analyze.

The match to AC-i-2/2, i.e., the use of data frames in the data processing

pipeline, is consistent with the match at the upper level. Yet, the data scientist

98 4 | Axiomatic Design for Machine Learning

may also want to match DR-i-2/2 to AC-i-1/1. S/he may wish to collect

data directly in a data frame, instead of having to encode it later. However,

AC-i-1/1 is the decomposition of AC-i-1, which was not matched with DR-i-2

(see Figure 4.8b). This becomes evident when comparing design matrix A

before (Equation (4.19)) and after (Equation (4.20)) the decomposition











DRi1

DRi2

DRp3

DRo4











=











A1,1 0 0 0

0 A2,2 0 0

0 0 A3,3 0

0 0 0 A4,4





















ACi1

ACi2

AC p3

ACo4











(4.19)

















DRi1

DRi2/1

DRi2/2

DRp3

DRo4

















=















A1,1/1 0 0 0 0

0 A2/1,2/1 0 0 0

A2/2,1/1 0 A2/2,2/2 0 0

0 0 0 A3,3 0

0 0 0 0 A4,4































ACi1/1

ACi2/1

ACi2/2

AC p3

ACo4

















(4.20)

As a result, the design equation for DR-i-2/2 includes a term with AC-i-

1/1. This is inconsistent with the initial design equation between DR-i-2

and AC-i-2, which lacks a match to AC-i-1. The specification hence needs

correction. Two alternatives are possible. The first one, the initial equation

matches DR-i-2 to AC-i-1 too. The second one, the decomposition equation

removes the match between AC-i-1/1 and DR-i-2/2.

This axiomatic validation allows AD4ML to recognize design flaws while

the design process is taking place. Without AD4ML, validation needs to be

an extra step in the design process. Otherwise, design flaws are discovered

when the ML solution is developed or deployed.

4.4.2. Assessment of ML Solution Specifications

AD4ML enforces a structure to organize the contents of an ML solution

specification via typed components. Each component has design elements

with match and decomposition relationships between these elements. This

4.4 | Approaches to Validate and to Assess ML solution Specifications During the Design

Process
99

organizing structure enables another contribution of AD4ML to the design

process. Namely, the assessment of ML solution specifications. Two types

of assessment are possible. First, an assessment of the contents of the

specification. Second, an assessment of many specifications to choose the

best one.

An analysis of the structure gives insights about the contents of the ML

solution specification. The example specification consists of four components,

out of which two are of type input. This shows that the data input and

preprocessing are more elaborate than the processing or output in this ML

solution. Similarly, it shows that the ML solution is not very complex. It has

four components when the minimal AD4ML specification has three, one of

each type. The analysis of its structure may also determine which additional

components can complement the specification. This can happen when an

existing specificationmust provide new capabilities. A new output component

can be added if more target systems need access to the predictions. A

new processing component could provide reinforcement learning to handle

concept drifts over time. Thanks to the independence axiom, it can be safely

assumed that a higher number of components implies more complex ML

solutions. Decomposition levels also offer an assessment of contents. ML

solution specifications with more decomposition levels are by definition

more detailed. They are thus closer to a finished specification that may be

implemented. Note that a certain high number of decomposition levels does

not guarantee a finished specification. This occurs only when the TRs at

the lowest decomposition level are fully configured, available software. Yet,

experienced practitioners can determine the number of decomposition levels

that their specifications need. Without AD4ML, assessing the contents and

complexity of an ML solution becomes more complicated.

Assume that several teams have developed many complete specifications

for a particular ML task. Then, the two axioms provide clear assessment

criteria to choose one. The independence axiom prefers uncoupled or decou-

pled specifications. This means specifications with one-to-one or at least

one-to-many relationships between their design elements. This is because

they result in less complex ML solutions. The information axiom prefers

100 4 | Axiomatic Design for Machine Learning

specifications with a minimal number of design elements. This is because

they produce more robust and non-redundant ML solutions. These solutions

are easier to maintain and are more tolerant to variance in their operation.

Assessment of specifications hence becomes a comparison of relationship

cardinalities and of the number of design elements.

Without AD4ML, both types of assessments are more complicated. Doc-

umentation must be inspected and interpreted to assess the specification’s

contents and complexity. The specification may not be organized in inde-

pendent components or have a consistent level of detail. If ML solutions

are documented in different ways, it is difficult to find information for com-

parison. Moreover, common criteria to compare them has to be agreed

upon.

4.5. Prototypical Implementation

A prototype by the name of ML solution designer showcases the usage of

AD4ML to design specifications. The prototype was developed as a series of

modules in python 3.8.31 and R 3.6.32. The modules form a python-based

web client and an R-based back-end API. The module architecture of the ML

solution designer is shown in Figure 4.9. The back-end is a REST API that

implements the operations to create and manipulate AD4ML specifications.

The specification repository was implemented as two document collections

in MongoDB. The first collection stores complete AD4ML specifications,

whereas the second one stores reusable specification components. All parts

of the prototype exchange specifications in JSON format.

Complete AD4ML specifications are formed by four objects. These are

"Domain_Requests", "Analytical_Concepts", "Technological_Resources" and

"Design_Matrix". The first three objects contain the design elements indi-

cated by their name. Each design element is a separate object with the fields

"code", "type", "title", and "description". Decomposed design elements are

stored in a nested object inside their parent design element. This preserves

1https://www.python.org/downloads/release/python-383/
2https://cran.r-project.org/bin/windows/base/old/3.6.3/

4.5 | Prototypical Implementation 101

Figure 4.9.: Module architecture of the ML solution designer. The program-
ming languages and libraries used are shown in parentheses.

the decomposition hierarchies built during the zigzagging processes. The

object "Design_Matrix" contains all matches between any two design ele-

ments. It thus combines design matrices A and B. Matches are stored as

JSON arrays.

Users can interact with the prototype in three ways (see Figure 4.9). First,

they can create a new AD4ML specification by providing the use case name.

This is the case when the design process is about to begin. Second, they

can load an existing AD4ML specification by choosing it from the list of

specifications stored in the repository. This may be the case, e. g., when the

specification is finished and needs to be retrieved to be implemented. Third,

they can drag and drop an AD4ML specification stored in JSON format into

the web client interface for it to be rendered. This can be useful if the team

wishes to share the specification with others without making it generally

available in the repository. Figure 4.10a shows the three options available

on the web client.

After picking one of the three cases, the prototype renders and analyzes

the corresponding JSON specification. Assume that the specification for the

fault diagnosis use case from Section 4.1.1 has been stored in the repository.

Figure 4.10b shows the web client with the specification rendered on the in-

terface. Aside from visualizing specifications, users can create, edit or delete

individual design elements, as well as match and decompose one or more

102 4 | Axiomatic Design for Machine Learning

design elements. The main section arranges the specification components in

three columns corresponding to the input, processing and output component

types. Any decomposed components can be displayed by expanding the

parent component. This visualization implements parts of the AD4ML flow

diagram (see Section 4.3.3). It depicts each specification component with

a header, a match section and a decomposition section. The second section

displays design elements that have been created but not linked to other

design elements, either by a match or decomposition operation. This section

can be thought of as a working area where design elements are collected

and edited before being matched to a specific specification component.

After rendering the AD4ML specification, the ML solution designer an-

alyzes the specification contents and informs users about the state of the

specification. Figure 4.11 shows the summary section in the prototype for

the specification of the fault detection use case. The summary section lists

the number of components that make the specification (see second row in

Figure 4.11). It also states the number of times those components have

been decomposed (see third row in Figure 4.11). This gives users a rough

indication of how advanced is the design of the specification. The prototype

also indicates users which components need additional design elements to

be completed (see fourth row in Figure 4.11). The example in Figure 4.11

shows that most components lack TRs, probably a sign that software devel-

opers have yet to contribute to the specification. If any of the axioms are

violated, the corresponding text is shown in the design warnings row.

Finally, users can store specification components directly from the web

client. This parses all specification components from the JSON document and

reformats them as individual JSON documents as proposed in Section 4.3.4.

4.5 | Prototypical Implementation 103

ure 4.6, there may be a need to change the kind of data used by the ML

solution. Instead of using the most significant data (DR-i-2), the most fre-

quent data may be required (DR-i-2’). Thanks to the match coefficients

contained in the Design Matrices A and B, the impact and effect of this

change is easy to identify. Design equation 4.9 shows that only AC-i-2 needs

to be revised. Following the match relationships, design equation 4.12 shows

that TR-i-2 is the only software element materializing AC-i-2. This indicates

that only the scikit learn pipeline needs modifications to use the most fre-

quent data. This analysis of the design equations also applies at deeper levels

of decomposition.

4.6.2. R2. Clear and Objective Documentation of the Design Intention

AD4ML keeps a separate statement of the design intention with the DRs of

the domain-specific design layer. Nevertheless, these DRs are decomposed

along with the other design elements during the zigzagging process. This

guarantees that the design intention is as detailed and current as the spec-

ification of implementation details of the ML solution in the ACs and TRs.

As a result, even the purpose of specific settings, e. g., the use of a sampling

strategy to obtain train and test data splits, can be known. Thus, it can be

said that DRs provide the clear and objective documentation of the intention

behind each software component, i. e., they fulfill R2.

In the example specification (see Figure 4.6), a domain expert with no

knowledge of Machine Learning can still know that the scikit learn pipeline

is the software component responsible for finding the most significant data.

S/he can thus understand the effect that modifying or removing that scikit

learn pipeline can have in the use case.

This level of detail opens the possibility to search for specifications made

for the same or a similar purpose. This implies retrieving ML solution specifi-

cations with the same DRs, or with a common subset of them. Instead of

making relative comparisons between them, the most suitable one can be

selected based on the information axiom.

106 4 | Axiomatic Design for Machine Learning

4.6.3. R3. Support of End-to-end Traceability and Consistency

R3 is addressed by AD4ML by means of the zigzagging process. The line

of thought can be traced in the sequence of matching and decomposition

steps across design layers. This trace is end-to-end because it goes from the

initial design intention in the context of the use case to the most specific

settings of the ML solution software components. It is all encoded in the

design matrices, from the initial DRs to the most concrete TRs.

Having this traceability information facilitates the creation of a revised

version of the ML solution. In the example specification, it is easy to find out

why scikit learn is used. The match relationships between DR-i-2, AC-i-2

and TR-i-2 trace the decisions of domain expert, data scientist and software

developer that lead to that choice (see Figure 4.8a). Each design element

in that line of thought can be reviewed in case the functionality provided is

insufficient. It can be determined, e. g., that AC-i-2, put forward by the data

scientist, is inadequate. This means that DR-i-2 cannot be satisfied by TR-i-2,

even if the latter is a good match to AC-i-2. Also, consistency is verified

between decomposition levels. This allows to see if and where a compromise

is made. The flawed specification in Figure 4.8b illustrates this. Equations

4.19 and 4.20 show an inconsistency in the way DR-i-2 is satisfied. The data

scientist initially claims that the data preprocessing pipeline alone (AC-i-2)

can satisfy DR-i-2. Later, s/he decides that AC-i-1, through its decomposition

DR-i-1/1, is also needed. In this state, the decomposition is inconsistent and

hence a compromise at either level must be done.

4.7. Related Work

This section compares AD4ML with related approaches concerning their abil-

ity to address the requirements in Section 4.1.2. A fundamental approach

in this regard is the CRISP-DM model (Chapman et al., 2000). Addition-

ally, the related work also surveys Continuous QFD (Herzwurm, Schockert,

et al., 2015) and a conceptual modeling framework to design analytical

4.7 | Related Work 107

solutions (Nalchigar and Yu, 2020). Table 4.2 summarizes the related work

observations.

CRISP-DM. The Cross-industry Standard Process for Data Mining is the

de-facto standard for practitioners to carry out data mining projects in

domain-specific use cases. It provides an industry-, application-, and tool-

neutral reference process model with guidelines to analyze data and gain

knowledge from it (Shearer, 2000). The six phases of the process model

provide a sequence in which tasks should be carried out, as well as certain

loops from one phase back to previous phases whenever modifications are

needed (Chapman et al., 2000).

Regarding the design of ML solutions, CRISP-DM focuses on setting up

a project plan. The contents of the project plan overlap with those of the

ML solution specification in AD4ML. For instance, business objectives relate

to the design intention. However, the project plan is rather meant to guide

iterations of the CRISP-DM cycle. It is updated in every cycle iteration until

an empirically approved specification emerges. In the end, the ML solution

specification is the sum of all documentation created throughout the phases.

Overall, CRISP-DM partially enables experimental learning. Its iteration

approach and the documentation allow for testing different software com-

ponents. However, several factors complicate experimental learning. Cycle

iterations must go through the same phases regardless of the changes pur-

sued. It is not easy to determine the impact of changing one component.

This is because dependency information is scattered in the project plan and

among all other documents created during the phases.

The business objectives and success criteria are relevant for the clear and

objective documentation of the design intention. They describe the domain-

specific purpose of the ML solution. Nevertheless, this information is mixed

with project information in the project plan, while AD4ML allows for a clear

and concise presentation of only the ML solution’s objectives.

The end-to-end traceability and consistency of the ML solution specifi-

cation is not addressed by CRISP-DM. It does not keep clear track of the

108 4 | Axiomatic Design for Machine Learning

Table 4.2.: Coverage of feasibility requirements by related approaches.
++ shows complete fulfillment, + shows partial fulfillment, -
shows non-fulfillment.

Feasibility Requirement
CRISP-
DM

Continous
QFD

Conceptual model-
ing framework ...

R1. Experimental learn-
ing

+ - -

R2. Clear design intention + + + + +
R3. End-to-end traceabil-
ity

- - -

dependencies between the software components and the business objectives

they are supposed to fulfill. For this reason, a general and sophisticated

review of the process is needed during the evaluation phase. Checking

the consistency at this stage requires manual inspections of all the project

documentation.

Continuous QFD. Quality Function Deployment (QFD) is a requirements

engineering method that captures customer needs and transforms them into

product requirements. Different adaptations of QFD have been proposed

for specific application domains. Continuous QFD (CQFD) is an adaptation

for highly-dynamic software development (Herzwurm, Schockert, et al.,

2015). It is meant to handle unclear customer requirements and changing

software components (Herzwurm, Dowie, et al., 2001). An integral part

of CQFD are content templates. These templates represent the adaptation

of QFD concepts to the context of an innovative technology, e. g., cloud

computing. They contain a predefined set of customer requirements and

software characteristics (Herzwurm, Dowie, et al., 2001). These two types

of elements are set in a matrix to document their dependencies. So, the

template captures the equivalent of DRs and ACs, as well as the design

matrix capturing dependencies between DRs and ACs. This implies that

CQFD provides a clear documentation of a design intention.

4.7 | Related Work 109

Nevertheless, CQFD fails to enable experimental learning specifically be-

cause of the use of content templates. The predefined set of software char-

acteristics offered by the templates limits the ability to test software com-

ponents. Any characteristic not present in the template cannot be included

in the ML solution, even if it fulfills customer requirements. Additionally,

CQFD cannot offer end-to-end traceability and consistency. This is because

it stops when software requirements are specified, which are similar to

the conceptual architecture defined by the ACs. So, CQFD does not offer

any means to specify the technical software implementations. In contrast,

AD4ML provides these means via TRs and the design matrix B to capture

dependencies between ACs and TRs.

Conceptual Modeling Framework for Business Analytics Solutions.

This framework is composed of three views: business, analytics design and

data preparation(Nalchigar and Yu, 2020). These views roughly correspond

to the domain-specific and analytics design layers of AD4ML. The difference

lies in the way this framework captures the dependencies between its lay-

ers. All three views are connected solely through analytics goals. These are

elements in the analytics design View. They capture the type of analysis

to be performed over the data set, i. e., prediction, prescription or descrip-

tion (Nalchigar and Yu, 2020).

This framework addresses the second requirement in that it can document

the design intention using its business view. However, having the analytics

goals as the sole connector between views makes it difficult to capture all

the component dependencies. For example, there is no way to indicate if

the choice of an algorithm needs a particular data transformation. This hin-

ders experimental learning, because it requires that practitioners manually

determine the impact of changing components. It also complicates checking

the consistency from a design intention to the implemented ML solutions.

So, the framework cannot support end-to-end traceability and consistency.

110 4 | Axiomatic Design for Machine Learning

4.8. Summary and Future Work

This chapter introduced AD4ML, an adaptation of Axiomatic Design for

the specification of ML solutions in manufacturing. The chapter discussed

the rationale behind the adaptation and illustrate this by designing an ex-

ample specification for a fault detection use case. It also explained three

improvements that AD4ML brings to the design process. They include the

visualization of specifications in AD4ML flow diagrams; the reutilization of

specification components and the agile design of specifications. Together,

they ease the design effort of the stakeholders. The chapter also discussed

how the use of AD4ML can be leveraged to enable the validation and assess-

ment of ML solution specifications. This allows for the early identification of

flawed design choices. Stakeholders can thus correct them before developing

or deploying the whole ML solution. The chapter presented a prototypical

implementation of AD4ML in the form of the ML solution designer. The

prototype depicts the advantages of designing ML solutions with AD4ML.

