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Zusammenfassung

Realistische Simulationen mechanischer Bauteile erfordern Kompromisse zwischen dem
für die Ergebnisse aufgebrachten Aufwand und der Genauigkeit dieser Ergebnisse. Ins-
besondere wenn die Materialien mikroskopische Heterogenitäten aufweisen, erfordern
klassische Lösungsansätze entweder exzessive Rechenkapazitäten oder scheitern auf-
grund Übervereinfachung an der Berechnung vertrauenswürdiger Ergebnisse. Dies gilt
selbst im vergleichsweise einfachen Fall von Hyperelastizität, da enormer rechnerischer
Aufwand allein schon durch feinkörnige Geometrien bedingt wird.
In der Literatur finden sich vergleichsweise effiziente Rechenschemata für Hyperelastiz-
ität, die auf dem Konzept der Skalenseparation beruhen. Diese beinhalten Yvonnet & He
[2007], welches die Proper Orthogonal Decomposition (POD) auf mikroskopischen Ver-
schiebungsvariablen anwendet, oder Temizer & Wriggers [2007], Yvonnet et al. [2009],
wo homogenisierte Materialeigenschaften auf makroskopischen Dehnungs- oder Verfor-
mungsmaßen interpoliert werden. Die vorliegende Arbeit ist von diesen und anderen
etablierten Verfahren inspiriert und schlägt eine neue, effizientere Methode vor. Dabei
werden grundlegende Konzepte neu definiert, wie zum Beispiel welche Variablen durch
POD-Projektion approximiert werden. Auch werden die völlig verschiedenen Methoden
der Projektion und der Interpolation zu einem synergetischen Ansatz kombiniert, welcher
die Vorteile beider Methoden vereint. Das Produkt ist ein Verfahren, welches auch für
mehr als zwei Skalen hinreichend performant, robust und allgemein ist.
Nach bestem Wissen des Autors ist die vorliegende Arbeit die erste, die vierskalige,
rechnergestützte hyperelastische Homogenisierung durchführt. Dabei werden keine
Einschränkungen an die geometrische Nichtlinearität, die Anzahl der materiellen
Komponenten, deren Form, Verteilung und hyperelastischen Eigenschaften sowie an
das Vorhandensein von Poren getroffen. Die Tatsache, dass keine Höchstleistungs-
Rechenkapazitäten benötigt werden und dass die Anzahl der handhabbaren Skalen be-
liebig ist, verdeutlicht wie in vielen anderen Fällen, dass Effizienz nicht nur der Leis-
tungssteigerung dient, sondern auch neue Möglichkeiten eröffnet.
Ähnlichkeit der Skalen, wie zum Beispiel im Fall von fraktalen Mikrostrukturen, wird
nicht vorausgesetzt, kann jedoch ohne Weiteres mit dieser Methode behandelt werden.
Hochgradig anisotropes Effektivverhalten, geometrisch bedingte Versteifungen sowie
skaleninduzierte Erweichungen sind darstellbar. Phasenkontraste von bis zu 1000 werden
ohne größere Schwierigkeiten behandelt.
Der Vorschlag besteht auf jeder Skala aus zwei Stufen. Zuerst wird ein projek-
tionsbasiertes, ordnungsreduziertes Modell konstruiert, welches kinematische Größen
– jedoch nicht die Verschiebungen – durch eine Reduzierte Basis (RB) approximiert.
Dadurch ist die Berechnung der effektiven Materialantwort deutlich effizienter im Ver-
gleich zum unreduzierten Ausgangsmodell. In der zweiten Stufe werden sorgfältig aus-
gewählte Stichproben der homogenisierten Materialantwort mittels “Concentric Inter-
polation” (CI) konzentrisch interpoliert. Die Stützstellen hierfür werden in der ersten
Stufe erstellt, wohingegen der Aufbau des RB-Modells auf Lösungsdaten beliebiger
