
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Long-Term Motion Prediction in
Traffic

Katharina Hengel

Course of Study: Computer Science

Examiner: Ph. D. Jim Mainprice

Supervisor: Dr. Luigi Palmieri

Commenced: May 27, 2020

Completed: November 27, 2020

Abstract

The field of Inverse Reinforcement Learning (IRL) addresses the task of finding a cost function which
describes expert behavior. Since the cost function is solely computed from expert demonstrations,
the sample complexity exerts influence on the performance of these algorithms. In this thesis we
study the Learning to Search (LEARCH) and the maximum entropy IRL framework as example
IRL techniques. Based on these two algorithms we develop a variation of the LEARCH algorithm
using the idea of maximum entropy IRL. In the next step we extend LEARCH to Deep-LEARCH as
well as the newly developed LEARCH variation to a equivalent Deep-LEARCH variation. Thereby
we generalize the cost function to function space using Convolutional Neural Networks (CNNs).
Including maximum entropy inside the Deep-LEARCH variation increases the density of the target
maps of the CNN.

We discover that LEARCH shows the lowest sample complexity among the investigated algorithms,
while maximum entropy shows the highest sample complexity. In the deep learning setting the
increased density of the CNN target maps did not improve the performance. Hence, the performance
does not change, if the algorithms are extended by CNNs to the function space.

3

Contents

1 Introduction 15

2 Related Work 17

3 Inverse Reinforcement Learning 19
3.1 LEARCH . 19

3.1.1 LEARCH as Linear Function Approximation 19
3.1.2 Deep-LEARCH . 22

3.2 Maximum Entropy . 23
3.2.1 Maximum Entropy as Linear Function Approximation 23
3.2.2 Maximum Entropy using Convolutional Neural Networks 26

4 Development of a variation of LEARCH 29
4.1 Variation of LEARCH as Linear Function Approximation 29
4.2 Variation of Deep-LEARCH . 30

5 Experiment 33
5.1 Experiment Setup . 33

5.1.1 Radial Basis Function Environment . 33
5.1.2 Signed Distance Function Environment 34

5.2 Measurements . 35
5.3 Evaluation of the Inverse Reinforcement Learning Algorithms 36

5.3.1 Evaluation of the Linear Models . 37
5.3.2 Evaluation of the Deep-Learning Algorithms 45

6 Conclusion and Outlook 53

Bibliography 55

A Graphs of the Evaluation 57

B Implementation Details 71

5

List of Figures

3.1 Scaled hamming loss map with a = 1 and s = 10 21
3.2 Ground truth costmap and corresponding input and target maps for the CNN in

Deep-LEARCH using ten demonstrations . 22
3.3 Empirical feature count and ground truth costmap 26
3.4 Expected state frequencies, costmap of the expected state frequencies and the

ground truth costmap . 26
3.5 Ground truth costmap and corresponding input and target maps for the CNN in

maximum entropy using ten demonstrations . 27

4.1 Ground truth costmap and corresponding input and target maps for the CNN in the
Deep-LEARCH variation using ten demonstrations 31

5.1 Costmap created from four radial basis functions, and five demonstrations 33
5.2 Costmap created from a signed distance function of three circular obstacles, and

five demonstrations . 34
5.3 Loss over one to 100 demonstrations of the LEARCH algorithm using a varying

number of environments . 38
5.4 Loss over one to 100 demonstrations of the maximum entropy algorithm over a

varying number of environments . 39
5.5 Loss over one to 100 demonstrations of the LEARCH variation over a varying

number of environments . 40
5.6 Loss over one to 100 demonstrations and one environment 41
5.7 Loss over one to 100 demonstrations and five environments 41
5.8 Loss over one to 100 demonstrations and ten environments 42
5.9 Loss over one to 100 demonstrations and twenty environments 42
5.10 Costmap with 20 demonstrations and corresponding example paths using a one

vector as weight. The first costmap in the upper left corner represents the ground
truth costmap . 43

5.11 Costmap with 20 demonstrations and corresponding example paths using a random
vector as weight. The first costmap in the upper left corner represents the ground
truth costmap . 44

5.12 Costmap with 20 demonstrations and corresponding example paths learned with
the LEARCH algorithm on five environments with each 20 demonstrations. The
first costmap in the upper left corner represents the ground truth costmap 45

5.13 Costmap with 20 demonstrations and corresponding example paths learned with
maximum entropy on five environments with each 20 demonstrations. The first
costmap in the upper left corner represents the ground truth costmap 46

7

5.14 Costmap with 20 demonstrations and corresponding example paths learned with
the LEARCH variation on five environments with each 20 demonstrations. The
first costmap in the upper left corner represents the ground truth costmap 47

5.15 Loss over 1 to 25 demonstrations using Deep-LEARCH 48
5.16 Loss over 1 to 25 demonstrations using the Deep-LEARCH variation 49
5.17 Loss over 1 to 25 demonstrations using maximum entropy extended by CNNs . . 49
5.18 Loss over 1 to 25 demonstrations for 200 training environments 50
5.19 Loss over 1 to 25 demonstrations for 800 training environments 51
5.20 Costmap and one demonstration using Deep-LEARCH and 800 training environ-

ments. The first costmap in the upper left corner represents the ground truth costmap.
The costmaps below show the learned costmaps using 1, 3, 5, ... demonstrations . 51

5.21 Costmap and one demonstration using the Deep-LEARCH variation and 800
training environments. The first costmap in the upper left corner represents the
ground truth costmap. The costmaps below show the learned costmaps using 1, 3,
5, ... demonstrations . 52

A.1 Training and validation losses for one to 100 demonstrations. Learning is done on
one environment. The result is averaged over ten environments 58

A.2 Training and validation losses for one to 100 demonstrations. Learning is done on
five environments simultaneously . 60

A.3 Training and validation losses for one to 100 demonstrations. Learning is done on
ten environments simultaneously . 62

A.4 Training and validation losses for one to 100 demonstrations. Learning is done on
20 environments simultaneously . 64

A.5 Training and validation losses for one to 25 demonstrations and 200 training
environments . 66

A.6 Training and validation losses for one to 25 demonstrations and 400 training
environments . 68

A.7 Training and validation losses for one to 25 demonstrations and 800 training
environments . 70

8

List of Tables

B.1 Parameters of LEARCH, maximum entropy IRL and the LEARCH variation . . . 71
B.2 Parameters of Deep-LEARCH, maximum entropy using CNNs and the Deep-

LEARCH variation . 72

9

List of Algorithms

3.1 LEARCH algorithm . 21
3.2 Update of a target map of the CNN in Deep-LEARCH 23
3.3 Expected state frequency calculation . 25
3.4 Update of a target map of the CNN using maximum entropy 27
4.1 Variation of the LEARCH algorithm . 30
4.2 Update of a target map of the CNN in the Deep-LEARCH variation 31

11

Acronyms

CNN Convolutional Neural Network. 3, 17

GAN Generative Adversarial Network. 17

IRL Inverse Reinforcement Learning. 3, 15

LEARCH Learning to Search. 3, 17

MDP Markov Decision Process. 19

ReLU Rectified Linear Unit. 71

13

1 Introduction

Machine Learning has changed the research in the traffic system over the last decades. The goal of
self driving cars encourages a multitude of new discoveries, many of which have the goal to predict
paths. Whether it is the path of a car parking itself into a parking spot, the fastest route between
two cities or the path of surrounding road users, that has to be evaded. The problem of trajectory
prediction, i.e. the task of predicting the trajectory from a given start location to a given target
location, has many different use cases. Since there can be a lot of influencing factors, like pavement,
obstacles and traffic infrastructure, the task of path planning can get complex very easily.

Thus, one technique, which can be used, is imitation learning. In this field the predicted trajectory
is inferred only from expert behavior. Imitation learning is best used to learn a complex task, when
a lot of expert demonstrations are available. It can be modeled as part of Inverse Reinforcement
Learning (IRL), which means that a cost function is derived from the expert demonstration. The
predicted trajectory which is described by the optimal policy is inferred from this cost function
afterwards. Thereby the cost function does not need to be hand designed, which can get difficult for
complex tasks.

15

2 Related Work

Since IRL is an ill-posed problem, a policy can be described by multiple cost functions. Hence, a
further objective is necessary to obtain a unique solution. We distinguish between model-based and
model-free IRL methods. While the system dynamics are known for the former, this does not apply
to the later.

In model-based IRL there are two common techniques which solve the ambiguity between cost
functions by maximizing either a margin or the entropy. Ratliff et al. [RBZ06] introduced the idea
of maximizing a margin in the context of route planning. This technique was developed further in
the Learning to Search (LEARCH) framework [RSB09]. The principle of maximum entropy on the
other hand was applied to IRL by Ziebart et al. [ZMBD08].

