
Institute for Formal Methods of Computer Science
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Bachelor Thesis

OpenStreetMap Risk Maps

Patrick Lindemann

Course of Study: Computer Science

Examiner: Prof. Dr. Stefan Funke

Supervisor: M.Sc. Tobias Rupp

Commenced: May 3, 2021

Completed: November 3, 2021

Abstract

Military strategy games such as the popular turn-based board RISK® by Hasbro offer the

opportunity to create playable maps that use real cartographical material, due to the fact that

players enjoy to play such games on boards that come as close as possible to real maps. Using

the freely available and continuously maintained geodata of the OpenStreetMap project, we

have developed a MapMaker tool that mostly automatizes the map generation process. We use

various algorithms to compress and assemble administrative boundaries, which are extracted

from the geographic source data, and collect additional metadata such as the adjacency of

territories to create a fully playable map. Last but not least, we use the online strategy game

Warzone for the testing and evaluation of our work with real players.

2

Contents

1 Introduction 8
1.1 Motivation . 8

1.2 Related Work . 11

2 Foundations 12
2.1 OpenStreetMap Data . 12

2.2 Projections and Transformations . 17

2.3 Geometry . 20

3 Risk Map Generation 24
3.1 Map Requirements . 24

3.2 Compression . 24

3.3 Assembly . 30

3.4 Neighborships . 33

3.5 Filters . 34

3.6 Center Points . 36

4 Conclusion 42

Bibliography 43

3

List of Figures

1.1 The OpenStreetMap logo . 9

1.2 The Warzone logo . 10

1.3 An ongoing game on the world map in Warzone 11

2.1 A multipolygon area with one inner and three outer way members. 15

2.2 Administrative boundaries of Germany with the levels 2, 4 and 6 16

2.3 The graphical depiction of latitude and longitude [Com05] 17

2.4 The world map created by applying the Mercator projection [Str11] 20

2.5 The geometric primitives: A point, segment and polyline 21

2.6 Examples for valid polygon geometries . 21

2.7 Examples for invalid polygon geometries . 22

2.8 Valid family geometries . 22

2.9 Invalid figure and family geometries (outer polygons are red, inner polygons

are blue) . 23

3.1 Ramer-Douglas-Peucker Compression after [Com20] 26

3.2 A comparison between the unmodified Ramer-Douglas-Peucker compression

(left) and the modified version (right). 28

3.3 A polyline that has the worst-case runtime for the compression algorithm . . 29

3.4 A map of the Canary Islands and its neighbor graph 35

3.5 Counter-example polygons for average and geometric centers [Bau19] 39

3.6 A generated map for the Isle of Man with territory level 8 and bonus level 6 . 40

3.7 Bayern with territory level 8 . 41

4

List of Tables

2.1 Administrative levels and their mapping for the United States and Germany . 16

5

List of Listings

2.1 A café in Stuttgart represented by a node. 13

2.2 A way with multiple node references that represents a street. 13

2.3 A metro line represented by a relation with multiple node and way members. 14

2.4 A boundary area for the administrative borders of the city of Stuttgart 14

6

List of Algorithms

1 Ramer-Douglas-Peucker Algorithm . 27

2 Modified Ramer-Douglas-Peucker Algorithm 29

3 Brute-Force Intersection Algorithm . 30

4 Shamos-Hoey Algorithm . 32

5 Neighbor Graph Creation . 34

6 Component Depth-First-Search . 37

7 Component Filter . 37

7

1 Introduction

The main focus of this work is to create playable maps for strategy games, such as the popular

board game RISK
®
by Hasbro, by using real geographic map data. The following sections are

intended to introduce the reader to OpenStreetMap, which provides the map data and Warzone,
an online strategy game that we use to test and evaluate our work.

1.1 Motivation

RISK
®
is a turn-based strategy board game of world conquest [Gor13] for two up to six players.

The most popular version of the game is played on a board that portrays the world map, which

is divided into 42 territories that are grouped into 6 continents [Bro63].

At the start of the game, the territories are distributed by cards from the deck evenly among

the players. Afterwards, players receive varying amounts of army figures, which they can

assign to territories that they control. These armies can be used to attack adjacent territories

controlled by an opponent engaging such in a battle by dice rolls, whereas the result of the

attack attempt is determined by the dice roll result of the attacker compared to the one of the

defendant. Controlling all territories of a continent grants the player a bonus in the form of

additional troops in each turn. The goal of the standard mode of the game is to defeat and

eliminate all opponents by conquering and occupying every territory on the board, achieving

the full world domination.

The main focus of this project is to create boards that can be used for play in strategy games

like RISK
®
by using political boundaries (specifically country borders and their administrative

subdivisions) of real geographic data. Although it is possible to create such maps manually,

this process is very time-consuming and error-prone, especially when working with large

map sections that contain many boundaries. We will automatize this process by providing a

MapMaker tool that assembles the geometries of geographic data extracts and converts them

into board maps with territories and bonuses.

In order to make our generated maps playable, we calculate additional metadata for the

extracted boundaries, namely:

• The center point of territories to act as positions for labels,

8

1 Introduction

• A neighborship graph that contains the adjacencies of territories, with the purpose that

armies can be moved between them, and

• A hierarchy that groups territories together to form bonuses which grant the player

additional armies.

The following two sections will present the OpenStreetMap, which provides our work with

geographic data and Warzone, an online spin-off version of RISK
®
that we use to test and

evaluate the generated maps.

OpenStreetMap

Founded in 2004, the collaborative OpenStreetMap Project
1
aims to create a free geographic

database of the world [Pro21b]. The map data is contributed and actively maintained by a

community of volunteers and released with an open-content license [Pro21a]. In contrast to

other map services, OpenStreetMap does not only provide the maps, but also the underlying

geodata that can be used and further processed as desired. As of 2021, OpenStreetMap counts

more than 8 million users [Pro21c].

Figure 1.1: The OpenStreetMap logo

Source: https://www.openstreetmap.de/

In the context of our work, we rely on geodata obtained from the OpenStreetMap project. In

general, we are interested in the administrative boundaries for countries and their subdivisions,

so that we can replicate the real geometries in our playable maps. In order to understand

how this data is composed and further processed, we will elaborate the core concepts of the

OpenStreetMap objects further in the following chapter.

Warzone

Similar to RISK
®
, Warzone

2
is a turn-based strategy game that can be played online between 2

and 40 players, in teams or individually [War21]. Each game takes place on a specified map,

1
https://www.openstreetmap.org/

2
https://www.warzone.com/

9

1 Introduction

which is a collection of territories. Each territory is filled with a color that indicates by which

player it is controlled, and a number that indicates how many armies are currently present in

this territory. A player or team wins the game by conquering all territories on the entire map,

with the result that none of the opponent players has any territories left [Wik21k].

Figure 1.2: The Warzone logo

Source: https://www.warzone.com/

Each turn consists of three phases [Wik21k]:

1. Army deployment: at each turn, the player receives a number of armies which can be

distributed over controlled territories.

2. Attack and Transfer : after the armies have been deployed, the player can move armies

between same player-controlled territories that are adjacent. The type of move is

determined by the status of the target territory:

a) Attack: if the target territory belongs to an enemy (or is neutral), it will be attacked.

Attacks can succeed or fail, what will be determined by the number of armies

attacking and defending the territory. Each army that attacks has a 60% chance to

defeat one defending army [Wik21j]. If all armies of the defending territory are

defeated, the respective territory is conquered and occupied by the attacker.

b) Transfer : if the target territory is friendly (i.e. it belongs to the player or a teammate),

the armies may be transferred. Transfers always succeed.

