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Abstract

The thesis objective is to develop a robust tracking pipeline for a Baxter robot system. The
tracking pipeline includes the applications of robot tracking and object tracking, which localizes the
surrounding objects for robot manipulation. By combining, extending, and comparing state-of-the-
art approaches for object tracking and image segmentation, this thesis estimates the initial poses
of the objects such that their pose can be used to auto-initialize object tracking algorithms. The
pipeline is able to handle unfamiliar and dynamic environments. The system was implemented in
simulation and can be applied to a real robotic system.
The resulting pipeline uses an RGB image, a depth image, and the 3D object models as input. The
outputs are the tracked object poses in real time. A dataset was generated to train the instance
segmentation network. Furthermore, the pipeline was evaluated with several conditions to test the
robustness of the tracking. A comparison to other 6D pose estimation approaches is provided in the
results.
The code of the pipeline is available on GitHub: https://github.com/timschaeferde/rai_baxter

Kurzfassung

Ziel dieser Arbeit ist die Entwicklung einer robusten Pipeline zur Ojektverfolgung für den Baxter
Roboter. Die Pipline umfasst die Anwendungen der Roboterkalibrierung und der Objektverfolgung,
die die Lage von Objekte im Raum bestimmt, um sie für weitere Aufgaben zu nutzen. Durch die
Kombination, Erweiterung und den Vergleich von modernen Ansätzen zur Objektverfolgung und
Bilderkennung, soll die initiale Lage der Objekte abgeschätzt werden. Die Pipeline ist in der Lage,
Objekte in unbekannten und dynamischen Umgebungen zu lokalisieren. Das System wurde mit
einer Simulation implementiert und kann jederzeit auf ein realen Roboter übertragen werden.
Die resultierende Pipeline verwendet das RGB Bild, das Tiefenbild sowie die 3D-Objektmodelle
als Eingang und gibt die Lage des verfolgten Objekts in Echtzeit wieder aus. Für das Training der
Bilderkennung wurde ein Datensatz generiert. Desweiteren wurde die Pipeline unter verschiedenen
Bedingungen evaluiert, um die Robustheit der Objektverfolgung zu testen. Ein Vergleich mit
ähnlichen Ansätzen ist auch in den Ergebnissen enthalten.
Der Quellcode der Pipeline is auf GitHub zu finden: https://github.com/timschaeferde/rai_

baxter
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1 Introduction

Manipulation of an object with a robot includes multiple sub-tasks for the robot, before completing
the task. One of these key sub-tasks is to localize the object in the environment. The objective
is to estimate the 6D pose, which contains position and the orientation of the object. This task is
extremely challenging in unknown and dynamic environments, where the robot only receives limited
and noisy sensor input. Nonetheless, inferring the pose of the object is crucial for robot grasping, as
well as to predict user intention in a human-robot collaborated or shared environment.

In the last years, significant progress has been made in real-time object tracking [IWC+16],
instance segmentation [HGDG18], and 6D-Pose estimation [WXZ+19; XSNF18]. Most of the
real-time tracking approaches, like DBOT (depth bases object tracking) [IWC+16], require manual
initialization of the object pose and the 3D model (mesh). By combining tracking, segmentation,
and pose estimation, the robotic system can autonomously localize and manipulate objects with out
manual initialization. This leads to a safer, more independent, and more reliable performance of the
robot and can be widely applied.

The objective of this thesis is to develop a robust and advanced pipeline for 6D pose estimation
and tracking by combining state-of-the-art approaches, comparing, extending them and providing a
simulated development-environment for manipulation tasks, which can be transferred to a real robot
environment. The robot should be able to handle the segmentation task, tracking task and further
processing of the pose feedback autonomously. While the input for the pipeline is an RGB image, a
depth image and a set 3D models of the objects, the output is the detected pose of the objects.

As the first step, a simulation environment was set up to provide a virtual environment including the
Baxter robot. The scene contains a table or a shelf and objects to track. In the second step, a robot
controller and the pose estimator were implemented using the simulation environment to initialize
the tracker. The simulation environment uses ROS (Robot Operating System) topics to communicate
with the tracker and other components like the visualization using Rviz (ROS visualization). The
simulation can be extended to a real world scenario that includes the physical Baxter robot and a
RGBD camera. To make the system more robust to noisy real-world data, different experiments
with visual artifacts are evaluated during the evaluation of the models in simulation.w

The results of the experiments show that the pipeline is very robust and performs extremely well,
also compared to other pose estimation and tracking frameworks. An important feature of the
pipeline is that only very limited training (with transfer-learning) and data (with augmentation) is
necessary to get reasonable results. After the successful initialization of the tracker, it provides very
useful pose feedback for further manipulation tasks in simulation.

The thesis starts with Chapter 2 on related work and background knowledge. Chapter 3 describes
the complete architecture including the simulation environment, the DBOT (depth bases object
tracking) initialization and the ROS package with its components. Chapter 4, Experiments and

13



1 Introduction

Results, starts with the explanation of the own dataset and the generation of the dataset. Experiments
demonstrate the performance of the instance segmentation and the pose initialization of the pipeline
under different conditions. The conclusion and the outlook are presented in Chapter 5.
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2 Background

2.1 Related Work

6D Pose estimation and object tracking became popular over the last years with a rapidly rising
number of papers and approaches for robot manipulation tasks [CMS11]. Especially, the advances in
high performance computing and the use of convolutional neural networks lead to significantly better
detection/prediction performance [SEZ+14; SSB15; XSNF18]. Other than the NOCS approach
from Wang et al. [WSH+19], which performs instance-level 6D pose estimation and scaling, the
thesis focuses on the pose estimation without scaling. The objective is to obtain 3D position and 3D
rotation of the objects of known shape and size to automate the manual initialization process of
current real-time trackers, like DBOT [IW+16]. The approach of the thesisis limited to familiar
objects with fixed shape.

Traditional approaches use template-based methods, which obtain the pose by rendering the objects
from different fixed camera poses and try to find the best matching template all across the image
[RL18; SQLG15]. These methods with templates are simple and able to detect texture-less objects
but often fail with bad lighting conditions or occlusions between the objects. By taking the depth
information into account, the performance in bad lighting or partial occlusion increases [SSB15].

The thesis is related to most recent methods like the PoseCNN [XSNF18] and DenseFusion
[WXZ+19] which use instance segmentation to get the mask and extract features to predict the
6D pose of the objects. PoseCNN refines the pose by using Iterative Closed Point (ICP)[BM92]
method, while DenseFusion comes up with a new iterative refinement procedure within the neural
network architecture, which replaces ICP. The method in this thesis uses another refinement method
which outperforms ICP and enables successful initialization of DBOT [IWC+16; WPK+13]. For
the DBOT initializer only a small dataset and minimal amount of training is necessary to perform a
sufficient initialization.

15



2 Background

2.2 Terms

term explanation

pose position and orientation
point cloud A set of points in the 3D-space.
mesh 3D model stored as polygon object in 3D-space
label The label of an object is an individual name, not only the class.
rai Robotic AI research software package with a small simulation. [Tou18]
ROS Robot Operating System with software tools for robot development.
Rviz ROS visualization tool.
DBOT Depth Bases Object Tracking implementation of [IWC+16]
ICP Iterative Closest Point is an old algorithm for point cloud registration
CPD Coherent Point Drift algorithm for point cloud registration

2.3 Object Recognition

Object recognition, in general, is part of computer vision and used in many applications such as
autonomous driving, robotics or medical diagnosis. There are four tasks that are mainly related to
object recognition: classification and localization, semantic segmentation, object detection, and
instance segmentation.

