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Abstract: Flow through heterogeneous landfills that include macropores may occur under Reynolds
numbers higher than those where Darcy’s law is valid. Extensions, such as a Forchheimer approach,
may be required to include inertial effects. Our aim is developing predictive models for such
landfills that are built from the low-level radioactive waste and debris of dismantled nuclear power
plants. It consists of different materials, which after crushing result in a spatially heterogeneous
distribution of porous-media properties in the landfills. Rain events or leakage, for example, may
wash out radionuclides and transport them with the water flow. We investigate here the water
flow and consider an inclusion of macropores. To deal with possibly high velocities, we choose
the Forchheimer model and, taking different Forchheimer coefficients into account, compare it to
the Darcy model. The focal points of the study are (i) the influence of the macropores on the flow
field and (ii) the impact of the choice of the Forchheimer coefficient both on the solution and the
computational effort. The results show that dependent on their size, macropores can dominate the
flow field. Furthermore, Forchheimer coefficients introducing more inertial effects are associated
with considerably higher runtimes.

Keywords: Forchheimer; macropores; heterogeneous landfills

1. Introduction

When developing predictive models for flow through heterogeneous landfills, flow ve-
locities beyond the validity of Darcy’s law [1,2] may be encountered. To incorporate inertial
effects at higher Reynolds-number regimes, there are approaches related to Forchheimer’s
extension of Darcy’s law discussed in the literature [3–6]. Our aim for the present study is
to quantify the influence of employing Forchheimer’s extension on the results as well as on
the numerical behavior for a particular set of model scenarios.

More precisely, we focus on flow events in heterogeneous landfills from debris of
dismantled nuclear power plants after their clearance. Such debris consists mainly of
demolished material such as concrete, plaster, bricks, metal, valves, piping, etc. According
to [7], clearance is defined as “the removal of radioactive materials or radioactive objects
within authorized practices from any further regulatory control by the regulating body”.
Due to its nature, this waste can either be reused or disposed in municipal landfills [8–10].
The heterogeneity of the materials translates into a porous matrix of irregular characteristics.
Matrices such as those are often called “structured” as they can contain large, continuous,
structural pores, which can be called macropores [11]. According to [12], voids such as
macropores are readily visible, and it is known that they can be continuous for several
meters in both vertical and lateral directions. Most soils contain macropores of some sort;
in [12], they are divided in categories depending on how they were formed. Since the
cause of their formation is not always the same, their sizes can also vary widely [12–15].
A convenient approximation would be that pore diameters larger than 0.3–0.5 mm are
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typically classified as macropores. It should be mentioned that size is not alone a sufficient
criterion to define a macropore; structure is important as well [12].

For our study, we follow the previous works from [16–18] on the modeling of the
water pathway. They focused on 1D models under the assumption of homogeneous
spatial parameters such as porosity and permeability. Additionally, they only considered
regular rain events. We extend the model scenarios to 2D, incorporate spatial heterogeneity,
and investigate heavy rain events, which are expected to happen more frequently in the
future [17]. With the higher inflow mass from the heavy rain events and areas of high
porosity (i.e., the macropores) in the heterogeneous landfills, the flow velocities inside
the domain increase. Therefore, it is necessary to study this topic with an extension of
Darcy’s law. We will investigate the differences between Darcy’s law and the Forchheimer
extension both in terms of the results as well as of the computational performance, with a
particular focus on quantifying the influence of macropores on the water flow field.

This paper is structured as follows: We introduce and explain the governing equations
that were used for our model in Section 2. We continue with the description of the model
scenarios in Section 3 and present results and an analysis in Section 4. We interprete and
discuss our results in Section 5 and end with our conclusions in Section 6.

2. Governing Equations

In the landfills that we have in mind in this study, macropores are a relatively small
proportion of the soil volume. However, they play an important role in the flow and
transport of water and solutes [14], due to their irregular geometry and characteristics. Their
effects on flow and how they can be described in state-of-the-art models have intrigued
the interest of many researchers. According to [13], macropore flow can be categorized as
a flow phenomenon that is initiated from the soil (matrix) surface and terminated at the
deeper profile or groundwater, bypassing the intermediate soil profile. Macropore flow is
also denoted in the literature as non-equilibrium and preferential [12,13,15,19,20].

