
Institute of Parallel and Distributed Systems
Machine Learning and Robotics Lab

Bachelorarbeit

Monte Carlo Localization in
dynamic environments based on

an Automotive Lidar Sensor
Cocoon

Felix Weitbrecht

Course of Study: Informatik

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: Prof. Dr. rer. nat. Marc Toussaint,
Dr. Daniel Hennes,
Dr. rer. nat. Jens Honer

Commenced: 2017-02-01

Completed: 2017-08-01

CR-Classification: G.3, I.2.9

Abstract

Autonomous driving and driver assistance systems require accurate information about
the vehicle and its surroundings to perform tasks such as robust path planning. An
occupancy grid map can provide such information, but it too requires precise information
about the vehicle’s location. We present an approach to Monte Carlo Localization on
an occupancy grid map based on an automotive lidar sensor cocoon providing 360°
measurements around the vehicle using five Valeo SCALA sensors. Standard MCL is
enhanced through an alternative particle weighting function and separate alpha filters
are used to incorporate odometry measurements. Additionally, scan point sampling is
introduced into the particle weighting function to select scan points most representative
of pose estimation quality. Compared to paths reconstructed from only the vehicle’s
odometry signals, the mean squared error in heading angle and position is reduced by
93-97% and 86-96%, respectively. Investigated scenarios include urban roads, factory
roads, elevated country roads and highways.

Zusammenfassung

Autonomes Fahren und Fahrassistenzsysteme benötigen akkurate Informationen über
das Fahrzeug und seine Umgebung um Aufgaben wie zum Beispiel robuste Bahnplanung
durchzuführen. Occupancy Grid Maps können solche Informationen liefern, aber auch
sie benötigen präzise Informationen über den Standort des Fahrzeugs. Wir präsentieren
auf Basis einer Occupancy Grid Map einen Ansatz für Monte Carlo Localization. 360°
Messungen der Umgebung werden von einem Automobil-Lidar-Sensor-Cocoon geliefert,
der aus fünf Valeo SCALA-Sensoren besteht. Standard-MCL wird durch eine alternative
Gewichtungsfunktion für Partikel verbessert und separate Alpha-Filter werden verwen-
det, um Odometriemesswerte zu integrieren. Zusätzlich wird Scanpunkt-Sampling in
der Gewichtungsfunktion für Partikel eingeführt um Scanpunkte auszuwählen, die am
repräsentativsten für die Schätzungsqualität einer Pose sind. Die mittlere quadratische
Abweichung in Richtungswinkel und Position wird 93-97% und 86-96% verbessert
gegenüber Bahnen, die nur aus den Odometrie-Signalen des Fahrzeugs berechnet wur-
den. Untersuchte Szenarien beinhalten Innerortsstraßen, Fabrikgelände, erhöhte Land-
straßen und Autobahnen.

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Goals . 10
1.3 Outline . 10

2 Related Work 11

3 Background 13
3.1 SLAM: Simultaneous Localization and Mapping 13
3.2 Bayesian Filtering . 14

3.2.1 Particle Filters . 15
3.2.2 Monte Carlo Localization . 17
3.2.3 Alpha Filters . 20

3.3 Occupancy Grid Mapping . 20
3.3.1 Log Odds . 21
3.3.2 Inverse Sensor Model . 22

3.4 SCALA . 23
3.5 DBSCAN . 24

4 Problem Description and Setup 27
4.1 SCALA Cocoon . 27
4.2 Odometry . 28
4.3 Occupancy Grid Map . 28

4.3.1 Input Data . 30
4.3.2 Motion Model . 31

4.3.2.1 Derivation of the equations for curved motion 33
4.3.3 Map Shift . 34
4.3.4 Correction step . 34

4.4 Objective . 36

5 Approach 39
5.1 Environment . 39

5

Contents

5.2 Particle Filter Implementation . 40
5.2.1 Particle Spawning . 41
5.2.2 Particle Evolution . 41
5.2.3 Particle Weighting . 42

5.2.3.1 Weighting based on scan points 42
5.2.3.2 Weighting based on odometry 44

5.2.4 Particle Resampling . 46
5.3 Pose Extraction . 46
5.4 Connecting the Particle Filter to the Occupancy Grid Map 47
5.5 Expanding the Particle Filter . 48

5.5.1 Alternative Particle Weighting Function based on Scan Points . . 49
5.5.2 Utilizing Alpha Filters for Odometry 49

5.6 Scan Point Sampling . 50
5.6.1 Sampling based on Distance to the Car 51
5.6.2 Sampling for Far Detections . 52
5.6.3 Sampling Scan Points based on Angle between Road and Obstacles 53
5.6.4 Grid-based Sampling . 55
5.6.5 Sampling based on Surface Smoothness 56
5.6.6 Sampling against Dynamic Obstacles 57

6 Evaluation and Results 59
6.1 Method of Evaluation . 59

6.1.1 Obtaining Reference Data . 59
6.1.2 Accuracy of Reference Data . 61
6.1.3 Path Evaluation . 63

6.1.3.1 Preparing path data for comparison 63
6.1.3.2 Comparing path data to ground truth data 65

6.2 Configuring the OGM . 66
6.3 Test Scenarios . 67
6.4 Baseline . 68
6.5 Configuring the Particle Filter . 72
6.6 Scan Point Sampling . 74
6.7 Combining Scan Point Sampling Strategies 77

7 Conclusion 81
7.1 Future Work . 82

List of Figures 83

Bibliography 85

6

Glossary

This short glossary is intended to explain abbreviations and terminology used frequently
in this work. It is incomplete in the sense that it does not contain all abbreviations and
terminology, this list only includes items that occur frequently without an explanation
obvious from context.

Host Vehicle the OGM and SLAM is working with

MCL Monte Carlo Localization

MSE Mean squared error

OGM Occupancy Grid Mapping

Pose Position and heading angle of the host; different from position which only refers
to location

Scan point cloud Set of scan points gathered by a sensor in one time step

SCALA Lidar scanner, often referred to simply as sensor

SLAM Simultaneous Localization and Mapping

Trace File containing recording of all data necessary for OGM and SLAM provided by
the host during a test drive

7

1 Introduction

1.1 Motivation

Autonomous driving is rapidly gaining importance. Replacing human drivers with
autonomous vehicles promises significant advantages for everyday life, safety and the
environment. Eliminating humans as a source of accidents would significantly decrease
traffic related injuries and deaths. A step below autonomous driving are driver assistance
systems which assist with or fully automate certain parts of driving, such as staying
in one’s lane or keeping a safe distance to cars traveling in front. Reacting to and
interacting with its environment requires a vehicle to know as much as possible about
its surroundings. Lidar sensors enable vehicles to see their surroundings through sets
of detections reported for certain ranges and angles relative to the sensors. Combining
these detections over time allows the vehicle to construct a map of its surroundings in
which it can track its movement. To make the map useful the vehicle location on the map
needs to be known as precisely as possible. The process of simultaneously constructing
a map and localizing oneself in it is called SLAM, short for simultaneous localization and
mapping. It assists in providing fundamental information about the vehicle’s environment
such as the shape and extent of the road, the location and motion of other vehicles,
and of course its own position relative to obstacles. Reliable information like that is
necessary for various parts of autonomous driving such as robust path planning. To
maximize the information gathered by the vehicle one can place a multitude of sensors
around the vehicle so that the sensors, when their measurements are combined, provide
a 360° view around the entire vehicle.

Typical SLAM algorithms assume a static environment, making robust localization
especially difficult in highly dynamic environments. There, other vehicles going in
various directions, pedestrians and other smaller dynamic obstacles make it hard to
obtain accurate localization results sufficient for reliable fully autonomous driving. That
is because their changing location causes scan point clouds to depict environments that
are different from previously established environment information.

9

1 Introduction

1.2 Goals

We aim to provide improved localization estimates in dynamic environments by utilizing
a Monte Carlo filter working on an occupancy grid map. Its performance is amplified
by various modifications including multiple ways of sampling scan points used for
determining the quality of estimations.

The particle filter we set up is based on an existing occupancy grid map. The filter
provides vehicle location updates to the grid map to help it better line up new scan
point clouds to the existing map. We improve the performance of the particle filter
first by investigating different particle weighting functions and using alpha filters to
estimate odometry signals. Then we implement a series of scan point sampling strategies
aimed at finding a set of scan points containing the scan points most important for
localization. We obtain a particle filter that is able to reliably track the vehicle in a
variety of environments.

1.3 Outline

The rest of this work is structured as follows.

Chapter 2 – Related Work discusses important related work concerning SLAM, auto-
motive lidar and occupancy grid mapping.

Chapter 3 – Background presents background theory concerning Bayes filters, particle
filters, occupancy grid mapping and the hardware required for this work.

Chapter 4 – Problem Description and Setup explains the system we are working with
and its limitations.

Chapter 5 – Approach describes the techniques we use to solve the problem. An
alternative particle weighting function is introduced and a variety of scan point
sampling strategies used in the particle filter’s weighting function are presented.

Chapter 6 – Evaluation and Results formulates a method of evaluation based on
matching scan point clouds to satellite imagery and uses it to show and com-
pare the results of our work. Paths estimated by various configurations of our
particle filter are compared against paths calculated based on only odometry data.

Chapter 7 – Conclusion concludes the work, concisely summarizing our approach,
highlighting key achievements and outlining some areas for future work to expand
on.

10

2 Related Work

There exist many different approaches to SLAM. Extended Kalman Filters have been
popular from the beginning [SC86]. They maintain a Gaussian distribution which
is updated recursively as new measurements become available. A detailed summary
of the history of and many approaches to SLAM is given in [BD06; DB06]. Another
popular approach is Monte Carlo Localization [DFBT99], proposed in 1999 to localize
and track mobile robots in known environments. In MCL, a particle filter maintains a
set of samples drawn from the state space to represent the belief distribution. A key
advantage of particle filters over Kalman Filters is their ability to represent arbitrary
belief distributions. Combining MCL with a mapping algorithm yields a solution to
SLAM.

SLAM has also been studied in automotive scenarios. [LT10] uses a combination of GPS,
IMU and lidar to build a non-volatile map capable of being updated on secondary visits.
[RJMZ16] simultaneously perform MCL on multiple map layers built from data provided
by a 3D lidar sensor.

Other approaches to automotive SLAM exist that don’t rely on particle filters. [VAA07]
uses a local grid map to keep track of the vehicle’s environment; scan matching based
on samples drawn according to the motion model is used for position updates.

It’s important to distinguish between 2D lidar sensors and 3D lidar sensors. The former
are currently the only type of hardware viable for automotive applications, however
they often have parts of their field of view obstructed by dynamic objects; the latter,
more expensive, 3D lidar sensors, mounted above the vehicle, allow one to specifically
select scan points belonging to the ground plane, resulting in measurements free of most
dynamic and semi-dynamic obstacles [CQB+13; LMT07].

Other approaches use cameras for localization [Wu16], for example [CMC+17] uses
a camera pointed at the road to improve lateral position estimations using road mark-
ings.

11

3 Background

This chapter explains the basics of the standard techniques and methods, and presents the
hardware built into the test vehicles used for this work. Specifically, SLAM (Simultaneous
Localization and Mapping), Bayesian Filtering, (Monte Carlo) Particle Filters, Occupancy
Grid Mapping, and SCALA are covered.

Note that in this chapter the term robot will be used to describe the machine on which
sensors are installed and algorithms are executed. This term is not meant to be limited
to actual robots, instead it is used in the context of techniques developed with them in
mind, but also applicable to our purposes, automobiles.

Large parts of sections 3.1 through 3.3 are based on [TBF05].

3.1 SLAM: Simultaneous Localization and Mapping

SLAM is the practice of concurrently constructing a consistent map of a robot’s surround-
ings and continuously determining the robot’s location in this map as it is generated.

There are various different scenarios in which SLAM finds application: There can either
be one robot or there can be multiple robots cooperating to construct the map, navigating
through the same environment at the same time. The map may be partially or fully
constructed beforehand (with some or no errors), with the robot first having to localize
itself inside this map before being able to contribute to it in a meaningful way. The
accuracy and detail provided by the sensors used to describe the robot’s movement and
its vision of the environment may vary greatly. The map may be limited to a certain area,
either fixed in the environment or relative to the robot. With larger or unlimited maps,
one may encounter the issue of loop closure, the robot visiting a location it has visited
before. There, ideally, the robot’s localization in the map should be the same for both
visits so the scans of the environment line up between the two visits.

13

3 Background

In general, there are two approaches to SLAM:

• Smoothing: Given all measurements up to and including the current time step,
what is the most likely sequence of robot states leading up to and including the
current time step?

• Filtering: Given the previous robot state and map as well as a new set of measure-
ments, what is the most likely state of the robot for the current time step?

For our purposes, there exists only one robot, building a square map centered on itself.
Depending on the configuration of the map, the point farthest from the robot may be up
to about 170 meters away from it. Considering the accuracy of even untreated odometry
data and the scale of typical highway and urban environments, loop closure is not an
issue we need to address specifically. Global localization isn’t an issue we need to deal
with either because the map is not known beforehand, making this a pure tracking
application.

Typically Bayes Filters are used for SLAM. [DB06]

3.2 Bayesian Filtering

A Bayesian Filter estimates a state vector xt at time t by updating a belief distribution
bel over xt whenever a new set of measurement data becomes available. It functions in
two steps: prediction and measurement update. Measurement data consist of control
inputs or (or, in our case, measured odometry data) ut and a set of measurements zt.
Based on the previous time step’s belief bel(xt−1), the so called prior belief, a new belief
bel(xt), the so called posterior belief, is then calculated.

When an update is applied, the belief is updated for every single xt. In the prediction
step

bel(xt)←
∫

p(xt | ut, xt−1) bel(xt−1) dxt−1 (3.1)

the probability to arrive at each state xt according to only the odometry data is calculated.
Note that while the left side of the equation does read bel(xt), this is not the final bel(xt)
- it will be overwritten again in the measurement update directly afterwards.

In the measurement update

bel(xt)← η p(zt | xt) bel(xt) (3.2)

the belief is multiplied by the probability of the measurement zt having been observed
in the predicted state xt. η is a normalization factor that appeared after applying Bayes’

14

3.2 Bayesian Filtering

Theorem to calculate the posterior. There, it replaces the denominator on the right-hand
side:

p(xt | z1:t, u1:t) = p(zt | xt, z1:t−1, u1:t) p(xt | z1:t−1, u1:t)
p(zt | z1:t−1, u1:t)

(3.3)

The ab:c-notation indicates the sequence of ab through ac. For the full derivation of the
filter, the reader is encouraged to look up chapter 2.4.3 of [TBF05].

To use the filter, an initial belief bel(x0) needs to be specified. Typically, the initial state
is either fully known, for example in tracking applications, or entirely unknown, like in
many localization applications. The obvious choice then will be to assign all probability
to the known value or to choose a uniform distribution, respectively.

3.2.1 Particle Filters

Particle filters approximate the posterior bel(xt) with a finite set of state samples ran-
domly chosen from bel(xt). This allows one to represent almost arbitrary distributions.
Typically, the number of state samples, also called particles, M should be large enough
to represent the belief accurately to some extent. Usually M is chosen between 100 and
1000 [TBF05]. Optionally, this number may be varied over time or depending on other
parameters. We denote the set of particles at time step t

Xt = {x[i]
t | 1 ≤ i ≤M} (3.4)

Then each particle x
[i]
t is a hypothesis about the actual state at time step t. As Xt

approximates bel(xt), the probability of a hypothesis xt to be included in Xt should be
proportional to its posterior bel(xt). Assuming the number of particles to be sufficiently
large, this means that parts of the state space densely populated by particles are more
likely to contain the true state.

