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Abstract

A critical feature of situated visualization toolkits is the ability to automatically place visualizations
by detecting objects and surfaces in the physical environment. However, the few existing available
toolkits lack this feature, which slows down development cycles and makes situated visualizations
less practical. In this thesis, I present AVAR-X, a toolkit to create situated visualizations that boosts
the agility in development cycles through spatial mapping and object recognition. To this end, I
extended AVAR, an existing toolkit, with situating modalities as well as revised the user interface
such that development of situated visualizations is user-friendlier. Using AVAR-X, users can situate
visualizations by selecting targets in the environment, using two predefined modalities, eliminating
the need to do this by hand. To demonstrate the practical application of AVAR-X, I present three
usage examples, developed using the toolkit. They illustrate how AVAR-X may be used to quickly
situate energy efficiency visualizations in a room, how situated visualizations can help in day-to-day
scenarios such as managing the inventory of a supermarket, and how troubleshooting complex
computer networks can be made easier. While AVAR-X indeed simplified the development and
situating of visualizations, further improvements could be made. Exploring different methods of
text entry, or integrating common programming tools, are only a couple of ways of helping the user
with agile development of situated visualizations.

Kurzfassung

Eine essentielle Funktion jedes Toolkits zur Erstellung räumlich-situierter Visualisierungen ist
es, diese nahe ihres Referenten positionieren zu können. Um diese Positionierung zu erleichtern,
sollten dabei Objekte und Flächen in der Umwelt automatisch erkannt werden. Allerdings besitzen
keine der wenigen existierenden Toolkits diese automatische Funktion, was die Entwicklung
verlangsamt und die Nutzbarkeit situierter Visualisierungen einschränkt. In dieser Arbeit präsentiere
ich AVAR-X, ein Toolkit für die Entwicklung situierter Visualisierungen, welches mit Spatial
Mapping und Objekterkennung die Agilität des Entwicklungsprozesses erhöht. Dazu wurde
das existierende Toolkit AVAR mit automatischen Positionierungsmethoden erweitert, und die
Benutzerobefläche überarbeitet, sodass die Entwicklung von Visualisierungen benutzerfreundlicher
wird. Mit AVAR-X können Visualisierungen automatisch durch zwei Methoden situiert werden,
indem Positionen in der Umwelt direkt festgelegt werden. Um AVAR-X zu demonstrieren stelle ich
drei Anwendungsszenarien vor, für welche ich mithilfe des Toolkits Visualisierungen entwickelt
habe. Diese illustrieren wie AVAR-X verwendet werden kann um die Energieeffizienz eines Raumes
zu visualisieren, und wie situierte Visualisierungen in der Verwaltung eines Supermarktes helfen
können. Des Weiteren zeige ich, wie mit AVAR-X die Fehlerbehebung in einem Computernetzwerk
erleichtert werden kann. Obwohl AVAR-X die Entwicklung situierter Visualisierungen erleichtert
hat, könnten weitere Verbesserungen durchgeführt werden. Verwendung anderer Eingabemethoden,
oder die Integration weit verbreiteter Programmierwerkzeuge, sind nur zwei Möglichkeiten um die
agile Entwicklung situierter Visualisierungen zu vereinfachen.
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1 Introduction

Although toolkits can offer an agile approach to create situated visualizations for immersive AR,
they are often application specific and usage limited. Additionally, state-of-the-art toolkits do not
offer appropriate support to develop data visualizations in an iterative and agile manner while not
breaking the immersion. That is, users are required to design and develop situated visualizations on
a desktop computer and then use visualizations in immersive AR. To address the shortcomings of
these existing toolkits, AVAR [MSY+20] was proposed. AVAR allows users to programmatically
develop visualizations, evaluate, and improve them all from within the immersive environment
itself in an iterative manner.

While AVAR represents a first step in the right direction, it lacks methods to establish a connection
between the created visualizations and the environment. Matching the visualization to the related
object in the real world is not just helpful to the viewer for association and providing tactile, physical
feedback, it may also prevent misunderstandings if multiple visualizations are present. If this
connection does not exist, reordering the physical referents will not reorder the visualizations, which
will cause a false association by the perceived distance of the visualization to the referent. With
AVAR, working in an iterative fashion with multiple visualizations in the environment is impractical,
if not impossible, due to how limited the programming environment is. This however is desirable
if a user wants to compare the performance of different visualization techniques, or if multiple
visualizations are to be situated.

In this thesis I will introduce AVAR-X, which builds upon AVAR, with the goal to connect
visualizations more to the environment and to improve the programming interface in a way to
enable the user to more easily develop visualizations from within AVAR. I will give details on how I
implemented my changes and why I changed AVAR the way I did, finally illustrating with practical
examples the improvements of AVAR-X over AVAR.

Situated visualizations. Bruce H. Thomas et al. define a spatially-situated visualizations
as [MSD+18]

(...) data representations that are related to and portrayed in their physical environ-
ment. Sensemaking is achieved through the combination of the visualization and the
relationship of that visualization to the immediate physical environment.

Take for example a person that wants to purchase a smartphone. Specifications of all the devices for
sale could be looked up online to compare between the different models. Or, the store could situate
a visualization of the specifications for each model right next to the relevant device, its so called
physical referent. This way, the user is close to both the relevant visualization as well as the physical
referent itself. In the smartphone example, having access to the devices helps in understanding the
visualizations better, as they can help the viewer in, for example, comparing the weights of different
models against each other. The distance of the visualization to the referent, real or perceived, is
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1 Introduction

Figure 1.1: Two ways to situate a visualization: The referent, in this case the smartphone, can
either show the visualization directly on the screen, or the visualization can be printed
out and situated close to the referent.

what makes a visualization situated, however, there is no fixed threshold. Situated visualizations are
not reliant on a specific display method, they can be shown on, for example, a display, or be printed
out on a piece of paper, as seen in Figure 1.1.

A special case of situated visualizations are embedded visualizations. Embedded visualizations
subdivide the referent into multiple sub-referents, to each of which a visualization is situated. In
the smartphone example, stickers on the devices themselves next to the camera, the touchscreen or
the microphone with a visualization of their specifications printed on them, would be examples of
embedded visualizations.

A challenge when situating visualizations comes with physically large or movable referents. Take
for example, a person wanting to visualize conduits hidden in a wall. While it is possible to print
out a plan of the wall with the conduits visualized on it, establishing a mapping between the plan
and the real referent can become very difficult. This becomes especially apparent if the precise
location of a conduit on the surface of the wall needs to be known. The user would have to first find
the conduit on the plan, and then, measure the distance from some reference point. Finally, the
position can be marked on the wall. Possibly, a better approach would be to scale up the plan to the
size of the wall, and overlay it directly on it. This way, the position of all conduits will become
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immediately apparent to the observer, and no additional measurements have to be made. Thanks
to AR technology, this approach is now practical. AVAR-X aims to support the user in the agile
development of such situated visualizations.

Agile development. According to Pekka Abrahamsson et al., a development method is agile
if [ASRW17]

(...) software development is incremental (small software releases, with rapid cycles),
cooperative (customer and developers working constantly together with close com-
munication), straightforward (the method itself is easy to learn and to modify, well
documented), and adaptive (able to make last moment changes).