In both techniques the cost function is modeled as a linear combination of features. Although Ratliff
et al. [RSB09] starts with a linear cost function approximation, they already extend the LEARCH
framework to function space using boosting. The maximum margin as well as the maximum
entropy technique were further developed using Convolutional Neural Networks (CNNs) to model
non-linear cost functions [MBK+16] [WOP16].

Finn et al. [FLA16] presented a model-free IRL approach for non-linear function approximation.
Furthermore, Ho and Ermon [HE16] introduce a model-free imitation learning approach, combining
Generative Adversarial Networks (GANs) and IRL. However, it does not recover the cost function
explicitly. Thus, it is not an IRL algorithm in a narrower sense. In the thesis we will focus on
model-based IRL methods.

17

3 Inverse Reinforcement Learning

The goal of the IRL problem is to find a suitable cost function for a set of expert demonstrations
[NR00]. Taking always the least cost action, we obtain a policy which describes the observed
behavior of the expert.

The problem is modeled as a Markov Decision Process (MDP) M = {X,A,T , c}, where X
denotes the state space, A the set of possible actions and T the transition function. The cost
function c is the function of interest. It is often assumed to be a linear combination of features
c(x,a) = wT · φ(x,a).

Furthermore let Ξ = {ξ0, ..., ξN } be the set of expert demonstrations. A demonstration is denoted
by a set of state-action pairs ξi = {(x0,a0), (x1,a1), ..., (xK,aK)}. We assume a deterministic policy.
Hence, the action is implicitly determined by the subsequent state sequence. Therefore, we write
ξi = {x0, x1, ..., xK } instead of ξi = {(x0,a0), (x1,a1), ..., (xK,aK)} and c(x) = wT · φ(x) instead of
c(x,a) = wT · φ(x,a).

There are several methods to solve the IRL problem, two of which we will introduce in the following
sections. While the first approach extends the Maximum Margin Planning framework of Ratliff
et al. [RBZ06], the second technique is based on the maximum entropy principle. In Chapter 4
we will then introduce a newly developed algorithm which incorporates ideas of both algorithms
explained beforehand.

3.1 LEARCH

The following chapter introduces the LEARCH framework. Here we model the cost function as
linear combination of features c(x) = wT · φ(x). Afterwards we introduce Deep-LEARCH, which
uses the afore mentioned LEARCH framework in combination with CNNs to model non-linear cost
functions.

3.1.1 LEARCH as Linear Function Approximation

The LEARCH framework was presented by Ratliff et al. [RSB09] in “Learning to search: Functional
gradient techniques for imitation learning”. It is based on the Maximum Margin Planning framework
[RBZ06].

Let the cost be a linear combination of features c(x) = wT · φ(x) with w being the weights and φ(x)
the features. Starting with the weights initialized to one, we use gradient descent steps to improve
the current solution step-by-step.

19

3 Inverse Reinforcement Learning

The idea of the LEARCH algorithm is to adjust the cost function in a way, that the expert
demonstrations are the minimum cost paths on the solution costmap. For each demonstration ξ, we
plan the minimum cost path between its start and target state on the current costmap. We denote
this example path as ξ∗. Iteratively increasing the costs along the example path ξ∗ and decreasing
the costs along the demonstrations ξ, leads to ξ being the least cost path. If both paths match, the
shifting of the costs counterbalance. Hence, the costs converge.

Adding a loss onto the costmap before planning the example path ξ∗ includes a maximum margin
objective in the algorithm. In the end of the algorithm the costs of the demonstration ξ don’t only
have to be smaller than the costs of any other path between its start and target states, but the costs
have to be smaller by a margin which scales with the loss. This technique improves generalization.

Like Ratliff et al. [RSB09] we used a scaled version of the hamming loss in our implementation of
the LEARCH algorithm. The hamming loss assigns every state-action pair a loss of 1, if it is not
part of the demonstration ξi and 0 otherwise.

hamming loss: li(x,a) =

{
1, if x < ξi
0, if x ∈ ξi

(3.1)

The scaled hamming loss assigns state-action pairs in the demonstrations ξi the lowest loss values
while states further away are gradually assigned higher loss values.

scaled hamming loss: li(x) = a − (a · exp(−
1
2
· (

edt(x, ξi)
s

)2))(3.2)

Here, edt(x, ξi) denotes the euclidean distance transform of state x to the demonstration, i.e. the
length of the shortest path from state x to any state in the demonstration. The scalar a determines
the highest loss value any state x can achieve, whereas s gradually scales the amount of loss for
states nearby the trajectory ξi . For a small s the area, which is impacted, is more narrow, while for a
larger s the area is wider. Figure 3.1 presents an example map of the scaled hamming loss.

To improve robustness, we use exponentiated gradient descent having the following update rule:

wt+1 = wt · exp(αt · wh)(3.3)

Similar to Ratliff et al. [RBZ06] we choose the step size αt to be r
t+m with r being the learning rate,

t the iteration count and m a scalar regulating the amount of decrease between two steps.

The informally described procedure results in the Algorithm 3.1. The data set D is initialized in
every iteration step with the empty set. For every start and corresponding target state of a sample
trajectory the least cost path ξ∗ in the loss-augmented costmap is computed. We use the Dijkstra
algorithm in our implementation to compute this path. Afterwards, all states of the demonstration
ξ and the example path ξ∗ are added to the data set D with its tendency whether to increase or
decrease the cost in this state. More precisely, for each state x in the demonstration ξ we add the
tuple (x,−1) and for each state x in the example path ξ∗ we add the tuple (x,−1) to D.

20

3.1 LEARCH

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

0510152025
0.0
0.2
0.4
0.6
0.8
1.0

Figure 3.1: Scaled hamming loss map with a = 1 and s = 10

Algorithm 3.1 LEARCH algorithm
1: procedure LEARCH({ξi}Ni=0)
2: w0 = (1, ...,1)T
3: while ‖wt+1 − wt ‖ < ε do
4: D = ∅

5: for all example trajectories ξi do
6: ξ∗i = argmin

ξ∗i

∑
x∈ξ∗i
(c(x,wt) − li(x))

7: D = D ∪ {(x,1)|x ∈ ξ∗i }
8: D = D ∪ {(x,−1)|x ∈ ξi}
9: end for

10: wh = argminwh

1
2
∑
(x,y)∈D(y − c(x,wh))

2 + λ1
2 ‖wh − wt ‖

2 + λ2
2 wh

11: wt+1 = wt · exp(αt · wh)

12: end while
13: return wt+1
14: end procedure

Now let X be a vector of all the states where the costs have to be adjusted, and Y the vector encoding
the corresponding tendency to increase or decrease the cost in that state. Let wh be the weight
vector computed by linear regression of X and Y with proximal regularization. Hence, wh is the
vector indicating the direction in which the weights w have to be adjusted. Thus, it is the gradient
of the LEARCH loss, which we use to update our current solution wt .

To improve generalization of the algorithm, we extend the LEARCH algorithm to learn on multiple
environments simultaneously. This means, we average the gradient wh over multiple environments
before updating the weights with the next gradient step.

All in all we get the following loss and gradient for the LEARCH algorithm:

21

3 Inverse Reinforcement Learning

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

(a) Ground truth costmap with
ten demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

(b) Occupancy map

3

2

1

0

1

2

(c) Gradient map

Figure 3.2: Ground truth costmap and corresponding input and target maps for the CNN in
Deep-LEARCH using ten demonstrations

L(w) =
1
N

N∑
i=1
(
∑
x∈ξi

wT · φ(x) − minξ∗i (
∑
x∈ξ∗i

wT · φ(x) − li(x)))(3.4)

∇L(w) =
1
N

N∑
i=1
(
∑
x∈ξi

φ(x) −
∑
x∈ξ∗i

φ(x))(3.5)

3.1.2 Deep-LEARCH

Deep-LEARCH [MBK+16] extends the previously described algorithm with CNNs, which allows
for non-linear approximation of the cost function. Hence, we get the following loss of the cost
function c:

L(c) =
1
N

N∑
i=1
(
∑
x∈ξi

c(x) − minξ∗i (
∑
x∈ξ∗i

c(x) − li(x)))(3.6)

The difference between LEARCH and Deep-LEARCH is in the computation of the gradient wh.
Instead of using a linear regression in line 10 of Algorithm 3.1, a CNN is used to compute the
functional gradient of the loss. For every training environment a tuple of the occupancy map and
the gradient map is created. The occupancy map is created by setting every state to one which
is occupied by an obstacle in the ground truth costmap. All other states are zero. An example
occupancy map is presented in Figure 3.2b. The creation of the gradient maps follows the idea
of the LEARCH algorithm. It is computed by increasing the value of each state on the example
paths by one and decreasing the value of each state on the demonstration by one. The example
path is hereby computed on the loss augmented costmap. The exact algorithm is described in
Algorithm 3.2. Figure 3.2c shows such a target map of Deep-LEARCH. We also call the occupancy
map the input map of the CNN, and the gradient map the target map.

