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Abstract
Emotions are an essential and inherent part of human behav-
ior and communication. In spoken conversations, a lot of in-
formation is conveyed beyond the spoken words. This addi-
tional, paralinguistic information can for example change the
meaning of words and sentences (e.g. by different intonation
or word stress), or reveal a speaker’s emotional state or other
speaker characteristics, such as age, gender or personality traits.
In present-day speech based human-computer interaction, a lot
if not all of this additional information is not being conveyed.
However, it is often argued that in order to achieve a truly
effective human-computer interaction, it is inevitable to equip
machines with emotional intelligence (Creed and Beale, 2008;
Pantic and Rothkrantz, 2003). Automatic recognition of emo-
tional states – in the present work from acoustic speech proper-
ties – is certainly the first step of any such ‘emotion processing
pipeline’.

Emotions are an inherently subjective phenomenon and differ-
ent underlying theories exist of what they are and how they can
best be represented in terms of labels or numerical scales. This
makes it challenging and expensive to annotate data in order to
teach machines to understand emotions. The typical procedure
is that several human raters are asked to label a speech sample
with some type of emotion representation (e.g. with emotion
words like anger and sadness, or as values on scales of arousal
and valence). Due to these challenging prerequisites as well
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as the difficulty to collect realistic emotional speech in the first
place, the main challenges for speech emotion recognition (SER)
are to achieve a high level of accuracy and generalizability, and
the problem of data scarcity (that is the lack of large, annotated
datasets to train machine learning algorithms on).

One of the main contributions of this thesis is therefore to ad-
dress these challenges by investigating different aspects of the
typical SER pipeline in order to improve performance and to
better understand sources of error in the models. For this, we
employ a convolutional neural network (CNN) because of its
ability to capture local patterns in the input. We present exper-
iments on factors of input data, including the choice of acoustic
features, the degree of naturalness of speech, and the duration
of the input samples. We show that the type of speech (scripted
conversations vs. improvised play) strongly affects the SER per-
formance in terms of accuracy, and that a relatively short seg-
ment of a speech utterance can be sufficient for SER, a relevant
finding for real-time requirements of applications. Further as-
pects of investigation pertain to generalizability of the trained
models. We present experiments on multi- and cross-lingual
SER on English and French speech, and assess the performance
under noisy acoustic conditions. We found that arousal level
prediction (how calm or excited someone is) is feasible across
languages under certain conditions, but valence level prediction
(positive vs. negative) does not well generalize.

The second main contribution of this thesis pertains to pos-
sible extensions to the typical SER pipeline, addressing perfor-
mance improvement and data scarcity. We show that unsu-
pervised representation learning on additional unlabeled speech
data can be utilized for SER because the learned general-purpose
speech representations implicitly contain information about emo-
tional dimensions. Moreover, we show that training data for a
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given target emotion label can be artificially generated by means
of emotion style transfer using generative adversarial networks.
Lastly, as another direction of extension, experiments on audio-
visual emotion recognition are presented that demonstrate the
benefit of adding visual information (facial expressions), espe-
cially to alleviate the effect of decreasing performance in noisy
acoustic conditions.

In summary, this thesis shows that neural networks provide
an efficient method for speech emotion recognition, and pro-
vides valuable findings to better understand and approach the
challenges towards robust and generalizable SER.
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Deutsche
Zusammenfassung

Emotionen sind essentieller und inhärenter Bestandteil mensch-
licher Kommunikation. Gesprochene Konversationen beinhalten
wesentlich mehr Informationen als nur die gesprochenen Wor-
te. Diese zusätzlichen, paralinguistischen Informationen können
beispielsweise die Bedeutung von Sätzen beeinflussen (z.B. durch
unterschiedliche Intonation oder Betonung) oder Aufschluss ge-
ben über den emotionalen Zustand einer Person oder andere
Eigenschaften, wie z.B. Alter, Geschlecht oder Persönlichkeits-
merkmale. In der heutigen Mensch-Computer-Interaktion kön-
nen solche paralinguistischen Informationen nicht oder kaum
übermittelt und genutzt werden. Jedoch wird häufig argumen-
tiert, dass es unvermeidbar ist, Maschinen mit emotionaler Intel-
ligenz auszustatten, um eine wirklich effektive Mensch-Computer-
Interaktion zu erreichen (Creed and Beale, 2008; Pantic and Ro-
thkrantz, 2003). Die automatische Erkennung von Emotionen –
im Fall der vorliegenden Arbeit von akustischen Eigenschaften
des Sprachsignals – ist der erste notwendige Schritt in jeglicher
maschinellen Emotionsverarbeitung.

Emotionen sind grundsätzlich ein subjektives Phänomen und
es existieren unterschiedliche Theorien, was Emotionen sind und
wie sie am besten repräsentiert werden können, z.B. als nomi-
nale Kategorien oder als Werte auf verschiedenen Intervallska-
len. Dadurch ist es schwierig und aufwändig Daten zu anno-
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tieren, um damit Algorithmen zur Emotionserkennung zu trai-
nieren. Die übliche Vorgehensweise ist, dass mehrere Personen
eine Sprachprobe mit einer vorgegebenen Emotionsrepräsenta-
tion annotieren (beispielsweise mit Emotionswörtern wie Wut
oder Traurigkeit oder mit Zahlenwerten auf Skalen für die Di-
mensionen Arousal und Valenz). Aufgrund dieser aufwändigen
Vorbedingungen und weil es grundsätzlich schwierig ist, realisti-
sche emotionale Sprachdaten in großem Maßstab aufzunehmen,
ergeben sich folgende Herausforderungen für die Emotionser-
kennung in Sprache: Datenknappheit (eng. data scarcity), also
ein Mangel an ausreichend annotierten Sprachproben, um ro-
buste Machine-Learning Modelle zu trainieren, und allgemein
eine relativ niedrige Genauigkeit der Vorhersagen und mangeln-
de Generalisierbarkeit in Bezug auf neue, ungesehene Daten.

Basierend auf diesen Herausforderungen ist ein wesentlicher
Beitrag der vorliegenden Arbeit die Analyse von verschiedenen
Aspekten und Einflussfaktoren der Emotionserkennung mit dem
Ziel, die Genauigkeit von Vorhersagen zu verbessern und Feh-
lerquellen der Modelle besser zu verstehen. Für diese Untersu-
chungen wurde eine spezielle Art von neuronalem Netzwerk, be-
zeichnet als Convolutional Neural Network (CNN), eingesetzt,
um anhand von akustischen Merkmalen Emotionen (nominale
Kategorien) zu klassifizieren. Untersucht wurden verschiedene
Aspekte der Eingabedaten: die Auswahl der akustischen Merk-
male (die Repräsentation der Daten), der Grad der Natürlich-
keit der Sprache, und die Länge des Sprachsignals. Diese Ex-
perimente zeigen, dass die Art der Sprache (Drehbuch-basiertes
Schauspiel verglichen mit Improvisation) einen erheblichen Ein-
fluss auf die Ergebnisse hat, und dass ein kurzer Auschnitt einer
Sprachäußerung ausreichen kann für die Emotionserkennung.
Weitere untersuchte Aspekte zielen auf die Generalisierbarkeit
des Modells ab. Sprachübergreifende Evaluierungen mit engli-
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schen und französischen Sprachdaten demonstrieren, dass die
Vorhersage von Arousal (wie ruhig oder erregt eine Person ist)
unter bestimmten Bedingungen möglich ist, während die Vor-
hersage von Valenz (positiv oder negativ) sprachabhängiger er-
scheint.

Ein weiterer Schwerpunkt dieser Arbeit ist die Untersuchung
möglicher Erweiterungen der typischen Machine Learninig Pro-
zedur für Emotionserkennung, um das Problem der Datenknapp-
heit zu addressieren und die Genauigkeit der Modelle zu verbes-
sern. Untersuchungen mit sogenanntem unsupervised represen-
tation learning (d.h. dem automatischen Erlernen von abstrak-
ten Repräsentationen des Eingabesignals ohne zusätzliche An-
notationen) zeigen, dass solche Repräsentationen, die auf großen
Sprachkorpora erlernt wurden, nützlich für die Emotionserken-
nung sein können, da sie implizit Informationen über bestimmte
emotionale Dimensionen enthalten. Weiterhin wird eine Metho-
de vorgestellt, um mittels sogenannter Generative Adversarial
Networks (zu deutsch etwa ‘erzeugende gegnerische Netzwer-
ke’) künstliche Trainingsdaten zu erzeugen, die eine vorgegebene
Emotion darstellen. Zuletzt wird eine weitere mögliche Erweite-
rung in Form von mulimodaler Modellierung untersucht. Expe-
rimente unter Hinzunahme von visueller Information (Videoauf-
nahmen der spechenden Personen) bestätigen einen Mehrwert
der zusätzlichen Modalität mit Bezug auf allgemein höhere Ge-
nauigkeiten und insbesondere um Verschlechterungen der Mo-
delle bei lauten Umgebungsgeräuschen entgegenzuwirken.

Zusammenfassend zeigt diese Arbeit, dass neuronale Netzwer-
ke eine effiziente Methode zur Emotionserkennung in Sprache
darstellen und liefert wertvolle Erkenntnisse, um die Herausfor-
derungen auf dem Weg zu einer robusten Emotionserkennung
besser zu verstehen.
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1 Introduction

The most important thing
in communication is to
hear what isn’t being said

Peter Drucker, interview in
Bill Moyers A World of

Ideas, 1989

1.1 Motivation

Natural language processing (NLP) as well as automatic speech
recognition (ASR) are two of the driving research areas for many
applications in the realm of natural language based human-
computer interaction (HCI). In the last decades, a lot of ef-
forts were made in those fields to improve the performance and
broaden the use and acceptance of (spoken) language technol-
ogy (Hirschberg and Manning, 2015; Yu and Deng, 2016). The
main focus in speech processing has long been on modeling and
predicting what is being said (i.e. automatic speech recogni-
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CHAPTER 1. INTRODUCTION

tion), but not how something is being said. However, the how
is crucial for communinication because the meaning of the same
sentence can completely change depending on the intonation (or
other prosodic events). For example, the sentence She finished
her thesis with a falling intonation at the end is understood as
a statement, whereas the same sentence with a rising intonation
at the end is usually understood as a question. Similarly, the
way how something is being said can convey certain emotional
states. For example, She finished her thesis could be expressed
joyfully and with excitement (e.g., expressing It is finally done),
or it could be uttered in a surprised manner (e.g., to express
Wow, she is already done). Because of such changes in meaning
and other things we convey through our voice, like emotions or
sarcasm, it is of such great importance – as Peter Drucker said
– to understand what is not being said explicitly.

The automatic analysis of speech-related phenomena beyond
pure linguistics has spawned the research field of computational
paralinguistics, an area of increasing interest both in academia
and industry. The Oxford English dictionary defines paralin-
guistics as “The branch of linguistics which studies non-phonemic
aspects of speech, such as tone of voice, tempo, etc.; non-phonemic
characteristics of communication; paralanguage.” (Paralinguis-
tics, 2020) Certainly, this is a very broad definition as the study
of non-phonemic characteristics of communication includes a

2



1.1. MOTIVATION

large variety of aspects (cf. Schuller et al. (2013) and Schuller
and Batliner (2013) for an overview).

The present thesis deals with one of these aspects of compu-
tational paralinguistics that is recognizing a person’s emotional
state from acoustic speech properties, apart from the linguistic
content, i.e. the meaning of spoken words. This topic, com-
monly referred to as speech emotion recognition (SER) is
situated at the intersection of various research areas, namely
paralinguistics, psychology, affective computing, and artificial
intelligence. Moreover, with increasing availability of multi-
modal data and machine learning techniques, also NLP and
computer vision play a role in a holistic approach to multimodal
affective computing. The term affective computing was coined
by Rosalind Picard (1995) and it emerged to a research field on
its own. Broadly spoken, it comprises the study and develop-
ment of all kinds of systems that are able to detect, recognize,
interpret, or simulate human affects. It is often argued that in
order to achieve a truly effective human-computer interaction, it
is inevitable to equip machines with such emotional intelligence.
Recognition of affective states (in our case from the speech sig-
nal) is certainly the first step of any such ‘emotion processing
pipeline’.

Possible use cases and applications that benefit from SER
already or could potentially incorporate it, include, but are not
limited to:
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CHAPTER 1. INTRODUCTION

• Call centers: emotion recognition and monitoring is used
to improve customer satisfaction (Burkhardt et al., 2009)

• Recruitment: emotion recognition can be part of auto-
mated personality tests to find suitable candidates for a
job position (however, this is strongly critized, cf. Ragha-
van et al. (2020))

• Personal assistants: SER is likely going to be integrated
in voice-based assistants such as Apple’s Siri or Microsoft’s
Cortana to improve user experience and adapt to the user’s
affective state (Parmar, 2019)

• Gaming: The plot of a video game or the behavior of game
characters could be adapted based on the player’s emo-
tional state or stress level (Jones and Sutherland, 2008)

• Health care: SER is used in various areas in digital health
care, including diagnosis and monitoring of specific neu-
rological conditions (e.g. autism), and assistive and em-
pathic care robots (Cummins et al., 2018)

Despite being already used to some extent in certain (well-
constrained) applications and scenarios, SER is still facing lots
of challenges. The basic approach to automatic recognition of
emotional states is to use machine learning (ML) techniques
to learn from data. Hence, a prerequisite is the availability of
training data, in our case speech samples. These speech data
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need to be annotated, i.e. they need to have labels, such as
emotion classes (e.g. anger, happiness, sadness). This data la-
beling process is usually done by human annotators who assign
a label to each speech sample they listen to. Because emotion
perception is characterized by subjective notions of what emo-
tional states are and how they are expressed, no ‘ground-truth’
can exist in any labels. Therefore, human ‘performance’ in this
task, or rather agreement in perception between different peo-
ple is relatively low (cf. Elfenbein and Ambady (2002) for a
meta-analysis on human emotion recognition).

Thus, the main challenges in SER are the lack of large, an-
notated datasets to train such ML algorithms on, and the rela-
tively low accuracy of predictions, which is tightly coupled to the
subjective nature of emotions and the resulting low interrater
agreements between human annotators. While ASR for exam-
ple is robust and good enough to be used in many everyday use
cases (for certain languages), such as personal voice assistants,
voice control in cars and smart homes, call centers and many
more, this is far from being the case for emotion recognition.

Recent advancements in machine learning with deep neural
networks (NNs) have also impacted the field of SER immensely.
However, there are many open questions that have been and
still are being actively researched, such as the search for opti-
mal acoustic features, the question of what is actually learned
by the employed neural networks (which are often denoted as
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‘black box’ because it is difficult to understand and interpret
the internal processing), or the question of how to efficiently
collect or create more training data for the task. As illustrated
above, (labeled) training data is one pivotal factor of success
in ML. One of the reasons why (deep) neural networks work so
well in many areas nowadays is the availability of huge amounts
of training data. Figure 1.1 illustrates this relation between the
amount of training data and model performance with regard to
traditional ML approaches vs. NNs. For small datasets, the
relative order of the algorithms is not clearly defined, but as the
figure suggests, it is likely to achieve higher performance on very
small datasets with traditional approaches; and it is certainly
the case that with an increasing amount of training data, NNs
outperform these methods.

This thesis aims to provide anwsers to some of these open
questions and challenges. Throughout this work, we explore
various aspects of SER, including the use of convolutional neu-
ral networks for modeling, methods to make use of additional
unlabeled speech data, and audiovisual ML to improve perfor-
mance in noisy conditions – always with a focus on thorough
analyses of the results to gain insights about the used models,
beyond of just comparing performance metrics. In the following
we describe the broader research context and the goals of this
work.
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Figure 1.1: Illustration of the relation between the amount of
training data and performance with respect to

different machine learning paradigms.1

1.2 Research Context

Human emotions are an inherently multimodal phenomenon.
This means, several modalities or information channels are in-
volved when a person expresses a certain emotion. Examples
for these different channels are physiological signals like an in-
creased blood pressure, facial expressions, a change in the tone
of voice, or the choice of words to express emotions. Focusing
on methods that can be employed remotely and in a scalable
fashion (e.g. with the use of smartphone microphones and cam-
eras), speech and language as well as facial expressions are the
commonly exploited modalities for automatic analysis of human

1Graphic inspired by Andrew Ng’s lecture ‘Neural Net-
works and Deep Learning’, https://coursera.org/share/
0a61ee951fa8f1edee71a8bdf764c145 [Accessed March 04, 2021]
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emotions. Figure 1.2 illustrates the research fields related to
these modalities, which are also closely related to each other.
As already mentioned above, we approach the task of emo-
tion recognition as a paralinguistic task, hence we focus only on
speech acoustics, and do not take into account the lexical infor-
mation (which could be retrieved from the speech signal by using
ASR). In contrast to SER, where speech prosody plays the most
important role, the related disciplines of sentiment and (textual)
emotion analysis are dealing with the content and meaning of
written text. The difference between these two is that senti-
ment analysis is about binary classification into positive and
negative sentiment, as opposed to a more fine-grained spectrum
of emotional states; a well known use case of sentiment analysis
is the classification of product reviews. Finally, although not di-
rectly linked to speech and language, facial expression analysis
is depicted in this overview because the interplay between these
modalities and their combined use in multimodal machine learn-
ing has gained a lot of attention in recent years. We used this
visual channel as additional information to complement SER in
noisy acoustic conditions.

Regarding the methodology for SER, it is fair to say that neu-
ral networks have replaced traditional ML methods like decision
trees, support vector machines or hidden Markov models – at
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Attribution of images: 

portrait by ffabio44 from the Noun Project


Soundwave by Maxim Kulikov from the Noun 
Project

 
Document by Rediffusion from the Noun Project


https://thenounproject.com

Image/Video


Speech

Written text

Sentiment / Emotion 
Analysis
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Speech Emotion 
Recognition

Facial Expression 
Analysis

Audiovisual 
processing

Figure 1.2: Different modalities that are commonly exploited
in affective computing and closely related to each
other. The focus of this thesis is speech emotion

recognition (parts in boldface). Facial expression
analysis plays a marginal role in this work, while

written text and lexical information (parts in gray)
are not taken into account.2

least in an academic context. Deep learning has gained traction
in the field roughly since 2013, and since then many varieties
of neural networks have been explored. The majority of these

2The following icons from the Noun Project (https://thenounproject.
com) are used in Figure 1.2: portrait by ffabio44, Soundwave by Maxim
Kulikov, and Document by Rediffusion
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approaches can be assigned to one of the following two general
types of NNs: feedforward or recurrent NNs (see section 2.4 for
details). Other types exist, as well as many variants and ex-
tensions, but for the sake of putting this work into the broader
research context, we retain this division. While both types of
NNs are well suitable for SER and can also be combined (Zhao
et al., 2017), the approach taken in this thesis focuses on CNNs.
We model the task of emotion recognition on utterance level, un-
der the assumption that in a relatively short speaker utterance
only one emotional state is expressed (and therefore temporal
dependencies within an utterance are not as crucial as in other
sequence modeling tasks).

1.3 Goals of this Thesis

The goals of this thesis can be split up into two areas: system-

atic investigations of various aspects of SER, and extensions

to the basic approach of training and evaluating a machine learn-
ing model on a given dataset. Approaching the two challenges
outlined before – data scarcity and low performance due to the
complex nature of emotions – we aim at investigating ways to
improve performance and to better understand sources of error,
as well as proposing extensions that address data scarcity and
consequently also improvements in accuracy.
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Systematic investigations: Since SER is a relatively young
and fast evolving research field, there are many aspects that
have not yet been investigated. The work presented in this thesis
aims to shed light on some of these. Specifically, we investigate
the choice of acoustic features as input to a CNN model, the
impact of utterance length on SER performance, the feasibil-
ity of cross-lingual and multilingual SER, and the performance
under noisy acoustic conditions. In doing so, we focus on com-
prehensive analyses that go beyond reporting and comparing
accuracy numbers; among others, confusion matrices are one
helpful tool used throughout this work to uncover and interpret
error patterns.

Extensions: The basic ML approach to a given task is to train
a model on some labeled dataset and evaluate its performance
(either on a separate test set or by means of cross validation). In
order to improve the performance and robustness of the models,
the second goal is to investigate possible extensions to this ba-
sic approach. Concerning the CNN model itself, we propose and
analyze an attention mechanism, which is a method to make a
NN learn to focus on specific parts of the input data. Further-
more, we incorporate a multi-task learning paradigm where two
different types of output labels are predicted (a secondary or
auxiliary task is added) in order to improve the accuracy on the
main task.

11
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Another extension pertains to data (and the problem of data
scarcity). As illustrated above with Figure 1.1, having a rea-
sonably large amount of training data available is a key factor
of success for deep learning. Because of this and because exist-
ing emotional speech datasets are relatively small, we explore
two directions of making use of additional, unlabeled speech
data: representation learning and generative modeling to create
additional training data. The last type of extension concerns
multimodal processing: we investigate how audiovisual emotion
recognition can improve the performance, specifically in noisy
conditions.

1.4 Overview and Contributions

In the following, we outline the structure of this thesis and state
the main contributions presented in each chapter.

Chapter 2 provides the necessary background for the pre-
sented work. The chapter is divided into two parts. First, we
provide an introduction to emotion modelling and commonly
utilized representations of emotions, along with a description
of the used speech datasets and their annotation. Second, the
technical background is introduced, including speech processing
and acoustic feature extraction as well as background on neural
networks, with a focus on convolutional neural networks.

12
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Chapter 3 presents SER experiments with an attentive convo-
lutional neural network (ACNN) framework. We first describe
the neural network architecture and detail the acoustic feature
extraction. Then, experimental results are presented and ana-
lyzed.

The ACNN was first presented in Neumann and Vu (2017),
along with a comparison of different acoustic feature sets as in-
put, a comparison between two types of speech (scripted conver-
sations vs. improvised play), and an investigation of the impact
of signal length on the SER performance. These systematic
investigations of different aspects of SER using a CNN model
are one of the main contributions of this thesis, and the pro-
posed model also constitutes the basis for further experiments.
The results of this first series of experiments are discussed in
section 3.4. The main findings were that the recognition perfor-
mance strongly depends on whether acted (based on a script)
or freely improvised conversations are the object of study, and
that it can be sufficient to analysize only a short audio snippet
from the beginning of a user utterance to make a reasonable
prediction of the emotional state.

Utilizing the same neural network architecture, we presented
cross-lingual and multilingual experiments with a French and
an English dataset in Neumann and Vu (2018). We showed
that arousal prediction is possible in a multilingual setup as
well as with cross-lingual training followed by fine-tuning on

13
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the target data, whereas valence prediction is more sensitive to
cross-lingual training. Further, this publication presented an
analysis of the learned attention weights of the ACNN. These
experiments and their results are detailed in section 3.5.

Chapter 4 addresses one fundamental problem of speech emo-
tion research, that is the lack of large scale, annotated datasets
to train ML models on (known as data scarcity). We present
experiments on unsupervised representation learning with au-
toencoders and on generating synthetic training data (data aug-
mentation) by using a cycle consistent generative adversarial
network (CycleGAN).

The first part of this chapter (section 4.1) builds up on the
ACNN model proposed in Neumann and Vu (2017) and presents
an extension to it by incorporating speech representations that
are learned in an unsupervised fashion on a large, unlabeled
speech corpus. This work was reported in Neumann and Vu
(2019). One important finding was that the autoencoder rep-
resentations, which are learned without any emotion labels, are
notably discriminative for the distinction between low and high
arousal and that they can improve the SER performance when
integrated into the ACNN model.

A different way of approaching the data scarcity problem is
to create additional (labeled) training data using a generative
ML model. In the second part of this chapter (section 4.2) we
present such a method that is based on CycleGANs, which em-
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ploy adversarial training to generate synthetic feature vectors
representing a certain target emotion. This work emerged from
the Master thesis by Fang Bao, which was supervised by Ngoc
Thang Vu and myself. We published the results in a joint effort
in Bao et al. (2019) and the results are extended in the present
thesis by the addition of a second feature set and by more in-
depth analyses. The main contributions of this work is that
the generated additional data can be beneficially used for data
augmentation, and that we could achieve relatively high per-
formance when training only on these synthetic feature vectors,
compared to related studies.