3. Confirmation: after preparing the aforementioned moves, they are reviewed and con-

firmed by the player before submitting them to the Warzone server. Afterwards, the

orders will be executed one-by one in the specified order for each player.

In our work, we create maps that are customized to work with Warzone, so that the created

maps can be play-tested by real users. We chose Warzone as the testing ground for our results

because of its simplicity regarding the map creation process and for its active community of

players and map creators, who could benefit directly from a tool that partially automatizes

the map making process. In addition, Warzone also defines quality requirements for maps

[Wik21l], which we will use to evaluate our results against.

10

1 Introduction

Figure 1.3: An ongoing game on the world map in Warzone

1.2 Related Work

There exist multiple free tools that allow users to extract selected administrative boundaries

and their subdivisions from OpenStreetMap. For instance, OSMBoundaries
3
provides an online

interface through which a registered OpenStreetMap user can select boundaries for one or

multiple countries and convert them to GeoJSON data.

For Warzone, the community developed a the tool collectionWarlight Tools4 which provides

algorithms to calculate metadata information such as center points and adjacencies of specified

.svg map files. This tool also uses API endpoints provided by Warzone [Wik21m] to automatize

the metadata upload process. However, the implemented algorithms operate directly on the

geometries, with the result of low performances for larger maps, as this was reported by users

in [War11].

Our work intends to combine both of these parts into a single pipeline to create an MapMaker

application that is easy to use and that requires minimal knowledge for users. In addition,

we implement efficient algorithms to achieve speedups for the map creation and metadata

calculation process, especially for larger maps. At last, our tool uses the the Warzone API to

further automatize the upload process.

3
https://osm-boundaries.com/Map

4
https://github.com/MatmaRex/Warlight-Tools

11

2 Foundations

In this Chapter, wewill introduce the basic concepts and terminology for the data representation

of OpenStreetMap, which we already introduced shortly in Chapter 1. Thereupon, we will

dedicate a short section to map projections and transformations that will be applied to the

extracted geographic locations. At last, we will define geometric constructs and consistency

criteria for those in order to use them for our map-making algorithms in Chapter 3.

2.1 OpenStreetMap Data

OpenStreetMap (OSM) uses three types of basic elements to model data of the real world

[Wik21c]:

1. Nodes define points in space,

2. Ways define linear features, and

3. Relations are used to explain how elements work together.

In addition, Tags which are key-value-pairs can be added to elements to describe their meaning

and to provide additional meta information. As of November 2021, OpenStreetMap contains

over 7.2 billion nodes, 811 million ways and 9.3 million relations [Pro21c].

OpenStreetMap data mainly comes in the form of XML formatted .osm files [Wik21b]. The

planet file Planet.osm contains the data of the whole project and is updated on a weekly basis.

However, due to its massive size of more than 100 gigabytes, mappers work with so-called

Extracts of the map, which only cover a specific part of the planet and are usually much

smaller in size. Moreover, OSM files are usually interchanged as compressed .pbf files using

the Protocolbuffer Binary Format [Wik21f] to further reduce the file sizes and improve reading

and writing times.

The planet file and smaller extracts of the OpenStreetMap project are freely available and may

be downloaded from official sources
1
or from third-party providers such as Geofabrik

2
.

1
https://planet.openstreetmap.org/

2
https://download.geofabrik.de/

12

2 Foundations

Nodes

A node represents an arbitrary point on the earth’s surface, which is defined by longitude and

latitude[Wik21e]. Most nodes are used to define the path (or shape) polylines, but they can

also be extended with an arbitrary amount of tags to represent standalone point features, for

example trees, bridges, stores and more.

<node id="1674998233" lat="48.7790552" lon="9.1785426">
<tag k="name" v="Cafe Königsbau"/>
<tag k="amenity" v="cafe"/>
<tag k="opening_hours" v="Mo-Sa 09:00-19:00; Su,PH 11:00-19:00"/>

</node>

List of Listings 2.1: A café in Stuttgart represented by a node.

Ways

Away is an ordered list of up to 2,000 nodes that represent continuous linear features. [Wik21i]

Like nodes, they can contain tags with additional metadata information to specify standalone

features such as roads, rivers or walls. On the other hand, ways are also used to define the

outer (and inner) boundaries of relations and areas. Ways that start and end at the same node

are referred to as closed ways.

<way id="25490102">
<nd ref="27168602"/>
<nd ref="27168603"/>
<nd ref="886217198"/>
<nd ref="27168604"/>

...
<nd ref="27168607"/>
<tag k="name" v="Universitätsstraße"/>
<tag k="highway" v="tertiary"/>
<tag k="lanes" v="2"/>
<tag k="maxspeed" v="70"/>

</way>

List of Listings 2.2: A way with multiple node references that represents a street.

Relations

A relation is a multi-purpose data structure that defines a relationship between two or more

object members such as nodes, ways and other relations [Wik21c]. They usually include a type

13

2 Foundations

value which indicates how the relation is to be interpreted. Established types include routes

(such as metro lines or numbered highways), waterways and multipolygon geometries such as

buildings [Wik21h]. Each member can optionally define a role value within the relation.

<relation id="9396889">
<member type="way" ref="406220223"/>
<member type="node" ref="8529770817" role="stop"/>
<member type="way" ref="89155651"/>
<member type="node" ref="129999865" role="stop"/>

...
<member type="way" ref="9837998"/>
<member type="node" ref="129999865" role="stop"/>
<tag k="type" v="route"/>
<tag k="name" v="23: Ruhbank (Fernsehturm) -> Straßenbahnmuseum"/>
<tag k="from" v="Ruhbank (Fernsehturm)"/>
<tag k="to" v="Straßenbahnmuseum"/>
<tag k="route" v="tram"/>

</relation>

List of Listings 2.3: A metro line represented by a relation with multiple node and way

members.

Areas

In contrast to the previously mentioned node, way and relation objects, areas are not native to

OpenStreetMap. However, they are almost treated like real OSM objects [Top]. Since areas

have no distinct representation in OSM data, they can be defined in one or both of the following

two ways according to [Wik21a]:

1. Explicit: relations and closed ways that contain the tag area=true are explicitly declared

as an area. In addition, relations with the type multipolygon are always considered to

be areas.

2. Implicit: there are several tags that imply that a relation or closed way is an area. For

example, a closed way with the tag landuse=forest is interpreted as a tree-covered

area by default rather than a row of trees. However, there can be exceptions, which is

why the tag area=false can be used to prevent implicit declarations of areas.

<relation id="2793104" version="83" timestamp="2021-03-22T20:18:32Z">
<member type="way" ref="333901568" role="outer"/>
<member type="way" ref="49931697" role="outer"/>
<member type="way" ref="49931741" role="outer"/>

...
<member type="way" ref="70547034" role="outer"/>
<member type="way" ref="70547255" role="inner"/>

14

2 Foundations

<member type="way" ref="70547831" role="inner"/>
<member type="node" ref="1674026139" role="admin_centre"/>
<tag k="name" v="Stuttgart"/>>
<tag k="type" v="boundary"/>
<tag k="boundary" v="administrative"/>
<tag k="admin_level" v="6"/>

</relation>

List of Listings 2.4: A boundary area for the administrative borders of the city of Stuttgart

Multipolygon areas are closed ways or relations that include the tag type=multipolygon.

In case of relations, these contain multiple way members with an assigned role each (see

listing 2.4). These roles can have two different types: outer and inner. These members must

not necessarily be closed ways that represent a ring each; they can also be partial lines that

agglomerate the rings in a specific order (Fig. 2.1). On the one hand, this has the advantage

that partial borders between areas which are same do not need to be specified separately, on

the other hand, the member ways need to be assembled with specific algorithms (which will

be introduced in Section 3.3) in order to retrieve the actual area geometries.