Namely, it enables the visualization and design of specifications, it provides

analysis information on the specification contents, and it allows the consoli-

dation of reusable specification components in a repository. Furthermore,

the chapter discussed how AD4ML addresses the feasibility requirements

faced by the process of specifying ML solutions. It does this by providing

clear documentation of the design intention, the conceptual and technical

solution specifications, as well as linkages between them.

A future research direction may be to automatically generate design rec-

ommendations based on existing ML solution specifications. For that, the

observed performance of implemented ML solutions must be documented

and bound to components in their ML solution specification. These bindings

may help find correlations between good or bad ML solution performance

and the components that yield that performance. Bundled with a repository

of reusable components (see Section 4.3.4), a recommender system can be

developed. This can make it easier for less experienced users to participate in

the design process. The recommender system in the next chapter represents

4.8 | Summary and Future Work 111

a first step in this direction, which nonetheless lacks the integration with

AD4ML specifications.

112 4 | Axiomatic Design for Machine Learning

C
h
a
p
t
e
r

5
AssistML

The sheer number of possible ML solutions increases the complexity to

select suitable solutions for a new use case (see selection challenge CH-3 in

Section 1.3). Addressing this complexity is difficult for citizen data scientists

or domain experts, who are becoming more and more involved in data

science projects (Gröger, 2018). These practitioners have limited knowledge

of ML solutions, but in-depth understanding of the use case. Furthermore,

citizen data scientists face practical requirements when building ML systems,

which go beyond the known challenges of ML, e. g., data engineering or

parameter optimization, and span over the complete development process

(see process challenge CH-4 in Section 1.3). For instance, they are expected

to quickly identify ML system options that strike a suitable trade-off across

multiple performance criteria. These options also need to be understandable

for non-technical users like them, i. e., recommended ML solutions should

explain their suitability. Citizen data scientists are also encouraged to reuse

components from existing ML solutions to reduce development time and

costs. Addressing these practical requirements represents a problem for

citizen data scientists with limited ML experience. This calls for a method to

help them identify suitable ML software combinations.

113

Different approaches, such as AutoML (Vanschoren, 2018), Explainable

AI (Burkart and Huber, 2020), and Meta-learning (Vanschoren, 2018), have

been proposed to tackle the problem of selecting and configuring software

components for ML solutions (see Section 5.2). Yet, they address these

requirements only partially.

This chapter introduces AssistML, a concept to recommend ML solutions

for predictive use cases. This concept targets citizen data scientists, enabling

them to apply ML solutions without the involvement of more experienced

data scientists. The concept uses performance preferences provided by citizen

data scientists and matches them to existing metadata about ML solutions

to facilitate the selection and configuration of ML components. Furthermore,

it offers intuitive explanations of the recommended ML solutions via a

recommendation report.

The approach was implemented and evaluated based on two new data sets,

i. e., not contained in the metadata repository. This evaluation shows that

AssistML leads to less-complex ML solutions that meet the user’s preferences

considerably faster than the AutoML system. Moreover, the recommendedML

solutions clearly show their trade-offs across multiple performance criteria

and provide concise and relevant information to the users.

The contents of this chapter are an edited version of a separate publication

(Villanueva Zacarias, Weber, et al., 2021). All concepts extracted from it

and used in this dissertation are the original work of the dissertation author.

The remainder of this chapter is structured as follows: Section 5.1 presents

an application scenario and the results of a literature review to derive re-

quirements for a system recommending ML solutions. With respect to these

requirements, the chapter discusses related work in Section 5.2. Then,

Sections 5.3 and 5.4 present AssistML. Finally, Section 5.5 discusses the

evaluation results, whereas Section 5.6 concludes the chapter.

114 5 | AssistML

5.1. Application scenario for ML Solution recommendations

The first part in this section describes the exemplary application scenario in

which practitioners benefit from recommended ML solutions. The second

part discusses the practical requirements for a concept to provide such

recommendations.

5.1.1. Reusing ML Solutions for Predictive Use Cases

Figure 5.1 depicts an exemplary scenario where an ML solution is to be

developed for a new predictive use case. A team of practitioners is assigned to

this task, e. g., a decision maker, a domain expert, a software developer and

a citizen data scientist. In this context, citizen data scientists are particularly

attractive when experienced ML experts are scarce (Flaounas, 2017). The

team has access to the data of the new predictive use case and to a repository

populated with metadata about existing ML solutions, some of which have

been developed for similar use cases. Such repositories are part of various

ML tools (Zaharia et al., 2018). So, they are available in many ML projects

and organizations.

However, the reuse of ML solutions from the repository proves to be

difficult. The citizen data scientist knows that there exist different languages,

libraries, data formats, and deployment models to develop the new ML

solution. Yet, besides his or her general ML knowledge, s/he does not know

which of the existing ML solutions were developed for a similar use case.

Thus, s/he has to determine for each individual ML solution in the repository

whether the combination of software components can be reused in the new

use case. For example, s/he has to verify that the software components can

process the new use case data. S/He also has to validate that the performance

of each existing ML solution meets the requirements of the new use case.

This implies the consideration of performance trade-offs, e. g., preferring ML

solutions with a faster prediction speed over others with higher prediction

accuracy.

5.1 | Application scenario for ML Solution recommendations 115

Figure 5.1.: Application scenario for recommendations of ML solutions.

5.1.2. Practical Requirements

The application scenario illustrates the complexity of reusing ML solutions

and the human effort involved. To address this problem, citizen data scien-

tists need concepts that recommend suitable ML solutions. This subsection

discusses four key practical requirements that a concept for recommending

ML solutions must fulfill. These requirements are based on a literature

review and on discussions with industry partners.

[R1] Reusability. Existing ML solutions should be the basis to make

recommendations (Paleyes et al., 2020). As the number of developed ML

solutions in an organization increases, it is more likely that existing ML

solutions have configurations similar to the solution needed in the new

use case. Citizen data scientists may thus want to reuse those existing ML

solutions. This can mean either to reuse the implemented ML solution as-is

or to consider the combination of ML components and their configurations

as blue-print recommendation for a new implementation. To address this

consideration, a common set of metadata about each ML solution has to be

stored in a central metadata repository. These metadata need to ensure the

116 5 | AssistML

complete reproducibility of the ML solution so that the recommendation is

applicable in new use cases.

[R2] Explainability. Recommended ML solutions should be interpreta-

ble (Baier et al., 2019; Burkart and Huber, 2020; Ethayarajh and Jurafsky,

2020). The lack of experienced ML experts increases the need for explana-

tions that are especially tailored to non-technical people such as citizen data

scientists (Baier et al., 2019). Citizen data scientists prefer understandable

ML solutions with acceptable performance over complex black-box ML so-

lutions with state-of-the-art performance (Ethayarajh and Jurafsky, 2020;

Paleyes et al., 2020). To address this consideration, meaningful explana-

tions have to be generated for each recommended ML solution. Meaningful

explanations focus on the effects of ML solution components on prediction

results instead of focusing on standard ML metrics (Baier et al., 2019). They

facilitate citizen data scientists to select a recommendation out of many that

match his or her performance preferences (Ethayarajh and Jurafsky, 2020).

[R3] Responsiveness. The process to generate recommendations should

be responsive (Baier et al., 2019; Bernardi et al., 2019; Flaounas, 2017; Za-

haria et al., 2018). ML solution development is an iterative process. Thereby,

citizen data scientists test different hypotheses to assess whether an ML

solution fulfills the use case needs (Bernardi et al., 2019; Flaounas, 2017).

A recommendation system hence should suggest several ML software combi-

nations to citizen data scientists, so that they may compare the solutions and

select the most suitable one (Zaharia et al., 2018). Throughout this iterative

search, citizen data scientists’ preferences develop too, as they narrow down

suitable ML solutions. However, iterations and the number of ML solutions

citizen data scientists may assess are constrained by the resources allocated

to the use case (Flaounas, 2017). In order to reduce time and costs for the

search of ML solutions, it is important to provide recommendations in a

responsive manner.

[R4] Multi-criteria trade-offs. The suitability of ML solutions has to be

decided based on multiple criteria (Baier et al., 2019; Bernardi et al., 2019;

Ethayarajh and Jurafsky, 2020; Wagstaff, 2012). In practical use cases,

the suitability of an ML solution depends on multiple factors instead of a

5.1 | Application scenario for ML Solution recommendations 117

single ML quality metric, e. g., only accuracy or Root Mean Square Error

(RMSE) (Wagstaff, 2012). For example, a very accurate ML solution may

not be useful if it takes too long to make predictions or if it requires a lot of

data and complex data preprocessing (Breck et al., 2017). In that case, a

less accurate, but faster ML solution that requires less data can be a better

recommendation (Baier et al., 2019; Bernardi et al., 2019; Ethayarajh and

Jurafsky, 2020). Similarly, excessive computing infrastructure investments or

many software dependencies may render a complex ML solution unsuitable

for the new use case. It is important to generate recommendations with

the consideration of multiple criteria and objectives. Furthermore, it has to

be possible to identify and compare the trade-offs between the individual

recommended solutions. For this purpose, information highlighting these

trade-offs have to be made available to citizen data scientists.

5.2. Related Work

This section discusses three related approaches for ML solution development:

AutoML systems, Meta-Learning, and Explainable AI. The related work

assesses whether each approach fulfills the practical requirements from

Section 5.1.2. A summary of the analysis is shown on Table 5.1.

5.2.1. AutoML Systems

Automated machine learning (AutoML) systems generate an optimized su-

pervised learning model or pipeline (Feurer, Eggensperger, et al., 2020; Xin

et al., 2021). The final ML model is optimized to, e. g., minimize generaliza-

tion error or maximize accuracy. Open source examples of AutoML systems

include Auto-sklearn (Feurer, Eggensperger, et al., 2020) or TPOT (Olson,

Urbanowicz, et al., 2016).

For each new use case, AutoML systems search for high-performing ML

models in a predetermined configuration space, consisting of learning algo-

rithms, (hyper-)parameters and basic feature engineering (Xin et al., 2021).

So, AutoML systems are not based on ML solutions that already exist in

118 5 | AssistML

an organization or on metadata describing these solutions in a repository.

Therefore, they do not fulfill requirement R1.

AutoML systems also do not fulfill R2. They tend to produce complex ML

models that citizen data scientists usually fail to interpret. They even prefer

complex to simpler models if the complex models are only marginally better

in the considered optimization objective (Xin et al., 2021). Furthermore,

AutoML systems do not offer adequate explanations to citizen data scientists.

AutoML systems are not responsive at all (R3), as they are known to

be resource- and time-intensive (Xin et al., 2021). Even if the system is

constrained by a time budget, the runtime to obtain a single optimized

ML model can take up to 60 minutes (Feurer, Eggensperger, et al., 2020).

Citizen data scientists are usually not willing to wait this long time, i. e., they

want to assess different configurations of ML solutions in a much faster pace.

Fulfilling R4 requires the consideration of multiple criteria. AutoML sys-

tems do not support this by design, since optimization strategies are executed

to improve the value of one single evaluation metric, e. g., cross-validation

loss (Feurer, Eggensperger, et al., 2020) or area under the operator curve (Gi-

jsbers et al., 2019). So, it is not possible to consider any trade-offs between

several optimization criteria and objectives with AutoML systems.

5.2.2. Meta-Learning

Meta-learning refers to data-driven approaches to learn from previously

implemented ML models or pipelines (Vanschoren, 2018). Meta-learning

approaches can be used to recommend ML models or their settings for a new

task and data set (Pan and Yang, 2010). Metadata about the configuration,

used training data, and observed performance of already existing ML models

form the basis for meta-learning approaches (Vanschoren, 2018). Several

platforms have been proposed to collect these metadata (Vanschoren et al.,

2014; Zaharia et al., 2018). These platforms collect metafeatures about the

data sets, the learning task, e. g., classification, the used (hyper-) parame-

ters and data preprocessing techniques. In addition, they store results of

evaluation metrics. Meta-learning platforms thus fulfill R1.

5.2 | Related Work 119

Table 5.1.: Assessment of related approaches
AutoML Meta-Learning Explainable AI

[R1] Reusability
[R2] Explainability
[R3] Responsiveness
[R4] Multi-criteria trade-offs

For meta-learning approaches to fulfill R2, they must be able to explain

why an ML model suits the new data set. Explanations have to avoid the

use of ML metrics that non-expert citizen data scientists cannot understand.

Most meta-learning approaches base their selection on complex metrics, e. g.,

covariances of text feature pairs (Raina et al., 2006) or data complexity

measures (Biondi and Prati, 2015). Using these metrics, each approach

estimates the similarity between the new data set and the data sets used for

already existing ML models. However, it is hard for citizen data scientists

to understand these complex metrics and to reproduce how they determine

the similarity of data sets. Thus, R2 remains unfulfilled.

Regarding the responsiveness requirement R3, meta-learning approaches

are expected to find various suitable ML models in a short time. Yet, only

single meta-learning approaches meet this requirement, as they are limited

to a specific type of algorithm (Biondi and Prati, 2015; Raina et al., 2006;

Van Rijn and Hutter, 2018). For example, the approach of Raina et al. (Raina

et al., 2006) is designed exclusively for text classification with logistic regres-

sion. Similarly, the approach of Biondi and Prati (Biondi and Prati, 2015)

is designed exclusively for support vector machines. However, to efficiently

use such meta-learning approaches independently of the underlying ML

algorithm, a citizen data scientist has to invest additional time. To this end,

s/he needs to execute and compare different meta-learning approaches in

terms of their predictive quality and performance. This is error-prone and

time-consuming. R3 is thus not fulfilled.

Meta-learning approaches evaluate performance towards a single per-

formance metric at a time, usually accuracy (Biondi and Prati, 2015) or

classification error (Raina et al., 2006). Data similarity can only be indi-

120 5 | AssistML

rectly considered in the selection of suitable ML models (Biondi and Prati,

2015). Thus, meta-learning approaches may not consider more than one

performance metric and one similarity metric at a time. They only partially

fulfill the consideration of multiple criteria and trade-offs between them, as

required by R4.

5.2.3. Explainable AI

Explainability approaches can describe the general functioning of a ML

model (Burkart and Huber, 2020), i. e., give global explanations, or the

reasoning behind an individual prediction, i. e., give local explanations. Since

ML solution development is guided by the overall behavior of the solution,

the discussion focuses on global explanations. Here, model-agnostic global

explainers can be used with different supervised learning algorithms. These

kinds of explainers only use the data set of the ML model they are applied

to. They do not establish comparisons with other data sets or with other ML

models. Thus, R1 is not given.

Regarding the explainability requirement (R2), model-agnostic, global

explainability approaches provide two types of explanations. The first type

are visualizations (Adler et al., 2018; Goldstein et al., 2015), e. g., partial

dependency plots. These approaches plot the effect of one or multiple data

features on the model’s performance, e. g., on accuracy. Most plots are only

able to display one or two data features at a time, rendering them impractical

for MLmodels with many data features. The plots also display metrics such as

obscurity (Adler et al., 2018) in unfamiliar formats, e. g., in various diverging

and falling curves. These plots are difficult to interpret for non-experts. The

second type of explanations are relevance metrics. These metrics quantify

the impact that the presence or absence of a data feature has on the model.

Example metrics are attribute interactions (Henelius et al., 2017) or attribute

weights (Subianto and Siebes, 2007). Similar to the plots, the interpretation

of these metrics is difficult for non-experts. In both cases, the interpretation

of ML models depends on the use of explainability concepts, which have

to be interpreted as well. Citizen data scientists however usually do not

5.2 | Related Work 121

completely understand these explainability concepts. Thus, explainability

approaches partially fulfill R2.

To fulfill the responsiveness requirement, explainability approaches must

provide explanations in short execution times. However, approaches such

as leave-one-out (Burkart and Huber, 2020) or Explainer global (Subianto

and Siebes, 2007) need to iterate multiple times over the data features.

This is time-consuming when a big amount of features needs to be handled.

Therefore, explainability approaches partially fulfill R3.

Finally, none of the approaches allows the consideration of multiple criteria

when offering explanations. Explanations are offered for one performance

aspect at a time. For instance, GFA plots obscurity versus accuracy (Adler

et al., 2018). In ASTRID, attribute interactions are computed with respect

to accuracy (Henelius et al., 2017). These approaches do not allow the

consideration of trade-offs, e. g., between accuracy and training time. Thus,

R4 is not fulfilled.

5.3. AssistML Metadata Repository

AssistML provides its recommendations based on a centralized repository that

contains metadata, source code, and sample training and test data of previ-

ously developed ML solutions. Metadata and source code are accessible via

an identification code assigned to each ML solution, e. g., "DTR-faultdetection-

001". The identification code describes in three parts (1) the learning algo-

rithm with an abbreviation ("DTR"), (2) the use case ("faultdetection"), and

(3) a sequence number for the specific combination of learning algorithm

and use case. Data sets used to develop an ML solution are referenced in the

solution metadata itself. The contents of the source code and data sets are

specific for their use case. As such, their format and contents are determined

before being submitted to the repository. This section defines the metadata

schema that AssistML requires.