Flow in domains containing macropores is often described with the Richards equation.

∂(φρwSw)

∂t
+ ∇ · (ρwvw) − ρwqw = 0 , (1)

which only describes the flow of the water phase [14,20–22]. The limitations of the Richards
equation with respect to the full interaction of water and gas phase can be overcome by
using a two-phase flow approach [23]. Then, the mass conservation equations can be
written as

∂(φραSα)

∂t
+ ∇ · (ραvα) − ραqα = 0; α ∈ {w, n}, (2)

with φ denoting the porosity, ρα denoting the density of phase α, Sα denoting the phase sat-
uration, vα denoting the Darcy velocity of phase α, and qα denoting the phase source term.

The phase velocity from Equation (2) can be calculated using the multi-phase extension
of Darcy’s law as

vα = − krα

µα
K(∇pα − ραg) [m s−1]; α ∈ {w, n}, (3)

with krα indicating the phase relative permeability, µα indicating the phase mobility, and K
indicating the intrinsic permeability. We remark that we assume a rigid porous medium,
namely, that the porosity and permeability distribution is fixed over time.

The preferential flow introduced in the domain because of the macropores (accel-
eration and deceleration in the pore throats) might also include inertial effects, which
are characterized by a Reynolds number larger than unity (Re > 1). For such cases, the
multi-phase extension for Forchheimer’s law

− (∇pα − ραg) =
µα

Kkrα
vα + βαραvα|vα| (4)
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is an approach that has been used in the literature [3,23–27] to describe higher Re-number
flow regimes in porous media, fractured, or macroporous media and also for flow near
well regions [5,6]. It is a nonlinear relation with second-order corrections and, thus, can
be viewed as an extension of the linear Darcy law for higher velocity regimes [26]. The
nonlinear term of the equation accounts for inertial effects and contains a coefficient β
[m−1], which is described as the effective non-Darcy-flow or Forchheimer coefficient. This
coefficient is an empirical value specific to the porous medium [28,29] and has been a source
of many controversies and ambiguities [30].

The inertial coefficient varies with geometrical characteristics of the pore structure.
Methods for computing the β coefficient can be roughly split into two categories: (i) the
first one is concerned with fitting measurement data directly to the assumed model, while
(ii) another approach assumes a direct correlation of β to such fundamental properties of
the porous medium as permeability (K), porosity (φ), and in some cases tortuosity (τ) [30].

The latter category can be further divided into theoretical and empirical correla-
tions [24]. The empirical correlations of the inertia coefficient were initially determined
experimentally for single-phase flow [25]. In order to account also for multi-phase flow, they
were extended in terms of saturation and effective permeability correction. This way, the
corresponding change in the Forchheimer flow coefficient due to saturation difference can
be described [6]. The β parameter values for typically studied porous media are reported
to be greater than 5000 m−1 [26].

In this study, we investigate flow in a heterogeneous macroporous domain. The
problem is formulated for building rubble and debris of a nuclear power plant on top of
a landfill. Our aim is to assess if the flow in such a porous-media domain can be studied
using the standard multi-phase Darcy approach or if an inertia correction should be added.
The flow models are implemented in DuMux [31]. DuMux is an open-source simulator
and research code in C++; its main intention is to provide a sustainable and consistent
framework for the implementation and application of porous-media model concepts and
constitutive relations. For more information, we refer to the official website dumux.org
(accessed on 28 January 2022). The flow velocities are calculated by the extended multi-
phase Darcy model, Equation (3), or Forchheimer’s model, Equation (4), respectively. For
Forchheimer’s law, the Forchheimer coefficient is calculated with two approaches; thus,
effectively, we consider two different Forchheimer models and evaluate their differences.

