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Estimating the optical flow of an image sequence is a major challenge in computer
vision. Optical flow is a vector field that provides information about the apparent motion,
for example of objects, edges or surfaces, within a visual scene. The recently introduced
Recurrent All-Pairs Field Transforms (RAFT) by Teed and Deng [TD20] achieved significant
improvements over prior methods on popular benchmarks. However, this method reduces
each image dimension to an eighth at the beginning of the calculations and scales the
resulting flow back to the original size afterwards. This upscaling leads to a visible structural
error. We investigate this error and present various approaches to reduce it using adapted
diffusion methods. The peculiarity of our approach is that we consider only the resulting
optical flow and not the underlying image data. In the process, a framework was developed
to examine and diffuse vector-valued images such as optical flow. In addition, we present
advanced methods for blocking artifact detection. All methods are tested and evaluated on a
common sample data set. The regular structure of the error of the RAFT method could be
exploited to slightly reduce the average error of the method.
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Introduction

The determination of optical flow is a key method for extracting motion information in
computer vision. It is one of the major problems in machine vision. In general, the optical
flow represents the vector field of the displacement of image points between two successive
frames of an image sequence. The first seminal work in this area goes back to Horn and
Schunck [HS81].

Optical flow is used in many applications. These include object tracking [Shi+05; Mae+96],
for example via motion estimation, object detection in moving environments such as envi-
ronment detection in (autonomous) driving [GLU12; MG15], image stabilization in cameras
[Cha+02], video compression in the field of motion compensation [SLZ98], and many more.

Current methods for determining optical flow are oftentimes learning-based methods
[Dos+15; RB17; Sun+18; TD20]. These are based on the optimization of numerous parameters
and often create very large correlation volumes, which map all possible correlations between
two images to determine where a certain part of an image moved to in the next frame. In order
to handle such large amount of data efficiently, most of these methods are simplified. One of
the more recent approaches in this area is called Recurrent All-Pairs Field Transforms (RAFT)
and was presented by Teed and Deng [TD20]. It currently delivers superior results on popular
benchmarks such as MPI Sintel [But+12] and KITTI 2015 [Gei+13]. A main simplification
made in RAFT is to reduce the amount of data to be processed by acting on only one eighth
of the original image size. To obtain the optical flow in the original resolution at the end,
the resulting optical flow is upsampled to the original size. This causes the emergence of
blocking artifacts in the flow visualizations, which are accompanied by an increase in the
average error.

The goal of this work is therefore to develop a diffusion-based refinement step that
improves the RAFT method. For this purpose, a general framework for the application of
diffusion processes is implemented. It is especially adapted to vector-valued images and
supports a variety of diffusion methods including linear and nonlinear ones. Using this
framework, a specific diffusion process is developed that reduces the blocking artifacts
described above while simultaneously improving the overall accuracy of RAFT. Note that
a premise of our approach is that we consider only the resulting optical flow and not the
actual underlying image data itself. This is a novel approach to improving optical flow using
diffusion.

The remainder of this thesis is divided into two main parts. The first part represents
the Propaedeuticum and consists of Chapter 1 and Chapter 2, where related works are pre-
sented, providing a theoretical basis of diffusion and optical flow that is used in the methods
presented afterwards. The second part represents the Bachelor Thesis and consists of the re-
maining chapters. The diffusion implementations are presented in Chapter 3. Subsequently,
the methods we developed for refinement are explained in Chapter 4 and we present our
main results and evaluate these methods in Chapter 5. Chapter 6 finally summarizes the
most important findings and gives an outlook on possible improvements.



1

1 Diffusion

Diffusion finds application in many areas of image processing. Usually it is used for smooth-
ing two-dimensional images. In this thesis, diffusion will be used to enhance optical flow,
which is a vector-valued image. While this is an area in which diffusion algorithms have rarely
been used before, it will prove to offer some advantages. In this chapter, we will discuss the
history and some basic ideas of conventional diffusion in the field of image processing. We
outline various crucial works in the development of diffusion-based algorithms including
several different approaches.

In a general sense, diffusion describes the process of equalizing concentration differences.
Since this concept originates in physics, we will use the general physical concept as starting
point. Based on this, we will briefly outline linear diffusion filters. However, we will focus
more on nonlinear diffusion methods, as they are more sophisticated and allow greater
influence on the diffusion process. This includes anisotropic diffusion, which is basically a
nonlinear, space-variant transformation of an image. It typically aims to reduce noise while
preserving crucial parts of the image such as edges and will play a major role in this work.
This chapter is structurally based on Weickert’s "Theoretical Foundations of Anisotropic
Diffusion in Image Processing" [Wei96], where the concepts presented here are discussed in
great detail.

1.1 Physical Concept

As an entry point to diffusion, the physical description of a diffusion process is suitable since
it is quite easy to conceive. In the following, it will be analogized to diffusion filters in image
processing. For example, the basic physical idea of concentration equalization in liquids can
be transferred to the smoothing of images. More precisely, first consider Fick’s first law in two
dimensions

J =−D∇u, (1.1)

where u is a concentration, J is a diffusion flux and D a diffusion coefficient, a positive
definite symmetric matrix. Also, the nabla operator ∇ represents the differential operator
of the gradient throughout the thesis. More formally, it is a vector whose components are
the partial derivative operators ∂

∂x , so in our case we mainly get ∇u = (
ux ,uy

)> with the

shorthand notation ux = ∂u
∂x .

In image processing, the concentration u may be equated with the gray value of a pixel.
Note that u depends on a location x and a time parameter t . Formally, we denoteΩ→R2 as a
subset of the plane, whereΩ := (0, ax )×(

0, ay
)

is the rectangular image domain. So the image
u is rather a family of rectangular gray scale images and can be described as u(x, t ) :Ω→R.
Going back to Equation (1.1) and additionally considering mass conservation, which states
that the overall physical mass does not change due to diffusion, we can apply this idea to
imaging and obtain the continuity equation

div J +∂t u = 0. (1.2)



Chapter 1. Diffusion * 2

Using this, the general diffusion equation is obtained, which is given by

∂t u = div(D ·∇u). (1.3)

The whole system is a partial differential equation (PDE) for which we require an initial
condition. In image processing, the input image f is used as the initial condition with

u(x,0) = f (x). (1.4)

In Equation (1.3), the choice of the diffusion tensor D is decisive. If it is spatially constant
in the image, we speak of homogeneous diffusion. If D is spatially invariant, it is called
inhomogeneous diffusion. Furthermore, one can distinguish whether D depends on the
structure of the evolving image. This is not the case in the following section, where we get
linear diffusion. Only nonlinear methods allow a functional dependence D(∇u).

1.2 Linear Diffusion

One of the simplest methods for smoothing images is linear diffusion. This method is similar
to the convolution with a Gaussian. As already mentioned, the diffusion tensor does not
depend on the image in linear methods and can be replaced for example by the unit matrix.
Substituting this into Equation (1.3) yields the linear diffusion equation

∂t u =∆u. (1.5)

The entire diffusion process can also be understood on the basis of the scale-space. This
term refers to the concept of embedding the original image into a family of subsequently
simpler, more global representations of it. The parameter t is also called scale parameter.
It can be understood in such a way that image structures, which are smaller than a certain
spatial size proportional to t , are largely smoothed in the scale-space plane of scale t .

One of the major drawbacks of linear diffusion is that important features of the image
are smoothed, such as edges and corners. Since these are crucial for object recognition, they
should not be lost in the method developed here. This can be seen clearly in Figure 1.2,
which shows different diffusion methods applied to an example image, with Figure 1.2c
corresponding to linear diffusion.

1.3 Nonlinear Diffusion

More complex methods for diffusion are nonlinear diffusion filters. These are based on the
idea of making the diffusion process itself depending on the image. The process is thus
a combination between the original image and a filter that depends locally on the image
content. In this chapter, the first formulations of nonlinear filters are presented to provide a
basic understanding. Subsequently, more sophisticated methods are considered, which offer
a greater influence on properties such as direction and strength of diffusion, especially also
depending on local structures.

Perona-Malik Model

This section would be incomplete without giving credit to Perona and Malik for their first
PDE-based formulation of a nonlinear diffusion method [PM90; PSM94]. The basic idea of
their method is to detect important features of an image and avoid smoothing those, unlike
linear diffusion. To locate features such as edges, their model uses the image gradient. This
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)= 1
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(right). The parameter ε is located

exactly where the flux is largest, thereby separating areas of low contrast from
those of high contrast.

leads to the Perona-Malik equation

∂t u = div
(
g

(|∇u|2)∇u
)

, (1.6)

where g is a scalar function called diffusivity. It is a decreasing function, that is large for small
values of the squared magnitude of the image gradient |∇u|2. Perona and Malik propose a
diffusivity of the form

g
(
s2)= 1

1+ s2/ε2 (1.7)

with a contrast parameter ε> 0. An example using this diffusivity is shown in Figure 1.2d.
Other possible choices of the diffusivity leading to edge-preserving regularization are pre-
sented by Blanc-Feraud et al. [BF+95].

This method yields good results especially in terms of edge-enhancement. To understand
this, consider the flux functionΦ(s) := sg

(
s2

)
in the one-dimensional case. This flux function

reflects the flux in the image in the sense that it takes large values for edges and is small
elsewhere. It can be shown that the diffusion equation in one dimension can be rewritten to

∂t u =Φ′ (ux )uxx . (1.8)

The flux function is monotonically increasing for values smaller than ε and monotonically
decreasing for larger values. This can be seen in Figure 1.1 using the Perona-Malik diffu-
sivity. From Equation (1.8) we can deduce that the diffusion process is a forward PDE for
monotonously increasing flux, so for gradient values with |ux | ≤ ε, which leads to smoothing
of the image. For a negative derivative of the flux, on the other hand, we get backward
diffusion, which increases the contrast of the image and we get edge-enhancement. Note
that a problem with backward diffusion is that it can generate numerically unstable solutions
and may even have multiple solutions, which is also known as ill-posedness. Overall, we can
summarize that the parameter ε affects the contrast of the image. Thus, a correct choice not
only smooths unwanted noise but also sharpens edges.