Metadata can be extracted directly from ML solution’s software or from

its documentation. This way, the repository helps to standardize different

122 5 | AssistML

metadata, so as to make all ML solutions comparable with each other. Let mi

be the metadata describing the i-th ML solution in the metadata repository

M . Each entry mi contains four metadata subsets:

mi = {ui , di , si , pi} (5.1)

ui = {taskT ypei , taskOutput i , deplo yment i} (5.2)

di = {allM Fi , singleM Fi , preprocessingi , f eatsUsedi} (5.3)

si = {languagei , plat f ormi , al gori thmi , hParamsi} (5.4)

pi = {metricsi , metricsLabelsi , mar ginsi} (5.5)

The use case set ui firstly describes the type of analytics task the ML

solution i performs. This refers to supervised learning tasks, e. g., binary or

multi-class classification (Sokolova and Lapalme, 2009). The task output

indicates the kind of result the ML solution produces, e. g., whether it delivers

single predictions or class probabilities for a new observation. Finally, the

type of deployment describes how the solution may be used in production

environments. Examples can be deploying the ML solution in a cluster or as a

stand-alone program on a single host. These metadata can be obtained from

technical and project documentation about the ML solution development,

e. g., in software specifications.

In allM Fi, the data subset di contains descriptive metrics, i. e., simple

meta features (Vanschoren, 2018) about the complete data set for which an

ML solution is developed. Different data sets can thus be compared on the

basis of these metafeatures. They are computed on the original data set prior

to the data preprocessing required by the ML solution. Examples include

the total number of instances, the number of features, and percentages

describing the shares of each feature type in the data set. Each data feature

can belong to one of four feature types: numerical, categorical, datetime or

unstructured text. singleM Fi is a vector of length j that describes each data

feature j with additional metafeatures specific to its feature type. Table 5.2

gives examples of the metafeatures that can be computed for each feature

5.3 | AssistML Metadata Repository 123

type. Note that the list is not exhaustive and thus metafeatures can be added

or removed for each feature type. Metadata in preprocessingi describe the

used data preprocessing techniques. For each feature type in di, two lists

indicate the techniques applied for the ML solution to be able to read the data

(encoding) and to select features (selection). f eatsUsedi indicates which

data features from the data set di are finally used by the ML solution.

Table 5.2.: Exemplary metafeatures by feature type

Feature Description

Numerical Number of outliers, number of missing values.
Categorical Number of categories, imbalance ratio (count of

the most frequent category over the count of the
least frequent category)

Datetime Minimum and maximum deltas between chrono-
logical timestamps, frequencies of months and
days of the week.

Unstructured text Relative vocabulary size, Shannon’s entropy (Bank
et al., 2012).
A bag-of-words representation (Sebastiani, 2002)
withminimal text preprocessing is required (word-
tokenization, lowercasing, stopword and punctu-
ation removal)

The technical settings si describe the configuration and parameters

needed to reproduce the ML solution. The metadata for this set can be

collected directly from the ML solution code via custom annotations (Za-

haria et al., 2018). Metadata in this set include lists with the programming

language(s) (languagei), and the software platform(s) and libraries used

(plat f ormi). Furthermore, al gori thmi specifies the ML algorithm imple-

mentation used by the ML solution, e. g., sklearn.naive_bayes.GaussianNB.

Custom hyperparameter values are stored in hParamsi .

The performance set pi contains performance values and explanations

of the ML solution. Three groups of metadata are collected. The first group,

metricsi , contains values of performance metrics obtained while testing the

ML solution on a test set. For instance, metricsi can capture the accuracy,

124 5 | AssistML

precision, and recall values for a classifier. The values in metricsi are scaled

to a range [0,1], going from worst or slowest performance to best or fastest

performance.

The second group, metricsLabelsi , contains a performance label for each

metric based on the values in metricsi. The performance labels intuitively

indicate non-experts how good a solution is in comparison to others. Per-

formance labels are letter grades going from A+ to E. Grade A+ denotes

the best values. Grades A to E denote five groups, each covering 20% of the

value range of that performance metric among ML solutions. For fairness,

these labels only compare ML solutions developed for the same task and

data set. To determine the threshold values for each grade, 5 quantiles are

computed.

The third group, mar ginsi , includes margin heuristics for all data features.

A margin heuristic for a particular feature assesses how useful data feature

variations are for an ML algorithm to perform its task. In case of a classifi-

cation, the margin of a data feature estimates the differences between the

values of correctly classified observations from those of incorrectly classified

observations. In general, the margin heuristic for a data feature in binary

classification tasks is:

mar gin f eat =
∑

(w1 ·mar ginP
, w2 ·mar ginN) (5.6)

where mar ginP is the difference between true positives (TP) and false

positives (FP), mar ginN is the difference between true negatives (TN) and

false negatives (FN), and w1 and w2 the factors for a weighted average.

Depending on the feature type, the margin heuristic is computed differ-

ently. For numeric data and datetime deltas:

mar ginPnum =

∑n

1

�

�

�

−−−−−→
T P f eat −

−−−−−→
F P f eat

�

�

�

avg(avg(T P f eat), avg(F P f eat))
(5.7)

5.3 | AssistML Metadata Repository 125

where
−−−−−→
T P f eat are the sorted data feature values in the true positives sample,

−−−−−→
F P f eat are the sorted data feature values in the false positives sample and

avg(T P f eat) and avg(F P f eat) are the average values of the same samples.

For categorical and unstructured text data:

mar ginPcat =
∑

�

�

�

�

|levels(T P f eat)|

|T P f eat|
−
|levels(F P f eat)|

|F P f eat|

�

�

�

�
(5.8)

where |T P f eat| is the number of elements in the true positives sample and

|F P f eat| represents the number of elements in the false positives sample.

|levels(T P f eat)| is the count of each distinct data feature value in the true

positives sample, e. g., how many times does the value medium appear in

the data feature size in the TP sample; |levels(F P f eat)| is the count of each

distinct data feature value in the false positives sample. In general, the

function levels() is equivalent to the output of the COUNT() function with

the DISTINCT clause in SQL.

The margin heuristic is used by AssistML to explain the functioning of a

recommended ML solution (see Section 5.4.4). A high value for instance

may show that a data feature has very different values in true positive and

false positive samples. This big difference indicates that the feature helps

improve the classification precision.

5.4. AssistML: A Concept to Recommend ML Solutions

This section explains the four main steps that constitute AssistML. They

recommend a short list of ML solutions for a new use case n based on meta-

data from the repository M . AssistML requires three inputs (see Figure 5.2).

These inputs form a query qn to obtain a list of recommended ML solutions

in repor tn. Thereby, qn requires only the absolute minimum information,

making the query easier to determine for citizen data scientists. The first

input in qn is a description of the desired use case task un. The task may be

described, e. g., as binary classification with a single prediction as output.

126 5 | AssistML

Figure 5.2.: Overview of the steps in AssistML

The second input is an annotated extract of the new use case data dn. Citizen

data scientists use annotations to indicate the feature types contained in the

data, i. e., which of the four feature types numerical, categorical, unstruc-

tured text, or datetime are present. As third input, citizen data scientists

set preferences they have about the ML solution’s performance (pn). These

preferences include ranges for performance metrics that define acceptable

values for citizen data scientists. For instance, a classification task can have

range limits for accuracy, precision, recall, and training time. A range of

0.25 for all metrics means that only ML solutions with values in the top 25%

in all metrics are considered acceptable.

qn = {un, dn, pn} (5.9)

un = {taskT ypen, taskOutputn} (5.10)

dn = {datan, f eatT ypesn} (5.11)

pn = {rangesn} (5.12)

5.4.1. Step 1: Select ML Solutions on Data Similarity

The first step selects ML solutions based on the similarity of the data set and

task of existing ML solutions in M to the data set and task of the new use

case in query qn. Only the solutions developed for the most similar data sets

5.4 | AssistML: A Concept to Recommend ML Solutions 127

Algorithm 5.1 Select solutions on data similarity

Require: M , un, dn

Ensure: ms, wt

1: {allM Fn, singleM Fn} ←

anal yzeQuer yData(dn.data, dn. f eatT ypes)
2: function select(un, dn)
3: ms0 = {mi ∈ M |

mi .taskT ype = un.taskT ype and
mi .taskOutput = un.taskOutput}

4: if ms0 = {} then
5: terminate AssistML

6: else
7: {ms, wt} ←checkSimilarity(ms0,

dn.allM F, dn.singleM F)
8: return {ms, wt}

9: end if
10: end function

and tasks, i. e., ms, are passed to the following steps. The goal is to ensure

that the recommended ML solutions were developed for a use case that is as

similar as possible.

Algorithm 5.1 gives an overview of the first step. It requires access to

the repository M , and the subsets un and dn of the user query. The first

task is to analyze the provided data. The sample data datan and its fea-

ture type annotations are used to compute summary metafeatures allM Fn

and individual metafeatures singleM Fn for the new use case data. These

metafeatures allow the determination of similarity between the new data

set dn and existing data sets di in M .

Data set similarity is expressed in four levels. Each similarity level is

defined by criteria regarding the use case task and data set. Firstly, the base

similarity or ms0 (see Algorithm 5.1) describes ML solutions developed for

the same type of task and same type of output. For example, ms0 can refer to

all solutions in M for binary classification (taskT ype) and producing single

predictions (taskOutput). If no solutions in M fulfill the criteria, the whole

recommendation process is terminated (Algorithm 5.1). This is indicative

128 5 | AssistML

of a completely new use case, for which none of the solutions in M can be

reused. In that situation, other development approaches should be followed.

If solutions with similarity level 0 are available in M , the function check

Similari t y() applies filter criteria to determine which solutions fulfill lev-

els 1 to 3. The filter criteria for each level are given in Equation (5.13),

Equation (5.14) and Equation (5.15). The similarity levels are consecutively

checked, so that ms3 ⊆ ms2 ⊆ ms1 ⊆ ms0.

ms1 = {ms1 ∈ ms0|di .allM F. f eatT ypes = dn.allM F. f eatT ypes}

(5.13)

ms2 = {ms2 ∈ ms1|rat ios(di .allM F. f eatT ypes)

≃ rat ios(dn.allM F. f eatT ypes)} (5.14)

ms3 = {ms3 ∈ ms2|di .singleM F ≃ dn.singleM F} (5.15)

The filter for ms1 removes solutions whose associated data sets di do not

have the feature types of the new data set dn. For a new data set with

numerical data, this filter removes ML solutions not trained on numerical

data at all. Conversely, ML solutions trained with at least one numerical

feature have similarity level 1. The filter for ms2 keeps only those solutions

whose associated data sets di have feature type ratios similar to the feature

type ratios of the new data set dn. Ratios are considered similar if they are

within one decile of the feature type ratios of the new data set. This means,

e. g., removing ML solutions not trained on data sets with 95% +/- 5%-

points of numerical features. The filter for ms3 compares the metafeatures

in singleM F . Again, the solutions in ms3 must have singleM F values within

one decile of the singleM F values of the new data set. This means that we,

e. g., compare the percentage of outliers of numeric features in the new data

set dn to the percentage of outliers of the numeric features in associated data

sets di in M . If the percentage of outliers of all numeric features is within +-

5%, e. g., [0.2, 0.0, 0.11] and [0.18, 0.05, 0.07], the solution’s similarity is

level 3.

5.4 | AssistML: A Concept to Recommend ML Solutions 129

Step 1 passes over the ML solutions trained on the most similar data sets

(ms in Algorithm 5.1), i. e., having the highest similarity level. If ms have a

similarity lower than 3, the function checkSimilari t y() adds distrust points

and warnings to wt . Formally, wt = {dist rustPoints, warnings(t)}, i. e., a

scalar value dist rustPoints and a list of short explanations warnings(t)

describing a problematic condition t. wt is the basis of a distrust score

that estimates the suitability of the recommendations for the use case. It is

inspired by the ML test score of Breck et al. (Breck et al., 2017). Distrust

points are added for each problematic condition t that occurs at any step in

AssistML. During this step, wt .dist rustPoints can receive up to 3 distrust

points depending on the highest similarity level found. Similarity level 0

awards 3 distrust points; similarity level 1 awards 2 distrust points and

similarity level 2 awards 1 distrust point. No distrust points are awarded if

the highest similarity level 3 is achieved.

5.4.2. Step 2: Identify Acceptable/Nearly Acceptable ML Solutions

The second step divides ML solutions from the previous step based on their

performance into two groups, i. e., mACC and mNACC . An ML solution belongs

to mACC if its performance values for each relevant metric fall in the percentile

range established by the user in pn.ranges. For instance, a range of 0.2 for

accuracy means that only the ML solutions of ms which are among the upper

20% regarding accuracy are acceptable. For example, if the accuracy values

of solutions in ms vary uniformly between 0.7 and 0.92, ML solutions with

an accuracy of 0.87 or higher are considered acceptable.

An ML solution belongs to mNACC if its performance values are lower than

those of solutions in mACC . Nevertheless, the performance values of mNACC

solutions may only be lower than the threshold for mACC solutions by the

amount defined by pn.ranges. In the same example with a 0.2 accuracy

range, ML solutions in ms belong to mNACC if their accuracy values are lower

than 0.87 and greater or equal than 0.82. ML solutions in mNACC serve as

comparison for ML solutions in mACC .

130 5 | AssistML

Algorithm 5.2 Identify [nearly] acceptable ML solutions

Require: ms, pn.ranges

Ensure: mACC , mNACC , wt

1: function cluster(ms, ranges)
2: cls← DBSCAN(ms)
3: mts← ms.p.metrics

4: qlim← pn.ranges

5: for j = 1 to [cls] do
6: accl = max(mts(i) ∈ cls(j))− qlim

7: accF i t(i) =
|{ms |ms∈cls(j)∧mts(i)>=accl}|

|{ms |ms∈cls(i)}|

8: naccl = max(mts(i) ∈ cls(j))− 2 ∗ qlim

9: naccF i t(i) =
|{ms |ms∈cls(j)∧mts(i)<accl∧mts(i)>=naccl}|

|{ms |ms∈cls(i)}|

10: if (accF i t(i)≥ 51%) then
11: mACC ← cls(i)

12: else if (naccF i t(i)≥ 51%) then
13: mNACC ← cls(i)

14: end if
15: end for
16: if (mACC = {}) then
17: terminate AssistML

18: else
19: wt ← testFits(mACC ,mNACC)

20: return mACC , mNACC , wt

21: end if
22: end function

The first task of Algorithm 5.2 (line 2) uses the DBSCAN algorithm (Ester

et al., 1996) to cluster the solutions in ms based on their performance values,

which are contained in ms.p.metrics. The need for clustering derives from

the fact that companies typically store hundreds of ML solutions in their

repositories (R1). Furthermore, ML solutions with different configurations

can still produce very similar performance across several metrics. For in-

stance, Figure 5.3 illustrates 228 ML solutions developed for different use

cases as colored dots in a three dimensional space. The color indicates the

cluster to which the ML solution belongs, as determined by a clustering algo-

rithm. The plot shows that ML solutions from different use cases and with

5.4 | AssistML: A Concept to Recommend ML Solutions 131

Figure 5.3.: Visualization of ACC and NACC groups where each dot repre-
sents an ML solution.

different configurations can have similar performance trade-offs, resulting

in clearly separated clusters. The identification of Acceptable (ACC) and

Nearly Acceptable (NACC) solutions is thereby facilitated. The consequence

of these effects is that, after a relatively small number of ML solutions, it

becomes inefficient to check and compare the performance of every ML

solution. Clustering analysis reduces the number of necessary checks by

grouping similarly performing ML solutions.

The DBSCAN algorithm is appropriate for this task for two reasons. First,

it removes the need for citizen data scientists to predefine the number

of clusters, thus removing a potential source of bias. Second, DBSCAN’s

minimum distance parameter guarantees that all ML solutions in a cluster

have the same performance trade-off across all considered performance

metrics.

132 5 | AssistML

Figure 5.4.: Points assignment for the distrust score after clustering.

The second task (Lines 7 and 9) computes the fit of each cluster i in the

ACC and in the NACC group. The fit of a cluster is the proportion of its

ML solutions that are inside the acceptable (accF i t) or nearly acceptable

(naccF i t) ranges. The third task (Lines 10 and 14) uses accF i t and naccF i t

to assign the current cluster of ML solutions to either mACC or mNACC . A

value of 51% is used in both assignments to indicate a simple majority in

the cluster.

Once all clusters have been processed, AssistML is interrupted if no cluster

of ML solutions can be assigned to mACC . This means that no ML solution

in ms meets the performance preferences of the new use case. In such

a situation, it is better to develop a new ML solution from scratch with

senior ML experts. Otherwise, function testFits() adds distrust points and

warnings to wt depending on how well clusters fit in the groups mACC or

mNACC . The criteria to award distrust points are illustrated in Figure 5.4. If

for each cluster, at least one ML solution is outside its mACC or mNACC group,

3 distrust points are awarded. If the simple majority of clusters have at least

one solution outside of a group, 2 distrust points are awarded. If this only

holds for the simple minority of clusters, 1 distrust point is awarded. No

distrust points are given if all ML solutions of all clusters are fully inside their

group. A corresponding explanation is added to wt .warnings to describe

the situation in each group.