If a method follows these principles, developers should be able to recognize and adjust to
unexpected situations as they progress [All21]. These concepts can be applied to the development
of visualizations as well. With agile visualizations, the focus lays closer at both the incremental
as well as the adaptive aspect of agile development. Visualizations should be built in incremental
steps, each of which should only last a couple of minutes [Ber16]. To make a toolkit suitable for
agile visualization development, it has to make these short development cycles possible.
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2 Related Work

In this chapter I discuss related works. Specifically, I introduce other immersive analytics toolkits
and explain how these approaches to creating visualizations in immersive environments differ from
my approach with AVAR-X.

MIRIA [BLD21]. The Mixed Reality Interaction Analysis toolkit (MIRIA) was created to help in
analyzing spatial interaction data by the means of situated visualizations. Using a Head-Mounted
Display (HMD), the user can collaboratively view the data in the same environment in which it
was recorded. The study data to be analyzed as well as additional metadata are loaded onto a
HoloLens device. After choosing the desired data set, the data is imported and processed, after
which the user can place the visualization in the space. Seven fixed 3D and 2D visualization types
such as trajectory plots or heat maps are available, which the user can select from within the AR
environment. Different parameters of the visualizations can be changed without the need to remove
the HMD. The user can, in-situ, start and stop the playback of the recorded data, as well as filter
it by specifying a desired time interval. The user has to manually situate the 3D visualizations,
2D visualizations can also be situated by attaching them to, for example, walls, or to the virtual
representation of the device that was tracked. MIRIA is an application specific toolkit. That is,
it is intended to only visualize spatial interaction data. Similarly to AVAR-X, visualizations can
be edited in the same immersive environment in which they are viewed, and interactions with an
external editor is only required for the configuration of the study data. However, because MIRIA
is intended for a specific use-case, it is not designed with the intention of users fundamentally
changing or adding new visualizations in-situ. To do so, the user would have to use the Unity editor
and program new visualizations in C#.

DXR [SLC+18]. Users of DXR are able to customize and interact with visualizations from within
an AR or Virtual Reality (VR) environment. The toolkit is intended for a wide range of users,
from non-programmers to experienced Unity developers. To describe the visualization, a custom
grammar is used, similar to Vega-Lite. Input data is provided as Comma-Separated Values (CSV)
or JavaScript Object Notation (JSON) files. Visualization parameters are loaded from a JSON file,
which more experienced users can edit directly instead of using the GUI. Apart from using text to
create a visualization, DXR provides templates for common visualizations that can be simply added
into the Unity editor by drag-and-drop. Visualization parameters like the data set, or the mark type,
are changeable from within the environment, however, the user is restricted to the GUI alone, in
which the JSON file describing the visualization cannot be edited directly. Being able to do so
would allow for more direct control over the visualization, including the filtering of the data. More
advanced users can create their own visualizations using C#, however, this is not possible in-situ.
With DXR, situated visualizations are possible, but not efficiently. In particular, the position of
every referent has to be provided as an offset to some anchor which has to be measured manually
by the user. Then, a visualization can be placed in the environment, however, this also means that
the visualization is not attached to the referent. A notable difference to AVAR-X is that the user
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has to interact with the Unity editor to create a visualization, only some adjustments can be made
without it. AVAR-X does not require any changes in the Unity editor to change a visualization, it is
programmed directly in-situ.

IATK [CCB+19]. With IATK, visualizations can both be created from templates using the Unity
editor or, if the user is more experienced, by creating new visualization templates using C# code.
The visualization can then be shown in either VR or AR. Contrary to MIRIA and AVAR-X, IATK
does not allow for filtering or basic changes to visualization parameters in-situ. The data for the
visualizations is provided by CSV files, that are loaded into the Unity editor. Similar to the other
toolkits mentioned, IATK requires the user to manually place the visualization in the environment.
IATK does not have any special situating features that create a link between referent and visualization.
As opposed to AVAR-X, IATK allows for the linking between multiple visualizations. For example,
a user wants to visualize the same data set with both a 3D scatter-plot and a 3D bar-plot. After
enabling the feature in the editor, the user can select specific data points from the scatter-plot, that
are then highlighted in the bar-plot. A big difference to DXR and AVAR-X is, that ITAK is designed
to be used with a large number of data points.

PapARVis Designer [CTW+20]. The PapARVis designer is a tool to create augmented static
visualizations. Instead of being a stand-alone visualization, they are supposed to extend physical,
static visualizations and provide additional, possibly dynamic information. A static visualization
printout from a newspaper could, for example, be extended with real time data. As the name
suggests, PapARVis Designer is only used to design the visualizations. The application creates the
necessary output files, that are then hosted on a server. To view the visualization, the user has to
provide an AR application. To create visualizations, PapARVis Designer uses an extension of the
Vega grammar. The user describes the visualization using this grammar in a JSON file, data can be
either entered directly or loaded from files. A preview of the designed visualization is provided
as a prototype for evaluation. Once completed, the visualization is split into a static and a virtual
part. From the static part, a target is created which can then be used by the AR viewer to situate the
virtual part. The target along with the virtual part is uploaded to a public server, where the used
AR application then combines the static visualization with the virtual component. Similar to the
other toolkits previously introduced, the visualizations created with PapARVis Designer cannot be
modified directly with the AR device. As the toolkits’ focus lays on 2D visualizations, and it is
intended to only extend existing visualizations, the need for testing on a real device is not as high as
for 3D visualizations that are intended to be embedded in the environment.

Corsican Twin [PWE+20]. The Corsican Twin toolkit takes advantages of VR as well as AR
to enable the development of situated and embedded visualizations. With it, visualizations can
be created within the immersive environment using a graphical user interface in-situ. However,
the development is expected to be conducted within VR instead of involving a real space. To do
so, a model of the real location is used. To situate a visualization, the user can then place virtual
markers in VR, which will later match up with physical markers in the real location. Once the user
is satisfied with the result, an AR headset can be used to view and interact with the visualizations.
Corsican Twin is limited to simple and template-based visualizations, where AVAR-X aims to give
the user more control over how the data is visualized. Furthermore, AVAR-X is intended to be used
close to the referent when developing a visualization, whereas a core goal of the Corsican Twin
toolkit is to enable the development off-site. Very similar to AVAR-X are the situating features,
helping the user create situated as well as embedded visualizations without the need to position the
visualization manually.
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3 AVAR-X

AVAR-X, is a situated visualization toolkit, which extends the AVAR toolkit. Specifically, AVAR-X
includes support for spatial mapping and object recognition. In the following, I will give detailed
information on how I implemented these extended features, and finally, give an architectural
overview over the new AVAR-X toolkit.

3.1 AVAR

AVAR1 is a toolkit aimed at enabling the user to create, evaluate, and improve situated visualizations
all from within the immersive environment itself. It features a simple text editor with which the user
can write and run a script and a number of example visualizations to choose from. The architecture
of AVAR is shown in Figure 3.1 (b). AVAR employs the Pharo2 scripting language and VM as
a back-end to build the visualizations. After writing the code for the visualization, the code can
be executed, which will send it to a Pharo VM. The script is executed in the VM, the resulting
geometries are returned to AVAR using the JSON format, and the visualization will appear in the
immersive environment. The user can manipulate the visualization and evaluate it, making changes
to the code if necessary, all without breaking the perception of immersion. The code used to build a
visualization can be temporarily saved to a clipboard, and later recalled. This way, a practically
unlimited number of visualizations can be displayed [MSY+20].