1. A generalized equation for all media [32], which also is viable for multi-phase flow,
formulated here according to [33]:

βα =
cF√
Kkrα

[m−1], (5)

where cF is the so-called Forchheimer constant. A typical value of the constant for a
range of investigated porous media is 0.55 [32].
If we insert Equation (5) in the general form of the Forchheimer Equation (4), we
obtain the following equation for the first case:

→ vα + cF
√

K
ρα

µα
vα|vα| +

Kkrα

µα
(∇pα − ραg) = 0. (6)

2. An equation that accounts for multi-phase flow more explicitly [6]:

βα =
cβτ

(Kkrα)(φSα)
[m−1]; α ∈ {w, n}, (7)

where cβ is a numerical constant which is found to be approximately equal to
1.5 × 10−4 m for a specific range of investigated porous media [6].
By inserting this coefficient of Equation (7) in the Forchheimer Law, we can write the
velocity of the fluid phase α for the second case:

https://dumux.org
dumux.org
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→ vα +
cβτ

(φSα)

ρα

µα
vα|vα| +

Kkrα

µα
(∇pα − ραg) = 0. (8)

For each of the different models (based on Equations (3), (6), and (8), respectively),
different macropore scenarios are simulated, and then, the results are compared with
respect to their accuracy and also the efficiency of the simulations. Furthermore, we study
the relationship between the parameters of each model, and the inertia flow is identified
using the dimensionless flow criteria, Reynolds (Re) and Forchheimer (Fo) numbers (see
Section 4.1).

The Forchheimer number equals the ratio of pressure drop caused by liquid–solid
interactions to that by viscous resistance [34] and indicates how microscopic effects in the
porous-media structure lead to significant macroscopic nonlinear effects [35]. Due to the
consistent definition and physical meaning of the variables involved, it might be a better
approach for the characterization of the flow regime [6]. In porous media, there is no clear
threshold number that defines the transition between the flow regimes, and the nonlinearity
in non-Darcy flow is introduced from inertia instead of turbulent effects. Therefore, in
porous media, non-Darcy flow can occur for small Reynolds numbers [6]. Roughly, creeping
Darcy flow is observed for Re < 1 [36]. Non-Darcy inertial flow (or Forchheimer flow)
occurs for a range of 1 < Re < 10 [36]. Furthermore, the critical Forchheimer number is
between 0.005 and 0.2, as stated in [6].

3. Model Scenarios

A major challenge in modeling landfills and their different materials as described
above is the variation in their properties. Since it is impossible to predict the exact spatial
distribution of the materials, we choose to create a spatial distribution with the R-project
package gstat [37,38]. It requires specification of a variogram model; therefore, we chose
the Matérn covariance function

F(h) =
1

2ν−1Γ(ν)

(
h
r

)ν

Kν

(
h
r

)
(9)

as available in gstat. According to [39], it works well for soil variograms. Its smoothness
parameter ν, appearing in Equation (9), allows for creating areas with less variation, which
we assume to be the case in the landfill. For more information about the Matérn covariance
function, we refer to [40]. The parameters used are shown in Appendix A in Table A2.

The most relevant spatial parameters for us are the porosity and the permeability.
Since we are interested in macropores, we decided to create a porosity distribution with
gstat and then relate the permeability with the Kozeny–Carman relationship [41]

K = Kre f
φ3(1 − φre f )

2

φ3
re f (1 − φ)2

. (10)

Here, we use a reference porosity φre f and a reference permeability Kre f , which
are calculated based on the grain-size distribution WT1 from the nuclear power plant
Würgassen, as published in [42] and shown in Table 1. There, we also show the result
for the mean particle diameter (l), which will be used in Section 4.1. Since the grain-size
distribution is known, we are calculating the average particle diameter l as the weighted
average of the range of diameters, namely,

l =
6

∑
i=1

pidi, (11)

where di denotes an average fraction and the percentages pi of the fractions are used as the
weights of the average.
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Table 1. Calculation of weighted average (average particle diameter) based on the grain-size distribution.