5.4 | AssistML: A Concept to Recommend ML Solutions 133

Algorithm 5.3 Find ML solution patterns

Require: mACC , mNACC

Ensure: rulesm

1: function patterns(mACC , mNACC)
2: settings← mACC .s, mNACC .s

3: metricsLabels← mACC .p.metricsLabels, mNACC .p.metricsLabels

4: rulesm← FpGrowth(set t ings, metricsLabels, minConf ,

minSuppor t)
5: rulesm← removeDuplicates(rulesm)
6: rulesm← {rulesm : con f idence(rulesm)< 1 &

leverage(rulesm)> 0 & l i f t(rulesm)> 1}
7: return rulesm

8: end function

5.4.3. Step 3: Find ML Solution Patterns

The third step searches for patterns in the metadata of the ACC and NACC

solutions. For this purpose, Algorithm 5.3 builds association rules with the

settings and performancemetadata of mACC and mNACC solutions. Association

rules describe patterns of the kind: "IF training time label is D (antecedent),

THEN number of custom parameters is 5-10, has neural networks algorithm

(consequent)". They indicate the common occurrence, not causality, of the

antecedent and the consequent among ML solutions.

The first task of this step generates frequent item sets and rules using the

FP-Growth algorithm (Han et al., 2000) (line 4 in Algorithm 5.3). Its input is

metadata describing the configuration set t ings and the performance labels

metricsLabels of both the acceptable and nearly acceptable ML solutions.

The step combines metadata from both mACC and mNACC to capture patterns

supported by solutions in mACC and mNACC , since these patterns can be

decisive for the solution’s performance. The step configures the FP-Growth

algorithm by means of two parameters to prompt the creation of as many

association rules as possible. The minimum confidence, which measures a

rule’s reliability, is set to 0.7 and minimum support to 0.25, which sets the

threshold to consider a rule frequent. The result is a list rulesm, where each

rule has confidence, leverage and lift values. Depending on the ML solutions

134 5 | AssistML

Table 5.3.: Sample ML solution recommendation report

1 RFR_kick_011

2 Overall score: 0.9914
3 Performance Labels
4 Accuracy: A Precision: A
5 Recall: A Training Time: C
6 Output Explanation
7 Feature-3 is suitable for the task. Feature-6 is

unsuitable for the task.
8 Data Preprocessing
9 Categorical data is read via One-Hot Encoding

(. . .)
10 ML Solution Patterns
11 IF ML solution has [random forests algorithm]

and [number of custom parameters is 5 - 15] then
[recall label is A] and [library used is sklearn].

12 Deployment Description
13 Deployed on single_host with 2 cores with 2.6

GHZ
14 Language python v. 3.6.0
15 Implementation sklearn.ensemble. Extra-

TreeClassifier v. 0.22.2
16 Nr. Dependencies: 6 Nr. Parameters: 14

contained in the metadata repository, it may be necessary to readjust these

values.

The following task (line 5) removes duplicate rules with the same items

and the same values of confidence, leverage and lift. This is because the

two rules express the same co-occurrence pattern. The next task (line 6)

removes low-quality rules from rulesm. Here, the step removes rules with a

confidence value of 1 or with leverage of 0 or with lift of 1. These metric

values indicate that rules are trivial or that the antecedent and consequent

are statistically independent.

5.4 | AssistML: A Concept to Recommend ML Solutions 135

5.4.4. Step 4: Generate List of Recommendations

The final step generates a report containing a list of k ML solutions for both

mACC and mNACC . The positive and negative examples indicate a citizen

data scientist the pros, cons, and effects of using different ML solution

configurations. As a result, s/he can make informed decisions for the new use

case. The lists are stratified by type of learning algorithm to ensure variety

in the recommendations. The report additionally includes the original query

qn and wt .warnings with explanations of problematic situations collected

during the previous steps. Furthermore, it contains the dist rustScoren

to estimate how applicable a recommendation is. This distrust score is

computed based on wt .dist rustPoints as shown in Equation (5.16)

dist rustScoren =

∑

wt .dist rustPoints

t
(5.16)

A dedicated recommendation report describes each selected ML solution

in mACC(k) and mNACC(k) individually. Table 5.3 shows a simplified version

of this report for a sample recommendation. The report describes the ML

solution’s performance and configuration in a simple and intuitive way for

citizen data scientists. An overall score summarizes the different performance

values in p.metrics. For example, the overall score can be computed on

accuracy, precision, recall, and training time. This score metric is the average

of these four normalized metrics, scaled to a range from 0 (worst) to 1

(best). Also, the performance labels in p.metricsLabels further describe the

solution’s performance for each considered metric.

A global explanation of the ML solution’s output based on p.mar gins

completes the description of the solution’s performance. This global explana-

tion exemplifies the ML solution’s behavior regarding certain data features.

Data features with low margin values, e. g., lesser than 0.05, are considered

unsuitable for the ML solution’s task. Data features with high margin values,

e. g., greater than 0.3, are considered suitable.

136 5 | AssistML

The report also describes the solution’s configuration with metadata from

mACC and mNACC . First, the report includes the preprocessing used on each

feature type. Any pattern from rulesm that contains an element of the

solution’s configuration, e. g., the same implementation library, is added to

the ML Solution Patterns section of the report. Data about the software and

hardware resources needed to deploy theML solution, the used programming

language and algorithm implementation library, as well as the number of

custom hyperparameters complete the report.

The generated reports are ranked using the overall score value. If there are

ties, the individual performance metrics rank further involved ML solutions.

A sequence deduced from the performance ranges in pn of user query qn

determine the order in which to use the performance metrics for this ranking.

Metrics with narrower ranges are assumed more important than metrics

with wider ranges.

5.5. Prototype and Evaluation

The first part in this section describes the AssistML prototype. The second

part explains the approach to evaluate the functionality of AssistML on the

basis of two use cases. The third part discusses four types of evaluation

results obtained with the aforementioned prototype and evaluation approach.

The last part in the section assesses how AssistML fulfills the requirements

from Section 5.1.2. The source code and a short demonstration video of the

AssistML prototype is available on GitHub 1.

5.5.1. Prototypical Implementation

AssistML was implemented as a prototype consisting of modules developed

in R and Python. Each module groups functionality corresponding to a step

in AssistML. Together, they process a user query qn and deliver in return a

recommendation report repor tn. Figure 5.5 depicts the module architecture

of the prototype. Arrows indicate the data and logic flow between the

1https://github.com/al-villanueva/assistml

5.5 | Prototype and Evaluation 137

Figure 5.5.: Module architecture of the Assist ML prototype. Used libraries
are shown in parentheses

modules. The required metadata repository was implemented as document

collections in MongoDB. This allows the modules to use JSON documents as

data exchange format. In order to ensure experimental reproducibility of the

results, this dissertation describes the system requirements and necessary

installation steps to run the AssistML prototype in Appendix B.

Once installed, users can issue queries to the prototype via a web interface

or via a REST API. Figure 5.6a shows the prototype’s web interface. Users

introduce the query data using the controls on the sidebar (Figure 5.6b).

After the user uploads a sample of the use case data, the feature analysis

module computes the necessary metafeatures to compare the new data with

the data sets documented in the repository. Query results are presented on

the main section of the web interface. These are composed of a summary

section, a performance visualization of all recommended ML solutions, and

a list of recommendation reports (see Figure 5.6a).

138 5 | AssistML

Moreover, the evaluation approach included the development of 228 ML

solutions to populate the metadata repository. These solutions represent a

diverse selection of configurations in order to reflect the typical application

scenario in companies. The solutions were developed for different data

sets with various feature types. Their predictive models were trained us-

ing various learning algorithms from different libraries and programming

languages. Table 5.4 gives specific details about the ML solutions in the

metadata repository. The description of use case data includes their feature

types in parentheses. If multiple feature types are included, they are listed

from most common to least common in the data set. Several performance

metrics were collected for each ML solution using 5-fold cross-validation.

These include accuracy, precision, recall, training time, execution time for a

single prediction, the f1 score and the confusion matrix.

Table 5.4.: Metadata repository contents

Element (count) Description

Use cases (5) kick auction (categorical,numeric)
bank marketing (categorical,numeric)
human activity recognition (numeric)
gasdrift (numeric)
amazon fine food reviews (numeric, unstructured text,

categorical, date time)
ML tasks (2) Binary classification, multi-class classification
ML algorithms (9) Decision trees, random forests, neural networks, logis-

tic regression, naive bayes, K nearest neighbors, gradient
boosting machines, support vector machines, general lin-
ear model

Languages (2) Python, R
Libraries (4) scikit-learn, RWeka, pycaret, H2O

5.5.2. Evaluation Approach

The prototypical implementation enables the evaluation of the AssistML

concept with a multistep approach. The following paragraphs explain the

details of the use cases, the evaluation settings and the evaluation steps.

140 5 | AssistML

Figure 5.7.: Steps of the evaluation approach

The evaluation approach considers two new use cases, which are unknown

to the metadata repository. The first and main use case deals with a fault

detection task during steel plates production. It is based on a public data set

for binary classification1. As basis for comparison, the evaluation approach

discusses a complementary use case based on the public data set adult2. It

describes a predictive task to determine if an adult has a yearly income over

50 000 dollars.

Figure 5.7 gives an overview of the four approach steps. The evaluation

approach begins by issuing queries for each use case using two evaluation

settings (see step 1 in Figure 5.7). These settings represent two levels of

performance preferences. For simplicity, the same preferences are set across

all performance metrics considered, i. e., accuracy, precision, recall, and

training time. Settings q-steel-10 and q-adult-10 demand ML solutions to

have the top 10% best values in all four metrics to be considered acceptable.

1https://www.openml.org/d/1504
2https://www.openml.org/d/1590

5.5 | Prototype and Evaluation 141

Settings q-steel-20 and q-adult-20 describe less restrictive demands, i. e., ML

solutions with the top 20% performance values are considered acceptable. In

practice, switching from the top 10% to top 20% setting can be the result of

dealing with a performance trade-off. In that case, the citizen data scientist

may look for ML solutions with high values on a critical performance metric

at the expense of others. Each evaluation setting is executed three times

following a randomized plan in order to track the execution times to generate

recommendations per evaluation setting.

Step 2 of the evaluation approach adapts the list of n recommended ML

solutions on the new use case data, i. e., steel plates or adult. Thereby, the

source code and configuration settings of the recommended solution are

reused, i. e., the sampling strategy, seed values, hyperparameters, algorithm

implementation and software dependencies. Thus, they are called reused

ML solutions. Step 3 collects metadata to compare the performance of

recommended ML solutions to that of reused ML solutions .

The last step of the evaluation approach used an AutoML system to gener-

ate a new competing ML solution for both use cases. H2O AutoML 3.32.1.6

was used with default configurations. The execution of H2O AutoML was

triggered from an R script in R 3.6.3 on Windows 10. H2O AutoML trains

and cross-validates ML models with different learning algorithms(LeDell

and Poirier, 2020). These include: gradient boosting machines, general

linear models, random forests, and neural networks. It also trains stacked

ensembles with combinations of these algorithms. The trained models are

then ranked based on a single performance metric, which varies depending

on the type of learning task. The step compares a new ML model produced

by AutoML against a reused ML solution obtained with AssistML. This allows

the discussion of the advantages and disadvantages of both AutoML and

AssistML.

This approach is designed to evaluate the following four aspects: (a) the

information provided for each recommended ML solution, (b) the concept’s

ability to provide good recommendations, (c) the time it takes to obtain

them, and (d) the advantages and disadvantages of using this approach over

AutoML.

142 5 | AssistML

5.5.3. Evaluation Results

Overall, the evaluation approach delivers the following results: (a) ML

solution recommendation reports for both use cases, (b) the performance

values of reused ML solutions, i. e., recommended ML solutions adapted to the

new use case data, (c) the execution times of the AssistML prototype for each

of the four evaluation settings, and (d) the highest-ranked ML model trained

with an AutoML system for both use cases. The following paragraphs discuss

each of these results. For simplicity, the discussion of specific results focuses

on representative examples. The corresponding paragraph indicates this at

the beginning. However, the complete list of recommendations generated for

all four evaluation settings is shown in Table 5.8, at the end of this subsection.

Columns 6 to 8 in the table describe the performance of recommended ML

solutions. Columns 10 to 12 describe the performance of the corresponding

reused ML solutions.

ML solution recommendation report. The report shown in Table 5.3 in

Section 5.4.4 recommends the ML solution RFR_kick_011 in the q-steel-10

setting. The performance labels intuitively show the performance of this

recommended ML solution. They give users a sense of how the solution

compares to other solutions for the same use case. For instance, the labels

in lines 4 and 5 show that the recommended ML solution achieves overall

good prediction performance at the cost of a longer training time.

Recommendation reports also indicate the ML solution strengths and

weaknesses w. r. t. data features. Citizen data scientists can compare the

suitable or unsuitable data features of existing ML solutions (see line 7) to

the data features in their new use case. As a result, they can select only those

that resemble the suitable ones. Data preprocessing information is given in

line 9. In this example, one-hot-encoding is applied on categorical data. The

information in lines 7 and 9, along with the source code in the repository,

reduce the effort and time needed to prepare the new use case data.

ML solution patterns offer global explanations (see Section 5.2.3). They

provide the citizen data scientist with relevant relationships on configuration

5.5 | Prototype and Evaluation 143

and performance. For instance, the ML solution pattern in line 11 indicates

that solutions with the Random Forest algorithm as well as 5 to 15 custom

parameters tend to have a good recall (A label) and use the sklearn library.

Citizen data scientists can restrict any adaptations they do on the ML solution

to those that are indicated by these patterns. For instance, the pattern in

line 11 helps them to avoid to tune more than the 15 parameters that are

indicated by this pattern. This again reduces the time and effort they need for

any adaptations. The report ends with deployment requirements (lines 13

to 16) to let the citizen data scientist decide if the solution can be deployed

in the new use case.

Performance comparison between recommended and implemented ML

solutions. The discussion of this result focuses on evaluation settings q-

steel-10 and q-adult-10. However, similar observations can be made for the

other evaluation settings. The comparison in an evaluation setting includes

the performance values of each recommended ML solution against the values

of its corresponding reused ML solution. The recommended ML solution mrec

is one built for a previous use case, contained in the metadata repository,

and described in a recommendation report, e. g., Table 5.3. In this context,

the performance of mrec constitutes a prediction of using that combination

of ML components on the new use case data. The reused ML solution mreu

is one that adapts the source code of the recommended ML solution to use it

with the new use case data, in this case with the steel plates or adult data

set. In other words, the performance of mreu is the true value of using that

combination of ML components on the new use case data.

Each pair of mrec and mreu in an evaluation setting is compared using

the absolute error for the three performance metrics considered, namely

accuracy absolute error (AccAE), precision absolute error (PreAE), and recall

absolute error (RecAE). For instance, Equation (5.17) shows the formula for

AccAE.

AccAE = |m.accrec −m.accreu| (5.17)

144 5 | AssistML

(a) q-steel-10 setting.

(b) q-adult-10 setting

Figure 5.8.: Accuracy absolute error per recommendation (AccAE) in the
q-steel-10 and q-adult-10 settings.

where m.accrec and m.accreu are the accuracy values of mrec and mreu, re-

spectively. Similar equations can be defined for precision and recall. The

absolute error quantifies the variation between the expected or predicted

performance of an ML solution and the actual or observed performance.

Therefore, smaller values of AccAE PreAE and RecAE indicate better suitabil-

ity of the recommendation for the new use case.

Figure 5.8a shows the values AccAE for recommendations in the setting

q-steel-10, from the highest ranked ACC recommendation (Recommendation

1) to the lowest ranked NACC recommendation (Recommendation # 11).

Figure 5.8b shows AccAE for ACC recommendations in the q-adult-10 setting.

In general, ACC recommendations lead to smaller, more consistent absolute

errors than NACC recommendations. This confirms the suitability of ACC

recommendations. They can be contrasted with NACC recommendations

to analyze the small differences that contribute to their good performance.

Moreover, the mean absolute error of accuracy (MAE Accuracy), shown

as a dotted red line, summarizes the comparison for the whole evaluation

5.5 | Prototype and Evaluation 145

(a) q-steel-10 setting.

(b) q-adult-10 setting

Figure 5.9.: Precision absolute error per recommendation (PreAE) in the
q-steel-10 and q-adult-10 settings.

setting. Notice that MAE Accuracy is bigger in setting q-steel-10, where the

data set similarity is lower (level 1). AssistML warns the user about this

with a high distrust score of 0,89. In setting q-adult-10, where the data set

similarity is higher (level 2), the MAE and the distrust score provided by

AssistML decrease, too. This behavior of the values confirms the ability of

the distrust score to inform users about the error to expect when adapting

the recommended ML solutions.

The values of PreAE (see Figure 5.9) and RecAE (see Figure 5.10) behave

similarly in both use cases. This indicates that AssistML is able to estab-

lish similarity adequately, because the reused ML solutions in the new use

case perform as the recommended solutions did in the original use cases

across all performance metrics considered. Recommendation #8 for the

evaluation setting q-steel-10 represents an exceptional case, because the

absolute error reaches between 25 and 40 % in each performance metric.

As shown in column 2 of Table 5.8, the corresponding NACC recommenda-

146 5 | AssistML

(a) q-steel-10 setting.

(b) q-adult-10 setting

Figure 5.10.: Recall absolute error per recommendation (RecAE) in the
q-steel-10 and q-adult-10 settings.

tion, SVM_kick_004, employs the same learning algorithm as the second

ACC recommendation SVM_bank_007, i. e., support vector machines. How-

ever, they have different configurations and training settings, e. g., different

implementation libraries, data sampling ratios and library dependencies.

