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Abstract

This thesis investigates two different methods to learn a state representation from only image
observations for task and motion planning (TAMP) problems. Our first method integrates a multi-
modal learning formulation to optimize an autoencoder not only on a regular image reconstruction but
also jointly on a natural language processing (NLP) task. Therefore, a discrete, spatially meaningful
latent representation is obtained that enables effective autonomous planning for sequential decision-
making problems only using visual sensory data. We integrate our method into a full planning
framework and verify its feasibility on the classic blocks world domain [26]. Our experiments show
that using auxiliary linguistic data leads to better representations, thus improves planning capability.
However, since the representation is not interpretable, learning an accurate action model is extremely
challenging, rendering the method still inapplicable to TAMP problems. Therefore, to address the
necessity of learning an explainable representation, we present a self-supervised learning method to
learn scene graphs that represent objects (“red box”) and their spatial relationships (“yellow cylinder
on red box”). Such a scene graph representation provides spatial relations in the form of symbolic
logical predicates, thus eliminates the need of pre-defining these symbolic rules. Finally, we unify
the proposed representation with a non-linear optimization method for robot motion planning and
verify its feasibility on the classic blocks-world domain. Our proposed framework successfully
finds the sequence of actions and enables the robot to execute feasible motion plans to realize the
given tasks.
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1 Introduction

Sequential manipulation planning is one of the core challenges of robotics, which involves reasoning
both on the task level and the motion level. The task level requires solving for high-level, discrete
sequences of actions. Considering a task grab a beer, one action sequence can be open the fridge,
get the beer, close the fridge, and place the beer on the table. On the motion level, continuous
configurations has to be figured out to execute each of these high-level actions. Solving for such an
action sequence requires joint optimization over all the constraints of each action. This is necessary
since one motion plan of an action greatly affects the feasibility of the subsequent actions. However,
due to the fact that each of the above actions imposes different constraints, it is too complex to
solve this joint optimization problem analytically. To tackle the hybrid nature of such problems,
task and motion planning (TAMP) methods requires pre-defined symbolic state representations
and rule-based action model to be given while using either sampling-based [23, 29, 43, 49, 65] or
optimization-based [67, 68] motion planners for solving the continuous motion trajectory. Realizing
the predicates for the spatial relationships and the action transition rules that determine the logical
and geometrical constraints are crucial to enhance the autonomy of the robotic agent that relies on
existing TAMP methods. Therefore, acquiring planning-compatible, relational representations and
transition rules from image observations is exactly the focus of this thesis work.

Representation learning is about “learning representations of the data that make it easier to extract
useful information when building classifiers or other predictors” [7]. In other words, a representation
would be of no use if it were not applied to any learning task. Moreover, it is not yet possible to learn
a task-agnostic representation, which works well for all the subsequent learning tasks. Therefore,
many of the works in the field have been focusing on learning continuous representations [9, 33, 42,
70] due to the straightforward gradient feedback of subsequent learning objectives. Meanwhile,
learning discrete representations is not as common, despite the potential application to multiple
interesting problems. One of these problems, in particular, is planning. Although it is still possible
to plan on continuous state representation [34], the resulting plan is suboptimal and does not
guarantee to reach the desired state due to the impossibility to perform exact state comparison.

Earlier studies [3, 4] show promising results of learning discrete, planning-feasible representation.
Both of these works proposed to use a Gumbel-Softmax (GS) [37, 52] layer in a Variational
Autoencoder [42] architecture to learn a discrete latent vector. However, the technique was evaluated
on simple toy-like puzzles, in which low-dimensional image observations (32 × 32) were sufficient.
Additionally, van den Oord et al. [54] addessed that GS layer works only with low-dimensional
images. We first propose to use Vector-Quantized Variational Autoencoder (VQ-VAE) [54] to
encode higher-dimensional image observations, which is more realistic in robotic settings. However,
both VQ-VAE and GS-activated encoder suffers from providing unstable encoding. This problem
results from the fact that even though both produces discrete latents, they still rely on a continuous
encoder. Hence, the latent alters when there is a small change in the observation (e.g., appearance
of irrelevant objects or illumination). This is critical to planning performance since we would want
an invariant representation for most, if not all, of the similar scenes. Inspired by Asai and Kajino [5],
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1 Introduction

we investigate a method to enhance stability by jointly training the VQ-VAE with a visual-question
answering framework in a pre-training step. This setting enables encoding image features which are
important only for question-answering (QA). In particular, when the questions are about spatial
relations, like those in the CLEVR dataset [38], the visual reasoning ability of the state encoder
is supported. Since the spatial relations often characterize the scene semantics, understanding of
these relationships results in a higher quality of representation. The statement is confirmed by
investigating how efficiently a stochastic action model learns transition rules in the classic blocks
world problem [2, 26]. Using the new technique, such an action model is able to gain approximately
8.2% in accuracy in the task of learning transition rules.

Despite this improvement, VQ-VAE still does not provide sufficiently invariant latent representation.
The core issue perhaps lies within the explainability of such a representation. Even though the
presented encoder [3, 4, 54] produces discrete vectors, these vectors contain just unintelligible
scalars. We would not know which relationships between which scene objects each of these scalars
denote. This unexplainability renders constructing a rule-based, oracular action model infeasible,
forcing previous works [3, 4] to learn stochastic action models. These stochastic models are more
complex to learn in TAMP problem settings. Even if such a model exists, there would still be
uncertainties in inferring state transitions, hence misleading the search. A symbolic, structured,
hence human-readable representation would be more appreciated. We then propose a visual module
to first capture the representations of the input scenes in the form of scene graphs [39]. This is
possible via an encoder network that transforms visual input into a local (relative to the view)
coordinate system. Inside this coordinate system, :-means algorithm is used to group coordinates
into clusters, then effectively infer spatial relationships among clusters and objects in each of the
cluster. These spatial relationships are built into triples which are combined to form a scene graph,
e.g., a triple [red, up, green] denotes red box is on top of green box. Since these scene graph
representations are symbolic, the action model is well-defined, enabling the use of any generic graph
exploration algorithms to search for the optimal path to reach a goal state from an initial state.

To sum up, two methods have been developed to learn a state representation from image observations.
The first method involves training a VQ-VAE as an image encoder via a QA framework. This allows
us to learn a state representation that is more efficient, more stable under noisy settings, and with
which it is easier to learn transition rules. However, since these representations are not interpretable,
a strong stochastic action model is required, thus rendering planning impractical. We then propose
a second method to learn a scene graph representation. Such a scene graph contains information
about spatial relationships and provides a symbolic state representation. This characteristic enables
the use of an oracular action model and eliminate the need of a stochastic one. Therefore, this
technique integrates effectively into an existing motion planner [68] to solve for TAMP problems.
The main contributions of this thesis are:

• We implement VQ-VAE to obtain discrete, planning-feasible representations of large images,

• We integrate an auxiliary QA loss during a pre-training step to restrict the latent space, and
further improve visual reasoning capability of the framework.

• We implement a visual module that learns relative coordinates in a self-supervised way,

• We exploit this visual module to map a scene image into a scene graph,

• We present a unified framework comprising learning and task and motion planning directly
from visual data to solve sequential robotic manipulation tasks effectively.
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2 Related Work

Learning manipulation skills Reinforcement learning (RL) have been the focus of many works in
learning motor skills for robotic manipulation. RL-based methods, in general, require a supervision
signal, which comes from either a reward function [12, 19, 21] or a demonstration [18, 55, 57, 58].
These supervision signals, however, demand large human effort to design and annotate. Lynch et al.
[51] proposed to learn from unannotated, teleoperated, simulation-based data in a self-supervised
manner on triples [current state, logged teleoperated action, next state]. The resulting policy is
trained to maximize the log-likelihood of the logged action. In another work with the same
motivation, Nair et al. [53] present a technique to continuously sample and achieve a goal state by a
simple distance reward function (in the latent space), thus facilitating the self-improvement of its
general-purpose skills without a hand-designed reward. While RL-based methods require a flexible
input modality (e.g., image pixels) and show impressive learned policy for motor skills, they do not
maintain an action model which is critical to understand transition rules. This issue prevents these
methods to perform offline planning for longer horizon without modifying the environment.

Symbolic planning This thesis work is heavily inspired by the use of symbolic planning [3,
17, 28, 34] for manipulation. Symbolic planning often utilizes an efficient, optimal graph search
algorithm, hence allows us to look into further planning horizon without acting in the environment.
However, symbolic planners do not work out of the box with continuous state representations.
Huang et al. [34] overcame this challenge by relaxing the discrete requirement of symbolic planners.
This method applies only the actions with the highest chance of satisfying preconditions. Since
these actions are not necessarily the optimal actions, the resulting plan is suboptimal. This plan
also does not guarantee to reach the goal state since we can only quantify the reaching condition
by a distance measure. Therefore, the method is applicable to the tasks in which exact goal
achievement is not critical, such as manipulation of deformable objects. On the other hand, different
works [3, 4] attempted to obtain discrete state representations to be compatible with existing classical
planning by adding a Gumbel-softmax [37, 52] layer to enforce discrete outputs. While being
planning-compatible, these representations are not ideal to learn a stochastic action model to be
effective in real-world robotic settings. This difficulty of learning an action model misguides the
search, thus renders the plan suboptimal.