Figure 3.1 (a) shows how AVAR is limited when working with multiple visualizations and binding
them to objects in the real world. The code editor (1) is used to to build visualizations (2). After
the code is successfully deployed, the visualization will appear in the environment, and the user
can place the visualization relative to a fixed origin location in the room (3). This means that
there is no connection between the referent and the visualization, if the referent was to be moved,
the visualization would stay put. Furthermore, due to the fixed number of code editors (1), the
user is limited to actively working on one visualization at a time. If another, previously created
visualization was to be edited, the old code had to be recalled, and the code for the new visualization
would be lost, as the other visualization would occupy the clipboard. In the next section, I explain
how I want to address these shortcomings with a new toolkit, called AVAR-X.

1https://github.com/bsotomayor92/AVAR-unity/, visited October 27, 2021.
2https://pharo.org/, visited October 27, 2021.
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3 AVAR-X

(a) From code to situated visualization in AVAR: The
single code window (1) has to be used to write the
code for multiple visualizations (2). The user then
places them manually in the AR environment (3).

(b) The code of the visualization is sent to the Pharo
VM, which evaluates the script and returns the seri-
alized scene. AVAR interprets the JSON response
and adds the visualization to the environment. The
user then can situate the visualization manually
using gestures.

Figure 3.1: AVAR principle and architecture.

3.2 Design

The objective of AVAR-X, which builds upon AVAR, is to:

i) let the user situate visualizations by specifying target objects in the environment, and

ii) ease agile in-situ development of visualizations by providing a method for organizing multiple
code editors.

In the following, I will detail my design decisions for AVAR-X, and how they fulfill these
objectives.

3.2.1 Concept

Figure 3.2 shows the overall concept of AVAR-X. Like with AVAR, in AVAR-X visualizations are
entirely programmable from within the immersive environment. The user should have an unlimited
number of code editors available (1). Each of them should describe one visualization (2). The user
then should have the option of choosing between different situating modalities, which are managed
by trackers (3). A tracker is responsible for binding the visualization to a target in the real world (4),
keeping track of the object’s position, and updating it if necessary. The user should then be able to
make fine adjustments to the position of the visualization relative to its target.

3.2.2 Software and Hardware

To help explain my design decisions, I will first introduce the software stack and hardware I used.
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3.2 Design

Figure 3.2: In AVAR-X, every code editor (1) is linked to a visualization (2). A tracker (3) is
responsible for situating the visualization in the AR environment by binding it to a
target (4).

Unity. Unity3 is an engine designed for developing 2D and 3D applications for a wide variety of
devices. A Unity application is divided into Scenes, which contain GameObjects arranged in a
tree-like structure. This hierarchy determines the transformations of the GameObjects, this means
that all transformations applied to a parent GameObject will also affect a child GameObject. The
GameObjects are internally built of multiple Components. These components are scripts written in
the C# language and define how a GameObject behaves.

Vuforia. Vuforia4 is a library intended for the use in AR applications, and can be easily integrated
into a Unity project. With it, an AR application can determine the orientation and position of
an object or image printout by the means of a color camera. The tracking capabilities can be
automatically extended by additional capabilities of hardware on the device, such as accelerometers.
It also features extended tracking, the capability to track the position of an object by observing
features of its surroundings, even if the tracked object is not in the view anymore.

Pharo. Pharo is a modern Smalltalk environment, which combined with toolkits such as Roassal5
and WODEN6, provide users expressive means for building visualizations. Because it is just-in-time
compiled, it is very fast to execute newly written code, making it ideal for an agile development
approach, in which users have to iterate on the code several times to develop a visualization script.
The syntax is designed to be as simple as possible.

3https://unity.com/, visited October 27, 2021
4https://developer.vuforia.com/, visited October 27, 2021
5https://github.com/ObjectProfile/Roassal3/, visited October 27, 2021
6https://github.com/woden-engine/woden/, visited October 27, 2021
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3 AVAR-X

Microsoft HoloLens 2. The Microsoft HoloLens 27 device is the successor to the older HoloLens
1 HMD, featuring a resolution of 1440×936 pixels. Some of the features include a front-facing
color camera, and multiple black and white cameras used for reconstructing the environment, and
determining the location of the HMD in the room.

3.2.3 Situating Features

To attach a visualization to a physical object in the AR environment, the position of this object
has to be known. If the object is movable, it may also be desirable that the position, rotation, and
occlusion is updated at a reasonable rate. Methods for tracking a physical object generally fall into
one of two different categories, inside-out or outside-in tracking. When using outside-in tracking,
sensors are placed in the vicinity of the object that then calculate the position of it. With inside-out
tracking, the object uses sensors to observe the environment around it, and determine the position
of itself. With AVAR-X, two situating methods were to be chosen and implemented.

Method 1: Spatial Mapping. The first situating method makes use of the inside-out tracking
capability of the HoloLens, called spatial mapping. The device already supports this as it has to
know the approximate position of the device to correctly display the holograms. The surroundings
are scanned using multiple cameras on the device, and the distinctive features of it are then used to
build a 3D mesh that closely resembles the environment around the device [Fer20]. Because this
mesh directly relates to the objects in the environment, it can be used to situate visualizations on any
of them. The user would only have to choose the part of the mesh that relates to the object in the real
world. Additionally, the second generation of HoloLens devices also support scene understanding.
The experimental library divides the spatial mapping mesh up automatically into categories, such
as, platforms, walls and ceilings. Using this library, the user could directly choose a recognized
object instead of manually specifying it on the mesh.

With spatial mapping, the situating of a visualization close to its referent would be faster, as the
manual adjustment of the position is not required anymore. Furthermore, the quick switching
between positions in the room would enable the user to evaluate the visualization closer and further
away from the user. When using scene understanding, the process of selecting the relevant target on
the spatial mapping mesh can be simplified, as the mesh is already divided into sections.

As spatial mapping relies on the features of all objects around the device, attaching markers to objects
is not required, which can be beneficial in some circumstances (such as attaching a visualization
to a ceiling, or quickly situating the visualization in front of the user for development purposes).
One big drawback of spatial mapping is that binding to smaller objects may not be possible, if the
HoloLens does not recognize it. Furthermore, attaching a visualization to a portable object would
require the user to change the spatial mapping target manually. The scene understanding library
actually supports a method to give objects in the environment a unique id. After the surroundings
are re-scanned, the library will try to give the same id to what is identified as the same object. When
testing this feature however, I found it to be be not reliable enough.

7https://www.microsoft.com/en-us/hololens/hardware/, visited October 27, 2021
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Method 2: Object Recognition. To mitigate the shortcomings of spatial mapping, a different
situating method using physical markers was chosen. To do so, the Vuforia library is used. It uses
the front-facing color camera of the HoloLens to track targets, making it an outside-in tracking
method. One benefit of Vuforia is that it is intended to be used with the HoloLens, utilizing some
of its other sensors to improve tracking quality. This also implies that Vuforia does not need to
determine the position of the device itself . As such, visualizations bound to markers whose location
has been determined once before, but are not in view anymore, will still be situated at the correct
position, assuming the position of the marker has not changed.

