
Performance Quantification
of Visualization Systems

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Roman Valentin Bruder

aus Tübingen

Hauptberichter: Prof. Dr. Thomas Ertl
Mitberichter: Prof. Dr. Hank Childs

Prof. Dr. Steffen Frey

Tag der mündlichen Prüfung: 16. Dezember 2021

Visualisierungsinstitut
der Universität Stuttgart

2022

Acknowledgments

With deep gratitude I acknowledge the following people, for without them this work
would not have been possible. First of all, Thomas Ertl, who not only gave me the idea
and opportunity to pursue a doctoral degree at VISUS, but also supervised me and left
me the freedom to explore and realize some of my own ideas. Special thanks to Steffen
Frey, who mentored, supported, and encouraged me throughout the years, from my
master’s thesis to numerous collaborations. I thank Hank Childs and Steffen Frey for
their willingness to serve as reviewers for this thesis.
Thanks to my many coauthors and collaborators: Ruben Baur, Fabian Beck, Matthias
Braun, Michael Burch, Hank Childs, Thomas Ertl, Steffen Frey, Florian Frieß, Moritz
Heinemann, Melanie Herschel, Marcel Hlawatsch, Kuno Kurzhals, Houssem Ben Lamar,
Mathias Landwehr, Matthew Larsen, Christoph Müller, Guido Reina, Christoph Schulz,
Hagen Tarner, Gleb Tkachev, and Daniel Weiskopf. It was great working with you
over the years and solving all the diverse research problems together! I thank all my
colleagues at VISUS and VIS, research can be tiresome and frustrating at times—you
have made it less so.
My work at the Visualization Research Center of the University of Stuttgart was funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within
Project A02 of the SFB/Transregio 161 (project number 251654672). This included
funding of my stay abroad at the University of Oregon in Eugene, Oregon, USA. Many
thanks to Hank Childs who was an exceptional host there and the whole CDUX group
for the warm welcome. Special thanks to Brent, Abhishek, and Kristi for a great time in
Eugene.
For Annika and my family, thank you for all your support and patience over the years,
without which all that I achieve means little.

Valentin

iii

Table of Contents

Acknowledgments iii

Summary xii

Zusammenfassung xiv

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline and Contributions . 5

1.2.1 Overall Contributions . 8
1.2.2 Awards . 9

2 Fundamentals 11
2.1 Visualization and Rendering . 11

2.1.1 Visualization Pipeline . 12
2.1.2 Rendering Pipeline . 13
2.1.3 Foveated Rendering . 14

2.2 Volume Visualization . 15
2.2.1 Volume Rendering . 15
2.2.2 The Volume Rendering Integral 16
2.2.3 Raycasting . 17

2.3 Parallel and Distributed Visualization 20
2.3.1 Volume Raycasting on GPUs . 21
2.3.2 In Situ Visualization . 22

2.4 Performance Analysis and Modeling . 23
2.4.1 Volume Visualization and GPU Performance 23
2.4.2 Modeling of GPU and Scientific Visualization Workloads 24

2.5 Data Sets and Hardware . 24

3 Runtime Performance Evaluation 29
3.1 Empirical Evaluation of GPU-Accelerated Interactive Visualizations . . 30

3.1.1 Measurement and Analysis . 31
3.1.2 Case Study 1: Volume Raycasting 33
3.1.3 Case Study 2: Particle Visualization 43
3.1.4 Results and Recommendations 52
3.1.5 Future Directions . 54

3.2 Visually Comparing Performance Specifics 55
3.2.1 Multiple Perspectives Analysis System 56

v

Contents

3.2.2 Application . 60
3.2.3 Future Directions . 60

4 Performance Modeling on GPU Systems 61
4.1 Load Balancing and Resolution Tuning for Interactive Volume Raycasting 62
4.2 Collection of Performance-Relevant Data 64

4.2.1 Histograms of Volume Blocks (H and Hα) 65
4.2.2 Depth Assessment (Dfront and Dback) 65
4.2.3 Early Ray Termination (DERT & D′

ERT) 66
4.3 Hybrid Performance Model . 67

4.3.1 Machine Learning: Prediction of Sample Cost σ 68
4.3.2 Analytical Model: Prediction of Frame Execution Time 69

4.4 Prediction-Based Parameter Tuning . 70
4.4.1 Adaption of the Sampling Resolution 70
4.4.2 Load Balancing . 71

4.5 Results . 72
4.5.1 Analysis and Comparison of a Sequence with a Single GPU . . 73
4.5.2 Approximation and Prediction Accuracy 76
4.5.3 Prediction Overhead . 76
4.5.4 Interaction Sequences . 77
4.5.5 Load Balancing . 78
4.5.6 Image Versus Ray Space Adaption 79

4.6 Future Directions . 82

5 Performance Modeling on Distributed Memory Systems 83
5.1 A Hybrid In Situ Approach for Cost Efficient Image Database Generation 84

5.1.1 In Situ Visualization . 85
5.1.2 Hybrid In Situ Method for Image Database Generation 90
5.1.3 Implementation Details . 95
5.1.4 Overview of Experiments . 96
5.1.5 Results . 98
5.1.6 Future Directions . 107

5.2 Performance Prediction to Support Render Hardware Acquisition . . . 108
5.3 Adaptive Encoder Settings for Interactive Remote Visualization 111

6 Foveated Rendering to Improve Application Performance 115
6.1 Voronoi-Based Foveated Volume Rendering 116

6.1.1 Method . 116
6.1.2 Results . 120
6.1.3 Discussion and Future Directions 122

6.2 Foveated Encoding for High-Resolution Displays 122

vi

Contents

6.2.1 Method . 123
6.2.2 Results . 124
6.2.3 Future Directions . 125

7 Performance-Optimized Volume Rendering Applications 127
7.1 Volume-Based Large Dynamic Graph Analysis 128

7.1.1 Static Volumetric Graph Representation 129
7.1.2 Classes of Analytics Methods 131
7.1.3 Evolution Provenance . 136
7.1.4 Implementation . 139
7.1.5 Application Examples . 140
7.1.6 Expert Evaluation . 146
7.1.7 Future Directions . 150

7.2 Space-Time Visualization of Gaze and Stimulus 150
7.2.1 Method . 151
7.2.2 Examples . 157
7.2.3 Discussion . 160
7.2.4 Future Directions . 161

8 Conclusion 163
8.1 Summary . 164
8.2 Discussion . 166

8.2.1 Research Question 1 . 166
8.2.2 Research Question 2 . 167
8.2.3 Research Question 3 . 167

8.3 Outlook . 168

Author’s Work 171

Bibliography 173

vii

List of Figures

1.1 Thesis components and their relation . 3

2.1 Visualization pipeline . 12
2.2 Graphics rendering pipeline . 13
2.3 Illustration of object-order empty space skipping 20
2.4 Renderings of artificial volume data sets . 25
2.5 Renderings of volume data sets from simulations 25
2.6 Renderings of volume data sets from CT-scans 27

3.1 Camera paths . 32
3.2 Execution time distribution for volume raycasting 37
3.3 Distribution of Pearson correlation coefficients of volume raycasting 38
3.4 Pearson correlation matrix for GPUs . 39
3.5 Speed-up of volume rendering on different GPUs 40
3.6 Frame times for data sets using different camera paths 42
3.7 Particle data sets . 46
3.8 Distribution of the execution times of particle rendering 48
3.9 Distribution of Pearson correlation coefficients of particle rendering 48
3.10 Pearson correlation matrix for particle data sets 50
3.11 Pearson correlation matrix of camera paths 51
3.12 Mean frame times of data sets rendered with different techniques 51
3.13 Data Set Explorer . 56
3.14 Camera Path Explorer . 58

4.1 Process overview of the load balancing and resolution tuning approach . . 63
4.2 Raycasting algorithm . 66
4.3 Load balancing distribution . 71
4.4 Frame times comparison . 74
4.5 Prediction accuracy of sample cost, sample count and ERT approximation . 75
4.6 Performance and quality comparison . 78
4.7 Load balancing performance . 80
4.8 Visual comparison of adaption in image space, ray space, and hybrid 81

5.1 In situ processing types . 86
5.2 Notional organization of the viability of rightsizing 90
5.3 Sequence diagram of our hybrid in situ system 91
5.4 Compositing time prediction accuracy . 93
5.5 Load balancing approach . 94

viii

Figures

5.6 Render time estimation accuracy . 97
5.7 Baseline experiments . 99
5.8 Parametric study: image count . 102
5.9 Parametric study: image resolution . 103
5.10 Nyx simulation renderings . 105
5.11 Nyx weak scaling results . 105
5.12 Differences in cost between hybrid and inline as a function of concurrency 107
5.13 Prediction accuracy for a GPU upgrade . 109
5.14 Prediction accuracy across multiple clusters 110
5.15 CNN architecture for adaptive encoding . 112

6.1 Sampling mask for foveated volume raycasting 117
6.2 Illustrations of foveated volume rendering 121
6.3 Illustration of the foveated encoding approach 123
6.4 Throughput comparison for foveated encoding 125

7.1 Volumetric representation using adjacency matrices 129
7.2 Scalability of the volumetric graph representation 130
7.3 Classes of analytics methods . 131
7.5 Volume partitioning . 134
7.6 Aggregation levels . 135
7.7 Color mappings . 136
7.8 Session graph example . 138
7.9 Evolution provenance visualization . 139
7.10 Timeline plot of the flight data graph . 140
7.11 Volumetric representation of the flight data 142
7.12 Matrix view to visualize differences . 143
7.15 Process of analyzing the software call graph 146
7.16 Exemplary provenance graph generated during the user study 150
7.17 Space time visualization application . 151
7.18 Data processing pipeline . 152
7.19 Illustration of the data input . 153
7.20 Volume clipping . 155
7.21 Transfer functions for optical flow and gaze density 156
7.22 Kite video example . 158
7.23 Thimblerig video example . 159
7.24 UNO game video example . 160

ix

List of Tables

2.1 Graphics Cards Used for Performance Measurements 25
2.2 Volume Data Sets Used for Performance Measurements 26

3.1 Performance Evaluation in Recent Selected Volume Rendering Papers . . . 34
3.2 Parameters of the Volume Rendering Benchmark 36
3.3 Performance Evaluations in Recent Particle Rendering Papers 44
3.4 Techniques and Required Shader Stages Used for Particle Rendering 45

4.1 Maximum Execution Times . 77
4.2 Quality Impact of Adaption . 79

5.1 The Four Types of Inefficiency for In Situ Processing 89
5.2 Node Configurations for the Nyx Simulation on Stampede2 106
5.3 Throughput of our Adaptive Encoding in Comparison to Flat Encodings . . 113

6.1 Foveated Volume Rendering Performance 120

7.1 Permitted Analytics Operations . 137
7.2 Usefulness of Components . 148
7.3 Relative Usage of the Widgets . 149
7.4 Data Formats . 154
7.5 Example Videos with Gaze Data . 157

x

List of Abbreviations and Acronyms

AMR adaptive mesh refinement
API application programming

interface
AOI area of interest
CNN convolutional neural network
CT computed tomography
CPU central processing unit
DDA digital differential analyzer
DDR double data rate
ERT early ray termination
ESS empty space skipping
FDR fourteen data rate
GPGPU general-purpose computing on

graphics processing units
GPU graphics processing unit
GUI graphical user interface
HPC high performance computing
HVS human visual system
KRLS kernel recursive least squares
LBG Linde-Buzo-Gray
LOD level of detail
NLM United States National Library of

Medicine
MSE mean-squared error
MPI message passing interface
MRI magnetic resonance imaging
OpenCL Open Computing Libray
OpenGL Open Graphics Library
OpenMP Open Multi-Processing

PNG portable network graphics
PRNG pseudo-random number

generator
PSNR peak signal-to-noise ratio
RBF radial basis functions
RAM random access memory
ReLU rectified linear unit
RGB red, green, blue
RGBA red, green, blue, alpha
RMSE root-mean-square error
RLS recursive least squares
SIMT single instruction, multiple

threads
SSIM structural similarity index

measure
STC space-time cube
SU shader units
TACC Texas Advanced Computing

Center
UDP User Datagram Protocol
UMAP Uniform manifold approximation

and projection
UTCT University of Texas

High-Resolution X-ray CT
Facility

VRAM video random access memory

Units

fps frames per second

xi

Summary

Visualization is an important part of data analysis, complementing automatic data
processing to provide insight in the data and understand the underlying structure
or patterns. A visualization system describes a visualization algorithm running on a
specific compute architecture or device. Runtime performance is crucial for visualization
systems, especially in the context of ever-growing data sizes and complexity. One reason
for this is the importance of interactivity, another is to provide the opportunity for a
comprehensive investigation of generated data in a limited time frame. Providing the
possibility of changing the perspective beyond the original focus has been shown to be
particularly helpful for explorative data analysis. Performance optimization is also key
to save costs during visualization on supercomputers due to the high demand for their
compute time. Being able to predict runtime enables a better resource planning and
optimized scheduling on such devices.
The central research questions addressed in this thesis are threefold and build on each
other: How can we quantify runtime performance of visualization systems? How to use
this information to develop models for prediction, and ultimately: How to integrate both
aspects in the application context? The goal is to gain a comprehensive understanding
of the runtime performance of visualization systems and optimize them to save costs
and improve the user experience.
Despite many works in this direction, there are still open questions and challenges on
how to reach this goal. One of these challenges is the diversity of compute architectures
used for visualization, including devices from mobile devices to supercomputers. Most
visualization algorithms profit from running in parallel. However, this poses another
challenge in performance quantification due to the usage of multiple heterogeneous
parallel hardware hierarchies. Typically, visualization algorithms deal with large data,
sparse regions, and interactivity requirements. Further, they can be fundamentally
different in their rendering approaches. All these aspects make a reliable performance
prediction difficult. This thesis addresses those challenges and presents research on
performance evaluation, modeling, and prediction of visualization systems, and how to
translate these concepts to improve performance-critical applications.
Assessing runtime performance plays a key role in understanding and improving
it. A new framework for the extensive and systematic performance evaluation of
interactive visualizations is introduced, to help gain a deeper understanding of runtime
behavior and rendering parameter dependencies. Based on the current practice of
runtime performance evaluation in literature, a database of performance measurements
is created. A list of best practices on how to improve performance evaluation is compiled
based on a statistical analysis of the data. Additionally, a frontend has been developed
to visually compare the rendering performance data from multiple perspectives.

xii

Summary

With a fundamental understanding of an application’s runtime behavior, performance
can be modeled, and the model used for prediction. New techniques for different hard-
ware systems are introduced that are typically used for the visualization of large data
sets: desktop computers featuring dedicated graphics hardware and high-performance
distributed memory systems. For the former, a method to predict performance on-line
is used to dynamically tune volume rendering during runtime to guarantee interactivity.
For image database generation on distributed memory systems, a hybrid approach for
dynamic load balancing during in situ visualization is introduced.
This work also explores how human perceptual properties can be used to improve the
performance of visualization applications. Two novel techniques are introduced that
adapt rendering quality to the human visual system by tracking the users gaze and
changing the visualization accordingly. In this thesis, a special focus is set on volume
rendering. Performance optimization makes it possible to use volume rendering to
visualize data outside the typical use cases. Two visualization systems are presented
that use volume rendering at their core: one for the interactive exploration of large
dynamic graphs and one for the space-time visualization of gaze and stimulus data.
Overall, this thesis advances the state of the art by introducing new ways to assess,
model, and predict runtime performance of visualization systems that can be used
to improve usability and realize cost savings. This is demonstrated through several
applications.

xiii

Zusammenfassung

Visualisierung ist ein wichtiger Bestandteil der Datenanalyse und ergänzt dabei automa-
tische Datenverarbeitung. So ermöglicht Visualisierung oftmals einen besseren Einblick
in die Daten, die zugrunde liegenden Strukturen oder Muster. Visualisierungssysteme
beschreiben einen Visualisierungsalgorithmus, der auf einer bestimmten Rechenar-
chitektur oder einer bestimmten Hardware läuft. Die Laufzeitleistung ist für Visual-
isierungssysteme von entscheidender Bedeutung, insbesondere vor dem Hintergrund
ständig wachsender Datenmengen und zunehmender Komplexität. Ein Grund dafür ist
die Bedeutung von Interaktivität im Kontext von Visualisierung, ein anderer die um-
fassende Analyse generierter Daten in einem begrenzten Zeitrahmen zu ermöglichen.
Die Möglichkeit, die Perspektive über den ursprünglichen Fokus hinaus zu ändern, hat
sich als besonders hilfreich für die explorative Datenanalyse erwiesen. Leistungsop-
timierung ist auch entscheidend für Kosteneinsparungen bei der Visualisierung auf
Supercomputern, da dafür typischerweise ein erheblicher Teil an Rechenzeit benötigt
wird. Die Vorhersage von Laufzeiten auf Supercomputern ermöglicht eine bessere
Ressourcenplanung und optimierte Zeiteinteilung.
In dieser Arbeit werden drei zentrale Forschungsfragen behandelt, die aufeinander
aufbauen: Wie kann die Laufzeitleistung von Visualisierungssystemen quantifiziert
werden? Wie können diese Informationen genutzt werden, um Modelle für die Vorher-
sage der Laufzeitleistung zu entwickeln, und schließlich: Wie können beide Aspekte im
Anwendungskontext umgesetzt werden? Ziel ist es, ein umfassendes Verständnis der
Laufzeitleistung von Visualisierungssystemen zu erlangen und diese zu optimieren, um
Kosten zu sparen und das Benutzererlebnis zu verbessern.
Trotz vieler Forschungsarbeiten in diesem Themenbereich gibt es noch offene Fragen
und Herausforderungen, wie dieses Ziel erreicht werden kann. Eine dieser Heraus-
forderungen ist die Heterogenität der für die Visualisierung verwendeten Rechenar-
chitekturen, die von mobilen Geräten bis hin zu Supercomputern reichen. Die meisten
Visualisierungsalgorithmen profitieren von paralleler Ausführung, dies stellt jedoch
eine weitere Herausforderung bei der Leistungsquantifizierung dar, da mehrere het-
erogene parallele Hardware-Hierarchien verwendet werden. Typischerweise stellen
Visualisierungsalgorithmen große Daten, die viel Leerraum enthalten können, dar und
sollen dabei interaktiv sein. Außerdem können sie sich in ihren Rendering-Ansätzen
grundlegend unterscheiden. All diese Aspekte erschweren eine zuverlässige Leis-
tungsvorhersage. Die vorliegende Arbeit befasst sich mit diesen Herausforderungen
und stellt Forschungsarbeiten zur Leistungsbewertung, Modellierung und Vorhersage
von Visualisierungssystemen vor. Zusätzlich wird aufgezeigt, wie diese Konzepte
zur Verbesserung von Anwendungen, in denen die Laufzeitleistung entscheidend ist,
eingesetzt werden können.

xiv

Zusammenfassung

Die Erfassung der Laufzeitleistung ist ein entscheidender Aspekt für deren Verständnis
und Verbesserung. Es wird ein neues Framework für die umfassende und systematische
Leistungsbewertung interaktiver Visualisierungen vorgestellt, um ein tieferes Verständ-
nis des Laufzeitverhaltens und dessen Abhängigkeiten von Rendering-Parametern zu
erlangen. Basierend auf der derzeitigen Praxis der Bewertung der Laufzeitleisung in
der Literatur wird eine neu erstellte Datenbank mit Leistungsmessungen präsentiert.
Auf der Grundlage einer statistischen Analyse dieser Daten werden Best-Practices zur
Verbesserung der Leistungsbewertung zusammengestellt. Darüber hinaus wird ein
Frontend vorgestellt, das einen visuellen Vergleich der Rendering-Leistungsdaten aus
verschiedenen Perspektiven ermöglicht.
Mit einem grundlegenden Verständnis des Laufzeitverhaltens einer Anwendung kann
die Leistung modelliert und das Modell für Vorhersagen verwendet werden. Es wer-
den neue Techniken für verschiedene Hardwaresysteme eingeführt, die typischer-
weise für die Visualisierung großer Datensätze verwendet werden: Desktopcomputer
mit dedizierter Grafikhardware und High-Performance-Distributed-Memory-Systeme.
Für erstere wird eine Methode zur Online-Vorhersage der Leistung verwendet, um
das Volumen-Rendering während der Laufzeit dynamisch anzupassen und durchge-
hend Interaktivität zu gewährleisten. Für die in situ Generierung von Bilddaten-
banken auf Distributed-Memory-Systemen wird ein hybrider Ansatz zur dynamischen
Lastverteilung während der Visualisierung vorgestellt.
In dieser Arbeit wird außerdem untersucht, wie menschlichen Wahrnehmungseigen-
schaften genutzt werden können, um die Leistung von Visualisierungsanwendungen
zu steigern. Es werden zwei neue Techniken vorgestellt, die die Rendering-Qualität an
das menschliche visuelle System anpassen, indem sie dem Blick des Benutzers folgen
und die Visualisierung entsprechend verändern. In dieser Arbeit wird ein besonderer
Schwerpunkt auf das Rendering von Volumina gelegt. Die in dieser Arbeit vorgestell-
ten Techniken zur Leistungserfassung und -optimierung ermöglichen es, Volumen-
Rendering zur Visualisierung von Daten außerhalb der typischen Anwendungsfälle zu
nutzen. Zwei Visualisierungssysteme werden eingeführt, die Volumen-Rendering als
Kernkomponente verwenden: eines für die interaktive Exploration großer dynamischer
Graphen und eines für die Raum-Zeit-Visualisierung von Blick- und Stimulusdaten.
Insgesamt bringt diese Arbeit den Stand der Technik voran, indem sie neue Tech-
niken zur Erfassung, Modellierung und Vorhersage der Laufzeitleistung von Visual-
isierungssystemen eingeführt, die zur Verbesserung der Benutzerfreundlichkeit und
zur Realisierung von Kosteneinsparungen genutzt werden können. Dies wird anhand
mehrerer Anwendungen demonstriert.

xv

C
h
a
p
t
e
r 1

Introduction

Today, people and organizations are confronted with a huge amount of data and infor-
mation on a daily basis in both professional and private contexts. Dealing with this
ever-increasing flood of data is a great challenge. Many methods and techniques have
been developed by computer scientists to process, store, and analyze data produced by
simulations, information systems, sensors, and individuals. Visual presentation of the
data is a promising way to complement automatic processing and help in the extraction
of relevant information.

Scientific visualization is concerned with visualizing data with given spacial dimensions.
This typically means simulation or measurement data from different science disciplines,
such as medicine, physics, molecular biology, or material sciences. In those contexts,
interactive exploration of the data is often desired to provide additional insight and better
understanding of the simulated process or structure, beyond the initial perspective.
Simulation data evolves over time, therefore scientific visualization often needs to
process a temporal dimension.

Typically, exploring scientific data requires powerful hardware to handle the multidi-
mensional data in the short time interval between rendering of consecutive frames.
Often, image or data elements can be processed independently from each other. This
enables the usage of hardware capable of parallel execution such as a multi core central
processing unit (CPU) or graphics processing unit (GPU). Modern systems often contain
both. In high performance computing (HPC) environments, thousands of nodes are
connected to form a supercomputer that provides a vast amount of processing power.
Each node can be equipped with multiple CPUs, GPUs, and additional acceleration hard-

2 Chapter 1 • Introduction

ware, forming several parallel layers in a hierarchy. However, those different hardware
layers all add to the system’s overall complexity and quantifying performance of visual
computing algorithms that run in parallel on such systems becomes a challenging
problem.

Today, there are two major approaches to scientific visualization for large scale simula-
tion data that is typically generated on supercomputers. The classical approach is to
save (parts of) the generated data to disk during simulation and then perform a post
hoc visualization by loading the data into a visualization application afterwards. This
approach has the advantage of keeping at least parts of the original data, providing
full flexibility, but the disadvantage of requiring great amounts of disk space and I/O
bandwidth to save it. This is especially the case for data with high resolutions in spacial
and temporal dimensions, which is typically generated today. I/O bandwidth in particu-
lar has become a bottleneck in recent years because of a constant progress in the area
of parallel compute performance, whereas the memory and interconnect bandwidth
did not keep pace on leading-edge supercomputers. Therefore, it is often required to
throw away and/or compress parts of the data when using the post hoc approach. In
recent time, the in situ paradigm has gained a wider adaption in the high-performance
scientific visualization community. In situ means that the visualization is performed
while the simulation is running, which allows for a direct access of the simulation data
in memory, obviating the need to write data to disk [43].

Performance plays a central role for both visualization paradigms. In the case of in-
teractive post-hoc visualization, high frame rates are crucial for user satisfaction. For
in situ visualization, short render times are critical to save compute time on super-
computers since access to compute time on those systems is both in high demand and
expensive. Therefore, reliable performance assessment, modeling, and prediction is of
great value to scientific visualization developers and researchers, as a basis to optimize
algorithms, improve user experience, and evaluate techniques. However, performance
quantification is a challenge since many factors influence runtime execution times,
such as the visualization technique or variant thereof, the data set, parameters, and
different hardware layers. The work presented in this thesis covers the different areas
of performance quantification, i.e., assessment, modeling, and prediction, and integrates
them into visualization applications from different domains to steer parameters and
behavior.

1.1 Research Questions

This thesis takes a holistic approach to performance quantification of visualization
systems. The structure is comprised of several components that are directly linked to
performance (Figure 1.1).

1.1 • Research Questions 3

Runtime
Performance

Evaluation

Performance
Modeling and

Prediction

Visualization Application

Compute Architecture / Device

Select/Adapt

Adapt

Replace
offline

online

R
u

n
s

o
n

Improve/Select

Users and their
Visual System

Interact

Track

Perceive

C
o

m
p

u
tes

Select

Figure 1.1: Overview of the thesis’s components and their relation. A visualization ap-
plication runs on a compute architecture / device. This results in a specific performance
characteristic that can be evaluated. On this basis, a different compute architecture
or application may be selected or the performance of the application optimized. The
evaluation serves as a foundation for building models and predicting performance. Per-
formance models can be used to dynamically adapt application parameters or hardware
usage during runtime or offline. Finally, users interact with the application, thereby
influencing the performance. The visualizations are perceived by the human visual
system (HVS) that can be tracked and its properties exploited to improve performance.

Compute Architecture / Device. The visualization application runs on a specific
compute architecture or device that has a fundamental impact on performance. Dif-
ferent compute architectures are used for visualization in practice, from small mobile
devices to class-leading supercomputers. This thesis specifically investigates worksta-
tion systems featuring one or multiple GPUs and distributed memory systems from
small visualization clusters featuring a few dozen nodes equipped with GPUs up to a
leading-edge supercomputer with hundreds of pure CPU nodes. Some of the systems
are equipped with eye-tracking or gaze-tracking devices.

Runtime Performance Evaluation (chapter 3). The evaluation of performance is
the foundation of the components for modeling and prediction. Both, the application as
well as the compute architecture need to be considered. Performance assessment enables
a selection of the compute architecture that meets performance requirements. The same
is true for the application, the underlying visualization algorithm, or a variant thereof.
Typically, performance evaluation is the starting point for performance improvements.

4 Chapter 1 • Introduction

Research Question 1

How can we improve the current practice in runtime performance evaluation of
scientific visualizations?
Based on the systematic review of recent visualization papers on rendering vol-
umes and particles, a general need for a better comparability and generalizability
of runtime performance evaluations was identified. Recommendations for best
practices when evaluating runtime performance to improve on those aspects, as
well as a novel evaluation approach are presented.

Performance Modeling and Prediction (chapter 4 and chapter 5). With appro-
priate performance assessment, it is possible to derive performance models that can
be used for prediction. Predictions can be used for different application scenarios, for
instance to plan hardware upgrades. They can also be used during runtime, where
accurate predictions enable the adaption of the application to meet pre-defined re-
quirements, e.g., adapting the quality to guarantee a minimum number of frames per
second (fps) for a fluid interaction. Additional use cases that benefit from performance
prediction are the selection or adaption of the compute architecture. For instance, by
dynamically distributing work among compute nodes to avoid idle times.

Research Question 2

How can we use performance modeling and prediction in the context of scientific
visualization systems to improve performance?
This question focuses on concrete instances of performance modeling and pre-
diction and their application. The techniques developed in this thesis propose
several performance models in different (online and offline) scenarios and distinct
objectives, from workstation environments to leading-edge supercomputers.

Users andTheirHumanVisual System (HVS) (chapter 6). By interactingwith the
visualization application, the user is a key influencing factor for runtime performance.
Users perceive the produced renderings with their visual system, whose properties
can be used to optimize performance (e.g., rendering less details where they cannot be
perceived). Typically, special devices need to track the gaze of the user for HVS-based
performance optimizations.

VisualizationApplications (chapter 7). The visualization application is the central
component that connects to all of the others others. It is also central for performance.
The user interacts or steers the application and perceives the generated visualizations.
Based on performance evaluation, modeling, and prediction, the application may be

1.2 • Outline and Contributions 5

selected, exchanged, and adapted. The latter can happen dynamically during runtime
or offline with optimizations of the algorithms.

Research Question 3

How can we leverage performance evaluation to develop optimized visualization
applications?
This question is concerned with two aspects: users and their HVS and perfor-
mance optimized visualization applications. This thesis presents visualization
applications for data that can be interpreted as a volume, whose performance
optimizations enable interactive user interaction. Further, techniques introduced
in this thesis use foveated rendering to improve application performance.

1.2 Outline and Contributions
This section outlines the thesis with short summaries of each chapter. For most of the
presented publications, I am the first author and developed the software prototypes,
framework extensions, data pre-processing, and conducted the data analysis myself.
Some of the works presented in the following are collaborations and projects under
my supervision. My supervisor Thomas Ertl and my mentor Steffen Frey were both
involved as co-authors in all publications, they contributed their experience, advice,
discussions, and ideas and helped analyzing and formulating many of the results.

Chapter 2—Fundamentals This chapter introduces the fundamentals of the the-
sis. That includes visualization and (foveated) rendering in general and direct volume
rendering in particular, as the primary visualization technique used in most of the
approaches introduced in this thesis. Further topics covered in this chapter include
parallel rendering on GPUs, rendering in distributed environments, and in situ visual-
ization, all of which are fundamental to the rest of this thesis. Finally, a brief discussion
of performance analysis and modeling in visualization research completes the basics.
An overview of the data sets and hardware used throughout the thesis is provided at
the end.

Chapter 3—Runtime Performance Evaluation This chapter focuses on perfor-
mance evaluation of scientific visualizations, covering an analysis of the current prac-
tice based on recent publications from volume and particle visualization techniques.
We present a performance evaluation framework, where I took part in design and
implementation. I also implemented the volume rendering plugin and orchestrated the
execution of the benchmarks. Further, I analyzed millions of measurements with differ-
ent configurations on up to eleven different GPUs [7]. Christoph Müller co-authored

6 Chapter 1 • Introduction

this publication, implemented and discussed the different particle rendering techniques,
mainly designed the architecture of our fully automated benchmarking framework,
and implemented general parts of it. He also performed some of the statistical test
presented. Hagen Tarner developed a web-based visual analytics system for a detailed
analysis of the same data from multiple perspectives, focusing on the camera paths in
particular [13]. For analysis of a second data set, I modified Intel’s OSPRay framework
to produce systematic benchmark measurements comparable with our own benchmark
results. Further, I developed the projections of the camera paths and directions to 2D,
as well as image comparisons and other data processing. Finally, I provided application
use cases by investigating the data sets with the visual analytics system. Fabian Beck
contributed his expertise in visual analytics design, advise, and discussion.

Chapter 4—Performance Modeling for Runtime Optimizations on GPU Sys-
tems This chapter presents a performance modeling and prediction approach for
volume rendering on GPU systems featuring one or more graphics cards. I developed
and implemented techniques for performance prediction during runtime of an interac-
tive volume rendering application [2, 3]. The prediction is used for dynamic quality
adaption to keep a consistent frame rate as well as for load balancing between different
graphics cards in a workstation.

Chapter 5—Performance Modeling for Runtime Optimization and Cost Sav-
ings on Distributed Memory Systems Our novel techniques for performance pre-
dictions in distributed memory environments are presented in this chapter. First, a
hybrid in situ visualization approach for cost efficient image database generation [6] is
introduced. While I implemented the technique as an extension to the Ascent in situ
framework and conducted all measurements, Matthew Larsen helped me with design
and integration, and also implemented most of the Ascent integration into the Nyx
simulation code. Besides general advise and ideas, Hank Childs provided suggestions for
experiments, discussions and data analysis of the results. The performance prediction
model for distributed volume rendering to support render hardware acquisition [14],
is based on Gleb Tkachev’s Master thesis, supervised by Thomas Ertl, Steffen Frey,
Christoph Müller and me. In particular, I advised on the volume rendering and perfor-
mance modeling. A technique for adapting encoder settings for streaming interactive
visualizations to high-resolution displays is introduced [11]. The technique is based
on the Master thesis work of Mathias Landwehr that I co-supervised together with
Thomas Ertl, Florian Frieß and Steffen Frey. Florian Frieß integrated the work into his
remote visualization framework for high-resolution displays. Besides general advise, I
provided the rendering content for training and testing.

1.2 • Outline and Contributions 7

Chapter 6—Foveated Rendering to Improve Application Performance This
chapter presents foveated rendering techniques to improve performance of scientific
visualization applications. First, our Voronoi-based foveated volume rendering is dis-
cussed [8]. The work is based on the Bachelor thesis of Ruben Bauer who used my
volume renderer as a basis for his implementation. The thesis was co-supervised by
Thomas Ertl, Christoph Schulz, Steffen Frey and me. For the publication, I extended
the foveated approach with a performance optimized Linde-Buzo-Gray stippling pat-
tern that Christoph Schulz provided. Also, Daniel Weiskopf contributed his expertise.
Further, an approach for foveated encoding for large high-resolution displays is dis-
cussed [10]. This publication was mainly developed by Florian Frieß, who did most
of the implementation and measurements, while Matthias Braun contributed to the
head-tracking implementation. Guido Reina provided his expertise, while I contributed
derivation and discussion of the foveated region setup and quantization parameters.

Chapter 7—Performance-Optimized Volume Rendering Applications In this
chapter, performance optimized volume rendering techniques are introduced. I devel-
oped a volume-based approach to large dynamic graph analysis [4]. Michael Burch
proposed the initial idea and gave general advise, while Marcel Hlavatsch and Daniel
Weiskopf contributed their expertise. The approach was later extended to include
evolution provenance [1], where Houssem Ben Lamar and Melanie Herschel provided
their expertise on data provenance in general and the specific evolution provenance
model in particular. I also developed a space-time volume visualization of gaze and
stimulus [5], based on the initial concept from Kuno Kurzhals who also provided the
data and pre-processing. Daniel Weiskopf was also on hand to advise on this work.
The final chapter concludes this thesis with a summary and an overarching discussion
relating to the research questions and also providing directions for future research.

Copyright This thesis reuses materials from several publications with kind permis-
sion of the respective copyright holder and first authors:

• [4, 7, 11, 10] are under copyright of IEEE,
• [2, 5] are under copyright of ACM,
• [1] is under copyright of Springer Nature,
• [8, 14] are under copyright of the Eurographics Association,
• [3] is licensed under Creative Commons license.

8 Chapter 1 • Introduction

1.2.1 Overall Contributions

This thesis introduces various novel contributions in the field of visualization:

Performance evaluationmethodology for scientific visualizations. This thesis
introduces a systematic performance benchmark for scientific visualization algorithms,
including millions of measurements for volume and particle rendering on different
GPUs [7]. The selected parameters are based on a literature review on the current practice
in performance evaluation. The results lead to recommendations for best practices in
performance evaluation that can serve as a starting point for more elaborate models
of performance quantification in the future. Further, a fine-grained approach for the
evaluation of rendering performance is presented using a bottom-up instead of a top-
down approach [13]. The approach focuses on camera configuration and comparison
between different rendering techniques.

Performancemodeling and prediction of rendering algorithms for runtime op-
timization and cost savings. The thesis contributes multiple techniques to model
and predict performance in various application scenarios. For GPU-accelerated worksta-
tions, a novel approach to dynamically tune performance and quality based on user
interaction is introduced, that can also be used for load balancing between multiple
devices [2, 3]. For HPC, a hybrid in situ approach for image database generation is
presented that dynamically shifts rendering load between nodes to save compute time
that is particularly valuable on supercomputers [6]. Further, with the goal of support-
ing cluster hardware acquisition, a neural network-based approach is introduced that
predicts the runtime performance of a distributed volume raycaster [14]. Finally, a
technique that dynamically adapts encoding quality of image parts based on the content
in remote rendering settings is introduced, the technique aims to provide the best
quality under a given bandwidth limitation [11].

Foveated rendering techniques and performance optimized volume rendering
applications. This thesis introduces two techniques related to foveated rendering. A
novel approach based on Voronoi cells to accelerate volume rendering with the help
of an eye-tracking device is presented [8], another approach uses gaze-tracking to
reduce the throughput of remote rendering on high-resolution displays by adapting
the encoding quality based on the HVS [10]. Further, two novel volume rendering
techniques to visualize abstract data are introduced that are performance optimized to
allow interactive exploration. The first one is used to visualize large dynamic graphs and
also includes tracking and an interactive visualization of the evolution provenance [4,
1]. The second technique combines video data, eye-tracking recordings, and optical
flow to a single, integrated visualization [5].

1.2 • Outline and Contributions 9

1.2.2 Awards
V. Bruder, M. Hlawatsch, S. Frey, M. Burch, D. Weiskopf, and T. Ertl. “Volume-based
large dynamic graph analytics”. In: Proceedings of the International Conference Infor-
mation Visualisation (IV). Dec. 2018, pp. 210–219 — was awarded the best paper at the
International Conference Information Visualisation (IV) 2018.
V. Bruder, C. Schulz, R. Bauer, S. Frey, D. Weiskopf, and T. Ertl. “Voronoi-Based
Foveated Volume Rendering”. In: Proceedings of EuroVis (Short Papers). The Eurographics
Association, 2019, pp. 67–71 — was awarded the best short paper at EuroVis 2019.
F. Frieß, M. Braun, V. Bruder, S. Frey, G. Reina, and T. Ertl. “Foveated Encoding for
Large High-Resolution Displays”. In: IEEE Transactions on Visualization and Computer
Graphics 27.2 (Feb. 2021), pp. 1850–1859 — was awarded the best paper at the IEEE
Symposium on Large Data Analysis and Visualization (LDAV) 2020.

C
h
a
p
t
e
r 2

Fundamentals

This chapter covers the basics of this thesis and foundations of multiple of the presented
approaches. First, a general introduction to visualization and rendering is given, with
a focus on the visualization pipeline and the graphics rendering pipeline. Further,
foveated rendering is briefly discussed. Most of the techniques introduced in this thesis
use volume rendering as the core scientific visualization technique (subsection 2.2.1).
Volume raycasting, as today’s predominant technique for volume rendering in scientific
contexts, is described in detail in subsection 2.2.3. As raycasting can be processed
in parallel and on distributed systems, those are discussed as well, with a focus on
raycasting on GPUs (subsection 2.3.1) and in situ visualization (subsection 2.3.2). This
chapter concludes with an overview on performance analysis and modeling in the
visualization domain (section 2.4). Data sets and hardware used in multiple experiments
are listed in section 2.5.

2.1 Visualization and Rendering

Visualization generally means putting abstract data and relationships into a graphical
respective visually comprehensible form. Visualizations typically have the goal to
facilitate analysis, presentation, and communication of data by uncovering patterns
and relationships that are not immediately obvious. It has been used in this capacity
for centuries, for instance in astronomy (Johann Beyer, 1603), geography (Alexan-
der von Humbold, 1817), and cartography (Charles Joseph Minard, 1869 [65]). With
the advent of modern computer systems, these were increasingly used to generate

12 Chapter 2 • Fundamentals

Simulation

Data Bases

Sensors

Data
acquisition Raw Data Filtering

Visualization
Data

Mapping
Renderable

Representation
Rendering Visualizations

Interaction

Figure 2.1: The visualization pipeline as described by Weiskopf [185].

graphical representations of data, initially on the basis of geometric descriptions [161].
Advances in simulations and sensor precision resulted in an increasing amount of non-
geometric data, which led to the application of computational visualization to abstract
data. McCormick et al. [134] introduce the term visualization in scientific computation
and describe it as the transformation of symbolic information to geometric informa-
tion. Today, this is referred to as scientific visualization and typically encompasses the
visualization of measurement and simulation data with given spatial dimensions. The
visualization of abstract data that lacks a spatial dimensions (i.e., it needs to be chosen)
is referred to as information visualization [63]. Examples of such data are relationship
graphs, text collections, networks and hierarchies, and multivariate data. This thesis is
mainly concerned with scientific visualization in general and volume rendering in par-
ticular, one of the major algorithms used for rendering in this domain. However, some
of the presented techniques can be classified as information visualization techniques,
since they visualize data from performance measurements (section 3.2), dynamic graphs
(section 7.1), and gaze (section 7.2).

In the following, the visualization pipeline is discussed, a step-wise process description
of visualizing data. Further, the graphics rendering pipeline is introduced and how
general-purpose computing on graphics processing units (GPGPU) can be used as a
flexible alternative for image-order rendering. Finally, foveated rendering is described,
a method that uses characteristics of the human visual system (HVS) to accelerate
rendering.

2.1.1 Visualization Pipeline

Haber and McNabb [78] introduced the concept of the visualization process as a
pipeline. Figure 2.1 shows a refined version of this so called visualization pipeline
by Weiskopf [185]. First, the raw data is acquired from sources such as simulations,
data bases, or sensors. Typically, the data acquisition is not considered part of the
visualization pipeline. In the first stage of the actual pipeline, the raw data is filtered to
transform it into visualization data. Examples for filtering are denoising, interpolation,
or enhancement of data values. There can be multiple filtering operations or none at
all. In the second stage, the visualization data is mapped to a renderable representation.
Generally, this representation contains attribute fields such as geometry, color, opacity,
and texture. For instance, assigning color and transparency to values in a scalar field

2.1 • Visualization and Rendering 13

Application
Geometry
Processing

Rasterization
Pixel

Processing

Figure 2.2: The graphics rendering pipeline [17]. The four stages may be pipelines
themselves.

by using a transfer function is such a mapping. Finally, the rendering stage produces
visualizations as an observable representation of the data. In the next section, rendering
will be discussed in more detail.

A user can interact with all three steps of the pipeline. In the case of filtering, this could
be the adaption of a threshold value for denoising. For mapping, an example may be
the manipulation of a transfer function; and for rendering this could be the adaption of
the camera angle and distance.

2.1.2 Rendering Pipeline

Figure 2.2 shows the four core stages of the rendering pipeline as used for rasterization-
based, real-time rendering applications in visualization and computer graphics. Typi-
cally, these stages are further divided into sub-stages, forming small pipelines them-
selves. GPUs accelerate most of the stages in hardware, with some parts being fixed and
others programmable. In contrast, the first stage typically runs on the CPU. It is called
the application stage since it is driven by the application. Besides the general program
flow, tasks in this stage include, for instance, data pre-processing, animation, and global
acceleration techniques. At the end of the application stage, rendering primitives are
sent to the next stage.

The geometry processing stage usually runs on the GPU and can be split into four sub-
stages: vertex shading, projection, clipping, and screen mapping. In the vertex shading
sub-stage, the positions of the vertices are computed and attributes such as surface
normals and texture coordinates evaluated. Vertices are transformed into view space
and then the view volume is projected into a unit cube. These operations typically take
place in a programmable vertex shader. Optionally, the geometry processing stage also
includes two other programmable vertex processing stages: tessellation and geometry
shading. Both may generate new vertices and the stream output can be used instead of
sending vertices further down the pipeline. In the clipping sub-stage, vertices outside
the unit cube are discarded since they are not needed for further processing, while
intersecting primitives get clipped. The last part of the geometry processing is mapping
the clipped primitives to two dimensional screen coordinates.

The next stage of the rendering pipeline is called rasterization. Here, all pixels that
are inside a primitive are determined. Finally, in the pixel processing stage, the color

14 Chapter 2 • Fundamentals

of each pixel is determined using another shader program. Additionally, visibility of
the fragment may be checked using depth testing, and per-pixel operations performed
such as blending transparent primitives.
In recent years, the GPU has developed from an accelerator for a fixed-function version
of the rendering pipeline described above to a fully programmable parallel accelerator.
Using the GPU for tasks outside the graphics pipeline is known as GPGPU and can be
done using platforms such as Nvidia cuda or the Open Computing Libray (OpenCL).
In this thesis, OpenCL is primarily used in this capacity since it is platform and device
portable and also runs on other parallel devices besides GPUs, such as multi-core or
many-core CPUs. Importantly, those platforms allow access and forwarding of data
generated on the GPU, i.e., data generated using GPGPU can be directly displayed using
the traditional rendering pipeline without copying any data to the CPU.
An example of using GPGPU instead of the rendering pipeline for visualization, are
image-order rendering techniques such as ray tracing. Here, instead of projecting
primitives and rasterizing them, the color of each pixel is determined by shooting
rays through each of them and determining the light transport between the scene’s
elements (objects, light sources, etc.). Volume raycasting is a special case of image based
rendering and is discussed in more detail in subsection 2.2.3. In the case of image based
rendering, the traditional rendering pipeline is typically only used to draw a single,
screen-sized quad and texture it with the resulting image. Since the image never leaves
the GPU in this case, there is no delay from transfers to the CPU. In the next section,
foveated rendering is discussed as an extension to traditional rendering that improves
performance by taking into account properties of the HVS.

2.1.3 Foveated Rendering
Humans perceive sharp, colorful details in a small region around the center of their
gaze. This is called the foveal region. Outside this region, in the periphery, everything
is perceived blurred and colorless. The ability to distinguish and recognize small objects
and details is usually referred to as visual acuity. A large body of work has shown a
fall-off in visual acuity towards the periphery of the human eye [169], it can be modeled
by a hyperbolic function. This also roughly matches the average density distribution
of photo receptors in the human macula and has been validated with low level vision
tasks [36].
The acuity falloff in the periphery has been exploited to speed upmany (object-order and
image-order) computer graphics and visualization algorithms through the implementa-
tion of foveated rendering (e.g., [168, 75, 176]). With this technique, the image around
the point of focus is rendered in high detail, while quality and details in the periphery
are reduced. Most of the methods focus on object-order rendering or perception-driven
acceleration of raytracing techniques (e.g., [139, 93, 184]). In their work from 1990,

2.2 • Volume Visualization 15

Levoy and Whitaker [124] present a gaze-directed volume renderer for the Pixel-Planes
5 rendering engine. They reduce the sampling rate in the image as well as object space,
thereby generating a performance increase of about a factor of five.
For remote rendering setups and pixel streaming, foveated video compression is a
way to lower data throughput and therefore bandwidth requirements. For instance,
Lee and Bovik [122] propose foveated video processing algorithms to reduce local
bandwidth with foveation filtering. Using a foveated model, Chen and Guillemot [41]
adapted the macroblock quantization adjustment in the Advanced Video Coding (H.264)
compression standard. Their model enhances the spatial and temporal just-noticeable-
distortion models in order to account for the relationship between eccentricity and
visibility. Illahi et al. [92] propose a foveated streaming system in the domain of cloud
gaming. Their approach adapts the video encoder based on the player’s gaze. In their
work on streaming panoramic videos in virtual reality applications, Zare et al. [194]
propose to use a tiled based encoding in order to transmit their wide-angle and high-
resolution spherical content to head-mounted displays. Using the High Efficiency Video
Coding (HEVC) standard, they store the video content in tiles using two resolutions.
Based on the user’s gaze, the high or low-resolution tiles are transmitted.