22

3.2 Maximum Entropy

Algorithm 3.2 Update of a target map of the CNN in Deep-LEARCH
1: procedure UpdateTargetMap(c, {ξi}Ni=0)
2: D = (0, ...,0)
3: for all example trajectories ξi do
4: ξ∗i = argmin

ξ∗i

∑
x∈ξ∗i
(c(x) − li(x))

5: for all x ∈ ξ∗i do
6: D(x) = D(x) + 1
7: end for
8: for all x ∈ ξi do
9: D(x) = D(x) − 1

10: end for
11: end for
12: return D
13: end procedure

The result c j
h

of the CNN for an occupancy map of the environment j is used to update the current
costmap of the environment j.

c j
t+1 = c j

t · exp(αt · c
j
h
)(3.7)

We use the same step size αt = r
t+m as in the linear case.

3.2 Maximum Entropy

Like before, we differentiate two approaches. The first one models a linear cost function while the
second approach models a non-linear cost function.

3.2.1 Maximum Entropy as Linear Function Approximation

Since the inverse reinforcement learning problem is an ill-posed problem, many reward functions
can be optimal for a given set of demonstrations. Ziebart et al. [ZMBD08] resolves this ambiguity by
choosing the solution which matches feature counts of the expert demonstrations and the learner’s
demonstrations while maximizing entropy of the distribution over paths. The latter is done by

23

3 Inverse Reinforcement Learning

maximizing the likelihood of the observed expert demonstrations. Following is the corresponding
loss formalized:

L(w) =

N∑
i=1

log P(ξi |w)

=

N∑
i=1

log
1

Z(w)
exp(

∑
x∈ξi

wT · φ(x))

=

N∑
i=1

∑
x∈ξi

wT · φ(x) − N log Z(w)

=

N∑
i=1

∑
x∈ξi

wT · φ(x) − N log
∑
ξ

exp(
∑
x∈ξ

wT · φ(x))

(3.8)

P(ξi |w) denotes the likelihood of the expert demonstration ξi in the current costmap using the
weight w and Z(w) the partition function. The gradient of the loss is:

∇L(w) =

N∑
i=1

∑
x∈ξi

φ(x) − N
1∑

ξ exp(
∑

x∈ξ w
T · φ(x))

∑
ξ

exp(
∑
x∈ξ

wT · φ(x))
∑
x∈ξ

φ(x)

=

N∑
i=1

∑
x∈ξi

φ(x) − N
∑
ξ

P(ξ |w)
∑
x∈ξ

φ(x)

=

N∑
i=1

∑
x∈ξi

φ(x) − N
∑
x

P(x |w)φ(x)

=

N∑
i=1

∑
x∈ξi

φ(x) − N
∑
x

Dxφ(x)

(3.9)

Dividing the gradient by the number of expert demonstrations gives:

1
N
∇L(w) =

1
N

N∑
i=1

∑
x∈ξi

φ(x) −
∑
x

Dxφ(x)(3.10)

with 1
N

∑N
i=1

∑
x∈ξi φ(x) being the empirical feature count of the expert and

∑
x Dxφ(x) being the

expected feature count of the learner. Let Dx denote the expected state frequency of state x. We
compute Dx using the forward-backward algorithm proposed by Ziebart et al. [ZMBD08]. It is
presented in Algorithm 3.3. The scalar N determines the number of iterations done in the expected
state frequency calculation. The starting states of the demonstrations are used to calculate the initial
state probabilities. The target states of the demonstrations are used as terminal states.

Figure 3.3a shows a costmap, where the empirical feature count of one demonstration is used
as weight vector of the costmap. The ground truth of the underlaying costmap is presented in
Figure 3.3b. An example of the expected state frequencies of three demonstrations is presented in

24

3.2 Maximum Entropy

Algorithm 3.3 Expected state frequency calculation
1: procedure Expected State Frequency Calculation(N, starts, targets)
2: 1. Backward pass
3: if xi ∈ targets then
4: Zxi = 1
5: else
6: Zxi = 0
7: end if
8: for 1 to N do
9: Zai , j =

∑
k P(xk |xi,ai, j) exp(−c(xi,w))Zk

10: Zxi =
∑

ai , j Zai , j

11: end for
12: 2. Local action probability computation
13: P(ai, j |xi) =

Zai , j

Zxi

14: 3. Forward pass
15: if xi ∈ starts then
16: Dxi ,0 = 1
17: else
18: Dxi ,0 = 0
19: end if
20: Dxi ,0 =

Dxi ,0∑
xi

Dxi ,0

21: for t = 1 to N do
22: Dxi ,t+1 =

∑
ai , j

∑
k Dxk ,tP(ai, j |xi)P(xk |si,ai, j)

23: end for
24: 4. Summing frequencies
25: Dxi =

∑
t Dxi ,t

26: return Dxi

27: end procedure

Figure 3.4a. The associated costmap is illustrated in Figure 3.4b. The centers of the radial basis
functions are marked with blue crosses. Since we work with costs and not rewards, we inverted the
weights before computing the costmap, such that states with a high visitation count have low cost.

We iteratively update the weights w using gradient descent:

wt+1 = wt + αt∇L(w)(3.11)

We use the same step size r
t+m as in the LEARCH algorithm.

Furthermore, we improve generalization by averaging over multiple environments. Like in the
LEARCH algorithm we average the gradient of multiple environments before updating the weights.

25

3 Inverse Reinforcement Learning

0

2

4

6

8

(a) Costmap with the empirical feature count of one
demonstration as weight vector

0.5

1.0

1.5

2.0

2.5

(b) Ground truth costmap

Figure 3.3: Empirical feature count and ground truth costmap

0.1

0.2

0.3

0.4

0.5

0.6

(a) Expected state frequencies of
three demonstrations

0

5

10

15

20

25

30

35

(b) Costmap with the expected
state frequencies of three
demonstrations as weights

0.5

1.0

1.5

2.0

2.5

(c) Ground truth costmap

Figure 3.4: Expected state frequencies, costmap of the expected state frequencies and the ground
truth costmap

3.2.2 Maximum Entropy using Convolutional Neural Networks

The idea is to extend the maximum entropy IRL framework by a CNN similar to Deep-LEARCH
and LEARCH. Hereby the gradient of the maximum entropy loss is included into the target maps of
the CNN. The maximum entropy loss is now formalized by:

L(c) =
N∑
i=1

∑
x∈ξi

c(x) − N log
∑
ξ

exp(
∑
x∈ξi

c(x))(3.12)

26

3.2 Maximum Entropy

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

(a) Ground truth costmap with
ten demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

(b) Occupancy map

0.0

0.1

0.2

0.3

0.4

(c) Gradient map

Figure 3.5: Ground truth costmap and corresponding input and target maps for the CNN in
maximum entropy using ten demonstrations

Algorithm 3.4 Update of a target map of the CNN using maximum entropy
1: procedure UpdateTargetMap(c, {ξi}Ni=0)
2: D = (0, ...,0)
3: for all example trajectories ξi do
4: for all x ∈ ξi do
5: D(x) = D(x) − 1
6: end for
7: end for
8: for all x ∈ X do
9: D(x) = D(x) + Dx

10: end for
11: return D
12: end procedure

For a number of environments occupancy maps and corresponding target maps are created. We use
the ground truth costmap to compute the occupancy map like we explained in Section 3.1.2. The
creation of the target maps starts with a zero map. The value of states with high empirical feature
count is decreased. We calculate the empirical feature counts as before using:

1
N

N∑
i=1

∑
x∈ξi

φ(x)(3.13)

The only difference is the feature map. Here, we use a map with dimension s2 × s × s where s
is the height and width of the cost grid. The value of an element ei jk in the feature map is one,
if i = j ∗ s + k. Decreasing the target map on the empirical feature count has the same effect as
decreasing the map on the states of the demonstrations. Hence, this step equals the Deep-LEARCH
algorithm. While Deep-LEARCH now increases the value of states on the example paths, we
increase the value by the expected state frequency. The computation of the target maps is described
in Algorithm 3.4. Figure 3.5c shows an example target map.