The library supports the tracking of different types of markers, such as simple images, cylinder-
shaped objects, or more complex targets, by loading a model of the real-world object into the target
database. This way, the need for physical markers is eliminated, however, object models would have
to be added into a database that then has to be imported into Unity, being very specific to the use
case. Initially, when designing AVAR-X, I considered making targets addable from withing the
immersive environment, however, due to limitations in the Vuforia API this idea was not realised.
For changing or adding a target, the Unity editor has to be used, this should not, however, affect the
development of visualizations.

One of the goals for AVAR-X is to make the API as extensible as possible, such that new situating
modalities can be added without changing any unrelated code. The interface with which the other
parts of AVAR-X interact, should be kept as abstract and high-level as possible.

3.2.4 User Interface

AVAR has a simple user interface, controlled with a Bluetooth keyboard. It presents the user two
window panels and a list of example visualizations to choose from. One panel is used by the user
for writing code and one is used to show errors, between which the user can switch with the tab key.
This is extremely limiting, especially when working with multiple visualizations. When designing
AVAR-X, I decided to keep the keyboard-centric nature of the user interface. The reason behind
this is, that while virtual keyboards inside the immersive environment could be used, writing large
amounts of text on one would not be comfortable. A real keyboard gives the advantage of tactile
feedback, and thanks to the nature of AR, inexperienced typists are still able to look at their hands
and the keyboard. A big drawback of this approach is that the user has to be close to a surface that
allows the keyboard to be placed on, and as such is somewhat restricted to where in the environment
the simulations can be developed.

AVAR uses 2D windows that are always fixed in front of the users view. I decided to keep this
approach in AVAR-X, however, to enable the user to work on multiple visualizations simultaneously,
a method for arranging and switching between different code editor windows had be implemented.
Because of the limited resolution of the HMD, and because the user already uses a physical keyboard
for programming, I took inspiration from the i3 window manager8 and decided to implement a basic
tiling window manger for AVAR-X. As opposed to a more common, floating window manager, a
tiling window manager divides the available screen space into tiles, resizing them such that all
available space is used. This has the effect that windows never overlap, and that the user does not
need to manually control the position of the windows. An example can be seen in Figure 3.3, where

8https://i3wm.org/, visited October 27, 2021
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Figure 3.3: The i3 window manager divides all available screen space up into tiles that are
arrangeable either vertically or horizontally. Windows are controlled mostly through
the keyboard, although some operations can be performed with the mouse.

the available space is automatically divided into three tiles, one tile for each window. If a window is
to be inserted, the focused window is resized either vertically or horizontally to half its original size,
depending on what the user selected beforehand. The new window is then inserted and resized such
that the created gap is completely filled. i3 also provides work-spaces, essentially virtual desktops,
between which the user can switch rapidly.

The window manager for AVAR-X is intended to give the user more flexibility when programming
visualizations. The user should be able to create, resize, close and freely arrange windows. Two types
of windows should be implemented, a code editor for programming visualizations, and a console
window for showing messages from the Pharo backend. Additionally, the code editor window
should enable the user to select from the available situating modalities and their related targets. As
illustrated in Figure 3.2, every editor should be responsible for only up to one visualization. Due to
the relatively low resolution of the HMD, the number of simultaneously open windows is limited.
With switchable work-spaces similar to i3 however, this number can be increased. Controlling the
window manager should be, like with i3, possible only with key combinations.

The advantage of a tiling 2D window manager over a more traditional 2D floating window manager
is that all available space will be used, which is limited on the HMD. However, learning key
combinations to control windows might represent a certain difficulty for users that never used a
tiling window manager. A different approach would have been to use 3D windows in the immersive
environment itself, that the user could then manipulate with e.g. gestures or direct interactions.
This would be less constrained by the resolution of the HMD, the user, however, would have the
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Figure 3.4: Most of the implementation was conducted during four months. In particular, (1) the
existing AVAR code had to be ported to the newest Unity version; (2) while adding the
situating features; (3) some problems where encountered, and instead development on
the arrangeable window system started. Finally, (4) the existing situating code was then
adapted to an extensible API, integrating it with the window system and the existing
AVAR code.

responsibility to arrange the windows manually. Additionally, if multiple windows are shown in 3D,
they have to be made either smaller, as is the case with the 2D window manager anyways, or located
further away, which would make reading text harder.

In addition to improving the window system, the selection of example visualizations should be
changed to a selection that provides a preview of the example to the user.

3.3 Implementation

In this section, I present the development process I followed. AVAR-X uses the new LTS version of
Unity, 2020.11.3f, and with it the newly introduced Mixed Reality Tool-Kit (MRTK).

3.3.1 Situating Features

I did not have previous knowledge of Unity, Vuforia, and the HoloLens. In consequence, I decided
that my highest priority for AVAR-X were the situating features. This turned out to be a good
decision, as visible in Figure 3.4.

Method 1: Spatial Mapping

Because a more recent version of Unity was used, I initially chose to use the scene understanding
API instead of the deprecated spatial understanding API to implement the spatial mapping feature.
Unfortunately, this new API is currently experimental and not supported on the older HoloLens 1.
The user would situate a visualization by first scanning the room with the device. After pressing a
shortcut, the scene understanding API then processes the spatial mapping mesh and identifies flat
surfaces like walls and platforms, returning identified objects to the tracker which then assigns a
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(a) Target selection using scene understanding to recognize surfaces. Notable is that only the left window is
recognized properly, as the right window is tilted.

(b) Revised target selection using the look direction of the user. To add a target, the user has to simply look at
a position on the spatial mapping mesh. The sphere indicates the origin of the new target. If the sphere
turns red, no spatial mapping mesh is available and no target can be added.

Figure 3.5: (a) The initial spatial mapping target selection method used scene understanding to
recognize flat surfaces in the room and assigned each a target number the user could
choose. (b) The revised target selection gave the user the ability to choose any position
on the spatial mapping mesh.
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unique number to every surface. The number is situated itself at the origin of the surface, where a
visualization would then be placed. The user can then specify this number to situate a visualization
on this surface.

This implementation had numerous problems, the biggest of which was the re-identification of
surfaces. Because the HoloLens does periodic scans of the environment, the spatial mapping mesh
is periodically updated and changes constantly. The surface would then appear as a different one to
the tracker, which then could not guarantee to give the target the same id. The user would then have
to re-specify the target number for every visualization manually. While the scene understanding
API has a mitigation for this very problem, by giving similar appearing structures unique identifiers,
I found it to be too unreliable for real-world use in testing. Furthermore, not every surface can
necessarily be identified. For example, tables with items on them, such as a keyboard and a monitor,
would not be recognized as a platform. This problem is also visible in Figure 3.5 (a), where the
user can situate a visualization on the left window, not on the right one however, as this window
is tilted and as such not identified as a flat surface. To position the visualization anyways, the
user would have to specify the left window (Target 8), and then manually adjust the position of
the visualization, which would defeat the purpose of the situating feature. Additionally, the object
recognition on bigger spatial meshes was computationally expensive, and the scene understanding
API is experimental, which means that it only works on the newer HoloLens 2 devices.

