
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Region Proposal Network for Simple
Objects in Grasping Experiments

Ruben Bauer

Studiengang: Informatik

Prüfer/in: Dr. Jim Mainprice

Betreuer/in: Janik Hager, M.Sc.

Beginn am: 17. Juni 2020

Beendet am: 17. Dezember 2020

Abstract

Particularly in applied robotics, the grasping of objects is a major field which comes with various
difficulties. Multiple objects with simple or complex shapes as well as different colors can be
scattered on a surface in random positions and orientations. However, with the knowledge about
the correct object positions, a robot has high chance of grasping them. Object detection systems
can determine bounding boxes of objects in images, which can help to calculate the correct object
positions. Current state-of-the-art object detection systems such as the popular Faster R-CNN and
the Mask R-CNN, often use multi-stage architectures. Both models utilize a region proposal network
to obtain regions which are likely to contain objects. This thesis introduces and evaluates multiple
architecture variations of single-stage and two-stage models. These variations include a region
proposal network, yet in the setting of grasping experiments. Usually, the training of these models is
done in a supervised manner which requires lots of data with ground truth information. Generating
this kind of data in a real world environment is expensive, yet it is cost-efficient to generate the same
kind of data in a simulated environment. Therefore, this thesis introduces a framework to generate
artificial data in a simulated grasping experiment environment. This framework implements several
domain randomization techniques in order to randomize this simulation environment. The training
data contains only artificial images with objects of simple geometry. The results have shown that
models, which were trained only on these artificial images, can still generalize well to images of
a real environment. Furthermore, the generalization to images which contain objects of complex
geometry is equally possible. This thesis performs ablation studies on the employed domain
randomization techniques which reveal both degradation and improvement of different techniques.
Benchmarks on the model variations show that a significantly faster inference is possible compared
to the originally Faster R-CNN and Mask R-CNN, while still achieving pleasant prediction results.
This was made possible by using different configurations for the region proposal network, and by
introducing faster feature extraction backbone architectures.

3

Kurzfassung

Insbesondere in der angewandten Robotik ist das Greifen von Objekten ein großes Forschungsgebiet,
welches mit verschiedenen Schwierigkeiten verbunden ist. Verschiedene Objekte mit einfachen oder
komplexen Formen sowie in unterschiedlichen Farben können in zufälligen Positionen und Orien-
tierungen auf einer Oberfläche verteilt sein. Sollten jedoch die korrekten Objektpositionen bekannt
sein, dann kann ein Roboter diese mit hoher Wahrscheinlichkeit Greifen. Objekterkennungssysteme
können Objekte in Bildern erkennen und ihre Bounding Boxen bestimmen, welche die Objekte auf
den Bildern einrahmen. Diese Informationen werden oft genutzt, um dann echte Objektpositionen
zu berechnen. Aktuelle Objekterkennungssysteme, wie das bekannte Faster R-CNN und das Mask
R-CNN, verwenden häufig mehrstufige Architekturen. Beide Modelle verwenden unter anderem
ein Region Proposal Netzwerk, welches wichtige Vorarbeit leistet, um aus einem Bild Regionen zu
bestimmen, die mit hoher Wahrscheinlichkeit Objekte enthalten. In dieser Arbeit werden mehrere
Architekturvarianten von einstufigen und zweistufigen Objekterkennungsmodellen entwickelt und
diese im Kontext von Greifexperimenten ausgewertet. Diese Modelle verwenden ebenfalls ein
Region Proposal Netzwerk. Das Trainieren solcher Modelle erfordert in der Regel große Mengen
an Trainingsdaten, die korrekte Ground-Truth Informationen beinhalten. Das Generieren solcher
Daten ist in der echten Welt teuer und aufwändig. Abhilfe können Simulationsumgebungen schaffen,
welche es erlauben, kostengünstig große Mengen an künstlicher Trainingsdaten zu generieren. In
dieser Arbeit wurde ein Framework entwickelt, welches zur Erzeugung künstlicher Trainingsdaten
im Kontext von Greifversuchen, genutzt werden kann. Das Framework implementiert verschiedene
Domain Randomization Techniken, um diese Simulationsumgebung so zufällig wie möglich zu
gestalten. Die generierten Trainingsdaten enthalten dabei ausschließlich künstliche Bilder mit
Objekten einfacher Geometrie, welche genutzt wurden, um die verschiedenen Modellvarianten
zu trainieren. Die Ergebnisse haben gezeigt, dass diese Modelle, die nur auf diesen künstlichen
Bildern trainiert wurden, immer noch gut sowohl simple als auch komplexe Objekte in Bildern einer
ähnlichen, aber realen Umgebung erkennen können. Außerdem wurden verschiedene Experimente
durchgeführt, um die Effekte der eingesetzten Domain Randomization Techniken zu untersuchen.
Benchmarks für die verschiedenen Modellvarianten haben gezeigt, dass das Erkennen von Objekten
auf Bildern, imVergleich zu den ursprünglichen Faster R-CNN undMask R-CNNModellen, deutlich
beschleunigt werden kann, ohne dabei große Verluste in der Genauigkeit der Objekterkennung
in Kauf nehmen zu müssen. Dies wurde unter anderem durch die Entwicklung eines kleinen
Autoenkodierer Netzwerkes, dessen vortrainierter Enkodierer für das Extrahieren von Features
verwendet wurde, möglich, sowie durch die Anpassung der Konfigurationen für das Region Proposal
Netzwerkes auf den Kontext von Greifexperimenten.

5

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Contributions . 10
1.3 Organization . 10

2 Related Work 11
2.1 Object Detection . 11
2.2 Grasping Experiments . 14
2.3 Domain Randomization . 14

3 Background 17
3.1 Neural Networks . 17
3.2 The Evolution of R-CNN . 22
3.3 From Simulation to the Real World . 29

4 Methods 31
4.1 Simulation Framework . 31
4.2 Model Research . 41

5 Experiments 61
5.1 Datasets . 61
5.2 Model Evaluations . 68

6 Discussion 89
6.1 Results . 89
6.2 Alternatives . 92
6.3 Insights . 93
6.4 Conclusion . 94

Bibliography 95

7

1 Introduction

This thesis introduces different model architectures which utilize a region proposal network for object
detection and evaluates the different architectures in the setting of a grasping experiment. These
model architectures are supposed to be trained only on data from a simulated environment. Although,
they should generalize well on previously unseen data from a real environment. Furthermore, the
models should be able to detect objects of simple geometry, as well as arbitrary objects with more
complex geometry, correctly. The models should be practical in order to be used in real-time
applications.

This chapter provides a short motivation to the ambitions in section 1.1. It also gives a brief overview
on how this thesis is organized as well as a short summary of the main contributions in this thesis in
sections 1.3 and 1.2 respectively.

1.1 Motivation

In the field of robotics, the grasping of objects is a major challenge. It is essential to automate
many complex processes in which objects have to be moved from one position to another. For
instance, the automated selection of tools such as a drill or spray flask for further tasks, or an
automated sorting process in which a pile of different objects should be arranged correctly. With
the knowledge about correct object positions a robot would be able to grasp them. Object detection
systems can determine bounding boxes of objects in images, which can help to calculate the correct
object positions. However, the system must correctly identify objects and their locations. This
can be difficult as the exact object positions are often not known beforehand, even though they
usually are located on a specific surface area as for instance a table. The actual objects are also
unknown. Thus, they can come in the form of simple or complex shapes as well as each arbitrary
color. Distinguishing the objects from the background is often difficult, since the background might
be textured and therefore appears to contain objects even though it does not. Cameras and sensors
are usually attached to robots in order to scan the environment by capturing it with RGB images or
depth images. Hence, the camera position and gaze can change during movements which further
increases the difficulty of detecting objects as the appearance of them as well as of the background
changes with the perspective of the cameras. This motivates the first main objective of this thesis:
developing an object detection model which can successfully and efficiently detect and locate simple
as well as complex objects in the setting of grasping experiments.

Current state-of-the-art results in the task of object detection have been achieved by powerful
neural networks. Some of them utilize special region proposal network architectures. Training
neural networks is usually done in a supervised manner which requires lots of data with ground
truth information. Generating this kind of data in a real world environment is expensive, yet it is
cost-efficient to generate the same kind of data in a simulated environment. This motivates the

9

1 Introduction

second main objective of this thesis: developing a simulated grasping experiment environment to
generate artificial training data which allows to train an object detection model that utilizes a region
proposal network architecture. The trained model should be able to also generalize well to data
from a corresponding real world environment.

1.2 Contributions

The core contributions of this thesis are the following:

1. The development of a simulation framework which allows to simulate the environment of a
grasping experiment and generate artificial datasets. The simulation framework implements
multiple domain randomization techniques. It is covered in section 4.1.

2. The development of a large variety of models, which all utilize a region proposal network,
see section 5.2.

3. Ablation studies were performed and together with the evaluation of the developed models
they reveal informative insights on the effect of different domain randomization techniques
(subsection 5.2.2) and how different model architectures perform (subsections 5.2.1 and
5.2.1).

4. An auto-encoder architecture was developed to utilize its pretrained encoder part as feature
extraction network, see section 4.2.2. This enables really fast and accurate object detection,
see subsection 5.2.1.

5. A training, evaluation, and visualization pipeline was developed to ease and accelerate the
development of new models.

1.3 Organization

This thesis is organized as follows. Chapter 2 covers related work on the subjects covered in
this thesis, which are “object detection,” “grasping experiments,” and “domain randomization
techniques.” Chapter 3 provides background information which allows to build a theoretical
foundation for understanding the developed and used methods in this thesis. It covers the basics of
neural networks, the operating principle of the used region proposal network and object detection
systems, as well as core concepts on how to transfer models from a simulated environment to a
real world environment. The developed and used methods are presented in chapter 4. It goes into
detail about the developed simulation framework; the different architectures, components, and
algorithms that are used by the developed models; and how the developed models were trained and
evaluated. Chapter 5 presents the performed experiments and investigates the evaluation results
on the developed models w.r.t. several metrics. Finally, chapter 6 gives a brief discussion on the
summarized results, some hints on alternative approaches, and a final conclusion.

10

2 Related Work

The subjects covered in this thesis are based on and related to a considerable amount of previous work.
They can be divided in the following three topics: “Object Detection,“ “Grasping Experiments,“
and “Domain Randomization.“ Each topic comes with a long history of research, hence, just a
few can be briefly referred to and only a small selection of them will be mentioned in detail in the
following sections.

Section 2.1 covers some related work on the topic of object recognition. There exist different
methods to the problem of object detection, yet the most recent and common ones are approaches
using either multi-stage or single-stage network models. The section covers related work on
multi-stage models in detail as it is the model type of choice in this thesis.

While the major focus of this thesis lies on object detection and domain randomization, section 2.2
provides a small outlook to work which relates to the overall goal, the grasping of objects. One
approach to solving this problem proposes similar architectures for generating grasp predictions as
it is for instance used in this thesis for object detection, thus skipping the step of object detection or
implicitly solving it by defining a more specific objective.

Domain randomization plays a big role for machine learning methods and can also assist to solve
problems of transfer learning. It is a major objective in this thesis to develop a good model which
has been trained on synthetic data only, where utilizing domain randomization techniques seems to
be promising. Section 2.3 is concerned with related work on this topic and presents two distinct
approaches to domain randomization.

2.1 Object Detection

Object detection is a major field in computer vision and has continuously grown in relevance due
to many breakthroughs in recent years. There are many applications for object detection, such
as autonomous driving, face recognition or grasping experiments in robotics. Most recent object
detectors can be divided in either single-stage detectors or multi-stage (mostly two-stage) detectors.
Multi-stage detector usually perform better in object localization and object classification but lack
in inference speed due to expensive processing steps between stages, whereas single-stage detectors
are far superior when it comes to inference speed but often lack in localization and recognition
performance. A common characteristic for multi-stage detectors is an additional stage generating
region proposals, usually defined as rectangular bounding boxes. They define a region on the
original image which suggests the existence of a possible object in this region. Multi-stage detectors
often implement this step and use these proposals as additional information when performing
RoI-Pooling 3.2.2. In contrast, single-stage detectors omit this step and directly predict the bounding
boxes on the input image. [13]

11

2 Related Work

A well known multi-stage detectors is for example the R-CNN proposed by Girshick et al. [8]. It
was the first region-based CNN to outperform all of the previous models on VOC2012 [5], and
was a breakthrough in image detection, as it increased the baseline performance by more than 30%.
On the basis of the R-CNN, Girshick published an improved version called Fast R-CNN [7] with
drastically reduced training and inference time as well as a slightly better performance on VOC2012.
Shortly after, Ren et al. proposed the Faster R-CNN [25], a likewise further improved version of
the Fast R-CNN in which a region proposal network (RPN) has been introduced for the first time.
The Faster R-CNN has been designed for the task of object localization and object classification;
however, its architecture serves as base for future models. For instance, the Mask R-CNN which has
been proposed by He et al. [9], and augments the capabilities of the Faster R-CNN by additionally
performing instance segmentation and keypoint detection.

Since the Faster R-CNN serves as foundation for the Mask R-CNN, the model of choice in this
thesis, more of their core contributions are elaborated in subsections 2.1.1 and 2.1.2 respectively.
However, their specific architectures are further presented in subsections 3.2.5 and 3.2.6.

Single-stage predictors do not use region proposals and predict the bounding boxes from the input
image directly. A popular single-stage predictor is YOLO (You Only Look Once) [22], proposed by
Redmon et al., which focuses on inference speed and real-time detection, see 2.1.3 for more detail.
Further improved versions are the YOLOv2 [23]. It even outperforms multi-stage models like the
Faster R-CNN on VOC2012, while still having significantly faster inference. Another version
is the YOLOv3 [24], which uses for example a new backbone for more robust feature extraction
compared to YOLOv2. Other known single-stage methods are SSD [18], DSSD [6], RetinaNet [16],
M2Det [36], and RefineDet [35], as presented in [13].

2.1.1 Faster R-CNN

The Faster R-CNN network [25] has been proposed by Ren et al. and has been a breakthrough in
object detection. At the time, it achieved state-of-the-art accuracy in object detection and did run on
7 frames per seconds (fps), which made it significantly faster compared to the previous Fast R-CNN
model. Faster R-CNN is a multi-stage model for the task of object detection and object recognition.
It builds on top of the previous models, R-CNN [8] and Fast R-CNN [7] and introduces a novel
fully convolutional region proposal network (RPN), allowing to predict cheap object boundaries
and objectness scores in form of region proposals. These proposals then serve as input for the Fast
R-CNN module. In order to enable the prediction of different sized objects on potentially different
sized images, the Faster R-CNN uses so called anchor boxes which exist in different scales and
aspect ratios. A technique called RoI-Pooling, see 3.2.2, generates fixed sized feature maps from
the region proposals where the anchors are being applied on. In Faster R-CNN, the RPN and the
Fast-RCNN have been merged into one single network, sharing convolutional features and allowing
the Faster R-CNN to be trained end-to-end. Its architecture is explained in section 3.2.5 in detail.

The Faster R-CNN is mainly used for the task of object detection in a general setting. Usually, the
input images describe complicated environments that consist of many complex objects. In contrast,
object detection in this thesis is applied to the setting of grasping experiments. For this reason, there
are less objects, the objects have simple shapes, and the classification head is reduced to predict for

12

2.1 Object Detection

binary object or no object, as it is described in subsection 4.2.2. Thus, the models discussed here
are class-agnostic classifier which allow to generalize to objects of complex shapes that have not
been seen before.

2.1.2 Mask R-CNN

The Mask R-CNN [9], which has been proposed by He et al., represents a framework for object
instance segmentation. By using the Faster R-CNN as core architecture, He et al. showed in their
approach how it could be easily extended for other tasks, e. g., instance segmentation and human
pose estimation. At the time, it outperformed all other existing models for each of these tasks
and provides a good example on how to extent given models to different objectives in a modular
manner. Moreover, they added an additional branch for predicting the segmentation mask of an
object without changing the existing branch used for object detection. The mask branch is a small
fully convolutional network; which can be easily implemented and adds only a little computational
overhead. The Mask R-CNN runs with 5 fps, while the Faster R-CNN runs with 7 fps. It can be
trained by using the Faster R-CNN framework, in which the mask-task is added as additional loss to
the multi-task loss of the Faster R-CNN. A small adjustment to the implementation is the usage of
RoI Align instead of RoI Pooling (see subsection 3.2.2). It allows to produce output masks that are
correctly aligned with the input. This improved the mask loss by a significant margin, given that a
correct alignment has not been relevant for the task of object detection in the Faster R-CNN.

Although themain objective in this thesis lies on object detection rather than on instance segmentation,
the model of choice is still the Mask R-CNN. Particularly because it provides an easy way to
additionally perform instance segmentation while still predicting bounding boxes and classes. Also,
[9] showed, that the additional task of instance segmentation even leads to slightly better results
on the task of object detection. The architecture of the Mask R-CNN is presented in detail in
subsection 3.2.6.

2.1.3 You Only Look Once (YOLO)

Compared to multi-stage models like the Faster-RCNN or the Mask R-CNN, single-stage models
like YOLO [22] significantly outperform the known multi-stage models in terms of inference speed.
In YOLO, object detection is formulated as a regression problem where bounding boxes and class
probabilities are directly predicted from the input image’s feature map. Even though it has a worse
localization accuracy than for example the Faster R-CNN, it outputs far less false positive predictions
and runs with over 45 fps, compared to the 7 fps for the Faster R-CNN. This makes its use attractive
for real-time applications.

A more recent version is the YOLOv2 [23]. It introduces multiple improvements and greatly
increases the detectors accuracy while still keeping most of its speed. It achieves a inference speed
of up to 91 fps. The focus of this thesis lies on evaluating models using a region proposal network,
in particular the Mask R-CNN. However, bearing the knowledge about real-time detectors in mind,
also different approaches are tested to speed up the existing multi-stage model, as it is presented in
section 4.2.2.

13

2 Related Work

2.2 Grasping Experiments

Object detection has likewise a field of application in robotic vision. There exist different approaches
to tackle the problem of grasping objects. For example, Schmidt et al. [27] proposed a method to
grasp unknown objects by predicting grasp configurations from depth images. Their comparatively
small neural network takes a depth image as input which is then processed by two convolutional
layers. This step is followed by two fully connected layers that finally output a single grasp
configuration.

Real-World Multi-Object, Multi-Grasp Detection

Chu et al. [1] introduces a deep learning architecture to predict possibly multiple grasping positions
for objects in the input image. Their approach uses RGB-D images as input. Similar to [27], they
do not compute the object locations explicitly but directly tackle the overall grasping problem for
general and unseen objects. However, [27] outputs the grasp in camera coordinates with roll, pitch
and yaw values, a total of 6 parameters, whereas [1] outputs an grasp oriented bounding box with a
total of 5 parameters encoding one grasp position. This limits the grasps to the normal vector of the
image plane. Their network architecture is similar to the Faster R-CNN and also utilizes a region
proposal network which is trained to output grasp region proposals. These grasp region proposals
are then further refined in the network head to contain an additional orientation value and slightly
adjusted bounding box parameters to match the best grasp positions as closely as possible. Due
to the architecture, the network allows predicting multiple grasps for multiple objects in the input
almost by default.

In[1], training and testing were both performed on real data. In contrast, in this thesis, the models are
trained on only synthetic data. Furthermore, this thesis focuses on object detection and predicting
axis aligned bounding boxes for the objects in the input image, instead of predicting grasp positions
directly.

2.3 Domain Randomization

In order to avoid the overfitting of deep neural networks, it is necessary to provide a large enough
dataset with multiple diverse training samples. The amount of existing real data is often not
sufficient, yet there exist different techniques to circumvent this problem. Domain randomization is
a technique which eases the transfer of models between different domains and improves the overall
generalization to other datasets, especially when it comes to transferring models from an simulated
environment to the real world. Due to a lack of real world data for the specific setting of object
detection in grasping experiments, this thesis thoroughly exploits domain randomization techniques.
Their investigation is a major objective of this thesis, see subsection 4.1.5.

Different previous work engage in the topic of domain randomization. A significant work is [29]. It
focuses on randomizing the generation of the data and is further covered in subsection 2.3.1.

Whereas [29] and several other scholars pursue the approach of applying almost arbitrary random-
izations in order to hopefully increase the variety in data, Zakharov et al. propose in [34] a different
approach for domain randomization. It focuses on data augmentation, see subsection 2.3.2.

14

2.3 Domain Randomization

2.3.1 Domain Randomization for Transferring Deep Neural Networks from Simulation
to the Real World

In [29], Tobin et al. explore domain randomization to tackle the “reality gap"problem, which
describes the difference between the real world and simulation. The core idea is, that “with enough
variability in the simulator, the real world may appear to the model as just another variation" [29].

In their work, they investigate this approach w.r.t. the task of object localization and show that it is
also applicable for the task of grasping in cluttered environments. They train on simulated RGB
images, while testing is done on real world images. Similar to this thesis, they use a setting in which
the objects are placed on a table. The randomizations of their simulator include for example the
amount and shape of objects; their position, orientation, and texture; the texture of the floor and
table; the position, orientation, and field of view of the camera; the amount of lights in the scene;
the position, orientation, and specular characteristic of the lights; as well as the type and amount
of random noise which is being added to the images. Although this thesis adopts many of their
proposed randomizations, there are some minor differences. For instance, the fact that objects do
not have a texture and are plain-colored; as well as the camera’s orientation and fixed field-of-view.
Its position and view direction is randomized. Due to the used framework, only one light exists. It
is also noteworthy that adding random noise to the images is no part of the rendering but happens
separately during training together with many other image augmentations.

Tobin et al. uses a modified version of the VGG16 [28] to predict 3D-coordinates of the objects
of interest. The performance on real world data was found to be promising and although some
overfitting exists, the results are comparable to other traditional techniques. They also discovered
that using pretrained weights is not necessary for achieving good performance, as training from
scratch yields to similar good results, if enough training samples are being used. However, the use
of pretrained weights still leads to less iterations needed for convergence. The results have also
shown, that texture randomizations seem to be more important than for instance the randomization
of object positions, particularly in cases in which only few data is used. Furthermore, adding small
amount of noise makes training more robust against local minima and leads to faster convergence.

In this thesis, many of their techniques for domain randomization have been adapted and evaluated
by using the powerful Mask R-CNN network.

2.3.2 DeceptionNet: Network-driven Domain Randomization

As mentioned above, most applications of domain randomization techniques use either the trial-
and-error approach or orient themselves on previous works which have successfully implemented
randomizations. Zakharov et al. propose in [34] a novel approach to close the reality gap by
introducing a method to learn “useful augmentations which maximize the uncertainty of the
output."

They use a deception network to find the most destructive augmentations w.r.t. the task architecture,
which is in their case a recognition net for class and pose estimation. This has been achieved by
using an alternating optimization scheme with two alternate phases during training. In the first
phase, the weights of the recognition net are frozen and the weights of the deception net are updated
w.r.t. the maximized recognition net objective. This first phase leads to an increasing amount of

15

2 Related Work

variance in the images produced by the deception net. In the second phase, the weights of the
deception net are frozen and the weights of the recognition net are updated w.r.t. its minimized
objective, yielding a more and more robust recognition net against these domain changes.

Their novel approach yields comparable performance to other existing techniques and shows a
significantly better generalization ability of their recognition network.

In contrast to [29], this approach performs data augmentation, i.e., modifies or creates data based
on already existing data and does not change the way the data is generated in the first place, e. g., by
a renderer and a simulation.

In this thesis, multiple data augmentation techniques are used to induce and increase the effect
of domain randomization, as described in subsection 4.2.3. However, the augmentations are
hand-selected, applied randomly and in consequence, not learned.

16

3 Background

This chapter covers relevant background information to build a theoretical foundation for under-
standing the different methods presented in chapter 4.

The Mask R-CNN can be understood as big neural network. Neural networks have shown to be
quite promising in solving different tasks. What needs to be understood when talking about neural
networks and what the core concepts are, is covered in section 3.1.

The model used, is theMask R-CNN [9]. It expands on multiple previous other network architectures
and is one of the latest generations in the evolution of R-CNN. Section 3.2 provides background
information to the history of the Mask R-CNN and explains different important techniques which
have been introduced on this path and are still being used in the modern Mask R-CNN architecture.

Section 3.3 goes more into the depth of domain randomization and data augmentation techniques.
It covers the core ideas and shows examples of where and how these can be used.

3.1 Neural Networks

Artificial neural networks mimic the processing of information in the human brain, which occurs via
multiple neural connections between neurons. They have proven to be great function approximators
and have been used to successfully tackle many different tasks. In this thesis, the term ‘neural
network‘ will from now on always refer to some artificial neural network.