2.2 Volume Visualization
As scientific computation is typically concerned with real-world phenomena, either
through simulation or measurement, the according visualizations usually project three
spatial dimension onto a 2D screen. To gain insight, the visualization is normally imple-
mented to be an accurate, realistic, and detailed representation of the underlying data.
A volume data set can be seen as a collection of scalar values taken from a continuous
3D signal. If the values are arranged on a regular grid, they are typically referred to as
voxels and do not explicitly encode their location. If the volume data is arranged on a
Cartesian grid, as is often the case for medical data from computed tomography (CT)
scans or magnetic resonance imaging (MRI), the data set can be conveniently stored
and processed using 3D textures on a GPU. Since an exact reconstruction of the 3D
signal is not practical due to the computational demands, a filter is typically used in
practice to approximate the signal. Today, the de facto standard is to reconstruct the
signal using trilinear interpolation, an operation modern graphics processors accelerate
in hardware.

2.2.1 Volume Rendering
Many different volume rendering techniques have been developed over the last decades.
They can be classified into direct and indirect, as well as image space and object space
techniques. In the case of indirect volume rendering, visualization is usually performed

16 Chapter 2 • Fundamentals

using isosurfaces, i.e. surfaces that represent points of a constant scalar value. The
isosurfaces can be generated as a triangle mesh in a pre-processing step, e.g. by using
the Marching Cubes algorithm [129]. The rendering can then be done either using the
classical graphics pipeline (subsection 2.1.2). Another method for rendering isosurfaces
is shooting rays through the pixels of the image plane and analytically computing
isosurface intersections [151].
In direct volume rendering, the volume rendering integral is discretely approximated.
For object-order techniques, this means evaluating the contributions of each part
of the volume to the image individually, for instance by using splatting [186], cell
projection [157], or shear-warp techniques [113]. Image-order direct volume rendering
approaches, today’s predominant technique especially when using GPUs, determine the
radiance that leaves the volume at each pixel of the image plane. The latter is used for
the techniques presented in this thesis.

2.2.2 The Volume Rendering Integral
There are different optical models for light interaction with volume densities [133] that
can be used as a basis for direct volume visualization. For this, the data is considered
to consist of a semi-transparent material with basic physical properties regarding the
interaction with light: emission, reflection, scattering, absorption, and shadowing.
The most common model for scientific visualization, which is also as a basis for the
rendering techniques in this thesis, is an emission-absorption model. That means,
particles in a volume emit light by a factor q and simultaneously absorb incoming light
with coefficient κ.
The volume rendering integral assumes an emission-absorption model that is evaluated
along a viewing ray R(t). The rays are parameterized by the distance t to their origin,
which is the position of the observer’s camera. The model states that emitted radiant
energy q(t) at the distance t = d from the camera is continuously absorbed along the
viewing ray, until it reaches the camera. For a non-constant absorption κ along the ray,
the remaining emitted energy q′ reaching the camera can be expressed as:

q′ = q · e−
∫ d

0
κ(t̂)dt̂. (2.1)

The second factor in Equation 2.1 is called the transparency T with the general form

T (d1, d2) = e
−
∫ d2

d1
κ(t̂)dt̂

. (2.2)

Since radiant energy can be emitted from all positions t along a ray, the total energy Q
can be obtained by integration:

Q =
∫ ∞

0

q(t) · T (0, t)dt. (2.3)

2.2 • Volume Visualization 17

Considering a volume and a ray with the entry point t0 and radiance I(t0) as well as
an exit point D out of the volume, the total radiant energy I(D) leaving the volume is
defined by the volume rendering integral:

I(D) = I(t0) · T (t0, D) +
∫ D

t0
q(t) · T (t, D)dt. (2.4)

The volume rendering integral can be approximated numerically using a Riemann
sum. For this, we can use the raycasting algorithm [123] that basically performs a
front-to-back compositing, i.e. blending equidistant samples along the rays.

2.2.3 Raycasting
Raycasting [123] is an image-order algorithm, i.e., one or multiple rays are cast through
each pixel of the image plane. The volume integral is evaluated by taking equidistant
samples with distance ∆ along the rays, commonly using trilinear interpolation as a
reconstruction filter. That means, the scalar values of the eight neighboring voxels
are considered and weighted according to their distance with respect to the sampling
position. The resulting interpolated value is then typically mapped to red, green, blue,
alpha (RGBA) values that represent emission (red, green, blue (RGB) color values) and
absorption (alpha value). Usually, a modifiable transfer function is used for the mapping
of scalar to RGBA values.
Using a Riemann sum and Equation 2.2, the accumulated absorption at t can be approx-
imated after N = ⌊t/∆⌋ samples along the ray:

T (0, t) ≈ e−
∑N−1

i=0
κ(i·∆)∆ =

N−1∏
i=0

e−κ(i·∆)∆ =
N−1∏
i=0

Ti. (2.5)

Here, a value of 1 indicates full transparency and a value of 0 full opacity. The opacity α
on the other hand defines 1 as being fully opaque and 0 fully transparent, i.e. T = 1−α.
Substituting this relation in Equation 2.5 (with Ti = 1− αi) yields

T (0, t) =
N−1∏
i=0

(1− αi). (2.6)

If α(k) = ∏k−1

i=0
(1− αi) is the k-th iteration of Equation 2.6, it follows by induction:

k = 0 : α(0) = 0

k → k + 1 : α(k+1) = α(k) + (1− α(k))αk.
(2.7)

The emitted color along a ray segment i can be approximated similarly to the opacity:

Qi = q(i ·∆)∆. (2.8)

18 Chapter 2 • Fundamentals

Algorithm 1 Front-to-back raycasting of a mapped volume Vrgbα along a ray R with
sample distance ∆ and a total depth D.
1: function Raycasting(Vrgbα, D, ∆)
2: χα ← 0 ▷ initialize opacity
3: χrgb ← (0, 0, 0) ▷ initialize color
4: for all d ∈ {Dfront . . . Dback, ∆} do ▷ sample ray with step size ∆
5: rgb, α← Vrgbα(R(d)) ▷ color and opacity from mapped volume
6: α← 1− (1− α)∆ ▷ adjust opacity contribution w.r.t. step size
7: χα ← χα + α(1− χα) ▷ blend opacity
8: χrgb ← χrgb + α · rgb(1− χα) ▷ blend color
9: if χα > 1− ϵ then ▷ early ray termination
10: break
11: end if
12: end for
13: return(d, χ) ▷ return depth and color at ray termination
14: end function

Finally, using Equation 2.6 and Equation 2.8, the volume rendering integral (Equation 2.4)
can be approximated with

Q̂ =
N−1∑
i=0

Qi

i−1∏
j=0

(1− αj). (2.9)

This leads to the front-to-back algorithm for direct volume raycasting (Algorithm 1) that
is commonly used today and also the foundation of most of the techniques presented
in this thesis. In line 6, the opacity contribution is adjusted according to the step size ∆
that is given relative to the length of a voxel.

3D Digital Differential Analyzer

As an alternative to equidistant sampling along the viewing rays, the sampling distance
may also be adjusted based on the content or the grid structure of the volume. For the
latter, a 3D digital differential analyzer (DDA) [19] can be used that determines the next
sampling position based on the distance to the next voxel along the ray. Using this
method, each voxel the ray crosses is evaluated only a single time. This approach is
similar to 3D line rasterization.

The techniquemay be slower than raycasting since neighboring rays divergemore easily
which can lead to less profits from caching. However, the results are typically more
accurate, especially when it is intended to render isolated voxels (e.g., the technique
presented in section 7.1).

2.2 • Volume Visualization 19

Raycasting Extensions

Many works have proposed extensions to the classic volume raycasting algorithm with
the goal of shorter rendering times, higher sampling accuracy, and enriched visuals.
One method to improve visuals is the use of lighting and shading, for instance using
Phong-style illumination [153]. As a replacement for the normals that are typically
used to calculate local illumination on opaque surfaces, the gradients can be evaluated
on each sampling position along the rays. Other visual extensions to volume raycasting
include for example the use of style transfer [39] and the enhancement of contours [46].

Many acceleration techniques for volume raycasting have been proposed over the years,
the most straight forward one being early ray termination (ERT) [123]. As shown in
Algorithm 1, ERT terminates the evaluation along the ray once the opacity approaches a
value of 1. This early termination can be performed since the remaining samples would
contribute practically nothing to the final color and opacity. Skipping the evaluation of
those samples can save a substantial amount of processing power, depending on the
data set and the transfer function.

Another commonly used acceleration technique in object-space is empty space skipping
(ESS) [204, 44, 79]. Here, empty parts in the volume data (i.e., parts that do not contribute
to the final image after applying the transfer function) get skipped during raycasting
(see Figure 2.3c). There are many different approaches to accomplish this that depend
on data properties, structure, and implementation of the raycasting. Typically, a coarse
representation of the volume or a hierarchical data structure is used for processing [195].
One common approach is to render a proxy-geometry that represents a hull around
the visible volume in a pre-raycasting pass and save the depth values of the front and
back faces for each pixel in the image plane by using dual depth peeling [25]. Then,
the depth values can be used as entry and exit points of the rays (Figure 2.3a). Another
approach is to evaluate a coarse representation of the volume during runtime, for
instance using a 3D DDA. Only a single lookup in memory is needed to determine if the
brick in the coarse representation is empty, if it contains relevant data, the raycasting
is processed with the regular fine-grained sampling. Compared to the approach using
a proxy-geometry, this method needs additional memory lookups but no use of the
graphics rendering pipeline (subsection 2.1.2) is required. Further, arbitrary empty
blocks inside the volume can be skipped, which can only be achieved with additional
render passes using the dual depth peeling method (Figure 2.3b).

Progressive rendering is a common image-space approach to accelerate rendering
performance for raycasting. Progressive rendering refers to techniques that reuse pixel
values of previous frames to improve rendering quality (e.g., [162, 154, 64]). Often, a
low sampling rate in image space (which can be lower than the image resolution) is
used during user interaction, resulting in high frame rates but a loss of image quality.
If the camera is fixed, the image gradually refines over time by shooting more rays

20 Chapter 2 • Fundamentals

(a) ESS using bounding geome-
try.

(b) ESS using a 3D DDA. (c) ESS visualized.

Figure 2.3: Illustration of object-order empty space skipping (ESS): (a) A bounding
geometry (orange) on a coarse grid defines ray entry and exit points. (b) A 3D digital
differential analyzer (DDA) is used on a coarse grid to skip empty blocks. (c) shows the
skipped blocks (black) for the Bonsai data set.

through different locations on the image plane and reusing samples from previous
frames. Multiple rays per pixel typically also result in anti-aliasing on sharp edges,
further improving the visual quality.

2.3 Parallel and Distributed Visualization
Many scientific visualization algorithms are computationally expensive on the one
hand but can be trivially parallelized on the other, which can mitigate the high cost
to some extend if enough parallel resources are available. Besides multi-core CPUs,
GPUs have become a universal acceleration device for massive parallel computations in
recent years, due to their many—today in the range of a few thousand—smaller, but
more specialized cores. GPU architectures are primarily optimized for an aggregate
throughput across all cores and less optimized for individual performance and thread
latency [148, 15].
Another approach to minimize rendering time of scientific visualization algorithms is to
distribute the work across multiple devices or nodes on a supercomputer. In particular,
this is done for large data sets since today’s GPUs are limited in video random access
memory (VRAM) capacity compared to the cheaper (but also slower) random access
memory (RAM) used by CPUs. Generally, there are two approaches to the rendering of
scientific data on a distributed parallel systems. One is to distribute the data among the
nodes such that each node renders a part of the final image. This is known as sort-first

2.3 • Parallel and Distributed Visualization 21

rendering [140]. The other approach is to have each node render the full image but
with only parts of the data. For visualization of large-scale simulation results, the
decomposition of the data is usually done by the simulation code. In a second step, the
images are then composited into a single, final image. This approach has been termed
as sort-last rendering [140] and it has been shown to provide a better scalability than
sort-first rendering, especially for large parallel jobs (e.g., [146, 191]). Compositing
the images generated by each node into a single image is crucial for the efficiency of
sort-last parallel rendering. Many sort-last rendering algorithms have been proposed
with different advantages and drawbacks [141].
The typical technique used for communication between cluster nodes is the message
passing interface (MPI). Traditionally, visualization on supercomputers has used post
hoc processing, i.e., simulations save their data to disk and dedicated visualization
programs read that data later. However, the post hoc paradigm is increasingly inef-
fective on supercomputers, as the ability to generate data on each new generation of
supercomputer is increasing much faster than the ability to store and load data. As
a result, I/O load times for visualization are becoming unacceptably large, as are I/O
times for simulations performing frequent storage. In contrast to post-hoc visualization,
the so called in situ visualization takes a different approach. Here, the visualization
runs at the same time the simulation is running, thereby sharing the data directly in
memory, avoiding the need to utilize the file system. Currently, in situ is increasingly
the preferred processing paradigm on leading-edge supercomputers [42, 152] and has
been used in many recent visualization works (e.g., [34, 58, 189, 149]).
In the following, volume rendering on GPUs is highlighted inmore detail as an exemplary
parallel rendering technique in the field of scientific visualization. The section is
concluded by an in-depth discussion of in situ visualization, covering instantiations as
well as hybrid and elastic approaches.

2.3.1 Volume Raycasting on GPUs
The performance advances of GPU architectures in recent decades, as well as the addition
of general-purpose computing capabilities have made GPU-based raycasting the de-facto
standard approach for interactive volume rendering in single-device environments [80,
32]. Typically, the contribution of each ray can be calculated independently from each
other while at least clusters of neighboring rays are largely coherent. This makes
volume raycasting by design a good fit for modern GPU’s single instruction, multiple
threads (SIMT) architecture. The first implementations on GPUs required multiple passes
through the render pipeline [108], but this has since been reduced to a single pass with
the advancement of GPU programming capabilities [167, 81].
Typically, the volume data set is uploaded as a 3D texture to GPU memory because
this enables faster lookups due to optimized memory layout and hardware-accelerated

22 Chapter 2 • Fundamentals

trilinear interpolation. Initially, an intersection test with the bounding box of the data
set is conducted to determine the ray entry and exit points for each ray and if it needs to
be evaluated at all. Alternatively, a pre-pass to determine the entry and exit points for
a bounding geometry is carried out. Then, the rays are sampled with equidistant steps
in the respective range. For each sample, a trilinear interpolation is used to reconstruct
the scalar value at the respective position from the volume data. By using a transfer
function, the scalar value is mapped to color and opacity values that are used to estimate
the volume rendering integral (subsection 2.2.2). Illumination can be calculated on
the fly, by estimating the gradients with central differences. The reconstruction of the
volume signal can be improved at almost no cost by reusing the additional samples
needed for the gradient estimation [45].

2.3.2 In Situ Visualization

There are many possible instances of in situ processing, varying over division of re-
sources, access to data, and other factors [43]. There are two instances that are used
most commonly. In the first instance, sometimes referred to as inline or tightly coupled
in situ, the simulation code and visualization routines run on the same compute nodes,
accessing the same memory and alternating usage of a node’s cores. In this setting,
visualization routines are typically integrated into the simulation via a library, and
the simulation code invokes this library whenever visualization is required, effectively
giving up control of the compute resources until the visualization routine returns from
its function call. Popular products that use this form include Catalyst [22], Ascent [116],
and LibSim [187]. In the second instance, sometimes referred to as in transit or loosely
coupled in situ, the simulation code and visualization routines use distinct resources,
often referred to as simulation nodes and visualization nodes. In this setting, the simula-
tion code typically sends its data to the visualization nodes via network communication,
and the visualization nodes will keep its own separate copy of the simulation data.
Popular products that use this form include Damaris [55], Sensei [23], and Adios [67].
To date, there have been few true hybrid in situ approaches that blend between inline
and in transit. Notably, Bennett et al. [28] used a hybrid in situ approach for S3D
combustion simulations, using inline computations to reduce data such that modest in
transit resources could be used to complete analysis tasks. In another notable work,
Zheng et al. [202] introduced PreDatA, where compute nodes could do local processing
before sending data to in transit nodes, although most of the calculations took place on
in transit nodes.
Several works have focused on addressing inherent inefficiencies with in situ process-
ing. With Flexpath [48], the authors focus on saving transfer costs by reducing data
movements or optimizing the data placement based on network topology and other
performance influencing factors. Damaris [54] considered the issue of variability, while

2.4 • Performance Analysis and Modeling 23

Kress et al. considered using in transit to reduce scalability in two separate studies [104,
105]. However, they use a fixed amount of visualization resources.
There are also several works on assessing resource usage of inline in situ and in transit
analysis and visualization tasks, including quantitative formulations [200, 53]. Friesen
et al. [66] discuss in situ experiments for the two instances with the Nyx simulation
code and two in situ analysis suites while mainly considering overall execution time per-
formance. Other works focus on general workflow optimization and orchestration [181,
136].
Those works mainly focus on performance instead of cost, i.e., reducing the overall time
to solution often at the cost of additional node seconds by using additional resources.
Further, either in transit or inline processing is used, but not both in a hybrid fashion. In
the case of in transit, rightsizing is not considered although several works acknowledge
the problem.
There have been several works exploring elastic in situ [56], as a promising direction to
optimize visualization workloads. Elastic in situ describes techniques for resource adap-
tation over the execution time between simulation and visualization. Goldrush [201] is
a system that identifies when simulation resources are idle and used them to perform
analysis tasks. Landrush [69] extends this idea to use idle cycles on GPUs. Melissa [173]
supports a design where a server processes data from multiple independent simulation
groups that connect dynamically. Dirand’s TINS system [52] approaches the problem
from a task-based perspective, with resources being allocated for analytics when such
tasks emerged.

2.4 Performance Analysis and Modeling
Performance analysis has been an integral part of visualization research since its
inception. It is used and recommended for comparisons and to show the limits of the
proposed algorithms [115]. However, there are still papers in the visualization domain
that do not contain comprehensive experimentally validated results or provide only
results with a limited informative value or generalizability [174, 62]. These shortcomings
lead to a still active field of research in performance analysis for scientific visualization.

2.4.1 Volume Visualization and GPU Performance
Since interactivity in visualization is often crucial, as it allows for an exploratory
approach that enables users to gain insight beyond the original focus, enhancing the
performance of GPU-based volumetric raycasting in different forms has emerged into a
significant field of research on its own [32]. However, even in this well-studied context
the performance achieved in practice significantly varies with factors such as data sets,

24 Chapter 2 • Fundamentals

parameters, and hardware in a way that is hard to assess beforehand. Bethel et al. [31]
tested a variety of settings, algorithmic optimizations, and different memory layouts
for the Intel Nehalem, AMD Magny Cours, and Nvidia Fermi architecture to assess
and tune parameters for parallel raycasting. They found that optimal configurations
vary across platforms, often in non-obvious ways. This type of detailed performance
analysis is not only of interest for hardware acquisition or parameter tuning, but is also
the basis for improving algorithm performance (e.g. [29, 118]).

2.4.2 Modeling of GPU and Scientific Visualization Workloads
Naturally, results of a thorough performance analysis can be used to model an ap-
plication’s performance. Many different approaches have been proposed, also in the
field of scientific visualization and GPU performance modeling in general. Examples
are generic performance models [88, 49, 102] and approaches specific to a selected
hardware architecture (e.g., Nvidia GPUs of the 200-series [199]). Those approaches
are typically based on micro-benchmarks (small pieces of code to test for a specific
performance characteristic) and target more or less generic compute applications. There
has also been work focusing on scientific visualization, especially in the domain of
high-performance computing. For instance, Rizzi et al. [156] presented an analytical
model to predict scaling behavior of parallel volume rendering on GPU clusters. Larsen
et al. [117] took a more general approach and modeled the performance of in situ visual-
ization in the context of high-performance computing. In their work, they investigated
three rendering algorithms: ray casting of regular grids, raytracing of iso-surfaces
using only primary rays, and a rasterization implementation that is based on sampling
with barycentric coordinates. Other proposed performance modeling and prediction
methods in the field of rendering and scientific visualization focus on object-order
rendering algorithms (e.g., [188, 171]) or create a performance model for a visualization
pipeline [35].

2.5 Data Sets and Hardware
In this thesis, several dedicated GPUs are used for runtime performance measurements.
The selection encompasses multiple generations of the two major vendors of discrete
graphics cards: AMD and Nvidia. For the evaluation of the presented volume rendering
algorithms, two dozen volume data sets were used. They include measured data from
computed tomography (CT) scans, simulation data, and artificially generated data sets.
Table 2.1 provides a list of all GPUs that were used for evaluation of the techniques
presented in this thesis. The respective sections are referenced. The listed key speci-
fications include the architecture, the number of shader units (SU) and the amount of
video random access memory (VRAM).

2.5 • Data Sets and Hardware 25

Figure 2.4: Renderings of volume data sets that are artificially generated and used in
various experiments. The order is according to Table 2.2 (bottom).

Figure 2.5: Renderings of volume data sets from simulations used in various experiments.
The order is according to Table 2.2 (middle).

Table 2.1: Graphics Cards Used for Performance Measurements

Vendor Model Arch. SU VRAM Used in
AMD Radeon R9 290 GCN 2 2560 4GB 3.1.2
AMD Radeon R9 Nano GCN 3 4096 4GB 3.1.2
AMD Radeon RX 480 GCN 4 2304 8GB 3.1.2, 3.1.3
AMD Radeon Vega FE GCN 5 4096 16GB 3.1.2, 3.1.3
Nvidia GeForce GTX 480 Fermi 480 1.5 GB 5.2
Nvidia GeForce GTX 680 Kepler 1536 4GB 4.5 (A)
Nvidia GeForce GTX 960 Maxwell 1024 4GB 4.5 (B)
Nvidia GeForce GTX 980 Maxwell 2048 4GB 3.1.2, 4.5 (B)
Nvidia Quadro M6000 Maxwell 3072 12GB 3.1.2, 3.1.3, 5.2, 5.3, 6.2
Nvidia GeForce GTX 1060 Pascal 1280 6GB 6.2
Nvidia GeForce GTX 1070 Pascal 2432 8GB 6.1
Nvidia Titan X (Pascal) Pascal 3584 12GB 3.1.2, 3.1.3, 4.5 (B), 7.1.5
Nvidia GeForce GTX 1080 Ti Pascal 3584 11GB 3.1.2, 3.1.3
Nvidia Quadro GP100 Pascal 3584 16GB 3.1.2
Nvidia Titan Xp Pascal 3840 12GB 3.1.2, 3.1.3
Nvidia Tesla V100 Volta 5120 16GB 3.1.2

26 Chapter 2 • Fundamentals

Table 2.2: Volume Data Sets Used for Performance Measurements

Volume Resolution Size Source/Creator Used in
Bat 1024

2 × 720 16 bit UTCT 3.1.2
Bonsai 256

2 × 256 8 bit S. Roettger 3.1.2
Chameleon 1024

2 × 1024 16 bit UTCT 3.1.2, 4.5,
5.2, 5.3

Engine 256
2 × 128 8 bit General Electric 3.1.2

Field mouse 1024
2 × 975 16 bit UTCT 3.1.2, 4.5

Flower 1024
2 × 1024 8 bit University of Zurich 4.5

Foot 256
2 × 256 8 bit Philips Research 3.1.2

Foraminifera 1024
2 × 219 16 bit UTCT 3.1.2

Hazelnut 512
2 × 512 8 bit University of Zurich 3.1.2

Hoatzin 1024
2 × 729 16 bit UTCT 3.1.2, 4.5

Kingfisher 1024
2 × 885 16 bit UTCT 3.1.2, 4.5

Parakeet 1024
2 × 340 16 bit UTCT 3.1.2, 4.5

Skull 256
2 × 256 8 bit Siemens Medical 3.1.2

Stanford Bunny 512
2 × 361 8 bit T. Yoo et al. / NLM 3.1.2

VisFemale 512
2 × 512 8 bit NLM 3.1.2

Zeiss 640
2 × 640 8 bit Daimler AG 3.1.2, 4.5

Combustion 480× 720× 120 8 bit J. Chen 6.1
Porous media 2048

2 × 256 8 bit — 3.1.2
Supernova 432

2 × 432 8 bit J. M. Blondin 3.1.2
Vortex Cascade 529

2 × 529 8 bit A. Beck & C.-D. Munz 6.1
Uniform box 512

2 × 512 8 bit — 3.1.2
Gradient box 512

2 × 512 8 bit — 3.1.2
Frequency box 512

2 × 512 8 bit — 3.1.2
Mandelbulb 512

2 × 512 8 bit D. White & P. Nylander 3.1.2
Top: data sets from CT-scans (Figure 2.6)
Middle: data sets from simulations (Figure 2.5)
Bottom: artificially generated data sets (Figure 2.4)

In Table 2.2, all volume data sets are listed. All are regular grids with the listed voxel res-
olution and scalar precision. Representative renderings of the data sets can be found in
Figure 2.4 (artificially generated), Figure 2.5 (simulation data), and Figure 2.6 (CT scans).

2.5 • Data Sets and Hardware 27

Figure 2.6: Renderings of volume data sets from CT-scans used in various experiments.
The order is according to Table 2.2 (top).

C
h
a
p
t
e
r 3

Runtime Performance Evaluation

In general, the analysis of algorithmic and computational performance has always been
a central aspect of computer science research. In the field of scientific visualization this
is of a particular interest, since there is a high computational demand resulting from
rendering algorithms and a strive for interactive frame rates. The typical approach to
performance evaluation in scientific visualization papers dealing with interactive tech-
niques is the performance measurement for several, often hand picked data sets under
the assumption of representability. In many cases, authors compare their proposed
techniques with comparable ones on one or two different hardware systems. The fact
that there are numerous factors that can influence performance even for simple visual-
ization algorithms raises the question to which extent such common evaluations are
actually representative. Does using only a small subset of possible configurations such
as a few data sets and a single computing device lead to missing influential performance
characteristics? Which are the most important factors that need to be investigated
closely to convey a comprehensive picture of rendering performance? Are there typical
correlations of factors that might help finding a concise, yet complete description? This
chapter discusses these questions from two directions.

In section 3.1, a top-down approach is used that incorporates descriptive statistics on
thousands of different configurations from a systematic performance benchmark [7].
Independent and linear parameter behavior is discussed as well as non-obvious effects.
A list for best practices when evaluating runtime performance of scientific visualization
applications is compiled, which can serve as a starting point for more elaborate models
of performance quantification.

30 Chapter 3 • Runtime Performance Evaluation

In section 3.2, a more specialized and fine-grained approach for the evaluation of
rendering performance is presented that takes multiple perspectives into account:
camera position and orientation along different paths, rendering algorithms, image
resolution, and hardware [13]. The approach comprises of a visual analysis system that
shows and contrasts the data from these perspectives.

This chapter is partly based on these publications

• V. Bruder, C. Müller, S. Frey, and T. Ertl. “On Evaluating Runtime Perfor-
mance of Interactive Visualizations”. In: IEEE Transactions on Visualization
and Computer Graphics 26.9 (2020), pp. 2848–2862 [7]

• H. Tarner, V. Bruder, T. Ertl, S. Frey, and F. Beck. “Visually Comparing
Rendering Performance from Multiple Perspectives [in preparation]” [13]

3.1 Empirical Evaluation of GPU-Accelerated Inter-
active Visualizations

There are different forms of performance analysis ranging from pure analytical models
to those that are solely based on measurements and hybrids of the two. For interactive
visualizations, using empirical measurements to report performance is by far the most
common approach. This is mainly because interactive applications can typically gener-
ate many measurements with a high frequency, thereby requiring only little alterations
to the code. This way, empirical measurements can be used to capture performance
characteristics of various performance-influencing factors for interactive applications
in a reasonable amount of time.
In direct comparison with analytic performance modeling, there are further advantages
of an empirical approach in the case of interactive visualizations. First, concrete per-
formance numbers achieved in practice are reported. However, using measurements
instead of theoretic estimates also raises the question of how portable performance
numbers are to other systems, data sets, and configurations. We address this in part
with our approach by performing and analyzing an extensive amount of measurements
for different combinations of those performance influencing factors. In general, there
are cases in which the assessment of portable performance numbers becomes very hard
or even impossible. With increasing complexity of a system, it becomes difficult to
take all possible influencing factors and their combined performance characteristics
into account. In those cases, an empirical approach is often better suited. Finally,
the performance impact of some factors is hard or even impossible to assess without
executing the algorithm. An example is early ray termination (ERT), an acceleration
technique for volume raycasting (see subsection 2.2.3). The performance impact of ERT

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 31

highly depends on the data set and employed transfer function. When using ERT, even
small changes to the transfer function can substantially impact the number of samples
along rays, for instance in the case where a large surface changes from transparent to
fully opaque. Changes like this are very hard to capture in a model, for example if the
performance is estimated based on the numbers and the cost per sample.

3.1.1 Measurement and Analysis
We compare the current practice of empirical performance evaluation in scientific
visualization research to our approach of using extensive measurements. This includes
investigating if the evaluation criteria typically used in publications are a generally
valid approach to report performance. Further, we evaluate how to improve on the
current practice to make performance analysis more expressive. We look at the common
approach of performance evaluation for novel or improved techniques in scientific
visualization. However, this approach does not focus on comparing against performance
evaluation techniques in particular.
Our basis is the systematic measurement of an extensive amount of different parameter
configurations and data sets on various systems (i.e., GPUs) for two scientific visualiza-
tion techniques: volume raycasting and particle rendering. Both techniques are custom
implementations that are embedded in a benchmarking framework handling program
flow, automatic parameter changes and logging of the runtime measurements.
We investigate the performance of the two techniques in terms of frame times that are
a crucial metric for interactive applications. There are also other performance measures
we are not concerned with here, but which are relevant depending on the application
scenario (e.g., power consumption, memory usage). Further, we restrict ourselves to
scientific visualization applications in a single node environment that use GPUs without
out-of-core-techniques. We presume that many of the concepts may be transferred to a
broader field of visualization applications and usage scenarios.
For data analysis, we use descriptive statistics since a investigation of single frame
times does not allow many conclusions to be drawn about performance behavior in
general for the many different configurations we covered in our benchmark. Therefore,
we mainly look at distributions, linear correlations of influencing factors, subsets of our
data, and general patterns. Finally, we do not investigate single outliers and specific
measurement points.

Experiment Design

For our experiment, we developed an extensible benchmarking framework allowing us
to automatically evaluate all combinations of influencing factors (rendering parameters,
resolution, data set, etc.) based on a declarative description. The factors that can be

32 Chapter 3 • Runtime Performance Evaluation

Figure 3.1: The camera paths used for measurements (left to right): orbit around the
data set, straight path along the axes, diagonal, and sine curve. © 2020 IEEE [7].

measured also include a series of pre-defined camera paths ranging from commonly used
orbits around the data set, over fly-throughs on straight or curved paths, to randomly
selected views (Figure 3.1). Our framework provides a plugin mechanism, by means of
which different kinds of compute/rendering application programming interface (API)s
and devices can be added. For our experiment, we implemented an OpenCL 1.2 and a
Direct3D 11 environment since both APIs support GPUs from different manufacturers.
Refer to Table 2.1 for an overview on the GPUs we used in our experiment. For measuring
the rendering performance, we used similarly equipped machines comprising of an Intel
Xeon E5-2630 CPU running at 2.2 GHz and 64GB of RAM per CPU for all GPUs except
for the Nvidia Titan Xp (Intel Core i9-7900X at 3.3 GHz) and the GeForce GTX 1080 Ti
(Core i7-7700K at 4.2 GHz).

Analysis Process

We follow a top-down approach to analyze the generated data and gain insights into our
large body of performance measurements with little prior knowledge. Accordingly, we
start by looking at the overall distribution of obtained timings, investigating whether
performance data of volume rendering and particle raycasting follow as known distribu-
tion. In a second step, we continue by investigating if we can find a linear relationship
between factors that we changed during the experiment. Our focus on linear dependen-
cies has several reasons. First, those dependencies may be a convenient and intelligible
way to describe the overall influence of a factor. Second, we would expect factors such
as the hardware device to have a linear influence on the results as long as all devices
have the same capabilities (since we do not support out-of-core rendering). In general,
we first compare correlation coefficients on a per feature level, i.e. we look at the means
and ranges of the correlation factors for the different particularities of each feature.

We proceed our analysis process by looking into each of the influencing factors that we
varied in more detail by further investigating correlations. Here, we focus on single
values of the respective factor, i.e. examining correlationmatrices. By calculating a linear

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 33

regression on the factors that behave linearly (as determined before), we additionally
calculate concrete speed-ups. We conclude the analysis process with a closer look at
interesting findings.

3.1.2 Case Study 1: Volume Raycasting

In a first case study, volume rendering performance is investigated. Volume visualization
is a computationally demanding application, especially for high resolution data sets
from state-of-the-art scanners and simulations (see subsection 2.2.1). We consider GPU
raycasting techniques in particular since they are the de-facto standard for volume
rendering in non-distributed environments.

Common Practice

Table 3.1 provides an overview on publications with a strong focus on GPU volume
raycasting and performance-related aspects to assess the common practice of perfor-
mance evaluation in the field during the last two decades. The majority of publications
deal with real-time volume rendering in single node environments. After a review of
their individual approaches for performance evaluation, we identified the following
commonalities that are shared by a majority of the works.

Except Wu et al. [190], a single GPU was used in all papers (in almost all cases from
Nvidia). On average, around five data sets were evaluated. Transfer functions were
unspecified in most cases, but are often depicted in figures. Across different papers,
the size of the data sets ranged from less than one Megavoxel to several Gigavoxels
(with the exception of Hadwiger et al. [79], who used a data set with more than one
Teravoxel). In most cases, camera positions and parameters were not specified explicitly.
Five papers used orbital rotations around one or three axes [180, 170, 121, 167, 38],
while three papers employed pre-defined user interaction sequences [183, 2, 64]. The
size of the viewports were specified in most cases, with some exceptions [145, 95, 198,
198, 192, 84]. In most cases, a single resolution was measured, with a pixel count of
less or around one Megapixel (1024× 1024). In some papers, several viewports were
evaluated [131, 180, 127, 167]. Other rendering parameters were given to some extent.
For instance, raycasting step sizes are specified or described in roughly half of the
papers listed. Algorithmic variations, such as acceleration techniques and illumination
methods, were stated often, but not always. In terms of performance indicators, most
authors provided at least a single fps value per data set. Although it is seldom stated
explicitly, we assume these numbers to be average values of multiple measurements.
Some authors additionally provided minimum and maximum frame rates [80, 167],
speed-ups or even frame time diagrams. Memory consumption is also reported in some
of the works.

34 Chapter 3 • Runtime Performance Evaluation

Table 3.1: Performance Evaluation in Recent Selected Volume Rendering Papers

Author Year GPUsd Viewports Data Sets Views
Wald et al. [179] 2021 N 1 4 –a

Waschk and Krüger [183] 2020 N 1 2 b

Morrical et al. [145] 2019 N –a 4 –a

Hadwiger et al. [79] 2018 N 1 8 –a

Magnus et al. [131] 2018 N 3 8 –a

Wang et al. [180] 2017 N 3 3c rot. x,y,z
Jönsson et al. [95] 2017 N –a 4c –a

Wu et al. [190] 2017 2×N 1 6 –a

Sans et al. [158] 2016 N 1 4 –a

Zhang et al. [198] 2016 I –a 7 –a

Ament et al. [20] 2016 N 1 6 –a

Bruder et al. [2] 2016 N 1 6 > 500
b

Zhang et al. [196] 2016 N –a 6 –a

Ding et al. [51] 2015 N 1 4c –a

Sugimoto et al. [170] 2014 N 1 2 rot. x,y,z
Hero et al. [85] 2014 N 1 5 –a

Frey et al. [64] 2014 N 1 4c > 1000
b

Lee et al. [121] 2013 N 1 5 360
Liu et al. [127] 2013 N 2 9 –a

Yang et al. [192] 2012 N –a 6 –a

Jonsson et al. [94] 2012 N 1 5 1 or 2
Kronander et al. [106] 2012 N 1 8 –a

Schlegel et al. [159] 2011 N 1 7 –a

Hernell et al. [84] 2010 N –a 1 –a

Zhou et al. [203] 2009 N 1 4 –a

Lundström et al. [130] 2007 N 1 3 –a

Ljung et al. [128] 2006 A 1 4 2
Stegmaier et al. [167] 2005 N 2 1 rot. y
Bruckner et al. [38] 2005 N 1 1 3× 360

Krüger et al. [109] 2003 A 1 4 –a

a Property not mentioned in the paper.
b Interaction sequence with variable number of views.
c Time-series data sets.
d N = Nvidia, A = AMD/ATI, I = Intel.

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 35

In this first case study, we test the parameters usually evaluated in common practice:
GPUs, viewports, data sets, and camera paths. We do not consider parameters that are
specific to certain techniques such as illumination. Each parameter dimension was
sampled at least as extensively as in the respective papers. In addition to the parameters
directly derived from common practice, we measured different sampling sizes along
the ray, two acceleration techniques, and transfer functions. Testing various GPUs
helps in understanding device portability. Sampling rate parameters are numerical and
have a well defined order, therefore providing means to test for scalability. Different
data representations are covered by measuring data sets and transfer functions. Since
the camera setup is not reported in many of the reviewed papers, we wanted to test
how different camera paths influence performance and what can be considered most
representative. Evaluating with and without ERT and object-order empty space skipping
(ESS) provides us with the option to emulate accelerated rendering techniques.

Experiment and Implementation

We systematically analyze the performance of volume rendering, using our perfor-
mance evaluation framework (see section 3.1.1) and our custom implementation of
a GPU volume renderer. Our design choices are directly derived from the reviewed
papers to reflect the current standard approach in the field. Accordingly, we employ a
front-to-back volume raycaster with perspective projection, which usually results in a
higher thread divergence compared to orthographic projection. It features local illumi-
nation based on gradients (calculated with central differences), and we can optionally
enable ERT and ESS (see subsection 2.2.3). For our implementation, we make use of the
OpenCL 1.2 API because it enables us to compare the same implementation across graph-
ics cards from different vendors. Volume raycasting is a comparably simple algorithm
and its parallelization is trivial, which minimizes the advantage of vendor-specific APIs
with respect to kernel execution times. Finally, vendor optimized third party libraries
are not used.
Table 3.2 lists the parameters that we varied in our volume rendering benchmark. The
selection is based on our review of the common practice. In the following, we denote
them as factors that influence performance. Further, we divide those factors into two
classes: numerical (including viewport and the step size along rays) and categorical
(the rest). We propose this distinction, because categorical factors do not have a well
defined order, while we can naturally sort numerical ones. The categorical factors
also include the binary values, such as the use of ERT or ESS. Besides the variations of
sampling resolutions in object space and image space, we used 21 different data sets in
our experiment. We test two different transfer functions, because in combination with
the use of acceleration techniques, distinct transfer functions can be seen as different
data shapes. The step sizes in Table 3.2 are relative to the voxel length. That means, a
step size of 0.5 results in 2 samplings in the length of a voxel’s edge.

36 Chapter 3 • Runtime Performance Evaluation

Table 3.2: Parameters of the Volume Rendering Benchmark

Factor Instances Values
Device 11 see Table 2.1
Viewport 3 512

2, 10242, 20482
Step size 4 0.25, 0.5, 1.0, 2.0
Acceleration 2× 2 ERT, ESS (on/off)
Camera path 7× 36 orbitx/y, diagonal, pathx/y/z/ sin z

Transfer function 2 see Figure 2.4–Figure 2.6 for examples
data set 21 see Table 2.2

We ran our application on various dedicated GPUs from Nvidia and AMD (i.e., no inte-
grated GPUs were measured), spanning multiple generations of different architectures.
All of the GPUs used for the benchmark have sufficient video memory to store the test
data sets. To study the impact of simple performance improvement techniques, we
enabled respectively disabled ERT or ESS. We employ an ESS approach that is designed
to be used in a single rendering pass using a 3D DDA (subsection 2.2.3). The time needed
for data pre-processing is not part of the measurement. Further, the majority of the
data sets we measured have also been used for performance evaluation in the reviewed
papers (Table 3.1). Their resolutions range from 256

2 × 128 up to 10243 voxels. The
spacing along the x- and y-axes is the same for all data sets, while the slice size along
the z-axis differs for about half of the data sets. Notably, the tested data sets also include
three generated cubic data sets: one with a uniform density value, another one with a
density gradient from one corner to the opposite, and one featuring a high frequency
pattern generated by using trigonometric functions. Exemplary renderings of all data
sets (but the uniform box) are shown in Fig. 2.6. Although our implementation can han-
dle and convert 8, 16, 32 and 64 bit data precision and sampling precision per voxel, we
limit ourselves to 8 bit sampling precision for a better manageability of the data (every
factor significantly raises the number of measurements due to the added dimension).
In our pre-tests, they exhibited linear behavior for different data precision across most
devices. The performance on AMD GPUs was affected a little less than on Nvidia cards
when increasing the scalar precision, with the exception of the AMD N9 Nano that was
affected most of all cards.

To emulate different evaluation methods, we designed simple camera paths that can be
sampled in arbitrarily small intervals. To keep the computational effort manageable,
we used 36 samples (camera positions) per path, adding up to a total of 252 different
camera positions. The employed paths are schematically depicted in Fig. 3.1. We use
a full orbit around the x-axis and y-axis (as in [170, 180, 121, 167, 38]), three straight

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 37

0.0 0.1 0.2 0.3 0.4 0.5
execution time [seconds]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

fre
qu

en
cy

1e6

Global mean

10.0 7.5 5.0 2.5 0.0
log-scaled execution time [seconds]

0.00

0.05

0.10

0.15

0.20

fre
qu

en
cy

Global mean
log-normal fit

Figure 3.2: Overall distribution of execution time medians of the volume raycasting
benchmark. The right plot has a logarithmic scaling.

paths into the volume data set along each axis, a diagonal path from one corner of
the bounding box towards the opposite one, and one path along a scaled sine-curve in
z-direction. All paths begin with a full view of the bounding box and (except the orbits)
stop at its center. For the orbits, the view direction is always towards the center of the
data set. We measured the kernel execution time of each configuration by using the
queue profiling functionality of OpenCL, and rendered every configuration at least five
times. In total, this amounted to over 25 million measurements covering more than five
million distinct configurations.

Analysis of the Results

Performance Distribution. The overall distribution of all kernel execution times
of our volume raycaster is shown in Figure 3.2 (left). The chart includes all measured
configurations (using themedian of the execution times formeasurements with the same
configuration). In general, the differences between runs with the same configuration
are negligibly small (mean standard deviation of 0.002 s). In some cases, the first
run is slightly slower than the others (especially on AMD GPUs), which we attribute
to caching effects of the kernel. Applying a logarithmic scaling on the measured
execution times reveals a log-normal nature of the distribution (Figure 3.2, right). For
verification, we performed a one-sample Kolmogorov-Smirnov test on the data, which
rejected the null hypothesis of the sample coming from a log-normal distribution
(D = 0.78, p < 2.2 · 10−16). On the one hand, there are some visible deviations in
the tails (see Figure 3.2). On the other hand, it is a known problem of the used test to
become very sensitive to even small deviations for large sample sizes as in our case
(more than five million configurations). Although we cannot claim statistical support
for the assumption that the performance of volume renderings is log-normal distributed,
the visual inspection of the histogram shows that it is very close. The global distribution

38 Chapter 3 • Runtime Performance Evaluation

ca

m
er

a
pa

th

de

vi
ce

da

ta
se

t

vi

ew
po

rt

st

ep
 s

iz
e

us

e
ER

T

us

e
ES

S

tra

ns
fe

r f
un

ct
io

n

ca

m
er

a
ro

ta
tio

n

ca

m
er

a
di

st
an

ce

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 3.3: Pearson correlation coefficients for volume raycasting as boxplot for the
observed performance influencing factors, camera rotation, and camera distance.

gives a general impression of the range and occurrence of the execution times. However,
this representation does not provide any details about the influence of the different
factors we varied in our measurements.

Linear (in)dependence of features. In a second step, we investigate the correlation
of different factors with respect to the execution time (the target) with the other values
or categories from the respective factor. For instance, we consider all timings obtained
for the “Nvidia Titan Xp” being one data set and all obtained for the “AMD Radeon
Vega FE” being the other. Then, we compute the Pearson correlation coefficient between
these two disjunctive data sets. The result gives us an idea of whether there is a linear
correlation between the rendering performance of the two devices. If that is case, we
can conclude that the devices behave similarly for all test cases except for a linear
scaling factor and offset. We compute a correlation coefficient for all pairs of different
values of a single factor, which yields a correlation matrix (e.g., Figure 3.4) and repeat
this procedure for every factor we tested. That means, we calculate one such correlation
matrix per factor. Figure 3.3 gives an aggregated overview of all those matrices: each
single box in this boxplot represents the distribution of all correlation factors within
one matrix. This yields one box per tested factor. High values in the matrix indicate a
generally high linear correlation between all pairs of instances of the respective factor.
Additionally, we calculated correlation matrices for camera rotation and distance that
we added to the boxplot for a comparison to the camera path factor.

Themeans of the correlation coefficients indicate that the volume data set has the highest
variance and lowest correlation (also the factor with the highest number of different

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 39

R
ad

eo
n

Ve
ga

 F
E

R
ad

eo
n

R
X

48
0

R
ad

eo
n

R
9

29
0

R
ad

eo
n

R
9

N
an

o

Q
ua

dr
o

G
P1

00

Q
ua

dr
o

M
60

00
 2

4G
B

G
eF

or
ce

 G
TX

 9
80

TI
TA

N
 X

 (P
as

ca
l)

TI
TA

N
 X

p

G
eF

or
ce

 G
TX

 1
08

0
Ti

Te
sl

a
V1

00

Radeon Vega FE

Radeon RX 480

Radeon R9 290

Radeon R9 Nano

Quadro GP100

Quadro M6000 24GB

GeForce GTX 980

TITAN X (Pascal)

TITAN Xp

GeForce GTX 1080 Ti

Tesla V100

1.00 1.00 1.00 1.00 0.95 0.99 0.99 0.98 0.98 0.96 0.99

1.00 1.00 1.00 1.00 0.95 0.99 0.99 0.97 0.98 0.96 0.99

1.00 1.00 1.00 1.00 0.95 0.99 0.99 0.97 0.98 0.96 0.99

1.00 1.00 1.00 1.00 0.95 0.99 0.99 0.97 0.98 0.96 0.99

0.95 0.95 0.95 0.95 1.00 0.97 0.98 0.99 0.98 0.99 0.96

0.99 0.99 0.99 0.99 0.97 1.00 1.00 0.99 0.99 0.98 0.99

0.99 0.99 0.99 0.99 0.98 1.00 1.00 1.00 1.00 0.99 0.99

0.98 0.97 0.97 0.97 0.99 0.99 1.00 1.00 1.00 1.00 0.98

0.98 0.98 0.98 0.98 0.98 0.99 1.00 1.00 1.00 0.99 0.98

0.96 0.96 0.96 0.96 0.99 0.98 0.99 1.00 0.99 1.00 0.97

0.99 0.99 0.99 0.99 0.96 0.99 0.99 0.98 0.98 0.97 1.00
0.95

0.96

0.97

0.98

0.99

1.00

Figure 3.4: Matrix showing Pearson correlation coefficients among different measured
GPUs for volume raycasting.

values in our measurement), followed by the camera path. While the step size has a
very high correlation among different values, there is also some noticeable variation for
the viewport. We attribute the variations when changing the viewport to performance
deviations caused by oversampling of the smaller data sets (i.e., neighboring rays get
very cheap due to caching effects). The binary factors for the acceleration techniques
and transfer functions have a medium to high correlation. They are closely linked to
the data set structure. Finally, all devices show a very predictable behavior in terms of
performance.

We visualize the correlation matrices as a heat map for closer investigation. Figure 3.4
shows the correlation heat map for the device factor, i.e. the different GPUs. Notably,
the linear correlations between the tested AMD GPUs are almost 1.0 in all cases, while
correlations with the Nvidia cards are still above 0.95 in all cases.

The performance influencing factors we benchmarked, can further be classified into
four categories:

40 Chapter 3 • Runtime Performance Evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speed-up

Radeon RX 480

Radeon R9 290

Radeon R9 Nano

Quadro GP100

Quadro M6000 24GB

GeForce GTX 980

TITAN X (Pascal)

TITAN Xp

GeForce GTX 1080 Ti

Tesla V100

Reference: Radeon Vega FE

0.0 0.2 0.4 0.6 0.8 1.0
Speed-up

orbit_y

diagonal

path_x

path_y

path_z

path_sin_z

Reference: orbit_x

Figure 3.5: Speed-up of volume raycasting on different GPUs relative to the AMD Radeon
Vega FE (top); and speed-up of different camera paths relative to an orbit around the
x-axis (bottom). Error bars indicate the variance.