Task and motion planning Unlike RL-based counterparts which learn pose configurations from
image pixels, task and motion planning (TAMP) methods solve for such motion trajectories of
configurations by numerical optimization algorithms. This optimization is particularly challenging
when we have to optimize jointly for a sequence of action, e.g., pick a the red box and place
it on top of the blue box, since each of these actions impose different geometric constraints.
Toussaint [67] first proposes a method known as logic-geometric programming (LGP) to formulate
this optimization problem into a non-linear program (NLP) and solve locally using constrained
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optimization methods [66]. This approach optimizes directly on the geometric constraints, thus is
different from earlier TAMP’s methods [46, 49, 65], in which geometric constraints are introduced
as symbolic abstractions. LGP, however suffers from the inefficiency due to the large search space
of possible actions. Several subsequent studies successfully enhanced the scalability of LGP either
by branch-and-bound heuristic search [69] or using neural networks for predicting action sequences,
thus reducing the number of NLPs to be solved [14, 15].

Inductive priors for representation learning Annotated data is often expensive and not always
available. One of the most commonly proposed solutions is unsupervised learning of a pre-trained
representation. The main idea is trying to make a good use of largely available unannotated datasets
(images [30], natural languages [1, 13], offline exploratory data [71]), obtaining inductive priors
which empower pre-trained models. Inspired by Andreas et al. [1], we present a technique which
complements discrete representation learning with linguistic data. The training phase is divided into
two phases in [1]. In pre-trained phase both a sampler of missing language data in the downstream
task and a shared parameter space are learned, and in concept-learning phase the parameter space
is fine-tuned on the downstream task. During the concept-learning phase, the sampler is used to
sample any absent parameter in the downstream dataset. We propose to merge pre-trained and
concept-learning phases into a single step, which results in a unified framework and naturally solves
the problem of absent parameters in the downstream task.
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3 Background

3.1 Deep learning

Deep learning is a branch of machine learning which deals with the question: how to learn from
experience. While machine learning field has developed a number of learning algorithms, deep
learning concerns only neural network architecture. Because of their arbitrary complexity, neural
networks have large representation capability, thus have been applied widely and successfully in
many tasks: machine translation, speech processing, and computer vision. Throughout its history,
deep learning architectures have evolved into many different forms to be suitable for a specific
task, hence rendering impractical to describe the best architecture for all the tasks. Therefore, we
describe only the most basic blocks which are used in this thesis work.

3.1.1 Convolutional neural network architecture

Convolutional layer: Convolutional layer is the core component of CNNs where most of the
computation takes place. Convolutional layer has four hyper-parameters: F - the field size, K -
the number of filters, S - the stride, P - the amount of zero padding. First, the input matrix is
padded with zeros according to the parameter P. Next, a window kernel is convolved within the
input matrix to compute the dot product between the kernel elements and the input matrix elements.
This process results in K two-dimensional feature maps. Note that the number of trainable weights
can be reduced using parameter sharing scheme. This scheme constrains all the kernels within
the same depth to use a single set of weights and bias. Hence, the number of weights becomes
K · F · F · D which is reduced by a factor of W2 ·H2 (where D - the depth of the input matrix, W2
and H2 - the width and height of the resulting feature map).

Pooling layer: Pooling layer is used to shrink down the dimension of the input matrix, thus
controlling the size of the whole network and helping to combat overfitting. The most common
operation of the pooling layer is the MAX operation. Similar to the convolutional layer, the pooling
layer employs a kernel window of size F. This kernel is convolved across the input matrix with S -
stride, but output the largest element instead of the dot product. Note that the MAX operation is not
differentiable, therefore only directs the gradient of the largest element during backpropagation.

Fully-connected layer: The desired output of an forward pass through a neural network is often a
single vector. Depending on the learn task, this vector denotes different meanings. However, the
output of the convolutional and pooling layer is a matrix. Therefore, it is common to flatten this
matrix into a one-dimensional vector first. This vector is then multiplied with a weight vector of the
fully-connected layer to produce an output vector of desired size.
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3 Background

3.1.2 Spatial transformer network

Spatial transformer network [36] is a special neural network architecture which learns spatial
transformation. Spatial transformer network consists of two main components: a localisation
network 5loc and a grid sampler. The localisation network outputs the affine vector \ = 5loc(*),
where* is the input feature map (* ∈ R�×,×�). 5loc can be any neural network which includes
a regression final layer. After \ is determined by 5loc, a grid � is defined in the the input map *
so that each element lies in a corresponding grid point. Next, this grid � is transformed using
the affine parameter \ to obtain T\ (�). The grid sampler then uses T\ (�) and * to produce a
transformed output matrix + using bi-linear sampling:

+28 =
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=

,∑
<
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Also note that Equation (3.1) allows us to define m+ 2
8

m*2=<
, m+

2
8

mGB
8

, and m+ 2
8

mHB
8

, therefore enabling gradient

backpropagation to the input feature map* and 5loc since mG
B
8

m\
and mHB

8

m\
are known using Equation (3.1).

The interested readers can refer to [36] for a complete derivation of these partial derivatives.

3.1.3 Variational auto encoder

Variational auto-encoder (VAE) [42] is a neural network architecture which focuses on learning
representation using reconstruction loss. VAEs consist of three components: a posterior distribution
@(I |G) which is parameterized by an neural network called the encoder, a prior distribution ?(I)
where I is mapped to, and a decoder distribution ?(G |I) which is also parameterized by an neural
network. While there are many works which focus on continuous representation [9, 33, 70],
discrete representation [37, 52, 54] is fewer but useful in many tasks, such as planning or reasoning.
Among these works of discrete representation learning, Vector Quantized - Variational AutoEncoder
(VQ-VAE) [54] tends to work better when experimenting with large datasets, e.g., ImageNet [62] or
CIFAR-10 [45]. VQ-VAE maps a latent representation I which is an ordered set of ! differentiable,
pre-defined, continuous embedding vectors 48: I = {48 | 48 ∈ R ×� , 1 ≤ 8 ≤  }, |I | = !, where
48 are �-dimensional selected from the embedding space of size  and ! <  . Observe that I
can be uniquely represented by indices of embedding vectors 48 in the embedding space, therefore
facilitating discrete trait while keeping the stochastic nature as 48 are continuous.
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3.1 Deep learning

3.1.4 Optimization

Objective functions Objective functions are used to measure how good or bad the prediction
currently is. Based on these feedbacks, the optimizer will update the networks’ weights so that
better predictions will be made next time. Depending on the learning task, the objective function
should be chosen accordingly. Here, we describe three different objective functions, which are used
in this thesis. Denoting # - the number of training samples, (G8 , H8) - the 8-th training sample, G -
the input, H - the output, and 5 - the learned function (e.g.,. a neural network):

• Mean-squared loss Lmse = Σ
#
8=1( 5 (G8) − H8)

2, which is usually employed in reconstruction
tasks, e.g.,. generative modelling.

• Cross-entropy loss Lcent = − log( 4
5H8∑
9 4
59
), which is useful to produce probabilities. The

cross-entropy loss minimizes the negative log-likelihood of the correct class. This is
equivalent to minimizing the Kullback-Leibler divergence between the predicted distribution
5 (G8) = [ 51, 52, ..., 5 9 , ..., 5" ] and the correct distribution ? = [0, ..., 1, ..., 0] (the number 1
appears at the H8 location).

• Hinge loss Lhinge = max(0, W − 3 ( 5 (G8), H8)), which is useful to perform contrastive learning.
The hinge loss constrains the gradient backpropagation only when 3 ( 5 (G8), H8)) is smaller
than W. Otherwise, no learning is performed. This is convenient when the distance 3 between
5 (G8) and H8 is desired to be at least W.

Backpropagation Backpropagation [61] is the powerful method of distributing gradient from the
output back to the inputs. During optimization, we know how the output 5 needs to change (using
one of these objective functions above), but not how the inputs need to change to obtain the necessary
change in the output. The chain rule tells us exactly how to. For example: 5 = (G + H)I = @I,
therefore m 5

m@
= I and m 5

mI
= @. Because we also know m@

mG
=
m@

mH
= 1, we apply the chain rule to

obtain m 5

mG
=
m 5

m@

m@

mG
= I and m 5

mH
=
m 5

m@

m@

mH
= I. At this point, it is clear how the inputs [G, H, I] has to

change with respect to the output 5 . Abstracting @ = G + H is known as staged backpropagation in
practice. This abstraction allows us to break down the complex 5 into simpler functions whose
known local gradient rules. These local gradients are then chained together using the chain rule to
obtain the global gradient, without the explicit derivation of the partial gradients of function 5 .

Optimizer algorithms After backpropagation is performed, we know how the inputs should
change to obtain the desired change in the output. One simple rule is just updating our parameters
like: FC+1 = FC − UΣ#8=1

mL( 5 (FC ,G8) ,H8)
mFC

where L - the objective function, U - the learning rate, # -
the number of training samples, FC - the current parameter at time C, 5 - the function which maps G8
to the prediction using parameter F, and [G8 , H8] - the 8-th training sample. This rule is commonly
known as Vanilla Gradient Descent, in which the gradient of the whole training set is computed to
update the parameter FC . However, # can be very large, e.g., 14 million samples in the ImageNet
dataset [62], therefore it is wasteful and memory intensive to compute the gradient for the whole
dataset. The solution for large datasets is to compute gradient for mini-batches of the dataset, update
the parameter using this gradient, and iterate until the whole dataset has been learned. Another
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3 Background

common optimzation algorithm is Adam [41] which computes adaptive learning rates of each of
the parameters by storing past gradients and squared gradients, hence is more memory intensive.
However, Adam often works well in practice and is the choice for all the experiments in this thesis.