This is why, very late in the development process, it was decided to completely scrap the idea of
using scene understanding, and instead to use a simpler and more practical approach. The user
can now add spatial mapping targets by pressing a shortcut. This will show the complete spatial
mapping mesh, as seen in Figure 3.5 (b). The user can then look at any point on it, and a cursor will
show where the visualization origin will be placed on the mesh. This is realized by casting a ray
from the camera in the view direction, and colliding it with the mesh. By pressing return, this target
will be added at the point of intersection, and can then be selected in the code editor. Just placing
the visualization at this point will, however, not orient the visualization parallel to the surface, as
the scene understanding API did. To mimic this behaviour, the normal of the point on the mesh is
calculated, and the visualization is then oriented such that the positive / axis of the visualization
points to the opposite direction of the normal. This implementation has a small drawback however,
as the normal of only a small portion of the mesh is used, instead of an average over the whole
surface. If the visualization is situated at a rough surface, the user may have to manually correct the
orientation.

Method 2: Object Recognition

Integrating Vuforia into AVAR-X was very straight forward. To track an object, first a target
GameObject is added in the editor. Any visualization that is to be attached to this object is simply
made a child of this object. If Vuforia then updates the position of the GameObject, the position
of the visualization will automatically change as well, no additional code has to be written. In
AVAR-X, Vuforia is only used with simple image markers, that the user can print out and attach
to objects. Adding targets during runtime, i.e. not in the Unity editor, is limited by the Vuforia
API to only simple image targets. This is why targets are not configurable from within AVAR-X,
however, adding new targets using the Unity editor does not require any C# code to be written. If a
new target has to be added, a new GameObject is created and then added to the list of object tracking
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Figure 3.6: Adding new object tracking targets can be done using the GUI of the Unity editor, no
additional code needs to be written.

(a) The active window is always highlighted. The user
can switch the active window by holding down
the meta key and pressing one of the arrow keys.

(b) Windows are managed using a tree structure. (6)
and (7) are window groups, which arrange win-
dows horizontally and vertically.

Figure 3.7: A practical window arrangement example: Two code editors are placed next to each
other, with a console window showing errors in the scripts below them

targets as seen in Figure 3.6. Because some issues were encountered during the development of the
spatial mapping feature, I intermittently worked on the window manager while waiting for access to
a device.

3.3.2 User Interface

I deemed that implementing the window manager was of less priority than implementing the
situating features, especially since the testing of it would be more straight forward.

Window manager. The window layout is managed by the window manager. Windows are organized
in a tree structure, where every workspace is a separate tree. At the root of every tree is a special type
of window, called the WindowGroup. This window is not visible to the user and only always contains
other windows. These windows, which are the children to this node, are laid out based on the rules
set for the window group. The user can change these rules, by specifying the arrangement of the
windows to be either horizontal or vertical. Because window groups are also windows, they can be
contained in other window groups, as can be seen in a typical arrangement shown in Figure 3.7 (b).
In the example, the user placed two code editors, (3) and (4), next to each other. Below this, a
console window (5) is placed, which will show possible error messages. (2) shows the tree that these
windows form. Window group (6) is set to a vertical layout mode, to place the console window
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(a) Visualization bound to image marker, no offset is
needed.

(b) Visualization bound to cylinder marker. Offset
is added in - and / axes to make sure that the
visualization appears outside the cylinder.

Figure 3.8: Screenshots of an early version of AVAR-X. The white plane/white cylinder indicate
the marker position as recognized by Vuforia.

below the code editors. To place a second code window next to window (3), a window group has to
be inserted with the layout mode set to be horizontal. Into this layout group, a second code window
(4) can now be inserted. Should a window be closed, for example window (4), window group (7)
will be redundant. To prevent these unnecessary window groups from accumulating, the window
manager will check and remove unused window groups in the layout if necessary. In the example,
window (3) would move into place of window group (7), which would be deleted.

The user has to specify the modality and the target to situate a visualization. Because every window
describes exactly one visualization, this selection can be done from the editor describing the
respective visualization. Every code editor shows the used situating modality as well as the target
the visualization is situated at. The user can switch the modality and the target independently for
every window.

Interaction with the window manager is realized with key combinations. Every command involves
the combination of the so called meta key, in the case of AVAR-X the Alt key, and one or multiple
command keys. To change the layout direction of a window to vertical, the user would press the
combination Alt+V, and to open a new code editor the combination Alt+Return is used. All available
shortcuts are listed in Table A.1.

Looking at the example shown in Figure 3.8 (b), it becomes obvious why the user may still have to
adjust visualizations manually despite the situating features. To do so, a visualization selection was
implemented that enables the user to choose a visualization, and then translate, rotate and scale it
using the keyboard. I chose to do this by keyboard, as the manual adjusting of the offset should be
kept to a minimum anyways.

Example selection. Next to improving the code editing functionality of the user interface, the
example selection was improved. To archive this, the list of examples was removed and instead the
user can now show a list of example visualization by pressing a shortcut. A preview for the selected
visualization is shown, and by pressing a key, the code for this visualization will be copied into
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Figure 3.9: AVAR-X gives the user a preview of the example visualizations. Once the user presses
the return key, a new window will be created, and the code inserted. The visualizations
are scaled such that they fit into the users view and the aspect ratio is preserved.

a new code editor. The code for the previews is, like with AVAR, contained in a text file. When
selecting a new preview, this code will be deployed to the Pharo instance, which will return the
geometries.

Because the scale of the visualizations can vary a lot (e.g., a visualization placed on a wall may be
bigger than a visualization placed on a table), the visualization has to be scaled appropriately. To
do so, the bounding box of the visualization is calculated. Then, the visualization is scaled such
that the longest edge in - , . and / axes fits into the users view. Finally, the scaled visualization is
centered. An example of this new selection can be seen in Figure 3.9.

3.3.3 Tracker API

To make AVAR-X as extensible as possible, a C# API was created. The goal is to enable the easy
integration of different situating modalities in the future, without the need to change other parts of
AVAR-X. The implementation happened after both object recognition and spatial mapping have
been implemented, this way I could foresee how the API should look like. This approach had the
drawback that the code for both modalities and the window system had to be adapted to fit the
API.
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Essentially, a tracker exposes to the window system functions to retrieve the available count of
targets, as well an interface to query their names. Binding a visualization (”world”) to a target that
this tracker manages is then as easy as calling the BindWorldToTarget function with the world and
the target number. The tracking manager manages the trackers themselves, this is where a user can
add custom trackers by the means of the Unity GUI.

Figure 3.10: The final architecture of AVAR-X. The interface between the Pharo VM and AVAR-X
is kept the same, so was the interpreter, except for some minor changes due to the
newer WODEN version used. The gesture manager was removed, and all situating
is now done with the tracking manager. Clearly visible is the newly implemented
example selection, now using the Pharo VM to show a preview of the visualization.

3.4 Discussion

The final architecture of AVAR-X can be seen in Figure 3.10, class diagrams of the implemented
features are in Appendix A.1. The interface between the Pharo back-end and AVAR-X is kept
unchanged. The gesture manager was removed and replaced by the tracking manager, responsible
for positioning the visualizations. Additionally, the old GUI code has been revised and the example
selection now also uses the back-end to provide the user a preview of the visualization code.