Algorithm 3.1 Particle filter

1: function PARTICLE_FILTER(Xt−1, ut, zt)
2: for all i ∈ {1, ..., M} do
3: sample x

[i]
t ∼ p(xt | ut, x

[i]
t−1)

4: w
[i]
t = p(zt | x

[i]
t)

5: end for
6: Xt = ∅
7: draw M particles x

[j]
t from the xt with probability ∝ w

[j]
t and add them to Xt

8: return Xt

9: end function

15

3 Background

Figure 3.1: The resampling step used in particle filters. Under each graph, the current
set of particles is displayed with different heights indicating their weights.
(a) The density f we aim to approximate. (b) Unable to sample from f ,
we’ll have to make do with a different density, g. (c) Giving importance
factors f(x)/g(x) to the particles, we obtain an approximation of f . (d) After
resampling from the particle set. Note that the particle set now contains
more duplicates, making dense areas appear sparser than they are. f stands
for bel(xt) and g stands for the proposal distribution particle set before the
resampling step.

Algorithm 3.1 describes a simple implementation of the particle filter’s recursive update
step performed whenever a measurement update along with a new set of odometry data
becomes available. Just like in equation 3.1, first a temporary set of x

[i]
t is constructed

based on the odometry data before taking into consideration the measurement update
to obtain the new posterior.

The prediction step is implemented by the loop in lines 2 through 5, each particle receives
an update based on the odometry data. For this, one state hypothesis is generated for
each particle based on its state and the state transition distribution. Also, an importance
factor w

[i]
t is calculated for each newly sampled hypothesis. It is given by the so-called

measurement probability, the probability of the measurement given the newly sampled

16

3.2 Bayesian Filtering

Algorithm 3.2 MCL

1: function MCL(Xt−1, ut, zt, m)
2: for all i ∈ {1, ..., M} do
3: x

[i]
t = SAMPLE_MOTION_MODEL(ut, x

[i]
t−1)

4: w
[i]
t = MEASUREMENT_MODEL(zt, x

[i]
t , m)

5: end for
6: Xt = ∅
7: draw M particles x

[j]
t from the xt with probability ∝ w

[j]
t and add them to Xt

8: return Xt

9: end function

hypothesis. Interpreting these importance factors as non-normalized weights of the
particles, the set of particles approximates the posterior bel(xt). This will be used in the
next step which is usually called resampling.

Here, in lines 6 and 7, M particles are chosen from the set of just-sampled hypotheses
proportionally to their importance factors determined in the previous step. This yields
Xt, our posterior approximation. Note that Xt generally will contain duplicates, taking
the places of particles that weren’t drawn in line 7 because they have evolved into less
likely hypotheses. This step is important to avoid spending a lot of computational effort
on particles located in areas of low likelihood within the state space as well as to keep a
significant number of particles in the area(s) of higher likelihood. These duplicates will
not remain identical forever, in the next time step they will diverge from each other as
they each have the prediction step applied to them.

Figure 3.1 visualizes how the resampling step allows us to approximate one distribution
by drawing samples from a different distribution and appropriately weighting them.

Again, for the mathematical derivation of the particle filter, the reader is encouraged to
look up chapter 4.3.3 of [TBF05].

3.2.2 Monte Carlo Localization

MCL, short for Monte Carlo Localization [DFBT99], uses a particle filter to perform
localization. In this section, we will take a short look at a basic MCL algorithm and
illustrate its functionality with a simple one-dimensional example.

Algorithm 3.2 describes how the MCL algorithm works. Note that m is the map and
that M is the amount of particles. The main difference between the general particle
filter (algorithm 3.1) and MCL is the substitution of the distributions in the loop with
a motion model and a measurement model. These provide a way to sample from the

17

3 Background

motion model and a way to ascertain how well a given measurement matches a given
map. Chapter 5 will go into more detail on them.

There are several common straightforward improvements for MCL that should be
mentioned even though they aren’t used in this work.

• Random particles: Particles tend to bunch up into one location once they become
lost. It’s highly unlikely for the filter to recover from such a situation on its own.
To work against this possibility, a certain number of particles, sampled uniformly
from the entire state space, is added into the set of particles at each time step. This
also helps recover from getting kidnapped, having the true pose changed without
odometry data indicating so.

• Resource-adaptive M : To best make use of available resources, one can, instead of
setting a fixed M in line 7 of algorithm 3.2, sample more and more particles until
ut−1 and zt−1 become available.

• KLD-Sampling: Using the Kullback-Leibler distance, the approximation error of
the particle filter is measured and used to dynamically set M to be smaller for very
focused distributions and higher for uncertain ones. [Fox02]

Figure 3.2 shows how the Monte Carlo Filter works by the example of a robot, repre-
sented by the black sphere, which is free to move left and right in a one-dimensional,
previously known environment. It possesses a sensor allowing it to distinguish between
solid walls and air (open doors, for example). Initially (3.2(a)), the robot doesn’t know
where it is. Its belief is distributed equally over the whole state space, as seen in the set
of particles displayed below the robot’s environment. In 3.2(b), the robot’s sensor has
reported air. The belief bel(xt) is assigned importance factors for every particle according
to the measurement probability p(z|x), which, for air readings, exhibits peaks by the
three holes the robot would sense air at.

In 3.2(c), the robot moves a few meters to the right. This step shows the particles after
they’ve been resampled and moved in accordance with the odometry data. The belief
displays three peaks corresponding to the three locations in the world the robot believes
itself to be located at most likely; these three locations all looked the same at the time
the only sensor reading so far was processed. In 3.2(d), weights are again assigned to
the particles, this time assigning much more likelihood around the correct pose of the
robot because the sequence of sensor readings and odometry data so far best matches
that pose. In the following iterations, the particle set will most likely converge towards
the correct pose.

18

3.2 Bayesian Filtering

Figure 3.2: One-dimensional MCL, figure inspired by [TBF05]

19

3 Background

Algorithm 3.3 Alpha filter

1: function ALPHA_FILTER(Xt−1, Xm,t)
2: r ← Xm,t −Xt−1
3: Xt ← Xt−1 + αr

4: return Xt

5: end function

3.2.3 Alpha Filters

An Alpha filter is a very simple implementation of a Bayes filter. It provides a basic
approximation of a single variable X supported by measurements Xm of this variable.
Measurements are assumed to be noisy but unbiased. Estimates are updated by shifting
the estimate towards the newest measurement by a constant factor α, also called the
gain. This is in contrast to Kalman filters which calculate updates using dynamic factors
[Kal+60].

Algorithm 3.3 describes the update step. Line 2 calculates the residual, the difference
between the last time step’s prediction and the new measurement. Line 3 updates the
estimate by adding α times the residual onto the previous one. Rewriting line 3 as

Xt ← (1− α)Xt−1 + αXm,t (3.5)

demonstrates that it is simply linearly interpolating between the measurement and the
old estimate using weights α and (1− α), respectively. Thus α determines how quickly
the estimate reacts to changes in the measured signal.

This filter is closely related to the alpha beta filter which maintains two state variables
of which one is the other’s integral over time. In the context of distance and velocity,
the filter would receive distance measurements and, using the residual of the distance
prediction, update distance and velocity estimates using gains α and β, respectively
[JZ98].

3.3 Occupancy Grid Mapping

OGM, short for Occupancy Grid Mapping, is a common method of storing information
about the environment a robot sees. It discretizes robot surroundings into a set of grid
cells mi of a certain size. Usually, these cells are all equally-sized and square. While
three-dimensional grid maps exist and have been utilized for vehicle navigation/tracking
purposes [HR16], two-dimensional grid maps are most prevalent for ground navigation.
Those only operate on a part of the environment, typically a horizontal thin slice-like

20

3.3 Occupancy Grid Mapping

structure, which, if necessary, is projected down into two dimensions to provide a
top-down view of the area.

The goal is to calculate a posterior over the map m given the measurements and the
path taken by the robot:

p(m | z1:t, x1:t) (3.6)

As the number of grid cells and thus the number of dimensions is unpracticably large for
any non-trivial grid map, this posterior is impossible to calculate in practice. Instead, it
has become standard practice to look at each cell separately to obtain a posterior:

p(m | z1:t, x1:t) =
∏

i

p(mi | z1:t, x1:t) (3.7)

Note that cells are not correlated in this view, an assumption that does not fully match
the real world. It also reduces the problem to a set of binary estimation problems, each
with static state. Cells which are likely to be occupied will have values closer to 1, cells
which are likely to be unoccupied will have values closer to 0 and cells we have little
information about or we are unsure about will have values close to 0.5.

Another optimization that will prove convenient is to make use of log odds.

3.3.1 Log Odds

When working with binary states, log odds are very useful to store the belief. Denoting
the two possible states occ and ¬occ, the simple relation between their probabilities can
be described in the following way:

p(occ) = 1− p(¬occ) (3.8)

Thus we can keep track of only one of the two probabilities without losing any informa-
tion. Even better, we can use the log odds ratio of the two probabilities:

log
p(occ)

1− p(occ) (3.9)

In the context of commonly used limited precision floating point numbers, this provides
two main advantages. Most importantly, precision errors near 0 and 1 are avoided.
Secondly, the entire domain of the number format is used because, as p(occ) approaches
0 or 1, the log odds ratio given in equation 3.9 approaches −∞ or∞, respectively. It
also turns what previously were multiplications into additions.

21

3 Background

Then, to update the map after a measurement has arrived, all cells covered by the field
of view of the sensor the update originated from are updated. Typically, an Inverse Sensor
Model is used to update the probabilities.

lt,i = lt−1,i + ism(mi, xt, zt)− l0 (3.10)

In this equation, lt−1,i and lt,i refer to the log odds representations of the prior and
posterior belief of cell i, the function ism is the Inverse Sensor Model which will be
explained in the following paragraphs, and l0 is the log odds representation of the prior
of occupancy. In applications in which the map is entirely unknown in the beginning, l0,
the log odds ratio of a probability of 0.5, will be 0 and can therefore be omitted.

The occupancy probability can be calculated from the log odds l using

p(occ) = el

1 + el
(3.11)

which is because

el

1 + el
=

p(occ)
1−p(occ)

1 + p(occ)
1−p(occ)

=
p(occ)

1−p(occ)
(1−p(occ))+p(occ)

1−p(occ)

=
p(occ)

1−p(occ)
1

1−p(occ)
= p(occ)(1− p(occ))

1− p(occ) = p(occ) (3.12)

3.3.2 Inverse Sensor Model

In the inverse sensor model, cells are represented in a probabilistic manner under the
assumption of independence of each other. As discussed in the context of occupancy grid
mapping (section 3.3), this allows for significantly easier calculation of posteriors.

The inverse sensor model gives the probability of a cell being occupied based on the
measurement update. It assigns higher probabilities of occupancy to cells close to
detections, lower probabilities to cells between detections and the sensor, and the prior
for occupancy to cells behind the measurement and cells out of measurement range.
One algorithm implementing this functionality is given in [TBF05].

In general, these functions can and should differ depending on the type of sensors
used. For example, one may take into account the distance from the sensor to a cell to
determine how likely it is to be unoccupied. Other details to adjust include for example
the expected thickness of detected objects and the accuracy of the sensor based on
distance to a detection. Another option is to learn a function from sensor data instead of
manually calculating or estimating parameters. [TBB+96]

22

3.4 SCALA

Figure 3.3: SCALA lidar sensor housing. Image: Valeo.

An alternative is the forward sensor model:

p(z1:t | m, x1:t) (3.13)

which is a maximization problem. Here, no assumption of independence between cells
is made, allowing the model to handle contradictory detections. However, this comes
at the price of considerably higher computational complexity. It is also not possible to
recursively run this model as new measurements become available.

[Thr03] goes into more detail on the forward sensor model.

3.4 SCALA

SCALA [GG14], a lidar sensor suitable for mass production produced by Valeo, is the type
of sensor installed on our test vehicles. Its size is 10.5 by 6 by 10 cm. It has a horizontal
field of view of 145° with a resolution of 0.25°. Vertically, it generates measurements
on four different layers, each covering 0.8° vertically. Range readings with a resolution
of 10 cm or better are provided up to 150 meters, even farther for exceptional objects.
Sensor readings are provided at a frequency of 25Hz, alternating between the bottom

23

3 Background

Figure 3.4: SCALA lidar sensor containing two back-to-back rotating mirrors. Image:
Valeo.

and top three out of four layers. Figure 3.4 shows one of the two rotating mirrors used
to direct the laser beams, which are emitted from a fixed source mounted in the top left
in the image.

The set of scan points obtained in a scan spanning three layers typically consists of 1500
individual scan points across the whole field of view.

3.5 DBSCAN

DBSCAN [EKS+96], short for density-based spatial clustering of applications with noise, is
a simple to use clustering algorithm able to detect arbitrarily shaped clusters without
having to provide the number of such clusters in advance. This section serves to outline
its basics. DBSCAN classifies data points into three categories:

• Core points: points with at least minPts points within a radius of ϵ

• Reachable points: points within the ϵ-neighborhood of a core point

• Outliers: remaining points

Then, a cluster is defined as a core point and all points, possibly including other core
points, reachable from it.

24

3.5 DBSCAN

It requires two parameters: ϵ, the maximum distance between points for them to
be considered connected, and minPts, the amount of points necessary within an ϵ-
neighborhood of a point for it to be considered a core point.

The underlying algorithm is given and explained in more detail in [EKS+96]. For this
work we will be using the DBSCAN implementation of scikit-learn [PVG+11].

25

4 Problem Description and Setup

This chapter will explain the physical setup we are working with as well as its digital
interfaces and outline the objective of this work. Because the grid map we are working
with has been developed independently of this thesis, with only minor adjustments made
to it for our purposes, it will also be described in this chapter.

4.1 SCALA Cocoon

Like the protective cover some insects develop during part of their life, the term cocoon
here also refers to surrounding something. Here, a vehicle is equipped with multiple
sensors in such a way that the area covered by their fields of view spans around the
whole vehicle; only some small coverage holes exist right by the car. Specifically, we are
using five SCALAs mounted in the back, on the sides and on the front of the vehicle.
Thanks to the sensor’s horizontal field of view of 145°, five sensors together can be
optimized for full 360° coverage with only five minimal blind spots. The sensors are

Figure 4.1: SCALA Cocoon coverage of the car’s surroundings, car facing right

27

4 Problem Description and Setup

all mounted at heights between 40 cm and 55 cm above the ground, where most other
vehicles and obstacles can be seen from without a vertical angle offset.

Figure 4.1 shows the setup we are working with. The car, which is facing to the right,
is represented by a rectangle in the middle, and the SCALA mounting positions are
represented by black circles. The gray wedges originating from them visualize their fields
of view, with darker areas showing where two or more sensors have overlap in their field
of view and white areas showing area not covered by any sensor’s field of view. In front
of the car, two sensors cover the area being driven towards. On the other three sides,
most of the area is covered by a single sensor. The white areas indicating coverage holes
all lie within at most two meters of the vehicle, close enough to not play a significant
role in localization scenarios in typical highway or urban street environments.

4.2 Odometry

Odometry data are provided through a decoder on the CAN bus (Controller Area Network),
independently of SCALA scans. There, an extractor provides measurements of the car’s
current velocity v in m/s and the car’s current yaw rate ω (the rate at which the vehicle’s
heading angle changes) in rad/s at a frequency of 100Hz. However, the actual frequency
at which that data is read is lower. This is explained further in section 4.3.1. Note that
this does not make a significant impact: both signals are smooth enough for there to be
no significant loss of information when sampling with a frequency of 25Hz.

4.3 Occupancy Grid Map

This section seeks to document our implementation of an occupancy grid map. For the
theoretical background we refer to section 3.3.

The occupancy grid map we are working with has square cells and square shape, but
allows tweaking resolution and size of the map through res and cells parameters giving
the length of a cell’s side in meters and the amount of cells extending from the origin in
all four cardinal directions, respectively. The car, which we will also be referring to as
host, is always in (or very near to) the center of the map. Specifically, it always is at most
half a cell away from the origin in both dimensions. Of course, as the car is moving, it
will change position eventually. This is reflected in two key properties of the map: the
host’s position is saved as an offset from (0, 0), and the map is shifted to compensate
for vehicle motion whenever the host position exceeds a certain threshold. This will be
explained in detail in section 4.3.3.