Figure 2.1: A multipolygon area with one inner and three outer way members.

Boundaries

In our map making process, we work with administrative boundaries exclusively, which

are areas, territories or jurisdictions recognised by governments or other organisations for

15

2 Foundations

administrative purposes only [Wik21d]. In OpenStreetMap, these are specified as areas that

contain the boundary=administrative tag.

Administrative boundaries can have subdivisions at different depths, which are referred to as

administrative levels or simply levels, that are specified with the admin_level=* tag. These

levels are integers between 2 and 11, whereas the level 2 marks country borders, while the

levels 3 to 11 delimitate sub-national boundaries, which are country-specific. Table 2.1 shows

the different mappings for the levels 3 to 11 for Germany and the United States.

Level United States Germany

3 - -

4 State Bundesland

5 New York City Regierungsbezirk

6 State County Landkreis

7 Civil Township Amt

8 City/Town/Village Stadt/Gemeinde

9 Ward Stadtbezirk

10 Neighborhood Stadtteil

11 - Stadtviertel

Table 2.1: Administrative levels and their mapping for the United States and Germany

Figure 2.2: Administrative boundaries of Germany with the levels 2, 4 and 6

16

2 Foundations

2.2 Projections and Transformations

As the earth is spherical, locations on its surface cannot be represented by a planar coordinate

system such as the Euclidean space. For this purpose, geographic coordinate systems (GCS)
[D0015], which we also refer to as spherical coordinate systems, are used to describe geographic
locations on the spherical surfaces with longitude and latitude coordinates.

By using a GCS, a sphere’s surface is divided into a grid by equidistant lines. The vertical lines

(North/South) are called meridians, the horizontal lines (East/West) are called parallels. The
longitude λ of a geographic location denotes the angle East or West and the latitude ϕ the

angle North or South to a fixed meridian and parallel respectively. For the earth’s coordinate

system, the central meridian was chosen internationally as the meridian that passes through

Greenwich in England, which is also called prime meridian, and the central parallel as the

equator.

Formally, geographic locations are two-dimensional vectors

(
λ

ϕ

)
with λ ∈ [−180°, 180°] and

ϕ ∈ [−90°, 90°]. In the following, we assume that these locations were converted into radians,

such that λ ∈ [−π, π] and ϕ ∈
[

− π
2 , π

2

]
.

For our work, wewant to represent points on a planar, Euclidean surface to perform calculations

and to display the resulting geometries. To accomplish this, we use so-calledmap projections.

Figure 2.3: The graphical depiction of latitude and longitude [Com05]

2.2.1 Map Projections

In cartographic terms, a map projection is a systematic representation of all or a part of a

surface’s round body on a plane in order to create a map [Sny72]. We define a map projection
function as a function ρ with

17

2 Foundations

ρ : [−π, π] ×
[

− π

2 ,
π

2
]

→ R2
(2.1)

that maps cylindrical locations (λ, ϕ)⊤
given in radians to locations (x, y)⊤

on a two-

dimensional plane.

Map projections can have one or multiple characteristics. We define three of the most important

properties according to [Sny72]:

• Equal-area: the projection retains the surface area of shapes relative to the scale. However,
the angles and scale of most parts of the map must be distorted to achieve this property.

• Conformal: the projection shows the relative local angles for approximately every point

correctly. Depending on the map size, large areas must be shown as distorted in shape,

while small features stay shaped essentially correctly.

• True-to-scale: the projection retains the scale of one or more lines throughout the map.

If a projection shows the true scale between one or two points and any other point of

the map, it is called equidistant.

Some of these properties are mutually exclusive - for example, no projection can both be

equal-area and conformal [Sny72]. Therefore, every projection contains some kind of error

and must be chosen by the mapper depending on the purpose of the map.

Mercator Projection

For our maps, we chose the Mercator Projection, which was presented by Gerardus Mercator

in 1569 and is the most famous projection to this day [Sny72]. The Mercator map projection

function is defined as

ρM : [−π, π] ×
[

− π

2 ,
π

2

]
→ R2,

(
λ

ϕ

)
7→
(

x

y

)
(2.2)

with

x = R(λ − λ0) (2.3)

y = R ln tan
(

π

4 + ϕ

2

)
(2.4)

where λ0 ∈ [−π, π] denotes the central median for the projection and R the radius of the

sphere relative to the desired scale of the projected map. By default, λ0 is chosen as 0, which

18

2 Foundations

denotes the prime meridian, but it can be set to the longitude of an arbitrary meridian to shift

the projected locations along the x-axis.

The Mercator projection is a conformal projection. It is important to note that the value of

y moves towards infinity as ϕ approaches ± π
2 . This leads to greater distortions of the size

of areas that are further away from the equator, which is the reason why Greenland or the

Antarctica for example appear many times larger in size than they actually are (Fig. 2.4). We

use the Mercator projection with the sphere radius R = 1 and apply our own transformations,

which will be introduced in the next section.

2.2.2 Transformations

Usually, we work with map extracts that cover smaller sections of the earth’s surface. Yet,

the scale of projected maps is independent from the bounding box of the map extract. In this

section, we define functions that fit an arbitrarily sized map extract to a specified width w and

height h after the projection has been applied.

First, we define the normalization functions nx and ny for each dimension:

nx : [xmin, xmax] → [0, 1], x 7→ x − xmin

xmax − xmin

(2.5)

ny : [ymin, ymax] → [0, 1], y 7→ y − ymin

ymax − ymin

(2.6)

Theminimum andmaximum coordinates xmin, xmax, ymin and ymax are retrieved by calculating

the bounding box of the map extract. With these normalization functions, we ensure that all

locations on the map are fitted to the edges of the bounding box and scaled relatively to the

unit interval [0, 1]. To resize the normalized locations to a specified map width w and height h,
we apply the scaling transformation

s : [0, 1]2 → [0, w] × [0, h],
(

x

y

)
7→
(

w 1
1 h

)(
x

y

)
(2.7)

The combined function f fits and resizes the projected locations:

f : R2 → [0, w] × [0, h],
(

x

y

)
7→
(

w · nx(x)
h · ny(y)

)
(2.8)

19

2 Foundations

Figure 2.4: The world map created by applying the Mercator projection [Str11]

2.3 Geometry

The algorithms we use in our calculations in Chapter 3 do mainly work with the geometry of

the extracted OSM objects. In this section, we introduce a terminology for geometric entities

and define criteria to differentiate whether we consider a geometry to be valid or not. For

simplicity, we assume that all locations are within the first quarter of the Euclidean space,

which can be achieved by applying the map projections and transformations described in

Section 2.2 to the extracted areas.

Primitive Objects

A point p is a two-dimensional vector (x, y) in the real vector space R2
.

A segment s is a pair of two points (p1, p2) that represents a finite part of a line between p1
and p2.

A polyline l is an ordered, finite sequence (p1, . . . , pn) of n points, where at least 2 points are

mutually different. The points of the line are called vertices, the consecutive pairs (pi, pi+1) are
referred to as edges. The edges form visual segments that connect the vertices of the polyline.

20

2 Foundations

Figure 2.5: The geometric primitives: A point, segment and polyline

(a) A regular polygon (b) A convex polygon (c) A concave polygon

Figure 2.6: Examples for valid polygon geometries

Polygons

We define a polygon P of size n as a closed polyline with n + 1 points (p1, . . . , pn, pn+1),
such that p1 = pn+1. Further, the edges (pi, pi+1) with 1 ≤ i < n + 1 are called sides of the
polygon.