3.2 Scene graph

As Johnson et al. [39] wrote, “a scene graph is a data structure that describes the contents of a
scene”. Each edge of this graph structure denotes the relationship between the two nodes, e.g., a
man is holding a beer will have the edge of holding between the node a man and the node a beer.
Johnson et al. [39] formally formulated a scene graph as � = ($, �) where $ = {>1, . . . , >=} is
a set of objects, � ⊆ $ × ' × $ is a set of edges, and ' is a set of relationships. In the context
of this thesis, we only focus on spatial relationships, thus ' = {left, up} with a possible extension
to include the front relation to be more effective in the 3-D world. This is a important highlight
since it is much more challenging to form a self-supervised learning formulation of a more general,
semantic relations like those in [39]. When used as state representations, scene graphs offer multiple
appealing properties: symbolic, explainable, and invariant if done right. These properties enables
scene graphs to be applicable to planning problems.

3.3 Classical planning

Planning is one of the core abilities of biological intelligence. Planning concerns with the realization
of action sequences which must be taken to achieve a desired state of the environment. Classical
planning algorithms have been developed since the early age of A.I. These algorithms often include
three components: the input state G0, the output state Ggoal, and the action model M. State
representation G8 is structured and symbolic, thus allows for goal state verification. Goal state
verification serves as a stopping condition for the search, and is not trivial if G8 is continuous or
complex, high-dimensional (e.g., image observations). This requirement renders classical planning
algorithms impractical in real-world settings. It is the core of this thesis that trying to learn
structured, discrete representation of image observations, hence bridging classical planning to
robotic manipulation. The action modelM outputs a consequent state after applying an action 08 to
a state G8: M(G8 , 08) = G8+1. Depending on the state representation and the planning problem,M
can be oracular (deterministic, rule-based) or stochastic (unknown dynamic environment). After
these three components are defined, we can use a generic graph search algorithm [20] to search
for the optimal action sequences. We describe two of such algorithms, namely breadth-first search
and A-star algorithm [27], which are sufficient within the experimental settings of this thesis (see
Algorithms A.1 to A.2).

3.4 Task and motion planning

Task and motion planning (TAMP) is a planning problem in which we try to solve for task (what
should I do first, second, third, and so on?) and motion (how do I move my arms to perform the
task?) jointly. A task, such as "get one bottle of wine", requires multiple sub-tasks to be done
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3.4 Task and motion planning

on the task level, such as: go to the fridge, open the fridge, grab the wine bottle, close the fridge,
and put the bottle on the table. On the motion level, each of these sub-tasks requires to solve for
continuous parameter of the robot’s joints. For example, in order to open the fridge, how much
and how far the robotic arm should rotate and translate so that the finger tips align with the door
handler of the fridge? This is a challenging problem since each action also influences the feasibility
of subsequent actions, e.g., how the robot grasps the bottle influences how the robot puts the bottle
on the table. Lozano-Pérez and Kaelbling [50] emphasizes this problem as “significantly nonlinear
and much too complex to solve exactly analytically in continuous form”. However, Toussaint [67]
proposed to formulate the problem into a mathematical program and solve locally using constrained
optimization tools. This method is referred as Logic - Geometric Programming (LGP) [67, 68, 69],
on top of which this thesis work is built. We now describe three main components which are crucial
to solve an LGP formulation.

Non-linear programming formulation LGP, in the most general form, formulates a TAMP
problem as a non-linear program (NLP) [68]. Let X ⊂ R3 × (� (3)# be the configuration space
of # rigid objects and a robot with 3 degrees-of-freedom with initial configuration G0. Given a
goal description 6, we aim to find a sequence of actions 0A1: and a path G : [0,  )] → X that
minimizes:

min
G, ,

0A1: ,B1: 

∫  )

0
2(G(C), B: (C) ) dC

s.t. G(0) = G0, B0 = B̃0, ℎgoal(G( )), 6) = 0
∀C ∈ [0,  )] : ℎpath

(
G(C), B: (C)

)
= 0, 6path

(
G(C), B: (C)

)
≤ 0

∀: ∈ 1, . . . ,  : ℎswitch(Ĝ(C), 0A:) = 0, 6switch(Ĝ(C), 0A:) ≤ 0
0A: ∈ A

A (B:−1), B: ∈ @(B:−1, 0
A
:), (3.3)

where:

– G = (G, ¤G, ¥G) which denotes poses, pose velocity, and pose acceleration

– Ĝ = (G, ¤G)

– ℎ describes equality constraint, e.g., velocity of the object must stay constant

– 6 describes inequality constraint, e.g., acceleration of robot’s joints should not excess a limit

– 6path and ℎpath describes the (in)equality constraints for the motion path, e.g., holding object
must have zero velocity relative to the end-effector

– 6switch and ℎswitch describes the (in)equality constraints of the transition between kinematic
modes, e.g., when touching the object, the arm must have zero velocity

– B: are symbolic states which define the constraints at each phase, and determine the available
actions from the set AA

– : ∈ 1, . . . ,  denotes the :-th switch, e.g., switching from holding the object to putting the
object down

– C ∈ [0,  )] denotes the discretized time step for each trajectory plan
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3 Background

Multi-bound tree search Multi-Bound Tree Search (MBTS) algorithm [69] is a combination of
branch-and-bound [48], heuristic search [27], and Monte - Carlo (MC) tree search [11]. In MBTS
algorithm, geometric feasibility is taken into account, hence avoids expanding the nodes which are
geometrically infeasible. This is a key improvement over MC search, which was used originally in
the work of Toussaint [67]. The efficiency was characterized by Toussaint and Lopes [69] as "there
could be around 20 possible decisions in the start state, while geometrically only about 4 of them
are feasible". MBTS maintains a tree-like structure, in which the root node contains the start state
in symbolic form. Each child node then contains the following information:

– the list of child nodes

– symbolic state which is originated from the root

– three NLPs, each of which corresponds to different coarser levels of the full LGP: P1,P2,P3
(detailed below)

– information about whether P8 has been given to the optimizer and a feasible solution has
been found.

Note that solving the NLP for the full LGP is computationally expensive, but the only way to detect
geometrical infeasibilities. However, Toussaint and Lopes [69] proves that “by dropping terms from
the cost function, or constraint function terms from constraint functions, a simpler, lower-bound P̂
is obtained”. This coarser P̂ is computationally cheaper, and computing feasibility of P̂ allows
for pruning the tree early in case of detected infeasibility. However, this is only an approximated
heuristic due to the locality of the optimization. The finest level P3 is the full LGP and only solved
when a symbolic terminal node is reached. On the next level P2 the NLPs of the all the keyframes,
i.e. when a switch is required, is considered. P2 and P3 are passed to the optimizer only when
a symbolic state is the desired goal state. The coarsest level P1 requires solving only the inverse
kinematics problem of the last pose in the action sequence. P1 of the current node is solved when
the parent node’s P1 has been solved.

:-order motion optimizer Toussaint [66] describes the :-order motion optimizer (KOMO), which
formulates NLPs generally as:

min
G0:)

)∑
C=0

5C (GC−::C )

s.t. ∀C : 6C (GC−::C ) ≤ 0 , ℎC (GC−::C ) = 0 . (3.4)

where

– GC ∈ R= is a joint configuration and G0:) = (G0, . . . , G) ) is a trajectory of length )

– GC−::C = (GC−: , .., GC−1, GC ) are : + 1 tuples of consecutive states

– the functions 5C (GC−::C ) ∈ R3C , 6C (GC−::C ) ∈ R<C , and ℎC (GC−::C ) ∈ R;C are arbitrary first-order
differentiable non-linear :-order vector-valued functions
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3.4 Task and motion planning

Inspired by Conn et al. [10], Toussaint [66] expanded Equation (3.4) to the augmented Lagrangian
form:

!̂ (G) = 5 (G) +
∑
9

^ 9ℎ 9 (G) +
∑
8

_868 (G) + U
∑
9

ℎ 9 (G)2 + V
∑
8

[68 (G) > 0]68 (G)2 (3.5)

The first iteration starts with ^ = _ = 0, hence Equation (3.5) drops the second and third terms.
The gradient of G is computed by ¤G = minG !̂ (G) using a Gauss-Newton method, then Lagrange
parameters will be updated by

^ ← ^ + 2Uℎ 9 ( ¤G) , _← max(0, _ + 2V68 ( ¤G)) (3.6)
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4 From Images to Task Planning: How Natural
Language Processing Can Help Physical
Reasoning

This chapter1 integrates a multi-modal learning formulation into classical AI planning. For
sequential manipulation tasks, planning with visual reasoning is challenging for autonomous agents.
We propose to optimize an autoencoder not only on a regular image reconstruction but also jointly
on a natural language processing (NLP) task. In essence, a discrete, spatially meaningful latent
representation is obtained that enables effective autonomous planning for sequential decision-making
problems only using visual sensory data. We integrate our method into a full planning framework
and verify its feasibility on the classic blocks world domain. Our experiments show that using
auxiliary linguistic data leads to better representations, thus improves planning capability. Our main
contributions of this chapter are:

• We implement Vector-Quantized Variational Autoencoder (VQ-VAE) to obtain discrete state
representations of large scene images which are feasible for classical planning.