Classification and localization detects the class and location for a known number of objects out of
a fixed set of categories(classes). It does not differentiate between multiple instances of the same
class.

Semantic segmentation annotates the classes pixel-wise, but does not create object masks. E.g. it
shows us that all these pixels in the image are pixels which represent cars.

Object detection predicts objects and differs between objects of the same class. Therefore, it
returns the number, the class and the location (often bounding boxes) of each object.

Instance segmentation, as used in this thesis, unites semantic segmentation with object detection.
It provides the location and the category-label (class) for each individual instance detected in the
image. The labels are chosen from a fixed set of categories. Additional to object detection, instance
segmentation provides a pixel-wise annotated mask. But contrary to semantic segmentation, the
masks are generated per instance.

2.3.1 Mask R-CNN

Mask R-CNN [HGDG18] adds instance segmentation to Faster R-CNN [RHGS16] which is an
improved version of R-CNN [GDDM14].

16



2.3 Object Recognition

Figure 2.1: R-CNN object detection system overview. [GDDM14]

R-CNN

R-CNN is a Region-based Convolutional Neural Network [GDDM14] for classical object detection,
which predicts labels and bounding boxes for objects in the image. First, it generates a manageable
number (e.g. 2000) of independent region proposals all over the image and then evaluates each RoI
(Region of Interest) with a CNN. (See Figure 2.1)

Faster R-CNN

Fast R-NN [Gir15] and Faster R-CNN [RHGS16] extend this approach by shared feature computation
(with ResNet101)[HZRS15], RoI max pooling and a Region Proposal Network (RPN) attention
mechanism. The RPN consists of additional convolutional layers which scan over so called
anchors(regions/boxes) in the image, to evaluate how likely the anchor contains an object. RoI
pooling makes sure to have a fixed input size for the following steps by resizing feature-maps from
the anchors with max pooling. Thus, it only passes the proposed regions to evaluate the given
features from RoI pooling and additionally uses the features from the RPN. This reults in a huge
speedup in training and testing (see Figure 2.2). The classification and bounding-box regression are
similar to R-CNN.

Mask R-CNN

Mask R-CNN [HGDG18] extended the object detection to instance segmentation and provides a
label, a bounding box and an object mask for each object in the image, as shown in Figure 2.3.
The ResNet101 backbone starts by computing a feature map of the input image and in combination
with a Feature Pyramid Network, which connects higher and lower level features, it returns an
improved feature map. The features is passed to the RPN as described in Faster R-CNN (2.3.1)
but instead of scanning the anchors over the image, Mask R-CNN scans the feature-map to avoid
double computation. To refine the bounding box, the RPN predicts a delta for the change of the
position and size for the box, to fit the object properly. Other than using max pooling, the authors of
Mask R-CNN suggested to use bilinear interpolation for the "RoIAlign". The segmentation of the
masks runs parallel to the class and bounding box prediction.

17



2 Background

Figure 2.2: Part of the Faster R-CNN architecture. The RPN module serves as the ‘attention’ of
this unified network. [RHGS16]

Figure 2.3: The Mask R-CNN framework [HGDG18].

Mask R-CNN creates 28x28 binary masks for each class in every RoI and evaluates the mask
with a cross-entropy loss on the ground truth class-mask. During inference, it predicts 28x28
floating-masks which contain more information as a binary mask. The mask is scaled back to the
size of the RoI and then binarized with a threshold of 0.5. The size of the masks is variable, but the
implementation from Abdulla [Abd17] uses 28x28 as default.
The novelty of this approach is that the masks are generated per class and at the same time the
classifier is not depending on the mask. On the contrary, the correct class-mask is choosen by the
classifier.

Mask R-CNN benefits from the use of transfer learning, where existing knowledge is applied to
a new, but related problem. By selecting a suitable pre-trained weight, e.g. a weight trained on
COCO data, and using these as initial weights, Mask R-CNN produces high accuracy scores on
small datasets, as well. The key to this behaviour is the pre-trained backbone, which already extracts
very useful features out of the images, because it’s already tuned on real images.

18



2.4 Object Tracking

Figure 2.4: ResNet: Example ßhortcut connection"[HZRS15]

ResNet

ResNet is a deep residual neural network structure with “shortcut connections” (see Figure 2.4),
which performs identity mapping and adds the mapping after the skipped layers. This structure tries
to avoid the performance decrease in deeper networks and keeps the complexity on the same level.
More details can be found here: [HZRS15; XGD+17].

2.4 Object Tracking

2.4.1 6D Pose

The term “pose” or “6D pose” is used to describe the position (3D) plus the orientation (3D) of an
object or in an associated coordinate system.

2.4.2 DBOT - Depth Based Object Tracking Library

DBOT [IW+16] is the implementation of two papers: "Probabilistic Object Tracking Using a Range
Camera"[WPK+13] and "Depth-based Object Tracking Using a Robust Gaussian Filter"[IWC+16],
to perform 6D object tracking based on a depth image. Both trackers only require a full 3D model
(mesh) of the object for tracking and there is no need to train the model for new objects.

The first paper [WPK+13] uses a dynamic Bayesian Network and a particle filter for the tracker.
The Bayesian Network estimates the pose of the object by calculating a posterior distribution with
respect to the previous poses and the observations. In every step, the likelihood of the observed
depth input is calculated and passed down as an update to the network. They explicitly handle
occlusion to gain robustness in their estimation. Therefore, their model has more dependencies
in the Bayes network and is non-linear. Using a particle filter to compute the distributions during
inference opens up the possibility of particle-wise parallelization.

The second method [IWC+16] uses a Gaussian filter plus some robustification methods, introduced
by the same authors. One part handles occlusion, noise, and outliers (unmodeled effects), where
they compute a probability of the measurement being produced by these effects. By applying this
method, the unmodeled effects are handled better than with a normal Gaussian filter.
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2 Background

For high-dimensional measurements (e.g. depth-image) it is very complex to compute the standard
Gaussian filter. Furthermore for the Gaussian tracker [IWC+16], the parallelization is not as trivial
as for the particle tracker.

A comparison of robustness and accuracy for the two trackers is given in [IWC+16]. They mention
that the particle tracker is more robust than the Gaussian filtering but the Gaussian tracker provides
more accurate and smoother tracking. The Gaussian tracker sometimes loses track of the object.
That’s why Issac et al. [IWC+16] propose the particle tracker for fast and irregular scenes and the
Gaussian tracker if more precise estimations are important.
The thesis also compares these two trackers and shows comparable results in Chapter 4.

2.5 Point Cloud Registration

The method of registration generally tries to register or align two point clouds with a nearly similar
structure, but different positions and orientations. There are several types of registration like affine,
rigid or non-rigid registration, but in the thesis only utilizes rigid registration.

With rigid registration the objective is to align a source point cloud or mesh, which initially does
not have the same orientation and position, with a target object. Only rigid transformation is used to
match the source with the target, therefore it only uses rotation, translation and scaling. It does not
distort the shape of the object.
The registration is able to handle incomplete point clouds, like point clouds produced from a
single point of view. Then the registration then tries to match the overlapping parts as good as possible.

20



3 Tracking Setup

The code of the tracking pipeline [Sch20] and its components are available on GitHub:
https://github.com/timschaeferde/rai_baxter

All related repositories such as the modified Mask R-CNN and the modified DBOT are linked in
the README.md of the rai_baxter [Sch20] repository.