Fraction [mm] Average Fraction
di [mm] Percentage pi [%] Weighted Average

pidi [mm]

1 <2 1 3.8 0.038
2 2–4 3 3.7 0.111
3 4–8 6 9.6 0.576
4 8–16 12 15.8 1.896
5 16–32 24 41.3 9.912
6 32–64 48 25.8 12.384

l ≈25 mm

The reference porosity is calculated as in [43–47] with the coefficient of grain uniformity

η =
d60

d10
(12)

and the empirical relationship between φ and η, namely,

φ = 0.255(1 + 0.83η). (13)

For this grain-size distribution, it results in the reference porosity φre f = 0.35. The
reference hydraulic conductivity is calculated after the Terzaghi equation [43]

k f = Ct

(
φ − 0.13

3
√

1 − φ

)2

d2
10, (14)

with Ct as the sorting coefficient, ranging between 6.1 × 10−3 and 10.7 × 10−3. Here, we
choose the average value of 8.4 × 10−3. Based on the the grain-size distribution from
Table 1 and the porosity calculated with Equation (13), the resulting reference permeability
is Kre f = 1.01 × 10−9 m2.

The entry pressure pd [Pa] of the Brooks–Corey capillary pressure–saturation relationship,

pc(Se) = pdS−1/λ
e , (15)

is adjusted with the reference entry pressure pd,re f = 1000 Pa plus the spatially varying
porosity and permeability using the Leverett J-function [48] as

pd = pd,re f

√
φ Kre f

φre f K
. (16)

From Equations (9), (10), and (16), we have calculated spatial distributions for the
porosity, permeability, and capillary entry pressure. As macropores, we insert additional
areas with very high porosity values (dimensions shown in Table A1), and finally, we end
up with the porosity fields, as shown in Figure 1.

We assign Neumann no-flow boundary conditions at the right and left side of the
domain. At the top boundary, a Neumann boundary condition represents the water
in-flowing rain. Its mass is calculated from the official threshold for heavy-rain events
q = 25 l m−2 h−1 = 0.007 kg m−2 s−1 provided by the German Weather Service [49]. At
the lower boundary, we set Dirichlet conditions with a fixed pressure and saturation.

The residual water saturation for the domain is set to Swr,d = 0.1, except for the
macropores. Several studies [23,50,51] assume the residual saturation in the macropores to
zero, namely, Swr,m = 0.0.
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0.12 0.3 0.4 0.5 0.6 0.7 0.8 0.94
porosity

Figure 1. The porosity fields for the three investigated cases: (a) no macropores; (b) two macropores
from top to bottom with different width; (c) two macropores with different porosity and different
width, only one from top to bottom.

In Figure 2, we show the porosity distribution histograms for the respective scenarios
(a), (b), and (c). The spikes at the tails of the latter two represent the high porosities assigned
to the macropores. Obviously, this confirms the bimodal porosity behavior of macroporous
domains.

(a) (b) (c)

Figure 2. Porosity histograms for Scenarios (a–c). Every column depicts the number of cells for a
porosity range [φmin, φmax) with ∆φ = 0.0275 . The total number of cells is 2500.

4. Results and Analysis
4.1. Flow-Regime Characterization

In flow problems, it is important to assess which flow regime dominates. As already
mentioned, in this study, we use the dimensionless Re and Fo numbers as indicators for
the prevailing flow regimes. Given their values, the required flow model can be chosen
accordingly. This is why for the phase-velocity value, we use the cell data results from the
Darcy models.

The Reynolds number Re is based on the average grain diameter (l) of Table 1 and the
phase velocity,

Re =
|vα|ραl

µα
[−] , (17)

which represents the ratio of inertial force to viscosity force. The Forchheimer number Fo
has an expression that includes multi-phase and inertia effects [6],

Fo =
ραkkrαβαvα

µα
[−]; α ∈ {w, n} , (18)

where βα is calculated from Equation (7).
The non-Darcy effect (E) is the error caused by ignoring the non-Darcy behavior.

According to [34,35], it is defined as “the ratio of the pressure gradient consumed in
overcoming the liquid-to-solid interactions to the total pressure gradient” and can be
calculated from [34] as

E =
Fo

1 + Fo
. (19)



Water 2022, 14, 546 7 of 15

From this equation, we understand that the Forchheimer number is directly depen-
dent on E. If we denote Ec as the critical value for the non-Darcy effect, then the critical
Forchheimer number would be

Foc =
Ec

1 − Ec
. (20)

For Ec = 10% [4,34], the critical Forchheimer number, or the lower limit for inertial
flow to be considered, is equal to Foc = 0.11. This value is larger than the one given from
literature and will be used as our critical Fo.