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 41

1. Hardware, in our case GPUs.
2. Numeric sampling parameters in image space (viewport resolution) and object

space (step size along the ray).
3. Camera parameters, in our case covered by different camera paths.
4. Data structure, a combination of data set and transfer function.

One can argue that different camera parameters are also a form of distinctive data repre-
sentations, respective data structures. That means, by changing the camera perspective,
we “generate” a new structure, through processing only parts of the original data and
changing the behavior or impact of ERT and ESS. Therefore, a reduction of the four
categories to three (adding camera parameters to data structure) is also possible.
In terms of those categories, the determined correlation coefficients imply that using
different hardware results in comparably predictable behavior. The same holds for the
sampling factors, with some limitations for the viewport. The camera parameters show
significantly bigger deviations, while factors related to the volume data structure have
the lowest correlation among one another. We conclude that the data set structure is
the most important factor for performance quantification in our volume raycasting
application.
To validate this conclusion, we separate the data based on all factors related to the
volume data structure as discussed above: data set, transfer function, acceleration
techniques and camera. We then apply a linear regression on a training subset of
the data. When testing the resulting model, we achieve an average coefficient of
determination of R2 = 0.894 across all data sets, with a minimum of R2

min = 0.756
and a maximum of R2

max = 0.940. In order to generate a reference, we used random
forest regression. Using this more advanced machine learning technique, we were able
to achieve a coefficient of determination of R2 = 0.982. We deliberately chose linear
regression to show and understand linear relations in the data, which may not be as
obvious with advanced machine learning techniques such as random forests or neural
networks. Figure 3.5 shows the linear relation of all tested GPUs and camera paths. The
error bars indicate uncertainty and are calculated using error = (1 − r) · s, with s
denoting the slope of the regression and r the correlation coefficient.

Further investigation of interesting findings. Based on the findings described
above, we were interested in two additional aspects: a detailed investigation of the
performance of different volume data sets, which showed the highest variation among
all features, and the influence of the camera parametrization on performance. To
accomplish the former, we measured the performance of a stack of down-sampled data
sets (i.e., aggregating 23, 33, 43, . . . neighboring voxels). As an example, we used the
Chameleon data set with an original resolution of 10243 voxels and created seven down-
sampled variants, the smallest one having a resolution of 1283 voxels. Investigating the
correlation matrix of those data sets showed a minimum coefficient of 0.85 (between

42 Chapter 3 • Runtime Performance Evaluation

ba
t

bo
ns

ai
bu

nn
y

ch
am

el
eo

n
en

gi
ne fo
ot

fo
ra

m
in

ife
ra

fre
qu

en
cy

 b
ox

gr
ad

ie
nt

 b
ox

ha
ze

ln
ut

ho
at

zi
n

ki
ng

fis
he

r
m

an
de

lb
ul

b
m

ou
se

pa
ra

ke
et

po
ro

us
 m

ed
ia

sk
ul

l
su

pe
rn

ov
a

un
ifo

rm
 b

ox
vi

sF
em

al
e

ze
is

s

diagonal
orbitx
orbity
pathx
pathy
pathz

pathsinz
0.08
0.16
0.24
0.32
0.40

Figure 3.6: Mean frame time (in seconds) for rendering the volume data sets using
different camera paths.

the highest and the lowest resolutions), with a mean value of 0.97 for all combinations.
Another example using the Zeiss data set with an original resolution of 6403 and six
down-samplings showed similar results, with a mean correlation coefficient of 0.99
a minimum of 0.96. The results suggest that the structure of the data set is mainly
responsible for the variance in performance behavior. However, there might be cases
where a high resolution data set has distinct performance characteristics from a down-
sampled version of the data. For instance, this could be the case if fine structures or
noise in the original data get averaged out in the down-sampling process and therefore
result in faster rendering times.

Figure 3.6 shows a heat map for the execution time means of all data sets when using
a specific camera path. The performance deviation are comparably high for several
combinations, which motivated us to further investigate the performance behavior for
different camera parameters. We calculated Pearson correlation coefficient matrices for
solely the rotation respectively the distance to the center of the bounding box of the
volume data set. For the former, we used the samples from the camera path doing a
full orbit around the y-axis. For the latter, we took the samples of the straight camera
paths along the three major axes. Different positions among the orbit showed a mean
correlation of 0.88, with the minimum being 0.68 (Figure 3.3). Besides the structure,
shape, and spacing of a data set, memory access patterns and caching influences
performance during rotation around a data set in texture-based volume rendering [170,
180].

For the distance to the volume (i.e., zoom into the data set), the mean of the correlation
coefficients was lower compared to the one for rotation, at 0.83. Notably, the lowest
factor was 0.54: It is the correlation factor between the camera configuration with the

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 43

shortest and the one with with the largest distance to the center. Overall, correlation
to other camera configurations decreases with smaller distances to the center. This
suggests a higher divergence in performance behavior between zooming into a volume
than circling around it.
Finally, we performed several two-sample, two-sided Kolmogorov-Smirnov tests to
analyze if the intuitive choice of rotating the camera around the data set is representative
for a wider range of views in the sense that the sample comes from the same distribution
as all views. For both paths that orbit around the data set, the test rejected the null
hypothesis (D = 0.09, p < 2.2 · 10−16 for orbitx and D = 0.04, p < 2.2 · 10−16 for
orbity) whereas it rejected it for none of 100 randomly chosen samples of the same size
(approximately 1.1 m), with p-values ranging between 0.051 and 0.997 (mean: 0.644,
median: 0.686).

3.1.3 Case Study 2: Particle Visualization

In a second case study, we examine particle rendering in the form of several different
techniques of raycasting sprites. Those techniques are often used for visualizing particle-
based data sets such as molecular dynamics simulations.

Common Practice

Table 3.3 shows a summary of how runtime performance evaluation has been done
in publications on particle-based visualization over the last two decades. It can be
seen that the authors mostly focused on varying the data sets, while in most cases
only one GPU and one viewport resolution was tested. Information about the camera
was rarely mentioned, especially in older publications. More recently, the camera was
oftentimes adjusted such that the data set fits the available screen area [107, 73, 96,
70]. Other authors complemented this overview rendering with a close-up [155, 61,
120], sometimes including the actual renderings for reference [100, 178, 71]. In three
cases [74, 125, 120], the authors used knowledge about their algorithm and placed the
camera in the assumed worst-case position. Performance measurements for a larger
number of camera positions are rarely reported. If so, rotations around the data sets are
used [125], also complemented by fly-through paths [147]. As an exception, Hermosilla
et al. [83] report average frame rates from random camera positions on a sphere around
the data set.
The predominant measure used in basically all cases are fps, similar as for volume
rendering. An exception is the work of Gumhold [76], who reported the number of
ellipsoids rendered per second alongwith the number of fragments filled per second for a
series of different data set sizes. Frame rates were sometimes complemented by detailed
performance information regarding individual steps of the algorithm [107, 74, 126, 100,

44 Chapter 3 • Runtime Performance Evaluation

Table 3.3: Performance Evaluations in Recent Particle Rendering Papers

Authors Year GPUsb Viewports Data Sets Views
Ibrahim et al. [90] 2021 N 1 9 3
Gralka et al. [70] 2020 2×N, 2×A 1 5 1
Müller et al. [147] 2018 H 1 5 5×?c
Ibrahim et al. [91] 2018 N 1 6 2
Hermosilla et al. [83] 2017 N 1 9 512
Jurčík et al. [96] 2016 N 1 4 1
Skånberg et al. [165] 2016 N 1 4 1
Grottel et al. [72] 2015 N –a 3 –a

Wald et al. [178] 2015 4×I 1 7 2
Guo et al. [77] 2015 4×N 1 2 7
Knoll et al. [100] 2014 2×I, N 1 8 2
Le Muzic et al. [120] 2014 N 1 1 1
Grottel et al. [73] 2012 N 1 6 1
Lindow et al. [125] 2012 N 1 7 rot.
Chavent et al. [40] 2011 4×N 1 12 1
Lindow et al. [126] 2010 2×N 1 5 –a

Grottel et al. [74] 2010 N 1 5 4
Krone et al. [107] 2009 N 1 10 1
Falk et al. [61] 2009 N 1 6 2
Lampe et al. [114] 2007 N 1 6 –a

Gribble et al.[71] 2007 O 2 6 1
Tarini et al. [172] 2006 A –a ≥ 2 –a

Reina & Ertl [155] 2005 3×N –a 4 ≥ 2

Klein & Ertl [99] 2004 N 1 1 –a

Gumhold [76] 2003 N, A –a 1 –a

a Property not mentioned in the paper.
b A = ATI/AMD GPU, H = HoloLens, I = Intel many-core CPU or Xeon Phi, N = Nvidia GPU,
O = Opteron CPU.

c Multiple camera paths with variable number of frames.

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 45

Table 3.4: Techniques and Required Shader Stages Used for Particle Rendering

Technique Active shader stages* Unique factors
Screen-aligned quad VS, GS, PS
Ray-aligned quad VS, GS, PS
Instanced quad VS, PS color conversion
Ray-aligned quad VS, HS, DS, PS
Ray-aligned polygon VS, HS, DS, PS corners (4–8, 16, 32)
Adaptive polygon VS, HS, DS, PS allowed corners (4–16)

* Bold face marks the shader stage used to compute the sprites.
V = Vertex, G = Geometry, H = Hull, D = Domain, P = Pixel shaders.

77, 40]. These were typically reported in milliseconds. Relative speed-ups [126, 71] are
less common and given if a new technique was compared to an existing one [114, 40,
125, 100, 72, 96]. Besides timings, bandwidth [114, 74] and memory requirements [125,
100, 178] were reported. Müller et al. [147] included data from pipeline statistics queries
such as the number of shader invocations or the geometry load.
While some authors provided quite detailed explanations about certain performance
characteristics and their causes [100, 178, 90] or compared several variants of their
technique [61, 107, 73, 165, 70]. Only a couple of works of the investigated ones present
systematic performance studies: Grottel et al. [74] investigated different techniques to
transfer data from main memory to the GPU, data quantization, two culling techniques
and deferred shading, and the combinations thereof. The reported results did not only
include frame rates but also statistics such as the visible data after culling. Müller et
al. [147] compared the performance of different shader-based methods of rendering
spherical glyphs on the Microsoft HoloLens.
For our benchmark, we derive similar factors from the literature review as in the volume
rendering case: GPUs, viewports, data sets, and camera paths. This also allows us to
compare across experiments. We focus on evaluating the different techniques and
variants used for particle rendering to provide a better understanding of the differences.
Additionally, we test several rendering specific parameters.

Our Test Implementation

Today, the predominant technique for rendering particle data sets as spherical glyphs
is computing the ray-sphere intersections on sprites. Since we need rasterization for
this, we base our test implementation on the Direct3D 11 API. In our experiment, we
evaluated several variants of this GPU-based raycasting, which are implemented via
modified pixel shaders. Our tests include a series of techniques for generating the

46 Chapter 3 • Runtime Performance Evaluation

Figure 3.7: The particle data sets from molecular dynamics simulations used in our
tests. From left to right: small test run (1000 particles), three droplets (79 509 particles),
formation of a liquid layer (2M particles), laser ablation (6 185 166 particles), and a set
of 10M nanoparticles. The last rendering shows one of the randomly generated data
sets with 100 000 particles. © 2020 IEEE [7].

sprites. Table 3.4 shows an overview of all rendering techniques along with specific
factors that might influence the rendering performance of the technique. They differ
in the usage of quads or polygons, the alignment of quads, the use of instancing, the
active shader stages, and the particular shader stage used for computing the sprites.

The Instanced quad approach differs from all others in that it does not obtain its data
(i.e., position, radius, and color of the particles) from a vertex buffer. Instead, data is
obtained from a structured resource view, which is accessed based on the instance ID.
The vertices for the instances are not stored in a vertex buffer, but computed on-the-fly
from the vertex ID. The ray-sphere intersection itself is always computed in the pixel
shader. For all tests using particles without a color, but with an intensity value, we
also tested the transfer function lookup in the vertex and pixel shaders regardless of
the technique. Further, we tested conservative depth output enabled and disabled for
all techniques. Conservative depth output allows the GPU to perform early z-culling
even as we are writing the correct depth of the ray-sphere intersection point computed
in the pixel shader. This way, many fragments in dense data sets can be discarded
before invoking the pixel shader. However, the effect varies with the position of the
camera because the order in which particles are emitted depends on the fixed layout
of the vertex buffer, not on the view. Therefore, the amount of overdraw and the
order in which it happens—and in turn the number of fragments discarded early—are
view-dependent.

We used quadratic viewports of 5122, 10242 and 20482 pixels (the same as in the volume
rendering case). The camerawasmoved in ten steps along different paths: diagonalx/y/z ,
orbitx/y, pathx/y/z and pathsin x/y/z . We measured the particle rendering on the GPUs
listed in Table 2.1. Our tests included five real-world data sets (cf. Fig. 3.7) and 21
artificial ones with uniformly distributed particles in a 103 bounding box. The artificial
data sets were generated in two series: the first one contains 10k, k ∈ {3, 4, 5, 6}
particles, each having approximately the same fraction of the bounding box filled (i.e.,
the size of the particles decreases as the number of particles increases). The second
series always comprises 100 000 particles but their size increases over three steps, i.e.,

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 47

more of the bounding box is filled increasing the overdraw that occurs during raycasting.
All artificial data sets were tested with 8 bit RGBA coloring, 32 bit RGBA coloring, and
intensity only.
For each test configuration, we obtained mainly two data points for comparison: GPU
timings measured with a timestamp query injected into the command stream and the
wall clock time measured with the high-resolution timer on the CPU. Additionally, we
obtained the number of shader invocations for each configuration by issuing a query
for pipeline statistics. Before the actual test run, we performed a couple of pre-warming
renderings, which are not included in the result. These serve mainly two purposes: the
first frame after switching shaders is usually particularly slow and therefore should
be excluded from the result for not being representative. At the same time, the system
computes from the pre-warming renderings how many frames to render for a minimum
runtime of 100ms. The actual measurements are then performed in three separate
steps. First, we render eight frames and obtained the timestamp query results for them.
Unless denoted otherwise, the GPU times reported subsequently are the medians of
these eight measurements. The difference between the minimum and maximum time
for one measurement ranges between 0ms and 1385ms (mean 0.16ms). Second, we
obtain the pipeline statistics by rendering the same configuration again. And finally,
we render the number of frames computed beforehand to measure the wall clock time.
As we completely rely on rendering to off-screen targets, which lacks the buffer swap
as synchronization point, we stalled the CPU by waiting for an event query injected
into the command stream after the last frame. Wall clock times are the time between
the first frame and the point when the event query returned, divided by the number of
frames rendered during this period.

Discussion of our Measurements

Performance distribution. We start our analysis by looking at the histogram of
GPU (Figure 3.8a) and CPU (Figure 3.8b) timings from all measurements. The applied
logarithmic scale shows that the distribution vaguely resembles a log-normal one,
but the fit is not as good for the volume rendering case. Given the histogram and the
sample size of more than 3.3 million measurements, it is not surprising that a one-sample
Kolmogorov-Smirnov test rejected a log-normal distribution (D = 0.25, p < 2.2 ·10−16).
Figure 3.8 also shows that there are small differences in the distribution of GPU time
stamp queries and wall clock measurements, but both histograms have approximately
the same spikes and a similar mean. These spikes could either result from particle
rendering generally not being log-normal distributed or from our test cases not sampling
the parameter space sufficiently well. We reckon that the selection of the data sets is
an important factor here, because we mainly sample based on orders of magnitude
and not evenly distributed numbers of particles. Data set sizes of 100 000 particles are
over-represented in the results and account for more than half of the observations in

48 Chapter 3 • Runtime Performance Evaluation

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
log-scaled time [seconds]

0.00

0.05

0.10

0.15

0.20

0.25
fre

qu
en

cy
Global mean
log-normal fit

(a) Time stamp queries

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
log-scaled time [seconds]

0.00

0.05

0.10

0.15

0.20

0.25

fre
qu

en
cy

Global mean
log-normal fit

(b) Wall clock time

Figure 3.8: Distribution of the logarithmically scaled timestamp queries (a) and wall
clock times (b), of the particle renderings.

de
vic

e

vie
wpo

rt

da
ta

se
t

meth
od

ca
mera

 pa
th

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 3.9: Pearson correlation coefficient for five selected factors influencing the
rendering speed of the particle data sets.

Figure 3.8, because the series of tests for different sphere sizes uses this number of
particles. The other artificial data sets comprising 1000 and 10 000 particles further add
to a large imbalance of data sets below 1 million particles, which has a notable influence
on the shape of the histogram.

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 49

Linear (in)dependence of features. We investigate the mean correlation between
the different levels of factors, such as the device, the viewport, etc. (see Figure 3.9), akin
to the analysis of the volume rendering data (subsection 3.1.2). Again, we observe a
strong linear relationship between all devices, i.e. the behavior of the GPUs is generally
the same for all tests. The correlation between the data sets is generally higher than for
the volume rendering case, but there is a lot of variation and there are some outliers:
Both effects can be explained by the large number of artificial data sets in the test. The
performance behavior of these seems to be largely the same with respect to the other
factors with correlation factors close to one. One notable exception are the data sets
containing spheres with very small radii that result in particles being represented by a
single pixel in the majority of views. Their correlation factor with the other artificial
data sets is only around 0.72 (see Figure 3.10). The data sets from simulations naturally
exhibit more variation, most notably the 79 509 particles that form three drops and
therefore differ from all other data in that a large fraction of the bounding box is actually
empty. This data set has a correlation factor of around 0.43 with most other data sets,
except for the laser ablation (0.18) and the liquid layer formation (0.05). The latter has a
Pearson correlation of around 0.39 with most other data sets and is special in the sense
that it is the only data set with a strongly non-cubic bounding box, i.e. the path along
the z-axis is much longer than along the other two. The two factors showing the least
correlation on average, and in turn the greatest variance, are the rendering method
and the camera path. While the methods based on sprites aligned with the view ray
mostly have correlation factors above 0.9 among each other, the screen-aligned one
lies around 0.7 depending on the specific method. The camera paths exhibit similar
results (Figure 3.11). Paths along one axis (straight and sine) reach 0.96 or higher, while
the two orbits yield around 0.9 with the other methods (comparing the orbits yields
a 1.0). We found that the underlying cause for both of these observations is that the
screen-aligned sprites can cause significantly more overdraw if the camera is close
to a sphere. This can also be measured via the number of pixel shader invocations
that is an order of magnitude above the one for the ray-aligned sprites. While the
ray-aligned quads can be clipped against the front plane (causing visual artifacts), the
screen-aligned ones become larger as a sphere comes closer and are only clipped at
once if they reach the front plane. Furthermore, depending on the radius of the sphere,
the camera position and the clipping planes, the method might also generate sprites for
back faces of spheres, which generate no fragment in the end. This effect cannot occur
if the camera is outside of the bounding box, which is the case for the orbit paths.

Further investigation of interesting findings. We assumed that the radius of the
spheres plays an important role for this effect and further investigated the rendering
times of all methods depending on the data sets. Figure 3.12 reveals that this is the case.
The high overdraw of screen-aligned quads becomes only a relevant factor if the number

50 Chapter 3 • Runtime Performance Evaluation

1K
-I-

0.
2

10
K-

I-0
.1

12
5

10
0K

-I-
0.

04
10

00
K-

I-0
.0

2
10

0K
-I-

0.
00

2
10

0K
-I-

0.
02

10
0K

-I-
0.

2
1K

-C
8-

0.
2

10
K-

C
8-

0.
11

25
10

0K
-C

8-
0.

04
10

00
K-

C
8-

0.
02

10
0K

-C
8-

0.
00

2
10

0K
-C

8-
0.

02
10

0K
-C

8-
0.

2
1K

-C
32

-0
.2

10
K-

C
32

-0
.1

12
5

10
0K

-C
32

-0
.0

4
10

00
K-

C
32

-0
.0

2
10

0K
-C

32
-0

.0
02

10
0K

-C
32

-0
.0

2
10

0K
-C

32
-0

.2
dr

op
le

t
liq

ui
d

fo
rm

at
io

n
te

st
la

se
r a

bl
at

io
n

ph
as

e
ch

an
ge

1K-I-0.2
10K-I-0.1125
100K-I-0.04

1000K-I-0.02
100K-I-0.002
100K-I-0.02
100K-I-0.2
1K-C8-0.2

10K-C8-0.1125
100K-C8-0.04

1000K-C8-0.02
100K-C8-0.002
100K-C8-0.02
100K-C8-0.2
1K-C32-0.2

10K-C32-0.1125
100K-C32-0.04

1000K-C32-0.02
100K-C32-0.002
100K-C32-0.02
100K-C32-0.2

droplet
liquid formation

test
laser ablation

phase change

0.2

0.4

0.6

0.8

1.0

Figure 3.10: Matrix of the Pearson correlation factors between timings for different
particle data sets.

of particles is high or, in case of the artificial data sets, if the radius is—compared to
real-world applications—unnaturally high. The matrix also shows that the generation
of view-aligned quads performs almost the same for all data sets, only if the number of
particles becomes very large, tessellation-based methods become slightly slower.

Given this observation, it is clear that an orbit path cannot be representative for the
entirety of the views. We performed a two-sample Kolmogorov-Smirnov test, which
rejected that both orbit paths have the same distribution as population of all views
(D = 0.03, p < 2.2 · 10−16 for orbitx and orbity). As with the volume rendering data,
we tested 100 random samples of the same size, for most of which the test did not reject
the null hypothesis (mean p-value 0.605, median p-value 0.658).

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 51

di
ag

on
al

x

di
ag

on
al

y

di
ag

on
al

z

or
bi

t x

or
bi

t y

pa
th

x

pa
th

y

pa
th

z

pa
th

si
nx

pa
th

si
ny

pa
th

si
nz

diagonalx

diagonaly

diagonalz

orbitx

orbity

pathx

pathy

pathz

pathsinx

pathsiny

pathsinz

1.00 0.74 0.86 0.33 0.32 0.40 0.55 0.66 0.41 0.53 0.64

0.74 1.00 0.63 0.28 0.26 0.30 0.82 0.75 0.31 0.80 0.73

0.86 0.63 1.00 0.40 0.39 0.48 0.52 0.69 0.49 0.50 0.66

0.33 0.28 0.40 1.00 0.97 0.22 0.27 0.31 0.23 0.27 0.31

0.32 0.26 0.39 0.97 1.00 0.22 0.25 0.30 0.23 0.25 0.30

0.40 0.30 0.48 0.22 0.22 1.00 0.42 0.56 1.00 0.40 0.54

0.55 0.82 0.52 0.27 0.25 0.42 1.00 0.90 0.44 0.99 0.91

0.66 0.75 0.69 0.31 0.30 0.56 0.90 1.00 0.58 0.88 0.99

0.41 0.31 0.49 0.23 0.23 1.00 0.44 0.58 1.00 0.42 0.56

0.53 0.80 0.50 0.27 0.25 0.40 0.99 0.88 0.42 1.00 0.91

0.64 0.73 0.66 0.31 0.30 0.54 0.91 0.99 0.56 0.91 1.00
0.30

0.45

0.60

0.75

0.90

Figure 3.11: Matrix of the Pearson correlation factor between the timings for different
camera paths through the particle data sets.

10
00

K-
C

32
-0

.0
2

10
00

K-
C

8-
0.

02
10

00
K-

I-0
.0

2
10

0K
-C

32
-0

.0
02

10
0K

-C
32

-0
.0

2
10

0K
-C

32
-0

.0
4

10
0K

-C
32

-0
.2

10
0K

-C
8-

0.
00

2
10

0K
-C

8-
0.

02
10

0K
-C

8-
0.

04
10

0K
-C

8-
0.

2
10

0K
-I-

0.
00

2
10

0K
-I-

0.
02

10
0K

-I-
0.

04
10

0K
-I-

0.
2

10
K-

C
32

-0
.1

12
5

10
K-

C
8-

0.
11

25
10

K-
I-0

.1
12

5
1K

-C
32

-0
.2

1K
-C

8-
0.

2
1K

-I-
0.

2
dr

op
le

t
la

se
r a

bl
at

io
n

liq
ui

d
fo

rm
at

io
n

ph
as

e
ch

an
ge te
st

Adaptive polygon
Instanced quad

Ray-aligned polygon
Ray-aligned quad GS

Ray-aligned quad Tess
Screen-aligned quad

150
300
450
600

Figure 3.12: Mean frame time (in milliseconds) for the particle data sets rendered using
different sprite-based sphere rendering techniques.

52 Chapter 3 • Runtime Performance Evaluation

3.1.4 Results and Recommendations

One rather obvious conclusion we draw from our experiments is that specifying mini-
mum and maximum values as well as percentiles along with average fps or frame times
is desirable, although seldom done in practice. For instance, when performing a fully
accelerated volume raycasting of the “Mandelbulb” on an Nvidia Titan Xp, the mean
of 0.0456 s implies a decently interactive frame rate of 21 fps, but the 75th percentile is
actually 0.0746 s and the 90th percentile only 0.1227 s. However, none of the reviewed
papers give percentiles, many of them only report average fps.

Given the amount of measurements we obtained in two different areas of visualization,
we believe it is reasonably safe to conclude that the typical approach of testing only
one device (done by ≈ 83% of the reviewed papers) seems to be valid for most cases.
There might be exceptions in case of different device types (CPU vs. GPU) or disruptive
technology changes enabling different kinds of algorithms. However, we found a linear
behavior even across different memory technologies, architectures and vendors for the
same algorithm.

Authors from both application areas oftentimes use different data sets for their eval-
uation: ≈ 89% in the reviewed volume rendering papers and ≈ 87% in the particle
rendering ones. In our studies, we could confirm that this is important due to their
generally significant impact on performance. However, in the case study on particle
rendering, we found that measurements with artificially generated data sets must be
handled with care. Real-world data usually have complex internal shapes influenced
by many parameters, making it difficult to decide which parameters should be used
in which way to generate test data. Further, designing data sets with a specific prop-
erty in mind that is to be tested, can cause an undesired bias in the distribution of
the results. In hindsight, we would recommend separating the corpus of data sets for
describing general performance characteristics and the ones for closer investigation
of a priori known effects. However, more realistic performance characteristics when
using artificial data could possibly be achieved with generative data models [160]. By
using them, a potential scarcity of data sets could be circumvented, there is even the
possibility of finding a small set of generated data sets that represents most of the
common performance characteristics.

The camera parameters proved to have an equally high impact in both of our tests.
However, evaluations in papers oftentimes only use a low number of view points. About
58% of the papers that actually report the number of views (which are only half the
papers) use less than eight different camera configurations. Therefore, it is particularly
desirable that a systematic performance evaluation explicitly states the respective
configuration, and that a variety of different camera configurations are considered.
Almost all reviewed papers that report on evaluating more than eight views perform
some form of intuitive camera paths, e.g., rotations around the bounding box or recorded

3.1 • Empirical Evaluation of GPU-Accelerated Interactive Visualizations 53

user interactions. We found that using those intuitive choices might be insufficient.
Based on our results we assume that testing a number of randomly chosen camera
poses—filtered in a way that a reasonable portion of the data is visible—is a sensible
approach. Although random camera parameters are typically not a realistic usage
scenario, using them for measurement has the advantage that the overall distribution
and performance characteristics can be covered with less samples, thus freeing resources
for measuring other parameters.

Best Practices

From our results, we derived the following set of best practices for performance evalua-
tion of interactive scientific visualization techniques in single node environments:

• Report performance distributions instead of a single fps value (or report at least
frame rates for different percentiles).

• Report all important factors that have an influence on the performance. Our
literature review shows that factors like the viewport size seem to be so obvious
to the authors that they are often missing in the exposition.

• Generally, one system for testing seems sufficient to report performance proper-
ties, if the software is not tailored towards special hardware characteristics like
specific memory hierarchies.

• Multiple (meaningful) random camera configurations should be used for mea-
surements. While these might not be representative for the actual interactions of
a user in a specific scenario, they allow for a comprehensive general assessment.
Typically, they yield much more expressive results in comparison to using just a
single view point or a single path.

• A large variety of real-world data sets and/or different shape-defining properties
(such as transfer functions in volume rendering) should be measured. This is par-
ticularly important when acceleration techniques are used, as their performance
results typically strongly depends on data characteristics.

This list is a rough guideline addressing several properties that we discovered during our
data analysis. Although we believe that they are a good starting point, the importance
and portability may vary depending on the specific visualization application and domain.
We consciously tried to keep these recommendations as general as possible, while also
providing a guideline on how to improve performance evaluation.

Limitations

Besides the still limited number of camera poses we have tested, there are several
limitations to our current approach. We restricted all of our measurements to interactive

54 Chapter 3 • Runtime Performance Evaluation

algorithms running on a single GPU and no out-of-core handling. Further, we collected
measurements for only one dimension—the rendering times—while there are many
other dimensions that might be interesting or necessary for a detailed evaluation. For
instance, the Direct3D pipeline statistics with the pixel shader invocations proved to be
very helpful for interpreting certain effects in the results from the particle test runs.

Given the amount of data, we followed a top-down exploratory approach, but investigat-
ing correlations between factors is still at such a high level that potentially interesting
outliers are hard to find. Also, we only analyzed whether there is a linear or no cor-
relation, which is sufficient to describe the influence of a factor in principle and to
derive some guidelines on how to handle this factor. However, we cannot find out
whether only certain expressions of a factor influence others this way. For instance,
if an optimization only has an impact on a subset of the data sets or in other specific
parameter configurations.

3.1.5 Future Directions

This systematic analysis is a first step towards a better understanding of how the
performance of scientific visualization applications behaves at large. Despite being
broadly applied techniques, volume and particle rendering is still only a subset of
scientific visualization. Further measurements and analysis of other techniques could
possibly complement and support the results to provide a more general understanding
of performance evaluation. This approach is focused on performance in the form of
rendering speed. However, there are multiple other interesting performance metrics
such as memory usage, energy consumption, rendering quality, etc. that are worth
of a similar investigation. Ultimately, a comprehensive understanding of different
performance metrics could lay the foundation to a better understanding of performance
metrics trade-offs.

There is an inherent link between performance evaluation and performance modeling.
The specific values we obtained with our measurements could potentially be used
directly in performance models. For instance, using the information gained from the
linear regressions in the volume rendering case study, a simple model for the execution
time t can be formulated, consisting of a linear part and a more complex part in form
of a distribution:

t = wis · wos · wh ·D

Here, w denote the weights (i.e. speed-ups) for different parameters, relative to a sample
configuration (wis/os: sampling in image/object space, wh: hardware factor). D is a
distribution representing the remaining factors, i.e. structural information of the data
set and acceleration techniques. Concrete instances of rendering performance models
can be found in chapter 4 and chapter 5.

3.2 • Visually Comparing Performance Specifics 55

3.2 Visually Comparing Performance Specifics

In this section, a fine-grained approach to performance evaluation is introduced that
is centered around the visual representation of camera position and orientation, and
puts those into context with performance measurements using multiple different pa-
rameters [13]. The approach aims to give the user a better understanding of detailed
differences between performance influencing factors and rendering techniques. This
can help, for instance, in selecting the best technique for a specific scene, avoiding
problematic camera perspectives, informing a fair comparative evaluation, detecting
quality mismatches between techniques, and spotting configurations with improvable
performance.

With this approach we take into account multiple perspectives: different camera paths,
different rendering techniques, and different hardware. Following the movement of the
camera through a scene and using this as a basis for visualization provides a natural
contextualization of the data and eases interpretation. Connecting the performance
data to the specifics of the camera view is key for understanding why certain views
show similar or dissimilar performance characteristics. The approach aims to specifi-
cally support the following four analysis tasks regarding the detailed investigation of
performance benchmark data:

• T1: Comparing the performance of rendering techniques for a specific camera
configuration in context of the rendered images.

• T2: Showing the performance of rendering techniques as part of a camera path
and support the comparison of different paths.

• T3: Identifying clusters and respective outliers of data points with similar perfor-
mance characteristics across the techniques.

• T4: Studying interactions of performance with other rendering parameters and
hardware setups.

In part, the runtime measurement data from our empirical approach (section 3.1) was
used for development and demonstration. While our empirical approach focuses on
analysis of distributions and correlation to determine general trends and interrela-
tions, it is rather unsuitable for a close inspection of outliers and specific, fine-grained
performance characteristics that are addressed with this technique. Although the ap-
proach was developed with runtime performance in mind, it is transferable to other
performance metrics as well.

56 Chapter 3 • Runtime Performance Evaluation

Figure 3.13: The Data Set Explorer provides an overview of camera paths and aggregated
performance metrics in radar charts. Shown is a cutout of four camera paths for a
volume scene rendered with OSPRay [177], a library for ray tracing based rendering on
CPUs.

3.2.1 Multiple Perspectives Analysis System

We propose the Multiple Perspectives system, a visual analysis approach for analyzing
rendering performance. The web-based application is divided into two linked screens:
the Data Set Explorer (Figure 3.13) and the Camera Path Explorer (Figure 3.14). The Data
Set Explorer uses a small multiples visualization to give an overview of all available
camera paths for a selected data set and their performance characteristics. Selecting
one of the small multiples opens the Camera Path Explorer that features an interactive
custom visualization to explore rendering performance along a single camera path.

Data Set Explorer

The Data Set Explorer shows a grid of small multiples for a selected data set. The small
multiples represent all available camera paths as a combination of a 3D thumbnail
and a radar chart (see Figure 3.13). This view serves as a summarized preview of the
performance data that can be analyzed in more detail for a specific camera path. It
addresses tasks T1 and T2 from a higher level of abstraction. The 3D thumbnail is an
interactive component that visualizes the sampled camera path and therefore provides

3.2 • Visually Comparing Performance Specifics 57

the spatial context of the performance measurement with respect to the bounding box
of the main scene. Below the 3D representation, a stripe of thumbnails is shown that
displays the rendered images along the camera path.
A radar charts next to the 3D thumbnail gives an overview of the recorded performance
metric for each camera path. The data displayed in the charts is filtered by the selected
data set and camera path, but aggregated across all camera configurations along the
path, resolutions, and hardware setups. Each axis of the radar chart represents one
technique and shows its measured runtime performance. In other words, the chart
summarizes all data points (which are vectors of performance measurements) across all
measurements that relate to the camera path. The minimum and maximum values are
shown on the respective axis and connected to form a polygon (light blue shape). On top,
a polyline visualizes the median. The decision to use radar charts—consistently in the
Data Set Explorer as well as in the Camera Path Explorer—is motivated by their compact
representation, their ability to form interpretable and memorable visual patterns, and
their relative simplicity.
The small multiples of the Data Set Explorer allow for a quick comparison of the
characteristics of the different camera paths. The user can select individual camera
paths for an in-depth analysis with the Camera Path Explorer.

Camera Path Explorer

The Camera Path Explorer addresses all analysis tasks T1–T4 on a detailed level of
abstraction. As shown in Figure 3.14, the Camera Path Explorer consists of five linked
views:
(I) Camera Path View—2D abstraction of the sampled camera path enriched with

radar charts that summarize the runtime performance of the different rendering
techniques next to the respective rendered images (T1, T2).

(II) Clustering Panel—interactive scatterplot that shows a 2D projection of all data
points (T3).

(III) Comparison Panel—interactive scatterplot for comparison of two techniques (T3).
(IV) Faceted Browsing Panel—interface to sub-select data points (T4).
(V) Data Table—table that shows all currently selected data points (T1, T4).

Camera Path View. This second central view of our approach serves as a base
layout for our main visualization. Task T2 is addressed for a single path. Instead of
representing the path in 3D, we project it to a fixed plane to create a recognizable
representation of the path with a simplified visual appearance. The plane is determined
by minimizing the distances to all sampled camera positions of the respective path. This
way, the geometric characteristics of the path can be preserved as well as its relative
position to the rendered objects inside the scene.

58 Chapter 3 • Runtime Performance Evaluation

Figure 3.14: The Camera Path Explorer consists of five components for data analysis
tasks. A stylized two-dimensional version of the sampled camera path (I), a Clustering
Panel (II), a Comparison Panel (III), and a scene or camera path selection as well as
radio buttons for faceted browsing (IV). At the bottom is a Data Table (V). Here, the
camera zooms into the data along a spiral path around a volume data set rendered with
OSPRay. Multiple data points have been selected in the clustering panel (light blue).
All visualizations are linked, to display respective sub-selections.

The sampled camera locations, the viewing directions, and the field of view are shown
with dots and triangles. By connecting the camera locations, a a polyline is formed that
indicates path and direction of the camera. Additionally, a stylized view of the data set’s
axis-aligned bounding box is rendered by projecting the vertices of the bounding box to
the plane that is also used for the projection of the camera positions. All sampling points
are connected to an overlay component that shows the performance of all measured
techniques in a radar chart. Further, the respective renderings are shown on the left
hand side of the overlay component (T1). It consists of two parts: a thumbnail-sized
image preview of the rendering result, and a magnified version of the selected image.
Image selection can be done by hovering a thumbnail, allowing for a comparison of
the rendering results. For scenes where the expected visual differences between the
rendered images are low, outliers with unexpected high visual deviations are calculated
using the structural similarity index measure (SSIM) [182] between each image pair of a
data point and highlighted with an indicator.

A force-directed layout is used to calculate the positions of the overlay components.

3.2 • Visually Comparing Performance Specifics 59

To further focus the visualization on specific camera configurations, the analyst can
hide or show boxes on demand. With zooming and panning, they can enlarge specific
regions and boxes to inspect details of the data or images.

Clustering Panel. To address task T3, the Clustering Panel contains a scatterplot
of data points, plotting samples with similar performance characteristics across all
rendering techniques in proximity. Uniform manifold approximation and projec-
tion (UMAP) [135] is used to project the multivariate data points, which contain one
performance measurement per technique each, to two dimensions. The projection is
solely based on the performance measurements, and does not take other factors (e.g.,
camera configurations of the sampled camera path) into account. This allows for easy
identification of data points with similar performance characteristics for all techniques
across the remaining parameters.

Comparison Panel. The Comparison Panel is a 2D scatterplot with interactively
selectable axes and complements the Clustering Panel with a detailed pairwise com-
parison, also addressing task T3. While points close to the diagonal reflect a balanced
performance between the two compared techniques, off-diagonal points indicates better
performance for one of the techniques. For example, it is possible to determine if a
performance difference of two technique relates to a constant factor for all data points
or if it is caused by a larger difference for only a subset of data points. The Clustering
and Comparison panels support sub-selection of data points via mouse brushing. Unse-
lected data points are grayed out, all visualizations are linked to display the respective
sub-selections accordingly.

Faceted Browsing Panel. A parameter space is sampled for the performance data
collection. While the scene (i.e., the data set), and the camera path are selected in the
Data Set Explorer, the camera configuration and rendering techniques have dedicated
visualizations in the Camera Path View. To also leverage the information about the
hardware and the rendered image’s output resolution, additional sub-selection options
are provided in a sidebar (Figure 3.14 IV). Applying the concept of faceted browsing [193],
we interpret hardware and resolution as facets. Selecting one or more facet values will
filter the shown data points and update all displayed visualizations. This addresses
task T4 as the selections allow to investigate whether, for instance, different hardware
setups influence the performance characteristics along the camera path or relate to
certain cluster as shown in the Clustering Panel.

Data Table. The Data Table contains all raw data points of the data set without any
aggregation. Each table row contains one data point with images as well as the camera
configuration, the used hardware, and the output resolution of the rendered image.

60 Chapter 3 • Runtime Performance Evaluation

Upon selection of data points in any of the other interactive visualization components,
the Data Table hides currently unselected rows. The Data Table contributes to task T1
and T4 by contextualizing the performance measurements with the rendered images as
well as the rendering parameters and hardware setups, respectively.

3.2.2 Application
We tested our approach and its applicability in two application examples with perfor-
mance data from the domain of scientific visualization. We investigate performance of
rendering techniques integrated in Intel OSPRay [178], a library for ray tracing-based
rendering on CPUs. For this, we measured the performance of several CPUs by extending
the benchmark capabilities of OSPRay for systematic sampling along camera paths.
In a second application example, we analyzed the performance data of our particle
visualization techniques (see subsection 3.1.3 on how we generated them).
Using these two application examples, we could demonstrated that our approach helps,
for instance, to reveal clusters of camera configurations that have special performance
characteristics regarding the compared techniques, performance bottlenecks on specific
devices in combination with some techniques, and non-obvious impact of parameter
changes.

3.2.3 Future Directions
The current system can be used in post processing only. A promising direction for future
work is an extension to capture performance data while the rendering application is
running and update the charts and visualizations in situ. Users could then interactively
select camera positions with uncharacteristic performance for further analysis.
Further, establishing a direct link between performance metrics, the rendered image,
and the source code of the rendering techniquemight benefit the reasoning over possible
deviations in visual output and performance. This would require an integration of the
source code into the Camera Path Explorer, for instance. Finally, showing different
versions of the code and the performance metrics could potentially enable a closer
tracking of the performance impacts caused by the changes in the code.

C
h
a
p
t
e
r 4

Performance Modeling for

Runtime Optimizations on GPU

Systems

In the previous chapter, approaches for structured performance evaluation of visualiza-
tion applications were introduced. This assessment is the foundation of modeling and
ultimately predicting the performance of applications—the topic of this chapter. The
focuses here is on GPU systems, while performance modeling on distributed memory
systems is covered in the next chapter.

Today, the parallel processing capabilities of graphics cards are often used to achieve
interactive frame rates for scientific visualizations (see subsection 2.3.1). Besides the
hardware used for rendering, parameters that can be changed interactively (e.g., transfer
function and camera configuration in the case of volume rendering) typically have a
substantial impact on performance. In order to accomplish continuous interactivity,
those variations in performance need to be accounted for, especially in challenging
cases with significant changes between frames, like switching to a different transfer
function.

Drops in the frame rate that are caused by a change of parameters may result in
unpleasant lags or jerky motions during interaction with the visualization. However,
depending on the visualization technique, those drops can be absorbed. For instance, in
volume raycasting the sampling density can be adapted in object or image space to speed
up the processing time at the cost of rendering quality. For interactive applications, the

62 Chapter 4 • Performance Modeling on GPU Systems

basis of such adaptions has to be an assessment of how the performance will evolve in
upcoming frames (after potentially big changes) in order to avoid unpleasantly long
response times or jerky motions. Modeling the performance on GPUs is a challenging
task due to the involved complexity. Several factors have a significant, but not always
obvious impact on performance.
In this chapter, a method is introduced to model and predict performance of GPU systems
to dynamically adapt quality parameters [2, 3]. Volume rendering is considered as one
of the fundamental techniques in scientific visualization. The sampling rate of the
raycasting process is dynamically adjusted to reliably meet a user-defined frame rate
target (i.e., interactive frame rates). The adjustment is performed in object space and in
image space. Finally, the performance model is used for a dynamic, balanced distribution
of rendering load among multiple different GPU models. The prediction and tuning
approach (section 4.1) is based on the following components:

• Assessing performance-critical numbers of raycasting acceleration techniques,
including the impact of the employed acceleration techniques early ray termina-
tion (ERT) and empty space skipping (ESS) (section 4.2).

• On the fly prediction of the execution time of upcoming frames using a hybrid
performance model (section 4.3).

• Balancing of the computational load among multiple devices in real-time as well
as steering rendering quality towards a user-defined frame rate (section 4.4).

This chapter is partly based on these publications

• V. Bruder, S. Frey, and T. Ertl. “Real-time performance prediction and
tuning for interactive volume raycasting”. In: Proceedings of the SIGGRAPH
ASIA Symposium on Visualization. 2016, pp. 1–8 [2]

• V. Bruder, S. Frey, and T. Ertl. “Prediction-based load balancing and resolu-
tion tuning for interactive volume raycasting”. In: Visual Informatics 1.2
(June 2017), pp. 106–117 [3]

4.1 Load Balancing and Resolution Tuning for Inter-
active Volume Raycasting

We use a standard front-to-back volume raycasting approach including the acceleration
techniques ERT and ESS, as well as local illumination (subsection 2.2.3). Typically,
acceleration techniques produce the highest rendering time heterogeneity for volume
raycasting (see chapter 3). At the core of our technique is a hybrid model that is able

4.1 • Load Balancing and Resolution Tuning for Interactive Volume Raycasting 63

Apply transfer
function to
histograms

Load
volume V

Change tranfer
function T

Generate
bounding

geometry G

t’ ≈ ttarget

Performance
estimation t’

Raycasting

T

Generate
block

histograms H

V

H

Depth
assessment D’

Raycasting ERT
Hα G

Hα

D’ERT

t’

no

yes

Adjust sampling
rate Δ in image

and/or ray space
Δ

t, DM

Change
camera

Adapt load
distribution Λ

across
multiple GPUs

Λ

Update machine
learning model M

Δ

D’ERT

Figure 4.1: Overview of our adaptive volume rendering process. The top row depicts
possible user interactions that trigger data generation and assessment methods (second
row). The lower part shows our prediction and parameter tuning approach. Adaption
of load distribution (gray) is only used for multi GPU setups.

to predict the execution time of the upcoming frame and adjust sampling density in
object as well as image space, based on this prediction. Figure 4.1 gives an overview of
our approach.

Central to all processing steps are three different user interactions (Figure 4.1 top
row): loading a new volume data set, changing the transfer function, and manipulating
the camera (i.e., rotation or zoom). When loading a data set, the volume is divided
into coarse blocks; we use a resolution of 163 voxels per block as it proved fastest for
the tested data sets. We calculate a density histogram H for each of those volume
blocks, representing the distribution of scalar density values in its respective block. The
histograms H have to be updated only if the volume data set changes.

In a next step, we use the user-selected opacity channel Tα of the transfer function
to derive opacity histograms Hα from the density distribution histograms H . Again,
there is one opacity histogram Hα per block, but in this case representing opacity
distributions instead of density distributions. This step has to be performed whenever
the user changes the transfer function. By directly evaluating the opacity histograms,

64 Chapter 4 • Performance Modeling on GPU Systems

we determine which blocks of the low-resolution volume are empty, and use this
information to generate a bounding geometry G that is used for empty space skipping.
For ESS, we use the Open Graphics Library (OpenGL) to rasterize G and determine the
depth of the foremost (Dfront) as well as the backmost (Dback) fragment of the bounding
geometry G in a single render pass. Those depth values are used as ray entry and exit
points. In order to incorporate estimated effects of ERT in our prediction model, we
further adjust the depth values Dback to D′

ERT.
With our approach, we generally target single-node systems. The user may select a
target frame rate ttarget that we aim to constantly hold during user exploration. As
parameters, we adjust the sampling rate ∆ along each ray and/or the number of rays,
to basically trade rendering quality for performance. For this, we follow an iterative
optimization approach by looping over the following operations until we approximately
predict the target frame rate:

• On the basis of the depth values D′
ERT and our prediction model M , we estimate

the time t′ that would be achieved with the current step size and/or resolution ∆.
• If the prediction t′ is close to the selected ttarget, we stop the adaption process.
• Otherwise, we calculate a new step size and/or resolution candidate for ∆.

In the case of having multiple GPUs available for rendering, we support using our
prediction for load balancing between them. We adapt the load distribution Λ between
available devices based on the adapted sampling rate (or image resolution) ∆, and the
depth estimation D′

ERT .
Finally, we raycast the volume by using the obtained value for ∆ (ray and/or image
space) and the load distribution Λ. After the raycasting, we update our prediction model
M by adding the measured values for the execution time t and the actual depth DERT
after ERT, that we assess during the raycast.

