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Abstract

Railway networks already play a major role in today’s transportation of passengers and goods. With
the growing efforts to protect the environment and climate, its role is likely to become even more
important in the near future. To handle this appropriately we need a way to schedule trains in a
fast and efficient way. A recent publication for computer network scheduling made conflict graphs
in their field viable, by building it up dynamically till a solution can be found. We to took this
idea and implemented it for joint routing and railroad scheduling. We added a Potential Conflict
mechanism to their algorithm to improve on its performance and compare different strategies to find
the best way to extend the conflict graph for our domain. The evaluation shows that with those two
adaptions we are able to scale the conflict graph solution from a single train station to the German
railroad network.

Kurzfassung

Schienen Netzwerke spielen bereits heute eine große Rolle beim Transport von Personen und Gütern.
Und mit den wachsenden Anstrengungen die Umwelt und das Klima zu schützen wird diese Rolle in
naher Zukunft warscheinlich noch wichtiger. Um dem gerecht zu werden brauchen wir eine schnelle
und effiziente Methode Fahrpläne zu erstellen. Eine neue Publikation im Bereich der Computer
Netzwerke verwendet Conflict Graphs, indem diese dynamisch aufgebaut werden bis eine Lösung
enthalten ist. Wir haben diese Idee auf das Streckenführungs- und Ablaufkoordinierungsproblem für
Züge übertragen. Um die Performance weiter zu verbessern haben wir außerdem den Algorithmus
um den Potential Conflict Mechanisus erweitert. Wir haben darüber hinaus verschiedene Strategien
erprobt, um den effizientesten Weg zu finden, den Graphen für dieses Problem aufzubauen. Unsere
Evaluation zeigt, dass wir mit diesen beiden Anpassungen nicht mehr nur den Verkehr für einzelne
Bahnhöfe, sondern für Länder der Größe Deutschlands planen können.
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1 Introduction

Trains are an important means of transport, for people and goods alike. With politics starting to
push more consequent for climate and environmental protection their role is likely to grow even
further. Most parties have their plans to consolidate Deutsche Bahn [Wit21], especially the German
green party [Die21a; Die21b]. But also Deutsche Bahn itself plans to improve by becoming CO2
neutral till 2040 [Deu21a]. This is would be an important step as a major player in German mobility
and transport with 4.874 billion passengers and 255 million tons of goods in 2019 [Deu21b]. Other
companies also (re)discover the advantages of trains for their logistics. DHL has plans to increase
the usage of trains from 2% to 20%, with one train replacing up to 25 trucks [Bar21]. Coca-Cola
wants to connect 13 sites with trains and avoid three million truck kilometers and 1900 tons of
CO2 [Süd21].

An increase in trains requires an efficient usage of the existing rail capacities, as building new
infrastructure can take a very long time [Tag21]. This is commonly known as railroad scheduling
and describes different approaches on creating efficient timetables, by associating trains with
departure and arrival times. It often is discussed in combination with the train routing problem.
Train routing assigns trains to available tacks in the railroad network. We want to discuss this joint
routing and scheduling problem in this thesis. Not many papers were published in this area in the
last years, most papers are older than 15 years, many of which are from the last century. While
many approaches were discussed they all share a common problem, which is scalability. The paper
focuses on small sections of the network, like stations or junctions, with only a few trains and still
take multiple hours. Because of this recent papers have shifted their focus to related problems and
optimize other aspects. One example is rolling stock scheduling where the composition, location,
and shunting of trains is also considered [BEF+21]. Because of this, the base problem did not much
improve recently and more reason developments in similar areas did not get adapted.

In contrast, routing in computer networks was intensely studied in the last decade. Rapid
development in hardware and requirements in this area combined with high economic relevance
made this to a popular topic. Many papers were published and a lot of different approaches were
discussed [NBT+19; NTA+]. One example is the approach presented and extended by Falk et
al. [FDR20; FGD+21].

The conflict graph approach which was used by Falk et al. [FDR20; FGD+21] was already in use
for railroad scheduling [LLER11] in the 1990s and 2000s. While then the scope was limited to
very small sections of the complete railroad network these new papers consider complete computer
networks. They introduced changes to the conflict graph which aim to reduce the cost of building it
up, which does improve scalability. As the two types of networks are similar in many points, this
might provide a base to scale conflict graphs to complete railroad networks.
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1 Introduction

The goal is a solution that scales well, while still finding good solutions. To achieve good scalability
they can only build up partially as this is the most time-consuming factor. Which simultaneously
limits the possible solution which can be found. This means that the conflict graph has to be built
up strategically so that it contains a solution early on. In this thesis, we present different strategies
to create conflict graphs for the domain of joint routing and railroad scheduling.

In Chapter 2 we will present the data structures and algorithms we used. We present the algorithm
we adapted in its original form, without any modification. In the Chapter 3 we present earlier
approaches to railroad scheduling and the algorithms they are often based on. We will also look at
approaches that already utilized conflict graphs, what network they use it for and what important
differences they have compared to our implementation. In Chapter 4 we will talk about railroad
specific requirements and which restrictions we need, to get a model as realistic as possible in
order to get valid results. We will also show how they are reflected in our implementation. We
also formalize the restrains from the previous chapter and discuss the system model we derive
from those the restrains. Chapter 5 presents our evaluation pipeline and discusses some of their
implementation details. In Chapter 6 we define the structure of a strategy and different sub-strategies
we experimented with. In Chapter 7 we first discuss the data our evaluation runs on, present
the results of the different strategies and compare them to each other. We will also compare the
capacity of our algorithm to those of older papers. We then discuss some questions which might
be interesting for future work in Chapter 8. And lastly in Chapter 9 we sum up the results of our
work.
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2 Background

In this chapter, we will explain undirected, bidirected, and conflict graphs which are the basis for the
algorithms used in this paper. We will also explain the algorithm proposed by Falk et al. [FDR20;
FGD+21] which we aim to adapt for railroad scheduling.

A graph is a data structure describing the relation between object. It can be defined as a tuple
𝐺 (𝑉, 𝐸), where 𝑉 is a nonempty set of nodes representing the data and 𝐸 ⊂ 𝑉 × 𝑉 representing
the relations between them. In an undirected graph two edges (𝑣1, 𝑣2) and (𝑣2, 𝑣1) equivalent. In
an directed graph those are two different edges, and the order defines the traversal direction. Also
graphs can be weighted which is formalized as a triple 𝐺 (𝑉, 𝐸, 𝑤). 𝑤(𝑒) → R : 𝑒 ∈ 𝐸 is a function
which maps a value to every edge. This is commonly used to represent the cost of using an edge.

In this thesis. we use a directed, weighted graph to represent the railroad network. The edges
represent a rail segment, the direction of the edge defines the direction the train can traverse it, and
the weight represents the length of the segment. The vertices represent places where two or more
rail segments connect. It might be a switch or simply a connection of two rail segments. We will
use this graph to calculate routes between stations. A route is a list of rail segments that a train can
traverse in this order to get from one station to another.

Further, we will use conflict graphs to model the solution space of the joint routing and scheduling
problem. A conflict graph is an undirected graph commonly used in concurrency control [CB;
Cha04; PY15]. Vertices require one or more resources and the edges between them represent a
conflict in those requirements. Each applicant is represented by multiple vertices varying in the
resources required or the time at which the resources are needed. Two vertices representing the
same applicant can not conflict. Solving a conflict graph comes up to solving the independent
vertex set problem. This means a set of nodes has to be found, which contains no edge. Every set of
nonconflicting vertices is a valid solution, if every applicant has at least one selected vertex the
solution is complete. Has an applicant more than one vertex in a solution one of them is selected,
the others are discarded.