28

4.3 Occupancy Grid Map

Figure 4.2: A typical view of the occupancy grid map displaying a scenario in which the
car is driving on a relatively straight bit of road.

Some of the features whose only purpose is to increase performance will be omitted in
this section as they have no relevance to the functionality.

Figure 4.2 shows a typical view of the occupancy grid map. In the center, the host
is represented by a green circle. On top of that, the arrangement of blue star shapes
represents the particles used for the Monte Carlo particle filter described in section 5.2,
one star per particle. A red line originating from the green circle visualizes the direction
the host is heading towards currently. On the map, black areas are free space, white
areas are occupied and gray areas are unknown. Overlaid on the map in blue is the last
set of scan points, in this case delivered from the SCALA mounted on the front left of
the car. A frame counter is displayed in the bottom left corner.

29

4 Problem Description and Setup

The occupancy grid map works in two steps. In the prediction step (sections 4.3.2 and
4.3.3), the host movement is applied and in the correction step (section 4.3.4), the map
is updated with new measurements.

4.3.1 Input Data

The occupancy grid map receives a new set of input data after every cycle of 40 ms,
triggered by a designated SCALA sensor providing its data set. On this trigger, current
odometry data of the car (velocity v in m/s and yaw rate ω in rad/s) is read from a
buffer along with scan data of each sensor, including their mounting position (section
4.1) and a UNIX timestamp in microseconds. The mounting position, provided in vehicle
coordinates (section 4.3.2), consists of an x-offset, an y-offset and a φ-offset.

We split this time step up into five time steps, one for each sensor, and calculate a new
vehicle pose for each of them to gain more accurate projections. In section 4.2 we noted
that odometry data is not read with its actual frequency. Instead, it is only read once
per set of input data, i.e. once every 40 ms. Then, as the five sensors generally are not
synchronized to complete their scans at the same time, the odometry data is used for
five different time steps. This, along with the errors in the odometry data itself, are
causes of incorrect paths being calculated for the host. While this isn’t always noticeable
on the constructed map it still isn’t a desirable effect.

The scans are provided as a polar histogram in which scan points have been sorted into
a number of angle bins (columns) and range bins (rows). Scan points are given in polar
coordinates (distance and angle) in the sensor’s coordinate system. In this coordinate
system, the sensor is placed at 0, 0 and is facing towards positive x. Each scan point
comes with a layer attribute (see section 3.4) of 0, 1, 2, or 3, with 0 denoting the lowest
layer and 3 denoting the highest layer. As part of this work, the OGM was changed to
immediately discard layer 0 scan points due to their tendency to include significantly
more ground detections.

This histogram will be used to update the occupancy grid map. For this, it is projected
onto the occupancy grid map and occupancy probabilities are updated. Note that
binning scan points into a histogram which is then projected onto the occupancy grid
map introduces slight inaccuracies. However, those have little impact if the histogram
consists of a sufficient number of bins in both dimensions.

Note that gathering scan points on different levels (in 3D) leads to scan points with the
same range reading corresponding to different distances on the 2D map. For this, the
scan points are projected down into two dimensions in a preprocessing routine, allowing
us to treat them equally.

30

4.3 Occupancy Grid Map

4.3.2 Motion Model

To describe the motion of the car, a suitable motion model needs to be chosen, consider-
ing the trade-offs in accuracy of simpler models and disadvantages in computational
complexity of more complex models [LJ00; LVL14; SRW08]. Depending on the data
available to the algorithm, one may structure the motion model in an arbitrarily com-
plex manner. However, we have the advantage of receiving odometry measurements
twenty-five times per second, alleviating the need for intricate model designs. Instead,
we can use the constant turn rate and velocity model [BF08] which assumes the turn
rate and velocity to be constant between odometry measurements, describing a circular
path in combination with a simple bicycle model [LVL14]. The bicycle model is a very
simplistic model of dynamic vehicle motion, entirely disregarding many influencing
factors, such as the lateral direction [Cha04]. While not perfect, this model allows very
good approximation because fundamentally, a car’s movement can be broken down into
a series of arcs due to the limited freedom of movement of the wheels.

The state vector xhost,t used by the occupancy grid map to keep the pose of the vehicle
up to date within its coordinate system consists of three components:

xhost,t =

xt

yt

φt

 (4.1)

Here, t is a time index and the heading angle φt is measured in radians. Before setting
up the motion model, we should take a look at the two coordinate systems used here.

The main coordinate system is the map’s coordinate system, it’s properties are apparent
in figure 4.2 and the text describing it. The host state is saved in this coordinate system.
We define a heading angle φ of 0 to be heading parallel to the x-axis towards positive x.
Increasing the heading angle φ corresponds to a counter-clockwise turning motion (in
figure 4.2). The host’s position is measured in the middle of the rear axle. Thus, a state
of [0, 0, π

2]T has the car positioned at the center of the map, with most of its body above
the x-axis, pointing upwards.

The host coordinate system is a right-handed coordinate system with its origin located in
the center of the rear axle and its x-axis pointing towards the front center of the vehicle.
This coordinate system is used as a reference coordinate system in the calculation of the
vehicle’s new pose and thus the new host coordinate system for the following time step.
This means that the transformation matrix to convert coordinates from host coordinates
into world coordinates is different for each time step as the host navigates the world.

With this distinction made, we can set up the motion model: The function, given in
algorithm 4.1, first calculates the motion of vehicle car in its own coordinate system,

31

4 Problem Description and Setup

Algorithm 4.1 OGM motion model

1: function MOTION_MODEL(xhost,t−1, △tt, vt, ωt)
2: △φ← ωt △tt

3: if ωt = 0 then
4: △x← vt △tt

5: △y ← 0
6: else
7: △x← vt

ωt
sin(△φ)

8: △y ← vt

ωt
(1− cos(△φ))

9: end if

10: xhost,t ← xhost,t−1 +

cos(φt−1) −sin(φt−1) 0
sin(φt−1) cos(φt−1) 0

0 0 1

△x

△y

△φ

11: return xhost,t

12: end function

then transforms the motion into the map’s coordinate system and returns the map’s new
state of the host. The algorithm receives four input parameters:

• xhost,t−1, the old host state

• △tt, the time difference since the last update in seconds

• vt, the velocity towards the car’s positive x-direction in meters per second

• ωt, the yaw rate in radians per second

In line 2 the difference in heading angle is calculated to later be added onto the previous
heading angle and to be used for turn calculation in the next few lines. Lines 3-9
calculate the distance in x- and y-direction driven on the curve described by △tt, vt and
ωt according to their equations. See section 4.3.2.1 for the derivation of these equations.
In the case of the yaw rate being 0 (for perfectly straight motion), the equations given
in section 4.3.2.1 don’t work as they would require dividing by zero. Instead, we can
simply calculate the distance driven in x-direction as the total distance driven, given by
the product of time and velocity △ttvt. The distance driven in y-direction (to the side)
then clearly is 0.

Line 10 transforms the motion back into the map coordinate system. Before being added
onto the old coordinates, the x- and y-components are rotated by the old heading angle
so the curve continues in the direction the car was heading up to this time step. The
heading angle has the difference in heading angle applied to it.

32

4.3 Occupancy Grid Map

Figure 4.3: Visualization of the turn model used for the host motion in the OGM

4.3.2.1 Derivation of the equations for curved motion

We will take a look at where the equations used in algorithm 4.1 come from. Time
indices will be omitted for the sake of readability. For this, we have to imagine the car
driving on a circle such as the one in figure 4.3. Note that the x-axis here is pointing
upwards and the y-axis is pointing to the left. In the figure, the car is represented by
the black dot on the bottom, facing towards the top of the figure. In this time step,
its heading angle has changed by △φ. Without a change in heading angle, the car,
going straight, would have followed along the direction of the arrow pointing upwards.
Instead, it drives along the highlighted part of the circle, an arc with angle △φ. The
forward change in position we intend to calculate is labeled △x, the sideways change in
position △y.

To understand the equations, we will consider the circle a unit circle while we calculate
the changes of position and apply an appropriate scaling factor later. The unit circle
assumption allows for simple equations when calculating the length of the sides of
the triangle completed by the dashed line in the center of the figure, which will prove
essential in a second. It now becomes clear that△x is given by the height of that triangle,
sin(△φ); slightly more tricky is △y, which is given by the difference between the radius
of the circle and the base length of the triangle , 1 − cos(△φ). At the end, we simply

33

4 Problem Description and Setup

apply the scaling factor vt

ωt
to convert the distances from radians to meters, obtaining the

equations
△x = vt

ωt

sin(△φ) (4.2)

△y = vt

ωt

(1− cos(△φ)) (4.3)

4.3.3 Map Shift

To keep the host centered in the map we shift the map and the host opposite the way the
host is moving whenever it leaves the center of the map. In effect, the map boundaries
are shifted along with the host movement. This is done right after the motion update is
applied, before the map is updated with new scan data.

The map shift is described in algorithm 4.2. Once the new host state xhost,t is known,
its coordinates are divided by the resolution res and rounded to the nearest integer to
get the cell index of the host in lines 2 and 3. The map is then shifted the opposite
way. Cells newly added to the map are initialized with the map prior. At last, the host
is moved back towards the center; specifically it is returned to at most half a cell away
from the origin in both dimensions.

Algorithm 4.2 Map shift

1: procedure SHIFT_MAP(xhost,t)
2: △cellsx = round(xt

res
)

3: △cellsy = round(yt

res
)

4: Shift whole map
[
−△cellsx

−△cellsy

]
cells, discard cells past map edges and fill new cells

with map prior

5: xhost,t =

xt − res △cellsx

yt − res △cellst

φt

6: end procedure

4.3.4 Correction step

The correction step receives as its input a polar histogram of the scan points. It is used to
update the log odds of the cells covered by the sensor’s field of view. We will discuss
our inverse sensor model (see also section 3.3.2) and look at how it is implemented
in combination with the polar histogram. We don’t assume detected objects to have a

34

4.3 Occupancy Grid Map

specific thickness, instead only the cell a scan point is mapped into will be considered
occupied.

The histogram contains the number of scan points that fall into a cell for each cell. Each
scan point is evidence for its cell being occupied. To integrate this evidence into the
OGM, the histogram is multiplied with the log odds factor determined by the detection
probability pd, this way each detection causes the same amount of evidence to be applied
to the OGM later. That log odds factor influences how much the occupation probability
increases. Detecting a scan point at range r from the sensor provides evidence that
there are no obstacles at ranges smaller than r in that direction. So cells between the
sensor and the first detection in an angle bin should decrease their occupancy probability.
The free space part of the inverse sensor model is computed in advance. It assigns a
likelihood of being empty to every range bin, allowing us to simply copy part of this
data set (in log odds) into the histogram up to the first detection. The unknown space
on the outer edge, having been 0, doesn’t need to be changed explicitly. That is because
log odds of 0 represent our maximum entropy state - we have no information about this
part of the map, so the occupation probability is 0.5 and the log odds are 0.

Figure 4.4 visualizes how cells of the polar histogram correspond to cells of the occupancy
grid map, which uses a Cartesian coordinate system.

Figure 4.4: Polar histogram of a front-mounted sensor’s field of view mapped onto the
occupancy grid map

35

4 Problem Description and Setup

Algorithm 4.3 Correction

1: procedure CORRECT_MAP(hpolar)
2: hpolar ← log_odds_factor hpolar

3: for φ ∈ angles(hpolar) do
4: if obstacles detected in angle bin φ then
5: Fill hpolar with ism up to the nearest detection
6: else
7: Fill hpolar with ism

8: end if
9: end for

10: Project hpolar onto m and add the occupancy values together
11: end procedure

Algorithm 4.3 describes how this process is integrated with the log odds (see also section
3.3.1) to update the occupancy grid map. In line 2, the histogram is multiplied by the log
odds factor determined by pd. Then, in lines 3 through 9, each column of the histogram
is traversed along the range axis to allow for simple application of the inverse sensor
model on a per-angle basis. The precomputed values of the inverse sensor model are
copied over, stopping at the first detection if there are any. Finally, the polar histogram
is projected onto the occupancy grid map and its occupancy probability log odds are
added to those of the occupancy grid map in line 10.

The precomputed part of the inverse sensor model was designed to place more probability
of cells not being occupied on cells closer the the sensor, because objects closer to the
sensor generate scan points more reliably. This is also the reason the probability of
not being occupied tends to 50% as distance increases past the point of reliable sensor
detections. Figure 4.5 shows a plot of the precomputed values.

4.4 Objective

We are given odometry data and scan point clouds generated by five SCALA sensors
mounted all around the car; both of these inputs are imperfect. Odometry measurements
are not free of noise and biases are observable, especially on the yaw rate signal.
Furthermore, the measurements do not fully account for physical circumstances. Scan
point clouds are flawed in that false negatives are inherent to the system. Obstacles
are less likely to be detected with increasing distance to the vehicle. Small laser beam
reflection angles also cause obstacles to not be picked up. False positives also occur,
albeit less frequently. They are usually caused by highly dynamic objects such as rain
drops or foliage.

36

4.4 Objective

Figure 4.5: Precomputed inverse sensor model placing more probability of not being
occupied on cells near the sensor

Based on these inputs, a local occupancy grid map is maintained. Our task is to build
and improve a particle filter working with this existing occupancy grid map to run live
Monte Carlo Localization. Here, live refers to the fact that pose estimates provided by
the particle filter are fed back into the occupancy grid map. This will improve the OGM’s
motion compensation step in which the host advances along its path on the map, in
turn producing a cleaner map which can be used for other applications such as path
planning. More importantly, it will also give us a better estimate of the path taken by
the vehicle.

37

5 Approach

This chapter will present the base implementation of a particle filter used for SLAM in
combination with the occupancy grid map presented in section 4.3 and continue to build
on that to explore various ways of improving estimates produced by the filter. Both the
mentioned occupancy grid map and the particle filter have been implemented in Python
2.7, however this work will stick to pseudo code to explain important concepts.

We will begin by setting up a classic particle filter and properly connecting it to the
occupancy grid map. After that has been accomplished we will turn our focus towards
improving the particle filter in terms of estimate accuracy.

Note that from here on, time indices, whenever possible, will be omitted for the sake of
readability or simply because there is no need to keep the whole data sequence around
when we only need the latest data set.

5.1 Environment

Python 2.7 is used for the implementation. Various packages that provide important
functionality to some of the features presented in this chapter are used:

• SciPy [JOP+01] provides many packages useful for scientific computing, including
all the other items on this list, as well as packages for common linear algebra use
cases and some coordinate mapping functionality

• NumPy provides efficient multi-dimensional arrays [WCV11], randomness in many
different formats and arbitrary data types

• Matplotlib [Hun07] provides a framework for plotting data

• scikit-learn [PVG+11] provides the clustering algorithm we use, see also section
3.5

The listed features are representative of what these packages are used for in our imple-
mentation, they are not meant to be a complete list of features.

39

5 Approach

Algorithm 5.1 Particle filter iteration

1: procedure ITERATE_PARTICLES(v, ω, scan)
2: if particles uninitialized then
3: SPAWN_PARTICLES(v, ω)
4: end if
5: EVOLVE_PARTICLES()
6: UPDATE_PARTICLE_WEIGHTS(v, ω, scan)
7: RESAMPLE_PARTICLES()
8: end procedure

5.2 Particle Filter Implementation

In this section we are constructing the foundation of this work; we are implementing
a particle filter based on section 3.2.2, specifically algorithm 3.2. For the beginning,
we will keep its interface minimalistic. Interfaces irrelevant to its functionality, such
as those for visualization, will not be mentioned at all. In fact, in the beginning
we will only have a single function interfacing with the occupancy grid map, the
ITERATE_PARTICLES(v, ω, scan) function which receives current odometry data and a
set of scan points. The scan parameter is provided in the form of a list of scan points
in polar coordinates. This function executes one iteration of MCL and handles initial
particle creation, as can be seen in algorithm 5.1. Note that the odometry parameters
are not passed to the particle evolution function but instead to the particle weighting
function. This is because we consider them measurements, just like scan point clouds.
The odometry parameters are part of what we want to estimate and therefore part of
the pose saved with each particle. Apart from that, everything else is comparable to
algorithm 3.2; other missing parameters are explained by the necessary data being
accessed in other ways due to implementation details.