3.1 Architecture Overview

In Figure 3.1 the pipeline overview is shown. There are four major elements described in the
following.
First starting with the simulation (Section 3.2), where the robot and the surrounding environment is
simulated with a physics engine. Sensor and camera output of the robot are periodically published
as ROS topics, which can be subscribed by RViz or DBOT. Secondly, instance segmentation
(Section 3.3) and pose estimation (Section 3.4) are providing the DBOT initialization part of
the pipeline, which is a major part in the thesis. Mask R-CNN [Abd17] is used for the instance
segmentation. The masks are the input for the pose estimation. This pose estimation is a set of
methods and algorithms to estimate the pose of the objects, from the mask and the depth information.
Finally DBOT, which is described in Section 2.4.2, receives these initial poses. After receiving the

RAI simulation/
RaiEnv DBOT

point cloud
& image

pose
 feedback

DBOT initalizer

initial pose

point cloud
& image

rai_baxter package

label

environment 
config:
robot, objects and
poses

Figure 3.1: Overview of the tracking pipeline.
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3 Tracking Setup

pose the tracker starts working by collecting the point cloud updates from the simulation via ROS
topic subscription.

3.2 Simulation

In the thesis, only a simulation was used to build the environment for the robot.
The main arguments for using a simulation in the thesis are the flexibility, the reproducibility of
scenes, and the speed (parallelization). Furthermore, it is simple to generate big datasets with any
number of objects and variations.
Different approaches have been undertaken to avoid overfitting of the network, which is trained on
the simulated inputs. These undertakings to make the predictions more robust to real inputs or to
test the pipeline with “non-perfect” inputs, are described in the following sections and in Chapter 4,
Experiments.

The pipeline is designed to operate with a real robot system instead of in simulation, by replacing the
simulation with a ROS topic subscriber. In this case the subscriber passes the camera information,
RGB image, and depth image to the DBOT initializer.

The simulation is based on the RAI library from Toussaint [Tou18], which provides rich functionali-
ties in robotics, machine learning, and motion planning. Its main part is to handle configurations of
the robot and objects in the environment. The simulation starts by adding and loading so called
“graph”-files, where the initial configurations, like joints, orientations, colors, meshes, and sensor
configurations are stored. It provides simple functions to edit all features in the configuration during
run-time. After the initialisation of the simulation the environment is simulated step by step while
reading the sensor outputs. The physics in the simulation are computed by PhysX and bullet.

In the thesis a model of the Baxter robot with a table in front (see Figure 3.2) was used as the
environment. A simulated depth camera was added on the head of the simulated Baxter robot model
to generate first-person view images. The resolution was chosen to 640x480 pixels, the focal length
to 0.895 meter and the depth range is [0.4 meter, 7.0 meter].

To provide a useful interface, the RaiEnv (see Figure 3.3) class was developed during the thesis.
RaiEnv comes up with a handful of functionalities to easily initialize and setup the configuration,
read the camera output, and connect to a ROS interface. It handles to load the correct environment
files, adds single or multiple objects in the scene, and enables the required components like the
simulation or the visualizers.

To use the ROS structure to communicate with other nodes (components) and to add visualization
via RViz, the hole simulation, environment files, and script’s are wrapped into a ROS-catkin-package
called rai_baxter (see Figure 3.3). Furthermore, publishers for the joint states, RGB images, depth
images, and point clouds are implemented. These publishers can be used to publish the states and
outputs of the simulation to ROS topics. With the RaiEnv class it is just one line of code to initialize
the publisher-nodes and another one to publish the information.

When the information is published, RViz can be used to visualize those ROS topics. To visu-
alize the joint states, the robot model needs to be loaded as robot_description in ROS and the
robot_state_publisher node is required. Figure 3.4 shows how the visualization looks like.
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3.2 Simulation

Figure 3.2: Simulation with Baxter robot and table with objects.

environment config:
robot, objects and poses

joint states

point cloud

RAI simulation/
RaiEnv

ROS joint 
publisher

ROS image 
publisher

ROS point cloud
publisher

visualization by
RVIZ

DBOT tracker

DBOT initializer
initial pose & label

rviz config

robot_description &
robot_state_publisher

UserInterface

External Components

ROS pose
subscriber

ROS topics

pose feedback

depth image
rgb image

Figure 3.3: Overview of the rai_baxter package and its components.

The UserInterface (see Figure 3.3) class adds keyboard control to the simulation. There are keys to
move the end effector position and a key to close the gripper.

With all these extension to the original RAI, this rai_baxter package comes up with a simple and
extendable simulation. The simulation can be used for a wide range of tasks in robotic research or
development. It is able to replace a real robot system for testing or evaluation of new methods. Even
though the graphical rendering is not as realistic as in other engines, the simulation is lightweight
and the results are adequate enough for most applications.
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3 Tracking Setup

Figure 3.4: Visualization in RViz.
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Figure 3.5: Initialization process of DBOT with the pose estimation.

3.3 Instance Segmentation

Instance segmentation is the first element of the DBOT initializer, which is shown in Figure 3.5.

In the beginning color segmentation was used with openCV[Ope15] to build up a proof of concept.
Here the colors in the RGB-images were used to determine the mask of the object by simply
searching the largest area of a single color. This mask of the object was applied to the depth
image and the remaining pixels were converted to 3D points according to the camera specifications
(focal-length, resolution). To receive the position of the objects, the center (coordinate-wise mean)
of the resulting 3D points was calculated to provide an indication of the location.
For several instances, with a known number and the same color, the 𝐾-means algorithm was selected
to get the 𝐾 centroids of the objects. It is not just using the largest contour to get the mask, but
it determines the 𝐾 centers in images with the given color. The result of the proof of concept is
shown in Figure 3.6.
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3.3 Instance Segmentation

Figure 3.6: The green balls indicate the position calculated by using color segmentation and
𝐾-means.

The color segmentation can only produce acceptable results in a simulation with nearly no shadows
and no reflections, because these effects aggravate the the determination of the color. Another
challenge is, that the color either has to be fixed or must be passed manually to find the objects in
the images. Therefore a more effective approach was used.

The implementation [Abd17] of the Mask R-CNN paper [HGDG18] was used for instance
segmentation in the thesis. More Details on the architecture of Mask R-CNN are provided in
Section 2.3.1.
Mask R-CNN is famous for instance segmentation, because it comes up with a flexible interface
for own datasets and produces reasonable results even on small datasets (low-data problem) by
transfer-learning. To support TensorFlow 2 the fork of Adam Kelly [fbAda18] was used.

Mask R-CNN has many advantages over color segmentation. The first advantage is that it can handle
realistic images with noise or other distortions. Section 4.2.1 provides further details on different
approaches how to make the Mask R-CNN more robust when training with little or synthetic
data. The second advantage is that the result of Mask R-CNN is not only containing masks rather
than class labels and bounding boxes. These class labels are especially used to fine tune the pose
estimation and to initialize the DBOT tracker with the correct object. The benefit in knowing the
object class during pose fine tuning is to use the according 3D model (mesh) to optimize the pose in
a more precise way (see Section 3.4 for details). Additionally the Mask R-CNN is able to detect
multiple objects in one detection step, even if they are close, occluded, overlapping or of the same
color.

In a nutshell, the Mask R-CNN detects mask and class labels from the input RGB image. It can be
trained efficiently by using pre-trained weights (transfer-learning) and is not limited to simulated
images, single colored objects, or one object per image. In Figure 3.7, an exemplary output of Mask
R-CNN together with an input image for the simulation is shown.
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3 Tracking Setup

Figure 3.7: An example of a result from Mask R-CNN with different classes and overlapping
objects.