In this thesis, we want to utilize a conflict graph to schedule train lines on a railroad network. The
lines are the applicants that we want to schedule. The line defines a list of stations that are visited in
this order, the speed of the train, and an interval at which the line needs to be serviced. The vertices
are configurations, which define a concrete route and the start of the first interval. The routes are
made up of rail segments which are the resources for which we need to prevent concurrent access.
Concurrent access would mean a violation of security requirements or even a train crash. After the
first time, which is defined by the configuration, a line is serviced in the interval it is set to.

The big drawback of conflict graphs is the time it takes to build them. Adding a single configuration
requires us to check against all existing configurations for conflicts which is expensive. The papers
of Falk et al. [FDR20; FGD+21] propose an algorithm which ties to solve this problem by building
the conflict graph in iterations. They aim to extend the conflict graph in a way so that the conflict
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2 Background

graph can be solved before the majority of configurations are created. The algorithm starts on
a conflict graph with a few initial configurations. It then tries to find a set of nonconflicting
configurations in which every line is represented once. For this, it selects the line with the worst
perspective out of the lines not yet represented (cf. Algorithm 2.1). This is evaluated by the number
of valid configurations, which are those that do not conflict with the configurations selected up to
this point.

As a first tie-breaker the number of conflicts of the line is used. A higher number implies that
the line is more likely to get shadowed by another line. Here shadowed means that it can not be
selected because all of its configurations are in conflict with already selected configurations. As a
second tie-breaker, the id of the lines is used to get a deterministic behavior. When the line is the
line determined all valid configurations are evaluated. Here the goal is to select a configuration
that has the least negative influence on the schedulability of other lines which is measured with the
shadowrating (cf. Algorithm 2.2). To get the shadowrating of a configuration we iterate over all
lines which have at least one conflicting configuration and sum up the eligible configuration to total
configuration ratio. Here we need to check for cases where all the remaining configurations would
be shadowed. To make such configuration unfavorable we fix the ratio to 𝛼. Falk et al. [FDR20;
FGD+21] proposed a value of 1000 for 𝛼, which we adopted. This high value causes the algorithm
to only select the configuration if all other configurations also block at least one line completely.
The configuration with the smallest shadowrating is selected and added to the solution set.

In the paper of Falk et al. [FDR20; FGD+21] the so-called rerun mechanism has been shown to
improve results. When the greedy flow heuristic algorithm did not find a complete solution the
rerun mechanism triggers another run on the same conflict graph, giving the flows which could not
be scheduled a higher priority. We use this mechanism by default, but strategies might deactivate it
as it might not produce optimal results for all of them.

When a complete solution is found, either by a normal run or a rerun, the algorithm stops and
returns the solution set. Did neither the normal run nor the rerun find a complete solution more
configurations are added to the conflict graph. Which configuration gets added is determined
by the Percentile strategy. Which configuration gets added is determined by a strategy. Falk et
al. [FDR20; FGD+21] used a strategy they called Percentile strategy. Was the strategy not able to
create more configuration, or in some cases enough configuration, the algorithm will return with
the last incomplete solution it found. This is shown in 2.3.

The desirable result is a complete solution, but depending on the data this might not exist or can
not be found by the heuristic. To determine the quality of a result and compare them we define
the number of scheduled lines as the quality of a result. This means a solution is better than other
solutions if it schedules at least a line more. Implicitly this also defines complete solutions as the
best solutions.

Besides good solutions we also want scalability. Both are important, but contradict each other, as a
complete conflict graph will lead to the best solutions, but scalability requires the conflict graph to
be as small as possible. This means we have to find a good Pareto optimal, considering those two
goals.

16



Algorithm 2.1 selects the next Line. As proposed by Falk et al. [FDR20; FGD+21].
1: procedure SelectLine(𝑙𝑖𝑛𝑒𝑠)
2: 𝑛𝑒𝑥𝑡𝐿𝑖𝑛𝑒 = 𝑙𝑖𝑛𝑒𝑠[0];
3: 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetEligibleConfigurations(𝑙𝑖𝑛𝑒𝑠[0]);
4: 𝑎𝑙𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetAllConfigurations(𝑙𝑖𝑛𝑒𝑠[0]);
5: for all 𝑙 in 𝑙𝑖𝑛𝑒𝑠 do
6: // Primary criteria: least eligible configurations
7: if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 < GetEligibleConfigurations(𝑙) then
8: continue;
9: else if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 == GetEligibleConfigurations(𝑙) then

10: // First Tie-Breaker: total configuration
11: if 𝑎𝑙𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 > GetAllConfigurations(𝑙) then
12: continue;
13: else if 𝑎𝑙𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 == GetAllConfigurations(𝑙) then
14: // Second Tie-Breaker: unique id
15: if 𝑛𝑒𝑥𝑡𝐿𝑖𝑛𝑒.𝐼𝑑 < 𝑙.𝐼𝑑 then
16: continue;
17: end if
18: end if
19: end if
20: 𝑛𝑒𝑥𝑡𝐿𝑖𝑛𝑒 = 𝑙;
21: 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetEligibleConfigurations(𝑙);
22: 𝑎𝑙𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetAllConfigurations(𝑙);
23: end for
24: return 𝑛𝑒𝑥𝑡𝐿𝑖𝑛𝑒;
25: end procedure

Algorithm 2.2 calculates the shadowrating for a configuration. As shown in Falk et al. [FDR20;
FGD+21].

1: procedure GetSchadowRating(𝑐)
2: 𝑠𝑐ℎ𝑎𝑑𝑜𝑤𝑅𝑎𝑡𝑖𝑛𝑔 = 0;
3: 𝐿𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑢𝑟 ← Lines which have at least one conflict with 𝑐;
4: for all 𝑙𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑢𝑟 in 𝐿𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑢𝑟 do
5: 𝑠𝑐ℎ𝑎𝑑𝑜𝑤𝐶𝑜𝑢𝑛𝑡 ← number of eligible configuration of 𝑙𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑢𝑟 shadowed by 𝑐;
6: 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐶𝑜𝑢𝑛𝑡 ← number of eligible configuration of 𝑙𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑢𝑟 ;
7: 𝛿 = schadowCount \eligibleCount;
8: if 𝛿 == 1 then
9: 𝑠𝑐ℎ𝑎𝑑𝑜𝑤𝑅𝑎𝑡𝑖𝑛𝑔 += 𝛼;

10: else
11: 𝑠𝑐ℎ𝑎𝑑𝑜𝑤𝑅𝑎𝑡𝑖𝑛𝑔 += 𝛿;
12: end if
13: end for
14: return 𝑠𝑐ℎ𝑎𝑑𝑜𝑤𝑅𝑎𝑡𝑖𝑛𝑔;
15: end procedure
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2 Background

Algorithm 2.3 scheduling Algorithm. As proposed by Falk et al. [FDR20; FGD+21].
1: procedure Scheduler(𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝑁𝑎𝑚𝑒)
2: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = GetStrategy(𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝑁𝑎𝑚𝑒);
3: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦.Init(); // Creates initial configurations
4: repeat
5: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = Solve();
6: if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.NotScheduled.IsEmpty() then
7: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.Scheduled;
8: end if
9: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.NotScheduled;

10: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = Solve(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦);
11: if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.NotScheduled.IsEmpty() then
12: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.Scheduled;
13: end if
14: if 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦.AddConfigurations() then
15: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.Scheduled; // Could not create new Configurations
16: end if
17: until true
18: end procedure
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3 Related Work

In this chapter, we will present other works in the area of railway scheduling, which approaches are
commonly used, and how they are used. We also show that there is still work to be done as the
approaches are not very scalable.