In our work, we are focusing just on polygons with simple geometries. A polygon P is simple
if and only if it fulfills the following three consistency properties:

P-1) P has at least 3 sides.

P-2) All points pi, pj ∈ P with 1 ≤ i, j < n + 1, i ̸= j are mutually different.

P-3) No two edges (pi, pi+1), (pj, pj+1) of P with for 1 ≤ i, j < n + 1, i ̸= j are intersecting.

We refer to non-simple polygons as complex polygons. Further, a simple polygon P is convex
if every segment joining two points (pi, pj) ∈ P with i ̸= j lies completely inside of it. If a

simple polygon is not convex, it is called concave. A simple polygon is regular if all edges have
the same length (equilateral) and all corner have angles (equiangular).

Figures

Multipolygon areas that were presented in Section 2.1 can have 1 to N outer rings and 0 to

M inner rings. To properly map these ring structures, which essentially are sets of simple

21

2 Foundations

(a) Unclosed polyline (b) Violation of property P-2
(c) Violation of property P-3

Figure 2.7: Examples for invalid polygon geometries

(a) A family of one figure that contains two holes

(b) A family of two figures where one contains a

hole

Figure 2.8: Valid family geometries

polygons that are topologically sorted, to geometric entities, we introduce the terms for

composite polygons:

We define a figure F = (P0, P1, . . . , Pn) as a tuple of one outer polygon P0 and n inner

polygons P1, . . . , Pn (also referred to as holes), such that all of the following conditions hold:

F-1) Every polygon P ∈ F is a simple polygon.

F-2) No two Polygons Pi, Pj ∈ F with i ̸= j share a common point or intersect.

F-3) Every inner polygon Pi is inside of the outer Polygon P0.

F-4) No inner polygon Pi is inside of another inner polygon Pj with i ̸= j.

A family F = {F1, . . . , Fm} is a set of m pairwise different figures, such that no two Figures

Fi, Fj with i ̸= j share a common point or intersect.

22

2 Foundations

(a) Two figures intersect

(b) Two figures share a common

point

(c) Violation of propterty F-2

(d) Violation of property F-1

(e) Violation of property F-2 (f) Violaiton of property F-2

(g) Violation of property F-3 (h) violation of property F-3 (i) Violation of property F-4

Figure 2.9: Invalid figure and family geometries (outer polygons are red, inner polygons are

blue)

23

3 Risk Map Generation

After we set the thematic framework in Chapter 1 and introduced basis of data that we work

with in Chapter 2, we describe the components of the final MapMaker solution and discuss the

general concepts and algorithms they implement.

For the sake of simplicity, we do not explicitly address individual component of the pipeline,

but rather discuss the general concepts and algorithms they implement.

Not all of the algorithms we describe in this chapter work with geometries. For example, the

neighborship algorithm which we present in Section 3.4 inspects the assembled areas and their

ways to find adjacencies rather than inspecting the points of the individual geometries.

3.1 Map Requirements

In Chapter 1 we introduced the basic map structure for Warzone. In order to evaluate the

quality of our generated maps, we define the following quality criteria in accordance to the

map requirements of Warzone[Wik21l]:

Q-1 Each territory has exactly one outer ring.

Q-2 Territories can contain holes.

Q-3 No territory overlaps with other territories.

Q-4 Territories must be large enough to fit a two-digit army number.

Q-5 Connections between territories are visible.

3.2 Compression

As we stated in the Section 2.1, OpenStreetMap extracts may consist of billions of nodes

and millions of ways and relations. For example, the comparably small extract of Baden-

Württemberg in terms of its surface area contains 3,040 boundary relations, which consist of

650,904 nodes in total. Especially for larger map extracts, this level of detailing is not necessary;

in addition, working with huge numbers of nodes substantially impacts the performance of

all other steps in the pipeline and clutters the map outputs visually. Therefore, we need to

24

3 Risk Map Generation

compress the detailed sections of boundaries while keeping at the same time their general

shape.

3.2.1 Ramer-Douglas-Peucker Algorithm

A well-known algorithm for the compression of geometric lines is the Ramer-Douglas-Peucker

Algorithm [DP73], which was proposed by David H. Douglas and Thomas Peucker in 1973 and

builds on an iterative algorithm for polynomial approximation of curves by Urs Ramer[Ram72].

The original algorithm works according to the Divide-And-Conquer principle using recursion.

Let l = (p1, . . . , pn) be a polyline and let ε > 0 be a specified distance threshold, which can be

interpreted as the level of compression applied to the sequence. The original algorithm works

as follows:

1. Choose the points (p1, pn) as the compressed polyline.

2. Compute the perpendicular distance to the segment (p1, pn) for each point p2, . . . , pn−1
and save the point pi with the maximum distance dmax.

3. If dmax is greater than ε, the left polyline (p1, . . . , pi) and the right polyline (pi, . . . , pn)
are compressed recursively. The resulting polylines are merged together, yielding the

compressed polyline (p1, . . . , pi, . . . , pn).

4. If dmax is less or equal to ε, return the polyline (p1, pn), which implicitly removes the

points p2, . . . , pn−1 from the line.

The end of the recursion is reached if the polyline input consists of two points or if the

maximum distance dmax falls below the threshold ε, in which case the line will be compressed.

The algorithmwill always terminate for valid polylines, as each recursive call splits the line such

that each side has a maximum of n − 1 points (which is the case for pi = p2 or pi = pn−1).

25

3 Risk Map Generation

1

2

3

5 6

7

8

9

4

The uncompressed polyline

Identification of point 3 with the maximum distance to the line segment (1, 9)

Recursive call for the left (1, 2, 3) and right (3, 4, 5, 6, 7, 8, 9) polyline

Removal of point 2 due to its distance to the line segment (1, 3)

Removal of the points 4, 5 and 6 yields the compressed polyline

Figure 3.1: Ramer-Douglas-Peucker Compression after [Com20]

26

3 Risk Map Generation

Algorithm 1: Ramer-Douglas-Peucker Algorithm

Input :A polyline l = (p1, . . . , pn) and a distance threshold ε > 0
Output :The compressed polyline l′

i := 0;
dmax := 0;
for k := 2, . . . , n − 1 do

d := perpendicularDist(pk, (p0, pn));
if d < dmax then

i := k;
dmax := d;

end
end
if dmax > ε then

(l1, . . . , ls) := ramerDouglasPeucker((p1, . . . , pi), ε);
(r1, . . . , rt) := ramerDouglasPeucker((pi, . . . , pn), ε);
return (l1, . . . , ls, r1, . . . , rt);

else
▷ Remove all points between p1 and pn

return (p1, pn);
end

Complexity Analysis

Let l = (p1, . . . , pn) be a polyline with n > 2 points. In the worst-case scenario, the point pi

with the maximum distance dmax < ε to (p0, pn) is either the leftmost point p2 or the rightmost

point pn−1. Without loss of generality, we assume that pi = pn−1. In this case, the polyline is

split into the left part (p1, . . . , pn−1) and the right part (pn−1, pn), which reduces the length of

the left polyline by 1.

If the described worst-case division of the line continues throughout every step of the recursion,

the algorithm will require O(n) subdivision steps. As each step iterates over the subdivided

line once, this results in a time complexity in O(n2). Figure 3.3 shows a polyline for which the

worst-case scenario would apply.

The best-case and average-case time complexities for the Ramer-Douglas-Peucker algorithm

are in O(n log n), the latter being derived from proofs [Hoa62] for other divide-and-conquer

algorithms such as Quicksort.