Unfortunately, this model has some shortcomings, which are listed in detail by Weick-
ert [Wei96]. Among other things, this includes the problem that the model delivers very poor
results when the image is noisy. The image gradient introduced by the model as a feature
detector fails in this case because it oscillates very strongly and noisy edges remain. An-
other problem of the model results from an investigation of Höllig [Hö83]. He constructed a
forward-backward diffusion process similar to the one in the Perona-Malik model, which can
have infinitely many solutions. This suggested a certain ill-posedness of the model, which
was later confirmed by the absence of uniqueness and stability. Kawohl and Katev [KK98]
proved that the Perona-Malik process has no global (weak) C 1 solutions for initial data
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involving backward diffusion.
There are numerous papers proposing improvements to Perona and Malik’s model. For

example, Catté et al. [Cat+92] introduce a variation based only on the scale parameter. In
doing so, they change the diffusivity to g (|dGσ∗u|). This leads to the modified diffusion
equation

∂t u = div
(
g (|dGσ∗u|)∇u

)
, (1.9)

where ∗ denotes a convolution and dGσ is the derivative of a Gaussian-like

Gσ(x) =Cσ− 1
2 exp

(
−|x|2

4σ

)
. (1.10)

Note that this function G is the fundamental solution of the heat equation. This means
that the diffusivity g in Equation (1.9) depends on a term that is simply the gradient of the
solution at time σ of the heat equation with u(x, t) as initial condition. Overall, this small
change in the method should reduce susceptibility to problems caused by noise in the image
without smoothing it beforehand. In addition, the instabilities of the Perona-Malik method
that arise when the flux functionΦ is not nondecreasing are eliminated, since the modified
method has been proven by Catté et al. [Cat+92] to have a unique smooth solution.

Wei [Wei99a] proposed a generalization of the model by adding a real-valued bounded
edge-enhancement functional to the equation of Perona and Malik. This edge-enhancement
feature is useful when handling blurred edges, low contrast as well as low resolution images.
A more recent improvement of this approach is presented by Guo et al. [Guo+12]. They adapt
the method by combining it with the heat equation, which corresponds to Equation (1.5),
and introducing an edge indicator to alternate between Perona-Malik diffusion and Gaussian
smoothing.

It is worth mentioning that Perona-Malik diffusion is an isotropic model (although Perona
and Malik originally presented it as an anisotropic model). Isotropic methods use the scalar
value of the diffusivity g instead of the tensor D in Equation (1.3). Thus the flux J =−g∇u of
the filter is always parallel to the image gradient. Since we want to have greater influence on
the flux and its direction, we consider anisotropic diffusion with a diffusion tensor D in the
following section.

Anisotropic Diffusion

As already mentioned, anisotropic filters play a particularly important role in this work. One
main advantage is that they allow influencing the direction of the diffusion process and
therefore also for it to be directed towards the orientation of features of interest. Generally
speaking, anisotropic diffusion is a space-variant transformation of an image and is similar
to the process of creating a scale-space, with the difference that each resulting image is a
combination of the original image and a filter that depends locally on the content of the
original image.

Crucial to this method is the choice of the diffusion tensor D . Since it is positive definite
and symmetric, it can be easily split up into eigenvectors and eigenvalues, which correspond
to the local directions and strengths of diffusion. A useful choice is to make them dependent
on the local image structure. With eigenvectors v1 and v2 and eigenvalues λ1 and λ2, the
decomposition of the diffusion tensor is given as

D (u) := (v1 | v2)

(
λ1 0
0 λ2

)(
v>

1
v>

2

)
. (1.11)

One possible choice of D is a regularization of the Perona-Malik process and is pre-
sented by Weickert [Wei96] as edge-enhancing anisotropic diffusion. With this method, the
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eigenvectors are chosen based on the image gradient smoothed by a Gaussian Kσ with

Kσ(x) := 1(
2πσ2

) ·exp

(
−|x|2

2σ2

)
, (1.12)

where σ is the kernel size. This leads to the smoothed image gradient

∇uσ :=∇Kσ∗u, (1.13)

where ∗ denotes a convolution. The eigenvectors are then chosen as

v1‖∇uσ and v2 ⊥∇uσ, (1.14)

where ‖ stands for parallelism and ⊥ for orthogonality. The eigenvalues on the other hand
are chosen depending on the diffusivity g . This way, smoothing along edges is preferred over
smoothing across them. A possible choice is suggested by Weickert as

λ1 := g
(|∇uσ|2

)
and λ2 := 1, (1.15)

where λ2 leads to diffusion along edges. Figure 1.2e shows an example of this method. Note
that this is only one possible choice of eigenvalues. We will evaluate several other options
later.

There are also more sophisticated methods to describe the local structure. For example,
it can sometimes be of interest to maintain flow-like structures in the image. However, with
the previous choice of the diffusion tensor, too much smoothing of the image gradient can
cause neighboring gradients with the same direction but opposite orientation to cancel, and
the flow field loses important information as a result. To prevent this, one can consider the
so-called structure tensor. It is a symmetric, positive semidefinite matrix Jρ and is calculated
on the basis of the image gradient as

Jρ (∇uσ) := Kρ ∗
(∇uσ∇u>

σ

)
, (1.16)

where Kρ again denotes a Gaussian, only this time with kernel-size ρ instead of σ in order to
distinguish the two. Using this structure tensor, Weickert now proposes coherence-enhancing
anisotropic diffusion [Wei99b; Wei95], which smoothes mainly along coherent structures. See
Figure 1.2f for an example of coherence-enhancement. For this purpose, the eigenvectors of
the diffusion tensor are chosen equal to those of the structure tensor. For the eigenvalues, we
can additionally introduce a parameter γ ∈ (0,1) and obtain

λ1 := γ, (1.17)

λ2 :=
{
γ+ (1−γ)exp

(
−c

(µ1−µ2)2

)
if µ1 6=µ2

γ else.
(1.18)

Here, µ1 ≥µ2 are the eigenvalues of the structure tensor Jρ and c is a threshold parameter.
The exponential function and γ guarantee the smoothness of the diffusion tensor and at the
same time ensure that there is always some amount of linear diffusion. This is used to prove
well-posedness.

Other Methods

In addition to the methods of nonlinear diffusion presented here, there is a variety of other
methods [Wei96; Sze10; NFD97; Bla+98; YA02] and we are unable to present all of them here.
Ultimately, however, most of them come down to choosing the eigenvectors and eigenvalues
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of the diffusion tensor D depending on the specific application. For this reason, we are able
to have a consistent implementation of the diffusion process, which we will present later. A
large part of this work consists of cleverly choosing the diffusion tensor as well.

1.4 Relation of Diffusion and Variational Methods

We have previously mentioned the method presented by Horn and Schunck [HS81]. The
Horn-Schunck method is a widely used technique for estimating the optical flow of an image
sequence. It is generally classed as a differential method, where one can make a further
classification [BWS05] into local methods such as that of Lukas and Kanade [LK81] and global
methods such as that of Horn and Schunck.

We do not want to present a lengthy explanation of such variational methods. A more
detailed description of variational methods for the calculation of optical flow is given by
Weickert et al. [Wei+03]. Instead, we want to highlight an interesting connection between the
Horn-Schunck method and diffusion.

Variational Methods Simply put, variational methods calculate minimizers of functionals.
A functional in our case is a mapping of functions to a scalar value. If we then consider the
given image sequence as a continuous function f and compute the optical flow u from it,
we can compute this optical flow with the help of an energy functional E(u). It provides a
scalar value for a given optical flow, which is large for large deviations of the flow from given
assumptions and vice versa. Horn and Schunck [HS81] make two basic assumptions, which
we divide into a data term D and a smoothness term S. This results in the energy functional

E(u) =
∫
Ω

D +αS dx dy, (1.19)

where Ω is the image domain and α is a regularization constant, with larger values of α
leading to a smoother flow.

Data Term First, consider the data term D . It is based on constancy assumptions about the
image sequence. This includes the brightness constancy assumption, which states that the
value of a pixel in one image corresponds to the value of the pixel at its new shifted position
in the next image. The gray value of objects in the image would therefore not change over
time (or only slowly). So if the optical flow is u = (u1,u2)> and

(
x(t ), y(t )

)> denotes some
movement in the image at time t , we obtain the optic flow constraint [Wei+03]

fx u1 + fy u2 + ft = 0, (1.20)

where the index in fx denotes a partial derivative fx := ∂x f . This assumption usually holds
only for small movements and small changes in image values.

Smoothness Term and Relation to Diffusion More important in the context of this compar-
ison to diffusion is the smoothness term S. It acts as a regularizer of the image, with Horn
and Schunck using a simple homogeneous regularizer of the form

S(∇u) = |∇u1|2 +|∇u2|2 . (1.21)

This term represents the assumption that the solution is smooth, meaning that spatial
changes are small. A formulation as a minimization problem of an energy functional
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(A) Original image. (B) Gradient magnitude of the original image.
Values shifted to [0,255] for better visibility.

(C) Linear diffusion (t = 10). (D) Perona-Malik diffusion (t = 200, ε= 7).

(E) Edge-enhancing anisotropic diffusion
(t = 200, ε= 5).