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hochgenauer Methoden basiert, wie zum Beispiel auf Finiten Elementen. Eine eigens
entwickelte Art der Stichprobennahme nach konzentrischem Muster, “Concentric Sam-
pling” (CS), mildert den Fluch der Dimensionalität und wird in jeder Stufe und auf jeder
Skala auf den kinematischen Zustandsraum angewendet.
Die Leistungsfähigkeit des Gesamtschemas geht mit einem erhöhten Aufwand für den
Modellaufbau einher. Dennoch sind Standardcomputer ausreichend. Der Aufbau hängt
von je einem Satz Parameter für die RB- und die CI-Methode ab. Diese Parameter werden
in dieser Fallstudie empirisch bestimmt.
Obgleich der fundamentalen Verschiedenheit der RB- und der CI-Methode wird CS in
beiden Fällen für den Modellaufbau empfohlen. Dabei wird der Raum der (infinites-
imalen oder Hencky-) Verzerrungstensoren auf isotrope, konzentrische Weise abge-
tastet: Die Probestellen werden entlang homogen verteilter Richtungen an gewissen
Radien platziert, wobei Letztere für alle Richtungen identisch sind. Hierdurch liegen
die Probestellen auf konzentrischen Sphären um den Ursprung. Die Auswertung der
homogenisierten Materialantwort zu Randbedingungen, die zu diesen kinematischen
Zuständen der nächsthöheren Skala gehören, ermöglicht das Erfassen sowohl der effek-
tiven Anisotropie als auch der Amplitudenabhängigkeit. Die Auflösung dieser Effekte ist
mittels der Anzahl an Proberichtungen bzw. -radien kontrollierbar.
Tatsächlich empfiehlt sich CS für jegliches materielle Ersatzmodell, welches auf einer
Diskretisierung des Raums der Hencky- oder der infinitesimalen Verzerrungstensoren
basiert. Dies gilt solang keine besonderen Anforderungen an die Probestellenverteilung
gestellt werden, die über die allgemein wünschenswerten Eigenschaften der Grobheit
(zwecks Leistungsfähigkeit) und der Dichte (zwecks vollständiger Erfassung) hinausge-
hen. Diese machen das klassische Dilemma der datenbasierten Mechanik aus.
Eine tiefgehende Analyse vorheriger Versuche, den Verzerrungsraum zu diskretisieren,
wie zum Beispiel reguläre Gitter in Yvonnet & He [2007], führt zur Entwicklung
von CS. Die Schlüsselidee für die konzentrische Anordnung der Probestellen ist, dass
der Winkelabstand zwischen Richtungen im Raum der infinitesimalen oder Hencky-
Verzerrungen ein Maß für die Verschiedenartigkeit der Belastungen ist. Deshalb trägt der
Winkelabstand einen höheren Informationsgehalt als der Abstand in regulären Gittern.
CS ist eine natürliche Folge der isotropen Erhaltung der Richtungsdichte.
Die Verknüpfung von CS und CI sollte als Machbarkeitsstudie und ohne Anspruch
auf Optimalität aufgefasst werden. Es wird vorgeführt, dass diese Kombination auch
außerhalb der Mechanik anwendbar ist: Allgemeine Funktionen mit noch nicht näher
bestimmten Glattheitseigenschaften können durch CI wie mit einer Blackbox interpoliert
werden, selbst wenn die Bedeutung des Winkelabstands im Definitionsbereich unklar ist.
CS ist auch in solchen Fällen vorteilhaft, da es dem Fluch der Dimensionalität nicht so
stark unterliegt wie die Abtastung mittels regulärer Gitter.
Um sowohl die Zugänglichkeit zu den Methoden als auch die Reproduzierbarkeit
der Ergebnisse zu erhöhen, ist der Quellcode der RB-Methode Kunc [2019], des
allgemeinen CI-Schemas Fritzen & Kunc [2018a] und der Generierung homogen
verteilter Richtungen in beliebigen Dimensionen Fritzen & Kunc [2018b] veröffentlicht.