3.4 Pose Estimation

The second part of the DBOT initializer (see Figure 3.5) is the final step to estimate the pose. The
objective of the pose estimation part is to process the results of the instance segmentation, in this
case Mask R-CNN, and to estimate position plus the orientation (pose) of the instances, in world
coordinates.

The pose estimation, described in the following, runs parallel for each instance detected by Mask
R-CNN. Equally to the Color Segmentation approach, described in the previous section, the depth
image is masked by the instance mask. The masked depth pixels are transformed into 3D points
with respect to the depth-value (𝑑), the focal length ( 𝑓𝑥 , 𝑓𝑦), the center of the image (𝑝𝑥 , 𝑝𝑦), and
the position of the pixel in the image (𝑢𝑥 , 𝑢𝑦). The equations for this pixel-to-point transformation
are shown in Equations 3.1. In RAI the camera is positioned, so that the z-axis points towards the
robot it self, therefore the minus sign in the brackets is required.

𝑥 = 𝑑 · (𝑢𝑥 − 𝑝𝑥)
𝑓𝑥

𝑦 = (−)𝑑 ·
(
𝑢𝑦 − 𝑝𝑦

)
𝑓𝑦

𝑧 = (−)𝑑

(3.1)

After this transformation, the points are represented in the camera coordinates and not in world
coordinates of the “real” robot environment. For the next steps, the poses remain in this coordinates
and transformation into the world coordinates is performed in the end, because the initialization of
DBOT requires the object pose in camera coordinates.

The pose estimation computes the mask_pose and the mesh_pose as visualized within the grey box
in Figure 3.5, using the output of the pixel-to-point transformation. To achieve more precise results,
the outliers in the observed point cloud are removed via the function remove_statistical_outlier
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3.4 Pose Estimation

Figure 3.8: The red outliers getting removed from the observed point cloud.

camera
bias

Figure 3.9: An example for computing the center of a 2D point cloud received by a camera. The
yellow point is the computed center and the green point is the real center.

of open3D [ZPK18] (see Figure 3.8). The function uses the standard deviation of 𝑁 neighbors to
determine the outliers.

3.4.1 mask_pose

The mask_pose only estimates the position and not the orientation. It uses simple averaging per axis
(coordinates) over the point clouds of every instance to identify the center. The center is a good
approximation for the real position, center of mass, but is often biased in direction of the camera
(see Figure 3.9). The reason for the bias is, that the camera provides an image from a single point
of view. Therefore the depth image represents the object only from the side, which points to the
camera. The same effect also occurs with concave objects, but with an opposite bias. To reduce this
bias, a fixed offset in the Z-direction of the camera coordinates is manually added. Experiments
with different offsets are shown in Chapter 4.
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3 Tracking Setup

Figure 3.10: A point cloud registration used to align the red points (sampled on the mesh (gray)
surface) with the green points from the depth camera. The result are the blue points.

3.4.2 mesh_pose

The mesh_pose estimates the complete pose of the objects. The label from the instance segmentation
is used to load the 3D model of the object. A point cloud (set of points) with 1000 points is sampled
via open3D [ZPK18] on the surface of the model for the following registration with the masked
point cloud, referred to as the target point cloud. The are stored in a file, so they can be reused for
the next estimation.
At this point, there is a sampled source point cloud and the masked point cloud. Next the normals
of the point clouds are estimated, which supports the registration computation.
The main part of the “mesh_pose” estimation is the registration of these two point clouds.

The rigid registration, as defined in Section 2.5, is performed using the coherent-point-drift (CPD)
algorithm, which is implemented in the probreg library [Ken] (see Figure 3.10). It is limited to
rotation and translation, because scaling is not needed. As an initialization for the translation,
the center (similar to mask_pose) of the target cloud is used. The output of the CPD is a 4x4
transformation matrix, which contains rotation and translation to align the object.
The whole process to estimate the mesh_poses takes about 1-16s, depending on the number of
objects and the number of iterations the mesh registration takes to find a sufficient pose. This
process is no performance bottleneck, as this pose estimation is only performed once to initialize
the actual tracker (DBOT).

Finally the positions from mask_pose and the mesh_pose are transformed with Equation (3.2)
to world coordinates for external usage and evaluation. The orientations are transformed by
the Hamilton Product [Wyn20] of the camera quaternion and the quaternion from the pose (see
Equation (3.3).
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3.4 Pose Estimation

Figure 3.11: RViz visualization of tracking multiple objects parallel. The green objects are markers
which indicate the current pose estimation by the tracker.

𝑅 := camera rotation ∈ R3𝑥3

𝑡 := camera translation ∈ R3

𝑇 :=
[
𝑅 𝑡

0 1

]
∈ R4𝑥4


𝑥𝑤𝑜𝑟𝑙𝑑

𝑦𝑤𝑜𝑟𝑙𝑑

𝑧𝑤𝑜𝑟𝑙𝑑

1


= 𝑇𝑐𝑎𝑚


𝑥𝑜𝑏 𝑗

𝑦𝑜𝑏 𝑗

𝑧𝑜𝑏 𝑗

1


(3.2)

𝑞𝑤𝑜𝑟𝑙𝑑 = 𝑞𝑐𝑎𝑚 ∗ 𝑞𝑜𝑏 𝑗 (3.3)
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3.5 DBOT Initialization

Originally DBOT requires manual initialization in RViz, where an interactive maker has to be
aligned with the point cloud manually. To initialize DBOT [IW+16] without RViZ, DBOT provides
a ROS service, which receives the initial pose for the particle tracker. Additionally, a new ROS
service for the Gaussian tracker is implemented to initialize this tracker as well.

Both services are extended to receive initialization for multiple objects and to track them in parallel.
A call to initialize the services contains a list of individual names, mesh-filenames (3D models) and
poses. As mentioned in the previous chapter, DBOT receives the poses in camera coordinates.

After the initialization, the DBOT trackers compute a new position for every object, on each update
of the point cloud, via the ROS publisher of the simulation. The computed pose is published as a
ROS topic as well (see Figure 3.3). In RViz, the tracking can be visualized by adding markers as
shown in Figure 3.11.

By using this pipeline, DBOT doesn’t have to be initialized manually because initialization is
automated, which is much more comfortable for the user of the robot. The advantage of successfully
initialized DBOT trackers is that the simulation or a real robot system, can subscribe to the poses
from DBOT (see Figure 3.1) and use this information to perform precise manipulations on the
object.
Once initialized the DBOT tracker runs with 10Hz, for up to 7 objects, only on CPU. By using a
GPU, the performance could be further improved.

3.6 Launching the Pipeline

The pipeline is launched via ROS-launch scripts in the rai_baxter package. These scripts start the
ROS master, the tracker services, the RViz visualization (with robot model), and the simulation.

The launch scripts could also load the Depth-Based-Robot-Tracking (DRBT) [GIW+17]. The robot
tracker subscribes to the same ROS topics as DBOT and computes calibrated joint states with the
depth image and a model of the robot. These joint states could lead to a more precise manipulation
for real robots, but this is not necessary in a simulation, so DBRT is disabled for the thesis.
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4 Experiments and Results

4.1 Own Datasets

For the training of the Mask R-CNN Network, an own dataset is created. The dataset features
are stored in a python file, which contains properties like the classes, object names, object mesh
filenames, and path structures. The Config and Dataset classes from Mask R-CNN are extended to
load the dataset correctly, in the same file. This configuration file is used for creation, training, and
inference on the dataset.

The final dataset, used in the thesis, contains the seven objects presented in Figure 4.1. In the dataset
the objects are randomly placed on a table. The final dataset contains about 49998 samples with
42498 images for training and 7500 images for validation. But this amount of data is not needed to
train the Mask R-CNN sufficiently as shown in Section 4.2.1.