(F) Coherence-enhancing anisotropic diffu-
sion (t = 200, ε= 5).

FIGURE 1.2: Different diffusion methods applied to the MRI slice of a head.
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can also be obtained for the general diffusion equation as given in Equation (1.3). We-
ickert et al. [WWW13] again use the diffusion tensor D and get

E(u) = 1

2

∫
Ω
∇>u D ∇u dx dy. (1.22)

Now, if we replace the diffusion tensor with the unit matrix, we obtain linear diffusion as in
Section 1.2 and the energy functional becomes

E(u) = 1

2

∫
Ω

(∇u1)2 + (∇u2)2 dx dy. (1.23)

The similarity between the energy functional of diffusion in Equation (1.23) and the smooth-
ness term in Equation (1.21) is obvious. More sophisticated diffusion methods can thus be
implemented directly in the method of Horn and Schunck to refine the assumption of a
smooth solution. In the choice of regularizer, a distinction can be made between image-
driven ones, which include the isotropic and anisotropic diffusion methods presented earlier,
and flow-driven ones, which take into account discontinuities of the unknown flow field by
preventing smoothing at or across flow discontinuities [Wei+03]. In the following chapter,
we will discuss variational methods for estimating the optical flow in general as well as more
recent methods.
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2 Optical Flow

In this chapter, we will take a closer look at the basics and development of different methods
in estimating the optical flow of an image sequence. This is helpful in understanding why
and how the blocking artifacts considered in this thesis are created in the first place.

In computer vision, a variety of methods have been developed and refined over the last
decades that enable machines to perceive their environment by detecting certain objects in
an image and assigning them to a class using object recognition. However, many well studied
methods in this area consider the data of only a single image. In the case of video inputs, this
leads to valuable temporal information being lost. Objects could be identified even better
by additionally considering their motion. This is where optical flow has several advantages,
since it is used to represent such motion information in image sequences.

The optical flow of an image sequence is a vector field representing the movement of
a point between consecutive images of the sequence. This movement is usually caused
by independent object motion in the scene, but also by the relative motion between the
observer, usually a camera, and the environment. First descriptions of optical flow go
back to studies of the visual perception of the environment by animals in motion [Gib50].
A more recent example is environment sensing in autonomous driving, where both the
camera and surrounding objects move. Basic methods for determining optical flow go back
several decades to works by Lucas and Kanade [LK81] and Horn and Schunck [HS81]. We
have already mentioned the method of Horn and Schunck in Chapter 1, where an iterative
algorithm is used to determine the optical flow pattern. They assume that the apparent
velocity of brightness patterns in the image vary smoothly almost everywhere and require
several constraints on smoothness and flow velocity. Meanwhile, there are more advanced
methods, some of which we present in Section 2.1.

Even to this day, determining the optical flow is a major challenge in image processing.
Problems such as motion blur and the aperture problem play a crucial role. Motion blur
results from the movement of an object during the exposure time of a camera. It increases
proportionally to the exposure time and the angular velocity of the object relative to the
camera. The blur causes edges and patterns in the image to be much harder to detect. The
aperture problem describes constraints imposed by viewing objects through a bounded
aperture. For example, the motion of a simple one-dimensional structure such as an edge
cannot be uniquely determined if its ends are not visible through the aperture. Being able
to estimate the optical flow is useful for a variety of tasks in computer vision like object and
motion detection.



Chapter 2. Optical Flow * 10

2.1 Methods

In this section, we will briefly review the development of methods for determining optical
flow. Beauchemin and Barron [BB95] provide a summary of some of the main methods in the
last century. These include variational methods, multiconstraint methods, frequency-based
methods and more. Modern methods, on the other hand, are mostly learning-based, which
means that they are based on artificial intelligence approaches and deep neural networks.

Variational Methods

Variational methods have long been considered successful, since they allow transparent
modeling and produce dense and accurate results [MSB17]. As already shown in Section 1.4,
they are based on the minimization of an energy functional. It is composed of a data term and
a smoothness term reflecting several assumptions on the image sequence. These may include
a brightness constancy assumption, a gradient constancy assumption or a smoothness
constraint to preserve discontinuities. The data term is usually strongly non-convex, which
is why several variational methods linearize it. Since this makes the estimation of large
motion difficult, Brox et al. [Bro+04] propose a warping strategy. They present coarse-to-fine
warping that produces smaller angular errors and is very robust under noise while avoiding
linearisations in the data terms. Modern approaches to optical flow estimation partially
adopt ideas from variational methods, but are mostly learning-based methods, which we
examine in more detail in the following.

Learning-Based Approaches

In recent years, the greatest successes in optical flow estimation have been achieved by
learning-based methods. These usually involve training a Convolutional Neural Network
(CNN). CNNs are a class of deep neural networks and are mostly used in automated process-
ing of image or audio data. We will briefly introduce a few of the most popular methods.

FlowNet FlowNet [Dos+15] was the first successful CNN-based method for calculating
optical flow. It introduces two core concepts for learning-based methods. The first is feature
matching, which involves not only identifying features in one image, but also recognizing
them elsewhere in another image. The other is the introduction of a correlation layer that has
such matching capabilities and can operate at different scales. FlowNet was able to achieve
best ratings on common benchmarks at the time and outperformed conventional methods.

SPyNet Ranjan and Black [RB17] implement a classical spatial-pyramid formulation into a
deep learning method. They show that this can help to estimate optical flow with less model
parameters. Combining spatial pyramids with deep learning in contrast to FlowNet, which
uses only deep learning, has some advantages. One is that SPyNet is significantly smaller and
simpler than FlowNet. The movements in each layer of the pyramid are rather small, which
makes the method more effective than previous ones.

PWC-Net One of the more recent methods is presented by Sun et al. [Sun+18] and is called
PWC-Net. They implement a pyramid scheme and warping strategies. In addition, the
method uses features of the first image together with warped features to construct a cost
volume, which is finally processed by a CNN to estimate the optical flow. The combination
of these three building blocks pyramid, warping and cost volume (PWC) have proven to be
very effective. PWC-Net is significantly smaller and easier to train even than the improved
FlowNet 2.0 of Ilg et al. [Ilg+17]. Recently, Sun et al. presented an empirical investigation of
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different CNN-based models for optical flow estimation [Sun+20]. There, they also provide a
very clear scheme for PWC-Net, which can be seen in Figure 2.1. On the left you can see the
feature pyramid, which calculates a cost volume using both images. For this purpose, the
most similar pixels in features of one image are found in the other image. In the second step,
a CNN is used as flow estimator to calculate the optimal flow for the lowest pyramid layer
based on the cost volume and the features of the first image. Then the flow is upsampled
(shown as an arrow pointing upwards in the diagram) and the features of the second image
are warped onto it. This procedure is repeated for all layers of the pyramid until finally the
full resolution optical flow is obtained.
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FIGURE 2.1: Schematic overview of PWC-Net. Image adapted from [Sun+20].
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2.2 RAFT

The Recurrent All-Pairs Field Transforms (RAFT) method presented by Teed and Deng [TD20]
is currently one of the best methods for determining optical flow. It is based on a deep
network architecture with iterative updating of the flow field. One drawback of this method
is the emergence of blocking artifacts. Since the goal of this work is to reduce the error of the
RAFT method, we will examine the origin of these artifacts in more detail. For this purpose,
the approach of RAFT will be briefly explained.

Figure 2.3 shows a schematic overview of how the algorithm works. Starting from two
consecutive frames of an image sequence, the feature encoder is used to extract features
from both images. To this end, each dimension of the images is first reduced to one-eighth of
its original size. After this reduction step, a vector is calculated for each pixel in both images.
Using these feature vectors, all pixels in the first image are correlated pairwise with those
of the second image. This results in a four-dimensional correlation volume, whose last two
dimensions are pooled to create multi-scale volumes. Together with a context encoder that
only extracts features from the first image, the flow field is then iteratively updated using a
gated recurrent unit (GRU). In each step, values are selected in the correlation volume based
on the current flow. The result is the optical flow between the two images at one-eighth of
the original resolution.

Due to the pooling, the network calculates the optical flow at one-eighth of the origi-
nal resolution. However, the final output is of the same resolution as the original image.
Therefore, there is an upsampling step in between. In this upsampling process, the vector
values of the high-resolution flow are determined using a weighted combination of the nine
neighboring low-resolution pixels. For this, weights are used for each neighbor, which are an
additional output of the update iterator.

Even though the upsampling yields good results, it creates blocking artifacts of size 8×8
pixels. To understand this a little better, consider Figure 2.2. It shows the upsampling process
for two high-resolution pixels located inside two neighboring low-resolution pixels. While
for the orange pixel in the left image the left nine large neighboring blocks (light orange)
are used for calculation, the blue pixel on the right uses the right nine blocks (light blue).
In general, the values of the smaller high-resolution blocks can be chosen in a way that a
smooth junction is created between the coarser blocks by weighting the neighboring values
appropriately. However, in extreme cases (which can be easily devised), visible edges may
still appear at the borders of the 8×8 blocks, that do not appear in the correct optical flow.

FIGURE 2.2: Upsampling for two neighboring pixels on the edge of two 8×8
blocks. The orange pixel on the left uses the weighted values of 9 coarser
blocks, of which 3 are different from the 9 coarse blocks of the blue pixel on

the right.
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FIGURE 2.3: Schematic overview of the RAFT algorithm (adapted from [TD20]).
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3 Implementation

In this chapter, we present details on the implementation of a general diffusion method. To
this end, we first introduce a theoretical formulation of the input data and our conventions.
Since we want to test and develop a variety of different diffusion methods with several param-
eters, it is beneficial to establish a framework to facilitate this task. This requires a general
numerical implementation of diffusion algorithms. We then adapt this implementation
specifically to vector fields such as optical flow.