Chapter 5 presents an analytical investigation of audiovisual
emotion recognition in noisy acoustic conditions. With the ad-
dition of the visual modality we bring in yet another important
aspect of emotion recognition research, since multimodal data
processing and machine learning are becoming increasingly pop-
ular and useful due to the ubiquitous availability of smart de-
vices equipped with cameras and microphones. Based on the
analyses in Neumann and Vu (2021) we present results on how
the addition of visual information can, to a large extent, allevi-
ate performance declines of SER when applied in noisy acoustic
environments.

Chapter 6 summarizes the key findings of this thesis and pro-
vides a discussion on ethical considerations with respect to the
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work presented here. Finally, some ideas for future directions
are outlined.
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2 Background

Almost everyone except the psychologist knows
what an emotion is. [...] The trouble with the
psychologist is that emotional processes and
states are complex and can be analyzed from so
many points of view that a complete picture is
virtually impossible

Paul T. Young, Feeling and Emotion in
Handbook of General Psychology, 1973

This chapter introduces concepts and definitions that build
the foundation for this thesis. The necessary background knowl-
edge can be divided into two big parts: (I) a conceptional
foundation concerning emotion theories and representations and
(II) technical background concerning speech signal processing
and machine learning methods.

In the first part, an overview of the theory of emotions is
provided (section 2.1). This shall provide the necessary back-
ground to understand why different theories and representations
of emotions exist and to be able to compare and discuss different
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representations and their simplifications with respect to speech
emotion processing, or more general computational processing
of human emotions. Further, the first part contains an overview
of emotional speech corpora (section 2.2) that are subject of the
experiments in this thesis, since the decision for a certain emo-
tion representation is tightly coupled with available data and
its annotation. Hence, different annotation schemes and related
datasets are described. Specific details of the data with respect
to different experimental settings are contained in the respective
experimental chapters.

The second part of this chapter provides technical background
knowledge that lays the foundation for all experiments presented
in this thesis. This is divided into two main topics: speech
signal processing (describing speech representations for emotion
recognition; section 2.3) and machine learning (introducing the
utilized neural network types; sections 2.4).

2.1 Theories of Emotions and their

Representations

What is an emotion? This central question has occupied re-
searchers from many fields, such as philosophy, evolutionary bi-
ology, psychology, and neuroscience for centuries – and there
is no easy answer to it. In fact, in consequence of being such
a multidisciplinary research subject, there are many definitions
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of what emotions are and how they are elicited (Gendron and
Feldman Barrett, 2009; Kleinginna and Kleinginna, 1981).

Having a closer look at the history of psychological theories
of emotions, Gendron and Barrett identify three fundamental
approaches: (a) “basic emotion” concepts, (b) “appraisal” the-
ories, and (c) “psychological constructionist” approaches (Gen-
dron and Feldman Barrett, 2009). These concepts strongly in-
fluenced how emotions are viewed and represented with respect
to the technical task of emotion recognition that we are con-
cerned with. However, it is important to note that the field of
SER and the work presented in this thesis in particular is not
aiming at exactly modeling psychological phenomena, nor do we
contribute to open questions in these areas. Instead, simplify-
ing assumptions need to be made and the term emotion is used
rather in its broad, ‘everyday-language’ sense. As the introduc-
tory quote states, almost everyone has a strong intuition of what
happiness is or feels like, and how people might sound when they
are angry. Still, it is inevitable to define the concept ’emotion’
and have a look at how (and why) emotional states can possibly
be detected from a person’s speech and facical expressions.1

Paul and Anne Kleinginna reviewed over 90 definitions from
the diverse literature on emotions and proposed the following
definition as a working model (Kleinginna and Kleinginna, 1981):

1While this thesis is mainly about speech emotion recognition, we also
have a look at facial expressions and a multimodal approach to emotion
recognition in chapter 5.
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Emotion is a complex set of interactions among sub-
jective and objective factors, mediated by neural-
hormonal systems, which can (a) give rise to af-
fective experience such as feelings of arousal, plea-
sure/displeasure; (b) generate cognitive processes such
as emotionally relevant perceptual effects, appraisals,
labeling processes; (c) activate widespread physio-
logical adjustments to the arousing conditions; and
(d) lead to behavior that is often, but not always,
expressive, goal-directed, and adaptive.

In the realm of automatic emotion recognition, we are mostly
concerned with the third point of this definition, (c) physiolog-
ical adjustments to the arousing condition. These physiological
phenomena are what can be perceived from the outside, such as
facial expressions, changes in speech prosody, changes in heart
rate, blood pressure, and skin conductance, to name a few phe-
nomena from different modalities. In turn, these observations of
physiological changes are used to infer an underlying emotional
state.

This section summarizes the most frequently utilized approach-
es to emotion representation in the field of speech emotion recog-
nition along with some historical context on the development of
emotion theories. However, this overview is by no means a com-
plete picture of the various theories that exist. The reader might
refer to Gendron and Feldman Barrett (2009) for a more detailed
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historic summary. Here, we focus on the types of emotion rep-
resentations, not the underlying psychological phenomena. In
addition to the two prevailing approaches – basic emotions and
dimensional models – we present more recent (and therefore less
frequently used) representations at the end of this section.

2.1.1 Basic Emotions

Historically, emotion research was foremost concerned with fa-
cial expressions. In his publication The Expression of the Emo-
tions in Man and Animals, Charles Darwin laid out the founda-
tion of the basic emotions theory. About the universal nature
of emotional expressions Darwin stated, “We can thus also un-
derstand the fact that the young and the old of widely different
races, both with man and animals, express the same state of
mind by the same movements.” (Darwin and Prodger, 1872, p.
352)

Contrary to Darwin who believed that emotions are mental
states that trigger physiological reactions (“we cry because we
feel sorry”), William James was the first one to hypothesize that
such bodily changes follow directly an exciting event and that
our feeling of these reactions is the emotion (“we feel sorry be-
cause we cry”). This view on emotion became known as the
James-Lange theory. James characterized what he called stan-
dard emotions as having a “distinct bodily expression” (James,
1884, p.189). He identified fear, grief, love, and rage as such.
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Nowadays, one of the most cited proponents of the basic emo-
tions theory in the field of SER is Paul Ekman. In his early work,
he identified and studied six basic emotions and their associated
facial expressions, which are universally found in humans across
cultures: anger, disgust, fear, happiness, sadness and surprise
(Ekman, 1970). It should be noted that Ekman’s basic emotions
framework does explicitly allow for additional ‘non-basic’ emo-
tions (“All the emotions which share the characteristics I have
described are basic. If all emotions are basic, what then is the
value of using that term?” (Ekman, 2000, p. 57)).

The basic emotions representation is frequently used as an-
notation scheme for emotional speech data (and facial expres-
sions). Especially in the early days of automatic facial/vocal ex-
pression recognition, those basic emotion categories have been
the most prevelant way to represent emotions (Sebe et al., 2005).
Speech corpora are typically segmented into utterances (some-
times referred to as speaker turns in the case of dialogs) and the
most common annotation with basic emotions is to assign one
emotion class from a given set of classes to each utterance (cf.
section 2.2 on page 27 for details). This annotation scheme is
convenient to implement (labeling each utterance with one class
is fast) and resembles what people intuitively think of emotion
classification (most people have an intuitive notion of how sad
speech or angry speech sounds like). However, the approach also
has problems. First, emotions and emotion words are highly
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subjective; different people have different notions of sadness or
happiness. To attenuate the effect of subjectiveness, corpora are
usually annotated by at least three raters (the more the better).
Second, a fixed set of discrete emotion classes does not allow
for blended emotional states or for other emotion words that
are not contained in the given set. One way to collect more
fine-grained annotations in this regard is to assign a primary
class and optionally a secondary class to an utterance (see for
example MSP-IMPROV (Busso et al., 2017)). However, the
interpretation of these secondary classes remains difficult.

Throughout this thesis, we mainly use the basic emotions rep-
resentation, and mainly four classes commonly found in avail-
able datasets: anger, happiness, neutral state, sadness. Al-
though this is a simplification of real, complex emotional states,
using these classes serves as a reasonable representation to im-
plement into many applications. For example, in a call center
application, the distinction between happiness/neutral state on
the one hand and anger on the other hand is the crucial classi-
fication to make in order to estimate customer satisfaction. Of
course, depending on the application, a different set of categories
might be appropriate; for example, in mental health monitoring
it is conceivable that states of fear/anxiety need to be detected.
Another simplification is that an emotional state is the same
throughout an utterance of a speaker. Again, in many appli-
cation contexts, especially within dialog systems (where user
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turns are often short), this is a valid assumption. Hence, it is
important to note that we are not aiming at developing a realis-
tic psychological model of emotional states (in their complexity
and with temporal variations), but rather contibute to the de-
velopment of application-oriented systems, which can recognize
a constraint (and simplified) set of emotion classes.

2.1.2 Dimensional Models of Emotion

Besides the notion of universal, basic emotions (represented
as distinct categories), another well-known and widely utilized
model is the representation of emotional states on independent,
continuous bi-polar dimensions. Wilhelm Wundt was the first to
propose the three dimensions valence, arousal and intensity to
describe emotions (Wundt, 1897). Williams and Sundene (1965)
studied facial and vocal expressions, suggesting that the two di-
mensions ‘general evaluation’ (valence) and ‘activity’ (arousal)
have generality between both modalities across different emo-
tions. James Russell hypothesized that the following three di-
mensions are both necessary and sufficient to define emotional
states: pleasure $ displeasure, degree of arousal, and domi-
nance $ submissiveness (Russell and Mehrabian, 1977).

A hybrid model that combines basic emotion categories and
dimensional theories is Robert Plutchik’s wheel of emotions, de-
picted in figure 2.1 on the next page. In his psycho-evolutionary
theory of emotions (Plutchik, 1980), he identified eight basic
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Figure 2.1: Plutchik’s wheel of emotions. Opposite emotions
form bipolar emotion pairs, e.g. joy vs. sadness.

Color intensity represents the intensity of the
emotions, along with different emotion words.

Image source: (Machine Elf 1735, 2011)

emotions (Ekman’s six plus trust and anticipation), which are –
from an evolutionary perspective – distinctive triggers of behav-
ior with high survival value (e.g. trust inspires behaviors like
sharing and grooming). The wheel of emotions arranges emo-
tions in concentric circles where outer circles represent more
complex emotions and decreasing intensity.
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2.1.3 Ordinal Representations of Emotions

If we distinguish emotion representations by the level of mea-
surement that is used for annotation, we have so far mainly con-
sidered nominal labels (basic emotions) and interval scales, such
as continuous values of arousal and valence. A different perspec-
tive that is endorsed in Yannakakis et al. (2018) is the ordinal
nature of emotions, that is a rank-based representation. The
authors argue that ordinal information is what people can de-
liver most reliably, i.e. it is easier and more reliable to compare
two data samples and rank them on a given scale (e.g. based
on intensity or on proximity to a prototypical state), instead
of assigning specific values or labels to an individual sample in
isolation. They provide an extensive background from multiple
disciplines (behavioral economics, neuroscience, machine learn-
ing, psychology, affective computing, philosophy, marketing) to
demonstrate why an ordinal view is appropriate and might even
be the most natural representation. Therefore, Yannakakis et
al. advocate for a holistic ordinal affective computing pipeline,
including data annotation, data processing, and modeling, for
which statistical analysis or preference learning (Fürnkranz and
Hüllermeier, 2010; Yannakakis, 2009) can be used.

Although this type of representation is not in the scope of
this thesis, we included it in this overview for the sake of com-
pleteness and because it seems to be a promising alternative
modelling approach to the aforementioned basic emotions and
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dimensional models. Note, that a mapping between certain rep-
resentations is feasible (cf. Yannakakis et al. (2018) for details).
For instance, an interval scale can be treated as ordinal repre-
sentation without any information loss.

2.2 Emotional Speech Corpora

The essential foundation for every machine learning problem is
data to learn from. In fact, the success of deep learning in many
areas in NLP and speech processing can be attributed to two
main driving forces: increasing computational power and algo-
rithmic efficiency on the one hand and the availability of large
(annotated) datasets for training these algorithms on the other
hand. While for certain tasks, such as ASR, the amount of
available training data is enormous2 and the ground-truth tran-
scriptions are mostly objective and undisputable, for SER that
is not the case. The size of available annotated emotional speech
datasets is orders of magnitude smaller than the available data
for ASR training (cf. Table 2.1). The main reasons for this are
the difficulty to collect naturalistic emotional speech and the
expensive annotation of emotion labels, being highly subjective
and debatable (Devillers et al., 2005; Schuller et al., 2011a).

2To give an example of the large available datasets for ASR, the English
dataset from Mozilla’s freely available common voice project contains
1,469 hours of verified, transcribed speech (as of June 2020), cf. https:
//commonvoice.mozilla.org/de/datasets [accessed Dec. 15, 2020]
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In this section we briefly discuss two of the main challenges in
emotional speech data collection, namely different annotation
schemes and the degree of naturalness of speech. We then pro-
vide an overview of the datasets that are used for experiments
throughout the thesis and describe commonalities and differ-
ences between them.

2.2.1 Annotation of Emotional Speech
Datasets

The labeling procedure of emotional states (and therefore, the
underlying representation model) is one of the main differences
between datasets. The basic emotions model is reflected in dis-
tinct emotion classes, which we will also call categorical anno-
tations. The most common categorical annotation scheme is to
assign one label for a whole utterance. While emotion classes
are convenient to use for the annotation procedure and for train-
ing classifiers, these hard boundaries also introduce problems:
a closed set of emotion words might exclude certain states; dif-
ferent raters might have different notions of words like anger,
happiness or sadness ; and it is difficult to represent mixed emo-
tions.

The second major representation of emotions, namely con-
tinous dimensional representations, has been used to annotate
data more and more recently. The most common approach here
is to use the two dimensions arousal and valence and annotate
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speech data on a certain scale for each dimension (e.g. contin-
uous values from -1 to 1). Sometimes, dominance is added as
a third dimension. When using dimensional models as foun-
dation, the task of predicting an emotional state can either be
formulated as a regression (predicting a value on the continu-
ous scale) or a classification problem (by grouping values into
discrete classes3).

Different from the utterance-level annotation used with the
basic emotions approach, dimensional labels are often anno-
tated time-continuously. For this, annotation tools like Feel-
trace (Cowie et al., 2000), Anvil (Kipp, 2001) or Annemo4 are
utilized, where a human annotator watches or listens to the stim-
ulus and simultaneously annotates the sample, either by moving
the mouse pointer in the two-dimensional space of arousal and
valence as in Feeltrace or by moving a slider on one dimension
at a time as in Annemo. The annotations are then the recorded
positions of the mouse pointer or slider at a certain sampling
rate, e.g. one value every 40ms between -1 and 1 on the arousal
dimension. One main advantage of continuous annotations is
that temporal dynamics are modeled, which is especially rele-
vant for longer stimuli and can provide a more detailed picture of
a speaker’s emotional state throughout a complete conversation.

3Such grouping or any other transformation of labels can, however, lead
to problems. This is discussed in chapter 3

4https://diuf.unifr.ch/main/diva/recola/annemo [Accessed March
06, 2021]
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However, due to the more complex annotation process, there are
also challenges to overcome and more sources for variation in the
annotations compared to the basic emotion approach. Kessler
et al. (2015) investigated the effects of different annotation tools
on the labeling process and found that the resulting labels vary
depending on the used software. One main challenge is the
dynamically varying time delay between an expression and the
rater’s reaction. Yet, methods have been established for tempo-
ral alignment of annotations in order to create a reliable ‘Gold
Standard’5 (Zhou and De la Torre, 2015).

There are also dimensional annotations that are done on ut-
terance level and therefore do not pose the problem of time
delay. In this case, labelers are asked to rate the arousal or va-
lence level of the whole utterance, e.g. on a Likert scale or with
self-assessment manikins (cf. Figure 2.3 on page 34).

For the work presented in this thesis, we followed an utterance-
level modeling approach (as described in section 1.2 in the Intro-
duction), and therefore used categorical annotations and framed
the task of SER as a classification task.

5Along the lines of Kossaifi et al. (2019), we use the term ‘Gold Standard’
to refer to emotion annotations instead of ‘ground-truth’, because no
objective truth exists for inherently subjective phenomena like emotions

30



2.2. EMOTIONAL SPEECH CORPORA

2.2.2 Degree of Naturalness

The second major difference between datasets is the type of
speech, and closely related the eliciation of emotional states.
Speech type is often broadly divided into acted vs. sponta-
neous interactions. In the early days of SER, available data
was usually always acted, that is, speakers are given a script
or sentence, which they shall utter with a certain emotional ex-
pression. While it is quite straightforward to obtain data in
such a way, the crucial problem is that such speech data is not
naturalistic and realistic. Therefore, researchers and develop-
ers need to be careful with any conclusions drawn from acted
datasets with respect to real-world applications; or, as Schuller
et al. put it:

In retrospect, the concentration on a few acted emo-
tions at the beginning of the whole endeavour re-
sulted in a sort of reality shock when non-prompted,
realistic, and sparse events were addressed. (Schuller
et al., 2011a, p.1065)

However, this does not ultimately render acted speech useless.
These datasets are still useful as benchmark data to evaluate
and compare models on, in order to advance the development
of systems that then can be transferred to more realistic set-
tings. One simply needs to be aware of the differences in speech
and of the fact that models trained on acted or read speech will
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not generalize well on spontaneous speech ‘in the wild’. Fur-
thermore, another legitimate reason to use acted (prototypical)
emotional speech can be research on acoustic parameters in a
controlled setting (e.g. to compare different expressions of the
same lexical content in identical, clean recording conditions).

In recent years, emotion recognition ‘in the wild’ has received
increasing attention (see for example Dhall et al. (2013); Pandit
et al. (2018); Kossaifi et al. (2019)). As the term suggests, the
goal is to leave clean and controlled laporatory conditions and
tackle the much more challenging data found in the real world.

For the present work, we distinguish types of speech data more
fine-grained than only acted vs. spontaneous. In the datasets
presented below, we identified four different types: read speech,
scripted conversations (actors perform a given script), impro-
vised play (actors improvise based on hypothetical scenarios),
and free speech (i.e. natural, spontaneous interactions). Fig-
ure 2.2 on the next page illustrates that these speech types are
of increasing naturalness in the presented order.

2.2.3 Overview of Datasets

Interactive Emotional Dyadic Motion Capture Database
(IEMOCAP)

IEMOCAP is a widely used multimodal and multispeaker cor-
pus that has been created at the Signal Analysis and Interpreta-
tion Laboratory (SAIL) at the University of Southern California
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Figure 2.2: Four different types of speech with respect to
naturalness of emotions.

(Busso et al., 2008). It consists of approximately 12 hours of
audiovisual data (speech, video, facial motion capture markers)
from two recording scenarios: scripted and improvised scenar-
ios. The corpus is divided into five sessions, each of which con-
tains English dyadic interactions between a female and a male
speaker (ten speakers total, seven professional actors and three
senior acting students). The conversations have been manually
segmented into dialog turns, resulting in 10,039 utterances in
total.

Annotation of emotional states was done in two ways: (a)
with categorical emotion descriptors, and (b) with continuous
emotion descriptors on the three dimensions arousal, valence,
dominance. For (a) categorical descriptors, each turn was anno-
tated by three raters (plus a self-report by the actors themselves)
with one of the following emotion labels: anger, sadness, happi-
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Figure 2.3: Self-assessment manikins (SAM) for the attributes
A) valence, B) arousal, and C) dominance. Source:

Galindo-Aldana et al. (2017)

ness, disgust, fear and surprise (Ekman’s basic emotions), plus
frustration, excitement and neutral state. Raters could addi-
tionally select other if none of the labels was adequate and they
were allowed to select two labels to account for blended emo-
tions. For (b) continuous descriptors, each turn was annotated
by two raters (plus self-report) with the use of self-assessment
manikins (Bradley and Lang, 1994) for the dimensions valence
(1-negative, 5-positive), arousal (1-calm, 5-excited), and domi-
nance (1-weak, 5-strong), depicted in Figure 2.3.

In the present thesis, the IEMOCAP data was used for the
experiments presented in chapters 3 and 4.
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MSP-IMPROV

The MSP-IMPROV dataset (Busso et al., 2017), a multimodal
corpus of dyadic interactions between six speaker pairs, was col-
lected at the Multimodal Signal Processing Laboratory (MSP)
at the University of Texas at Dallas. The corpus is similar to
IEMOCAP, in that specific emotion-eliciting scenarios were de-
signed, which have been improvised by acting students. Differ-
ent from IEMOCAP, this dataset contains specific target sen-
tences that had to be uttered in each scenario for each of the
four emotions happiness, sadness, anger, neutral state. In ad-
dition to the improvised scenarios, the target sentences were
recorded as isolated read speech, and the corpus also contains
annotated interactions between the speakers during preparation
and breaks. As for the videos, speakers were recorded frontally
in front of a green screen, which makes the videos of MSP-
IMPROV more suitable for facial expression analysis than those
of IEMOCAP (where the focus is on the motion capture mark-
ers).

Annotation of MSP-IMPROV was done similar to IEMOCAP,
but only for the four targeted emotion classes, plus a class other.
Dimensional annotations have been obtained for arousal, va-
lence, dominance with the five-item SAMs (Figure 2.3). For
MSP-IMPROV, crowdsourcing via Amazon Mechanical Turk
was used for annotation, instead of a small group of trained
evaluators; each utterance is annotated by at least five raters.
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We used MSP-IMPROV in the studies presented in chapters 4
and 5.

Crowd-Sourced Emotional Multimodal Actors Dataset
(CREMA-D)

The CREMA-D dataset (Cao et al., 2014) contains crowdsourced
video clips with English read speech. 91 speakers were asked
to read twelve target sentences in six different emotions (hap-
piness, sadness, anger, fear, disgust, and neutral state). The
videos show the speakers in front of a green screen. Annotations
have also been obtained through crowdsourcing. Each sample
is annotated for the emotion class and intensity (on a conti-
nous slider ranging from ‘mildly’ to ‘extremely’) by at least six
raters. There are individual annotations for audio-only, video-
only (without sound) and audiovisual data, from which we use
the latter in the experiments presented in chapter 5.

Multimodal Corpus of Remote Collaborative and
Affective Interactions (RECOLA)

RECOLA (Ringeval et al., 2013) is a multimodal dataset of
French speech that consists of dyadic conversations during a
video conference in which participants had to solve a collabora-
tive task. From a total of 46 speakers, a subset of 23 speakers
is publically available, comprising 1,308 annotated utterances.
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RECOLA is annotated with continuous values for arousal and
valence in the range [-1, 1] at a rate of 40ms. Annotation was
done by six raters with the web-based tool ANNEMO, which
had been developed in conjunction with the corpus creation.

RECOLA is the only non-English dataset that has been used
for this work, namely in the multilingual study presented in
chaper 3.

Speech Hours
Lang Speakers type Samples Annotation of speech

IEMOCAP en 10 acted & 10,039 utterance level 12
improvised 10 classes

A/V/D scores
MSP-IMPROV en 12 improvised & 8,438 utterance level 9.6

free & 5 classes
read A/V/D scores

CREMA-D en 91 read 7,442 utterance level 5.25
6 classes

RECOLA fr 23 free 1,308 continuous A/V 2
values in [-1,1]

Table 2.1: Overview of emotional speech datasets used in this
thesis.

Lang: language, A: arousal, V: valence, D:
dominance.

General Remarks on Evaluation and Comparability of
Results in Speech Emotion Recognition

Reseach in SER is facing the problem that reported results are
often not directly comparable to each other because no stan-
dardized test conditions are defined. To approach this issue,
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various challenges have been carried out in recent years to set
benchmarks on pre-defined test sets. The first of its kind was
the Interspeech 2009 Emotion Challenge (Schuller et al., 2009b),
which used the FAU Aibo dataset (Batliner et al., 2008) as
benchmark dataset. Since then, the ‘Interspeech Computational
Paralinguistics Challenge’ (ComParE) was established as annual
event and it has covered many paralinguistic topics beyond emo-
tion.6 Other challenges followed like the ‘Audio/Visual Emotion
Challenge’ (AVEC) since 2011 (Schuller et al., 2011b) or the
‘Emotion Recognition in the Wild Challenge’ (EmotiW) since
2013 (Dhall et al., 2013).