The paper by Lusby et al. [LLER11] written in 2011 is a survey paper about railroad scheduling. It
is a quite comprehensive collection containing papers back till the 1980s. It shows that up to that
time, integer linear programming (ILP) was the dominating approach on railway scheduling.

Cacchiani et al. (2008) [CCT08] consider a single one-way track between two major stations and
a number of minor stations in between. Trains are defined by the stations, a list of consecutive
stations, which they service. Trains are only able to overtake each other within stations and lower
bounds restrict the intervals between two consecutive arrival or departure times. They present a
heuristic approach based on the LP Relaxation, arguing that an exact solution would require too
much computational power. The test cases presented contained up to 102 stations with 41 trains or
17 stations with 221 trains.

Borndörfer et al. (2005) [BGL+06] present an auction system, where companies bid on connections.
The auction consists of multiple rounds, whit a bidding phase and an allocation phase each round.
In the bidding phase, all bids are submitted simultaneously, then in the allocation phase, a linear
programming-based optimizer decides which bids are accepted. The tests contained up to 737
trains, this instance took 3 days to compute.

Borndörfer and Schlechte (2007) [BS08] proposed improvements on the linear programming
representation of the problem. They encode conflicts with variables instead of constraints. This
allows for a more easy appliance of the column generation techniques. The test contained 37 stations
and up to 570 trains and was solved in about 16 hours.

Later publications in this area mostly focus on rolling stock instead of pure scheduling. This
means that the type of trains, waiting periods, coupling/decoupling, and moving trains from end
stations to the next start station are also considered. A prominent paper is from Borndörfer et al.
(2021) [BEF+21]. It was written in cooperation with Deutsche Bahn and seems to be the most
holistic approach published yet. Details on how the problem is solved are not disclosed.

Another approach already used in the 90s and early 2000s was the conflict graph. Because of the
cost of building up a conflict graph, it was only feasible to compute small parts of the network.
Thus it was used to calculate the routing within train stations or bigger junctions.

Zwaneveld et. al. [KEZ97; ZKR+] have published multiple papers proposing a routing solution for
railway stations. The algorithm requires the structure of the train station and for all trains the time
of arrival and departure and the tracks on which they enter and leave the station. The algorithm then
considers all valid routes for those parameters. The paper proposes a node package problem-based
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3 Related Work

algorithm, which is semantically identical to a conflict graph but also uses linear programming
and LP-relaxation aspects. The evaluations were conducted on single train stations with 18 trains
scheduled over an hour.

Cornelson and Stefano [CD07] worked on a simplified network representing a station with fixed
arriving and departing times. The trains also have fixed entry and exit points, all valid paths for those
are considered. The conflict graph is built up completely before trying to solve it and represents only
the train station. The paper did not provide any information about evaluation sizes or runtime.

Lusby et al. [LLRE11] present an approach similar to a conflict graph. They use a node set
approach to route trains through junctions. This is defined as a set 𝑆 of elements and a set of
subsets 𝑋 = 𝑋1, 𝑋2, ..., 𝑋𝑛 of the elements of 𝑆, a valid solution is a packing 𝑃 for which holds
that 𝑋 𝑗 ∩ 𝑋𝑘 = ∅, 𝑋 𝑗 ≠ 𝑋𝑘 ∈ 𝑃. In this paper, each node represents a certain rail segment at a
certain point of time, the subsets in 𝑋 representing valid routes through the junction, the nodes in it
encoding the position of the train in space and time. The algorithm then tries to find one 𝑋𝑖 for
every train so that they do not have a common node. The information needed for this step could
be represented as a conflict graph. The paper instead uses linear programming. In the paper, all
nodes for the set packing problem are created beforehand. As trains can have multiple routes, can
accelerate and decelerate, the number of nodes can be quite high. In the example a single route of a
train created up to 492,907 nodes, causing the examples with 9 trains and 19 routes to contain 1.7
million nodes.

Delorme et al. [DRG01] propose two approaches, one using linear programming and one based on
the unicost set packing problem. The second approach generates initial solutions with the greedy
randomized adaptative search procedure. It then tries to refine the solution by a local search phase.
The evaluation had up to 97 trains.

The common weakness of all those papers is scalability. The paper evaluates their approach on small
networks with a few trains. The the papers on ILP need 16 hours [BS08] or three days [BGL+06]
for less than 1000 trains. Papers with conflict graph approaches do not disclose the computational
time their evaluation needed, but evaluations with less than 100 trains [BGL+06; DRG01] suggest
that they have a similar problem with scalability. Deutsche Bahn Group had 23.466 passenger trains
each day [Deu21b].

Falk et al. [FDR20; FGD+21] proposed a conflict graph-based solution for routing in computer
networks. While working on another type of network, the approach is similar to those for railroad
networks. The two big differences are that this paper considers the complete network instead of
a small section and then the conflict graph is built up as needed instead of creating it completely
direct in the beginning. The Greedy Flow heuristic (GFH) is used to solve the conflict graph. If it
does not find a complete solution the Percentile Strategy determines which configuration should be
added before GFH algorithm tries to solve it again. This new approach to the conflict graph can
drastically speed up the algorithm. The paper does present a evaluation with 800 flows, the train
equivalent, that is solved in less than 3 minutes.

This approach has the potential to improve railway scheduling by adapting it. This could speed up
the process drastically and may allow to schedule a realistic number of trains for whole networks
instead of local portions.
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4 System model

In this chapter we discuss the requirements we have, to create a context that is as realistic as possible
for railroad scheduling. We also discuss which changes have to be applied to the conflict graph
algorithm presented by Falk et al. [FDR20; FGD+21] to adapt to this new context. We then want to
formalize the conditions and assumptions which we assume for this thesis.

Earlier approaches did work on prefabricated conflict graphs, in contrast, we build it up dynamically.
This means that we have to dynamically detect conflicts between configurations. We base the
definition, of which configurations are in conflict, on the regulations of Deutsche Bahn.

The Deutsche Bahn does use the system driving in “festen Raumabstand” [Pac16]. This means that
the network is divided into segments of the same length (For Deutsche Bahn it is roughly 1000
meter [Pac16]). Those segments are prefaced with signals which allow trains to enter only if the
three following conditions are fulfilled:

1. No other train is on the segment

2. The overlap (ger: “Durchrutschweg”) behind the segment has to be free

3. The previous train has to be protected by a stop signal

This is the system used on nearly all railroads today [Pac16].

Implementing this would have multiple disadvantages. Firstly we can only sparsely extract the
required segments from OSM, we would need to generate the missing ones our self, matching the
acquired segments, or generate them ourselves, which is out of scope for this thesis. It also would
drastically slow down the algorithm as the conflict detector has quadratic runtime in relation to the
number of segments in all routes.

To avoid those problems we decided to adapt “bewegter Raumabstand”. Here sensors have to
monitor the distance to the train ahead and decelerate or stop if the trains get to close to each other.
In reality, this is seldom implemented yet because of the complexity. We choose this approach
because of lesser computational requirements and because with an appropriately chosen distance
results can be transferred to “festen Raumabstand” systems. Also the EU plans to unify train control
with the European Train Control System(ETCS) which will on level three either work with virtual
“fester Raumabstand” or with “bewegter Raumabstand” [All21; DB 14; DB 18; EU21].

As long as the results are not transferred to a real railroad network, the chosen safety distance only
influences the number of trains required to use the full capacity of a rail segment. Because of this,
we chose to use the 1300 meter the Deutsche Bahn uses for “festen Raumabstand” without further
adaptation.
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4 System model

Based on those regulations we decided to implement the conflict detection so that two trains are in
conflict when they traverse the same rail segment with less than 1300 meters between them. This
represents a valid system in the real world, is comparable to the system most commonly used, and is
easy to implement. It also will be used on the European network eventually [DB 14; DB 18].