A neural network represents a parameterized function which parameters can be optimized w.r.t. a
objective and given data [30]. The data usually contains corresponding input and output samples
of the underlying function or distribution that needs to be learned. The universal approximation
theorem states that any continuous function can be approximated to a certain degree by a neural
network with one hidden layer under certain assumptions to the activation functions. It has been
proven in different previous work for sigmoid activations [3] and for Rectified Linear Unit (ReLU)
activations [19].

3.1.1 Neurons, Activation Functions, and Optimization

The core elements of neural networks are neurons which perform a linear mapping from some input
vector ®𝑥 to some scalar output 𝑧 using some weight vector ®𝑤 and add a scalar bias 𝑏 to the result, thus
𝑧 can be computed as 𝑧 = ®𝑤𝑇 ∗ ®𝑥 + 𝑏. The scalar output 𝑧 serves as input for a non-linear activation
function 𝜎, yielding the final output 𝑦 = 𝜎(®𝑤𝑇 ∗ ®𝑥 + 𝑏), as depicted in figure 3.1a. A single neuron
outputs only one scalar value. Usually, multiple neurons are stacked to form a layer which then can

17

3 Background

(a) A single neuron multiplies each element of the
input vector with a weight and adds a bias to
the result, which is then fed to some activation
function that yields the neuron’s output which
is scalar. Note that the input vector here has
been augmented with a scalar 1 and the bias
has been absorbed as additional weight such that
the neuron’s operation (excluding the activation
function) still represents a linear mapping. [32]

(b) An illustration of a fully connected neural network
with multiple hidden layers. Each layer may have
a different amount of neurons. [32]

be used to output higher dimensional information. The neuron’s transposed weight vectors can be
represented as a matrix𝑊 . The output of such a layer is computed as ®𝑦 = 𝜎(𝑊 ∗ ®𝑥 + ®𝑏), where 𝜎 is
an element-wise operation.

Typically, a loss function is defined on the networks output which represents the loss / error /
discrepancy between the expected output and the actual output of the network for some training
data. The training data consists of input and expected output tuples. This loss can be used to
compute gradients for the different layers via a backpropagation algorithm. There exist different
optimization algorithms which use these gradients to compute the weight updates with the objective
to minimize the loss [32]. One such optimization algorithm is gradient descent. The idea of
gradient descent is to start at a random point of the function to optimize, which corresponds to a
random weight initialization, and then follow the slope of the function by taking small steps to a
minimum. This is achieved by iteratively computing: 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑠𝑡𝑒𝑝 := 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ∗ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒
and then 𝑛𝑒𝑤_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 := 𝑜𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 − 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑠𝑡𝑒𝑝. Gradient descent computes the loss
and the gradient to update the weights w.r.t. the complete training data in every iteration. As
this is quite unpractical for big datasets, it is more common to use stochastic gradient descent.
In each iteration, naive stochastic gradient descent picks one data element by random and uses
this to compute the weight updates. However, this induces many weight updates and sometimes
even worsens convergence. Therefore, the middle way, in which in each iteration multiple random
samples of the training data, called a mini-batch, are chosen to compute the gradient and weight
updates, is the preferred way to train neural networks nowadays.

Note that more sophisticated optimization algorithms exist. While they all follow the core
idea of gradient descent, they introduce additional mechanisms that can improve learning. See
subsection 4.2.4 for the optimization algorithm used in this thesis.

A neural network consisting of only one single layer (only the output layer) is always limited to
be linear in the input. However, a neural network with two layers, i. e., one hidden layer and one
output layer (not counting the input layer), forms a universal function approximator when certain

18

3.1 Neural Networks

Figure 3.2: The batch normalization algorithm to normalize activations of hidden layers and to
increase the stability of the network. [12]

assumptions to the used activation functions hold. As shown in 3.1a, multiplying with a weight
and adding a bias can be rewritten as a linear mapping. Since multiple successive linear mappings
can be expressed in one single linear mapping, a multi-layer neural network with linear activation
functions would be as powerful as a neural network without any hidden layers [32]. The output
of any hidden layer can be seen as some intermediate representation of the input, and it might be
higher or lower dimensional. Neural networks are often used for feature extraction. A feature is just
some property or characteristic of what will be observed and is expressed as a value. The original
input itself or any intermediate representation are features.

The input features for neural networks are often normalized in a preprocessing step to improve
learning. This is sometimes also done for the output of hidden layers, and is then called Batch
Normalization. Batch normalization increases the stability of a neural network and introduces
a regularization effect. It works by computing the mean and standard deviation per (mini-)batch,
and then use this to normalize the batch. By introducing two additional learnable parameters
(per layer where batch normalization is being applied), this normalization can be undone by the
neural network if needed. This is called denormalization. Figure 3.2 shows the batch normalization
algorithm [12].

Two famous activation functions used in neural networks are the sigmoid and the Rectified Linear
Unit (ReLU) function. Both have an easy computable derivative which is important for the
backpropagation algorithm. The sigmoid function is defined as follows: 𝜎(𝑥) = 1

1+𝑒−𝑥 . Its
derivative is 𝜎′(𝑥) = 𝜎(𝑥) ∗ (1 − 𝜎(𝑥)). The ReLU function is defined as: 𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(0, 𝑥).

Its derivative is 𝑅𝑒𝐿𝑈 ′(𝑥) =

{
0 𝑥 > 0
1 𝑥 < 0

. The derivative of the ReLU function for 𝑥 = 0 is

undefined, hence, it is often chosen to be zero. In deeper neural networks with multiple layers,
sigmoid functions are less popular because they reduce the absolute value of the gradient during
backpropagation with each layer, due to their derivative. Hence, ReLU activation functions are
preferred in deep neural networks.

19

3 Background

(a) A two dimensional filter is sled over the input.
At every position, each weight is multiplied with
the corresponding input value and the results
are summed up. No padding is used, thus the
output size is a little smaller1.

(b) A window is sled over the input. At each po-
sition, the maximum value in the window is
taken2.

A typical fully connected neural network with multiple layers is depicted in figure 3.1b. Fully
connected means that every neuron of one layer is connected to every output value of the previous
layer, or to every input value if it is the first layer. A fully connected layer expects the input to be a
vector of features. Its output is a vector of features, too. This makes it difficult to apply them on
images directly as a image is represented as matrix instead of a vector, and also spatial information
might be important. Convolutional neural networks are a special type of neural networks which are
especially useful for this kind of input.

3.1.2 Convolutional Neural Network

Convolutional neural networks (CNNs) can handle two (or three-) dimensional input particularly
well. They can preserve spatial information of the input and are often used for image processing
tasks. CNNs are often used to reduce the huge amount of input features occurring in high resolution
images, and output a small as well as informative representation of the input in form of feature maps.
Most CNNs are built of two different types of layers. Firstly, the convolutional layer which is used
to extract abstract features of the input. Secondly, max-pool layers, which are used to downsample
and reduce the number of input features. Note that in this thesis the 2D-convolutional layers with
two dimensional filters are meant when talking about CNN, if not specified otherwise.

A convolutional layer is not fully connected to its input and it has its weights grouped in filters. The
operation of a convolutional layer can be visually imagined by sliding each of its filter over the
input image and performing a convolution between the image and the filter at each position. See
an illustration of this in figure 3.3a. A max-pool operation works in a similar manner as it slides
a window instead of a filter over the input and takes the maximum value in the window at each
position. It is illustrated in figure 3.3b. A stride specifies how many grid cells the filter / window is
shifted each time it is moved. As illustrated in figure 3.3a, the center of the filter is initially aligned
at the boundary of the input. This results in smaller output size because there are less shifts than
input value in both dimensions, and the number of shifts specify the number of values in the output.
Padding the input at the edges, for instance with zeros, allows for more shifts. This is usually done
to maintain the input dimensions in the output.

1https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-
convolution-block (last visited 12-17-2020)

2https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-max-
pooling-block (last visited 12-17-2020)

20

https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-convolution-block
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-convolution-block
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-max-pooling-block
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-max-pooling-block

3.1 Neural Networks

(a) A typical architecture of deep convolutional neural
networks. Multiple convolutional- and pooling
layers downsize the input and extract higher-level
features which then serve as input for a fully
connected neural network3.

(b) The autoencoder network minimizes a reconstruc-
tion error between input and output, which re-
quires the to be as similar to the input as possible.
A bottleneck in the middle part of the network
forces the network to find a good lower dimen-
sional representation of the input4.

While, the number of parameters in a fully connected layer is directly coupled to the amount of input
features (#𝑛𝑢𝑚𝑏𝑒𝑟_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (#𝑖𝑛𝑝𝑢𝑡_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1) ∗ #𝑜𝑢𝑡𝑝𝑢𝑡_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠), the amount of
parameters (weights) of a convolutional layer is independent of the height or width of the two
dimensional input. It depends only on the size and number of chosen filters. Therefore, CNNs can
be used to extract small information rich feature maps, even for high resolution images with huge
amounts of input features, whilst using a comparatively small amount of weight parameters.

Deep convolutional neural networks have proven to be excellent feature extractors in the field of
image processing. They are often used as ‘backbones‘ to extract features that serve as input for
a following fully connected neural network, as it is illustrated in figure 3.4a. Popular deep CNN
architectures which are often used as backbones and have also been utilized in this thesis, are the
ResNet [10] in different variations and the VGG16 [28]. They were designed to tackle the task
of image recognition. Thus, they learn to extract features that characterize images and enable to
distinguish different types of images.

Autoencoder

An autoencoders is a neural network which consists of an encoder and decoder part as illustrated in
figure 3.4b. Autoencoder networks can be convolutional, fully connected or a mix of both. The
encoder part is used to compress the input to fewer, yet more informative features. They will be
used by the decoder to reconstruct the input. This is achieved by defining a reconstruction loss that
is to be minimized, on the original- and reconstructed inputs. By using the reconstruction loss, an
autoencoder can be trained with arbitrary images. The encoder part can then be used to serve as
feature extractor, similar as ResNet or VGG16, as mentioned in subsection 3.1.2.

In this thesis, the encoder part of a simple auto-encoder architecture will be additionally used as
backbone. See subsection 4.2.2 for more information about the used backbones.

3https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-
forging-pathways-future/ (last visited 12-17-2020)

4https://www.researchgate.net/profile/Jeremie_Sublime/publication/333038461/figure/fig3/AS:
757767321169921@1557677216019/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-

going-from-the-input.ppm (last visited 12-17-2020)

21

https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/
https://www.researchgate.net/profile/Jeremie_Sublime/publication/333038461/figure/fig3/AS:757767321169921@1557677216019/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-from-the-input.ppm
https://www.researchgate.net/profile/Jeremie_Sublime/publication/333038461/figure/fig3/AS:757767321169921@1557677216019/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-from-the-input.ppm
https://www.researchgate.net/profile/Jeremie_Sublime/publication/333038461/figure/fig3/AS:757767321169921@1557677216019/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-from-the-input.ppm

3 Background

Figure 3.5: Illustration of the differences between object localization, image classification, object
detection and instance segmentation.5

3.2 The Evolution of R-CNN

CNNs have had great success in image classification. It seems natural to also use them for object
detection. However, this comes with some issues as one image might contain many different
objects and a classifier would need to settle on one specific class, thereby the classifier would be
compelled to ignore all the other classes. Likewise, a standard classifier would not output the
objects location.

This section is about the basics of object detection, covered in subsection 3.2.1, as well as the
different techniques which finally lead to fully complete object detection networks, such as the
Faster R-CNN, described in subsection 3.2.5.

3.2.1 Object Detection Basics

Object detection is a subcategory of object recognition. Object recognition relates to a field in
computer vision which involves different tasks, such as object localization, image classification,
object detection, and segmentation.

Object Localization, Classification, Detection and Segmentation

Object localization is the task of locating one or multiple objects in an image. Hence, an object
localization algorithm should take an image as input and output a set of locations on the image, i. e.,
one location per object. These locations are usually represented as 2D bounding boxes. Note that in
this thesis it will be spoken of 2D-bounding boxes only.

5https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/object_
localization_and_detection (last visited 12-17-2020)

22

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/object_localization_and_detection
https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/object_localization_and_detection

3.2 The Evolution of R-CNN

A bounding box defines a rectangle area on an image. Axis-aligned bounding boxes are aligned
with the x and y axis of the image. They can be encoded by providing two points on the image
(𝑥0, 𝑦0, 𝑥1, 𝑦1) or one point with a width and a height value (𝑥, 𝑦, 𝑤, ℎ). Either way, the encoding
uses a total of four values. However, one could use an additional value representing an angle, to
define object oriented bounding boxes. In this thesis, bounding boxes will always be axis aligned
and not object oriented.

Image classification is the task of predicting some type or class for an image. In the field of
object recognition, image classification is typically used to classify an image depending on the most
dominant object class visible in the image. Thus, an image classification algorithm takes an image
as input and outputs one class label for the most dominant object in the image.

Object detection combines object localization and image classification. For some given input
image, a object detection algorithm outputs bounding boxes and corresponding class labels for the
detected objects in the image.

Image segmentation algorithms take an image as input and output a segmentation mask of the
same size as the input image, in which each pixel is labeled with the class of the object / thing
it belongs to. Instance segmentation is basically the same, but it distinguishes between object
instances. Thus, two different objects of the same class will have either different labels or some
other additional information which marks them as separate instances.

Figure 3.5 illustrate the differences between object localization, image classification, object detection
and instance segmentation.

3.2.2 Region Proposals

When going from image classification to object detection, region proposals play an important role.
They suggest regions on the image where objects may be located, usually in form of bounding
boxes. In the rest of this thesis, region proposals will be assumed to be represented as axis aligned
bounding boxes, although they could be of any shape or orientation. If such proposals are given and
a good image classifier exists, one can run the image classifier for each of the proposed regions of
the input, also called region of interest (RoI), and validate each region if it does indeed contain
some expected object or not, i. e., is background. Therefore, combining a good region proposal
algorithm with a good image classifier yields to a two-stage object detection model that does both
generating bounding boxes and classifying labels for the objects in the image. Note that, as it was
mentioned in the related work chapter, there also exist single-stage algorithms which do not use a
separate stage generating region proposals 2.1.3.

Region of Interest Pooling

6https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44 (last vis-
ited 12-17-2020)

7https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-
f795196fc193 (last visited 12-17-2020)

23

https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44
https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193
https://towardsdatascience.com/understanding-region-of-interest-part-2-roi-align-and-roi-warp-f795196fc193

3 Background

(a) Illustration of RoI Pooling on a 4 × 6 RoI and
a fixed 3 × 3 output size. The RoI is mapped
to a 16 × 16 feature map. Due to the discrete
grid size some information is already lost during
this mapping. The pooling layer has to be of size
(4/3)×(6/3) which is rounded down to 1×2. Due
to quantization, the information of the last RoI
row is lost when applying the pooling operation. 6

(b) RoI Align uses bi-linear interpolation to map the
RoI onto the feature map and pools its values
without skipping information. 7

Region proposals define regions of interest on the input image. As described in subsection 3.2.2,
the combination of good region proposals and a good classifier which can classify these regions of
interest, already yield an object detection model. A trivial solution for a region proposal would
be to define the whole image as region of interest. The objects of interest would be completely
captured by the region proposal. However, this does not help with localizing them and is basically
the same as image classification. A good region proposal algorithm should output tight bounding
boxes for the proposed objects in the image. Due to the objects being usually of different sizes, the
region of interest are also differently sized. This poses a problem, since classifiers usually expect
the input to have a fixed size, depending on its architecture. This problem is tackled by Region of
Interest Pooling (RoI Pooling).

RoI Pooling works like max-pooling, but with a pooling size dependent on the size of the input.
The pooling size is calculated such that the output always has the same size for every input. RoI
Pooling is a special case of Spatial Pyramid Pooling [11], yet with only one pyramid layer. It
is used to extract a fixed sized feature vector from arbitrary sized feature maps. RoIs can have
any size, whereas the size of the pooling output is fixed. Therefore, some information might get
lost due to quantization, if the input size is not divisible by the output size. Note that region of
interests are defined on the input image. If a backbone is used to extract a small feature maps from
the input image, the RoI have to be mapped to them before pooling can be applied. In standard
RoI Pooling this mapping introduces additional quantization, similar to the pooling process, if the
RoI coordinates are not divisible by the size of the feature maps. Figure 3.6a illustrates this. The
mapping depends on the architecture of the backbone. Different backbones may have a different
stride. The stride of a backbone is the factor an input image is reduced compared to the size of its
resulting feature map. Suppose that the input image is of size 512 × 512 and the backbone outputs a
32 × 32 feature map, then the backbone would have an overall stride of 16𝑥16, or just 16. Note that
the stride of a backbone is independent of the input size and solely depends on its architecture. As
it was mentioned before, there might be an additional loss of information, if the size of the input
image is not divisible by the network’s stride.

24

3.2 The Evolution of R-CNN

Figure 3.7: The intersection over union. A measure of similarity between bounding boxes. 8

RoI Align works similar as RoI Pooling. However, it circumvents both the quantization when
mapping the RoI to the feature map and the quantization when pooling the RoI. This is possible
by mapping the RoI to the feature map and dividing it in the appropriate sections with sub-grid
precision and then using bi-linear interpolation to evaluate the values for the new grid position in
the divided RoI. Figure 3.6b illustrate this.

Intersection over Union (IoU)

The intersection over union (IoU) is a measure of similarity between two areas (here the areas are
defined by bounding boxes). It is computed by the area of overlap divided by the area of union. Let
box one be 𝐵1 and box two be 𝐵2, then the intersection over union of those two is computed as
follows:

(3.1) 𝐼𝑜𝑈 (𝐵1, 𝐵2) =
𝑎𝑟𝑒𝑎_𝑜 𝑓 _𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑟𝑒𝑎_𝑜 𝑓 _𝑢𝑛𝑖𝑜𝑛

= 𝑎𝑟𝑒𝑎(𝐵1 ∩ 𝐵2)/𝑎𝑟𝑒𝑎(𝐵1 ∪ 𝐵2)

This is illustrated in figure 3.7. An IoU of 1 would indicate, that the bounding boxes are identical,
while an IoU of 0 would indicate, that they have no common area at all.

3.2.3 R-CNN

R-CNN is short for “Regions with CNN featuresänd refers to an object detection architecture
proposed in [8]. It combines traditional image classification using a CNN with a region proposal
method. In [8] they use selective search [31], which is not further relevant in this thesis. The region
proposal method is not part of the network.

First, the region proposal method generates all of the region proposals. Then, the regions of interest
are directly pooled from the input image and resized to fit the CNN input which then computes a
feature map per given RoI. These features serve as input for a linear regression classifier which

8https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/ (last visited
12-17-2020)

25

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

3 Background

Figure 3.8: The Fast R-CNN architecture. [7]

performs the bounding box regression and outputs four values on how to adjust the original proposals
in order to fit a tight bounding box optimally. Simultaneously, the same features are also fed to
support vector machine (SVM) classifiers which determine the classes of the objects or background.
Due to its architecture and the way the proposals are generated and processed, it was really slow
which is the main issue of the R-CNN.

3.2.4 Fast R-CNN

Instead of computing features per proposal, the more sophisticated Fast R-CNN [7] builds on the
idea of the R-CNN. It computes the feature map for the complete image once and then applies RoI
Pooling, as described in subsection 3.2.2. Another change is, that it uses fully connected layers with
a softmax classifier to classify the RoI instead of support vector machines (SVMs). Its architecture
is depicted in figure 3.8.

3.2.5 Faster R-CNN

The Faster R-CNN introduces a region proposal network (RPN) and makes the proposal generation
method part of the network itself. In contrast to the Fast R-CNN, the Faster R-CNN has an additional
stage between the convolutional layers, which compute the feature maps, and the RoI pooling. Note
that this allows to omit the external region proposal method which was necessary in the R-CNN and
Fast R-CNN and is now no longer a part of Faster R-CNN. Figure 3.9a illustrates the base architecture
of the Faster R-CNN network, including the new stage for proposal generation. In this stage, the
RPN generates region proposals based on the feature maps generated from the convolutional layers.
Thus, the RPN and RoI Pooling share the same features. Afterwards, the region proposals are used
together with the feature maps as input for RoI Pooling and further processing, which is the same as
it was in the Fast R-CNN architecture, see subsection 3.2.4.

Including the RPN in the network allows to train the whole network altogether by using a multi-task
loss, which is the sum of two losses from the RPN and two losses from the Fast R-CNN, as it is
shown in figure 3.9a.

26

3.2 The Evolution of R-CNN

(a) The Faster R-CNN architecture, including four
different losses that contribute to a multi-task
loss which can be used to train the networks as a
whole. [25] 5

(b) The region proposal network is sled over the
convolutional feature map in a sliding window
like manner, generating one region proposal with
a confidence score for each of the k anchors at
each feature map position. [25]

Region Proposal Network

The region proposal network is a small neural network which generates region proposals in form of
bounding boxes and a confidence score per proposal. The network consists of one regression layer
and one classification layer. The region proposals are generated by sliding a small window over the
feature maps. At each position on the feature map, the features inside the window are used as input
for the RPN. Thus, the RPN can be imagined as being sled over the feature map.

For every window of features, the regression layer of the RPN generates a fixed amount of region
proposals in a single evaluation step of its layers. Let this amount be denoted by 𝑘 . Thus, the
regression layer has 4 ∗ 𝑘 outputs which correspond to the encoding of 𝑘 region proposals. The
classification layer has 2 ∗ 𝑘 outputs which estimate the probability of object or no object for each
of the proposals. The classification layer is evaluated in parallel with the regression layer.

Each generated region proposal encoding is associated with one of the so called 𝑘 anchor boxes.
There exists a one-to-onemapping between region proposals and anchor boxes. Anchor boxes exist in
different sizes and aspect ratios. The center of the anchor boxes are placed at the center of the window.
Figure 3.9b illustrates this process. A region proposal encoding defines how its corresponding
anchor box needs to be adjusted to yield / decode the actual region proposal. The proposals are
sorted by their confidence score and further processed by non-maximum suppression.

Non-Maximum Suppression (NMS) is a technique to filter overlapping object proposals that most
likely detect the same object. It only leaves those with the highest confidence scores. Starting with
an empty final output, it iterates over the sorted input list until it is empty. Before each iteration
it pops the proposal with the highest score and adds it to the final output. During each iteration,
it calculates the intersection over union between the recently popped proposal and each of the
remaining proposals. Additionally, it deletes all proposals that have an IoU that is bigger than some
threshold.

27

3 Background

Figure 3.10: The Mask-RCNN architecture. An additional branch produces a segmentation mask
per RoI. This branch is in parallel to the regression and classification branch from
the Faster R-CNN. It uses RoI Align instead of RoI pool for a correct pixel-to-pixel
alignment between the input and the produced segmentation masks. [9]

After applying NMS, the remaining top-k proposals will be selected and returned as final output of
the RPN. [25]

3.2.6 Mask RCNN

The Mask R-CNN [9] is an extension to the Faster R-CNN. It performs instance segmentation by
extending the existing Faster R-CNN with an additional branch for predicting segmentation masks.
The mask branch is parallel to the existing classification and bounding box regression branches
from the Fast R-CNN, as shown in figure 3.10. Thus, the segmentation shares the region of interests
and corresponding features with classification and regression.

Instead of using RoI Pooling, as in the Faster R-CNN, the Mask R-CNN uses RoI Align (see 3.2.2).
This allows for a correct pixel-to-pixel alignment from the input image to each RoI. RoI Align
makes the predicted segmentation mask to properly map to the corresponding region of interest on
the input image.

For each RoI the mask branch simultaneously produces a 𝑚 ∗ 𝑚 segmentation mask for each of the
𝐾 possible classes. Hence, the output size of the mask branch is 𝐾 ∗ 𝑚2. During training, the mask
loss is only defined on the outputs corresponding to the correct output class. Therefore, each output
is trained only for its corresponding class which makes it independent to other classes. This makes
class prediction separated from the segmentation mask prediction. Class prediction now relies on
the classification branch of the Fast R-CNN only.

For training a multi-task loss consisting of the new mask loss, the classification, and the regression
loss of the two other branches, is defined on each RoI. This allows to train the branches together.

28

3.3 From Simulation to the Real World

3.3 From Simulation to the Real World

To train supervised learning algorithms, it is required for the training data to have corresponding
input and output pairs. As it was mentioned in section 3.1, neural networks can learn to approximate
continuous functions. They are usually trained in a supervised learning manner which means that
for a given input a loss is defined to measure the discrepancy between the current output of a
network and the expected output. During training of such a network its weights are updated in a
way that this loss is optimized.

Generating data with corresponding input and output / ground-truth pairs turns out to be a non-trivial
chore, especially if real world data is needed. Often real world training datasets contain hand-labeled
ground-truth information which is a time-consuming task. The use of a simulation allows to
automatically generate artificial input and corresponding ground-truth pairs.