However, for the datasets used in this thesis (with the excep-
tion of RECOLA), no such challenge baselines or other stan-
dardized benchmarks exist. Hence, fair comparison under ex-
actly the same test conditions remains almost impossible. Rea-
sons for this lie in different evaluation methods (e.g. held-out
test sets vs. cross validation), in different underlying modeling
approaches (e.g. basic emotions vs. continuous dimensions), in
different reported performance metrics (e.g. weighted accuracy
vs. unweighted average recall), and last but not least in possi-
ble variations of results due to non-determinism in certain GPU
operations and to random parameter initialization. With our

6The challenge name ComParE was established in 2013, after the ‘Par-
alinguistics Challenge’, the ‘Speaker State Challenge’ and the ‘Speaker
Trait Challenge’ in the years before. http://www.compare.openaudio.
eu [Accessed March 08, 2021]
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experiments, we followed established practices from the litera-
ture, such as speaker-independent cross validation and reporting
the mean of several runs of experiments in terms of unweighted
average recall. Still, interpretation of results and comparison to
related studies should be done cautiously because of these many
possible factors of variation. Generally, when reporting exper-
imental outcomes by means of comparison, there are different
possible comparisons to bring up: results can be better than a)
chance level, b) some challenge baseline (if existing), c) related
works, or d) own previous experiments/baselines. Comparison
with others in terms of state-of-the-art results is frequently done,
but can be difficult and/or misleading due to the aforementioned
reasons. Throughout this thesis, we confine comparisons to our
own baselines in order to report improvements of certain meth-
ods and model extensions.

2.3 Acoustic Features for Emotion

Recognition

From the search for optimal acoustic features for SER (which
has been an ongoing endeavor for more than two decades by
now), many approaches arose. In the early days of SER, small
sets of acoustic variables consisting of mainly prosodic features
had been used. Among others, these often included the funda-
mental frequency (F0) (Dellaert et al., 1996), energy (Schuller
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et al., 2003), temporal measures (speech rate and pausing), and
formants (Petrushin, 1999). Since then, a variety of acous-
tic feature types and modeling approaches (dynamic vs static)
emerged. In the following we briefly present the different types
of acoustic features that have been utilized for our experiments.

Spectral features. Despite the fact that spectral character-
istics of speech strongly depend on the phonetic content of a
speech utterance (and are therefore desirable features for ASR),
they have also been shown to contain useful information to dis-
criminate emotional states (Wang and Guan, 2004; Koolagudi
and Rao, 2012). Fayek et al. (2016) have demonstrated the
transferability of filter bank features between the two tasks of
ASR and SER. Mel frequency cepstral coefficients (MFCCs) are
a well known feature type in speech processing that is widely
used for ASR and music information retrieval, among others.
With the advent of deep learning, a closely related representa-
tion, log Mel filter banks (lMFBs), has become another widely
used feature type.

The procedure to obtain MFCCs involves the computation of
Mel filter banks (MFBs), which are highly correlated due to the
overlapping filters. Such correlated input poses a problem to tra-
ditional machine learning algorithms, such as Gaussian Mixture
Models - Hidden Markov Models (GMMs-HMMs). Therefore,
to decorrelate the features, a discrete cosine transform (DCT)
can be applied to the filter banks, resulting in MFCCs. Because
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neural networks are less susceptible to highly correlated input
(and can potentially make use of additional information in the
MFBs), the DCT as an extra transformation step appears not
to be necessary when employing deep learning for speech pro-
cessing tasks (Hinton et al., 2012; Mohamed, 2014, Chapter 4).
Log Mel filter banks were used as features throughout all inves-
tigations in this thesis with the exception of the work presented
in section 4.2. MFCCs were used for experiments described in
chapter 3 to compare the results between lMFBs and MFCCs.

Low-level descriptors and funcationals. Besides these ‘general-
purpose’ features, there are also affect-specific acoustic feature
set, such as the Geneva minimalistic acoustic parameter set
(GeMAPS) and its extended version eGeMAPS (Eyben et al.,
2016), or the ‘emobase2010’ reference feature set, which is based
on the Interspeech 2010 Paralinguistic Challenge feature set
(Schuller et al., 2010a). These feature sets are based on the
principle to first extract low-level descriptors (LLDs) from the
speech signal (e.g. the fundamental frequency contour), and
then apply functionals to them (such as the arithmetic mean,
standard deviation and certain percentiles) to arrive at a more
high-level representation of the input signal.

The emobase2010 reference feature set for SER is a large set
of 1,582 features. When it was proposed within the openSMILE
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toolkit7 (Eyben et al., 2010d, 2013), the so-called feature brute-
forcing was widely used in SER, that is extracting hundreds or
even thousands of features and let the machine learning algo-
rithm figure out which are useful (Schuller et al., 2008; Eyben
et al., 2010a). The 1,582 features in the emobase2010 set re-
sult from a set of 34 LLDs and their delta coefficients, to which
21 functionals are applied to (1,428 features). Additionally, 19
functionals are applied to four pitch-based LLDs and their deltas
(152 features); finally, two features (number of pitch onsets and
total duration) are appended.

GeMAPS represents quite the opposite of feature brute-forcing,
as it resulted from a joint effort of several research groups to
create a minimalistic set of voice parameters for affective com-
puting and voice research. In this thesis, the extended ver-
sion, eGeMAPS, is used. It consists of 25 LLDs (containing
frequency-related, energy-related and spectral parameters, such
as pitch, jitter, loudness, shimmer, frequency and relative energy
of formants), to which the arithmetic mean and the coefficient
of variation are applied as functionals. To loudness and pitch,
additional eight functionals are applied. Finally, specific fea-
tures are computed in addition on only voiced or only unvoiced
segments, and certain temporal features are added. This results
in 88 parameters total. For the experiments in this thesis, we
used the 25 LLDs from eGeMAPS without functionals as time-

7https://audeering.github.io/opensmile/about.html [Accessed
March 22, 2021]
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preserving input (chapter 3) as well as the complete set of 88
utterance-level features in chapters 4 and 5.

Data-learned and model-based representations. In contrast
to extracting specific ‘hand-crafted’ features, another recently
emerging approach is to automatically learn appropriate fea-
tures from data. Representation learning is essentially con-
cerned with learning a useful abstract representation for a given
task form the raw input signal. In section 4.1 we present work
on the combination of representation learning and traditional
data pre-processing.

Yet another related approach are model-based representa-
tions, that is using a pre-trained ML model to generate abstract
representations of the input. An example for this, used in chap-
ter 5 of this thesis, are ‘deep spectrum features’ (Amiriparian
et al., 2017b). They are generated by first extracting spectro-
grams from the speech signal and then feedings these into a
pre-trained deep neural network for image classification. The
activation values at a certain hidden layer of the network are
then taken as feature vector to represent the speech signal.
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2.4 Machine Learning Background:

Neural Networks

This section provides the technical background on machine learn-
ing and introduces methods and concepts that are used in the
experiments presented in this thesis. Note, that this is not
meant to be an exhaustive introduction to machine learning
and we assume that the reader is familiar with basic concepts
of ML and neural networks. The reader might refer to (Ju-
rafsky and Martin, 2020, chapters 5,7) for an introduction to
logistic regression and a concise overview of neural networks for
language and speech processing, to (Goldberg, 2017) for more
advanced ML methods for NLP, or to (Goodfellow et al., 2016)
for an extensive textbook on deep learning in general. In the
following, we present the necessary background on artificial neu-
ral networks (ANNs), and then introduce three specific types of
neural networks that were used in the experiments presented
in this thesis: convolutional neural networks (CNNs), autoen-
coders (AEs), and generative adversarial networks (GANs).

2.4.1 Artifical Neural Networks

In a typical supervised ML problem, given training samples xi

and the respective labels yi, the objective is to learn the function
ŷ = f(x;⇥) by learning appropriate values for the parameters ⇥,
so that the difference between predicted labels ŷi and real labels
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yi becomes minimal. This difference is defined by a so-called cost
function (also known as loss function) and the goal of training a
neural network is to reduce this cost (of misclassified samples).
The simplest case of such a function f is linear regression, which
can be defined as:

ŷ = w · x+ b (2.1)

where x denotes a feature vector of the input sample, w a weight
vector, and b a bias term; the learnable parameters ⇥ in this
case comprise w and b. Although it is a powerful machine learn-
ing method, the linear property is a strong limitation, which is
illustrated by the famous example of the logical XOR expres-
sion, which cannot be modeled with a linear function. In order
to overcome this problem, an activation function g(x) can be
applied to the input to perform a non-linear transformation.
One possibility for such a non-linearity is the sigmoid function,
which has a return value between 0 and 1:

�(x) =
1

1 + e�x
(2.2)

Applying the sigmoid function brings us from linear regression
to logistic regression, which can be used for binary classification:

ŷ = �(w · x+ b) (2.3)

Now, to move from logistic regression to neural networks, we
can view logistic regression as one single neuron in a network;
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thus, each neuron computes an activation g(x) given certain in-
puts to it and outputs the result to other neurons. ANNs are
loosely inspired by biological neural networks in the brain: over
their connections the neurons ‘transmit a signal’ to other neu-
rons (like synapses do in the brain), and the learnable weights
for these connections affect how strong the transmitted signal
is. ANNs consists of one or more hidden layers, denoted as
hj. Each hidden layer consists of multiple neurons (or units).
Mathmatically, a two-layer feed-forward neural network can be
expressed in a vectorized notation, where W represents a weight
matrix, as follows:

h1 = g1(W1x+ b1) (2.4)

h2 = g2(W2h1 + b2) (2.5)
ŷ = W3h2 (2.6)

Typically, all neurons in one hidden layer apply the same
activation function g(x) (to enable this computationally efficient
vectorization), and that is usually also kept consistent for all
hidden layers in a network. Essentially, a neural network is a
chain of matrix-vector multiplications, or as Ronan Collobert
put it in one of his lectures:

Deep learning is just a buzzword for neural nets, and
neural nets are just a stack of matrix-vector multi-
plications, interleaved with some non-linearities. No
magic there. (Collobert, 2011)
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As already mentioned above, the power of NNs comes from
the non-linear activation functions, for which the sigmoid func-
tion is only one example. There are others, such as hyperbolic
tangent (tanh) or the rectified linear unit (ReLU), which is fre-
quently employed.

While the hidden layers in a NN apply non-linear feature
transformations of their inputs, the last layer, referred to as
output layer, makes the actual class predictions. For this, typi-
cally the softmax function is used to normalize the output to a
probability distribution over the predicted classes. The softmax
function (equation 2.7) is a generalization of the sigmoid func-
tion for multiple dimensions. The output for each class label yj
is a value between 0 and 1, and these probabilities for all classes
sum to 1.

�(xi) =
exi

P
j e

yj
(2.7)

Training and optimization How a neural networks ‘learns’ to
fulfill its task is usually referred to as training and is an iterative
procedure. It consists of a forward pass and a backward pass
through the network and is repeated either for a certain number
of iterations (or epochs) or until a predefined stopping criterion
is reached. The forward pass is simply the calculation of the
network’s output given a training sample as input, as shown in
equations 2.4-2.6. Then the predicted output is compared to the
original label of the sample (by means of a loss function) and in
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the backward pass the networks weights are updated to improve
its predictions. This is done with an algorithm called backprop-
agation, which is the layer-wise computation of the gradient of
the loss function with respect to the network weights.

The procedure of finding optimal parameters, i.e. network
weights, is called optimization and is solved with gradient-based
optimization algorithms, such as gradient descent. The basic
principle of gradient descent and its variants is to update the
parameters in the direction of the negative gradient of the loss
function in order to find the global minimum of this loss surface
and therefore minimize the prediction error on a given training
dataset. These parameter updates are normally done on small
batches (so called minibatches) of the training data at once, in
order to reduce the computational cost of calculating the loss
function over the entire dataset. The learning rate of gradient
descent determines the magnitude of the updates – the smaller
the learning rate, the longer it takes for the algorithm to con-
verge to the minimum; but if the learning rate is too large, it can
cause gradient descent to ‘overshoot’ and might even increase
the loss and cause instability. There are optimization algorithms
that are based on adaptive learning rates, for example the Adam
algorithm (Kingma and Ba, 2015), which was used for neural
network training throughout the experiments presented in this
thesis.
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One problem that ML algorithms often face due to their large
number of parameters is overfitting, that is the effect that a
model learns to perfectly predict the training data at the cost
of poor generalization. Consequently, the model is ‘overfitted’
to the training data and performs poorly on unseen test sam-
ples. To prevent this from happening, regularization needs to
be applied. A traditional approach for this is to add a so called
regularization term R to the loss function, which puts certain
constraints on the learned parameters. One commonly used
example of this is the squared L2 norm of the weight matrix,
RL2 = ||W ||22 =

P
(Wi,j)2. Adding this to the loss function reg-

ularizes the parameters in W towards zero (with the effect that
unnecessary connections in the neural network might even be-
come canceled out effectively). Another widely used approach to
regularization, which was also applied in the models described
in this thesis, is dropout (Srivastava et al., 2014). With this
method, a certain number of neurons is ‘droppped out’, i.e. set
to zero, during the forward and backward pass at random. More
technically, at each training iteration, individual neurons are ei-
ther dropped out with probability p or kept unchanged with
probability 1 � p, where p is referred to as dropout rate (or
sometimes the terms are reversed and p is called keep rate).
The higher the dropout rate, the more constrained or regular-
ized the network will be. With dropout, a neural network learns
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more robust and generalizable feature representations that do
not rely too much on individual neurons.

2.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special kind of NN
that use an operation called convolution instead of general ma-
trix multiplication in at least one layer. CNNs operate on mul-
tidimensional input and are well known for their successful ap-
plications in computer vision, but are also widely used within
NLP and speech processing (cf. section 3.1).

The convolution operation in a CNN is sometimes called a
‘sliding dot product’ because it involves taking the dot prod-
uct between the input I and the kernel K, while the kernel is
sliding through the input. For a two-dimensional convolution,
this operation can be formally expressed as in Goodfellow et al.
(2016), chapter 9:

S(i, j) = (K ⇤ I)(i, j) =
X

m

X

n

I(i+m, j + n) ·K(m,n) (2.8)

where S denotes the output (feature map), i and j are itera-
tors over the input matrix I, and m and n iterate over the 2D-
kernel K. Note, that equation 2.8 strictly represents a function
called cross-correlation, which is essentially convolution with a
reversed kernel. For more details on the relation between convo-
lution and cross-correlation and on the differences in notation,
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see Goodfellow et al. (2016), chapter 9. We use the formal rep-
resentation in equation 2.8 because we find it is most intuitive
to understand (in conjunction with the example in Figure 2.4).
In the machine learning context, the cross-correlation function
is ususally also called convolution, and the fact that the kernel
is ‘flipped’ is not important for practical purposes (because the
kernel weights are learned during training anyway).
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13 14 15 16
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i m
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Figure 2.4: Illustration of the convolution operation in CNNs.

Figure 2.4 illustrates the convolution with an example; the
colored areas in the input correspond to the convolved outputs
in the resulting feature map with the same color. The distance
with which the kernels are moved is called stride (set to 1 in
the example). Note, that one convolutional layer in a CNN con-
tains not only one, but many kernels, which learn to represent
different aspects of the input.

Due to their design, CNNs have a number of useful and ad-
vantageous properties, especially that they are able to learn pat-
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terns in the input independent of their particular position, scale
and possible rotation.

2.4.3 Autoencoders

Autoencoders (AEs) are a type of neural networks that is suit-
able for unsupervised representation learning (RL). AEs are
trained to reconstruct (or attempt to copy) their input, given
certain constraints. A basic autoencoder consists of two parts,
the encoder and the decoder. The encoder is trained to learn
a mapping function h = f(x), where x is the input and h de-
notes a code that is used to represent the input. Then, the
decoder produces the reconstruction r = g(h) from this code.
The overall objective is to minimize the loss function

L(x, g(f(x))), (2.9)

which penalizes g(f(x)) from being dissimilar from x. This
could for example be the mean squared error (MSE) between
the two terms.

While simply copying the input to the output seems useless,
the constraints that are imposed to the AE are what makes it
useful. Normally, we are not interested in the output r = g(h)

itself, but in the code h. One classical variant is the under-
complete autoencoder, which was also used for the experiments
presented in chapter 4. Here, the constraint is that h has a
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(much) smaller dimension than the input x (also called bottle-
neck layer). By that, the model is forced to capture the most
salient features of the input, and therefore to learn a compact
representation. This learned representation can then be utilized
for other downstream tasks.

2.4.4 Generative Adversarial Networks

Generative adversarial networks (GANs), introduced by Good-
fellow et al. (2014), are not one specific type of NN, but rather
describe a class of adversarial machine learning frameworks,
which can be implemented in many ways with a variety of NNs.
The basic principle of GANs is that two neural networks play
a minimax game, where one network’s gain is the other one’s
loss. The idea of adversarial networks is not new (Schmidhu-
ber, 2020), but arguably has become very popular and sucessful
with the introduction of GANs and their many variants in recent
years.

GANs represent a different type of modeling approach from
what we have looked at so far; as their name suggests, they
belong to the class of generative models, as opposed to discrim-
inative models. While discriminative models are designed to
learn the conditional probability p(y|x), i.e. what is the prob-
ability of label y given features x, generative models learn the
joint probability p(x, y) (cf. Ng and Jordan (2002)). Hence,
generative models can not only be used for classification (by us-
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ing Bayes’ theorem), but also for generating samples, i.e. draw
samples from this learned distribution.

The intuition behind GANs is the following: a generator net-
work G samples from some random distribution and attempts
to output (generate) samples that are indistinguhisable from a
certain target data distribution. On the other hand, the discrim-
inator network D is trained to tell apart the real samples from
the ones generated by G. Both networks are trained jointly. An
illustrative metaphor, which is frequently used to explain this
principle (Marr, 2019), is that G is a blind art forger, who does
not know how real master pieces look like, but still wants to pro-
duce paintings that look similar – D is a detective who judges
whether G’s paintings are real or fake, and all what G knows is
the detective’s assessment. Iteratively, by producing thousands
of paintings and receiving D’s judgement, the art forger learns
to fool the detective, who in turn also becomes better and better
at telling apart real from fake paintings.

The technical details of the GAN variant that we have used
for experiments in chapter 4, such as the loss functions and
training procedure, are provided in section 4.2.2.
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3 Speech Emotion
Recognition with
Convolutional Neural
Networks

Thus, I may speak of “recognizing emotions”
but this should be interpreted as “measuring
observations of motor system behavior that
correspond with high probability to an
underlying emotion or combination of
emotions.”

Rosalind Picard, Affective Computing,
Technical Report, 1995

In this chapter we present an attentive convolutional neural
network (ACNN) with multi-task learning objective function,
proposed in Neumann and Vu (2017). This model builds the
foundation for several experiments presented in this thesis.
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First, in section 3.1 the most relevant related work is sum-
marized, in whose context our approach and the experiments
came into being. Section 3.2 contains the details of the ACNN
model, including its attention mechanism and the multi-task
learning approach. The datasets for model training and evalu-
ation, including preprocessing and acoustic feature extraction,
are described in section 3.3.

The first series of experiments, presented in section 3.4, is
concerned with three different aspects of the input data to the
network. We compare and analyze the classification accuracy
using: (a) different lengths of the input signal, (b) different types
of acoustic features and (c) different types of emotional speech
(improvised play vs. scripted conversations, cf. Figure 2.2 on
page 33). The experimental results on the Interactive Emotional
Motion Capture (IEMOCAP) database show that the recogni-
tion performance strongly depends on the type of speech data,
independent of the choice of input features. Further, emotion
recognition appears to be possible with only a short snippet of
an utterance (e.g. 2 seconds) because the accuracy decreases
only slightly compared to the full input length.

The second series of experiments, presented in section 3.5, is
concerned with cross- and multilingual SER. We investigated
cross-lingual and multilingual experimental setups, as a step
towards language-independent emotion recognition in natural
speech. Experiments on English and French speech data with
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similar characteristics in terms of interaction (human-human
conversations) are presented. Besides pure cross-lingual (train
on language A, apply to language B) and multilingual (train
and test on the union of both corpora) settings, we explored
the possibility of fine-tuning a pre-trained cross-lingual model
with a small number of samples from the target language, a
relevant scenario for low-resource languages. The results show
that multilingual as well as fine-tuned cross-lingual models yield
reasonable results for arousal prediction, whereas valence pre-
diction appears to be more sensitive to language differences. An
analysis of the learned attention weights in the ACNN’s atten-
tion layer shows that the highest attention lays mostly on the
beginning of a speech signal.

3.1 Related work

3.1.1 Neural Networks for Speech Emotion
Recognition

As for many tasks in speech and natural language processing,
neural networks have become the state-of-the-art method for
SER in the research community during the last decade. First
work on recurrent neural networks for SER was published al-
ready in 2008 (Wöllmer et al., 2008), but looking at the numbers
of publications and the growing variety of research directions
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related to neural networks and SER, these various approaches
really started to gain traction around 2013. At that time, neural
networks have been shown to significantly boost emotion recog-
nition performance, including Deep Belief Networks (DBN), hy-
brid deep neural network–hidden Markov model (DNN-HMM)
frameworks, and deep autoencoders (Cibau et al., 2013; Li et al.,
2013; Huang et al., 2014; Han et al., 2014; Xia and Liu, 2015).

Convolutional neural networks (CNN) proposed by Waibel
et al. (1989) and Le Cun et al. (1990) are a special kind of
neural networks that have been successfully used not only for
computer vision but also for speech processing (Abdel-Hamid
et al., 2012; Sainath et al., 2013, 2015) and NLP (Collobert
et al., 2011; Kim, 2014; Kalchbrenner et al., 2014). For speech
recognition, CNNs proved to be effective in modeling correla-
tions in time and frequency in spectral representations (Sainath
et al., 2015) and robust against noise compared to other neural
network models (Palaz et al., 2015). Furthermore, Sainath and
Parada (2015) showed that CNNs are suitable for small memory
footprint keyword spotting due to the parameter sharing mech-
anism. Therefore, because of a smaller number of parameters,
CNN models can be trained with a smaller amount of training
data than conventional DNN models.

First work on speech emotion recognition with CNNs was
presented in 2014. Mao et al. (2014) proposed feature learning
using a sparse autoencoder to learn CNN kernels in an unsuper-
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vised fashion, which are then applied on spectrograms to extract
local invariant features. In the following years, the number of
publications about CNNs for SER increased steadily (cf. for ex-
ample Zheng et al. (2015); Anand and Verma (2015); Xue et al.
(2015); Bertero et al. (2016); Fayek et al. (2016)). Several stud-
ies (Keren and Schuller, 2016; Trigeorgis et al., 2016; Lim et al.,
2016) presented CNNs in combination with Long Short-Term
Memory models (LSTM) to improve speech emotion recogni-
tion based on log Mel filter banks (lMFBs) or raw audio signal.
Trigeorgis et al. (2016) demonstrated an end-to-end training
from raw signal, dropping the step of manual feature extraction
completely.

Attention mechanisms were first employed primarily in re-
current neural networks that had been successfully applied to
a wide range of tasks such as handwriting generation (Graves,
2013), machine translation (Bahdanau et al., 2015), image cap-
tion generation (Xu et al., 2015) and speech recognition (Chorowski
et al., 2015). Inspired by this, attention mechanisms had also
been proposed for CNNs in NLP tasks (Adel and Schütze, 2017;
Meng et al., 2015; Yin et al., 2016). These mechanisms are es-
pecially helpful when the input signal is rather long or complex.
To combine the strengths of CNNs with an attention mecha-
nism, we proposed the attentive convolutional neural network
for speech emotion recognition.
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3.1.2 Cross-corpus and Cross-lingual Emotion
Recognition

A common approach to automatic emotion recognition is to
train and test a classifier on one annotated (mostly mono-lingual)
corpus, either by subdividing the data into train, validation and
test sets or by means of cross validation. This way, the system
is highly specialized with respect to multiple factors, such as
the speaker group, the recording situation, the language, and
the type of speech (spontaneous or acted). Further, no conclu-
sions can be drawn to what extend such a system can generalize
across different interaction scenarios and languages. One rela-
tively simple method to assess this generalization ability is to
evaluate a machine learning model on a separate dataset, which
has different properties than the training data. One case of
such cross-corpus evaluation, which we investigate in the last
part of this chapter, is the cross-lingual setting, meaning that
the datasets differ in language.