Abstract

Realistic simulations of mechanical parts require compromises between resources spent
on achieving the results and the accuracy of these results. Especially when significant
microscopic material heterogeneities are present, classical solution methods either
require excessive computational resources or fail to yield trustworthy results due to
oversimplification. The comparatively simple case of hyperelasticity is no exception to
this, as enormous computational complexity emerges from fine-grained geometries even
in the absence of more sophisticated material models.
Building on the concept of separation of scales, rather efficient computational two-
scale methods for hyperelasticity have been proposed in the literature. These include
Yvonnet & He [2007] applying Proper Orthogonal Decomposition (POD) on the
microscopic displacement variables, or Temizer & Wriggers [2007], Yvonnet et al.
[2009] interpolating homogenized material properties on macroscopic measures of strain
or deformation. The present work is inspired by these and other established techniques
and proposes a novel method of significantly increased efficiency. Basic concepts of
existing methods are redefined, e.g. which variables to approximate via POD-based
projection. The unrelated methods of projection and of interpolation are combined into a
synergetic approach inheriting the advantages of both paradigms. The resulting method
is sufficiently performant, robust, and general in order to treat more than two spatial
scales.
To the best of the author’s knowledge, the present work is the first to conduct
computational four-scale hyperelastic homogenization. The established method is
general with respect to geometric nonlinearity, the number of material constituents, their
shapes and distribution, their hyperelastic properties and the presence of pores. The facts
that no high-performance computing environment is necessary and that the number of
treatable scales is arbitrary highlight that – as in many cases – efficiency is not just an
improvement but even an enablement.
Similarity among the scales, in which case one speaks of fractal micro-structures, is not
required but can be treated without any modifications of the method. Highly anisotropic
effective behaviour, geometric stiffening and scale softening is well reproducible. Solid
phase contrasts of up to 1000 are applied without major hurdles.
The proposed method consists of two stages on each scale. First, a projection-
based reduced order model is constructed via a Reduced Basis (RB) approximation
of kinematic non-displacement quantities. The computation of the effective material
behavior is conducted significantly more efficiently than with the unreduced, original
model. Second, carefully selected samples of the homogenized material response are
interpolated by means of Concentric Interpolation (CI). The support data for the CI is
created at the first stage whereas the RB setup is based on solution data of any high-
fidelity method, such as Finite Elements. An original Concentric Sampling strategy (CS)
alleviates the curse of dimensionality and is applied to the kinematic state space at both
stages and on every scale.
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The performance comes at the cost of a notable setup time before the largest scale can
be treated. Still, standard workstation computers suffice. The setup is dependent on a
distinct set of parameters for each of the RB and the CI method. These parameters are
found empirically in this case study.
Despite the fundamental dissimilarities between the RB and the CI method, CS is
recommended for the setup of both. In this, the space of (infinitesimal or Hencky)
strains is sampled in an isotropic and concentric manner: the samples are placed
along homogeneously distributed directions at certain radii that are the same for all
directions. Therefore, the samples lie on concentric spheres centered at the origin. When
the homogenized material response is evaluated with respect to boundary conditions
corresponding to these next-scale kinematic states, an efficient capture of both effective
anisotropy and magnitude dependence is possible. The resolution of these effects is
controllable via the number of sampling directions and radii, respectively.
In fact, CS is suggestive for use with any method for material model surrogation relying
on discretizations of the space of Hencky strains or of infinitesimal strains. This holds
at least as long as no special requirements are posed on the sample placement besides
the generally desirable features of sparsity (for the purpose of performance) and density
(for the purpose of representativeness), constituting the classical dilemma of data-based
computational mechanics.
A thorough analysis of previous strain space discretization attempts, such as regular
grids as employed in, e.g., Yvonnet et al. [2009], leads to the development of CS. The
key idea for the concentric layout of the samples is that the angular distance between
directions in the space of infinitesimal or Hencky strains is a measure of how much these
kinematic loads differ in kind. Therefore, this angular distance is more meaningful than
the spacing of regular grid discretizations. Conserving the directional sampling density
in an isotropic way naturally leads to Concentric Sampling.
The combination of CS and CI should be seen as a proof of concept, optimality is not
claimed. It is demonstrated that this combination is applicable beyond computational
mechanics. General functions, with certain smoothness characteristics that are yet to be
determined rigorously, may be interpolated in a black-box manner via CI even when the
meaning of directional distance in the input space is unclear. CS is still beneficial in such
cases as it significantly alleviates the curse of dimensionality when compared to regular
grid discretization.
In order to increase the accessibility of the methods and of the reproducibility of the
claims, source code is published for the RB method [Kunc, 2019], the general CI scheme
[Fritzen & Kunc, 2018a] and for the generation of homogeneously distributed directions
in arbitrary dimensions [Fritzen & Kunc, 2018b].
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Chapter 1:
Introduction

1.1 Motivation

The domain of simulation is indispensable to modern engineering. Simulations of
mechanical behavior are fundamental to the design process of parts, components, and
systems throughout many industries. Such computations can be regarded as virtual
experiments with distinct advantages and disadvantages compared to the real-world
equivalents.

A subset of the broad field of mechanical simulation is concerned with multiple spatial
scales. Flow of information, both from smaller scales to larger scales and vice versa
are possibly of interest, depending on the application. Examples include the design
of composite materials for a specific purpose and the prediction of microscopic failure
initialization, respectively. The former case is of primary interest in the context of the
present work.

More specifically, it is assumed that all information about the complex microscopic
structure of a mechanical part is given. In non-trivial applications however, this leads
to an extremely fine-grained classical discretization as geometric features have to be
resolved which are orders of magnitudes smaller than the macroscopic engineering part.
In addition to the overly large size of the resulting model, material and geometric
nonlinearities on all scales hinder a solution of the governing equations within a
reasonable run time.