Subsection 3.3.1 covers a concept called ‘Transfer Learning‘ which relates to the idea of training a
model on data of some domain and transferring the learned knowledge to a model which works
in another domain. In this thesis, this concept is applied to a setting in which one domain is a
simulated environment and the other domain is the real world.

Subsection 3.3.2 and subsection 3.3.2 refer to two techniques which assist to implement this
concept.

3.3.1 Transfer Learning

Transfer learning is a broad concept and describes the idea of using knowledge which has been
learned by solving one task, to help solve another task. Both tasks might be in the same or different
domain. Transfer learning also applies if the tasks are essentially the same, but the models work
with different domains.

In the context of neural networks this is commonly used. For example, pretrained CNNs are often
used to extract features of images which then serve as input for arbitrary other image processing
tasks. These CNNs were mostly trained on image classification tasks during which they have
learned to extract important features of images and to distinguish as well as classify them correctly.
This knowledge of ‘how to extract important features‘ can be reused when such a pretrained CNN is
used as preprocessing step for arbitrary other image processing tasks in different domains.

This poses a contrast to traditional machine learning approaches, in which models have been
specifically trained on one specific task in one specific domain.

3.3.2 Domain Randomization

Domain randomization is a technique for training models on simulated images which can transfer to
real images by randomizing the rendering in the simulator. [29] The model learns to solve a task in
the artificial domain and applies this knowledge to solve the same task in the real world domain.
Here the domains change, but the tasks remain the same. Thus, the task to be solved and the target
domain, i. e., the real world, are known beforehand.

29

3 Background

(a) A real world setting which is emulated with a sim-
ulator, but the simulated environments have been
randomized to differ in each data element. [29]

(b) Different image augmentations applied to the same
source image result in many different images but
which still represent the same original informa-
tion. [14]

A simulation which can mimic the setting of the real world implements the idea of domain
randomization by randomizing the simulated environment as much as possible while maintaining
the same key elements of the real world. Then, by randomizing the data, the real world appears
as just another randomization, i. e., the model learns to solve a task by recognizing the important
key elements in the data and ignoring the overall appearance. Figure 3.11a shows different
randomizations of a setting where objects are placed on a table. The size of the objects, their color,
texture, and other characteristic such as the lightning conditions, are randomized to increase the
variety of data.

3.3.3 Data Augmentation

Data augmentation techniques can be used to increase the available data by creatingmodified versions
of the existing data elements. Given one data element in the original dataset, its corresponding
modified versions all rely on the same original information and often retain most of the original
properties. Figure 3.11b shows different augmentations applied to the same initial image. Even
though the images differ greatly in their appearance, it is still obvious that they belong together.

Data augmentation techniques can be used in the sense of domain randomization aswell. Nonetheless,
this thesis distinguishes between the domain randomization and data augmentation in the sense
that domain randomization refers to randomizing the information the data carries. Thus, two data
elements rely on different information as they are created. While, data augmentation may produce
many different new data elements, it always relies on already existing data.

30

4 Methods

This chapter covers the methods which were used for training and evaluation of the different models.
It can be split into two main sections.

Section 4.1 is about the simulation framework that has been developed to generate the artificial
datasets. It describes the different simulation settings, the objects used and the domain randomization
techniques that have been employed w.r.t. the simulation.

Section 4.2 goes into detail of the different architectures and methods used during training and
evaluation. It explains how the models are designed, trained, and which metrics were used to
evaluate them.

4.1 Simulation Framework

The simulation framework has been written in the programming language Python1. It makes use of
the Bullet Real-Time Physics Simulation which has been written in C++ but is also available as a
Python module named PyBullet [2].

The frameworks core is a simulation class which is described in subsection 4.1.1. It wraps the
PyBullet simulation client, which is a physics engine, and extends it with multiple different
functionalities in order to simplify its use for grasp experiments and domain randomization.

The simulation is used to generate the artificial data. Each data element is stored to disk as a
encoded so called sample object which is further described in subsection 4.1.2.

The simulation class supports different types of objects. Some are of simple and some of rather
complex geometry, see subsection 4.1.3.

The framework provides a functionality which considerably simplifies the data generation, while
it continues to provide arbitrary flexibility to create scenes. This is further described in subsec-
tion 4.1.4.

31

4 Methods

Figure 4.1: The left figure shows the table with only one stand in the middle. This variant is the
same as the table that has been used for the data generation in the real world. The right
figure shows the variant with four legs. Their overall sizes are the same, i.e., they are
equal in width, length and height.

4.1.1 Simulation

The simulation class can be seen as wrapper of the PyBullet simulation. In use, it connects to the
PyBullet physics server and holds the corresponding client id as a member variable. This allows the
simulation class to access and control the underlying PyBullet simulation. A PyBullet simulation
contains only one single light source. It is not able to manage more, thus this simulation has always
exactly one light source which is defined by a direction and distance vector w.r.t. the world origin.

The standard simulation consists of a white plane representing the ground, a table that is available
in two different styles, and a single light source. The table is available with either one stand in the
middle and four attached rolls on the bottom, or with four legs at each corner. Figure 4.1 shows both
table variants used in the simulation. Note that these figures were rendered via the the PyBullet
graphical user interface (GUI) by using an OpenGL renderer. PyBullet does not allow to use the
OpenGL renderer in headless mode. Thus, the actual images of the generated samples will be
rendered by a different renderer with different lightning and camera settings.

The simulation class allows to load a bunch of textures from a given directory which can be applied
to the objects inside the simulation.

There are different options available to configure the lightning conditions for the actual rendering of
images. As mentioned, the light source can be adjusted in distance and angle w.r.t. the world origin.
In figure 4.1, the world origin is displayed at the middle of the table and shows the orientation of the
three axes of the simulation’s coordinate system. Further lightning options to configure are: the
ambient coefficient, the diffuse coefficient, and the specular coefficient of the light. Finally, it is
possible to enable and disable the computation of shadows.

1https://www.python.org/downloads/release/python-385/ (last visited 12-17-2020)

32

https://www.python.org/downloads/release/python-385/

4.1 Simulation Framework

The simulation allows to add different types of objects. They can be added to the simulation in
three different ways:

1. The standard method would be to place the new object randomly on the table. This can
happen with one single function call. Its position, orientation, size and color is randomized.
The shape depends on the type of the object. Section 4.1.3 elaborates further on the different
object types and how their initial positions, orientations and colors are determined.

2. The simulation also allows to add multiple objects with one single function call at once. It
works by continuously adding objects until the desired amount has been reached. However,
before adding a new object, its initial position, orientation, and size is used to compute
whether it collides with another object. If the object does not collide, it can directly be added
to the simulation. If the object does collide, a new random position, orientation, and size for
it will be computed until it mo longer collides with other objects, or a maximum number of
trials has been performed which stops the adding of new objects.

3. Similar to 2, but the height of the objects will also be randomized. Thus, this places multiple
objects in a certain height range over the center of the table. After all object positions have
been determined and the objects were placed in the simulation, the simulation will be run
for multiple steps. Meanwhile, a second function will continuously compute the sum of the
object base velocities. The simulation will stop if the base velocities have reached almost
zero, i. e., they have stopped moving. This simulates multiple objects being dropped on the
table. To prevent the objects from falling off the table and laying around on the ground, every
simulation step performs a check on the object positions and removes them if they are too far
away from the table.

Option 3, i. e., dropping the objects on the table, is the preferred way to add objects and resembles
best how the experiments are expected to look like in the real world.

Especially for round objects such as spheres, the dropping often causes them to roll of the table.
Therefore, before the dropping simulation, there are artificial walls created around the table in order
to stop the objects from falling off. Those walls are removed again when the objects have stopped
moving. Although the walls are invisible, removing them is needed, otherwise they would cast
shadows.

The simulation is supposed to generate multiple different scenes. A scene represents how the objects
are arranged in the simulation, i. e., their position and orientations, their color and texture, but also
the lightning conditions in the scene. To generate multiple scenes by using the same simulation, the
simulation implements a function that will remove all objects except the table, plane and the light
source, and allows to build a new scene.

As mentioned before, the generated data from a simulation comes in the form of so called samples.
A sample describes a scene from a specific camera perspective, which will be further explained in
subsection 4.1.2. Additionally, it contains a rendered image of a scene which is a snapshot of the
scene taken by a virtual camera as well as information about the objects seen in the image. The
perspective is defined by a view matrix and projection matrix and may change for every sample.
The simulation has a function to create such a sample for the current scene. It includes for instance,
a rendered RGB image, an associated segmentation mask, and a corresponding depth image.

33

4 Methods

Rendering may result in sharp edges or other artifacts. Hence, it is implemented that the images can
be generated with doubled resolution, but are afterwards downsampled using bi-linear interpolation
in order to smooth edges. The function also collects the other information contained in a sample,
such as, among other things, the objects states which hold the objects bounding boxes in image
coordinates (see subsection 4.1.3).

4.1.2 Sample

A sample is used to gather the data of a specific scene. The corresponding sample class has
functionality to encode and decode the sample objects to and from a disk. Thus, it is used to store
the collected data. As it was mentioned before, each sample object holds the information about a
certain scene from a specific perspective. Hence, it is possible to have multiple samples from the
same scene.

The specific data a sample holds is the following:

• A unique identifier which is a uuid4 string which uniquely identifies each sample. It is
also used in the file names when encoding and storing a sample to disk and allows to identify
the files that belong to the same sample.

• The width and height of the rendered image stored by the sample. Note that this is not
affected by oversampling.

• The encoded view and projection matrices that were used to render the image.

• The rendered RGB image.

• The associated segmentation image. It is of the same size as the other RGB and depth image.
At each of its image coordinates, it has the object id of the visible object at this coordinate as
integer pixel value.

• A corresponding depth image.

• A object state dictionary, i. e., a key-value mapping of the object ids in the segmentation
image to the corresponding objects states of the objects. The content of a object state is
further explained in subsection 4.1.3.

The simulation allows to generate such samples of scenes, yet they are still in memory. Therefore,
the sample class also contains the needed functionality to encode and decode a sample object to the
disk. A sample is encoded and stored in four different files:

• The samples information, except for the RGB, segmentation, and depth image, is encoded as
a json object and stored as sample_{uuid4}.json file. The json encoding is handled by a
specific SampleEncoder class, which is needed to handle more complex data such as the view
or projection matrix and the object states.

• The RGB image is saved as rgb_{uuid4}.png file.

• The depth image is saved as depth_{uuid4}.tiff which has the actual depth values in the
simulation, i. e., in units, encoded as 32 bit floating point pixel values.

34

4.1 Simulation Framework

(a) The different objects with simple geometry in
randomized shape and color on the table. From
left to right: Sphere, Cylinder (flipped), Pyramid,
Capsule (flipped), and Cube.

(b) The different objects with complex geometry in
randomized shape and color. From back left to
front right: spray flask, glass bowl, flower cup,
toothpaste, and wineglass.

• The segmentation image is saved as seg_{uuid4}.json file. The pixels are eight bit integer
values corresponding to the object ids of the objects in the RGB image.

Decoding a stored sample into a sample object is done by using the SampleDecoder class.

The sample class allows to load one or more samples in different ways:

1. Providing a path to a directory together with a given sample {uuid4}.

2. Providing the path to its .json file.

3. Providing a path to a directory which contains .json files of samples. This will return a list
of all samples that were stored in the specified directory.

The sample class also allows to store a single sample as well as to store a complete list of samples at
once.

4.1.3 Objects

The simulation supports different object types, each type has its own shape. There are a few basic
standard objects with shapes that exist in the PyBullet engine by default. It is possible to extent the
simulation with arbitrary objects whose shapes are determined by some mesh that can be loaded
into the simulation. For example, the shapes for the two table variations, were designed by using
Blender2. Most of the simple geometries have been already available in the simulation as they

2https://www.blender.org/ (last visited 12-17-2020)

35

https://www.blender.org/

4 Methods

are standard PyBullet shapes. All of the complex geometries come from external sources such as
blender. Note that multiple instances of the same object have the same overall shape but may be
scaled in different sizes or colored differently.

Each available object in the simulation has its own file that defines two classes: a base object class,
e. g., BaseCube, and a corresponding real object class, e. g., RealCube. Each base class inherits
from the BaseObject class, and each corresponding real class inherits from the RealObject class.
The base classes define the shapes of the objects as well as a static function which will return such
a new object instance with randomized position, orientation, size, and color. When a new object
is created, this static function is called. It then randomly selects the parameters defining the size
of the shape as well as its color, position, and orientation, from a specific range, and returns this
contained in a base object instance. Note that the base object instance has not been added to the
simulation yet. However, the base object instance is used to define a corresponding real object
instance which adopts and realizes the information in the base object by placing it in the actual
simulation. The real instances hold the information about such objects after they have been added
to the simulation. As the position and orientation may change per object, the corresponding real
class provides functionality to access the current position and orientation of the object. This for
instance, allows to compute the bounding boxes of the objects. Real object instances also hold the
object id which identifies the object in the simulation and in the segmentation image, see 4.1.2.

Simple Geometries

The following lists the objects defined to have simple geometries.

• Sphere - a standard PyBullet geometry. Its size is defined by a radius.

• Cube - a standard PyBullet geometry. Its size is defined by a extent in each axis direction.

• Cylinder - a standard PyBullet geometry. Its size is defined by a length and radius value.
It may be flipped, i. e., with a 50% probability the cylinder is placed vertically instead of
horizontally.

• Capsule - originally a standard PyBullet geometry but due to false rendering it was remodeled
with blender. Its mesh can be scaled in length and radius similar to the Cylinder. It also
may be flipped.

• Pyramid - a mesh designed via blender. Its mesh can be scaled in length, width, and height.

Figure 4.2a displays the different available simple geometries.

Complex Geometries

The shapes of the objects with complex geometries are all defined by meshes. The available complex
geometries originate from [15] and are the following:

• Spray Flask - its shape is defined by as mesh. Its mesh can be scaled in width and height.

• Glass Bowl - its shape is defined by as mesh. Its mesh can be scaled in width and height.

• Flower Cup - its shape is defined by as mesh. Its mesh can be scaled in width and height.

36

4.1 Simulation Framework

• Toothpaste - its shape is defined by as mesh. Its mesh can be scaled in width and height.

• Wineglass - its shape is defined by as mesh. Its mesh can be scaled in width and height. It
may be flipped upside down with a 50% chance.

Figure 4.2b displays the different available complex geometries.

Object State

A sample contains a {object id: object state} mapping. Each object instance in the rendered
image has an unique object id. This is also used in the segmentation image to indicate where
the objects / instances are located. Every real object has an object state which can be retrieved
via a function and gives information about the object in the current simulation regarding size and
orientation. Simultaneously, it includes the information of the base object. An object state

contains the following information:

• The position of the object in world coordinates when the state was retrieved.

• The orientation of the object w.r.t. the world origin when the state was retrieved.

• The size of the object (the same as for its base object).

• The color of the object (the same as for its base object).

• The x, y, width, and height of the object’s bounding box in image coordinates with floating
point precision.

• The image frame points of the object, if they were computed (see below for a description).

• The object’s segmentation mask in run-length encoding (RLE)3.

The most relevant information in an object state is the computed bounding box as well as
the segmentation mask of the corresponding object instance. They are part of the ground truth
annotations of a sample, and are computed by the simulation during the generation of a sample.
Note that objects which are not visible in the rendered image, i. e., their bounding box is outside the
image bounds or its visible area is zero, will not be included in a sample.

Bounding Box Computation

The simulation allows to compute the axis aligned bounding box of an object in two different
ways.

The first, more complex approach defines points on an object that form a convex hull and tightly
encompass the object. These are the so called frame points. They are defined in the objects local
coordinate system, but can be mapped to world coordinates with the knowledge about the world
position and orientation of the objects. Furthermore, knowing the view and projection matrix, those

3https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py (last visited 12-17-2020)

37

https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py

4 Methods

(a) (b)

Figure 4.3: In the left image, frame points are projected on each object to encompass its convex
hull. These are then projected on the image and used to compute the bounding boxes.
In the right image however, the segmentation mask of each object is used to compute its
bounding box. Thus, only the visible parts of the objects contribute to the computation
of the bounding boxes. Note, how the bounding box of the pink pyramid between the
two cylinders differs between the images.

can then be mapped to image coordinates. By using these image coordinates, the bounding box of
an object can be computed by taking the minimum and maximum values of all the points w.r.t. the
x- and y-axis.

The second approach, which is easier and independent to the shapes of the objects, is to compute
the bounding boxes given the segmentation image. The segmentation image is returned by default
and the object id is known for every object, therefore it is easy to extract the segmentation mask
per object. Assuming the segmentation mask represents frame points in image coordinates, the
bounding box can be computed in the same way as in the first approach. The computation of
bounding boxes via segmentation masks is independent to the shapes of the objects. Therefore, this
is the preferred way of computing the bounding boxes.

The only difference in the result of both approaches is that the first approach does not consider
overlapping objects during the computation of bounding boxes. Thus, even if the object would be
partially or completely occluded by other objects, its bounding box would still be computed as if
there were no other objects. The second approach does compute the bounding box only w.r.t. the
visible pixels of the object. Figure 4.3 illustrates how the two approaches differ in the resulting
bounding boxes.

38

4.1 Simulation Framework

4.1.4 Data Generation

The main purpose of the simulation is to generate data for training, validation, and testing of
supervised learning models. As described in subsection 4.1.1, the simulation is able to generate
scenes and to sample them. In subsection 4.1.2, it was shown that these samples contain the rendered
images and objects states. Subsection 4.1.3 have shown, that these object states contain the
bounding boxes and segmentation masks for the objects in the scene. Hence, w.r.t. the task of object
detection, the encoded samples include the input and expected output pairs of an object detection-
as well as an instance segmentation algorithm and form the data needed to train, validate, and test
those algorithms.

For this purpose, there exist different utility functions that can interact with the simulation. There
also exists the concept of so called scene functions which generate a random scene each time they
are called.

Utility

The utility functions enable to generate a complete dataset consisting of a training, validation, and
test set. The overall data is split by default into 80 percent training data, 10 percent validation
data, and another 10 percent test data. The corresponding function can be called with a directory
path to where the data should be saved, a scene function, a total amount of scenes, and an
amount of how many times each scene should be sampled. Thus, the total amount of samples is:
𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑠𝑐𝑒𝑛𝑒𝑠 × 𝑎𝑚𝑜𝑢𝑛𝑡_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑝𝑒𝑟_𝑠𝑐𝑒𝑛𝑒, which will be divided into
train, validation, and test set. For each of those sets, a function is called which generates the
corresponding portion of samples. This works as follows:

1. Define the middle of the table, here this is the world origin.

2. Create a simulation object. This starts the simulation and connects its physic client to the
PyBullet physic server. It is done in DIRECTmode, consequently there is no GUI and rendering
of the images will be performed using a ER_TINY_RENDERER instead of an OpenGL Renderer.

3. For the expected amount of scenes:

a) The scene function is called, which creates a new scene by adding objects or changing
textures. The scene function returns the parameters that define the random ranges for
the creation of the view matrix.

b) For the expected amount of samples per scene, a new random view matrix is created
and the scene is sampled out of this perspective.

c) The samples are encoded and saved in the previously provided directory.

d) The scene is cleared, i. e., all created objects from the scene function will be removed.
Texture changes persist but can be overwritten by the next call to the scene function.

The view matrix is computed via a camera position, a target position, and a camera up vector. The
𝑢𝑝-vector is always the same and it points upwards, parallel to the z-axis, i. e., ®𝑢 = (0, 0, 1)𝑇 . The
camera position and target position are sampled from the ranges returned by the scene function.
The middle of the table as well as a random offset that is sampled from the given range is used as

39

4 Methods

Figure 4.4: The different textures available in the simulation.

target position. The camera position is computed via a specific distance to the target and a direction
vector from the target to the camera. Distance and direction are again sampled from a given range,
but the direction is always set to point slightly upwards in order for the camera position to be above
a specific minimum height value. Hence, the camera is always directed downwards.

Another utility function generates random lightning coefficients, which specify the ambient, diffuse,
and specular lightning conditions for the light from the single light source.

Scene Functions

As described before, the generate data utility functions take a scene function as argument. Scene
functions are supposed to generate a new scene in the simulation when they are called, and they
return the ranges to sample the view matrix parameters. A scene function gets the simulation as
argument and has full control over the simulation. It can add and remove objects; load and apply
textures; change colors or positions; run multiple simulation steps, e. g., when dropping objects;
configure the lightning conditions and define the ranges for sampling the view matrix. Hence, the
scene function defines how the created dataset is going to look like.

4.1.5 Domain Randomization Techniques

The previous subsections illustrate most of the possibilities, the simulation has to offer. They
have been designed to suit different domain randomization techniques. This subsection quickly
summarizes them.

The scene always consists of a bottom plane, which represents the ground, and a table which stands
on top of it. The table exists in two variations as shown in figure 4.1, one variation with only one
stand in the middle but with rolls at the footing, and the other variation with four table legs, one at

40

4.2 Model Research

every corner. All objects can have textures applied but this will only be done to the table and the
bottom. There are 16 different textures available which are shown in figure 4.4. The simulation
offers five object types with simple a geometry. These are: sphere, capsule, cylinder, cube, and
pyramid, shown in figure 4.2a. It also offers five object types which have a rather complex geometry.
These are: spray flask, toothpaste, glass bowl, flower cup, and wineglass, shown in figure 4.2b. One
or more instances of these objects can be put in arbitrary positions and orientations. They can even
be put above the table to simulate them dropping down. Their sizes are adjusted randomly and each
instance has a random color assigned to it. The lightning conditions are randomized. Shadows are
always set to be enabled. However, the PyBullet rendering engine renders in few cases none or false
shadows with artifacts. There is one light source, its position, direction and color is randomized.
Its ambient, diffuse, and specular light coefficients are also randomized. The rendered images are
taken by a virtual camera whose position and orientation is randomized. However, it always points
roughly in the direction of the table’s center, and its position is at least slightly elevated. Section 5.1
presents examples of differently generated artificial datasets and how their randomized scenes look
like.

4.2 Model Research

The used models in this thesis were implemented, trained, and evaluated with the help of the
Detectron2 [33] framework. Detectron2 is a software system, which has been developed by Facebook
AI Research, and it implements various state-of-the-art object detection algorithms. The framework
has been written in the programming language Python. It is based on the PyTorch [21] deep learning
library and is compatible to its concepts. PyTorch is a deep learning library that allows to utilize
GPUs and CPUs for tensor computations. A tensor in PyTorch “is a multi-dimensional matrix
containing elements of a single data type.” [21] A usual image has three channels, one for red,
green, and blue respectively. In PyTorch, a tensor containing such an image of width𝑊 = 512 and
height 𝐻 = 512 would have a shape, i. e., dimensionality of (3, 512, 512), hence more generally:
(𝐶, 𝐻,𝑊), where 𝐶 = 𝑎𝑚𝑜𝑢𝑛𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠. In the following, the ’size’ of a tensor will refer to
its width and height dimension, if not otherwise specified. Multiple images (or other data) can
be gathered in a batch. If the images or the data have the same dimensions, such a batch can be
represented in a single tensor of shape (𝑁,𝐶, 𝐻,𝑊), where 𝑁 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒.

The detectron2 framework can be used as a Python module, i. e., as library. Its concepts and
components were designed to be both, easy to use, and highly customizable. State-of-the-art models,
such as the Faster R-CNN or Mask R-CNN, are supported in a generalized form which enables them
to be easily modified, see subsection 4.2.2. Hence, this library has been chosen to serve as a tool in
this thesis to implement the training, testing, evaluation, and visualization of the models, as well as
the models themselves.

Subsection 4.2.1 is about configurations in detectron2. They allow to separate different models by
writing the construction plan for the model, as well as the settings for its training, testing, evaluation
and visualization in one configuration file per model. Almost all components in detectron2 are
configurable via key-value pairs in a configuration file.

41

4 Methods

Subsection 4.2.2 explains detectron2’s concept of the generalized r-cnn, which allows to easily
exchange or modify specific parts of a two-stage r-cnn network without changing the rest. All
evaluated models were trained as an instance of a generalized r-cnn, except for the auto-encoder, see
subsection 4.2.2.

The data used for training, testing, and evaluation is loaded via so called Dataloaders which are
covered in subsection 4.2.3. Dataloading takes care of mapping the original data to the expected
input format of each model. Dataloading also takes care of applying online augmentations to the
data. However, dataloaders work only for data that has been registered to the framework. To register
data to the framework, it has to be of a specific format, which is also covered in this subsection.

The standard training loop which will be used for the training of each of the models is described
in subsection 4.2.4. Subsection 4.2.5 describes the evaluation process of the models including the
different metrics that are evaluated.