27

3 Inverse Reinforcement Learning

The CNN returns the functional gradient, which we use to update the costs using exponentiated
functional gradient descent. Let c j

h
be the result of the CNN for an occupancy map of the environment

j. Furthermore let αt be the step size computed by r
t+m with r being the learning rate and m a scalar.

We get the following gradient decent update rule:

c j
t+1 = c j

t · exp(αt · c
j
h
)(3.14)

28

4 Development of a variation of LEARCH

In the following section we will develop a new algorithm. It is based on the LEARCH algorithm, but
includes ideas of maximum entropy. The gradient of LEARCH is created from the demonstrations
and example paths. In case of Deep-LEARCH this gives a rather sparse target map for the CNN. In
contrast to that maximum entropy obtains a more dense gradient representation by feature matching.
We want to exploit maximum entropy by its dense gradient representation to densify the target CNN
maps of Deep-LEARCH. In Chapter 5 we will then examine the impact of the matrix density on the
learning performance

4.1 Variation of LEARCH as Linear Function Approximation

Fist we will introduce a variant of the LEARCH algorithm which approximates the cost function as
a linear combination of features.

LLearch(w) =
1
N

N∑
i=1

∑
x∈ξi

wT · φ(x) −
1
N

N∑
i=1

minξ∗i (
∑
x∈ξ∗i

wT · φ(x) − li(x))(4.1)

∇LLearch(w) =
1
N

N∑
i=1

∑
x∈ξi

φ(x) −
1
N

N∑
i=1

∑
x∈ξ∗i

φ(x)(4.2)

LmaxEnt (w) =
1
N

N∑
i=1

∑
x∈ξi

wT · φ(x) − log
∑
ξ

exp(
∑
x∈ξi

wT · φ(x))(4.3)

∇LmaxEnt (w) =
1
N

N∑
i=1

∑
x∈ξi

φ(x) −
∑
x

Dxφ(x)(4.4)

Equations (4.1) to (4.4) show both losses and corresponding gradients of the LEARCH and maximum
entropy IRL framework. For better comparison we divided the maximum entropy loss and gradient
by N. Both losses are subtractions with the same minuend. They differ only in the subtrahend. Now
taking the LEARCH algorithm as basic principle, we want to change it in a way that we optimize the
maximum entropy loss. Let D still be a data set of states and its indication to decrease or increase
the costs at this state. Since the minuend is still the same in the loss of the new algorithm, we add
the states of the demonstrations with an indication to decrease the costs. For the subtrahend we no
longer compute the least cost path ξ∗ on the loss-augmented costmap and add it to the data set D.
Instead we add every state x ∈ X with its corresponding state frequency value Dx to D.

With the omission of the least cost path ξ∗ on the loss augmented costmap, the new algorithm
does no longer include any notion of margin. The intention now is to incorporate the margin into
the expected state frequencies D. Therefore, we compute the expected state frequencies D for

29

4 Development of a variation of LEARCH

Algorithm 4.1 Variation of the LEARCH algorithm
1: procedure LEARCH variation({ξi}Ni=0)
2: w0 = (1, ...,1)T
3: while ‖wt+1 − wt ‖ < ε do
4: D = ∅

5: for all example trajectories ξi do
6: D = D ∪ {(x, γDi

x)|x ∈ X}
7: D = D ∪ {(x,−1)|x ∈ ξi}
8: end for
9: wh = argminwh

1
2
∑
(x,y)∈D(y − c(x,wh))

2 + λ1
2 ‖wh − wt ‖

2 + λ2
2 wh

10: wt+1 = wt · exp(αt · wh)

11: end while
12: return wt+1
13: end procedure

every demonstration on the loss augmented costmap. To differentiate the state frequency D from
the loss augmented state frequencies of the trajectory ξi, we denote the later by Di. Hence, this
newly developed algorithm includes both ideas of the maximum entropy framework by Ziebart et al.
[ZMBD08] and the maximum margin framework by Ratliff et al. [RBZ06]. The final algorithm is
presented in Algorithm 4.1. We include the hyperparameter γ as scaling factor of Dx , such that the
magnitudes of increase and decrease counterbalance.

Generalization is improved by learning over multiple environments. wh is calculated for multiple
environments and averaged, before updating the weights wt+1 in the next gradient descent step. We
use the same step size αt as in LEARCH.

4.2 Variation of Deep-LEARCH

Next, we extend the above algorithm using deep learning. We use exponentiated functional gradient
descent to update the cost functional like we did in Section 3.1.2. Let αt = r

t+m be the step size. We
get:

c j
t+1 = c j

t · exp(αt · c
j
h
)(4.5)

The target maps of the CNN are created using the idea of the LEARCH variation. Starting with a
zero map we decrease the value of the states along the expert demonstrations by one. For every
demonstration ξi we calculate the corresponding loss augmented expected state frequency Di and
increase the value of the target map by it. Like before, we use γ for scaling. The computation of the
target maps is presented in Algorithm 4.2. An example target map is shown in Figure 4.1c.

The approach to Deep-LEARCH, maximum entropy using CNNs and the Deep-LEARCH variation
is in all three cases the same. Exponentiated functional gradient descent is used to update the
cost function c. The difference in these algorithms is in the computation of the target map of
the CNN. Deep-LEARCH uses the demonstrations and the example paths of the loss augmented
costmap to compute the gradient map while the other two use the demonstrations and the expected

30

4.2 Variation of Deep-LEARCH

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

(a) Ground truth costmap with
ten demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

(b) Occupancy map

2.5

2.0

1.5

1.0

0.5

0.0

0.5

(c) Gradient map

Figure 4.1: Ground truth costmap and corresponding input and target maps for the CNN in the
Deep-LEARCH variation using ten demonstrations

Algorithm 4.2 Update of a target map of the CNN in the Deep-LEARCH variation
1: procedure UpdateTargetMap(c, {ξi}Ni=0)
2: D = (0, ...,0)
3: for all example trajectories ξi do
4: for all x ∈ X do
5: D(x) = D(x) + γDi

x

6: end for
7: for all x ∈ ξi do
8: D(x) = D(x) − 1
9: end for

10: end for
11: return D
12: end procedure

state frequencies D. The difference in the target maps of maximum entropy using CNNs and
the Deep-LEARCH variant is the loss augmentation. In the later the expected state frequency is
computed for every demonstration separately. To do this the loss augmented current costmap is used.
Contrary to that, maximum entropy computes the expected state frequency over all demonstrations
on the current costmap without loss augmentation.

31

5 Experiment

In the evaluation we compare the IRL algorithms introduced in Chapter 3 and 4. We collect different
kind of measurements over a varying number of demonstrations and environments used during
training.

5.1 Experiment Setup

We evaluate the algorithms on sample environments. We use two different environment setups. In
the first environment setup we use explicit features for the generation of the costmap. Hence, it is
used in the evaluation of the algorithms assuming a linear cost function. In contrast the second
environment setup is not build by the linear combination of features. It is used in the algorithms
using deep learning. Further implementation details are described in Appendix B.

5.1.1 Radial Basis Function Environment

Each environment is a squared grid with 28 x 28 states. The costmaps are computed by the weighted
linear combination of features. One radial basis function corresponds to one feature φi . We use 16
radial basis functions for one environment. The radial basis functions are multiplied by the weight
w. Hence, the costmap is build by the inference of multiple gaussian radial basis functions.

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

0510152025

0
5

10
15

20
25

0.0
0.5
1.0
1.5
2.0

Figure 5.1: Costmap created from four radial basis functions, and five demonstrations

33

5 Experiment

0.00

0.05

0.10

0.15

0.20

0510152025

0
5

10
15

20
25

0.00
0.05
0.10
0.15
0.20

Figure 5.2: Costmap created from a signed distance function of three circular obstacles, and five
demonstrations

gaussian radial basis function: φi(x) = exp(
|x − ci |2

σ2)(5.1)

tensor of radial basis functions: φ(x) = (φ1(x), ..., φ16(x))T(5.2)
costmap function: c(x,w) = wTφ(x)(5.3)

The centers ci of the radial basis functions are sampled randomly over the grid. Let σ be the
variance of the gaussian function and fixed. Furthermore, let w be random, but fixed for a set of
environments. Hence, a set of sample environments only differ in the position of the centers of the
radial basis functions, but not in the value of the weight w. Thus, the introduced algorithms can
learn one single weight vector over multiple environments.

The expert demonstrations are computed on the above costmap by randomly choosing a start
and target state for each demonstration. The least cost path between these states on the ground
truth costmap is the demonstration. We used the Dijkstra algorithm [Dij59] to compute this
path. Figure 5.1 shows an example costmap created from four radial basis functions and five
demonstrations.