• We integrate an auxiliary question-answering loss during a pre-training step to restrict the
latent space, and further improve visual reasoning capability of the framework.

4.1 Problem Statement

We focus on solving planning problems for sequential robotics manipulation tasks autonomously.
Our objective is to achieve physical reasoning by only visual perception and without human-designed
logical rules for high-level action selection. The goal is to find an action sequence 01:# , given an
image of the scene G0, and a goal state description Egoal, e.g., red box is above yellow box,

argmin01:#

#∑
8=1
H(I8−1, 08) (4.1)

s.t. I0 = G(G0), I# = G(F (Egoal)),
I8+1 =M(I8 , 08), 08 ∈ A

whereH defines the optimality criterion, I0, I# is the initial and final latent states encoded by G,
M is an action model, F is a mapping from the text space to the image space, and A is a fixed set
of actions (Figure 4.2). Note that this formulation is generalizable to whether the goal state is in the

1This chapter was discussed in the form of a presentation at the R:SS 2020 workshop on Self-Supervised Robot Learning
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4 From Images to Task Planning: How Natural Language Processing Can Help Physical Reasoning

Figure 4.1: Five samples of planning sequences (from top row to bottom row) usingM1 where the
left-most and right-most images are specified as initial and goal states, respectively.

image or the text space. We aim for this generalization since textual (or verbal) goal state E6>0; is
reasonable in real-world settings. We do not focus on deriving such F in this work, instead we
relax this constraint and use Ggoal, i.e., G(F (Egoal)) ' G(Ggoal).

4.2 Methodology

First, we describe how to realize G. Then, we describe two possible action modelsM1 andM2.
These action models are used to integrate G into a planning framework to solve for Equation (4.1).

4.2.1 State encoder

To realize G, we propose to use a Vector Quantized - Variational AutoEncoder (VQ-VAE) [54]
to directly encode raw images into propositions under a multi-modal training scheme. The latent
vector I in VQ-VAE is an ordered set of ! differentiable, pre-defined, continuous embedding vectors
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4.2 Methodology

Figure 4.2: An overview of the high-level planning framework as formalized in Equation (4.1).

48, i.e., I = {48 | 48 ∈ R ×� , 1 ≤ 8 ≤  }, |I | = !, where 48 are �-dimensional selected from the
embedding space of size  and ! <  . Observe that I can be uniquely represented by indices of
embedding vectors 48 in the embedding space, therefore facilitating trivial goal state verification
while keeping the stochastic nature as 48 are continuous. This is crucial for our training settings
where I is jointly optimized with an auxiliary linguistic task.

In order to make use of linguistic data, we propose to jointly train G (which is a VQ-VAE) in a
visual-question answering (VQA) framework (Figure 4.3). Given an image G, a question F1:) which
is a sequence of ) words F8 , the VQA framework returns an answer by forming a distribution over
a fixed set of answer Y, i.e., ?(H 9 |·) where 1 ≤ 9 ≤ |Y|. Under this setting, our goal is to encode
image features which are important not only for reconstruction but also for question-answering.
Hence, when the questions are about spatial relations, like those in the CLEVR dataset [38], the
autoencoder focuses more on the semantically essential scene elements.

To process the textual data, we use a relation network [63], ?(H 9 |·) = '# (G, F1:) ) = '#G (F1:)
omitted for brevity). Our full training objective becomes:

LG = ULrec(Grec, G) + V'#Grec'#G + Llh (4.2)

where Lrec is the mean squared error loss, �KL is the Kullback–Leibler divergence loss, and Llh is
the log-likelihood loss originally presented in [54]. We keep the log-likelihood loss in all of our
experiments.
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4 From Images to Task Planning: How Natural Language Processing Can Help Physical Reasoning

Figure 4.3: An overview of a forward pass through our VQA framework from inputs (depicted in
red color) to outputs (depicted in green color).

4.2.2 Action model

In order to solve for Equation (4.1), an action modelM is missing. We evaluate G with two action
models.

Oracular action model

The oracular action modelM1 observes all the possible state transitions in the state space, therefore
Ĩ8+1 =M1(I8 , 08) is exactly equal to I8+1 where I8+1 and Ĩ8+1 are the ground-truth and predicted
resulting state of applying an action 08 to a state I8 .

Stochastic action model

Our stochastic action modelM2, which is inspired by Asai and Fukunaga [4], has two components:
action policy c and action discriminator D.

• The c network is trained on transition pairs (G(G8), 08 ,G(G8+1)) where 08 is the action which
transitions the scene image G8 to G8+1. c samples the result state after applying an action
to one state, i.e., Ĩ8+1 = c(I8 , 08) and I8 = G(G8). To train c, we use a contrastive learning
objective function similar to [44]:
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4.3 Evaluation

Lc = 3 ( Ĩ8+1, I8+1) +max(0, W − 3 ( Ĩ8+1, Ineg
8+1)) (4.3)

where 3 is the squared difference, W is a hyper parameter (W = 1 during our experiments [44]),
and Ineg

8+1 are negative examples, sampled from the same training batch.

• The D network decides which action is applicable given a state, i.e., D(I8) = {D 9 | 1 ≤ 9 ≤
|A|}, D 9 ∈ {0, 1}} where D 9 = 1 if 0 9 is applicable to state I8. To train D, we use binary
cross-entropy (BCE) loss in a multi-label classification manner:

LD = BCE(D(I8),U) (4.4)

where U = {D 9}.

We found that the D component often performs much better than the c component (apprx. 94%
vs. 65% accuracy, respectively) on the test set. Since the accuracy of c appears to be the bottleneck
ofM2, our analysis focuses on this component.

4.3 Evaluation

We evaluate our method based on three criterion: reasoning, planning, and efficiency. Our
experiments are based on the following setting: (1) we train the state encoder G using the CLEVR
dataset [38], (2) we use G to encode the scene images of the photorealistic Blocks world dataset [2]
to evaluate our overall planning framework.

Table 4.1: Reasoning and reconstruction performance

Loss function QA accuracy Reconstruction error

KL-Divergence only 0.932923 0.118789
Reconstruction only 0.676227 0.000464

Both 0.931829 0.002303

Reasoning: We analyze our VQA framework with three different objective functions (Table 4.1).
We trained the framework with CLEVR dataset [38] for 150 epochs over the full training set.
The training set consists of 70 000 images and 699 989 questions. With the �KL objective, our
state encoder reasoning shows better performance than using only Lrec on the held-out test set.
Figure 4.5 shows reconstructed images in each case. We observe that when using only �KL loss,
the framework tends to neglect unnecessary details (e.g. background, shadows) as reflected by its
larger reconstruction error but with a high QA accuracy.

Planning withM1: Following Asai and Fukunaga [4], we show that our learned representation is
compatible with planning algorithms, for example, with a breadth-first search graph exploration.
Note that one can achieve a planning accuracy of 100% withM1 on one condition: each state is
uniquely encoded. With VQ-VAE, we fulfill this condition, thus achieve the absolute planning
accuracy usingM1 (Figure 4.1 and Figure 4.8). Similar to [5], we challenged this uniqueness
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4 From Images to Task Planning: How Natural Language Processing Can Help Physical Reasoning

Figure 4.4: Accuracy of the stochastic action model overtime on the training (left) and test (right)
sets using representations acquired by only �KL loss (green line), Lrec loss (blue line),
and both (red line).

under noisy settings. Each scene image is perturbed with noise sampled from a standard normal
distribution (Figure 4.7) N(0, 1), i.e., G̃8 = G8 + UD where U is a noise magnitude and D ∼ N(0, 1).
Our latent representations are less affected by noise, as shown by smaller deviation between G(G8)
and G(G̃8) (Figure 4.6), when trained with �KL loss. However, the effects are magnified under
heavier noise (U > 0.01).

Figure 4.5: Qualitative results of our reconstructed images when trained under three schemes. From
top to bottom: first row: real images, second row: reconstructed images using only �KL
loss, third row: reconstructed images using only Lrec loss, fourth row: reconstructed
images using both losses.

Planning withM2: We evaluate our learned representations in a stochastic manner with another
action model,M2. We first encode all the transitions in the problem domain of 5 objects and 3
stacks and use these transitions to trainM2. After training, we evaluateM2 using the transitions in
the problem domain of 4 objects and 3 stacks. We report the accuracy by comparing the predicted
latent Ĩto =M2(Ifrom, 0) to the ground-truth latent Ito, i.e., accuracy = 1

"
1
#

∑∑#
8=1 D8 where " is

the size of the test set, I=< is the n-th bit of the latent I< (1 ≤ = ≤ #), and D8 = 1 if Ĩ8to = I8to and 0
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4.3 Evaluation

Figure 4.6: Absolute difference of latent representations when encoded under noisy versus normal
setting.

Figure 4.7: Reconstruction quality under different magnitudes of addition noise. From left to right:
six noise levels: 0.001, 0.003, 0.005, 0.01, 0.1, and 1. From top to bottom: real images,
reconstructed images using only �KL loss, using only Lrec loss, and both.
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4 From Images to Task Planning: How Natural Language Processing Can Help Physical Reasoning

Figure 4.8: Some more plan sequences usingM1.