4.2 Collection of Performance-Relevant Data
Object-order ESS and ERT are two widely used acceleration techniques for volume
raycasting that can have a high impact on rendering times. Therefore, we include
them as a central aspect of our performance assessment. In this section, we describe
our approach for collecting data that is relevant with respect to those acceleration
techniques. We base our assessment, as well as the actual ESS computation on a coarse
volume representation. For this, we partition the volume into blocks of 163 voxels each
and compute a density histogram for each of the blocks (see subsection 4.2.1). The
histogram data is used to determine the ray entry and exit points, that define depth D
without considering ERT (see subsection 4.2.2). We use those values for the prediction

4.2 • Collection of Performance-Relevant Data 65

as well as the actual raycasting acceleration. In subsection 4.2.3, we discuss how we
incorporate an estimation of ERT effects in our model, that is based on per block opacity
histograms Hα.

4.2.1 Histograms of Volume Blocks (H and Hα)

When loading a volume data set V , we logically partition it into coarse blocks of 163
voxels. Using all scalar values contained in a respective block, we generate one density
histogram H per block. We chose a size of 64 bins for the histograms since we use data
sets with 8 bit and 16 bit precision. A higher bin count could be beneficial for data sets
with a higher precision per scalar value.

After applying the transfer function to the density values, parts of the volume typically
become transparent in the visualization. Due to the usage of ESS, such transparent
regions have a major impact on runtime performance. We compute opacity histograms
Hα from every density histogram by applying the opacity transfer function Tα : R→ R.
Thereby, we distribute the computed values into 16 bins, mainly because it is more
efficient during our ERT approximation step, without having much impact on the
estimation accuracy (see subsection 4.2.3). Each bin b in the original density histogram
H represents a density range [vmin, vmax]. We generate Hα from H by basically looping
over those bins b. Thereby, we integrate over the range [vmin, vmax]with the user-defined
(opacity) transfer function Tα(b), resulting in opacity values bα:

∀b ∈ H : bα =
∫ vmax

vmin

Tα(b).

The opacity values bα are then used to select the respective opacity histogram bin bα of
Hα to which we add the number of corresponding elements from the original bin b of
the density histogram H .

We generate one opacity histogram Hα per volume block. Generating the histograms
has to be performed whenever the user either loads a new volume data set or changes
the transfer function since it depends on the density values as well as the transfer
function.

4.2.2 Depth Assessment (Dfront and Dback)

The amount of empty space depends on the volume characteristics as well as the selected
transfer function. We employ our opacity-mapped histogram Hα (subsection 4.2.1) to
implement object-order ESS. In a pre-processing step, we construct a bounding geometry
of the volume to determine entry points (Dfront) and exit points (Dback). The bounding
geometry is closer to the visible data than a commonly used bounding cuboid.

66 Chapter 4 • Performance Modeling on GPU Systems

RGB, α VRGB,α(R(d))
RGB Illumination(RGB, V(R(d))) χα > ThresholdERT

or d > Dback

χRGB χα + α (1-χα)

τ HybridTausworthy(τ)
α Sample(Hα(R(d)), τ)

α 1 - (1-α)Δ
χα Χα + α(1-χα)

no

d d+Δ

yes

Return d, χ

Initialization sample from volume
apply local illumination

weighted random sampling
of opacity histogram

adjust opacity
contribution

blend color

blend opacity

Opacity χα 0
Color χRGB (0, 0, 0)

Depth d Dfront

Opacity χα 0
PRNG seed τ RayID

Depth d Dfront

Figure 4.2: Front-to-back raycasting along a ray using sampling distance ∆. Steps in
yellow are executed only for ERT estimation (as discussed in Sec. 4.2.3), the blue ones
only for the actual rendering.

To decide whether a block of our proxy geometry is fully transparent, we use our
previously determined opacity-mapped block histograms Hα, by simply evaluating if
there are values in bins for non-transparent voxels. We generate quads for the surfaces
of the outermost blocks, thereby creating a polygon mesh of the volume hull. By using a
minimum blend equation, we rasterize the bounding geometry. This allows us to write
the minimum depth as well as the negated maximum depth values into the frame buffer
in a single render pass. Conceptually, this approach does not allow us to skip empty
space inside a volume (i.e., our bounding hull). This limitation can be circumvented
by using a dual depth peeling approach with multiple rendering passes, at the cost of
a higher overhead time. The depth assessment step (i.e., the rasterization) has to be
performed whenever the user changes camera parameters, while the generation of the
bounding geometry only has to be performed whenever the transfer function or data
set changes.

4.2.3 Early Ray Termination (DERT & D′ERT)

ERT is a simple acceleration method for volume raycasting that can possibly result in
substantial performance gains (subsection 2.2.3). The actual speedup mostly depends
on the data set and the transfer function. However, compared to the simplicity of
the approach, the a-priori estimation of the actual performance gain is non-trivial.
This stems from the fact that a possible estimation cannot be solved locally (e.g., on a
per-block basis), in contrast to the depth assessment. That means we have to consider
all accumulated opacities along the rays. To nevertheless achieve an estimation of the
ERT impact on a depth segment D in real-time, we implement a modified version of our
standard raycasting procedure.
Figure 4.2 outlines the estimation process (yellow) as well as our normal raycasting
algorithm (blue). First, we initialize the opacity and the ray starting position. For the
regular raycasting, we also initialize the color value, while we use the thread-id to create
a seed for our pseudo-random number generator (PRNG) in the ERT estimation case.

4.3 • Hybrid Performance Model 67

After the setup phase, we process the raycasting loop, in which we sample at depth d
along the respective ray R in front-to-back order by using step size ∆. The sampling
starts at Dfront, the entry point determined by our depth assessment (subsection 4.2.2),
and we sample until we reach Dback or the opacity surpasses the ERT threshold value.
For the regular raycasting, we fetch the respective scalar value from the data set and
apply the transfer function, resulting in color and opacity values. For the ERT estimation
pre-run, we use the opacity block histogramsHα (that we also use for depth assessment),
instead of sampling the volume data. For this, we start by generating a pseudo-random
number τ , using a hybrid Tausworthe PRNG [89]. Next, we determine the block we
are currently sampling at depth d along the ray R(d). Using the opacity histogram
Hα(R(d)) of this block and τ , we randomly draw an opacity value α. Thereby, we
weight each histogram bin according to its size, i.e. the sampling is proportional to the
number of elements in each bin.
The core idea behind using opacity histograms Hα is to estimate the ERT behavior in a
realistic manner at a fraction of the cost of the actual rendering. The cost savings mainly
result from a largely reduced I/O cost, that is particularly high due to the memory bound
nature of volume rendering. We use 16 byte histograms with one byte per bin for each
block (a block aggregates 163 voxels) in our implementation (see subsection 4.2.1). This
has the advantage that the whole histogram can be obtained using only a single fetch
operation on modern GPUs. This is also comparably fast across multiple rays due to
texture caching. By using random sampling of the opacity histogram values, we account
for the statistical distribution of the actual opacity values and thereby aim to more
closely reproduce the actual raycast. In addition, we sample much more coarsely along
the rays, which also contributes substantially to a reduction of the computational cost
compared to the regular raycast. In both raycasting passes, we account for changes of
the step size∆ by adjusting the opacity accordingly and therefore making the estimation
correspondent with the actual rendering, also during dynamic adjustments of the step
size.
The raycasting loop terminates if the accumulated opacity χα exceeds a threshold (i.e.,
ERT happens) or the sampling along the ray exits the bounding geometry. In either case,
we use the final depth value, as ERT estimation value or training data. Naturally, we
present the pixel color value in the case of the actual raycasting pass.

4.3 Hybrid Performance Model
We use a hybrid performance model to perform an online estimation of the execution
time of the upcoming frame. Our model may be categorized as a "semi-empirical"
performance model [87], since we use empirical measurements of previous execu-
tion times as well as known attributes of our volume raycasting algorithm. To learn

68 Chapter 4 • Performance Modeling on GPU Systems

hardware-specific characteristics, such as caching or swizzling algorithms, we employ a
machine learning model on the basis of execution time measurements. This part of our
model effectively learns and estimates the average cost σ per sample during raycasting
(subsection 4.3.1). Combining this approximated sample cost with an estimated depth
per ray D′

ERT (section 4.2), we predict the total cost t′ of rendering the upcoming frame
(subsection 4.3.2).

4.3.1 Machine Learning: Prediction of Sample Cost σ

We based our selection of the machine learning technique on two requirements. First,
the learning algorithm has to be fast enough to work in real-time, i.e. training as well
as evaluation has to be significantly faster than a single frame execution. Second, the
technique should be able to perform non-linear regression. Based on these requirements
and due to its comparably simple design, we chose kernel recursive least squares
(KRLS) [60]. The Dlib machine learning library [97] provides an implementation of KRLS
that we use in our model. We use a separate machine learning model for each device if
multiple GPUs are used for rendering. Due to the nature of the KRLS algorithm, weights
cannot be transferred directly between different runs, i.e. we have to build a new model
for every data set.
KRLS is a kernel-based regression algorithm that is able to dynamically include mea-
surement samples for training during runtime. This means the model is dynamically
trained during runtime and does not need any prior training sequence (see subsec-
tion 4.5.2 for a discussion of the approximation accuracy and learning speed). Through
the use of recursive least squares (RLS) with the addition of Mercer kernels, non-linear
regression is implemented. The core of RLS is an optimization problem (whose solution
is maintained every frame) to find weights w by minimization:

min
w

(∑
i

λn−i(yi − xT
i × w)2

)
(4.1)

Here, (xi, yi) is a pair of training points, where xi denotes a feature vector and yi is a
target scalar value. The so-called “forgetting factor” λ may be used to give exponentially
less weight to older samples.
We use linear radial basis functions (RBF)s as kernel functions because of their flexibility.
The target scalar value we predict is the sample cost σ, while our feature vector consists
of five properties that can have a significant impact on σ or are a performance indicator:

• Viewing angles (ϕ, θ). We derive them directly from the rotation of our arcball
camera. Among others, they impact performance because of different texture
respective memory access patterns caused by the perspective.

4.3 • Hybrid Performance Model 69

• Size of a splatted voxel. This has a potentially significant impact on texture
caching and also varies with viewing distance and resolution. It is one of our
tuning parameters.

• Step size along rays. This value has similar properties as the size of a splatted
voxel, but in ray space. It is also one of our tuning parameters that defines the
number of overall samples. Changed caching patterns may impact performance
here as well.

• Execution time. We use the execution time of our pre-rendering ERT approxi-
mation step. It roughly resembles the actual rendering time, when put in relation.

• Maximum ray depth. This is a possible indicator for maximumwarp/wavefront
processing time. All threads (usually 32 or 64) in a single warp/wavefront run
in lockstep on current GPUs, meaning that faster threads need to wait until all
threads in the warp/wavefront have finished processing.

Overall, those features reflect performance influencing characteristics on a hardware
level, such as caching behavior or different texture access patterns [31]. All used features
are available with no, or only minimal, computational overhead, therefore being well
suited for on-line runtime prediction of our volume raycasting application.
The implementation of KRLS provided by Dlib provides the possibility to change the
maximum number of dictionary entries (used to represent the regression function), a
tolerance value, and a γ-parameter for the RBFs. We determined the following set of
well working parameters by using a grid search auto tuning approach: γ = 0.00025, a
tolerance of 0.006 and a dictionary limit of 10 million entries.

4.3.2 Analytical Model: Prediction of Frame Execution Time
After the previous steps, we can combine the entry and exit values of our proxy geometry,
which we also use for ESS (section 4.2), with step size and image resolution to calculate
the number of samples we are going to take during raycasting of the upcoming frame.
For this, we use the 2D texture that is generated during the rendering pass of our proxy
geometry and generate a full mipmap-stack of the texture. The topmost layer of the
stack effectively contains the average minimum and maximum depth values dfront and
dback. Combined with our estimated cost per sample σ (see subsection 4.3.1), we can
calculate an estimate of the total frame execution time t′:

t′ = 7 · (dback − dfront)
∆ · σ.

We compute the average ray length l = dback − dfront (with dfront denoting the ray
entry point and dback being the estimated termination depth in ray space). Dividing the
value l by our step size ∆ gives us the average samplings per ray that we multiply by

70 Chapter 4 • Performance Modeling on GPU Systems

factor 7 (one RGBA value, plus six that we need for the gradient estimation with central
differences). Finally, we multiply the result with our cost per sample estimate σ, to gain
the prediction of the total rendering time t′ of the frame.

4.4 Prediction-Based Parameter Tuning
Our real-time performance prediction model provides us with the basis for several
applications. In this paper, we present two distinct scenarios for our interactive volume
rendering application. First, we use our model to dynamically steer the sampling
resolution of the volume raycasting application. This is done in ray space as well
as in image space, with the goal to achieve constant frame rates and thereby high
responsiveness and execution efficiency. Second, we use our online predictions to
dynamically distribute and balance computational load among multiple different GPUs.

4.4.1 Adaption of the Sampling Resolution
Central to our approach for dynamic adaption of the sampling resolution, is the defi-
nition of a target frame rate ttarget. By adjusting the sampling rate in ray space and/or
image space, our technique tries to consistently achieve the target frame rate during
user exploration. We use the tuning parameter ∆, that represents either the step size
along rays, or the image resolution in x and y direction in the case of image space
adaption. We also support a hybrid approach that adapts both parameters at the same
time. We follow an iterative optimization approach, using linear extrapolation and
bisection during each iteration:

∆ =

∆upper · ttarget

t′upper
if t̃upper < ttarget

∆lower · ttarget
t′ lower

if t̃lower > ttarget

∆lower + (∆target −∆lower) ttarget−t′
lower

t′upper−t′ lower
else

(4.2)

Here, t′
upper and t′

lower denote the smallest (respective largest) estimated timing below
(respective above) ttarget. Analogously, ∆upper and ∆lower stand for the respective sam-
pling resolution. We use the same approach for adjustment of the sampling resolution
in image and in ray space. Note, that in the case of image space adaption, we normalize
relative to the size of a splatted voxel, while also taking into account the quadratic
image resolution adaption. For tuning of the sampling distance along the rays, we
also factor in the additional samples used to evaluate gradients, which we need for
local illumination. Further, we assume (as can be seen in the top two conditions in
Equation 4.2) that the sampling resolution has an approximately linear impact on per-
formance. A new candidate resolution ∆ in ray and/or image space is generated via a
linear interpolation, as denoted in the “else”-branch of Equation 4.2.

4.4 • Prediction-Based Parameter Tuning 71

Figure 4.3: Load balancing distribution among three GPUs for different configurations
during an interaction sequence of the Flower data set. Color coding by GPU: red for
Titan X (Pascal), green for GTX 980 and blue for GTX 960. The load distribution is
adapted dynamically.

Finally, we introduce a fixed maximum adaption of ∆max = 0.8 · ∆ per frame, to
avoid overcompensation. This form of damping further helps in avoiding lags that
may result from overestimated sampling resolution adjustments. We only use this limit
while increasing resolution, since overly decreasing it does not have a negative impact
on performance, only on quality. The reasoning behind this is that we aim for the
system to be always responsive. However, if the system significantly underestimates
the performance impact, it may happen that the application becomes unresponsive and
therefore cannot adapt to changes until the kernel run finishes. On the other hand, if
the system overestimates the performance, it can quickly re-adapt for better quality.

4.4.2 Load Balancing
As a second use case, we employ our prediction model for load balancing in a multi-GPU
setup. Conceptually, we use a separate machine learningmodelMi (see subsection 4.3.1),
generating a distinct sample cost estimate σi for every available GPU i. We calculate
the load distribution Λi for n GPUs:

Λi = (1− ζ)
n

+ ζ ·
∏n

j=1,j ̸=i σj∑n
k=1

σk

We multiply the sampling costs σi of all devices except the one that is being calculated,
and divide the resulting product by the sum of all sampling costs. Here, ζ denotes
a damping factor that we use to avoid oscillation effects that are otherwise present
during load balancing. By using an empirical grid sampling approach, we determined a
damping factor of ζ = 0.5 to give the best results for the tested data sets.
We partition our image space into 2D tiles with a size of 8 × 8 pixels each, to avoid
warp/wavefront divergence (typically, warps on Nvidia GPUs have a size of 32 threads,
wavefronts on AMD GPUs 64 threads). We then use a k-d tree to distribute the tiles

72 Chapter 4 • Performance Modeling on GPU Systems

among the available devices, based on the average depth per tile as well as the de-
termined load distribution Λi per device. For this, we use the depth values from
our rendered proxy geometry texture (see subsection 4.2.2), more precisely the third
mipmap-layer that corresponds to our tile size. Figure 4.3 shows four renderings of
the Flower data set during a interaction sequence, where the image space partitioning
among three distinct GPUs has been encoded via the color channel. Note that the impact
of ERT significantly impacts load balancing that is dynamically adjusted during runtime.

4.5 Results
We evaluate our approach using seven volume data sets (Table 2.2) and compare the
results against an implementation without any parameter adjustments as well as two
other adaption approaches. Overall, this results in four methods:

1. No adapt. A fixed step size of 0.75 times the length of a voxel in z-direction as
well as one ray per pixel are used for sampling. We predict the execution time of
each frame using our method, but do not adjust any parameters.

2. Our adapt. We use our method to predict execution times of upcoming frames
and steer the step size and/or image resolution accordingly.

3. Last frame. Here, we adjust the sampling of the volume based on the execution
time of the last rendered frame.

4. Two pass. Two rendering passes are conducted, as a very simple form of progres-
sive rendering. In the first pass, a quarter of the sampling parameters from the
last frame is used for rendering. In case of the execution time being lower than
half of the target frame time, we linearly extrapolate the sampling parameters
according to the leftover rendering budget, and render a second time.

We evaluate our approach in two scenarios with different hardware setups:

(A) Single-GPU system that is used to test general performance characteristics at the
example of single data sets. Evaluation includes the analysis of a frame time diagram,
the overall accuracy of our approximations and prediction, and the computational
overhead of our prediction model.

(B) Multi-GPU system that features three distinct GPUs and is used to evaluate our
approach including load balancing. We compare our technique against three others,
analyze our load balancing in detail, and compare adaption in image space against
adaption in ray space and against a hybrid adaption in both spaces.

4.5 • Results 73

For all adaption modes, the frame target was set to 30 fps (A) or 40 fps (B). Both values
are generally considered interactive in this context. We recorded a 30 s long sequence of
user interactions using the four modes mentioned above for comparison. The sequences
contain changes of the transfer function as well as rotation and zooming of the camera
in an arcball-style. Example renderings for different configuration in such a sequence
are shown in Figure 4.4c–f. The parameters of the machine learning model used for
prediction are reset after the execution of each sequence.
We conducted all measurements on a workstation with an Intel Core i7-6700 CPU, 16GB
of RAM and either one (A) or three graphics cards (B). Table 2.1 lists the four GPUs used
for rendering. The GTX 680 was used in the single GPU system (A), while the others
were used to evaluate load balance (B).

4.5.1 Analysis andComparison of a Sequencewith a Single GPU
Figure 4.4a shows a frame time diagram for a sequence of rendering the Parakeet data
set in four different modes on a single GPU (scenario A). The black marker line depicts
the frame target of 30 fps. Figure 4.4b shows the corresponding step size factors for the
respective frames. The step size factor is relative to the voxel length, i.e. a smaller step
size factor indicates a higher sampling rate (and typically a higher rendering quality).
We use a fixed step size of 0.75 times the length of a voxel in z-direction as step size
for the mode without adaption (blue line Figure 4.4). As can be seen in the graph,
using no adaption leads to significant deviations from the target frame rate. This is
especially the case for changes to the transfer function, e.g. frames 20 and 95 (renderings
Figure 4.4c-Figure 4.4f). Even small changes to the transfer function can have substantial
performance impacts if large portions of the volume become transparent or opaque.
Smaller deviations are usually caused by changes to the camera configuration that are
comparably smooth during typical exploration of the data set.
In contrast, when using the adaption based on our model, the frame time stays around
the selected target, even in the case of changes to the transfer function. At the same time,
an overall higher sampling rate is achieved. However, the frame times for our approach
also show a few outliers with shorter execution times. Those are mainly caused by our
conservative adaption for higher sampling resolution (see subsection 4.4.1). Some of the
outliers can also be traced back to underestimation or overestimation of the performance
impact cased by ERT (see subsection 4.5.2). We assume that smaller deviations are caused
by our machine learning-based sample cost estimation σ′. Overall, there are no outliers
with longer frame times of note. This means that during the sequence interactivity was
kept at all times, guaranteeing a high responsiveness for the user.
In comparison, the adaption mode based on the last frame (green curve) shows huge
frame time spikes that may cause poor responsiveness and jerky motions during user
exploration. Those outliers are mainly the result of changes to the transfer function

74 Chapter 4 • Performance Modeling on GPU Systems

0 20 40 60 80 100 120 140 160
frames

0.00

0.02

0.04

0.06

0.08

0.10
ti

m
e
 (

se
co

n
d
s)

no adapt

our adapt

last frame

two step

target time ttarget

(a) Frame times with different adaption modes.

0 20 40 60 80 100 120 140 160
frames

0.0

0.5

1.0

1.5

2.0

2.5

st
e
p
 s

iz
e

no adapt

our adapt

last frame

two step

(b) Step sizes with different adaption modes.

(c) frame 20 (d) frame 21 (e) frame 95 (f) frame 96

Figure 4.4: Plot (a) shows a frame time sequence at the example of the Parakeet data set.
Frame times of our approach (red) are shown in comparison to the three other methods.
The corresponding step sizes can be found in (b), a lower step size indicates a higher
quality. (c)-(f) depict example pairs of consecutive renderings from the sequence.

4.5 • Results 75

0 20 40 60 80 100 120 140 160
frames

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ti
m

e
 (

in
 m

se
c)

predicted time per sample σ̃

measured time per sample σ

difference: # samples/ray

0

5

10

15

20

n
u
m

b
e
r

o
f

sa
m

p
le

s

(a) Approximation efficiency of sample count and cost.

(b) real (c) estimation (d) difference (e) rendering

Figure 4.5: (a) shows the estimation accuracy for average samples per ray (green)
and sample cost σ (blue/red) at the example of the Parakeet sequence (see Figure 4.4).
(d) shows the difference of measured ERT depths (b) and our approximation (c) for the
Hoatzin data set (e). Values in (d) are enhanced by factor 4 for better visibility.

since the last frame approach cannot handle those by design (basically, it has one frame
delay). For these cases, the sampling density is naturally higher for the last frame mode,
while otherwise being on a similar level compared to our prediction technique.

We also compare our approach against a two pass rendering mode (yellow curve). This
mode has the advantage, that the frame target is hardly ever exceeded. The major
drawback of this technique is the much lower sampling rate that eventually leads to a
lower overall rendering quality. This is caused by the lower rendering budget for each
frame, because of the additional time required for the pre-rendering pass.

76 Chapter 4 • Performance Modeling on GPU Systems

4.5.2 Approximation and Prediction Accuracy

Figure 4.5a shows the difference of our prediction (red curve) compared to the mea-
surement (blue curve) of the cost per sample σ for the same rendering sequence as
in the previous section. As can be seen, our machine learning model is able to make
fairly accurate predictions of the cost per sample σ after learning only a few samples
(30 frames). The differences are also reflected in the overall prediction (see Figure 4.4a).
Further, Figure 4.5a shows the difference between the estimated number of samples
per ray and the measured number (green curve). Here, the discrepancies are caused by
underestimation or overestimation of the impact of ERT on the number of samples. We
assume that this is caused by inaccurate results from our probabilistic estimation for
some difficult cases.
To investigate the efficiency of our depth estimation including ERT, Figure 4.5 shows
the measurement (b), our estimation (c) and the difference (d) of a rendering of the
Hoatzin data set (e). The intensity of (d) has been scaled by factor 4 to emphasize the
differences. Overall, the depth estimation is fairly accurate although there are some
discrepancies, mainly at the edges. Those are caused by difference between the proxy
geometry (used for our pre-rendering step) and the original high resolution data. Other
differences can be caused by our stochastic methods (see subsection 4.2.3).

4.5.3 Prediction Overhead

One important aspect of our prediction approach is real-time capability. That means,
the computational overhead needs to be significantly lower than actually rendering
the volume data. We explicitly designed our pipeline to provide interactive exploration
capabilities, e.g. training, which is done on the CPU, and pre-processing run interleaved.
Furthermore, it is conceptually possible to do the pre-processing steps (i.e., depth
assessment and ERT approximation) on a separate device, freeing up resources for the
actual frame computation. For instance, one could use an integrated GPU for the pre-
processing and a dedicated graphics cards for rendering. Table 4.1 lists upper bounds
for the processing times that the various steps in our pipeline needed. All times were
measured using the Chameleon data set on the Nvidia GTX 960. Refer to Figure 4.1 for
an overview of our pipeline and the listed steps.
As can be seen, the computational overhead of our prediction model is comparably
low. For the tested Chameleon data set, generating the bounding geometry (only
needed when changing the transfer function) and performing the depth assessment
has a combined execution time of about 6ms, a fraction of an interactive frame time.
Training and prediction are substantially faster yet. Overall, the measurements show an
acceptable computational overhead, that implies a smooth online usage of our prediction
method in average workstation environments.

4.5 • Results 77

Table 4.1: Maximum Execution Times for the Chameleon Data Set

Action Required if Max. time [ms]
Generate histograms Volume data set changes 1000
Generate bounding geometry Transfer function changes 3.551
Generate opacity histograms Transfer function changes 0.053
Depth assessment Camera changes 2.680
ERT approximation Camera changes 0.028
Training Frame was processed 0.015
Single prediction Step size ∆ is adjusted 0.001

4.5.4 Interaction Sequences
We conducted detailed measurements of interaction sequences for seven different
volume data sets listed in Table 2.2. For this, we created individual 30 s sequences for
each data set to capture different usage scenarios. The measurements discussed in this
section were done using system setup (B) with three GPUs (Table 2.1) and our load
balancing technique enabled. In case of the mode without adaption, the step size along
the rays was set to 0.25 times the voxel length in z-direction. The target frame rate was
40 fps (0.025ms frame time). We chose a higher frame rate target and smaller step size
to increase rendering complexity to stress the three GPUs sufficiently. The viewport was
kept at 10242 pixels, the ray sampling size was adjusted for the three adaption modes.
Figure 4.6 shows the results of our measurement series. As an indicator of the rendering
quality, we use the average step size along the rays (smaller is better). To judge the
prediction accuracy, we use the root-mean-square error (RMSE), as a measure for the
difference of predictions ŷt and measurements yt across a sequence of n frames:

RMSE =
√∑n

t=1
(ŷt − yt)2
n

. (4.3)

In the third column of Figure 4.6, the maximum absolute error above the frame target
is shown. This represents the biggest absolute difference between the target execution
time and the measured time. It is an indicator of the worst case performance, since a
high error usually results in lags or jerky motions during user exploration. One of the
main goals of our technique is to avoid such high frame times.
Figure 4.6 shows that our approach (red) has a comparably low RMSE (i.e., a low deviation
from the target frame rate). Only the two pass mode (yellow) performs better in some of
the sequences. At the same time, the step size (i.e., rendering quality) of our approach
is substantially better than the two pass mode in all cases and only slightly worse than
the last frame mode (green) in some cases. The mode without any step size adaptations

78 Chapter 4 • Performance Modeling on GPU Systems

0.0 1.0 2.0 3.0 0.00 0.02 0.04 0.06 0.00 0.10 0.20

Hoatzin

Kingfisher

Mouse

Parakeet

Zeiss

Flower

Chameleon

Avg. step size (rel. to voxel length) RMSE Max. absolute error (above target)

two pass
our adapt
last frame
no adapt

Figure 4.6: Comparison of our approach against the other modes using individual
interaction sequences for seven data sets. A smaller average step size factor indicates a
better quality, while a lower RMSE indicates a better performance (i.e., the frame rate
stays closer to the target). Maximum absolute errors indicate worst case performance
and possible lags.

(blue) performs best in terms of rendering quality, but has a significant deviation from
the frame target in all sequences. The maximum absolute error indicates a bad worst
case performance of the two pass mode, while our approach performs fairly well in
this regard. Naturally, the two step mode is better than ours in this regard. The results
reflect the ones observed and discussed above with the detailed analysis of the sequence,
the considerations are basically the same. Overall, our measurements show that our
technique keeps a balance between rendering quality and speed while guaranteeing
responsiveness during interactive exploration of the volume data set.

4.5.5 Load Balancing
We compare our load balancing approach against a static distribution based on all
our empirical measurements, i.e. the average sample cost over all measured data sets
respective sequences. Figure 4.7 shows the frame diagrams of the Chameleon and the
Flower data sets for the two modes. The solid lines depict the frame times for the three

4.5 • Results 79

Table 4.2: Quality Impact of Adaption

Adaption type MSE SSIM PSNR

Image space 34.256 0.981 37.215
Ray space 20.563 0.988 40.237
Hybrid 20.170 0.992 40.747

All values are averaged over the whole sequence and relative to a reference rendering
without adaption (Zeiss data set).

tested GPUs. The stacked semi-transparent plots show the relative load distribution
among the GPUs that is dynamic in case of our approach and static otherwise.
Although the overall trend is similar, our load balancing generally outperforms the
static approach. However, the dynamic balancing is not without flaws: An oscillation
pattern is noticeable, which is common to load balancing methods in general. We
counter this effect by using a damping factor of ζ = 0.5, an empirically determined
value that worked best across the tested volumes. A higher damping value resulted
in converging of the load balancing and static modes, while lower values worsen the
oscillation effect. In addition, the general problems of our model, which are discussed
above, also show in the load balancing. Throughout all tested volumes, the achieved
load distribution efficiency (i.e., how well the timings of all GPUs match on average) is
about 18% better for our load balancing approach compared to the static distribution,
proving our approach to be well suited for this task. Improvements with respect to the
damping factor and prediction accuracy could possibly further improve the results.

4.5.6 Image Versus Ray Space Adaption
With our prediction approach we can dynamically steer the rendering quality by
adapting the sampling resolution in ray space and/or in image space. In this section,
we present our evaluation of the image quality when adapting the sampling factor ∆
only in ray space, only in image space, or both at the same time (hybrid). We use three
measures to evaluate the image rendering quality:

• Mean-squared error (MSE) (the same as the RMSE (Equation 4.5.4) but without
applying the square root), lower is better.

• SSIM, closer to 1 means a higher similarity to the reference.
• Peak signal-to-noise ratio (PSNR), higher is better.

Table 4.2 lists the averages of the image quality measures for the interaction sequence
of the Zeiss data set, while Figure 4.8 shows a direct comparison of a single frame for

80 Chapter 4 • Performance Modeling on GPU Systems

0.00

0.05

0.10

0.15

0.20

0.25

tim
e

(s
ec

on
ds

)

Chameleon
Titan X (Pascal)
GTX 980
GTX 960

0 50 100 150
frames

0.00

0.05

0.10

0.15

0.20

0.25

tim
e

(s
ec

on
ds

)

Flower
Titan X (Pascal)
GTX 980
GTX 960

(a) Our load balancing

0.00

0.05

0.10

0.15

0.20

0.25

tim
e

(s
ec

on
ds

)

Chameleon
Titan X (Pascal)
GTX 980
GTX 960

0 50 100 150
frames

0.00

0.05

0.10

0.15

0.20

0.25

tim
e

(s
ec

on
ds

)

Flower
Titan X (Pascal)
GTX 980
GTX 960

(b) Static balancing (empirical)

Figure 4.7: Comparison of frame times (solid lines) and distribution (stacked areas)
among three different GPUs: one shows measurements with dynamic load balancing
based our prediction (a); the other one depicts a static load distribution (b), based on
empirically determined average sample costs σ̄i per device.

4.5 • Results 81

Figure 4.8: Comparison of adaption in image space, ray space, and hybrid for a frame
of the Chameleon data set.

the three methods against a reference rendering. The reference is rendered with an
image resolution of 12002 pixels and an integration step size of 0.1 times the voxel
length in z-direction, the adapted sampling resolution is at most 10242 rays respective
a step size of 0.25 times the voxel length. As can be seen in Figure 4.8 and Table 4.2, the
ray space adaption generally outperforms the image space adaption in the calculated
metrics. The hybrid approach yields similar results or slightly outperforms ray space
adaption. The exemplary renderings in Figure 4.8 show that a low integration step
size in ray space may result in ringing artifacts that are less prominent when using the
hybrid adaption, resulting in a higher image quality. In particular, this is the case for
data sets containing sharp edges and thin surfaces where under-sampling may occur
more easily (e.g., the Zeiss data set).

82 Chapter 4 • Performance Modeling on GPU Systems

4.6 Future Directions
A possible direction for future work is the improvement of the prediction accuracy, since
the ERT approximation in particular may lead to inaccurate results in some cases. A
possible approach to counter this inaccuracy could be the introduction of an uncertainty
quantifier that incorporates a measure of the distance of the current configuration to all
previously learned ones into the model. For instance, a high distance could then trigger
a more conservative estimation. Other means to increase the prediction accuracy could
be to perform a short learning run after loading a data set that covers multiple important
configurations. However, those configurations with a characteristic performance are
highly dependent on the data set, which is why it is often difficult to make a clear
assessment in advance (see section 3.1). Finally, transferring learned features between
data sets might be an option to improve prediction accuracy, in particular in the
beginning of an exploration session. However, this is not possible with the currently
used KRLS machine learning method.
The load balancing would also improve from such refinements to the prediction ap-
proach, possibly allowing for a lower damping factor and therefore higher cost savings
overall. Currently, the whole data set needs to be resident on all devices to avoid
expensive host-to-device copies. The partitioning of the rendering work is done in
image space. A possible extension could use a partitioning in object space with an
additional compositing step. This would allow only parts of the data to reside on the
respective GPU. However, some overlap of the data partitions would be needed on the
different devices to allow for actual load balancing. Lowering this overlap would lead to
less flexibility regarding the load distribution while increasing it would lead to higher
memory requirements.

C
h
a
p
t
e
r 5

Performance Modeling for

Runtime Optimization and Cost

Savings on Distributed Memory

Systems

The previous chapter discussed performance modeling and prediction approaches on
workstation systems that use one or multiple GPUs for parallel computation of visual-
izations. This chapter complements this by introducing techniques for performance
modeling and prediction of visualizations on distributed memory systems such as
supercomputers.

Computational simulations on supercomputers produce massive data sets, with meshes
containing billions or even trillions of cells per time step. To complete the visualization
on interactive time scales, the process is typically parallelized across hundreds of super-
computer nodes. Further, the visualization often occurs on the same supercomputer that
performs the simulation, obviating the need to relocate simulation data. Performance
modeling and prediction in such environments plays an important role since it can
be used to reduce compute cycles that are particularly expensive on supercomputers.
Further usages include infrastructure planning and optimized remote streaming of
visualization results.

This chapter covers three contributed techniques that model and predict performance
on distributed memory systems with different objectives and metrics:

84 Chapter 5 • Performance Modeling on Distributed Memory Systems

• An approach for in situ generation of image databases to achieve cost savings on
supercomputers is introduced in section 5.1 [6]. It is a hybrid between traditional
inline and in transit techniques that dynamically distributes visualization tasks
between simulation nodes and visualization nodes, using probing as a basis to
estimate rendering cost.

• A data-driven, neural network-based approach for prediction of the runtime
performance of a distributed volume renderer is presented in section 5.2 [14, 9].
It aims to support cluster hardware acquisitions.

• A technique that dynamically adapts encoder settings for image tiles to yield
the best possible quality for a given bandwidth in remote rendering scenarios is
introduced in section 5.3 [11].

This chapter is partly based on these publications

• V. Bruder, M. Larsen, T. Ertl, H. Childs, and S. Frey. “A Hybrid In Situ Ap-
proach for Cost Efficient Image Database Generation [in preparation]” [6]

• G. Tkachev, S. Frey, C. Müller, V. Bruder, and T. Ertl. “Prediction of Dis-
tributed Volume Visualization Performance to Support Render Hardware
Acquisition”. In: Proceeding of the Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV). 2017, pp. 11–20 [14]

• S. Frey, V. Bruder, F. Frieß, P. Gralka, T. Rau, T. Ertl, and G. Reina. “Trade-
offs and Parameter Adaptation in In Situ Visualization [to appear]”. In: In
Situ Visualization for Computational Science. Ed. by H. Childs, J. C. Bennett,
and C. Garth. Springer, 2022 [9]

• F. Frieß, M. Landwehr, V. Bruder, S. Frey, and T. Ertl. “Adaptive Encoder
Settings for Interactive Remote Visualisation on High-Resolution Displays”.
In: Proceedings of the IEEE Symposium on Large Data Analysis and Visual-
ization (LDAV). Oct. 2018, pp. 87–91 [11]

5.1 A Hybrid In Situ Approach for Cost Efficient Im-
age Database Generation

Generally, leading-edge supercomputers are expensive, meriting significant investi-
gation into optimizing their usage. Several new supercomputers are built annually
with hardware procurement costs in the range of hundreds of millions of euros, and
their true costs rising higher over time, including energy, staffing, and upkeep. Each
job running on a supercomputer shares these costs. An important way to optimize a
supercomputer’s usage is to optimize individual jobs, i.e., having a job complete using

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 85

fewer node hours. If a speedup can be aggregated over all jobs, then the result can
be profound, potentially creating millions of euros of extra node-hours for additional
computations.
With our approach, we optimize jobs on supercomputers in the context of in situ
visualization, i.e., visualizing data as it is generated (see section 2.3). Thereby, we
specifically consider an important technique for in situ visualization: the generation of
image databases of volume renderings in the style of the Cinema project [16]. However,
our technique is applicable to any in situ visualization setting that can be split into
many small tasks.
Despite the growing popularity of in situ visualization, there is still much room for
improvements in terms of cost and efficiency. Regarding cost, in situ visualization will,
despite saving on I/O, still require significant computational resources —in situ routines
sometimes use 10% or more of the simulation’s resources. The exact proportion of time
between visualization and simulation varies based on the nature of the simulation and
the data it produces, the visualization algorithm, the visualization frequency and other
factors. The second observation, that in situ visualization is inefficient, is discussed
further in the next section.

5.1.1 In Situ Visualization
In situ visualization generally occurs within “mega-cycles,” which perform both simula-
tion and visualization. Specifically, a mega-cycle consists of advancing a simulation
from some cycle n to another cycle n + m as well as visualizing the data from the
previous mega-cycle (i.e., cycle n − 1). Further, within a mega-cycle, there are two
different types of visualization tasks to perform: (1) tasks executing independently
from each other (e.g., rendering images of a data partition), and (2) collective tasks
executing on all pieces of data at once (e.g., compositing partial result into one final
image). Figure 5.1 shows how these tasks are scheduled within a mega-cycle for the
three in situ approaches using notional Gantt charts.
The remainder of this section is organized as follows: First, the four types of ineffi-
ciency are described. Second, the question how the traditional in situ processing types
(inline and in transit) suffer from different kinds of inefficiency is addressed. Finally,
opportunities for a hybrid approach to reduce inefficiency are discussed.

In Situ Inefficiencies

Inefficiencies with in situ processing stem from two main categories: running in parallel
and running on separate resources. Further, each of these two categories has two
distinct types of inefficiency.
The two inefficiencies from running in parallel are:

86 Chapter 5 • Performance Modeling on Distributed Memory Systems

(a) Inline: No dedicated visualization resources, alternate between simulation, inde-
pendent tasks, and collective tasks. Idle times are caused by variability.

(b) In transit: Independent and collective tasks are done on dedicated resources, idle
times caused by rightsizing.

(c) Hybrid: Dynamic distribution of independent tasks between visualization and
simulation nodes. Collective tasks are processed on visualization nodes only.

Figure 5.1: Gantt diagrams of the two conventional in situ processing schemes (a, b)
and our hybrid approach (c).

(i) Variability: certain operations execute for variable amounts of time, and the
nodes that run for longer periods of time create a bottleneck that leads other
nodes to sit idle. In particular, the cost of rendering images varies significantly
across nodes depending on the input data—which often changes with the pro-
gression of the simulation—and rendering parameters (e.g., transfer function for
volume rendering), especially when using acceleration techniques like empty
space skipping.

(ii) Scalability: certain operations exhibit limited scalability, and running them at
scale causes all nodes to run inefficiently. In particular, the compositing of partial
images (sub-images) into one final image frequently exhibits poor scalability [142].

These inefficiencies are related, but distinct. In particular, an algorithm can suffer from
delays due to scalability even if every compute node has the same amount of work to
perform. Further, an algorithm with no parallel coordination is very scalable, but it can
suffer from delays due to variability if some compute nodes have much more work to
perform than others.
The two inefficiencies from running on separate resources (i.e., dedicated visualization
nodes) are:

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 87

(iii) Overhead: transferring data from the simulation nodes to the visualization nodes
causes delays in multiple ways: the simulation must take time to send its data
(which often involves encoding into a string of bytes), the visualization routines
must receive the data (which often involves decoding a string of bytes), and the
network has extra traffic.

(iv) Rightsizing: visualization tasks rarely exactly align with the number of visualiza-
tion nodes. If there are too many nodes for the desired tasks, then the visualization
nodes sit idle. If there are too few visualization nodes for the desired tasks, then
either the simulation nodes will need to block and wait for them to complete or
tasks need to be dropped.

Traditional In Situ: Inline and In Transit

Traditionally, in situ visualization can be roughly categorized into two types: inline and
in transit. In the following formulas, timings and costs are denoted with Greek letters,
while tasks and nodes are denoted by Latin letters.

For inline (Figure 5.1a), each (simulation) node s ∈ S both conducts the simulation
(consuming time σ̂) and carries out independent and collective visualization tasks.
Independent tasks (s, i) ∈ I are specified via the simulation node s whose data is
visualized and i depicting the visualization configuration (e.g., camera position, transfer
function, etc.); corresponding timings are denoted via ιs,i. The timings of collective
tasks c ∈ C appear as ζc:

τ̂inline = σ̂ + max
s∈S

∑
i∈In

ιs,i +
∑

c∈Cn

ζc

 ,with
⋃
s∈S

Is = I.

This indicates that the biggest issues with inline are (i) variability and (ii) scalability.
For variability, depending on the data generated by simulation node s, the total cost∑

i ιs,i can vary significantly, forcing some nodes to wait and sit idle. Regarding scala-
bility, running collective tasks at high scale—on all simulation nodes S—is inefficient,
yielding comparably large ζs.

For in transit (Figure 5.1b), simulation nodes S are supplemented with dedicated visu-
alization nodes V that only perform visualization tasks. This means that all collective
tasks only occupy the visualization nodes, and all independent tasks are transferred
from simulation nodes s ∈ S to visualization nodes v ∈ V . Simulation nodes conduct
the simulation and copy the data, inducing communication overhead for both types of

88 Chapter 5 • Performance Modeling on Distributed Memory Systems

nodes. Overhead times are denoted as χs and χv:

τ̂sim = σ̂ + max
s∈S

(χs) ,

τ̂vis = max
v∈V

χv +
∑

(s,i)∈Iv

ιs,i +
∑

c∈Cv

ζc

 ,

τ̂in transit = max (τ̂sim, τ̂vis) ,with
⋃

v∈V

Iv = I.

The distribution of independent tasks (s, i) ∈ I from simulation nodes s ∈ S to dedi-
cated visualization nodes becomes an opportunity to address (i) variability. Running
the collective tasks C on the generally significantly lower number of visualization nodes
means concurrency will be lower, and so inefficiency due to lack of (ii) scalability
will be reduced. However, in transit suffers from issues due to (iii) overhead and
(iv) rightsizing. Regarding overhead, χs and χv needed to be introduced to account
for communication costs. For rightsizing, if τ̂vis > τ̂sim, then the visualization nodes
will block the simulation nodes (or else tasks must be dropped); if τ̂sim > τ̂vis, then
visualization nodes will sit idle.

Hybrid In Situ

Hybrid in situ (Figure 5.1c) refers to using a mixture of inline and in transit techniques.
With this work, we consider a specific form of hybrid in situ where simulation nodes
perform all simulation work as well as some visualization work, while visualization
nodes only do visualization. At the beginning of a mega-cycle, both simulation nodes
and visualization nodes tackle visualization tasks. At some point, simulation nodes stop
performing visualization tasks and resume the simulation, while visualization nodes
concurrently process their visualization tasks.

τ̂sim = σ̂ + max
s∈S

χs +
∑
i∈Is

ιs,i

 ,

τ̂vis = max
v∈V

χv +
∑

(s,i)∈Iv

ιs,i +
∑

c∈Cv

ζc

 ,

τ̂hybrid = max(τ̂sim, τ̂vis),with
⋃

v∈V

Iv ∪
⋃
s∈S

Is = I.

An independent task (s, i) ∈ I is only processed once (i.e., Ia∩Ib = ∅ for any nodes a, b),
but this can be done in different locations: either on the simulation node s that generated
the respective data (including it in Is), or on a visualization node v, transferring it to the
independent task list Iv . This form of hybrid in situ creates opportunities for addressing
all four inefficiencies:

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 89

Table 5.1: The Four Types of Inefficiency for In Situ Processing

Inefficiency Type Inline In transit Hybrid
(i) Variability − ✓ ✓
(ii) Scalability − ✓ ✓
(iii) Overhead ✓ − ✓
(iv) Rightsizing ✓ − ✓

The “—” signs indicate that the inefficiency afflicts a technique, while “✓” signs indicate the technique
is able to address the inefficiency.

(i) Variability. The visualization nodes can take work from the most overloaded
simulation nodes, reducing delays due to bottlenecking.

(ii) Scalability. Non-scalable tasks can be run on the dedicated visualization nodes,
saving time.

(iii) Overhead. Transfer times can be overlapped with doing visualization work on
the simulation nodes.

(iv) Rightsizing. The work distribution between simulation and visualization nodes
is dynamically adapted.

Regarding (iv) rightsizing, if there are few visualization nodes, then they will receive
only the work they can perform in their allotted time and the remainder can be per-
formed on the simulation nodes. If there are more visualization nodes, then they can
assume more work, and simulation nodes resume the simulation more quickly. In
Figure 5.2, this is depicted by the broad valley in-between the two main failure modes
“underwhelmed” and “overwhelmed.” With “underwhelmed” visualization nodes, there
is not enough rendering work. At the extreme, the “underwhelmed” category effectively
becomes an in transit scenario where visualization nodes will sit idle at the end of each
mega-cycle. With “overwhelmed” visualization nodes, there is too much rendering work.
At the extreme, the “overwhelmed” category effectively becomes an inline scenario,
with the visualization nodes unable to take on enough work to prevent variability on
the simulation nodes. We hypothesize rightsizing viability falls in distinct categories
based on the amount of resources to carry out this work (i.e., number of visualization
nodes) and the amount of work to perform (e.g., number of images to render).
Table 5.1 summarizes the three in situ approaches with respect to the four possible
inefficiencies. While inline and in transit can only address two of the inefficiencies
each, our hybrid approach can address all of the inefficiencies.
Finally, this analysis makes two key assumptions: (1) that the visualization work consists
of a series of atomic tasks that can be scheduled on either simulation or visualization
nodes and (2) that the time to execute each task is known a priori in order to facilitate
scheduling. With respect to image database generation, these assumptions hold, with

90 Chapter 5 • Performance Modeling on Distributed Memory Systems

Id
le

 p
ro

po
rt

io
n

Low vis load
per vis node

High vis load
per vis node Ratio of resources to work

Overwhelmed visualiza
tion nodes idle

B EA C D

simulation nodes idle
Underwhelmed

Figure 5.2: Notional organization of the viability of rightsizing into five categories (A,
B, C, D, and E) based on the ratio of resources to work. Hybrid in situ should be more
efficient than inline and in transit for categories B, C, and D, with C being the most
ideal since it can eliminate idle time altogether.

the second assumption possible due to our performance probing approach.

In all, the main challenge for hybrid in situ is the distribution of independent tasks I
and collective tasks C to simulation nodes S and visualization nodes V in a way that
minimizes inefficiencies. Addressing this challenge is a main focal point of our proposed
method.

5.1.2 Hybrid In Situ Method for Image Database Generation

This section describes our hybrid in situ method for generating Cinema-style image
databases. An image database consists of a collection of n renderings, each correspond-
ing to a different camera position in our case. Creating each image involves two types
of operations: (1) rendering sub-images across nodes s ∈ S (independent tasks Is), and
(2) compositing sub-images to the final result (a collective task C). This means that
there are |S| · n independent tasks and n collective tasks in each mega-cycle.