5.1.2 Signed Distance Function Environment

The second environment setup is used in all deep learning algorithms. Each environment is again a
squared grid with 28 x 28 states. The costmap is build by the signed distance function of multiple
obstacles. There are at most three circular obstacles in each environment. The center and the radius
of each obstacle is chosen randomly.

34

5.2 Measurements

costmap function: c(x) =

−d(x) + 1

2ε, if d(x) < 0
1
2ε (d(x) − ε)

2, if 0 ≤ d(x) ≤ ε

0, otherwise

(5.4)

We compute the costmap from the signed distance function of the obstacles using the cost function
proposed by Ratliff et al. [RZBS09]. Let d(x) be the signed distance function, i.e. the distance from
state x to the boundary of the nearest obstacle. d(x) is negative inside the obstacle and positive
outside the obstacles. If x is on the boundary of an obstacle it is 0. Let ε be the distance from an
obstacle at which the obstacle cost zeroes out. The cost function is described in Equation (5.4).

The expert demonstrations are computed with Dijkstra [Dij59] between two randomly sampled start
and target states. Due to runtime reasons we did not optimize the trajectories like Toussaint [Tou17]
describes. An example of a signed distance function environment with five demonstrations is shown
in Figure 5.2.

5.2 Measurements

In the analysis we calculate different measurements to evaluate and compare the performance of
the three introduced algorithms. The following notation assumes the cost function to be linear in
features. Hence, we compute the loss of the weights w. In the functional case the loss is computed
of the cost function c(x). This case follows accordingly.

The LEARCH loss is the sum of the difference between the costs of the demonstrations ξ and
example paths ξ∗ on the ground truth costmap normalized by the number of demonstrations. We use
the ground truth weights w̃ instead of the learned weights to compute this loss. The demonstration
is the least cost path on the ground truth costmap. Its cost is smaller than the costs of the example
path. Hence, the loss is negative. Thus, we want to maximize it.

LEARCH loss: L(w) =
1
N

N∑
i=1
(
∑
x∈ξi

c(x, w̃) −
∑
x∈ξ∗i

c(x, w̃))(5.5)

The maximum entropy loss is the log likelihood of the demonstration ξ given the learned weight
vector w. log Z(w) is independent of the expert demonstrations. Hence, N log Z(w) only increases
the convergence behavior. Therefore, we neglect it in the calculation of the maximum entropy
loss.

maximum entropy loss: L(w) =
N∑
i=1

log P(ξi |w)

=

N∑
i=1

∑
x∈ξi

wT · φ(x) − N log Z(w)

≈

N∑
i=1

∑
x∈ξi

wT · φ(x)

(5.6)

35

5 Experiment

The euclidean distance transform loss quantifies the distance between the demonstrations and the
example paths. We normalize by the number of demonstrations and the length of the example paths.
Hence, it expresses the average distance of one state in a example path to the demonstration. |ξ∗ |
denotes the length of the example path ξ∗.

euclidean distance transform loss: L(w) =
1
N

N∑
i=1

1��ξ∗i �� ∑
x∈ξ∗i

edt(x, ξi)(5.7)

Furthermore, we calculate the negative log likelihood using the log_loss function of the scikit-learn
library [PVG+11].

negative log likelihood loss: L(w) =
1
N

N∑
i=1

nll(ξi, ξ∗i)(5.8)

The costmap difference is the sum of the absolute difference of the ground truth and the learned
costmap. Before calculating the costmap difference loss, we normalize both costmaps using
c(x,w) = c(x,w)−minx′∈X c(x′,w)∑

x∈X(c(x,w)−minx′∈X c(x′,w)) , i.e. we center the map at zero and normalize the resulting
vector. w̃ denotes the ground truth weights in contrast to the learned weights w. The costmap
difference expresses the average difference of one state in the costmap.

costmap difference loss: L(w) =
1
|X|

∑
x∈X

|c(x, w̃) − c(x,w)|(5.9)

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

In the following evaluation we compare the performance of the IRL algorithms of Chapter 3 and
4. For this purpose we compute the different loss measurements introduced in Section 5.2 over
different amounts of demonstrations. In doing so, we average over multiple environments. In
addition we also take the standard deviation of the loss over different environments into account.
Furthermore, we compare the three algorithms using linear function approximation against two
baseline solutions. Let ’random’ denote the solution which always returns a random weight vector
with elements in [0.0,1.0) and ’one vector’ denote the solution which always returns (1, ...,1)T , i.e.
a vector created only by ones. These vectors are used as weight vectors in the cost function. A
selection of the results is presented in the following subsections. A representation of all results can
be found in Appendix A.

36

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

5.3.1 Evaluation of the Linear Models

First, we look at the case of approximating the cost function linearly. Here we look at the loss
over the range of one to 100 demonstrations per environment. Only every second step in the range
of one to 100 is computed. Furthermore, we evaluate the algorithms by learning over one, five,
ten and twenty environments. In case the algorithm only uses one environment in the learning
process, the result is averaged over ten runs. The training loss is not computed over the number of
demonstrations used in the algorithms, but always over 20 demonstrations. So even if the algorithm
takes into account only five demonstrations per environment in the training process, the training loss
is computed over 20 demonstrations. We also compute the test loss always over 20 demonstrations.
Some demonstrations are easier to fit than others, e. g., shorter demonstrations are usually easier to
fit than longer demonstrations. Using only the demonstrations of the training process would give
inaccurate loss measurements, if only a few demonstrations are used. In case of learning from
one demonstration, this single demonstration might not represent the total set of demonstrations
well. Hence, the loss is influenced by the properties of this demonstration. To avoid this effect we
always use a fixed number of demonstrations to compute the training and test loss. In addition the
test loss is averaged over five different environments, except in the case of the baseline methods
’random’ and ’one vector’. Here we use twenty environments to get a representative solution, since
the standard deviation is especially high in case of the ’random’ solution.

Figure 5.3a shows the LEARCH test loss for the LEARCH algorithm. The loss is computed for
a varying number of environments which have been used in the training process to average the
gradient. The LEARCH test loss improves with increasing amounts of environments. This loss
is already quite low with five environments. Hence, averaging the gradient over more than five
environments, archives only slightly improved results. The LEARCH test loss is relatively high
for less than 15 demonstrations. After this point the loss flattens out. For one environment the
curve stagnates after 15 environments. These results can be verified by the euclidean distance
transform test loss presented in Figure 5.3c. For more than 15 demonstrations the results using five,
ten and twenty environments are rather similar. The improvement over increasing demonstrations
per environment is little for more than 15 demonstrations in comparison to the improvement using
fewer than 15 demonstrations per environment. We can even see a slight worsening for 25 - 45
demonstrations using 20 environments. This is confirmed by the euclidean distance transform
training loss in Figure 5.3b. The results using only five environments are better than using ten
or twenty environments. Hence, LEARCH can not adjust well to the influences of multiple
different environments. The costmap difference is illustrated in Figure 5.3d. While the costmap
difference loss for five environments converges to zero, both the costmap difference for ten and
twenty environments remain constant for an increasing number of demonstrations. However, the
loss decreases significantly with the number of environments. Contrary to the examined loss
measurements above the standard deviation intervals do not overlap anymore. Since the costmaps
are normalized before the loss computation, the standard deviation is per se not as large as in case
of the other losses. We can conclude that the algorithm needs a reasonable amount of samples
for learning. However, more demonstrations or environments do not always achieve better results.
There is a point at which the loss stagnates with increasing number of samples.

The loss of the maximum entropy algorithm is illustrated in Figure 5.4. Even through the maximum
entropy loss does not noticeably improve with an increasing number of environments, the euclidean
distance transform, the neg-log likelihood and the costmap difference does. The largest improvement
is between one and five environments. Like the LEARCH algorithm we get a satiation for 20

37

5 Experiment

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(a) LEARCH test loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

1 environment
5 environments
10 environments
20 environments

(b) Euclidean distance transform training loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(c) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(d) Costmap difference test loss

Figure 5.3: Loss over one to 100 demonstrations of the LEARCH algorithm using a varying number
of environments

38

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

1 environment
5 environments
10 environments
20 environments

(a) Maximum entropy test loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(b) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(c) Neg-log-likelihood test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(d) Costmap difference test loss

Figure 5.4: Loss over one to 100 demonstrations of the maximum entropy algorithm over a varying
number of environments

39

5 Experiment

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(a) LEARCH test loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

1 environment
5 environments
10 environments
20 environments

(b) Euclidean distance transform training loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(c) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

1 environment
5 environments
10 environments
20 environments

(d) Costmap difference test loss

Figure 5.5: Loss over one to 100 demonstrations of the LEARCH variation over a varying number
of environments

environments. Looking at the loss in the course of increasing demonstrations we see the maximum
entropy loss exponentially declining. The other loss measurements decrease only slightly with
increasing number of demonstrations. Hence, maximum entropy IRL improves with increasing
number of samples until the point of satiation is reached.