Figure 4.9: Planning (left) and QA (right) accuracies using different latent sizes.

otherwise. For this action modelM2, our experiment shows that the latent representation trained
with �KL objective enables easier learning of transition rule even when G does not observe the
action data [2] (Figure 4.4).

Efficiency: We investigated the effect of the latent vector dimensionality, i.e., dim(G(G)) =
(>, 32, 32) where > ∈ {8, 16, 32, 64}. We kept > = 64 for all the previous experiments. Due to
computational time constraints, we used a subset of the CLEVR dataset [38] consisting of only
50 000 questions. We train our VQA framework using this smaller version under two settings:
optimizing only Lrec loss and both �KL and Lrec loss. With �KL loss, our state encoder achieves
better QA and planning accuracy even for smaller latent sizes (Figure 4.9).
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4.4 Conclusion

4.4 Conclusion

We introduced a novel method to train a state encoder and integrated it into a classical planner. We
are able to obtain latent representations that are higher quality in terms of visual reasoning, and
thus feasible for planning. We also presented a full symbolic planning framework to readily unify
with the state encoder. Our experiments demonstrate better performance of the whole system when
pre-trained with the proposed multi-modal scheme.

The limitation of our framework lies at the c component of the action model. While doing sufficiently
well in our toy experiment [2], c has to perform better to be effective under more complex settings.
Another aspect, which renders our framework semi-automatic, is that a set of actions A must be
defined explicitly. A fully autonomous agent has to learn applicable actions and their effects itself.
This work takes the first steps towards achieving this goal.

While classical AI planners are efficient and optimal, high-dimensional state representations, such
as visual data, hinders their applicability on real-world robotic manipulation problems [16]. Our
work hopefully sheds light on how to obtain such representations by taking advantage of auxiliary
(linguistic) data. The presented planner is ready to realize high-level plans, and can be integrated
into a motion planner (e.g., [67, 68, 69]) for robotic sequential manipulation tasks.
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5 Self-supervised Learning of Scene-Graph
Representations

We present a self-supervised representation learning approach for visual reasoning and integrate it
into a nonlinear program formulation for motion optimization to tackle sequential manipulation tasks.
Such problems have usually been addressed by combined task and motion planning approaches, for
which spatial relations and logical rules that rely on symbolic representations have to be predefined
by the user. We propose to learn relational structures from visual sensory data to alleviate the
resulting knowledge acquisition bottleneck. We compute scene graphs that represent objects (“red
box"), and their spatial relationships (“yellow cylinder on red box"). Leveraging visual perception
allows us to learn a representation with which we can plan high-level actions using a graph search.
We integrate the visual reasoning module with a nonlinear optimization method for robot motion
planning and verify its feasibility on the classic blocks-world domain. Our proposed framework
successfully finds the sequence of actions and enables the robot to execute feasible motion plans to
realize the given tasks. As the main contributions of this work1:

• We implement an encoder network as a visual module which allows for learning relative
coordinates in a self-supervised way,

• We exploit this visual module to map a scene image into a scene graph which is an invariant
representation feasible for planning,

• We present a unified framework comprising learning and task and motion planning directly
from visual data to solve sequential robotic manipulation tasks effectively.

5.1 Problem Statement

This works relies on the non-linear programming (NLP) formulation of the Logic-Geometric
Programming (LGP) framework [28, 68] to combine visual reasoning for task planning with
an effective constraint optimization method for path planning. LGP formulates a constrained
optimization problem based on the logical and geometrical constraints imposed while solving a
combined task and motion planning problem. We focus on solving similar TAMP problems for
sequential robotic manipulation. However, our objective is to complement physical reasoning by
visual perception for high-level action selection. In essence, the logical planning is delegated to a
visual reasoning component, whereas existing TAMP methods, including the LGP, use first-order
predicate language rules. Accordingly, in our formulation only the geometrical constraints are
imposed by this high-level planning on the NLP. This modification on planning still allows us

1This chapter has been revised, slightly rewritten, and submitted to the Conference on Robot Learning (CoRL) 2020.
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5 Self-supervised Learning of Scene-Graph Representations

Symbolic Action
Model

Planner 

extract low-level
robotic actions

plan in high-level
(visual) action space

NLP

extract geometrical
constraints

visual module motion planner

Figure 5.1: Flow of the proposed framework. Left: High-level action planning: a visual reasoning
module consisting of a scene graph representation (Section 5.2.1) and an action model
(Section 5.2.2), and Right: Motion optimization: a nonlinear programming (NLP)
component (Section 5.1).

to use the original NLP formulation of the LGP only with slight changes (Figure 5.1). Let
X ⊂ R3 × (� (3)# be the configuration space of # rigid objects and a robot with 3 degrees-of-
freedom with initial condition G0. Given a goal description 6, we aim to find a sequence of actions
0A1: and a path G : [0,  )] → X that minimizes:

min
G, ,

0A1: ,B1: 

∫  )

0
2(G(C), B: (C) ) dC

s.t. G(0) = G0, B0 = B̃0, ℎgoal(G( )), 6) = 0
∀C ∈ [0,  )] : ℎpath

(
G(C), B: (C)

)
= 0, 6path

(
G(C), B: (C)

)
≤ 0

∀: ∈ 1, . . . ,  : ℎswitch(Ĝ(C), 0A:) = 0, 6switch(Ĝ(C), 0A:) ≤ 0
0A: ∈ A

A (B:−1), B: ∈ @(B:−1, 0
A
:), (5.1)

where G = (G, ¤G, ¥G) and Ĝ = (G, ¤G). B̃0 describes the initial geometrical constraints, 6path and ℎpath,
the (in)equality constraints for the motion path, and ℎswitch and 6switch, the transition conditions
between kinematic modes, respectively. Symbolic state B: defines the constraints at each phase, and
determines the available actions from the set AA . The key difference is that we partially decouple
the logical action search component from the NLP. As the spatial relations are defined by visual
representations generated from images, high-level action planning is solved by the graph search
algorithm acting on the scene graphs. In particular, the goal of the visual planner k is to find an
action sequence 0E1: E , given an image of an initial scene D0, and a desired scene Dg,

argmin0E1: E

 E∑
8=1

2E (I8−1, 0
E
8 )

s.t. I0 = G(D0), I# = G(Dgoal),
I8+1 =M(I8 , 0E8 ), 0E8 ∈ AE (5.2)
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5.2 Methodology

Figure 5.2: A forward pass through the visual module G with the coordinate regressor c and
the affine grid sampler d (both depicted in red) from the input scene image to the
reconstructed scene image.

where 2E defines the optimality criterion, I0, I# is the initial and final scene graph representations
encoded by the visual module G,M is a symbolic action model, AE is a fixed set of high-level
actions, and  E is the number of high-level actions. Given the action sequence found by the visual
planner, we extract low-level actions for the robot 0A1: = ?(0

E
1: E ) and the geometrical constraints

B1: = @(0A1: ) (Fig. Figure 5.1). Note that  does not necessarily have to be equal to  E , e.g., a
single high-level move action might be broken down to two low-level robot pick and place actions.
Those actions 0A1: along with their implied geometrical constraints B1: form the constrained
optimization problem to be solved to compute the optimal motion path for the given plan that
realizes the goal.

5.2 Methodology

We present a unified framework to solve sequential robotic manipulation tasks. The three main
components comprise a visual module G, a symbolic action modelM, and an NLP solver for
motion planning. The basic forward pass from an input scene image to a goal scene image is
as follows: (i) we capture scene graphs from the image pair (D0, Dgoal) using the visual module
G (Figure 5.2), (ii) we use the action modelM to realize a high-level plan from D0 to Dgoal, and
(iii) we exploit the NLP formulation to convert the high-level plan into atomic actions along with
their implied constraints and compute the optimal motion path for the realization of the plan by the
robot.
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5 Self-supervised Learning of Scene-Graph Representations

5.2.1 Visual module G

The visual module G assumes that input scene images contain bounding boxes of # scene objects.
This assumption is reasonable since such bounding boxes are readily available within a simulation
environment, and also there exists several robust methods to acquire them for real-world tasks [24,
31, 59]. After computing the bounding boxes, we split the scene image into # different images.
Each of these images contains exactly one bounding box, i.e., a mask, of one scene object. The
module G then consumes one image at a time to encode a coordinate vector for this specific object.
This coordinate vector lives in a relative coordinate system which has the origin at the bottom left
corner of image. We proceed to present first, how to realize G, and then how to train the visual
module in a complete self-supervised manner, and last, how to transform # coordinate vectors to a
scene graph describing spatial relations between # objects.

Architecture overview

The visual module G consists of two sub-modules: coordinate regressor c and affine grid sampler d,
which was presented in [36] (illustrated by the red boxes in Figure 5.2). Note that the visual module
G is similar to the Spatial Transformer Network by Jaderberg et al. [36]. The only difference is
that G only works with the translation vector q instead of the full 3× 3 transformation matrix. Next,
we explain the details of those components and how they are combined.

c - Coordinate regressor: The coordinate regressor infers a vector q from a mask image D8, i.e.,
q = c(D8) where q ∈ R2, D8 ∈ R128×128×3. The vector q denotes how far the object should be from
the bottom-left corner (depicted in the fourth column of Figure 5.2). The backbone of the c module
is a Res-Net 34 network [32]. This module is pre-trained2 on the ImageNet dataset [62]. We replace
the last layer with a fully-connected layer to output q.

d - Affine grid sampler: The affine grid sampler takes the vector q and transforms a default matrix
Ddef (depicted in the fifth column of Figure 5.2) into the desired location which is implied by q, i.e.,
D̃8 = d(q, Ddef

8
). The module d is differentiable, hence capable of providing feedback on how to

spatially transform the default matrices Ddef
8

, i.e., optimizing the vector q from the c according to a
label signal. See Figure A.3 for examples of D8 and Ddef

8
.