The context created by all those assumptions and decisions differs in some aspects greatly from
the context of Falk et al. [FDR20; FGD+21]. This has a great impact on the performance. One of
those is that a cycle is between 250`𝑠 and 2000`𝑠 with a granularity of 1`𝑠 for computer networks,
while on railway networks cycle are 15 to 60 minutes with a granularity of 1 minute. This means
that on computer networks we have 4 to 130 times more configurations for an applicant. Due to
that, we expect strategies to perform worse as the differences in the timing of the configuration
available are a lot smaller than in the computer network. To compensate for the performance loss we
introduced another optimization. For this, we exploited that the smaller number of configurations
per route means, that the size of the conflict graph depends dominantly on the number of routes.
We introduced a relation between routes which we called Potential Conflict. Those relations mark
pair of routes that overlap. This means that there is at least one rail segment that they both traverse.
Only then a conflict between routes can occur and we can limit the search for conflicts to those
which belong to a route with Potential Conflict.

We consider a railway network. The network consists of rail segments, switch nodes, and stations
nodes. Switch nodes connect multiple rail segments and allow a train to pass to any outgoing
railway segment. Every station can be a source or a destination station for a line, trains traverse the
network according to the schedule.

Switches in reality only allow for a specific combination of entry and exit points. As incorporating
this restriction would only affect pathfinding, we decided to ignore it. The algorithm solving the
conflict graph does not check routes for validity and thus is not affected by this decision.

Our representation of the network has fewer parallel tracks and thus less capacity. Because of this,
we decided to model the trains with a length of 0 meters. A train is not able to accelerate, slow
down or wait. We only consider normal operation - power outage, or break down of any hardware is
out of scope. Each train has a safety distance of 1300 in front of it which other trains are not allowed
to enter. This simulates driving in "bewegtem Raumabstand"[Pac16], the size of this distance is the
same the Deutsche Bahn uses for the "festen Raumabstand"[Pac16]. This is necessary to get results
that are transferable to real scenarios.

Trains represent the notion of a line for certain parameters. A line does consist of a route from
a source station to a destination station. A train start for the first time at 𝑡0 + 𝜙 where 𝑡0 is a
common time-reference and 𝜙 is the offset. After this it departs in intervals 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. This means
the departure times are defined as 𝑘 ∗ 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 𝜙 + 𝑡0, 𝑘 ∈ N. Source, destination, speed, and
𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 are set line parameters and do not change during the lifetime of a line. Before creating a
new schedule all lines have to be added specifying those parameters for the planer. In addition, one
or more routes have to be given, from which the planer assigns one together with an offset 𝜙, which
has to be in the range of [0, 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [

As a continuous time variable 𝜙 would yield infinitely possible configurations. We choose an
appropriated granularity with 1 minute. This does reflect the granularity of real train schedules.
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For the speed of the trains, we decided on a uniform 100 km/h. This estimate on an average speed is
based on the top speeds available at OpenRailwayMap[Rei21]. As this value only influences the
capacity of the rail segments the precision does not matter for evaluating this algorithm.

Most train stations on the railroad graph are represented by multiple vertices. As it is a nontrivial
task to decide whether they are placed on the graph in a way that would increase the capacity of the
station, we decided to select one of the vertices randomly to represent the station. With that, the
capacity of a station is limited to 60 outgoing trains per hour per outgoing edge. This number is
unrealistic high but compensates for the fact that most edges represent more than a single track.
Because of terminus stations and stations at the outskirt of the network it is to be expected that for
some stations all traffic will leave on the same vertex. The same arguments hold for inbound trains.
This means that we have to expect bottlenecks in front of train stations. In our experience, with the
intervals we used in our evaluation, around 20 lines can pass the bottleneck in each direction.
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5 Implementation

In this chapter, we will present the toolchain we implemented and used to evaluate the different
conflict graph building strategies. It does get the base data from OSM, prepares them, evaluates our
strategies, and creates diagrams from the collected data.

We extract the railroad network from OpenStreetMaps (OSM) with a tool created for this pur-
pose [PGRR]. The exported graph edges represent the rails and vertices represent a point on the
rails, switches or train stations. The data consists of a file containing the rail segments represented
as an adjacency list and a file containing a list of train stations with their names and coordinates.

As we need to generate routes for our trains we have to run a pathfinding algorithm on the railroad
network. This requires coordinates for all vertices in the graph. For this, we modified the tool so
that the station file contains that information as well.

The exported graph is a bidirectional graph with many very short edges, often representing less than
10 meters of rails. This is due to OSM representing paths as a list of points, which causes points to
be close together where curves has to be represented. In the first step we remove all vertices which
have exactly two edges (and are not a train station) and contract the two edges. This reduces the
number of edges to less than 1

10 .

We then convert the graph to a unidirectional graph by replacing all edges with two new ones. The
two edges are unidirectional edges that point in opposite directions so that trains can traverse in
both directions without interfering with each other. We choose to do this to get a more accurate
representation of the real network, as 2 (or more) rails are standard and normally they are one
ways [Pac16]. This might cause some segments to be represented with more tracks than they have
in reality, if every single track is in the OSM data. This is unlikely to have an influence on our
implementation, as it should only occur sparsely and pathfinding will always use the shortest one.
We save the new graph in the same format as the extraction tool.

First, we generate lines on the currently used graph. For this, we manually selected the main
stations of the biggest cities on the graph and then used A* to find the shortest routes between them.
We choose an interval and speed for the line based on the cities connected. With this we want to
represent the different loads on high and low frequented rail sections. If both cities are in a defined
group of important cities, a faster interval is set than when less important cities are involved. We
save the generated lines as line templates to a file.

Our strategy evaluation tool takes three files. The adjacency list, the line template list, and the
task file. The task file contains a list of strategies that are to be evaluated and the parameters for
the strategies. A second list defines the number of lines for each run. At the start of each run the
lines are selected, all strategies are evaluated on this list for this run. A flag defines whether the
lines are selected randomly or starting from the beginning of the file, when there are more lines the
needed.
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5 Implementation

It then initiates a conflict graph for the first strategy with the data from the adjacency list. This data
is required as we need the detect conflict when adding configurations. For this, we need the length
of rail segments for the collision detection. We implemented lines, routes, and configurations in a
hierarchical structure. This has multiple advantages: Separating the routes from the lines allows
lines to have any number of routes. Associating the configurations with routes instead of directly
with the lines enables us to optimize adding new configurations to the conflict graph. For this, we
introduce Potential Conflicts between routes. Those mark pairs of routes which share one or more
common rail segments. If we now add a new configuration it can only conflict with configuration
from a route with a Potential Conflict. Because of this, we can limit the search of conflicting
configurations to those and thus speed up the process.

To solve the conflict graph the tool uses the algorithm described by Falk et al. [FDR20; FGD+21],
which we described in chapter 2. We added a mechanism that collects different timings and
intermediate results while solving the graph for evaluation purposes.

If the graph is solved the conflict graph is cleared and the next strategy is selected. After iterating
over all strategies the next run is started by selecting new lines and going back to the first strategy in
the task list. After finishing the task all collected data is saved to a file.

We used jupyter notebook to import the evaluation files, prepare the data and create diagrams with
pyplot and sealion.
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6 Strategies

The strategies described in this chapter determine in which order the configurations are added
to the conflict graph. Each strategy consists of three sub-strategies, namely the line-strategy,
the offset-strategy, and the route-strategies. The line-strategy determines which lines will get
additional configurations, the offset-strategy determines the offsets for the new configurations and
the route-strategy selects a route for every new configuration.