Various cross-corpus analyses have been conducted with re-
gard to SER (Schuller et al., 2010b; Lefter et al., 2010; Eyben
et al., 2010b; Polzehl et al., 2010; Schuller et al., 2011d,c). It
has been shown that cross-corpus classification is feasible in gen-
eral, but leads to performance drops in many cases compared to
within-corpus evaluation (Lefter et al., 2010; Jeon et al., 2013).
Eyben et al. (2010b) pointed out that for cross-corpus train-
ing it is crucial to find out which corpora are generic enough
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to be included and which ones are too specific. In an exten-
sive study with six corpora Schuller et al. (2010b) examined
many different combinations of corpora as training set, empha-
sizing the variety in conditions and therefore the transferabil-
ity of conclusions to real-world applications. Closely related to
that, Feraru et al. (2015) presented a comprehensive overview
using data from eight languages and showed that cross-lingual
emotion recognition is feasible, but with notably lower accuracy
than mono-lingual recognition, especially for valence prediction.
These studies give an overall impression on the performance of
cross-corpus emotion recognition, however, they make the in-
terpretation of results difficult because of these many factors of
variation in the data. In contrast, the herein presented experi-
ments focus on a more narrow comparison between two corpora
that differ in language but match the interaction type (human-
human) and are close to each other in the degree of natural,
spontaneous speech.

A closely related task is multilingual emotion recognition,
that is merging data from different languages into one dataset
for training a model. It has been shown previously that the
performance of a multilingual system is inferior compared to
monolingual models (Hozjan and Kačič, 2003). In this early in-
vestigation, authors used the InterFace datasets (Hozjan et al.,
2002), which contain data from four languages. Since these
datasets consist of acted speech from only two to three speak-
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ers per language, the general validity of these findings is ques-
tionable. Kim et al. (2017a) combined seven emotional speech
datasets; as mentioned before, this means that there are many
factors of variation, e.g. acted vs. spontaneous speech, different
annotation schemes, or different types of interaction (human-
computer vs. human-human). There are also approaches to
multilingual emotion classification that involve multiple models.
For example, Sagha et al. (2016) presented a two-step procedure
of first identifying the language and then selecting a language-
specific model. In contrast to this, we examined the performance
of one model trained on multiple languages.

3.2 Method

The attentive convolutional neural network is depicted in Fig-
ure 3.1 on the next page. It consists of two main parts: a CNN
with one convolutional and one pooling layer, and an attention
layer. The CNN learns a representation of the audio signal,
while the attention layer computes the weighted sum of all the
information extracted from different parts of the input. The
output from the pooling layer and the attention vector are then
fed into a fully connected softmax layer.
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Figure 3.1: ACNN for speech emotion recognition, Classifier
(CLF) 1 predicts emotional categories, CLF 2 and
3 predict arousal and valence categories (multi-task

learning).
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Convolutional Neural Network

To form the input matrix for the CNN, the audio signals are
divided into s overlapping segments, each represented by a d-
dimensional feature vector. Thus, each utterance is represented
as an input matrix I 2 Rd⇥s. The number of segments s de-
pends on the signal length as well as on the window size and
overlap between frames. The particular details also vary for the
implemented feature sets and are found in section 3.3. For the
convolution operation (equation 3.1), 2D kernels K (with width
|K|), spanning all d features, are applied. As a result, the output
of the convolutional layer is a vector that represents features on
the temoporal dimension. The reason for this ’one-dimensional’
approach is that we use different types of pre-processed features
(such as MFCCs and the LLDs of the eGeMAPS feature set)
for which the ’spatial’ relations in the feature dimension are not
necessarily clear. Hence, the intuition is that more meaningful
information can be extraced when looking at all features within
a certain time window.

(K ⇤ I)(i, j) =
d�1X

m=0

|K|�1X

n=0

I(i+m, j + n) ·K(m,n) (3.1)

After the convolution, a max pooling layer is applied to fur-
ther reduce the output the most salient features. Then, all fea-
ture maps are concatenated to form one final feature vector.
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Attention Mechanism

The attention layer in the ACNN model is based on the attention
mechanism introduced in Bahdanau et al. (2015) and inspired
by the work presented in Adel and Schütze (2017).

As depicted in Figure 3.1 on page 63, the output of the max
pooling layer is formed by stacking all feature maps (the number
of feature maps equals the number of kernels that are employed
in the convolutional layer). We now view each column of this
matrix as the feature vector xi at time step i. For each vector
xi in this sequence x, the so-called attention weights ↵i can be
computed with equation (3.2), where f(x) is the scoring func-
tion.

↵i =
exp(f(xi))P
j exp(f(xj))

(3.2)

In this work, f(x) is the linear function f(x) = W Tx, where
W is a weight matrix, i.e. a parameter that is learned during
model training. Following the terminology in Adel and Schütze
(2017), the feature map matrix x in this case is both the fo-
cus and source of the attention mechanism, i.e. the attention
weights are learned based on the information in the feature maps
and are then applied to them. The output of the attention layer,
attentive_x, is the weighted sum of the input sequence (equa-
tion (3.3)).

attentive_x =
X

i

↵ixi (3.3)

65



CHAPTER 3. SPEECH EMOTION RECOGNITION

The intuitions behind using this attention mechanism for emo-
tion recognition are two-fold: a) speech emotion recognition is
related to sentence classification with emotional content being
differently distributed over the signal and b) the emotion of the
whole signal is a composition of emotions from different parts
of the signal. Therefore, attention mechanisms are suitable to
first weight the information extracted from different pieces of
the input and then combine them in a weighted sum. However,
because the input signal is noisy with regard to expressed emo-
tions and can be very long, a max pooling layer is still helpful to
only select the most salient features and filter noise. Therefore,
we combine the CNN output vector after max pooling with the
attention vector for the final softmax layer.

Multi-task Learning

As introduced in section 2.1, two types of emotion represen-
tation are predominantly used for SER, namely categorical la-
bels (e.g. anger, happiness) and continuous labels in the 2-
dimensional arousal/valence space. In Xia and Liu (2015), it
was shown that multi-task learning (MTL) with both categor-
ical and continuous labels for training can improve prediction
results. Similar to this approach, we train the model with cat-
egorical labels as primary (target) classes, and use arousal and
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valence labels as secondary, auxiliary target.1 Each training
sample s is represented as [xs, (ye,s, ya,s; yv,s)], where xs is the
feature representation, and ye,s, ya,s, yv,s are the associated cate-
gory, arousal and valence labels. Equation 3.4 shows the overall
objective function of the model, where N is the number of sam-
ples and hl,s the output of the last hidden layer for sample s.

J =
1

N
(1� ↵� �) ·

NX

i

�log(P (ye,s|hl,s))

+↵ ·
NX

s

�log(P (ya,s|hl,s)) + � ·
NX

s

�log(P (yv,s|hl,s))

(3.4)

Two parameters ↵ and � are used to control the relative impact
of the auxiliary arousal and valence labels separately.

3.3 Data and Acoustic Features

Datasets The first series of experiments (feature sets and sig-
nal length analysis) was conducted and evaluated on the IEMO-
CAP database (cf. section 2.2 for details). In order to be com-

1In Neumann and Vu (2017) we used the term multi-view learning instead
of multi-task learning. Both can be somehow misleading in this context,
because it is about mulitple emotion representations (labels) of the same
data. So, while being essentially the same task of emotion classification,
the term multi-task learning describes it correctly, because two different
sets of labels are learned from a shared data representation.
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parable to related work and because some of the ten emotion
classes in IEMOCAP contain only very few samples, the same
four classes as in Xia and Liu (2015); Jin et al. (2015); Ghosh
et al. (2016b); Rozgic et al. (2012); Gideon et al. (2017) are
used: anger, happiness, sadness, and neutral state, where hap-
piness and excitement were merged into one class. The dataset
contains two types of speech: improvised and scripted. To in-
vestigate performance differences between these two, we report
results for three subsets from the data: only improvised (2,943
utterances), only scripted (2,588 utterances), and all sessions
(5,531 utterances). Table 3.1 presents the class label distribu-
tion of each subset.

Anger Happiness Neutral Sadness
improvised 289 947 1,099 608

sctipted 814 689 609 476P
1,103 1,636 1,708 1,084

Table 3.1: Label distribution of IEMOCAP and its subsets.

One restriction of using a CNN is that the sample length
has to be equal for all samples. For this reason, we set the
sample length to 7.5s, which corresponds approximately to the
mean utterance duration plus standard deviation.2 Longer turns
are cut at 7.5s and shorter ones are padded with zeros at the
end. Using this threshold, most speech material is included

2The mean length of all turns is 4.46s (max.: 34.1s, min.: 0.6s)
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without having too much zero padding (which would slow down
the training considerably).

As auxilliary labels for the MTL approach arousal and va-
lence labels are used. They are represented as Likert-scale scores
ranging from 1 to 5, and because the mean across annotators
is taken, real numbers are possible. To avoid having too many
classes, we group them into three categories each by applying the
same range mapping as in Metallinou et al. (2012): low: [1,2];
medium: (2,4); high: [4,5]. The class distribution for arousal is:
13.1% low, 68.1% medium, and 18.8% high. The distribution
for valence is: 28.3% low (negative), 47.2% medium (neutral),
and 24.5% high (positive).

For the second series of experiments (cross- and multilingual),
the RECOLA corpus (cf. section 2.2 for details) is used as
second dataset in addition to IEMOCAP. The main criterion
for selecting the data was that both corpora contain the same
type of speech in terms of conversation type (human-human)
and naturalness.

RECOLA is annotated with continuous labels for arousal and
valence in the range [-1, 1] on a 40ms rate. Since we are inter-
ested in recognition of emotions on utterance level, we calculated
the mean of all values for one turn, and then took the average
across all annotators as the final label.

To be able to train a model on several corpora, the different
annotation schemes have to be mapped to a unified form. We de-
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Arousal Valence
Low High Negative Positive

IEMOCAP 3,121 6,918 5,356 4,683
RECOLA 520 788 241 1,067P

3,641 7,706 5,597 5,750

Table 3.2: Distribution of binary arousal and valence labels in
IEMOCAP and RECOLA.

cide to focus on a binary classification task of arousal (low/high)
and valence (negative/positive). The mapping of original anno-
tations to a binary scheme is as follows: IEMOCAP annotations
in the range [1, 2.5] are mapped to low/negative and scores
within (2.5, 5] to high/positive; for RECOLA the respective
ranges are [-1, 0] and (0, 1]. The resulting distribution of these
binary labels is shown in Table 3.2.

Acoustic Features In order to analyse and compare the emo-
tion recogntion performance of a CNN with different feature
sets, we assessed the ACNN’s performance using the following
four feature sets: (a) 26 lMFBs, (b) 13 MFCCs, (c) a small
prosody feature set, and (d) eGeMAPS: the extended Geneva
minimalistic acoustic parameter set. For all feature sets stan-
dardization (also known as z-score normalization) was applied
for each speaker independently.

The openSMILE toolkit (Eyben et al., 2013) was used to ex-
tract all features. For filter banks, MFCCs, and prosody fea-
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tures, the audio signal is segmented into 25ms long frames with
a 10ms shift. To extract filter banks, a Hamming window is
applied and the fast Fourier transform (FFT) with 512 points is
computed. Then, the logarithmic power of 26 Mel-frequency fil-
ter banks over a range from 0 to 6.5kHz is computed. Finally, to
retrieve MFCCs from these lMFBs, a discrete cosine transform
is applied and the first 13 MFCCs are kept as features.

The prosody feature set is motivated by the question, how well
SER can be performed with the proposed model using a min-
imalistic set of only seven prosody-related features (compared
to the other, more informative features). We extracted the fol-
lowing features: PCM loudness, envelope of F0 contour, voic-
ing probability, smoothed F0 contour, local (frame-to-frame)
jitter, differential jitter, and local shimmer. This choice was
based on the Interspeech 2010 Paralinguistic Challenge feature
set (Schuller et al., 2010a), from which we selected only the
prosody-related LLDs and removed all other feature types (e.g.
MFCCs) and functionals.

The eGeMAPS feature set is an 88-dimensional utterance-
level representation (cf. section 2.3 for details) As input the the
ACNN model, we did not apply functionals, but extracted only
the 25 frame-by-frame LLDs, which are the basis for eGeMAPS.
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3.4 Analysis of Input Features, Signal

Length, and Speech Type

3.4.1 Experimental Setup

The IEMOCAP dataset consists of five sessions with one male
and one female speaker each. To train the models in a speaker-
independent manner, we use leave-one-session-out cross valida-
tion. Data from 8 speakers is taken to construct training and
development sets and the remaining two speakers’ data consti-
tute the test set.

To investigate the impact of signal length on the performance,
models were trained and tested with decreasing utterance length
by cutting the speech signals at 7, 6, 5, 4, 3, 2, and 1 seconds,
respectively.

The CNN models were implemented with the Theano library
(Bergstra et al., 2010; Bastien et al., 2012). For optimization
we used stochastic gradient descent with an adaptive learning
rate, known as Adam (Kingma and Ba, 2015). For regular-
ization dropout is applied to the last hidden layer (Srivastava
et al., 2014). The system’s hyper-parameters were tuned in a
grid search, assessing the accuracy on the validation set. The
final hyper-parameters are the following: 100 kernels of width 5
(spanning 5 input frames) and 100 kernels of width 10, resulting
in a total of 200 feature maps; a mini-batch size of 30 for lMFBs,
prosody and eGeMAPS, and 50 for MFCC features; a dropout
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rate of 0.8; a pool size of 30, and stride of the convolution op-
eration of 3 for all configurations. The reason for the seemingly
large size of the pooling window for the max-pooling layer is the
large amount of overlap in the feature maps, especially with a
kernel width of 10 and stride of 3. Multi-task learning can be
switched off by setting ↵ = � = 0.0 (i.e. arousal and valence in-
formation is not considered) without changing anything in the
model structure. We will refer to this setting as single-task
learning (STL) in the remainder of this chapter. For MTL we
set ↵ = � = 0.3. All models were trained for 100 epochs, and we
selected the model parameters and results from the epoch with
the highest accuracy on the validation set. This essentially cor-
responds to early stopping (Morgan and Bourlard, 1989) with
infinite patience, i.e. there is no specific stopping criterion, but
training runs for the complete number of determined epochs.
The main reason for this approach was a considerable amount
of loss oszilation throughout the training procedure. However,
while this can easily be done with small neural networks on
small datasets, it is not advisable for larger problems where the
absence of a reasonable stopping criterion potentially leads to a
big increase in training time and use of computational resources.
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3.4.2 Results

Differences between Scripted and Improvised
Conversations and Comparison of Input Features

CNN Attentive CNN
Features (dim.) STL MTL STL MTL
lMFB (26) 58.37 (61.71) 61.27 (62.06) 60.20 (61.95) 58.76 (62.11)
MFCC (13) 58.22 (61.31) 59.98 (61.35) 58.30 (60.85) 58.16 (61.35)
eGeMAPS (25) 58.27 (60.25) 58.96 (60.28) 59.53 (60.26) 59.87 (61.27)
Prosody (7) 51.27 (56.34) 51.12 (56.33) 51.27 (57.11) 51.33 (57.12)

Table 3.3: Results on improvised sessions; unweighted average
recall (weighted accuracy in parentheses).

CNN Attentive CNN
Features (dim.) STL MTL STL MTL
lMFB (26) 48.22 (51.07) 50.12 (51.64) 50.44 (52.64) 50.93 (51.70)
MFCC (13) 50.78 (52.35) 52.21 (53.01) 52.39 (53.19) 51.94 (52.72)
eGeMAPS (25) 50.70 (51.84) 50.81 (52.82) 50.10 (52.31) 52.81 (53.19)
Prosody (7) 48.12 (49.17) 46.64 (48.76) 48.36 (48.69) 46.80 (49.02)

Table 3.4: Results on scripted sessions; unweighted average
recall (weighted accuracy in parentheses).

For all experiments, the results are presented as unweighted
average recall (UAR) and as weighted accuracy (WA). WA rep-
resents the accuracy on the whole test set, i.e. the ratio of
correctly predicted samples to the total number of samples. It
is referred to as weighted accuracy because the class distribu-
tion in the data affects it, meaning that the accuracy is weighted
by class size. For example, misclassifying all samples of a class
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CNN Attentive CNN
Features (dim.) STL MTL STL MTL
lMFB (26) 55.75 (55.38) 58.08 (55.92) 57.54 (54.86) 58.98 (56.10)
MFCC (13) 57.12 (55.33) 57.82 (55.74) 57.54 (55.12) 57.32 (55.40)
eGeMAPS (25) 56.52 (54.73) 56.09 (54.71) 57.03 (54.93) 56.98 (54.78)
Prosody (7) 49.81 (48.90) 49.33 (48.79) 50.54 (48.99) 50.73 (49.13)

Table 3.5: Results on the complete dataset; unweighted
average recall (weighted accuracy in parentheses).

that has only few samples does have only little impact on the
overall result. In contrast to that, UAR represents the average
of the individual class recalls. Because the class recalls (num-
ber of correct samples within a class divided by total number
of samples within that class) are computed first and then aver-
aged, every class has the same impact on the result. Contrary to
the publication in which these experiments were first presented
(Neumann and Vu, 2017), we want to focus on UAR here, as this
metric is known to be better suited when working with unbal-
anced data. For the sake of comparison with the original results
and as basis for further discussion on performance metrics, both
UAR and WA are presented in Tables 3.3-3.5.

Improvised speech: The results for the improvised subset of
the data are shown in Table 3.3 on the preceding page. The
best performance is reached with lMFBs. In terms of UAR, the
CNN with MTL performs best with 61.27%; in terms of WA,
the ACNN with MTL performs best with 62.11%.
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Scripted conversations: The results for scripted conversa-
tions (Table 3.4 on page 74) are overall notably lower than for
improvised speech. For this subset of the data, MFCC and eGe-
MAPS features lead to higher accuracies than lMFBs. However,
all results are in a narrow range. In terms of UAR, the best
result of 52.81% is achieved with the ACNN with MTL using
eGeMAPS features; the highest WA (53.19%) is achieved with
the ACNN (MFCC with STL and eGeMAPS with MTL).

Complete dataset: The results for the full IEMOCAP dataset
(Table 3.5 on the previous page) lie inbetween those of the sub-
sets, as one would expect. Using MFCC and lMFB features
yields similar results, the accuracy with eGeMAPS is slightly
lower, whereas prosody features perform notably worse. The
best result is achieved with lMFB features using the ACNN
with MTL (58.98% UAR, 56.10% WA).

General findings: The following summary of the results refers
to the UAR results, as these are more meaningful in the context
of unbalanced data. We will discuss differences between UAR
and WA results further below. All results show that the prosody
feature set yields notably lower results than cepstral features
like lMFB and MFCC. We assume that the prosody feature set
simply contains too little information (only seven features) to
compete with the others. The performance differences between
lMFB, MFCC and eGeMAPS are generally small. This suggests
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that a CNN model is able to learn high-level features equally well
from these different input representations.

The proposed multi-task learning setup yields small improve-
ments in certain constellations, for example with lMFB features
on the complete dataset (Table 3.5), but at the same time
it deteriorates the results in other cases. One potential rea-
son for these results is that the secondary task of predicting
arousal/valence levels is so closely relatded to the main task,
that it cannot generate beneficial additional information in the
learning process.

Similarly to MTL, the results with and without attention
mechanism do not show significant differences. There are small
improvements in some cases, in particular for the STL setup.

Looking at the results through the lens of the two performance
metrics UAR and WA, the importance of considering a suitable
metric becomes evident. Depending on which one is chosen,
the results are viewed in a different light, particularly when we
compare Tables 3.3-3.5 to each other. While for the complete
dataset (Table 3.5), UAR is higher than WA in all configura-
tions, the opposite is the case for the two subsets of improvised
and scripted dialogs.3 The reason for this is the strongly unbal-
anced class distribution in these subsets (shown in Table 3.1 on
page 68).

3Average difference across all results per table (as WA � UAR): impro-
vised: 2.92%, scripted: 1.42%, all: -1.77%
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Overall, our proposed model performs better on improvised
play than on the scripted conversations, independent of the fea-
ture choice. Above all, these findings show that SER can be very
sensitive to the type of speech data. This is in line with findings
by Tian et al. (2015), who concluded that ‘the performance of
features and models is largely influenced by the dialogue type
and the size of the data set’. Hence, it is important to carefully
select suitable training data for a particular application and –
even more so – to develop machine learning models that are
robust against varying kinds of speech.

Model Performance for Decreasing Signal Length

In this experiment, we used the ACNN model with MTL to
perform emotion recognition on data of different sample length.
lMFB and MFCC features were used because they provided the
best results in the previous investigation. Now we attempt to
answer the question how long a system should wait to make a
prediction. In other words, is it possible to predict the emotional
state of a speaker before she finished the utterance? This can be
beneficial or even critical in real-time applications. The results
are presented in Figure 3.2 on the next page.

Generally, the accuracy decreases with shorter sample length
– as one would expect because less information is available.
Comparing lMFB and MFCC features, there are no large de-
viations, only smaller variations. However, when comparing the
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Figure 3.2: System performance with decreasing signal length.

speech types (i.e. the data subsets), we observe a notable differ-
ence in the performance decline between improvised and scripted
speech, especially with lMFBs. The absolute difference in ac-
curacy between longest (7.5s) and shortest (1s) input is 3.4%
on improvised and 7.5% on scripted data. These results sug-
gest that the improvised speech utterances are more likely to
carry emotional content in the first seconds already, compared
to the scripted speech. In general, these are promising findings,
showing that a relatively short snippet of a speech signal can be
sufficient to perform emotion recognition with only a small loss
in accuracy.

79



CHAPTER 3. SPEECH EMOTION RECOGNITION

3.4.3 Error Analysis

In this section we take a closer look at the results in terms of
error patterns by analyzing the predictions of the ACNN with
multi-task learning and lMFBs as input. Figures 3.3a-3.3c show
the corresponding confusion matrices; the results are averaged
across the five cross validation folds.4

For improvised speech (Figure 3.3a) one considerable obser-
vation is that the model predicts happiness for 45.82% anger
samples. First and foremost, this is due to the skewed class dis-
tribution in the improvised and scripted subsets of IEMOCAP
(cf. Table 3.1); the class anger is strongly underrepresented in
improvised sessions, which leads to a bias towards predicting
the overrepresented classes happiness and neutral state. Fur-
thermore, the seemingly counter-intuitive mistake of confusing
anger and happiness becomes more plausible when considering
the arousal-valence space. Both classes exhibit a high arousal
level. Hence, the system’s frequent confusion is also due to
the fact that valence is harder to predict than arousal (Schuller
et al., 2009a; Trigeorgis et al., 2016; Eyben et al., 2016). The
class sadness is predicted best (73.15%). This observation is
in line with findings in Busso et al. (2008). Further, the neu-
tral class is frequently confused with other classes. This seems

4The numbers in the presented confusion matrices differ slightly from
those in Neumann and Vu (2017) because some experiments were re-
run for the present analysis. The overall findings and conclusions of
this error analysis are not affected by this.
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(a) Improvised sessions. (b) Scripted sessions.

(c) All sessions.