4.1.1 Generating Datasets

Each sample in the dataset includes an RGB image, a depth image, the masks for each object in the
scene, and some informations for each object like position, quaternion, and color.

The complete dataset generation is implemented on top of the simulation. To generate a sample, the
simulation is started and produces a random scene on the table. The function for generating this
random scene is also used for creating evaluation scenes as well. The function either selects up to

(a) cube (b) sphere (c) lego toy (d) teapot

(e) cup (f) jug (g) bowl

Figure 4.1: Objects of the final dataset.
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𝑁 objects or generates scenes with exact 𝑁 objects. The position and orientations are randomly
distributed on the table, while avoiding overlaps.
The color is selected exclusively to avoid that the objects have the same color as the background.
The first step is to split the hue colorspace in 𝑁 parts, starting at an arbitrary point. The second
step is to check if one of the 𝑁 colors is to close to a background color, because all colors have to
be unique for the mask generation. If a color is to close, the same procedure starts with another
arbitrary starting point in the colorspace. Saturation and Value for the HSV color are randomly
selected in the interval: 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑣𝑎𝑙𝑢𝑒 ∈ [120, 180]
The masks are generated with the color segmentation algorithm, described in Section 3.3. By
searching for pixels with the same hue value as the object, the mask is determined and stored as
PNG. For this reason, the object colors have to be unique. This method for creating the masks could
be replaced and improved by a method, which uses the object pose and the camera pose to calculate
the mask. This improved method could work like an inverse of the pixel to point transformation
(Equation (3.1)).All supplementary information is stored as a dictionary with the pickle library.

To store the masks and the annotations more efficiently, a script converts the datasets with the PNG
masks (binary masks) into the format of the COCO [LMB+15] datasets. These datasets with the
annotations of all samples are stored in a single json file. The masks are stored as polygons instead
of binary masks. These polygons are described by a set of points in the image. The decreased
accuracy of the masks does not significantly affect the training. Furthermore, a real dataset would
be annotated with polygons as well. The bounding-boxes are described by the format [top_left_x,
top_left_y, width, height]. An example format is shown in Listing 4.1.

1 {

2 ...

3 "annotations": [

4 {

5 "id": 0,

6 "image_id": 0,

7 "category_id": 3,

8 "iscrowd": 0,

9 "area": 5562,

10 "bbox": [533.0, 300.0, 107.0, 106.0],

11 "segmentation": [

12 [ 639.0, 405.5, 624.0, 391.5, ... 639.5, 372.0, 639.0, 405.5]

13 ],

14 "width": 640,

15 "height": 480

16 },

17 ...

18 ]

19 ...

20 }

Listing 4.1: COCO annotations example.

32



4.2 Mask R-CNN experiments

The RGB images are stored as PNG-files, because the encoding is efficient enough. The depth
image can not be stored as PNG, due to the fact that PNG is not capable of storing the float32 values
of the depth image. Therefore, it is stored with pickle.

As many experiments showed that the robot arms were often detected as objects, the dataset is
collected with arbitrary arm joint positions. Mask R-CNN is trained to treat the arms in the image
as background.

4.2 Mask R-CNN experiments

4.2.1 Training with Synthetic Dataset

A dataset generated from a simulation is called a synthetic dataset. The samples in a synthetic
dataset are typically perfect in terms of noise, blur, and lighting. To ensure the network is generalized
towards real or non-perfect images, these distortions (noise,...) can be added to the images for
training. Hence, the network learns to manage these kinds of visual distortions.

Tobin et al. [TFR+17] provides an approach where they successfully use randomization in datasets
from the simulation to optimize detection in real images. They assume that enough randomization,
results in the fact that the real world just represents another variant.

Augmentation

Mask R-CNN already provides the implementation of the library [JWC+20] to apply augmentation
to the images. The library supports a tremendous number of image augmentations.
Augmentation is primarily used to artificially expand a small dataset by applying random augmenta-
tions on the images. The imgaug library [JWC+20] is used to add blur, add noise, resize the image,
chop the images, change the contrast, and change the brightness.
Another experiment is using a small dataset and “expands” it with augmentation.

To evaluate the training with augmentation, a medium and a heavy augmentation is defined as
shown in Table 4.1.

´

The results (see Table 4.2) of the trainings, with various augmentations, show that the networks
trained with stronger augmentation perform better on the augmented test data while maintaining the
precision on the non-augmented data on the non-augmented data. Presumably the precision of the
less augmented trainings, on non-augmented data, is higher, because these trainings overfit to the
simulated data. This effect is not desirable, if the objective is to obtain a more general and robust
network.
The loss-plots in Figure 4.2 additionally show that the final loss from less augmented trainings is the
smallest. This is not very surprising, because by augmentation there is always a loss of information
in the augmented images.

Figure 4.3 includes results of Mask R-CNN with the augmentation applied before inference.
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medium heavy

frequently used
flip horizontal X X
flip vertical x X
chop & fill X X
affine trans. X X
light contrast X
multiply color X

rarely used
blur X X
sharpen X X
emboss X X
edge detection x X
noise x X
dropout x X
invert color x X
add color X X
multiply color X
contrast X
grayscale X X
elastic trans. X
piece affine trans. X

Table 4.1: Medium and heavy augmentations. A small x indicates lighter application.

Augmentation in Training Average Precision Test in %
train heads fine-tuning no aug. med aug. heavy aug.

training1 flip only flip only 99.072 94.975 88.406
training2 med aug med aug 98.206 94.953 87.720
training3 heavy aug med aug 97.789 94.589 93.844
training4 med aug heavy aug diverged

Table 4.2: Heads training 8 epochs and fine-tuning 8 epochs. Average Precision based on 200
samples.
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(a) Smoothed plot of class loss
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Figure 4.2: Loss plots. Smoothed by rolling average. The unsmoothed plots can be found in the
Appendix, Figure A.1. The dotted red line indicates the boundary between heads only
and fine-tuning training. Only medium augmentation was used in these trainings.
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Figure 4.3: Detection with augmented images. The images are from a dataset with just cubes,
cylinders, and spheres and not from the final dataset.
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Optimal Number of Epochs?

Trainings of Mask R-CNN with more epochs have been performed to check how the losses behave
over time.

Focusing on the most significant losses for the pose detection, only the mrcnn_class_loss and
the mrcnn_mask_loss are presented and evaluated. The corresponding loss-plots are shown in
Figure A.1a and Figure A.1b.
These plots (see Figure 4.2) show that the loss decreases only very little on the epochs above 40.
Therefore, it could be enough to train just about 40 epochs.
The results of the network with 40 epochs and with 80 epochs are additionally compared by the
predicted pose from the DBOT initializer subsystem. These results can be found in Table 4.5 in
Section 4.3.2. They show that the accuracy of the the detected objects is exactly the same, only the
detection rate increases from 92.726% to 94.33%. Considering the losses and the accuracies, it is
obvious, that a extensive number of epochs is not mandatory for excellent performance.

Furthermore the training with fine-tuning on all layers results in a slightly lower mrcnn_mask_loss
than just training the heads. Since the difference is bigger for the mrcnn_class_loss, it is recommended
to train the network with fine-tuning.

4.3 Pose Experiments

4.3.1 Metrics

There are two methods of pose evaluation used in the thesis. The first method is to look at the
position and the orientation separately. This is essentially for the comparison of the mask_pose
and the mesh_pose position, because the mask_pose has no orientation. The second method is to
evaluate the whole pose.