In this thesis we will not use any route strategies. We calculated the shortest paths for every pair of
stations with the largest cities on the graph. This has shown that the second shortest path differs on
less than 1% of the route from the shortest path, for nearly all station pairs. For the third shortest
path this still holds for the majority of the stations’ pairs. This means that the paths are too similar
for our purpose. As the creation of sensible routes is out of the scope of this paper we limit ourselves
to line- and offset-strategies.

6.1 Offset-Strategies

We will now describe the offset-strategies and what idea they are based of. The strategy does
determine the offset for a new configuration. Every line will get initial configurations in the
preparing phase. If not stated otherwise those are based on the same rules as the configurations
created later on.

The Random strategy randomly selects a yet not used offset. We implemented this as a reference
for the evaluation of other strategies.

The Percentile strategy proposed by Falk et al. [FDR20; FGD+21] includes a route-strategy which
we will ignore for the reasons mentioned, the AllLines line-strategies which we will discuss later on,
and the offset-strategies, for which we will use the name in this paper. The offset-strategy calculates
the time in which 75% of the computer network applicants can finish transmission. The next offset
is determined by adding this value to the last offset. If the next offset is larger than the interval, it is
reset and the initial offset is increased by 1. The goal is to skip until we expect most currently active
network allocations to be gone and see if it is possible to schedule it there.

The percentile strategy was originally created for computer networks and relies on the transmission
time being significantly shorter than the interval. For trains, this is very unlikely, especially for
inter-city trains where the inverse can be true. This causes offset increase bigger than the cycle time
and thus the configurations are created from first to last (cf. Figure 6.1). To transfer the idea to
railroad networks we implemented the Local-Avoidance strategy. Here the time the offset increased
is determined by the time the individual train needs to traverse the safety distance. This causes the
new configuration to avoid all conflicts the last configuration has. This results in a configuration
distribution which Percentile is meant to create (cf. Figure 6.2).
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6 Strategies

Figure 6.1: Configuration creation order of the Percentile strategy on railway networks. (P: created
in the preparation phase)

Figure 6.2: Configuration creation order which the Percentile strategy should cause. (P: created in
the preparation phase)

Both, the LocalAvoidance and Percentile strategy, have the problem that it takes a high number
of steps until configurations are distributed over the complete interval. For LocalAvoidance the
increase is only 1 or 2 minutes depending on the speed of the train, thus it requires at least 15
configurations to cover an interval of 30 minutes, which is common. To cover the interval faster
we came up with the Bruteforce strategy. The Bruteforce strategy increases the offset for new
configuration by an amount that is manually set beforehand. With a good chosen step size the
configuration faster covers the complete interval.

The disadvantage of Bruteforce is that that it requires a manually chosen parameter which is the
same for all lines. Also, it still starts at one end of the interval and slowly covers the rest from there.
To get a more dynamic approach we implemented the DivideAndConquer strategy. For every line,
the biggest gap between the existing configurations is determined and a configuration is created in
the middle (cf. Figure 6.3 and Algorithm 6.1). This means the next configuration is always created
within the biggest possible time gap to the existing configuration, resulting in the most uniform
distribution we can achieve in this situation. This does consider every line individually, which
means that it does not require some sort of compromise for lines with different intervals.

Figure 6.3: Configuration creation order of the DivideAndConquer strategy. (P: created in the
preparation phase)
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6.2 Line-Strategies

Algorithm 6.1 selects the next configuration for the DivideAndConquer strategy.
1: procedure DeterminOffset
2: 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetExistingConfigurations();
3: 𝑔𝑎𝑝𝑠𝑖𝑧𝑒 = 0;
4: 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑛𝑑𝑒𝑥 = 0;
5: 𝑔𝑎𝑝𝑠𝑡𝑎𝑟𝑡 = 0;
6: for 𝑖 = 0; 𝑖 < 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠.Length; 𝑖++ do
7: if 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠[𝑖] then // Configuration with this offset exists
8: if 𝑠𝑡𝑎𝑟𝑡 == 𝑖 then // No gap, update start
9: 𝑠𝑡𝑎𝑟𝑡 = 𝑖 + 1;

10: continue;
11: else // Gap found
12: if 𝑖 - 𝑠𝑡𝑎𝑟𝑡 > 𝑔𝑎𝑝𝑠𝑖𝑧𝑒 then // Is gap the biggest yet
13: 𝑔𝑎𝑝𝑠𝑖𝑧𝑒 = 𝑖 - 𝑠𝑡𝑎𝑟𝑡
14: 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑛𝑑𝑒𝑥 = (𝑠𝑡𝑎𝑟𝑡 + 𝑖) / 2;
15: end if
16: end if
17: end if
18: end for
19: if 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠.𝐿𝑒𝑛𝑔𝑡ℎ - 𝑠𝑡𝑎𝑟𝑡 > 𝑔𝑎𝑝𝑠𝑖𝑧𝑒 then // Handels end of array
20: 𝑔𝑎𝑝𝑠𝑖𝑧𝑒 = 𝑖 - 𝑠𝑡𝑎𝑟𝑡
21: 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑛𝑑𝑒𝑥 = (𝑠𝑡𝑎𝑟𝑡 + 𝑖) / 2;
22: end if
23: return 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑛𝑑𝑒𝑥;
24: end procedure

With all those strategies all lines get new configurations with the same pattern. This means that lines
that start at the same station will always have pairs of conflicting configurations for the rail segment
in front of the station. To cause lines to get configurations in an individual patterns we will seed the
lines by selecting the configurations in the preparation phase randomly, for the DivideAndConquer
strategy (cf. Figure 6.4).

Figure 6.4: Configuration creation order of the seeded DivideAndConquer strategy. (P: created in
the preparation phase)

6.2 Line-Strategies

The line-strategy determines for which lines configurations are created. The trivial solution is the
All-Lines strategies, here all lines get an equal amount of configurations. This is the line-strategy
used by Falk et al. [FDR20; FGD+21] in the percentile strategy they proposed. It is also the
line-strategy we use later on to compare configuration-strategies.
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Another approach is the ConflictCount strategies. Here we tried to determine lines that are hard
to schedule by the number of conflicts that they currently have (cf. Algorithm 6.2). The strategy
creates a ranking based on this number and adds new configurations on lines based on the position
of the line in the ranking.

Algorithm 6.2 creates configurations for the ConflictCount strategy.
1: procedure ExtendConflictGraph
2: 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = new SortedList();
3: 𝑙𝑖𝑛𝑒𝑠 = GetAllLines();
4: for all 𝑙𝑖𝑛𝑒 in 𝑙𝑖𝑛𝑒𝑠 do
5: if 𝑙𝑖𝑛𝑒.AllConfigurationCreated then // Ignore lines which already have all

configurations
6: continue;
7: end if
8: 𝑟𝑎𝑛𝑘𝑖𝑛𝑔.Add(𝑙𝑖𝑛𝑒.GetNumberOfConflicts(), 𝑙𝑖𝑛𝑒);
9: end for

10: for 𝑖 = 0; 𝑖 < 𝑟𝑎𝑛𝑘𝑖𝑛𝑔.Length; 𝑖++ do
11: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑖+1 / 𝑟𝑎𝑛𝑘𝑖𝑛𝑔.Length; // Calculate position in ranking
12: 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑁𝑒𝑤𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetNumberOfNewConfigurations(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛);
13: CreateConfiguration(𝑙𝑖𝑛𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑁𝑒𝑤𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠);
14: end for
15: end procedure

We suspected that the number of conflicts might not be the best metric to determine how hard it
is to schedule a line. Many competing configurations from one line are valued the same as many
lines each with a few conflicting configurations. To improve on the ranking heuristic we propose
the ConflictRatio strategy. We try to get a more accurate estimate by considering the conflicts
proportionately to the number of Potential Conflicts a line has. We will also call this a ConflictCount
variation.