Training objective

We train the visual module in a complete self-supervised manner. Our training objective is

; = ;mse

(
#∑
8=1

D̃8 ,

#∑
8=1

D8

)
+

#∑
8=1

;mse (D̃8 , D8) (5.3)

where ;mse is the mean squared loss, D8 and D̃8 are the ground-truth and predicted images, which
contain only the bounding box of scene object >8.

∑#
8=1 D̃8 and

∑#
8=1 D8 are the reconstructed and

true scene images, respectively.

2The pre-trained weights are available in the TorchVision library [56].
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5.2 Methodology

We compute D̃8 by D̃8 = d(c(G8), Ddef
8
) where Ddef

8
is the default matrix in which the bounding box of

>8 is located at the bottom left corner (Figure 5.2).

Coordinates to scene graph

Our scene graphs are a set of triples {>1, 4, >2}, where 4 ∈ {left,up} describing the spatial relations
between object >1 and object >2 (Figure 5.3). We first use the k-means clustering algorithm to
group horizontal coordinates into < clusters, where < is the number of stacks. Then, within each
cluster, we simply construct up relations by comparing vertical coordinates. Finally, we add left
relations by comparing horizontal coordinates of the bottom objects of each cluster. Note that down
and right relations are covered as well thanks to this scene graph representation of triples.

5.2.2 Symbolic action model

After capturing the scene graphs for the initial and goal scene images, we deploy an action model to
search for the action sequence. Note that this action model is oracular since we pre-define a set of
actions AE = {(?, @) |1 ≤ ?, @ ≤ <}, where < is the number of stacks in the scene. This means
that if the visual module G correctly captures the scene graphs for the image pair (D0, Dgoal), the
action model is guaranteed to find the optimal plan if the goal can be satisfied. This is possible as
our planner relies on scene graph representation for intermediate states. To find the action sequence,
we start from the input scene graph, use this action model to explore the neighboring graphs from
the action set, and add these neighboring graphs into a queue-like data structure (Figure 5.3). The
search can be breadth-first or depth-first, although we use the former in our experiments. The search
stops when it reaches the goal scene graph Igoal which is either encoded by Dgoal or user-specified
(see Figure 5.4 for sample plans).

Graph
Search

Plan

Action Set

Action Rules

Symbolic Action Model

up

upup

Visual
Module

Visual
Module

left

upup

up

up
left

a state sample
scene graphs

Figure 5.3: An overview of how we use the symbolic action model M and the scene graph
representation to perform graph search.
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5 Self-supervised Learning of Scene-Graph Representations

Figure 5.4: Three sample plans. Initial images D0 are the left-most images of each row. Desired
relations Igoal (the right-most column) are specified as textual commands instead of
desired images Dgoal, which is also possible (Figure A.4). (Green) Action, which
transitions the current state to the next, is located at the top-left corner of each image.
Action notation follows Section 5.2.2 and Section 5.3.1.

5.2.3 Motion planner

Once an action sequence is found by the previous module, any optimization library can be
used to solve the problem described in Equation (5.1). We use KOMO (:-th order markov
optimizer) [66], and the changes introduced in [28] that makes the solver more robust, to formulate
and solve Equation (5.1). KOMO represents the trajectory directly in configuration space, and
computes velocities and accelerations as finite differences of configurations. This leads to a
constrained sum of squares problem with a banded symmetric matrix, that can be efficiently solved
using off-the-shelf Gauss-Newton methods. Note that, given the action sequence, any off-the-shelf
motion planner that can deal with multi-modal problems could be used as well, such as the ones
introduced in [29, 43].

5.3 Evaluation

Since our method is self-supervised, and is able to re-calibrate to adapt to novel scenes, we do not
aim for a universal generalization of all scene objects or camera views. Therefore, we structure
and perform experiments to investigate in which novel settings our model generalizes and does
not generalize. This analysis can be useful to understand when the model needs to re-calibrate,
although this can be achieved automatically using the Intersection-over-Union indicator. We also
evaluate our planner k with a robotic arm in a simulation.
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5.3 Evaluation

5.3.1 Setup

We evaluate our framework using the Blocks-world task [26] where we fix the number of stacks
< = 3, and the set of actionsAE = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1) (3, 2)}. The action 0E

8
= (?, @)

means move the object at the top of stack ? to stack @. We utilize two different graphics engine to
collect the data. The first engine, from the work of Asai [2], is used only to render photo-realistic
images to collect the dataset Dpbw. The second dataset Dsim is obtained from our own simulator
which is visually simpler but allows for robotic manipulation planning and control experiments. We
train two G’s on the state space of the 5-object task and evaluate on the 6-object task on Dpbw and
Dsim.

5.3.2 Results

Table 5.1: Performance on different evaluation datasets.

Dataset SG prediction accuracy IoU

Dpbw-all (6 objects, 3 stacks) 0.889 0.740
Dsim-all (6 objects, 3 stacks) 0.867 0.739
Dsim-20k (7 objects, 3 stacks) 0.884 0.714
Dsim-20k (6 objects, 3 stacks, camera view +2◦) 0.882 0.584
Dsim-20k (6 objects, 3 stacks, camera view +10◦) 0.881 0.561
Dsim-20k (6 objects, 3 stacks, camera view +15◦) 0.843 0.529

Since our action modelM is oracular, the planning accuracy depends on whether G correctly
captures the scene graphs of the desired scene images. Therefore, we focus our analysis on the
performance of G. We report the Intersection-over-Union (IoU) metric [60] (Figure 5.5) and the
scene graph prediction accuracy for our experiments (Table 5.1). The IoU is computed between the
ground-truth D8 and the predicted D̃8 mask images.

Large scale analysis We show that our method, when trained on the task of 5 objects and 3
stacks, generalizes well to higher dimensional task, e.g., 6 or 7 objects. This is reflected by the
good scene graph prediction accuracy and IoU metric (first 3 rows of Table 5.1). During plan
execution, the robot may change its camera view, thus we also analyze whether this change may
affect our method. We test the same G on datasets with different views. We observe a decreasing
trend in IoU, however, the performance is still good enough to retain accuracy in predicting scene
graphs (Table 5.1 last 3 rows).

Fine scale analysis We conduct fine-scale experiments to understand whether our model
generalizes to different shapes or colors. We artificially construct objects of 3 different shapes
(circle, square, and triangle) and 14 different colors. We evaluate the visual module G which is
trained on Dsim, and report the variance of the IoU as 0.0055 for shape and 0.001 for color changes.
This analysis suggests that our model is more sensitive to change in color rather than in shape.
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5 Self-supervised Learning of Scene-Graph Representations

Figure 5.5: IoU on the (5 objects, 3 stacks) training sets of Dpbw (left), and Dsim (right).

Robot manipulation experiments We test the proposed framework on a robotic sequential
manipulation task. The setting is similar to the blocks-world problem but constructed in our
simulator. The robot successfully executes plans proposed by the visual reasoning module (see
supplementary material). Even though the original LGP formulation struggles to solve problems
involving many objects (e.g., the number of objects # ≥ 5) and which requires long action sequences
(e.g., action sequence length  ≥ 6) [16], our framework efficiently solves such problems in this
blocks-world domain, where we have 6 & 7 objects in the scene and the solutions require action
sequences with length  ≥ 6. We note that comparing the runtime performance of our method
to the original LGP is not informative on its own, as this work is based on a more robust version
of the optimizer described in [28]. We merely want to point out that the visual representations
learned by our method proves to be a useful and feasible component for task and motion planning
approaches.

5.4 Extension to generalize in real-world settings

5.4.1 Dealing with random stack locations

Table 5.2: Performance comparison when randomly translating stacks horizontally.

nmax
Original Improved

IoU SG accuracy IoU SG accuracy

0.5 0.651 0.912 0.726 0.892
1.0 0.374 0.892 0.724 0.902
2.0 0.26 0.784 0.701 0.902

The visual module G does not generalize well to novel locations of stacks. We randomly added
a distance n (0 ≤ n ≤ nmax) between stacks to augment the stack locations in the testing dataset
Dpbw of 6-object, 3-stack. We then chose randomly 500 test samples of this testing dataset and
test the G which was trained on 5-object, 3-stack. The IoU metric dropped from 0.74 to 0.651,
0.374, and 0.26 for various values of nmax (Table 5.2). This issue can be fixed by first detecting
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5.4 Extension to generalize in real-world settings

the stack regions by a Connected-component labeling algorithm3 [22]. This algorithm starts at a
non-zero pixel and start to expand to neighboring pixels (if they are also non-zero). The final sets of
these non-zero pixels are called regions. These regions are then translated horizontally by 3 (where
3 ∈ {0,−5, 5,−10, 10,−15, 15}) to check if the new location (which is translated by 3 from the
original) yields a better prediction (which is quantified by the IoU confidence). Table 5.2 shows
that this technique improves the prediction significantly, hence successfully enhances the ability of
G to novel locations.