The results of the LEARCH variation in Figure 5.5 stand out, since the loss is, unlike before, almost
constant in every loss measurement. By contrast, before, where there is at first an improvement in
the loss for an increasing amount of environments, which later bottoms out, it is vice versa in case
of the LEARCH variant. We see no enhancement for five or ten environments, but with twenty
environments. The LEARCH variation shows a good ability to generalize with increased number

40

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) Costmap difference test loss

Figure 5.6: Loss over one to 100 demonstrations and one environment

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) Costmap difference test loss

Figure 5.7: Loss over one to 100 demonstrations and five environments

of environments. While the euclidean distance transform training loss is for 20 environments
higher than for five or 10 environments, the euclidean distance transform test loss is lower for 20
environments. In the costmap difference test loss the LEARCH variation performs for all number of
environments equal. The only difference is in the standard deviation. It is for 20 environments the
smallest. The LEARCH variant shows for 20 environments the lowest loss.

41

5 Experiment

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) Costmap difference test loss

Figure 5.8: Loss over one to 100 demonstrations and ten environments

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) Costmap difference test loss

Figure 5.9: Loss over one to 100 demonstrations and twenty environments

42

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

Figure 5.10: Costmap with 20 demonstrations and corresponding example paths using a one vector
as weight. The first costmap in the upper left corner represents the ground truth
costmap

Now we compare the performance of the algorithms among each other and the baseline solutions
dependent on the number of environments. For clarity reasons we omit the standard deviation of
the baseline solutions in the following graphs. The graphs are presented in Figures 5.6 to 5.9.

The algorithms perform with one exception always better than the ’random’ baseline solution. The
loss of maximum entropy is above the ’random’ solution as shown in Figure 5.6. ’random’ chooses
the elements of the weight vector in the interval [0.0,1.0). In the same range are also the ground
truth values. Maximum entropy on the other hand can achieve weights higher than 1. Hence, its
performance can be worse. LEARCH and the LEARCH variation are always around or below the
’one vector’ solution. Since both algorithms start with the ’one vector’ solution and improve it
gradually, this behavior is expected.

With an increasing number of environments maximum entropy catches up on LEARCH and achieves
the same performance for the euclidean distance transform loss. Looking at the costmap difference
loss, the LEARCH algorithm outperforms all other solutions.

In our experiment LEARCH achieves overall the best performance. It shows lower sample complexity
than maximum entropy. The LEARCH variation can only improve the ’one-vector’ baseline solution
using a large number of environments.

43

5 Experiment

Figure 5.11: Costmap with 20 demonstrations and corresponding example paths using a random
vector as weight. The first costmap in the upper left corner represents the ground truth
costmap

Looking at the one vector solution, we see that it achieves already a good performance. With an
euclidean distance transform loss of 0.58, one state of the example path is in average less than
one state from the ground truth demonstration away. This implies that nearly half of the paths
segments already match. The example paths in Figure 5.10 verify this insight. The figure shows
twenty demonstrations and their corresponding example paths for a costmap using the ’one vector’
solution. In only three cases the example path deviates far from the demonstration. In the most cases
the example paths are already nearby or even matching the demonstration. Since the ’one vector’
solution performs already very well, there is unfortunately not that much room for improvement. In
comparison, the example paths of the ’random’ solution, shown in Figure 5.11, deviate in more
cases further from the demonstrations.

Figure 5.12 show the same demonstrations with example paths for a costmap learned by LEARCH
over five environments with 20 demonstrations each. The algorithms accomplish to match the paths
quite well except for the first path. The example paths learned by maximum entropy deviate in more
cases from the demonstration. The paths and the costmap are illustrated in Figure 5.13. Figure 5.14
shows the results using the LEARCH variant. The example paths resemble the paths using the ’one
vector’ solution in Figure 5.10.

44

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

Figure 5.12: Costmap with 20 demonstrations and corresponding example paths learned with the
LEARCH algorithm on five environments with each 20 demonstrations. The first
costmap in the upper left corner represents the ground truth costmap

5.3.2 Evaluation of the Deep-Learning Algorithms

In this section we evaluate Deep-LEARCH, the variant of Deep-LEARCH and maximum entropy
extended by CNNs. We look at the results using one to 25 demonstrations. Like before, we only
compute the results for every second number in this range. We evaluate each algorithm using 200,
400 and 800 training environments in the CNN. As before, the loss is computed over a fixed set of
demonstrations. Here, we use ten environments with 20 demonstrations each. The CNN performs
in each iteration of gradient descent 100 training steps.

The results of the Deep-LEARCH algorithm are presented in Figure 5.15. The LEARCH loss
decreases with increasing number of demonstrations and training environments. This applies
also to the standard deviation of the LEARCH loss. The standard deviation is for less than ten
environments rather large, but it decreases with increasing number of demonstrations. Overall is
the loss, especially the euclidean distance transform loss and the neg-log likelihood loss, very close
for the different number of training environments. The costmap difference loss stands out, since the
loss improves with less sample environments.

45

5 Experiment

Figure 5.13: Costmap with 20 demonstrations and corresponding example paths learned with
maximum entropy on five environments with each 20 demonstrations. The first
costmap in the upper left corner represents the ground truth costmap

The Deep-LEARCH variation performs similar to Deep-LEARCH. The results are presented
in Figure 5.16. The LEARCH loss decreases with increasing number of demonstrations and
environments. The results using 200 and 400 environments are closer to each other than the results
using 400 and 800 environments. Hence, the Deep-LEARCH variation can improve more with
more sample data.

In the maximum entropy algorithm of Section 3.2.2 we can see the same characteristics as in the
Deep-LEARCH variation. Figure 5.17b shows no improvement of the euclidean distance transform
loss between 200 and 400 environments. Through, there is an improvement for 800 environments.
Not only the average LEARCH loss, but also the standard deviation decreases with an increasing
number of samples. The standard deviation is conspicuously large in Figure 5.17a.

Figure 5.18 shows the comparison of the three deep-learning algorithms for 200 environments.
Deep-LEARCH outperforms the other two algorithms in all loss measurements. Even through
Deep-LEARCH and the Deep-LEARCH variant show the same performance in the LEARCH
training loss, Deep-LEARCH outperforms its variant using the test data set. Hence, Deep-LEARCH
shows a larger ability to generalize. The standard deviation of the LEARCH test loss decreases
from maximum entropy over the Deep-LEARCH variation to Deep-LEARCH. Thus, the precision
increases in this order of the algorithms. As we already mentioned before the Deep-LEARCH

46

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

Figure 5.14: Costmap with 20 demonstrations and corresponding example paths learned with the
LEARCH variation on five environments with each 20 demonstrations. The first
costmap in the upper left corner represents the ground truth costmap

variation and maximum entropy using CNNs only differ in the loss augmentation of the costmap used
in the calculation of the expected state frequencies. Since the Deep-LEARCH variation outperforms
maximum entropy using CNNs, the loss augmentation does indeed improve the algorithm.

The results using 800 environments are presented in Figure 5.19. Again, Deep-LEARCH performs
best, followed by the Deep-LEARCH variation. The difference between the performance of the
algorithms is now with 800 environments not as large anymore as for 200 environments.

We can conclude that the results improve for all the three algorithms with increasing number
of samples. Deep-LEARCH outperforms the other two algorithms, although the distance to the
performance of the other two algorithms decreases with increasing number of samples. Hence,
Deep-LEARCH shows the smallest sample complexity. The increased density of the target map
of the CNN in the Deep-LEARCH variant does not compensate for the higher sample complexity
maximum entropy needs.

Figures 5.20 to 5.21 show examples of the learned costmaps over the range from one to 23
demonstrations. With the increasing amount of demonstrations the costmaps get more precise. The
costmap of the Deep-LEARCH variation is lighter, i.e. the costs are higher. This might be due to
the increased density of the target CNN map. The expected state frequencies increase the gradient
map in all states. It is striking that the border has relatively high costs. This effect can also be

47

5 Experiment

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH 400 environments
Deep-LEARCH 800 environments

(a) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH 400 environments
Deep-LEARCH 800 environments

(b) Euclidean distance transform test loss

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH 400 environments
Deep-LEARCH 800 environments

(c) Neg-log likelihood test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH 400 environments
Deep-LEARCH 800 environments

(d) Costmap difference test loss

Figure 5.15: Loss over 1 to 25 demonstrations using Deep-LEARCH

seen in Deep-LEARCH, but not in the same extent. We assume that this is due to the architecture
of the CNN. The improvement over an increasing number of demonstrations can be verified in
the Figures 5.20 to 5.21. The gap between the demonstration and example path gets gradually
smaller. Hence, the euclidean distance transform loss decreases. Overall the resulting costmaps are
very imprecise. Deep-LEARCH recognizes only one obstacle and not three. The learning of the
costmaps can be refined by increasing the number of CNN steps and the number of gradient descent
iterations.