Figure 3.3: Error distribution of the ACNN predictions (lMFB
features, multi-task learning).

plausible because the neutral state is located in the center of
the arousal-valence space, which makes the discrimination from
other classes more difficult.
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In contrast, for scripted sessions the recall for anger is notably
higher (anger is the majority class in this case), and relatively
low for sadness and happiness. In general, there are more errors
in almost all classes. The main reason for the high discrepancy
in the class anger is the different class distribution as described
above. However, this does not entirely explain the differences
in predictions of the other classes. The analysis suggests that
the improvised utterances might generally be more variable and
therefore make it easier to discriminate affective states. This
conclusion is also supported to some extend by the results in
Figure 3.2, which show that the performance loss is relatively
small for shorter input signals on the improvised speech subset.
Another observation worth noting is the high percentage of sad-
ness samples predicted as happiness (22.78%). To find out the
reason for this frequent confusion, further analysis is necessary.

The error distribution on the complete dataset (Figure 3.3c)
lies between those seen in Figures 3.3a and 3.3b. There are sim-
ilar patterns as for improvised data, but the confusion between
anger and happiness is not as severe.
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3.5 Multilingual and Cross-Lingual

Speech Emotion Recognition

3.5.1 Experimental Setup

For the multi- and cross-lingual experiments the following four
settings are investigated: (a) mono-lingual baseline models, (b)
multilingual models (merge the datasets RECOLA and IEMO-
CAP for training), (c) cross-lingual models (trained on one cor-
pus and tested on the other one), and (d) fine-tuning of a cross-
lingual model on a small number of samples from the target
dataset.

Mono-lingual and multilingual models were evaluated in a
cross validation (CV) scheme because there are no predefined
train and test splits for these datasets. The IEMOCAP data
consists of five sessions with one male and one female speaker
each. As in the previous experiments, data from four sessions
is used to construct training and development sets and the re-
maining session is used for testing, resulting in 5-fold CV. For
RECOLA, we manually construct five splits so that they are
balanced with respect to number of speakers and gender. This
way, we ensure speaker-independent training (in contrast to ran-
dom sampling). This segmentation into five splits (matching the
number of sessions in IEMOCAP) is done to facilitate multilin-
gual training with cross validation.
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The evaluation of cross-lingual training is straightforward:
one dataset is taken entirely as training set and the respective
other one as test set. For fine-tuning (FT) in a simulated low-
resource setup we take trained models from the cross-lingual
setting as starting point. The model is then refined using 100
randomly selected samples from the target language for each
CV split. Concretely, for the training procedure this means that
the stored model parameters from the cross-lingual model are
loaded as initial weights. Then, with these 100 target language
samples, the network is trained again for a certain number of
iterations, i.e. the network weights are fine-tuned towards the
target language. Log Mel filter banks were used as input features
for all models because they yielded the best overall results in the
previous experiment. To be consistent with the experiments in
section 3.4, the input length was kept at 7.5s; longer utterances
are cut and shorter ones are padded with zeros, as described
in Section 3.3 on page 67. Since the average utterance length
in the RECOLA dataset (mean=2.2s, standard deviation=1.8s)
is considerably shorter than for IEMOCAP, we additionally re-
peated experiments (a)-(c) with an input signal length of 4s to
see if this makes any notable difference in the results.

For these experiments, we re-implemented the ACNN model
with the Tensorflow library (Abadi et al., 2016) because the de-
velopment of Theano was stopped in late 2017. For binary clas-
sification, the output layer was adapted accordingly to yield two

84



3.5. MULTILINGUAL AND CROSS-LINGUAL SER

outputs (no multi-task learning is involved here). The model’s
hyper-parameters for this study were similar to the setup de-
scribed in Section 3.4 on page 72: 200 kernels with a size of
26x10 in the convolutional layer (spanning all 26 lMFBs); a
mini-batch size of 32; and a pool size of 30 for max-pooling. For
dropout regularization in the last hidden layer a dropout rate
of 0.5 was applied. We ran training for 50 epochs in all experi-
ments except for fine-tuning where the pre-trained models were
refined with only 10 epochs. All experiments were run five times
and the means across these five runs are reported.

3.5.2 Results

The performance measure used throughout all experiments is
UAR. The results are presented in Table 3.6 on the following
page.5 The mono-lingual baseline results for both IEMOCAP
and RECOLA reflect the well-known circumstance that the pre-
diction of valence levels from acoustic properties is more diffi-
cult than for arousal (cf. Schuller et al. (2009a); Eyben et al.
(2010b); Feraru et al. (2015); Trigeorgis et al. (2016); Ghosh
et al. (2016a); Abdelwahab and Busso (2018)). The perfor-

5The results presented here are slightly different from those in Neumann
and Vu (2018). The reason for this is an error in the paper regard-
ing the valence label distribution, which was due to a mistake in data
preprocessing. The experiments were conducted again with the correct
labels. However, the differences are marginal and do not change the
implications drawn from the results.

85



CHAPTER 3. SPEECH EMOTION RECOGNITION

IEMOCAP RECOLA
(English) (French)

Arousal Valence Arousal Valence
mono-lingual 68.09 (68.98) 61.84 (61.62) 60.77 (60.45) 52.30 (49.00)
multilingual 70.06 (71.16) 60.43 (60.63) 62.51 (60.94) 49.23 (48.58)
cross-lingual 59.32 (61.38) 49.38 (49.84) 61.27 (60.46) 48.26 (42.68)
CL + FT 67.03 (64.66) 50.94 (50.72) 63.07 (60.15) 50.98 (51.01)

Table 3.6: Results as unweighted average recall (UAR); results
with shorter input (4s) in parentheses.

Cross-lingual: only trained on source language, CL
+ FT: pre-trained on source language and

fine-tuned on 100 samples from target lanugage (CL
- cross-lingual, FT - fine-tuning).

mance for RECOLA is notably lower than for IEMOCAP. This
is partially due to the small size of the dataset, containing only
1,308 samples. However, this does not fully explain the differ-
ences. To test this, we trained a model on IEMOCAP using
only 1,308 randomly selected samples, which still yielded better
results (68.20% arousal and 58.77% valence).

Another relevant factor is again the highly imbalanced class
distribution of valence labels in the French dataset, with only
241 negative samples and 1,067 positive ones (similar to what we
observed with imbalanced classes on the improvised and acted
subsets of IEMOCAP, cf. section 3.4.3). The UAR of 52.30%
is only marginally above chance level, which means the model
does not really learn anything from the underlying data.6 One

6Inspection of the model predictions for valence on RECOLA has shown
that: (a) a monolingual model predicts almost all samples as positive,
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factor that assumingly contributes to this problem – and poten-
tially to the skewed class distribution in the first place – is the
transformation of continuous labels into binary categories. This
can introduce and/or strenghten a measurement bias in the an-
notations, which is one of the four technical biases discussed in
Dobbe et al. (2018).

With multilingual training we wanted to investigate the effect
of merging the two corpora and find out whether multilingual
speech emotion recognition is possible without performance loss.
The results show that we are able to use a system trained on
both languages and achieve similar performance compared to
the baselines. For arousal prediction, the additional training
data even improves performance, whereas we observe a decrease
in performance for valence. These findings demonstrate that
multilingual SER might be viable without further adaptation.

Cross-lingual training is useful in cases where no or only little
training data in the target language is available. We therefore
examined the performance of the system when trained on one
language and tested on the other (and vice versa), given the
same type of speech (human-human dyadic interaction). The
results in Table 3.6 suggest that cross-lingual training could po-
tentially work to some extend for arousal prediction, achieving

(b) a multilingual model predicts around 90% of all samples as positive,
(c) even in cross-lingual testing around 60-70% of samples in each class
are predicted as positive (alhough trained completely on IEMOCAP),
(d) fine-tuning again strengthens the bias towards positive valence.
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an UAR above chance level. However, it does not produce sen-
sible results for valence prediction. A first cautious conclusion
is that valence prediction could be more language-dependent
than predicting arousal. However, the results from a model
trained on RECOLA and tested on IEMOCAP can not be taken
as basis for solid conclusions as we already described that the
binary positive/negative discrimination does not work in this
setup. For arousal, the performance drops notably for IEMO-
CAP (trained on RECOLA) compared to the mono-lingual base-
line, achieving 59.32% UAR. For RECOLA (trained on IEMO-
CAP) it remains stable (60.77% mono-lingual, 61.27% cross-
lingual). Again, these results have to be interpreted cautiously,
because performance differences cannot solely be attributed to
the different languages English and French. Other factors come
into play, such as the very small dataset size of RECOLA, the
class distributions, and the fundamentally different annotations
schemes of the two datasets.

Fine-tuning the cross-lingual model with 10 training epochs
on 100 samples from the target language produces promising
results for arousal prediction. For IEMOCAP, the performance
comes close to the baseline and for RECOLA, it is notably
higher than the baseline (only for the setup with 7.5s long in-
put data). Again, the performance for valence remains approx-
imately at chance level. In summary, these results show that
cross-lingual training can set a useful baseline. Especially for a
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target language with a small amount of annotated data, train-
ing a cross-lingual model and then fine-tuning it on the available
target data can be a useful approach.

3.5.3 Analysis of Attention Weights

To gain more insights about which parts of the input are impor-
tant for classification, we analyzed the learned attention weights
↵i from the attention layer after the last training epoch. For this
analysis, we focus on the mono-lingual baseline experiments.
For each training sample, we output its attention weights vec-
tor and identify the maximum weight and therefore the segment
on the temporal dimension that the model judges to be most
salient for this sample. Figures 3.4a to 3.4d show for every index
in the attention weight vector (↵1 to ↵8) the respective propor-
tion of training samples for which this ↵i yielded the maximum
weight.7 For example, in Figure 3.4a, for 31.2% of training
samples, ↵1 was highest, which means the first segment of the
input to the attention layer is considered most salient for these
samples.

In Figure 3.4a we see that for arousal prediction on IEMO-
CAP for a large majority of samples the highest attention lies at
the beginning of the input. This finding aligns with the obser-

7The number of attention weights corresponds to the output vector of the
max-pooling layer and therefore depends on input signal length, kernel
size and pool size. In the present configuration, one attention weight
↵i corresponds to roughly 1 second of the input utterance.
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(a) IEMOCAP – Arousal. (b) IEMOCAP – Valence.

(c) RECOLA – Arousal. (d) RECOLA – Valence.

Figure 3.4: Distribution of maximum attention over time.

vation in section 3.4.2 that a short snippet from the beginning
of an utterance can be sufficient for a reasonable prediction. In
addition to depicting the maximum attention weights, we took a
closer look at the actual values of the maximum and the second
highest weight to find out more about the weight distribution.
Note, that the weights ↵1 to ↵8 sum up to 1.0 for every sample.
For the English data we found that for 73.1% of all samples the
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difference between highest and second highest attention weight
is greater than 0.5. This means, for the majority of data one
single segment is weighted much higher than all others.

The distribution for valence prediction on IEMOCAP (Fig-
ure 3.4b) looks quite different: high attention is most frequently
put on the middle of the signal. Further, the distribution of the
attention weights themselves is a lot flatter; only for 8.8% of the
samples the difference between highest and second highest ↵ is
greater than 0.5. These insights demonstrate that the attention
mechanism – despite only small contributions to performance
gains – can also serve as a useful analysis tool.

For the French data, Figure 3.4c and 3.4d for arousal and va-
lence show similar characteristics: ↵2 to ↵4 yield the maximum
weight for a large proportion of the data. Apart from ↵1, the
distribution exhibits a similar trend as for arousal prediction
on IEMOCAP, that is the beginning of the input is much more
often considered important than the end. Our first hypothe-
sis to explain the low rate for ↵1 was that RECOLA samples
might contain a certain amount of silence at the beginning more
often. However, using voice activity detection, we found that
most signals contain speech straight from the beginning. Hence,
further analysis is necessary to explain this difference. For the
RECOLA dataset the distribution of attention weights is rela-
tively flat (both arousal and valence). Furthermore, in contrast
to IEMOCAP, we observed notable variations in this analysis

91



CHAPTER 3. SPEECH EMOTION RECOGNITION

across multiple runs of the experiment. These findings suggest
that it is more difficult to learn useful attention weights for
the French data compared to English. However, as mentioned
already in the previous section, it is difficult to infer valid con-
clusions about differences in language because of other varying
factors. Although the maxim for selecting the datasets was sim-
ilarity in the type of conversations, they still differ considerably
in the given scenarios for the recordings. One limitation of this
attention weight analysis lies in the zero-padding method to cre-
ate fixed-length input features. It must be assumed that this
has an effect on the attention mechanism and contributes to the
fact that high attention is rarely put on the last pieces of the
signal; however this effect cannot be quantified or filtered out.

3.6 Summary

This chapter presented a series of investigations on speech emo-
tion recognition with convolutional neural networks. First, a
comparison of different input features was presented. We showed
that the recognition performance with lMFB, MFCC, and eGe-
MAPS features is on a similar level, ranging from 56 to 59%
UAR (54 to 56% weighted accuracy) for a four-class classifica-
tion task on the complete IEMOCAP dataset. However, it is
notably lower with the smaller prosody feature set. We hypoth-
esize that the markedly smaller size (7 features) is the main
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reason for this difference. The similar results show that a CNN
is able to learn high-level representations for the task equally
from these different features. Therefore, we conclude that the
particular choice of features might not be as important as the
model architecture and especially the amount and type of train-
ing data. We found significant differences between improvised
and scripted speech, obtaining better results on the first. The
two extensions to the model, namely multi-task learning and an
attention mechanism, turned out to have only little impact on
the results without a completely clear pattern in favor of one or
the other. We showed that MTL improves the results particu-
larly for the CNN without attention layer, whereas it is not as
clear for the ACNN. Attention itself slightly improved some re-
sults for certain combinations of features and MTL or STL, but
also impaired the performance for other configurations. In any
case, the attention mechansim can be useful for analyzing cer-
tain aspects of the model and the learning procedure, as shown
in the second part of the chapter.

Experiments with decreasing signal length showed that the
performance deteriorates slightly, but remains at a relatively
stable level even for short signals down to two seconds. The
analysis of error patterns revealed – unsurprisingly – that the
class label distribution of the relatively small training dataset
has a strong effect on the model predictions. This was par-
ticularly well observable for the class anger, which is strongly
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underrepresented in the improvised sessions of IEMOCAP and
conversely overrepresented in the scripted sessions.

The second series of experiments presented in this chapter was
concerned with binary arousal/valence classification in cross-
lingual and multilingual settings. We have shown that multilin-
gual classification of emotions in speech is possible, especially
for arousal prediction – a valuable finding for research on code-
switching speech. Further, we have shown that a model trained
on a source language and fine-tuned with only a small number
of samples from the target language can produce reasonable re-
sults for arousal prediction, whereas valence prediction appears
to be more sensitive to cross-lingual training. These findings
are useful for emotion research on low-resource languages.

The analysis of attention weights, which are learned during
model training, revealed that for arousal prediction the focus
lies on the beginning of the utterance in most cases (with the
exception of the very first attention weight ↵1 for the RECOLA
data). For valence prediction the distribution of maximum at-
tention for RECOLA is similar to arousal, but the distribution
of the weight values themselves is much flatter and there is more
variability across different runs of the experiment. For valence
prediction on IEMOCAP the distribution of maximum atten-
tion is overall flatter with a peak in the middle and more stable
compared to RECOLA.
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It is important to note that the presented results have to be
interpreted cautiously. In particular, for the RECOLA dataset
it turned out that the binary classification of positive vs nega-
tive valence does not work because of the strongly skewed class
distribution in the data. This leads us to an important aspect,
that has often been unconsidered in SER research publications:
the side-effects that annotations and their transformations en-
tail. Since various annotation schemes exist for labeling emo-
tional states in speech (cf. chapter 2), these annotations are
frequently transformed in some way in practice, for example to
enable cross-corpus validation or to adapt representations to cer-
tain application use cases. These transformations – in the case
of RECOLA from interval scores to nominal data – are likely
to introduce unwanted biases and shift the data away from the
underlying Gold Standard annotation. For these reasons, Yan-
nakakis et al. (2018) advocate the use of ordinal annotations
and models for SER. They presented a detailed account of the
various problems that such transformations can cause and de-
scribed compatible and incompatible transformations between
interval, nominal and ordinal ratings. These issues can be seen
as technical biases, which are artifacts of implementation (op-
posed to pre-existing biases in the data) (Dobbe et al., 2018).

To avoid or at least reduce these aforementioned issues, the
focus of the remainder of this thesis is on emotion classes (i.e.
nominal data). Although one might argue that this approach is
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also sub-optimal (because it is questionable whether basic emo-
tion categories are the ideal representation of the underlying
phenomenon of emotional states), it is still used widely in re-
search and application development. We are, however, aware
that continuous representations (such as the arousal/valence
space) as well as ordinal approaches are emerging as preferred
models (cf. Gunes and Schuller (2013); Yannakakis et al. (2018))
and this needs to be considered for any future work.
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4 Representation
Learning and Synthetic
Features

“But it is a pipe.”
“No, it’s not,” I said. “It’s a drawing of a pipe.
Get it? All representations of a thing are
inherently abstract. It’s very clever.”

John Green, The Fault in Our Stars, 2012

One of the main obstacles for the development of automatic
speech emotion recognition systems has been and still is the lack
of large, naturalistic, annotated datasets. Compared to other
speech processing tasks such as automatic speech recognition,
for which thousands of hours of annotated data are available,
emotional speech datasets are tiny (in the realm of a few hours
to tens of hours).

This chapter deals with this problem of data scarcity and
presents two different methods to appraoch it. The first part
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presented in section 4.1 is concerned with unsupervised repre-
sentation learning (RL) from unlabeled speech using autoen-
coders (AE), and the second part in section 4.2 is about data
augmentation with synthetically generated feature vectors.

Representation learning is concerned with automatically learn-
ing useful representations of input data for a given task. Note,
that in this context the terms features and representation are
often used interchangeably (because they are in fact the same:
a certain form of more or less abstract representation of the
data). However, to avoid confusion, in this work we use the
term features to refer to pre-defined extracted features and the
term representation to refer to an automatically learned depic-
tion of some kind (e.g. activations of a neural network’s hidden
layer). Autoencoders are a well known and often used method
for RL. They are a special kind of network architecture with the
aim to reconstruct the original input given certain contraints,
for instance a so called bottleneck layer that reduces the di-
mension of the representation. A classical AE consists of two
parts, the encoder and the decoder. The first part of the net-
work, the encoder, transforms the input features into a latent
space (bottleneck layer), while the second part, the decoder,
aims to reconstruct the input from this latent space. The en-
coder’s learned transformation can then be used to transfer in-
put data to a representation that is compact and encodes the
most important information. Autoencoders, being a form of un-
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supervised learning (it requires no labels or other annotations),
can be applied to any available data. Hence, the question arose
whether such learned latent representation from an AE trained
on a large speech corpus can be used to gain any additional
useful information for SER.

We present experimental evidence on how representation learn-
ing can be beneficially utilized for SER. We trained unsuper-
vised AEs on large unlabeled speech corpora and then used the
encoder to generate a compact latent representation of the emo-
tional speech samples to be classified. These representations
were then integrated as an extension into the ACNN model
described in the previous chapter. Experimental results show
that this additional information improves the recognition per-
formance of the classifier. To gain insights on the learned repre-
sentations with respect to affective information, visualizations
of the representations are presented. Evaluation was conducted
on the datasets IEMOCAP and MSP-IMPROV by means of
within- and cross-corpus testing.

In the second part in section 4.2, we present an appraoch to
data augmentation. Since annotation is expensive and time-
consuming – and in the field of emotion recognition especially
difficult due to the complex and subjective nature of emotions
– it is desirable to find ways of generating training data artifi-
cially. Generative adversarial networks (GANs), introduced by
Goodfellow et al. (2014), have proven to be a powerful method
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for generating realistic synthetic data, especially in the realm
of computer vision. Inspired by the successful applications of
GANs and their variants for tasks like image translation and
image style transfer, we transferred the idea towards generat-
ing synthetic emotional speech using this technique. As first
step towards synthetic emotional speech generation, we applied
a cycle consistent adversarial network (CycleGAN) on feature
vectors instead of raw audio signals because this simplifies the
learning process. Taking the Tedlium corpus as a large source
speech resource and the IEMOCAP dataset as emotional target
samples, we aimed at generating feature vectors that are close
to certain target emotions in feature space (happiness, sadness,
anger, neutral state). Further, an extension to the cycleGAN
framework was introduced, which improves the discriminability
of the generated data. Experimental results show that adding
those synthetic features to the training set improves recognition
performance in both within-corpus and cross-corpus evaluation.
These experiments and findings are based on the joint work with
Fang Bao (Bao et al., 2019).
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4.1 Unsupervised Representation

Learning for Speech Emotion

Recognition

4.1.1 Related Work

A variety of different approaches to RL exists, many of them
using variants of autoencoders to learn suitable representations
from the data in an unsupervised manner (Ghosh et al., 2016a;
Sahu et al., 2017; Ghosh et al., 2016b; Parthasarathy and Busso,
2018; Latif et al., 2018). Latif et al. (2018) used variational AEs
for RL and fed the learned representation into a long short-term
memory (LSTM) network for emotion recognition. A similar
approach was presented by Ghosh et al. (2016a), which closely
relates to the experiments presented here. The authors com-
pared different types of AEs and input features. In contrast to
the present work, these studies have not used any additional
unlabeled speech resources. Potential ways to incorporate ad-
ditional data have been presented in (Eskimez et al., 2018;
Lakomkin et al., 2017). Eskimez et al. (2018) used four dif-
ferent types of AEs, trained on Librispeech data, and employed
the encoders to generate representations of labeled emotional
speech as input into a convolutional neural network (CNN) for
SER. While this study used solely the AE representations as
input, Lakomkin et al. (2017) experimented with a combina-
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tion of emotion-specific and ASR-specific representations in a
progressive neural network.

4.1.2 Methods

For the acutal task of SER, the ACNN model with multi-task
learning objective, presented in the previous chapter, was em-
ployed. As input features, 26 lMFBs in the range 0 to 6.5kHz
were extracted for 25ms long frames with a 10ms shift (cf. sec-
tion 3.3 for details).

For learning a compact latent representation from unlabeled
speech as additional information source we trained a time-recur-
rent sequence-to-sequence autoencoder on spectrograms. We
used the auDeep toolkit (Freitag et al., 2017; Amiriparian et al.,
2017a) for spectrogram extraction, autoencoder training and for
generating representations with the learned model. For spec-
trogram extraction, 128 Mel frequency bands were extracted
for 80ms long FFT windows with a window overlap of 40ms,
following the authors’ recommendations.1 The auDeep toolkit
provides a variety of options to train sequence-to-sequence au-
toencoders on two-dimensional data (in this case spectrograms).
We employed a time-recurrent AE that processes spectrograms
(of possibly varying length) along the time-axis and produces
a fixed-length hidden representation. The encoder and decoder

1https://github.com/auDeep/auDeep#extracting-spectrograms
[Accessed: Feb. 24, 2021]
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for our experiments consist of two layers each, with 256 gated re-
current units (GRU) in each layer (cf. section 4.1.4 for details).
The latent representation that is learned is a 1,024-dimensional
vector.

Figure 4.1 on the next page presents an overview of the ar-
chitecture and shows how the representation generated by the
encoder is integrated into the ACNN training. The two networks
are trained consecutively, as depicted in Figure 4.1. First, the
AE is trained on some large speech corpus, e.g. Tedlium. After
this training step is done, the encoder is used to generate repre-
sentations for the emotional speech samples (step 2). The third
step is then to train the ACNN with the additional representa-
tions as extension to the last hidden layer. Note that the encoder
representations generated in step (2) are not changed anymore
by the ACNN, they are just ‘plugged in’ to supply additional
information about the speech sample. We applied dropout for
regularization on the whole concatenated feature vector before
the final softmax classification. The ACNN model architecture
as well as the multi-task objective function were identical to the
model described in section 3.2.