In Figure 3, we show the Reynolds and Forchheimer numbers for the three scenarios
at the end of the simulation time. In Scenario (a), the Reynolds numbers barely reach up
to Re = 1, with the majority of the domain in a smaller range of values. In Scenarios (b)
and (c), where macropores are added, it reaches up to Re = 2.5. Again, the majority of the
domain behaves similar to Scenario (a), but we know that this variation of values at the
tails of the histograms is caused by the macropores.

(a) (b) (c)

Fo > Foc

Re > Rec Re > Rec
Re > Rec

Fo > Foc Fo > Foc

Figure 3. Reynolds (Re, top) and Forchheimer (Fo, bottom) numbers histograms, calculated with
the Darcy velocity values for the three scenarios (a–c). Every column depicts the number of cells for
a range [Re/Fomin, Re/Fomax) with ∆Re/Fo = 0.009/0.003. The total number of cells is 2500. The
critical Reynolds and Forchheimer numbers are depicted as red vertical lines.

According to the typical range of the Forchheimer number for transition to inertial
flow from the literature, all scenarios depicted here belong in the inertial regime. Even if
we take into account the “stricter” Foc = 0.11, we reach this limit already in Scenario (a).
In Scenarios (b) and (c), the Forchheimer number reaches up to Fo = 0.35. We can see that
with both dimensionless criteria, we have a large spread of values on the right tail for the
macropore scenarios, along with some small spikes. We assume that these belong to the
macroporous regions of the domain.

The results for the Forchheimer number confirm that the inertial effects are strong
enough and they cannot be ignored in all three scenarios. The Reynolds criterion Re < 1 is
only valid for Scenarios (b) and (c) in regions where flow is not affected by the macropores.

4.2. Velocity Streamlines

In Figure 4, we show the streamlines representing the water-phase velocity over the
porosity fields for the two macropore scenarios after the last timestep. We present only
the results for the Forchheimer–Case 1 model, as no significant differences between the
others are visible. The strongest contribution of the macropores to the flow pattern is the
preferential flow path they obviously offer. In both scenarios, we notice that the velocity
streamlines around the macropores lead into them. This is caused by

• The different geometrical characteristics–continuous length and large width,
• The larger porosity and permeability compared to the rest of the domain, and
• The residual saturation, which is Swr,m = 0.0.
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Moreover, the water-phase velocity in the macropores is considerably higher than
in the rest of the domain. As we can see, in both scenarios, the highest values occur in
the thinner macropores, where we observe also a slightly higher pressure. Between the
three models used to simulate flow, the Forchheimer–Case 2 is the one that differs the
most compared to the other two. We assume that the two cases differ the most in regard
to the approach and consideration of the inertial effects. These should have the largest
impact when the velocity is changing. To distinguish the two cases, we look into the green
highlighted cells in Scenario (c), where the velocity is slowed down at the end of the left
(wide) macropore.

(b) (c)

0.20.12 0.3 0.4 0.5 0.6 0.7 0.8 0.94
porosity

0.20.12 0.3 0.4 0.5 0.6 0.7 0.8 0.94
porosity

9.1 x 10-5

8 x 10-5

6 x 10-5

4 x 10-5

2 x 10-5

1.4 x 10-7

9.9 x 10-5

8 x 10-5

6 x 10-5

4 x 10-5

2 x 10-5

4.1 x 10-8

liquid velocity
 [m/s] liquid velocity

 [m/s]

Figure 4. Water phase velocity streamlines of Forchheimer–Case 1 model for Scenarios (b) and (c).

According to [52,53], the microscopic inertial effects at high velocities distort the flow
lines and, therefore, increase the gradients of velocity and the pressure drop. Additionally,
ref.[35] explains this with the dissipation of energy as fluid particles accelerate in smaller
pores and decelerate while entering large pore spaces. As we study our cases, there should
be a visible faster acceleration or deceleration of water flow for the case with the higher
inertial effect.