48

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH variant 200 environments
Deep-LEARCH variant 400 environments
Deep-LEARCH variant 800 environments

(a) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

Deep-LEARCH variant 200 environments
Deep-LEARCH variant 400 environments
Deep-LEARCH variant 800 environments

(b) Neg-log likelihood test loss

Figure 5.16: Loss over 1 to 25 demonstrations using the Deep-LEARCH variation

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

maximum entropy using CNNs 200 environments
maximum entropy using CNNs 400 environments
maximum entropy using CNNs 800 environments

(a) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

maximum entropy using CNNs 200 environments
maximum entropy using CNNs 400 environments
maximum entropy using CNNs 800 environments

(b) Euclidean distance transform test loss

Figure 5.17: Loss over 1 to 25 demonstrations using maximum entropy extended by CNNs

49

5 Experiment

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(a) LEARCH training loss

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(b) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(c) Euclidean distance transform test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(d) Costmap difference test loss

Figure 5.18: Loss over 1 to 25 demonstrations for 200 training environments

50

5.3 Evaluation of the Inverse Reinforcement Learning Algorithms

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(a) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(b) Euclidean distance transform test loss

Figure 5.19: Loss over 1 to 25 demonstrations for 800 training environments

Figure 5.20: Costmap and one demonstration using Deep-LEARCH and 800 training environments.
The first costmap in the upper left corner represents the ground truth costmap. The
costmaps below show the learned costmaps using 1, 3, 5, ... demonstrations

51

5 Experiment

Figure 5.21: Costmap and one demonstration using the Deep-LEARCH variation and 800 training
environments. The first costmap in the upper left corner represents the ground
truth costmap. The costmaps below show the learned costmaps using 1, 3, 5, ...
demonstrations

52

6 Conclusion and Outlook

Based on the LEARCH and the maximum entropy IRL learning algorithm we developed a new
algorithm, a variation of LEARCH. In all three algorithms the cost function is approximated as
a linear combination of features. We evaluated all of the algorithms and two constant baseline
solutions over a varying number of demonstrations and environments for different kind of losses. The
LEARCH algorithm outperforms all the other algorithms and shows the lowest sample complexity.
The LEARCH variant does not improve with increasing number of demonstrations. It only improves
for a large number of environments. Thus it shows a high sample complexity. The constant ’one
vector’ baseline solution already achieves a relatively good performance. Many of the example
paths already match the demonstration, if a one vector is used as a weight vector. Hence, the
results of LEARCH, maximum entropy and the LEARCH variation should be verified by a different
environment setup.

We extended the three algorithms with CNNs. This facilitates a non-linear approximation of the cost
function. The target maps in the Deep-LEARCH variation have an increased density in comparison
to the target maps in the Deep-LEARCH algorithm, since the expected state frequency is used in the
computation of the target map. The Deep-LEARCH variation and maximum entropy using CNNs
only differ in the loss augmentation of the costmap before computing the expected state frequency.
As before we evaluate the algorithms over a varying number of demonstrations and environments
for different kind of losses. Again, LEARCH shows the best performance among the evaluated
algorithms. It is followed by the LEARCH variation. The difference between the performance of
the algorithms decreases with increasing number of samples. Increasing the density of the CNN
target maps did not enhance the performance of Deep-LEARCH. Hence, the sample complexity of
LEARCH could not be reduced. Future work can evaluate Deep-LEARCH and the Deep-LEARCH
variation for more than 25 demonstrations. Since the results did get close to each other for an
increasing amount of demonstrations, the Deep-LEARCH variation might be able to outperform
Deep-LEARCH for higher amounts of samples. Due to limited computation capacity this was not
possible to analyze in this thesis. Furthermore, instead of applying the algorithms to simulated
environments, it would be interesting to evaluate their performance on a data set, collected from
real life data, like the Stanford Drone Dataset [RSAS16].

53

Bibliography

[Cha17] M. Chablani. “Autoencoders - Introduction and Implementation in TF.” June 26, 2017
(cit. on p. 71).

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1 (1959), pp. 269–271. doi: 10.1007/BF01386390. url: https://doi.
org/10.1007/BF01386390 (cit. on pp. 34, 35, 71).

[FLA16] C. Finn, S. Levine, P. Abbeel. “Guided Cost Learning: Deep Inverse Optimal Control
via Policy Optimization”. In: Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed. by
M. Balcan, K. Q. Weinberger. Vol. 48. JMLR Workshop and Conference Proceedings.
JMLR.org, 2016, pp. 49–58. url: http://proceedings.mlr.press/v48/finn16.html
(cit. on p. 17).

[HE16] J. Ho, S. Ermon. “Generative Adversarial Imitation Learning”. In: Advances in Neural
Information Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, R. Garnett. Curran Associates, Inc., 2016, pp. 4565–4573. url: http:
//papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf

(cit. on p. 17).

[MBK+16] J. Mainprice, A. Byravan, D. Kappler, D. Fox, S. Schaal, N. Ratliff. “Functional
manifold projections in Deep-LEARCH”. In: Dec. 2016 (cit. on pp. 17, 22, 71).

[NR00] A. Y. Ng, S. J. Russell. “Algorithms for Inverse Reinforcement Learning”. In: Proceed-
ings of the Seventeenth International Conference on Machine Learning (ICML 2000),
Stanford University, Stanford, CA, USA, June 29 - July 2, 2000. Ed. by P. Langley.
Morgan Kaufmann, 2000, pp. 663–670 (cit. on p. 19).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 36).

[RBZ06] N. D. Ratliff, J. A. Bagnell, M. Zinkevich. “Maximum margin planning”. In: Machine
Learning, Proceedings of the Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006. Ed. by W. W. Cohen, A. W. Moore.
Vol. 148. ACM International Conference Proceeding Series. ACM, 2006, pp. 729–736.
doi: 10.1145/1143844.1143936. url: https://doi.org/10.1145/1143844.1143936
(cit. on pp. 17, 19, 20, 30).

55

https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
http://proceedings.mlr.press/v48/finn16.html
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1145/1143844.1143936

Bibliography

[RSAS16] A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese. “Learning Social Etiquette: Human
Trajectory Understanding In Crowded Scenes”. In: Computer Vision - ECCV 2016
- 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part VIII. Ed. by B. Leibe, J. Matas, N. Sebe, M. Welling. Vol. 9912.
Lecture Notes in Computer Science. Springer, 2016, pp. 549–565. doi: 10.1007/978-
3-319-46484-8_33. url: https://doi.org/10.1007/978-3-319-46484-8%5C_33
(cit. on p. 53).

[RSB09] N. D. Ratliff, D. Silver, J. A. Bagnell. “Learning to search: Functional gradient
techniques for imitation learning”. In: Auton. Robots 27.1 (2009), pp. 25–53. doi:
10.1007/s10514-009-9121-3. url: https://doi.org/10.1007/s10514-009-9121-3
(cit. on pp. 17, 19, 20).

[RZBS09] N. D. Ratliff, M. Zucker, J. A. Bagnell, S. S. Srinivasa. “CHOMP: Gradient opti-
mization techniques for efficient motion planning”. In: 2009 IEEE International
Conference on Robotics and Automation, ICRA 2009, Kobe, Japan, May 12-17,
2009. IEEE, 2009, pp. 489–494. doi: 10.1109/ROBOT.2009.5152817. url: https:
//doi.org/10.1109/ROBOT.2009.5152817 (cit. on p. 35).

[Tou17] M. Toussaint. “A tutorial on Newton methods for constrained trajectory optimization
and relations to SLAM, Gaussian Process smoothing, optimal control, and probabilistic
inference”. In: Geometric and numerical foundations of movements. Springer, 2017,
pp. 361–392 (cit. on pp. 35, 71).

[WOP16] M. Wulfmeier, P. Ondruska, I. Posner. Maximum Entropy Deep Inverse Reinforcement
Learning. 2016. arXiv: 1507.04888 [cs.LG] (cit. on p. 17).

[ZMBD08] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey. “Maximum Entropy Inverse
Reinforcement Learning”. In: Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008. Ed. by
D. Fox, C. P. Gomes. AAAI Press, 2008, pp. 1433–1438. url: http://www.aaai.org/
Library/AAAI/2008/aaai08-227.php (cit. on pp. 17, 23, 24, 30).