Figure 5.6: Illustrations of how to translate stacks in order to generalize better to novel locations.
Top row illustrates the original locations while bottom row illustrates the translated
locations of the left-most stack. From left corner to right corner, we translate the stack
by 0, -15 and 15 pixels.

5.4.2 Incorporating stability into the plan search

Taking no consideration of physical constraints in the real world, the high-level plans from Figure 5.3
can include actions which may cause instability of the stack structure. For example, there may exist
a spherical shape, on top of which the output plan should avoid stacking any shape. Hence, it is more
realistic if the graph search can be informed of any heuristic that restrict the plan to obey the physics
rules. Groth et al. [25] proposed to predict the stability of a stack of objects from just an image
observation. This method is motivated by the center of mass rule, thus predicts if the center of mass
of the top object lies within the surface of the bottom object. While showing good performance on

3We use a modified version of a Python implementation, which is archived at https://github.com/jacklj/ccl
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5 Self-supervised Learning of Scene-Graph Representations

simulation images, there are two limitations of the method. First, the method of Groth et al. [25] did
not generalize well to real images when having an accuracy drop of approximately 20%. Second,
the method required the input image to infer the stability of that image. However, in the context
of planning, the image, which we are interested in inferring, is usually from the future horizon.
Therefore, the method is applicable when we can sample the images of possible neighboring states of
a current state. Training such an image sampler in a semantically rich environment is a challenging
and open problem, particularly when the effects of actions are large and highly complex. We thus
present a more realistic technique which is based on capturing the properties of the scene objects.

Figure 5.7: A sample plan when stability is enforced (top) and not enforced (bottom). Note that the
former plan does not involve stacking any object on top of the sphere.

Prediction of object properties

Scene graph representation can be complemented if the properties of the objects are informed.
For example, one of these properties is shape. Training a shape predictor, which infers the shape
from the input bounding box, is possible. We generate an additional dataset Dpbw-shape of 4-object,
3-stack train to such a predictor and another similar test dataset with different object colors. The
shape predictor reaches an accuracy of 97% on the test set, which is no surprise since neural
networks are known to excel at this task. Using this shape predictor, we can put heavy penalties
on outputting actions involving fragile, unstable shapes using a heuristics search algorithm [27]
(see Algorithm A.2). Figure 5.7 shows an example of a planning sequence when stability is
enforced.

5.4.3 Possibility to include 3-D relations

Spatial 2-D relationships, such as left, right, up and down, do not capture extensively the environment.
For example, if there are 2 lines of stacks, it will be difficult to plan using only 2-D relationships.
Therefore, 3-D relationships, such as: in front or behind, have a large impact on the usability of
our method. We propose an extension to capture the depth relationships (in front, behind) using
only the depth information (e.g., from a depth sensor). We first predict the scene graphs of all the
scene objects which are present in the current view. Due to possible occlusion, we implement a
pre-checking subroutine. During this subroutine, the robot first moves all the visible objects into
both the right-most and left-most stacks, thus is able to observe the occluded objects and predict
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the relationships for these objects. To evaluate this technique, we generated a dataset Dpbw-3D of 4
objects and 6 possible stack locations (three stacks are in front of the other three) and tested using
the model which was trained using a dataset of 5 objects and 3 stacks (in Section 5.3). The testing
dataset Dpbw-3D has 2309 scene graphs which includes the depth relationships, 86.67% of which
our model predicted correctly. Therefore, this experiment confirms the possible generalization of
our model to 3-D relationships using an additional depth sensor. See Figure 5.8 for some sample
plans which involve the depth relationships.

Figure 5.8: Planning samples with 3-D relationships.

5.5 Conclusion

Here we discuss the main limitations and assumptions of our work, and provide possible directions
for future work to address those issues.

We make two assumptions within this work. First, we assume that we have access to the bounding
boxes of scene objects rather than just raw scene images. From such a segmented scene image, we
then extract individual objects to infer individual coordinates. Even though we think that it is a
reasonable assumption as there are many state-of-the-art object detection methods [24, 31, 59], this
can be relaxed by adapting an unsupervised scene decomposition technique [8].

Second, our current setup is highly structured, where we assume a fixed setup of 3 stacks in the
scene, thus set : = 3 in the :-means algorithm. However, this is not a hard requirement since it is
possible to infer : using a simple image processing algorithm (see Section 5.4.1 of the sup. mat.)
For a more realistic scene structure, our method can be further developed to reason about the 3-D
world using the depth sensor. Exploiting the depth information, we implemented a pre-checking
subroutine to handle occlusion. We detail this subroutine in Section 5.4.3 (Figure 5.8).
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5 Self-supervised Learning of Scene-Graph Representations

Our experimental results demonstrate a good accuracy for novel environmental settings (6 & 7
objects). To deal with a possibly incorrectly predicted image-pair, two approaches are feasible.
(i) Our planner can output a planning solution with a confidence score using the IoU metric,
which indicates the plan reliability. This might trigger either a view change on the robot for better
observation, or a query for clarifying the goal. (ii) Our framework can be extended to work in a
reactive way by closing the loop from the robotic action execution to the visual reasoning part. In
essence, visual planner can verify if the plan is executed properly and adjust the plan whenever
necessary.

For generic real-world settings, it is advantageous to incorporate physical constraints in addition to
spatial relations among objects. These constraints help to reason about stacking stability, thus allow
for safer manipulation. Since each object has different geometrical and dynamical properties, these
can also be inferred by more advanced object detection methods, which in turn supports the intuitive
physical reasoning of the autonomous agent [6]. We suggest one possible extension followed this
idea in Section 5.4.2 (Figure 5.7).

This chapter proposes a simple yet useful visual reasoning method which we combine with a
nonlinear program to solve sequential robot manipulation tasks. The scene-graph representations are
learned in a self-supervised fashion, which encourages the integration of such spatial relation learning
approaches into task and motion planning methods. Relational structures learned autonomously by
robots have the potential to improve the long-term autonomy of intelligent agents.

46



6 Discussion

Results Chapter 4 presents a multi-modal learning scheme to train a state encoder which produces
higher quality representations in terms of visual reasoning, efficiency, and learning transition
rules. First, under this learning scheme, our encoder produces higher reconstruction error, but
high reasoning accuracy, indicating the neglect of unnecessary details. Second, the resulting latent
representation enables easier learning of transition rule, when action data is not observed. Lastly,
for the smaller latent size settings, our encoder under the multi-modal learning scheme outperforms
its counterparts which are trained using normal scheme.

Chapter 5 addresses the difficulty of learning an accurate action model in Chapter 4 by proposing to
use an explainable representation, thus enabling an oracular action model. Our proposed framework
performed well on two synthetic datasets and showed good generalization to novel environmental
settings (different amounts of objects). Further analysis also confirm sufficient performance under
novel camera views, however, with a confidence drop. We successfully integrate our framework
into an existing motion planner and observe correct plan execution in the simulation.

Alternatives & Insights We think that the evaluation method in Chapter 4 is not well-grounded
due to the missing of a good stochastic action model. Formulating such an action model is very
challenging and an open research question. To the best of our knowledge, [40, 47] are two of the
early works tackling this problem. The action model by Kim et al. [40] samples the future image in
settings where the action displacement is small, e.g., “move left by two pixels”. Meanwhile, the
action displacement in our problem setting is rather large and often intractable, e.g., “move this
block to the third stack”, thus rendering this method ineffective in our settings. The recent work
of Lin et al. [47] achieves impressive results in the same direction, however, we did not have time to
implement and evaluate this method. Nevertheless, formulating such an effective action model is a
fruitful and interesting research direction, which highlights and complements well our contribution
in Chapter 4.

During this thesis work, we have tried multiple different methods to solve the representation learning
problem. Within Chapter 4, the missing piece is a stochastic action model to evaluate and highlight
our proposed learning scheme as discussed above. Despite trying different formulations for such
models (e.g., generative adversarial networks [40] with a dynamic engine and two discriminators,
or conditional pix-to-pix network [35]), we failed to implement a working solution. Beside the
difficulty of large action displacement, an additional reason for this failure is that objective functions,
such as mean-squared error or discriminator loss, are not effective for learning the transition rules.
Mean-squared error puts too much constraint on learning the transition rule, often results in too
identical input-output image pairs. On the other hand, the discriminator loss fails to capture the
real/fake space, since the fake space is often far larger than the real space.
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6 Discussion

While the method presented in Chapter 5 integrates well into an existing motion planner to solve
TAMP problems effectively, the weakest link in our method is the assumption of accessible bounding
boxes. Since those bounding boxes contain location information, there exists a trivial engineering
technique to infer relative coordinates of the boxes. Therefore, the contribution in Chapter 5 would
be much stronger if we incorporate a scene decomposition technique (e.g., [8]) into our framework.
Note that such a decomposition technique may propose an irrelevant object (e.g., a shadow) and lead
to an irrelevant relation (e.g., a shadow is behind a green cube). This effect, however, does not harm
the framework, since an irrelevant relation will never appear among our desired relationships.