3.1 Prerequisites

We start by specifying the theoretical foundations of our problem. The goal is to develop a
framework to apply various diffusion algorithms to images. To do this, we start by considering
continuous gray-scale images. These are a mapping u from a rectangular domain, the image
domain, to a one-dimensional domain of real values and we obtain

u :R2 ⊃Ω→R with Ω := (0, ax )× (
0, ay

)
, (3.1)

where ax and ay are the width and height of the image, respectively. Next, we discretize this
image domain, since image data is usually given only on a regular grid consisting of pixels.
Our image is then a set {

ui , j | i = 1, . . . ,W ; j = 1, . . . , H
}

, (3.2)

where each (i , j ) corresponds to one pixel with a value ui , j ∈ R. In general terms, this
corresponds to an image with resolution W × H . Unless otherwise indicated, we always
specify our image in x- and y-directions and the corresponding grid widths are hx and hy ,
whereby both in theory and in practice one often sets h := hx = hy .

3.2 Numerical Scheme for Diffusion

In Chapter 1, we described the theoretical diffusion process in image processing. We will
now consider a numerical scheme for its practical implementation. One of the main is-
sues with implementing anisotropic diffusion filters numerically is that they often suffer
from dissipative artifacts and have difficulty approximating rotation invariances. Weick-
ert et al. [WWW13] approach this problem by using finite differences to discretize a gradient
descent of a quadratic energy. This results in a general (3×3)-stencil that provides more
stable results than conventional methods. We will therefore now take a closer look at their
approach.

The first step is to consider the evolution equation of the diffusion process on an image
u. It is a gradient descent of the quadratic energy and reads

E(u) = 1

2

∫
Ω
∇>u D ∇u dx dy, (3.3)



Chapter 3. Implementation 16

where D is the diffusion tensor as introduced in Chapter 1. D is time-invariant but can be
chosen space-variant and - while making use of its symmetry - we write its entries as

D =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
. (3.4)

In order to understand why we use Equation (3.3), one may consider the gradient descent

dui , j

d t
=−∂E(u)

∂ui , j
(3.5)

and observe that the right-hand side is equal to the right-hand side of the general diffusion
equation (1.3) which reads div(D ·∇u). Using a regular grid {1, . . . ,W }× {1, . . . , H } with square
grid cells of size h×h to discretize the two-dimensional image domain in both directions, we
can discretize Equation (3.3) to get

E(u) = 1

2

W∑
i=0

H∑
j=0

(
au2

x +2bux uy + cu2
y

)
i+ 1

2 , j+ 1
2

. (3.6)

Note that a, b and c are assumed to have approximations in
(
i + 1

2 , j + 1
2

)
following the ideas

in [WWS06]. There it is illustrated that in the case of nonlinear diffusion, the center of a
four-pixel cell is well suited to discretize locally. This same assumption is also applied to u2

x ,
u2

y and ux uy . In addition, a, b, c, ux and uy must satisfy Neumann boundary conditions at
the edges of the image.

To discretize our derivatives ux and uy , we use forward differences and get

:= Dx ui , j := ui+1, j −ui , j

h
,

:= Dx ui , j+1 := ui+1, j+1 −ui , j+1

h
,

:= D y ui , j := ui , j+1 −ui , j

h
,

:= D y ui+1, j := ui+1, j+1 −ui+1, j

h
.

(3.7)

Using these discretizations, we can achieve approximations of u2
x , u2

y and ux uy with second-
order of consistency. To this end, one can apply affine combinations of the arithmetic mean
and the geometric mean, which leads to

u2
x

∣∣
i+ 1

2 , j+ 1
2
≈ 1

2h2 ·
((

1−αi+ 1
2 , j+ 1

2

)
· ( · + · )

+2αi+ 1
2 , j+ 1

2
· ·

)
,

u2
y

∣∣∣
i+ 1

2 , j+ 1
2

≈ 1

2h2 ·
((

1−αi+ 1
2 , j+ 1

2

)
· ( · + · )

+2αi+ 1
2 , j+ 1

2
· ·

)
,

ux uy
∣∣
i+ 1

2 , j+ 1
2
≈ 1

2h2 ·
(1−βi+ 1

2 , j+ 1
2

2
· ( · + · )

+
1+βi+ 1

2 , j+ 1
2

2
· ( · + · ))

,

(3.8)

where αi+ 1
2 , j+ 1

2
and βi+ 1

2 , j+ 1
2

are arbitrary weights. These provide another way to influence
the diffusion process by steering the weighting of arithmetic and geometric mean. The
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parameter α is used for both the x- and y-directions, since there is no need to distinguish
between them. The weights can be chosen as constants. For example, if both values are set to
zero, a standard discretization of average forward differences is obtained. However, we can
also integrate a spatial variance. Then the weights can be made dependent on the entries of
the diffusion tensor.

Finally, we can apply the derivative approximations in Equation (3.8) to the discrete
energy in Equation (3.6) to calculate the right hand side in Equation (3.5). The result gives
the desired discretisation of div(D ·∇u) and can be represented by the (3×3)-stencil, which
can be found in Appendix A.1.

3.3 Diffusion on Vector-Valued Images

The previously presented methods for diffusion have always referred to two-dimensional
images with only one value per pixel. A naive approach to apply these concepts to multi-
valued images, e.g. color images or optical flow, is processing each channel separately and
reassemble the results of each channel afterwards. However, merging the outputs of the
seperated edge detectors is mostly a heuristic combination without any theoretical back-
ground. In doing so, influences of the channels among each other are lost that can be helpful
in localizing edges. For this reason, the method of Sapiro and Ringach [SR96] is presented,
which extends the ideas of the previous Section to vector-valued data such as optical flow.

First, we let x = (x1, x2) ∈R2 and restrict ourselves to two-dimensional, two-valued images
f (x) :R2 →R2, such as the optical flow. We denote the value of each component (or channel)

as fi (x) :R2 →R, so f (x) =
(

f1(x)
f2(x)

)
. Using this, we define

f (k)(x) :=
(
∂ f1

∂xk
,
∂ f2

∂xk

)
(3.9)

where the i th component represents the partial derivative ∂ fi

∂xk
at x ∈R2.

If we then consider the values of two points p = (
x0

1 , x0
2

)
and q = (

x1
1 , x1

2

)
of our image,

their difference is given by ∆ f = f (p)− f (q). If the Euclidean distance d(p, q) between p and
q approaches zero, the difference becomes

d f =
2∑

i=1
f (i ) dxi . (3.10)

We are now interested in two quantities of our image: the direction of maximum change of
f (x) and the rate or rather the absolute value of this change. We therefore want to maximize
the squared norm of Equation (3.10)

(
d f

)2 =
2∑

i=1

2∑
j=1

f (i ) · f ( j ) dxi dx j (3.11)

under the condition
2∑

i=1
dxi dxi = 1. (3.12)

Equation (3.11) is also called the first fundamental form. If we now define

gi j (x) := f (i )(x) · f ( j )(x), (3.13)
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where · is the scalar product in R2, we get the matrix representation

(
d f

)2 =
(

dx1

dx2

)T [
g11 g12

g21 g22

]
︸ ︷︷ ︸

=:G

(
dx1

dx2

)
. (3.14)

This form allows easy determination of the directions of changes in the image as well as their
strength. One obtains the extrema of

(
d f

)2 via the eigenvectors of the matrix G , and the
values obtained here are the corresponding eigenvalues. Since gi j = g j i , G is symmetric and
its characteristic polynomial with eigenvalues λ is

λ2 − (g11 + g22)λ+ (g11g22 − g 2
12). (3.15)

A simple calculation shows that the eigenvalues are then

λ± =
g11 + g22 ±

√(
g11 − g22

)2 +4g 2
12

2
. (3.16)

Following the procedure in [DZ86], the problem stated in Equation (3.11) can be reformu-
lated to finding θ maximizing F (θ) = g11 cos2θ+2g12 cosθ sinθ+ g22 sin2θ. By using some
convenient substitutions, the solution of dF

dθ = 0 is given by the angles θ+ and θ− with (modulo
π)

θ+ = 1
2 arctan 2g12

g11−g22
,

θ− = θ++ π
2 .

(3.17)

This leads to the corresponding eigenvectors

v± = (cosθ±, sinθ±) . (3.18)

Let us briefly clarify the meaning of these quantities. The eigenvectors v± indicate the direc-
tion of maximum and minimum change, while the eigenvaluesλ± indicate the corresponding
maximum and minimum rates of change. Specifically, θ+ is the direction of maximum change
and λ+ is the maximum rate of change.

While λ+ ≡ ‖∇ f ‖2 and λ− ≡ 0 is always obtained for monovalent images, the minimum
rate of change λ− can be nonzero in our multivalued case. It is therefore important to note
that the strength of an edge is not only given by the maximum rate of change λ+, but rather
the difference between λ+ and λ− is decisive. Sapiro and Ringach therefore propose to detect
discontinuities in the image via a function h (λ+,λ−) that reflects the difference between λ+
and λ−. With this, one can also reformulate the diffusion equation to

∂ f

∂t
= h (λ+,λ−)

∂2 f

∂θ2−
, (3.19)

where a suitable choice for h is a decreasing function in the difference λ+−λ−. However, this
is not of any further relevance to us.