We define a particle to be an array 1 of length six, with the first five of the components
used for position, angle and velocities, and the last component for the weight. The pose
will also contain v and ω besides the obligatory x, y and φ. Due to the similarity of ’ω’
and ’w’ we will use weight for the last component. Then, a particle will look like this:
[x y v φ ω weight]T . Furthermore, we will use n to denote the number of particles. The
following subsections describe some of the functions used in the iteration loop in more
detail.

1Throughout this work, arrays are zero-indexed, meaning an array of length three consists of items 0, 1
and 2.

40

5.2 Particle Filter Implementation

Algorithm 5.2 Particle spawning

1: procedure SPAWN_PARTICLES(v, ω)
2: particles← array of length n

3: for i ∈ [1, ..., n] do

4: particles[i]←
[
0 0 v 0 ω 1

n

]T

5: end for
6: end procedure

5.2.1 Particle Spawning

Before working with the particles we need to initialize them in a meaningful way. Here,
we are in luck: As the particle filter is running in parallel with the occupancy grid map,
we essentially are performing tracking: we know the initial pose of the vehicle and our
task is to keep the pose updated as the vehicle moves through the world. In the OGM,
the initial vehicle pose is known to be at (0, 0) with a heading angle of zero. Algorithm
5.2 describes the initialization process.

5.2.2 Particle Evolution

In this step, the path determined by the particles’ states is followed for a time period of
△t and then some noise is applied to the resulting poses. First, an initial prediction is
made for each particle using the motion model described in section 4.3.2 and algorithm
4.1. Afterwards, we need to introduce noise into the particle motion. To apply process
noise we draw inspiration from a motion model more complex than the one used for
initial predictions. Note that this second model is only used for process noise. Process
noise is used to handle influences on the state vector that are not encompassed by the
motion model.

[RHG14] assumes the host is driven by acceleration inputs a [m
s2] and α [rad

s2] for v and ω,
respectively. They distinguish between two models:

• Acceleration inputs act as an impulse on v and ω just before the end of a time step.
This approach does not affect x, y and φ.

• Acceleration inputs are constant over the course of a time step, also known as
zero-order-hold discretization. This approach adjusts x, y and φ in accordance with
the acceleration inputs by integrating a and α over the time step’s length.

We will use the more realistic and common zero-order-hold discretization. Given an
acceleration vector acc = [a α]T , the following equations can be used to update the host

41

5 Approach

state hypothesis given by one particle, with MOTION_MODEL being a suitable motion
model matching the state vector, such as the one in section 4.3.2:

G←

(△t)2

2 cos(particles[i][3]) 0
(△t)2

2 sin(particles[i][3]) 0
△t 0
0 (△t)2

2
0 △t

(5.1)

particles[i][: 5]← MOTION_MODEL(particles[i][: 5]) + G acc (5.2)

Note the indexing in equation 5.2, here we use Python’s slice notation to denote which
part of an array we are accessing. Specifically, [: 5] refers to the first five indices, stopping
before index 5. MOTION_MODEL is an implementation of algorithm 4.1.

We will sample a and α from zero mean Gaussians with standard deviations σa = 5.0 for
a and σα = 2.5 for α. These values have proven to work in practice. Using acceleration
inputs acc sampled from these distributions gives us the desired particle evolution
functionality as described in algorithm 5.3. The algorithm loops over all particles and
evolves them individually. Lines 14 and 15 sample acceleration inputs and line 16
calculates the state vector update using G (equation 5.1). Finally, line 17 applies the
state vector update.

5.2.3 Particle Weighting

We need to calculate weights for every particle. They will be determined by finding
importance factors both for odometry measurements and for scan points and normalizing
their product. In the end, we normalize them to get our final set of weights which can
be used for resampling. See section 3.2.1 for more background information.

5.2.3.1 Weighting based on scan points

We start with the likelihoods for the detections. Looking back on sections 3.2.2 and 3.3,
this seems rather straightforward: To calculate a particle i’s importance factor, given a
scan scan = s1, s2, s3, ..., project the scan points into the occupancy grid map based on
the particle’s pase and multiply the values of all the cells hit by scan points together to
obtain the particle’s importance factor:

particles[i][5]←
∏

pt ∈ scan

p(map cell hit by pt) (5.3)

42

5.2 Particle Filter Implementation

Algorithm 5.3 Particle evolution

1: procedure EVOLVE_PARTICLES()
2: for particle ∈ particles do
3: △φ← particle[4] △t

4: if particle[4] = 0 then
5: △x← particle[2] △t

6: △y ← 0
7: else
8: △x← particle[2]

particle[4]sin(△φ)
9: △y ← particle[2]

particle[4](1− cos(△φ))
10: end if
11: particle[0]← particle[0] + cos(particle[3])△x− sin(particle[3])△y

12: particle[1]← particle[1] + sin(particle[3])△x + cos(particle[3])△y

13: particle[3]← particle[3] +△φ

14: a← sample from N (5.02, 0.0)
15: α← sample from N (2.52, 0.0)

16: d← G

[
a

α

]
17: particle[: 5]← particle[: 5] + d

18: end for
19: end procedure

However, there are a lot of technicalities this simple approach doesn’t consider: Scan
points may fall out of map bounds, different particles may end up with different numbers
of scan points inside the map bounds, and floating point accuracy may be insufficient.

Algorithm 5.4 shows one way to implement particle weighting without these issues. Lines
5 through 7 convert the scan points from polar coordinates in the sensor’s coordinate
system to Cartesian coordinates in the vehicle’s coordinate system. Line 8 turns the
OGM’s log odds into probabilities (see equations 3.11 and 3.12) and then calculates the
logarithm of them. This reduces floating point inaccuracy issues normally encountered
during multiplication of many small numbers between 0 and 1. Lines 9 through 25
iterate over all particles, converting the scan points from vehicle coordinates into world
coordinates based on the pose of particle i and then iterating over all scan points. Every
scan point that is within the OGM’s boundaries is looked up inside it; the resulting
logarithmic probability is added to the particle’s weight so far and the scan point is
counted towards the number of scan points considered for this particle’s weight.

Afterwards, particles that didn’t have any scan points end up inside the OGM boundaries
will be assigned a weight of 0, the initial value of weight. For other particles, the final

43

5 Approach

weights are calculated. Because different particles are positioned differently in the world,
the set of scan points will be projected into the OGM differently for each of them. This
causes different particles to have different amounts of scan points end up inside the
OGM bounds. We need to avoid giving higher weights to particles with fewer scan points
inside the OGM, so we normalize the importance factors against the number of scan
points used to calculate each factor. Let npts be the number of scan points used in the
calculation of a particle’s importance factor. We then normalize by taking the nptsth root
of the particle’s importance factor. In logspace this corresponds to division by npts. This
functionality is described in line 21. Lastly, we recover linear values from the logarithmic
ones in line 22 and normalize what have been importance factors until now to obtain
weights in line 26.

This approach is known as the likelihood field model ([TBF05], section 6.4). It does not
consider free space information gained from sensor readings and it does not account for
dynamic obstacles. The model can not directly be motivated through physical sensor
properties but it works well in practice, is relatively simple to calculate and produces
smoother weighting functions than the physically motivated beam model they [TBF05]
present in section 6.3.

5.2.3.2 Weighting based on odometry

To incorporate the odometry measurements into particle weighting, we assume them to
have a normally distributed error and assign them weights accordingly, both for v and
for ω. For reference, v typically ranges from 0 to 20 m

s
for city driving and from 20 to 60

m
s

for highway driving while ω typically ranges up to ± 0.7 rad
s

for turning.

The choice of using normal distributions to calculate the weights is near. Using a
standard deviation σv = 5 for v and σω = 0.04 for ω, we will be working with N (52, v)
and N (0.042, ω), respectively. Using their probability density functions to calculate
importance factors gives us algorithm 5.5. It calculates the two weights for all particles,
multiplies them with the existing weights and finally normalizes them again. This allows
particles to have odometry deviating from the odometry input data as long as their pose
estimates make up for the lower odometry weights by providing better scan matching
weights.

Figure 5.1 shows how different values of v and ω in the poses give different importance
factors for an odometry measurement of v = 20m

s
and ω = 0.1 rad

s
.

44

5.2 Particle Filter Implementation

Algorithm 5.4 Particle weighting

1: procedure UPDATE_PARTICLE_WEIGHTS(scan)
2: if no scan points in scan then
3: return
4: end if
5: Convert scan into Cartesian coordinates
6: Rotate scan by sensor angle offset
7: Offset scan by sensor mounting position
8: log_map← log(EXTRACT_MAP(map))
9: for i ∈ {1, ..., n} do

10: scanw ← scan converted into world coordinates based on particles[i]’s pose
11: weight← 0
12: npts ← 0
13: for pt ∈ scanw do
14: if pt not outside map boundaries then
15: idx← OGM_INDEX_FROM_COORDINATES(pt)
16: weight← weight + log_map[idx]
17: npts ← npts + 1
18: end if
19: end for
20: if npts > 0 then
21: weight← weight

npts

22: weight← eweight

23: end if
24: particles[i][5]← weight

25: end for
26: NORMALIZE_PARTICLE_WEIGHTS()
27: end procedure

Algorithm 5.5 Particle weighting (odometry part)

1: procedure UPDATE_PARTICLE_WEIGHTS_ODOMETRY(v, ω)
2: for i ∈ {1, ..., n} do

3: 1v ← 1√
2πσ2

v

e
− (particle[i][2]−v)2

2σ2
v

4: weightω ← 1√
2πσ2

ω

e
− (particle[i][4]−v)2

2σ2
ω

5: particles[i][5]← particles[i][5] weightv weightω

6: end for
7: NORMALIZE_PARTICLE_WEIGHTS()
8: end procedure

45

5 Approach

Figure 5.1: Odometry-based weighting function. (a) v = 20m
s

, (b) ω = 0.1 rad
s

.

5.2.4 Particle Resampling

In this step, the particles are resampled according to their weights. One difference to the
standard implementation pattern is how the weights are handled: Instead of normalizing
them after resampling, we keep them with the particles as a quality measure of the parti-
cles’ estimates, and use them during pose extraction in section 5.3. This does not cause
any problems to the rest of the particle filter because the weights aren’t used elsewhere;
afterwards they are overwritten by the UPDATE_PARTICLE_WEIGHTS(v, ω, scan) function
before being accessed again.

5.3 Pose Extraction

Here, we introduce another interface to our particle filter before we can connect it to the
occupancy grid map. A key component of the relationship between the OGM and the
MCL is the exchange of data: Every time step, MCL requires odometry data, timestamps
and scans from the sensors, and in return the OGM receives updates to the pose of the
vehicle. For this, we need some way of extracting a pose from the particle filter, which,
under the hood, has n different poses to choose from.

There exist many different ways to handle pose extraction; a few common ones are
compared in [LR09], however not all of them fit our tracking purposes. Four different
approaches to pose extraction were considered:

• Choose the best particle. This approach is simple but it exhibits a huge problem:
As particle weights are only based on the last set of measurements - which come
from different sensors with slight calibration errors and cover very different areas
of the map - particle weights are not very stable. A particle with large weight may
be deemed sub-average in the next time step.

46

5.4 Connecting the Particle Filter to the Occupancy Grid Map

• Choose the weighted mean of all particles. Another simple approach, but also
a flawed one: it doesn’t handle multimodal particle distributions with which
averaging all particles would produce a pose somewhere between the peaks of the
distribution.

• Choose the weighted mean of the best 10% of all particles. In an attempt to
combat multimodality and uneven distributions of outlier particles, we restrict the
particle set to the ⌈n/10⌉ best particles before computing their weighted mean.
However, this approach will still select particles from different peaks of the particle
distribution.

• Cluster the particles in the xy-subspace, choose the weighted mean of the cluster
with the best weight. This approach has no problem handling multimodal distribu-
tions and in practice produces stable pose sequences. DBSCAN (section 3.5) with
parameters ϵ = 0.001 and minPts = 3 is used to cluster the particles.

We will choose the clustering approach for the reasons mentioned above.

5.4 Connecting the Particle Filter to the Occupancy Grid
Map

Now that we’ve set up our OGM and our MCL including some interfaces, we can connect
the two. The OGM works in two steps: prediction and correction. In the correction
step, the map has its occupancy probabilities updated, there is nothing MCL needs to
do here. In the prediction step, the host is moved and, in our case, the map is shifted.
That’s where we need to tie in because with MCL, the pose updates of the host need
to come from there. So, before the host is moved, MCL has to run its iteration. This
also means that the occupancy grid map at this point will not have the newest sensor
readings incorporated, and for good reason: MCL needs the map to be in its old state
to best determine where the new sensor readings fit in and thus where the host has
moved.

So, in the OGM’s scheduling loop, instead of calling its motion model (section 4.1), we
need to run the MCL iteration function (algorithm 5.1) followed by querying the particle
filter’s pose extraction function (section 5.3) for the pose the map’s host state will be
overwritten with. Next we’ll need another interface between MCL and the OGM: After
the map has been shifted, additionally to the map’s host state we also need to shift the
particles in the particle filter. For this, a SHIFT_PARTICLES(△cellsx,△cellsy) function is
called that implements the pose update part (line 5) of algorithm 4.2 for the particles.

47

5 Approach

Figure 5.2: A view of the particles including their weights and the previous iteration
displayed next to the OGM

Lastly, we changed the grid map’s visualization to render the particles on top of the
map (figure 4.2). The visualization now includes a second plot showing a closeup view
of the particles represented by transparent white circles with their size corresponding
to the particle’s weight. Behind those particles, the particles of the previous time
step are rendered with fixed size, less opacity and in yellow color. Figure 5.2 shows
the visualization; note that one can also zoom in and out of both plots during the
animation.

5.5 Expanding the Particle Filter

In this section we will discuss two changes made to the particle filter described in section
5.2 in order to improve its performance, i.e. the accuracy of the approximations given
by it. The results of these changes will be discussed in chapter 6.

48

5.5 Expanding the Particle Filter

5.5.1 Alternative Particle Weighting Function based on Scan Points

[HR16] build a different scan point weighting function based on their inverse sensor
model. They replace equation 5.3 with the more sophisticated

particles[i][5]←
∏

pt ∈ scan

1
2 + pd(p(map cell hit by pt)− 1

2) (5.4)

This model considers the confidence we have in detections; with increasing confidence
in detections we should be devaluing diverging hypotheses more and with decreasing
confidence they should be given a chance to prove themselves. This produces a less
aggressive weighting function because all factors are moved to within ±pd

2 of 0.5; as
pd tends to 1.0, equation 5.4 tends towards the more aggressive equation 5.3. They
compute pd from the false alarm rate and the signal-to-noise ratio, however neither of
those are known to us. Instead, we substitute a constant factor 1

2 for pd to make use of
this model’s dampening property. Preliminary tests have shown even smaller factors to
negatively affect approximation quality.

The rest of algorithm 5.4 stays the same.

5.5.2 Utilizing Alpha Filters for Odometry

Here, we replaced the odometry part of the weighting function with an alpha filter
(section 3.2.3) for each of the two odometry measurement parameters, reducing the
weighting function to scan matching only. Two parameters, αv = 0.05 for the velocity
gain and αω = 0.4 for the yaw rate gain were introduced. The yaw rate gain was chosen
to be relatively high so the particle filter can quickly react to yaw rate changes which
significantly alter the course of the vehicle. The velocity gain was chosen smaller in order
to not unnecessarily restrict the particle filter. These values may seem counter-intuitive
given that the yaw rate signal provided by the vehicle tends to be biased while the
velocity signal is quite accurate. However they work very well in practice, with smaller
αω parameters actually worsening path estimates.