4.2.1 Configurations

Configuration files play an important role if several different models have to be evaluated. They
allow to define arbitrary parameters which often change during the development, training, testing,
and evaluation of different models. Consequently, configuration files allow to keep track of different
model versions and to keep the different model configurations separated from each other. This
makes it easy to try out multiple different approaches without changing the code of the training or
evaluation pipeline.

Almost all components which are implemented in the detectron2 framework are configurable via a
configuration file4. This thesis uses configuration files to define the different models. In addition to
the default configuration keys that are being used from the detectron2 framework, several custom
keys have been added to configure the customized augmentations during data loading, and to
allow the loading of weights for the backbone model, e. g., when using the encoder backbone, see
subsections 4.2.3 and 4.2.2 respectively. In addition, a key has been added to specify that a depth
image is part of the model input.

The configuration settings that affect the training and evaluation of the different models, and those
which vary between the models are specified in section 5.2. Common configuration settings which
do not change among the evaluated models are covered in the following subsections.

4.2.2 Generalized R-CNN

Detectron2 defines so called Meta Architectures. A meta architecture represents a specific type of
model. The meta architecture defines of what different components a model consists, and how they
interact with each other. The components may be exchanged or configured individually.

One such meta architecture in detectron2 is the generalized r-cnn. It is defined to consist of three
components.

4The configuration reference for the standard detectron2 config keys. https://detectron2.readthedocs.io/modules/
config.html#config-references (last visited 12-17-2020)

42

https://detectron2.readthedocs.io/modules/config.html#config-references
https://detectron2.readthedocs.io/modules/config.html#config-references

4.2 Model Research

Figure 4.5: The architecture of a generalized r-cnn. The modules Backbone, RPN, and RoI Heads are
configurable and even completely exchangeable.

1. A backbone which is used for the feature extraction per image. It is usually a convolutional
neural network which outputs feature maps, see subsection 4.2.2.

2. A region proposal network (RPN) which generates the region proposals / region of interests.
The implementation used here is the same as it is used in the Faster R-CNN and Mask R-CNN
which is described in subsection 3.2.5. However, it is configured slightly differently.

3. A module which extracts the features for each region of interest, and computes the predictions
on those using possibly multiple prediction heads. The implementation of this module is
again similar to the Mask R-CNN, see subsection 3.2.6. This module is called RoI Heads.

The generalized r-cnn represents two-stage models. The backbone and the RPN form together the
first stage. The RoI Heads represents the second stage.

Evaluating the model will do the following:

1. Take a list of input images and preprocess them. Preprocessing normalizes the batch of
images and pads the possibly different-sized images to the same size in order to form a single
image tensor. This padding respects the size divisibility of the backbone, thus, the images are
always padded to a size which is divisible by the stride of the backbone.

Normalization is done by subtracting the mean pixel value and dividing by the pixel
standard deviation, i. e., 𝑖𝑚𝑎𝑔𝑒 := (𝑖𝑚𝑎𝑔𝑒−𝑚𝑒𝑎𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒)

𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 , where subtraction and division
is a per-pixel operation, and 𝑚𝑒𝑎𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 and 𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 are vectors
containing the mean and standard deviation per color channel respectively.

2. Extract features from the images by using the backbone.

3. Use the region proposal network to compute region proposals (region of interests) on the
features from the backbone.

4. Compute arbitrary predictions given the features from the backbone and the RPN region
proposals using the RoI Heads module per region of interest. Possible predictions are the
following: box, classification, and or segmentation mask predictions. The predictions for one
roi is summarized in a so called instance object.

5. Postprocess the instances and scale the predictions back to the target input sizes.

43

4 Methods

Figure 4.5 illustrates the steps involved of evaluating a generalized r-cnn.

All the evaluated models were trained as instances of a generalized r-cnn but differ in the used
backbones and their initialization. See subsection 4.2.2 for the different backbone architectures
and 5.2 for the different model configurations. Additionally, the predictions of the RoI Heads will
be omitted in some cases in order to evaluate how good the original region proposals already are.
Thus, those which are evaluated without the RoI Heads predictions can be considered as one-stage
models.

Backbones

There are different backbone architectures that are used to train, evaluate, and benchmark the
generalized r-cnn. These are the ResNet50, theVGG16, and the encoder part of a simple auto-encoder.
The results can be seen in section 5.2.

The backbones have different architectures which result in a different amount of resulting feature
map channels. The networks differ also in their overall stride, which determines the down sampling
factor of the size of the resulting feature map compared to the input size. However, they are all fully
convolutional and accept input of any size. Note that ’size’ in this context always refers to the width
and height dimension of the features, not the amount of channels. Furthermore, the input images
have usually three channels as they are mostly RGB images and a specific convolutional layer can
only accept a specific amount of channels. Some datasets which are going to be used for training
and evaluation have a different amount of channels, e. g., an extra channel for depth information.
The backbones are then modified in a way they can still accept this kind of data. This can be done
by exchanging their first convolutional layer through an almost identical layer which accepts the
expected amount of input channels. This causes the filters of the first convolutional layer to have a
different shape, i. e., a different amount of weights, the possibly pretrained weights of a network
that used to accept a different amount of channels cannot be used in this layer, and the weights of
the first convolutional layers have to be initialized by random.

ResNet50

The ResNet50 [10] is a residual network architecture with a depth of 50 convolutional layers. It is
a ’very deep convolutional neural network’ and has great success in various image classification
competitions. As mentioned in section 3.1.1, deep networks have to deal with the problem of
vanishing gradients due to the multiplications at each layer. Residual networks tackle this problem
by introducing so called skip connections, which allow the gradient to flow through the shortcuts,
and therefore prevent it from vanishing. Additionally, skip connections ensure that features extracted
by lower level layers are at least as good as features extracted by higher level layers. This is possible
because the network is allowed to learn identity functions where the input passes through by using
the skip connection and ignores the regular layers.

5https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33 (last visited 12-17-
2020)

44

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

4.2 Model Research

(a) A resnet convolutional block with skip con-
nection. The input and output dimensions
may be different.

(b) A resnet identity block with skip connection.
The input and output dimensions stay the
same.

(c) The ResNet50 stages built with identity and convolutional blocks.

Figure 4.6: Illustration of the ResNet50. Subfigure 4.6c shows the ResNet50 with its different
stages. The stages consist of (4.6b) identity- and (4.6a) convolutional blocks5.

ResNet50 consists of multiple stages which are illustrated in figure 4.6c. The first stage is special, let
it be called the ’stem’ of the residual network. It consists of one convolutional layer which is followed
by a batch normalization, ReLU activations, and finally a max pool layer. As it was mentioned
before, this stage can be built to accept any number of input channels. The stem is configured to
output a 64 channel feature map. The second stage is configured to accept the 64 channel features
and to output a 256 channel feature map. The following other stages each consist of a convolutional
block followed by multiple identity blocks. The amount of identity blocks varies among the stages.
Stage three, four, and five reduce the width and height dimension of its input features by a factor of
two. However, they double the amount of input channels. Hence, they each effectively reduce the
amount of total features by a factor of 2.

An identity block performs three convolutional layer operations as shown in figure 4.6b. Each
convolutional layer is followed by a batch normalization layer and a ReLU activation function.
Identity blocks do not alter the input’s dimension. Therefore, the skip connection can be used to
directly transfer the input to the output by a simple element-wise addition with the result of the
skipped layers.

A convolutional block, as shown in figure 4.6a, is basically the same as an identity block. However,
it does alter the dimension of the input. As the input can no longer be added directly to the output
because the dimensions do not match, the skip connection needs a convolutional layer of its own to
make the dimensions match.

The implementation of the ResNet50 in the detectron2 framework allows to use the output features
of any of the five stages. However, only the output features of the fourth stage are used, which
is referred to as ResNet-C4 backbone in the original Mask R-CNN paper [9]. Note that in this
implementation, the fifth stage is still used to further process the pooled region of interest features
w.r.t. the predicted region proposals, see subsection 4.2.2. The ResNet50 backbone, given that the
final output are the features of the fourth stage, has a stride of 16 and outputs a 1024 channel feature
map at the fourth stage. As it was mentioned in subsection 3.2.2, a stride of 16 means that the
resulting feature map’s width and height dimension is 16 times smaller than the width and height
of the input. Furthermore, the ResNet50 stages are configured to use frozen batch normalization

45

4 Methods

Figure 4.7: The VGG16 architecture.6Only the first few layers are part of the backbone, the rest is
ignored. The third max pooling layer is marked blue. It is the last layer that will be
included in the backbone and thus, it will produce the backbone’s output.

layers, i. e., the batch normalization parameters are not learnable but fixed. Hence, if weights of a
pretrained model are used for initialization, these parameters will stay the same during training.
Here, for a randomly initialized model, a batch normalization layer does only normalize but does
not denormalize.

VGG16

The VGG16 [28] is a rather traditional convolutional neural network. It has no skip connections
like the ResNet50 does. It was designed for the task of image classification and was state-of-the-art
when published. Its architecture consists of multiple convolutional layers, each followed by a
ReLU activation function, and multiple max pooling layers to reduce the size of the input. For
image classification, its convolutional layers are followed by multiple fully connected layers. Its
architecture is illustrated in figure 4.7. Due to the fact that its convolutional layers are followed by
fully connected layers, the image expects a fixed sized input. In the original VGG16, images has to
be of size 224× 224× 3. However, similar to the ResNet50 backbone, the fully connected layers are
not used here, which enables the network to process the input independent of the size.

6https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33 (slightly modified)
(last visited 12-17-2020)

46

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

4.2 Model Research

Figure 4.8: The architecture of the auto-encoder.7The encoder part on the left is blue underlined
and its layers are prefixed with ’enc_’. The decoder part on the right is green underlined
and its layers are prefixed with ’dec_’.

As shown in figure 4.7, only the layers up to and including the third max pooling layer are used as a
backbone. The convolutional layers do not alter the input’s width and height. This backbone has a
stride of 8 and produces a 256 channel feature map. Note, that the original VGG16 accepts RGB
images with three channels. However, the first convolutional layer can be exchanged to accept a
different amount of channels.

Auto-Encoder

While the ResNet50 and the VGG16 were designed for the task of image classification, an auto-
encoder is designed for the task of image encoding and decoding, see subsection 3.1.2. In order to
evaluate how a different type of pretrained model performs as backbone in the generalized r-cnn
for the task of object detection and instance segmentation, a simple auto-encoder architecture has
been developed. It consists of an encoder and decoder part, shown in figure 4.8. Similar to the
generalized r-cnn, it is defined to be a meta architecture.

It works as follows:

1. Take a list of input images and preprocess them. This step is similar to the preprocessing in
the generalized-rcnn. It performs a normalization and padding of the images, which results in
a batch of images which are stored in a tensor.

2. Compute the features with the encoder part.

3. Compute the still normalized reconstructed images with the decoder part.

4. Postprocess the reconstructed result and perform denormalization by multiplying with the
standard deviation and adding the pixel mean, i. e., 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 ∗
𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑑 + 𝑝𝑖𝑥𝑒𝑙_𝑚𝑒𝑎𝑛. Finally, the pixel values are clipped to a range of [0, 255], in order
to be in valid color ranges.

7created using: http://alexlenail.me/NN-SVG/AlexNet.html (last visited 12-17-2020)

47

http://alexlenail.me/NN-SVG/AlexNet.html

4 Methods

(a) The specification of the layers in the auto-encoder.
Padding mode ’reflect’ means that the image is
mirrored at the edges as padding. Groups with a
value of one is the standard convolutional opera-
tion, where all inputs are convolved to all outputs.
For the down and upsampling layers, groups is
equal to the amount of channels, which means that
there is a separate set of filters per channel8.

(b) The left shows a classical 2d convolution operation
with a filter size and stride of two. This results
in downsampling with a factor of two. The right
shows a 2d transposed convolutional operation,
again with a filter size and stride of two. This
results in an upsampling operation with a factor
of two.

Figure 4.9

Note that the original and postprocessed reconstructed images are used to compute the loss, not
their normalized representations.

The auto-encoder is trained using a reconstruction loss between the original and the reconstructed
image. In this case, the reconstruction loss is the mean squared error. Let the original image be 𝐼
and the reconstructed image be 𝐼, then the mean squared error is computed as:

(4.1) 𝑀𝑆𝐸 (𝐼, 𝐼) = 1
𝑛
∗

𝑛∑︁
𝑖=1

(𝐼𝑖 − 𝐼𝑖)2

Here, 𝑛 is the total amount of elements in the input. If the input is a batch of images 𝐼𝐵, the loss 𝐿
will be computed as:

(4.2) 𝐿 (𝐼𝐵, 𝐼𝐵) =
1
𝑁

∗ 𝑀𝑆𝐸 (𝐼𝐵𝑖, 𝐼𝐵𝑖)

𝑁 denotes the amount of images in the batch.

Figure 4.8 shows the complete auto-encoder architecture. The encoder part consists of a total of
five convolutional layers. Each convolutional layer, except for the last output layer of the encoder
(enc_conv3), is followed by a ReLU activation. The first convolutional layer takes a batch of images.
In this case with three input channels and outputs a feature batch with 64 channels, yet the size is
preserved. The second layer is used to downsample the size by a factor of four. It uses a stride of
four and a kernel size of eight. The third layer doubles the amount of channels, yet again preserves
the size, whereas the fourth layer reduces the size by a factor of four, similar to the second layer.
The fifth layer again doubles the amount of channels, thus the encoder outputs a feature map with
256 channels and has a total stride of 16.

The decoder part also consists of a total of five convolutional layer. Again, each layer except the last
(dec_conv3) is followed by an ReLU activation. Its layers are basically the encoder but back-to-front
instead. The first and third layer decrease the amount of channels by a factor of two, and the

8https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d (last visited 12-17-2020)

48

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

4.2 Model Research

second and fourth layer upsample the size of the input by a factor of four. The last layer takes the
64 channel input map and outputs the reconstructed normalized image with three channels. The
exact specification of each layer in the auto-encoder is represented in figure 4.9a.

While the first, third, and fifth layer perform normal convolutional operations, the upsamling of the
second and fourth layer occurs by performing a transposed convolution. The transposed convolution
simulates a deconvolution operation, i. e., the inverse of the convolution operation. It takes the
input feature map and slides a filter over it, similar to the regular convolution. However, at each
position on the feature map, only the value at this position is used to multiply with the weights of
the filter, which gives the output. Hence, this does not result in one single value but in a field of
values in the size of the filter, in which each position in this field corresponds to a weight of the
filter multiplied with the single feature value. A stride specifies how many steps this field moves on
the output feature map for every step of the filter on the input feature map. Figure 4.9b compares
regular 2d convolution with 2d transposed convolution.

Note that by simply changing the first layer of the encoder and the last layer of the decoder, the
architecture can be modified to accept any amount of input channels and produce the same amount
for reconstruction in the output layer.

Only the encoder part will be used as a backbone for the generalized r-cnn.

RPN

The region proposal network used by the generalized r-cnn models is generally the one used by the
Mask R-CNN model. However, it has been slightly modified.

The RPN implementation in detectron2 is also a meta-architecture. It consists of two modules: a
module for anchor generation, the anchor generator, and a module for predicting the objectness
scores and anchor deltas, the RPN head. The anchor deltas correspond to the region proposal
encoding that were mentioned in subsection 3.2.5, and are used to decode or alter the generated
anchors which yield the actual region proposals.

The RPN head is used to predict the region proposals. It is very thin and consists of three
convolutional layers in total. The first convolutional layer generates a hidden representation of the
input features. It is followed by two parallel convolutional layers, of which each takes the hidden
representation of the features. One predicts the objectness scores per anchor, and the other one
predicts the anchor deltas. Note that both are evaluated only once, thus, they predict the objectness
score and anchor deltas for all anchors at once. Suppose there are 𝑘 reference anchors, then the
convolutional layer for objectness scores prediction produces a 𝑘 channel output of the same size
as the feature map, and the convolutional layer for the anchor deltas prediction produces a 𝑘 ∗ 4
channel output which is also of the same size as the feature map. Note that in contrast to the RPN
description of the Faster R-CNN in subsection 3.2.5, the implementation here only predicts one
objectness score per region proposal. Hence, the objectness ’classification layer’ has only 𝑘 outputs,
i. e., channels, instead of 2 ∗ 𝑘 .

The evaluation of the overall RPN works as follows:

1. Take the feature map output of the backbone as input.

49

4 Methods

2. Use the anchor generator to generate 𝑘 anchor boxes per feature map position. The amount
of anchors, i. e., 𝑘 , results from the different defined anchor sizes and aspect ratios, and is
computed as 𝑘 = 𝑛𝑢𝑚_𝑠𝑖𝑧𝑒𝑠 ∗ 𝑛𝑢𝑚_𝑎𝑠𝑝𝑒𝑐𝑡_𝑟𝑎𝑡𝑖𝑜𝑠.

3. Predict objectness scores and anchor deltas using the RPN head.

4. Decode the anchors using the predicted anchor deltas which yields preliminary region
proposals.

5. Select a specified amount of top region proposals:

a) Sort the preliminary region proposals by their objectness score in descending order.

b) Select the 𝑝𝑟𝑒_𝑛𝑚𝑠_𝑡𝑜𝑝𝑘 proposals and discard the others.

c) Run non-maximum suppression (NMS) on the remaining proposals.

d) Sort the remaining proposals again by their objectness score and return the top
𝑝𝑜𝑠𝑡_𝑛𝑚𝑠_𝑡𝑜𝑝𝑘 .

The anchor generator which is used here has been configured to use four different sizes, i. e.,
𝑛𝑢𝑚_𝑠𝑖𝑧𝑒𝑠 = 4, where the sizes are 32, 64, 128, and 256. The sizes correspond to the square root of
the area of the generated anchors in image coordinates. For each size, the anchor generator generates
anchors with aspect ratios: 0.5, 1, and 2, i. e., 2 : 1, 1 : 1, and 1 : 2 respectively. Hence, here
𝑘 = 𝑛𝑢𝑚_𝑠𝑖𝑧𝑒𝑠 ∗ 𝑛𝑢𝑚_𝑎𝑠𝑝𝑒𝑐𝑡_𝑟𝑎𝑡𝑖𝑜𝑠 = 3 ∗ 4 = 12. Furthermore, 𝑝𝑟𝑒_𝑛𝑚𝑠_𝑡𝑜𝑝𝑘 has been set to
be 12000 during training and 6000 during testing. The 𝑝𝑜𝑠𝑡_𝑛𝑚𝑠_𝑡𝑜𝑝𝑘 has been set to 128 during
training and to 16 during testing. The threshold for NMS is set to be 0.7. This is the intersection over
union (IoU) threshold for discarding region proposals during NMS, see subsection 3.2.2 and 3.2.5
respectively.

Note that only a sampled subset of the generated anchors is used to train the weights of the RPN head
and the associated backbone in each training iteration. Here, the subset is of size 256 proposals per
image and is sampled in a way that a fraction of approximately 50 percent consists of region proposals
labeled as foreground, and the other 50 percent consists of region proposals labeled as background.
Region proposals are labeled as foreground if they have an 𝐼𝑜𝑈 > 0.7 with a ground-truth box. If
there is no ground-truth box such that they have an 𝐼𝑜𝑈 >= 0.3, they will be labeled as background
instead. Proposals that can neither be labeled foreground nor background are completely ignored
during the training of the RPN. The RPN contributes to the overall loss of the generalized r-cnn with
a L1 regression loss on the anchor delta predictions w.r.t. the corresponding ground-truth deltas,
and a binary cross entropy loss on the objectness score predictions w.r.t. the ground truth labels.
However, this loss is computed w.r.t. the sampled subset of the generated anchors / proposals and
only affects the weights of the RPN head and the backbone during optimization. It does not affect
the weights of the following RoI heads.

ROI Heads

The RoI Heads module performs all per-region computations of the generalized r-cnn. Here, it
performs the following steps:

50

4.2 Model Research

1. Only during training: similar to what the RPN does during training, the predicted proposals
given from the RPN are labeled as foreground and background proposals, and sampled here
for a total of 512 proposals per image, so that a fraction of 25 percent is labeled as foreground
and the rest is labeled as background. Here, the threshold for the IoU between a predicted
proposal and a ground-truth box to be labeled as foreground is 0.5. Proposals which have no
IoU with a ground-truth box greater than 0.5 are labeled as background.

Note that during testing, the following computations are done on all predictions which result
from the RPN. Furthermore, the RoI Heads will only consider proposals with a confidence
score greater equal 0.2 in order to reduce the amount of false positives during evaluation.

2. Crop the regions and pool the region of interests, i. e., this extracts the per-region features
from the feature map generated by the backbone.

3. Perform the per-region predictions for each of the heads. Here, two different heads are used,
one box predictor head which predicts bounding boxes and classes, and one mask head
which predicts the segmentation masks. The box predictions of the RoI Heads undergo
non-maximum suppression like for the RPN before they are returned, which should remove
remaining overlapping proposals. The threshold for here is set to 0.5.

Note that heads used here have been configured to predict only w.r.t. one ’object’-class or
background, i. e., the predictions are class agnostic.

The pooling operation is RoI Align v2. It returns fixed sized feature maps of 14× 14 resolution, see
subsection 3.2.2. RoI Align v2 is the similar as RoI Align, yet the pixels are shifted by 0.5 for a
better alignment of neighboring pixel indices9. The pooled region features have a fixed size and
are further processed by the fifth stage of the ResNet50 before they serve as input for the different
heads. Thus, the heads do share feature computations per region of interest which is illustrated in
figure 3.10. The features produced by the fully convolutional fifth stage of the ResNet50 corresponds
to the RoI feature vector of the Fast R-CNN head in figure 3.8.

The box predictor consists of the two fully connected layers. These are the layers that follow the
RoI feature vector in figure 3.8. One layer for class predictions, and one layer for bounding box
regression which again predicts box deltas w.r.t. the region proposals. Note that the RoI Heads have
only one object class to predict, which is ’Object’, as they are class agnostic. This means that the
classification layer has only two outputs, one for ’background’ and one for ’Object’. Analogous, the
bounding box regression layer has only four outputs because it predicts the box deltas for only one
class.

Similar to the RPN, the box predictor contributes with two losses to the overall generalized r-cnn
loss. One cross entropy loss computed on the class predictions, and one L1 regression loss w.r.t.
the box deltas and region proposal.

For the ResNet50 backbone, the output of the fourth stage is a 1024 channel feature map, which
is then accepted by the fifth stage in the RoI Heads. However, using the VGG16 or the encoder
part from the auto-encoder as backbone instead, yields only a 256 channel feature map. Therefore,
instead of taking the fifth stage of the ResNet50 for the shared feature computation in the RoI Heads,

9RoI Align v2 equals the PyTorch RoI Align implementation with aligned=True. https://pytorch.org/docs/stable/
torchvision/ops.html#torchvision.ops.roi_align (last visited 12-17-2020)

51

https://pytorch.org/docs/stable/torchvision/ops.html#torchvision.ops.roi_align
https://pytorch.org/docs/stable/torchvision/ops.html#torchvision.ops.roi_align

4 Methods

in these cases, the fifth stage of the ResNet18 is used instead. This stage accepts a 256 channel
feature map. Due to it being a ResNet18 block, it consists of blocks that only have two convolutional
layers instead of three. Furthermore, the fifth stage of the ResNet18 consists of one convolutional
block followed by two identity blocks instead of three identity blocks, as it would be the case for the
fifth stage of the ResNet50.

Note that the computed losses during training do not contribute to the weight updates of the RPN
and the backbone. They only affect the trainable weights of the fifth stage of the ResNet50 (or
ResNet18) and the layers of the box and mask head. Hence, even though the total loss of the
generalized r-cnn is the sum of the intermediate losses from the RPN and the losses from the RoI
Heads, the weights of RPN and backbone are updated and therefore trained separately to the weights
of the RoI Heads during the optimization of the total loss.

4.2.3 Dataloading

Loading the data for training and evaluating models consists of two steps.

1. Register the dataset and its metadata to the detectron2 framework. Note that the dictionaries
do not contain memory expensive information, such as the data of images, but only reference
the filenames of the images on the disk.

2. Create a dataloader object which takes the information from a registered dataset and provides
the actual input to the models. The dataloader can modify the data during loading with a data
mapper, e. g., apply augmentations, see subsection 4.2.3.

In the configuration file, it can be specified which datasets are to be used for training and which for
the evaluation of a model. An additional key in the configuration file also specifies whether to merge
the classes when registering a dataset or not. Here, all models do class agnostic prediction, i. e.,
they only know the classes ’Object’ and ’Background’. Thus, the different objects are all merged to
one ’Object’ class.