Another interesting and potential alternative direction to the method in Chapter 5 is differential
rendering methods [64, 72] . Notice that if rendering is a process which goes from parameters
(such as: colors, shapes, or locations) to pixel values, perception is just the inverse process of
rendering process. Hence, if a rendering process is differential, we can construct a learning program
which receives gradient feedbacks from such renderers and tries to reconstruct a scene observation.
If the quality of the reconstruction is good enough, then the rendering parameters are sufficient
to infer many object relationships. An example of this idea is the work of Sitzmann et al. [64],
which generates novel views from the camera parameters (both extrinsic and intrinsic) and pixel
coordinates. This method first predicts the distance from the camera / eye to the object, then
compute the world coordinates using the pixel coordinates and the camera parameters. Finally,
the learning loop is closed by a module which predicts the pixel value from the world coordinates.
We emphasize that the world coordinates of objects are a valuable source of information to infer
object relationships, and the technique of Sitzmann et al. [64] suggests how to learn this information
in a self-supervised manner. Much inspired by this work, we attempted to formulate a similar
method (see Equation (A.1)). This formulation, however, is inconsistent since due to a constraint of
the mapping from a fixed world coordinate vector GHI to a fixed color vector ˜A61. This conflicts
with the fact that GHI may have different color values depending on which scene image �. A more
appropriate formulation would be conditioning on the current �, i.e., ˜A61 = Ξ(Γ1(�), Γ2(GHI)). We
believe that this formulation is one of the first steps towards applying interdisciplinary ideas from
computer graphics to robotics, which is a potential and interesting research direction.

Conclusion In this thesis work, we have developed two methods to learn a state representation
from image observations. The first method is to train a VQ-VAE [54] as an image encoder with
a relation network [63] using a question-answering dataset [38]. This allows us to encode state
representations which are more efficient (concentrating only on relevant objects), more stable under
noisy settings, and easier to learn transition rules (with a naive, stochastic action model). The second
method is about learning to predict scene graphs from images without ground-truth labels. Such a
scene graph contains information about spatial relationships (e.g., up, down, left, and right), thus
providing an invariant, interpretable, and symbolic state representation. This characteristic enables
the use of an oracular action model and eliminate the need of a stochastic one. Therefore, our
proposed technique integrates effectively into an existing motion planner [68] to solve for task and
motion planning problems, such as: a classical Blocksworld domain [2]. Multiple generalizations
of this technique are also discussed to aim for a more realistic robotic use case.

48



A Appendix

A.1 Algorithm pseudocode

Algorithm A.1 Breadth-first search algorithm
procedure BFS(G, root)

Q← queue
root.visited← true
Q.put(root)
while Q is not empty do

E ← Q.pop()
if E = G then

return E
for all F ∈ E.neighbours()

if w.visited = false then
w.visited← true
w.parent← E

Q.put(w)
end procedure
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Algorithm A.2 A-star algorithm by Hart et al. [27]
procedure Search(goal, root, h)

Q← array
Q.put(root)
P← map
G← map
F← map
G[A>>C] ← 0
F[A>>C] ← ℎ(A>>C)
while Q is not empty do

E ← minG∈& (� [G])
if E = goal then

? ← array // solution path
?.put(E)
while E ∈ % do

E ← %[E]
?.put(E)

return ?
Q.remove(E)
for all F ∈ E.neighbours()

6 ← � [E] + 1
if F not in � or 6 < � [F] then

%[F] ← E

� [F] ← 6

� [F] ← 6 + ℎ(F)
if F not in & then

&.put(F)
return null

end procedure
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A.2 Supplementary materials for Chapter 5

A.2 Supplementary materials for Chapter 5

A.2.1 G-network architecture and training

To implement c, we replace the last layer of ResNet-34 [32] with one sigmoid-activated fully-
connected layer �� (512, 2). Suppose the output of c: q = [0, 1], our 2 × 3 transformation matrix

U is U =
(
1 0 −1.60
0 1 1.61

)
. Here 1.6 is our tuned hyper-parameter to make sure that q covers a good

area of the 128 × 128 image plane. We then pass U to the grid sampler d to transform the default
matrix Ddef to the desired location implied by q. Table A.1 details our training hyper-parameters for
training G.

Table A.1: Training-related hyper-parameters

Parameter Value

Optimizer Adam [41]
Learning rate 1 × 10−3

Weight decay 1 × 10−4

Batch size 16

A.2.2 Ambiguity of Relations

Scene graph representation only takes into account the relative spatial relations, therefore does not
express exact positional information. This problem creates ambiguity in which two different states
may share the same representation (Figure A.1). Although this is not critical, we find a workaround
to disambiguate the scene graph by adding imaginary bases. We then add one more relation for
every base object, and also remove all the left relations as they become redundant. Note that the
left/right relations can still be used, e.g., for such bases, in unstructured environments.

A.2.3 OracularM

We explain here why our symbolic action modelM is oracular. A general action model synthesizes
the new state Ĩ1 after applying an action 00 to a state I0, i.e., Ĩ1 =M(I0, 00). Depending on the
representation of I, finding this mapping can be challenging, especially when I are in the image
space [40]. The synthesized Ĩ1 can be visually correct, but will not be exactly the same as the true
I1. We avoid this problem by utilizing a symbolic scene graph to represent I. Given an action
00 = (?, @), our rule-basedM works as follows: (1) find the top object >1 of stack ?, (2) find
the top object >2 of stack @, (3) remove any relations which >1 holds from I0, (4) add the relation
{>1, D?, >2} to I0, (5) output the newly modified I0 as Ĩ1. Hence, if the scene graph representations
of the initial and goal scenes are correctly predicted, such an oracular action model always finds a
feasible plan.
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A Appendix

Figure A.1: Two different states share the same scene graph representation ({brown, up, pink},
{pink, up, blue}, {blue, left, green}). New scene graph: left: ({brown, up, pink},
{pink, up, blue}, {blue, up, stack0}, {green, up, stack1}), right: ({brown, up, pink},
{pink, up, blue}, {blue, up, stack0}, {green, up, stack2}). Here stack0, stack1, and
stack2 are three additional imaginary bases.

A.2.4 Knowing : in advance

Our limitation of requiring the number of stacks : to be known in advance can be addressed by a
simple algorithm. This algorithm takes in the mask image D8 as an input and outputs : . Starting at
the bottom of D8, the algorithm draws a horizontal line from the left-most pixel to the right-most
pixel, then sees how many times this line intersects with the stacks. Finally, the algorithm outputs
the number of stacks : as : = 1

2 max( ), where  = {:8 |1 ≤ 8 ≤ 128}, :8 is the number of
intersections between the horizontal line at row 8 and the mask area, and 128 is the number of rows
in D8 .

A.2.5 Additional Analysis on IoU Metric

We discussed in Section 5.5 of the main text that the Intersection-over-Union (IoU) can be an indicator
to measure the confidence of the model for a novel scene. The confidence score can be computed
using 5 (/ 91), where 5 is either min or mean function, / 91 = {IoU(D 92 , D̃ 92) |1 ≤ 92 ≤ �} with � is
the number of scene objects and 1 ≤ 91 ≤ |Dsim-6obj |. We further analyze to see which 5 is more
suitable. Denote � as the set of correctly predicted scene graph � = { 5 (/ 91) |1 ≤ 91 ≤ |Dsim-6obj |},
and � as the set of incorrectly predicted scene graph � = { 5 (/ 91) |1 ≤ 91 ≤ |Dsim-6obj |}. The
probability of indicator function 5 rejecting a correctly predicted scene graph is then |�>max(�) |

|� | .
This probability is 0.047 for 5min and 0.266 for 5mean, therefore suggests that 5min is a better indicator
function due to the lower number of potential false positives. Figure A.2 also reflects this as we see
a bigger overlapping area between the sets of correct and incorrect predictions (right column).
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Figure A.2: Histogram of occurrences for different IoU values in the set of incorrectly and correctly
predicted scene graph.

A.2.6 Image Masks and Planning with Goal Images

We present additional figures to further support Chapter 5 of the main text. Figure A.3 illustrates
different mask images D8 and default matrices Ddef

8
. These samples are either rendered by [2] (top

row) or our simulator (bottom row). Figure A.4 shows three additional plans which are different
from those presented in the main text. In these samples, we specify our desired scene images instead
of relations.

Figure A.3: Left column: mask images D8 . Right column: default matrices Ddef
8

. Top row: samples
from Dpbw. Bottom row: samples from Dsim.
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Figure A.4: Three sample plans illustrated in each row. Initial images D0 are the left-most, desired
scenes Dgoal are the right-most images of each row, respectively. Action (green), which
transitions the current scene to the next, is located at the top-left corner of each image.

A.3 Additional equations for Chapter 6

˜A61 = Ξ(Γ2(GHI))
GHI = % · DE3
3 = Υ(Γ1(�), DE)

(A.1)

where:

– Ξ is the pixel generator, which is the same as in [64]

– Γ1, Γ2, Υ are represented by neural networks

– % is the full projection matrix

– � is the input image

– 3 is the predicted depth value

– DE is the 2-D vector, which denotes the pixel coordinate at (D, E)

– DE3 is the 3-D vector, which is (D, E, 3)

– A61 is the 3-D vector, which denotes the true pixel color at (D, E)

– ˜A61 is the 3-D vector, which denotes the predicted pixel color at (D, E)

– GHI is the 3-D vector, which denotes the world coordinate of the pixel at (D, E)
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