This change removes algorithm 5.5. The newly introduced alpha filters, described by
algorithm 5.6, are placed inside the particle evolution function (section 5.2.2), between
lines 1 and 2 of algorithm 5.3. Since the alpha filters require odometry measurements
we also need to adjust the parameter list for EVOLVE_PARTICLES() which previously didn’t
contain v or ω.

49

5 Approach

Algorithm 5.6 Alpha filters for odometry

1: procedure ALPHA_ODOMETRY_UPDATE(v, ω)
2: for i ∈ {1, ..., n} do
3: particles[i][2]← particles[i][2] + αv(v − particles[i][2])
4: particles[i][4]← particles[i][4] + αω(ω − particles[i][4])
5: end for
6: end procedure

5.6 Scan Point Sampling

In this section we aim to give scan points we deem important more influence on particles’
weights and lessen the impact of scan points we deem unimportant, erroneous or clutter.
We also want to reduce bias introduced by uneven scan point distributions. In [UT13],
a couple of sampling strategies in scan matching are described. Listed are only those
applicable to OGM SLAM based on SCALAs:

• No sampling

• Uniform subsampling

• Selecting points such that the distribution of normals among the selected points is
as large as possible

We will draw inspiration from these and examine some other sampling strategies.
Considering that we are primarily aiming to improve approximation quality and not
performance, the first two approaches are not applicable either.

Our approach is simple: based on the original set of scan points, construct a different
set of scan points by changing which scan points appear how often. Then change the
weighting function to work with this modified set of scan points. In algorithm 5.4,
this step would be inserted between lines 7 and 8 for sampling methods based on
Cartesian coordinates, and between lines 4 and 5 for sampling methods based on polar
coordinates. Here, sampling doesn’t necessarily refer to sub-sampling, it just refers to
the fact that we are using weights assigned to scan points to sample a certain number
of scan points from the original set; sometimes with replacement, sometimes without;
sometimes we end up with fewer scan points, sometimes we end up with more scan
points - with some duplicates, of course. That is because we investigate what type of
distribution is beneficial for the particle filter. To optimize the particle filter’s runtime
to some extent, the number of scan points could be further reduced through uniform
subsampling without significantly impacting the quality of approximations.

50

5.6 Scan Point Sampling

Algorithm 5.7 Sample scan points based on distance to the car

1: procedure SCANPT_SAMPLING_DISTANCE(scan)
2: for pt ∈ scan do
3: if RANDOM_FLOAT() < range reading of pt

20 then
4: drop pt

5: end if
6: end for
7: end procedure

5.6.1 Sampling based on Distance to the Car

Scan points at close distances are often undesirable: In general, scan points at small
ranges make up a disproportionately large fraction of the entirety of scan points, making
this method of sampling useful even for detections that in themselves aren’t undesirable.
Undesirable scan points can be caused by raindrops or spray close to the sensor, they can
be caused by parts of the car itself if the sensor isn’t installed properly or they could be
other vehicles that are going to move elsewhere soon. This method of sampling discards
some scan points with close distances to the car. Specifically, preliminary tests have
indicated 20 meters to be a good threshold for that. The probability of a scan point
surviving this step is then proportional to its distance from the car, up to the threshold.
Scan points bearing a range reading of 0 will certainly be discarded and scan points at a
distance of 20 meters or more will certainly be kept.

Denoting the number of scan points npts, algorithm 5.7 describes this procedure. RAN-
DOM_FLOAT generates a random or pseudo-random floating point number between 0
and 1.

Figure 5.3 shows an example situation in which this filtering method removes some
undesirable scan points as well as some scan points in densely populated areas of
the scan point cloud. In the figure, one can see the car facing top-right. Some thirty
meters away, road boundaries can be made out. A few cars have been detected from
behind, most of them at a distance of 60 meters or more. 5.3(a) shows the scan point
cloud before sampling. The three scan point clusters closest to the vehicle consist of
significantly more scan points than those stemming from similar obstacles at greater
distances: the road boundaries to the right of the vehicle at x=5 and at x=35 are
structurally equivalent, however they generate very different amounts of scan points.
In 5.3(b), after applying the sampling step, the three clusters closest to the vehicle
have been removed entirely or weakened significantly. 5.3(c) displays the scan points
discarded in this sampling step.

51

5 Approach

Figure 5.3: Range based sampling thinning out the scan point cloud near the car. (a)
Before; (b) after; (c) discarded scan points.

A pleasant side effect of this method of sampling is that it, on a smaller scale, has the
same effect as the sampling strategy for far detections which specifically increases the
impact of scan points detected at large distances. That strategy is discussed in section
5.6.2.

5.6.2 Sampling for Far Detections

This method of sampling is also based on the distance between scan points and the car,
however it serves a very different purpose. Here, scan points far away from the car
are given significantly more influence by duplicating them. Of course, this also affects
clutter or unrelated object detections, however those do not occur in large numbers.
Mostly relevant detections are affected and we can afford to duplicate these scan points.

52

5.6 Scan Point Sampling

Specifically, scan points with a range reading of 80 meters and above are added to the
set of scan points an additional ten times.

At these distances, guardrails by the side of straight roads are no longer detected,
however buildings and other tall obstacles such as signs mounted above the highway will
still be picked up by the top-most layer of scans (see also section 3.4). These obstacles
are static and thus very good for reliable localization.

Detections at large distances are particularly useful for estimating the angle of the car.
To understand this relation, consider the following hypothetical using a laser sensor
that allows scan points an error of 0.5 meters to each side. A detection at a range of 10
meters could have been generated anywhere within a detection window of 5.73 degrees.
The same detection with a range of 100 meters however will stem from a detection
window of only 0.57 degrees.

This makes reliable detections at large ranges very desirable to us. Usually, they are
vastly outnumbered by closer detections, but using this filter we can increase their
numbers to a point at which they make an actual impact on the particle weights.

5.6.3 Sampling Scan Points based on Angle between Road and Obstacles

Straight, empty stretches of roads typically generate scan point clouds consisting mainly
of scan points stemming from guard rails or other road boundaries. When few other
obstacles are nearby, guard rails and other road boundaries look the same over long
distances. This makes it difficult to localize the vehicle along the road in the direction of
travel; reliable estimates of velocity become difficult to obtain. To remedy this situation
we place more weight on scan points for obstacles that are orthogonal to the direction
of travel. These obstacles are important for velocity estimation as they are not invariant
with regards to the position of the vehicle along its predicted path. To avoid having
to calculate a road or lane radius, we use the next best thing available, the vehicle’s
current heading angle. This approximation is quite appropriate on straight roads where
the vehicle’s heading angle usually closely matches that of the road.

To calculate the angle of obstacles relative to the vehicle we need to calculate their
surface normals. Using the neighborhood of a scan point for surface normal calculation
may accidentally include scan points from other obstacles. Therefore we need to cluster
the scan point cloud. However, many surfaces are more complex than a simple line so
we must consider the immediate neighborhood of a scan point within its cluster. Hence,
this approach combines the advantages of local neighborhoods and clusters: we get the
locality of neighborhoods without having the set of considered scan points contain scan
points stemming from nearby separate structures.

53

5 Approach

Algorithm 5.8 Sample scan points based on angle between road and obstacles

1: procedure SCANPT_SAMPLING_ROAD_ANGLE(scan)
2: particle← POSE_EXTRACTION()
3: clusters← DBSCAN(scan, 1.0, 3)
4: weightsscan ← array of length |scan|, initialized with 0.0
5: for i ∈ {1, ..., |clusters|} do
6: for pt ∈ clusters[i] do
7: neighbors← {ptneighbor ∈ clusters[i]

∣∣∣ ||pt− ptneighbor|| < 2}
8: mean← ∑

pt ∈ neighbors
pt

|neighbors|
9: deltas← neighbors−mean

10: scatter ← ∑
delta ∈ deltas delta⊗ delta

11: vals, vecs = EIG(scatter)
12: if vals[0] < vals[1] then
13: smallest_vec← vecs[0]
14: else
15: smallest_vec← vecs[1]
16: end if

17: weightsscan[index of pt]←

∣∣∣∣∣∣ smallest_vec

[
cos(particle[3])
sin(particle[3])

] ∣∣∣∣∣∣
18: end for
19: end for
20: Normalize weightsscan

21: Sample the amount of non-clutter scan points from the weighted scan points
22: end procedure

We start out by clustering the scan points using DBSCAN (section 3.5) with parameters
ϵ = 1.0 and minPts = 3. Then, for each scan point, we look at its neighborhood of scan
points closer than two meters within the cluster. We calculate the surface normal of
the surface described by that neighborhood. To obtain the surface normal, we calcu-
late the eigenvector belonging to the smallest eigenvalue of the point neighborhood’s
scatter matrix. Assuming that neighborhood stems from a single surface, the resulting
eigenvector is its surface normal. The cosine of the angles between surface normals
and the vehicle’s heading direction are used as weights. Acute angles between vehicle
and surface correspond to angles near 90° or 270° between vehicle and surface normal.
Thus the absolute value of the cosine matches our intent of giving smaller weights to
surfaces parallel to the vehicle path. Scan points that weren’t grouped into a cluster are
considered clutter and will be discarded. In the end, the weights are used to resample
the scan point cloud.

54

5.6 Scan Point Sampling

Figure 5.4: Effect of using neighborhoods within clusters for surface normal calculation.
(a) clustering only, (b) clustering combined with neighborhoods.

Algorithm 5.8 outlines this approach. In line 2 the current pose estimate is fetched,
acting as an approximation for the pose of the car. The pose is actually different for
each particle, but for typical particle distributions, with only small deviations in angle
and position, this approximation is harmless. This allows us to calculate the angles only
once instead of for every particle. Lines 8 through 10 calculate the scatter matrix before
fetching its eigenvalues and normalized eigenvectors in line 11. The following five lines
select the eigenvector belonging to the smaller eigenvalue. That is used to calculate
the absolute value of the dot product between the eigenvector and the vehicle heading
direction. We take the absolute value because the surface normals may point either
direction of the heading direction while we are only interested in the angle between the
two. That yields the cosine of the angle between these two vectors. We do not need to
normalize it because both vectors were normalized to begin with. The remaining clutter
scan points keep their initial weights of 0.

Figure 5.4 shows how considering neighborhoods within clusters produces more accurate
surface normals. The identical clusters produced in both versions are highlighted in
different colors, outliers are displayed as black dots. In 5.4(a), the same surface normal
is used for every scan point within a cluster, not accounting for clusters consisting of
what should be considered multiple surfaces. In 5.4(b), each point has a separate surface
normal, calculated based on its neighborhood within its cluster. Note that in 5.4(b),
only a small subset of scan points are displayed with their surface normal for visibility
reasons.

5.6.4 Grid-based Sampling

Proposed in [UT13], this strategy is designed to normalize the scan point density across
the space of detections. It can be considered a generalization of the first sampling

55

5 Approach

strategy based on the distance to the car presented in section 5.6.1. As explained
there, the amount of scan points detected at a certain range decreases drastically as
the range decreases. This is because with smaller distances, sensor beams are thinner
and thus more beams can hit a certain area (see also figure 4.4). Another cause is the
detection rate decreasing with increasing distance. This places a disproportional amount
of relevance on detections at close ranges and very little relevance on far-out detections;
however we’d like all objects on the map to be utilized equally.

The implementation of this strategy is straightforward: Start by binning all scan points
into a Cartesian grid laid over the scan point cloud. Then, cells are classified into
populated and sparse cells depending on how many scan points are contained in a cell.
We calculate the average amount navg of scan points across populated cells and sample
navg scan points from each of these cells. These sampled scan points are combined with
all scan points in sparse cells to form the resulting scan point cloud. It makes sense
to choose a relatively coarse grid so that populated cells contain a significant number
of scan points. We will choose four by four meters for the cell size and consider cells
containing at least 3 scan points populated.

Figure 5.5: Effect of grid-based sampling. (a) before, (b) after.

Figure 5.5 shows the effect grid-based sampling has on a scan point cloud recorded at a
typical inner-city intersection. In 5.5(a), one can see a high concentration of scan points
on obstacles close to the car such as the two fragments of road boundary on the bottom.
In 5.5(b), the density of scan points is approximately equal across the whole map except
for some outliers.

5.6.5 Sampling based on Surface Smoothness

In [ZS14], they perform scan to scan matching. They investigate selecting edge scan
points and planar scan points to use for scan to scan matching based on a subset of scan

56

5.6 Scan Point Sampling

points. They propose a measure of smoothness, assigning high values of c(pt) to edge
points and low values of c(pt) to planar points:

c(pt) = 1
|scan| ||pt||

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
pt2 ∈ scan

pt ̸=pt2

(pt− pt2)

∣∣∣∣∣∣
∣∣∣∣∣∣ (5.5)

To understand this measure of smoothness, consider a set of eleven scan points arranged
in a line with constant distance between two neighboring scan points. The sixth scan
point, with equally many scan points on both sides, will be assigned 0 because the
summands corresponding to the closest two scan points cancel each other out, as do
those of the second-closest two scan points and so on. The eleventh scan point on the
other hand will be assigned a much larger value because the summands all have the
same sign in each of the components; the same thing happens for corner points.

Note that this measure of smoothness is local, it is designed to work on connected
scan points. Thus, we will first cluster the scan points using DBSCAN (section 3.5)
with parameters ϵ = 1.0 and minPts = 3. Then we can weight and sample scan
points individually per cluster. We will use edges and corners being less susceptible to
erroneously being perceived at an offset along the wall than long, straight sections of it.
Drawing some amount of samples from the set of scan points weighted using equation
5.5 will yield a scan point distribution that places significantly more scan points around
corners and edges.

5.6.6 Sampling against Dynamic Obstacles

Dynamic obstacles - other vehicles and pedestrians - are not part of the static environment
we want the OGM to contain. The OGM itself already does filter out a lot of dynamic
object detections simply because they rarely stay in the same place, preventing the OGM
from developing high occupancy probabilities for affected cells. However, this doesn’t
work in stopped traffic. So, generally, we’d like for dynamic obstacles to be removed
before they have a chance of influencing the map. Various approaches exist, both with
2D [MON09; WPN15] and with 3D sensors [AA12; MDU11]).

Attempting to emulate more sophisticated approaches at detecting dynamic obstacles,
we will use a simple filter that discards a portion of the scan points in a rhombus shape
designed to cover most obstacles in front and behind the car where the road is as well
as a bit to the side, where other vehicles may be blocking the view. Scan points within
that area were given a 25% chance of being discarded, focusing the scan point cloud on
objects more likely to be static.

57

5 Approach

Figure 5.6: Outline of rhombus used for dynamic object pseudo-sampling overlaid on
the OGM

Figure 5.6 shows the outline of this rhombus in red overlaid on the OGM displaying
a typical situation in which we’d like to get rid of scan points representing other cars.
Scan points on the road boundary remain unaffected while the scan points representing
the two cars driving in front of the host will be thinned out heavily.

58

6 Evaluation and Results

In this chapter we show the results of the thesis. We present our method of evaluation
and use it to examine and compare the various improvements over the standard particle
filter presented in chapter 5. We look at traces recorded in different environments and
find out how best to handle them. Before doing any comparisons, we configure the
occupancy grid map presented in section 4.3, and, after investigating the MCL changes
proposed in section 5.5, set up the the particle filter presented in section 5.2 before
comparing the scan point sampling strategies presented in section 5.6.

6.1 Method of Evaluation

6.1.1 Obtaining Reference Data

For real world SLAM applications a common method of evaluation is to obtain ground
truth data, which can be used to calculate approximation errors for any given time step.
For this, we would use a differential GPS (DGPS) system which provides positional data
within a very small margin of error, typically around 10 cm. As we have no access to
such a system we will make do with the next best thing: Google Maps satellite imagery,
which we will call map in this chapter. In combination with Google Maps we will use
Bing Maps, Google StreetView and video recordings recorded along with the traces to
better establish reference points that are difficult to make out from a top-down view.