For our purposes, the insights from Equations (3.16) and (3.18) are particularly important.
They provide us with an edge detector for vector-valued images that considers all dimensions
of the vectors equally. Especially the direction of largest change will be very helpful in
analyzing the error of the RAFT method in Section 4.2.
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4 Methods for Diffusing Optical Flow

In this chapter, we present the methods we developed and tested for diffusion of optical flow
and improvement of the RAFT method. We first apply conventional linear and nonlinear
methods mainly for comparison reasons. However, since a systematic error is expected in the
RAFT method, we analyze this error in detail and visualize it. Using the knowledge gained
from the analysis, we then develop diffusion algorithms specifically adapted to RAFT’s error.

4.1 Conventional Methods

With the developed framework, well-known methods of diffusion can be applied easily. As an
example, we can simply insert the unit matrix as diffusion tensor and specify a number of
time steps as well as a time step size to get linear diffusion. Afterwards, we can compare the
results for different values of the parameters we devised in our methods. Linear diffusion
does not require any further discussion, since we don’t have great influence on the diffusion
process.

With nonlinear methods, we can exert greater influence. The Perona-Malik model intro-
duces first approaches to edge detection. For this purpose, we multiply our image gradient
with a diffusivity function as presented in Section 1.3. This diffusivity depends on the magni-
tude of the largest change in the image, which we can estimate as presented in Section 3.3.

If we consider anisotropic diffusion, we compute a diffusion tensor by specifying its
eigenvalues and eigenvectors. To do this, we again use the magnitude of the largest changes
in the image but additionally consider its direction as presented in Section 3.3. We can choose
the first eigenvector of the diffusion tensor the same as the direction of the largest change
and the second eigenvector orthogonal to it. This allows distinguishing between diffusion
across edges and along edges.

More crucial is the choice of eigenvalues. In the context of this work, it is of great
importance for all methods to preserve edges of objects in the optical flow. For this purpose,
we will mainly rely on diffusivity functions. We therefore want to use the standard anisotropic
diffusion method to find the best of three common functions for our purposes. These include
the Regularized Linear variant

gRL
(
s2)= 1

2
p

s2 +ε2
, (4.1)

the Charbonnier function

gCH
(
s2)= 1p

1+ s2/ε2
(4.2)

and Perona-Malik’s method

gPM
(
s2)= 1

1+ s2/ε2 . (4.3)

There are of course numerous other variants [Bla+98; TP13], but we are not able to compare
all of them here.
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4.2 Error Analysis of RAFT

General Error Analysis

We now want to get a better understanding of the error that occurs when calculating optical
flow using the RAFT method to be able to adapt our methods to it. To this end, let us first
consider an example. Figure 4.1a shows two frames of the Sintel data set overlaid with each
other. This makes the motion between the frames fairly visible. Figure 4.1b shows the optical
flow calculated by RAFT using a color representation, where no systematic errors can be
discerned. In addition, Figure 4.1c shows the difference between the optical flow of RAFT
and the actual ground truth of the optical flow from Sintel. This corresponds to the error
made by RAFT. Again, no pattern in the error is apparent at first. It is noticeable that the error
due to blocking artifacts does not seem to have a large influence on the overall error, since
errors seem to occur mainly at edges.

If we enlarge the view and look at the hand in the upper right corner as shown in Figure 4.2,
then we can make the artifacts become more visible. There are slight blocking artifacts visible
in the scaled optical flow, which are even more noticeable in the error plot. So it seems that
such artifacts are created at least in certain parts of the image.

We can additionally consider the method for calculating the largest changes in the image
based on the image gradient in Section 3.3, where the direction of this change was calculated
as well. Figure 4.3 shows the angle of this largest change mapped to a cyclic colormap. Here
we can clearly see a regular grid throughout the image. Not surprisingly, this grid coincides
with the position of the blocking artifacts. The same result is obtained for other images in the
data set.

However, one thing should be noted. The error caused by the blocking artifacts is relatively
small. Especially in Figure 4.1c, it is clearly visible that the biggest errors are caused by
inaccurate edge detection and other common problems like occlusions. Blocking artifacts
are only detectable when the image is enlarged and the coloring is adjusted.
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(A) Original frame and the following frame overlaid with 50% opacity.

(B) Color representation of the optical flow of the frame as calculated by RAFT.

(C) Color representation of the difference between the optical flow of RAFT and the actual ground truth of the
optical flow. Bright values represent a low error and dark, saturated values a higher error.

FIGURE 4.1: Analysis of the optical flow resulting from the RAFT method
applied to a sample frame in the Sintel data set.
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(A) Zoomed-in and enhanced area of the optical
flow in Figure 4.1b.

(B) Zoomed-in and enhanced area of the error of
RAFT in Figure 4.1c. Note that the meaning of the
color has been reversed. Dark color now represents
a low error. Also, a logarithmic transformation has

been applied for better visibility.

FIGURE 4.2: Enhanced close-up of RAFT’s optical flow and its error from
Figure 4.1.

FIGURE 4.3: Direction of largest change in the optical flow. The colormap is
cyclic and represents the angle θ1 ∈

(−π
2 , π2

]
.
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Blocking Artifacts in Detail

In our general examination of the error, we noticed blocking artifacts. Let’s examine these in
a bit more detail. First, it is easily noticeable that the artifacts are arranged in a regular grid
consisting of 8×8 pixel sized cells. The grid’s position follows a regular pattern as well. In the
case of this data set, all images are of the same size and therefore the grid is always in the
same location. This is consistent with the downscaling and upscaling in RAFT to one-eighth
of the original image size presented in Chapter 2, as this is expected to produce exactly such
regular artifacts. The regularity of the artifact’s positions is very helpful in developing our
methods in Section 4.3.

We can now use this knowledge to additionally investigate the error within the blocking
artifacts. To do this, the error can be calculated individually for each pixel in an 8×8 block.
This can be thought of as removing all pixels except the one currently under consideration
from all blocks in the image, and calculating the average endpoint error (AEE) only for the
pixels that remain. See Section 5.2 for an explanation of how the AEE is calculated. To be
more precise, we calculate the AEE 64 times and each time for 1/64 of the original amount of
pixels. This can be averaged for all blocks in the optical flow and across all images in the data
set. The result can be seen in Figure 4.4, where a pattern is visible. In average, the error in
the upper left corner is smaller than in the lower right corner, and there seems to be a linear
gradient from the upper left to the lower right corner. Although this difference is relatively
small, it can definitely be taken into account in the development of the methods, since it is
clearly a systematic error and we have already noted that the expected overall improvement
is quite small as well. Note that the colormap used can be seen to the right of the plot in
Figure 4.4 and will be used several times in the course of this work, where purple always
represents low values and yellow high values.

FIGURE 4.4: Average endpoint error of each pixel in an 8×8 block in all blocks
of the RAFT results on Sintel.
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4.3 RAFT Adapted Methods

In this section, the most promising methods we developed to improve the error are presented.
We will mainly focus on smoothing the blocking artifacts. This is mainly due to the fact that
in this work only the optical flow and not the original image sequences are considered. Thus,
it would be surprising if diffusion and smoothing could be used to fix other problems such as
poor edge detection that do not follow any obvious regularity. In a different approach, one
might also use the original frames as input.

Diffusion Direction Customization (DDC)

We can control the direction and strength of diffusion ourselves. The easiest way to do this is
to modify the eigenvalues and eigenvectors of the diffusion tensor. The idea now is that we
can reduce the blocking artifacts by smoothing over the edges of the artifacts. To this end,
we choose the eigenvectors pointing outward at the edge of an artifact. This can be seen in
Figure 4.5. We will call this method Diffusion Direction Customization (DDC).

FIGURE 4.5: Custom eigenvectors of the diffusion tensor for an 8×8 block.

We have already found that the positions of the artifacts are known. Thus, we can spread
the blocks of eigenvectors over the whole image according to these positions. This pattern
can be see in Figure 4.6. The second eigenvector is always othogonal to the first.

FIGURE 4.6: Custom eigenvectors of the diffusion tensor on a grid. The
coloring corresponds to the direction of the vectors.
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The choice of eigenvalues is a bit more complicated. We can naively set the first eigen-
value to 1 and the second to a value close to 0. This corresponds to strong diffusion across the
edges of the blocking artifacts and almost none along the edges. The problem is that edges
of objects in the flow are then smoothed as well, which of course should be avoided. So we
have to distinguish between edges of objects and edges of blocking artifacts. This is one of
the main challenges in developing these methods.

One approach is to again use classical edge detectors as presented in Section 4.1. Based
on the image gradient, these yield large values for small changes in the image and vice versa.
We can therefore use these values directly as eigenvalues and expect little diffusion at edges.
We will address the problem of distinguishing edges of blocking artifacts from edges of objects
later using a different method.

Remove and Interpolate (RI)

Another concept we’ve been exploring is what we’ll call Remove and Interpolate (RI). This
sums up what the method is supposed to do: we remove the unwanted edges of blocking
artifacts and interpolate the missing values based on the surrounding ones. This can be
applied to different quantities.

The first and most obvious quantity to apply RI to is the optical flow itself. This process
is shown in Figure 4.7. We remove the vectors at the edge of each 8×8 block in the image.
This can be seen in Figure 4.7b. We then interpolate the resulting grid of missing values.
For this we use the interpolate function for grid data from SciPy1. It provides three possible
types of two-dimensional interpolation: cubic, linear and nearest. SciPy’s documentation
explains these in a bit more detail, but we want to present at least the basic functionality. The
cubic interpolation uses a piecewise cubic, continuously differentiable, and approximately
curvature-minimizing polynomial surface to determine the missing values (see Figure 4.7d).
The linear method decomposes the input point set into N-D simplexes and interpolates
linearly on each simplex (see Figure 4.7e). “Nearest” simply uses the value of the closest pixel
(see Figure 4.7f). In the images, we can see that the nearest interpolation produces quite hard
edges. With the cubic method, clearly wrong directions are calculated in some places, as can
be seen in the example on the middle finger. The linear method does not preserve the edges
cleanly. We will evaluate these methods further in Chapter 5. In this first variant, edges are
not taken into account yet.