Especially for symmetric objects, it is challenging to find a metric which is able to handle the
ambiguous poses of some perspectives. Therefore, the PoseCNN paper [XSNF18] provides an
advanced average distance metric (ADD). The metric is called average closest point distance
(ADD-S) (see Equation (4.1)) and handles the ambiguities of symmetric objects as well as normal
objects. ADD-S transforms the 3D model (𝑀 with 𝑚 points) of the object once by the predicted
pose (𝑅̂, 𝑡) and once by the ground truth pose (𝑅, 𝑡). Then it computes the average distance of every
point (𝑥2) in the predicted model to the closest point (𝑥1) in the target model.
In PoseCNN they do not calculate the accuracy by using a fixed threshold. Instead, they vary the
threshold from zero to a maximum threshold and calculate the area under the curve (AUC) of the
resulting accuracy-threshold curve (see Figure 4.4). The AUC divided by the maximum threshold
results in the final accuracy score.

ADD-S =
1
𝑚

∑︁
𝑥1∈𝑀

min
𝑥2∈𝑀

| | (𝑅𝑥1 + 𝑡) − (𝑅̂𝑥2 + 𝑡) | | (4.1)
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Figure 4.4: Accuracy-threshold curve of all objects with maximum threshold of 10cm for the
different poses. The AUC score for the curves are e.g. mask_pose 76.69%, mesh_pose
88.49%, particle_pose_3s 93.60%

In the thesis, a maximum threshold of 10cm is used following DenseFusion [WXZ+19] and
PoseCNN [XSNF18]. For the separate evaluation of the position or the orientation, the unconsidered
part (orientation(𝑅) or position(𝑡)) is igno, when calculating the ADD-S. After the calculation for
each sample the AUC, with 10cm threshold, is used as accuracy for the position or the orientation.
When considering the whole pose for evaluation, the standard ADD-S and AUC with 10cm threshold
is calculated.
DenseFusion has an additional metric, where they report the percentage of ADD-S under a threshold
of 2cm. They argue that most of the robot grippers include a tolerance of 2cm and therefore all
predictions with a distance under 2cm are tolerated.

4.3.2 General results

The evaluation of all pose experiments are performed on a set of 4,798 random samples. All samples
are not part of the training for Mask R-CNN. These samples do not contain the arms of the baxter
robot.
All the accuracy scores are calculated by the metrics described in Section 4.3.1. Only samples,
where Mask R-CNN detects an object, are used for the accuracy-score. The detection rate and error
rate, of Mask R-CNN, are provided with the results (below the tables). The detection rate is defined
as number of classified objects with respect to the number of ground truth objects. The error rates
are defined as the number of wrong class predictions with respect to the number of classified objects.
The undetected objects are presumably simply not detected, out of sight or just partially visible.
The results from the pose estimation and DBOT initialization of the standard pipeline, which
uses the unmodified images and a Mask R-CNN network with 40 epochs of training are shown in
Table 4.3.
Note that the rotation precision of the sphere is always 97% but should be 100% for a perfect sphere.
The reason is assumely the sampling of the point cloud models which are used for the accuracy
calculation.

38



4.3 Pose Experiments

mask mesh particle 1s gaussian 1s particle 3s gaussian 3s
t t R t R t R t R t R

cube 89.1 90.3 96.0 97.4 97.0 93.9 97.0 97.7 97.2 90.7 96.9
sphere 76.1 79.2 97.0 97.9 97.0 97.5 97.0 97.9 97.0 98.0 97.0
lego_toy 66.7 80.2 90.2 85.0 92.2 84.8 92.3 84.9 92.4 83.0 92.3
teapot 77.8 80.0 90.7 91.7 93.3 86.5 92.8 94.0 95.2 91.2 94.8
cup 90.9 90.2 95.0 94.0 95.9 85.1 95.6 94.3 96.2 77.1 95.7
jug 69.8 77.3 90.2 93.6 92.4 74.8 92.8 95.1 95.3 89.9 96.2
bowl 69.3 70.4 84.4 81.0 87.7 86.6 84.9 81.1 88.7 80.8 85.6

mean 77.1 81.1 91.9 91.5 93.7 87.0 93.2 92.1 94.6 87.2 94.1

mesh particle 1s gaussian 1s particle 3s gaussian 3s
AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm

cube 93.8 100.0 96.8 100.0 95.6 99.7 97.0 100.0 94.3 98.8
sphere 88.6 100.0 96.1 100.0 96.0 100.0 96.1 100.0 96.1 100.0
lego_toy 90.8 99.3 93.3 98.1 93.4 96.7 93.4 97.3 92.3 88.4
teapot 88.2 100.0 93.7 100.0 91.3 94.0 95.2 100.0 93.8 95.2
cup 92.9 100.0 95.1 99.0 92.0 92.7 95.3 98.9 87.8 86.4
jug 84.6 98.8 91.8 99.6 86.6 82.7 95.2 99.6 93.3 94.5
bowl 80.4 78.7 83.6 80.2 85.5 78.1 82.9 80.2 83.9 75.0

mean 88.5 96.7 92.9 96.7 91.5 92.0 93.6 96.6 91.6 91.2

Table 4.3: Results of the standard pipeline. The upper table shows position and orientation
individually. The lower table shows the AUC and <2cm metric.
detection rate(Mask R-CNN): 92.726%; error rate(Mask R-CNN):0.16%

mask_pose vs. mesh_pose

The mask_pose only contains position information and no information about the orientation. But
the mask_pose is a good baseline for the position. The mesh_pose contains both position and
orientation.
In the first table of Table 4.3, the comparison of the mask_pose position and the mesh_pose position
shows that the mesh_pose additionally is slightly more accurate.
In the following evaluations only the mesh_pose will be considered.

Bias in Point Cloud Center

When calculating the position of a point cloud from a camera image, there is often a bias for the
position in the direction of the camera. This effect especially occurs on convex surfaces. Concave
surfaces cause an opposite effect. But all objects with positive volume show this bias effect, no
matter how many convex or concave surfaces there are.
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mask mesh
offset t t R

-0.01m 56.2
-0.005m 62.1
0.00m 66.0 77.0 91.9
0.015m 79.4 91.9
0.02m 77.1 81.1 91.9
0.03m 77.6 80.8 91.9

Table 4.4: Mean precision of all objects for bias compensation results with different offsets.

This bias is described and illustrated in Section 3.4.1 and Figure 3.9. The effect of the bias is also
visible in the accuracy-threshold curve (see Figure 4.4) where the gradient of the mesh_pose (with
offset) is very high but starts to rise barely after some millimeters. This effect is even worse when
no offset is added.
Furthermore, the pipeline is tested with different values for the z-axis-offset (in camera coordinates),
which should compensate the bias. The mean precision over all objects is presented in Table 4.4.
In most cases the bias mainly depends on the size of the objects. Therefore, the bias should be
adjusted for significantly bigger or smaller objects. The samples used for evaluation contain the
same objects as the final dataset (see Figure 4.1). They all have a diameter between 4cm to 15cm.

The mesh_pose provides a more accurate pose even without offset. An offset of 2cm for the
mesh_pose and 3cm for the mask_pose produces the best results. As expected the bias barely affects
the orientation. Another result is, that the offset affects the mask_pose more than the mesh_pose,
because the precision of the mask_pose increases with a higher rate, when adding more offset.
Additionally, the bias for the mesh_pose is not as depended on the object size as the bias of the
mask_pose.

An alternative approach to compensate the bias of the mask_pose, could be a higher weighting of
the pixels, which are further away form the camera, during the center computation. This method is
not evaluated in the thesis, because the mask_pose is just used as a baseline.