Our hybrid in situ system presented in the next subsection addresses the involved
inefficiencies. Compositing suffers from (ii) scalability inefficiency, which we reduce by
performing it only with the generally significantly lower number of visualization nodes.
To address (iii) overhead, the system overlaps data transfer and visualization work.
Rendering suffers from (i) variability inefficiency, as the rendering cost heavily depends
on the data generated by simulation node s ∈ S and the camera configuration associated
with task i ∈ I . This is addressed together with (iv) rightsizing by distributing rendering
tasks I such that idle time across all nodes is minimized. For this, we first estimate
how long rendering and compositing will take, and then schedule visualization work
accordingly.

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 91

time

simulation
node s1

simulation

probing

simulation

send
data

probing

visualization
inline send

render parts

simulation
node s2

simulation

probing

simulation

send
data

probing

visualization
inline

simulation
node s3

simulation

probing

simulation

send
data

probing

visualization
inline

send
render parts

visualization
node v0

visualization
in transit

receive
data

receive
render

parts

compositing

visualization
node v1

compo-
siting

visual-
ization
in transit

receive
data

simulation
node s0

simulation

probing

visual-
ization
inline

simulation

send
render parts

probing

send
data

visualization load assignment / compositing time prediction

visualization load assignment / compositing time prediction

synchronization / exchange

synchronization / exchange

send
render parts

receive
render

parts

write
 images
to disk exchange

start mega-cycle 0

start mega-cycle 0

start mega-cycle 1

start mega-cycle 1

Figure 5.3: Sequence diagram of our system. Probing times are used as a basis to
distribute the rendering load. Our main objective is to minimize the inline visualization
time and the upper bound for time spent rendering on the visualization nodes is
constrained by the combined time of rendering inline (including probing) and the
simulation time before the next visualization step. Compositing is done on visualization
nodes only, sub-images created inline or during probing are sent there.

System Overview

Figure 5.3 gives a sequential overview of our system. Although our approach is not
limited to a specific rendering or compositing technique, we use volume raycasting
(see subsection 2.2.3) and direct-send compositing in our system. A mega-cycle starts
with visualizing the simulation results from the previous iteration. First, we create
an estimation of induced cost on the simulation nodes s ∈ S. Probing is carried out
and measures a subset of the render tasks I ′

s ⊂ Is to estimate their cost. There is
global synchronization between all nodes to exchange probing timings (this is the only
instance of global synchronization in our approach). Compositing time is predicted
using a simple performance model.

This provides the basis for visualization load assignment, which consists of two phases:
First, each simulation node is assigned to one visualization node (N : S → V), and

92 Chapter 5 • Performance Modeling on Distributed Memory Systems

then the remaining render tasks I∗
s = Is \ I ′

s are distributed between a simulation
node s and its visualization node N(s). Simulation data is accordingly distributed to
the visualization node that took over respective rendering tasks. Likewise, all images
produced on s are moved to its assigned N(s). For faster transfer and smaller footprints
we apply run-length encoding to the renderings being sent. The lossless compression
is applied to pixel color values as well as the depth values. All image and data sending
and receiving operations are asynchronous both on simulation and visualization nodes.
This allows the system to effectively hide induced latency, i.e., simulation nodes can
render while they are sending, and also visualization nodes can process tasks while
they are receiving.
After rendering, simulation nodes immediately continue with the simulation. Visualiza-
tion nodes v perform classic direct send compositing with images rendered by them
as well as associated simulation nodes s (i.e, with v = N(s)). Since the images are
composited sequentially, it allows us to compress and write them to disk concurrently.

Render and Compositing Time Predictions

Render Probing. At the beginning of each mega-cycle, all simulation nodes carry
out probing rendering. For this, we randomly sample from all render tasks Is of the
respective nodes s in each mega-cycle to select probing samples I ′

s ⊂ Is. We then
render and measure timings for these on s as the basis to predict the costs of the
remaining tasks I∗

s . We use the arithmetic mean of the probing render times as a
runtime estimate (per render) of the respective data partition. Typically, a random
sampling of positions of an arcball-style camera provides a good coverage of the overall
performance distribution (see subsection 3.1.4). During probing, we also detect if
rendering can be skipped by checking whether the scalar value range in the data
partition of s always yields opacity values below a threshold of 0.001 for the provided
transfer function.
Compositing Time. For direct send compositing, cost can be estimated as a function
of nodes participating [142, 119]. In our case, we specifically consider whether nodes
produce images that contribute to the final results (i.e., which were not skipped via
opacity checking):

1.05 · (α + β · |V ∗| · |S
∗|
|S|

+ γ · |V ∗|(1− |S
∗|
|S|

)). (5.1)

Here, |V ∗| (with V ∗ ⊂ V) is the number of visualization nodes actively participating in
compositing and α, β, γ are empirically determined constants on a target system. |S| is
the number of simulation nodes, while |S∗| divided by the total number of simulation
nodes represents the normalized amount of data set partitions that need to be visualized
(i.e., the ratio between skipped and non-skipped partitions).

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 93

Figure 5.4: Compositing times compared to our estimate using 27 simulation nodes
and 6 visualization nodes. Our prediction model depends on the number of nodes
participating in visualization and uses initial measurements on the target systems.

Since we determine α, β, γ empirically, a few measurements of compositing times
are needed when running our system on hardware using a different interconnect. We
determine the constants using the measurements and a non-linear least squares function
fit that resulted in a normalized RMSE of 8.83% for our compositing time estimation.
We conservatively overestimate the time by 5% to avoid blocking of the simulation
nodes. Figure 5.4 shows a comparison between the measured compositing time and our
estimate using Equation 5.1 with |S| = 27 and |V | = 6.

Visualization Load Assignment

Node assignment N : S → V . The estimated rendering time from probing for the
remaining images I∗ = Is \ I ′

s provide the basis for assigning each simulation node
s ∈ S to one visualization node v ∈ V . For this, we iteratively assign the simulation
node with the highest cost to the visualization node with the lowest accumulated cost
until all nodes are distributed.

Rendering task assignment As : I∗
s → (s, N(s)). Next, rendering tasks I∗

s remain-
ing after probing on a simulation node s are scheduled to be either tackled by s or
its assigned visualization node N(s). Our main objective is to minimize the inline
visualization time to maximize the time the simulation node can use for simulation.

94 Chapter 5 • Performance Modeling on Distributed Memory Systems

Figure 5.5: Our load balancing using two simulation nodes (1, 2) and one visualization
node (3). Initially, all visualization load is assigned to the visualization resources (A). If
the estimated runtime there exceeds the full cycle time on the simulation nodes (B),
we gradually shift render load back to be processed by the (then) fastest simulation
node (C) until runtimes are balanced out across all nodes (D).

Initially, we expect all rendering to be done on the visualization nodes (Figure 5.5A).
However, when aiming to avoid idle times, there is an upper bound for time spent ren-
dering and compositing on the visualization nodes (Figure 5.5B). It is constrained by the
combined time of three parts: (inline) rendering time on simulation nodes (influenced
by As), the simulation steps before the next visualization run on the simulation nodes,
and the maximum probing time of the next visualization cycle. The probing time is
approximated from the current mega-cycle. If the render time prediction combined
with the compositing time prediction on the visualization nodes exceeds the time of
those three parts, we gradually shift rendering load back to be processed inline on the
simulation nodes, until the estimated time on the visualization load is below the bound.
Thereby, we iteratively move a random rendering of the fastest simulation node from
being processed on the visualization node back to be rendered inline, updating the
respective time estimates in the process (Figure 5.5C). This balances the render load
across simulation and visualization nodes (Figure 5.5D).

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 95

5.1.3 Implementation Details

As a basis for our hybrid in situ approach, we use the Ascent [116] framework that
supports a wide range of data filters and several parallel scientific rendering algorithms
using the vtk-m [143] toolkit. Furthermore, Ascent supports distributed memory and
comes integrated with several simulation codes.

We use only CPUs for both simulation and visualization in our test. A future extension
to GPUs in thinkable since they are supported by vtk-m. MPI is used to distribute tasks
among nodes, running multiple MPI tasks per node is possible. All data sending and
receiving operations are asynchronous both on simulation and visualization nodes.
We use Open Multi-Processing (OpenMP) for shared memory parallelization of the
simulation as well as the rendering tasks on the nodes. Ascent supports the generation
of Cinema [16] image databases that we use in our approach for visualization. In our
experiments, we generate volume renderings of the 3D scalar fields generated by the
simulations. We perform volume rendering, this is done using an arcball-style camera,
i.e., we choose camera positions on a sphere around the data set using pre-defined zoom
levels and facing at the center of the dataset. For acceleration, we employ block-based
ESS and ERT (subsection 2.2.3).

For our tests with volume rendering on regular grids, we use the Cloverleaf3D [82]
simulation, a 3D Lagrangian-Eulerian hydrodynamics benchmark. Ascent comes with a
Cloverleaf3D version featuring an integration of the framework. As a second real world
example we use Nyx [18], a massively parallel code for cosmological hydrodynamics
simulations. Nyx usesAMReX [197], a software framework for block structured adaptive
mesh refinement (AMR). All frameworks as well as our modifications are open source.

Integration into the Simulation Codes

The integration of our system into the simulation codes is minimally invasive. Besides
the integration of the Ascent in situ framework (i.e., mainly coupling of the simulation
data), we split the MPI communicator into a simulation and a visualization group based
on a user-defined split factor. The MPI ranks belonging to the simulation group proceed
regularly with the simulation and start visualization once the in situ condition triggers,
i.e., a user-defined time interval has passed or a number of simulation steps have been
processed. This is done by calling Ascent with the simulation data of the respective
rank, the simulation time that we use as an estimate of the time for the next simulation
block, and a set of user-defined actions. The latter include the visualization setup: filter
pipelines, the scenes to be rendered (e.g., volume rendering including transfer function,
Cinema configuration, etc.) and the probing setup for our hybrid approach such as
the split factor between simulation and visualization ranks and the amount of probing
renders.

96 Chapter 5 • Performance Modeling on Distributed Memory Systems

The visualization ranks wait for incoming data and perform visualization immediately
after receiving data from the simulation ranks. In contrast to the simulation ranks,
Ascent is called without a data set but the same configuration. A synchronization
between the simulation and the visualization ranks only happens inside Ascent during
the exchange of probing times.

Integration into Ascent

We extend the Ascent in situ framework by adding flexible in transit capabilities includ-
ing a modified compositing that can work solely on visualization resources. Further,
we extend Ascent to handle our hybrid approach. This primarily includes a probing
step in which we distribute the rendering load across the MPI ranks. When starting
our runtime, we first split the MPI communicator that is passed on by the simulation
and includes all ranks into a simulation and a visualization communicator. For this,
we use the same split factor as in the simulation code to exactly reproduce the split. A
pseudo-random sequence is generated to determine the images used for probing, the
same sequence is generated on all ranks.
All simulation ranks then proceed with the probing run, i.e. by rendering the random
image subset. The resulting render times are then gathered on allMPI ranks to determine
the load distribution and the assignment of the simulation ranks to the visualization
ranks. Then, the simulation ranks asynchronously send their simulation data to their
assigned visualization ranks, where the respective subset of images is rendered in transit
on arrival of the data. Meanwhile, inline rendering is performed on the simulation
ranks. This happens in batches to facilitate asynchronous sending of the render parts
to the respective visualization ranks where compositing happens. After rendering, we
apply run-length encoding to the pixel RGBA and depth values. After sending the last
encoded render parts, the simulation ranks return to the simulation.
The visualization ranks receive the image parts of their assigned simulation ranks,
decode them and use them with the ones rendered themselves for compositing. We
use direct send compositing that is integrated in Ascent using the DIY2 [144] library.
Ascent uses direct send since it has to support the worst case scenario, i.e., unstructured
meshes that fit together like puzzle pieces. Once the final image is composited, we
compress it as a portable network graphics (PNG) and write it to disk on one of the
visualization ranks. To process the writing in parallel, we use a producer-consumer
approach. After the last image is written to disc, the visualization ranks return to the
simulation process and proceed with the next visualization cycle.

5.1.4 Overview of Experiments

Our experiments are organized into three phases:

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 97

Figure 5.6: Render time estimation error depending on the number of probing images
(total: 400). The data is based on twelve random sequences.

• Baseline experiments, which compare our hybrid method with inline and in
transit approaches for a fixed configuration.

• Parametric study, which extends the comparisons from the baseline experi-
ments to consider configurations with varying amounts of work (number of
images in the image database and different image resolutions) and resources
(number of visualization nodes).

• Weak scaling study, which evaluates how changes in concurrency affect cost.

The remainder of this section describes the details behind our experiments: probing,
hardware, and workloads.
Probing: One important aspect to our technique is how much probing to perform.
Prior to our experiments, we conducted an analysis to identify a good trade-off between
performance and accuracy. This analysis used an example case with 400 renderings. To
calculate the accuracy, we generated twelve random sequences of camera positions, and
generated estimations using the sequencewith the firstn ∈ [4, 200] probings (Figure 5.6).
With this, we identified 15% of the renderings to be a good compromise of scheduling
flexibility versus accuracy (yielding an error of 6.3%± 1.3%), and use this ratio in all
experiments that generate 400 renderings.
Hardware: We ran all our experiments on the Stampede2 supercomputer of the Texas
Advanced Computing Center (TACC). We used Skylake nodes that feature Intel Xeon
Platinum 8160 CPUs with 48 cores on two sockets (24 cores/socket). The CPUs support

98 Chapter 5 • Performance Modeling on Distributed Memory Systems

two hardware threads per core, adding up to a total of 96 threads per node. Typically,
we ran six MPI tasks per node with 16 OpenMP threads per task.

When comparing across inline, in transit, and hybrid, we fixed the number of simulation
nodes and considered different numbers of visualization nodes. This is crucial for
comparability as the number of simulation nodes impacts the domain decomposition of
the simulation, which not only influences the simulation itself but also the rendering
tasks.

Workloads: A workload consists of running a simulation code for some number of
mega-cycles, as well as generating an image database for eachmega-cycle. We determine
the number of simulation steps in all mega-cycles by running the simulation in intervals
of 120 seconds of wall clock time before invoking the in situ visualization. For the image
databases, we generate a Cinema database of 400 volume renderings per visualization
cycle using an orbital camera with regular spacing of the angles and a single zoom level.
All images are rendered with a resolution of 800× 800 pixels. Finally, we employed
supersampling during the weak scaling phase.

We used two simulation codes throughout our study. The first two phases used Clover-
leaf3D [82], a 3D Lagrangian-Eulerian hydrodynamics benchmark. The third phase
used Nyx [18], a massively parallel code for cosmological hydrodynamics simulations
as a real world example. We visualize the energy field for Cloverleaf3D (Figure 5.7) and
the density field for Nyx (Figure 5.10). While Cloverleaf3D uses regular grids, Nyx uses
block structured adaptive mesh refinement with AMReX [197].

The simulations also differ in how they evolve over time. The Cloverleaf3D simulation
starts with two initial energy fields in opposite corners of its domain, and these two
energy fields extend over the course of the simulation until they visually fill the whole
domain. The volume rendering’s transfer function treats low energy regions as fully
transparent, resulting in imbalanced work from empty space skipping. As the simu-
lation continues this effect fades, but rendering imbalances emerge due to early ray
termination. With Nyx, the simulation starts with an initial random seed of dark matter
particles distributed across the whole domain. Over the course of the simulation, the
particles attract each other to form clusters, creating empty spaces as a side effect. As a
result, data blocks become less active over time.

5.1.5 Results

Our results are organized into baseline experiments, parametric study, and weak scaling
experiments.

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 99

Figure 5.7: Baseline experiment of 14 mega-cycles of Cloverleaf3D simulation and
Cinema database generation. Images at the top show volume renderings from odd
mega-cycles. The remaining rows show Gantt charts for inline, hybrid, and in transit
configurations. The charts are colored to indicate the activity being performed on a
given node, including two types of idle. Light gray indicates idle caused by variability
while dark gray shows idle times caused by prediction errors. Although in transit (8+8)
has a shorter completion time, hybrid is more efficient using less node seconds overall.

100 Chapter 5 • Performance Modeling on Distributed Memory Systems

Baseline Experiments

Our baseline experiment considered a single workload. For simulation, we ran Clover-
leaf3D for 14 mega-cycles on eight simulation nodes, with a grid resolution of 3843
(1923 per node). For image database, we generated 400 images each mega-cycle. We
compared four in situ approaches: inline, our hybrid configuration receiving two addi-
tional visualization ranks (ten total) and two different in transit configurations receiving
four and eight additional visualization ranks (i.e., twelve and 16 total). Figure 5.7 shows
volume renderings from these experiments, as well as Gantt charts for each in situ
approach.

Our hybrid technique was the most efficient approach since it took the least node
seconds to complete the 14 mega-cycles. It completed the simulation and visualization
tasks in 2408 s using ten nodes (24.1K node-seconds), while the inline configuration
took 3804 s using 8 nodes (30.4K node-seconds — 26.2% more), and the in transit
configuration took 3342 swith 12 nodes (40.1K node-seconds — 66.5% more) and 1940 s
with 16 nodes (31.0K node-seconds — 28.9% more). The flexibility of hybrid enabled
it to do better in terms of the four types of in situ inefficiency (see subsection 5.1.1),
despite introducing (iii) overhead for transfer (pink) in comparison to inline, and also
exhibiting some (i) variability issues due to sub-optimal work assignments (black).

For inline, the effects from (i) variability can be seen in the high proportion of idle
time (gray) in simulation ranks 1 through 6 while simulation ranks 0 and 7 are rendering
(green). These effects are significant from mega-cycles 0 through 4, with only two
corners of the volume actually contributing to the volume rendering. As the simulation
evolves, this improves when all nodes engage in rendering work in mega-cycles 5
through 8, but inefficiencies re-emerge in mega-cycles 9 through 13 due to ERT (node 7
in particular). Our hybrid technique addresses variability by adapting the assignments
to visualization ranks accordingly. Inline also demonstrates (ii) scalability issues
during the compositing phase (yellow). Compositing costs were 160 node-seconds per
mega-cycle with 8 simulation ranks participating for about 20 s, while hybrid only
required 100 node-seconds with just 2 nodes being involved for 50 s.

Both in transit configurations perform quite poorly. Hybrid reduces (iii) overhead
inefficiencies in comparison to in transit both by overlapping data transfer with vi-
sualization work and only triggering it when simulation nodes cannot process all
visualization work themselves. However, for both in transit cases, the major issue is
(iv) rightsizing — one configuration has too few visualization nodes and the other has
too many. With too few visualization nodes (four visualization nodes, twelve total), the
rendering tasks cannot be completed in time, blocking the simulation nodes. This results
in significant idle time (gray) on the simulation nodes, especially after mega-cycle 4.
With too many visualization nodes (eight visualization nodes, 16 total), there are not
enough rendering tasks to occupy the visualization nodes. This again results in signifi-

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 101

cant idle time, although this time on the visualization nodes and before mega-cycle 4.
Together, these two configurations demonstrate the difficulty in rightsizing in transit
resources: whether too few or too many visualization resources, the result is idle time.
In contrast, hybrid achieves rightsizing over a variety of visualization workloads by
dynamically assigning render tasks. In early mega-cycles, the visualization ranks can
almost exclusively handle the rendering tasks, allowing simulation ranks to focus on
the simulation. When the cost of rendering tasks increase (around mega-cycle 5), work
is shared between visualization and simulation ranks such that they complete their
respective tasks right as the mega-cycle ends.

Although our hybrid approach was able to improve efficiency overall, this experiment
shows fundamental limitations that it cannot improve on. Specifically, the variability is
extreme in mega-cycle 0: simulation nodes #0 and #7 have all the inline visualization
work and the others have none. Between this level of imbalance, the ratio between
visualization nodes and simulations, and the amount of rendering work compared to
the length of the mega-cycle, there is no way to schedule tasks that will fully prevent
idle on simulation nodes #1–#6.

Parametric Study

The next phase is split into two parts and extends the baseline experiment to compare
different combinations of workload (i.e., varying image count and varying image reso-
lution) and resources (i.e., number of visualization nodes). The first part of this phase
consisted of 36 experiments, as a cross product of four image database sizes (81, 144, 256,
and 400 images) and nine in situ configurations. Eight of the in situ configurations came
from varying the number of visualization nodes (1, 2, 4, and 8) for both hybrid and in
transit. The ninth configuration was running inline. As in the baseline experiment, each
configuration ran Cloverleaf3D with eight simulation nodes (four of the 36 experiments
in this phase appeared in the baseline experiments). The second part consisted of 27
similar experiments, but this time the image resolution was changed instead of the
image count (which remained at 400 images). Three different resolutions were used
(8002px, 11002px, and 14002px), where the latter two roughly correspond to doubling,
respective tripling, the pixel count of the 8002 default configuration.

Regarding the first part, Figure 5.8 compares the efficiency of our hybrid approach
with inline and in transit in a 4× 4 matrix. The lower left of this matrix has the least
work per visualization node (81 images and 8 visualization nodes). We refer to this
as “underwhelmed” (see Figure 5.2). The upper right of this matrix is where there is
the most work per visualization node (400 images and one visualization node). We
refer to this as “overwhelmed.” In terms of results, our approach was the most efficient
approach (i.e., fewest node-seconds) in eight of 16 configurations, and each of these
eight tended towards “overwhelmed.” The other eight tended towards “underwhelmed.”

102 Chapter 5 • Performance Modeling on Distributed Memory Systems

0

500

1000

1500

2000

2500

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
11

%
 (8

+1
)

81 144
2927
256

4520
400

0

500

1000

1500

2000

2500

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
20

%
 (8

+2
)

3338

0

500

1000

1500

2000

2500

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
33

%
 (8

+4
)

2694

hybrid inline
in transit

0

500

1000

1500

2000

2500

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
50

%
 (8

+8
)

hybrid inline
in transit hybrid inline

in transit hybrid inline
in transit

0

2000

4000

6000

8000

10000

12000

tim
e

to
 so

lu
tio

n
[s

ec
]

0

2000

4000

6000

8000

10000

12000

tim
e

to
 so

lu
tio

n
[s

ec
]

0

2000

4000

6000

8000

10000

12000

tim
e

to
 so

lu
tio

n
[s

ec
]

0

2000

4000

6000

8000

10000

12000
tim

e
to

 so
lu

tio
n

[s
ec

]

Image count (800 x 800 pixels resolution)

Simulation
Rendering
Compositing
Idle (variability)
Idle (misprediction)
Transfer / copy
Time to solution

Figure 5.8: Columns in the 4× 4 matrix correspond to the number of images rendered,
while the rows correspond to the number of visualization nodes. Each of the 16 stacked
bar charts compares our hybrid method with inline and in transit. The colors correspond
to different activities, the heights for each color indicates how much time was spent
(on average) per mega-cycle (left y-axis). Broken bars indicate higher y-values. Black
diamonds indicate the total time-to-solution (right y-axis). The inline configuration
does not use visualization nodes, a single inline run is repeated along each column.

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 103

0

1000

2000

3000

4000

5000
m

ea
n

no
de

 se
c.

 /
m

eg
a-

cy
cle

11
%

 (8
+1

)
800 x 800

7984
1100 x 1100

13485
1400 x 1400

0

1000

2000

3000

4000

5000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
20

%
 (8

+2
)

6127 9783

0

1000

2000

3000

4000

5000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
33

%
 (8

+4
)

7575

hybrid inline
in transit

0

1000

2000

3000

4000

5000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle
50

%
 (8

+8
)

hybrid inline
in transit hybrid inline

in transit

5848

0

5000

10000

15000

20000

25000

30000

tim
e

to
 so

lu
tio

n
[s

ec
]

0

5000

10000

15000

20000

25000

30000

tim
e

to
 so

lu
tio

n
[s

ec
]

0

5000

10000

15000

20000

25000

30000

tim
e

to
 so

lu
tio

n
[s

ec
]

0

5000

10000

15000

20000

25000

30000

tim
e

to
 so

lu
tio

n
[s

ec
]

Image resolution in pixels (400 images total)

Simulation
Rendering
Compositing
Idle (variability)
Idle (misprediction)
Transfer / copy
Time to solution

Figure 5.9: Columns in the 4 × 4 matrix correspond to the images resolution (400
images total per run), while the rows correspond to the number of visualization nodes.
Otherwise, the properties are similar to Figure 5.8

104 Chapter 5 • Performance Modeling on Distributed Memory Systems

Of our eight “underwhelmed” (losing) configurations, the best possible schedule would
assign rendering work to the visualization nodes. That said, if there is not enough work
per node, then visualization nodes sitting idle is inevitable—(iv) rightsizing is not
possible. Worse, our probing step always occurs on the simulation nodes, meaning that
our assignments (including the rendering done with probing) is even worse than a pure
in transit approach; this is why in transit is faster for “81 images and 8 visualization
nodes” (among others).

Conversely, being “overwhelmed” did not affect our performance. At the extreme,
being overwhelmed would become like a pure inline situation, and thus be subject
to (i) variability. While this does occur in practice (see discussion in the previous
subsection on unavoidable idle from variability at mega-cycle 0), the effect is small
enough compared to savings that our method is still the most efficient. Finally, some
of these configurations show our technique’s flexibility in rightsizing. For example,
our hybrid technique took approximately the same amount of time to render 256
images whether it was assigned one visualization node or two visualization nodes.
This is because our algorithm was able to adapt the assignments to do more work
on the simulation nodes when there was one visualization node and more work on
the visualization nodes where there were two. The cost is the same across the two
experiments because both have the same savings on scalability and variability, overheads
do not increase, and (critically) rightsizing is maintained for both.

Our second experiment series demonstrates the impact of higher render loads when
when using a larger image resolutions that might be desirable in some visualization
scenarios, e.g., when fine detail are important. The results are shown in Figure 5.9, the
columns represent the different resolutions while the rows again correspond to the
number of visualization nodes. As in our first set of experiments examining a varying
number of images, the inline case was run only once per configuration since it does not
use dedicated visualization resources. When compared, both experiment series show
similar results, while the distance of our hybrid technique to inline even increases for
higher resolutions in the “overwhelmed” cases (upper half).

In all, both series demonstrate that our method yields rightsizing in fairly wide ranges
of configurations, while in transit is only able to achieve this in the rare case when all
conditions align.

Finally, we consider the time-to-solution in Figure 5.8 and Figure 5.9 (diamond shapes),
i.e., the wall-clock time it takes to finish all 14 mega-cycles using the respective con-
figuration. Generally, our hybrid approach finishes first in cases in the “overwhelmed”
category (upper right triangle in Figure 5.8 respective upper half in Figure 5.9), while in
transit typically finishes faster in the clearly “underwhelmed” cases. Inline is often the
slowest to finish, except for cases with high render load and low visualization resources
where in transit performs worse. This can partly be attributed to the fact that these are

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 105

Figure 5.10: Renderings of the Nyx simulation data.

hybrid inline
0

200

400

600

800

1000

1200

1400

1600

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

144

hybrid inline
0

1000

2000

3000

4000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

576

hybrid inline
0

2000

4000

6000

8000

10000

12000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

1248

hybrid inline
0

5000

10000

15000

20000

25000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

2400

hybrid inline
0

10000

20000

30000

40000

50000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

4128

hybrid inline
0

20000

40000

60000

80000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

6624

hybrid inline
0

20000

40000

60000

80000

100000

120000

140000

160000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

9888

hybrid inline
0

25000

50000

75000

100000

125000

150000

175000

m
ea

n
no

de
 se

c.
 /

m
eg

a-
cy

cle

14016

Logical cores

Simulation
Rendering
Compositing
Idle (variability)
Idle (misprediction)
Transfer / copy

Figure 5.11: Nyx weak-scaling results. For inline, compositing times grow with higher
core count, while rendering gets relatively faster. For hybrid, overhead and render
times grow, as well as idle times caused by prediction errors. In transit runs are not
considered since their results are substantially worse than hybrid or inline due to the
rightsizing inefficiency.

absolute numbers and we use the least resources for inline (no additional visualization
nodes).

Weak Scaling

As our last experiment, we consider a weak scaling study with the Nyx simulation code,
comparing our hybrid approach against pure inline. We aimed for a visualization to
simulation resource ratio of f = |V |

|S| = 0.2 and used a data partition size of 323 voxels
per simulation rank. The randomly seeded dark matter particle count was adapted
accordingly. We ran Nyx with eight different node configurations on up to 14 016

logical cores. Configuration details are listed in Table 5.2. The numbers result from

106 Chapter 5 • Performance Modeling on Distributed Memory Systems

Table 5.2: Node Configurations for the Nyx Simulation on Stampede2

Nodes Logical cores Sim. ranks Vis. ranks Factor Grid size Supersampling
2 144 8 1 0.125 64

3
1× 1

6 576 27 9 0.333 96
3

1× 1

13 1248 64 14 0.219 128
3

2× 2

25 2400 125 25 0.200 160
3

3× 3

43 4128 216 42 0.194 192
3

4× 4

69 6624 343 71 0.207 224
3

4× 4

103 9888 512 106 0.207 256
3

4× 4

146 14016 729 147 0.202 288
3

4× 4

the constraints that the MPI task count is divisible by six (to fully load the nodes) and a
simulation task count whose cube root is an integer for even partitioning. We increased
supersampling in the volume raycaster for higher node counts to balance out the render
load decrease at higher concurrency that is caused by our constant image resolution.
The run was interrupted after 60 minutes of execution (hybrid) respective 80 minutes
(inline). As discussed above, we allowed the inline case more processing time to get a
similar number of full cycles as in the hybrid case.
The performance summaries plotted in Figure 5.11 show that the four types of ineffi-
ciency change as concurrency increases. The most obvious effect is with scalability.
The inline approach devotes more and more time to compositing (yellow color) due to
poor scalability, while our hybrid approach is able to reduce compositing time signifi-
cantly. That said, as can be seen in Figure 5.11, the compositing time increases with
concurrency for our hybrid technique as well, as the number of visualization nodes
increases proportionally and begin to exhibit their own scalability inefficiency. Another
notable effect is with overhead, which can be seen in the increasing transfer/copy times
(pink) for our hybrid approach. However, overlapping copy and transfer with rendering,
combined with run-length encoding counters much of the visible cost, keeping overhead
times fairly low even at larger scales.
With respect to rightsizing, our algorithm was able to make “rightsized” assignments
for visualization and simulation work (i.e., all tasks should finish a mega-cycle at the
same time), but these assignments did sometimes lead to idle resources because of
mispredictions (black color). That said, the amount of misprediction does not appear to
change significantly as concurrency increases.
Finally, variability effects (gray color) again do not appear to change significantly
as concurrency increases for our hybrid method (with the exception of the largest
run, which we attribute to the simulation output), although they improve for inline
visualization. This change is because rendering times are getting smaller, since each

5.1 • A Hybrid In Situ Approach for Cost Efficient Image Database Generation 107

0 2000 4000 6000 8000 10000 12000 14000
Logical cores

30

20

10

0

10

20

30
Co

st
 d

iff
er

en
ce

 o
f i

nl
in

e
vs

. h
yb

rid
 [%

]
scalability
rightsizing
overhead

variability
total

Figure 5.12: Differences in cost between hybrid and inline as a function of concurrency.
The differences are calculated relative to the inline run. For example, the total cost
for the 2400 core inline experiment was 26077 seconds, of which 4317 s were spent
compositing. The corresponding hybrid run took 1636 s for compositing, representing
a savings of 2681 s, which is 10.3% of the total inline run. In turn, the yellow (scalability)
curve has a point at (2400, -10.3%). The overhead curve (pink) considers both transfer
costs and reduced performance in rendering due to the overlap with transfers.

block contributes fewer fragments. In actuality, variability is increasing relative to
render time, but render time drops sharply enough that this increase is insignificant.

In terms of actual savings, our hybrid approach had lower cost for all concurrencies,
although these savings varied (144 cores: 6.9%, 576: 2.8%, 1248, 9.0%, 2400: 8.5%, 4128:
2.0%, 6624: 6.9%, 9888: 10.2%, 14016: 9.8%). While the savings are fairly consistent,
the factors behind them are changing. These changes can be seen in Figure 5.12. As
concurrency increases, scalability savings are growing fast enough to offset additional
overhead costs and reduced savings in variability.

5.1.6 Future Directions

Although the actual savings in cost may appear to be modest (on the order of 7%), this
research has a chance to be very impactful—small speedups for ubiquitous operations
on expensive devices add up to large impact overall. With the success of the Cinema
project, image database generation has a high chance of becoming a ubiquitous task. In

108 Chapter 5 • Performance Modeling on Distributed Memory Systems

all, this approach should be strongly considered for in situ image database generation
going forward. That said, the design is somewhat complex, and will need to be hidden
behind production software, such as done in this work using Ascent.
In terms of future work, the hybrid approach should generalize to other analysis tasks
that can be split into fine granular sub-tasks for dynamic distribution. Further re-
finements could possibly improving the accuracy of cost predictions via importance
sampling for probing and through advanced compositing and simulation time predic-
tions.

5.2 Performance Prediction to Support Render Hard-
ware Acquisition

For HPC environments in general and small sized clusters in particular, a performance
estimation prior to hardware acquisition may be crucial to meet performance require-
ments and at the same time use a limited budget. We propose a neural network-based
approach to predict the runtime performance of a distributed GPU-based volume ren-
derer [14]. Using timing measurements of a single cluster and individual GPUs, the
performance gain of upgrading or extending a cluster’s graphics hardware can be
predicted. Using the model, a performance prediction of upgrading the whole cluster
but keeping the network configuration is also possible.
Formally, the main objective of the approach is to predict the total render time of a frame
Tcluster based on cluster size C , data set D, the node’s hardware H , image resolution I ,
and view parameters V :

(C, D, H, I, V)→ Tcluster. (5.2)
Typically, prediction accuracy of neural networks improves with a larger amount of
training data, which keeps the model general and avoids a possible bias. However,
different GPU clusters are rare and exchanging all GPUs of an operating cluster unfeasible.
Therefore, the initial model has to be split into two levels aligned with the two phases of
an object-space distributed volume renderer: local rendering (resulting in local render
time Tlocal) and compositing. Equation 5.2 can be split accordingly:

(D, H, I, V)→ Tlocal, (5.3)

(I, C, Tlocal)→ Tcluster. (5.4)
In Equation 5.3, data set D, hardware H , image resolution I , and view parameters V
define a local render time Tlocal. Equation 5.4 models the compositing phase, mapping
cluster size C , image resolution I , and local render time Tlocal to the final cluster frame
time Tcluster. Reformulating Equation 5.2 this way has the advantage that Equation 5.4
does not contain information about the employed rendering hardware. This allows to

5.2 • Performance Prediction to Support Render Hardware Acquisition 109

0 10 20 30
0

1

2

3
·103

Cluster size

Fr
am

e
tim

e
[m

s]

Actual
Predicted

(a) 30722 image size, 10243 volume size

0 10 20 30
0

2

4

6

8

10
·103

Cluster size
Fr
am

e
tim

e
[m

s]

Actual
Predicted

(b) 61442 image size, 10243 volume size

Figure 5.13: Evaluation of the performance prediction model in the cluster upgrade
scenario: training is done using data in single GPU mode, predicted is performance of a
dual GPU cluster.

emulate different rendering times on single nodes by stalling local execution time Tlocal,
effectively generating more measurement data on a single cluster. This data is used to
train the neural network that predicts Equation 5.4. The model eventually captures
performance characteristics of hardware for compositing, network, and topology. This
means that by using this model meaningful predictions for a cluster on the basis of
local render time measurements from one node equipped with the target hardware can
be made.
The neural network contains an input layer for the input features I, C, Tlocal and Tcluster.
Further, the experimentally determined inner structure for the network contains two
hidden layers, consisting of 16 and eight neurons respectively. Finally, the rectified
linear unit (ReLU) is chosen as activation function for faster training.
The model is evaluated using two different scenarios:

• Predicting the impact of a GPU upgrade in a cluster on volume rendering perfor-
mance.

• Investigating how accurately the model can predict rendering performance across
multiple clusters.

For the first scenario, a 33 node cluster consisting of nodes equipped with two Intel

110 Chapter 5 • Performance Modeling on Distributed Memory Systems

0 5 10 15 20
0

0.2

0.4

0.6

0.8
·103

Cluster size

Fr
am

e
tim

e
[m

s]
Actual

Predicted

(a) 30722 image size, 10243 volume size

0 5 10 15 20
0

1

2

3
·103

Cluster size

Fr
am

e
tim

e
[m

s]

Actual
Predicted

(b) 61442 image size, 10243 volume size

Figure 5.14: Evaluation of the performance prediction model to predict the performance
of a different cluster. Training is done using data from one cluster, predicted is the
performance of a different cluster with a similar network configuration.

Xeon E5620 CPUs, 24 GB RAM, two NVIDIA GeForce GTX 480 GPUs (see Table 2.1), and
a double data rate (DDR) InfiniBand are used. The upgrade is emulated by deactivating
one of the GPUs per node and only using data from single GPUmode for training. Testing
the renderer in dual GPU mode enables a comparison between prediction and actual
performance. Figure 5.13 shows the results for two different configurations. As can be
seen, the model is able to accurately predict performance for different cluster sizes (R2

score of 0.95).

For the second scenario, training is performed on the 33 node cluster with both single
and dual GPUmodes. For testing, a second cluster consisting of 20 nodes, each equipped
with two Intel Xeon E5-2640 v3 CPUs, 128 GB RAM, an Nvidia Quadro M6000 (see
Table 2.1), and a fourteen data rate (FDR) InfiniBand was used. The results for different
configurations are depicted in Figure 5.14. The model is able to perform well in this
scenario (R2 score of 0.93), too. However, in this case the graphs show a small bias
(prediction of slower performance) that can be attributed to the different network
interconnects used.

Overall, by using our model, accurate performance predictions can be made for the
upgrade of GPUs in small clusters as well as upgrading to a completely new cluster with
a comparable network configuration.

5.3 • Adaptive Encoder Settings for Interactive Remote Visualization 111

5.3 Adaptive Encoder Settings for InteractiveRemote
Visualization on High-Resolution Displays

Pixel streaming is a convenient way to display large amounts of data on remote locations,
e.g. to monitor simulations on supercomputers. A typical approach to pixel streaming
for large scale simulation data is to render the visualization directly on the cluster
where the simulation is running and send encoded images to a client for display since
this is typically less data than sending the whole raw data. Another possible usage
of pixel streaming is collaborative visualization where domain experts analyze the
data in multiple locations at the same time. However, maintaining a low latency for
interactive explorability is still a major challenge for remote rendering in general and
high-resolution setups in particular. A typical approach to keep the latency low is to
send less data, e.g. by using a higher compression rate on the sent images which usually
comes at the cost of a lower quality. We propose an approach to dynamically adapt
encoder settings on a per image-tile-basis to optimize the quality for a given bandwidth.
Our adaptive remote visualization algorithm operates in four stages:

1. Capturing the last rendered frame and splitting it into equally sized tiles.
2. Predicting the compressed tile sizes and qualities.
3. Optimization of the encoding settings.
4. Encoding and sending of the tiles.

We start by converting the last rendered frame to grayscale since our predictions works
on a single channel only. Our specific setup, which we used for development and testing,
features a powerwall that uses ten display nodes with a resolution of 4096×1200 pixels
each, to display the visualization. We split the image per node into 40 tiles, resulting in
a total of 400 tiles.
We use three different encoder settings that differ in quality parameter and average
bitrate: low (0.65Mbit), medium (7.74Mbit), and high (17.42Mbit). Our objective is
to find an optimal encoding setting for each tile based on the quality and size. We use
a convolutional neural network (CNN) to predict the size and quality of an image tile
for each encoder setting. The output of our network is a vector containing six values,
one for the expected quality and one for the expected size after encoding with each
of the three settings. We combine the those predictions with an optimizer to decide
on the encoder setting for each tile. We use the SSIM to assess the image quality of the
encoding compared to the original.
The architecture of our CNN is shown in Figure 5.15. We use two consecutive combina-
tions of convolution, ReLU activation, and max-pooling each and end the network with
a dropout and dense layer to get our desired resulting vector of six values. For training
of the CNN, we used more than 22 000 images of volume renderings that we encoded
with our three quality setups. Evaluation was done using 5632 images.

112 Chapter 5 • Performance Modeling on Distributed Memory Systems

Figure 5.15: CNN architecture used for prediction of compressed tile size and quality.

Our goal is to optimize the quality of all tiles given a size threshold T . In other words,
we want the highest possible encoding setting per tile while keeping the overall size of
the tiles below the threshold. Since this is equivalent to the multiple-choice knapsack
problem and can be optimally solved by minimizing the objective function:

min
N−1∑
i=0

M−1∑
j=0

xij · (1− SSIMij)2 (5.5)

Here, N is the number of tiles and M the number of encoding seconds. The first
constrained arises from the fact that we can take exactly one encoder setting for each
image tile: ∀j ∈ N : ∑M−1

i=0
xij = 1, x ∈ {0, 1}. The second constraint restricts the

overall size of all tiles to be less or equal to the given threshold:∑N−1

i=0

∑M−1

j=0
xij ·sizeij ≤

T . For faster processing, we use a greedy approximation.

We tested our approach using by transferring two scientific visualization streams
between two workstations equipped with an Intel Xeon E5-2640 v3, 256GB of RAM
and an Nvidia Quadro M6000 GPU. The resolution was set to 4096× 1200 pixels and
the maximum bandwidth target to 100 Mbit/s. One of the streams is a 40 seconds long
particle simulation of a laser ablation, the other a 30 seconds long interaction with the
Chameleon volume data set (see Table 2.2). Table 5.3 shows an overview of average and
maximum throughput achieved using our technique in comparison to encoding the all
frame with the three encoder settings. On average, capturing, subdivision, converting,
and predicting the encoder setting takes about 50 milliseconds. For the particle data
sequence, our algorithm produced on average an encoding quality distribution for all
tiles of 29% low, 69% medium, and 2% high. Regarding accuracy of our prediction,
the error rate is about 5% for all six values in our result vector (quality and size for

5.3 • Adaptive Encoder Settings for Interactive Remote Visualization 113

Table 5.3: Throughput of our Adaptive Encoding in Comparison to Flat Encodings.

Test low medium high Ours
Particle (avg) 29.19 86.63 310.92 26.35
Particle (max) 46.13 133.98 544.55 42.21
Volume (avg) 4.00 13.90 143.23 10.83
Volume (max) 6.49 22.18 255.94 21.72

each encoder setting). The accuracy is acceptable with respect to the required real-time
capability.
With our technique, we can achieve a good overall quality while preserving details
in areas of interest in both tested scenarios. For the particle rendering sequence,
our algorithm uses the lowest average and maximum throughput while delivering a
slightly better overall quality than the medium setting. In contrast, using only the
medium setting produces three times the throughput of our technique on average, while
producing a similar output. The difference in throughput stems from the fact that our
algorithm chooses the low encoding setting for some tiles with less visual complexity
in order to save bandwidth. This allows it to use the high setting for tiles with fine
structures to improve the overall quality of the final image. Finally, only the low setting
and our algorithm stay below our target of 100Mbits/s during the tests.

C
h
a
p
t
e
r 6

Foveated Rendering to Improve

Application Performance

Modern output devices are steadily increasing in pixel density and refresh rate. While
this trend improves the experience for users of large projection screens and head-
mounted devices, the rendering performance of image order approaches such as volume
raycasting (see subsection 2.2.3) is heavily impacted by the associated performance
requirements (section 3.1). For example, a higher screen resolution typically requires a
denser sampling of the image plane that can only partly be accounted for by advances
in graphics hardware. In this chapter, two approaches are presented that use foveated
rendering to improve performance of scientific visualization applications. For this, the
user’s gaze needs to be tracked by the compute device and perceptual characteristics of
the HVS used to improve performance.
The first approach (section 6.1) is concerned with the specifics of volume raycasting,
where the widely used acceleration techniques ESS and ERT are complemented by
adapting the sampling pattern in different areas of an image depending on the observer’s
fixation [8]. The user’s gaze is measured using an eye-tracking system to determine the
areas of the image that are in foveal visionwhere humans perceive sharp, colorful details;
and areas in peripheral vision, where users perceive less details and colors. The second
approach (section 6.2) deals with foveated encoding on large high-resolution displays
in remote rendering scenarios, with the goal of keeping the throughput continuously
below a bandwidth limit [10]. The gaze of multiple users is determined by means of
head tracking and the encoding quality adapted depending on the users’ fixations:
higher quality for foveal regions on the display and lower quality for peripheral ones.

116 Chapter 6 • Foveated Rendering to Improve Application Performance

This chapter is partly based on these publications

• V. Bruder, C. Schulz, R. Bauer, S. Frey, D. Weiskopf, and T. Ertl. “Voronoi-
Based Foveated Volume Rendering”. In: Proceedings of EuroVis (Short
Papers). The Eurographics Association, 2019, pp. 67–71 [8]

• F. Frieß, M. Braun, V. Bruder, S. Frey, G. Reina, and T. Ertl. “Foveated
Encoding for Large High-Resolution Displays”. In: IEEE Transactions on
Visualization and Computer Graphics 27.2 (Feb. 2021), pp. 1850–1859 [10]

6.1 Voronoi-Based Foveated Volume Rendering
In this work, we focus on the specifics of foveated volume raycasting. The contribution
can be broken down into the modeling, realization, and evaluation of a foveated volume
rendering system: We pre-compute a sampling mask based on visual acuity fall-off
using the Linde-Buzo-Gray (LBG) algorithm, shift this mask according to user gaze,
reconstruct the image based on Voronoi cells using natural neighbor interpolation, and
apply temporal smoothing to make undersampling artifacts less disturbing.
The acuity fall-off of the HVS can be modeled using a hyperbolic function (see subsec-
tion 2.1.3). We approximate this function using a 2D Gaussian that depends on screen
resolution, size, viewing distance, and estimated photo-receptor distribution in the
human eye. Our photo-receptor topology estimation is based on an average foveal
acuity for healthy adults below the age of 50 [59]. In addition, the smooth properties of
the Gaussian result in a visually more pleasant sampling mask (Figure 6.1a). Based on
our acuity fall-off function around the gaze, we can now infer the number and spread of
cast rays in screen space as well as the sampling density along the rays in object space.

6.1.1 Method

Our technique carries out several computationally intensive pre-processing steps, min-
imizing the induced cost at runtime. In the first pre-processing step, we compute a
sampling mask to determine the starting points of the rays for raycasting using the
LBG stippling algorithm. The algorithm has several advantages over other straight
forward sampling strategies: It arranges the rays’ starting positions in a way that little
or no visible patterns manifest, which could irritate the viewer [50]. According to
our observations, this property translates well to foveated volume rendering. Also
during pre-processing, we optimize the spatial locality of sampling rays by sorting
them according to Morton order, also called Z-curve (see Figure 6.1b for an illustration).
This improves ray locality and therefore caching behavior when using the generated
sampling masks for volume raycasting at runtime. The sampling mask has at least

6.1 • Voronoi-Based Foveated Volume Rendering 117

(a) Color-coded Voronoi cells and corresponding ray origins in black.

(b) Ray origins connected by lines to illustrate the Morton ordering.

Figure 6.1: Illustration of the sampling mask for volume raycasting. © 2019 The Euro-
graphics Association [8].

twice the size of the screen resolution since we translate it during volume rendering
according to the gaze, effectively keeping the high-density part in the middle of the
texture at the foveal region of the user.
Our sampling method in image space is based on Voronoi cells, as is natural neighbor
interpolation, which provides a mathematical symmetry between sampling and recon-
struction strategy. Accordingly, we modified the LBG algorithm to compute neighbors
and weights for natural neighbor interpolation of the sparsely sampled rays during
pre-processing. These can then be used directly during runtime for reconstruction.
Finally, we apply a temporal smoothing filter to attenuate undersampling artifacts in
peripheral vision.