Because access to a HoloLens 2 device was limited, a lot of development had to be done using an
emulator. This posed a problem, as Vuforia does not work in the emulator and the program will
refuse to start up. The tracking capabilities of Vuforia can be tested within Unity using a webcam,
however, some components still had to be tested in the emulator. This limitation resulted in making
sure to design the components such as the trackers and the window manager as modular as possible,
to be able to e.g. simply disable the Vuforia tracking capability.
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Additionally, MRTK offers two plugins to make a Unity project AR enabled. OpenXR, the
recommended plugin, did not work with native keyboard input, which was required for AVAR-X.
This problem as well as other problems such as crashes when debugging on a real device let me
to choose the older Windows-XR plugin. A benefit was, over the absence of the problems with
OpenXR, that AVAR-X can also be used on a HoloLens 1 device.

Some problems with the documentation of MRTK were encountered, with some misleading and
conflicting information existing.

When deploying a Unity project to a HoloLens 2, it is important that it is build in ”Release” mode.
This means, however, that no debug information can be printed. During development, it was helpful
to show debug information in the immersive environment itself.

A Git repository9 was used to help with versioning the project, and was useful if some mistake
needed to be rolled back. Because a file size limit exists with the Git provider, I had to pay attention
not to commit big binaries, and only commit code changes, along with some metadata.

9https://github.com/st155592/AVAR-X/
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In this chapter, I present selected usage examples [MSK+20] to demonstrate how AVAR-X can
improve agile development and simplify the process of situating visualizations.

4.1 Inventory Management

The Ebeca supermarket needs to monitor its inventory closely. Otherwise, not enough products may
be available, or some of them that are past their expiration date could be still on a shelf. Sarah, a
supermarket manager, wants to know which aisles need to be stocked. Sarah also wants to know
which aisle in the market is frequented more often and at what time of the day, such that placements
of products may be optimized. First, the data has to be obtained. The supermarket already has
an inventory management system, and every time an item is bought, put on a shelve or sold, it is
registered in the system. The expiration dates of items is entered manually into the system when it is
placed on a shelf. Of course when an item is sold, it is not known which item with what expiration
date was sold. This is why aisles are checked periodically for expired products.

Sarah then builds a situated visualization with AVAR-X. The visualization is identical for every
aisle, only the aisle identifier is changed in the code to visualize a different data set. First, her script
queries the data for the specified aisle from the management system. Then it is determined if this
aisle has to be checked for expired products by comparing the earliest expiration date of items placed
on the shelf to the current date. If the expiration date is equal or later to the current date, a label will
show in the visualization, indicating that an employee has to check the contents of the shelf. After
the check, the management system is notified that all products on the shelf have an expiration date
later than the current date, and items with an earlier date can be removed from the system. Next, a
label should show if items have to be moved to the shelf, or if stock of an item is running low. This
is simply accomplished by comparing the number of sold items to the number of shelved items, and
checking if the number of items in the inventory is over a certain threshold. Using the number of
items sold from the aisle at specific times during the stores opening, the script can then calculate the
number of people buying items at this location. Sarah decides she wants to visualize the foot traffic
as well as the average amount of items on the shelf for every hour the store is open. She wants to be
able to compare this statistic to the average of the preceding quarters. To do so, she uses one of the
layouts provided by WODEN to arrange twelve spheres in a circle, each sphere representing the
average data over one hour the store was open. She uses the size of the sphere to indicate how many
people bought an item in the aisle, and colors the sphere depending on how many items were on the
shelf for this specific hour. Then she creates three copies of this visualization and arranges them
in a grid layout. Every circle then represents the data of the three preceding quarters. To situate
the visualization, a unique marker can be attached to each shelf. Then to deploy it, a new window
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Figure 4.1: A visualization that helps with managing the inventory of a supermarket. Shown is
if the staff has to check the expiration date of items and what items have to be put
on the shelf. Also shown is the recent traffic through the specific isle at every store
opening hour, compared to other quarters of the year. This way, item placement may
be optimized. The visualization is situated using a marker, in an actual supermarket,
every aisle would be marked with a unique marker at each end of the aisle .

with the copy of the visualization code is created. Sarah then selects the marker modality and the
appropriate marker in the GUI. She specifies the correct aisle number in the code and executes it.
The visualization is then automatically situated at the appropriate position.
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A possible implementation of such a visualization can be seen in Figure 4.1. Here, all data was
loaded from a CSV file1 containing the synthetic dataset. The visualization shows Sarah directly
if an item has to be restocked or if she has to check the expiry dates of the items. Because the
visualizations are situated directly on the relevant shelf, there is no danger of associating a shelf
with the wrong visualization. This could be a problem especially if the wrong shelf is checked for
expired items. Because she is at the aisle when she views the visualization, she can inspect the
shelves and comprehend the decision of the customers better.

4.2 Network Administration

Richard is a network administrator of an office building. He is responsible for the upkeep of the
network itself, as well as the servers which store critical documents. To ensure a high availability
of the servers, the network is organized in a semi-decentralized way. Multiple file servers as well
as backup servers are located all over the facility. If an error occurs in the network, Richard is
responsible for quickly diagnosing and fixing the error. To help with his job, he developed a software
that constantly sends status updates from every single server to his computer, reporting different
statistics about the server, such as network and processor load. If a report is not received within a
certain time-span, it is assumed that the server had a failure which needs to be investigated.

Ideally, Richard would do this remotely, however this is sometimes not possible if the server e.g.
crashed and needs to be restarted on-site or if there was a hardware failure. However, he noticed
that due to the many different server arrangements in the office building, he has a hard time of
remembering how the network is set up on each location, slowing down the troubleshooting process.
Additionally, he does not have access to his computer to show the current status of the local network.
To circumvent these problems, Richard decides to use AVAR-X to create a situated visualization for
every server group located in the building. If a problem occurs that cannot be resolved remotely, he
has to go to the location of the fault. There, all the statistics of the different computers as collected
by his program should be visualized on the location of the fault. The network topology should
be visualized, to help with understanding the problem and track down defective equipment more
quickly. He wants to make the visualization as intuitive as possible, such that his co-worker who is
not very familiar with the network is also able to address issues quickly. Richard decides to use a
situated visualization for this purpose.

First, Richard has to create a visualization template, which can then be customized for every site.
To make the use as streamlined as possible, he decides to add the visualization code of every
location to the example selection of AVAR-X. This way, the needed visualization code can be
quickly recalled when needed. He decides that every visualization should be situated with a marker
that is permanently attached somewhere close to the servers. First, the status of every component in
the local network is queried from his program. He then draws a graph of the network topology over
the servers, where every node is a sphere colored either green if the server is responding, or red if
the server is offline. The position a node relative to the marker is input directly into the code in a
list. This is better than loading it from an external CSV file, as Richard has to adjust the position
of the nodes by trial-and-error from within AVAR-X. Then, the nodes are connected by colored
edges indicating the link status of the specific interfaces of a server. The name of every server is

1https://github.com/st155592/AVAR-X/tree/master/Examples/inventory.csv
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Figure 4.2: Visualizing the network topology of multiple servers, as well as their current status.
The nodes visualize the status of the respective server, and the color of the edges
visualize the link status.

shown over each node, making the status of every server immediately obvious. Over every node
applicable, additional data such as uptime, CPU usage, as well as upload and download rate over
time is shown. Once finished, Richard can copy the code from the HMD into the example text
document for AVAR-X. If a fault should occur, he only has to select the visualization from the
examples. He then has to choose the appropriate marker for the site and execute the code. Richard
could optionally customize the name of the markers in the Unity GUI to simplify the selection
process.