Result of long Mask R-CNN training

As already mentioned in Section 4.2.1, the pose estimation does not depend on perfect segmentation
to produce excellent results. The corresponding results of different trainings are visualized in
Table 4.5.

DBOT Initialization

To evaluate the behaviour of DBOT after an automated initialization with the mesh_pose, the pose
of DBOT is captured after 1s and 3s for both trackers. As the objective is not to evalutate the DBOT
tracking itself, the objects are not moved during the first three seconds.
The accuracy scores are presented in Table 4.3. These results show that both trackers achieve better
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4.3 Pose Experiments

40 epochs 80 epochs 40 epochs (ld) 20 epochs (ld) 40 epochs (noise)
AUC <2cm AUC <2cm AUC <2cm AUC <2cm AUC <2cm

cube 93.8 100.0 93.8 100.0 93.5 100.0 93.6 100.0 93.7 100.0
sphere 88.6 100.0 88.9 100.0 89.1 100.0 89.3 100.0 88.3 100.0
lego_toy 90.8 99.3 90.6 98.7 90.6 98.9 90.7 98.8 90.6 98.8
teapot 88.2 100.0 88.0 99.9 87.9 99.8 87.9 100.0 88.1 100.0
cup 92.9 100.0 92.9 100.0 92.9 100.0 92.9 100.0 92.9 100.0
jug 84.6 98.8 84.5 98.3 84.4 98.7 84.7 98.7 84.2 96.9
bowl 80.4 78.7 80.3 77.9 80.6 78.8 80.8 78.9 80.3 78.4

mean 88.5 96.7 88.4 96.4 88.5 96.6 88.6 96.6 88.3 96.3

Table 4.5: Accuracy results of the mesh_pose from different experiments. All networks trained
with medium augmentation.
Networks from left to right:
40 epochs on the standard dataset with about 50k samples;
80 epochs on the same dataset (50k samples);
40 epochs on a very small dataset (low-data) with 107 samples;
10 epochs the same very small dataset (107 samples);
40 epochs same network as the first column but with noise and blur in evaluation.
Mask R-CNN rates from left to right:
detection rate: 92.73% ; error rate:0.16%
detection rate: 94.33% ; error rate:0.13%
detection rate: 95.16% ; error rate:0.68%
detection rate: 95.14% ; error rate:0.74%
detection rate: 94.00% ; error rate:0.70%

accuracies, for translation (𝑡), rotation (𝑅), and the AUC metric, than the initial pose. This indicates
a successful initialization of the trackers, because they are able to refine the pose.

Particle Tracker vs. Gaussian Tracker

The particle tracker refines the pose faster and is accurate than the Gaussian tracker. But both
trackers still outperform the initial pose (mesh_pose). A reason for the more inaccurate results of
the Gaussian tracker may be that the tracker is less robust to inaccurate initialization. As observed
in the simulation, the tracked objects sometimes drift away from the correct pose towards the table
or other objects. Once the Gaussian tracker tracks the object correctly, it maybe even more precise
than the particle tracker as the authors of DBOT mentioned in their paper [IWC+16].

The “<2cm” metric does not behave like the other metrics, for the Gaussian tracker. The metric
decreases over the time. This effect could also be related to the pose drift mentioned before. The
“<2cm” metric penalizes such drift, away from the true pose, more than the other metrics. Because
the drift does not happen very often, the other metrics increase for the Gaussian tracker as well.
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val train

cube 4 46
sphere 7 54
lego_toy 7 56
teapot 5 54
cup 8 51
jug 6 51
bowl 7 55

Table 4.6: Occurrences per class in a small dataset for the low-data experiment.
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Figure 4.5: Loss plots of the low-data experiment. Smoothed by rolling average. The unsmoothed
plots can be found in the Appendix, Figure A.2. The dotted red line indicates the
boundary between heads only and fine-tuning training.

4.3.3 Low-Data and Inaccurate Masks

Another experiment indicates the performance of the DBOT initialization with a Mask R-CNN
network, which is trained on a small dataset (low-data training). The dataset contains 91 training
and 15 validation images, the occurrences of each class are presented in Table 4.6.

The network is trained for 40 epochs with this small dataset and medium augmentation. The
evaluation shows that the average precision of Mask R-CNN on unseen data is 91.2098%, which is
still good. It is important to include augmentation during training with small datasets, otherwise
the trainings tends to overfit. The loss plots of these trainings compared to the network trained with
a big dataset are presented in Figure 4.5. Generally the loss of the low-data training is smaller. The
reason maybe some overfitting to the small dataset. Another interesting aspect is that the final mask
loss on the validation dataset is almost the same as for the network trained with the big dataset.

To confirm the results, the accuracy of the pose from the DBOT initializer, which receives more
inaccurate masks from the low-data network, is shown in Table 4.5.
These results show that this pose estimation produces the same accuracy as the pose estimation with
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4.3 Pose Experiments

Figure 4.6: Mask R-CNN results from the low-data experiment network after 16 epochs. On the
left are the ground truth images and on the right the segmented images.

the more accurate masks. Even the detection rate is higher than for all the other networks in the
table. The error rate is higher as well, but in sum the low-data network obtains the highest number
of correct labeled objects. The reason for the robust pose refinement, even with inaccurate mask
inputs, is the outlier detection. It compensates the inaccuracies and leads to the robustness of the
coherent-point-drift point cloud registration.
Furthermore, when selecting the weights from epoch 20 on the low-data network the pose results
are practically identical. Only the error rate is a little bit higher, than for the 40 epochs weights.
The images presented in Figure 4.6 are the results from the network after 16 epochs training on the
small dataset. These results are excellent, considering the small dataset and short training period. It
is quite impressive, how fast the Mask R-CNN is able to learn from a remarkably small dataset.
The fact that the accuracy of the masks plays a minor role, is observed during the evaluation of the
network with 80 epochs, as well. This network has even more accurate masks than the standard
network, but the performance is still the same.

All these results prove, that the complete pipeline performs very well even with small datasets and
is very robust to non-perfect segmentation masks. Combining the facts that the pose estimation is
very robust and the Mask R-CNN network has a high learning speed, the pipeline is able to adapt to
new objects or other datasets very fast.
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(a) Heavy noise and blur in the point cloud.

(b) Some images later there is less noise, this shows
that the grey Gaussian tracker still tracks the object
very good. The green particle tracker is not able
to follow the object.

Figure 4.7: Tracking in highly distorted point clouds.

4.4 Noise in Depth Image

In this experiment, the visual distortions, like noise and blur, are added to the RGB and depth image
during the initialization. These effects are frequently updated on every captured image (10Hz). The
imgaug library [JWC+20] assists to generate these effects. Both effects are not applied uniformly.
The strength of the effect changes randomly across the image and over time. The objective is to
simulate a “real” camera form the synthetic images and compare the performance. The range of the
noise for the depth image is between 0mm to 7mm. Therefore, the maximal difference from one
pixel to its neighbor, on a planar surface, is about 14mm.