This highlights the importance of having both positive and negative rec-

ommendations to avoid generalizations about specific learning algorithms.

NACC recommendations serve as counter examples with which citizen data

scientists can better understand why ACC recommendations perform well.

Also note that the MAE in both evaluation settings is relatively small, i. e.,

between 3 and 11% across all performance metrics. This is even with the

consideration of exceptional NACC recommendations. This is acceptable

for citizen data scientists. It constitutes a negligible price to pay, since they

can save huge efforts by avoiding the time-consuming implementation of

completely new ML solutions. One alternative for citizen data scientists is to

tune the hyperparameters and other settings to improve the performance

5.5 | Prototype and Evaluation 147

Table 5.5.: Execution times of the AssistML prototype. Values in seconds (s)
Evaluation
setting

Mean (s) Median (s)
Standard
Dev. (s)

q-steel-10 30,906 26,822 8,376
q-steel-20 12,292 12,225 0,762
q-adult-10 41,102 41,058 1,292
q-adult-20 41,545 41,410 0,792

in the new use case. However, this additional effort may only lead to slight

performance increases of about 1 to 2%-points for any of the metrics. Such an

elaborate parameter tuning is usually not a practical option for citizen data

scientists in light of such small performance increases. Another alternative is

to use an AutoML system to obtain an optimized ML model without any user

involvement. This however may imply several sacrifices, e. g., the simplicity

of the model or the explanations about the model’s behavior. This alternative

is further discussed at the end of this subsection.

Execution times to generate recommendations. The discussion of exe-

cution times focuses on the four evaluation settings. The results obtained

confirm further the advantages of saving efforts and time during the develop-

ment of ML solutions. The prototype delivers recommendation lists for both

use cases in a matter of seconds. Table 5.5 shows the average and median

execution times collected after carrying out a 3-fold randomized execution

plan for all four evaluation settings. Due to variations in individual hardware

used to run the prototype, execution times may vary to a certain extent. The

execution time for any evaluation setting never surpasses 45 seconds, with

standard deviation remaining also low. In some cases, it is even below 15

seconds.

These measurements concern the execution of single experiments. In a

production environment, the demands for this assistant service may fluctuate,

with demand peaks and bottoms. The prototypical implementation is thus

as a stateless web service that can be scaled and replicated as necessary.

148 5 | AssistML

Criterium AutoML AssistML

Execution time 41 minutes 30,9 seconds + adaption time
+ 0,3 to 0,7 seconds training time

Number of models
/recommendations

60 11

Performance
(accuracy)

50% to 79,68% 85,33% to 100%

Highest ranked
model/ solution

Stacked ensemble with 5 models: 1
deep learning, 2 random forests, 1
gradient boosting machines, 1 gen-
eral linear model

Gaussian naive bayes classifier

Available
information

6 performance metrics and
confusion matrix

ML solution recommendation
report

Table 5.6.: AutoML vs AssistML for the evaluation setting q-steel-10

Comparison to an ML model developed with AutoML. The discussion of

this result focuses on evaluation settings q-steel-10 and q-adult-10. AutoML

represents an alternative for citizen data scientists to develop ML models.

H2O’s AutoML (LeDell and Poirier, 2020) is applied on both the steel plates

and adult data sets. H2O’s AutoML uses default settings to reflect the

interest of the citizen data scientist to minimize input. AutoML results are

compared to the reused ML solutions from the most demanding evaluation

settings of AssistML for each use case, i. e., q-steel-10 and q-adult-10. The

comparison focuses on the advantages and disadvantages of using each

development approach for the citizen data scientist. The comparison includes

the execution time, the number of models available, the performance values

of themodels, their complexity, and the amount of information each approach

provides.

Table 5.6 summarizes the output of both approaches for the steel plates

use case. From it, it is clear that AutoML takes considerably longer than

AssistML to deliver results. AutoML takes 41 minutes to deliver a trained

ML model, whereas AssistML takes only 30,9 seconds to provide recom-

mendations. However, AssistML still needs to adapt the source code of the

recommended ML solution to the new use case data. This adaptation time

varies depending on the user’s skills and the complexity of the solution. Thus,

the adaptation time is indicated, but not quantified. Yet, AssistML provides

information to facilitate this adaptation via the recommendation report, as

5.5 | Prototype and Evaluation 149

well as by providing access to the original source code in the repository.

Afterwards, the ML model in the ML solution still needs to be trained. For

the recommendations in evaluation setting q-steel-10, this takes negligible

time.

Besides the highest ranked ML model, AutoML also gives a leaderboard of

all the models it trained. This is done with the intention of offering options

to the citizen data scientists. Yet, the number of additional models may

become too big to analyze and compare comprehensively. AssistML takes

this into consideration and caps the length of the list of recommendations to

a sample, to avoid offering too many options.

Regarding the observed performance, the evaluation approach uses ac-

curacy to compare models in AutoML’s leaderboard to the reused solutions

based on ACC recommendations from AssistML. The highest accuracy value

of AutoML models is lower to the lowest accuracy value in AssistML. More-

over, the value range for AutoML models (29,68%-points) is wider than that

of the AssistML ACC reused solutions (14,67%-points).

Regarding the complexity of the resulting model, the evaluation approach

compares the highest ranked AutoML model to the first recommendation

from AssistML. Here again there is a contrast between AutoML’s more com-

plex stacked ensemble and the simpler naive bayes classifier.

Finally, the citizen data scientist obtains different amounts of detail from

each approach. AutoML provides six different performance metrics to de-

scribe each ML model in the leaderboard, as well as their confusion matrices.

The performance metrics include area under the curve (AUC), mean square

error (MSE), root-mean-square error (RMSE), Logloss, area under the pre-

cision and recall curve (AUCPR) and error/accuracy. The confusion matrix

for each leaderboard’s model can also be individually retrieved. In contrast,

AssistML describes the ML solution regarding the data it uses, configuration

and performance with the more intuitive recommendation report.

The results in this evaluation setting illustrate the disadvantages of us-

ing AutoML. For the sake of avoiding user intervention, AutoML incurs in

much longer execution times and delivers many less-performing and more-

150 5 | AssistML

Criterium AutoML AssistML

Execution time 41,76 minutes 41.1 seconds + adaption time
+ 0,45 to 13,5 seconds training
time

Number of models
/recommendations

56 3

Performance
(accuracy)

80,03% to 83,60% 75,64% to 84,90%

Highest ranked
model/ solution

Stacked ensemble with 54 models:
26 deep learning, 2 random forests,
25 gradient boosting machines, 1
general linear model

Random forest classifier

Available
information

6 performance metrics and
confusion matrix

ML solution recommendation
report

Table 5.7.: AutoML vs AssistML for the evaluation setting q-adult-10

complicated ML models. Additionally, these models are also difficult to

understand for citizen data scientists only on the basis of expert ML metrics.

Table 5.7 summarizes the output of both approaches for the adult use

case. In this evaluation setting, the execution time, number of models or

recommendations and available information display similar behaviors as in

the comparison for the steel plates use case.

Regarding the observed performance, the comparison shows that both

approaches produce similar accuracy values with their best model or recom-

mendation. It is important to note that the value range of AutoML models

is narrower (3,57%-points) than that of AssistML ACC recommendations

(9,26%-points). However, this is achieved at the expense of more complicated

models. Specifically, AutoML’s highest ranked ML model is an ensemble stack

of 54 individual models, whereas AssistML recommends a random forest

classifier. Thus, for this evaluation setting, AutoML delivers a complicated

ML model after 41 minutes which is 1,3%-points more accurate than the

best recommendation of AssistML, the latter being found in only 41 seconds.

The results in this evaluation setting illustrate the importance of hav-

ing suitable ML solutions to exploit the advantages of AssistML. A diverse

number of ML solutions increases the probability of citizen data scientists

to achieve acceptable performance intuitively and quickly. At the cost of

adapting existing source code, they obtain a simpler ML solution, along with

explanations after a few seconds.

5.5 | Prototype and Evaluation 151

Table 5.8.: Experimental data
1.Evaluation
setting

2.Recomm. code 3.Recomm.
group

4.Distrust
score

5.Data set
similarity

6.Accuracy 7.Precision 8.Recall 9.Adaptation code 10.Accuracy11.Precision12.Recall 13.Accuracy
absolute
error

14.Precision
absolute
error

15.Recall
absolute
error

q-steel-10 NBY_bank_003 ACC 0,89 1 1,000 1,000 1,000 NBY_steelplates_001 1,000 1,000 1,000 0,000 0,000 0,000
q-steel-10 SVM_bank_007 ACC 0,89 1 1,000 1,000 1,000 SVM_steelplates_001 1,000 1,000 1,000 0,000 0,000 0,000
q-steel-10 RFR_kick_011 ACC 0,89 1 0,990 0,990 0,990 RFR_steelplates_001 0,897 0,897 0,897 0,092 0,092 0,092
q-steel-10 RFR_kick_028 ACC 0,89 1 0,984 0,984 0,984 RFR_steelplates_003 0,894 0,894 0,894 0,090 0,090 0,090
q-steel-10 RFR_kick_030 ACC 0,89 1 0,985 0,985 0,985 RFR_steelplates_002 0,883 0,883 0,883 0,102 0,102 0,102
q-steel-10 DTR_kick_019 ACC 0,89 1 0,939 0,939 0,939 DTR_steelplates_002 0,853 0,853 0,853 0,085 0,086 0,086
q-steel-10 DTR_kick_018 ACC 0,89 1 0,938 0,939 0,939 DTR_steelplates_003 0,853 0,853 0,853 0,085 0,086 0,086
q-steel-10 SVM_kick_004 NACC 0,89 1 0,900 0,829 0,900 SVM_steelplates_003 0,642 0,423 0,642 0,258 0,406 0,258
q-steel-10 NBY_kick_001 NACC 0,89 1 0,886 0,841 0,886 NBY_steelplates_003 0,642 0,580 0,642 0,244 0,261 0,244
q-steel-10 DTR_kick_017 NACC 0,89 1 0,850 0,850 0,850 DTR_steelplates_004 0,850 0,850 0,850 0,001 0,001 0,001
q-steel-10 RFR_kick_010 NACC 0,89 1 0,830 0,830 0,830 RFR_steelplates_004 0,909 0,909 0,909 0,079 0,079 0,079

Mean: 0,0942 0,1093 0,0943

q-steel-20 NBY_bank_003 ACC 0,56 1 1,000 1,000 1,000 NBY_steelplates_001 1,000 1,000 1,000 0,000 0,000 0,000
q-steel-20 SVM_bank_007 ACC 0,56 1 1,000 1,000 1,000 SVM_steelplates_001 1,000 1,000 1,000 0,000 0,000 0,000
q-steel-20 RFR_kick_011 ACC 0,56 1 0,990 0,990 0,990 RFR_steelplates_001 0,897 0,897 0,897 0,092 0,092 0,092
q-steel-20 RFR_kick_028 ACC 0,56 1 0,984 0,984 0,984 RFR_steelplates_003 0,894 0,894 0,894 0,090 0,090 0,090
q-steel-20 RFR_kick_030 ACC 0,56 1 0,985 0,985 0,985 RFR_steelplates_002 0,883 0,883 0,883 0,102 0,102 0,102
q-steel-20 DTR_kick_019 ACC 0,56 1 0,939 0,939 0,939 DTR_steelplates_002 0,853 0,853 0,853 0,085 0,086 0,086
q-steel-20 DTR_kick_018 ACC 0,56 1 0,938 0,939 0,939 DTR_steelplates_003 0,853 0,853 0,853 0,085 0,086 0,086
q-steel-20 DTR_kick_016 NACC 0,56 1 0,757 0,757 0,757 DTR_steelplates_005 0,838 0,838 0,838 0,080 0,080 0,080
q-steel-20 RFR_kick_008 NACC 0,56 1 0,751 0,751 0,751 RFR_steelplates_006 0,896 0,896 0,896 0,144 0,144 0,144
q-steel-20 RFR_kick_019 NACC 0,56 1 0,675 0,675 0,675 RFR_steelplates_005 0,890 0,890 0,890 0,215 0,215 0,215

Mean: 0,0894 0,0895 0,0895

q-adult-10 RFR_bank_001 ACC 0,22 2 0,901 0,920 0,972 RFR_adult_002 0,849 0,881 0,926 0,052 0,039 0,046
q-adult-10 DTR_bank_004 ACC 0,22 2 0,874 0,931 0,926 DTR_adult_002 0,813 0,881 0,872 0,061 0,050 0,054
q-adult-10 NBY_bank_001 ACC 0,22 2 0,851 0,919 0,912 NBY_adult_004 0,756 0,916 0,748 0,094 0,003 0,163

Mean: 0,0689 0,0305 0,0876

q-adult-20 RFR_bank_001 ACC 0,11 2 0,901 0,920 0,972 RFR_adult_002 0,849 0,881 0,926 0,052 0,039 0,046
q-adult-20 DTR_bank_004 ACC 0,11 2 0,874 0,931 0,926 DTR_adult_002 0,813 0,881 0,872 0,061 0,050 0,054
q-adult-20 NBY_bank_001 ACC 0,11 2 0,851 0,919 0,912 NBY_adult_004 0,756 0,916 0,748 0,094 0,003 0,163

Mean: 0,0689 0,0305 0,0876

1
5

2
5

|
A

s
s
is

tM
L

5.5.4. Assessment

This section concludes by determining whether any characteristic of AssistML

fulfills the four practical requirements that citizen data scientists face to

develop ML solutions.

Regarding [R1], the concept is expected to reuse information from ex-

isting ML solutions. AssistML fulfills this requirement with the use of a

metadata repository containing previously developed ML solutions. The

repository contains source code, training and test data to reproduce the

results reported for each ML solution. Moreover, the metadata – summarized

in the recommendation report – describe the necessary adaptations to the

recommended ML solutions in detail. These resources significantly speed up

the development of new solutions.

The concept fulfills [R2], as it provides recommendation reports (see Ta-

ble 5.3) that explain the ML solutions globally, i. e., its overall behavior and

composition. The reports describe the solution’s performance and configura-

tion in an intuitive manner. They thereby avoid the use of expert metrics and

enable the comparison of good and bad configurations via comprehensible

performance labels. In addition, they provide patterns to explain the ML

solutions’ functioning w. r. t. certain data features and data preprocessing

techniques. In this regard, they offer citizen data scientists more intuitive

explanations than the competing approach AutoML to understand and select

ML solutions.

Regarding [R3], the concept is expected to provide recommendations in a

responsive manner. AssistML has very short execution times when generating

recommendations and thus fulfills this requirement. In addition, citizen

data scientists only need to specify a minimum amount of information to

issue queries qn. These two factors allow citizen data scientists to assess

the feasibility of multiple ML solutions efficiently. They can iterate on the

recommendation process quickly and thereby, e. g., change their performance

preferences. In this respect, AssistML offers citizen data scientists more

flexibility than AutoML to explore different implementation alternatives.

5.5 | Prototype and Evaluation 153

AssistML fulfills [R4], as citizen data scientists may state preferences for

multiple user-defined performance criteria in a query qn. AssistML then

considers all criteria simultaneously and offers intuitive performance labels

for each of them. These labels clearly indicate the trade-offs an ML solution

implies across different criteria. Citizen data scientists may use this to

intuitively compare the recommended ML solution relative to others.

5.6. Summary and Future Work

This chapter introduced AssistML, a concept to recommend ML solutions for

predictive use cases. This concept is subject to four practical requirements

which are based on the needs of practitioners with less ML knowledge, e. g.,

citizen data scientists. AssistML analyzes metadata of existing ML solutions

stored in a repository to find suitable matches for the user query. Furthermore,

it offers intuitive explanations of the recommended ML solutions, e. g., by

identifying frequent patterns among different data features. The chapter

also presented a prototypical implementation of the concept as well as its

evaluation with two use cases. The AssistML prototype is responsive, as it

provides recommendations within 12 to at most 42 seconds. In addition,

the finally implemented ML solutions show a performance that is very close

to the performance of the recommendations, with a MAE of at most 10%

across all performance metrics. Moreover, citizen data scientists can adapt

and reuse the recommendations with reduced effort and time thanks to

the source code and metadata available in the repository. Compared to

AutoML, AssistML offers citizen data scientists simpler, intuitively-explained

ML solutions in considerably less time. Moreover, these solutions perform as

well as or even better than AutoML models.

Overall, AssistML provides very promising results, which can serve as

basis for a new development approach for ML solutions in organizations

wishing to use ML in their use cases. Possible future work directions include

the analysis of the queries issued to AssistML to guide the expansion of

the metadata repository. For instance, frequently used performance criteria

154 5 | AssistML

can be turned into preference patterns that show the need for a particular

type of ML solution. An example of this can be criteria favoring solutions

with high accuracy and low recall can indicate the interest in more complex

ensemble methods. Another direction is the automated adaptation of a

recommendation into the new use case. This can be achieved by enforcing a

naming scheme based on feature types. This can allow data features from

very similar data sets to be used with the existing ML solution without any

need for further time-consuming adaptations.

5.6 | Summary and Future Work 155

C
h
a
p
t
e
r

6
Conclusion and Future

Work

This chapter draws general conclusions about all contributions presented in

this dissertation. The first section summarizes the research contributions

and assesses the extent to which they fulfill the research challenges (see

Section 1.3). The second section discusses future research directions that

build upon the research contributions.