Of course, obtaining ground truth data like this is not as simple as with DGPS. For each
data point, consisting of a timestamp along with the vehicle’s position and orientation
in the OGM at that time step, we need to manually align it on the map. For every test
scenario, we first stitch together the map and determine the scaling factor required to
align world coordinates to it. Then we pick a couple of time steps, enough to have one
data point for every 60 m to 200 m driven by the car. For each of those time steps we
export the current scan point cloud into a file so it can be loaded without replaying
the whole trace. The scan point cloud is saved in vehicle coordinates, thus finding the
rotation and translation required to align the scan point cloud with the map equals
finding the car’s position and heading angle on the map. A good place to save scan points

59

6 Evaluation and Results

like this is directly after line 7 of algorithm 5.4. A short Python script then displays the
scan points overlaid on the map given a position (x, y) and heading angle φ. We will
refer to this visualization as the overlay from here on out.

Scan point clouds should not be selected at random because they are not all equally
suitable for manual ground truth estimation. Whenever possible, one should select scan
point clouds according to the following criteria:

• They should contain several different obstacles to best guarantee only one position
on the map matches the scan point cloud

• They should contain straight surfaces to best aid in figuring out φ

• They should contain reliable scan points at large distances (≥ 100 m) to narrow
down guesses of φ (see also section 5.6.2)

Additionally, the first scan point cloud should not be chosen directly at the start of the
trace. This is because the particle filter requires some time to stabilize while the OGM,
which is initialized as entirely unknown, is constructed to an extent allowing stable
tracking - typically, two seconds are plenty of warmup time.

Manually aligning the scan point cloud is simple but tedious. We give a work flow
that proved to be effective assuming the position of the car is known to within a
couple dozen meters: Put in a rough guess for φ, display the overlay and use the plot’s
display of cursor coordinates to get a good first estimate of (x, y). Put in (x, y) and
look at the overlay again. By comparing straight lines in the scan point cloud and their
corresponding obstacles in the map, φ can be improved significantly. Update φ and then
repeatedly improve the parameters until changes are too small to make a difference on
the overlay.

Estimates of paths driven by the vehicle contain the error rate integrated over time.
Comparing such a path estimate against ground truth data reveals any biases in velocity
in the shape of shortened or elongated path segments, and in yaw rate in the shape of
paths continuously drifting to one side.

Figure 6.1 shows the result of aligning a scan point cloud to the map. The vehicle has
been localized in the top left part of the image. Each red dot represents a scan point.
This example demonstrates the three criteria listed earlier: the scan point cloud shows
an emergency lay by which is clearly differentiable from the rest of the otherwise quite
similar road. The guardrails provide multiple series of scan points arranged in straight
lines. Far off in the distance, about 250 meters away from the car, we can see a few
more scan points stemming from some small plastic dividers installed on the central
road markings as well as two scan points stemming from the guardrails, and, most
importantly, a couple of scan points stemming from a billboard or sign placed on the

60

6.1 Method of Evaluation

side of the road. Matching up this sign with Google StreetView data allowed us to obtain
a very accurate value for φ.

Figure 6.1: Scan point cloud aligned to satellite imagery. Map data: Google, ZENRIN.

6.1.2 Accuracy of Reference Data

We examine the accuracy of our evaluation for scan point clouds chosen according to
the criteria listed in section 6.1.1. The map resolution is one pixel width per 19.5 cm.
The scan point clouds we chose for manual localization all contained wall segments long
enough to manually line up in parallel with the corresponding obstacles on the map
despite its limited resolution. We also have several objects at different angles available
to support localization. Using those, we can determine the host location up to the map
and SCALA accuracy. To account for obstacle edges not always lining up with the pixel
grid of the map we allow a two by two pixel area in which a scan point’s true position is.
Accounting for SCALA accuracy (section 3.4) we obtain the following upper bound for
the error in position localization:

R(x) = R(y) = 2 ∗ 19.5 cm + 10 cm = 49 cm (6.1)

Using this bound we can derive an upper error bound for the heading angle. Scan point
clouds fulfilling our criteria contain reliable scan points at distances of at least 100 m.
For the sake of this example the scan point cloud consists of exactly one scan point. We

61

6 Evaluation and Results

Figure 6.2: Derivation of the ground truth heading angle error. Note that the axis aspect
ratio is not equal.

use the true host’s coordinate system for the following calculations. The true location of
the scan point is straight in front of the vehicle, at an angle of 0°. We construct the worst
case scenario for φ localization and calculate the error introduced in that situation:

• The host position was localized as far to the right of the heading direction as
possible

• The far off scan point was localized as far to the left of the heading direction as
possible

• The far off scan point has a range reading of 100 m

The first two items here maximize the error in angle as both of them skew the perceived
heading angle in counter-clockwise direction. The last item maximizes the impact of the
first two items because lateral shifts of scan points have a larger impact on their angle
the closer they are to the sensor. Figure 6.2 visualizes this scenario. The green dots
represent the true host and scan point positions and the red dots represent their wrongly
localized positions. The angle between the dashed line and the black line connecting
the two wrongly localized positions is our upper error bound on manual heading angle
localization. It is given by the following equation:

sin(R(φ)) = 100 m

2 ∗R(y) (6.2)

Solving for R(φ) yields R(φ) = 0.5615°. Note that we do not need to account for errors
in x-direction here because the distance between scan point and host is fixed.

62

6.1 Method of Evaluation

6.1.3 Path Evaluation

To quickly review the data used to evaluate a path, this is what we have gathered for a
trace:

• Ground truth data: A series of 3-12 data points (ts, x, y, φ)

• Vehicle path: A series of thousands of data points 1 (ts, x, y, φ), containing data
points for the ground truth data’s timestamps among them

• A scaled map, useful for visualization

6.1.3.1 Preparing path data for comparison

Before calculating any errors we need to line up the vehicle path with the ground truth
data so they both start at the same place, except for some warmup time. Resetting the
accumulated error by synchronizing the path at every ground truth data point allows us
to separately consider each segment defined by two ground truth data points.

Algorithm 6.1 describes the path synchronization procedure. The path is synchronized
at each data point in ground_truth so the error accumulated in each section becomes
visible. The difference between the two conditional branches are minuscule: the first
entry in ground_truth is used to align the whole path, including the warmup time; all
other entries are used to align one section only, starting at the timestamp after the
one listed for the current ground truth data point. This is so the ground truth data
point can be compared with the corresponding data point in the driven path before the
accumulated error is reset. As this is the only difference between the two conditional
branches, we will only describe the first branch. Here, a series of points (the vehicle
positions) is transformed to align with the first ground truth data point.

Because we will need to apply a rotation matrix in a few lines, we start by moving
the series of points onto (0, 0) from where they can be rotated without introducing an
additional offset. We are synchronizing at the first ground truth data point entry, so
in line 4 we choose the path’s corresponding position as translation required for the
shift onto (0, 0). In the next line we calculate the angle by which we need to rotate so
the heading angles match between ground truth and the vehicle path, this rotation is
applied in lines 6 and 7. To finish off, the series of points, now rotated to match ground
truth, is shifted onto ground truth at its first timestamp.

1The exact length is determined by the number of sensors and the duration over which the trace was
recorded

63

6 Evaluation and Results

Algorithm 6.1 Synchronize vehicle path with ground truth data

1: procedure SYNC_PATHS(ground_truth, path)
2: for data ∈ ground_truth do
3: if data is first entry then
4: Subtract (xy entry of path where ts = data[ts]) from all xy entries in path

5: φ_diff ← (φ entry of path where ts = data[ts])− data[φ]
6: Subtract φ_diff from all φ entries in path

7: Rotate all xy entries in path by −φ_diff

8: Add data[xy] to all xy entries in path

9: else
10: Subtract (xy entry of path where ts = data[ts]) from all xy entries in path

after ts

11: φ_diff ← (φ entry of path where ts = data[ts])− data[φ]
12: Subtract φ_diff from all φ entries in path after ts

13: Rotate all xy entries in path after ts by −φ_diff

14: Add data[xy] to all xy entries in path after ts

15: end if
16: end for
17: end procedure

Figure 6.3 shows the effect of repeated path synchronization. In this scenario, the vehicle
drove from the top left to the bottom right part of the road. Blue dots represent data
points available in the ground truth data set, red lines represent vehicle path sections. In
6.3(b), only the first ground truth data point was used to localize the vehicle path on the
map. In 6.3(a), every ground truth data point was used for synchronization. The error
accumulated over each section is much easier to make out in the left half. Note that an
artificial error was introduced to the vehicle’s path to better visualize this effect.

Figure 6.3: The effect of synchronizing paths at every ground truth data point. (a)
synchronized at every ground truth data point, (b) synchronized once. Map
data: Google, ZENRIN.

64

6.1 Method of Evaluation

6.1.3.2 Comparing path data to ground truth data

We will use the mean squared error (MSE) to quantify the error in path approximations.
The MSE is given by the sum of the squared approximation errors. In general, for a
sequence of n ground truth data points gi and n corresponding approximations hi, it is
calculated as follows:

MSE = 1
n

n∑
i=1

(gi − hi)2 (6.3)

Consider a trace and the path taken by the vehicle in it, such as the one in 6.3(a). We
have manually established n = 5 ground truth data points for this trace. They divide the
vehicle path up into six path sections: one section preceding each point plus one short
section after the last point. 2 We look at the errors accumulated during each section to
calculate the MSE. However, the last section cannot be used for this because it has no
ground truth data point at its end allowing us to calculate the section’s accumulated
errors. The first section cannot be used either because we specifically aligned this section
so that it matches the first ground truth data point. The remaining four sections are
then used for error calculation.

There, we calculate the MSE as follows:

MSE = 1
n− 1

n∑
i=2

(gi − hf(i))2 (6.4)

Note that the summation index i here starts at 2 because we skip the first ground truth
data data point. In practice, we do not have the same number of ground truth data
points and estimated data points. Therefore we need to use different indices for the
two sequences. In equation 6.4 we use a function f that maps ground truth indices
to their corresponding indices in the estimated data sequence. In our implementation,
corresponding indices are found by comparing the timestamps attached to each data
point in both sequences.

Due to the vehicle rotating on the map, errors in the x and y components individually
are dependent on the scenario. Instead we calculate the MSE in dxy, the 2-dimensional
Euclidean norm. It directly relates to the error in position accumulated over a given
time, be it caused by wrong velocity approximations or by wrong heading angle approx-
imations. As will become apparent in the following sections, the accuracy of velocity
data provided by the host is quite good already. So good, in fact, that measuring it using
satellite imagery is no longer feasible: the error often lies on the same order of accuracy
as our reference method. We also calculate the MSE in φ.

2Scan point clouds extracted for manual ground truth collection have to meet certain criteria outlined at
the beginning of section 6.1.1. This is why we usually cannot choose the very last scan point cloud in
a trace, resulting in an additional short path section after the last ground truth data point.

65

6 Evaluation and Results

6.2 Configuring the OGM

We need to configure the occupancy grid map before we can start examining the various
approaches developed in the last chapter. Specifically, we need to pick appropriate
values for the following four parameters:

• od, the odds ratio multiplied onto grid cells in which scan points are detected. This
parameter influences how quickly a cell changes towards occupied when a scan
point is placed in it. Here we need to find a balance so dynamic objects do not stay
on the OGM permanently and static objects become solid relatively quickly.

• ond, the odds ratio multiplied onto grid cells between a sensor and its nearest
detections. This parameter, along with the inverse sensor model, influences how
quickly a cell changes towards free when a scan point is detected somewhere
behind it. See section 4.3.4 for the free space calculation integrated in the inverse
sensor model.

• res, the OGM resolution, determines the side length of the square cells that make
up the OGM. Here we need to choose a resolution fine enough to allow for accurate
mapping and tracking, but also coarse enough to get a consistent OGM.

• cells, the amount of cells extending in both directions from the origin in both
dimensions, is determined by the desired range and resolution of the map.

Considering the five 25MHz SCALAs have a combined average update frequency of
125Hz, od needs to be chosen relatively close to 1.0 so dynamic obstacles do not cause
too high occupancy likelihoods. Some trial and error has shown od = 1.041 to be a good
choice: obstacles appear quickly and reliably on the OGM while other vehicles mostly
don’t affect the OGM visually. We will choose ond similarly: ond = 0.961 works well in
practice.

One could think choosing a resolution was simple given our knowledge of the sensors
(section 3.4). However, their scanning multiple layers, inaccuracies caused by real world
objects being detected from different angles, imperfectly calibrated sensor mounting
positions and angles limit the resolution we are able to work with. Figure 6.4 shows
one of the more obvious misalignments noticeable in our traces. Two scan point clouds,
recorded in successive time steps, are displayed on the OGM. They just about line up
within the stripe of cells they occupy. We will set the resolution to that used in the figure,
res = 0.4. In practice, our particle filter produces worse results when finer resolutions
are chosen.

We want the OGM to have a range of more than 100 meters. Not many scan points are
returned much farther out, but a good portion of the scan points at this range are valid

66

6.3 Test Scenarios

detections especially useful for angle estimation. We choose a range of 120 meters, so
we set cells = 300 to yield the desired range at the chosen resolution res = 0.4.

Figure 6.4: Scan point clouds not lining up perfectly between two time steps.

6.3 Test Scenarios

We have four traces available for testing, each set in a different environment.

Factory is set inside a private business estate. The surrounding buildings are warehouses
and office buildings. Velocity is limited to a maximum of 20 km/h. Large static
objects such as containers, storage shelfs and trucks delivering goods are the type
of obstacles encountered in this trace. The route is 650 meters long.

Urban takes place on a curvy four lane urban street with inclines of up to 6%, intersec-
tions, traffic lights, pedestrians and other vehicles. Velocities range up to 50 km/h,
the route is 1.5 km long.

67

6 Evaluation and Results

Country takes place on a slightly curved elevated highway with one lane of traffic going
each direction, guardrails on both sides and small dividers installed on the lane
markings, separating the two directions of traffic. Few other obstacles are detected
past the road boundaries. Here, the vehicle moves at 60 to 80 km/h for 70 seconds.

Highway takes place on a divided highway with four lanes going in the host’s direction,
starting on a curved onramp and following along for 7.5 km, gaining almost 100
meters of altitude on the way. Velocity is typical for highways in Germany, ranging
from 80 km/h to 130 km/h.

Figure 6.5 roughly shows the paths driven in the four traces. 6.5(a) shows factory,
driving around the central building in counter-clockwise direction starting from the
bottom. 6.5(b) shows urban, driving towards the bottom of the image. 6.5(c) shows
country, driving towards the bottom right. 6.5(d) shows highway, driving towards the
bottom of the image.

6.4 Baseline

To evaluate the improvements we made in chapter 5 there needs to be a baseline to
compare against. In this section we will set two baselines: one showing the accuracy of
the default odometry data and one showing the accuracy of the particle filter without
any of the improvements presented in sections 5.5 and 5.6. We will refer to this particle
filter configuration as base particle filter. Every test that includes the particle filter will be
performed with a set of n = 500 particles; more particles don’t produce different results
and significantly fewer particles make for unstable results.

Three of the four traces available for testing (section 6.3) - all but country - were recorded
with badly configured sensors. Issues like those shown in figure 6.4 are so prevalent that
running the particle filter with some of the sensors disabled actually produces better
path approximations. Specifically, we are only using the two forward facing sensors for
these traces. Nonetheless we achieve significant improvements over paths constructed
purely from odometry signals.

Figure 6.5 shows the paths driven in the four traces reconstructed from odometry data.
In 6.5(a), the vehicle drove from the bottom to the top, in the others it drove towards
the bottom. 6.5(a,b,d) all show a significant negative yaw rate bias apparent from the
path sections ending up to the right of the blue ground truth data points. 6.5(c) shows a
significant drift towards the left. However, the path sections all appear to be the right
length, indicating that the velocity odometry signal is quite good on its own.

68

6.4 Baseline

Figure 6.5: The traces available for testing. Map data: Google, ZENRIN, GeoBasis-
DE/BKG.

69

6 Evaluation and Results

Figure 6.6: The four traces with paths estimated by the base particle filter. Map data:
Google, ZENRIN, GeoBasis-DE/BKG.