To see if the heuristics we came up with have an effect we implemented the third strategy. The
InverseConflictCount strategy uses the same heuristic as ConflictCount but sorts the lines in the
inverse order. We will also refer to this as a ConflictCount variation.

The implementation shown in Algorithm 6.2 vary for other ConflictCount variation only in line
8. InversConflictCount does multiply the number of conflicts with −1 to invert the order. And
ConflictRatio does divide it by the number of Potential Conflicts the route has.

With the NotScheduled strategy we tried to restrict the number of lines that get additional
configurations to a minimum (cf. Algorithm 6.3). At the end of an iteration, all lines which were
not successfully scheduled are selected to get new configurations. As the strategy works based
on the results of the solving or rerun phase the rerun mechanism which was introduced by Falk
et al. [FDR20; FGD+21] does influence the strategy greatly. In chapter 7.3 we compared both
variations, and show that they should be deactivated for this strategy.
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6.2 Line-Strategies

Algorithm 6.3 implementation of the NotScheduled strategy.
1: procedure ExtendConflictGraph
2: 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑁𝑒𝑤𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = GetNumberOfNewConfigurations();
3: for all 𝑙𝑖𝑛𝑒 in GetUnscheduledLines() do
4: AddConfigurations(𝑙𝑖𝑛𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑁𝑒𝑤𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠);
5: end for
6: end procedure

The disadvantage of NotScheduled is that it can cause problems when from a conflicting pair of
lines one gets always scheduled. Normally this behavior causes the rerun mechanism to prioritize
the other line to solve such locks, but we do not use that with this strategy. To prevent such locks
from stopping the algorithm early, we implemented the ExtendedNotScheduled strategy. We
added that if a line has all possible configurations and still can not be scheduled, all lines with
Potential Conflicts get new configurations instead. This is a trade off as it causes more and not as
targeted configurations, because we do not know which Potential Conflict causes the problem. It is
more complex und thus obviously slower than NotScheduled, but might result in better solutions.

With the combination of conflict- and line-strategy we try to minimize the resulting conflict graph.
The line-select minimizes the number of lines that are extended and the configuration-select aims to
make lines with as few configurations as possible schedulable.
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7 Evaluation

In this chapter, we will discuss the empiric evaluation of different strategies. For this, we will
describe our evaluation environment, present the data which we used for our evaluation, and the
metrics we observe.

7.1 Enviroment and Data

Our evaluation tool is implemented in C# .Net Version 5.0.402. It runs on a server with two AMD
EPYC 7401 24-Core Processors, each with 48 Threads, and 128GB RAM. The OS is Ubuntu
20.04.3 LTS.

The Deutsche Bahn has some data about their railroad network available [DB 16], but the data is
incomplete to a degree where we can not use it for our evaluation. Therefor, we decided to use
data provided by OpenStreetMap. This allows us to get graphs of different sizes and areas. We
converted the data we get from OSM to a directional graph and removed unnecessary vertices
(cf. Chapter 5).

For the evaluation, we picked three graphs, Germany and the two federal states Baden-Württemberg
and Nordrhein-Westfalen (cf. table 7.1). We decided to do our evaluation on German railroad
networks because it is ample and dense. Baden-Württemberg is the smallest of the three and
already of a size where railroad scheduling is reasonably complicated and way larger than any
railroad networks used in earlier papers [LLER11]. For the second stage we choose the network for
Nordrhein-Westfalen, it is larger than the Baden-Württemberg graph but does represent roughly
the same area. This means we can see the performance of the strategies on a more dense network.
Lastly, we choose Germany as our third graph to see the performance on very large graphs and test
out how many lines we can schedule in this realistically sized scenario.

To get a realistic scale on the traffic we looked at the statistic published by Deutsche Bahn which
states that in the year 2019 about 24.000 passenger trains were on the network each day [Deu21b].
Which in our model is equivalent to 1000 lines. Normally most of them would be during the day,
but our network capacity is not sufficient for that (as discussed in chapter 4) so we have to distribute

OpenStreetMaps Optimized Graph Reductions
Region Vertices Edges Vertices Edges Vertices Edges
Baden-Württemberg 183,458 301,964 12,915 38,404 92.96% 87.28%
Nordrhein-Westfalen 266,836 543,124 32,616 87,588 67.77% 83.87%
Germany 1,350,756 2,888,708 216,535 675,772 83.96% 76.60%

Table 7.1: The graph sizes before and after optimization.
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them evenly. We created those lines by selecting the main stations from federal state capitals and
filling them with the main stations of the 34 biggest cities to 50 stations. We created lines between
each of the capitals with an interval of 30 minutes. We then filled it up with lines that have intervals
of 60 minutes until every station is the source station of 20 lines. For the destination station, we
selected the stations closest to the source station. All lines operate with a speed of 100 km/h as we
discussed in Chapter 4. We used this as our baseline for the amount of traffic on a graph, we call
this normal traffic. To get low and very low traffic we filled the connection only up to 15 and 10
respectively.

For the Nordrhein-Westfalen we selected the main station of the 35 biggest cities. We create lines
between each of the 10 biggest cities with an interval of 30 minutes and fill them up to 10, 15, or 20
the same way as we did on the Germany graph. On the Baden-Württemberg graph, we did the same
with the 20 biggest cities.

We determined the number of Cities based on the observation that most of the time more than
20 outgoing connections could not be scheduled (as discussed in chapter 4). The rail segment
in front of the station node is a bottleneck which causes this limit. Because of this, we selected
20 cities for Baden-Württemberg. To get to the 24.000 trains a day with 20 outgoing, mostly
60-minute cycle, lines we need 50 cities. Thus we selected 50 cities for the German network. For
Nordrhein-Westfalen, we decided to select 35 as it is the midpoint of the other two.

As the primary metric for evaluation, we choose the ratio of created configurations to schedulable
lines. This represents the efficiency of the strategy for building up the graph. It is the major factor
in the runtime of the Greedy Flow Heuristic. It also is an indicator for the number of iterations the
overall algorithm has gone through and thus the number of times the Greedy Flow Heuristic was
executed. As a second metric, we choose the runtime. As we aim for scalability the runtime can
be a misleading factor especially for evaluation on small graphs. The strategies do influence the
runtime in three ways, the runtime they require to add new configurations, the number of iterations,
and the number of configurations they create. While for small railroad networks the time needed
to extend the conflict graph is negligible, for larger networks it gets a major factor for the overall
runtime. Because of this, we decided to make the graph buildup efficiency our primary metric, as it
is the best indicator for scalability.

In all the following graphs, which plot the not scheduled lines, two effects can be seen to varying
degrees. One is a slight bump in the number of lines not scheduled after around half of the conflict
graph is built up. The other is the reduced number of lines scheduled after the complete graph is
built up. Both effects lessen with bigger graphs and more traffic. We think that this occurs when
newly added configurations cause the evaluation to rate a line better than before without improving
the schedulability. After half the graph is built up with the AllLines strategy, an evenly spread
coverage with enough choices is reached. The configurations created after this fill gaps, but have
already existing configurations with a similar offset. Thus causing the line to be better rated without
being easier to schedule. The fact that the ConflictCount strategies have this effect less pronounced
supports this assumption as they cause the lines to hit this point at varying iterations. The bump in
the last iteration is likely due to the same effect.