27

3 Risk Map Generation

3.2.2 Compressing Areas

In our implementation, we apply compression to the polyline geometry of the extracted ways

before assembling the areas. This is done because a way can be referenced by multiple areas

(i.e. when two areas are adjacent). Consequently, if we would apply the compression after the

area assembly, the polylines of such shared ways would be compressed twice.

However, this approach comes with a caveat: If a node which is referenced by multiple ways

is removed, a hole can appear between said ways. This occurs due to the following two

properties:

1. The compression result of a polyline is dependent on the chosen first and last point.

2. Two different ways wi, wj can share one or more nodes.

We introduce a simple fix for this problem: before the compression algorithm is performed on

the way geometries, we create a node reference dictionary that maps each node n to a set of

ways W = {wi, . . . , wj} which contain reference to it. Vice versa, we define the cardinality
of a node n as the number of ways in W . Finally, if the cardinality of n is greater than 1, we

simply ignore it during the compression procedure and persist it in the resulting polyline l′
.

The modified compression algorithm 2 implements this idea together with an iterative version

of the Ramer-Douglas-Peucker algorithm.

Figure 3.2: A comparison between the unmodified Ramer-Douglas-Peucker compression (left)

and the modified version (right).

28

3 Risk Map Generation

Figure 3.3: A polyline that has the worst-case runtime for the compression algorithm

Algorithm 2:Modified Ramer-Douglas-Peucker Algorithm

Input :A polyline l = (p1, . . . , pn) and a distance threshold ε > 0
Output :The compressed polyline l′

stack := {};
removed := {};
stack.push((0, n));
while stack ̸= ∅ do

(start, end) := stack.pop();
i := 0;
dmax := 0;
for k := start + 1, . . . , end − 1 do

d := perpendicularDist(pk, (pstart, pend));
if d < dmax then

i := k;
dmax := d;

end
end

end
if dmax > ε then

stack.push((start, i));
stack.push((i, end));

else
for k := start + 1, . . . , end − 1 do

if cardinality(pk) < 3 then
removed.add(pk);

end
end

end
return l \ removed;

29

3 Risk Map Generation

3.3 Assembly

The geometry of areas is not inherently declared in OpenStreetMap data, but must rather be

assembled from the referenced way members (please refer to Section 2.1). This section presents

the algorithms necessary in order to assemble and group these geometries and to validate

them using the criteria that we defined in Section 2.3.

3.3.1 Line Intersection Tests

A crucial part of the assembly stage is the discovery of intersections between line segments. A

naive approach to this problem would be to test each pair of segments for intersections:

Algorithm 3: Brute-Force Intersection Algorithm

Input :A set of segments S = {s1, . . . , sn}
Output :True if any two segments si, sj intersect

for i := 1, . . . , n − 1 do
for j := i, . . . , n do

if intersect(si, sj) then
return true;

end
end

end
return false;

In the worst case, no two-line segments si, sj intersect in such a way that every pair is tested

for once before the algorithm can terminate. Since the time complexity for intersection tests

for two-line segments is constant [LaM99], we can conclude that the time complexity of this

brute-force algorithm is in O(n2).

A better approach for finding intersections between line segments may be the so-called plane
sweep algorithms: these can be visualized with a conceptual, often vertical, sweep line that is
moved across the plane until all of its objects have been visited. These kinds of algorithms are

especially useful to solve problems of algorithmic geometry when they are combined with

efficient data structures like self-balancing binary trees.

3.3.2 Shamos-Hoey Algorithm

Michael I. Shamos and Dan Hoey achieved a breakthrough in computational complexity of

geometric algorithms [BP00] when they introduced the Shamos-Hoey Algorithm [SH76] in

1976. This algorithm applies the sweep-line concept to a set of segments that lie on a plane to

find the leftmost intersection point.

30

3 Risk Map Generation

Let S = {s1, ..., sn} be a set of n segments. We describe the algorithm according to its original

implementation:

1. Initialize an empty self-balancing binary tree (e.g. an AVL-Tree or Red-Black-Tree) to
manage the segments. We refer to this three as the sweep line (SL).

2. Retrieve the points of all segments and sort them in a lexicographic order by their x and

y coordinates, such that p1 is leftmost and p2n is rightmost.

3. Iterate over each point p in the sorted collection from left to right and retrieve its segment

s.

3.1. If p is the left endpoint of s, add s to the sweep line and retrieve the segments a, b
above and below of s. Then, test the two pairs (a, s) and (s, b) for intersections.

3.2. If p is the right endpoint of s, the segment already exists in the sweep line. Retrieve

the segments a, b above and below of s and test if the pair (a, b) does intersect or
not. If not, no other intersection with s is possible, thus s is removed from the

sweep line.

If an intersection is found during the process, the algorithm stops immediately and returns

the intersection point, which is the leftmost intersection point [SH76]. If not, the algorithm

terminates after it reaches the rightmost point. The resulting pseudo-code is denoted in

Algorithm 4, which is a slightly changed version that adapts an implementation of [Sun21].

An edge case we need to consider in the application of this algorithm is that the input may

contain duplicate segments; whether such are detected as intersections or not is dependent on

the implementation of the tree data structure and the intersect function. While some algorithms

don’t consider duplicate segments as intersections, other algorithms like the assemblers do

so. Nevertheless, this problem can easily be fixed by checking the sorted list of segments for

duplicates before applying the line intersection algorithm.

Complexity Analysis

The time complexity for sorting the points for an input of n Segments is in O(n log n). The
subsequent line sweep loops over the sorted collection of points once and tests their segments

for intersections, which is done in constant time (Section 3.3.1). This results in a linear

complexity for the loop and a combined time complexity in O(n log n) as well as a space

complexity in O(n) for the Shamos-Hoey algorithm, which is a significant speedup compared

to the brute-force approach.

31

3 Risk Map Generation

Algorithm 4: Shamos-Hoey Algorithm

Input :A set of segments S = {s1, . . . , sn}
Output :The leftmost intersection point i or null if no two segments si, sj intersect

SL := {};
P := getPoints(S).sortXYOrder();
for p ∈ P do

s := getSegment(p);
if isLeft(p, s) then

SL.add(s);
a = SL.getInorderPredecessor(s);
b = SL.getInorderSucessor(s);
if i := intersect(a, s) then

return i;
end
if i := intersect(s, b) then

return i;
end

else
a = SL.getInorderPredecessor(s);
b = SL.getInorderSucessor(s);
if i := intersect(a, b) then

return i;
end
SL.remove(s);

end
end
return null;

3.3.3 Assembling Geometries

As we discussed in section 2.1, areas are either closed ways or relations with outer and inner

way members. In this section, we describe an algorithm that creates polygon geometries by

assembling ways according to [Wik21g]. This algorithm, in its essence, can be visualized as a

game of Dominoes 1
.

Let W = {w1, . . . , wn} be a set of unordered ways. We initialize the polygon P with the

points of the first way w1. Next, we remove w1 from W and try to complete P by using

back-tracking:

1
https://en.wikipedia.org/wiki/Dominoes

32

3 Risk Map Generation

1. Initial check: if P is already complete, i.e. closed and not self-intersecting, the assembly

procedure is finished. The line intersection tests are performed on the edges of P using

the Shamos-Hoey algorithm.

2. Domino step: if P is not complete, find all candidates w that could continue the polygon,

i.e. last(P) = first(w) or last(P) = last(w). In the latter case, reverse the nodes of w to

maintain the correct order of points.

3. Recursive step: add the points of the current candidate w to P and test if P can be

completed with the remaining ways W \ {w} recursively. If so, return the resulting

polygon P ′
, else proceed with the next candidate.

4. Back-tracking step: If no candidates are left, the current set of ways W can’t complete

the polygon.