4.1.3 Data

For the experiments the two emotional speech datasets IEMO-
CAP and MSP-IMPROV were used. Both corpora have been
created and annotated in a similar way (cf. section 2.2). Identi-
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Figure 4.1: Overview of the model architecture. The training
procedure follows these consecutive steps: (1)
autoencoder training on a large speech corpus,
(2) generation of latent representations for the

emotional speech samples, (3) ACNN training with
those representations as additional feature vector.
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cal to the experiments in the previous chapter, the four emotion
classes anger, happiness, sadness, and neutral state were taken
into account (for IEMOCAP, samples from the classes excite-
ment and happiness are merged to form one class). As in pre-
vious experiments, we set the maximal length for each sample
to 7.5s. Longer turns were cut at 7.5s and shorter ones were
padded with zeros. lMFBs were used as features. Arousal and
valence labels were grouped into three classes each for multi-
task learning, following the same mapping as in section 3.4:
low: [1,2]; medium: (2,4); high: [4,5] (cf. Neumann and Vu
(2017); Metallinou et al. (2012)).

As additional unlabeled data for AE training we used two
well-known corpora from the field of automatic speech recogni-
tion: Tedlium (release 2) (Rousseau et al., 2014) and Librispeech
(Panayotov et al., 2015). Tedlium 2 is a collection of 1,495 Ted
talks comprising 207 hours of transcribed English speech. We
segmented the talks according to the timing information in the
provided transcripts, resulting in 92,973 utterances. We have
trained two models, one with the full dataset and one with a
smaller subset consisting of 400 talks, or 25,303 utterances re-
spectively. Librispeech contains 1,000 hours of read English
speech from audiobooks. Due to computational limitations, we
have used a subset of 100 hours, respectively 28,539 utterances.
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4.1.4 Experimental Setup and
Hyper-parameters

The baseline for this study is the ACNN model without any
additional representation data (right-hand side of Figure 4.1 on
page 104). We conducted 5-fold cross validation on IEMOCAP,
taking samples from eight speakers as train and development
sets and the ones from the remaining two speakers as test set.
Results are averaged over the five folds.

For generating additional feature representations, we trained
autoencoders on four datasets with the following motivations:

(a) The main research question is whether additional unlabeled
data can be utilized to improve the accuracy of SER. For
that purpose, we trained an AE on the full Tedlium 2 corpus
as the main experiment.

(b) As control condition, we trained an AE only on IEMOCAP
itself (respectively MSP-IMPROV for cross-corpus evalua-
tion). In doing so, we can verify that any observed effects
are in fact related to additional speech data compared to
just adding an AE representation of the test corpus itself.

(c) To investigate a potential effect of the amount of additional
data, we trained a model on a small subset of Tedlium.

(d) To confirm our findings, we used another kind of additional
data in form of a subset of Librispeech.
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Another research question we investigated is the effect of our
approach on cross-corpus evaluation. For that, we used IEMO-
CAP as training set and MSP-IMPROV as test set (in the same
four conditions as described above). All experiments were run
ten times with different random seeds to be able to report on any
variations in the results due to random parameter initialization.

Hyper-parameters The encoder and decoder of the AE con-
sist both of 2 layers with 256 GRUs each. After testing several
combinations of uni- and bidirectional encoders and decoders
with regard to the reconstruction loss, we found that using a
unidirectional encoder and a bidirectional decoder is a good
choice. The auDeep toolkit employs Adam optimization, for
which we used the default initial learning rate of 0.001; dropout
was used as regulaization at a rate of 0.2 and we trained the
models for 64 epochs (except for the full Tedlium dataset, for
which training was done for 32 epochs).

The hyper-parameters for the ACNN model are similar to the
setup in section 3.4, however, slight changes were introduced be-
cause hyper-parameter tuning was done again with the new Ten-
sorflow implementation. The final hyper-parameters are: 200
convolutional filters of size 26x10 (spanning all 26 lMFBs), con-
volutional stride of 3, pooling size of 30, and a Glorot uniform
initialization (Glorot and Bengio, 2010) of kernel weights. The
model was trained for 100 epochs and dropout was applied at a
rate of 0.8 for IEMOCAP and 0.7 for MSP-IMPROV to the last
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layer. For multi-task learning, the influence of arousal/valence
predictions was set to a weight of 0.2 for each.

4.1.5 Results

Table 4.1 presents the results as mean UAR across all runs for
each experimental configuration described in section 4.1.4. The
left-hand side of the table shows the performance on IEMOCAP
(5-fold cross validation) and the right-hand side the results of
cross-corpus evaluation (trained on IEMOCAP and tested on
MSP-IMPROV).

IEMOCAP MSP-IMPROV
(cross-corpus)

Baseline 58.03 ± 0.76 42.99 ± 0.66
Control 58.07 ± 1.02 42.37 ± 0.77

Small Tedlium 58.85 ± 0.83† 45.21 ± 0.89‡
Librispeech 59.05 ± 0.75† 44.82 ± 1.09‡

Full Tedlium 59.54 ± 0.63‡ 45.76 ± 0.62‡

Table 4.1: Results in UAR. Baseline: no additional
represenation, Control condition: AE trained on

IEMOCAP/MSP-IMPROV.
† and ‡ indicate statistically significant difference
compared to the respective baseline (†p < 0.05,

‡p < 0.01)

In both cases we observe small, but consistent improvements
over the baseline when adding the represenations generated by
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the different AE models. The results for the control condition
are similar to (IEMOCAP) or even below (MSP-IMPROV) the
baseline. This indicates that it is in fact the additional speech
data which helps improving the performance. It can also be
seen that adding more data increases the performance further,
as the best results are achieved with the full Tedlium corpus.
Because the absolute improvements are relatively small, we con-
ducted Kruskal-Wallis H-tests (Kruskal and Wallis, 1952) to see
which configurations yield significantly better results than the
baselines.

(a) ACNN baseline. (b) ACNN+AE (full Tedlium).

Figure 4.2: Confusion matrices for mean results on IEMOCAP.

To gain more insights about the models’ predictions, we ana-
lyzed error patterns, depicted in the confusion matrices in Fig-
ures 4.2 and 4.3. They represent the mean results across all ten
runs of the particular setup. For within-corpus evaluation on
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(a) ACNN baseline. (b) ACNN+AE (full Tedlium).

Figure 4.3: Confusion matrices for mean results of cross-corpus
evaluation on MSP-IMPROV.

IEMOCAP (Figure 4.2) we see that the ACNN+AE model has
a higher recall for sadness (marginal difference), neutral state,
and anger. However, for happiness the recall drops below the
baseline. The proportions of happiness-anger confusions are
more balanced when adding the AE representations, indicating
that the baseline model has a stronger bias towards happiness,
which is counterbalanced to a certain extent in the ACNN+AE
model. Overall, the confusion patterns between classes are sim-
ilar between the two models.

For cross-corpus evaluation on MSP-IMPROV (Figure 4.3),
there are significant differences for the classes neutral and sad-
ness. Whereas the baseline ACNN trained on IEMOCAP pre-
dicts happiness and the neutral state for a large proportion of
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samples with high error rates across all target classes, the pre-
dictions of the ACNN+AE are more balanced. Besides a higher
recall for anger, the main difference lies in the notably higher
proportion of predictions for sadness, which in turn shift the
sadness-neutral confusion and lead to a significantly lower re-
call for the neutral state. A possible reason for the different
patterns compared to within-corpus evaluation on IEMOCAP
is that samples from the class sadness exhibit different charac-
teristics in the two corpora, and that the additional AE repre-
sentations are well suited for distinguishing sadness from other
classes.

Visualization of Speech Representations

To learn more about what kind of information might be con-
tained in the automatically learned speech representations, we
have a look at visualizations of both the learned ACNN repre-
sentation (i.e. the last hidden layer before the final classification
layer) and the representation from the AE trained on Tedlium.
The objective here is to make visible what the two models learn
– or do not learn – with regard to different aspects, such as emo-
tion class, arousal/valence labels, speaker identity and gender.
Figures 4.4 and 4.5 show two-dimensional projections of the data
generated with t-distributed stochastic neighbor embeddings (t-
SNE) (Maaten and Hinton, 2008). t-SNE is a nonlinear dimen-
sionality reduction method for visualizing high-dimensional data
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(a) Class labels.

(b) Arousal scores. (c) Valence scores.

Figure 4.4: t-SNE visualizations of the last hidden layer of the
ACNN for IEMOCAP.

in a two- or three-dimensional space. Data points are projected
in a way that similar objects are close to each other and dissimi-
lar ones are more distant from each other with high probability.
The data points in the resulting scatter plots can then be col-
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(a) Class labels.

(b) Arousal scores. (c) Valence scores.

Figure 4.5: t-SNE visualizations of the AE representations for
IEMOCAP (AE trained on full Tedlium).

ored according to certain information in order to reveal details
of the data distribution. With this approach, we can find out
whether clusters in the data (if there are any distinct clusters)
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belong for example to a certain emotion label or represent a
certain group of speakers.

In Figures 4.4a, 4.5a and 4.7 the class neutral state was ex-
cluded for visual clarity; in all cases neutral samples are dis-
tributed across the whole plot and do not form a well-defined
cluster. This finding has also been reported by Ghosh et al.
(2016a). It can be seen that the ACNN is capable of separat-
ing sadness from anger to a certain extent. The class happiness,
however, forms a high-variance cluster that largely overlaps with
anger. This explains the high confusion rates seen in Figure 4.2
on page 109. The plots for arousal and valence annotations
show that the ACNN model is much more discriminative for
arousal than for valence – a well known characteristic of SER
(cf. section 3.5 in the previous chapter).

Looking at the visualizations of the AE representation in Fig-
ure 4.5 on the preceding page, we observe similar patterns,
despite no emotion labels are involved in training the model.
This indicates that the learned speech representations implic-
itly contain information about low and high arousal, and there-
fore anger and sadness samples can be distinguished surpris-
ingly well (which explains the boost for anger in the results in
Figure 4.2 on page 109). Similar findings with respect to dis-
criminative power between anger and sadness have also been
reported by Ghosh et al. (2016a) and Lakomkin et al. (2017).
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Figure 4.6: t-SNE visualizations of the ACNN representations
colored by speaker gender.

Regarding speaker gender and identity we found that both
representations are invariant to these factors, i.e. no separable
clusters can be found in the t-SNE projections. An example of
this is shown in Figure 4.6.

So far, we looked at visualizations of IEMOCAP data (i.e.
within-corpus evaluation). To conclude this analysis, we will
also have a look at the same kind of t-SNE projections for
MSP-IMPROV data, which was used for cross-corpus evalu-
tion. Therefore, there is a difference in that the ACNN (visu-
alizations in Figure 4.7a) was trained on IEMOCAP and then
applied to MSP-IMPROV to harvest the last hidden layer’s ac-
tivations for visualization. For the AE representations depicted
in Figure 4.7b the same autoencoder, trained on Tedlium data,
was used to generate representations of the MSP-IMPROV sam-
ples. We see that in both t-SNE projections no single emotion
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class forms a well defined, separable cluster. This partially ex-
plains the low recall for sadness with the ACNN (cf. results in
Figure 4.3) and it indicates that the two corpora in fact have
different characteristics with respect to emotion classes. How-
ever, the visualization in Figure 4.7b does not reveal anything
about the shift towards a higher proportion of sadness predic-
tions in the ACNN+AE model. Assumingly, further anaylsis of
the combined model would be necessary to get more insights.

(a) ACNN representations. (b) AE representations.

Figure 4.7: t-SNE visualizations of the ACNN’s last hidden
layer (trained on IEMOCAP) and of the AE

representations for MSP-IMPROV (AE trained on
full Tedlium).
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4.2 CycleGAN-based Emotion Style

Transfer for Feature Generation

The problem of data scarcity may be approached from many dif-
ferent angles. In the previous section, we addressed the partic-
ular circumstance that annotated data is scarce, whereas plenty
general, unlabeled speech data is available that can be used for
unsupervised representation learning. Now, in this section we
are going to approach the problem from a different perspective,
that is generating more (labeled) training data artificially, a
method known as data augmentation. While a large variety of
data augmentation methods exist, for example noise injection
(Ko et al., 2017) or speed variation (Ko et al., 2015), we focus
here on a promising direction of utilizing generative adversar-
ial networks to generate realistic data samples based on some
target data distribution.

4.2.1 Related Work

As mentioned before, data scarcity is one of the major challenges
in SER (Schuller et al., 2013), which is reflected not only in the
lack of large, naturalistic labeled speech corpora, but also by the
unbalanced distribution of emotions in the data (El Ayadi et al.,
2011). To approach both problems, we proposed a method based
on CycleGANs (Zhu et al., 2017) to generate feature vectors
representing a certain target emotion. This way, the proportion
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of emotional categories can be controlled, thus building a large
and balanced synthetic dataset.

A CycleGAN is a variation of a generative adversarial net-
work (GAN) (Goodfellow et al., 2014). GANs have successfully
been applied to a variety of computer vision tasks as well as to
speech-related applications, such as speech enhancement (Pas-
cual et al., 2017) and voice conversion (Kaneko and Kameoka,
2018). The basic principle of GANs is that they are composed of
two neural networks that are trained in an adversarial manner:
the generator and the discriminator. As the names suggest, the
generator network is trained to generate data samples, while the
discriminator’s objective is to distinguish between real samples
and those produced by the generator. The main idea is that
during the joint training process both networks become better
and better with respect to their goal, which results in generated
data samples that come as close to real samples as possible.

Adversarial training schemes have also been used for SER.
Sahu et al. (2017) deployed adversarial autoencoders (Makhzani
et al., 2016) to represent emotional speech in compressed feature
space while maintaining the discriminability between emotion
categories. Chang and Scherer (2017) utilized a deep convolu-
tional GAN to learn a discriminative representation of emotional
speech in a semi-supervised way. Yet another adversarial train-
ing framework was proposed by Han et al. (2018): two sepa-
rate networks are trained in an adversarial manner. One learns
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to predict dimensional representations of emotions, while the
other aims at distinguishing between the first network’s pre-
dictions and the actual target labels from the dataset. Fur-
thermore, GANs can also be used for synthetic data generation
to improve classification performance. Sahu et al. (2017) have
shown this by using reconstructed samples from their adver-
sarial autoencoder as synthetic training data. In a follow-up
study, they investigated the use of a vanilla GAN and a con-
ditional GAN for generating high-dimensional feature vectors
from a low-dimensional (2-D) space (Sahu et al., 2018). It was
shown that a vanilla GAN cannot achieve convergence and the
conditional GAN only converges when it is initialized with pre-
trained weights and the power of its discriminator is limited.
The classification performance has been improved by augment-
ing the original training dataset with synthetic feature vectors.
Inspired by this work, we proposed to generate synthetic feature
vectors through emotion style transfer.

Previously, emotion style transfer had mainly been researched
in the area of speech synthesis (Tao et al., 2006; Inanoglu and
Young, 2009). Our approach was inspired by advances in un-
supervised image-to-image translation (Zhu et al., 2017; Kim
et al., 2017b; Shrivastava et al., 2017; Taigman et al., 2017;
Liu et al., 2017; Yi et al., 2017). All these works have in com-
mon that a mapping between source and target domain can be
learned without paired training data. For our work this means
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that there is no need for parallel speech corpora in which iden-
tical samples exist in a neutral and an emotional version. In-
stead, a CycleGAN has the ability to learn a mapping from the
entirety of a provided source speech corpus to the entirety of a
given emotional speech corpus as target.

4.2.2 Methods

CycleGAN as Main Building Block

Given a labeled dataset with N emotion classes, the proposed
framework generates synthetic samples for each emotion class
i using one individual CycleGAN. Figure 4.8 depicts the entire
framework, in which the N CycleGANs build the foundation. As
shown in the top half of the figure, one CycleGAN establishes a
bijective mapping between a source domain S and a target do-
main Ti, where S can be any external (unlabeled) dataset and Ti

represents the samples of emotion i in the labeled dataset. The
two mapping functions Gi and Fi are used for translating from
source to target and from target to source, respectively. The ad-
versarial discriminator DT

i encourages Gi to generate synthetic
targets indistinguishable from real samples. The adversarial loss
for Gi and DT

i is defined as

LGAN
i (Gi, D

T
i , S,Ti) = E

t⇠pt
[logDT

i (t)]

+ E
s⇠ps

[log(1�DT
i (Gi(s)))]

(4.1)
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Figure 4.8: Illustration of the proposed framework. It consists
of N CycleGANs, where N is the number of

emotion classes. For each emotion i, there is one
CycleGAN with two discriminators DT

i , DS
i and

two mapping functions Gi, Fi as generators. The
output of the mapping Gi(S) are the desired

synthetic samples. Cycle-consistency loss is built
between real samples and their corresponding

reconstructed samples. The domain classifier C is
added to ensure the discriminability between the

generated samples.
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Analogous, there is an adversarial loss for the generator Fi and
the discriminator DS

i , LGAN
i (Fi, DS

i , S,Ti).

The total adversarial loss is defined as the sum of these two
functions:

LGAN
i (Gi, Fi, D

T
i , D

S
i , S,Ti) = LGAN

i (Gi, D
T
i , S,Ti)

+ LGAN
i (Fi, D

S
i , S,Ti)

(4.2)

The generators Gi and Fi try to minimize this loss, while the
discriminators DT

i and DS
i try to maximize it. Intuitively, this

means that the generators goal is to produce samples that the
discriminators classify as real samples, so that the term DT

i (Gi(s))
in equation 4.1 gets close to 1. The discriminators objective on
the other hand is to assign high probability (close to 1) only
to real samples t, and low probability (close to 0) to generated
samples.

Additionally, a CycleGAN regularizes the adversarial train-
ing with a cycle consistency loss. The generated target samples
Gi(S) are translated back to the source domain and the mean
squared error (MSE) between the real source S and reconstruc-
tion Fi(Gi(S)) is computed. The same is done for Ti and the
reconstructed target Gi(Fi(Ti)). This cylce consistency loss,
which can be compared to back translation in neural machine
translation (He et al., 2016), prevents the problem of mode col-
lapse, where all inputs are mapped to the exact same output.
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The total cycle consistency loss is defined as follows:

Lcyc
i (Gi, Fi, S,Ti) = E

s⇠ps
[k(Fi(Gi(s))� s)k22]

+ E
t⇠pt

[kGi(Fi(t))� tk22]
(4.3)

Discriminability between Generated Samples

The bijective mapping of the CycleGAN ensures similarity be-
tween the distribution of real and synthetic data. However, to
improve classification performance, we need to learn a general-
ized distribution from real data samples instead of merely re-
constructing the exact same distribution. Therefore, we added a
classifier C to the framework to discriminate between the gen-
erated data of each emotion class, which is illustrated in the
bottom half of Figure 4.8. This additional loss function, the
classification loss, can be defined as a softmax cross-entropy
loss:

Lcls =
X

i

yilog(C(Gi(S))) (4.4)

where yi is the label of the target emotion i. Ultimately, the
total loss function for the proposed model is then defined as

L =
X

i

LGAN
i + �cyc

X

i

Lcyc
i + �clsLcls

(4.5)
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The parameters �cyc and �cls are weights to control the impact of
the cycle-consistency and classification loss, respectively. They
affect the similarity of generated feature vectors to real data and
the discriminability between emotions.

4.2.3 Data and Features

The following datasets were used for experiments with the Cy-
cleGAN framework: IEMOCAP as labeled target data, Tedlium 2
as unlabeled source data, and MSP-IMPROV for cross-corpus
evaluation (cf. sections 2.2 and 4.1.3 for details about the
datasets).

As mentioned before, to ease model training and optimization,
we used feature vectors instead of raw audio signals throughout
all experiments. The openSMILE toolkit (Eyben et al., 2013)
was used to extract the ‘emobase2010’ reference feature set for
each utterance. It is based on the Interspeech 2010 Paralinguis-
tic Challenge feature set (Schuller et al., 2010a) and consists
of 1,582 features (see section 2.3 for details). This feature set
was selected because it is a widely used reference set for SER
and because it was employed in the experiments in Sahu et al.
(2018), with which we compare our results. In addition, we ran
our experiments with the 88-dimensional eGeMAPS feature set
(cf. section 2.3) in order to compare results using both a very
large and a minimalistic feature set.
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4.2.4 Experimental Results

Setup

Since there are four emotions to be classified, the model consists
of four generators, four discriminators and one classifier. They
are all implemented by feed-forward neural networks. Each gen-
erator has three hidden layers with 1000, 500, and 1000 neurons
for emobase2010 features (and 64, 32, and 64 neurons for eGe-
MAPS). Each discriminator has two hidden layers with 1000
neurons each (2 x 64 for eGeMAPS). The classifier has two hid-
den layers with 100 neurons each (2 x 64 for eGeMAPS). For all
hidden layers Leaky Rectified Linear Units (leaky ReLUs) were
used as activation function.

Due to the difficulty for generators to learn a high-dimensional
distribution, we pre-trained each pair of the generators Gi and
Fi on their corresponding source and target data for 10,000
epochs with a learning rate of 0.0002 and a dropout of 0.2.
The source data S consists of the full Tedlium corpus in each
case, and the target data Ti consists of the particular portion
of IEMOCAP annotated with emotion class i. As mentioned
in section 4.2.1, the advantage of the CycleGAN framework is
that no paired data is needed, which also means that source
and target datasets can be of different sizes because the learned
mapping is not a 1-to-1 mapping on sample level, but rather a
domain-to-domain mapping.
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Initialized with the pre-trained weights for generators, the
complete model was then trained for 2,000 epochs with four
parallel CycleGANs that transfer the unlabeled data to each of
the target emotions individually. This procedure yields 92,973
synthetic feature vectors for each emotion class, i.e. a total of
371,892 samples. To reduce loss oscillation, the initial learning
rate was set to 0.0002 and linearly decayed every 50 epochs by a
factor of 0.8. To balance the generators and discriminators, the
generators were updated twice and the discriminators once at
each iteration. Besides that, we used one-sided label smoothing
as introduced by Salimans et al. (2016). For both training and
pre-training we used Adam optimization and a batch size of 64.

The model was implemented with TensorFlow (v 1.10.0). In
terms of preprocessing, min-max normalization was used for
synthetic features generation. For the emotion classification
task we scaled the features on each dataset with z-normalization
separately, because Zhang et al. (2011) have shown that z-
normalization yields an improvement over min-max normaliza-
tion for cross-corpus classification.

Experiment 1: Emotion Transfer

The aim of this first experiment is to test the feasibility of adapt-
ing CycleGANs to emotion style transfer in feature space. Our
main objective was to generate feature vectors that preserve the
distribution of the real target samples. The proposed cycleGAN
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framework was trained in two different configurations: (a) with-
out classification loss (we set �cls = 0 in equation 4.5), and (b)
with classification loss, setting �cls = 2. For both setups we set
�cyc = 5, which controls the impact of the cycle-consistency loss.

We compared the distribution of the unlabeled source data,
the emotional synthetic data and the target data in feature space
(using the emobase2010 feature set). First, these distributions
were visualized by plotting the mean and standard deviations
for each feature dimension individually. A small subset of fea-
tures is shown in Figure 4.9, which shows that the synthetic and
target feature vectors are similar in both mean and standard de-
viation, which means the source data are transferred to the four
target distributions successfully. Also, we observe that with-
out classification loss (�cls = 0) the similarity is higher, which
is expected because setting �cls = 2 produces more variability
between the samples of different emotion classes, and in turn
changes the feature distribution. To verify what is exemplified
in this graphic, we manually inspected the plots for all 1,582
features and found that the demonstrated tendencies hold for
the complete feature set. For this investigation all features had
been normalized using min-max normalization.

In addition to this visual inspection of means and standard
deviations, we explored the use of Fisher’s discriminant ratio
(Fisher, 1936) as a measure of overlap of feature values, as in
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Figure 4.9: Normalized feature distributions of source, target,
and synthetic feature vectors (exemplified with a

subset of 12 features).

Ho and Basu (2000). It is defined as:

f =
(µ1 � µ2)2

�2
1 + �2

2

(4.6)

where µ1, µ2, �1, �2 are the means and standard deviations of the
two distributions for a specific feature dimension. For similar
feature distributions with large overlap f becomes small, and the
smaller the overlap is, the larger the value for f becomes. Since
we want to look at multi-dimensional distributions, we have two
options for aggregating these discriminant ratios, which depend
on what we want to investigate: computing the average or the
maximum over all feature dimensions.
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For this analysis, the two main goals are: (1) high similar-
ity between the target (emotional speech) and the generated
feature distribution, and (2) high discriminability between in-
dividual emotion classes within the synthetic dataset. For (1)
the average discriminant ratio over all features is most appropri-
ate to measure the overlap because the distributions should be
similar in all dimensions, while for (2) the maximum value over
all features is preferred to measure discriminability because as
long as one highly discriminating feature exists, emotion classes
can be separated regardless of other features with possibly small
values for f . Figures 4.10 and 4.11 show the results for these
two measures.