In Tables 2 and 3, the velocities of the green highlighted cells in Figure 4 are shown.
The cells are the last in the macropore and the first afterwards. Generally, we can say that
Case 2 has higher velocities in the macropores. Additionally, we can see that the velocity in
Case 2 drops lower in the domain cells. If we follow the previously referenced literature, it
would imply that Case 2 accelerates and decelerates more than Case 1 and therefore has
more inertial effects.

Table 2. Model liquid phase velocity results [m s−1] for scenario (c) of Forchheimer–Case 1.

Left Cell Right Cell

Macropore cells 2.47 × 10−5 2.46 × 10−5

Domain cells 1.87 × 10−5 1.82 × 10−5

Table 3. Model liquid phase velocity results [m s−1] for scenario (c) of Forchheimer–Case 2.

Left Cell Right Cell

Macropore cells 2.75×10−5 2.75×10−5

Domain cells 1.85×10−5 1.80×10−5

4.3. Breakthrough Curves

Figures 5 and 6 show the breakthrough curves for all three scenarios. Breakthrough
stands here for the time at which the water saturation in the lowest domain cell reaches
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a threshold of ε = 1 × 10−5 above the residual saturation. For the Scenarios (b) and (c),
the macropores are dominating, which is best displayed on a logarithmic timescale. In the
macropores themselves, there are also no significant differences, especially because the
arrival times are so small.

(a) (b)

Figure 5. Breakthrough curves for Scenario (a) and Scenario (b) and the three cases.

Figure 6. Breakthrough curves for Scenario (c) and the three cases on the right side, with enlargement
of left macropore on the left side.

The differences between the cases can be seen in Scenario (a) and the left macropore of
Scenario (c), as shown enlarged in Figure 6. There, the Darcy model and the Forchheimer–
Case 1 are very similar, while Case 2 clearly differs. In the areas where the water reaches the
bottom faster, Case 2 is slower, while in the areas with a slower water front, Case 2 is faster.
Since Case 1 is so similar to the Darcy model, this supports the approach of Case 2 having
the Forchheimer coefficent with a higher inertia effect. This was also tested with higher
influx boundary conditions, i.e., q = 0.014 kg m−2 s−1. There, the differences between
the models are more significant, and the results are even more clear with regard to the
acceleration and deceleration.

4.4. Numerical Behavior

In Tables 4–6, the total runtime of the model simulations, the timesteps required for
the solution, and the total of Newton iterations to solve the timesteps are listed for the
implemented scenarios.

Table 4. Computational effort and numerical behavior for Scenario (a).

Total
Time [s]

No. Global
Timesteps

No. Newton
Iterations

No. Failed
Timesteps

Darcy 57.08 121 1107 2
Forchheimer–Case 1 202.02 211 2009 1
Forchheimer–Case 2 1104.53 1274 12,583 0
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Table 5. Computational effort and numerical behavior for Scenario (b).

Total
Time [s]

No. Global
Timesteps

No. Newton
Iterations

No. Failed
Timesteps

Darcy 42.02 86 787 0
Forchheimer–Case 1 323.86 316 3019 9
Forchheimer–Case 2 905.74 1032 10,159 6

Table 6. Computational effort and numerical behavior for Scenario (c).

Total
Time [s]

No. Global
Timesteps

No. Newton
Iterations

No. Failed
Timesteps

Darcy 48.30 98 907 0
Forchheimer–Case 1 290.04 316 2991 11
Forchheimer–Case 2 1003.27 1162 11,442 7

A general observation for the Darcy and Forchheimer–Case 2 models is that the total
runtime of the simulations decreases when the macropores, which induce faster flow, are
added in the domain. More specifically, for both of them, the lowest total runtime occurs
for Scenario (b) (Figure 1). This may be explained by macropores being large areas in the
domain where porosity, permeability, and entry pressure are constant.