For the evaluation we look at the two types of sub-strategies we have separately. The first is the
configuration-selection sub-strategy which decides which offset a new configuration has and the
second group is the line-selection sub-strategy which determines which lines get new configurations.
We then compare them within the groups and create our strategy from the best sub-strategies. In the
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7.2 Configuration-Select Substrategies

configuration-select group are the Percentile, Local-Avoidance, Bruteforce, and DivideAndConquer
strategies. We also include the Random strategy as a reference strategy. All of them use the AllLines
sub-strategy so that we can compare the effect of different configuration distribution patterns without
additional effects from the line strategy. In the lines-selection group, we have ConflictCount,
ConflictRatio, and Not-Scheduled strategies. Here we used the seeded DiviedAndConquer strategy,
as it is the best configuration-selection strategy, for all of them to be comparable.

7.2 Configuration-Select Substrategies

We evaluate the configuration-selection group first as all strategies have the same line-select
sub-strategy. this allows us to find the best configuration-select strategy without noise from varying
line-selection strategies in the data.

As a first step, we compared different parameters for the Percentile and the Bruteforce strategies, to
find the optimal parameter for each of them. We run the strategies with a large number of different
parameters and compared the number of iterations they needed to schedule most of the lines.

We run this on all 3 networks with all intervals from 1 to 25 for the Bruteforce strategy. All results
are close together with slightly better results around 13 and 25 intervals(cf. Figures 7.1 to 7.3).
We choose an interval of 13 as it seems to produce the most consistent results over iterations and
different graphs. Both values are quite large compared to the interval length used for the lines, this
could be a sign that the difference of the configuration overall is quite small and thus creating a few
configurations distributed over the whole range is preferable. It is also noticeable that the second
value is roughly a multiple of the first one and both cause a configuration with nearly the maximal
offset for lines with 30 and 60 intervals in the first iteration.

Figure 7.1: Bruteforce strategy on Baden-Württemberg graph with different parameter.
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Figure 7.2: Bruteforce strategy on Nordrhein-Westfalen network with different parameter.

Figure 7.3: Bruteforce strategy on Germany graph with different parameter.

For the Percentile strategy, we have similar results. We selected values evenly spread out between
10% and 120% in an first step. As as second step we added more values around 60% as it had
the best results in the first round. For the Baden-Württemberg graph and the Germany graph, a
percentile value of 0.65 does produce the best results with most of the other parameters resulting in
negligible differences. For the more dense network of Nordrhein-Westfalen, all parameters produce
approximately the same results.
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Comparing the four strategies of this group against each other shows that the differences are small.
Percentile and Bruteforce have an advantage over LocalAvoidance and DivideAndConquer. But all
of them are worse than our reference strategy Random, see Figure 7.4. This is most likely due
to all lines acquiring new configurations in the same pattern. To see if we can improve based on
this assumption we modified the DivideAndConquer strategy so that the initial configurations are
selected randomly, adding later configurations based on the gaps unique to each line.

Figure 7.4: Result of the randomized seed for DivideAndConquer on Baden-Württemberg graph.
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Figure 7.5: Result of the randomized seed for DivideAndConquer on Germany graph.

The results of the modified DiviedeAndConquer strategy do confirm our suspicion that the uniform
configuration pattern does cause bad results. If DivideAndConquere is initiated with a few random
configurations it has the same results as the Random strategy (cf. Figure 7.5). The first iteration
even performing slightly better.

We decided to select the seeded DiviedeAndConquer strategy as the most promising. The
disadvantage of the Random strategy is that it can create big time gaps between configurations. This
has only very small effects in our setup as the evaluation with different parameters for Bruteforce
and Percentile have shown. It is to be expected that this effect increases with the number of
configurations per line. This is assumption is supported by the results of Falk et al. [FDR20;
FGD+21] as in their work the different parameters did cause a significant difference in the results.
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7.3 Line-Select Substrategies

7.3 Line-Select Substrategies

We have to determine the best configuration for the strategies first before we can compare them
against each other. We use the seeded DivideAndConquer configuration-select strategy this chapter.
This prevents effects from varying configuration-select strategies.

For ConflictCount, InverseConflictCount, and ConflictRatio this is more complex to determine the
best configuration than for the configuration-select strategies. The strategies all sort the lines and
then add configuration based on the position in this ranking. We have to consider which percentage
of lines should get new configurations, how the new configurations are distributed between them,
and how many overall configurations should be created. We investigated a linear and an exponential
approach with varying percentages of lines receiving new configurations and a different numbers of
overall configurations.

The results show that the configurations cause no significant difference in the number of lines that
are scheduled. One configuration resulted in a better runtime with only a very small deviation over
the runs. This configuration adds 8 configurations to the top 20% of the lines, 4 to the top 40%,
and 2 to the top 60%. The performance improvement is likely to cause by the high number of
configurations added in each iteration.

Comparing the different strategies shows that the ConflictCount strategy and its variations have
negligible effects (cf. Figure 7.6). The bump after around half of the configurations have been
created is less pronounced but the overall results are not significantly better. As this bump gets less
pronounced the more traffic is handled the impact is not large enough to justify those strategies. The
only notable advantage is a mean runtime of about 3/4 of the AllLines strategy (cf. Figure 7.7).

The fact that ConflictCount and InverseConflictCount perform nearly identically shows that the
used sorting heuristic is not better than selecting them randomly. The improvement on the bump
does indicate that not adding configurations equally to all lines has potential, but a better heuristic
has to be found.

All three have no significant differences. We would choose ConflictCount as it is the most simple to
implement and also has, because of this, a very slight performance advantage on small networks
(Baden-Württemberg size or smaller).
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Figure 7.6: Comparison of the different ConflictCount variations on the NRW network.
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Figure 7.7: Runtime comparison of the ConflictCount variations to seeded DivideAndConquer on
the German network.

We run the NotScheduled strategy with and without the rerun mechanism. We expected that the
rerun mechanism would cause worse results as the lines which the strategy detects as not scheduled
are not selected in a run with equal chances for each line. We ignore the time required for the
preparation phase for this comparison, as this phase is identical. For normal traffic, the strategy
creates around 1.8 times more configuration when reruns are enabled. This results in around 8
times the runtime (cf. Figure 7.8). This additional cost results on average in 10 more scheduled
lines, which is 1% of all lines (cf. Figure 7.9). For low traffic, rerun does schedule 20 lines more,
with only 3.5 times the runtime. While for scenarios with low traffic this trade off might be the
better choice, we chose to deactivate reruns for this strategy for better scalability.
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Figure 7.8: Runtime with and without the rerun mechanism on the German network.
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Figure 7.9: The unscheduled lines with and without rerun mechanism on the German network.

We tried to improve further on the NotScheduled strategy with the ExtendedNotScheduled strategy.
We evaluated this strategy with and without reruns also. With normal traffic, it builds up nearly the
complete conflict graph and still schedules 1-3 lines less than its NotScheduled equivalent. We
expected to perform better with low or very low traffic, which is not the case. This means the
strategy is worse than NotScheduled in generic cases. It might be worth testing this on data where
the lines are distributed more unevenly, but this is out of the scope of this thesis.
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If we would only consider the quality of the result the AllLines/seeded DivideAndConquer would
be the best Strategy in our evaluations (cf. Figure 7.10). As our main objective was scaleability
the best line-select strategy we found is the NotScheduled strategy. It only creates around 20% of
the conflict graph and has a runtime of around 2/3 of the ConflictCount variations with normal
traffic. The downside is that it typically schedules the least number of lines. On the Germany
graph with normal traffic, other strategies could not schedule about 9.3% of the lines while for
NotScheduled this value is around 10.5%. It is also very likely that the way we generate our lines is
disadvantageous for NotScheduled, as our traffic is evenly distributed. For scenarios where some
hot spots have drastically more traffic than other parts of the network NotScheduled might perform
even better compared to other Strategies as it can distinguish those regions and build up the conflict
graph accordingly.