6.1. Assessment of the Research Contributions

This dissertation proposes methods and concepts to solve the ineffectiveness

problem of current ML solution development processes. Based on a division

of the ML solution development process into three steps, this dissertation

proposes four research challenges that need to addressed to solve the re-

search problem just mentioned. The four challenges are: CH-1, i. e., the

design challenge, which requires concepts and methods to systematize the

collaboration of different roles to specify ML solutions from end-to-end;

157

CH-2, i. e., the configuration challenge, which requires concepts and meth-

ods to ensure that all information needed to evaluate, compare, reproduce

and reuse ML solutions is systematically collected; CH-3, i. e., the selection

challenge, which requires concepts and methods to facilitate the compari-

son, understanding and selection of ML solutions by ML non-experts that

nonetheless are concerned by use case preferences, i. e., decision makers and

citizen data scientists; and CH-4, i. e., the process challenge, which requires

concepts and methods to ensure that all necessary development activities,

i. e., the activities that fulfill the interests of all roles throughout the three

main steps, are performed in the right sequence. This section discusses

the fulfillment of these four research challenges by means of the research

contributions presented in Chapters 3 to 5. Table 6.1 gives an overview of

this assessment.

The adapted design methodology AD4ML addresses the design challenge

CH-1. AD4ML formalizes ML solution specifications as systems of design

equations, with relationships between design elements expressed as non-zero

coefficients in each design equation. These mathematical formalism allows

specifications made with AD4ML to be processed and analyzed by software

systems. For instance, the prototypical ML solution designer can identify

which components are missing the contributions of certain roles, e. g., a data

scientist to specify an analytics concept. It can also issue warnings whenever

a matching or decomposition operation violates one of the methodology’s

axioms. AD4ML allocates to each role in the development team a design

element to contribute to the specification, i. e., DRs for domain experts, ACs

for data scientists and TRs for software developers. Constraints, although not

a design element, allow decisionmakers to set boundary conditions that affect

the overall development project, e. g., by setting total development costs.

Thereby, AD4ML clearly defines the level of involvement that is expected

from each role and ensures that an ML solution designed with AD4ML has a

clear trace between the domain-specific requirements that justify the use of

ML to the specific software libraries and values that are used to implement

it. This makes it easy to identify the impact that every software component

of the ML solution has on the use case.

158 6 | Conclusion and Future Work

The metadata profiles and the solution viewer of the ML solution profiling

framework address the configuration challenge CH-2. The metadata profiles,

i. e., the profile for the use case task (ATP), the profile for data characteristics

(DQP), the profile for the hardware and software resources (AIP), and the

profile for the MLmodel configuration (ACP), serve as thematic metadata sets

to capture all information needed to reproduce the ML solution’s data, ML

model, and hardware and software stack. Moreover, the metadata profiles

are implemented as schema-free key-value documents, which nevertheless

allows the use of identification codes and naming conventions. Software

developers can thus refer to specific metadata profiles using only their

identification codes to find out which components are part of an ML solution,

how were they implemented and the performance they delivered. This

introduces an abstraction level when referring to ML solution components,

which allows data scientists and software developers to work with more

complex specifications easily.

The recommendation process AssistML addresses the selection challenge

CH-3. The automated analysis that is performed to identify the ACC and

NACC ML solutions automates the consideration of multiple performance

criteria and trade-offs. AssistML can explore the data set similarity and

performance suitability of multiple ML solutions and identify any useful

performance pattern to recommend citizen data scientists and decision

makers which ML solutions can be refactored for reuse in a new use case.

For this purpose, AssistML provides recommendation reports with intuitive

descriptions. They allow citizen data scientists to ponder the advantages

and disadvantages of using an ML solution, as well as to compare many

alternatives that can be built with different software libraries, ML algorithms,

data sets, tasks and/or programming languages. Overall, AssistML allows

decision makers and citizen data scientists to make better informed selections

in less time.

The development process of the ML solution framework along with the

metadata repository from AssistML address the process challenge CH-4.

The sequence of activities indicates each role in the development team

when to get involved, the information and components available at that

6.1 | Assessment of the Research Contributions 159

stage and the deliverables they have to provide for the development to

continue. The process also contemplates activities to interact with the other

contributions, e. g., the ML solution designer from AD4ML or the AssistML

solution repository. For instance, the process indicates when to secure an

identification code for a new ML solution and when to document each

component in the solution repository. This turns the documentation of

metadata into a milestone activity that secures the configuration of that

component for other roles to work with. The process also brings a technical

standard to track the progress in the development project, as the activities it

describes are required for different types of ML solutions.

In sum, it can be concluded that the research contributions presented

throughout this dissertation do address the research challenges that make the

development of ML solutions ineffective. This has been confirmed through

the implementation and evaluation of each contribution with exemplary use

cases.

160 6 | Conclusion and Future Work

ContributionDesign
challenge (CH-1)

Configuration
challenge (CH-2)

Selection
challenge (CH-3)

Process
challenge (CH-4)

Agile design methodol-
ogy. Formal solution
specifications. Methods
to validate, assess and
visualize specifications.
ML solution designer.

Metadata profiles to en-
sure reproducibility and
reusability. Systematic
identification of solution
components. ML so-
lution viewer facilitates
overview of complex so-
lutions.

ML solution develop-
ment process coordi-
nates work of team
roles and sequences
development steps.

Recommendation pro-
cess facilitates the
reuse of ML solutions.
Recommendation re-
ports provide intuitive
information to citizen
data scientists.

ML solution repository
standardizes collection
of ML solution compo-
nents.

Table 6.1.: Fulfillment of the challenges by the main contributions of this dissertation

6
.1

|
A

s
s
e

s
s
m

e
n

t
o

f
th

e
R

e
s
e

a
rc

h
C

o
n

trib
u

tio
n

s
1

6
1

6.2. Future Research Directions

The work on the research contributions discussed in the previous section has

led to identify new interesting areas where research can continue. These

research directions are detailed below.

6.2.1. ML Solution Assessment Function

The suitability of ML solutions depends on their ability to deliver their pre-

dictive capability with a certain expected performance that domain experts

require for the given use case. However, ML solutions consist of many com-

ponents, e. g., data preprocessors, prediction models, or sample data sets.

Therefore, the performance observed when evaluating the ML solution de-

pends on their combined performance and in last instance on the individual

(hyper)parameters used to configure them. Currently, to test if a component

combination and parameterization leads to acceptable performance, that

combination must be implemented and evaluated. Any new proposed combi-

nation, or a slight modification of existing ones, requires both development

and evaluation to be carried out again. This implies a significant amount

of development effort. At the moment, AssistML provides the performance

of existing ML solutions in previous use cases as an indication of the perfor-

mance that can be expected in the new use case. However, these indications

necessarily include an error component. To address this inefficient situation,

there is the need for a concept or method to predict the performance of an

ML Solution before it is developed.

The ML solution framework can comprehensively document the configura-

tion and performance of ML solution components. Metadata generated with

this framework enable the development of a Bayesian Network to predict

the performance or performance ranges that a combination of ML solution

components will produce. The architecture of the network can be deter-

mined by analyzing the correlation of each configuration element in the ML

solution, e. g., the hyperparameters, the preprocessing steps, the type of ML

algorithm used, or the type of data features used. Depending on the number

162 6 | Conclusion and Future Work

of significant correlations found, one or multiple networks can be modeled.

The conditional probabilities to train the network can be computed once a

sufficient number of different ML solutions are documented in a metadata

repository. In this context, the consideration of performance ranges can help

increase the number of available examples, specially considering the low

likelihood that two ML solutions for completely different use cases and/or

learning on different data sets produce the exact same accuracy, precision

or recall.

Once tested, the assessment function can be applied on an ML solution

specification at the end of the design step. In this situation, the assessment

function could serve as an early filter to decide the viability of continuing ML

solution development. An early and accurate detection of underperforming

ML solutions can greatly decrease development times and, as a consequence,

free up time and resources to cover more ML solution development projects.

6.2 | Future Research Directions 163

List of Author

Publications

Publications as first author

Villanueva Zacarias, A. G., Weber, C., Reimann, P., Mitschang, B. (2021).

AssistML: A concept to recommend ML solutions for predictive use cases.

2021 IEEE 8th International Conference on Data Science and Advanced

Analytics (DSAA), 2021, pp. 1-12, doi: 10.1109/DSAA53316.2021.9564168.

Villanueva Zacarias, A. G., Ghabri, R., Reimann, P. (2021). Leveraging

Axiomatic Design to Improve the Design Process of Machine Learning So-

lutions in Manufacturing. Accepted for publication in a special issue of the

International Journal of Semantic Computing (IJSC). To appear.

Villanueva Zacarias, A. G., Ghabri, R. and Reimann, P. (2020). AD4ML:

Axiomatic Design to Specify Machine Learning Solutions for Manufactur-

ing. 2020 IEEE 21st International Conference on Information Reuse and

Integration for Data Science (IRI) (p./pp. 148-155), August, 2020. DOI:

10.1109/IRI49571.2020.00029

Villanueva Zacarias, A. G., Reimann, P. and Mitschang, B. (2018). A

framework to guide the selection and configuration of machine-learning-

165

based data analytics solutions in manufacturing. Procedia CIRP, 72, 153–158.

DOI: 10.1016/j.procir.2018.03.215

Villanueva Zacarias, A. G., Kassner, L. and Mitschang, B. (2017). Exploring

Text Classification Configurations - A Bottom-up Approach to Customize Text

Classifiers based on the Visualization of Performance. Proceedings of the 19th

International Conference on Enterprise Information Systems, : SCITEPRESS

- Science and Technology Publications. DOI: 10.5220/0006309705040511

Supervised student theses and projects

Master Theses. ACP Dashboard: An interactive visualization tool for se-

lecting Analytics Configurations in an industrial setting. June - December

2017

Relevance of the two adjusting screws in data analytics: data quality and

optimization of algorithms. January - July 2017

Student Projects. Research Project INFOTECH. Use and Evaluation of

Bayesian Networks to Predict the Performance of ML Solutions. Winter

Semester 2020/2021.

Study Project INFOTECH. Performance Analysis of Machine Learning

Models (MLM-Perf). Winter Semester 2019/2020.

Practical Course Information Systems. The Machine Learning Algorithm

Wars (ML-Wars). Summer Semester 2019.

Developed prototypes

ML Solution Viewer. A dashboard to visualize the metadata of developed

ML solutions. Introduced in Chapter 3.

ML Solution Designer. A web client and back end to specify ML solutions

using the AD4ML methodology. Introduced in Chapter 4.

166 6 | Conclusion and Future Work

ML Solution Repository. A MongoDB database, consisting of metadata

collections, as well as source code, and training data samples to consolidate

the ML solutions developed by different projects. Introduced in Chapter 5.

AssistML. A recommendation system with a web interface and API inter-

face to recommend ML solutions to citizen data scientists. Introduced in

Chapter 5.

6.2 | Future Research Directions 167

Bibliography

Adler, P., C. Falk, S. A. Friedler, T. Nix, G. Rybeck, C. Scheidegger, B. Smith, S. Venkata-

subramanian (2018). ‘Auditing black-box models for indirect influence’. In: Knowl-

edge and Information Systems 54.1, pp. 95–122 (Cited on p. 121, 122).

Akao, Y., B. King (1990). Quality function deployment: integrating customer require-

ments into product design. Vol. 21. Productivity press Cambridge, MA (Cited on

p. 47, 63).

Alpaydin, E. (2009). Introduction to machine learning. 2nd. MIT Press (Cited on p. 45,

46).

Anderl, R., M. Eigner, U. Sendler, R. Stark (2012). Smart engineering: interdisziplinąre

Produktentstehung. Springer-Verlag (Cited on p. 37–39).

Ashmore, R., R. Calinescu, C. Paterson (2021). ‘Assuring the machine learning

lifecycle: Desiderata, methods, and challenges’. In: ACM Computing Surveys (CSUR)

54.5, pp. 1–39 (Cited on p. 21, 22).

Atwal, H. (2020). ‘The Problem with Data Science’. In: Practical DataOps: Delivering

Agile Data Science at Scale. Berkeley, CA: Apress, pp. 3–26. url: ❤tt♣s✿✴✴❞♦✐✳

♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✶✲✹✽✹✷✲✺✶✵✹✲✶❴✶ (Cited on p. 17).

Azevedo, A. I. R. L., M. F. Santos (2008). ‘KDD, SEMMA and CRISP-DM: a parallel

overview’. In: IADS-DM (Cited on p. 49).

Baier, L., F. Jöhren, S. Seebacher (May 2019). ‘Challenges in the deployment and

operation of machine learning in practice’. In: Proceedings of the 27th European

Conference on Information Systems (ECIS2019) (Cited on p. 29, 117, 118).

Bank, M., R. Remus, M. Schierle, P. S. Ag, N. Calzolari, K. Choukri, T. Declerck,

M.U. Doğan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, S. Piperidis (2012).

‘Textual Characteristics for Language Engineering.’ In: Proceedings of the Eight In-

169

https://doi.org/10.1007/978-1-4842-5104-1_1
https://doi.org/10.1007/978-1-4842-5104-1_1

ternational Conference on Language Resources and Evaluation (LREC’12). European

Language Resources Association (ELRA), pp. 515–519 (Cited on p. 124).

Bernardi, L., T. Mavridis, P. Estevez (2019). ‘150 Successful Machine Learning

Models: 6 Lessons Learned at Booking.Com’. In: Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’19.

Anchorage, AK, USA: Association for Computing Machinery, pp. 1743–1751. url:

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✷✾✷✺✵✵✳✸✸✸✵✼✹✹ (Cited on p. 21, 22, 26, 117,

118).

Biondi, G.O., R. C. Prati (2015). ‘Setting parameters for support vector machines

using transfer learning’. In: Journal of Intelligent & Robotic Systems 80.1, pp. 295–

311 (Cited on p. 120, 121).

Bischl, B., P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fręchette, H. Hoos,

F. Hutter, K. Leyton-Brown, K. Tierney, et al. (2016). ‘Aslib: A benchmark library

for algorithm selection’. In: Artificial Intelligence 237, pp. 41–58 (Cited on p. 55).

Bishop, C.M. (2006). ‘Pattern recognition’. In: Machine learning 128.9 (Cited on

p. 46).

Bourrasset, C., F. Boillod-Cerneux, L. Sauge, M. Deldossi, F. Wellenreiter, R. Bor-

dawekar, S. Malaika, J.-A. Broyelle, M. West, B. Belgodere (2019). ‘Requirements

for an Enterprise AI Benchmark’. In: Performance Evaluation and Benchmarking

for the Era of Artificial Intelligence. Ed. by R. Nambiar, M. Poess. Cham: Springer

International Publishing, pp. 71–81 (Cited on p. 50).

Braschler, M., T. Stadelmann, K. Stockinger (2019). Applied data science: lessons

learned for the data-driven business. Springer International Publishing (Cited on

p. 19).

Breck, E., S. Cai, E. Nielsen, M. Salib, D. Sculley (2017). ‘The ML test score: A

rubric for ML production readiness and technical debt reduction’. In: 2017 IEEE

International Conference on Big Data (Big Data), pp. 1123–1132 (Cited on p. 118,

130).

Burkart, N., M. F. Huber (2020). A Survey on the Explainability of Supervised Machine

Learning. arXiv: ✷✵✶✶✳✵✼✽✼✻ ❬❝s✳▲●❪ (Cited on p. 114, 117, 121, 122).

Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, R. Wirth,

et al. (2000). ‘CRISP-DM 1.0: Step-by-step data mining guide’. In: SPSS inc 9,

p. 13 (Cited on p. 47, 107, 108).

170 Bibliography

https://doi.org/10.1145/3292500.3330744
https://arxiv.org/abs/2011.07876

Choudhary, A. K., J. A. Harding, M. K. Tiwari (2009). ‘Data mining in manufacturing:

a review based on the kind of knowledge’. In: Journal of Intelligent Manufacturing

20.5, p. 501 (Cited on p. 16).

Crowe, T. J., C.-C. Cheng (1996). ‘Using quality function deployment in manufac-

turing strategic planning’. In: International Journal of Operations & Production

Management 16.4, pp. 35–48 (Cited on p. 48).

Demšar, J. (2006). ‘Statistical comparisons of classifiers over multiple data sets’. In:

Journal of Machine learning research 7.Jan, pp. 1–30 (Cited on p. 54).

Dogan, N., Z. Tanrikulu (2013). ‘A comparative analysis of classification algorithms

in data mining for accuracy, speed and robustness’. In: Information Technology and

Management 14.2, pp. 105–124 (Cited on p. 54).

Eigner, M. (2013). ‘Modellbasierte Virtuelle Produktentwicklung auf einer Plattform

für System Lifecycle Management’. In: Industrie 4.0: Beherrschung der industriellen

Komplexitąt mit SysLM. Ed. by U. Sendler. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 91–110. url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲ ✸✲ ✻✹✷✲

✸✻✾✶✼✲✾❴✻ (Cited on p. 38, 42).

Eigner, M., R. Stelzer (2009). Product lifecycle management: Ein Leitfaden für product

development und life cycle management. Springer Science & Business Media (Cited

on p. 37–39).

Ester, M. et al. (1996). ‘A Density-based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise’. In: 2nd International Conference on Knowledge Dis-

covery and Data Mining, pp. 226–231 (Cited on p. 131).