For the Forchheimer–Case 1 model, the total simulation runtime increases when the
macropores are added (Tables 5 and 6). Interestingly, the longest simulation for this model
is for Scenario (b), for which both the other models have their shortest runtime. This will
be subject to further in-depth investigations beyond the scope of this study.

4.5. Root-Mean-Square Error (RMSE)

For our goal of comparing the two Forchheimer models and understanding their
possible differences, we calculate the RMSE (root-mean-square error) for key parameters of
the simulations (saturation [-], mobility [Pa−1 s−1], and velocity [m s−1]).

The RMSE is used to measure the error or the deviation of model-predicted results
from observed values [54]. In our case, we want to measure the difference between the
Forchheimer–Case 1 and Forchheimer–Case 2 results from the Darcy results. We use the
Darcy results as our reference values and the results from the Forchheimer cases as the new
values that need to be examined. We use the data of the final timestep.

The RMSE is calculated from the following equation [54]:

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
, (21)

where ŷi are the new values, yi are the reference values (Darcy model results), and n = 2500
is the number of cell data pairs.

We compare the Darcy and Forchheimer models, using three different response pa-
rameters with different units or no units and different scales [54]. That is why we calculate
a normalized root-mean-square error (NRMSE), where we have a relative rather than an
absolute squared difference. We calculate our NRMSE by dividing the squared differences
with the reference values [54]:

NRMSE =

√√√√ n

∑
i=1

( ŷi − yi
yi

)2

n
. (22)

From the results of the comparison between the Darcy and the Forchheimer–Case 1
models (Table 7), we can see that the differences of Scenario (a) are a lot smaller compared
to the rest and the respective differences of the Darcy and Forchheimer–Case 2 models.
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This would mean that the Darcy and Forchheimer Case 1 models are more in “agreement”
for a heterogeneous domain when no macropores are added. For the rest of the scenarios,
in both model differences, we notice a similar tendency with the largest differences for the
water-phase velocity and water-phase saturation parameters. The differences in saturation
are a result of the propagation of the flow field.

Table 7. NRMSE values for the mobile (liquid) phase parameters between the Darcy and Forchheimer–
Case 1 models (t = TEnd).

Case 1

NRMSE
Saturation [-] Mobility [-] Velocity [-]

Scenario (a) 2.61 × 10−5 4.63 × 10−4 9.50 × 10−5

Scenario (b) 0.12 × 10−2 1.90 × 10−2 0.49 × 10−2

Scenario (c) 0.16 × 10−2 2.33 × 10−2 1.28 × 10−2

5. Discussion

In this study, we investigated flow in an unsaturated heterogeneous domain with and
without macropores. In order to better understand the mechanisms that affect flow, we
implemented three different model approaches: an extended multi-phase Darcy model
that simulates creeping flow and two multi-phase Forchheimer models that consider the
possible inertia effects. The Forchheimer models include a Forchheimer (inertia) coefficient,
which is subject of our investigation. Its calculation is mainly empirical, and the theoretical
equations that exist vary depending on which parameters of the domain and the phases
are included. Here, we use two equations to calculate it according to [6,33].

Regarding the final steady-state flow field, we can see from the breakthrough curves
(Section 4.3), as well as from the velocity streamlines (Section 4.2), that the three models
do not differ substantially. This shows that the two-phase flow problem is affected by
the domain’s characteristics (porosity, permeability), the traversing fluid’s characteristics
(saturation, relative permeability, mobility), and their interaction (capillary pressure).

The differences in the final velocity values are a result of the different approaches to
the solution of velocity. The Forchheimer coefficient based on Equation (5) depends on
permeability and phase saturation via the relative permeability. On the other hand, in
Equation (7), the coefficient is directly proportional to tortuosity and inversely proportional
to permeability, relative permeability, porosity, and saturation. This is reflected in Figure 7,
where the beta-coefficient maps of both Forchheimer cases for Scenario (a) are shown. The
distribution of the beta coefficient for Case 1 resembles the distribution of porosity and
permeability and shows the same spatially smooth behavior. Case 2, on the other hand, is
spatially more disrupted, even though also the areas with very high and very low porosity
are visible.