Weighted Linde-Buzo-Gray Algorithm

The objective of the LBG algorithm [50, 68] is to arrange stipples depending on a function.
In this work, we want to arrange starting positions of representative rays, instead of

118 Chapter 6 • Foveated Rendering to Improve Application Performance

stipples, according to a density function over the sampling mask. Let Φ : R2 → [0, 1] be
a function that maps pixel coordinates to sampling density. The algorithm is initialized
with a random distribution of ray positions. During each iteration, the neighborhood
of each ray position r is inferred from the Voronoi diagram to assess how well each
ray represents its proximity in Φ by integrating over the corresponding Voronoi cell Vr.
Formally, the target density for a ray position representing the cell Tr is defined as:

Tr =
x

Vr

Φ(x, y) dA . (6.1)

In our case, this can be approximated by accumulating the density of all pixels of the
sampling mask that are part of to the respective Voronoi cell. Then, the algorithm
compares the cost function Tr with the area occupied by the ray position Ar to measure
the error ε. The ray positions are then adjusted according to one of three cases:
(1) If (Tr ∈ [Ar − ε, Ar + ε]): move and relax the ray position.
(2) If (Tr > Ar + ε): split the ray.
(3) If (Tr < Ar − ε): delete the ray.
This process is repeated until the error is below a given threshold, i.e., the amount of
rays remains unchanged. To stabilize iteration, we use a hysteresis function for the
lower and upper bound of the cases above:

h(i) = Ar · (1± (ε0 + i · ε∆) / 2), (6.2)

with ε0 = 0.5 and ε∆ = 0.1 in the ith iteration.

Volume Raycasting

Our GPU-based volume raycaster samples 3D textures using perspective projection,
performing front-to-back compositing using a post-classification model with linear
transfer functions. Density values that are sampled along casted rays are determined
using trilinear interpolation. The renderer features local Phong illumination, based on
gradients (central differences), ERT, and ESS for acceleration (subsection 2.2.3). We adjust
the distance between samples as given by our sampling mask proportional to our acuity
fall-off function, not only in image but also in object space. Akin to a decreased sampling
density in image space that is a direct result of the visual model (subsection 2.1.3), a
coarser sampling along rays produces a lower resolution approximation with respect
to a reference image (e.g., [30]).

Natural-Neighbor-Based Image Reconstruction

To reconstruct an image of the volume, we have to perform an interpolation of the
sparsely sampled screen space. We chose a natural neighbor interpolation scheme [163]

6.1 • Voronoi-Based Foveated Volume Rendering 119

because it provides a smooth approximation, requires only local neighbors, and is
generally C1 continuous. Moreover, it fits our sampling strategy well since it is also
Voronoi-based.

Despite being computationally expensive, the method has been used in different applica-
tion domains such as engineering, mechanics, and also in scientific visualization [150].
To compute the interpolated value at a given point, a new Voronoi cell is inserted
into the existing tessellation at the position (x, y) of the point. The estimate G of
the new point is then calculated by using the areas A of the intersections with the
neighboring cells in relation to the total area of the new cell as weighting factors for
the interpolation:

G(x, y) =
k∑

i=0

A(Si ∩N)
A(N) · f(xi, yi) , (6.3)

with A(N) being the area of the new cell N and f(xi, yi) being the known values at
the k neighboring cells Si.

The computation of the weights is offloaded into a pre-processing step that results in two
textures. Both have twice the screen’s resolution to accommodate for gaze-dependent
translation of the mask. One texture stores the indices of the neighboring cells, the
other one stores the weights that are used for interpolation. This design makes it simple
and efficient to compute the interpolations on a per-pixel basis after raycasting.

Temporal Smoothing Filter

While natural neighbor interpolation provides a precise and smooth reconstruction,
sparse sampling introduces aliasing artifacts, especially at hard transitions in the volume
data. In addition, undersampling artifacts may occur especially near fine structures
due to the low sampling density in peripheral vision. However, peripheral vision is
particularly sensitive to contrast changes and movement. Therefore, we attenuate those
artifacts using a temporal smoothing filter by averaging between n previous frames.
We found n = 8 to be a good compromise between sufficient smoothing, perceived fade,
and perceived frame rate [57]. Effectively, the filter also provides a form of anti-aliasing
through implicit temporal supersampling. Moreover, it hides the transition from blurry
to sharp during rapid eye movements that can be noticeable if the screen update lags
behind the eye movement. This approach also helps with eye-tracking devices with low
sampling rate. To avoid introducing a motion blur effect, we do not apply the temporal
smoothing during image-altering changes such as camera manipulation and transfer
function modifications.

120 Chapter 6 • Foveated Rendering to Improve Application Performance

Table 6.1: Foveated Volume Rendering Performance

Data set Mean fps Relative speedup
Regular Foveated 0 1 2 3 4 5

Combustion 73.85 154.20

Supernova 37.60 105.28

Vortex cascade 33.27 104.87

Zeiss 98.50 177.09

Flower 22.79 74.08

Chameleon 35.99 99.78

6.1.2 Results

We tested our approach using a stationary Tobii Pro Spectrum eye-tracker with a sam-
pling rate of 1200Hz. For runtime performance evaluation, we simulated deterministic
and randomly scattered gaze positions for comparability and reproducibility. All im-
ages were rendered with a resolution of 1024× 1024 px on a 1080 p screen with a 24"
diagonal, using a workstation equipped with an Intel Core i7-7700K, 32GB RAM, an
Nvidia GeForce GTX 1070, and running Windows 10. Our single-pass implementation
of volume raycasting uses OpenCL 1.2 as the parallel compute backend for reasons of
device and platform portability. The evaluated pixel colors are written to a texture and
shown with a screen-filling quad using OpenGL. The sampling rate along the rays was
set to be twice the data resolution (i.e., a sampling distance of half a voxel) as base value.
We used several CT-scan and simulation data sets for testing (see Table 2.2). For each
data set, we designed a specific transfer function that we used across our measurements,
the resulting renderings are shown in Figure 6.2. To give an impression of the sampling
pattern, Figure 6.2h shows the same configuration as Figure 6.2g but without natural
neighbor interpolation applied, i.e., only pixels containing ray starting positions are
colored. For comparison, Figure 6.2f shows the reference without foveated rendering
applied.
Based on our results from section 3.1, we measure 256 random camera configurations,
rotating around the volume and changing the distance to the volume, while the target
of the camera is the center of the data set. The maximum distance is set to the minimum
distance required to fit the whole projected volume onto the screen for any camera
configuration. For each camera configuration, we test 256 random gaze positions,
resulting in a total of 65 536 measurement configurations. We measure five frames
for each configuration and keep the median frame time as representative value. We
also calculate the mean frame rate and relative speedup based on those representative

6.1 • Voronoi-Based Foveated Volume Rendering 121

(a) Combustion (b) Supernova (c) Vortex cascade (d) Zeiss

(e) Flower (f) Chameleon
(reference)

(g) Chameleon
(foveated)

(h) Chameleon
(sampling pattern)

Figure 6.2: Example renderings of each data set with transfer functions from the
benchmark. The left sides show the reference renderings, while the right ones show our
foveated renderings with a red cross indicating the respective fixation point. For the
Chameleon (g), we also provide sampling results before reconstruction (h). © 2019 The
Eurographics Association [8].

measurements. Table 6.1 shows frame times with and without foveated rendering
as well as the relative speedup for each data set. On average, we achieved speedups
between factor 1.8 and 3.2 using our foveated rendering, depending on the data set and
transfer function. Generally, the speedup is higher for volumes with less empty space.
We could barely experience perceptible changes with respect to visual quality.

The reduced number of rays when using our approach (less than 8%) may indicate
an even bigger performance gain. However, the sparse regions in the periphery often
correspond to those rays accelerated by empty space skipping. Furthermore, we cannot
take advantage of caching as efficiently compared to using the regular volume rendering
due to the sparser voxel-access pattern (see Figure 6.2h). Finally, there is the small
overhead of natural neighbor interpolation, which amounts to 1.5± 0.157ms for all
data sets, as well as a general overhead (kernel invocation, etc.).

122 Chapter 6 • Foveated Rendering to Improve Application Performance

6.1.3 Discussion and Future Directions

We approximate the acuity fall-off by using a 2D Gaussian function. While this is
sufficiently accurate for people with normal vision, individual differences exist regarding
the distribution of rod and cone cells in the retina. Thus, calibrating our system
according to the physiology of individuals could potentially improve the quality and
performance of our foveated rendering approach.

Further, the sparse sampling in the peripheral regions can lead to artifacts, especially
near sharp edges or fine structures in the data. While our temporal smoothing filter
helps to avoid such artifacts, it may potentially induce undesired motion blur effects.
Therefore, we have refrained from using the filter for interaction and dynamic data.
We found that explicit and expected movement tends to make rendering artifacts less
prominent. We also explored a 3D mipmap stack and linear interpolation between
the levels based on the sampling density. However, the performance hit caused by
additional 3D texture fetches was too high compared to the improvement in image
quality. In general, we suppose that our implementation can be further optimized to
yield even higher speedups based on the substantial reduction in emitted rays when
using our technique.

High frame rates are crucial in virtual reality to prevent dizziness and motion sickness
when using head-mounted displays. The presented foveated volume rendering tech-
nique can be employed for head-mounted displays with integrated eye-tracking devices
in the future to help achieving the required frame rates.

6.2 Foveated Encoding for High-Resolution Displays

Streaming and conferencing technology are becoming increasingly ubiquitous in recent
time. However, many of the existing systems do not support resolutions beyond
4K, as are common for large display walls that are used in visualization contexts.
Streaming solutions with a particular focus on such high-resolution display typically
make compromises between quality and bandwidth (e.g., [33, 132]). They either deliver
a high quality image and therefore require bandwidths that may not be met by the
network infrastructure, or they uniformly decrease the quality to maintain adequate
frame rates.

We address this issue by employing foveated rendering (see subsection 2.1.3) for encod-
ing settings. That means we track the users’ gazes and use that to dynamically adapt
the compression in parts of the image to meet the capabilities of the HVS (see Figure 6.3).
This leads to overall lower bandwidth requirements while keeping the perceived image
quality at a high level. To the users, the result is typically indistinguishable to a high
quality encoding of the whole screen. To meet the latency requirements, our approach

6.2 • Foveated Encoding for High-Resolution Displays 123

Figure 6.3: Illustration of our foveated encoding approach for large high-resolution
displays. Macroblocks near the user’s focal point are encoded with high quality, while
the encoding quality decreases towards the periphery according to the acuity fall-off of
the human visual system (HVS).

is based on frame buffer streaming and dedicated hardware video encoders and decoders
found on modern GPUs.

6.2.1 Method
Parts of the system run on the server, others on the client. Onside communication is
implemented using MPI, while we use internet communication between the sides. The
server side renders and captures the visualization and carries out foveated encoding
of the captured frames. For this, the quality of the macroblocks (16× 16 pixel blocks)
used by the H.264 video compression standard are changed based on their distance to
the gaze points of the observers. By tracking the gaze of the users, the client provides
the respective foveated regions and displays the decoded frames.
The following steps are performed on the server side to produce the foveated encoding:
The computation is done in parallel across all nodes that render parts of the potentially
distributed frame buffer. First, the last rendered frame is acquired as a texture. Initially,
all macroblocks are considered to be in the peripheral region and therefore use the
lowest possible quality parameter. In the second step, the intersection between the last
received foveated regions and the macroblocks is computed. In case of an intersection,
the new quality parameter for the respective macroblock is computed based on the
distance to the region’s center using a hyperbolic fall-off function. In order to adapt

124 Chapter 6 • Foveated Rendering to Improve Application Performance

the quality, we use a map that contains an offset for the quality parameter of each
macroblock. Encoding is done asynchronously on the GPU. After encoding, all frames
are sliced to fit the User Datagram Protocol (UDP) packages and forwarded to the client.

The client side also processes the potentially distributed frame buffer in parallel. The
received UDP packages are reordered based on the timestamp and a sequence number.
The potentially sliced frames are reassembled and then queued for asynchronous
decoding. Incomplete frames are dropped after a user specified time. We render the
decoded frames using Nvidia Quadro Sync for synchronization, with an MPI alternative
as portable fallback. One of the client’s nodes computes the foveated regions based
on the tracking data and forwards size and location to the server. As a basis for this
calculation, we use average acuity values (see subsection 2.1.3), so the size of the
foveated region spans 50° horizontally and 50° vertically from the user’s position.

6.2.2 Results

We evaluated of our system quantitatively by measuring the latency and throughput
required to share the content of a tiled display with 10800× 4096 pixels resolution in a
local area network, with and without using our foveated encoding. The resolution is
split horizontally into nine regions, each powered by a single display node featuring
an Nvidia Quadro M6000 GPU. Two dedicated nodes are used for streaming that are
equipped with a GeForce GTX 1060 GPU each. We used a recorded exploration session
of a molecular dynamics simulation (Figure 6.3). The additional latency of our system
was hardly noticeable in a side-to-side comparison for multiple scenarios. Typically, it
stayed below 30ms from capturing to displaying the frame.

Figure 6.4 shows the throughput for different encoding setups while streaming the
molecular dynamics simulation. On the left, three fixed, non-foveated encoding setups
are compared: low (51), medium (31), and high (11). Using the high encoding quality for
the whole frame yielded a maximum throughput of almost 2000Mb/s, while medium
peaks at around 540Mb/s and low at 60Mb/s. In comparison, the throughput stayed
consistently below 200Mb/s when using our foveated encoding, with the highest
measured value at 150Mb/s (Figure 6.4 right). Tracking a second user did not increase
this value substantially. Overall, the foveated encoding required on average between
10 and 20Mb/s more bandwidth than the low setting, except for situations when users
want to get a complete overview of the visualization by walking farther away from the
screen (see the peaks in Figure 6.4). All in all, our foveated encoding approach used
on average 14% of the measured throughput required for the non-foveated medium
encoder settings and 4% compared to high encoder settings. At the same time, the
changes in quality were hardly perceptible to the observers.

6.2 • Foveated Encoding for High-Resolution Displays 125

0 50 100 150 200
time [seconds]

0

500

1000

1500

2000

th
ro

ug
hp

ut
 [M

b/
s]

high
medium
low

0 50 100 150 200
time [seconds]

40

60

80

100

120

140

th
ro

ug
hp

ut
 [M

b/
s]

foveated [31,51]
foveated [11,51]
low

Figure 6.4: Aggregated throughput of all nodes for three non-foveated tests (left), and
two foveated tests and the low setting for comparison (right). Both foveated tests use a
static region. The peaks in the foveated curves can be attributed to the user moving far
away from the display, which leads to a bigger foveated region with more macroblocks
using a higher quality.

6.2.3 Future Directions
A natural step to extend the presented foveated encoding approach would be with a
more accurate, user validated model that also limits the size of the foveated region based
on the users distance and the dimensions of a pixel. Further, a progressive encoding in
case of static frames would be a useful extension. Another interesting path to move
forward would be the combination of the two approaches presented in this chapter
to enable real time streaming of detailed volume visualizations on high resolution
displays. For instance, the foveated sampling could be directly streamed, thereby saving
throughput, while the reconstruction could be done at the client site.

C
h
a
p
t
e
r 7

Performance-Optimized Volume

Rendering Applications

This chapter introduces two applications to show how performance optimization can
open up new application areas for cost intensive visualization algorithms. Both applica-
tion examples use volume rendering at the core of their respective technique but aim
at different domains and data to visualize, which is not the classical volume data from
simulations and CT-scans. Although volume rendering is a comparably computational
expensive technique, specific performance optimizations allow for interactive rendering
of data sets containing over a billion of scalar values.

The first approach (section 7.1) is concerned with the visualization and interactive
analysis of dynamic graphs that contain a large number of time steps [4, 1]. A special
focus is set on the support of analyzing the temporal aspects in the data. For this, a
central component of the technique is an interactive volumetric representation of the
graph based on the concept of a space-time cube (STC) that is generated by stacking
the adjacency matrices of all time steps. In an integrated application, this central
representation is complemented with different views, adjustment options, and evolution
provenance to enable interactive exploration of dynamic graphs.

The second approach (section 7.2) combines the visualization of eye-tracking data,
video data, and optical flow [5]. As in the other technique, the concept of a STC is
adapted to create an interactive volumetric representation of the data. This allows for
a spatio-temporal analysis of gaze data from multiple participants in the context of a
video stimulus. With specifically designed transfer functions, different data aspects can

128 Chapter 7 • Performance-Optimized Volume Rendering Applications

be emphasized, making the visualization suitable for explorative analysis of the data as
well as illustrative support of statistical findings.

This chapter is partly based on these publications

• V. Bruder, M. Hlawatsch, S. Frey, M. Burch, D. Weiskopf, and T. Ertl.
“Volume-based large dynamic graph analytics”. In: Proceedings of the In-
ternational Conference Information Visualisation (IV). Dec. 2018, pp. 210–
219 [4]

• V. Bruder, H. Ben Lahmar, M. Hlawatsch, S. Frey, M. Burch, D. Weiskopf,
M. Herschel, and T. Ertl. “Volume-based large dynamic graph analysis
supported by evolution provenance”. In: Multimedia Tools and Applications
78.23 (2019), pp. 32939–32965 [1]

• V. Bruder, K. Kurzhals, S. Frey, D.Weiskopf, and T. Ertl. “Space-time volume
visualization of gaze and stimulus”. In: Proceedings of the ACM Symposium
on Eye Tracking Research and Applications (ETRA). 2019, pp. 1–9 [5]

7.1 Volume-Based Large Dynamic Graph Analysis
Graphs can be used to analyze and visualize relational data in many application fields,
such as network traffic, biological processes or social relationships. When also consider-
ing the evolution of the data over time, the graph becomes a dynamic graph. Visualizing
dynamic graphs is a challenging task, especially if they contain hundreds of nodes and
thousand of links.
We introduce a visual analytics approach that allows for interactive analysis of graphs
in this category. With our technique and application, we support typical analysis
tasks such as detecting temporal patterns, e.g., clusters forming and disintegrating or
repeating occurrences of similar node-link structures. We present and implement four
classes of analytics methods that we believe to be central:

1. Data views
2. Aggregation and filtering
3. Comparison
4. Evolution provenance

At the core of our techniques is a volumetric representation of the dynamic graph that
is similar to a space time cube [24]. In this representation, every time step is represented
by an adjacency matrix of the node link structure. The adjacency matrices are arranged
according to their temporal order in a third dimension, generating a cuboid structure
that is a concise and static representation of the whole dynamic graph that preserves
the mental map [137, 21].

7.1 • Volume-Based Large Dynamic Graph Analysis 129

time

Adjacency matrices stacking volume

Figure 7.1: For each time step of the dynamic graph, 2D adjacency matrices are stacked
to create a 3D volume, forming our static graph representation.

7.1.1 Static Volumetric Graph Representation

A focus of our approach for visual analysis of dynamic graphs are temporal aspects.
In this context, a static representation of the data has several advantages compared
to animations [175]. In our approach, (directed) graphs are represented as adjacency
matrices, i.e., the rows and columns denote the nodes of the graph. Therefore, an entry
(i, j) at the i-th row and j-th column of the matrix denotes a (weighted) edge from the
node with index i to the node with index j. One matrix is generated for each time step
of the dynamic graph. An adjacency matrix representation has several advantages [27]:

• Large graphs can be depicted without crossing or intersecting graphical elements.
• A volumetric representation can be generated without layout algorithms and is
consistent for all time steps.

• Adjacency matrices are well suited for revealing cluster structures.

As illustrated in Figure 7.1, adjacency matrices are 2D structures that are stacked to
incorporate the temporal evolution of the graph. In the resulting 3D structure, the
x-axis and y-axis represent nodes, while entries in the plane defined by those two axes
represent edges (including their weights). The z-axis represents time.
The visual appearance of adjacency matrices strongly correlates with the ordering of
the nodes. Therefore, we support reordering of the nodes based on three different
sparse matrix ordering algorithms: Cuthill-McKee [47], King [98], and Sloan [166]. As
basis for ordering, an arbitrary amount of time steps (i.e., matrices) is selected that are
aggregated and used in the respective algorithm.

Scalability

The technical scalability of the dynamic graph size is limited by the available VRAM
on the GPU. In our implementation, every edge including its corresponding weight is
represented by an 8 bit scalar value. This results in a memory requirement of n× n× t

130 Chapter 7 • Performance-Optimized Volume Rendering Applications

(a) 10 000 time steps with constant cluster/edge density (eight clusters, around 25 000 edges).

(b) 5000 time steps with increasing cluster/edge density (2–24 clusters, around 20 000–51 000
edges).

Figure 7.2: Scalability of the volumetric graph representation. The graph contains 512
nodes in both cases.

bytes, with n being the number of nodes and t the number of time steps. Additionally,
we need approximately 1

7
of this size to store a full 3D mipmap-stack of the aggregated

representations. For instance, we can load a dynamic graph with 1000 nodes and 10 000
time steps on an Nvidia Titan X (Pascal) GPU with 12GB VRAM. The number of nodes
has a quadratic effect on the data size, while the number of time steps only has a linear
impact. The number of edges has no influence on the memory requirements, i.e., a
sparse and a dense graph with the same number of nodes and time steps requires
the same size. The size limitations could be mitigated in part by using compression, a
different data structure, or out-of-core techniques to overcome GPUmemory limitations.
The visual scalability strongly depends on the 3D representation, the main issue being
the occlusion of edges. Figure 7.2a demonstrates the scalability with respect to the
temporal dimension of the graph. It shows a graph with 512 nodes, 10 000 time steps,
a constant edge density of around 25 000 edges (around 10% of the fully connected
graph). All time steps include some random edges and eight clusters that are randomly
redistributed every 50 time steps. Figure 7.2b shows the scalability with respect to graph
density. The depicted graph features 512 nodes, 5 000 time steps and the edge density
increases from around 20 000 edges (8% of a fully connected graph) in the beginning
to 51 000 edges (20% of a fully connected graph) in the last time steps. The number of
clusters increases from two to 24, and the graph also contains random edges.
Comparing the renderings, we can see that the visual scalability with respect to the
temporal dimension is good when using our approach. Doubling the number of time
steps only slightly decreases visibility of the data since the same image resolution is
used for a larger volume. Furthermore, problems with a reduced resolution can be often
alleviated with camera navigation, e.g., zooming and panning. However, the example

7.1 • Volume-Based Large Dynamic Graph Analysis 131

Data Views
• Timeline plot
• Slice view
• Volume view/lens
• Volume partitioning
• Color mapping

Aggregation/Filtering
• Aggregation levels
• Filtering

Comparison
• Pairwise differences
• Interactive

matrix view

Evolution Provenance
• State comparison
• Provenance timeline

Figure 7.3: Four classes of analytics methods for large dynamic graphs. We implement
and discuss respective techniques, and show their utility.

with increasing edge density shows the limitations of the visual scalability. Doubling
the number of edges can introduce substantial occlusion, making analysis more difficult.
To address this issue, we support various filtering and aggregation modalities, and
complement our volumetric view with additional data views.

7.1.2 Classes of Analytics Methods

The efficient analysis of large dynamic graphs in general and their temporal features in
particular can be supported by combining different classes of analytics methods. We
identified four central classes (see Figure 7.3):

• Data Views. Large dynamic graphs typically exhibit a lot of information in many
interesting aspects. A single visualization is often not capable to convey them all.

132 Chapter 7 • Performance-Optimized Volume Rendering Applications

Therefore, it is important to offer distinct perspectives on the data using multiple
linked views with suitable visualizations.

• Aggregation and Filtering. Showing all edges of a large dynamic graph, espe-
cially a dense one, quickly leads to visual clutter, overload, and occlusion using
our volumetric approach. This makes filtering and aggregation of adjacent edges
an essential part of the analysis process to reduce the visualization to relevant
information.

• Comparison. Comparing different sections within a temporal graph or even
several distinct dynamic graphs becomes challenging using the methods discussed
above. Including a dedicated visualization for this specific task is therefore
important for the analysis process.

• Evolution provenance. Oftentimes during an analysis process, a parameter
configuration is selected that shows interesting features of the data. Going back
to such a analysis step can be very useful during data exploration. Furthermore,
tracking and navigating the provenance evolution also helps to understand and
reconstruct the analysis process. Our implementation of this class in described in
subsection 7.1.3.

We implement methods for all classes in our integrated graph analytics system. In the
following, we describe these methods and their implementation in detail and discuss
how they support the analysis of large dynamic graphs.

Data Views

A key to providing an analysis system that supports many different data sets and tasks
is to offer multiple data views with different types of visualizations, because some are
typically better suited for a specific task than others. Figure 7.4 shows the graphical user
interface (GUI) of our system offering multiple views that can reveal different aspects of
the data.

Timeline Plot. The timeline shows different graph metrics on a 2D plot over time
(Figure 7.4a). Those metrics include, for instance, the number of edges in each time
step, or the linear arrangement of the matrices. This visualization is intended to give
an overview of the temporal evolution of the graph and thereby reveal recurring
patterns. The timeline plot is also an interface for interaction tasks such as selecting
and highlighting a single time step, browsing through the time slices or setting split
marks (see Volume Partitioning below).

Slice View. While the timeline plot often provides a good overview on the data,
it is highly aggregated and lacks details. Therefore, we also provide information of

7.1 • Volume-Based Large Dynamic Graph Analysis 133

c

d

g b

af

e

Figure 7.4: The GUI of our dynamic graph analysis tool, consisting of: (a) timeline/prove-
nance plot, (b) slice views, (c) volume view, (d) lens, (e) color map editor. The list view (f)
shows information of selected edges and nodes, selected provenance states are shown
as thumbnails (g).

individual, selected time steps with 2D slice views (Figure 7.4b). One view for each
dimension is displayed, i.e., the slices show all incoming edges of a selected node (x-axis),
all outgoing edges of a selected node (y-axis), or one adjacency matrix (time axis). The
slices are aggregated and colored according to the current selection and may be linked
to picking of elements and the section on the timeline plot. The respective slice planes
can be visualized inside the volumetric view to give context in the spacial structure.

Volume View. While the slice views provide a convenient method to analyze single
nodes or time steps, it is hard to analyze the temporal evolution of structures on a
global level. For this task, we provide a direct visualization of the full graph volume
(Figure 7.4c). Here, the analyst can interactively rotate, zoom, pan, and tilt the camera
and thereby change the view on the data. Multiple tiled view modes showing a different
configuration per tile are supported. One of the view setups features a main view and a
thumbnail band containing six consecutive provenance states as shown in Figure 7.4g.
Which states to display can be selected using the evolution plot (see subsection 7.1.3).

134 Chapter 7 • Performance-Optimized Volume Rendering Applications

Figure 7.5: Splitting the graph volume into sub-volumes along the time dimension
enables dedicated analysis of specific sections.

Detail Views. To inspect details, we provide a lens feature that is controlled via
mouse (Figure 7.4d). It shows a different visualization parametrization inside the
volume view, such as color mapping and/or aggregation level. Further, we support
interactive selection and highlighting of edges (single elements or aggregated blocks)
inside the volume view. The selected edges are shown in a list view (Figure 7.4f) in
which corresponding nodes and weights are displayed as well.

Volume Partitioning. To improve the interaction possibilities with regard to tem-
poral analysis of the graph, we support partitioning and splitting of the volume into
sub-volumes along the temporal axis (Figure 7.5). The partitioning is helpful in re-
ducing visual clutter and potentially occlusion. Split marks can dynamically be added
and removed along the timeline plot, a visual gap between the sections in the volume
indicates the locations. The gap size can be adjusted and single blocks selected for
individual inspection. Finally, we offer the possibility to automatically generate split
marks based on different graph metrics.

Color Mapping. Properties of the dynamic graph may be mapped to color by using
a color map editor (Figure 7.4e). That means, the volumetric representation as well
as the slice views are colored according to a selected metric and a user defined color
map. Examples of possible color mappings are shown in Figure 7.7. They include the
weights of the edges and the order of the nodes in the adjacency matrix. Additional
metrics support the analysis of the temporal evolution in the graph by mapping graph
metrics, such as density or linear arrangement, as colors directly onto the volume.
Further possible mappings include the temporal dimension and the lifetime of edges.
We implement the color mapping for our static volumetric representation via the
concept of transfer functions from traditional volume rendering as it is used in scientific
visualization. It bears some similarity to our filtering discussed in the next section:
color mapping defines the color, while filtering steers the opacity.

7.1 • Volume-Based Large Dynamic Graph Analysis 135

(a) Level 1 (b) Level 3 (c) Level 4 (d) Level 6

Figure 7.6: Aggregation levels (aggregated by edge density) of a software call graph.

Aggregation and Filtering

A direct visualization of all edges of a large graph is usually not feasible, especially for
dense graphs, because of visual clutter, occlusion, and space constraints, depending on
the visualization technique. In the case of our volumetric representation, the former
two apply. To mitigate those issues, we offer several techniques for aggregation and
filtering.

Aggregation. In the volumetric and the slice views, individual edges (rendered as
small cuboids/rectangles) can be very small, especially for larger graphs. Those small
elements may be hardly visible or not at all, due to the projection and rasterization,
which is limited by the screen resolution. Irritating visual artifacts, such as Moiré
patterns may occur. Therefore, we support multiple data aggregation methods that can
be applied to the original data and generate a stack of representations with smaller
resolutions. We support aggregation by minimum, maximum, and average weight, as
well as density of edges. Aggregation may be applied to the spacial domains only. When
applying the aggregation, a single voxel in the volumetric view may represent multiple
edges (Figure 7.6). Typically, coarse patterns can be seen using a high aggregation level,
while details may be better analyzed with a low level and closeup view.

Filtering. Filtering is a method essential to reducing visual clutter and occlusion,
or highlight parts of the graph with specific properties. We support it by applying
transparency to edges with selected properties, for instance those with low weights.
For this, we use a transfer function mapping that can be dynamically adjusted and is
applied to our volumetric representation.

Comparison

With our system, we focus on supporting the analysis of temporal aspects in particular.
Therefore, we support another modality: the comparison of arbitrary time sequences
(see Figure 7.12 for an example). The analyst can select starting points and a range

136 Chapter 7 • Performance-Optimized Volume Rendering Applications

(a) time / edge count (b) edge weight / edge lifetime

Figure 7.7: Different color mappings of dynamic graph properties.

of time steps to compare them against one another. A matrix view is presented that
shows the different time sequences on the main diagonal. We use the upper and lower
triangles of the matrix to show different aspects: The upper one shows a comparison
of the existence of edges, i.e. edges that appear, disappear, or exist in both sequences
are highlighted by color and/or filtered by transparency. The lower triangle shows the
difference in weights between the sections. The number of time sequences that are
shown can be dynamically adjusted.

7.1.3 Evolution Provenance

With the variety of analytics methods presented so far, our approach offers users the
possibility to perform different analysis operations and thereby obtain various results
and observations. The collection of “history” of manipulations was shown to be effective
for reproducibility as well as in remembering intermediate steps conducted to reach
insights [86]. To this end, we have extended our approach to support the collection
of evolution provenance. Traditionally, users are engaged in a visual analysis session
where they perform various visual analysis steps iteratively. In this case, evolution
provenance keeps track of the set of visual analysis steps performed and thereby
comprises the “full story" of a visual analysis session.

Model and Definitions

Given an initial dynamic graph G that contains a set of time steps {t1..tk}, we de-
fine a visual analysis step S = {GS, VS}, where a sub-graph Gs contains time steps

7.1 • Volume-Based Large Dynamic Graph Analysis 137

Table 7.1: Permitted Analytics Operations

Operation Parameters Output

Selection {ti′ , tj′}; selected range of time steps G′
s = {ti′ ..tj′}, Vs

Partition {m1..my}; the set of split marks Gs, V ′
s = {v′

1
..v′

p}
Aggregation l, where l is a level Gs, V ′

s = {v′
1
..v′

p}
Filtering d× α, α is opacity and d a graph property Gs, V ′

s = {v′
1
..v′

p}
Color mapping d× rgb, rgb is color and d a graph property Gs, V ′

s = {v′
1
..v′

p}
Camera config. angles ϕ, θ, zoom ζ Gs, V ′

s = {v′
1
..v′

p}

{ti..tj}, 1 ≤ i ≤ j ≤ k and is visualized using a visual analytics configurations Vs

defined by the parameters {v1..vp}.

Our evolution provenance collector tracks visual analysis steps encompassing the volu-
metric representation. Table 7.1 summarizes supported analytics operations enabling
the transition from a visual analysis step S = {GS, VS} to another S ′ = {G′

S, V ′
S}, and

lists the set of parameters needed for each operation. We distinguish six operation types
that allow the application of different analytics methods presented in subsection 7.1.2.
These operations are captured with our evolution provenance model.

The selection operation is associated with the timeline plot, whose x-axis depicts a set
of time steps {ti..tj}. The user can select a single or a range of time steps {ti′ ..tj′}
with ti ≤ ti′ ≤ tj′ ≤ tj to analyze them visually. The partition operation corre-
sponds to the volume partitioning feature, where the user interactively specifies split
marks {m1..my} to split the time steps {ti..tj} of a sub-graph Gs into sub-ranges
[{ti..tm1

}, {tm1
..tm2
}, . . . , {tmy ..tj}]. Our evolution provenance model also encom-

passes the aggregation and the filtering operations. The former aggregates the data
according to a level l to alleviate the complexity of the visualization, while the latter
operation defines the visibility of parts of the data based on a factor α. Further, our
provenance model contains the color mapping operation where a user maps a graph
property d (e.g., weights of edges) to color rgb. Finally, we record selected camera
configurations, where the user selected a certain zoom level ζ and rotation angles ϕ, θ.

Overall, the evolution provenance is modeled by an analysis session graph that gathers
all visual analysis steps made by the analyst. Figure 7.8 shows an exemplary analysis
session graph, augmented with screenshots of the respective analytics step.

An analysis session graph summarizes the analyst’s manipulations when exploring a
dynamic graph data set. The analysis session graph is a labeled directed acyclic graph
consisting of n ∈ N nodes and e ∈ E labeled edges. Each node n corresponds to a
visual analytics step S. An edge e = (n, n′, L) represents the transition from one visual
analytics step S = {Gs, Vs} to the next visual analytics step S ′ = {G′

s, V ′
s}. L is a pair

138 Chapter 7 • Performance-Optimized Volume Rendering Applications

S0 S1/4/7

S8

S5

S2

S6

S9 S10

S3

Aggregation
(l4)

Partition
({m1, m2})

Filtering
(weight > 5)

Camera
configuration

Filtering
(weight > 5)

Color mapping
(weight, rgb)

Figure 7.8: Example of an analysis session graph, augmented with images of the respec-
tive analytics steps. Blue arrows indicate going back to a former state. Indices indicate
the temporal order of the states S.

⟨op, param⟩ where op is an identifier of the analytical operation type (see Table 7.1)
and param is the set of parameters used to navigate from S to S ′.

Visualization and Navigation

We implement the provenance model described in the previous section. Important
analysis steps are saved automatically or on demand by the user: selection, aggregation,
partitioning, camera configuration (on demand), color mapping and filtering via opacity.
The evolution of the changes can be tracked and navigated in a visualization that shows
important parameter changes in a combination of lines and glyphs.

Since the rendering of the full analysis session graph can get spacious for longer sessions,
we chose a simplified representation of the provenance graph as a 2D plot (Figure 7.9).
The tracked analysis steps are plotted consecutively along the x-axis (ordered by time
of configuration), while the value of the respective properties is plotted either binary
(using a glyph) or by using a normalized y-value. In this example, the red line indicates
changes to the aggregation level. The two yellow lines represent the sub-volume size
(partitioning and selection) of the respective state by plotting the normalized minimum
and maximum value of the visible time steps. For instance, values one and zero indicate
that the analyst investigated the whole volume. The magenta and orange curves show
the camera configuration at the respective state, while a triangle glyph indicates that

7.1 • Volume-Based Large Dynamic Graph Analysis 139

- Aggregation - Split min/max - Camera angle - Camera zoom Δ Camera state ● Coloring/filtering * Color mapping

Figure 7.9: Section of an example of our evolution provenance visualization, indicating
different analysis steps during a session with plots and glyphs.

the user saved this camera setup explicitly. A blue circle shows a change of the color
mapping or filtering, a green star the selected graph property that is used for the color
mapping in a categorical order.

The user may interact with this plot to browse through the history of analysis steps. We
show six consecutive steps as thumbnails below the volumetric view (see Figure 7.4g).
Those thumbnails can optionally be synchronized to the main camera configuration
(i.e., they interact similar to the main view) to ease comparison tasks. All tracked states
may be selected to apply their configuration to the main view, i.e., “going back” to this
state.

7.1.4 Implementation

To enable interactive exploration of the volumetric data structure, even of large dynamic
graphs with thousands of time steps and hundreds of nodes, we accelerate the compute
heavy calculations by using parallel processing on GPUs. This includes the rendering
of the volume and slice views, as well as the hierarchical generation of different ag-
gregation levels. Some of the computations are also performed in parallel on the CPU
such as reordering operations on the matrices. By using OpenCL, we can accelerate
data generation and processing across heterogeneous platforms such as GPUs, CPUs or
parallel accelerators. On GPUs, we take advantage of their integrated texture units and
interpolation capabilities making them the preferred devices. In this case, the stacked
adjacency matrices are saved and processed as a 3D texture.

We support two different front-to-back raycasting algorithms that have been adapted
for the needs of visualizing dynamic graphs (subsection 2.2.3). The first is a parallel
3D digital differential analyzer (DDA), featuring local illumination of voxel surfaces.
Although having slightly less runtime performance than our second algorithm, it has
several advantages: single and isolated voxels can be easily distinguished because of
the lighting approach. The same applies to opaque structures, making this technique
well suited for analyzing sparse graphs. The second rendering algorithm is based on a
standard raycasting with equidistant sampling points along viewing rays. In contrast to
the first method, local illumination is performed based on the gradient that is calculated

140 Chapter 7 • Performance-Optimized Volume Rendering Applications

Figure 7.10: Timeline plot of the flight data graph showing the number of edges per
time step. The complete data set is shown on the top, while the bottom figure depicts
data of September 2001 only.

using central differences. This approach makes the technique better suited for the usage
on dense graph data when making use of transparency for filtering.

For both techniques, we map sampled density values (i.e., edge weights) to opacity and
color with our filtering and color mapping features. The values are then composed
into the final pixel color and opacity. Using raycasting instead of rendering geometry
with rasterization has several advantages. Foremost, we do not need to order elements
and can therefore easily apply transparency for filtering or highlighting purposes.
This improves performance and enables interactive explorations with high frame rates
even for large graphs with millions of edges. Furthermore, raycasting enables us to
easily display multiple 3D views with synchronized camera configurations without a
significant overhead.

We tested our application on a workstation equipped with an Nvidia Titan X (Pascal)
GPU, an Intel Core i7-6700 and 16GB of RAM. Using a data set with over 1000 nodes
and 8000 time steps, we were able to achieve interactive frame rates with a minimum
of 20 fps during exploration (i.e., camera interactions such as rotation and zoom). Due
to the use of early ray termination (ERT), dense graphs can even be rendered faster
depending on the opacity mapping.

7.1.5 Application Examples

We demonstrate our techniques with two application scenarios, focusing on the different
classes of analytics methods we describe in subsection 7.1.2. In the first scenario, a
graph data set containing flight connections over time is analyzed with a focus on the
comparison features of our application. In the second scenario, a temporal software
call graph is analyzed, the main focus lies on using the evolution provenance tracking
features.

7.1 • Volume-Based Large Dynamic Graph Analysis 141

Flight Connection Analysis Using Difference Views

Our first application example is a dynamic graph representing the domestic flights
in the United States during the years 2000 and 2001. The graph contains 234 nodes
(airports) and more than 16 000 discrete time steps (one per hour). An edge represents
a connection between two airports, the weight indicates the frequency. The aggregated
amount of edges in every time step is depicted in the timeline plot (Figure 7.10). Here,
a gap in September 2001 is immediately visible, which was caused by the 9/11 terrorist
attacks and a shutdown of all air traffic in the hours following this incident. Furthermore,
a regular pattern is noticeable that repeats on a daily basis, visualizing the day-night
changes.

Figure 7.11a shows the complete graph in the volumetric representation, time is mapped
to color. We applied the Cuthill-McKee graph ordering algorithm to change the node
order based on the first 24 hours. To better see the temporal pattern and reduce visual
artifacts, we selected aggregation level 2, i.e., 23 neighboring voxels are aggregated
using the average weights. To investigate the changes between the year 2000 and 2001,
the volume is split accordingly, revealing an increase of the edge count in the second
year. The structure of the adjacency matrices shows that several new edges appear.
Closer investigation reveals that some airports do not have any flights in the year 2000,
leading to the conclusion that they either opened, or were only added to the data base
in 2001, which seems more likely.

Figure 7.11b shows our lens: We overlay the visualization with another visual represen-
tation showing a different color mapping that highlights edges with a higher weight
(frequency of flights on the same connection). We can infer from this visualization,
that higher frequencies occur at larger airports in particular. Those get clustered in the
bottom right corner by our reordering algorithm, because of the many connections to
other airports.

A direct comparison of time sequences is of special interest in this application example
because of recurring patterns. Using our difference view (Figure 7.12), we can visualize
differences between several consecutive days of the dynamic graph. We select eight days
around the 9/11 attack to further investigate the disruption of air traffic. The difference
matrix (8 × 8 grid view) gives an overview of the coarse patterns: canceled flights
(blue) and resumed ones (red) are immediately visible. To investigate the differences of
two consecutive days more closely (e.g., Sunday and Monday), we can enlarge/reduce
the view to only show those two in a 2× 2 tiled view. We can infer from the detailed
view that many of the connections are stable over the two days (transparent green).
However, there are more flights on Sunday morning compared to Monday morning. In
contrast, there are more flights scheduled Monday evening than on Sunday evening.

142 Chapter 7 • Performance-Optimized Volume Rendering Applications

(a) The entire flight data with time mapped to color. The volume is split between the years.
min max

time

min max
edge weight

(b) Close-up of the area between years: the lens shows edge weights mapped to color.

Figure 7.11: Volumetric representation of the U.S. flight data of the years 2000 and 2001.

Software Call Graph and Evolution Provenance Tracking

In the second example, we analyze a dynamic graph representing software calls of a
drawing application written in Java. We use this example to demonstrate the utility of
provenance information that is captured during an analysis session and their navigation
as supported by our application.

The data set has been previously used by Beck et al. [26]. It contains 982 nodes represent-
ing functions of the application on the code level, 32 259 weighted and directed edges
representing calls of these functions, and 1231 time steps that were recorded during the
execution of the drawing application. Using a Java profiling tool, the following phases
were captured: program start, creation of a new document, drawing a rectangle and a
circle, and finally writing text into the circle. Weights of the edges represent execution
times of the functions. Nodes of the graph are ordered according to the hierarchy of
functions in the software project. Therefore, we did not apply matrix reordering to
keep the semantics of this hierarchy.

We capture analysis steps performed by the user and store them as provenance infor-
mation (see subsection 7.1.3). The evolution provenance is visualized in our tool as
timeline plot to enable browsing through the history. Figure 7.13 depicts provenance

7.1 • Volume-Based Large Dynamic Graph Analysis 143

select for closer investigation

09.09
(Sun.)

10.09
(Mon.)

11.09.
(Tue.)

12.09.
(Wed.)

13.09.
(Thu.)

14.09.
(Fri.)

15.09.
(Sat.)

16.09.
(Sun.)

09
.0

9.

Sunday Monday

Su
nd

ay
M

on
da

y
10

.0
9.

11
.0

9.
12

.0
9.

13
.0

9.
14

.0
9.

15
.0

9.
16

.0
9.

time

ad
ja

ce
nc

y
m

at
rix

Identical entries in both
Entry occurs only in oneselection: Logan (Boston) ⟷ John F. Kennedy (New York)

connectivity
difference

weight
difference

connectivity difference

w
ei

gh
t d

iff
er

en
ce

individual adjacency graph

in
di

vi
du

al
 a

dj
ac

en
cy

 g
ra

ph

(1) adjacency graph

(2) connectivity
 difference

(3) weight difference

adjacency matrix volume

difference matrix
(consisting of three parts)

pos. in diff. matrix

pos. in diff. matrix

pos. in diff. matrix

adjacency
graph

adjacency
graph

mapping of edge weights
0 max

difference mapping

-max max
0

Figure 7.12: Top: Difference visualization matrix to investigate changes in temporal
sequences of dynamic graphs. This instance depicts connections between U.S. airports
in September 2001 (diagonal), with differences between days in the upper and lower
triangles. Bottom: Changes from Sunday to the following Monday (enlarged difference
view). Connections are largely similar (indicated in transparent green), but there are
less flights in the morning on Sunday and more in the afternoon; e.g., flights between
Boston Logan and New York JFK (highlighted in yellow/orange).

144 Chapter 7 • Performance-Optimized Volume Rendering Applications

a b c d e f

Figure 7.13: Evolution provenance plot for an analysis session of the call graph data set.
Different time spans of the analysis sessions are annotated.

information captured during this analysis session. Three examples for sequences of
analysis steps and the related thumbnails are shown in Figure 7.14.

In the provenance plot, we can see that the camera parameters are permanently adapted
during the whole duration of the analysis session. This is not surprising since a 3D
representation of data usually requires a lot of camera changes to circumvent occlusions.
Further, the aggregation stays above a certain level during the whole analysis session.
One reason for this might be the large size of the dynamic graph with around 1000
nodes and time steps leading to very small visual representations of the edges if no
aggregation is used.

We partitioned the provenance plot based on the split parameter (yellow lines) that
defines the sub-volume that is shown in the 3D visualization (see Figure 7.5). From
the beginning to the middle of the sequence, the complete graph volume is analyzed
(Figure 7.13a). The user initially adapted the aggregation level of the graph volume to
his requirements, which is visible through changes in the red line. After they found a
suitable setting, the user modified the transfer function, probably to highlight certain
aspects of the data or filter out parts that are not of interest. To better understand
these changes, an inspection of the thumbnails for these parameter changes provide a
preview for the respective states. Figure 7.14a shows those thumbnails. The opacity for
some of the edges is reduced to filter or emphasize edges with high weights (visible in
orange).

In the next phase (Figure 7.13b), the user applied the volume partitioning feature to
explore a short time span at the beginning of the data set. The respective thumbnails
and one example state are shown in Figure 7.14b. In the plot, we can recognize that
the aggregation level is increased in the beginning. After that, primarily the camera
zoom is adapted. Two analysis steps were explicitly saved by the user indicating that
they might have found something interesting. The thumbnail sequence shows how the
sub-volume is selected and that the camera is adapted to a orthogonal view onto the
volume similar to a single adjacency matrix. This is reasonable since the graph volume
captures only a few time steps and the interesting aspects of the data might lie in the
connectivity information.

Next, a larger sub-volume in the middle of the time range was selected for analysis.
The provenance plot (Figure 7.13c) shows a similar user behavior as in the previous

7.1 • Volume-Based Large Dynamic Graph Analysis 145

a b c

a

b

c

Figure 7.14: Selected analysis steps (top row) and the respective thumbnail list (bottom
three rows) for the exploration of the call graph data set. The respective analysis steps
shown in the top row are highlighted with a green border in the thumbnail lists.

phase: The aggregation level is changed first, followed by adaption of the camera
configuration. The next short phase marked in the plot (Figure 7.13d) is interesting
because the sub-volume is changed to a later time span and then the previous time
span is restored (indicated by the peak in the yellow line). This indicates that the user
visually compared these two time spans, since other parameters besides the camera
settings were not changed. The thumbnails confirm this (Figure 7.14c), the two different
sub-volumes are shown with the same visualization parameters. In the second to last
of the marked phases (7.13e), a shorter time range at the end of the data set is analyzed.
We can trace changes in almost all parameters (color mapping, filtering, aggregation
level, camera configuration) as well as how the user switches between selecting the
short time range and the remaining time range of the data set.

In the last annotated phase (Figure 7.13f), the user seems to switch between the different
time spans they identified in the data set. An explanation for this might be that the
user wants to recap what they found in the data set in different time spans.