Figure 7.10: Comparison of the unscheduled lines with our best strategies on the German network.
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Figure 7.11: Comparison of the runtime with our best strategies on the German network.

7.4 Potential Conflicts

The time to add a new configuration without any optimization depends on the number of existing
configurations 𝑉 , the average length of the routes 𝐿, and the average size of the hypercycles 𝐻 of
every pair of lines. This means that the complexity is 𝑂 ( |𝑉 | ∗ 𝐿 ∗ 𝐻).Therefore, the time required
to extend the conflict graph grows with every iteration significantly. With the Potential Conflict
mechanism, the complexity is 𝑂 ( |𝑃𝐶𝑣 | ∗ 𝐿 ∗ 𝐻), where 𝑃𝐶𝑣 is set of tuples defining pairs of routes
which can conflict with the new configuration. The cardinality of 𝑃𝐶𝑣 depends on the density of
the lines and the reach of the lines, but it always holds that 𝑃𝐶 <= |𝑉 |2. This is a runtime/memory
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Figure 7.12: Runtime of the extension phase in each iteration for seeded DivideAndConquer on
the German network.

trade-off, with a memory usage of 𝑂 (𝑃𝐶). We expect 𝑃𝐶 to upper bound in real scenarios, as the
network capacity limits the line density. More lines are likely to cover a wider area, resulting a
geographic separation with no or few potential conflicts.

The evaluation shows that the time is growth is linear over the iterations (cf. Figures 7.12 and 7.13).
The speed up after the fifth iteration is due to the lines with a cycle if 30 minutes being completed.
The last iteration has no extension phase as either the graph is built up completely or a complete
solution is found.

With 1000 lines there are 1.000.000 possible combinations. Lines can not conflict with themselves
and the association is bidirectional which means there are 499.500 combinations of lines which
could theoretically have conflicting configurations. On the German network with normal traffic,
which consists of 1000 lines, we have 30.986 Potential Conflicts. This means that while extending
the graph only around 6.2% of the lines have to be considered (the number of configurations is hard

46



7.5 Comparison

to estimate as they are not evenly distributed). This has a great impact on the overall runtime as
most Potential Conflict checks replace many conflict checks. This is further amplified by the fact
that Potential Conflict checks are simpler and thus faster.

The ConflictCount/Seeded DivideAndConquer strategy on the German network with normal traffic
takes 13 minutes to finish the preparation phase and 8.5 minutes to extend the conflict graph. As no
complete solution exists the conflict graph is built up completely. If we now assume that those 8.5
minutes are 6.2% of the time required without Potential Conflict we can estimate that it would take
2.3 hours, compared to 0.35 hours with Potential Conflicts.

Compared to that the NotScheduled/Seeded DividedAndConquer strategy does only build up around
20% of the conflict graph. It takes 13 minutes for the preparation phase and only 1.7 minutes for
extending. With the same estimation, this means we still reduce the time from around 27 minutes to
less than 15 minutes.

The mechanism could be refined further by adding additional information. At the moment they only
mark the pair of routes which can conflict. It could be beneficial to save the segment and time offset
for the first, or for all, conflicting segments to reduce the number of rail segments which have to
be iterated. In addition, knowing the last possible segment on which a conflict is possible would
allow to end the iteration early. As routs on the German network consist of hundreds of segments a
significant improvement on the runtime might be possible.

7.5 Comparison

We now want to assess our results. For this, we have two comparisons. Firstly the result of other
papers using conflict graphs and secondly the 24.000 trains on the real network [Deu21b].

Not many papers in the field of railroad scheduling and similar problems contain the data of
evaluation results. Of those which do most evaluations handle less than 100 unique trains. The
biggest evaluation we found utilizing conflict graphs is from Delorme et al. [DRG01] with 97 unique
trains. The results did take between 16 minutes and 166 minutes.

The largest evaluation overall is from Borndörfer et al. (2005) [BGL+06], with 737 unique trains
calculated in 3 days. A bit smaller, but likely as scalable, is Borndörfer and Schlechte (2007) [BS08]
published a test with 570 unique trains, which was solved in 16 hours.

To get a better comparison we will consider unique trains to be lines. With normal traffic on the
German network, we have 1000 lines, which is significantly more around 1.5 more than Borndörfer
et al. (2005) [BGL+06]. We solve this in less than 25 minutes which is 0.5% of the time required
by them.

Each day 24.000 passenger trains are deployed on the real German railroad network. Our 1000
lines with cycles of 60 minutes or less equal to 29.760 trains in 24 hours (240 lines between state
capitals have a cycle of only 30 minutes). This does even cover the additional 2.569 freight trains
each day [Deu21b].

This means we reached a level of scalability where real railroad networks can be handled. This
shows that our approach scales better than previous approaches and can handle country-sized
cases.
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Figure 7.13: Runtime distribution of the three phases over the iterations for seeded DivideAndCon-
quer on the German network. The last iteration has no extending phase as the graph is
complete or a complete solution has been found.
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8 Future Work

In this chapter, we discuss ideas that came up during the creation of this thesis and have the potential
to improve the approach further but were out of scope.

We only implemented strictly periodic lines, but in reality passenger trains often are suspended in
the early morning and fewer fright trains are used during the daytime. When implementing this,
these limitations could be utilized to further reduce the necessary conflict checks.

Including non-strictly periodic lines might benefit from allowing slight variation for some occasions.
This could make it easier to schedule lines that overlap with multiple lines. This would allow a
nightly fright train to evade the first and last passenger train when those departures vary slightly
from their normal departure time.

One major difference between computer networks and railroad networks is the capacity of links. In
computer networks, a link is a single cable and it is very rare that multiple cables connect the same
two components. In railroad networks, a link is made up of multiple tracks, which enable multiple
trains with the same timing on the link or overtaking. To use this, the current implementation would
require the creation of multiple routes for each train. But encoding every possible route on each
link would cause a massive amount of routes which in turn would ruin the runtime even for short
routes. This could possibly be circumvented by replacing links with abstract representation which
encodes the number of tracks and options to overtake in a capacity value. This could allow for a
more optimized usage of complex links without sacrificing performance.

Also, connections in computer networks have a source and a destination, in railway networks,
there are normally stopovers. This could be implemented as multiple lines which are connected
by some restrains. This could improve performance as the segments are smaller and therefore
have fewer Potential Conflicts. We have seen this effect on the German network that the time for
extending the conflict graph reduced significantly after the lines between the state capitals had
all their configurations (cf. Figure 7.12 after iteration 5). As the other lines are mostly spatially
separated, they have significantly fewer Potential Conflicts.

Furthermore, the inclusion of alternative routes and selection strategies for them was out of the
scope of this paper. This might be relevant for real-world usage and should be looked into.

From an implementation point of view, it could be an interesting task to try to improve on the
strategies by parallelizing them. It would be necessary to cache the newly create configurations and
check for conflicts between them, but as they are a lot less than those already in the conflict graph
after a few iterations the time saving might be worth the overhead.
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9 Conclusion

In this thesis, we presented an approach to make conflict graphs viable to solve the joint routing and
scheduling problem for country-sized railroad networks. As the creation of conflict graphs is very
expensive we verified that small parts of the conflict graph are sufficient to find good solutions,
which was already done for computer networks. For this, we present strategies that build the conflict
graph dynamically so that good solutions can be found early. We further speed up the creation of
the graph by introducing the Potential Conflict mechanism, which drastically reduces the the cost of
adding new configurations. The results of our proof-of-concept implementation have shown that
the combination of those two optimizations is quite potent. Our approach can handle larger cases
than previous works and still be faster. It can schedule traffic equivalent to that of Germany in less
than 25 minutes.
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