Finally, if there are any ways left after P ′
was completed, the tail recursion starts a new polygon

and repeats the process with the remaining ways W ′
. If the assembly was unsuccessful, the

current way w1 is considered as invalid and thus is removed from W before starting the

next iteration. Therefore, complex polygons, which we consider as invalid, are filtered out

implicitly.

We apply this algorithm to the closed ways and multipolygon relations that were extracted

from OpenStreetmap to retrieve the actual area geometries. If an area is declared by a closed

way w, we apply the assembler with W = {w}, otherwise the inner and outer way members

of the relation are assembled separately and combined into families using the ring grouping
algorithm described in [Wik21g]. At last, if we assemble territories, we split the created families

such that each contained figure becomes its own territory, as territories can only have exactly

one outer ring (refer to Section 3.1). If we assemble bonuses, then the geometries stay the

same.

3.4 Neighborships

After compressing and assembling the territories, we want to determine neighborships between

them.

Let AL be the set of all areas with the level L. We consider two areas ai, aj ∈ AL to be adjacent,
if any of their rings share a common node. We formalize this statement by defining the relation

RN
L ⊆ AL × AL as the neighbor relation over all boundaries with the level L. It is apparent

that this relation is an equivalence relation, since it is reflexive, transitive and symmetric.

We use a graph structure to model the neighbor relations. A graph G is a pair (V, E), where
V is a set of vertices and E a set of edges. We define GL = (V, E) with V = AL and

E = RN
L \ {(a, a) | a ∈ AL} without self-directed edges as the neighbor graph over AL.

33

3 Risk Map Generation

By persisting the way references of each area during the assembly stage, we can determine

the neighbors for each area by creating a dictionary that maps each way w to a set of areas

A = {aj, . . . , ak} that reference it. If a way is referenced by more than one area, the areas

aj, . . . , ak are considered to be neighbors. This approach clearly is more efficient than iterating

and comparing the individual nodes of each area (or the points of their geometries). Figure 3.4

shows the resulting neighbor graph for a map of the Canary Islands.

Algorithm 5: Neighbor Graph Creation

Input :A set AL of all areas with the level L
Output :The undirected neighbor graph GL = (V, E)
▷ Build the way reference dictionary

dict = {};
for a ∈ A do

for w ∈ getWays(a) do
dict.addReference(w, a);

end
end

▷ Create the neighbor graph

for ai ∈ A do
V .insert(i);
for w ∈ getWays(ai) do

for aj ∈ dict.addReference(w) do
E.insert(i, j);

end
end

end

3.5 Filters

Map extracts can contain tiny areas that are too small in size to create a territory (cf. map

quality requirements in Section 3.1). Consequently, we want to remove such areas from our

map by filtering them, which is the focus of this section.

3.5.1 Surface Area

In order to determine the size of an area, we calculate the surface area of its geometry:

34

3 Risk Map Generation

Figure 3.4: A map of the Canary Islands and its neighbor graph

Let P = (p1, . . . , pn, pn+1) be a simple polygon with n + 1 points and pi = (xi, yi). Then, the
(signed) surface area AP of the polygon P can be calculated with the so-called shoelace formula
[Bra86]:

AP = 1
2

n∑
i=1

(xiyi+1 − xi+1yi) (3.1)

To calculate the surface area of a figure F = (P0, P1, . . . , Pn), we simply subtract the sum of

the inner surface areas from the outer surface area:

35

3 Risk Map Generation

AF = AP0 −
n∑

i=1
APi

(3.2)

3.5.2 Filtering Areas

Now we can move on to the actual filter algorithm: at first, we calculate the total surface

area as the sum of the surface areas of each individual figure. Afterwards, we can calculate

the relative size of each figure as the quotient of its surface area and the total surface area.

We introduce a relative size threshold ε ∈ [0, 1] and consider figures to be too small, if their

relative size is less than ε. For example, defining ε = 0.5 would remove all figures that are

smaller than 50% of the total map area.

Applying this algorithm too all areas comes with one caveat: if an area which is surrounded by

other areas is removed due to its size, holes will appear throughout the map. We can correct

this problem by changing the filter algorithm to operate the map’s islands instead. We can

find these islands by finding the connected components of the neighbor graph Gt.

3.5.3 Filtering Islands

Let G = (V, E) be an undirected neighbor graph. A connected component C = (V ′, E ′) is a
sub graph of G, such that every vertex vi ∈ V ′

has a path to every other vertex vj ∈ V ′
. We

simplify this definition and define components as the set V ′
. In order to find all islands of the

map, we retrieve the components for our neighbor graph G by applying a depth-first search,

which is denoted in algorithm .

After we found the components, we apply the filter described in Algorithm 7 to remove all

islands that have a smaller relative size than the specified ε from the map, without creating

holes.

3.6 Center Points

One of simplest way to determine the center point of polygons is by taking the average of

each point of the polygon. Let P = (p1, . . . , pn, pn+1) be a polygon with n + 1 points and

pi = (xi, yi). We calculate the center point m by extending the formula for the arithmetic

mean to the two-dimensional vector space [Bau19]:

m = 1
n

n∑
i=1

(xi, yi) = 1
n

(n∑
i=1

xi,
n∑

i=1
yi

)
(3.3)

36

3 Risk Map Generation

Algorithm 6: Component Depth-First-Search

Input :An undirected neighor graph G = (V, E)
Output :A set of components C
C := {};
unvisited := V ;

stack := {};
while unvisited ̸= ∅ do

c := {};
stack.push(unvisited.pop());
while stack ̸= ∅ do

v := stack.pop();
c.add(v);
unvisited.remove(v);
for vadj ∈ adjacents(E, vi) do

if vadj ∈ unvisited then
stack.push(vadj);

end
end

end
components.add(component);

end

Algorithm 7: Component Filter

Input :A set of components C and a threshold ε > 0
Output :The filtered set of components C ′

totalSurfaceArea := 0;
for c ∈ C do

totalSurfaceArea := totalSurfaceArea + surfaceArea(c);
end
for c ∈ C do

relativeArea := surfaceArea(c)/ totalSurfaceArea;
if relativeArea < ε then

C .remove(c);
end

end
return C ;

37

3 Risk Map Generation

This formula calculates the center point of a polygon in linear time, which is optimal. However,

for polygons that are not regular, the calculated center can differ substantially from its visual

center (cf. Fig. 3.5a).

Geometric Center

A better approach for finding the center of a polygon is by calculating its center of mass, which

is also referred to as its centroid. The general idea is to triangulate the polygon along its sides

and to determine its center as the sum of the triangle centers weighed by their respective

surface area.

LetP = (p1, . . . , pn, pn+1) be a simple polygonwithn+1 points. Then, the centroid c = (xc, yc)
is calculated with the following formulae [Bou97]:

xc = 1
6A

n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi) (3.4)

yc = 1
6A

n∑
i=1

(yi + yi+1)(xiyi+1 − xi+1yi) (3.5)

A denotes the polygon’s (signed) surface area (cf. Section 3.5.2). For figures F =
(P0, P1, . . . , Pk) with one outer polygon P0 and k inner polygons P1, . . . , Pk, we calculate the

centroid mF as follows [Bau19]:

mF = P0 · AP0 −∑k
i=1 Pi · APi

AP0 −∑k
i=1 APi

(3.6)

At last, the centroid for a family F = (F1, . . . , Fm) is calculated in the same way as the sum

of the weighted figure centroids.

The geometric center formula calculates the centroid of a polygon in linear time and finds a

better solution for non-regular polygons. However, for concave polygons, this algorithm does

not guarantee that the calculated center actually lies inside of the polygons, which can be seen

in Figure 3.5b.