Based on the provenance information, we summarize an exemplary analysis process of
the call graph data. The illustration in Figure 7.15 shows the steps during investigation
in a flow chart. The procedure is a typical top-down approach: starting at the overview,
then splitting the graph into sections along the temporal domain, and finally investi-

146 Chapter 7 • Performance-Optimized Volume Rendering Applications

split
volume

compare
2nd and 3rd

time ranges

overview

select select

1st time
range

2nd time
range

select
LOD

Figure 7.15: Summary of the different steps during the analysis of the call graph data set
with our visual analytics approach. First, an adequate level of detail (LOD) is chosen for
the temporal analysis of the graph. After that, the graph volume is split into different
time ranges with prominent visual patterns and analyzed in detail. Besides selecting
edges, the graph difference feature is used to compare two time ranges.

gating details and differences. Typically, a similar procedure should be applicable for
different dynamic graphs using our system.

We can identify four different phases in the graph using the volumetric representation:
a initial startup phase, two similar looking phases in the middle of the graph, and finally
a shutdown phase. The initial and the shutdown phase are different from the other
two in that they show many scattered edges (i.e., method calls). A closer investigation
shows many edges along the diagonal, implying the call of neighboring functions in
the code hierarchy. A direct comparison of two similar looking sections in the middle
shows that they have almost the same edges but a different overall time span. a direct
selection of the differing edges reveals that both phases represent a drawing operation
but one is a rectangle figure, the other one an ellipse.

7.1.6 Expert Evaluation

Our two use cases show how trained users can successfully use our techniques and sys-
tem to analyze large dynamic graphs. To gather qualitative feedback on how untrained
visualization researchers can work with our techniques and system, we conducted a
think-aloud user study. We asked five visualization experts from our institute (three
with an information visualization and two with a scientific visualization background)
to solve several data analysis tasks. While all of them are familiar with the general

7.1 • Volume-Based Large Dynamic Graph Analysis 147

concepts of graphs and their visualization, most of them have other research topics.
We chose this type of evaluation because a fair comparison of our system to other tech-
niques for large dynamic graph visualization is difficult. This is because we propose an
integrated approach that features different data views, comparison, and aggregation and
filtering, besides the volumetric view. However, since our components were designed
to complement the 3D volumetric representation, they are not directly portable to other
techniques or less useful in combination with them. We have refrained from performing
a quantitative study with time and error measurement because of two reasons. First,
statistical meaningful results need a larger amount of participants. Second, it is difficult
to find specific measurable tasks that can meaningfully represent the whole analytics
process with our system.

Study Design

At the beginning, we gave a structured demonstration of the functionality and how to
use the features of the system, followed by a short learning period. We used the flight
data set for this purpose, the software call graph was used as the data set for the analysis
tasks. The participants were given a short introduction to the data set, including the
program type, the meaning of the weights and a high-level overview on the sequence
(program start, user interaction, program close). No further details about the program
execution and user interactions were provided. The study took about one hour on
average, including demonstration (about ten minutes) and the learning period (about
five minutes). While the experts were working on the tasks, we recorded the screen
and spoken comments of the participants. Further, we tracked the mouse position to
determine which view or widget was being used, and saved the provenance traces
that were automatically generated by our system. Finally, we asked the participants to
briefly summarize their results in a questionnaire. We asked the experts to solve six
tasks:

1. Select a suitable aggregation level to gain an overview of the entire graph.
2. Identify time spans with different behavior.
3. Partition the graph into those time spans and investigate them.
4. Identify two equally looking time ranges and validate whether they are different.
5. Describe a given provenance trace.
6. Compare their own workflow against the one shown by the provenance trace.

The participants were free to use any of the available views and features of the system.
We chose specific tasks because they had a higher chance of providing comparable
results with our small group of participants. Furthermore, we wanted to test if our
proposed workflow (Figure 7.15) is suitable for visualization experts that are not familiar
with the data set to get insights into the dynamic graph.

148 Chapter 7 • Performance-Optimized Volume Rendering Applications

Table 7.2: Usefulness of Components

Component Mean
Timeline view 4.4± 0.8
Volume view 4.8± 0.4
Slice views 3.0± 1.1
Partitioning 4.2± 0.8
Difference view 4.8± 0.4
Provenance graph and views 3.6± 1.4
Overall system 4.4± 0.5

Scale from 1 (not helpful) to 5 (very helpful).

Results

We asked the experts to rate the visualization components of our system on a Likert
scale from 1 (not helpful) to 5 (very helpful) with the option to give no rating. The
participants could also write free-text comments and suggestions for improving the
system and visualizations. Average ratings of our system’s components are listed in
Table 7.2. The overall system was rated very helpful, with the volume view and the
difference view being rated the most helpful components for the tasks.

Table 7.3 lists the results of the mouse tracking during the user study. We captured
the mouse positions in half-second intervals and increased a counter for the respective
widget below. The relative usage was calculated by normalizing those counters at the
end of the session. As can be seen, the volume view was interacted with the most. The
timeline view was the second most used widget that was also rated (very) helpful by
most participants. In terms of usage, adjusting the settings such as the aggregation level
follows next, while the slice views and the transfer function editor were used less or not
at all by the experts. Only one of the participants used the transfer function editor (for
filtering low weights). To improving this widget, one of the experts suggested easily
accessible, pre-defined transfer functions and showing the editor only on demand. Both,
the user rating and the widget usage are influenced by the fact that the volumetric graph
representation is the central and most prominent component of our system, whereas
the additional components and features were designed to support and complement
this technique. Therefore, the high relative usage of the volume view (almost 60% on
average) as well as the positive rating of the component (4.8 ±0.4) could be expected.

Suggestions for improving visual representations an usability included tool-tips for
different terminology and sharp borders between the slice views for better separation.
Further, one expert suggested improving the slice views with a separate aggregation
levels and a zoom functionality to improve their helpfulness.

7.1 • Volume-Based Large Dynamic Graph Analysis 149

Table 7.3: Relative Usage of the Widgets

Widgets Average usage (%)
Timeline view 16.6± 5.1
Volume view 58.5± 3.6
Slice views 7.4± 6.1
Transfer function editor 2.1± 3.6
Settings 15.0± 6.7

Regarding task 1, the participants selected aggregation levels between 2 to 4 because
they yield desirable properties: “visual appeal, not too much clutter, still visible details”.
Several experts adjusted the aggregation level during the completion of the other tasks,
as exemplified in the provenance graph (Figure 7.16). This confirms the utility of
our aggregation feature and its real-time adjustability. In tasks 2 and 3, the experts’
selections generally match our own partitioning of the graph (Figure 7.15). All experts
could identify and interpret the coarse structure of the graph using our system. The
main differences to our own analysis were that two experts created a finer partitioning
and one a coarser by combining the two sections in the middle. The participants could
identify several details and assumptions were made about the characteristics of the
program flow, although the participants were only given a high level description of the
data set. For instance, several experts pointed out the initialization and de-initialization
phases and they were able to identify user interactions.

Regarding task 4, which required the experts to compare two equally looking sections,
three of the five participants compared parts similar to the 2nd and 3rd time range in
Figure 7.15. One validated the periodicity within the 2nd time range, while another one
compared the sequences right before and after those two blocks. According to their
feedback, the difference feature proved very helpful for this task. In the last two tasks,
all experts were able to comprehend the example workflow we had provided them and
spot differences to their own provenance trace. This included differences in temporal
partitioning of the graph data, aggregation levels, and the use of the transfer function
for filtering.

Figure 7.16 shows a sample provenance graph that was recorded for one of the partici-
pants. Identifiable is the change of the aggregation level (red curve) in the beginning, as
required by the first task. Afterwards follows a detailed investigation of seven identified
sections of the graph as indicated by the yellow curves (task 2 and 3), concluding with
the investigation regarding the differences (task 4). Notably, this expert did not change
the transfer function or the mapping metric during the whole time and adjusted the
aggregation level several times during the analysis task. Compared to our example
analysis of the same data set in the previous section, the participant made a more fine-

150 Chapter 7 • Performance-Optimized Volume Rendering Applications

Figure 7.16: Provenance graph of one of the experts, generated during the user study.

grained separation of sections in the temporal domain. However, the overall separation
matches ours.
Overall, the visualization experts typically not working with graph data were able to
successfully analyze an unknown dynamic graph data set using our system. The experts
came to similar results in their analysis and were able to detect major structures in the
data. While we could not directly quantify the effectiveness of our approach, the expert
feedback indicates its utility for the analysis of large dynamic graphs.

7.1.7 Future Directions
Besides implementing the suggested improvements for our visualization components
and interactions, there are two promising directions to continue this work. The first
one is addressing the technical scalability limitation, i.e., using compression or out-
of-core techniques to circumvent the current data set size limit that is bound to the
available VRAM. The second direction is to improve the integrated support for evolution
provenance, which turned out to be very helpful during data exploration. Possible
extensions and refinements include the addition of user comments or bookmarks, using
a heuristic for automatic recording of interesting camera states, and suggesting new
parameter setups based on the evolution provenance.

7.2 Space-Time Visualization of Gaze and Stimulus
Gaze data recorded frommultiple participants watching dynamic stimuli, such as videos,
poses a challenge for eye tracking researchers. Complex spatio-temporal patterns that
might appear in the data are hard to capture with statistical methods alone and often
require visual support for (1) explorative data analysis, (2) displaying statistical results,
and (3) the illustration of the results.
Established visualization techniques such as gaze plots and heat maps are limited for
these purposes because they require animation to represent changing gaze patterns
over time. In contrast, a static overview of gaze data from videos that conveys important
contextual information allows for an efficient navigation in the data. A space-time
cube (STC) representation of the data is presented that uses GPU volume raycasting at
its core (subsection 2.2.3). By applying multiple transfer functions, we can combine
data aspects for filtering and emphasizing important regions and time spans in the data.

7.2 • Space-Time Visualization of Gaze and Stimulus 151

A

D

BC

Figure 7.17: Our application combines: (A) the main view with the space-time cube
visualization, (B) a transfer function editor for filtering and coloring that also shows
data histograms, (C) an editor to adjust clipping planes, and (D) the visualization of
selected frames as annotation that also shows the gaze heat map.

With this visualization approach, multiple space-time volumes (video, optical flow, gaze)
are combined into a spatio-temporal overview that conveys gaze patterns as well as
information on what caused these patterns. To this end, specifically designed transfer
functions are presented that reveal different aspects in the data. The applicability of the
approach is demonstrated on various videos with gaze data from multiple participants,
using a performance optimized implementation.

7.2.1 Method
To explain our approach for combined analysis of gaze and stimulus data, we first discuss
the visual design, followed by three core aspects (Figure 7.18): (1) data pre-processing,
(2) volume rendering, and (3) interactive data exploration.

Visual Design

Figure 7.17 shows an overview of our system. It features the main view with the
STC visualization (A), controls for filtering and highlighting parts of the data (B, C),
and the possibility to annotate important frames (D). The two data sources for our
visualization are video frames and gaze positions from multiple participants. Each data

152 Chapter 7 • Performance-Optimized Volume Rendering Applications

Video frames

Gaze data

Video

Flow

Gaze

Mul�-field

volume

Transfer

func�ons Clipping

planes

Annota�ons

Data processing Volume rendering Data explora�on

Figure 7.18: The stimulus video and the recorded gaze data from multiple participants
is processed to derive three volumes containing spatio-temporal information of the
data. Rendering is performed with a multi-field approach, combining the volumes.
Interactive data exploration is supported via transfer functions, clipping planes, and
annotations for the temporal dimension.

source can be investigated separately in the STC as depicted in Figure 7.19. The raw
video volume provides an overview of motion at frame borders. This corresponds to
slit-scan visualizations that are used to summarize a video [101]. However, content
inside the volume is occluded. Figure 7.19 also shows the aggregated gaze data rendered
as a STC. While this visualization provides an overview of the gaze distribution, there
is no direct link to the video content. To make this connection visible, a combination of
the two data sources is necessary. Such a combination can be represented as a dense
volume or slices, to reduce occlusion and reveal more details (Figure 7.19).

To support effective analysis of the combined data sources, pre-processing is required to
transfer the data into a unified multi-field volume. To render the volume interactively,
we use GPU-accelerated raycasting (subsection 2.2.3). For appropriate representation of
important gaze patterns, we support interactive data exploration. Thereby, a key aspect
is the manipulation of transfer functions to change the visualization based on different
aspects in the data.

Data Pre-Processing

To yield real-time rendering performance for interactive analysis, we convert the data
into dense volumes in a pre-processing step.

Video Volumes. A video volume contains all visual information of the stimulus, and
interaction methods from volume visualization can be employed. The spatial plane
depicts the video frames, clipping the volume along the time axis emulates a video
replay. The side planes of the volume represent slit-scans of the video. Adjusting the
clipping for these planes provides the corresponding slit-scan that can show important
regions and events of the video.

7.2 • Space-Time Visualization of Gaze and Stimulus 153

Video Data

Gaze Data
Dense Combination Slice-based Combination

Figure 7.19: Example renderings of our data input (gaze density and video frames) as
volumes and a combination thereof.

The investigated stimuli consist of n frames, often in typical multimedia resolutions,
e.g., 1920×1080 pixels. Including the temporal dimension in the data significantly
increases the amount of memory necessary to hold such data. Hence, a reduction of the
visualized data becomes necessary. For the representation of the data as a volume, the
temporal resolution is more important because it allows depicting longer sequences,
while the spatial resolution can be reduced without drastically changing the overview
of the data set. However, with a low resolution the image content becomes blurry
and details can be missed. We found that processing the videos for all frames with a
width between 200–400 pixels and a height adjusted with respect to the aspect ratio
of the video provides smaller volumes with enough details to interpret the stimulus.
Furthermore, the ratio between the spatial and the temporal resolution increases with
lower spatial resolutions, leading to elongated, less compact STCs, which might require
additional scaling of the temporal axis for a better overview. The data is stored as RGBA
unsigned characters in raw data files. This format is compatible with most applications
for volume rendering. Note that the alpha channel in this format could be used to also
store the gaze volume at the cost of precision.

Optical Flow. The optical flow for a video sequence describes how individual pixels
move between two consecutive frames. We apply a variational method [37] that provides
a dense vector field of absolute displacement for image pairs in the video sequence. For
a more intuitive interpretation, the values are converted to angle and magnitude of the
vectors. For the filtering of motion regions, pixel-precise accuracy of the flow is less
important. Hence, a trade-off between flow precision and computational performance
can be made by reducing the number of iterations for the applied approach. We store

154 Chapter 7 • Performance-Optimized Volume Rendering Applications

Table 7.4: Data Formats

Volume Format Channels Content

Video UCHAR 4 RGBA values of the video frames
Optical Flow FLOAT 2 Angle & magnitude of the displacement vector field
Gaze FLOAT 1 Gaze density based on kernel density estimation

the angle and magnitude as single precision floats in two separate channels. The
normalization factor of the magnitude can be dynamically adjusted during runtime
according to the needs of the analyst and specifics of the data.

Gaze Volumes. Heat maps are a common visualization to represent aggregated gaze
data. The aggregation can be calculated over time and/or for multiple participants. For
dynamic stimuli, it is necessary to provide a dynamic heat map that conveys the changes
of gaze patterns over time. To achieve this, we apply a sliding window approach that
respects temporal coherence by summarizing gaze points from the current frame and
m ∈ N previous frames. For the heat map calculation, we apply an Epanechnikov
kernel [164] for an efficient approximation of a Gaussian kernel. The kernel covers 10%
of the frame height, which roughly corresponds to the foveal area that was covered
at a distance of 65 cm showing the videos with a resolution of 1920×1080 pixels on
a 24" screen. As with the optical flow, the applied techniques are interchangeable
according to the requirements for precision and performance. The data is stored as
single-precision floats without normalization. Again, the normalization of the data
can be adjusted in the rendering process, allowing the analyst to change the heat map
dynamically, depending on the task. Table 7.4 summarizes the data volumes and how
they are stored for volume rendering.

Volume Rendering

We apply multi-field volume rendering to depict the three spatio-temporal volumes.
To enable interactive exploration of the data, even when rendering large sequences
with several thousand frames, we accelerate the compute-heavy calculations by using
parallel processing on GPUs. For this, we use OpenCL that allows for cross-platform
execution and device portability. We also take advantage of texture units integrated
in GPUs for their interpolation capabilities. For this, we process the video volume,
optical flow, and gaze data as a 3D textures. We implement direct volume rendering by
using front-to-back raycasting, including early ray termination (ERT) and empty space
skipping (ESS) (see subsection 2.2.3).

7.2 • Space-Time Visualization of Gaze and Stimulus 155

(a) Front view: t0 (b) Front view: t36 (c) Front view: t57

(d) Side: vertical plane clipping (e) Top: horizontal plane clipping

Figure 7.20: Volume Clipping along the three dimensions. (a)–(c) Temporal clipping
emulates a playback of the video. (d) Clipping the volume with a vertical plane results
in slit-scans that depict objects whenever they moved through the scene. (e) Similarly,
clipping with a horizontal plane reveals motion patterns.

Multi-Field Rendering. In case of the video data, the sampled RGB colors are directly
used to determine the color of the pixel. Density and optical flow data (angle and
magnitude) are interpreted as three distinct scalar fields, their samples are evaluated
using transfer functions. We support three transfer functions, one for color and opacity
values and two for transparency only. If multiple transfer functions are employed at the
same time, the opacity values are composited into one final opacity value. The sequence
in which the functions are applied to the data (and if at all) can be dynamically adjusted
by the analyst.

Slice-Based Video Context. The dense nature of the data makes it hard to make out
the content of single frames, especially if little transparency is used in the mappings. To
counter this, we support rendering only a subset of frames at regular intervals, where
the density can be dynamically adjusted. In Figure 7.17 for instance, a stride of 15 is
used to show only the data of 42 of the 624 frames, making it possible to see most parts
of the content of the rendered frames.

Interactive Data Exploration

The presented multi-field approach allows us to filter specific parts of the data and
to emphasize regions in the STC that are relevant for the research question at hand.
For example, one could only be interested in the parts where participants looked at
moving objects. Combining our three data properties, such a query can be modeled by
combining transfer functions. Further, the application of clipping planes and timeline

156 Chapter 7 • Performance-Optimized Volume Rendering Applications

(a) Filtering/coloring based
on gaze density.

(b) Filtering/coloring based
on flow vector magnitude

(c) Filtering/coloring based
on the angle of flow vectors.

Figure 7.21: Different transfer functions for optical flow and gaze density applied to the
same data set. Two camera pans and the moving car are clearly visible in the flow data,
the gaze data shows that participants follow the car’s movement accurately.

annotations provides means to explore the data and create supportive illustrations.
Finally, basic interactions along the temporal domain are supported, such as scaling the
data along the axis and showing only every n-th frame.

Clipping Planes. Clipping of the volume can be performed individually for each
dimension. If clipped along the z-axis, the volume depicts how the video content changes
over time, i.e., this corresponds to a playback of the video (Figure 7.20a–Figure 7.20c).
If clipped along the x- or y-axis, the volume depicts individual slit-scans [112, 101]
that summarize all motion over time at the clipping border, acting as a scanline. This
helps to identify when an object appeared in the video (Figure 7.20d) or how it moved
(Figure 7.20e).

Transfer Functions. Transfer functions determine the visual mapping of voxels to
values such as color and opacity. A common approach to transfer function design is
to select value ranges and their corresponding opacity based on a 2D histogram. For
example, values that correspond to the hue of the sky in a video volume can be set to
appear fully transparent to remove one important area that often occludes interesting
details. This corresponds to chroma keying techniques known from visual effects in
video production. The flow data also contains information that helps filter the data
further. The histogram of the flow vector magnitude is helpful to remove areas without
motion, analog to the previous example, regions such as the static sky can be masked
out this way. Furthermore, camera panning motion can be removed by appropriate
filter settings (Figure 7.21b). Filtering the gaze data by its density allows us to highlight
hotspots of attentional synchrony where the gaze density is high (Figure 7.21a). Regions
with lower density values can also be emphasized, which is usually of interest if multiple
regions attracted attention, or if the gaze data is dispersed.

7.2 • Space-Time Visualization of Gaze and Stimulus 157

Table 7.5: Example Videos with Gaze Data

Video title Duration Figure

Car Pursuit 0:25 min 7.17, 7.19, 7.20, 7.21
Kite 1:37 min 7.22
Thimblerig 0:30 min 7.23
UNO game 2:01 min 7.24

Annotations. Filtering the volume with appropriate transfer functions provides a
better overview of the data set because of the local stimulus context, compared to
visualizations without stimulus information. However, for the illustration of results,
the global context, i.e., the whole video frame and the corresponding heat map are
beneficial. Hence, we adapt the idea of annotations for narratives of historical events in
the STC from [103], who annotate events in a geo-spatial context by pictorial labels to
summarize important events. We support such an interactive labeling of individual time
steps (i.e., video frames). For this, the analyst can simply click on a frame to select in
the STC. This triggers the generation of a hovering window containing the frame with
a colored border that matches an also generated marker on the sides of the volumetric
view that highlights annotated frames (Figure 7.17D).

7.2.2 Examples

We apply our technique to different videos from a publicly available data set [110].
Table 7.5 summarizes the video examples. All data was recorded in a user study with 25
participants using a Tobii Pro T60 XL with a stimulus resolution of 1920 × 1080 pixels.
The Car Pursuit video is shown in the previous sections to illustrate concepts of our
technique. It depicts a red car driving from the left side of the screen to the right and
back. The video contains two horizontal panning motions at the beginning and the end
to adjust the field of view. Participants were asked to follow the car, leading to smooth
pursuits and attentional synchrony [138].

Kite

In theKite video sequence (Figure 7.22), a person steers a yellow kite that the participants
were asked to follow. The kite leaves the recorded field of view several times during
the sequence. Filtering out low gaze density from the video data reveals patterns and
outliers, thereby providing an overview (Figure 7.22a). Mostly, participants follow the
path of the kite smoothly, when it is visible. However, if it leaves the field of view, some
participants try to estimate the path outside the view and predict the spot where the
kite reenters into the video. Other participants focus on the person steering the kite on

158 Chapter 7 • Performance-Optimized Volume Rendering Applications

(a) Frames with high gaze density. Selections
before and after the kite leaves the field of view.

(b) Frames with high motion. Small camera
pans are visible (not filtered out).

Figure 7.22: Video of a person steering a yellow kite. Filterings based on gaze as well as
flow are applied to highlight different aspects.

the meadow. Figure 7.22b shows the video while using our technique to filter based on
the magnitude of the flow vectors (i.e., removing low magnitudes). This rendering also
reveals the path of the kite but also highlights the sections where the kite leaves the field
of view. Slight camera pans in the data appear as fully visible frame slices but could be
filtered out using another pre-processing step. This setting also shows that the person
on the ground is hardly moving (only slight indications), making it hard to identify the
person as a potential area of interest (AOI) solely based on motion information. The
example shows that using both flow and gaze for filtering is advantageous over visually
identifying AOIs.

Thimblerig

In our second example, we apply our technique to a video showing a hat game (thim-
blerig). The participants were asked to follow one of three hats that hides a marble
underneath while they are being shuffled. Figure 7.23 shows renderings of the video
data, which contains 749 frames, with different configurations. Looking only at the
video data without any filtering applied (Figure 7.23a), the shuffling pattern is roughly
visible.

Filtering out regions with low flow magnitude yields a concise overview of the shuffling
patterns. They can be enhanced further by using our slice-based video context view that
regularly skips several frames (Figure 7.23b). Alternatively, we can filter out regions
with low gaze density (Figure 7.23c). This reveals that most participants followed a
single hat—the one hiding the marble. Investigating the frames before the hat with the
marble is lifted reveals that most participants were successful in following the hidden
object. Comparing the two filterings (gaze and motion) shows that gaze is directed by
motion.

7.2 • Space-Time Visualization of Gaze and Stimulus 159

(a) Video with shuffling pattern. (b) High motion frames. (c) High gaze density frames.

Figure 7.23: Video showing a hat game with and without filtering applied for different
properties. Participants were tasked to follow the hat hiding a marble.

UNO Card Game

In this example, we apply our technique to a video of two people playing the UNO
card game. During each player’s turn, participants were asked to focus on playable
cards in the hands of the players. Filtering the video data by omitting regions with low
gaze provides a good overview of the major patterns (Figure 7.24a). For instance, it is
clearly visible when the majority of the participants looked either at the cards of the
right or the left player. Typically, attention on one of the players is followed by gaze
on the discard pile, then on the opposing player. This seems to be the main pattern
in the gaze data. Participants follow the card put on the discard pile and look at the
other player’s hand next to anticipate the upcoming move. Visualizing the gaze data in
the STC also reveals four time spans where the participants focus on the draw stack.
Further investigation shows that all of these are related to events where players have
to draw new cards. This can be visualized by filtering out regions with little motion
(Figure 7.24b). By using this filtering, one can reconstruct which player had to draw
cards and even how many.
A close comparison of flow magnitude filtering that shows only parts with large motion
and filtering with respect to high gaze density reveals aspects of interest. For instance,
after the player on the right hand side plays the red card 1, the opponent cannot play a
valid card and is forced to draw from the stack. Figure 7.24a shows that participants
who watch the video react to this event differently. Some anticipate the draw as the next
action, which is visible in the gaze visualization in that it shows attention on the draw
stack before the motion of the hand begins, as can be seen in the flow visualization.
However, most of the participants seem to follow the motion of the hand to the draw
stack. This indicates that a few participants followed the game attentively and are able
to anticipate the next move correctly before it happens. The attention of the other
participants who follow the hand movement are probably drawn by the motion because
they did not follow the game carefully or are not fully aware of the rules.
Our approach is also well suited to support statistical measures with illustrations. As an

160 Chapter 7 • Performance-Optimized Volume Rendering Applications

0

20

40

60

80

100

300 350 400 450 500 550 600

M
ea

n
 d

is
ta

n
ce

 t
o

 c
en

tr
o

id

Frame

Gaze distribution

(a) High gaze density, frames before and of the
first draw action are selected.

(b) High motion data, the plays of the two pay-
ers are clearly visible.

Figure 7.24: Two persons playing the UNO card game visualized with our technique
showing gaze and flow magnitude. The plot shows the mean distance of the gaze to the
centroid for a selected time range. Selected frames are marked as vertical lines.

example, one can calculate the mean distance of gaze positions relative to the centroid
over time, which is an indicator for attentional synchrony if values are low [111]. The
stimulus context is not directly available if the mean distance alone is used. However,
such a measure can be applied to segment respective time spans. With our STC approach,
we complement the measure to directly depict what happened in the stimulus that
caused the changes in the values. As an example, Figure 7.24 shows such a gaze
distribution plot for a range around the selected frames.

7.2.3 Discussion

The examples in subsection 7.2.2 demonstrate the usefulness of our approach especially
for gaining a combined overview of video, gaze, and flow data. In the first example,
investigating the Kite video, our volume STC rendering applied with a gaze filter yields
a concise overview of the participants’ gaze distribution across the whole video. For
example, the analyst can directly see how participants follow the kite, and that their
focus shifts to the person steering the kite when it leaves the field of view. Further, it is
possible to make out details in our visualization that would be obscured by a traditional
heat map approach. Starting at the overview, the analyst can easily pick single frames
for further investigation or compare the gaze to the optical flow vectors, e.g., movement
patters as also demonstrated in the second example (Thimblerig). The flow data also
contains camera pans that clutter the visualizations of some of the videos (Car Pursuit
and Kite). However, they could be automatically detected and removed with further

7.2 • Space-Time Visualization of Gaze and Stimulus 161

pre-processing. The UNO card game example in particular demonstrates how much
detail can be shown in our STC visualization. A combination of filtering with gaze and
flow data reveals major game moves as well as gaze patterns.
Filtering out specific angle ranges of the optical flow vector field did not reveal promi-
nent patterns in the examples. However, we anticipate that this could be useful for
analyzing other data sets, especially in combination with the filtering based on the
magnitude of flow vectors. For instance, it could be used to filter for objects moving
only in a certain direction such as a person walking from left to right while others
move from right to left.

7.2.4 Future Directions
The adjustment of transfer function could be further improved. For instance, by adding
presets for common tasks such as the identification of attentional synchrony, smooth
pursuit of objects, or areas with high dispersion. Another direction for future work
would be the addition of pixel-precise AOI labels into the volumetric representation.
This would allow analysts to filter the volume for regions where a specific AOI is visible.

C
h
a
p
t
e
r 8

Conclusion

This thesis addresses challenges of performance quantification in the context of visual-
ization systems. A visualization system describes a visualization algorithm running on a
compute architecture or device. By taking a holistic approach, a better understanding of
performance in the visualization domain and novel techniques to improve performance
in selected scenarios were achieved. The focus was on three aspects:

Performance evaluation. The proposed evaluation techniques and best practices
provide insights and well-founded suggestions on how to improve performance
evaluation for interactive visualizations.

Performance modeling. Contributions to performance modeling and prediction in
the context of scientific visualization allow for real-time parameter tuning to
keep a frame rate or limit data throughput. Techniques to balance rendering load
between devices in shared and distributed memory environments are proposed.

Performance optimization. The technical contributions include approaches for per-
formance optimizations based on foveated rendering and performance optimized,
non-conventional volume rendering techniques that support interactive explo-
ration of large data sets of abstract data.

In the following, the thesis is summarized chapter by chapter. An overarching discussion
provides an evaluation of the presented work in the context of the central research
questions posed in chapter 1. Finally, overarching directions for future research are
sketched in an outlook.

164 Chapter 8 • Conclusion

8.1 Summary

This thesis contributes work on performance quantification of visualization systems.
The topic is addressed from various aspects: performance evaluation, modeling, and
optimization of visualization applications in the context of foveated rendering and
volume rendering.

Runtime Performance Evaluation In chapter 3, the current approach on perfor-
mance quantification in scientific visualization was investigated by reviewing respective
efforts in related work and comparing these methods to an extensive measurement
approach. For this, volume rendering and particle rendering were considered as two
established fields in scientific visualization. A large systematic series of performance
measurements was conducted for the two algorithms, followed by an in-depth statistical
analysis of the measurement data that showed several characteristics and commonalities
between the two rendering techniques. Based on those, a list of best practices was
compiled that can act as a guideline for empirical performance evaluation of interactive
scientific visualization techniques. Another approach was presented for the perfor-
mance evaluation and comparison of rendering algorithms, focusing on supporting
the visual analysis of runtime performance differences, in particular in the context of
distinct camera configurations.

Performance Modeling for Runtime Optimizations on GPU Systems In chap-
ter 4, an integrated approach for on-the-fly prediction of rendering performance of a
volume raycaster was presented and used for load balancing as well as dynamic tuning
of the sampling resolution. Computational load can be distributed among different
devices to substantially reduce lags and jerky motions during interactive exploration.
To overcome such unpleasant effects, methods were proposed to explicitly assess the
impact of acceleration techniques on the raycasting performance, including a novel
technique to estimate the effect of early ray termination. Based on those methods,
a hybrid performance prediction model was presented that is capable of predicting
accurate frame execution times on-the-fly. The model consists of two parts. One used
the assessed acceleration data together with general information on the data set and
sampling density for an analytical depth estimation. This was combined with a second
part, an estimate of the cost per sample using a machine learning technique. The
usability of the model was demonstrated by means of two use cases. The first one
adjusted the sampling density in ray and image space to reliably meet user defined
performance requirements. In the second one, a prediction-based load balancing among
multiple GPUs was conducted with the goal to consistently maximize hardware usage
and thereby improve rendering speed and image quality.

8.1 • Summary 165

Performance Modeling for Runtime Optimization and Cost Savings on Dis-
tributed Memory Systems In chapter 5, different performance models for dis-
tributed memory systems were introduced. The central one was a cost efficient hybrid in
situ visualization approach—dynamically combining inline and in transit visualization—
for creating Cinema-style image databases. Substantial speedups compared to pure
inline and in transit approaches were achieved by addressing four types of inefficiencies
in in situ visualization. The rendering work was distributed dynamically between nodes
to tackle load imbalances caused by heterogeneous rendering costs. Compositing of
partial images, a task with scalability issues, was only executed on the comparably
small subset of visualization nodes. Transfer overhead aws hidden behind task pro-
cessing, i.e., rendering overlaps the distribution of raw data and partial images. The
rightsizing of visualization resources was greatly facilitated as simulation nodes can
also process visualization tasks. With the presented hybrid in situ visualization, cost
estimations—e.g., via runtime probing for predicting rendering costs—provided the
basis for the dynamic optimization of task distribution in each mega-cycle. Further
approaches presented in chapter 5 include a model to predict the runtime performance
of a distributed volume renderer to support hardware acquisition. Finally, a technique
to dynamically adapt encoder settings for image tiles in remote rendering setups was
introduced that increases the quality while at the same time lowering the bandwidth
requirements.

Foveated Rendering to Improve Application Performance In chapter 6, it is
discussed how foveated rendering techniques can increase application performance.
A novel approach was presented that utilizes the acuity fall-off in the human visual
system (HVS) to accelerate volume rendering. To this end, a typical volume raycaster
was modified to adapt sampling parameters in image and object space to the gaze of the
observer. For the approximation of sample density and reconstruction during rendering,
a novel technique based on the Linde-Buzo-Gray (LBG) algorithm and natural neighbor
interpolation was proposed. Overall, average speedups between 1.8 and 3.2 could be
achieved for different data sets, with hardly perceptible changes in image quality in
peripheral areas. Furthermore, a system that reduces the bandwidth requirements for
remote visualization on large high-resolution displays was proposed. The approach
determines foveated regions based on the gaze of one or more users and encodes them
with a higher quality than the rest of the image.

Performance-Optimized Volume Rendering Applications In chapter 7, uncon-
ventional volume rendering applications are presented that enable exploration of ab-
stract and spacial data from different domains through performance optimization. An
approach for the interactive visual analysis of large dynamic graphs with several thou-
sand time steps was presented. The approach comprises four analysis classes that

166 Chapter 8 • Conclusion

were integrated into an interactive visual analytics system: data views, aggregation
and filtering, comparison, and evolution provenance. Central was a GPU-accelerated,
volumetric view of the dynamic graph based on the concept of space-time cubes. The
scalability of the approach was demonstrated by analyzing dynamic graphs with several
thousand time steps. In this chapter, a second approach was introduced to visualize
gaze data from participants watching video. The data was rendered as a space-time
volume with multiple fields, providing an overview of the stimulus context and how it
relates to occurring gaze patterns. Analysts were supported in identifying important
time spans without having to replay the whole video stimulus. The technique was
optimized to be explored flexibly and interactively via different transfer functions.

8.2 Discussion
In chapter 1, three major research questions are introduced that have been addressed
in this thesis. In the following, those questions are discussed in the context of the
presented work.

8.2.1 Research Question 1

How can we improve the current practice in runtime performance evaluation
of scientific visualizations?

Research Question 1 is approached by a literature review on the current practice in
performance evaluation for scientific visualization, in particular recent works on new
or improved rendering techniques (chapter 3). The survey shows heterogeneity and no
common methodological foundation for evaluating runtime performance. Typically,
only a very limited set of parameters such as different data sets, camera paths, viewport
sizes, and GPUs are investigated. This makes a comparison with other techniques or
generalization to other parameter ranges at least questionable.
The systematic runtime performance evaluation of millions of different parameter
configurations, combined with a statistical analysis focusing on correlations, has shown
to be a promising approach to derive common guidelines for future performance
evaluations. However, the parameter selection remains a challenge since the high
dimensionality of the space can quickly lead to infeasibility of a systematic benchmark.
An extension to other visualization algorithms besides volume and particle rendering
is possible since the proposed framework supports a plugin system. To what extent
the findings are transferable to other algorithms remains a question to be addressed
in future research. Finally, due to the many configurations that need to be measured
on different devices, the process is time and resource consuming. It would have to be

8.2 • Discussion 167

repeated to investigate other performance metrics besides runtime, such as memory
consumption or energy usage.
Systematic measurements and statistical analysis help to gain a deeper understanding of
qualitative runtime behavior and quantitative parameter dependencies from a high-level
perspective. However, a more fine-grained approach proved useful for more detailed
performance analysis, which was particularly promising for comparing rendering
techniques or variants thereof.

8.2.2 Research Question 2

How can we use performance modeling and prediction in the context of scien-
tific visualization systems to improve performance?

The work presented in this thesis shows applications for performance modeling and
prediction in several different scenarios in the domain of scientific visualization. This
includes load balancing for (1) cost savings on supercomputers and (2) increased perfor-
mance through load distribution among multiple GPUs in a workstation environment.
Further, runtime performance prediction was used to keep fluent interactivity for an
improved user experience, while increasing the rendering quality if surplus resources
are available. Quality was also optimized for encoding in remote rendering, while
keeping below a bandwidth limit. Finally, performance modeling was applied to save
costs in hardware procurement.
Looking at the different approaches, it becomes clear that they also require different
models depending on the available compute time, information, and also the data type.
This ranges from comparably simple but fast performance probing and linear regression,
over a combination of analytical modeling and real-time capable kernel recursive least
squares (KRLS), to neural networks that can be evaluated offline, and convolutional
neural network (CNN)s for image data. Some of the performance influencing character-
istics, such as early ray termination (ERT) in volume rendering are hard to estimate and
require hand-tailored probabilistic approaches. Even then, some uncertainty remains
that needs to be handled and remains an interesting direction for future work. Finally,
the differences in requirements and the results from the practical implementation pre-
sented in this thesis show that there is probably no universal model for performance
prediction in the field of scientific visualization.

8.2.3 Research Question 3

How can we leverage performance evaluation to develop optimized visualiza-
tion applications?

168 Chapter 8 • Conclusion

Two of the techniques presented in this thesis show that foveated rendering is a promis-
ing addition to complement classical acceleration techniques to improve runtime perfor-
mance. This is particularly relevant in light of the fact that gaze-tracking or eye-tracking
devices are becoming more common due to cheaper prices and integration into virtual
reality devices. For this, a clear understanding of how perceived rendering quality and
performance characteristics are related is vital to further optimize foveated techniques.

The work in this thesis also shows that a better understanding of performance charac-
teristics is a first step to improving it. The optimization of compute heavy rendering
algorithms in particular, such as volume raycasting, opens up the possibility for new
application domains. Presented were two techniques that both use volume raycasting at
their core to visualize hundreds of thousand of data points interactively. One visualizes
large dynamic graphs, a data type that is typically visualized in two dimensions. The
other one combines gaze data with video stimulus and visualizes them in an integrated
space-time view. In both techniques, the typical advantages of volume rendering can
be used, such as transfer functions for flexible manipulation of the view to gain new
insights.

8.3 Outlook

The methods presented in this thesis are part of a holistic approach to performance
quantification of visualization systems. Thereby, most of the presented techniques
focus on runtime performance (i.e., frame execution time) for evaluation, modeling, and
acceleration. However, there are several other performance metrics worth investigating,
depending on the usage scenario and application: memory usage, energy consumption,
data throughput, etc. Two of the approaches presented in this thesis already focus
on throughput as a performance metric. Typically, the different metrics are linked.
That means for example, a slower execution time might lead to energy savings [12].
Incorporating several of these metrics into the models presented in this thesis to form
a combined model seems to be a promising direction for future research. This could
be a step towards better understanding of their trade-offs and ultimately lead to a
multi-objective optimization approach.

Energy usage in particular could play an important role in performance analysis in
the future. For instance, embedded devices often have strict energy consumption
requirements to save battery life or limit heat emissions. Also, in the domain of high
performance computing (HPC) power consumption is increasingly becoming a challenge
due to ever growing systems and rising costs for energy and cooling. On the other
hand, there is still a huge potential in saving costs for (in situ) visualization, in the form
of energy and resources, by avoiding rendering irrelevant or unperceivable parts and
details of the data.

8.3 • Outlook 169

Several of the presented approaches show that there is also an inherent link between
quality and performance. Rendering quality itself can be considered a performance
metric. As can be seen at the example of the presented foveated approaches, perceived
quality can be subjective and dependent on the visual system of the observer. Therefore,
a direct quantification of quality is not always trivially possible—despite the existence of
several general image quality metrics, such as structural similarity index measure (SSIM)
or peak signal-to-noise ratio (PSNR). Hence, an interesting direction for future research
would be the creation of an expressive quality metric for the context of major scientific
visualization algorithms, such as volume rendering. With the help of this metric, it
would be possible to fine-tune the presented performance models and ultimately save
rendering cost or storage space.
Another possible path forward would be the application of the performance modeling
and analysis algorithms presented in this thesis to other domains such as software
engineering or human computer interaction. Regarding software engineering, it would
be thinkable that possible performance regressions can already be detected during
software development or that it can be predicted how a code change will affect perfor-
mance. For human computer interfaces, performance prediction during runtime could
be used to change the interaction, for instance by warning the user of long wait times
for certain operations or suggesting performance optimized visual mappings.
Finally, the work on performance evaluation showed the substantial impact of data sets
on runtime performance, in particular if acceleration techniques are used. The creation
of a standard collection of data sets that cover many performance characteristics would
be a major step towards a better comparability of performance measurements and
benchmarks. Ultimately, this would greatly simplify future research in the area of
performance quantification.

Author’s Work

[1] V. Bruder, H. Ben Lahmar, M. Hlawatsch, S. Frey, M. Burch, D. Weiskopf, M.
Herschel, and T. Ertl. “Volume-based large dynamic graph analysis supported
by evolution provenance”. In: Multimedia Tools and Applications 78.23 (2019),
pp. 32939–32965 (cited on pages 7, 8, 127, 128).

[2] V. Bruder, S. Frey, and T. Ertl. “Real-time performance prediction and tuning
for interactive volume raycasting”. In: Proceedings of the SIGGRAPH ASIA Sym-
posium on Visualization. 2016, pp. 1–8 (cited on pages 6–8, 33, 34, 62).

[3] V. Bruder, S. Frey, and T. Ertl. “Prediction-based load balancing and resolution
tuning for interactive volume raycasting”. In: Visual Informatics 1.2 (June 2017),
pp. 106–117 (cited on pages 6–8, 62).

[4] V. Bruder, M. Hlawatsch, S. Frey, M. Burch, D. Weiskopf, and T. Ertl. “Volume-
based large dynamic graph analytics”. In: Proceedings of the International Confer-
ence Information Visualisation (IV). Dec. 2018, pp. 210–219 (cited on pages 7–9,
127, 128).

[5] V. Bruder, K. Kurzhals, S. Frey, D. Weiskopf, and T. Ertl. “Space-time volume
visualization of gaze and stimulus”. In: Proceedings of the ACM Symposium on
Eye Tracking Research and Applications (ETRA). 2019, pp. 1–9 (cited on pages 7,
8, 127, 128).

[6] V. Bruder, M. Larsen, T. Ertl, H. Childs, and S. Frey. “A Hybrid In Situ Approach
for Cost Efficient Image Database Generation [in preparation]” (cited on pages 6,
8, 84).

[7] V. Bruder, C. Müller, S. Frey, and T. Ertl. “On Evaluating Runtime Performance of
Interactive Visualizations”. In: IEEE Transactions on Visualization and Computer
Graphics 26.9 (2020), pp. 2848–2862 (cited on pages 5, 7, 8, 29, 30, 32, 46).

[8] V. Bruder, C. Schulz, R. Bauer, S. Frey, D. Weiskopf, and T. Ertl. “Voronoi-Based
Foveated Volume Rendering”. In: Proceedings of EuroVis (Short Papers). The
Eurographics Association, 2019, pp. 67–71 (cited on pages 7–9, 115–117, 121).

172 Author’s Work

[9] S. Frey, V. Bruder, F. Frieß, P. Gralka, T. Rau, T. Ertl, and G. Reina. “Trade-
offs and Parameter Adaptation in In Situ Visualization [to appear]”. In: In Situ
Visualization for Computational Science. Ed. by H. Childs, J. C. Bennett, and
C. Garth. Springer, 2022 (cited on page 84).

[10] F. Frieß, M. Braun, V. Bruder, S. Frey, G. Reina, and T. Ertl. “Foveated Encoding
for Large High-Resolution Displays”. In: IEEE Transactions on Visualization and
Computer Graphics 27.2 (Feb. 2021), pp. 1850–1859 (cited on pages 7–9, 115, 116).

[11] F. Frieß, M. Landwehr, V. Bruder, S. Frey, and T. Ertl. “Adaptive Encoder Set-
tings for Interactive Remote Visualisation on High-Resolution Displays”. In:
Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
(LDAV). Oct. 2018, pp. 87–91 (cited on pages 6–8, 84).

[12] M. Heinemann, V. Bruder, S. Frey, and T. Ertl. “Power Efficiency of Volume Ray-
casting onMobile Devices”. In: Proceedings of EuroVis (Posters). The Eurographics
Association, 2017, pp. 49–51 (cited on page 168).

[13] H. Tarner, V. Bruder, T. Ertl, S. Frey, and F. Beck. “Visually Comparing Rendering
Performance from Multiple Perspectives [in preparation]” (cited on pages 6, 8,
30, 55).

[14] G. Tkachev, S. Frey, C. Müller, V. Bruder, and T. Ertl. “Prediction of Distributed
Volume Visualization Performance to Support Render Hardware Acquisition”. In:
Proceeding of the Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV). 2017, pp. 11–20 (cited on pages 6–8, 84, 108).

Bibliography

[15] Advanced Micro Devices. RDNA Architecture. Tech. rep. 2019, pp. 1–25. url:
https://www.amd.com/system/files/documents/rdna-whitepaper.
pdf (visited on 10/29/2021) (cited on page 20).

[16] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Petersen. “An
Image-Based Approach to Extreme Scale In Situ Visualization and Analysis”.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). Jan. 2014, pp. 424–434 (cited on pages 85,
95).

[17] T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire.
“The Graphics Rendering Pipeline”. In: Real-Time Rendering. 4th ed. New York:
A K Peters/CRC Press, Aug. 2018. Chap. 2, pp. 11–27 (cited on page 13).

[18] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. V. Andel. “Nyx: A Mas-
sively Parallel AMR Code for Computational Cosmology”. In: The Astrophysical
Journal 765.1 (Feb. 2013), pp. 39–53 (cited on pages 95, 98).

[19] J. Amanatides and A. Woo. “A Fast Voxel Traversal Algorithm for Ray Tracing”.
In: Proceedings of Eurographics. 1987, pp. 3–10 (cited on page 18).

[20] M. Ament and C. Dachsbacher. “Anisotropic Ambient Volume Shading”. In: IEEE
Transactions on Visualization and Computer Graphics 22.1 (Jan. 2016), pp. 1015–
1024 (cited on page 34).

[21] D. Archambault, H. Purchase, and B. Pinaud. “Animation, small multiples, and
the effect of mental map preservation in dynamic graphs”. In: IEEE Transac-
tions on Visualization and Computer Graphics 17.4 (2011), pp. 539–552 (cited on
page 128).

[22] U. Ayachit, A. Bauer, B. Geveci, P. O’leary, K. Moreland, N. Fabian, and J. Mauldin.
“ParaView Catalyst: Enabling In Situ Data Analysis and Visualization”. In: Pro-
ceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV). 2015, pp. 25–29 (cited on page 22).

https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf

174 Bibliography

[23] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, and E. W. Bethel.
“The SENSEI Generic In Situ Interface”. In: Proceedings of the Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV).
Feb. 2016, pp. 40–44 (cited on page 22).

[24] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale. “A De-
scriptive Framework for Temporal Data Visualizations Based on Generalized
Space-Time Cubes”. In: Computer Graphics Forum 36.6 (Sept. 2017), pp. 36–61
(cited on page 128).

[25] L. Bavoil and K. Myers. Order Independent Transparency with Dual Depth Peel-
ing. Tech. rep. NVIDIA Corp., 2008, pp. 1–9. url: https : / / developer .
download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/
doc/DualDepthPeeling.pdf (visited on 10/29/2021) (cited on page 19).

[26] F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf. “Rapid Serial Visual
Presentation in Dynamic Graph Visualization”. In: Proceedings of the IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). 2012,
pp. 185–192 (cited on page 142).