Ethayarajh, K., D. Jurafsky (2020). ‘Utility is in the Eye of the User: A Critique of

NLP Leaderboards’. In: Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing, pp. 4846–4853 (Cited on p. 117, 118).

Fayyad, U., G. Piatetsky-Shapiro, P. Smyth (1996). ‘From data mining to knowledge

discovery in databases’. In: AI magazine 17.3, p. 37 (Cited on p. 49).

Feurer, M., K. Eggensperger, S. Falkner, M. Lindauer, F. Hutter (2020). ‘Auto-sklearn

2.0: The next generation’. In: arXiv preprint arXiv:2007.04074 (Cited on p. 118,

119).

Feurer, M., A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter (2015). ‘Ef-

ficient and robust automated machine learning’. In: Advances in Neural Information

Processing Systems, pp. 2962–2970 (Cited on p. 54).

Flaounas, I. (2017). ‘Beyond the technical challenges for deploying Machine Learning

solutions in a software company’. In: Proceedings of the Human in the Loop Machine

Bibliography 171

https://doi.org/10.1007/978-3-642-36917-9_6
https://doi.org/10.1007/978-3-642-36917-9_6

Learning Work- shop, International Conference on Machine Learning, (Cited on

p. 18, 21, 22, 115, 117).

Gandomi, A., M. Haider (2014). ‘Beyond the hype: Big data concepts, methods, and

analytics’. In: 35 (2), pp. 137–144 (Cited on p. 17, 43, 44).

Giebler, C., C. Gröger, E. Hoos, H. Schwarz, B. Mitschang (2019). ‘Leveraging the

Data Lake: Current State and Challenges’. In: Big Data Analytics and Knowledge

Discovery. Ed. by C. Ordonez, I.-Y. Song, G. Anderst-Kotsis, A.M. Tjoa, I. Khalil.

Cham: Springer International Publishing, pp. 179–188 (Cited on p. 43).

Gijsbers, P., E. LeDell, J. Thomas, S. Poirier, B. Bischl, J. Vanschoren (2019). ‘An

open source AutoML benchmark’. In: 6th ICML Workshop on Automated Machine

Learning (Cited on p. 119).

Goldstein, A., A. Kapelner, J. Bleich, E. Pitkin (2015). ‘Peeking inside the black box:

Visualizing statistical learning with plots of individual conditional expectation’.

In: Journal of Computational and Graphical Statistics 24.1, pp. 44–65 (Cited on

p. 121).

Grabowski, H., R.-S. Lossack, J. Weißkopf (2002). Datenmanagement in der Produk-

tentwicklung: automatische Klassifikation von Produktdaten aus 3D-CAD-Systemen,

PDM- und ERP-Systemen, XML- und Office-Dokumenten, ... Deutsch. Literaturverz.

S. 233 - 236. München ; Wien: Hanser, 248 S (Cited on p. 38–40).

Gröger, C. (2018). ‘Building an Industry 4.0 Analytics Platform’. In: Datenbank-

Spektrum 18.1, pp. 5–14 (Cited on p. 18, 83, 113).

Grover, P., A. K. Kar (2017). ‘Big data analytics: A review on theoretical contributions

and tools used in literature’. In: Global Journal of Flexible Systems Management

18.3, pp. 203–229 (Cited on p. 43, 44).

Gupta, D. (2018). Applied analytics through case studies using Sas and R: implementing

predictive models and machine learning techniques. Apress (Cited on p. 17).

Haasis, S., D. Frank, B. Rommel, M. Weyrich (2003). ‘Feature-based Integration of

Product, Process and Resources’. In: Feature Based Product Life-Cycle Modelling:

IFIP TC5 / WG5.2 & WG5.3 Conference on Feature Modelling and Advanced Design-

for-the-Life-Cycle Systems (FEATS 2001) June 12–14, 2001, Valenciennes, France.

Ed. by R. Soenen, G. J. Olling. Boston, MA: Springer US, pp. 93–108. url: ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✵✲✸✽✼✲✸✺✻✸✼✲✷❴✻ (Cited on p. 38, 40, 41).

Han, J., J. Pei, Y. Yin (May 2000). ‘Mining Frequent Patterns without Candidate

Generation’. In: SIGMOD Rec. 29.2, pp. 1–12 (Cited on p. 134).

172 Bibliography

https://doi.org/10.1007/978-0-387-35637-2_6
https://doi.org/10.1007/978-0-387-35637-2_6

Henelius, A., K. Puolamąki, A. Ukkonen (2017). ‘Interpreting classifiers through

attribute interactions in datasets’. In: Proceedings of the ICML Workshop on Human

Interpretability in Machine Learning 2017 (WHI 2017) (Cited on p. 121, 122).

Herzwurm, G., U. Dowie, S. Schockert (Jan. 2001). ‘Quality Planning for E-Commerce

Applications’. In: TAE-Konferenz (Cited on p. 109).

Herzwurm, G., W. Pietsch, S. Schockert, T. Tauterat (2012). ‘QFD for Cloud Com-

puting’. In: Proceedings of the 18th International Symposium on Quality Function

Deployment. International Symposium on Quality Function Deployment (ISQFD).

Yamanashi, Japan (Cited on p. 48).

Herzwurm, G., S. Schockert, T. Tauterat (2015). ‘Quality Function Deployment in

Software Development-State-of-the-art’. In: Proceedings of the 21th International

Symposium on Quality Function Deployment (Cited on p. 48, 107, 109).

Hevner, a. R., S. T. March, J. Park (2004). ‘Design Science in Information Systems

Research’. In: MIS Quarterly 28 (1), pp. 75–105 (Cited on p. 31).

Hoos, H.H. (2008). Computer-aided design of high-performance algorithms. Tech.

rep. Technical Report TR-2008-16, University of British Columbia, Department of

Computer Science (Cited on p. 54).

Hoos, H.H., F. Neumann, H. Trautmann (2017). ‘Automated Algorithm Selection

and Configuration (Dagstuhl Seminar 16412)’. In: Dagstuhl Reports. Vol. 6. 10.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (Cited on p. 51, 55).

Hutter, F., H.H. Hoos, K. Leyton-Brown, T. Stützle (2009). ‘ParamILS: an automatic

algorithm configuration framework’. In: Journal of Artificial Intelligence Research

36.1, pp. 267–306 (Cited on p. 55).

Isermann, R. (2017). ‘Supervision, fault-detection and fault-diagnosis methods –

a short introduction’. In: Combustion Engine Diagnosis: Model-based Condition

Monitoring of Gasoline and Diesel Engines and their Components. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 25–47. url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲

✸✲✻✻✷✲✹✾✹✻✼✲✼❴✷ (Cited on p. 75).

Kashyap, P. (2018). Machine Learning for Decision Makers: Cognitive Computing

Fundamentals for Better Decision Making. Apress (Cited on p. 45).

Kotsiantis, S. B., I. Zaharakis, P. Pintelas, et al. (2007). ‘Supervised machine learning:

A review of classification techniques’. In: Emerging artificial intelligence applications

in computer engineering 160.1, pp. 3–24 (Cited on p. 46).

Bibliography 173

https://doi.org/10.1007/978-3-662-49467-7_2
https://doi.org/10.1007/978-3-662-49467-7_2

Kotsiantis, S. B., I. D. Zaharakis, P. E. Pintelas (2006). ‘Machine learning: a review

of classification and combining techniques’. In: Artificial Intelligence Review 26.3,

pp. 159–190 (Cited on p. 46, 53).

Kubat, M. (2017). An introduction to machine learning. Springer (Cited on p. 46).

Kühn, A., R. Joppen, F. Reinhart, D. Röltgen, S. von Enzberg, R. Dumitrescu (2018).

‘Analytics Canvas–A Framework for the Design and Specification of Data Analytics

Projects’. In: Procedia CIRP 70. 28th CIRP Design Conference, pp. 162–167 (Cited

on p. 48).

Kuwajima, H., H. Yasuoka, T. Nakae (2020). ‘Engineering problems in machine

learning systems’. In: Machine Learning 109.5, pp. 1103–1126 (Cited on p. 15).

Langley, P., H. A. Simon (1995). ‘Applications of machine learning and rule induction’.

In: Communications of the ACM 38.11, pp. 54–64 (Cited on p. 53, 70).

LeDell, E., S. Poirier (July 2020). ‘H2O AutoML: Scalable Automatic Machine Learn-

ing’. In: 7th ICMLWorkshop on Automated Machine Learning (AutoML). url: ❤tt♣s✿

✴✴✇✇✇✳❛✉t♦♠❧✳♦r❣✴✇♣✲❝♦♥t❡♥t✴✉♣❧♦❛❞s✴✷✵✷✵✴✵✼✴❆✉t♦▼▲❴✷✵✷✵❴♣❛♣❡r❴

✻✶✳♣❞❢ (Cited on p. 142, 149).

Li, C., A. Dakkak, J. Xiong, W.-M. Hwu (2019). ‘MLModelScope: Evaluate and Intro-

spect Cognitive Pipelines’. In: 2019 IEEE World Congress on Services, SERVICES

2019, Milan, Italy, July 8-13, 2019. Ed. by C. K. Chang, P. Chen, M. Goul, K. Oyama,

S. Reiff-Marganiec, Y. Sun, S. Wang, Z. Wang. IEEE, pp. 335–338. url: ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❙❊❘❱■❈❊❙✳✷✵✶✾✳✵✵✵✾✸ (Cited on p. 49).

Lieber, D., M. Stolpe, B. Konrad, J. Deuse, K. Morik (2013). ‘Quality prediction in

interlinked manufacturing processes based on supervised & unsupervised machine

learning’. In: Procedia CIRP 7, pp. 193–198 (Cited on p. 54).

Mąkinen, S., H. Skogström, E. Laaksonen, T. Mikkonen (2021). ‘Who Needs MLOps:

What Data Scientists Seek to Accomplish and How Can MLOps Help?’ In: 2021

IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN) of

43rd International Conference on Software Engineering (ICSE) (Cited on p. 17, 43).

Marchand, D. A., J. Peppard (2013). ‘Why IT fumbles analytics’. In: Harvard Business

Review 91.1, pp. 104–112 (Cited on p. 76).

Mattson, P., V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter, P. Micikevicius,

D. Patterson, G. Schmuelling, H. Tang, G.-Y. Wei, C.-J. Wu (2020). ‘MLPerf: An

Industry Standard Benchmark Suite for Machine Learning Performance’. In: IEEE

Micro 40.2, pp. 8–16 (Cited on p. 50).

174 Bibliography

https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://doi.org/10.1109/SERVICES.2019.00093
https://doi.org/10.1109/SERVICES.2019.00093

Mell, P., T. Grance, et al. (2011). ‘The NIST definition of cloud computing’. In: (Cited

on p. 65).

Mikkonen, T., J. K. Nurminen, M. Raatikainen, I. Fronza, N. Mąkitalo, T. Mąnnistö

(2021). ‘Is Machine Learning Software Just Software: A Maintainability View’.

In: International Conference on Software Quality. Springer, pp. 94–105 (Cited on

p. 21).

Mitchell, T.M. (1997). Machine Learning. Vol. 1. McGraw-Hill Series in Computer

Science. Boston, Mass. [u.a.]: WCB/McGraw-Hill, XVII, 414 pages (Cited on p. 45).

Monostori, L. (2003). ‘AI and machine learning techniques for managing complex-

ity, changes and uncertainties in manufacturing’. In: Engineering applications of

artificial intelligence 16.4, pp. 277–291 (Cited on p. 20, 21).

Moyne, J., J. Iskandar (2017). ‘Big data analytics for smart manufacturing: Case

studies in semiconductor manufacturing’. In: Processes 5.3, p. 39 (Cited on p. 16,

17, 43, 44).

Nalchigar, S., E. Yu (Feb. 2020). ‘Designing business analytics solutions’. In: Business

& Information Systems Engineering 62.1.1, pp. 61–75. url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴

✶✵✳✶✵✵✼✴s✶✷✺✾✾✲✵✶✽✲✵✺✺✺✲③ (Cited on p. 48, 108, 110).

O’Donovan, P., K. Leahy, K. Bruton, D. T. O’Sullivan (2015). ‘An industrial big data

pipeline for data-driven analytics maintenance applications in large-scale smart

manufacturing facilities’. In: Journal of Big Data 2.1, p. 25 (Cited on p. 17, 43).

Olson, R. S., R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, J. H. Moore, et al. (2016).

‘Automating biomedical data science through tree-based pipeline optimization’.

In: European Conference on the Applications of Evolutionary Computation. Springer,

pp. 123–137 (Cited on p. 118).

Olson, R. S., W. La Cava, P. Orzechowski, R. J. Urbanowicz, J. H. Moore (Dec. 2017).

‘PMLB: a large benchmark suite for machine learning evaluation and comparison’.

In: BioData Mining 10.1, p. 36 (Cited on p. 54).

Paleyes, A., R.-G. Urma, N.D. Lawrence (2020). Challenges in Deploying Machine

Learning: a Survey of Case Studies. arXiv: ✷✵✶✶✳✵✾✾✷✻ ❬❝s✳▲●❪ (Cited on p. 22,

116, 117).

Pan, S. J., Q. Yang (2010). ‘A Survey on Transfer Learning’. In: IEEE Transactions on

Knowledge and Data Engineering 22, pp. 1345–1359 (Cited on p. 119).

Pham, D., A. Afify (2005). ‘Machine-learning techniques and their applications in

manufacturing’. In: Proceedings of the Institution of Mechanical Engineers, Part B:

Bibliography 175

https://doi.org/10.1007/s12599-018-0555-z
https://doi.org/10.1007/s12599-018-0555-z
https://arxiv.org/abs/2011.09926

Journal of Engineering Manufacture 219.5, pp. 395–412 (Cited on p. 16, 17, 21,

51, 53, 70).

Raina, R., A. Y. Ng, D. Koller (2006). ‘Constructing informative priors using transfer

learning’. In: Proceedings of the 23rd international conference on Machine learning,

pp. 713–720 (Cited on p. 120).

Ramos, A. L., J. V. Ferreira, J. Barceló (2011). ‘Model-based systems engineering: An

emerging approach for modern systems’. In: IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 42.1, pp. 101–111 (Cited on

p. 42).

Rauch, E., D. T. Matt, P. Dallasega (2016). ‘Application of axiomatic design in manufac-

turing system design: a literature review’. In: Procedia CIRP 53. 10th International

Conference on Axiomatic Design, pp. 1–7 (Cited on p. 78).

Saaty, R. (1987). ‘The analytic hierarchy process - what it is and how it is used’. In:

Mathematical Modelling 9.3, pp. 161–176 (Cited on p. 64).

Schneider, F., L. Balles, P. Hennig (2019). ‘DeepOBS: A Deep Learning Optimizer

Benchmark Suite’. In: International Conference on Learning Representations. url:

❤tt♣s✿✴✴♦♣❡♥r❡✈✐❡✇✳♥❡t✴❢♦r✉♠❄✐❞❂r❏❣✻ss❈✺❨✼ (Cited on p. 50).

Schwaber, K., J. Sutherland (2017). The Scrum GuideTM. The definitive guide to scrum:

The rules of the game. November 2017. url: ❤tt♣s✿✴✴✇✇✇✳s❝r✉♠❣✉✐❞❡s✳♦r❣

(Cited on p. 95).

Sculley, D., G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,

M. Young, J.-F. Crespo, D. Dennison (2015). ‘Hidden technical debt in machine

learning systems’. In: Advances in neural information processing systems 28, pp. 2503–

2511 (Cited on p. 15, 18, 20).

Sebastiani, F. (2002). ‘Machine learning in automated text categorization’. In: ACM

Computing Surveys 34 (1), pp. 1–47 (Cited on p. 44, 124).

Sharp, M., R. Ak, T. Hedberg Jr (2018). ‘A survey of the advancing use and develop-

ment of machine learning in smart manufacturing’. In: Journal of Manufacturing

Systems (Cited on p. 20, 21, 47, 73).

Shearer, C. (2000). ‘The CRISP-DM model: the new blueprint for data mining’. In:

Journal of data warehousing 5.4, pp. 13–22 (Cited on p. 22, 47, 108).

Snoek, J., H. Larochelle, R. P. Adams (2012). ‘Practical Bayesian optimization of

machine learning algorithms’. In: Advances in Neural Information Processing Systems,

pp. 2951–2959 (Cited on p. 55).

176 Bibliography

https://openreview.net/forum?id=rJg6ssC5Y7
https://www.scrumguides.org

Sokolova, M., G. Lapalme (July 2009). ‘A systematic analysis of performancemeasures

for classification tasks’. In: Information Processing & Management 45.4, pp. 427–

437 (Cited on p. 54, 123).

Subianto, M., A. Siebes (2007). ‘Understanding discrete classifiers with a case study

in gene prediction’. In: Seventh IEEE International Conference on Data Mining

(ICDM 2007). IEEE, pp. 661–666 (Cited on p. 121, 122).

Suh, N. P., ed. (2001). Axiomatic design: advances and applications. Englisch. The

MIT-Pappalardo series in mechanical engineering. New York ; Oxford: Oxford

University Press, XXIII, 503 Seiten (Cited on p. 32, 74, 78–81, 84, 90, 92, 93).