For the overlap between datasets in Figure 4.10 the values in
the left-most column are all identical because the source data
(Tedlium) does not have emotion labels, so we computed the
overlap between the complete source and target datasets. For
the other comparison, we split up the calculation by emotion
classes. We can see that the average overlap between synthetic
and target data is notably higher (indicated by a small value of
f) than between source and target data. Concerning the classi-
fication loss (i.e. when �cls = 2), the plot shows a mixed result:
the feature overlap for anger and happiness samples decreases
compared to the middle column, while it increases for neutral
state and sadness.
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Figure 4.10: Overlap between datasets for each emotion class
measured as average Fisher’s discriminant ratio f

over all features (maximum f is given in
parentheses). Syn: Synthetic features; cls0:

�cls = 0, cls2: �cls = 2.
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Figure 4.11: Overlap between emotion classes for each dataset
measured as maximum Fisher’s discriminant ratio

f over all features (average f is given in
parentheses). Syn: Synthetic features; cls0:

�cls = 0, cls2: �cls = 2.
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The comparison of emotion classes within one dataset in Fig-
ure 4.11 (shown as the maximum overlap across all features)
demonstrates the consequences of the introduced classification
loss more clearly. For the target dataset (IEMOCAP) the max-
imum values for f are all relatively low, i.e. the overlap of
feature values between emotion classes is rather high. For both
synthetic datasets these values are notably higher, reaching the
highest ratios when classification loss is used (bottom row in
the figure). Primarily, this means that the feature distributions
between emotion classes are enforced to be more different in the
latter case. However, from this analysis nothing can be inferred
about how representative these synthetic feature vectors are for
a given emotion class. This leads us to the next experiment,
where we used the generated data to test SER performance on
IEMOCAP.

Experiment 2: Within-corpus Evaluation

For evaluating the usefulness of the generated samples, we im-
plemented three feed-forward neural network classifiers that were
trained on: (i) only real samples taken from IEMOCAP, (ii) only
synthetic features and (iii) the combination of both.2 We per-

2These models were created and trained independently from the Cycle-
GAN framework, i.e. whenever the term classifier is used in this and
the following section, we do not mean the classifier component C in
Figure 4.8 but a separate classifier that is trained and evaluated on the
created data.
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Real Syn. Real + Syn.
Hidden layer sizes 100, 100 200, 200 1000, 1000
Dropout rate 0.2 0.5 0.5
Batch size 64 256 256
Init. learning rate 1e-5 1e-5 5e-6
Number of epochs 70 5 30
Optimizer Adam
Activation function Leaky ReLU

Table 4.2: Hyper-parameters of feed-forward neural networks
for within-corpus evaluation.

formed leave-one-session-out cross validation on IEMOCAP to
ensure that results are speaker-independent. The hyper-para-
meters for these models are listed in Table 4.2. When training
only with synthetic data, we observed that the model overfits
very fast, hence the small number of training epochs. We report
unweighted average recall (UAR) as performance measure. All
experiments were repeated five times and we report mean and
standard deviation of the results. For the eGeMAPS feature
set we set the layer size to 100 units per layer for all settings
due to the smaller size of the feature set, the remaining hyper-
parameters were kept unchanged.

Table 4.3 on the following page shows the results and, for
comparison, the results reported in Sahu et al. (2018) for the
three experimental settings. It can be seen that the baseline
performance with the emobase2010 feature set is comparable to
Sahu et al. (2018). Using the combined dataset (real + syn.), we
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achieved an improvement over the baseline when incorporating
the classification loss into the cycleGAN (�cls = 2). Augmenting
the dataset with synthetic features generated without this loss
did not yield an improvement with emobase2010 features.

Real Syn. Real + Syn.

Sahu Sahu et al. (2018) 59.42 34.09 60.29
emobase2010, �cls = 0

59.48 ± 0.71
51.57 ± 0.60 58.79 ± 0.77

�cls = 2 46.59 ± 0.75 60.37 ± 0.70

eGeMAPS, �cls = 0 54.28 ± 1.03 54.83 ± 0.80 54.89 ± 0.59
�cls = 2 55.40 ± 0.83 55.26 ± 0.72

Table 4.3: Results for cross validation evaluation on
IEMOCAP.

Using only synthetically generated samples as training data,
we observe a significantly higher performance on the test set
(51.57%) than reported in Sahu et al. (2018), which implies
that our cycleGAN approach generates feature vectors that are
closer to the underlying distribution of real data. Interestingly,
with the emobase2010 features the UAR for the setting with
�cls = 2 is notably lower than for �cls = 0.

With eGeMAPS features, we observe overall only small differ-
ences between the different configurations. While the baseline
on only real data and the results on the augmented dataset are
notably lower than with emobase2010 features, the result when
training only on synthetic features higher (55.40%). This sug-
gests that with the much smaller eGeMAPS feature set, there is
not as much variation between synthetic and real training data.
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But the overall best result of 60.37% is achieved with the larger
feature set.

To gain a deeper understanding of the performance differ-
ences, we analyzed the prediction errors (for models trained on
emobase2010 features3), shown in Figure 4.12a- 4.12c.

It can be seen from the confusion matrices that the predic-
tions and error patterns based on the augmented dataset (real +
syn., right-hand sides of Figure 4.12b, 4.12c) are similar to the
baseline (Figure 4.12a). For the setting with classification loss
(Figure 4.12b), we observe improvements for the three classes
anger, happiness, sadness – whereas the result for sadness drops
below the baseline in the setting without classification loss (Fig-
ure 4.12c).

Substantial differences between the two configurations are
found in the predictions when using only synthetic data as train
set (left-hand sides of Figure 4.12b, 4.12c). For �cls = 2, the
model appears to have a strong bias towards the classes anger
and sadness, given the high proportions of incorrect predictions
of those two classes. For �cls = 0, the proportions of samples
wrongly predicted as sadness and anger, respectively, are also
high, but Figure 4.12c presents a more balanced confusion ma-
trix for synthetic samples overall. The total UAR of 51.57% is

3In addition, we also inspected the confusion matrices for models trained
on eGeMAPS features. They exhibit similar patterns as the ones shown
here.
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(a) Baseline without
synthetic data.

(b) Features generated with classification
loss (�cls = 2).

(c) Features generated without
classification loss (�cls = 0).

Figure 4.12: Averaged confusion matrices for IEMOCAP with
emobase2010 feature set.
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higher than for �cls = 2 and the bias towards sadness and anger
not as severe.

These findings show that the proposed classification loss in
our cycleGAN framework can in fact improve classification re-
sults (for real + syn.), but potentially introduces biases towards
certain classes. In addition, we have recognized a strong over-
fitting problem when training only on synthetically generated
feature vectors.

Experiment 3: Cross-corpus Evaluation

To investigate whether the generated synthetic samples are use-
ful when applying a model to another, unseen dataset, we per-
formed cross-corpus evaluation in the same three setups as de-
scribed in the previous section, using the MSP-IMPROV dataset
as test data. We took 30% of the samples as development set
for hyper-parameter tuning and the remaining 70% as test set,
keeping class proportions equal in both sets.4 For (ii) Syn. and
(iii) Real + syn., the following hyper-parameters differ from the
within-corpus setup: 200 neurons per layer (100 units with eGe-
MAPS features), dropout of 0.8, learning rate of 1e-5 and 20
training epochs for both setups. The high dropout rate ap-

4Note that hyper-parameter tuning was primarily done for the
emobase2010 feature set. Due to resource limitations, we did not con-
duct the complete procedure again for eGeMAPS, which potentially
affects the reults.
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peared to be necessary because of the overfitting problem with
synthetic samples.

Real Syn. Real + Syn.

Sahu Sahu et al. (2018) 45.14 33.96 45.40
emobase2010, �cls = 0

45.58 ± 0.40
39.35 ± 0.33 42.61 ± 0.34

�cls = 2 41.58 ± 1.29 46.52 ± 0.43

eGeMAPS, �cls = 0 40.03 ± 0.67 24.39 ± 3.29 34.27 ± 1.79
�cls = 2 29.47 ± 2.17 33.03 ± 2.53

Table 4.4: Results for cross-corpus evaluation on
MSP-IMRPOV.

The results in Table 4.4 show similar characteristics for emo-
base2010 features as the results for within-corpus evaluation:
adding synthetically generated training samples improves the
classification performance (with classification loss, i.e. �cls = 2).
Also when using only synthetic training samples, the UAR for
�cls = 2 is higher than for �cls = 0, suggesting that the in-
troduced classification loss is beneficial for cross-domain sce-
narios. However, with eGeMAPS features the baseline consti-
tutes the best result, while adding synthetic data diminishes
the performance. When training only on synthetic features,
the UAR even drops below chance level (< 25%) for �cls = 0.
This shows that the findings need to be interpreted cautiously
and that they do not necessarily generalize across different con-
ditions. We assume that one reason for this discrepancy was
the hyper-parameter tuning, which was primarily done with the
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emobase2010 feature set (we only reduced the size of the neural
network when transferring to the smaller feature set).

4.3 Summary

In this chapter we presented experimental results on represen-
tation learning and feature generation (data augmentation) for
SER. First, we have shown that incorporating representations
generated by an autoencoder that was trained on a large dataset,
leads to statistically significant and consistent improvements in
recognition accuracy of the proposed ACNN model (for wihtin
and cross-corpus evaluation). Visualizations of the learned rep-
resentations (created with t-SNE dimensionality reduction) re-
vealed the discriminative strength of those representations with
regard to low and high arousal. With cross-corpus evaluation
on MSP-IMPROV we further showed that speech samples of
the two used datasets that are assigned to the same emotion
class (e.g. sadness) seem to exhibit notably different acoustic
properties. This became evident when comparing the recall for
sadness as well as the visualizations of AE representations with
regard to emotion classes between the two corpora

This investigation has shown that RL on additional speech
data can be beneficial for SER performance. For future exper-
imentation in this direction, robustness with respect to varying
recording conditions and noise could be a possible subject of
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study. We hypothesize that speech representations that are au-
tomatically learned on large corpora with high variability in this
respect, can improve robustness and increase generalizability of
models.

The second part of the chapter addressed another topic re-
lated to data scarcity: data augmentation with generative ad-
versarial networks. In contrast to previous methods, where syn-
thetic feature vectors were generated from a low-dimensional
space (Sahu et al., 2018), we proposed a CycleGAN-based method
to transfer unlabeled data into different target emotions. The
experiments have shown a considerable similarity between the
distribution of synthetic and target feature vectors. Further-
more, we introduced a classification loss to the network architec-
ture as an additional regularizer to enable the generated samples
to be better distinguishable. Experimental results on IEMO-
CAP and MSP-IMPROV with the high-dimensional emobase-
2010 feature set (1,582 features) have demonstrated improve-
ments in classification performance over previous methods when
training on synthetic features as well as on the combination of
real and synthetic samples. The same models were additionally
trained using the minimal eGeMAPS feature set (88 features;
only layer sizes of the neural networks were adapted). These re-
sults showed a stable UAR across settings for within-corpus eval-
uation on IEMOCAP, with slight improvements for training on
the synthetic and the combined data. However, for cross-corpus
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testing on MSP-IMPROV the performance with eGeMAPS fea-
tures notably deteriorated when the generated feature vectors
were involved. One possible reason for this is that the classifier’s
hyper-parameters were tuned with the emobase2010 features to
work well in the cross-corpus setting, while this tuning step
was not done for the additional experiments with eGeMAPS.
In any case, this comparison shows that such experimental evi-
dence needs to be interpreted cautiously and that it is generally
necessary to test various conditions (such as different datasets,
features, or model architectures) to derive generalizable con-
clusions. Furthermore, we observed a strong bias towards cer-
tain emotion classes in the synthetic data and strong overfitting
when training only on these samples. These problems need to be
solved in future work, possible directions are varying the weights
of the differnt parts in the loss function (�cls and �cyc) to find the
optimal balance between similarity and discriminability as well
as utilizing additional speech emotion corpora as target data for
cycleGAN training.
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5 Audiovisual Emotion
Recognition in Noisy
Conditions

Our intuition tells us that our senses are
separate streams of information. We see with
our eyes, hear with our ears, feel with our skin,
smell with our nose, taste with our tongue. In
actuality, though, the brain uses the imperfect
information from each sense to generate a
virtual reality that we call consciousness. It’s
our brain’s best guess as to what’s out there in
the world. But that best guess isn’t always
right.

David Ludden, Hearing With Our Eyes,
Seeing With Our Ears, 2015

Emotion recognition has seen great advances both in speech
and facial expression analysis, more and more blending into

143



CHAPTER 5. AUDIOVISUAL SER

each other with the rise of multimodal machine learning. In
this chapter we explore emotion recognition under noisy acous-
tic conditions and investigate in audiovisual feature fusion in
order to improve the overall performance. The main research
questions are:

(i) How does speech emotion recognition perform on noisy
data? and

(ii) To what extend does a multimodal approach improve the
accuracy and compensate for potential performance degra-
dation at different noise levels?

We present an analytical investigation on two English audiovi-
sual emotion datasets, MSP-IMPROV and CREMA-D. Acous-
tic noise was superimposed to the original audio files at different
signal-to-noise ratios. For this, in order to simulate real-world
scenarios with various kinds of background noise, randomly se-
lected samples from three different domains of real noise record-
ings were used (instead of using static white noise). Focusing
on noisy acoustics, we compared and analyzed the results with
three different types of acoustic features. For multimodal fusion,
visual features are extracted from the videos with a pre-trained
CNN model for image recognition.

As one would expect, the experimental results show a strong
performance degradation when audio-only models are applied
to noisy audio – throughout different features, noise types and
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datasets. Both the addition of visual features and the addition
of noisy samples (data augmentation) to the training data sig-
nificantly improve the accuracy. Further, we found that mul-
timodal fusion helps to distinguish the high-arousal emotion
classes anger and happiness better from each other in clean au-
dio conditions. Comparing three acoustic feature sets, one main
finding is that a CNN with log Mel filter banks (lMFBs) as input
performs most stable under noisy conditions, compared to feed-
forward networks on the other feature sets, which exhibit strong
biases towards single classes. However, the overall best perfor-
mance was achieved with eGeMAPS features and a feed-forward
network. These results have been published in Neumann and
Vu (2021).

This chapter is structured as follows: We highlight the most
relevant related work in section 5.1, before presenting the neural
network architectures and the used feature sets in sections 5.2
and 5.3, respectively. Section 5.4 outlines the experimental de-
sign and the results are presented in section 5.5. The chapter is
rounded off with a summary of the main findings in section 5.6.

5.1 Related Work

Research on automatic affect recognition has long focused on
one modality individually (e.g., speech or facial expressions),
but multimodal emotion recognition – and multimodal machine
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learning in general – has gained much attention in recent years.
For a comprehensive survey on multimodal machine learning the
reader can refer to Baltrušaitis et al. (2019). Regarding emo-
tion recognition, Sebe et al. (2005) presented a survey on mul-
timodal approaches and proposed probabilistic graphical mod-
els for fusing modalities. In another early work, Busso et al.
(2004) compared early and late fusion and showed that acoustic
and visual features contain complementary information about
expressed emotions. More recently, deep learning and end-to-
end learning gained traction in the field of (multimodal) emo-
tion recognition, partially because of the availability of larger
amounts of training data (Tzirakis et al., 2017; Han et al., 2019;
Ghaleb et al., 2017; Wöllmer et al., 2013; Mallol-Ragolta et al.,
2019).

Another aspect of increasing interest is the performance of
systems outside of clean laboratory conditions, which is for
example addressed by the ’Emotion Recognition in the Wild
Challenge’ (Dhall, 2019). The effect of noisy data has been in-
vestigated for speech in several studies (Schuller et al., 2006,
2007; You et al., 2006; Zhao et al., 2014) and speech enhance-
ment methods are one promising direction for better SER qual-
ity (Chenchah and Lachiri, 2016; Avila et al., 2018; Zhang et al.,
2016; Triantafyllopoulos et al., 2019). While we are aware of the
different methods to attenuate noise effects in speech data, we
focused specifically on a multimodal approach because only few
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studies have addressed the problem of noisy data in audiovi-
sual experiments and we wanted to investigate the complemen-
tary effects of both modalities. Banda and Robinson (2011)
focused on the effect of corrupted videos and showed that a
multimodal system retains a reasonably high performance com-
pared to video-only. Lin et al. (2013) added noise to both audio
and video and presented a semi-coupled Hidden Markow Model
to diminish the negative impact of noise. In contrast, we fo-
cused on noisy acoustics, leaving the videos untouched. An
even more important aspect with respect to previous work is
that the above-mentioned studies all have in common that the
training and test data match (i.e. either clean or noisy data).
A more realistic setting, however, is that training and test data
vary from eath other with respect to noise type and noise levels.
Therefore, we conducted experiments with different configura-
tions, including models that are trained on clean audio data
only and then applied to different noise levels.

5.2 Methods

For both unimodal and multimodal experiments we trained fully
connected feed-forward (FF) neural networks (except for lMFBs,
for which a CNN is applied). All models were implemented with
PyTorch (Paszke et al., 2019). The focus of this investigation
is on low complexity of the models to facilitate reproducibility
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Figure 5.1: Scheme of neural network architectures that
consists completely of fully connected feed-forward

layers and are used for eGeMAPS and
DeepSpectrum features.

and – since it is a comparative experiment – to reduce potential
factors of variations. The study design is based on and inspired
by the work in Wand et al. (2018). The FF networks are com-
posed of a stack of fully connected layers with tanh non-linearity,
each followed by dropout regularization, as shown in Figure 5.1.
For lMFBs, which are a time-preserving 3-dimensional repre-
sentation, we trained a strided CNN composed of two convolu-
tional layers with ReLU activation, each followed by a dropout
layer (depicted in Figure 5.2 on the next page). There is no
pooling layer, but pooling is implicitly controlled by tuning the
stride size of the convolution. The kernels of the first convo-
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Figure 5.2: Scheme of neural network architectures that
contain convolutional layers for acoustic log Mel

filter bank features.

lutional layer span the entire input feature dimension (23 fil-
ter banks), i.e. the subsequent layer is a 1-D convolution over
time. As explained in section 3.3, CNNs require a fixed input
size. We set the sample length to 7.5s for MSP-IMPROV and
3s for CREMA-D (based on mean duration + standard devia-
tion of each corpus) and applied zero-padding for shorter utter-
ances. The two-dimensional output of the convolutional layers
(a ‘stack’ of feature maps) is then flattened in order to feed into
the fully connected output layer.

149



CHAPTER 5. AUDIOVISUAL SER

For multimodal fusion we used a hybrid approach, shown in
Figures 5.1 (b) and 5.2 (b), respectively: audio and video input
is fed into separate sub-networks, which consists of at least one
layer. The sub-networks’ outputs are then concatenated and fed
into a joint network. For filter banks, the sub-network is a CNN
(as described above) whose output is flattened and fed into the
joint network.

5.3 Data and Features

5.3.1 Datasets

Two datasets were used for this experiment: MSP-IMPROV and
CREMA-D (cf. section 2.2 for details). MSP-IMPROV audio
files were downsampled to 16 kHz for all experiments (originally
provided with 44.1 kHz). Identically to previously described
experiments, 6-fold cross validation (leave-one-session-out) was
applied as evaluation method to ensure speaker-independent
evaluation. 10% of the training set were randomly selected as
development set for hyper-parameter tuning.

As second dataset we used CREMA-D, a crowdsourced au-
diovisual dataset of emotional read speech. To facilitate com-
parisons between datasets, we used the same four classes as for
MSP-IMPROV, resulting in 4,799 samples. As there are no de-
fault train and test splits for this dataset, we split the data by
speaker IDs to avoid speaker overlap: speakers 1-63 as train,
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speakers 64-77 as development, and speakers 78-91 as test set.
We have verified that these partitions are balanced regarding
age and gender distributions. Video recordings show the speak-
ers in front of a green screen in both datasets.

5.3.2 Acoustic Features

Three different types of acoustic features have been examined,
including handcrafted (eGeMAPS) and model-based represen-
tations (DeepSpectrum). Noisy audio was generated by follow-
ing the approach taken in Wand et al. (2018): Three differ-
ent categories of noise samples from the Freesound database
(Font et al., 2013) were superimposed to the clean audio at
{-10, -5, 0, 5} dB signal-to-noise ratio (SNR) using the acous-
tic simulator presented in Ferras et al. (2016). The categories
are ‘ambience-babble’ (151 samples), ‘ambience-music’ (96 sam-
ples), and ‘ambience-transportation’ (186 samples). For each
category noise samples were randomly drawn to superimpose the
noise to the emotional speech utterances one by one. Through-
out all experiments, a sample rate of 16kHz was used (for clean
and noisy audio).

eGeMAPS is a feature set recommendation for affective com-
puting (see section 2.3 for details). We used openSMILE (Eyben
et al., 2013) to extract the 88-dimensional eGeMAPS feature
vectors.
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As second feature set lMFBs were used as input to a CNN,
as this approach has been shown to produce good results pre-
viously. Note that we use the terms lMFB and ‘filter banks’
interchangeably in the following sections. We used PyTorch’s
torchaudio package (Paszke et al., 2019) to extract 23 lMFBs
with the default settings.1

For the third feature set we used DeepSpectrum (Amiri-
parian et al., 2017b), a Python toolkit for acoustic feature ex-
traction based on pre-trained image CNNs. Spectrograms are
generated from the acoustic signal and fed into a pre-trained
CNN. The activations of a specific layer form the feature vec-
tors. We used the DeepSpectrum default settings, i.e. extract
the activations of the ’fc2’ layer from AlexNet, resulting in a
4,096-dimensional feature vector for one utterance.2 DeepSpec-
trum features have previously been shown to work well for emo-
tion recognition (Cummins et al., 2017) and served as baseline
features in the 2018 and 2019 Audio/Visual Emotion Challenge
(AVEC) (Ringeval et al., 2018, 2019).

For all features z-score normalization was applied globally (i.e.
across all speakers) on the training set and the computed feature
means and standard deviations were then taken to normalize the
test set. We compared global vs. speaker-wise normalization on

125ms window size, 10ms shift, frequency range for Mel bins: 20.0 -
Nyquist frequency, Povey windowing function; https://pytorch.org/
audio/compliance.kaldi.html#fbank

2https://github.com/DeepSpectrum/DeepSpectrum
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MSP-IMPROV and found that there was no noticable difference
in the normalized features.

5.3.3 Visual Features

Visual representations have been obtained as follows: Each video
frame was converted to gray scale and Contrast-limited adaptive
histogram equalization (Pizer et al., 1987) was applied to en-
hance contrast, followed by face recognition using dlib’s (King,
2009) frontal face detector. The detected face region was cropped
and resized to 100x100 pixels to feed it into the VGG 11-layer
model (configuration A of the model described in Simonyan
and Zisserman (2015)), which was trained on ImageNet (Rus-
sakovsky et al., 2015). The processing pipeline is depictd in
Figure 5.3. We took the activations of the first fully connected
layer as frame-level intermediate features and applied average
pooling across all frames of the same utterance to obtain a 4,096-
dimensional utterance-level representation.