70

6.4 Baseline

Figure 6.7: Difficulties in the highway trace

Figure 6.6 shows the paths estimated by the base particle filter. In factory and country
(6.6(a,c)) the drift has mostly been corrected. In urban (6.6(b)) the particle filter got
lost twice when stopping and starting for traffic lights. However, as apparent from the
path sections that were aligned correctly, the drift has mostly been corrected.

Lastly, 6.6(d) shows highway. While the path estimate here does look better than that
of urban, we have not been able to improve it significantly - not with the configuration
presented in the next section and not with the various scan point sampling strategies
tested in section 6.6. That is because of a combination of reasons:

• Other vehicles travel on both sides of the host

• Guardrails are not always present on the right-hand road boundary

• A significant part of the trace is spent in areas where the area to the right of the
road is occupied with a man-made embankment covered in bushes and small trees.
The ground structure there is very uneven compared to flat walls and guardrails.
Also, the distance from detections to the sensor is highly subjective to changes in
altitude as well as pitch and roll angles of the vehicle. This makes consecutive
scan point clouds and even different layers of the same scan point cloud align very
badly.

Figure 6.7 shows a truck blocking the view of the left guardrail (6.7(a)) and uneven
surface detections on the right-hand side (6.7(b)). Therefore, highway results will be
omitted from now on.

Table 6.1 shows the MSEs in φ [°] and dxy [m] for the two traces that didn’t diverge,
factory and country. Listed are the path reconstructed from odometry data and the the
path estimated by the base particle filter. For MCL data, the values were averaged over
six runs for each test scenario3. Values in brackets show the standard deviation of the

3Last minute bug fixes prevented us from using previously prepared averages based on a higher number
of runs.

71

6 Evaluation and Results

values used for the average. We calculate the standard deviation σ of a series of n values
vi as follows:

σ =
√√√√ 1

n

n∑
i=1

(vi − v)2 (6.5)

Here v is the average of the vi.

The entries for the path based on only odometry have been calculated deterministically
and as such did not require averaging. Note that looking at only this table, comparisons
between different traces are hardly possible: traces were recorded in very different
environments under very different circumstances, and ground truth data points’ distances
differ.

While path approximations have been improved over the path reconstructed from
odometry data, the standard deviations show that the particle filter doesn’t produce
particularly consistent path approximations at this stage.

Factory Country

MSE φ dxy φ dxy

Odometry 30.37 109.28 26.28 169.95
Base MCL 8.16 (6.39) 17.68 (9.47) 3.14 (0.56) 85.06 (54.34)

Table 6.1: Comparison of MSEs between pure odometry data and base particle filter

6.5 Configuring the Particle Filter

In this section we test the improvements presented in section 5.5. Table 6.2 shows the
results of the tests ran in this section: Weights for the alternative weighting function and

Factory Country Urban

MSE φ dxy φ dxy φ dxy

Odom. 30.37 109.28 26.28 169.95 27.10 205.11
Base MCL 8.16 (6.39) 17.68 (9.47) 3.14 (0.56) 85.06 (54.34) − −

Weights 6.13 (1.15) 11.72 (1.41) 2.19 (0.31) 132.65 (43.32) 9.42 (2.29) 62.91 (6.94)
Alpha 5.86 (3.29) 7.07 (1.54) 1.93 (0.10) 41.05 (1.16) 10.95 (1.46) 28.97 (9.70)

Table 6.2: Comparison of MSEs between baselines and particle filter configurations

72

6.5 Configuring the Particle Filter

Alpha for odometry alpha filters. The two baselines established in the previous section
are labeled Odom. and Base for pure odometry and the base particle filter, respectively.
Standard deviations are again given in brackets, where applicable.

We start by substituting in the alternative weighting function presented in section 5.5.1.
This weighting function provides less aggressive weights so particles with lower weights
survive for longer, allowing the particle filter to more freely explore hypotheses that start
out appearing unlikely. For factory and country, this reduces the standard deviations
of all MSEs, indicating more stable path estimates. The MSEs themselves also went
down in all but one case: in country, the dxy MSE increased by more than half. This is
because there are fewer obstacles in this particular trace which could help discredit bad
hypotheses. Note that errors of this magnitude also occurred in the base particle filter’s
dxy MSEs. For urban, this particle filter configuration achieves stable path estimates,
albeit the dxy MSE is still almost a third of the odometry baseline’s.

Then we add in the alpha filters for v and ω as presented in section 5.5.2. While MSEs
in φ haven’t changed significantly for any of the traces, the dxy MSEs for country and
urban are quartered and halved, respectively.

Figure 6.8: Collection of scan points recorded in country trace

The reason results for country are this much better with alpha filters is that this particular
trace contains barely any obstacles apart from those that are part of the road. Figure 6.8
shows a representative subset of all scan points recorded during that trace: apart from
some outliers, only a bridge and the forest near the start on the left side have generated
scan points past the road boundaries. Before the alpha filter change, this allowed the
odometry part of the particle weighting function, which is based on noisy odometry
signals, to dominate the overall particle weights. The weights the scan matching part
was assigning to slightly misaligned particles weren’t small enough to offset the higher
odometry weights attached to particles close to the (noisy) odometry signals.

Going forward we will use the alternative weighting function and alpha filters.

73

6 Evaluation and Results

Factory Country Urban

MSE φ dxy φ dxy φ dxy

Odom. 30.37 109.28 26.28 169.95 27.10 205.11
Alpha 5.86 (3.29) 7.07 (1.54) 1.93 (0.10) 41.05 (1.16) 10.95 (1.46) 28.97 (9.70)

dist 9.70 (3.34) 8.56 (0.98) 1.69 (0.15) 35.23 (6.30) 4.72 (0.43) 22.43 (6.80)
far 5.71 (1.87) 6.45 (1.58) 1.70 (0.19) 40.34 (6.14) 7.29 (1.31) 30.07 (12.89)
angle 7.33 (1.87) 12.65 (4.57) 1.40 (0.24) 36.55 (4.05) 7.79 (6.18) 136.71 (31.45)
grid 3.64 (1.14) 5.66 (0.70) 16.91 (1.67) 119.19 (14.52) 3.98 (0.96) 15.80 (3.02)
smooth 16.19 (3.44) 17.14 (2.78) 4.65 (1.59) 79.50 (19.79) 14.70 (7.84) 177.99 (81.12)
dynamic 5.59 (1.19) 8.24 (2.37) 1.55 (0.12) 39.62 (5.72) 8.92 (2.35) 28.27 (3.44)

Table 6.3: Comparison of MSEs for scan point sampling strategies

6.6 Scan Point Sampling

In this section we evaluate the scan point sampling strategies presented in section 5.6.
Following that, section 6.7 will combine some of these strategies to obtain a particle
filter that works well on all three traces. Like before, we will give the results of each test
series and discuss each strategy’s impact on the three traces.

We test the following strategies:

dist Sampling based on distance to the car (section 5.6.1)
far Sampling for far detections (section 5.6.2)

angle Sampling based on angle between road and obstacles (section 5.6.3)
grid Grid-based sampling (section 5.6.4)

smooth Sampling based on surface smoothness (section 5.6.5)
dynamic Sampling against dynamic obstacles (section 5.6.6)

Table 6.3 shows the results of combining the particle filter configured in section 6.5 with
each of the sampling strategies listed above. For comparison, the odometry-only path
and the configured particle filter are also listed as odom. and alpha, respectively. The
following paragraphs compare the alpha baseline to the performance of our sampling
strategies.

Sampling based on distance to the car, which linearly downsamples scan points up
to 20 meters away from the sensor, improved estimates of urban in both evaluated
measures. There, many of the detections close to the sensors stem from other vehicles.
Decreasing their impact improved the path approximation. The factory trace produced
worse results. There, most of the close detections should be considered reliable as they

74

6.6 Scan Point Sampling

belong to static obstacles such as palettes and containers. Removing part of these scan
points negatively affects path approximations. Lastly, Country produced less stable dxy

MSEs, however it did improve the φ MSEs. This is likely because most close detections
were actually reliable, only some traffic dividers and a few vehicles going the opposite
way would produce undesirable detections.

Sampling for far detections, which duplicates scan points past 80 meters, slightly
improved the φ MSEs of country and urban at the cost of less stable dxy approximations.
This is because more importance was assigned to lining up far detections which can be
lined up quite well even with small alignment errors at smaller ranges. However, for
factory, both measures have changed for the worse. In this environment, there rarely is
80 meters or more of visibility along the vehicle path, thus detections at these ranges
are mostly clutter. Increasing their impact negatively affects approximation quality.

Sampling based on angle between road and obstacles, which favors scan points be-
longing to surfaces orthogonal to the road, was intended to improve velocity estimations.
However, as explained in section 6.1.3.2, no significant improvements are possible for
velocity estimation. Additionally, this sampling strategy actually significantly worsened
path approximations by taking focus away from important scan points. Most MSEs and
standard deviations have grown compared to those of alpha. Only φ MSEs for country
and urban have improved. One possible explanation for urban is that road boundaries,
of which detections typically only appear within forty meters of a sensor, have been
discounted heavily; this would give more influence to obstacles at greater distances,
which bear more importance for angle estimates, improving the φ MSE.

There is a small silver lining here: looking at the path approximations produced here
we can see path sections ending up short of their successive ground truth data point.
This shows that velocity estimates in other test scenarios were indeed good and that
the particle filter possesses the freedom to deviate from the velocity signals provided
to it through the alpha filters in section 5.5.2. It also shows that this sampling strategy
did not work as intended, having entirely ignored the importance of other detections.
Figure 6.9 shows path sections for (a) factory, (b) country and (c) urban that ended up
short of their real world destinations.

75

6 Evaluation and Results

Figure 6.9: Path approximations ending up short of their destination. Map data: Google,
ZENRIN, GeoBasis-DE/BKG.

Figure 6.10: Poles and stone blocks separating opposite sides of traffic. Image: Valeo.

Grid-based sampling resamples the whole scan point cloud to achieve an approximately
equally dense distribution across all detected obstacles. The resulting path approxima-
tions for urban and factory are decidedly better compared to alpha, both in average
MSE and in standard deviation. The only exception is the country trace, for which the
path estimates are now almost as bad as those based only on odometry signals. That is
because on the road in that trace, opposite sides of traffic are separated by groups of
single plastic poles followed by two small stone blocks every five meters. Figure 6.10
shows these dividers. Depending on vertical angle to the sensor, the stone bars can
generate detections at different points along their long side. After resampling, these
detections make up as much of the scan point cloud as each of the guardrails. Placing
too much weight on these inconsistent detections lessens the approximation quality of
path estimates.

Sampling based on surface smoothness places more weight on un-smooth scan points,
such as those connecting two surfaces or those on the edge of a single line of scan points.
This produced path approximations much worse than alpha, almost as bad as the paths

76

6.7 Combining Scan Point Sampling Strategies

reconstructed from only odometry data. That is because this strategy bears several
problems. Surfaces that extend past a sensor’s field of view still generate edge point
detections because these sections look identical to sections with actual edge points.
Surfaces that are partially hidden by a separate obstacle between the sensor and the
surface will also generate edge points even though the partially hidden surface may
extend past the detected edge point, as mentioned in [ZS14].

Sampling against dynamic obstacles is a simple strategy we implemented to lessen
the impact of dynamic obstacles. An area shaped like a rhombus centered on the host is
used to classify objects as dynamic (figure 5.6). Even though dynamic obstacles are most
prevalent in urban, all three traces now produce slightly better φ MSEs. For country,
where this is especially noticeable, a possible reason is that the obstacles shown in figure
6.10 now have less impact on the weighting function; this allows farther out scan points
to influence φ estimations more, similar to what is done in section 5.6.2 (sampling
for far detections). For factory, this strategy has a similar effect as sampling based on
detection distance with the difference that walls are now only affected right next to
the vehicle where the rhombus overlaps, leaving most of the walls within the 20 meter
range untouched.

The MSEs for dxy, remaining largely the same on average, have become less stable for
country and factory. That is likely because in those traces, only scan points belonging to
static obstacles have been removed. Only for urban has dxy become more stable: urban
is the only trace with frequent dynamic obstacles, exactly what this strategy was aiming
at.

6.7 Combining Scan Point Sampling Strategies

The obvious next step is to combine our scan point sampling strategies. Table 6.4
shows the results discussed in this section. For comparison, the odometry-only path
and the configured particle filter from section 6.5 are again listed as odom. and alpha,
respectively. Additionally, the best result obtained for each trace so far is listed as best.
Three configurations are compared; one based on the overall performance of scan point
sampling strategies, and two that consider varying results for different traces.

We start with combined1. For this setup we included the four strategies that seemed
most promising, omitting only the two strategies that produced worse results (angle and
smooth in table 6.3). Apart from some exceptions addressed in the other setups discussed
later on, these four strategies improved results for all traces. The sampling steps given
by the four strategies were executed in the following order: First, grid-based sampling
is applied. Applying it later would work against other strategies which specifically

77

6 Evaluation and Results

Factory Country Urban

MSE φ dxy φ dxy φ dxy

Odom. 30.37 109.28 26.28 169.95 27.10 205.11
Alpha 5.86 (3.29) 7.07 (1.54) 1.93 (0.10) 41.05 (1.16) 10.95 (1.46) 28.97 (9.70)
Best 3.64 (1.14) 5.66 (0.70) 1.40 (0.24) 36.55 (4.05) 3.98 (0.96) 15.80 (3.02)

combine1 7.20 (3.92) 5.35 (0.72) 10.31 (0.85) 75.21 (6.28) 0.72 (0.20) 23.47 (1.40)
combine2 1.86 (0.26) 3.80 (0.54) − − − −
combine3 − − 1.02 (0.10) 23.14 (1.96) − −

Table 6.4: Comparison of MSEs for combined scan point sampling strategies

affect the scan point cloud to be denser in some and sparser in other areas. The order
within the other three approaches doesn’t matter as they each look at every scan point
separately.

Indeed, our scan point sampling approach further improved results for urban when
combining multiple strategies. Most importantly, MSEs for φ have almost sunk to within
the evaluation error margins; dxy MSEs have only gotten slightly worse. For factory,
results are worse than the previous best results. That is because combine1 includes
distance-based sampling, which had previously produced results worse than that of
Alpha. We address this in combine2, which removes distance-based sampling. After this
change, factory results are now also better than its previous best results: φ MSEs have
halved and dxy MSEs have gone down by a third.

To remedy combine1’s performance for country, we remove grid-based sampling from
combine1, and replace it with angle-based sampling (section 5.6.3) as that strategy
actually had a positive impact on this trace. The position of angle-based sampling in the
order listed above is irrelevant because this strategy only considers surface orientation
and that isn’t affected by any of the other three strategies used in this setup. We
execute angle-based sampling first because it typically reduces the scan point cloud size
drastically, allowing for faster calculations in the following sampling steps. With this
setup, listed as combine3 in table 6.4, the errors for country decrease to below those of
the best results obtained in the previous chapter: the dxy MSE has gone down by a third
and the φ MSE is now almost down to 1.

Figure 6.11 shows paths provided by these final three setups compared to the respective
paths reconstructed from odometry data.

78

6.7 Combining Scan Point Sampling Strategies

Figure 6.11: Path approximations provided by combined scan point sampling strategies
(yellow) compared with odometry-only reconstruction (red): (a) com-
bine3, (b) combine2, (c) combine1. Map data: Google, ZENRIN, GeoBasis-
DE/BKG.

79

7 Conclusion

This work tackles automotive SLAM using a Monte Carlo particle filter handling scan-
to-map matching on an existing occupancy grid map; alpha filters are used to handle
odometry estimation. Two particle weighting functions are considered for the particle fil-
ter and a series of scan point sampling strategies that provide differently distributed scan
point clouds for the calculation of particles’ scan matching weights. Of particular interest
were five sampling strategies that linearly downsampled detections at close range, super-
sampled very far detections, sampled based on weights determined by surface normals,
resampled to approximate uniform scan point density and sampled against dynamic
obstacles. Manually matching scan point clouds to satellite imagery yielded precise
ground truth data enabling a comprehensive evaluation of path approximations.