All links were last followed on November 25, 2020.

56

https://doi.org/10.1007/978-3-319-46484-8_33
https://doi.org/10.1007/978-3-319-46484-8_33
https://doi.org/10.1007/978-3-319-46484-8%5C_33
https://doi.org/10.1007/s10514-009-9121-3
https://doi.org/10.1007/s10514-009-9121-3
https://doi.org/10.1109/ROBOT.2009.5152817
https://doi.org/10.1109/ROBOT.2009.5152817
https://doi.org/10.1109/ROBOT.2009.5152817
https://arxiv.org/abs/1507.04888
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php

A Graphs of the Evaluation

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) LEARCH training loss

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) LEARCH test loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(c) Maximum entropy training loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(d) Maximum entropy test loss

57

A Graphs of the Evaluation

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(e) Euclidean distance transform training loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(f) Euclidean distance transform test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(g) Neg-log-likelihood training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(h) Neg-log-likelihood test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(i) Costmap difference training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(j) Costmap difference test loss

Figure A.1: Training and validation losses for one to 100 demonstrations. Learning is done on one
environment. The result is averaged over ten environments

58

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) LEARCH training loss

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) LEARCH test loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(c) Maximum entropy training loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(d) Maximum entropy test loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(e) Euclidean distance transform training loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(f) Euclidean distance transform test loss 59

A Graphs of the Evaluation

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(g) Neg-log-likelihood training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(h) Neg-log-likelihood test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(i) Costmap difference training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(j) Costmap difference test loss

Figure A.2: Training and validation losses for one to 100 demonstrations. Learning is done on five
environments simultaneously

60

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) LEARCH training loss

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) LEARCH test loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(c) Maximum entropy training loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(d) Maximum entropy test loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(e) Euclidean distance transform training loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(f) Euclidean distance transform test loss 61

A Graphs of the Evaluation

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(g) Neg-log-likelihood training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(h) Neg-log-likelihood test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(i) Costmap difference training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(j) Costmap difference test loss

Figure A.3: Training and validation losses for one to 100 demonstrations. Learning is done on ten
environments simultaneously

62

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(a) LEARCH training loss

0 20 40 60 80 100
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(b) LEARCH test loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(c) Maximum entropy training loss

0 20 40 60 80 100
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(d) Maximum entropy test loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(e) Euclidean distance transform training loss

0 20 40 60 80 100
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(f) Euclidean distance transform test loss 63

A Graphs of the Evaluation

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(g) Neg-log-likelihood training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(h) Neg-log-likelihood test loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(i) Costmap difference training loss

0 20 40 60 80 100
of demonstrations used per environment

0.0

0.1

0.2

0.3

0.4

0.5

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

LEARCH
maximum entropy
LEARCH variation
one vector
random

(j) Costmap difference test loss

Figure A.4: Training and validation losses for one to 100 demonstrations. Learning is done on 20
environments simultaneously

64

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(a) LEARCH training loss

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(b) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(c) Maximum entropy training loss

0 5 10 15 20 25
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(d) Maximum entropy test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(e) Euclidean distance transform training loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(f) Euclidean distance transform test loss 65

A Graphs of the Evaluation

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(g) Neg-log-likelihood training loss

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(h) Neg-log-likelihood test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(i) Costmap difference training loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

Deep-LEARCH 200 environments
Deep-LEARCH variant 200 environments
maximum entropy using CNNs 200 environments

(j) Costmap difference test loss

Figure A.5: Training and validation losses for one to 25 demonstrations and 200 training environ-
ments

66

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(a) LEARCH training loss

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(b) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(c) Maximum entropy training loss

0 5 10 15 20 25
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(d) Maximum entropy test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(e) Euclidean distance transform training loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(f) Euclidean distance transform test loss 67

A Graphs of the Evaluation

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(g) Neg-log-likelihood training loss

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(h) Neg-log-likelihood test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(i) Costmap difference training loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

Deep-LEARCH 400 environments
Deep-LEARCH variant 400 environments
maximum entropy using CNNs 400 environments

(j) Costmap difference test loss

Figure A.6: Training and validation losses for one to 25 demonstrations and 400 training environ-
ments

68

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(a) LEARCH training loss

0 5 10 15 20 25
of demonstrations used per environment

1.0

0.8

0.6

0.4

0.2

0.0

LE
AR

CH
 te

st
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(b) LEARCH test loss

0 5 10 15 20 25
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 tr
ai

ni
ng

 lo
ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(c) Maximum entropy training loss

0 5 10 15 20 25
of demonstrations used per environment

0

2

4

6

8

10

12

14

m
ax

im
um

 e
nt

ro
py

 te
st

 lo
ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(d) Maximum entropy test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(e) Euclidean distance transform training loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

eu
cli

de
an

 d
ist

an
ce

 tr
an

sf
or

m
 te

st
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(f) Euclidean distance transform test loss 69

A Graphs of the Evaluation

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
tra

in
in

g
lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(g) Neg-log-likelihood training loss

0 5 10 15 20 25
of demonstrations used per environment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
te

st
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(h) Neg-log-likelihood test loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 tr

ai
ni

ng
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(i) Costmap difference training loss

0 5 10 15 20 25
of demonstrations used per environment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
st

m
ap

 d
iff

er
en

ce
 te

st
 lo

ss

Deep-LEARCH 800 environments
Deep-LEARCH variant 800 environments
without loss augmentation 800 environments

(j) Costmap difference test loss

Figure A.7: Training and validation losses for one to 25 demonstrations and 800 training environ-
ments

70

B Implementation Details

The parameter choices are depicted in Table B.1 and Table B.2.

In the environment setup using radial basis functions, σ is fixed to 0.15. In the signed distance
function environment ε is fixed to 0.1. The radius of the obstacles is chosen randomly from
the interval [0.05,0.3). This forces the obstacles to have a reasonable size. Furthermore, the
centers of the obstacles are chosen such, that the obstacles do not overlap. With the trajectory
optimization described by Toussaint [Tou17] the trajectories get smoothed. This has the advantage
that the trajectories do not overlap as much as if only the Dijkstra [Dij59] algorithm is used. We
decided against doing so, since this improved the runtime by the factor 100. While computing
100 demonstrations with Dijkstra on a costmap took about 3.548 s, it take 293.580 s for the same
amount of demonstrations, if optimized trajectories are used. With the limited computation capacity
this decision sped up the evaluation process.

The implementation of the CNN follows [Cha17] and [MBK+16]. The network consists of a
sequence of three convolutions, three deconvolutions and one output layer. Each convolution is
followed by a max pooling operation. Before every deconvolution an upsampling operation is
applied. Rectified Linear Unit (ReLU) is used as activation function.

Parameter LEARCH maximum entropy LEARCH variation

learning rate r 1 0.4 1
step size scalar m 1 1 1
loss deviation s 10 − 10
loss scalar a 1 − 1
l2 regularizer 1 − 1
proximal regularizer 0 − 0
iteration count N − 45 45
convergence rate 0.1 1 0.1

Table B.1: Parameters of LEARCH, maximum entropy IRL and the LEARCH variation

Parameter Deep-LEARCH maximum entropy
with CNNs

Deep-LEARCH
variation

learning rate r 1 1 1
step size scalar m 1 1 1
loss deviation s 10 − 10
loss scalar a 1 − 1
iteration count N − 35 35
convergence rate 1 1 1
CNN training steps 100 100 100
batch size 64 64 64
learning rate of CNN 0.002 0.002 0.002

Table B.2: Parameters of Deep-LEARCH, maximum entropy using CNNs and the Deep-LEARCH
variation

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related Work
	3 Inverse Reinforcement Learning
	3.1 LEARCH
	3.1.1 LEARCH as Linear Function Approximation
	3.1.2 Deep-LEARCH

	3.2 Maximum Entropy
	3.2.1 Maximum Entropy as Linear Function Approximation
	3.2.2 Maximum Entropy using Convolutional Neural Networks

	4 Development of a variation of LEARCH
	4.1 Variation of LEARCH as Linear Function Approximation
	4.2 Variation of Deep-LEARCH

	5 Experiment
	5.1 Experiment Setup
	5.1.1 Radial Basis Function Environment
	5.1.2 Signed Distance Function Environment

	5.2 Measurements
	5.3 Evaluation of the Inverse Reinforcement Learning Algorithms
	5.3.1 Evaluation of the Linear Models
	5.3.2 Evaluation of the Deep-Learning Algorithms

	6 Conclusion and Outlook
	Bibliography
	A Graphs of the Evaluation
	B Implementation Details