Step 1 registers the datasets using a function ’load_data_set’ which can read the data and returns it
in the expected format of the framework. It also registers the corresponding metadata for the dataset.
Note that if a dataset consists of a train, validation, and test set, each set is here considered to be a
single dataset. Therefore, the registration of a ’complete’ dataset consisting of a ’train’, ’val’, and
’test’ set, as generated by the simulation (see subsection 4.1.4), is done by registering each of these
sets as a different dataset. Datasets need to be registered before a dataloader can access them.

A registered dataset is a list containing the data elements, in which each data element is represented
as a dictionary (key-value mapping). The metadata of a dataset is also a dictionary. It contains a list
of object names, a list of object colors for the visualization of the predictions, and a mapping from
the object ids in the dataset to the internal ids of the classes that correspond to the model outputs.
However, since there will be only one class to predict, the names list only contains ’Object’, the
corresponding color is yellow, and the object id is just ’0’, whereas background will have the id ’1’.
Once a dataset is registered to the detectron2 framework, it can be accessed by a dataloader in order
to produce the inputs for the model during training or evaluation.

52

4.2 Model Research

All raw data comes in the form of samples, see subsection 4.1.2, as it was either generated as samples
by the simulation or transformed to the sample encoding, if it came from another source, e. g., the
real data. Hence, the ’load_data_set’ function operates with samples. It loads all samples, which
are stored in a provided directory, by using the ’Sample’ class from the simulation, and converts
them to the encoding expected from the detectron2 framework. Each sample is transformed into a
dictionary which contains the following key-value pairs10:

• file_name - the path to the RGB image of the sample

• height - the height of the RGB image

• width - the width of the RGB image

• image_id - the sample id

• annotations - a list of instance annotations. Each instance in the image corresponds to its
own annotation. Note that in a sample, the instances / objects are described by a dictionary
which contains object states. Each object state corresponds with one instance, thus there
is one separate annotation for every object state. An annotation describes the instance’s
ground-truth and is again a key-value mapping which contains the following:

– bbox - [𝑥, 𝑦, 𝑤, ℎ], the axis aligned bounding box of the instance in image coordinates,
encoded as four values: 𝑥 and 𝑦 specify the top left corner of the box in the image, and
𝑤 and ℎ specify the width and height of the box.

– bbox_mode - a value indicating the encoding of the bbox. This is needed as (axis aligned-)
bounding boxes can also be encoded differently, e. g., by providing four values that
specify the top left and bottom right corner of the box.

– category_id - the category of the instance. Note that when the configuration specifies
to merge the classes, the category_id is set to ’0’ for all instances. Furthermore, the
object state of the table, which is also stored in the sample, is ignored.

– segmentation - the RLE encoded segmentation mask of the instance

• depth_file_name - the path to the depth image of the sample.

The ’load_data_set’ function returns a list containing these dictionaries which is then registered by
the detectron2 framework and can later be retrieved by the dataloader.

Step 2 creates a dataloader object. A dataloader takes the information from the registered dataset
and processes the data to a format which can be directly used as input by the model. The dataloader
consists of a datasampler and a dataset mapper. During training, the datasampler samples the
registered dataset and represents an infinite stream of random samples from the dataset. During
evaluation, the datasampler iterates only once over the dataset. The dataset mapper is a component
which loads the RGB and depth images from the disk intomemory and applies the data augmentations
that will be used during training or testing, see subsection 4.2.3. It does this for every sampled data
dictionary and returns the mapped input for the models.

10https://detectron2.readthedocs.io/tutorials/datasets.html (last visited 12-17-2020)

53

https://detectron2.readthedocs.io/tutorials/datasets.html

4 Methods

Figure 4.10: The left image shows two axis aligned bounding boxes and the pixels that they
encompass. Rotating the image and the corresponding pixels leads to loose axis
aligned bounding boxes on the right. They are still computed correctly w.r.t. the
pixels they did encompass before, but not w.r.t. the objects they should cover. [14]

During training or evaluation, the dataloader can be iterated. In each iteration it returns a batch
of images. For the majority of models, the batch size is eight, but during testing it is always one.
The images in the batch have been mapped by using the dataset mapper and they were sampled
with the datasampler. This batch is the input for the preprocessing of the generalized r-cnn or the
auto-encoder model.

The dataset mapper component has been customized in order to also create single and multi channel
input images. This allows to have an additional channel for depth information, i. e., RGB-D images,
as well as to use depth information only, i. e., D images. By default, it produces three channel RGB
images.

The dataset mapper works as follows:

1. Take the dictionary of a single data element from a registered dataset as input. The dictionary
is cloned and the mapping only affects the cloned version.

2. Depending on the information to be used, i. e., , RGB, RGB-D, or D only, load the RGB
image and or depth image from the disk by using the corresponding filenames from the data
dictionary.

3. When loading a depth image, its values are going to be normalized to a range of [0.0, 255.0]
by using one-dimensional linear interpolation.

4. Apply the configured augmentations on the loaded images separately.

• If RGB and depth images are being used, the augmentations will be applied on the
RGB image first. An augmentation is associated with a parameterized deterministic
transformation. Applying an augmentation will compute random parameters which
define the actual deterministic transformation that has to be applied, and returns this
deterministic transformation in which the random parameters have been absorbed into.
This allows to apply the exact same transformations to, e. g., the depth image afterwards,
too. Multiple augmentations can be applied one after another. They result in an ordered
list of deterministic transformations.

54

4.2 Model Research

• Depth images only have a single channel. However, some augmentations only work
with RGB images which have three channels. Therefore, the depth image are stacked
three times which results in a DDD image, i. e., a fake RGB image. The augmentations
can then be applied as usual on the DDD image. Afterwards, only the first channel of
the result is taken to represent the augmented depth image. Note that the DDD image
has still floating point precision before applying the augmentations. However, some
augmentations do not work with floating points. Thus, in those cases, the depth image
values are converted to integers before applying the augmentations which introduces
some information loss.

5. Apply the transformations that result from augmenting the previous image(s) also on the
segmentation mask of each instance. The segmentation masks are stored in the annotations of
the data dictionary. Note that the segmentation masks are RLE encoded. They are decoded
into binary mask images before applying the transformations. Afterwards, they are RLE
encoded and stored in the dictionary again.

6. Recompute the bounding boxes by using the corresponding transformed segmentation
masks, as described in section 4.1.3. This is needed as some augmentations alter the image
geometrically, e. g., rotating or flipping. This results in loose bounding boxes, as shown in
figure 4.10. Therefore, they are recomputed by using the new segmentation mask which then
again results in tight bounding boxes.

7. Return the altered copy of the data dictionary with the additional keys image and instances.
The key image maps to the augmented image. The key instances maps to an efficient
representation of the augmented annotations that can be processed by the model during
training.

Augmentations

The dataset mapper applies different augmentations depending on how it is configured. Note that
the augmentations applied by the dataset mapper are online augmentations. This means that this is
done during data loading by the dataset mapper. This is different to offline augmentation. Here, the
augmented dataset results in a new dataset containing the augmented images, i. e., the augmentations
have been stored to the disk. Thus, a model may see the exact same data multiple times during
training. In contrast, for online augmentations, each augmentation computes a new randomness for
its transformations which likely results in differently augmented data after every augmentation.

The augmentations during training or testing can be configured separately. However, it has been
configured that there are no augmentations applied during testing.

The detectron2 framework already provides some augmentations11 that are partly also used during
training. The following lists these augmentations and how they have been configured.

• RandomFlip - performs a horizontal flip with a 50 percent chance on the image

11https://detectron2.readthedocs.io/_modules/detectron2/data/transforms/augmentation_impl.html (last visited
12-17-2020)

55

https://detectron2.readthedocs.io/_modules/detectron2/data/transforms/augmentation_impl.html

4 Methods

Figure 4.11: The available image augmentations. During training, each data element is augmented
by selecting four of the available image augmentations randomly and applying them
in a random order, in which each is only applied with a chance of 50 percent.

• RandomCrop - performs a random crop on the image, i. e., it extracts a rectangle region of
the original image which gives the augmented image. The size of the rectangle is randomly
computed but in the range of 80- to 100 percent of the original image size.

• RandomLightning - performs a ’lightning’ augmentation. It uses the ’fixed PCA (principal
component ananlysis) over ImageNet’ and a normal distribution with a standard deviation
(scale) of 150 to sample the degree of color jittering [33].

• RandomSaturation - samples a saturation weight parameter in the range of [0.25, 1.75] and
changes the saturation of the image.

• Random Brightness - samples a brightness weight parameter in the range of [0.25, 1.75] and
adjusts the overall brightness of the image.

• RandomContrast - samples a contrast weight parameter in the range of [0.25, 1.75] and
adjusts the contrast of the image.

• Rotation - rotates the image clockwise or counter-clockwise by an angle sampled from a
range of [0, 30] degrees.

56

4.2 Model Research

Besides the already existing augmentations of the detectron2 framework, the following other
augmentations from the imgaug library [14] have been made available for use during training. The
following lists these augmentations and how they were configured.

• RandomAdd - samples a value from a given range which is then added to all pixels on all
channels. With a 50 percent chance, this value is sampled new per channel. Note that this has
been configured to always select the value 30, i. e., there is no range given to sample from.

• RandomNoise - add a noise to the image element-wise, i. e., the noise is computed per pixel,
that is sampled from a Gaussian distribution with a scale factor that is sampled from the
range [0, 0.1 ∗ 255].

• RandomDropout - zeros a given fraction of all the pixels in the image. This fraction is in the
range of [0, 15] percent.

• RandomCoarseDropout - similar to RandomDropout but instead of single pixels, full
rectangles of pixels are dropped. This works by performing RandomDropout on a downscaled
image and mapping the dropped pixels back to the original size, thus dropping full areas on
the actual image instead of single pixels. The RandomDropout is performed on an image
that has 5 percent to 10 percent the size of the original image. The RandomDropout drops
between 2 percent and 20 percent of the pixels from the downscaled image.

• RandomBlur - blurs the image with a Gaussian kernel filter using a sigma of 3 for the gaussian.

• RandomSuperpixels - splits the image in 50 to 120 segments. With a chance of 50 percent
per segment, make it to a superpixel by setting all its pixels to its mean pixel value, or leave
them to their original value otherwise.

The effect of applying each augmentation itself is shown in figure 4.11. The dataset mapper does
not apply all of the augmentations. Per data element that is going to be mapped, four of all available
augmentations are selected, their order randomized, and each of the selected augmentations is only
applied with a chance of 50 percent.

4.2.4 Training Loop

Training a model is always done w.r.t. a configuration file which specifies the model and all the
parameters related to its training or testing. The training code performs the following steps:

1. Load the configuration file.

2. Register the datasets needed for training or evaluation

3. Build the model as specified in the configuration file.

4. Load pretrained weights of some checkpoint from previous training or initialize the weights
by random.

If the model uses a backbone, its weights can be loaded separately while the rest of the
model will be initialized randomly.

57

4 Methods

Figure 4.12: The left figure shows an example precision-recall curve with interpolated precision
values. The right figure shows the area under the interpolated precision-recall curve.
The average precision (AP) is computed as 𝐴𝑃 = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 [20].

5. Build an optimizer which performs the optimization algorithm including the backpropagation.
The optimization algorithm used here is a stochastic gradient descent with momentum, i. e.,
it is basically a stochastic gradient descent but it uses a moving average of the gradients
to compute the weight updates, in which the older gradients decay exponentially w.r.t. the
amount of updates since. [26]

6. Build a learning rate scheduler which allows to alter the learning rate based on the number of
iterations.

Often the learning rate starts almost at zero and increases up to the actual learning rate
in the first few iterations, which is called ’warm up’. This might prevent ’early overfitting’.
Early overfitting means that the model adjusts too heavily on the first few samples of the data
and keeps biased during training afterwards.

The learning rate scheduler might also decrease the learning rate after a specific amount
of iterations. This allows to better fine tune on the data by taking smaller steps to the minimum,
which usually leads to improved convergence.

7. Build the dataloader used during training.

8. Run the training loop for the specified amount of iterations on the data which is being retrieved
from the dataloader. In every iteration, compute the total loss of the model (the sum of
all losses returned by it or its sub-modules), and update the weights with the learning rate
scheduler and optimizer w.r.t. the total loss.

In addition, in a specific iteration interval, the current model is evaluated on a small
random subset of the validation or testing data.

58

4.2 Model Research

4.2.5 Evaluation Metrics

Evaluation is performed with the help of the object-detection-metrics library [20]. The library
implements the object detection metrics of the Pascal VOC Challenge [5]. The evaluation will
compute the following metrics w.r.t. some IoU threshold:

• Total positives - total amount of ground truth objects.

• Total true positives (TP) - total amount of detections that have an 𝐼𝑜𝑈 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 with
some ground truth bounding box. For every ground truth box only the detection with the
highest score that still has a sufficient IoU with the ground truth box is labeled as TP. All other
detections that have an IoU above the threshold are labeled as FP w.r.t. this ground truth box.

• Total false positives (FP) - total amount of detections that have no 𝐼𝑜𝑈 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 with
any ground truth bounding box

• Total false negatives (FN) - total amount of ground truth boxes that have no 𝐼𝑜𝑈 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

with any detection. 𝐹𝑁 = 𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 − 𝑡𝑜𝑡𝑎𝑙_𝑇𝑃.

• Total precision (P) - 𝑡𝑜𝑡𝑎𝑙_𝑃 =
𝑡𝑜𝑡𝑎𝑙_𝑇 𝑃

𝑡𝑜𝑡𝑎𝑙_𝑇 𝑃+𝑡𝑜𝑡𝑎𝑙_𝐹𝑃
=

𝑡𝑜𝑡𝑎𝑙_𝑇 𝑃
𝑎𝑚𝑜𝑢𝑛𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

• Total recall (R) - 𝑡𝑜𝑡𝑎𝑙_𝑅 =
𝑡𝑜𝑡𝑎𝑙_𝑇 𝑃

𝑡𝑜𝑡𝑎𝑙_𝑇 𝑃+𝑡𝑜𝑡𝑎𝑙_𝐹𝑁
=

𝑡𝑜𝑡𝑎𝑙_𝑇 𝑃
𝑎𝑚𝑜𝑢𝑛𝑡_𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ_𝑏𝑜𝑥𝑒𝑠

• Average precision (AP) - ’the precision averaged across all recall values between 0 and 1’,
instead of taking only eleven points as it is often done.

Assume that there are 𝑛 predictions in a list sorted by their confidence score and each has
been labeled as TP or FP. For every index 𝑖 in the list, calculating the accumulated TP and
accumulated FP over all predictions from index zero to the current index 𝑖, results in two
new lists: 𝑎𝑐𝑐𝑇𝑃 for the accumulated TP, and 𝑎𝑐𝑐𝐹𝑃 for the accumulated FP. The list of
precision values is computed via the element-wise operations:
𝑎𝑐𝑐𝑃 = 𝑎𝑐𝑐𝑇 𝑃

𝑎𝑐𝑐𝑇 𝑃+𝑎𝑐𝑐𝐹𝑃
. The corresponding list of recall values is computed via the element-

wise operation: 𝑎𝑐𝑐𝑅 = 𝑎𝑐𝑐𝑇 𝑃
𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 . This yields 𝑛 precision-recall pairs that can be plotted

to a precision-recall curve as shown in figure 4.12. The precision values are interpolated
over all recall points where the interpolated precision 𝑝𝑖𝑛𝑡𝑒𝑟 𝑝 (𝑟) at recall 𝑟 is the maximum
precision for all recall values greater equal than 𝑟 . Calculating the area under the interpolated
curve yields the average precision (AP).

The average precision (AP) is computed as: 𝐴𝑃 =
∑

𝑖=0(𝑟𝑖+1 − 𝑟𝑖) ∗ 𝑝𝑖𝑛𝑡𝑒𝑟 𝑝 (𝑟𝑛+1), where 𝑖
iterates over the index of all distinct recall values in 𝑎𝑐𝑐𝑅. [20]

Note that the ’total’ prefix refers to the summed TP, FP, and FN among all predictions returned by
evaluating a dataset.

The used IoU thresholds to compute the above metrics are 0.5 and 0.75, i. e., 50 percent and
75 percent. The metrics will be marked with a trailing ’@{𝐼𝑜𝑈}’, e. g., 𝐴𝑃@50 or 𝐴𝑃@75.

59

5 Experiments

This chapter covers the evaluation results on different configuration for models. All model
configurations which were evaluated are of the type generalized r-cnn, see subsection 4.2.2.

Section 5.1 first illustrates the different datasets which were used to train or test the models. The
training datasets were generated with the simulation from section 4.1. However, for the ablation
studies, which are shown in subsection 5.2.2, they differ slightly in the implemented domain
randomization techniques. For testing and evaluation, artificial as well as real datasets were used.

Section 5.2 covers the different model configurations and their evaluation results. The model
configurations differ in the used backbone, whether they use pretrained weights or not, the use of
the RoI Heads module, the artificial training datasets, image format, and the testing datasets.

The model configurations are grouped in three categories: architecture variations 5.2.1 and their
benchmarks 5.2.1, domain randomization 5.2.2, and depth information 5.2.3 The results were
evaluated with the evaluation metrics of subsection 4.2.5. However, main focus lies on the
commonly used average precision metric with a IoU threshold of 50 percent (AP@50).

5.1 Datasets

The following subsections describe the different available datasets. All datasets contain samples as
data, see subsection 4.1.2. Therefore, they all have corresponding RGB and depth images as well as
ground truth instance annotations with a bounding box and segmentation mask per object instance
visible in the images.

5.1.1 Artificial Data

The artificial datasets were all generated with the simulation framework described in section 4.1.
Every sampled scene contains a table and a ground plane as well as a single light source. Each
scene was sampled out of two different perspectives.

The default scene function, which creates all of the scenes for the default artificial datasets ’AD.
SO.’ and ’AD. CO.’, is configured to do the following during the generation of a scene:

• Of the two available table designs, which are shown in figure 4.1, one is chosen with a
50 percent chance. The table is placed in the scene with a width and length of 6 units. The
table plane is 7 units above the bottom plane. The color for the table is chosen uniformly by
chance.

• The table stands on the bottom plane. The bottom plane has a width and length of 20 units.
The color of the bottom plane is chosen uniformly by chance.

61

5 Experiments

• Table and bottom plane can each have a texture assigned to them. For both, this texture is
sampled uniformly by chance out of all the available textures which are presented in figure 4.4.
However, with a 20 percent chance no texture is applied at all. The assigned colors of the
table and the plane also influences the appearances of their assigned textures.

• Of all the currently available object classes, which are either simple objects or complex
objects, a random amount between zero and four instances are placed in the scene. However,
the total amount of instances among all object classes does not exceed eight instances per
scene.

• All object instances are placed in a random position above the table plane. In regard to
the table plane, each object position is between 0 and 1.5 units away from the table center.
Furthermore, each vertical object position is chosen in a height range between 0 and 10 units
above the table.

• All instances are randomized in their size, orientation, position, and color. Their sizes are
around 0.3 units in width, length, and height, yet they can vary significantly which also
depends on the object class. The color is chosen uniformly by chance.

• After placing the objects, the simulation is run until all objects have stopped moving in order
to simulate the objects being dropped down on the table. During this simulation, artificial
walls are set up to prevent objects from falling over the table edge, yet these walls are removed
after the dropped objects have stopped moving.

• The camera position is randomized for every sample. However, the camera position is
configured to be at least 6 units and at most 14 units away from the table center, and it is
always at least 3 units above the table. It always looks roughly at the center of the table with
an offset of up to 1 unit. The camera upwards orientation is ®𝑢 = (0, 0, 1)𝑇 .

• Shadow casting is enabled.

• Ambient, diffuse, and specular lightning coefficients are chosen randomly from the ranges:
[0.25, 0.75], [0.3, 0.9], and [0.3, 0.9] respectively.

• The incoming direction of the light is randomized. However, the light source is always set to
be above the table surface, and its position is between 10 to 16 units away from the center of
the table surface.

The behavior of this scene functions is slightly modified for the datasets which were used in the
ablation studies of the domain randomization techniques.

Artificial Data - Simple Objects (AD. SO.)

This dataset is used for training and validation of the models with different backbones and image
formats, see subsection 5.2.1 and 5.2.3 respectively. The available objects are only of simple
geometry. These are sphere, capsule, pyramid, cube, and cylinder. It uses shadows and randomized
lightning, random textures, random sizes, and random object colors. Figure 5.1 shows some
example samples. The ’AD. SO.’ training set contains 26214 samples, the validation set contains
3276 samples, and the test set contains 3276 samples. The instances are distributed as follows:

62

5.1 Datasets

Figure 5.1: Some RGB images and corresponding depth images of samples from the ’AD. SO.’
dataset. The ’AD. SO.’ dataset implements simple objects, randomized textures,
randomized lightning and shadows, and randomized object colors. The left shows the
RGB image, the right shows the corresponding depth image in grayscale format after it
was normalized to pixel values in the range of [0, 255].

Object Training Set Validation Set Test Set
Capsule 25006 3057 3062
Cube 35225 4514 4303
Cylinder 27560 3480 3508
Pyramid 30967 3856 3790
Sphere 32103 3913 4218
Total 150861 18820 18881

Table 5.1: The distribution of the instances in the training, validation, and test set of the ’AD. SO.’
dataset.

Artificial Data - Complex Objects (AD. CO.)

The ’AD. CO.’ dataset only differs from the ’AD. SO.’ dataset w.r.t. the geometry of its objects. It
uses only objects with complex geometry. These are, flower cup, glass bowl, spray flask, toothpaste,
and wineglass. It still implements randomized lightning, random textures, and random object colors
and sizes. Figure 5.1 shows some of its samples. This dataset is used to evaluate whether the
models, which were trained on the ’AD. SO.’ dataset with simple geometries, can generalize to this
dataset which implements complex geometries instead. It is not used for training. It contains a total
of 3276 samples. The instances are distributed as shown in table 5.2.

63

5 Experiments

Figure 5.2: Some data samples of the ’AD. CO.’ dataset, each with a RGB and corresponding
normalized depth image. It is the same as the ’AD. SO’ dataset, but it contains objects
with complex geometry instead of objects with simple geometry. It still implements
randomized textures, randomized lightning and shadows, and randomized object colors
and sizes.

Figure 5.3: Some data samples of the ’AD. NL. SO.’ dataset, each with a RGB and corresponding
normalized depth image. It is similar to the ’AD. SO.’ dataset with the exception that
the lightning conditions are not randomized, and shadow casts are disabled.

64

5.1 Datasets

Figure 5.4: Some data samples of the ’AD. NT. SO.’ dataset, each with a RGB and corresponding
normalized depth image. It is similar to the ’AD. SO.’ dataset with the exception that
neither table nor bottom plane do have textures applied to them.

Artificial Data without randomized Lightning - Simple Objects (AD. NL. SO.)

The ’AD. NL. SO.’ dataset was created by using the same scene function as for the ’AD. SO.’
dataset 5.1.1, yet shadows were disabled and the lightning conditions were not randomized. The
available objects have simple geometry. Figure 5.3 shows some example samples.

Artificial Data without Textures - Simple Objects (AD. NT. SO.)

Similar to the ’AD. NL. SO.’ dataset, the ’AD. NT. SO.’ dataset was created by using the same scene
function as for the ’AD. SO.’ dataset 5.1.1, yet no textures were applied to the table and bottom
plane. The available objects are of simple geometry. Figure 5.3 shows some example samples.

Artificial Data without randomized Object Colors - Simple Objects (AD. NRC. SO.)

The ’AD. NRC. SO.’ dataset was created by using the same scene function as for the ’AD. SO.’
dataset 5.1.1, with the exception that the objects do not have randomized colors. They all are colored
light gray to white. The objects are of simple geometry. Figure 5.5 shows some example samples.

5.1.2 Real Data (RD.)

The ’RD.’ dataset contains real data. There is always one object instance per sample visible. The
available objects are: cube, metal cylinder, plastic cylinder, fruit press, computer mouse, pipe, sec,
and tape. Figure 5.6 shows some example samples. It is used for testing and consists of a total of
231 samples. Table 5.2 shows the instance distribution of the overall dataset.

65

5 Experiments

Figure 5.5: Some data samples of the ’AD. NRC. SO.’ dataset, each with a RGB and corresponding
normalized depth image. It is similar to the ’AD. SO.’ dataset with the exception that
the objects do not have arbitrarily randomized colors. They are colored light gray to
white. However, shadows are cast and lightning conditions, object sizes, and textures
are randomized.

Figure 5.6: Some data samples of the ’RD.’ dataset, each with a RGB and corresponding normalized
depth image. The real data only ever has one object at a time visible on the table surface.