By consideration of Representative Volume Elements (RVE’s), a concept that is known
at least since Hill [1963], it is possible to treat different scales individually and thus
more efficiently. The RVE contains a representative part of the microscopic structure and
allows for homogenization of the mechanical properties. On the macroscopic scale, the
micro-structure is then not resolved but incorporated only by the pre-computed effective
material law. The complexity of the overall problem is greatly reduced as repetitive
occurrences of sub-scale structures are avoided. In this way, flow of information from
the smaller to the larger scale is made possible.

Iterative procedures take this a step further and switch back and forth among discretiza-
tions of the RVE and of the macroscopic problem. For instance, in Feyel [1999], Miehe
et al. [1999b] this concept of separation and coupling of spatial scales is rigorously ap-
plied to complex problems. Millions of solutions of high-fidelity microscopic problems
are necessary for just the closure of the equations on the macroscopic scale. Even with
such methods that are fairly advanced in comparison to the naive approach (without sepa-
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ration of scales) and that can be easily accelerated by means of parallel computing, the
compute times for real-world problems are still unacceptable.

Certain order reduction methods provide a means to accelerate the solution of mathe-
matical models of mechanics. Among these, projection via Proper Orthogonal Decom-
position (POD), cf. e.g. Sirovich [1987], and Hyperreduction, cf. Ryckelynck [2005],
are notable examples. The application of such methods to homogenization problems has
proven especially fruitful, cf. Saeb et al. [2016], Geers & Yvonnet [2016]. It is this path
of order reduction techniques that the present work intends to take, and to extend to even
greater efficiency.

Such classical order reduction schemes have the feature of carrying micro-structural
information with them, i.e. it is possible to recover the detailed microscopic state
associated with a macroscopic state. This property may be important, especially if one
is interested in the flow of information from the larger to the smaller scale. If one
is interested in opposite direction only, as is the case in the current work, the burden
of detailed information about micro-structural complexity is essentially unnecessary as
only the effective material response is required. In this case, certain data-based methods
promise to be game-changing in the way that seek to dispose of this ballast, taking
computational economy to a different level while still providing satisfactory accuracy:
if sufficient suitable data is available, this data may possibly replace the equations on
which the homogenization is based. The quest for suitable data-based schemes and
compatible data is highly non-trivial and depends on the particular context. Examples
include interpolation methods, cf. e.g. Temizer & Wriggers [2007], and the very general
set of Artificial Neural Networks (ANN’s), cf. e.g. Le et al. [2015].

Synergies of model order reduction techniques and data-based methods do not seem
to have been extensively investigated in the literature of homogenization prior to
the beginning of this work. More specifically, it appears worthwhile to investigate
whether advanced order reduction schemes may assist the setup of specialized data-based
methods, combining the advantages of both.

Applications involving certain materials, such as polymers, foams, or soft biological
tissues require a geometric description without the assumption of small strains or small
rotations. In the context of efficient homogenization, this causes both modeling and
numerical difficulties, ranging from a multitude of possible formulations to limited
numerical stability. Even when assuming purely hyperelastic material models, the
aforementioned difficulties remain obstructive for classical order reduction and data-
based methods.

Although hyperelasticity is generally considered a relatively simple class of material
models, sufficiently efficient homogenization methods allowing for finite strains on two
or more spatial scales in three dimensions have not yet been established. A solution to
this arguably elementary problem seems overdue.
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1.2 Goal
The goal of the present work is to enable efficient realistic structural solid mechanical
simulations under the following conditions.

• Arbitrary number of spatial scales: if desired, more than two scales may be
considered in a simulation.

• Finite strains: a linearized geometrical description is optional but not necessary.
• Hyperelasticity: all constituents on the microscopic scale are assumed to be known

and of general hyperelastic kind.
• Limited computational resources: all computations should be able to be carried

out on current standard workstations. For instance, a typical hardware setup could
consist of 12 modern CPU cores and 256 GB of RAM. Strongly depending on the
actual complexity of the setting, rough estimations of the anticipated runtimes for
realistic three-dimensional scenarios on two scales are

• less than 24 hours for the setup of the macroscopic simulation.
• few hours for the execution of the macroscopic simulation for a couple of

interesting loading scenarios.

Applications which are covered by the just mentioned modeling conditions include,
for instance, rubber foams with pores of different orders of magnitude. Furthermore,
composites with possibly extreme phase contrast are within the scope of this work, such
as metal fiber inclusions within a polymer matrix. Even some dissipative materials may
possibly be covered by these conditions for proportional loadings, e.g. when speaking of
pseudo-plasticity.

It is important to highlight the lack of certain additional conditions that are commonly
imposed on micro-structured solids. Most notably, the effect of macroscopic anisotropy
induced by microscopic (mis-)alignments is not assumed to be absent or restricted to a
certain degree. This effect is especially significant when long fibers are involved.