5.4 Experimental Setup

To establish baselines, we assessed the accuracy on clean audio
on the development set (average result across 6 folds for MSP-
IMPROV) in a grid search for the following hyper-parameters:
number of layers, number of neurons per layer, dropout rate
(additionally for CNN: number and size of feature maps, stride
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Gray scale Enhance contrast

Face detection - 
crop and resize Pre-trained VGG Activations of 1st fully 

connected layer (4,096)

Figure 5.3: Illustration of the visual feature processing pipeline
(which is applied to each frame in a video).3

size). This was done for each feature type (unimodal and mul-
timodal) and dataset individually. Table 5.1 shows the num-
ber and size of layers for each input option. The CNN hyper-
parameters are: 128 feature maps of width 10 and stride 7 for
MSP-IMPROV and CREMA-D unimodal, and 128 feature maps
of width 15 and stride 3 for CREMA-D multimodal. For MSP-
IMPROV, we applied dropout at a rate of 0.5 for all except the
DeepSpectrum features, for which we selected 0.7 to prevent
overfitting. For CREMA-D, overfitting appears more prevalent,
presumably due to the artificial nature of the data. We obtained

3The following icon from the Noun Project (https://thenounproject.
com) is used in Figure 5.3: Convolutional neural network by Oleksandr
Panasovskyi
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a dropout rate of 0.7 for all but the unimodal eGeMAPS fea-
tures, for which 0.5 was applied. Model training was done with
a batch size of 32 for 100 epochs for unimodal and 50 epochs for
multimodal input. Early stopping was not employed because of
loss oszillation. We inspected loss and accuracy on the training
and development sets as a function over number of epochs and
found that 100 and 50 epochs respectively were suitable for this
data. We ran all experiments (except hyper-parameter tuning)
three times and report mean and standard deviation in terms
of unweighted average recall (UAR).

MSP-IMPROV CREMA-D
# layers # neurons # layers # neurons

eGeMAPS 2 128 3 64
DeepS 2 128 2 128

Video (V) 3 256 3 128

eGeMAPS+V 1+1 256 1+1 128
Filterbanks+V 2+2 256 2+1 128

DeepS+V 1+1 128 1+1 128

Table 5.1: Hyper-parameters. ’x+y’ means: x layers in each
sub-network and y layers in the joint network.
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5.5 Results and Analysis

5.5.1 Models trained on clean and applied to
noisy audio

In this first experiment we applied trained models to data with
different noise levels and compared the results with the clean
reference data. The results are shown in Figure 5.5. Comparing
different noise types, we observed the same tendencies across
features and datasets. Overall, the recognition performance is
slightly higher for transportation noise and lowest for babble
noise. Figure 5.4 shows results for all three noise types on the
MSP-IMPROV data with eGeMAPS features. Because of these
similarities between noise types, we describe and analyze only
the results for babble noise in greater detail in the following.

In general, we observed a large decline in performance from
clean to noisy audio on both datasets, with decreasing UAR
for higher noise levels (as one would intuitively expect). Adding
visual features consistently improves the performance by a large
margin. In the following, the detailed results for each dataset
are presented.

For MSP-IMPROV (Figure 5.5a), the best audio-only re-
sult is 48.59% ±0.23% (clean audio, eGeMAPS), the best mul-
timodal result is 53.50% ±0.14% (clean audio, DeepSpectrum).
The video-only UAR is 44.24% ±0.59%.

156



5.5. RESULTS AND ANALYSIS

Figure 5.4: Results on MSP-IMPROV for training with clean
audio only and applying the models to noisy audio

data (eGeMAPS features, all noise types).

To gain more insights on the results, we analyzed the mod-
els’ predictions. Exemplary confusion matrices are shown in
Figure 5.6 on page 160 and Figure 5.7 on page 161. For clean
audio, the individual class recalls with eGeMAPS and Deep-
Spectrum features are well balanced (cf. Figure 5.6a). For filter
banks we observed a bias towards the class neutral state (Fig-
ure 5.7a). Adding visual features improves the recall for anger
and happiness notably, which can partially be explained by the
high recall for happiness in the video-only case (73.7%). When
applied to noisy audio, we observed that happiness is predom-
inantly predicted for all three feature types. With eGeMAPS
(audio-only), this effect is most pronounced (cf. Figure 5.6b).
Adding the visual modality improves recall for the other three
classes significantly (cf. Figure 5.6d).
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(a) MSP-IMRPOV

(b) CREMA-D

Figure 5.5: Results for training on clean audio only and
applying the models to noisy audio data (babble

noise).
FBank (F): filter banks, DeepS (D):

DeepSpectrum, eG: eGeMAPS, V: Video.
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With filter banks and DeepSpectrum features (audio-only),
the majority of samples is predicted as either happiness or neu-
tral state at low noise levels and the bias towards happiness in-
creases with higher noise levels. Adding visual features improves
the recall for anger and sadness considerably (cf. Figure 5.7a-
5.7d), but a bias towards the high-arousal classes happiness and
anger remains at higher noise levels.

One main finding of the analysis is that the performance de-
cline on noisy data is smallest for the model with filter bank
features. However, the reference performance on clean data is
lowest in this case. The confusion matrices show that the model
with filter bank features is more stable on noisy audio data with
respect to the balance between classes and the bias towards one
single class. Figure 5.6b and 5.7b illustrate this comparison:
While with eGeMAPS features, the number of samples wrongly
predicted as happiness is very high and almost all anger sam-
ples are predicted as happiness, these effects are less pronounced
with filter bank features. This difference between the models
and features becomes even larger at high noise levels.

For CREMA-D (Figure 5.5b), the results show the same pat-
terns as for MSP-IMPROV: a performance decline proportional
to the noise level (even more pronounced at higher noise levels).
An exception is the combination of visual and eGeMAPS fea-
tures, for which the UAR at 5dB SNR is higher than on clean
audio. We found that the benefit of adding visual features is
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(a) eGeMAPS: clean audio (b) eGeMAPS: 0dB SNR

(c) eG+V: clean audio (d) eG+V: 0dB SNR

Figure 5.6: Results for MSP-IMPROV from uni- and
multimodal models trained on clean audio only and
tested on clean and noisy audio. eG: eGeMAPS, V:

video.
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(a) FBank: clean audio (b) FBank: 0dB SNR

(c) F+V: clean audio (d) F+V: 0dB SNR

Figure 5.7: Results for MSP-IMPROV from uni- and
multimodal models trained on clean audio only and
tested on clean and noisy audio. F: filter banks, V:

video.
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differently distributed across emotion classes. In general, the
largest improvement is observed for the class happiness, which
also has the highest recall for video-only (same as for MSP-
IMPROV). As a result, it can happen that the total UAR is
slightly higher on noisy data than on clean data because the
imbalance between classes increases and certain biases are even
more emphasized. This effect is not as strong for MSP-IMPROV
because overall the differences in recall for individual classes are
not as large.

The best audio-only result is 63.76% ±1.35% (clean audio,
eGeMAPS), the best multimodal result is obtained with eGe-
MAPS features (71.38% ±0.28% at 5dB SNR and 71.17% ±0.29%
on clean audio). The video-only UAR is 59.63% ±0.71%.

The inspection of confusion matrices showed high recall for
the class anger on clean audio throughout all feature sets. With
eGeMAPS the class recalls are most balanced, while with filter
banks a high proportion of samples is wrongly predicted as neu-
tral state. On noisy audio we observed a strong bias towards
happiness with eGeMAPS, a strong bias towards anger with fil-
ter banks and high confusion between sadness and neutral with
DeepSpectrum features. With higher noise levels the biases
towards the high-arousal classes anger and happiness become
stronger. The addition of visual features improves generally the
recall for happiness and neutral.
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5.5.2 Models trained on single noise levels

For the second analysis, we trained and evaluated the models
at the same noise level (matched condition, as it was frequently
done in related work). Figure 5.8 shows the results for MSP-
IMPROV. The results for CREMA-D exhibit similar charac-
teristics. In contrast to the first experiment the performance

Figure 5.8: Results on MSP-IMPROV for training and
evaluation on single noise levels (babble noise).

remains much more stable for noisy data when the model is
trained on this kind of data. The results within one feature set
are at a similar level with a tendency of slightly lower UAR for
higher noise levels. This decrease is most pronounced for eGe-
MAPS features (audio-only). These observations paired with
the findings of the first experiment emphasize the severe conse-
quences that can be caused by a mismatch between train and
test data.
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5.5.3 Data augmentation: Training on all
noise levels

In the third experiment all models are trained on the union
of data from all noise levels (including clean audio) and eval-
uated on the different noise levels separately (similar setup as
in section 5.5.1). The results for MSP-IMPROV are shown in
Figure 5.9. Again, CREMA-D results exhibit similar charac-
teristics. Compared to Figure 5.5a, the performance on clean

Figure 5.9: Results on MSP-IMPROV for training on all noise
levels with babble noise (data augmentation).

audio decreases throughout all features and multimodal combi-
nations, while it improves remarkably on noisy data, especially
for audio-only. The addition of visual features is especially use-
ful with filter bank and DeepSpectrum features. These results
show that data augmentation in the form of added noise is ben-
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eficial in noisy conditions. However, a trade-off between lower
accuracy on clean and higher accuracy on noisy data needs to
be accepted.

5.6 Summary

In this chapter on audiovisual emotion recognition in noisy acous-
tic conditions we have shown that the SER performance de-
creases significantly when training and test data do not match
(clean vs. noisy), and that this effect can be dampened with au-
diovisual models. Intuitively, this does not seem to be surprising
observation. However, it underlines the importance of evalua-
tion in such mismatched conditions, which is neglected by a large
proportion of related research work. As outlined in section 5.1,
most studies have only investigated noisy data in the matched
condition, where training and test data come from the same (or
a similar) distribution with regard to background noise. Gen-
erally spoken, more cross validation needs to be done when the
question at hand is whether developed models can be applied
to real-world use cases. With cross validation, many varying
parameters can be evaluated in order to verify the robustness
of a model, including different noise conditions, recording con-
ditions, languages, speaker characteristics such as sex and age,
just to name a few. In this contribution we investigated noisy
audio as one such varying parameter and demonstrated the po-
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tentially serious consequences of mis-matched conditions. Fur-
thermore, we showed that data augmentation by adding noise
to the training set increases the accuracy on noisy audio signifi-
cantly, but can affect results on clean data negatively. Hence, a
trade-off between the results obtained on clean and noisy data
needs to be found (which may be dependent on the specific ap-
plication or use case).

The comparison between feature sets showed that the eGe-
MAPS parameter set yields the best overall results, given the
basic feed-forward networks that have been employed in this
analysis. However, the inspection of error patterns revealed that
the CNN with log Mel filter bank features yields more stable pre-
dictions under noisy conditions with respect to the magnitude
of accuracy decline and the class balance in predictions.

One limitation of the present study is that the Lombard effect
– the phenomenon that people speak differently than usual in
noisy environments – is not taken into account. To consider
this, future work needs to be based on real-world noisy speech
data instead of superimposed noise.
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6 Conclusion and Future
Directions

This chapter summarizes the main findings with regard to the
two overall research goals that we started off with: systematic
investigations of certain aspects in SER, and extensions to ba-
sic modeling approaches. Furthermore, we present and discuss
ethical considerations with respect to the work presented in this
thesis and also to the broader perspective of affective computing.
While this brief account on the ethical impact of our research is
not intended to be exhaustive, we nevertheless want to highlight
certain ethical aspects, since SER (and more generally, affective
computing) is no longer confined to the work in research insti-
tutions, but it is employed in many real world applications and
products that may have ethical consequences for individuals or
society at large. Lastly, we conclude this work by outlining some
directions for future work to address the limitations of this the-
sis.
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6.1 Summary and Key Findings

We showed that convolutional neural networks are an efficient
modeling approach to automatically learn high-level speech rep-
resentations suitable for classifying basic emotions. With the
proposed ACNN model we found that the particular choice of
preprocessed acoustic features as input to the neural network
does not substantially impact its performance, as long as enough
information is contained in the input (only the very minimal-
istic prosodic feature set consisting of seven features yielded
significantly lower accuracy). However, by comparing scripted
conversations with improvised play, it was shown that the type
of speech can have a significant impact on accuracy. Concerning
the length of the input signal — basically asking the question,
‘How long does the model have to listen before it makes a pre-
diction?’ — we showed that a short segment of the beginning
of an utterance can be sufficient for prediction because the per-
formance loss for shorter input down to about two seconds is
marginal.

Apart from the input data in terms of features, speech type
and signal length, we investigated the feasibility of multilingual
and cross-lingual SER with experiments on English and French
speech data. We showed that arousal level prediction is feasible
across languages, especially when fine-tuning on the target data
can be applied. However, predicting valence levels did not work
well in these multi- and cross-lingual settings. These results
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should be interpreted cautiously with respect to the two lan-
guages used, because language alone was certainly not the only
varying factors between the datasets. The last investigated as-
pect was noise robustness of SER. By evaluating feed-forward
neural networks in mismatched noise conditions (i.e., the model
was trained on clean and then applied to noisy audio data), we
showed a severe performance degradation. Although this was
an expected finding, we emphasized the importance in research
to evaluate such mismatchted conditions, which has only rarely
been done in the literature. As one solution to improve the ac-
curacy, we showed that data augmentation by adding noisy data
to the train set helps.

As for the second goal, possible extensions, several directions
were explored. Using an attention mechanism to make the CNN
model attentive to the most salient information, we showed that
this yields slight improvements for certain constellations of in-
put speech type and acoustic features. Beyond that, the anal-
ysis of the learned attention weights demonstrated that such
an attention layer is a useful vehicle for analysis of the net-
work. Looking at the problem of data scarcity, we presented
two different promising appraoches: representation learning on
unlabeled speech, and generating artificial samples that repre-
sent a certain target emotion. We showed that general-purpose
speech representations learned by an autoencoder are useful as
additional feature to improve SER performance and that a Cy-
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cleGAN framework can be successfully employed for generating
artifical training data by means of emotion style transfer. Fi-
nally, we explored multimodal processing of audio and visual
information (facial expressions) to attenuate the performance
degradation in noisy environments. With a model-level fusion
approach of the two modalities, we showed that the addition of
visual features does not only improve the general performance,
but helps significantly to reduce the loss when the audio chan-
nel is corrupted by noise. Especially the high-arousal classes
anger and happiness, which are difficult to distinguish based
on acoustics alone, can be better told apart with a multimodal
model.

6.2 Ethical Considerations

As emotion processing and related computational paralinguis-
tics technologies are being used more and more in real-world
applications for a variety of purposes, it becomes also increas-
ingly important to put responsible use of such in the focus of
the general discourse. Examples for such applications are found
in the automotive industry (e.g. detecting stress or other states
in drivers (Eyben et al., 2010c)), in call centers (e.g. reacting to
angry customers (Burkhardt et al., 2009)), in the health sector
(e.g. asssessing mood and emotional states to monitor neurolog-
ical conditions (Cummins et al., 2018; Matton et al., 2019)), or
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in the entertainment sector (e.g. players’ emotions influence the
plot of video games (Lobel et al., 2016; Jones and Sutherland,
2008)).

Ethical guidance for artificial intelligence (AI) and its related
areas and use cases exists, for example in the Institute of Elec-
trical and Electronics Engineers’ Ethically Aligned Design (The
IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems, 2017) – however, practical guidelines and binding stan-
dards are still rather the exception. IEEE provides high-level
recommendations in various areas of autonomous and intelli-
gent systems, including affective computing. In a meta-analysis
of existing ethical guidelines, Jobin et al. investigated whether
there are globally agreed principles of ethical AI (Jobin et al.,
2019). They identified five main principles that occurred most
frequently: transparency, justice and fairness, non-maleficence,
responsibility, and privacy. Focused on computational paralin-
guistics specifically, Batliner et al. (2020) give a comprehensive
account on the specific ethical demands within the field and em-
phasize the importance of representative data and interpretabil-
ity of outcomes.

Based on the literature, we identified the following pivotal
ethical cornerstones with regard to SER and its potential appli-
cations:

• Performance – quality of models in terms of accuracy and
robustness
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• Representative data and models – different types of biases
and how they can be addressed

• Transparency – disclosure of the inner workings and the
underlying data, comprising interpretability/explainability

• Privacy – a large area that encompasses, among others,
data pricacy and security, anonymizing algorithms, decen-
tralized processing techniques, emotion-hiding methods

• Accountability – the question of who is responsible and
accountable for decisions taken by autonomous systems is
one of the ‘General Principles’ in Ethically Aligned Design
(The IEEE Global Initiative on Ethics of Autonomous and
Intelligent Systems, 2017)

In the following, we discuss aspects that are directly related
to the work presented in this thesis, which particularly pertain
to the first two cornerstones, performance and representative
data and biases.

In the experiments presented in the previous chapters, it be-
came evident that the accuracy of SER is still at a relatively low
level.1 Performance, being expressed in terms of some evalua-
tion metric, is usually not considered as an ethical aspect (but a

1Note, at the time of writing, state-of-the-art results in the literature for
the used benchmark datasets are undoubtedly higher than the ones re-
ported in this work, since the ‘race for the highest accuracy’ is moving at
fast pace in the research community. However, this certainly comes at
the cost of even lower generalizability. Usually, state-of-the-art results
are presented on a specific dataset and assessing a model’s performance

172



6.2. ETHICAL CONSIDERATIONS

rather technical one) and is just assumed to be given; it appears
that optimal performance is assumed in ethical discourses and
guidance. However, it should be critically asked, whether an
algorithm is ‘good enough’ for a particular use case. If this is
not thoroughly assessed, potential unethical consequences can
arise (e.g. if SER is used in personality tests for job recruitment,
or for employee monitoring). As we have shown in chapter 5,
when applied in conditions different from the training data (in
this case acoustic noise), prediction accuracy can deteriote sig-
nificantly. This is also generally the case for these small training
data sets in other cross validation settings. For these reasons, we
consider model performance and generalizability as critical eth-
ical aspects, because the usage of inaccurate models can have
severe consequences. A related problem is the ‘veneer of ac-
curacy’, that is when applications or products are claimed to
work optimally and accurately, given certain benchmark num-
bers, but they in fact fail to deliver this accuracy once released
to the open, i.e. applied to unseen data.

Closely related to performance is the question how represen-
tative data and models are (including biases that emerge if data
and/or algorithms are not representative). The prevailing dis-
cussions on bias are typically about training data bias (with the
main theme often being ‘AI itself is not biased, but the under-

with cross validation on different data is still not widely done. Gener-
alizability remains a crucial challenge, also due to small and potentially
biased datasets.
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lying data are’). However, various distinct sources and types of
biases exist and it is important to distinguish them. Already
in early works on bias in computer systems, Friedman et al.
identified three overarching types: pre-existing, technial, and
emergent bias (Friedman and Nissenbaum, 1996). More recent
work on algorithmic bias suggests a more fine-grained taxonomy,
distinguishing biases with respect to training data, algorithmic
focus, algorithmic processing, transferring context, and inter-
pretation of outcomes (Danks and London, 2017). With regard
to SER and the presented work in this thesis, we view train-
ing data bias (pre-existing) and several technical biases as the
primary issues that need to be addressed in the research com-
munity. Considering the small datasets used for training and
evaluating SER systems, the obtained results usually cannot be
transferred to real world use cases yet and trained models are
not representative for a broader population of speakers. Con-
cerning technical bias, which comprises all tools and processes
used to transform data into models that make predictions, Fried-
man (1996) described one source of bias as “the attempt to make
human constructs amenable to computers – when, for example,
we quantify the qualitative, make discrete the continuous, or
formalize the nonformal.” Dobbe et al. (2018) pointed out that
technical bias is particularly domain-specific, but they identi-
fied four common sources of bias in the typical machine learning
pipeline: measurement, modelling, label, and optimization bias.
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Measurement bias describes how the procedure of transform-
ing data and labels into machine-readable representations can
induce unwanted effects (for example using a nominal instead
of an ordinal scale to measure some variable). In SER, various
types of measurements are used, both for the speech data itself
(e.g. the unit of analysis can be a long utterance or a short
audio frame; it can be modeled statically or time-continuously)
and for labels (e.g. basic emotions on a nominal scale or dimen-
sional representations on interval scales). Consequently, when
putting SER into practice, these possible sources of bias need
to be considered and the right measures for the particular ap-
plication have to be chosen. Another critical issue in emotion
processing technologies, which seems to be largely neglected in
the technology-oriented AI community is label bias, which is
about the question how representative the chosen output la-
bels are for the actual phenomenon. The target labels we aim
to predict (such as basic emotions) are unavoidably some dis-
cretized proxies for the actual emotional states because emo-
tions cannot be objectively measured (no ground-truth exists).
Some researchers in psychology are even calling for an overhaul
on how emotions are understood in computational analysis by
challenging the common view that certain physical movements
(e.g. facial expressions) are intrinsic displays of specific emo-
tional states (Barrett et al., 2019). While we acknowledge that
it will remain difficult, if not impossible to truly ‘read some-
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ones emotions’, as emotion itself is a difficult concept to grasp
even for humans, we argue that conducting research on acoustic
parameters that correlate with certain states and traits of the
speakers is important and useful for a large variety of applica-
tions. Consequently, depending on the application domain, it
can be fully acceptable to utilize abstract proxies, like a closed
set of emotion words to describe user states, whereas it might
not be applicable to other contexts. To conclude, it is important
to raise awareness in the community for these different types of
biases and how they can affect the outcomes, which always need
to be carefully interpreted.

6.3 Outlook

In this work, we focused on the basic emotions approach and
therefore used mainly nominal emotion labels and treated the
task of SER as classification problem. As already detailed in
chapter 2, the second widely utilized type of emotion repre-
sentation is the dimensional model with the two predominant
dimensions of arousal and valence. Both approaches are broadly
in use and have their own advantages and disadvantages. On
the one hand, the basic emotions approach facilitates interpre-
tation of the labels by users of a system because people usually
have a common notion of how an angry or sad voice sounds
like (at least in the prototypical sense). On the other hand,
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value ‘continuous’ dimensions eliminate the problem of artifi-
cially introduced clear-cut boundaries between classes and allow
for more fine-grained nuances. A mapping from dimensional la-
bels to basic emotions and vice versa is sometimes done (e.g. in
cross-corpus evaluation), however it is not straightforward. It is
conceivable that future work will examine such mappings fur-
ther and how the different approaches can be made compatible.

In section 3.2 we described our proposed ACNN model with
its necessity to provide fixed-length feature representations as
input data. Although handling variable length input by means
of zero-padding has been a common approach when working
with CNNs, the approach has its limitations: the resulting data
is either very sparse when we take the longest training sample
as the threshold and pad everything else, or we lose information
when we cut long utterances to a certain shorter threshold (and
still have to pad many samples with zeros). While this has not
been critical for the presented work because the used datasets
consist of short dialog turns, it can pose problems to other types
of data and use cases. One possible alternative could be a slid-
ing analysis window, i.e. multiple shorter chunks of equal size
are fed into a model and the predictions are fused in some way
at the end for the complete utterance. Another broadly re-
searched alternative, which was not in the scope of this work, is
time-continous modeling where the task is not treated as clas-
sification, but as regression. This usually goes together with
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using continuous emotion dimensions, i.e. a model is trained to
predict an arousal or valence value for each point in time at a
certain rate. For this approach, recurrent neural networks and
their variants have been established. With their ability to ‘re-
member’ information and therefore take preceding context into
account, these types of neural networks are a promising avenue
for SER applications.

In section 3.5.3 an analysis of the learned weights from the
attention mechanism was presented. Another attempt to gain
more insights about the inner workings of the model was pre-
sented in section 4.1.5, where the activations of the CNN’s last
hidden layer were visualized using t-SNE dimensionality reduc-
tion. These analyses provided useful insights, but were con-
fined to looking at weights (without knowing what exactly is
weighted) and outputs respectively. In recent years, explainable
AI (XAI) has become a research field in its own right, which
is concerned with uncovering what is actually represented and
learned inside neural networks (Adadi and Berrada, 2018; Arri-
eta et al., 2020). Consequently, future work will provide more
insight into the inner representations and how they can be inter-
preted in order to explain and justify predictions to the users.

Lastly, another area that is already gaining a lot of atten-
tion and which we have touched rather superficially is multi-
modal machine learning. Because of the complementary infor-
mation that different modalities can provide – in the case of
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emotion recognition particularly speech and facial expressions –
a large performance gain can be expected when the task is mod-
eled holistically with as much available information as possible
(which information channels are readily available strongly de-
pends on the domain and use case). Outstanding challenges in
this interdisciplinary area include the development of robust and
efficient fusion methods (for potentially heterogeneous data),
and handling noisy or missing data from one or the other modal-
ity. Coming back to the introductory quote by Peter Drucker,
many challanges are still waiting to be solved on the way to let
machines “understand what isn’t being said”.
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