As the counter-examples have shown, the two presented formulaes do not find the optimal

center point for arbitrary simple polygons. In fact, there exist several alternatives that may

find better center points for our boundaries. However, we ultimately chose to remain with

the centroid algorithm due to its linear time complexity and acceptable solutions for most

polygons.

38

3 Risk Map Generation

(a) A polygon for which the centerpoint

by average sum is non-ideal

(b) A concave polygon for which its cen-

troid lies outside

Figure 3.5: Counter-example polygons for average and geometric centers [Bau19]

39

3 Risk Map Generation

Figure 3.6: A generated map for the Isle of Man with territory level 8 and bonus level 6

40

3 Risk Map Generation

Figure 3.7: Bayern with territory level 8

41

4 Conclusion

This section concludes our work. As a main purpose thereof, we have taken up the challenge to

elaborate a tool that mostly automatizes the map generation process using real cartographical

material provided by the freely available geodata of the OpenStreetMap project to be used as a

layer for the referenced game, aiming concomitantly a highest possible level of automation as

well as a reasonable compression of detailed maps with a high resolution that were generating

huge data processing requirements and implicitly significant performance losses. This tool, the

MapMaker, resolved in addition the aggregation of adjacent territories for bonuses, boundary

and map viewing optimizations, the digital connectivity as well as other targets. In our

work, we embedded well-known, helpful projections, such as the Mercator projection, and

also integrated algorithms (Shamos-Hoey algorithm, Ramer-Douglas-Peucker compression

algorithm) in order to achieve the aforementioned goals. Last but not least, our work has aimed

and hopingly succeeded to provide a most user-friendly tool that may be used without any

relevant prior knowledge by its users, which also significantly accelerates the computational

and resource-intensive process of map creation and metadata computation and automatizes

also the uploading process.

We hope that the ideas and proposed solutions included in this paper will generate an impulse

for the further use of actual maps and geodata for development and improvement of other

popular strategy games, therefore we provide the source code for the MapMaker in a public

repository
1
to encourage the further development and maintenance by the community and

interested users.

1
https://github.com/PatrickLindemann/warzone-osm-mapmaker

42

Bibliography

[Bau19] L. Baur. “Points of Interest - a search for adequate map labelings.” University of

Stuttgart, 2019. doi: 10.18419/opus-10620. url: http://dx.doi.org/10.18419/opus-

10620 (cit. on pp. 36, 38, 39).

[Bou97] P. Bourke. Calculating the area and centroid of a polygon. 1997. url: http : / /
paulbourke.net/geometry/polygonmesh/ (cit. on p. 38).

[BP00] J.-D. Boissonnat, F. P. Preparata. “Robust plane sweep for intersecting segments.”

In: SIAM Journal on Computing 29.5 (2000), pp. 1401–1421 (cit. on p. 30).

[Bra86] B. Braden. “The Surveyor’s Area Formula.” In: The College Mathematics Journal
17.4 (1986), pp. 326–337. doi: 10 . 1080 / 07468342 . 1986 . 11972974. url: https :

//doi.org/10.1080/07468342.1986.11972974 (cit. on p. 35).

[Bro63] P. Brothers. Risk vs Diplomacy. 1963. url: https://www.hasbro.com/common/

instruct/Risk1963.PDF (cit. on p. 8).

[Com05] W. Commons.A simple figure explaining latitude and longitude. File: FedStatsLatlong.svg.
2005. url: https://de.wikipedia.org/wiki/Datei:FedStats%5C_Lat%5C_long.svg

(cit. on p. 17).

[Com20] W. Commons. File:Douglas Peucker.png — Wikimedia Commons, the free media
repository. 2020. url: https://commons.wikimedia.org/w/index.php?title=File:

Douglas%5C_Peucker.png&oldid=486144100 (cit. on p. 26).

[D0015] D00659. A guide to coordinate systems in Great Britain. Version 2.3. 2015 (cit. on

p. 17).

[DP73] D.H. Douglas, T. K. Peucker. “Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature.” In: Cartographica:
The International Journal for Geographic Information and Geovisualization 10 (1973),
pp. 112–122 (cit. on p. 25).

[Gor13] D. Gordon. Risk vs Diplomacy. 2013. url: https://www.cardboardrepublic.com/

classics/risk-vs-diplomacy (cit. on p. 8).

[Hoa62] C. A. R. Hoare. “Quicksort.” In: The Computer Journal 5.1 (Jan. 1962), pp. 10–16. issn:
0010-4620. doi: 10.1093/comjnl/5.1.10. eprint: https://academic.oup.com/comjnl/

article-pdf/5/1/10/1111445/050010.pdf. url: https://doi.org/10.1093/comjnl/5.1.10

(cit. on p. 27).

43

https://doi.org/10.18419/opus-10620
http://dx.doi.org/10.18419/opus-10620
http://dx.doi.org/10.18419/opus-10620
http://paulbourke.net/geometry/polygonmesh/
http://paulbourke.net/geometry/polygonmesh/
https://doi.org/10.1080/07468342.1986.11972974
https://doi.org/10.1080/07468342.1986.11972974
https://doi.org/10.1080/07468342.1986.11972974
https://www.hasbro.com/common/instruct/Risk1963.PDF
https://www.hasbro.com/common/instruct/Risk1963.PDF
https://de.wikipedia.org/wiki/Datei:FedStats%5C_Lat%5C_long.svg
https://commons.wikimedia.org/w/index.php?title=File:Douglas%5C_Peucker.png&oldid=486144100
https://commons.wikimedia.org/w/index.php?title=File:Douglas%5C_Peucker.png&oldid=486144100
https://www.cardboardrepublic.com/classics/risk-vs-diplomacy
https://www.cardboardrepublic.com/classics/risk-vs-diplomacy
https://doi.org/10.1093/comjnl/5.1.10
https://academic.oup.com/comjnl/article-pdf/5/1/10/1111445/050010.pdf
https://academic.oup.com/comjnl/article-pdf/5/1/10/1111445/050010.pdf
https://doi.org/10.1093/comjnl/5.1.10

Bibliography

[LaM99] A. LaMothe. Tricks of the Windows Game Programming Gurus. USA: Sams, 1999.

isbn: 0672313618 (cit. on p. 30).

[Pro21a] O. Project. About — OpenStreetMap Wiki. 2021. url: https://wiki.openstreetmap.

org/wiki/About_OpenStreetMap (cit. on p. 9).

[Pro21b] O. Project. OpenStreetMap Deutschland: Die freie Wiki-Weltkarte. 2021. url: https:
//www.openstreetmap.de/ (cit. on p. 9).

[Pro21c] O. Project. Statistics — OpenStreetMap. 2021. url: https://www.openstreetmap.

org/stats/data_stats.html (cit. on pp. 9, 12).

[Ram72] U. Ramer. “An iterative procedure for the polygonal approximation of plane

curves.” In: Computer Graphics and Image Processing 1.3 (1972), pp. 244–256. issn:

0146-664X. doi: https://doi.org/10.1016/S0146-664X(72)80017-0. url: https:

//www.sciencedirect.com/science/article/pii/S0146664X72800170 (cit. on p. 25).

[SH76] M. I. Shamos, D. Hoey. “Geometric intersection problems.” In: 17th Annual Sym-
posium on Foundations of Computer Science (sfcs 1976). 1976, pp. 208–215. doi:
10.1109/SFCS.1976.16 (cit. on pp. 30, 31).

[Sny72] J. P. Snyder. Map projections: A working manual. 1395. U.S. Government Printing

Office, 1972. doi: https://doi.org/10.3133/pp1395. url: https://pubs.er.usgs.gov/

publication/pp1395 (cit. on pp. 17, 18).