However, we can additionally apply an edge detector to this method to preserve important
edges of objects. For this, we consider the values of the largest change in the image and can
again calculate a diffusivity (see Figure 4.7c). If the diffusivity is smaller than a predefined
threshold, then the associated vector in the flow is not removed before interpolating.

Another quantity which we can apply RI to is the eigenvalue of the diffusion tensor from
the DDC method. We have already found that edges of blocking artifacts are also preserved
by our edge detection. However, by applying this method, we can remove these edges and
interpolate the missing values. This should allow diffusion to still preserve edges of objects,
but smooth edges of blocking artifacts. Again, we examine the three previously mentioned
interpolation methods in the results.

1https://www.scipy.org/
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(A) Original optical flow. (B) Removing values on the grid. (C) Diffusivity for edge detection.

(D) Cubic interpolation. (E) Linear interpolation. (F) Nearest interpolation.

FIGURE 4.7: Remove and Interpolate method on the close-up of a sample
frame comparing different interpolation methods.
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Template Matching (TM)

We found that our edge detectors also detect the edges of blocking artifacts. This is problem-
atic since our diffusion method preserves or even sharpens edges. Using Template Matching
(TM), we attempt to explicitly detect the edges of blocking artifacts without detecting the
edges of objects. For this purpose, we use the Template Matching function of OpenCV2. Using
this function, it is possible to find predefined templates in the form of smaller images within
larger images. This involves sliding the template over the image, similar to a convolution,
and calculating the similarity between template and respective image area. There are six dif-
ferent methods in OpenCV to calculate similarities. Either via the square difference between
template and input image at the respective position, their cross correlation, their correlation
coefficients or the respective normalized variant of these methods. If the input image has
a size of (W ×H) and the template of (w ×h), then the method yields an output image of
size (W −w +1×H −h+1) where each pixel value corresponds to the calculated similarity at
the pixel’s position. We have compared the methods and for our purposes, the normalized
correlation coefficient is clearly superior to the other methods.

Two questions arise: Which quantity is most suitable for edge detection and what should
the templates look like then? To answer the first question, we will first have a look at Fig-
ure 4.2b again. There, the artifacts are clearly visible to humans in both images. However, it
is quite difficult to create a concrete template that would allow a machine to recognize all
artifacts. In Figure 4.7c on the other hand, the edges of blocking artifacts are clearly separated
from the background and look fairly uniform. Also, the values are always between 0 and 1
with edges having values close or equal to 0. We will therefore focus mainly on the diffusivity
for template matching.

To generate the templates, it is convenient to examine some sample images and note the
most common patterns. One of the biggest differences between edges of blocking artifacts
and of objects is that in most cases the inner values of a blocking artifact are quite large.
Figure 4.8 shows a possible choice of templates. These are all possible combinations of at
least two edges in the blocking artifact. If there is only one edge, the method already gives
good results. In several trials, these templates have proven to be good detectors.

FIGURE 4.8: Match templates.

The functionality of Template Matching quickly becomes clear with the help of an exam-
ple. Figure 4.9 shows the main steps of the method. First, Figure 4.9a represents the diffusivity
as introduced before. Using the Template Matching algorithm, the correlation with each
possible image area is calculated for each template. We then select which positions should
actually be removed. To do this, we specify two conditions. The first is that the match found
is actually on the grid of blocking artifacts. We can conveniently assume this because we
know their positions. The second condition is that the calculated correlation must be larger
than a predefined threshold. A larger threshold leads to less accepted matches, a threshold of
zero removes all values on the grid and we get the same result as in Figure 4.7b. The result
after applying these two conditions is shown in Figure 4.9b. Note that only those pixels were
marked that were also an edge in the given template. Tests have shown that this gives slightly
better results than selecting the entire edge of a matched block, since potentially correct pixel
values could be removed in the latter variant.

2https://opencv.org/
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(A) Original diffusivity calculated using the largest changes in the image.

(B) Edges of blocking artifacts detected by Template Matching are marked in white.

(C) Detected edges interpolated using neighboring values.

FIGURE 4.9: Template Matching applied to the Diffusivity.
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Finally, there is the question of what to do with the edges found. For this, we can again
use our Remove and Interpolate method. We remove the found edges from the diffusivity and
interpolate the missing values. In Figure 4.10, the whole process can be seen in a close-up.
There the interpolation of the values is better visible. It is clearly visible that mainly edges
of blocking artifacts are detected and removed, while the values removed from edges of
objects are mostly restored by the interpolation afterwards. The interpolation method used
is “nearest” in the example. In addition, Figure 4.10d shows the results of the Template
Matching, i.e. the calculated correlations.

(A) Original diffusivity. (B) Matched templates in white rarely lie on edges
that belong to objects.

(C) Resulting diffusivity by interpolating the
matched template edges.

(D) Result of Template Matching.

FIGURE 4.10: Close-up view of Figure 4.9.
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Variable Time Steps

The optical flow differs greatly depending on the sequence. For example, in some scenes
there is a lot of motion and correspondingly large flow values. With large flow values, we
expect a larger error in the calculation. Accordingly, it would be practical to apply more
time steps of diffusion in case of a larger error. Of course, calculating the AEE is not possible
without knowing the ground truth flow, so we have to rely on other quantities. The y-axis of
the graph in Figure 4.11 shows the average absolute value and the AEE of all flows of RAFT in
the final pass of Sintel (listed chronologically on the x-axis). The two quantities are scaled in
order to be comparable in the graph. Large flow values seem to be related to a larger error.
This confirms our expectation.

FIGURE 4.11: Relation between mean flow (orange) and AEE (blue).

Figure 4.12 shows the relation between the AEE and the average values of the diffusivity
on the edges of the 8×8 grid of blocking artifacts for a sample of frames from the Sintel data
set. Again, the values are scaled to make comparison easier. They seem to correlate as well.

The idea now is to make the number of time steps variable and dependent of the average
absolute flow or the diffusivity. First, we choose the flow as a measure for the number of time
steps. If u is the flow with size W ×H , we can calculate the number of time steps as

t (u) =
⌊

1

W H

W∑
i=1

H∑
j=1

∥∥ui , j
∥∥

2

⌋
·τscale. (4.4)

We therefore calculate the arithmetic mean of the absolute values of all vectors in the flow
and round it to a whole number. In this case, we use the floor function b·c for rounding. Note
that the absolute value of the vectors refers to their Euclidean norm ‖·‖2, so in our case the
length of the vectors. Finally, we can scale the result by a factor τscale to gain more control. Of
course, it is possible to transform the absolute flow values differently as well. In fact, our tests
have shown that even better results are obtained if the rounded arithmetic mean is squared
additionally.

A similar transformation can be performed using the diffusivity. However, the diffusivity
values of different frames are pretty similar, which makes a useful transformation to the
number of time steps difficult. We will therefore not discuss this in more detail.
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FIGURE 4.12: Relation between AEE (orange) and diffusivity values on 8×8
block grid edges (blue, scaled).

4.4 Parameter Overview

In the previous chapters, we presented a variety of different parameters that allow influencing
the diffusion process. The following list provides an overview and briefly explains their
respective function.

t Number of time steps, i.e. how often diffusion is applied.

τ Time step size per diffusion step. In practice, the stencil is convolved with
the image in each time step and the result weighted with τ is subtracted from
the result of the previous time step.

σ Standard deviation of the Gaussian kernel that is applied to the input image
to enable more reliable edge detection.

ε Contrast parameter for the diffusivity g .

α,β Weights used in the numerical diffusion scheme.

tRI Threshold parameter used in the Remove and Interpolate method. Based on
this threshold, the diffusivity is used to decide whether an edge is interpolated
or not. For a value of zero, all edges are removed; for a value of one, none are
removed.

tTM Threshold parameter for Template Matching. A small value means that
matches with low correlation are accepted as well and therefore more tem-
plates are matched. A value of one means that no templates are matched.

τscale A scaling parameter for the variable time step size.
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5 Evaluation

In Chapter 3 and Chapter 4, we developed a framework for applying diffusion and presented
several approaches to reducing errors in the form of blocking artifacts such as the one arising
in the RAFT method. The purpose of this chapter is to present the evaluation of our methods
and compare their effectiveness. To this end, we first present the data set on which the
evaluation took place. We will then evaluate the results mainly using the difference in average
endpoint error between our methods and the results of RAFT.

5.1 Data Set

We evaluate the implemented methods on the MPI Sintel1 data set [But+12]. It consists of
23 sequences and a total of over 1000 frames that were generated from the animated open
source short movie Sintel. Since these are purely computer-generated images, the actual
ground truth optical flow is available as well. We apply our methods to the final Sintel results
of RAFT trained on FlyingChairs [Dos+15] and FlyingThings [May+16] with data set specific
finetuning. So these are the results generated by an overfitted RAFT and we abbreviate them
as CTS. Later, our results for the data set without finetuning are also presented, which are
abbreviated with CT. In the Sintel data set, two additional variants are offered, namely the
clean and final pass. In the clean pass, various lighting effects such as shading, reflections
and mirror effects are already applied. In the final pass, other difficulties such as motion blur
and atmospheric effects are added.

For calculating the results for our various methods, we choose a sample of twenty flows
for reasons of convenience and computational cost. The sample was chosen based on the
frames’ AEE. They are intended to mimic the distribution of the AEE of the entire data set.
This should ensure that the results for the samples are representative of the entire data set,
which has been confirmed in most cases of our tests.