Tao, F., Q. Qi, A. Liu, A. Kusiak (2018). ‘Data-driven smart manufacturing’. In:

Journal of Manufacturing Systems 48. Special Issue on Smart Manufacturing,

pp. 157–169. url: ❤tt♣s✿✴✴✇✇✇✳s❝✐❡♥❝❡❞✐r❡❝t✳❝♦♠✴s❝✐❡♥❝❡✴❛rt✐❝❧❡✴

♣✐✐✴❙✵✷✼✽✻✶✷✺✶✽✸✵✵✵✻✷ (Cited on p. 17, 42, 43).

Van Rijn, J. N., F. Hutter (2018). ‘Hyperparameter importance across datasets’. In: Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pp. 2367–2376 (Cited on p. 120).

Vanschoren, J. (2018). ‘Meta-Learning: A Survey’. In: arXiv preprint arXiv:1810.03548

(Cited on p. 114, 119, 123).

Vanschoren, J., J. N. van Rijn, B. Bischl, L. Torgo (June 2014). ‘OpenML: Networked

Science in Machine Learning’. In: SIGKDD Explor. Newsl. 15.2, pp. 49–60. url:

❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✻✹✶✶✾✵✳✷✻✹✶✶✾✽ (Cited on p. 49, 119).

Viaene, S., A. Van den Bunder (2011). ‘The secrets to managing business analytics

projects’. In: MIT Sloan Management Review 53.1, p. 65 (Cited on p. 27, 76).

Villanueva Zacarias, A. G., R. Ghabri, P. Reimann (2020). ‘AD4ML: Axiomatic Design

to Specify Machine Learning Solutions for Manufacturing’. In: 2020 IEEE 21st

International Conference on Information Reuse and Integration for Data Science (IRI),

pp. 148–155 (Cited on p. 30, 74).

Villanueva Zacarias, A. G., R. Ghabri, P. Reimann (2021). Leveraging Axiomatic Design

to Improve the Design Process of Machine Learning Solutions in Manufacturing. to

appear (Cited on p. 30, 74).

Villanueva Zacarias, A. G., P. Reimann, B. Mitschang (2018). ‘A framework to guide

the selection and configuration of machine-learning-based data analytics solutions

in manufacturing’. In: Procedia CIRP 72. 51st CIRP Conference on Manufacturing

Systems, pp. 153–158 (Cited on p. 31, 52).

Bibliography 177

https://www.sciencedirect.com/science/article/pii/S0278612518300062
https://www.sciencedirect.com/science/article/pii/S0278612518300062
http://doi.acm.org/10.1145/2641190.2641198

Villanueva Zacarias, A. G., C. Weber, P. Reimann, B. Mitschang (2021). ‘AssistML: A

Concept to Recommend ML Solutions for Predictive Use Cases’. In: 2021 IEEE 8th

International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–12

(Cited on p. 31, 114).

Villanueva Zacarias., A. G., L. Kassner., B. Mitschang. (2017). ‘Exploring Text Classifi-

cation Configurations - A Bottom-up Approach to Customize Text Classifiers based

on the Visualization of Performance’. In: Proceedings of the 19th International Con-

ference on Enterprise Information Systems - Volume 3: ICEIS, INSTICC. SciTePress,

pp. 504–511 (Cited on p. 31).

Wagstaff, K. L. (June 2012). ‘Machine Learning that Matters’. In: Proceedings of the

29th International Conference on Machine Learning. Edinburgh, Scotland (Cited on

p. 50, 117, 118).

Walden, D. D., G. J. Roedler, K. Forsberg (2015). ‘INCOSE Systems Engineering Hand-

book Version 4: Updating the Reference for Practitioners’. In: INCOSE International

Symposium. Vol. 25. 1. Wiley Online Library, pp. 678–686 (Cited on p. 42).

Weber, C., P. Hirmer, P. Reimann, H. Schwarz (2019). ‘A New Process Model for the

Comprehensive Management of Machine Learning Models’. In: Proceedings of the

21st International Conference on Enterprise Information Systems - Volume 1: ICEIS.

Ed. by J. Filipe, M. Smialek, A. Brodsky, S. Hammoudi. SciTePress, pp. 415–422

(Cited on p. 21, 22).

Westkąmper, E., C. Löffler (2016). Strategien der Produktion: Technologien, Konzepte

und Wege in die Praxis. Springer (Cited on p. 15, 16).

Wuest, T., D. Weimer, C. Irgens, K.-D. Thoben (2016). ‘Machine learning in manufac-

turing: advantages, challenges, and applications’. In: Production & Manufacturing

Research 4.1, pp. 23–45 (Cited on p. 15, 46, 51, 53, 70).

Xin, D., E. Y. Wu, D. J.-L. Lee, N. Salehi, A. Parameswaran (May 2021). ‘Whither

AutoML? Understanding the Role of Automation in Machine Learning Workflows’.

In: Proceedings of the Conference on Human Factors in Computing Systems (CHI ’21).

8-13. ACM. ACM (Cited on p. 18, 28, 29, 118, 119).

Zaharia, M., A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski, S. Murch-

ing, T. Nykodym, P. Ogilvie, M. Parkhe, et al. (2018). ‘Accelerating the Machine

Learning Lifecycle with MLflow.’ In: IEEE Data Eng. Bull. 41.4, pp. 39–45 (Cited

on p. 18, 28, 48, 49, 115, 117, 119, 124).

All URLs were last checked on 30.06.2021.

178 Bibliography

List of Figures

1.1. Elements of an ML solution. Core components have double

line borders. 20

1.2. Typical ML solution development process. 21

1.3. Typical roles in ML solution development team. 23

1.4. Common elements in ML solution development. 25

1.5. Detail of the research challenges occurring during the devel-

opment process of ML solutions. 27

1.6. Contributions to address the challenges in the development

of ML solutions. 31

2.1. Overview of the product conception phase. After descriptions

from (Anderl et al., 2012) and (Eigner and Stelzer, 2009) . . 38

2.2. Feature tree showing the connection between part feature,

process and resources. After (Haasis et al., 2003) 41

2.3. General operation of Machine Learning 45

3.1. Motivation Scenario . 52

3.2. ML Solution Development Process: A structured approach to

create an ML solution, where experts are supported on par-

ticular topics . 59

179

3.3. Metadata Profiles of the ML Solution Framework 64

3.4. System Architecture of the ML Solution Viewer 68

3.5. Web prototype of the ML Solution Viewer 69

3.6. ML solution viewer displaying details of performance metadata 70

4.1. Overview of the example use case for Fault Detection 75

4.2. Overview of the milestones (in black) and requirements (in

gray) in the design process of Machine Learning Solutions . . 77

4.3. Conceptual overview of Axiomatic Design along with the roles

involved in their definition. 79

4.4. Overview of AD4ML concepts. 83

4.5. List of initial Domain Requests for the use case example. . . . 85

4.6. Example of the zigzagging processes to specify details of the

initial and abstract DR-i-2. Matching arrows are dashed and

black-headed. Decomposition arrows are dotted and white-

headed. Decomposed design elements are shown as white

boxes. 87

4.7. Flow diagram of the ML solution specification introduction in

Section 4.3.2 . 92

4.8. Comparison between correctly and incorrectly designed ML

solution specifications . 97

4.9. Module architecture of the ML solution designer. The pro-

gramming languages and libraries used are shown in paren-

theses. 102

4.10.ML solution designer . 104

4.11.Detail of the analysis text available on the ML solution designer105

5.1. Application scenario for recommendations of ML solutions. . 116

5.2. Overview of the steps in AssistML 127

5.3. Visualization of ACC and NACC groups where each dot rep-

resents an ML solution. 132

5.4. Points assignment for the distrust score after clustering. . . . 133

180 List of Figures

5.5. Module architecture of the Assist ML prototype. Used libraries

are shown in parentheses . 138

5.6. Prototypical implementation of AssistML 139

5.7. Steps of the evaluation approach 141

5.8. Accuracy absolute error per recommendation (AccAE) in the

q-steel-10 and q-adult-10 settings. 145

5.9. Precision absolute error per recommendation (PreAE) in the

q-steel-10 and q-adult-10 settings. 146

5.10.Recall absolute error per recommendation (RecAE) in the

q-steel-10 and q-adult-10 settings. 147

A.1. Sample metadata of the ML solution "KNN_kick_001" 190

List of Figures 181

List of Algorithms

5.1. Select solutions on data similarity 128

5.2. Identify [nearly] acceptable ML solutions 131

5.3. Find ML solution patterns . 134

183

List of Tables

4.1. Comparison of Axiomatic Design and AD4ML 82

4.2. Coverage of feasibility requirements by related approaches . 109

5.1. Assessment of related approaches 120

5.2. Exemplary metafeatures by feature type 124

5.3. Sample ML solution recommendation report 135

5.4. Metadata repository contents . 140

5.5. Execution times of the AssistML prototype 148

5.6. AutoML vs AssistML for the evaluation setting q-steel-10 . . . 149

5.7. AutoML vs AssistML for the evaluation setting q-adult-10 . . . 151

5.8. Experimental data . 152

6.1. Fulfillment of the challenges by the main contributions of this

dissertation . 161

B.1. Software version numbers . 192

185

Acronyms

ACP Analytics Configuration Profile. 61, 64, 65, 68

AIP Analytics Infrastructure Profile. 61, 64

ATP Analytics Task Profile. 61, 65

CAD Computer Aided Design. 40

CAE Computer Aided Engineering. 40

CAM Computer Aided Manunfacturing. 40

CH-1 Design Challenge. 25, 30

CH-2 Configuration Challenge. 30

CH-3 Selection Challenge. 27, 31

CH-4 Process Challenge. 28, 32

CRISP-DM Cross Industry Standard Process for Data Mining. 45

CRM Customer Relationship Management. 40

DQP Data Quality Profile. 61, 63

ERP Enterprise Resource Planning. 40, 41

187

KDD Knowledge Discovery in Databases Process. 46, 47

MBSE Model Based Systems Engineering. 40

MES Manufacturing Execution System. 40, 41

PDM Product Data Management. 40

QFD Quality Function Deployment. 45, 62

SCM Supply Chain Management. 40

SEMMA Sample, Explore, Modify, Model, Assess. 47

188 Acronyms

A
p
p
e
n
d
ix

A
Sample metadata profiles

The metadata profiles presented in Section 3.3 were implemented as a

single JSON document. This implementation facilitated the mass collection

necessary to build the ML solution repository described in Section 5.3.

Figure A.1 visualizes an example JSON document containing the meta-

data profiles for the ML solution "KNN_kick_001". The document is gener-

ated via annotation commands in the solution source code. The document

is organized in three main fields, i. e., "Data_Meta_Data" corresponding

to the task description (ATP) and the data quality (DQP) profiles, "Train-

ing_Characteristics" corresponding to the configuration (ACP) and infrastruc-

ture (AIP) profiles, and "Metrics" complementing the configuration (ACP)

profile. An additional field "Info" facilitates the identification of the JSON

document in the solution repository.

The visualization was generated with PlantUML 1.2021.101

1https://plantuml.com/json

189

Figure A.1.: Sample metadata of the ML solution "KNN_kick_001"

190 A | Sample metadata profiles

A
p
p
e
n
d
ix

B
System Requirements and

Installation Guide for

AssistML

System Requirements. Table B.1 shows the software and package depen-

dencies required to set up the prototype. For our individual setup, we used

an Ubuntu 18.04 host with 2 CPUs at 2.5 GHz, 8 GB of memory and 40 GB

of disk space.

Installation guide. The following steps need to be carried out to run the

prototype of AssistML and reproduce the experimental setup:

1. Clone GitHub repository.

2. Satisfy dependencies.

3. Create repository in Mongo with the provided data.

4. Launch the API ("assist.R") and web interface ("assist_dashboard.py").

191

Table B.1.: Software version numbers
Software Version URL

R "3.6.3" https://cran.r-project.org
plumber "0.4.6" https://www.rplumber.io
dbscan "1.1-5" https://cran.r-project.org/web/packages/dbscan
mongolite "2.2.0" https://cran.r-project.org/web/packages/mongolite
stringr "1.4.0" https://stringr.tidyverse.org
rjson "0.2.20" https://cran.r-project.org/web/packages/rjson
reticulate "1.18" https://rstudio.github.io/reticulate
Python "3.8.6" https://www.python.org/downloads/release/python-386
mlxtend "0.17.3" http://rasbt.github.io/mlxtend
requests "2.24.0" https://2.python-requests.org/en/master
pymongo "3.11.0" https://github.com/mongodb/mongo-python-driver
MongoDB "4.4.0" https://www.mongodb.com/try/download/community

5. In a web browser go to http://localhost:8050

6. To reproduce evaluation setting q-steel-20 (see Section 5.5.1), watch

the video q-steel-20.mkv in the repository. Other evaluation settings

can be reproduced in a similar manner.

192 B | System Requirements and Installation Guide for AssistML

	1 Introduction
	1.1 Motivation
	1.2 Application Context of ML Solution Development in Manufacturing
	1.2.1 Definition of Machine Learning Solution
	1.2.2 The Project Scope
	1.2.3 The Development Process
	1.2.4 Roles in the Development Team
	1.2.5 Data and Available Tools

	1.3 Research Challenges
	1.3.1 Design Challenge
	1.3.2 Configuration Challenge
	1.3.3 Selection Challenge
	1.3.4 Process Challenge

	1.4 Research Contributions
	1.4.1 Research Contribution for the Design Challenge
	1.4.2 Research Contribution for the Configuration Challenge
	1.4.3 Research Contribution for the Selection Challenge
	1.4.4 Research Contribution for the Process Challenge

	1.5 Dissertation Outline

	2 Theoretical Background
	2.1 Characteristics of Production System Design
	2.1.1 Production System Design within the Product Conception Phase
	2.1.2 Classification Systems
	2.1.3 Feature Technology
	2.1.4 Model-based Systems Engineering

	2.2 Data in Manufacturing Use Cases
	2.3 Machine Learning
	2.4 Approaches to Design ML Solutions
	2.5 Approaches to Configure ML Solutions
	2.6 Approaches to Select ML Solutions

	3 ML Solution Framework
	3.1 Related Work
	3.1.1 Challenges of ML Solutions in Manufacturing
	3.1.2 Empirical Evaluation of Machine Learning Algorithms
	3.1.3 Automated Machine Learning

	3.2 Design Requirements
	3.2.1 Specification of a Domain-specific Problem Definition
	3.2.2 Efficient and Accurate Data Utilization
	3.2.3 Consideration of Available IT Resources
	3.2.4 Property-based and Performance-based Selection and Configuration of ML Algorithms
	3.2.5 Enhanced ML Solution Comprehensibility

	3.3 ML Solution Framework
	3.3.1 ML Solution Development Process
	3.3.2 Metadata Profiles
	3.3.3 ML Solution Viewer

	3.4 Prototypical Implementation and Discussion
	3.5 Summary and Future Work

	4 Axiomatic Design for Machine Learning
	4.1 Problem Context and Requirements
	4.1.1 Use Case: Fault Detection in a Production Line
	4.1.2 Feasibility Requirements in the Design of ML Solutions

	4.2 Main Concepts of Axiomatic Design
	4.3 Axiomatic Design for Machine Learning (AD4ML)
	4.3.1 Adaptations to Axiomatic Design for ML Solutions
	4.3.2 AD4ML Specification for the Fault Detection Use Case
	4.3.3 Visualization of ML Solution Specifications
	4.3.4 Reusability of Specification Components
	4.3.5 Agile Design of ML Solutions

	4.4 Approaches to Validate and to Assess ML solution Specifications During the Design Process
	4.4.1 Validation of ML Solution Specifications
	4.4.2 Assessment of ML Solution Specifications

	4.5 Prototypical Implementation
	4.6 Discussion and Assessment
	4.6.1 R1. Enablement of Systematic Experimental Learning
	4.6.2 R2. Clear and Objective Documentation of the Design Intention
	4.6.3 R3. Support of End-to-end Traceability and Consistency

	4.7 Related Work
	4.8 Summary and Future Work

	5 AssistML
	5.1 Application scenario for ML Solution recommendations
	5.1.1 Reusing ML Solutions for Predictive Use Cases
	5.1.2 Practical Requirements

	5.2 Related Work
	5.2.1 AutoML Systems
	5.2.2 Meta-Learning
	5.2.3 Explainable AI

	5.3 AssistML Metadata Repository
	5.4 AssistML: A Concept to Recommend ML Solutions
	5.4.1 Step 1: Select ML Solutions on Data Similarity
	5.4.2 Step 2: Identify Acceptable/Nearly Acceptable ML Solutions
	5.4.3 Step 3: Find ML Solution Patterns
	5.4.4 Step 4: Generate List of Recommendations

	5.5 Prototype and Evaluation
	5.5.1 Prototypical Implementation
	5.5.2 Evaluation Approach
	5.5.3 Evaluation Results
	5.5.4 Assessment

	5.6 Summary and Future Work

	6 Conclusion and Future Work
	6.1 Assessment of the Research Contributions
	6.2 Future Research Directions
	6.2.1 ML Solution Assessment Function

	List of Author Publications
	Bibliography
	List of Figures
	List of Tables
	Appendices
	A Sample metadata profiles
	B System Requirements and Installation Guide for AssistML