[Str11] D. R. Strebe. Mercator projection Square. File: MercatorprojectionSquare.jpg.
2011. url: https://commons.wikimedia.org/wiki/File:Mercator%5C_projection%

5C_Square.JPG#filelinks (cit. on p. 20).

[Sun21] D. Sunday. Practical Geometry Algorithms: with C++ Code. Amazon KDP, 2021.

isbn: 9798749449730 (cit. on p. 31).

[Top] J. Topf. Libosmium Manual. url: https://osmcode.org/libosmium/manual.html

(cit. on p. 14).

[War11] Warzone. Generate your connections automatically, too! - Warzone Forums. 2011.
url: https : / / www . warzone . com / Forum / 2668 - generate - connections -

automatically- (cit. on p. 11).

[War21] Warzone. About - Warzone - Better than Hasbro’s RISK® game - Play Online Free.
2021. url: https://www.warzone.com/About (cit. on p. 9).

[Wik21a] O. Wiki. Area — OpenStreetMap Wiki. 2021. url: https://wiki.openstreetmap.org/

w/index.php?title=Area&oldid=2194500 (cit. on p. 14).

[Wik21b] O. Wiki. Downloading data — OpenStreetMap Wiki. 2021. url: https : / / wiki .
openstreetmap.org/w/ index .php?title=Downloading_data&oldid=2183449

(cit. on p. 12).

[Wik21c] O. Wiki. Elements — OpenStreetMap Wiki. 2021. url: https://wiki.openstreetmap.

org/w/index.php?title=Elements&oldid=2157322 (cit. on pp. 12, 13).

44

https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://www.openstreetmap.de/
https://www.openstreetmap.de/
https://www.openstreetmap.org/stats/data_stats.html
https://www.openstreetmap.org/stats/data_stats.html
https://doi.org/https://doi.org/10.1016/S0146-664X(72)80017-0
https://www.sciencedirect.com/science/article/pii/S0146664X72800170
https://www.sciencedirect.com/science/article/pii/S0146664X72800170
https://doi.org/10.1109/SFCS.1976.16
https://doi.org/https://doi.org/10.3133/pp1395
https://pubs.er.usgs.gov/publication/pp1395
https://pubs.er.usgs.gov/publication/pp1395
https://commons.wikimedia.org/wiki/File:Mercator%5C_projection%5C_Square.JPG#filelinks
https://commons.wikimedia.org/wiki/File:Mercator%5C_projection%5C_Square.JPG#filelinks
https://osmcode.org/libosmium/manual.html
https://www.warzone.com/Forum/2668-generate-connections-automatically-
https://www.warzone.com/Forum/2668-generate-connections-automatically-
https://www.warzone.com/About
https://wiki.openstreetmap.org/w/index.php?title=Area&oldid=2194500
https://wiki.openstreetmap.org/w/index.php?title=Area&oldid=2194500
https://wiki.openstreetmap.org/w/index.php?title=Downloading_data&oldid=2183449
https://wiki.openstreetmap.org/w/index.php?title=Downloading_data&oldid=2183449
https://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=2157322
https://wiki.openstreetmap.org/w/index.php?title=Elements&oldid=2157322

[Wik21d] O. Wiki. Key:Boundary — OpenStreetMap Wiki. 2021. url: https : / / wiki .
openstreetmap .org /w/ index .php? title=Key :boundary&oldid=2091920 (cit.

on p. 16).

[Wik21e] O. Wiki. Node — OpenStreetMap Wiki. 2021. url: https://wiki.openstreetmap.org/

w/index.php?title=Node&oldid=2141656 (cit. on p. 13).

[Wik21f] O. Wiki. PBF Format — OpenStreetMapWiki. 2021. url: https://wiki.openstreetmap.

org/w/index.php?title=PBF_Format&oldid=2183349 (cit. on p. 12).

[Wik21g] O. Wiki. Relation:multipolygon/Algorithm — OpenStreetMap Wiki. 2021. url: https:
/ / wiki . openstreetmap . org / w / index . php ? title = Relation : multipolygon /

Algorithm&oldid=2138462 (cit. on pp. 32, 33).

[Wik21h] O. Wiki. Types of relation — OpenStreetMap Wiki. 2021. url: https : / / wiki .
openstreetmap.org /w/ index .php? title=Types_of_relation&oldid=2152781

(cit. on p. 14).

[Wik21i] O. Wiki.Way — OpenStreetMap Wiki. 2021. url: https://wiki.openstreetmap.org/

w/index.php?title=Way&oldid=2173770 (cit. on p. 13).

[Wik21j] W. Wiki. Combat Basics — Warzone Wiki. 2021. url: https://www.warzone.com/

wiki/Combat_Basics (cit. on p. 10).

[Wik21k] W. Wiki. Gameplay Basics — Warzone Wiki. 2021. url: https://www.warzone.com/

wiki/Gameplay_Basics (cit. on p. 10).

[Wik21l] W. Wiki. Map Requirements — Warzone Wiki. 2021. url: https://www.warzone.

com/wiki/Map_requirements (cit. on pp. 10, 24).

[Wik21m] W. Wiki. Set Map Details API — Warzone Wiki. 2021. url: https://www.warzone.

com/wiki/Set_map_details_API (cit. on p. 11).

All links were last followed on November 3, 2021.

https://wiki.openstreetmap.org/w/index.php?title=Key:boundary&oldid=2091920
https://wiki.openstreetmap.org/w/index.php?title=Key:boundary&oldid=2091920
https://wiki.openstreetmap.org/w/index.php?title=Node&oldid=2141656
https://wiki.openstreetmap.org/w/index.php?title=Node&oldid=2141656
https://wiki.openstreetmap.org/w/index.php?title=PBF_Format&oldid=2183349
https://wiki.openstreetmap.org/w/index.php?title=PBF_Format&oldid=2183349
https://wiki.openstreetmap.org/w/index.php?title=Relation:multipolygon/Algorithm&oldid=2138462
https://wiki.openstreetmap.org/w/index.php?title=Relation:multipolygon/Algorithm&oldid=2138462
https://wiki.openstreetmap.org/w/index.php?title=Relation:multipolygon/Algorithm&oldid=2138462
https://wiki.openstreetmap.org/w/index.php?title=Types_of_relation&oldid=2152781
https://wiki.openstreetmap.org/w/index.php?title=Types_of_relation&oldid=2152781
https://wiki.openstreetmap.org/w/index.php?title=Way&oldid=2173770
https://wiki.openstreetmap.org/w/index.php?title=Way&oldid=2173770
https://www.warzone.com/wiki/Combat_Basics
https://www.warzone.com/wiki/Combat_Basics
https://www.warzone.com/wiki/Gameplay_Basics
https://www.warzone.com/wiki/Gameplay_Basics
https://www.warzone.com/wiki/Map_requirements
https://www.warzone.com/wiki/Map_requirements
https://www.warzone.com/wiki/Set_map_details_API
https://www.warzone.com/wiki/Set_map_details_API

Declaration

I hereby declare that the work presented in this thesis is

entirely my own and that I did not use any other sources and

references than the listed ones. I have marked all direct or

indirect statements from other sources contained therein as

quotations. Neither this work nor significant parts of it were

part of another examination procedure. I have not published

this work in whole or in part before. The electronic copy is

consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Foundations
	2.1 OpenStreetMap Data
	2.2 Projections and Transformations
	2.3 Geometry

	3 Risk Map Generation
	3.1 Map Requirements
	3.2 Compression
	3.3 Assembly
	3.4 Neighborships
	3.5 Filters
	3.6 Center Points

	4 Conclusion
	Bibliography