In Sections 4.2 and 4.3, we supposed that the Forchheimer–Case 2 has the higher
inertial effects. This is also visible in Figure 7, where the coefficient can become several
orders of magnitude larger. This is probably influenced the most by the difference in how
the permeability is considered in the calculation of the coefficient. In Case 1, it is with a
square root, while in Case 2, it is not.

Since the context this study is related to water flow and the transport of low-level
radioactive substances in landfills [17], the transient flow field is of high importance. This
holds in particular since the differences between the breakthrough curves increase with
higher velocities. Additionally, we keep in mind that in reality, macropores reaching from
top all the way through to the bottom as in Scenario (b) should be unlikely. This puts more
emphasis on the behavior of the coefficients in Scenarios (a) and (c).
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Case 1 Case2

Figure 7. Spatial Forchheimer coefficients for Scenario (a).

Choosing the “correct” Forchheimer coefficient for our case is de facto impossible,
since there are so many different possibilities with different parameters [6,24,29], for which
we have currently no experimental data available yet. However, we can conclude that
the coefficent for Case 1 needs less computing time and represents less inertial effects.
In particular, the differences to the Darcy model for Scenario (a), shown in Table 8, are
marginal. If we follow our thought from above that the most interesting scenario is probably
Scenario (a), we may conclude that using the Forchheimer equation with this coefficient
is not appropriate and justified. It results in more computing time while providing no
significant difference, even though we are above the critical Forchheimer number.

Table 8. NRMSE values for the mobile (liquid) phase parameters between Darcy and Forchheimer–
Case 2 models (t = TEnd).

Case 2

NRMSE
Saturation [-] Mobility [-] Velocity [-]

Scenario (a) 1.50 × 10−2 2.27 × 10−1 5.03 × 10−2

Scenario (b) 1.18 × 10−2 2.10 × 10−1 6.07 × 10−2

Scenario (c) 1.53 × 10−2 2.40 × 10−1 5.52 × 10−2

6. Conclusions

Motivated by flow events in heterogeneous landfills from debris of dismantled nuclear
power plants, we investigated the differences between Darcy’s law and the Forchheimer
extension in the presence of macropores. We reach the following conclusions:

• Based on numerical scenarios, which all featured Reynolds numbers beyond the
validity of Darcy’s law and, thus, an expected influence of inertia effects, we found
that different approaches to calculating Forchheimer were showing different behavior
in representing inertia effects.

• At the same time, the different investigated Forchheimer coefficients are associated
with different computational efforts.

• Dependent on the inflow boundary condition, the resulting velocities, and the size
of the investigated domain, we could show that heterogeneous setups including
macropores require the Forchheimer extension to account for inertial effects for the
transient transport solution.

• Macropores dominate the flow-field and the breakthrough times, in particular when
they reach over large vertical distances, in this study from top to bottom.

While the present study improves our general understanding of the influence of
macropores on the flow behavior by means of synthesized scenarios, further work has
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to be performed for achieving predictability in practice. In particular, we will extend the
spatial dimensions to 3D and to the scale of a realistic landfill. Additionally, the transport of
radionuclides and their decay chaines will be considered, where the results of this study can
be used to optimize the applied flow models. This further involves concepts for modeling
the sorption of radionuclides. Finally, we expect to acquire experimental data to calibrate
and validate the models.
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Appendix A

Table A1. Macropore parameters for the three implemented scenarios.

Porosity [-] x1 [m] x2 [m] y1 [m] y2 [m]

Scenario (a) Lens1 - - - - -
Lens2 - - - - -

Scenario (b) Lens1 0.94 3.0 3.2 0.0 10.0
Lens2 0.94 7.2 7.6 0.0 10.0

Scenario (c) Lens1 0.90 3.6 4.0 4.0 10.0
Lens2 0.94 7.4 7.6 0.0 10.0

Table A2. Parameters for the Matern model in gstat.

Parameter Value

ν 2.5
r 2

sill 0.02
anisotropy angle 90
anisotropy factor 0.4

https://git.iws.uni-stuttgart.de/dumux-pub/winter2021a
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