In Figure 4.2, a possible failure scenario is shown. Here, the node statistics were not loaded from
an external server, but hard coded into the visualization2. Using libraries such as Zinc3, Richard
could connect directly to his already existing monitoring program to access the data. Looking at
this visualization, it becomes immediately obvious even to people that are not familiar with the
infrastructure, how the network is set up and where the faulty device is located. This will speed up
the troubleshooting process and simplify Richard’s job.

2https://github.com/st155592/AVAR-X/tree/master/Examples/NetworkMaintenance.st
3https://github.com/svenvc/zinc/, visited October 27, 2021
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4.3 Energy Efficiency

4.3 Energy Efficiency

Meet Dieter, an architect who needs to evaluate the energy efficiency of a building. Specifically, he
needs to examine how much heat in a room is lost or gained through various surfaces. Heat loss of a
surface is directly dependent on the area, material, and temperature differences across the surface.

This means that factors on the outside such as the exposure of a surface to the sun, which may
depend on the time of the year, may affect heat lost or gained. Dieter observes that the room in
question is heated in the winter and cooled in the summer. The room has three windows and a door,
which are usually the biggest contributors to heat loss relative to surface area. Also of interest for
energy efficiency is how often and for how long windows are opened, as this may indicate that the
temperature in the room is not ideal. Other than that, Dieter wants to know the heat lost through
the four walls. Three of the walls face to other rooms in the building, and one wall faces to the
outside.

Dieter has collected a complete data set with over the course of a year. To do so, sensors are
directly placed on the outside and inside of every surface. He accomplished this by using an
ESP32 micro-controller4, which sends the collected data over a wireless network to a central server.
The central server then calculates the heat loss with the previously defined surface parameters.
Additionally, for windows and doors a switch is used to determine if it is open or closed. For
windows, an ambient temperature sensor has been placed close to them as well. This sensor then
measures the temperature close to the inside of the window. If the temperature is closer to the
outside temperature than the inside temperature, it could be a window may be not closing properly.

After the data has been collected, Dieter starts AVAR-X and builds visualizations that are then
shown on every relevant surface. As the visualizations are mostly the same for every surface in the
room, Dieter wants to build a single visualization which then only has to be changed slightly for
every surface. Because it is inconvenient to place physical markers on every relevant surface, spatial
mapping is used to situate the visualizations. This, however, also means that every visualization has
to be manually matched to the correct surface, such that the correct data is displayed. To accomplish
this task in an effective way, a variable in the visualization code is defined, which contains the
name of the target, e.g.. ”Corner window”, ”Door”. When he ran the Pharo script, a query is sent
to the server with the defined surface name. It returns the appropriate data, that is processed and
visualized.

Now Dieter has to decide how the data should actually be visualized and program the visualizations.
To make developing easier, a new spatial mapping target is created such that the created visualization
is directly in front of the users view. First, the total energy lost through the surface over the duration
of the year should be shown. As this is an absolute value, it makes sense to show it as a number
directly. The energy loss should also be visualized as compared to the total energy lost over all
measured surfaces. The initial approach was to visualize the total energy loss as the size of e.g. a
sphere. However, because the visualizations are spread out over the whole room, perspective will
make it hard to compare the size of objects. Instead, a visualization is chosen that shows both total
energy loss and loss through the surface next to each other. Next, the average temperature difference
for every month should be shown. Dieter decides to do this by placing twelve spheres in a grid.

4https://www.espressif.com/en/products/socs/esp32/, visited October 27, 2021
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4 Usage Examples

Figure 4.3: What a heat loss visualization may look like. The size of the spheres visualize the
temperature difference, while the color shows how long the window was opened as
compared to the other months. The cylinders on the right visualize the energy loss
through this window as compared to the other surfaces.

Every sphere represents a month, and the size of the sphere represents the temperature difference.
If the visualization is attached to either a window or a door, the spheres are color coded with the
total time the window was open. The month with the longest open time is colored red, the month
with the least time is colored white. To show excessively leaky windows, a cube is shown in place
of the sphere.

Finally, the visualizations can be situated. For every surface of interest, Dieter first creates a new
spatial mapping target. This can be rapidly done from within AVAR-X. For every target he now
opens a new code window and selects the appropriate target number. The visualization code is
copied into every window, the name of the surface is specified in the code, and the code is executed.
An example for this visualization can be seen in Figure 4.3.

In this case, Dieter was not satisfied with how the visualization turned out. He thinks the visualization
of the months is not very intuitive and can be improved. To make it easier to understand, he wants
to visualize the data with text showing the month’s name directly. The size of the text should show
temperature difference, and if the month is colored red, the window may be leaky. The saturation of
the text color still shows how long a window was open for. These changes can be made directly in
AVAR-X, Dieter only has to copy the code of the new visualization into every window and re-run
all scripts again.
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4.4 Discussion

Figure 4.4: The final heat loss visualization. The size of the month names indicate the temperature
difference. Months labeled red indicate that the window had a suspiciously low
temperature difference and may leak. In this example, the window was open a lot in
winter and summer, indicating too much heating or cooling

The revised version of the visualization is shown in Figure 4.4. Dieter took advantage of the quick
development cycles he has with AVAR-X to determine the size and spacing between the different
visualization elements. To illustrate this specific example, a synthetic data set was created and used.
All the parameters are specified in a CSV file5 located on the Pharo server.

4.4 Discussion

The presented usage examples illustrate how AVAR-X could be used in envisioned real-world
applications. First of, visualizations are created completely in-situ. Unlike toolkits introduced in
related works, the user does not have to use the Unity editor to create or fundamentally change
visualizations. With the expressive Pharo programming language, users are not restricted to limited,
generic visualizations. Thanks to the just-in-time compiled nature of Pharo, very short development
cycles are possible, as opposed to other toolkits which need to be recompiled and redeployed onto
the HMD.

While AVAR already had these benefits, additional improvements aim to shorten these cycles even
further and make development easier. Placing visualizations in the environment is faster thanks
to the situating features. Compared to AVAR, where every visualization would have to be placed
manually after running the script, visualizations are now situated by either specifying a previously

5https://github.com/st155592/AVAR-X/tree/master/Examples/windows.csv
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4 Usage Examples

(a) During development, having more space to pro-
gram is desirable. A window showing errors in
the code can be opened as needed, maximizing
the usable space.

(b) During deployment, a smaller window can be
created for every visualization, as ideally larger
edits are not required anymore. In this case, the
code can be simply copied into every window only
changing the visualized data set.

Figure 4.5: The arrangeable windows allow for different window configurations, depending on the
current user requirements.

selected surface in the room or by choosing a marker that can be attached to any object. The biggest
improvement over AVAR, however, is the composable window system. It enables the user to work
on and improve upon multiple visualizations simultaneously, without having to save and recall
code. As opposed to AVAR, the code of every visualization is accessible, as long the window is not
explicitly closed by the user. During development of the usage examples, it became apparent that
the isolated development of the different visualization sub-components was helpful in managing
the code of larger visualizations. The window system was also helpful during deployment of the
visualizations. Usually, the involved visualizations were designed such that the code could be
reused for different referents with minimal changes, just by specifying a different data set. A new
window was then created for every visualization, into which the code was copied and the relevant
data specified. Thanks to the flexible window manager, the user can create an ideal environment
for both the development and deployment scenario. In Figure 4.5, a possible arrangement for both
scenarios is shown.