66

5.1 Datasets

Object ’RD.’ and ’RDC.’ ’Mixed’
Capsule 0 865
Cube 23 1292
Cylinder 62 1232
Fruit-press 23 92
Mouse 22 88
Pipe 32 128
Pyramid 0 1050
Sec 44 173
Sphere 0 1214
Tape 25 100
Total 231 6234

Object ’AD. CO.’
Flower Cup 4258
Glass Bowl 3880
Spray Flask 3356
Toothpaste 3130
Wineglass 4186
Total 18810

Table 5.2: The instance distribution in the ’RD.’, ’RDC.’ and ’Mixed’ datasets on the left, and of
the ’AD. CO.’ dataset on the right.

Figure 5.7: Some data samples of the ’RDC.’ dataset, each with a RGB and corresponding
normalized depth image. It contains the cropped images of the ’RD.’ dataset.

Real Data Cropped (RDC.)

The ’RDC.’ dataset contains cropped versions of the samples in the ’RD.’ dataset. It is a approach to
remove eventual false positive predictions in the background. The images have been cropped to the
bounding box of the table, yet with some small random offset at each side of the table’s bounding
box. Figure 5.7 shows some example samples of the ’RDC.’ dataset. It has a total of 231 samples
likewise the ’RD.’ dataset, and it has the same distribution of instances as shown in table 5.2.

5.1.3 Artificial and Real Data Mixed (Mixed)

The ’Mixed’ dataset contains artificial as well as real data. The ratio between artificial and real data
samples is 50 : 50. The real data of the ’Mixed’ dataset is the data of the ’RD.’ dataset which has
been additionally augmented once with a horizontal flip and twice with a random crop. Hence, the

67

5 Experiments

Figure 5.8: Data samples of the ’Mixed.’ dataset with RGB and corresponding normalized depth
image. The ’Mixed’ dataset consists of images from the ’AD. SO.’ dataset as well as
images from the ’RD.’ dataset.

’Mixed’ dataset contains four times the amount of real data than the ’RD.’ dataset. The artificial
data was sampled randomly from the ’AD. SO.’ dataset to match the amount of augmented real data.
Figure 5.8 shows some examples. The mixed dataset consists a total of 1848 samples. Table 5.2
shows its distribution of instances.

5.2 Model Evaluations

The evaluation of the differentmodel configurations covers three parts. The first part, subsection 5.2.1,
investigates the performance of different network architectures. They differ in the used backbones
and whether the RoI Heads module is being used or not. It is also examined how the different
architectures perform with a pretrained weight initialization.

The second part, subsection 5.2.2, focuses on one specific model architecture. It performs ablation
studies on the employed domain randomization techniques. The different models are trained with
datasets that differ in one specific characteristic. It also explores the effect of image augmentations
during training.

The third part, subsection 5.2.3, examines how different image formats during training and evaluation
impact the performance of some models. In particular, two model architectures were in addition
trained and evaluated with RGB-D images and D images, and their performance compared to their
counterparts that were trained and evaluated on RGB images.

The differently trained models are separated in configurations, see subsection 4.2.1. All models were
built as a type of the generalized r-cnn meta architecture which was mentioned in subsection 4.2.2.
Their architectures resemble the Mask R-CNN. However, only the box predictions will be considered.
In the Mask R-CNN architecture, which is used here, the mask head and the box head of the RoI
Heads module share some features. Hence, training with an additional mask prediction loss also
influences these features for the box predictor. In [9], it is stated that training with an additional

68

5.2 Model Evaluations

mask loss improves the box predictions. This is why both the mask head and the box head are used
as part of the RoI Heads module. Nevertheless, subsection 5.2.1 also investigates the impact the RoI
Heads module has on the performance in contrast to just using the RPN predictions directly.

The models are configured as described in section 4.2. However, other configurations which apply
to all models are the following:

• The preprocessing step of the models use the following values for normalization. The mean
pixel value and standard deviation are based on the ImageNet [4]: 𝑚𝑒𝑎𝑛_𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒 =

[123.765, 116.28, 103.53] and 𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = [58.395, 57.12, 57.375], in
RGB channel order. If depth data is used, it is normalized with: 𝑚𝑒𝑎𝑛_𝑑𝑒𝑝𝑡ℎ_𝑣𝑎𝑙𝑢𝑒 = 128.0
and 𝑑𝑒𝑝𝑡ℎ_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 60. The values for the depth information are leaned on
the mean and standard deviation for the RGB values and do not represent the actual mean and
standard deviation of the depth data in the datasets.

Only when using the pretrained weights from the detectron2 instance segmentation
baseline in model 1 (see table 5.3), the standard deviation is set to 1.0 on all channels as it has
already been absorbed by the weights of the first layer1.

• All convolutional and fully connected layers in the models are trainable. This includes layers
which were initialized with pretrained weights.

• During evaluation, all images are resized by the datamapper to 512 × 512 pixels in width and
height. The resizing process uses bi-linear interpolation. This resizing is a augmentation,
thus during training this happens only if the appropriate resizing augmentation has been
selected by the datamapper.

• All model configurations are evaluated on the ’AD. CO.,’ ’RD.,’ ’RDC.,’ and ’Mixed’ datasets.
During evaluation, no image augmentations are applied except for resizing the images.

Also recall that the evaluation will only consider proposals with a confidence score of at
least 0.2 to reduce the amount of false positive predictions.

• Intermediate evaluation results are obtained by evaluating a small subset of 20 random samples
every 1000 iterations. This gives insight on how the performance changes with increasing
training iterations. Note that these intermediate results only represent a small subset of the
actual test set and are more likely to result in spikes or outliers or are shifted for the better
or worse due to the smaller amount of evaluated data. However, the smoothed intermediate
results on the subsets should at least correlate with the performance on the complete test sets.
The smoothing was performed with a 1-dimensional Gaussian filter with 𝜎 = 2.

• The random seed is fixed to 424242.

The optimization during training of the models is configured as follows:

• A mini-batch is of size 8 images.

Only model 1 in table 5.3 uses a batch size of 10 images instead.

1_C.Model.PIXEL_STD in https://detectron2.readthedocs.io/modules/config.html#config-references (last visited
12-17-2020)

69

https://detectron2.readthedocs.io/modules/config.html#config-references

5 Experiments

ID Backbone RoI Heads shared Conv. Input Pretrained Training Set
1 ResNet50 ResNet50 5th stage RGB COCO Instance Seg. Baseline2 AD. SO.
2 ResNet50 ResNet50 5th stage RGB False AD. SO.
3 VGG16 ResNet18 5th stage RGB only the VGG16 backbone3 AD. SO.
4 VGG16 ResNet18 5th stage RGB False AD. SO.
5 Encoder ResNet18 5th stage RGB Encoder only4 AD. SO.
6 Encoder ResNet18 5th stage RGB False AD. SO.

Table 5.3: The configurations resemble the Mask R-CNN architecture with different backbones.
For each backbone, there exists a model with a pretrained and a model with a random
weight initialization.

• The base learning rate is 0.02.

In the first 1000 iterations, the learning rate is linearly increased via a learning rate
scheduler until it reaches the base learning rate at 1000 iterations.

• After 35000 iterations the learning rate is reduced to 0.002, and after 120000 iterations, it is
again reduced to 0.0002.

• The maximum amount of iterations is 160000. However, w.r.t. the performance on the
validation set, some models were evaluated at earlier iterations, if the performance suggested
convergence.

• The optimization algorithm uses gradient descent with momentum. The weight decay is set
to 0.0001.

All models were trained and evaluated on a workstation with two Intel(R) Xeon(R) Gold 6148 CPU

@ 2.40GHz by utilizing one NVIDIA GeForce GTX 1080 Ti GPU.

5.2.1 Backbone Variations

The used backbones vary in structure and type. The ResNet50 is a ’very deep network’ and produces
a 1024 channel feature map from the input image. This results in a lot of trainable parameters for
the overall model. Not only the backbone itself has lots of layers and weights, but also the amount
of weights of the RPN and the RoI Heads scale with the amount of channels in the input feature
map. The VGG16 and the encoder backbone each have less layers and they both output only a
256 channel feature map. Hence, the amount of parameters is significantly smaller, as it is illustrated
in table 5.4. The model architectures do also impact the benchmarking results of their inference, see
subsection 5.2.1.

2The backbone and the shared convolutions in the RoI Heads are initialized with pretrained weights: the model ID
for the detectron2 COCO instance segmentation baseline: ’137849525’ - https://github.com/facebookresearch/
detectron2/blob/master/MODEL_ZOO.md (last visited 12-17-2020)

3The weights of the VGG16 have been pretrained on the ImageNet, see https://pytorch.org/docs/stable/torchvision/
models.html#id2 (last visited 12-17-2020)

4Only the encoder part has been pretrained as part of the auto-encoder and with a reconstruction loss. The pretraining
has been performed on the AD. SO. training data.

70

https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
https://pytorch.org/docs/stable/torchvision/models.html#id2
https://pytorch.org/docs/stable/torchvision/models.html#id2

5.2 Model Evaluations

Module ResNet50 backbone VGG16 backbone Encoder backbone
Backbone 8290304 1735488 383296
RPN 9499708 605500 605500
Model without RoI Heads 17790012 2340988 988796
RoI Heads shared conv. 14942208 8650752 8650752
RoI Heads - Box Head 12294 3078 3078
RoI Heads - Mask Head 2097665 524801 524801
RoI Heads Total 17052167 9178631 9178631
Complete Model 34842179 11519619 10167427

Table 5.4: The amount of trainable parameters of the different modules per architecture style.
Note that these values are for models with the RGB input format. The RGB-D input
format would result in slightly more, and the D input format would result in slightly
less parameters in the backbone due to more weights in the filters of the first layer.
The ResNet50 produces a 1024 channel feature map while the VGG16 and the encoder
only produce a 256 channel feature map. The amount of channels in the feature map
influences the amount of features in the RoI Heads module.

ID Iter. AP@50 | AP@75 AD.SO. val. AP@50 | AP@75 AD.CO. AP@50 | AP@75 RD. AP@50 | AP@75 RDC. AP@50 | AP@75 mixed
1 50000 99.51% | 98.68% 56.45% | 31.20% 79.30% | 46.05% 84.38% | 46.22% 97.35% | 92.39%
1 160000 99.52% | 98.89% 55.30% | 30.65% 73.69% | 46.44% 77.01% | 43.68% 96.37% | 92.48%
2 50000 98.71% | 97.40% 58.58% | 32.83% 59.82% | 35.11% 69.03% | 41.68% 93.91% | 89.54%
2 130000 98.97% | 97.66% 59.53% | 33.67% 60.83% | 38.49% 64.86% | 39.54% 94.14% | 90.14%
3 20000 97.69% | 96.92% 53.42% | 29.99% 30.09% | 19.70% 18.03% | 9.80% 88.50% | 86.15%
3 160000 98.70% | 98.03% 57.40% | 34.07% 34.75% | 24.64% 28.07% | 13.86% 89.93% | 87.52%
4 45000 98.03% | 97.24% 58.02% | 34.12% 38.19% | 23.86% 33.74% | 18.00% 89.86% | 87.32%
4 150000 98.36% | 97.61% 59.70% | 36.31% 34.74% | 23.82% 30.16% | 16.62% 89.49% | 87.27%
5 160000 96.35% | 94.46% 57.80% | 35.27% 56.66% | 25.77% 55.89% | 21.79% 91.28% | 85.28%
6 105000 96.29% | 94.55% 58.20% | 35.32% 53.78% | 19.55% 51.23% | 16.05% 91.07% | 84.80%

Table 5.5: The AP@50 and AP@75 evaluation results of the different models at the specific
iterations for different datasets.

Table 5.3 shows the different model configurations in which each configuration corresponds to a
different model. Each model architecture exists in a pretrained and non-pretrained variant. In the
following, the models will also be referred to by their model id. The model ids are are defined
in table 5.3, table 5.9, and table 5.11. All model in this subsection use RGB data as input during
training and evaluation. The models were trained on the ’AD. SO.’ dataset. Augmentations during
training were enabled as described in subsection 4.2.3. For every input image, out of all the available
augmentations, four were randomly selected. Each of the selected augmentations was then applied
with a 50 percent chance, one after another.

Model 1 uses a ResNet50 backbone which is described in subsection 4.2.2. The weights of its
backbone as well as the weights of its shared convolutional layers in the RoI Heads were initialized
by a pretrained model. The pretrained model is an instance segmentation baseline of the Mask
R-CNN which was trained on the COCO dataset[17]. Model 2 has the same architecture as model 1,
yet all its trainable weights were randomly initialized.

71

5 Experiments

Figure 5.9: The left figure shows the original RGB image above, and the reconstructed RGB image
below. The right figure shows the original depth image above, and the reconstructed
depth image below. The auto-encoder which was used here was trained on RGB-D
data. To illustrate the results, the input and output was split in RGB and D images
respectively. It can be seen that the texture in the originally RGB image has an impact
on the reconstructed depth image.

Model 3 uses a shortened VGG16 backbone which is described in subsection 4.2.2. Here, only
the backbone was initialized from a pretrained model. The rest of the model was initialized
randomly. The pretrained model was trained with an image classification task on the ImageNet[4]
dataset. Model 4 is has the same architecture as model 3, but all its trainable weights were randomly
initialized.

Model 5 uses the encoder part of an auto-encoder, see subsection 4.2.2. The auto-encoder, thus
including the encoder, was pretrained on the ’AD. SO.’ dataset by using a reconstruction loss. The
rest of the model was randomly initialized. The auto-encoder used the same values for normalization
as the generalized r-cnn models. Note that the reconstructed normalized images were denormalized
with those same values before computing the reconstruction losses. Hence, the encoder backbone
expects the same normalized input images as the other backbones.

The auto-encoder was trained with a batch size of 10 images for a total of 140000 iterations. In the
first 5000 steps, a linear learning rate warm-up was performed, which reached the base learning
rate of 0.000015 at 5000 iterations. After 70000 iterations and after 1000000 iterations, the base
learning rate was decreased by a factor of 10. The optimization algorithm used gradient descent with

72

5.2 Model Evaluations

momentum. The weight decay rate was set to 0.005. During training, the same augmentations were
used as for the other models in this subsection. Figure 5.9 shows an example of a RGB and depth
image of a sample in the ’AD. SO.’ validation set as well as the corresponding reconstructed images
which were reconstructed by using the trained auto-encoder. Model 6 has the same architecture as
model 5, yet all its trainable weights were randomly initialized.

Table 5.5 shows the evaluation results of the different configurations. Some models were evaluated
at multiple different iterations. This was done to examine if overfitting on the artificial data occurs.
The total loss and average precision on the validation data converges already at early iterations.
However, the overall goal is to have the models generalize well to unseen real data and to unseen
artificial data with complex objects. Continuing training after convergence on the validation data
might result in worse generalization to other domains like the real data or the artificial data with
complex objects. Therefore, the models will also be evaluated at earlier iterations when their total
loss and average precision on the validation data stops changing and converges.

ResNet50 (Model 1 & Model 2)

Figure 5.10 shows the total losses and intermediate AP@50 for model 1 and model 2 on the training
and validation set of ’AD. SO.’ as well as on ’RD.’ at multiple training iterations.

For both models, the total training loss is in overall continuously decreasing and converges after
around 35000 iterations. However, the validation loss behaves differently. The pretrained model,
i. e., model 1, starts off with a significantly smaller validation loss than model 2, which is only
slightly decreasing afterwards. In contrast, the validation loss of model 2 keeps decreasing but
still stays in general worse than the validation loss of model 1. The small jump of the training loss
at around 35000 iterations is the effect of the learning rate scheduler, which decreased there the
learning rate by a factor of 10. This happens again at 120000 iterations, yet this seems to have a less
significant effect on the training loss.

The intermediate evaluation of the average precision on the validation set for model 1 shows that it
starts off well after only about 1000 iterations, and finally converges at after 50000 iterations. This
possibly results due to the initialization of model 1 with pretrained weights. Hence, less iterations
are needed for the network to learn good features and correctly predict the objects. In contrast,
model 2 was initialized randomly. The intermediate results show that the AP@50 on the validation
set starts of low after 1000 iterations but increases fast until around 20000 iterations, where it slows
down for a moment until it increases again and finally converges around 50000 iterations.

Even though the loss and average precision on the ’RD.’ dataset is shown in figure 5.10, these values
were not used to select the iterations to evaluate the models. This was done w.r.t. the validation
data of the ’AD. SO.’ dataset. Also, they represent a small subset and therefore might differ from
the actual evaluation result on the complete datasets. However, it can be clearly seen, that model 1
with pretrained weights performs significantly better in early iterations than the randomly initialized
model 2. The average precision of model 1 on the ’RD.’ dataset stays relatively high even after it has
converged on the training and validation set of the ’AD. SO.’ dataset. Its peak is around iteration
50000. The AP@50 for model 2 increases fast early and has its peak at around 35000 iterations.
Afterwards, it decreases again and does not seem to converge as it keeps alternating increasing and
decreasing. A possible reason for it to decrease after 35000 iterations would be that overfitting
occurs on the ’AD. SO.’ dataset. In contrast, model 1 does not show this behavior. It seems unnatural

73

5 Experiments

(a)Model 1 total loss (b)Model 2 total loss

(c)Model 1 AP@50 (d)Model 2 AP@50

Figure 5.10: The upper two images show the total losses on the ’AD. SO’ training and validation
dataset as well as the total losses on the ’RD.’ dataset for model 1 (5.10a) and model 2
(5.10c). The lower two images show the AP@50 from the intermediate evaluation
results on the same datasets for model 1 (5.10c) and model 2 (5.10d) respectively.

that the pretrained model 1 has a worse peak AP@50 on the real data as its weights were pretrained
on the COCO data set which uses real data too. Hence, the ResNet50 backbone should already be
trained well to extract features out of images. However, due to the training on a completely different
domain, these well learned weights might be annihilated. Also, the ’AD. SO.’ and ’RD.’ dataset do
indeed have a similar setting. Due to the model 1 being pretrained on a completely different domain,
the pretrained weight initialization might even worsen the generalization to the ’RD.’ dataset. This
would justify the lower peak performance for the AP@50.

The final evaluation results on the different test datasets for model 1 and model 2 are shown in
table 5.5. Model 1 was evaluated both at 50000 iterations and at 160000 iterations, while model 2
was evaluated at 50000 iterations and at 130000 iterations. The results endorse the assumption that
overfitting occurs on the ’AD. SO.’ dataset, i. e., on the domain of the artificial dataset. Model 1
performs on all test sets better with less training iterations. The generalization to complex objects
seems to work reasonable well with an average precision (AP@50) of 56.45 percent on the ’AD. CO.’
dataset. The generalization on the real data works even better with an AP@50 of 79.30 percent on

74

5.2 Model Evaluations

the ’RD.’ dataset. On the cropped real data of the ’RDC.’ dataset, it achieves an even higher AP@50
of 84.38 percent, which is possibly due to less visible background which would encourage more
false positive predictions. The AP@50 on the ’Mixed’ dataset is almost perfect with 97.35 percent.
However, this is not suitable to imply the generalization to the real data. Although the amount
of samples is distributed evenly among real data and artificial data in the ’Mixed’ dataset, each
artificial data sample does contain in average four times the amount of instances which leads to
four times the amount of predictions on artificial instances, when assuming that the predictions
are correct. Hence, the artificial data weighs significantly more in the evaluation of the ’Mixed’
dataset.

Model 2 performs on most test sets similar or slightly worse with less iterations, except for the
cropped real data (RDC.) dataset. At 130000 iterations, it achieves 59.53 percent on the ’AD. CO.’
dataset and therefore generalizes better to it than the pretrained model 1 does. However, for the
real data, it performs significantly worse compared to model 1. At 130000 iterations, it achieves
60.8 percent on the ’RD.’ dataset and 64.86 percent on the ’RDC.’ dataset. Using pretrained weights
improves the AP@50 on the ’RD.’ dataset by almost 20 percentage points. Overall does model 1
with pretrained weights, outperform its counterpart model 2 which has been initialized randomly.
The generalization to complex objects, i. e., the AP@50 on the ’AD. CO.’ dataset is better for the
non-pretrained model 2.

Note that the evaluated average precision of the intermediate evaluations does indeed differ by a
significant margin and should not be considered as valid absolute values.

VGG16 (Model 3 & Model 4)

The validation loss of the pretrained VGG16 (model 3) depicted in figure 5.11 behaves likewise
the validation loss of the pretrained ResNet50 (model 1) during training. However, it is initially
significantly higher but decreases with higher iterations to a similar value. An explanation for
model 1 having a smaller loss initially could be that the shared convolutions in the RoI Heads of
model 1 were also initialized with pretrained weights, whereas this is not the case for model 3.

The average precision of model 3 on the validation set converges faster than for model 1. It
already converges before 20000 iterations even though the validation loss keeps decreasing. The
intermediate evaluations on ’RD.’ suggest that model 3 achieves here an even higher AP@50 than
model 1. However, the actual evaluation results will show that this is not the case. Anyways, the
AP@50 peak on the ’RD.’ dataset is already at around 5000 iterations, and afterwards it decreases
significantly.

The validation graph of the AP@50 seen in figure 5.11 for the non-pretrained model 4 looks similar
to the graphs of the non-pretrained model 2 in figure 5.10. It starts off significantly lower and it takes
more iterations to converge. The AP@50 on the validation data for model 4 converges at around
45000 iterations. Again, the AP@50 for the real data does peak early at around 45000 iterations,
too, and then decreases again but does not seem to converge.

75

5 Experiments

(a)Model 3 total loss (b)Model 4 total loss

(c)Model 3 AP@50 (d)Model 4 AP@50

Figure 5.11: The intermediate evaluation results of model 3 and model 4. The upper two images
show the total loss on the ’AD. SO’ training and validation dataset as well as the total
loss on the ’RD.’ dataset for model 3 (5.11a) and model 4 (5.11d). The lower two
images show the average precision with an IoU threshold of 50 percent on the same
datasets for model 3 (5.11c) and model 4 (5.11d).

The final evaluation results on the test datasets for both models are also shown in table 5.5. Compared
to model 1 and model 2, which use the ResNet50 backbone, model 3 and model 4 only reach less than
half of the AP@50 on the real data. On the ’RD.’ dataset, the pretrained model 3 reaches only about
34.75 percent at 160000 iterations, and the non-pretrained model 4 reaches about 38.19 percent at
45000 iterations.

The results for model 3 show that it performs worse with less iterations than with more iterations,
on the real data, i. e., ’RD.’ and ’RDC.’ as well as on the ’RDC.’ dataset. This contradicts the
intermediate evaluations w.r.t. the real data.

The results for model 4 show that at earlier iterations the performance on the real datasets increased,
which approves the results of the intermediate evaluations for model 4. However, the intermediate
evaluation results do not seem to be reliable for the general case.

76

5.2 Model Evaluations

Note that the version with less iterations of model 4 is at 45000 iterations while for model 3 it
is at 20000 iterations. This might suggest that training for 20000 iterations is not enough while
training with the full 160000 iterations is too much and results in overfitting. The checkpoint at
45000 iterations for model 4 might be just between overfitting and not enough training. Overall
does model 3 with pretrained weights perform worse on all evaluated datasets than its counterpart
model 4 which has been initialized randomly. This is in contrast to the previous models (1 and 2)
which both use the ResNet50 backbone instead of the VGG16 backbone, for which the pretrained
model did perform significantly better, at least on the datasets which use real data, i. e., the ’RD.,’
’RDC.,’ and ’Mixed’ datasets.

As for the models with the ResNet50 backbone, the non-pretrained model at high iterations perform
best on the ’AD. CO.’ dataset. Model 4 achieves an AP@50 of 59.70 percent on the ’AD. CO.’
dataset.

Encoder (Model 5 & Model 6)

Model 5 and model 6 are equipped with the encoder backbone. In contrast to the previous model
pairs, the pretrained model 5 was trained via a reconstruction loss on the training set of ’AD. SO.’.
Thus, the encoder was trained to extract important features of the images which enable for a good
image reconstruction. However, as depicted in figure 5.12, the validation loss of model 5 even starts
higher and decreases slower than the validation loss of model 6. It converges on a significantly
higher value than it does for model 6.

This correlates with the measured average precision from the intermediate evaluations. The average
precision of model 5 on the validation data does increase slower and converges at 130000 iterations
with a significantly lower value than model 6 which already converges after around 30000 iterations.
The intermediate evaluations on the ’RD.’ datasets seem to correlate with the behavior of the
validation loss and the AP@50 on the validation data.