The results of the experiments are shown in Table 4.5. They show only a minimal decrease of
accuracy compared to the standard evaluation. Furthermore, the point cloud registration takes about
50% more time for the distorted point clouds than for the standard registration. Because the results
are very close to standard evaluation, another experiment is started with even more noise and blur.
The maximum noise is set to 60mm, which is quite high. The results of the second experiment
are almost as good as the results from the first one. The mean precision for AUC metrics is 87.2%
(1.3% lower than the standard precision) and for the <2cm metric is 95.1% (1.6% lower than the
standard precision). Additionally, the results of the second experiment are verified manually. This
shows that the outlier detection and the registration performing excellent in refining towards the
best-matching position, even in highly distorted point clouds.
Furthermore, the tracking of DBOT in the second experiment showed that the Gaussian tracker is
able to track the object really well with the distortions in the input point cloud (see Figure 4.7). On
the contrary, the particle tracker is not able to handle the tracking with the distortions. The reason
here is not the initial pose, as the successful tracking of the Gaussian filter proves, but the particle
tracker itself.
In conclusion, the pose estimation of the DBOT initialization is extremely robust against noisy or
blurry images.
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(a) potted meat can (b) wood block (c) pitcher base (d) bowl

(e) mug

Figure 4.8: Some YCB Dataset Objects. [CWS+15]

4.5 Results of other Papers

This section presents a brief overview over the results form the DenseFusion paper [WXZ+19] and
compares them to the results from the thesis. In their paper, they compare DenseFusion [WXZ+19]
with PoseCNN [XSNF18]. The paper uses the same metrics as used in the thesis (see Section 4.3.1).

DenseFusion [WXZ+19] evaluated their work on the YCB [CWS+15] and the LineMOD[HHC+11]
datasets. Therefore, a direct comparison of the results is not completely valid, due to the different
datasets used for evaluation, but it provides an idea how this approach performs compared to others.

The following objects from the YCB dataset are comparable, in terms of size and form, to objects
from the final dataset in the thesis:

YCB dataset own dataset
potted meat can (4.8a) <-> cube

wood block (4.8b) <-> cube
pitcher base (4.8c) <-> jug

bowl (4.1g) <-> bowl
mug (4.8e) <-> cup

The results from the DenseFusion paper compared to the own results are presented in Table 4.7.
For all the compared objects, the own results are pretty close, some are even better compared to
their results.
The mean accuracy of DenseFusion is 93.1% for the AUC metric. The mean AUC of the mesh_pose
with 88.5% is already very close and compared to the particle tracker after 3s with 93.6%, the
DBOT pipeline is even better than the accuracy of DenseFusion.
As already mentioned, the direct comparison is not totally fair here, but the pipeline presented in the
thesis produces excellent results, which can definitely challenge current state of the art frameworks
like DenseFusion.
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PoseCNN DenseFusion Own results
[XSNF18] [WXZ+19] own mesh particle 3s

AUC <2cm AUC <2cm class AUC <2cm AUC <2cm

master chef can 95.8 100.0 96.4 100.0
cracker box 92.7 91.6 95.5 99.5
sugar box 98.2 100.0 97.5 100.0
tomato soup can 94.5 96.9 94.6 96.9
mustard bottle 98.6 100.0 97.2 100.0
tuna fish can 97.1 100.0 96.6 100.0
pudding box 97.9 100.0 96.5 100.0
gelatin box 98.8 100.0 98.1 100.0
potted meat can 92.7 93.6 91.3 93.1 cube 93.8 100.0 97.0 100.0
banana 97.1 99.7 96.6 100.0
pitcher base 97.8 100.0 97.1 100.0 jug 84.6 98.8 95.2 99.6
bleach cleanser 96.9 99.4 95.8 100.0
bowl 81.0 54.9 88.2 98.8 bowl 80.4 78.7 82.9 80.2
mug 95.0 99.8 97.1 100.0 cup 92.9 100.0 95.3 98.9
power drill 98.2 99.6 96.0 98.7
wood block 87.6 80.2 89.7 94.6 cube 93.8 100.0 97.0 100.0
scissors 91.7 95.6 95.2 100.0
large marker 97.2 99.7 97.5 100.0
large clamp 75.2 74.9 72.9 79.2
extra large clamp 64.4 48.8 69.8 76.3
foam brick 97.2 100.0 92.5 100.0

MEAN 93.0 93.2 93.1 96.8

Table 4.7: Evaluation of 6D pose (ADD-S) on YCB-Video dataset. The first four columns are from
Table 1 in the DenseFusion paper [WXZ+19] on page 6.
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Conclusion

The thesis comes up with a whole pipeline to simulate a robot environment, to accurately compute
the initial poses of the familiar objects, and to initialize the object tracker, DBOT [IW+16]. The
objective is to provide a robust initialization for the tracker and the feedback from the tracker for
precise robot manipulation. The tracking pipeline is build from state-of-the-art components. The
individual parts of the pipeline are cooperating successfully and they are flexible to integration into
other systems.

The experiments show that the DBOT initialization in general performs excellent. Furthermore
the pipeline only requires a minimal amount of training to adapt to new object sets, because Mask
R-CNN is the only part which requires training. Other frameworks like DenseFusion requires more
training than just the instance segmentation for each new object.
Moreover, it is shown that Mask R-CNN can be trained quite fast and with very little data due to the
use of pre-trained weights e.g. from the COCO dataset. The main objective of using Mask R-CNN
is to classify objects and provide labels. The masks gives a rough idea of the object location in the
image or a bounding box could be enough. The mesh_pose estimation handles the final refinement,
even with inaccurate masks or other distortions (noise or blur). DBOT only needs the initial pose
and the 3D model of the object for the tracking.
All poses in the pipeline are in camera coordinates, therefore the tracking even works without
knowing the exact location of the camera. Only when the real position is used for some manipulation,
the camera pose is required.

On one hand, the advantages of this tracking pipeline are the handling of textureless objects,
symmetric objects, and the utilization of transfer-learning for Mask R-CNN. Furthermore it is
adaptable to other systems because it uses popular and well documented components.
On the other hand, the use of the 3D models limits the pipeline to objects, where the 3D model is
available, and has a fixed shape (objects with no degrees of freedom). The pipeline is only able to
handle one 3D model per class, therefore every model requires to have its own class for the instance
segmentation. For example, the pipeline cannot estimate the pose of two different cars like a sports
car and a SUV, which are both labeled as car. To properly handle this case, Mask R-CNN needs to
be trained for the classes sports_car and suv.
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Outlook

Overall, the results are promising. The pipeline and some individual parts may be used in future
robotic research projects. The tracking could be an excellent base to develop advanced manipulation
approaches or to accurately predict the intention of a person, who is manipulating the objects in
front of the robot. This could lead to a better robot-environment or robot-human interaction.

Nevertheless, there are still many opportunities to improve the pipeline. One improvement could be
the usage of a GPU for the mesh registration and for the DBOT tracking, to improve the speed of
the initialization and the tracking. The probreg library [Ken], which performs the registration, is
capable of using CUDA. But this approach was not used by the thesis. It may be worthwhile to look
into the fast-coherent-point-drift approach from Feng et al. [FFZ20] for better performance.

Another level of improvement could be to utilize a small convolutional network to refine the pose
after the registration of the point clouds. By using the label and the pose of the object as input to
the network, it tries to minimize the bias by adding a custom offset. This would add an additional
training effort to the network, but since the network could be small, it should be no problem. Then
the network may even detect additional biases in the registration, outside the z-direction.

Furthermore, there was no access to the lab during the time of the thesis due to CoVID-19
pandemic. The drawback is, that there are no results about, how the approach would perform in a
real environment with noisy sensors, blur, real light conditions or cluttered background scenes. The
complete tracking could be tested with a real dataset on a real robot or at least with more realistic
data and simulation. Another possibility is to render objects into real background images, as done
in other approaches.
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Figure A.1: Loss plots. The dotted red line indicates the boundary between heads only and
fine-tuning training.
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Figure A.2: Loss plots of the low-data experiment. The dotted red line indicates the boundary
between heads only and fine-tuning training.
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