5.2 Error Evaluation

To evaluate the developed methods, we compare the AEE of the respective frames of RAFT
with the AEE after applying our methods to the RAFT results. The AEE is calculated using the
ground truth of the optical flow, which is contained in the Sintel data set. It is defined as the
average distance between the endpoint positions of the ground truth flow vectors and the
estimated flow vectors. If we consider images of size W ×H with ground truth flow ugt, then
the AEE of the estimated flow uest is calculated as

AEE
(
ugt,uest)= 1

W H

W∑
i=1

H∑
j=1

∥∥∥ugt
i , j −uest

i , j

∥∥∥
2

. (5.1)

In addition, we provide the change in percentage of AEE compared to RAFT. To this end,
we subtract the AEE of the respective method of the AEE of the original results of RAFT and
divide by RAFT’s AEE. So if uest is the resulting flow of our method and uRAFT is that of RAFT,

1http://sintel.is.tue.mpg.de/
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then the change is given by

δAEE
(
ugt,uest,uRAFT)= AEE

(
ugt,uRAFT

)−AEE
(
ugt,uest

)
AEE

(
ugt,uRAFT

) . (5.2)

Note that a positive value for δAEE corresponds to a decrease of the AEE of our method
compared to the one of RAFT, so our goal is to maximize this value. In contrast, we want to
minimize the AEE.

5.3 Results

Parameter Optimization

The summary in Section 4.4 shows a variety of parameters. When computing the results, we
cannot optimize all of these parameters, especially since this would not be possible in a real
world application. Therefore, we simplify the parameter space by specifying some values in
advance. The large dependence of anisotropic diffusion on several parameters such as the
gradient threshold parameter and the number of time steps is also addressed by Tsiotsios
and Petrou [TP13].

The number of time steps depends strongly on the respective method and is therefore not
fixed. However, the time step size per diffusion step is set to τ= 0.05. This value guarantees
stability, since it is smaller than 0.25 (see [WWW13] for details), and allows a fine resolution
of the time steps. The standard deviation σ is fixed as well, since optimizations on several
different methods have mostly led to similar optima for σ. This optimum is approximately
σ= 0.1. The same applies to the contrast parameter of the diffusivity. Its optimum is usually
around λ= 20. The fact that these values attain similar optima for different methods is not
surprising, since it is mainly the edge detection that is optimized which is used similarly for
all methods.

For the weights of the numerical scheme, we compared the variants presented by Weick-
ert et al. in Table 2 of [WWW13]. The best results were obtained for their nonstandard stencil,
so we set α = 0.44 and β = 0.118 sign

(
b(x, y)

)
, where b is the space-dependent diffusion

tensor entry as introduced in Section 3.2. The other parameters are analyzed in more detail
with the help of the results.

Figure 5.1 shows the optimization process using the contrast parameterλ of the diffusivity.
The AEE has been calculated for different values of λ at regular intervals. If necessary, one
could resolve the intervals even smaller, but in this case the accuracy is sufficient. A unique
minimum is attained. Similar results are obtained for the other parameters.

FIGURE 5.1: Optimization of the contrast parameter in the diffusivity.
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Conventional Methods

To get a sense of the change in error and to examine the influence of the number of time
steps, we consider the results of the three conventional methods presented in Chapter 4.
These are listed for three different numbers of time steps in Table 5.1. In the table, it can be
seen well that with linear diffusion the error becomes larger with increasing number of time
steps. This is not surprising, since no features are retained in the flow field and information is
only lost. In the Perona-Malik model, it can be seen that a slight improvement was achieved
after only one time step. However, if more time steps are applied, the error quickly increases
again. With the more sophisticated anisotropic diffusion, the error can actually already be
improved quite a bit, especially considering that no adaptation to the RAFT method has yet
been applied. Therefore, diffusion in general seems to be able to have a positive influence on
the error. However, the improvement is still quite small.

A close-up of the respective errors of some of our methods applied to a sample frame can
be seen in Figure 5.3. There you can see how the methods change the error and if blocking
artifacts are still visible. Figure 5.3a shows the initial error of the RAFT method, in which the
blocking artifacts are clearly visible. Linear diffusion reduces these artifacts (Figure 5.3b), but
the image and especially edges become brighter and the error therefore increases. Figure 5.3c
shows the same for anisotropic diffusion, which preserves edges better, but does not reduce
blocking artifacts significantly.

Method Time steps AEE δAEE (%)

Original (t = 0) 0.71382 0.000

Linear

(t = 1) 0.71535 -0.215

(t = 5) 0.72250 -1.217

(t = 10) 0.73108 -2.418

Perona-
Malik

(t = 1) 0.71373 +0.012

(t = 5) 0.71391 -0.014

(t = 10) 0.71431 -0.069

Anisotropic

(t = 1) 0.71372 +0.014

(t = 5) 0.71348 +0.047

(t = 10) 0.71352 +0.040

TABLE 5.1: Results of conventional diffusion methods. Bold indicates the
largest improvement of the error.

We now want to use the best value of the anisotropic diffusion to find the optimal variant
for calculating the diffusivity. To do this, we compare the three variants we presented in
Section 4.1. The results can be seen in Table 5.2, where the optimal number of time steps was
determined individually for each diffusivity function. It is quite clear that the Perona-Malik
diffusivity is superior to the other two.
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Diffusivity AEE δAEE (%)

Regularized Linear (gRL) 0.71381 +0.001

Charbonnier (gCH) 0.71358 +0.033

Perona-Malik (gPM) 0.71348 +0.047

TABLE 5.2: Results of different diffusivities on anisotropic diffusion.

RAFT Adapted Methods

We will now compare the results of our adapted methods DDC, RI and TM as well as combi-
nations of those. We also present the results using a variable number of time steps. Finally,
we verify whether the results of the sample data set can be generalized to the whole Sintel
data set.

Diffusion Direction Customization Table 5.3 shows the results of DDC for different num-
bers of time steps. By choosing custom eigenvectors of the diffusion tensor, the standard
anisotropic diffusion could be improved as can be seen from the value marked in bold, albeit
only slightly. We can clearly see that the AEE increases when applying more time steps after
the minimum is reached, which is in line with our expectation.

Time steps AEE δAEE (%)

(t = 0) 0.71382 0.000

(t = 1) 0.71372 +0.013

(t = 5) 0.71351 +0.042

(t = 10) 0.71344 +0.054

(t = 15) 0.71341 +0.056

(t = 20) 0.71344 +0.054

(t = 50) 0.71362 +0.028

TABLE 5.3: Results of the Diffusion Direction Customization.

Remove and Interpolate The results of the RI method in Table 5.4 on the other hand do not
look quite as promising. We see a significant increase in the error when applying the method
to the optical flow itself. Note that no diffusion was used in this process. However, this result
is not surprising since we remove all values on the 8×8 grid without considering features in
the flow.

If we apply the method to the diffusivity as a refinement for anisotropic diffusion, a slight
improvement of the error is possible, especially using the “nearest” interpolation method. To
better understand why it is the simplest of the three interpolation methods that yields the
best results, consider Figure 5.2. There you can see nicely that cubic and linear interpolation
create a smooth transition at locations where edges between large and small diffusivity have
been removed. The nearest interpolation, on the other hand, produces sharp edges. This
better resembles the original sharp edges that the diffusivity usually produces in such areas.
Figure 5.3d shows the error of this variant. Notice that the edges of the grid and thus the
blocking artifacts are slightly smoothed, but the artifacts are still clearly visible.
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RI applied to. . . Interpolation method AEE δAEE (%)

Optical
Flow

cubic 0.72312 -1.304

linear 0.72444 -1.488

nearest 0.72290 -1.273

Diffusivity

cubic 0.71376 +0.008

linear 0.71401 -0.027

nearest 0.71371 +0.014

TABLE 5.4: Results of the Remove and Interpolate method comparing differ-
ent interpolation methods.

(A) Diffusivity with re-
moved grid in white.

(B) Cubic interpolation. (C) Linear interpolation. (D) Nearest interpolation.

FIGURE 5.2: Comparison of different interpolation methods applied to the
diffusivity.

If we take into account the values of the diffusivity in the RI method, then we can improve
the results slightly. This is shown in Table 5.5. The threshold controls how large the diffusivity
must be to preserve edges. A threshold of 0 would correspond to the values in Table 5.4, as all
edges on the 8×8 grid would be removed. With increasing threshold, the error decreases for
both variants. A threshold of 1 implies that no values are removed and interpolated, since the
diffusivity can take at maximum the value 1. This means that for a threshold of 1 and thus
the best values in the table, the RI method is not applied at all. Consequently, this method
only leads to a deterioration of the error when applied to the optical flow directly and also
when used as a preliminary step of anisotropic diffusion.

RI applied to. . . Threshold tRI AEE δAEE (%)

Optical
Flow
(nearest)

0.1 0.71498 -0.164

0.5 0.71467 -0.120

0.9 0.71445 -0.088

(1.0) (0.71382) (0.000)

Diffusivity
(nearest)

0.1 0.71354 +0.039

0.5 0.71351 +0.043

0.9 0.71350 +0.044

(1.0) (0.71348) (+0.047)

TABLE 5.5: Results of the Remove and Interpolate method keeping values
with low diffusivity.
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Template Matching By being a bit more selective in choosing edges to remove using TM,
it is possible to improve the AEE further. This can be seen from the bold marked result in
Table 5.6. Note that the threshold parameter of tTM = 0.8 is nearly the optimal value and not
chosen at random. Of course, for a threshold of tTM = 1.0, no match can be found because
the correlation coefficient is normalized and thus cannot be greater than 1 and we get the
same result as with anisotropic diffusion. Additionally, the average number of matches per
flow is given in the table. At the optimal value, these are around 160. To give some context
to this value: The images underlying the flows have dimensions of 1024×436 pixels. So, in
total, there can be approximately 1,024

8 · 436
8 ≈ 7,000 blocking artifacts in the image. Since the

number of matches is calculated for each of the eleven templates individually and the total
number is then the sum of these, a maximum of 11 ·7,000 = 77,000 matches could be found
in total. Hence, although only few matches are found, there is already an improvement. This
is not clearly visible in Figure 5.3e, where the edges of objects are well preserved, but the
blocking artifacts are still visible. But this is different when applying the following method.