Comparing path approximations against paths reconstructed from odometry signals
showed that, accumulated over sections of 60 to 200 meters, the MSE in heading angle
was reduced by 93-97% and the MSE in position was reduced by 86-96% through the
use of different combinations of scan point sampling strategies. Evaluations in different
scenarios demonstrated that no combination of scan point sampling strategies would
work well in all scenarios. The particle filter was successfully tested in a factory setting,
a complex urban road, and a two-way elevated highway. In a complex highway scenario
our approach didn’t succeed due to a number of difficulties; inconsistent scan point
clouds generated by uneven embankment surfaces, vehicles blocking the sensors’ views
and an insufficient number of obstacle detections usable as a reference for localization
posed difficulties to the particle filter.

81

7 Conclusion

7.1 Future Work

Several parts of this work naturally lead the way to some approaches that promise
further approximation improvements.

Scan point sampling was investigated to find criteria for constructing scan point dis-
tributions yielding particle weights more representative of the particles’ approximation
quality; however runtime optimizations were not considered. SLAM typically is per-
formed in real time so performance should be good enough to keep up with the stream
of odometry and lidar measurements. Instead of changing the distribution of scan points
directly, one could assign them weights to use as exponents in the calculation of particle
scores. This avoids expensive duplicate lookups into the map and construction of a
second scan point cloud.

Scan point classification could generally tie directly into the particle weighting function,
allowing one to discard ground detections, dynamic obstacles, shrubbery and foliage,
and other clutter detections. This would likely require knowledge beyond single scan
point clouds and the current occupancy grid map state to properly assess scan point
properties.

Scenario classification would allow one to exploit different characteristics of scan point
sampling strategies in different scenarios. Dynamically using different parameters and
weighting the impact of the individual scan point sampling strategies based on what type
of scenario the vehicle is currently navigating would eliminate the problem of having
to combine scan point sampling strategies into one single approach suitable for many
different scenarios. Classifications could define scenario classes or they could provide
information about scenario attributes such as amount of dynamic objects, road type,
speed of traffic, and composition of obstacle detections.

Sensor mounting positions can become misaligned over the lifespan of a car. Using the
particle filter to correct sensor mounting data would allow longer service intervals and
could provide well-aligned scan point clouds even when sensors become misaligned.

82

List of Figures

3.1 Resampling step in particle filters . 16
3.2 One-dimensional Monte Carlo Localization 19
3.3 SCALA lidar sensor housing . 23
3.4 SCALA lidar sensor containing two rotating mirrors 24

4.1 SCALA Cocoon coverage . 27
4.2 A typical view of the occupancy grid map 29
4.3 Visualization of the turn model used in the OGM 33
4.4 Polar histogram mapped onto occupancy grid map 35
4.5 Precomputed inverse sensor model . 37

5.1 Weighting function based on odometry data 46
5.2 Particle visualization displayed next to the OGM 48
5.3 Range based sampling thinning out the scan point cloud near the car . . 52
5.4 Effect of using neighborhoods within clusters for surface normal calculation 55
5.5 Effect of grid-based sampling . 56
5.6 Outline of rhombus used for dynamic object pseudo-sampling 58

6.1 Scan point cloud aligned to satellite imagery 61
6.2 Derivation of the ground truth heading angle error 62
6.3 The effect of synchronizing paths at every ground truth data point 64
6.4 Scan point clouds not lining up perfectly 67
6.5 The traces available for testing . 69
6.6 The four traces with paths estimated by the base particle filter 70
6.7 Difficulties in the highway trace . 71
6.8 Collection of scan points recorded in country trace 73
6.9 Path approximations ending up short of their destination 76
6.10 Poles and stone blocks separating opposite sides of traffic 76
6.11 Path approximations provided by combined scan point sampling strategies 79

83

Bibliography

[AA12] A. Azim, O. Aycard. “Detection, classification and tracking of moving
objects in a 3D environment.” In: Intelligent Vehicles Symposium (IV), 2012
IEEE. IEEE. 2012, pp. 802–807 (cit. on p. 57).

[BD06] T. Bailey, H. Durrant-Whyte. “Simultaneous localization and mapping
(SLAM): Part II.” In: IEEE Robotics & Automation Magazine 13.3 (2006),
pp. 108–117 (cit. on p. 11).

[BF08] A. Barth, U. Franke. “Where will the oncoming vehicle be the next second?”
In: Intelligent Vehicles Symposium, 2008 IEEE. IEEE. 2008, pp. 1068–1073
(cit. on p. 31).

[Cha04] D. M. Chabukswar. “Modeling Simulation and Experimental Validation of
’ATRV-Jr.’” MA thesis. 2004, pp. 12–13. URL: http://diginole.lib.fsu.edu/
islandora/object/fsu:182176/datastream/PDF/view (cit. on p. 31).

[CMC+17] A. Cosgun, L. Ma, J. Chiu, J. Huang, M. Demir, A. M. Anon, T. Lian,
H. Tafish, S. Al-Stouhi. “Towards Full Automated Drive in Urban Envi-
ronments: A Demonstration in GoMentum Station, California.” In: arXiv
preprint arXiv:1705.01187 (2017) (cit. on p. 11).

[CQB+13] Z. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, D. Rus. “Syn-
thetic 2d lidar for precise vehicle localization in 3d urban environment.”
In: Robotics and Automation (ICRA), 2013 IEEE International Conference on.
IEEE. 2013, pp. 1554–1559 (cit. on p. 11).

[DB06] H. Durrant-Whyte, T. Bailey. “Simultaneous localization and mapping:
part I.” In: IEEE robotics & automation magazine 13.2 (2006), pp. 99–110.
URL: https://www.doc. ic .ac .uk/~ajd/Robotics/RoboticsResources/
SLAMTutorial1.pdf (cit. on pp. 11, 14).

[DFBT99] F. Dellaert, D. Fox, W. Burgard, S. Thrun. “Monte carlo localization for
mobile robots.” In: Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on. Vol. 2. IEEE. 1999, pp. 1322–1328 (cit. on
pp. 11, 17).

85

http://diginole.lib.fsu.edu/islandora/object/fsu:182176/datastream/PDF/view
http://diginole.lib.fsu.edu/islandora/object/fsu:182176/datastream/PDF/view
https://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/SLAMTutorial1.pdf
https://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/SLAMTutorial1.pdf

Bibliography

[EKS+96] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A density-based algorithm
for discovering clusters in large spatial databases with noise.” In: Kdd.
Vol. 96. 34. 1996, pp. 226–231 (cit. on pp. 24, 25).

[Fox02] D. Fox. “KLD-sampling: Adaptive particle filters.” In: Advances in neural
information processing systems. 2002, pp. 713–720 (cit. on p. 18).

[GG14] H. Gotzig, G. Geduld. “Automotive LIDAR.” In: Handbook of Driver Assis-
tance Systems: Basic Information, Components and Systems for Active Safety
and Comfort (2014), pp. 1–20 (cit. on p. 23).

[HR16] M. Hammarsten, V. Runemalm. “3D Localization and Mapping using auto-
motive radar.” MA thesis. Chalmers University of Technology, 2016. URL:
http://publications.lib.chalmers.se/records/fulltext/238490/238490.pdf
(cit. on pp. 20, 49).

[Hun07] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing In
Science & Engineering 9.3 (2007), pp. 90–95 (cit. on p. 39).

[JOP+01] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools
for Python. 2001. URL: http://www.scipy.org/ (cit. on p. 39).

[JZ98] R. J. Jesionowski, P. Zarchan. “Comparison of four filtering options for a
radar tracking problem.” In: Journal of guidance, control, and dynamics
21.4 (1998) (cit. on p. 20).

[Kal+60] R. E. Kalman et al. “A new approach to linear filtering and prediction
problems.” In: Journal of basic Engineering 82.1 (1960), pp. 35–45 (cit. on
p. 20).

[LJ00] X. R. Li, V. P. Jilkov. “A survey of maneuvering target tracking: Dynamic
models.” In: Proceedings of SPIE Conference on signal and data processing of
small targets. Vol. 6. 4048. 2000, pp. 212–235 (cit. on p. 31).

[LMT07] J. Levinson, M. Montemerlo, S. Thrun. “Map-Based Precision Vehicle Local-
ization in Urban Environments.” In: Robotics: Science and Systems. Vol. 4.
2007, p. 1 (cit. on p. 11).

[LR09] T. Laue, T. Röfer. “Pose Extraction from Sample Sets in Robot Self-
Localization-A Comparison and a Novel Approach.” In: ECMR. 2009,
pp. 283–288 (cit. on p. 46).

[LT10] J. Levinson, S. Thrun. “Robust vehicle localization in urban environments
using probabilistic maps.” In: IEEE. 2010, pp. 4372–4378 (cit. on p. 11).

[LVL14] S. Lefèvre, D. Vasquez, C. Laugier. “A survey on motion prediction and risk
assessment for intelligent vehicles.” In: Robomech Journal 1.1 (2014), p. 1
(cit. on p. 31).

86

http://publications.lib.chalmers.se/records/fulltext/238490/238490.pdf
http://www.scipy.org/

Bibliography

[MDU11] P. Morton, B. Douillard, J. Underwood. “An evaluation of dynamic object
tracking with 3d lidar.” In: Proc. of the Australasian Conference on Robotics
& Automation (ACRA). 2011 (cit. on p. 57).

[MON09] T. Miyasaka, Y. Ohama, Y. Ninomiya. “Ego-motion estimation and moving
object tracking using multi-layer lidar.” In: Intelligent Vehicles Symposium,
2009 IEEE. IEEE. 2009, pp. 151–156 (cit. on p. 57).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn:
Machine learning in Python.” In: Journal of Machine Learning Research
12.Oct (2011), pp. 2825–2830 (cit. on pp. 25, 39).

[RHG14] M. Roth, G. Hendeby, F. Gustafsson. “EKF/UKF maneuvering target tracking
using coordinated turn models with polar/Cartesian velocity.” In: Informa-
tion Fusion (FUSION), 2014 17th International Conference on. IEEE. 2014,
pp. 1–8 (cit. on p. 41).

[RJMZ16] J. Rohde, I. Jatzkowski, H. Mielenz, J. M. Zöllner. “Vehicle pose estimation
in cluttered urban environments using multilayer adaptive Monte Carlo
localization.” In: Information Fusion (FUSION), 2016 19th International
conference on. IEEE. 2016, pp. 1774–1779 (cit. on p. 11).

[SC86] R. C. Smith, P. Cheeseman. “On the representation and estimation of spatial
uncertainty.” In: The international journal of Robotic Research 5.4 (1986),
pp. 56–68 (cit. on p. 11).

[SRW08] R. Schubert, E. Richter, G. Wanielik. “Comparison and evaluation of ad-
vanced motion models for vehicle tracking.” In: Information Fusion, 2008
11th International Conference on. IEEE. 2008, pp. 1–6 (cit. on p. 31).

[TBB+96] S. Thrun, A. Buecken, W. Burgard, D. Fox, A. B. Wolfram, B. D. Fox, T. Fröh-
linghaus, D. Hennig, T. Hofmann, M. Krell, et al. Map learning and high-
speed navigation in RHINO. 1996 (cit. on p. 22).

[TBF05] S. Thrun, W. Burgard, D. Fox. Probabilistic Robotics. MIT Press, 2005 (cit.
on pp. 13, 15, 17, 19, 22, 44).

[Thr03] S. Thrun. “Learning occupancy grid maps with forward sensor models.” In:
Autonomous robots 15.2 (2003), pp. 111–127 (cit. on p. 23).

[UT13] C. Ulas, H. Temeltas. “A Fast and Robust Feature-Based Scan-Matching
Method in 3D SLAM and the Effect of Sampling Strategies.” In: Interna-
tional Journal of Advanced Robotic Systems 10.11 (2013), p. 396. DOI:
10.5772/56964. eprint: http://dx.doi.org/10.5772/56964. URL: http:
//dx.doi.org/10.5772/56964 (cit. on pp. 50, 55).

87

https://doi.org/10.5772/56964
http://dx.doi.org/10.5772/56964
http://dx.doi.org/10.5772/56964
http://dx.doi.org/10.5772/56964

[VAA07] T.-D. Vu, O. Aycard, N. Appenrodt. “Online localization and mapping with
moving object tracking in dynamic outdoor environments.” In: Intelligent
Vehicles Symposium, 2007 IEEE. IEEE. 2007, pp. 190–195 (cit. on p. 11).

[WCV11] S. v. d. Walt, S. C. Colbert, G. Varoquaux. “The NumPy array: a structure for
efficient numerical computation.” In: Computing in Science & Engineering
13.2 (2011), pp. 22–30 (cit. on p. 39).

[WPN15] D. Z. Wang, I. Posner, P. Newman. “Model-free detection and tracking of
dynamic objects with 2D lidar.” In: The International Journal of Robotics
Research 34.7 (2015), pp. 1039–1063 (cit. on p. 57).

[Wu16] Y. Wu. “Image Based Camera Localization: an Overview.” In: arXiv preprint
arXiv:1610.03660 (2016) (cit. on p. 11).

[ZS14] J. Zhang, S. Singh. “LOAM: Lidar Odometry and Mapping in Real-time.”
In: Robotics: Science and Systems. Vol. 2. 2014 (cit. on pp. 56, 77).

All links were last followed on July 31, 2017.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Outline

	2 Related Work
	3 Background
	3.1 SLAM: Simultaneous Localization and Mapping
	3.2 Bayesian Filtering
	3.2.1 Particle Filters
	3.2.2 Monte Carlo Localization
	3.2.3 Alpha Filters

	3.3 Occupancy Grid Mapping
	3.3.1 Log Odds
	3.3.2 Inverse Sensor Model

	3.4 SCALA
	3.5 DBSCAN

	4 Problem Description and Setup
	4.1 SCALA Cocoon
	4.2 Odometry
	4.3 Occupancy Grid Map
	4.3.1 Input Data
	4.3.2 Motion Model
	4.3.2.1 Derivation of the equations for curved motion

	4.3.3 Map Shift
	4.3.4 Correction step

	4.4 Objective

	5 Approach
	5.1 Environment
	5.2 Particle Filter Implementation
	5.2.1 Particle Spawning
	5.2.2 Particle Evolution
	5.2.3 Particle Weighting
	5.2.3.1 Weighting based on scan points
	5.2.3.2 Weighting based on odometry

	5.2.4 Particle Resampling

	5.3 Pose Extraction
	5.4 Connecting the Particle Filter to the Occupancy Grid Map
	5.5 Expanding the Particle Filter
	5.5.1 Alternative Particle Weighting Function based on Scan Points
	5.5.2 Utilizing Alpha Filters for Odometry

	5.6 Scan Point Sampling
	5.6.1 Sampling based on Distance to the Car
	5.6.2 Sampling for Far Detections
	5.6.3 Sampling Scan Points based on Angle between Road and Obstacles
	5.6.4 Grid-based Sampling
	5.6.5 Sampling based on Surface Smoothness
	5.6.6 Sampling against Dynamic Obstacles

	6 Evaluation and Results
	6.1 Method of Evaluation
	6.1.1 Obtaining Reference Data
	6.1.2 Accuracy of Reference Data
	6.1.3 Path Evaluation
	6.1.3.1 Preparing path data for comparison
	6.1.3.2 Comparing path data to ground truth data

	6.2 Configuring the OGM
	6.3 Test Scenarios
	6.4 Baseline
	6.5 Configuring the Particle Filter
	6.6 Scan Point Sampling
	6.7 Combining Scan Point Sampling Strategies

	7 Conclusion
	7.1 Future Work

	List of Figures
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: unten um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20170531122333
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 453
 307

 Fixed
 Down
 2.8346
 0.0000

 Odd
 2
 CurrentPage
 7

 CurrentAVDoc

 None
 420.9449
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 89
 0
 1

 1

 HistoryList_V1
 qi2base