Table 5.5 includes the final evaluation results of model 5 and model 6. The intermediate evaluation
results on the validation data, which are shown in figure 5.12, suggest that the non-pretrained
model 6 is superior compared to the pretrained model 5. However, the complete evaluation results
of model 5 and model 6 show that the non-pretrained model 6 is actually inferior to the pretrained
model 5 by a substantive margin of around 3 to 4 percentage points on the AP@50 w.r.t. the ’RD.’
and ’RDC.’ datasets. Model 5 performs slightly better on the validation dataset and the ’Mixed’
dataset, yet with a difference of less than 0.25 percentage points. Only on the artificial dataset
with complex objects (’AD. CO.’) does the non-pretrained model perform slightly better with an
advantage of 0.4 percentage points.

Overall do the models with an encoder backbone achieve significantly better results w.r.t. AP@50
metrics than the models with the VGG16 backbone w.r.t. the real data. Model 5 achieves an AP@50
of 57.80 percent on the ’AD. CO.’ dataset, 56.66 percent on the ’RD.’ dataset, and 55.89 percent on
the ’RDC.’ dataset. Model 5 achieves a better AP@50 by 18.47 percentage points than model 4 on
the ’RD.’ dataset.

This is notable as the encoder network consists of around 4.53 times less trainable parameters
than the VGG16 backbone, as shown in table 5.4. However, the best AP@50 on the ’RD.’ dataset
is still achieved by model 1 which utilizes the ResNet50 backbone. It achieves 22.64 percentage

77

5 Experiments

(a)Model 5 total loss (b)Model 6 total loss

(c)Model 5 AP@50 (d)Model 6 AP@50

Figure 5.12: The intermediate evaluation results of model 5 and model 6. The upper two images
show the total loss on the ’AD. SO’ training and validation dataset as well as the total
loss on the ’RD.’ dataset for model 5 (5.12a) and model 6 (5.11d). The lower two
images show the average precision with an IoU threshold of 50 percent on the same
datasets for model 5 (5.12c) and model 6 (5.12d). Note that even though model 5
seems to be inferior given the intermediate evaluation results, table 5.5 reveals that
model 6 performs better in the final evaluations.

points of AP@50 more than model 5 with an encoder backbone does. This is justified as it is the
most powerful backbone used here and it was initialized with weights in the backbone and in the
RoI Heads module which come from training on a dataset containing real data. Thus, it is not
completely unfamiliar with real data and real lightning conditions or other characteristics of a real
environment. Note that it has 21.63 times more trainable parameters than the encoder backbone,
and 4.78 times more parameters than the VGG16 backbone. It achieves best results on all datasets
except for the ’AD. CO.’ dataset. Even though the models, which utilize the VGG16 backbone,
achieve far worse AP@50 results on the real data than the models with an encoder or ResNet50
backbone, model 4 which uses a randomly initialized VGG16 backbone generalizes best to the ’AD.
CO.’ dataset. Although, only by a small margin of 0.17 percentage points compared to model 2 and
of 1.50 percentage points compared to model 6.

78

5.2 Model Evaluations

Figure 5.13: Comparison of prediction results of model 1 without the RoI Heads module on the
left, and with the RoI Heads module on the right. On the left, the RPN module does
always output 16 proposals of which all except one are close to the actual object.
On the right, the RoI Heads module did correctly classify the outlying proposal as
background and filtered the other overlapping proposals by correcting their bounding
box and removing overlaps by applying non-maximum suppression (NMS) to the
resulting proposals.

Single Stage Evaluation

This subsection investigates how the previous two-stage models, which include the RoI Heads
module, perform compared to their single-stage variants which do not use the RoI Heads module.
The evaluation of the single-stage model variants will consider all region proposals returned by
the NMS of the RPN module as box predictions. The NMS in the RPN module is configured to
always output 16 proposals, and its IoU threshold is 0.7. In contrast, the RoI Heads module does
also apply NMS before outputting the final predictions, yet it is not configured to keep a specific
amount of predictions and its threshold is only 0.5 which will remove overlapping predictions more
aggressively. This will lead to a massive amount of false positive predictions for the single-stage
models because the average amount of instances in the data samples is only 1 for the real data and
about 4 for the artificial data. Thus, when computing the AP@50 (see subsection 4.2.5) for the
real data out of 16 predictions will always be 15 predictions labeled as false positive, while for
the artificial data at least 8 predictions but in average 12 predictions will result in false positives.
Nevertheless, the computation of the average precision does consider the objectness scores of
the proposals. Therefore, the false positives with a lower objectness score will have less of an
impact on the overall average precision. Figure 5.13 shows an example prediction of model 1 at
50000 iterations without the RoI Heads and once with the RoI Heads. Applying NMS a second time
for the RPN proposals without keeping a specific amount of proposals and with a smaller threshold
of 0.5, or appropriately modifying the existing NMS algorithm in RPN module, should result in
significantly less false positives and a drastically increased precision for all models which do not
use the RoI Heads module. However, this was not implemented here. In the following, only the
artificial dataset with complex objects (’AD. CO.’) and the real dataset (’RD.’) will be considered in
the evaluation.

79

5 Experiments

ID Iter. RoI Heads AP@50 | AP@75 AD.CO. AP@50 | AP@75 RD.
1 50000 True 56.45% | 31.20% 79.30% | 46.05%
1 50000 False 56.87% | 25.46% 74.40% | 34.59%
2 130000 True 59.53% | 33.67% 60.83% | 38.49%
2 130000 False 58.03% | 26.60% 69.45% | 26.56%
3 160000 True 57.40% | 34.07% 34.75% | 24.64%
3 160000 False 49.10% | 22.74% 28.91% | 9.21%
4 45000 True 58.02% | 34.12% 38.19% | 23.86%
4 45000 False 50.26% | 23.17% 29.73% | 5.86%
5 160000 True 57.80% | 35.27% 56.66% | 25.77%
5 160000 False 52.38% | 19.38% 49.26% | 7.49%
6 105000 True 58.20% | 35.32% 53.78% | 19.55%
6 105000 False 52.00% | 18.54% 53.74% | 5.80%

Table 5.6: Comparison of the evaluated average precision of the different models of which each
is evaluated once with a RoI Heads module and once without a RoI Heads module. In
general, the additional RoI Heads module increases the AP@50 on both ’AD. CO.’ and
the ’RD.’ dataset by up to 8.46 percentage points. Only model 2 seems to achieve a
worse AP@50 with the RoI Heads module with a difference of around 8.62 percentage
points.

The direct comparison of the evaluated average precision among the models is shown in table 5.6.
The counterparts which use the additional RoI Heads module achieve in general a similar or better
AP@50 by up to 8.46 percentage points on both evaluated datasets. Only model 2 performs worse
with the RoI Heads module than without the RoI Heads module on the real data with a difference
of around 8.62 percentage points. The results also show, that the additional RoI Heads module
significantly increases the predictions quality w.r.t. the AP@75 metric which uses a higher IoU
threshold.

Table 5.7 directly compares the models given the evaluated precision and recall with an IoU threshold
of 50 percent, i. e., P@50 and R@50. It shows that the precision without the RoI Heads module and
its including NMS is far worse, which can be expected. This is due to the many false positives that
result from the fixed amount of 16 proposals which are generated by the RPN module. The overall
precision on the ’AD. CO.’ dataset compared to the ’RD.’ dataset is among the models without a
RoI Heads module significantly higher. The higher average amount of instances per image in the
’AD. CO.’ dataset contributes to this difference.

The results in table 5.7 also reveal the precision and recall values of the previous models which
have RoI Heads modules. They reveal that model 5 with a pretrained encoder backbone and a
RoI Heads module achieves the best precision values among the other backbone variations on
the ’RD.’ dataset with a P@50 of 76.60 percent. It beats the next best model, model 2, which
has a P@50 of 71.83 percent by 4.77 percentage points, and the third best model, model 4, which
has a P@50 of 70.14 percent by 6.46 percentage points. Table 5.7 shows that all three different
backbone architectures can achieve pretty good precision results. However, the encoder and the
VGG16 backbone with a RoI Heads module significantly lack in recall performance with a R@50 of
43.72 percent and 62.34 percent respectively, compared to the ResNet50 with a RoI Heads module
which still achieves a R@50 of 88.31 percent.

80

5.2 Model Evaluations

ID Iter. RoI Heads P@50 | R@50 AD.CO. P@50 | R@50 RD.
(1) 50000 True 58.81% | 77.44% 50.75% | 88.31%
1 50000 False 29.75% | 82.91% 6.14% | 98.27%
(2) 130000 True 65.27% | 78.11% 71.83% | 66.23%
2 130000 False 30.32% | 84.49% 6.09% | 97.40%
(3) 160000 True 67.89% | 73.10% 66.92% | 38.53%
3 160000 False 29.49% | 82.18% 4.71% | 75.32%
(4) 45000 True 70.64% | 76.32% 70.14% | 43.72%
4 45000 False 29.38% | 81.87% 4.65% | 74.46%
(5) 160000 True 72.92% | 72.98% 76.60% | 62.34%
5 160000 False 29.64% | 82.60% 5.06% | 80.95%
(6) 105000 True 73.08% | 73.09% 69.42% | 61.90%
6 105000 False 29.62% | 82.54% 5.49% | 87.88%

Table 5.7: Comparison of the evaluated precision P@50 and recall R@50 for each model once
with a RoI Heads module and once without a RoI Heads module. Including the RoI
Heads module drastically increases the evaluated precision up to 71.54 percentage points
(model 5 w.r.t. the ’RD.’ dataset). However, the evaluated recall also decreases by a
large margin of up to 36.79 percentage points.

ID Backbone RoI Heads Inference Time (compute time) Time per Image (compute time) fps
1 ResNet50 True 1:15min 0.023198 s/img 43.1 fps
1 ResNet50 False 0:50min 0.015555 s/img 64.3 fps
3 VGG16 True 1:06min 0.020372 s/img 49.1 fps
3 VGG16 False 0:51min 0.015745 s/img 63.5 fps
5 Encoder True 0:47min 0.014373 s/img 69.6 fps
5 Encoder False 0:35 min 0.010896 s/img 91.8 fps

Table 5.8: The total inference time, average time per image, and the average frames per second
(fps) of the different models. The models all perform significantly faster without the
RoI Heads module. The timings only refer to the pure compute times which omit an
overhead of around 10 seconds on the total inference time per model. It is noteworthy
that the VGG16 backbone without RoI Heads performs slower than the corresponding
model which use the ResNet50 backbone, even though the VGG16 has less layers and
weights.

Model 5 with the non-pretrained encoder backbone and a RoI Heads module achieves the best
precision results among the other models on the ’AD. CO.’ dataset with a P@50 of 73.08 percent. It
again beats model 1 and model 2 which implement the powerful ResNet50 backbone. Thus, when
using a RoI Heads module, the encoder backbone does in general perform well w.r.t. the P@50
metric, compared to the other models. In terms of recall, model 1 beats all other models which also
use a RoI Heads module, and model 2 beats all other model which use no RoI Heads module. The
recall of model 2 without the RoI Heads module is almost perfect with around 98 percent.

81

5 Experiments

Benchmarks

This subsection investigates the difference in inference speed of the different configurations. Deep
models like model 1, which uses the deep ResNet50 as backbone, are expected to perform slower
during inference than shorter models like model 3 which uses a VGG16 backbone, or model 5, which
uses an encoder backbone. See subsection 4.2.2 for a detailed description of these backbones. The
same models are also evaluated without the RoI Heads module. This should speed up the inference
time for each model as this omits multiple layers and expensive per region computations.

Table 5.8 shows the inference benchmark results on the ’AD. SO.’ validation set. The ’AD. SO.’
validation set contains 3276 samples, thus 3276RGB images are evaluated during the inference
per model. Recall, the benchmarks for all models were performed on a workstation with two
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz while utilizing one NVIDIA GeForce GTX 1080 Ti GPU.
As expected, for all model pairs, the version without the RoI Heads module is faster due to less
computations being made. The pure inference time when using the encoder backbone improves by
25.5 percent from 47 seconds down to 35 seconds without a RoI Heads module. This is equivalent
to 91.8 fps, i. e., over 91 images were processed per second. The pure inference time when using the
VGG16 backbone improves by 22.7 percent from 66 seconds down to 51 seconds without a RoI
Heads module. This is equivalent to 63.5 fps. The pure inference time when using the ResNet50
backbone improves by 33.3 percent from 75 seconds down to 50 seconds without a RoI Heads
module. This is equivalent to 64.3 fps.

It shows that the less layers and parameters the backbones have, the faster the inference is. However,
model 3 which uses a VGG16 backbone with significantly less layers and parameters than the
ResNet50, takes around the same amount of time during inference compared to model 1 which
utilizes the ResNet50 backbone, if both do not use the RoI Heads module. A possible reason might
be that although the VGG16 has less layers and parameters than the ResNet50, it produces a feature
map with less channels but with doubled width and height, i. e., four times the amount of sliding
window positions for the RPN module. This likely increases the inference time of the RPN.

Table 5.4 shows the amount of parameters for the different architecture styles. A reason for model 1
with RoI Heads being still slower than model 3 with RoI Heads might be the following: Although the
previous stage for both models do perform similar fast and the produced region proposals for both
models is always set to be 16 proposals, the pooled features of the ResNet50 do have 1024 channels,
whereas for the VGG16 they have only 256 channels. This slows down the computation in the RoI
Heads of model 1 as it requires much more parameters than the RoI Heads of model 3. Overall do
model 5 and model 6 perform faster than all other combinations. This meets the expectations as the
encoder is the smallest backbone network and produces only a 256 channel feature map of the same
size as the produced feature maps of the ResNet50 backbone.

5.2.2 Domain Randomization Techniques

This subsection investigates the effect that the available different domain randomization techniques
have on the evaluation performance of the model. Therefore, the non-pretrained Mask R-CNN
architecture, which uses the ResNet50 backbone, was trained on each of the different datasets
presented in subsection 5.1. Each of these datasets has one significant domain randomization

82

5.2 Model Evaluations

ID Backbone RoI Heads shared Conv. Input Pretrained Training Set
(2) ResNet50 ResNet50 5th stage RGB False AD. SO.
7 ResNet50 ResNet50 5th stage RGB False AD. NT. SO.
8 ResNet50 ResNet50 5th stage RGB False AD. NL. SO.
9 ResNet50 ResNet50 5th stage RGB False AD. NRC. SO.
10 ResNet50 ResNet50 5th stage RGB False AD. SO. (no augmentations)

Table 5.9: The configurations resemble the Mask R-CNN architecture with the ResNet50 backbone,
similar to model 2 which is used as reference. The models are all initialized randomly
using the same random seed. The training data differs in the employed domain
randomization techniques. Model 10 uses the same training data as model 2, yet without
online augmentations.

ID Type AP@50 | AP@75 AD.CO. AP@50 | AP@75 RD. AP@50 | AP@75 RDC. AP@50 | AP@75 mixed
2 reference 58.58% | 32.83% 59.82% | 35.11% 69.03% | 41.68% 93.91% | 89.54%
7 no textures 57.28% | 33.20% 69.27% | 41.43% 79.57% | 49.96% 93.97% | 88.79%
8 no shadows & fixed lightning 55.85% | 31.31% 32.85% | 20.60% 38.15% | 20.19% 89.53% | 85.91%
9 no random colors 16.15% | 7.34% 35.95% | 15.52% 39.40% | 15.66% 40.28% | 32.00%
10 no augmentations 59.59% | 31.04% 61.34% | 38.30% 57.28% | 31.23% 93.76% | 89.51%

Table 5.10: The AP@50 and AP@75 evaluation results of the different models of which each
was trained with one specific domain randomization technique missing. Model 2
serves as reference. It was trained on the ’AD. SO.’ dataset which implements all
the available domain randomization techniques. Furthermore, its training did include
online augmentations. The metrics which surpass the corresponding reference of
model 2 are marked bold.

technique missing, except the ’AD. SO.’ dataset which implements all the available domain
randomization techniques and which was used to train model 2. All configuration variations and
their corresponding model id are presented in table 5.9:

• Model 2: It was trained on the artificial ’AD. SO.’ dataset, and serves as reference. All
domain randomization techniques have been employed, including online augmentations
during training.

• Model 7: It was trained on the ’AD. NT. SO.’ dataset. It is the same as the ’AD. SO.’ dataset
with the exception that the table and bottom plane do not have any textures applied to them.
Its training also includes the online augmentations of model 2.

• Model 8: It was trained on the ’AD. NL. SO.’ dataset. It is the same as the ’AD. SO.’ dataset
with the exception that there is no randomized lightning. The shadows are disabled and the
lightning conditions are fixed. Its training also includes the online augmentations of model 2.

• Model 9: It was trained on the ’AD. NRC. SO.’ dataset. It is the same as the ’AD. SO.’ dataset,
however, the instances do not have randomized colors. The colors differ only in a small range
and are between white or grey. Its training also includes the online augmentations of model 2.

• Model 10: It was trained on the ’AD. SO.’ dataset. The datamapper does not apply any
augmentations during training except for resizing the image to a fixed size of 512× 512 pixels.

83

5 Experiments

Model 2 was trained for 50000 iterations. The other models were trained for 80000 iterations. The
evaluated average precision on the different test datasets for each model is shown in table 5.10. No
augmentations, except for resizing the input image, were performed during the evaluations.

Texture Randomizations On / Off

Training without textures seems to significantly increase the average precision on the datasets which
contain real data, i. e., ’RD.,’ ’RDC.,’ and ’Mixed.’ For the ’RD.’ dataset, the AP@50 increases by
9.45 percentage points from 59.82 percent up to 69.27 percent. For the ’RDC.’ dataset, the AP@50
increases by a similar margin of 10.54 percentage points from 69.03 percent up to 79.57 percent.
The applied textures seem to make the images less recognizable to the network w.r.t. the setting of
the real data. They severely change the appearance of the images, and the setting of the real data
does not contain such diverse textures. Hence, the data of the artificial dataset ’AD. NT. SO.’ is
closer to the real dataset ’RD.’ than the ’AD. SO.’ dataset, and training on the ’AD. NT. SO.’ dataset
improves the generalization to the ’RD.’ dataset compared to training on the ’AD. SO.’ dataset.

However, training with the additional textures increases the AP@50 on the artificial ’AD. CO.’
dataset by a small margin of 1.3 percentage points from 57.28 percent up to 58.58. The ’AD. CO.’
dataset does also contain textures. This makes it appear natural that the performance on it increases
if the training set also uses textures.

Lightning Randomizations On / Off

Training without shadows and fixed lightning conditions significantly decreases the performance on
the real data and slightly decreases the performance on the artificial dataset with complex objects.
For the ’RD.’ dataset, the AP@50 decreases by 26.97 percentage points from 59.82 percent down
to 32.85 percent. For the ’RDC.’ dataset, the AP@50 decreases by 30.88 percentage points from
69.03 percent down to 38.15 percent. This shows that training without shadows and randomized
lightning conditions makes the artificial data appear less real, hence the performance on the real data
decreases. However, it might be surprising that these additional randomizations have such a notable
impact on the evaluated performance, as the data of the ’AD. SO.’ dataset does not seem to appear
that different compared to the ’AD. NL. SO.’ dataset. Thus, shadows and randomized lightning in
the input images do contribute to important features for object detection w.r.t. real data.

Without shadows and randomized lightning, the performance on the ’AD. CO.’ dataset does slightly
decrease by a small margin of 2.73 percentage points from 58.58 percent down to 55.85 percent.
The overall setting of the artificial data in ’AD. SO.’ and ’AD. CO.’ seems to be close enough to still
produce similar results.

Object Color Randomizations On / Off

The results show that randomizing object colors does contribute significantly to the performance
on the real data, and training without it decreases the AP@50 by a notable margin. For the ’RD.’
dataset, the AP@50 decreases by 23.87 percentage points from 59.82 percent down to 35.95 percent.

84

5.2 Model Evaluations

ID Backbone RoI Heads shared Conv. Input Pretrained Training Set
(2) ResNet50 ResNet50 5th stage RGB False AD. SO.
12 ResNet50 ResNet50 5th stage RGB-D False AD. SO.
14 ResNet50 ResNet50 5th stage D False AD. SO.
(5) Encoder ResNet18 5th stage RGB Encoder only AD. SO.
11 Encoder ResNet18 5th stage RGB-D Encoder only5 AD. SO.
13 Encoder ResNet18 5th stage D Encoder only6 AD. SO.

Table 5.11: The configurations resemble the Mask R-CNN architecture with the ResNet50 and
encoder backbone. The additional models are configured to have RGB images and D
images (RGB-D) or depth information only (D) as input.

For the ’RDC.’ dataset, the AP@50 decreases by 29.63 percentage points from 69.03 percent down
to 39.40 percent. However, randomized lightning conditions and shadows still seems to be of more
importance.

The results on the ’AD. CO.’ dataset with complex objects are far worse. For the ’AD. CO.’ dataset,
the AP@50 decreases by 42.43 percentage points from 58.58 percent down to 16.15 percent. This
can be expected as the objects do not look alike w.r.t. their color anymore. The ’AD. NRC. SO.’
dataset contains only objects which are colored white to grey. With regard to their color, they do
rather resemble the background’s white skybox instead of colored objects which would justify them
to not being predicted well.

Augmentations On / Off

Augmentations introduce a regularization effect, thus it is justified that the performance on a
similar artificial dataset decreases. The results show that the augmentations do not contribute to
the generalization for complex objects which are in the same artificial setting as the additional
augmentations slightly decrease the performance on the ’AD. CO.’ dataset by 1.01 percentage points
from 59.59 percent to 58.58 percent.

However, w.r.t. the ’RD.’ dataset, the additional augmentations do also decrease the performance
by a small margin of 1.52 percentage points from 61.34 percent down to 59.82 percent. In contrast,
for the cropped real data, i. e., the ’RDC.’ dataset, the additional augmentations did significantly
increase the average precision by 11.75 percentage points from 57.28 percent up to 69.03 percent.
This seems unexpected as both contain real data. A possible yet rather unlikely explanation could
be, that random cropping is also part of the augmentations. Thus, when augmentations are enabled,
the model trains on more cropped data and in result responses better to the cropped real data.

85

5 Experiments

ID Input AP@50 | AP@75 AD.CO. AP@50 | AP@75 RD. AP@50 | AP@75 RDC. AP@50 | AP@75 mixed
(2) RGB 58.58% | 32.83% 59.82% | 35.11% 69.03% | 41.68% 93.91% | 89.54%
12 RGB-D 58.10% | 30.84% 44.14% | 31.67% 58.83% | 36.11% 91.61% | 88.48%
14 D 29.93% | 7.03% 38.24% | 15.48% 48.50% | 10.18% 91.11% | 85.21%
(5) RGB 57.80% | 35.27% 56.66% | 25.77% 55.89% | 21.79% 91.28% | 85.28%
11 RGB-D 55.46% | 29.77% 37.12% | 22.17% 36.78% | 15.65% 89.05% | 85.70%
13 D 34.01% | 9.35% 74.22% | 50.58% 72.65% | 44.58% 94.41% | 89.76%

Table 5.12:Model 2, model 12, and model 14 use a ResNet50 backbone. Model 5, model 11,
and model 13 use an encoder backbone. The table shows the average precision
performance of the models when trained and evaluated with RGB, RGB-D (additional
depth information), and D only (only depth information) images.

5.2.3 Depth Information

This subsection investigates the impact of training and evaluation of models which have additional
or only depth information as input. Therefore, two backbones were selected. Firstly, the ResNet50
backbone which is used in model 2, model 12, and model 14. Secondly, the encoder backbone which
is used in model 5, modelInformatik1, and model 13. Table 5.11 shows the different configurations.
The models, which use the ResNet50 backbone, were all randomly initialized, while the models,
which use the encoder backbone, had the backbone initialized with pretrained weights. Similar to
model 5, as described in subsection 5.2.1, the encoder of model 11 and model 13 were pretrained as
part of an auto-encoder with a reconstruction loss on the ’AD. SO.’ dataset, each with the appropriate
input format. Note that online augmentations were applied on RGB-D and D input, too.

Model 2 was evaluated after 50000 training iterations, and model 12 and model 14 each after
80000 training iterations. Model 5 and model 13 were evaluated after 160000 training iterations,
and model 11 after 100000 training iterations. The iteration were chosen w.r.t. the best results of
the intermediate evaluations on the validation set of the ’AD. SO.’ dataset.

The results of the evaluated average precision on the test datasets are shown in table 5.12. Both
backbone variations generalize to the ’AD. CO.’ dataset better without any depth information than
with depth information. Additional depth information slightly decreases the average precision by
0.48 percentage points from 58.58 percent down to 58.10 percent for the models with a ResNet50
backbone, and by 2.34 percentage points from 57.80 percent down to 55.46 percent for the models
with the encoder backbone.