The biggest shortcoming of AVAR-X is the lack of interactability with the visualizations. Sometimes
placement of the visualization relative to their target object has to be adjusted, which is currently
only possible by keyboard. Selecting objects by e.g. pointing at them and then manipulating them
using gestures would make sense, especially in the AR environment. AVAR supported translation,
rotation and showing popup information of visualizations this way, however due to a change in
the gesture recognition API in the newer Unity version, this would have meant that a lot of this
code would have had to be rewritten. While the usage of the situating features makes the need for
manually adjusting of the position somewhat infrequent, it is still required in some cases. During
the deployment of the example visualizations, it became apparent that for the positioning of some
visualizations, a close up inspection and correction was necessary. For this, the Bluetooth keyboard
had to be re-positioned closer to the visualization, which was inconvenient in some situations.
Interactions can also help with the better understanding of visualizations. Looking at Section 4.2
it becomes apparent that visualizations can quickly become overcrowded with information. The
previously introduced Corsican twin toolkit mitigated this problem by letting the user show and
hide visualization details by gesture, a feature that AVAR-X still lacks.
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4.4 Discussion

Listing 4.1 An excerpt of the visualization code used in Section 4.2 to create a label.

...

"Add name and status label"

labels := OrderedCollection new.

name := RWElement new id: 'AVARXLabel_', (nd at: 2).

name shape height: 0.4.

labels add: name.

...

Additionally, while the current window manager approach is very usable and quick to learn, it is
very limited by the low resolution of the HMD. The window manager currently also lacks the ability
to swap the position of windows, which would improve the user experience, however I found this
to not be essential. Visualizations can currently not be saved in any way, and once AVAR-X is
quit, all code is lost. This is not desirable, and some way to save and recall visualization to and
from the HMD would be ideal. To help manage multiple visualizations, it might be desirable to
access the target type and number from within the Pharo code. This way the user would not need to
specify the target twice for every visualization, a problem which becomes apparent in Section 4.1,
especially with many targets. When creating the example in Section 4.2, I initially attempted to
situate a visualization on every device, which where then to be connected with the edges. However,
with the current implementation, as every visualization is essentially isolated, this is not possible.
Instead, the less-ideal method of creating and situating one big visualization had to be used.

To make the development of visualization faster, it would make sense to employ classes that make
performing commonly performed tasks, such as normalization, easier. While the creation of helper
classes during runtime is possible in the Pharo VM, it is not as practical to do this from within
AVAR-X. One more shortcoming lays in the back-end of AVAR-X. The WODEN library used to
create the 3D visualizations in Pharo has to serialize all elements in the scene as JSON. This JSON
response contains the color and the position of the elements, the rotation, however, is not serialized.
Due to the update to Pharo 9.0, and with it, the newer WODEN and Roassal versions, the previous
method to insert labels into a visualization was not supported anymore. To avoid having to use a
special Pharo version, a very simple method to add labels to visualizations was implemented, using
the generic RWElement provided by WODEN, as shown in Listing 4.1. An element is considered a
label by AVAR-X, if its id has the ”AVARXLabel_” prefix. All text following the underscore is used
as the label text, including newline characters. While this is certainly not the cleanest approach
possible, it has the benefit of being usable with an unmodified version of WODEN, and was used
extensively in the illustration of the examples6.

Overall, AVAR-X can be used to quickly develop and situate visualizations. While some practical
limitations still exist, both design goals as laid out in Section 3.2 are fulfilled.

6https://github.com/st155592/AVAR-X/Examples/
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5 Conclusion and Outlook

In this thesis I presented AVAR-X, an agile situated visualization toolkit. Initially, I defined situated
visualizations and agile development. I illustrated the benefits of these concepts and identified
challenges with these methods. Then I introduced toolkits that can be used to create situated
visualizations and explained their shortcomings, merits and commonalities compared to AVAR-X.
I introduced AVAR, the toolkit upon which AVAR-X builds, and identified its shortcomings as a
missing connection between visualizations, their code and the real environment. Additionally, I
came to the conclusion that multiple code editors are essential for agile development, especially
when working with multiple visualizations. After I presented the employed hardware and software, I
detailed how the various improvements were implemented. One of the two situating modalities used
is Vuforia, that uses printable markers to determine the location and orientation of objects in the
environment. The other modality is spatial mapping, where the geometry of the real environment is
determined and certain objects in this environment such as platforms or walls can then be identified
and used as a target. While the situating features were implemented, I also started to work on
the user interface. I decided to keep the windows fixed in front of the user, and as such had to
implement a way to arrange windows. Taking inspiration from i3, I implemented a tiling window
manager usable from within the environment, controllable with only keyboard shortcuts. It, together
with groups of windows arranged in switchable workspaces, enables the user to work on multiple
visualizations simultaneously, and helping with the management of larger code-bases. After having
basic situating features implemented and the window manager was working, I needed to create an
easily extensible API for the situating modalities. I decided on a very high-level API, exposing
a way to bind visualizations to targets, which were managed by trackers. This way, the user can
select for every visualization the situating modality and target to use. I also extended the example
templates, by providing the user with a preview of how the visualization will look like. Through
selected usage examples, I demonstrated how AVAR-X can mitigate the shortcomings of AVAR
identified earlier, and came to the conclusion that AVAR-X is well suited for agile development of
situated visualizations.

Outlook. There are various user experience improvements that can be made to AVAR-X, such as fine
positioning of a visualization by using gestures. An interesting possibility for future work would be
the replacement of the physical keyboard with an input method more suited for the AR environment,
as explored in a related study [Gär20]. Thanks to the modular design, new situating modalities could
be added, providing improvements over the currently implemented ones. One such tracker could
use cameras placed in the room to improve tracking of objects, as Vuforia is limited to tracking
objects that are in the view of the camera in the HMD. For improving the programming experience,
it might be helpful to integrate programming tools such as syntax highlighting, versioning support
or find-replace functionality into the code editor.
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A Appendix

A.1 Class diagrams

Figure A.1: Class diagram of the situating system.
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A Appendix

Figure A.2: Class diagram of the window system.
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A.2 Keyboard shortcuts

Shortcut Function

F1 Show/Hide all windows
F2 Show server configuration dialog and shortcut help
F3 Show/Hide debug information
Alt + Return Open a new code editor
Alt + C + Return Open a new console window
Alt + V Split the selected window vertically if a new window is to be inserted
Alt + H Split the selected window horizontally if a new window is to be inserted
Alt + 0 - 9 Select workspace
Alt + Arrow keys Select a window
Alt + Ctrl + Arrow keys Resize selected window
Alt + Ctrl + Q Close the selected window
Alt + X Switch tracker in code window
Alt + PageUp/PageDown Select next/previous target in code window
F5 Run code of selected code window
Alt + E Show example preview
Alt + M Adjust position of visualization/remove visualizations
Alt + T Add spatial mapping target

Table A.1: Keyboard shortcuts in AVAR-X
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