[27] M. Behrisch, B. Bach, N. H. Riche, T. Schreck, and J.-D. Fekete. “Matrix Reorder-
ing Methods for Table and Network Visualization”. In: Computer Graphics Forum
35.3 (June 2016), pp. 693–716 (cited on page 129).

[28] J. C. Bennett et al. “Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis”. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC). 2012,
pp. 1–9 (cited on page 22).

[29] C. Bentes, B. B. Labronici, L. Drummond, and R. Farias. “Towards an efficient par-
allel raycasting of unstructured volumetric data on distributed environments”.
In: Cluster Computing 17 (June 2014), pp. 423–439 (cited on page 24).

[30] S. Bergner, T. Möller, D. Weiskopf, and D. J. Muraki. “A spectral analysis of
function composition and its implications for sampling in direct volume visu-
alization”. In: IEEE Transactions on Visualization and Computer Graphics 12.5
(Sept. 2006), pp. 1353–1360 (cited on page 118).

[31] E. W. Bethel and M. Howison. “Multi-core and many-core shared-memory
parallel raycasting volume rendering optimization and tuning”. In: International
Journal of High Performance Computing Applications 26.4 (Nov. 2012), pp. 399–
412 (cited on pages 24, 69).

[32] J. Beyer, M. Hadwiger, and H. Pfister. “State-of-the-Art in GPU-Based Large-
Scale Volume Visualization”. In: Computer Graphics Forum 34.8 (2015), pp. 13–37
(cited on pages 21, 23).

https://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
https://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
https://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf

Bibliography 175

[33] T. Biedert, P. Messmer, T. Fogal, and C. Garth. “Hardware-Accelerated Multi-Tile
Streaming for Realtime Remote Visualization”. In: Proceedings of the Eurographics
Symposium on Parallel Graphics and Visualization (EGPGV). 2018, pp. 33–43
(cited on page 122).

[34] R. Binyahib, T. Peterka, M. Larsen, K. L. Ma, and H. Childs. “A Scalable Hybrid
Scheme for Ray-Casting of Unstructured Volume Data”. In: IEEE Transactions
on Visualization and Computer Graphics 25.7 (July 2019), pp. 2349–2361 (cited
on page 21).

[35] I. Bowman, J. Shalf, K.-L. Ma, andW. Bethel. Performance Modeling for 3D Visual-
ization in a Heterogeneous Computing Environment. Tech. rep. 2004, pp. 1–9. url:
https://escholarship.org/uc/item/1hp5w4gg (visited on 10/29/2021)
(cited on page 24).

[36] A. Bringmann, S. Syrbe, K. Görner, J. Kacza, M. Francke, P. Wiedemann, and
A. Reichenbach. “The primate fovea: structure, function and development”. In:
Progress in Retinal and Eye Research 66 (Sept. 2018), pp. 49–84 (cited on page 14).

[37] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. “High Accuracy Optical Flow
Estimation Based on a Theory for Warping”. In: Proceedings of the European
Conference on Computer Vision (ECCV). Vol. 3024. 2004, pp. 25–36 (cited on
page 153).

[38] S. Bruckner and E. Gröller. “VolumeShop: An Interactive System for Direct
Volume Illustration”. In: Proceedings of the IEEE Visualization Conference. Oct.
2006, pp. 671–678 (cited on pages 33, 34, 36).

[39] S. Bruckner and E. Gröller. “Style transfer functions for illustrative volume
rendering”. In: Computer Graphics Forum 26.3 (Sept. 2007), pp. 715–724 (cited
on page 19).

[40] M. Chavent, A. Vanel, A. Tek, B. Levy, S. Robert, B. Raffin, and M. Baaden. “GPU-
accelerated atom and dynamic bond visualization using hyperballs: A unified
algorithm for balls, sticks, and hyperboloids”. In: Journal of Computational
Chemistry 32.13 (Oct. 2011), pp. 2924–2935 (cited on pages 44, 45).

[41] Z. Chen and C. Guillemot. “Perceptually-friendly H.264/AVC video coding based
on foveated just-noticeable-distortion model”. In: IEEE Transactions on Circuits
and Systems for Video Technology 20.6 (June 2010), pp. 806–819 (cited on page 15).

[42] H. Childs, J. Bennett, C. Garth, and B. Hentschel. “In Situ Visualization for
Computational Science”. In: IEEE Computer Graphics and Applications 39.6 (Nov.
2019), pp. 76–85 (cited on page 21).

[43] H. Childs et al. “A terminology for in situ visualization and analysis systems:”
in: The International Journal of High Performance Computing Applications 34.6
(Aug. 2020), pp. 676–691 (cited on pages 2, 22).

https://escholarship.org/uc/item/1hp5w4gg

176 Bibliography

[44] D. Cohen and Z. Sheffer. “Proximity clouds - an acceleration technique for 3D
grid traversal”. In: The Visual Computer 11.1 (1994), pp. 27–38 (cited on page 19).

[45] B. Csébfalvi. “Beyond trilinear interpolation: Higher quality for free”. In: ACM
Transactions on Graphics (TOG) 38.4 (July 2019), pp. 1–8 (cited on page 22).

[46] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and E. Gröller. “Fast visualization of
object contours by non-photorealistic volume rendering”. In: Computer Graphics
Forum 20.3 (Sept. 2001), pp. 452–460 (cited on page 19).

[47] E. Cuthill and J. McKee. “Reducing the bandwidth of sparse symmetric matrices”.
In: Proceedings of the 24th ACM National Conference. Aug. 1969, pp. 157–172
(cited on page 129).

[48] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang, H. Abbasi,
S. Klasky, and N. Podhorszki. “Flexpath: Type-based publish/subscribe system
for large-scale science analytics”. In: Proceedings of the IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGrid). 2014, pp. 246–255
(cited on page 22).

[49] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. “GPU-STREAM v2.0:
Benchmarking the Achievable Memory Bandwidth of Many-Core Processors
Across Diverse Parallel Programming Models”. In: Proceedings of the Interna-
tional Conference on High Performance Computing. Oct. 2016, pp. 489–507 (cited
on page 24).

[50] O. Deussen, M. Spicker, and Q. Zheng. “Weighted linde-buzo-gray stippling”.
In: ACM Transactions on Graphics (TOG) 36.6 (Nov. 2017), pp. 1–12 (cited on
pages 116, 117).

[51] Z.-Y. Ding, J.-G. Tan, X.-Y. Wu,W.-F. Chen, F.-R. Wu, X. Li, andW. Chen. “A Near
Lossless Compression Domain Volume Rendering Algorithm for Floating-Point
Time-Varying Volume Data”. In: Journal of Visualization 18.2 (2015), pp. 147–157
(cited on page 34).

[52] E. Dirand, L. Colombet, and B. Raffin. “TINS: A Task-Based Dynamic Helper
Core Strategy for In Situ Analytics”. In: Proceedings of the Asian Conference on
Supercomputing Frontiers. 2018, pp. 159–178 (cited on page 23).

[53] T. M. A. Do, L. Pottier, S. Thomas, R. F. da Silva, M. A. Cuendet, H. Weinstein,
T. Estrada, M. Taufer, and E. Deelman. “A Novel Metric to Evaluate In Situ
Workflows”. In: Proceedings of the International Conference on Computational
Science. June 2020, pp. 538–553 (cited on page 23).

[54] M. Dorier, G. Antoniu, F. Cappello, M. Snir, R. Sisneros, O. Yildiz, S. Ibrahim,
T. Peterka, and L. Orf. “Damaris: Addressing Performance Variability in Data
Management for Post-Petascale Simulations”. In: ACM Transactions on Parallel
Computing (TOPC) 3.3 (Oct. 2016), pp. 1–43 (cited on page 22).

Bibliography 177

[55] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro. “Damaris/Viz:
A nonintrusive, adaptable and user-friendly in situ visualization framework”.
In: Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
(LDAV). 2013, pp. 67–75 (cited on page 22).

[56] M. Dorier, O. Yildiz, T. Peterka, and R. Ross. “The Challenges of Elastic In
Situ Analysis and Visualization”. In: Proceedings of the Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV).
2019, pp. 23–28 (cited on page 23).

[57] E. DoVale. “High frame rate psychophysics: Experimentation to determine a JND
for frame rate”. In: SMPTE Motion Imaging Journal 126.9 (Nov. 2017), pp. 41–47
(cited on page 119).

[58] S. Dutta, C. M. Chen, G. Heinlein, H.W. Shen, and J. P. Chen. “In Situ Distribution
Guided Analysis and Visualization of Transonic Jet Engine Simulations”. In: IEEE
Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017), pp. 811–
820 (cited on page 21).

[59] D. B. Elliott, K. C. Yang, and D. Whitaker. “Visual acuity changes throughout
adulthood in normal, healthy eyes: seeing beyond 6/6.” In: Optometry and Vision
Science 72.3 (Mar. 1995), pp. 186–191 (cited on page 116).

[60] Y. Engel, S. Mannor, and R. Meir. “The kernel recursive least-squares algorithm”.
In: IEEE Transactions on Signal Processing 52.8 (Aug. 2004), pp. 2275–2285 (cited
on page 68).

[61] M. Falk, M. Klann, M. Reuss, and T. Ertl. “Visualization of signal transduction
processes in the crowded environment of the cell”. In: Proceedings of the IEEE
Pacific Visualization Symposium. 2009, pp. 169–176 (cited on pages 43–45).

[62] D. G. Feitelson. Experimental Computer Science: The Need for a Cultural Change.
Tech. rep. The Hebrew University of Jerusalem, Dec. 2006, pp. 1–37. url:
https://cs.uwaterloo.ca/~brecht/courses/854-Experimental-
Performance-Evaluation-2018/readings/feitelson-exp05.pdf (vis-
ited on 10/29/2021) (cited on page 23).

[63] J.-D. Fekete, J. J. van Wijk, J. T. Stasko, and C. North. “The Value of Informa-
tion Visualization”. In: Information Visualization: Human-Centered Issues and
Perspectives. Ed. by A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North. Springer,
Berlin, Heidelberg, 2008, pp. 1–18 (cited on page 12).

[64] S. Frey, F. Sadlo, K. L. Ma, and T. Ertl. “Interactive Progressive Visualization with
Space-Time Error Control”. In: IEEE Transactions on Visualization and Computer
Graphics 20.12 (Dec. 2014), pp. 2397–2406 (cited on pages 19, 33, 34).

https://cs.uwaterloo.ca/~brecht/courses/854-Experimental-Performance-Evaluation-2018/readings/feitelson-exp05.pdf
https://cs.uwaterloo.ca/~brecht/courses/854-Experimental-Performance-Evaluation-2018/readings/feitelson-exp05.pdf

178 Bibliography

[65] M. Friendly. “Visions and Re-Visions of Charles Joseph Minard”. In: Journal
of Educational and Behavioral Statistics 27.1 (Nov. 2002), pp. 31–51 (cited on
page 11).

[66] B. Friesen, A. Almgren, Z. Lukić, G. Weber, D. Morozov, V. Beckner, and M. Day.
“In situ and in-transit analysis of cosmological simulations”. In: Computational
Astrophysics and Cosmology 3.1 (Aug. 2016), pp. 1–18 (cited on page 23).

[67] W. F. Godoy et al. “ADIOS 2: The Adaptable Input Output System. A framework
for high-performance data management”. In: SoftwareX 12 (July 2020), pp. 1–9
(cited on page 22).

[68] J. Görtler, M. Spicker, C. Schulz, D. Weiskopf, and O. Deussen. “Stippling of 2D
Scalar Fields”. In: IEEE Transactions on Visualization and Computer Graphics 25.6
(June 2019), pp. 2193–2204 (cited on page 117).

[69] A. Goswami, Y. Tian, K. Schwan, F. Zheng, J. Young, M. Wolf, G. Eisenhauer,
and S. Klasky. “Landrush: Rethinking In-Situ Analysis for GPGPU Workflows”.
In: Proceedings of the IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid). July 2016, pp. 32–41 (cited on page 23).

[70] P. Gralka, I. Wald, S. Geringer, G. Reina, and T. Ertl. “Spatial Partitioning Strate-
gies for Memory-Efficient Ray Tracing of Particles”. In: Proceedings of the Sym-
posium on Large Data Analysis and Visualization (LDAV). 2020, pp. 42–52 (cited
on pages 43–45).

[71] C. P. Gribble, T. Lze, A. Kensler, I. Wald, and S. G. Parker. “A coherent grid
traversal approach to visualizing particle-based simulation data”. In: IEEE Trans-
actions on Visualization and Computer Graphics 13.4 (July 2007), pp. 758–768
(cited on pages 43–45).

[72] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl. “MegaMol - A prototyping
framework for particle-based visualization”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 21.2 (Feb. 2015), pp. 201–214 (cited on pages 44,
45).

[73] S. Grottel, M. Krone, K. Scharnowski, and T. Ertl. “Object-space ambient occlu-
sion for molecular dynamics”. In: Proceedings of the IEEE Pacific Visualization
Symposium. 2012, pp. 209–216 (cited on pages 43–45).

[74] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl. “Coherent culling and shading
for large molecular dynamics visualization”. In: Computer Graphics Forum 29.3
(June 2010), pp. 953–962 (cited on pages 43–45).

[75] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. “Foveated 3D graphics”.
In: ACM Transactions on Graphics (TOG) 31.6 (Nov. 2012), pp. 1–10 (cited on
page 14).

Bibliography 179

[76] S. Gumhold. “Splatting Illuminated Ellipsoids with Depth Correction”. In: Pro-
ceedings of the Symposium on Vision, Modeling and Visualization (VMV). 2003,
pp. 245–252 (cited on pages 43, 44).

[77] D. Guo, J. Nie, M. Liang, Y. Wang, Y. Wang, and Z. Hu. “View-dependent level-of-
detail abstraction for interactive atomistic visualization of biological structures”.
In: Computers and Graphics 52 (Aug. 2015), pp. 62–71 (cited on pages 44, 45).

[78] R. B. Haber and D. A. McNabb. “Visualization ldioms: A Conceptual Model for
Scientilic Visualization Systems”. In: Visualization in Scientific Computing (1990),
pp. 74–93 (cited on page 12).

[79] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister. “SparseLeap:
Efficient Empty Space Skipping for Large-Scale Volume Rendering”. In: IEEE
Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018), pp. 974–
983 (cited on pages 19, 33, 34).

[80] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski. “Advanced Illumina-
tion Techniques for GPU-Based Volume Raycasting”. In: Proceedings of ACM
SIGGRAPH ASIA Courses. 2008, pp. 1–166 (cited on pages 21, 33).

[81] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. “Real-time ray-
casting and advanced shading of discrete isosurfaces”. In: Computer Graphics
Forum 24.3 (2005), pp. 303–312 (cited on page 21).

[82] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beckingsale,
A. C. Mallinson, and S. A. Jarvis. “Accelerating hydrocodes with openACC,
opeCL and CUDA”. In: Proceedings of the International Conference for High
Performance Computing, Networking Storage and Analysis (SC). 2012, pp. 465–
471 (cited on pages 95, 98).

[83] P. Hermosilla, M. Krone, V. Guallar, P. P. Vázquez, À. Vinacua, and T. Ropinski.
“Interactive GPU-based generation of solvent-excluded surfaces”. In: Visual
Computer 33.6-8 (June 2017), pp. 869–881 (cited on pages 43, 44).

[84] F. Hernell, P. Ljung, and A. Ynnerman. “Local ambient occlusion in direct volume
rendering”. In: IEEE Transactions on Visualization and Computer Graphics 16.4
(2010), pp. 548–559 (cited on pages 33, 34).

[85] R. Hero, C. Ho, and K. L. Ma. “Volume rendering of curvilinear-grid data using
low-dimensional deformation textures”. In: IEEE Transactions on Visualization
and Computer Graphics 20.9 (2014), pp. 1330–1343 (cited on page 34).

[86] M. Herschel, R. Diestelkämper, and H. B. Lahmar. “A survey on provenance:
What for? What form? What from?” In: The VLDB Journal 26.6 (Oct. 2017),
pp. 881–906 (cited on page 136).

180 Bibliography

[87] T. Hoefler, W. Gropp, M. Snir, and W. Kramer. “Performance modeling for
systematic performance tuning”. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC). 2011,
pp. 1–12 (cited on page 67).

[88] S. Hong and H. Kim. “An analytical model for a gpu architecture with memory-
level and thread-level parallelism awareness”. In: Proceedings of the International
Symposium on Computer Architecture. 2009, pp. 152–163 (cited on page 24).

[89] L. Howes and D. Thomas. “Efficient Random Number Generation and Applica-
tion Using CUDA”. In: GPU Gems 3. Addison-Wesley Professional, 2007, pp. 805–
830 (cited on page 67).

[90] M. Ibrahim, P. Rautek, G. Reina, M. Agus, and M. Hadwiger. “Probabilistic
Occlusion Culling using Confidence Maps for High-Quality Rendering of Large
Particle Data”. In: IEEE Transactions on Visualization and Computer Graphics
(Sept. 2021), pp. 1–10 (cited on pages 44, 45).

[91] M. Ibrahim, P. Wickenhäuser, P. Rautek, G. Reina, and M. Hadwiger. “Screen-
Space Normal Distribution Function Caching for Consistent Multi-Resolution
Rendering of Large Particle Data”. In: IEEE Transactions on Visualization and
Computer Graphics 24.1 (Jan. 2018), pp. 944–953 (cited on page 44).

[92] G. Illahi, M. Siekkinen, and E. Masala. “Foveated video streaming for cloud
gaming”. In: Proceeding of the IEEE International Workshop on Multimedia Signal
Processing (MMSP). Nov. 2017, pp. 1–6 (cited on page 15).

[93] B. Jin, I. Ihm, B. Chang, C. Park, W. Lee, and S. Jung. “Selective and adaptive
supersampling for real-time ray tracing”. In: Proceedings of the Conference on
High-Performance Graphics (HPG). 2009, pp. 117–126 (cited on page 14).

[94] D. Jönsson, J. Kronander, T. Ropinski, and A. Ynnerman. “Historygrams: En-
abling interactive global illumination in direct volume rendering using photon
mapping”. In: IEEE Transactions on Visualization and Computer Graphics 18.12
(2012), pp. 2364–2371 (cited on page 34).

[95] D. Jönsson and A. Ynnerman. “Correlated PhotonMapping for Interactive Global
Illumination of Time-Varying Volumetric Data”. In: IEEE Transactions on Visual-
ization and Computer Graphics 23.1 (Jan. 2017), pp. 901–910 (cited on pages 33,
34).

[96] A. Jurčík, J. Parulek, J. Sochor, and B. Kozlíková. “Accelerated visualization of
transparent molecular surfaces in molecular dynamics”. In: Proceedings of the
IEEE Pacific Visualization Symposium. May 2016, pp. 112–119 (cited on pages 43–
45).

[97] D. E. King. “Dlib-ml: A Machine Learning Toolkit”. In: Journal of Machine
Learning Research 10 (2009), pp. 1755–1758 (cited on page 68).

Bibliography 181

[98] I. P. King. “An automatic reordering scheme for simultaneous equations derived
from network systems”. In: International Journal for Numerical Methods in
Engineering 2.4 (Oct. 1970), pp. 523–533 (cited on page 129).

[99] T. Klein and T. Ertl. “Illustrating Magnetic Field Lines using a Discrete Particle
Model”. In: Proceedings of the Symposium on Vision, Modeling and Visualization
(VMV). 2004, pp. 387–394 (cited on page 44).

[100] A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M. E. Papka, and K. Gaither.
“RBF volume ray casting on multicore and manycore CPUs”. In: Computer
Graphics Forum 33.3 (June 2014), pp. 71–80 (cited on pages 43–45).

[101] M. Koch, K. Kurzhals, and D. Weiskopf. “Image-based scanpath comparison with
slit-scan visualization”. In: Proceedings of the ACM Symposium on Eye Tracking
Research and Applications (ETRA). June 2018, pp. 1–5 (cited on pages 152, 156).

[102] E. Konstantinidis and Y. Cotronis. “A practical performance model for compute
and memory bound GPU kernels”. In: Proceedings of the Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP). 2015,
pp. 651–658 (cited on page 24).

[103] M.-J. Kraak and I. Kveladze. “Narrative of the annotated Space–Time Cube –
revisiting a historical event”. In: Journal of Maps 13.1 (Jan. 2017), pp. 56–61
(cited on page 157).

[104] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky, H. Childs,
and D. Pugmire. “Comparing the Efficiency of In Situ Visualization Paradigms
at Scale”. In: Proceedings of the International Conference on High Performance
Computing. June 2019, pp. 99–117 (cited on page 23).

[105] J. Kress, M. Larsen, J. Choi, M. Kim, M. Wolf, N. Podhorszki, S. Klasky, H. Childs,
and D. Pugmire. “Opportunities for Cost Savings with In-Transit Visualization”.
In: Proceedings of the International Conference on High Performance Computing.
June 2020, pp. 146–165 (cited on page 23).

[106] J. Kronander, D. Jönsson, J. Löw, P. Ljung, A. Ynnerman, and J. Unger. “Efficient
visibility encoding for dynamic illumination in direct volume rendering”. In:
IEEE Transactions on Visualization and Computer Graphics 18.3 (2012), pp. 447–
462 (cited on page 34).

[107] M. Krone, K. Bidmon, and T. Ertl. “Interactive visualization of molecular surface
dynamics”. In: IEEE Transactions on Visualization and Computer Graphics. Vol. 15.
6. Nov. 2009, pp. 1391–1398 (cited on pages 43–45).

[108] J. Krüger and R. Westermann. “Acceleration Techniques for GPU-based Volume
Rendering”. In: Proceedings of the IEEE Visualization Conference. 2003, pp. 287–
292 (cited on page 21).

182 Bibliography

[109] J. Krüger and R. Westermann. “Acceleration Techniques for GPU-based Volume
Rendering”. In: Proceedings of the IEEE Visualization Conference. 2003, pp. 287–
292 (cited on page 34).

[110] K. Kurzhals, C. F. Bopp, J. Bässler, F. Ebinger, and D. Weiskopf. “Benchmark
data for evaluating visualization and analysis techniques for eye tracking for
video stimuli”. In: Proceedings of the Workshop on Beyond Time and Errors: Novel
Evaluation Methods for Visualization (BELIV). Nov. 2014, pp. 54–60 (cited on
page 157).

[111] K. Kurzhals and D. Weiskopf. “Space-time visual analytics of eye-tracking data
for dynamic stimuli”. In: IEEE Transactions on Visualization and Computer Graph-
ics 19.12 (2013), pp. 2129–2138 (cited on page 160).

[112] K. Kurzhals and D. Weiskopf. “Visualizing eye tracking data with gaze-guided
slit-scans”. In: Proceedings of the Workshop on Eye Tracking and Visualization
(ETVIS). Feb. 2017, pp. 45–49 (cited on page 156).

[113] P. Lacroute and M. Levoy. “Fast volume rendering using a shear-warp factor-
ization of the viewing transformation”. In: Proceedings of the Conference on
Computer Graphics and Interactive Techniques, July 1994, pp. 451–458 (cited on
page 16).

[114] O. D. Lampe, I. Viola, N. Reuter, and H. Hauser. “Two-level approach to efficient
visualization of protein dynamics”. In: IEEE Transactions on Visualization and
Computer Graphics 13.6 (Nov. 2007), pp. 1616–1623 (cited on pages 44, 45).

[115] R. S. Laramee. “How to write a visualization research paper: A starting point”.
In: Computer Graphics Forum 29.8 (Dec. 2010), pp. 2363–2371 (cited on page 23).

[116] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and C. Harrison.
“The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman”. In:
Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization (ISAV). 2017, pp. 42–46 (cited on pages 22, 95).

[117] M. Larsen, C. Harrison, J. Kress, D. Pugmire, J. S. Meredith, and H. Childs.
“Performance Modeling of in Situ Rendering”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC). 2017, pp. 276–287 (cited on page 24).

[118] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, and H. Childs. “Volume Rendering
Via Data-Parallel Primitives”. In: Proceeding of the Eurographics Symposium on
Parallel Graphics and Visualization (EGPGV). 2015, pp. 53–62 (cited on page 24).

[119] M. Larsen, K. Moreland, C. R. Johnson, and H. Childs. “Optimizing multi-image
sort-last parallel rendering”. In: Proceedings of the IEEE Symposium on Large
Data Analysis and Visualization (LDAV). 2016, pp. 37–46 (cited on page 92).

Bibliography 183

[120] M. Le Muzic, J. Parulek, A. K. Stavrum, and I. Viola. “Illustrative visualization
of molecular reactions using omniscient intelligence and passive agents”. In:
Computer Graphics Forum 33.3 (June 2014), pp. 141–150 (cited on pages 43, 44).

[121] B. Lee and Y. G. Shin. “Advanced interactive preintegrated volume rendering
with a power series”. In: IEEE Transactions on Visualization and Computer Graph-
ics 19.8 (2013), pp. 1264–1273 (cited on pages 33, 34, 36).

[122] S. Lee and A. C. Bovik. “Fast algorithms for foveated video processing”. In:
IEEE Transactions on Circuits and Systems for Video Technology 13.2 (Feb. 2003),
pp. 149–162 (cited on page 15).

[123] M. Levoy. “Efficient Ray Tracing of Volume Data”. In: ACM Transactions on
Graphics (TOG) 9.3 (Jan. 1990), pp. 245–261 (cited on pages 17, 19).

[124] M. Levoy and R. Whitake. “Gaze-Directed Volume Rendering”. In: Proceedings
of the Symposium on Interactive 3D Graphics (SI3D). 1990, pp. 217–223 (cited on
page 15).

[125] N. Lindow, D. Baum, and H.-C. Hege. “Interactive rendering of materials and
biological structures on atomic and nanoscopic scale”. In: Computer Graphics
Forum 31.3 (June 2012), pp. 1325–1334 (cited on pages 43–45).

[126] N. Lindow, D. Baum, S. Prohaska, and H. C. Hege. “Accelerated visualization
of dynamic molecular surfaces”. In: Computer Graphics Forum 29.3 (June 2010),
pp. 943–952 (cited on pages 43–45).

[127] B. Liu, G. J. Clapworthy, F. Dong, and E. C. Prakash. “Octree rasterization: Accel-
erating high-quality out-of-core GPU volume rendering”. In: IEEE Transactions
on Visualization and Computer Graphics 19.10 (2013), pp. 1732–1745 (cited on
pages 33, 34).

[128] P. Ljung, C. Winskog, A. Persson, C. Lundström, and A. Ynnerman. “Full body
virtual autopsies using a state-of-the-art volume rendering pipeline”. In: IEEE
Transactions on Visualization and Computer Graphics. Vol. 12. 5. Sept. 2006,
pp. 869–876 (cited on page 34).

[129] W. E. Lorensen and H. E. Cline. “Marching cubes: A high resolution 3D surface
construction algorithm”. In: ACM SIGGRAPH Computer Graphics 21.4 (Aug.
1987), pp. 163–169 (cited on page 16).

[130] C. Lundström, P. Ljung, A. Persson, and A. Ynnerman. “Uncertainty visualization
in medical volume rendering using probabilistic animation”. In: IEEE Transac-
tions on Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1648–1655
(cited on page 34).

[131] J. G. Magnus and S. Bruckner. “Interactive Dynamic Volume Illumination with
Refraction and Caustics”. In: IEEE Transactions on Visualization and Computer
Graphics 24.1 (Jan. 2018), pp. 984–993 (cited on pages 33, 34).

184 Bibliography

[132] T. Marrinan, S. Rizzi, J. A. Insley, L. Long, L. Renambot, and M. E. Papka.
“PxStream: Remote Visualization for Distributed Rendering Frameworks”. In:
Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
(LDAV). Oct. 2019, pp. 37–41 (cited on page 122).

[133] N. Max. “Optical Models for Direct Volume Rendering”. In: IEEE Transactions
on Visualization and Computer Graphics 1.2 (June 1995), pp. 99–108 (cited on
page 16).

[134] B. H. McCormick, T. A. DeFanti, and M. D. Brown. “Visualization in Scientific
Computing”. In: Computer Graphics 21.6 (Nov. 1987), pp. 1–14 (cited on page 12).

[135] L. McInnes, J. Healy, and J. Melville. “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction”. Sept. 2020. url: http://arxiv.
org/abs/1802.03426 (cited on page 59).

[136] K. Mehta et al. “A codesign framework for online data analysis and reduction”.
In: Proceedings of the Workshop on Workflows in Support of Large-Scale Science
(WORKS). Nov. 2019, pp. 11–20 (cited on page 23).

[137] K. Misue, P. Eades, W. Lai, and K. Sugiyama. “Layout Adjustment and the Mental
Map”. In: Journal of Visual Languages & Computing 6.2 (June 1995), pp. 183–210
(cited on page 128).

[138] P. K. Mital, T. J. Smith, R. L. Hill, and J. M. Henderson. “Clustering of Gaze During
Dynamic Scene Viewing is Predicted by Motion”. In: Cognitive Computation 3.1
(Oct. 2010), pp. 5–24 (cited on page 157).

[139] D. P. Mitchell. “Generating antialiased images at low sampling densities”. In:
Proceedings of the Conference on Computer Graphics and Interactive Techniques.
Vol. 21. 4. Aug. 1987, pp. 65–72 (cited on page 14).

[140] S. Molnar, D. Ellsworth, H. Fuchs, and M. Cox. “A Sorting Classification of
Parallel Rendering”. In: IEEE Computer Graphics and Applications 14.4 (July
1994), pp. 23–32 (cited on page 21).

[141] K. Moreland. “Comparing Binary-Swap Algorithms for Odd Factors of Pro-
cesses”. In: Proceedings of the IEEE Symposium on Large Data Analysis and
Visualization (LDAV). Institute of Electrical and Electronics Engineers Inc., Oct.
2018, pp. 56–60 (cited on page 21).

[142] K. Moreland, W. Kendall, T. Peterka, and J. Huang. “An Image Compositing
Solution at Scale”. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC). 2011, pp. 1–10 (cited
on pages 86, 92).

[143] K. Moreland et al. “VTK-m: Accelerating the Visualization Toolkit for Massively
Threaded Architectures”. In: IEEE Computer Graphics and Applications 36.3 (May
2016), pp. 48–58 (cited on page 95).

http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426

Bibliography 185

[144] D. Morozov and T. Peterka. “Block-parallel data analysis with DIY2”. In: Proceed-
ings of the IEEE Symposium on Large Data Analysis and Visualization (LDAV).
Mar. 2017, pp. 29–36 (cited on page 96).

[145] N. Morrical, W. Usher, I. Wald, and V. Pascucci. “Efficient Space Skipping and
Adaptive Sampling of Unstructured Volumes Using Hardware Accelerated Ray
Tracing”. In: Proceeding of IEEE Visualization Conference (Short Papers). 2019,
pp. 256–260 (cited on pages 33, 34).

[146] C. Mueller. “The Sort-First Rendering Architecture for High-Performance Graph-
ics”. In: Proceedings of the Symposium on Interactive 3D Graphics (SI3D). Apr.
1995, pp. 75–84 (cited on page 21).

[147] C. Müller, M. Krone, M. Huber, V. Biener, D. Herr, S. Koch, G. Reina, D. Weiskopf,
and T. Ertl. “Interactive Molecular Graphics for Augmented Reality Using
HoloLens”. In: Journal of integrative bioinformatics 15.2 (June 2018), pp. 1–
13 (cited on pages 43–45).

[148] NVIDIA. Ampere GA102 GPU Architecture. Tech. rep. 2021, pp. 1–53. url: https:
//www.nvidia.com/content/PDF/nvidia- ampere- ga- 102- gpu-
architecture-whitepaper-v2.pdf (visited on 10/29/2021) (cited on page 20).

[149] P. O’Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D. H. Rogers, and M. Pe-
tersen. “Cinema image-based in situ analysis and visualization of MPAS-ocean
simulations”. In: Parallel Computing 55 (July 2016), pp. 43–48 (cited on page 21).

[150] S. W. Park, L. Linsen, O. Kreylos, J. D. Owens, and B. Hamann. “Discrete sibson
interpolation”. In: IEEE Transactions on Visualization and Computer Graphics
12.2 (Mar. 2006), pp. 243–252 (cited on page 119).

[151] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. P. Sloan. “Interactive ray tracing
for isosurface rendering”. In: Proceedings of the IEEE Visualization Conference.
1998, pp. 233–238 (cited on page 16).

[152] T. Peterka, D. Bard, J. C. Bennett, E. W. Bethel, R. A. Oldfield, L. Pouchard, C.
Sweeney, andM.Wolf. “Priority research directions for in situ data management:
Enabling scientific discovery from diverse data sources”. In: International Journal
of High Performance Computing Applications 34.4 (July 2020), pp. 409–427 (cited
on page 21).

[153] B. T. Phong. “Illumination for Computer Generated Pictures”. In: Communica-
tions of the ACM 18.6 (June 1975), pp. 311–317 (cited on page 19).

[154] H. Qu, M. Wan, J. Qin, and A. Kaufman. “Image based rendering with stable
frame rates”. In: Proceedings of the IEEE Visualization Conference. 2000, pp. 251–
258+564 (cited on page 19).

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

186 Bibliography

[155] G. Reina and T. Ertl. “Hardware-Accelerated Glyphs for Mono- and Dipoles in
Molecular Dynamics Visualization”. In: Proceeding of the Eurographics / IEEE
VGTC Symposium on Visualization. 2005, pp. 177–182 (cited on pages 43, 44).

[156] S. Rizzi, M. Hereld, J. Insley, M. E. Papka, T. D. Uram, and V. Vishwanath.
“Performance Modeling of vl3 Volume Rendering on GPU-Based Clusters”. In:
Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV). 2014, pp. 65–72 (cited on page 24).

[157] S. Röttger, M. Kraus, and T. Ertl. “Hardware-accelerated volume and isosurface
rendering based on cell-projection”. In: Proceedings of the IEEE Visualization
Conference. 2000, pp. 109–116 (cited on page 16).

[158] F. Sans and R. Carmona. “Volume ray casting using different GPU based parallel
APIs”. In: Proceedings of the Latin American Computing Conference (CLEI). Jan.
2017, pp. 1–11 (cited on page 34).

[159] P. Schlegel, M. Makhinya, and R. Pajarola. “Extinction-based shading and illu-
mination in gpu volume ray-casting”. In: IEEE Transactions on Visualization and
Computer Graphics 17.12 (2011), pp. 1795–1802 (cited on page 34).

[160] C. Schulz et al. “Generative data models for validation and evaluation of vi-
sualization techniques”. In: Proceedings of the Workshop on Beyond Time and
Errors on Novel Evaluation Methods for Visualization (BELIV). Vol. 24-October.
Oct. 2016, pp. 112–124 (cited on page 52).

[161] H. Schumann and W. Müller. Visualisierung: Grundlagen und allgemeine metho-
den. Springer Berlin Heidelberg, 2000, pp. 1–370 (cited on page 12).

[162] H. W. Shen and C. R. Johnson. “Differential volume rendering: a fast volume
visualization technique for flow animation”. In: Proceedings Visualization. IEEE,
1994, pp. 180–187 (cited on page 19).

[163] R. Sibson. “A vector identity for the Dirichlet tessellation”. In: Mathematical
Proceedings of the Cambridge Philosophical Society 87.1 (1980), pp. 151–155 (cited
on page 118).

[164] B. W. Silverman. Density Estimation for Statistics and Data Analysis. 1st. London:
Chapman and Hall, 1986, pp. 1–175 (cited on page 154).

[165] R. Skånberg, P. P. Vázquez, V. Guallar, and T. Ropinski. “Real-Time Molecu-
lar Visualization Supporting Diffuse Interreflections and Ambient Occlusion”.
In: IEEE Transactions on Visualization and Computer Graphics 22.1 (Jan. 2016),
pp. 718–727 (cited on pages 44, 45).

[166] S. W. Sloan. “An algorithm for profile and wavefront reduction of sparse matri-
ces”. In: International Journal for Numerical Methods in Engineering 23.2 (Feb.
1986), pp. 239–251 (cited on page 129).

Bibliography 187

[167] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. “A simple and flexible volume
rendering framework for graphics-hardware - Based raycasting”. In: Proceedings
of the Eurographics/IEEE VGTC Workshop on Volume Graphics. 2005, pp. 187–195
(cited on pages 21, 33, 34, 36).

[168] M. Stengel, S. Grogorick, M. Eisemann, and M. Magnor. “Adaptive Image-Space
Sampling for Gaze-Contingent Real-time Rendering”. In: Computer Graphics
Forum 35.4 (July 2016), pp. 129–139 (cited on page 14).

[169] H. Strasburger, I. Rentschler, and M. Jüttner. “Peripheral vision and pattern
recognition: A review”. In: Journal of Vision 11.5 (May 2011), pp. 1–82 (cited on
page 14).

[170] Y. Sugimoto, F. Ino, and K. Hagihara. “Improving cache locality for GPU-based
volume rendering”. In: Parallel Computing 40.5-6 (May 2014), pp. 59–69 (cited
on pages 33, 34, 36, 42).

[171] N. Tack, F. Morán, G. Lafruit, and R. Lauwereins. “3D graphics rendering time
modeling and control for mobile terminals”. In: Proceedings of the Web3D Sym-
posium. 2004, pp. 109–117 (cited on page 24).

[172] M. Tarini, P. Cignoni, and C. Montani. “Ambient occlusion and edge cueing to
enhance real timemolecular visualization”. In: IEEE Transactions on Visualization
and Computer Graphics 12.5 (Sept. 2006), pp. 1237–1244 (cited on page 44).

[173] T. Terraz, A. Ribes, Y. Fournier, B. Iooss, and B. Raffin. “Melissa: Large scale in
transit sensitivity analysis avoiding intermediate files”. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). Vol. 14. Nov. 2017, pp. 1–14 (cited on page 23).

[174] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz. “Experimental evaluation
in computer science: A quantitative study”. In: The Journal of Systems and
Software 28.1 (1995), pp. 9–18 (cited on page 23).

[175] B. Tversky, J. B. Morrison, and M. Betrancourt. “Animation: can it facilitate?” In:
International Journal of Human-Computer Studies 57.4 (Oct. 2002), pp. 247–262
(cited on page 129).

[176] K. Vaidyanathan et al. “Coarse pixel shading”. In: Proceedings of High-Performance
Graphics (HPG). 2014, pp. 9–18 (cited on page 14).

[177] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Günther,
and P. Navratil. “OSPRay - A CPU Ray Tracing Framework for Scientific Visual-
ization”. In: IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan.
2017), pp. 931–940 (cited on page 56).

188 Bibliography

[178] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka. “CPU
ray tracing large particle data with balanced P-k-d trees”. In: Proceedings of the
IEEE Scientific Visualization Conference (SciVis). Mar. 2015, pp. 57–64 (cited on
pages 43–45, 60).

[179] I. Wald, S. Zellmann, and N. Morrical. “Faster RTX-Accelerated Empty Space
Skipping using Triangulated Active Region Boundary Geometry”. In: Proceedings
of the Eurographics Symposium on Parallel Graphics and Visualization. 2021,
pp. 37–44 (cited on page 34).

[180] J. Wang, F. Yang, and Y. Cao. “A cache-friendly sampling strategy for texture-
based volume rendering on GPU”. In: Visual Informatics 1.2 (June 2017), pp. 92–
105 (cited on pages 33, 34, 36, 42).

[181] Z. Wang, P. Subedi, M. Dorier, P. E. Davis, and M. Parashar. “Staging Based
Task Execution for Data-driven, In-Situ Scientific Workflows”. In: Proceedings
of the IEEE International Conference on Cluster Computing (ICCC). Sept. 2020,
pp. 209–220 (cited on page 23).

[182] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality assess-
ment: From error visibility to structural similarity”. In: IEEE Transactions on
Image Processing 13.4 (Apr. 2004), pp. 600–612 (cited on page 58).

[183] A. Waschk and J. Kruger. “FAVR - Accelerating Direct Volume Rendering for
Virtual Reality Systems”. In: Proceeding of the IEEE Visualization Conference
(Short Papers). 2020, pp. 106–110 (cited on pages 33, 34).

[184] M. Weier et al. “Perception-driven Accelerated Rendering”. In: Computer Graph-
ics Forum 36.2 (May 2017), pp. 611–643 (cited on page 14).

[185] D. Weiskopf. GPU-based interactive visualization techniques. 1st ed. Springer,
Berlin, Heidelberg, 2007, pp. 1–312 (cited on page 12).

[186] L. A. Westover. “Splatting: A Parallel, Feed-Forward Volume Rendering Algo-
rithm”. PhD thesis. Chapel Hill: The University of North Carolina, July 1991,
pp. 1–101. url: http://www.cs.unc.edu/techreports/91-029.pdf
(cited on page 16).

[187] B. Whitlock, J. M. Favre, and J. S. Meredith. “Parallel In Situ Coupling of Sim-
ulation with a Fully Featured Visualization System”. In: Proceeding of the Eu-
rographics Symposium on Parallel Graphics and Visualization (EGPGV). 2011,
pp. 101–109 (cited on page 22).

[188] M. Wimmer and P. Wonka. “Rendering Time Estimation for Real-Time Render-
ing”. In: Proceedings of the Eurographics Symposium on Rendering. 2003, pp. 118–
129 (cited on page 24).

http://www.cs.unc.edu/techreports/91-029.pdf

Bibliography 189

[189] J. Woodring, M. Petersen, A. Schmeißer, J. Patchett, J. Ahrens, and H. Hagen.
“In Situ Eddy Analysis in a High-Resolution Ocean Climate Model”. In: IEEE
Transactions on Visualization and Computer Graphics 22.1 (Jan. 2016), pp. 857–
866 (cited on page 21).

[190] K. Wu, A. Knoll, B. J. Isaac, H. Carr, and V. Pascucci. “Direct Multifield Vol-
ume Ray Casting of Fiber Surfaces”. In: IEEE Transactions on Visualization and
Computer Graphics 23.1 (Jan. 2017), pp. 941–949 (cited on pages 33, 34).

[191] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland. “Scalable rendering on PC
clusters”. In: IEEE Computer Graphics and Applications 21.4 (July 2001), pp. 62–70
(cited on page 21).

[192] F. Yang, Q. Li, D. Xiang, Y. Cao, and J. Tian. “A versatile optical model for hybrid
rendering of volume data”. In: IEEE Transactions on Visualization and Computer
Graphics 18.6 (2012), pp. 925–937 (cited on pages 33, 34).

[193] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. “Faceted Metadata for Image
Search and Browsing”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2003, pp. 401–408 (cited on page 59).

[194] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. “HEVC-compliant
tile-based streaming of panoramic video for virtual reality applications”. In:
Proceedings of the ACM Multimedia Conference (MM). Oct. 2016, pp. 601–605
(cited on page 15).

[195] S. Zellmann. Comparing Hierarchical Data Structures for Sparse Volume Rendering
with Empty Space Skipping. Tech. rep. Dec. 2019, pp. 1–9. url: http://arxiv.
org/abs/1912.09596 (visited on 10/29/2021) (cited on page 19).

[196] T. Zhang, Z. Yi, J. Zheng, D. C. Liu, W. M. Pang, Q. Wang, and J. Qin. “A
Clustering-Based Automatic Transfer Function Design for Volume Visualiza-
tion”. In: Mathematical Problems in Engineering (2016), pp. 1024–1037 (cited on
page 34).

[197] W. Zhang et al. “AMReX: a framework for block-structured adaptive mesh refine-
ment Software”. In: The Journal of Open Source Software 4.37 (2019), pp. 1370–
1373 (cited on pages 95, 98).

[198] Y. Zhang and K. L. Ma. “Decoupled Shading for Real-timeHeterogeneous Volume
Illumination”. In: Computer Graphics Forum 35.3 (June 2016), pp. 401–410 (cited
on pages 33, 34).

[199] Y. Zhang and J. D. Owens. “A quantitative performance analysis model for
GPU architectures”. In: Proceedings of the International Symposium on High-
Performance Computer Architecture. 2011, pp. 382–393 (cited on page 24).

http://arxiv.org/abs/1912.09596
http://arxiv.org/abs/1912.09596

190 Bibliography

[200] F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S. Klasky, and N. Pod-
horszki. “In-situ I/O processing: A case for location flexibility”. In: Proceedings of
the Parallel Data Storage Workshop (PDSW). 2011, pp. 37–42 (cited on page 23).

[201] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, and
S. Klasky. “GoldRush: Resource efficient in situ scientific data analytics using
fine-grained interference aware execution”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC). 2013, pp. 1–12 (cited on page 23).

[202] F. Zheng et al. “PreDatA - Preparatory data analytics on peta-scale machines”.
In: Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing (IPDPS). 2010, pp. 1–12 (cited on page 22).

[203] J. Zhou and M. Takatsuka. “Automatic transfer function generation using con-
tour tree controlled residue flow model and color harmonics”. In: IEEE Transac-
tions on Visualization and Computer Graphics. Vol. 15. 6. Nov. 2009, pp. 1481–
1488 (cited on page 34).

[204] K. J. Zuiderveld, A. H. J. Koning, and M. A. Viergever. “Acceleration of ray-
casting using 3-D distance transforms”. In: Visualization in Biomedical Comput-
ing 1808 (Sept. 1992), pp. 324–335 (cited on page 19).

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Summary
	Zusammenfassung
	Introduction
	Research Questions
	Outline and Contributions
	Overall Contributions
	Awards

	Fundamentals
	Visualization and Rendering
	Visualization Pipeline
	Rendering Pipeline
	Foveated Rendering

	Volume Visualization
	Volume Rendering
	The Volume Rendering Integral
	Raycasting

	Parallel and Distributed Visualization
	Volume Raycasting on GPUs
	In Situ Visualization

	Performance Analysis and Modeling
	Volume Visualization and GPU Performance
	Modeling of GPU and Scientific Visualization Workloads

	Data Sets and Hardware

	Runtime Performance Evaluation
	Empirical Evaluation of GPU-Accelerated Interactive Visualizations
	Measurement and Analysis
	Case Study 1: Volume Raycasting
	Case Study 2: Particle Visualization
	Results and Recommendations
	Future Directions

	Visually Comparing Performance Specifics
	Multiple Perspectives Analysis System
	Application
	Future Directions

	Performance Modeling on GPU Systems
	Load Balancing and Resolution Tuning for Interactive Volume Raycasting
	Collection of Performance-Relevant Data
	Histograms of Volume Blocks (H and H)
	Depth Assessment (Dfront and Dback)
	Early Ray Termination (DERT & D'ERT)

	Hybrid Performance Model
	Machine Learning: Prediction of Sample Cost
	Analytical Model: Prediction of Frame Execution Time

	Prediction-Based Parameter Tuning
	Adaption of the Sampling Resolution
	Load Balancing

	Results
	Analysis and Comparison of a Sequence with a Single GPU
	Approximation and Prediction Accuracy
	Prediction Overhead
	Interaction Sequences
	Load Balancing
	Image Versus Ray Space Adaption

	Future Directions

	Performance Modeling on Distributed Memory Systems
	A Hybrid In Situ Approach for Cost Efficient Image Database Generation
	In Situ Visualization
	Hybrid In Situ Method for Image Database Generation
	Implementation Details
	Overview of Experiments
	Results
	Future Directions

	Performance Prediction to Support Render Hardware Acquisition
	Adaptive Encoder Settings for Interactive Remote Visualization

	Foveated Rendering to Improve Application Performance
	Voronoi-Based Foveated Volume Rendering
	Method
	Results
	Discussion and Future Directions

	Foveated Encoding for High-Resolution Displays
	Method
	Results
	Future Directions

	Performance-Optimized Volume Rendering Applications
	Volume-Based Large Dynamic Graph Analysis
	Static Volumetric Graph Representation
	Classes of Analytics Methods
	Evolution Provenance
	Implementation
	Application Examples
	Expert Evaluation
	Future Directions

	Space-Time Visualization of Gaze and Stimulus
	Method
	Examples
	Discussion
	Future Directions

	Conclusion
	Summary
	Discussion
	Research Question 1
	Research Question 2
	Research Question 3

	Outlook

	Author's Work
	Bibliography