Omitting the RGB data completely, thus using depth information during training and evaluation only,
severely worsens the AP@50 on the ’AD. CO. dataset by 28.65 percentage points from 58.58 percent
down to 29.93 percent for the models with a ResNet50 backbone, and by 23.79 percentage points
from 57.80 percent down to 34.01 percent for the models with the encoder backbone. This suggests
that the additional depth information confuses the network w.r.t. the artificial dataset ’AD. CO.’
and leads to a worse feature extraction for object detection. When using depth information only,

5The encoder is pretrained as part of an auto-encoder with a reconstruction loss on the ’AD. SO.’ dataset but including
the depth information, i. e., the input was RGB-D data.

6The encoder is pretrained as part of an auto-encoder with a reconstruction loss on the ’AD. SO.’ dataset but using only
the depth information, i. e., the input was D data.

86

5.2 Model Evaluations

the images of the ’AD. CO.’ and ’AD. SO.’ datasets have even less similarities, due to the missing
colors and textures. Thus, the decrease in performance on the ’AD. CO.’ dataset is more significant
when using only depth information compared to using RGB and D images.

For the ResNet50 backbone models, the AP@50 with additional depth data also decreases on the
’RD.,’ ’RDC.,’ and ’Mixed’ datasets which contain real data. However, in this case the effects
of the additional depth data is more significant. For the ’RD.’ dataset, the AP@50 decreases by
15.68 percentage points from 59.82 percent down to 44.14 percent. For the ’RDC.’ dataset, the
AP@50 decreases by 10.2 percentage points from 69.03 percent down to 58.83 percent.

Using depth data only decreases theAP@50on the real data, when using theResNet50 backbone, even
more. For the ’RD.’ dataset, the AP@50 decreases by 21.58 percentage points from 59.82 percent
down to 38.24 percent. For the ’RDC.’ dataset, the AP@50 decreases by 20.53 percentage points
from 69.03 percent down to 48.50 percent.

For the models which use the encoder backbone, the results on the real data show a similar
effect when using additional depth information. For the ’RD.’ dataset, the AP@50 decreases by
19.54 percentage points from 56.66 percent down to 37.12 percent. For the ’RDC.’ dataset, the
AP@50 decreases by 19.11 percentage points from 55.89 percent down to 36.78 percent. However,
in contrast to the models which use the ResNet50 backbone, using only depth data does increase
the AP@50 on the real data. For the ’RD.’ dataset, the AP@50 increases by 17.56 percentage
points from 56.66 percent up to 74.22 percent. For the ’RDC.’ dataset, the AP@50 increases by
16.76 percentage points from 55.89 percent up to 72.65 percent. Thus, the combination of RGB
and depth information in one input image leads to worse results for all of the model configurations.
However, the results on the models which use the encoder backbone imply that the depth information
holds valuable information, as they perform significantly better when trained and evaluated on depth
images compared to training and evaluation on RGB images.

87

6 Discussion

The results in chapter 5 have shows that a generalization to unseen real data or complex objects is
possible by training only on artificial data from a simulated environment which contains simple
objects. The results of chapter 5 are briefly summarized and discussed in section 6.1.

Section 6.2 discusses some alternative approaches that might further improve the found results. The
key insights of this thesis are briefly summarized in section 6.3, and a final conclusion is given in
section 6.4.

6.1 Results

The following subsections briefly recap and discuss the results of chapter 5 w.r.t. different topics. It
covers the ability of generalization of the evaluated models w.r.t. unseen domains, the effect of
using pretrained weights to initialize the models, the impact of using different architectures, and the
results of the ablation studies of the employed domain randomization techniques. Furthermore, it
covers how additional or less information in the input changes the results.

6.1.1 Generalization Ability

This subsection discusses the generalization ability of models, which were only trained on artificial
data and simple objects, to unseen real data and to unseen artificial data with complex objects.
The training dataset implemented all introduced domain randomization techniques. Online
augmentations for further domain randomization were used during training.

Artificial to Real Data

The results have shown that training on artificial data, which employs the correct domain randomiza-
tion techniques, allows the models to generalize effectively to unseen real data. The best evaluation
result on the real data, with respect to the AP@50 metric and RGB information as input, were
achieved by a Mask R-CNN model which utilizes the powerful ResNet50 backbone. It achieves an
AP@50 of up to 69.27 percent.

89

6 Discussion

Simple Objects to Complex Objects

The results have also shown that training models on artificial data, which contains only objects of
simple geometry and implements appropriate domain randomization techniques, allows to generalize
them to artificial data with complex objects. The best evaluation results on the data containing
complex objects w.r.t. the AP@50 metric and RGB information as input, was achieved by a Mask
R-CNN model with the VGG16 backbone. The achieved AP@50 is 59.70 percent.

6.1.2 The Effect of Pretrained Weights

The initialization of parts of the models with pretrained weights had different effects among the
models depending on their architecture. Two models, one with the ResNet50 backbone and one
with the VGG16 backbone, were initialized with weights that have been previously trained with
tasks on real data. One third model uses an encoder part of an auto-encoder as a backbone. This
backbone was initialized with weights, which were learned during the training of the auto-encoder
on the artificial dataset with simple objects.

Pretrained on Real Data

Pretraining on real data did improve the AP@50 of the model significantly by using the ResNet50
backbone. The achieved AP@50 on the real test data is 79.30 percent, which makes it the best
AP@50 any evaluated model did achieve on this test data. In contrast, the model which uses a
VGG16 backbone actually performed worse when initialized with pretrained weights compared to a
random initialization. Both backbone variation generalize worse to artificial data with complex
objects if they were initialized with weights that were trained on real data.

Pretrained on Artificial Data

The third model uses an encoder backbone which was pretrained with a reconstruction loss
on artificial data. The results have shown that this increases the performance on the real data
considerably. Thus, pretraining with a reconstruction loss appears to help the model to find good
features which also work well on real data. However, it slightly worsens the performance on the
artificial data with complex objects.

6.1.3 Architecture Variations

As shown before, different architectures behave differently. In chapter 5, the Mask R-CNN
architecture was evaluated in different variations. The used backbones of the Mask R-CNN were
the following: the ResNet50; the VGG16; and a encoder network which is part of an auto-encoder.
Among these backbones, the ResNet50 is by far the most powerful network with the highest amount
of parameters. The VGG16 is rather smaller and has only about a third of the amount of parameters
the ResNet50 has. The encoder network is by far the smallest network. Additionally, a variation
was evaluated for each backbone which omitted the second stage of the Mask R-CNN. This results
in single-stage models which only consist of a backbone and a region proposal network.

90

6.1 Results

In general, the single-stage variations produced many false positives. This is due to a missing
additional non-maximum suppression (NMS) at the output of the region proposal network. Never-
theless, they partly achieve similar values w.r.t. the AP@50 metric, even if most perform worse. A
non-pretrained model, which uses a ResNet50 backbone, even achieves better results when evaluated
as single-stage variant.

Precision vs. Recall

The single-stage variants are far worse w.r.t. the measured precision due to the several false
positives. An additional NMS to postprocess the predictions would significantly increase the
evaluated precision. However, it would still likely be worse than for the two-stage variants. This
is because the NMS does not remove false predictions at different positions but only duplicates
at similar positions, whereas the additional RoI Heads module in the two-stage variants can also
remove these false predictions.

The results have shown that the single-stage models achieve significantly higher recall values, which
shows that the region proposals of the region proposal network cover most objects in the image,
even though the generated fixed amount of proposals is small with only 16 proposals per image.

Overall, the two-stage ResNet50 variations work best w.r.t. the recall metric, and they also achieve
considerable precision values compared to the other two-stage variants. However, the best precision
for two-stage variants is achieved with the encoder backbone. Nevertheless, the recall is in this case
slightly worse than for the ResNet50.

6.1.4 Average Precision and Inference Speed Tradeoff

The two-stage models, which use the ResNet50 backbone, are the slowest among the other two-stage
variations. They achieve only 43.1 fps. Even though they achieve the best average precision values.
The two-stage models with the VGG16 backbone are only slightly faster with 49.1 fps, but achieve
significantly worse average precision values compared to the other variations. The two-stage models
with an encoder backbone are the smallest and fastest two-stage variation with 69.6 fps, yet they
achieve almost as high average precision values as the two-stage ResNet50 variants. Note that if
high precision would be more important than high recall, then the encoder models would be the best
choice of all three two-stage variants. This is likely to be the case for grasping experiments, since
unpredictable movements to arbitrary empty positions are often less acceptable as no movement at
all.

If speed is the main factor, single-stage models with an encoder backbone would in this case be
the best choice as their inference is the fastest with over 90 fps. As mentioned before, additionally
adding NMS would introduce only a tiny overhead, but increases the precision significantly which
would make them practical.

Note that the Mask R-CNN in the original paper[9] also uses the ResNet50 backbone, but achieves
only about 5 fps during inference. The speed up of the corresponding models here is reasoned by a
significantly reduced amount of proposals that are generated by the region proposal network. Here,

91

6 Discussion

the RPN outputs only 16 proposals, whereas the RPN of the corresponding original Mask R-CNN
outputs 300 proposals during inference. This leads to a massively increased amount of ’per region
of interest’-computations in the mask and box head of the model, which slows down inference.

6.1.5 Domain Randomization Techniques

Training with additional textures notably decreases the generalization ability to the real data. It
shows that training with textures does in fact has a strong effect on the results, even if it turns out
worse, as in this case. Note that the chosen textures did introduce heavy image mutations which
let the images appear far less natural and real. However, different textures or applying them in a
less dominant way could as well turn this effect around for the better and improve the results with
additional textures compared to the results without using textures.

Shadows and randomized lightning make the artificial data appear more real. This additional
technique significantly improves the generalization to real data. A similar effect was observed for
the randomization of object colors.

The effect of online augmentations during training is less clear. They worsen the performance
on the regular real images but notably increase the performance for cropped real images. Similar
to the randomized textures, choosing the augmentations carefully might also improve the overall
performance for regular real images.

6.1.6 Input Information

Training and evaluating with RGB-D images, i. e., the input contains additional depth information
as an extra channel in the image leads to a worse prediction performance compared to training
and evaluating with RGB images. However, the same training with D images instead leads to a
significantly improved performance compared to RGB images, and an even better performance
compared to RGB-D images, at least for models that use the encoder backbone. This implies that
depth images do contain valuable information w.r.t. the objects in the image. However, combining
a RGB image and D image into one single image does lead to worse results as it might confuse the
network due to the different nature of the data in the input.

6.2 Alternatives

The evaluated single-stage models improve the recall and inference speed. As it was mentioned
in the results, applying additional non-maximum suppression to the output of the region proposal
network might improve the precision significantly. Thus, this represents a plausible alternative, if
inference speed matters.

The results have shown that domain randomization techniques are able to affect the generalization
ability of models. Furthermore, the results have shown that heavy randomizations and modifications
can lead to worse results. Therefore, less severe or sophisticated randomizations such as textures
and augmentations could improve the results.

92

6.3 Insights

In general, it is rather uncommon to have real depth data available because it is more complex
and difficult to be obtained. However, the results have shown that depth images hold valuable
information for predicting objects. Even though, including depth data directly in the input image
yields worse results and confuses the network. A possible alternative to construct a model, which
is independent to whether RGB images, depth images, or both are available during training and
evaluation, would be to have another parallel first stage which includes a second backbone and a
second region proposal network to the existing one. The second backbone will accept depth images
instead of RGB images, while the first backbone will accept RGB images instead. Both generate
region proposals w.r.t. their input data. The generated proposals can then be concatenated and serve
together as input for the second stage, i. e., the box or mask head. Hence, depending on which data
is available, the corresponding ’first stage’ is executed, or both, if RGB and depth data is available.
The ’first stages’ can be executed in parallel and should only add a small overhead. The predictions
will benefit from the best of both RGB data and depth data.

6.3 Insights

The evaluation results lead to following insights:

• Training only on artificial data with the correct domain randomization techniques enables
models to generalize effectively on unseen real datasets. Thus, domain randomization allows
to transfer a model from a simulated environment to the real world.

• The domain randomization techniques should be chosen carefully. More and heavier
randomizations do not necessarily contribute to an improved generalization.

• The amount of training iterations does affect the performance of the trained models. Both,
training for not enough iterations as well as training for too many iterations, may result in
worse results. The sweet spot for the best results will be obtainable in between. However, this
sweet spot depends on the goal of how the model should perform and also on which data.

• Intermediate evaluation results are not always reliable.

• Models with fewer parameters may perform almost as well as models which have plenty more
parameters.

• Appropriate configurations can considerably speed up the inference of the Mask R-CNN
while still achieving pleasant results.

• The initialization of models with pretrained weights usually improves their performance, yet
not necessarily.

• RGB and depth images should be considered as separate images to extract higher level
features. Combining them into one image leads to worse results.

93

6 Discussion

6.4 Conclusion

This thesis did develop a simulation framework which allows to generate artificial data of a simulated
grasping experiment environment. The simulation allows to employ multiple different domain
randomization techniques during data generation. With the help of the detectron 2 framework,
different model architectures, which are based on the Mask R-CNN network, were trained and
evaluated. It was investigated how well the models can generalize to real images and artificial
images that contain unseen complex objects. The training was performed only on artificial data with
simple objects. Both intentions were found to be successful. Multiple evaluations of combinations
with different architectures and employed domain randomization techniques were performed, also
in form of ablation studies. They have shown that choosing different architectures leads to a tradeoff
of inference speed and prediction quality. The ablation studies give insight about the effect of the
employed domain randomization techniques. They show that more randomizations of the artificial
training data do not necessarily improve the generalization to real testing data. Furthermore,
more input information such as information from depth images does not necessarily improve the
performance but can also act worsening, if RGB and depth images are combined into one single
image. The evaluation on a real dataset using depth images led to a model with an average precision
(at IoU=50) of up to 74.22 percent at 69.6 fps. A different model which uses RGB images instead,
achieved an AP@50 of up to 69.27 percent at 43.1 fps on a real dataset. For complex objects,
another model achieved an AP@50 of 59.70 percent at 49.1 fps.

94

Bibliography

[1] F.-J. Chu, R. Xu, P. A. Vela. Real-world Multi-object, Multi-grasp Detection. 2018. arXiv:
1802.00520 [cs.RO]. url: https://arxiv.org/pdf/1802.00520 (cit. on p. 14).

[2] E. Coumans, Y. Bai. PyBullet, a Python module for physics simulation for games, robotics
and machine learning. http://pybullet.org. 2016–2019. url: https://github.com/
bulletphysics/bullet3 (cit. on p. 31).

[3] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:Mathematics of
control, signals and systems 2.4 (1989), pp. 303–314. url: https://link.springer.com/
article/10.1007/BF02551274 (cit. on p. 17).

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR09. 2009 (cit. on pp. 69, 72).

[5] M. Everingham, L. Van Gool, C.K. I. Williams, J. Winn, A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html. url: http://host.robots.ox.
ac.uk/pascal/VOC/voc2012/ (cit. on pp. 12, 59).

[6] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. C. Berg. DSSD : Deconvolutional Single Shot
Detector. 2017. arXiv: 1701.06659 [cs.CV]. url: https://arxiv.org/pdf/1701.06659 (cit. on
p. 12).

[7] R. Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV]. url: https://arxiv.org/pdf/
1504.08083 (cit. on pp. 12, 26).

[8] R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. 2014. arXiv: 1311.2524 [cs.CV]. url: https://arxiv.
org/pdf/1311.2524 (cit. on pp. 12, 25).

[9] K. He, G. Gkioxari, P. Dollár, R. Girshick. Mask R-CNN. 2018. arXiv: 1703.06870 [cs.CV].
url: https://arxiv.org/pdf/1703.06870 (cit. on pp. 12, 13, 17, 28, 45, 68, 91).

[10] K. He, X. Zhang, S. Ren, J. Sun. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV]. url: https://arxiv.org/pdf/1512.03385 (cit. on pp. 21, 44).

[11] K. He, X. Zhang, S. Ren, J. Sun. “Spatial Pyramid Pooling in Deep Convolutional Networks
for Visual Recognition”. In: Lecture Notes in Computer Science (2014), pp. 346–361. issn:
1611-3349. doi: 10.1007/978-3-319-10578-9_23. url: http://dx.doi.org/10.1007/978-3-
319-10578-9_23 (cit. on p. 24).

[12] S. Ioffe, C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG]. url: https://arxiv.org/pdf/
1502.03167v3 (cit. on p. 19).

95

https://arxiv.org/abs/1802.00520
https://arxiv.org/pdf/1802.00520
http://pybullet.org
https://github.com/bulletphysics/bullet3
https://github.com/bulletphysics/bullet3
https://link.springer.com/article/10.1007/BF02551274
https://link.springer.com/article/10.1007/BF02551274
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://arxiv.org/abs/1701.06659
https://arxiv.org/pdf/1701.06659
https://arxiv.org/abs/1504.08083
https://arxiv.org/pdf/1504.08083
https://arxiv.org/pdf/1504.08083
https://arxiv.org/abs/1311.2524
https://arxiv.org/pdf/1311.2524
https://arxiv.org/pdf/1311.2524
https://arxiv.org/abs/1703.06870
https://arxiv.org/pdf/1703.06870
https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1512.03385
https://doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
https://arxiv.org/abs/1502.03167
https://arxiv.org/pdf/1502.03167v3
https://arxiv.org/pdf/1502.03167v3

Bibliography

[13] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, R. Qu. “A Survey of Deep Learning-Based
Object Detection”. In: IEEE Access 7 (2019), pp. 128837–128868. issn: 2169-3536. doi:
10.1109/access.2019.2939201. url: http://dx.doi.org/10.1109/ACCESS.2019.2939201
(cit. on pp. 11, 12).

[14] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J. Banerjee,
G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, B. Cook,
I. Fernández, F.-M. De Rainville, C.-H. Weng, A. Ayala-Acevedo, R. Meudec, M. Laporte,
et al. imgaug. https://github.com/aleju/imgaug. Online; accessed 01-Feb-2020. 2020. url:
https://github.com/aleju/imgaug (cit. on pp. 30, 54, 57).

[15] A. Kasper, Z. Xue, R. Dillmann. “The KIT object models database: An object model database
for object recognition, localization andmanipulation in service robotics”. In: The International
Journal of Robotics Research 31.8 (May 2012), pp. 927–934. doi: 10.1177/0278364912445831
(cit. on p. 36).

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár. Focal Loss for Dense Object Detection.
2018. arXiv: 1708.02002 [cs.CV]. url: https://arxiv.org/pdf/1708.02002 (cit. on p. 12).

[17] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,
C. L. Zitnick, P. Dollár. Microsoft COCO: Common Objects in Context. 2015. arXiv:
1405.0312 [cs.CV] (cit. on p. 71).

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C. Berg. “SSD: Single
Shot MultiBox Detector”. In: Lecture Notes in Computer Science (2016), pp. 21–37. issn:
1611-3349. doi: 10.1007/978-3-319-46448-0_2. url: http://dx.doi.org/10.1007/978-3-
319-46448-0_2 (cit. on p. 12).

[19] Y. Lu, J. Lu. A Universal Approximation Theorem of Deep Neural Networks for Expressing
Distributions. 2020. arXiv: 2004.08867 [cs.LG]. url: https://arxiv.org/pdf/2004.08867
(cit. on p. 17).

[20] R. Padilla, S. L. Netto, E. A. B. da Silva. “A Survey on Performance Metrics for Object-
Detection Algorithms”. In: 2020 International Conference on Systems, Signals and Image
Processing (IWSSIP). 2020, pp. 237–242 (cit. on pp. 58, 59).

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In:Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett.
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (cit. on
p. 41).

[22] J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You Only Look Once: Unified, Real-Time
Object Detection. 2016. arXiv: 1506.02640 [cs.CV]. url: https://arxiv.org/pdf/1506.02640
(cit. on pp. 12, 13).

[23] J. Redmon, A. Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv: 1612.08242 [cs.CV].
url: https://arxiv.org/pdf/1612.08242 (cit. on pp. 12, 13).

[24] J. Redmon, A. Farhadi. YOLOv3: An Incremental Improvement. 2018. arXiv: 1804.02767
[cs.CV]. url: https://arxiv.org/pdf/1804.02767 (cit. on p. 12).

96

https://doi.org/10.1109/access.2019.2939201
http://dx.doi.org/10.1109/ACCESS.2019.2939201
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://doi.org/10.1177/0278364912445831
https://arxiv.org/abs/1708.02002
https://arxiv.org/pdf/1708.02002
https://arxiv.org/abs/1405.0312
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/2004.08867
https://arxiv.org/pdf/2004.08867
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1506.02640
https://arxiv.org/pdf/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/pdf/1612.08242
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/pdf/1804.02767

[25] S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV]. url: https://arxiv.org/pdf/
1506.01497 (cit. on pp. 12, 27, 28).

[26] D. E. Rumelhart, G. E. Hinton, R. J. Williams. “Learning representations by back-propagating
errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–536. doi: 10.1038/323533a0 (cit. on p. 58).

[27] P. Schmidt, N. Vahrenkamp, M. Wächter, T. Asfour. “Grasping of Unknown Objects Using
Deep Convolutional Neural Networks Based on Depth Images”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 6831–6838. doi: 10.1109/ICRA.
2018.8463204. url: https://h2t.anthropomatik.kit.edu/pdf/Schmidt2018.pdf (cit. on
p. 14).

[28] K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. 2015. arXiv: 1409.1556 [cs.CV]. url: https://arxiv.org/pdf/1409.1556
(cit. on pp. 15, 21, 46).

[29] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel. Domain Randomization
for Transferring Deep Neural Networks from Simulation to the Real World. 2017. arXiv:
1703.06907 [cs.RO]. url: https://arxiv.org/pdf/1703.06907 (cit. on pp. 14–16, 29, 30).

[30] M. Toussaint. Introduction to Machine Learning (Lecture Slides). url: https://www.user.tu-
berlin.de/mtoussai//teaching/Lecture-MachineLearning.pdf (cit. on p. 17).

[31] J. Uĳlings, K. Sande, T. Gevers, A. Smeulders. “Selective Search for Object Recognition”.
In: International Journal of Computer Vision 104 (Sept. 2013), pp. 154–171. doi: 10.1007/
s11263-013-0620-5. url: http://www.huppelen.nl/publications/selectiveSearchDraft.
pdf (cit. on p. 25).

[32] T.Vu.Lecture WS 2018/2019 Deep Learning for speech and Language Recognition. University
of Stuttgart (cit. on pp. 18, 19).

[33] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick. Detectron2. https://github.com/
facebookresearch / detectron2. 2019. url: https : / / github . com / facebookresearch /
detectron2 (cit. on pp. 41, 56).

[34] S. Zakharov, W. Kehl, S. Ilic. DeceptionNet: Network-Driven Domain Randomization. 2019.
arXiv: 1904.02750 [cs.CV]. url: https://arxiv.org/pdf/1904.02750 (cit. on pp. 14, 15).

[35] S. Zhang, L. Wen, X. Bian, Z. Lei, S. Z. Li. Single-Shot Refinement Neural Network for Object
Detection. 2018. arXiv: 1711.06897 [cs.CV]. url: https://arxiv.org/pdf/1711.06897
(cit. on p. 12).

[36] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, H. Ling.M2Det: A Single-Shot Object
Detector based on Multi-Level Feature Pyramid Network. 2019. arXiv: 1811.04533 [cs.CV].
url: https://arxiv.org/pdf/1811.04533 (cit. on p. 12).

All links were last followed on December 17, 2020.

https://arxiv.org/abs/1506.01497
https://arxiv.org/pdf/1506.01497
https://arxiv.org/pdf/1506.01497
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/ICRA.2018.8463204
https://doi.org/10.1109/ICRA.2018.8463204
https://h2t.anthropomatik.kit.edu/pdf/Schmidt2018.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/pdf/1409.1556
https://arxiv.org/abs/1703.06907
https://arxiv.org/pdf/1703.06907
https://www.user.tu-berlin.de/mtoussai//teaching/Lecture-MachineLearning.pdf
https://www.user.tu-berlin.de/mtoussai//teaching/Lecture-MachineLearning.pdf
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/1904.02750
https://arxiv.org/pdf/1904.02750
https://arxiv.org/abs/1711.06897
https://arxiv.org/pdf/1711.06897
https://arxiv.org/abs/1811.04533
https://arxiv.org/pdf/1811.04533

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht. Das elektronischeExemplar stimmt
mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

Stuttgart, den 17.12.2020

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization

	2 Related Work
	2.1 Object Detection
	2.2 Grasping Experiments
	2.3 Domain Randomization

	3 Background
	3.1 Neural Networks
	3.2 The Evolution of R-CNN
	3.3 From Simulation to the Real World

	4 Methods
	4.1 Simulation Framework
	4.2 Model Research

	5 Experiments
	5.1 Datasets
	5.2 Model Evaluations

	6 Discussion
	6.1 Results
	6.2 Alternatives
	6.3 Insights
	6.4 Conclusion

	Bibliography