Threshold tTM AEE δAEE (%) Average Matched Templates

0.1 0.71371 +0.015 7133

0.5 0.71366 +0.022 2275

0.8 0.71340 +0.058 160

1.0 0.71348 +0.047 0

TABLE 5.6: Results of Template Matching.
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Variable Time Steps The best method so far has been DDC combined with TM as a prelimi-
nary step. This variant can be further refined with the help of a variable number of time steps,
as can be seen in Table 5.7. The time step scaler τscale is always chosen nearly optimal. The
best variant is clearly choosing the time steps proportional to the square of the arithmetic
mean of the absolute flow values, whereas using the diffusivity did not perform as well in
several trials. Once again, a noticeable improvement of the AEE could be achieved. This can
also be seen in the error representation in Figure 5.3f. The blocking artifacts are significantly
reduced and the image is slightly darker overall, what corresponds to a reduction in error.

Time steps proportional to. . . Time step scaler τscale AEE δAEE (%)

Mean of absolute flow 8 0.71328 +0.075

Squared mean of absolute flow 1 0.71308 +0.103

Diffusivity on block grid 125 0.71344 +0.053

TABLE 5.7: Results of Template Matching comparing variants of a variable
number of time steps.

Generalization The previous results were all referring to the sample of 20 frames of the data
set. To verify whether these results generalize to the entire Sintel data set, we calculated the
error values for two different variants of RAFT, namely RAFT CT without finetuning of RAFT
on Sintel and CTS with finetuning on Sintel, applied to the clean and final passes of Sintel
and also averaged the four variants. The five results are presented in Table 5.8. Our sample
frames are part of RAFT CTS final, and although the overall improvement in error is slightly
less than for the sample, the average error of all frames could be improved as well. The other
variants also show a reduction in error, albeit a slightly smaller one.

Data set AEE δAEE (%)

RAFT CT clean
Original 1.43041

Diffused 1.43015 +0.018

RAFT CT final
Original 2.71342

Diffused 2.71211 +0.049

RAFT CTS clean
Original 0.76768

Diffused 0.76764 +0.006

RAFT CTS final
Original 1.21736

Diffused 1.21632 +0.085

Whole Sintel
data set

Original 1.53222

Diffused 1.53155 +0.043

TABLE 5.8: Results of Template Matching with variable number of time steps.
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(A) Original error of RAFT without any meth-
ods applied.

(B) Linear diffusion applied.

(C) Anisotropic edge-enhancing diffusion ap-
plied.

(D) Remove and Interpolate applied.

(E) Template Matching applied. (F) Template Matching with variable time
steps applied.

FIGURE 5.3: Close-up of the error of a frame of the Sintel data set in the form
of a color representation of the difference between the respective calculated
optical flows and the ground truth optical flow. Dark values represent a

smaller error, bright values a larger error.



40

6 Conclusion

This thesis deals with the refinement of optical flow using diffusion-based methods. More
precisely, the results of one of the best methods for computing the optical flow of an image
sequence, namely RAFT, are examined for a systematic error and improved primarily with
respect to this error. We want to emphasize that in all the methods, only the resulting optical
flow was used as an input and therefore no information was derived from the original images
themselves.

The analysis of the error that occurs in the RAFT method revealed that a regular error
occurs in the form of blocking artifacts in the flow. Based on this, we have developed several
approaches to reduce this error using diffusion. Since these approaches differ mainly in
the choice of the diffusion tensor or its eigenvalues and eigenvectors, we have developed a
framework to simplify adapting the diffusion tensor and also apply the diffusion afterwards.
A special feature is that we can not only diffuse regular images, but the framework also
works for diffusing optical flow. Parts of the framework are therefore adapted specifically to
vector-valued images.

We found that, while conventional diffusion methods have partly already achieved slight
improvements on the Sintel data set, methods adapted to the analyzed error perform even
better. We first chose the diffusion tensor itself to obtain diffusion over edges of blocking
artifacts. In addition, we specifically detected blocking artifacts in the image and diffused
primarily at these locations. To have more control over the number of diffusion steps, the
time steps can be chosen individually for each flow. A dependence of time steps on the
average absolute flow has proven to be useful.

Our results have shown that there is a systematic error in RAFT and that it can be reduced
using only the resulting optical flow as input and by applying diffusion. A reduction in AEE
was achieved on the entire Sintel data set. However, only minor improvements were achieved.
This is probably due to the fact that the error caused by blocking artifacts is small as well.
The optimization of a large number of parameters has posed some difficulties. Further
approaches that could lead to a greater improvement of the error will be discussed in the
next section.

6.1 Outlook

Although these initial implementations of diffusion-based refinement methods did not
lead to a significant reduction of the error, the methods showed that further development
could still lead to general improvements of the RAFT method. We present a some possible
approaches in the following.

Additional Input Data

The underlying premise of the methods presented is that they consider only a single optical
flow. Advantages can result from additionally considering the flows of the following frames
or the underlying image data itself. Generally using more input data might help to determine
whether a blocking artifact in one frame still occurs in the following frame to distinguish
which edges result from blocking artifacts and which are object edges. For example, edges of



Chapter 6. Conclusion 41

blocking artifacts will certainly remain on the regular grid in the flow, while edges of objects
visible in the optical flow are likely to move.

Consideration of Image Structures

In Chapter 1, more sophisticated methods for detecting structures in images have already
been mentioned, such as detecting dominant directions in an image using a structure tensor.
When considering the color representative of the direction of largest change in Figure 4.3, the
blocking artifacts become clearly visible. Thus, a further advancement of our methods could
be to take these directions into account when determining the diffusion tensor. An example
would be choosing the eigenvectors to direct diffusion at edges of blocking artifacts in the
direction of motion in the area surrounding the edges.

Blocking Artifact Detection

To detect blocking artifacts, we mainly consider the diffusivity in our methods and apply
Template Matching to it. There are more advanced methods for pattern recognition in images
that may produce more accurate results. A better method for detecting unwanted edges
could additionally incorporate other quantities such as the direction of the largest change.
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A Appendix

A.1 Diffusion Stencil

In Section 3.2 we derived a numerical scheme for the diffusion process. This results in a 3×3-
stencil that can be convolved with an image to approximate the diffusion process div(D ·∇u).
For the sake of clarity, we introduce the following notations.

The diffusion tensor D is defined as

D =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
,

where we will only write a, b and c for its entries. For the discretization, we require these
entries as well as the parameters α and β at positions

(
i + 1

2 , j + 1
2

)
. The respective positions

are denoted by the index of the parameter. For readability, we write only (i , j ) for
(
i + 1

2 , j + 1
2

)
and accordingly for all other positions. We obtain these intermediate values by simply
averaging over the four surrounding pixels.

To account for the boundary values, one can implement the indicator function χ in the
discretization to mimic Neumann boundary conditions. Here, χi , j takes the value 0 if i or j
are outside the image domain and 1 otherwise. This allows us to write the stencil entries as
follows.

Stencil weight for ui+1, j+1:

−αi , j ·χi , j+1 ·χi+1, j+1 · ci , j

h2 − αi , j ·χi+1, j ·χi+1, j+1 ·ai , j

h2 − 0.5 ·βi , j ·χi , j+1 ·χi+1, j+1 ·bi , j

h2

− 0.5 ·βi , j ·χi+1, j ·χi+1, j+1 ·bi , j

h2 − 0.5 ·χi , j+1 ·χi+1, j+1 ·bi , j

h2 − 0.5 ·χi+1, j ·χi+1, j+1 ·bi , j

h2

Stencil weight for ui+1, j :

αi , j−1 ·χi , j ·χi+1, j · ci , j−1

h2 +
αi , j−1 ·χ2

i+1, j ·ai , j−1

h2 + αi , j ·χi , j+1 ·χi+1, j+1 · ci , j

h2

+
αi , j ·χ2

i+1, j ·ai , j

h2 + 0.5 ·βi , j−1 ·χi , j ·χi+1, j ·bi , j−1

h2 +
0.5 ·βi , j−1 ·χ2

i+1, j ·bi , j−1

h2

+ 0.5 ·βi , j ·χi , j+1 ·χi+1, j ·bi , j

h2 + 0.5 ·βi , j ·χi+1, j ·χi+1, j+1 ·bi , j

h2 + 0.5 ·χi , j ·χi+1, j ·bi , j−1

h2

− 0.5 ·χi , j+1 ·χi+1, j ·bi , j

h2 −
χ2

i+1, j ·ai , j−1

h2 −
χ2

i+1, j ·ai , j

h2

−
0.5 ·χ2

i+1, j ·bi , j−1

h2 + 0.5 ·χi+1, j ·χi+1, j+1 ·bi , j

h2

Stencil weight for ui+1, j−1:

−αi , j−1 ·χi , j ·χi+1, j · ci , j−1

h2 − αi , j−1 ·χi+1, j−1 ·χi+1, j ·ai , j−1

h2 − 0.5 ·βi , j−1 ·χi , j ·χi+1, j−1 ·bi , j−1

h2
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−
0.5 ·βi , j−1 ·χ2

i+1, j ·bi , j−1
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