Non-convex effective behavior is not specifically addressed by this work. A standard
example of such a phenomenon is buckling which may occur within fibrous structures
under loads that are compressive with respect to the fiber direction. Here, buckling
scenarios are not excluded but uniqueness is assumed and stability is not investigated.
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1.3 Structure of this document
The present dissertation is of cumulative nature. The essence of the work consists of four
scientific publications that are wholly contained in Chapters 5–8. This document serves
the purpose of providing additional context to the four articles, highlighting relationships
among them, and summarizing the overall achievements and the resulting perspective.

In Chapter 2, the main notation and general modeling assumptions are stated. A broader
view on the matter is established while select details are only covered in the respective
publication chapters.

Chapter 3 introduces to the concept of many-scale homogenization. Theoretical foun-
dations are addressed and the resulting models are stated. Classical and contemporary
homogenization methods are summarized and discussed.

Chapter 4 aligns the four core works and states the overall line of thought. Conceptual
connections among the individual parts and overarching decisions are explained.

Chapters 5–8 contain the published articles in their entirety and in chronological order.
Owing to the format of a cumulative work, each of these chapters is self-contained with
individual motivation, notation, summary etc.

In the closing Chapter 9, prospects on possible future developments are provided.

Readers of the digital version of this work are advised of the fact that both internal and
external references are hyperlinked and should be clickable from standard document
viewers, although no visual indication of this feature is given due to formal reasons.



Chapter 2:
Preliminaries

The foundation of solid mechanics, to which elasticity theory is a sub-domain, is the
assumption of a material continuum: it is assumed that any physical body is composed
of a continuum of material points, cf. [Wriggers, 2008, Chapter 3]. The continuity of the
distribution of these points stands in contrast to what is assumed in particle mechanics
and also to what is observed on sufficiently small scales of reality. All scales considered
in this work are assumed to be large enough such that the continuum hypothesis holds
and, therefore, the particulate or quantum nature of physical bodies does not need to be
addressed.

Based on this, a physical body is mathematically modeled as a bounded, simply
connected subset of the three-dimensional Euclidean space R3. This subset describes the
spatial extension of the body, by which it is said to be occupied. As the body is movable
and deformable, i.e. not rigid, different sets may be occupied depending on the physical
circumstances, i.e. for instance acting forces and mechanical properties of the material.
This chapter is concerned with a brief introduction of a standard continuum mechanical
formalism by means of which these physical circumstances and their influence on the
state of the body may be described. For a more detailed view, the reader is referred to
standard text books, e.g. Ogden [1984].

2.1 Basic kinematics
The basic kinematic quantities are sketched in Figure 2.1. Initially, the body occupies
the set Ω0 ⊂ R3. In this state, each material point is described by its coordinate vector
X ∈ R3. The current configuration of the body, e.g. in a possibly deformed state,
is denoted by Ω ⊂ R3. Coordinate vectors of points in this set are denoted by x ∈ R3

which relate to the initial coordinates by means of the displacementu ∈ R3: x = X+u.
It is important to note that both the displacement and the current position are actually
fields, i.e. u : Ω0 → R3 : X 7→ u(X) and x : Ω0 → Ω: X 7→ x(X), although these
functional relationships are not always explicitly stated.

In order to keep the necessary notation of this introductory chapter to a minimum, and
by slight abuse of notation, the vectorial quantitiesX , x, and u are also regarded as first
order tensorial quantities, which does not lead to any ambiguity in this work.

The Lagrangian description is mostly used for fields, i.e. they are formulated as a
function of the material coordinates, X , if not stated otherwise. This is in contrast
to the Eulerian description, which is with respect to spatial coordinates, x. An
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Figure 2.1: Configurations and basic kinematic quantities.

orthonormal, Euclidean basis EI,EII,EIII ∈ R3 is assumed for Lagrangian quantities.
The introduction of a spatial counterpart for Eulerian quantities is unnecessary for the
present work and is therefore spared.

Correspondingly, the displacement gradient H = ∂u/∂X = u⊗∇X and the defor-
mation gradient F = ∂x/∂X = x⊗∇X are second order tensorial quantities. These
are related via F = H + I , where I is the corresponding second order identity tensor.
The partial derivative notation of the deformation gradient follows from the relationship
dx = F dX for infinitesimal line elements.

For physical reasons, the determinant of the deformation gradient, J = det(F ), is
strictly positive, J > 0. As it denotes the local change in volume corresponding to
the deformation, a vanishing determinant would indicate a singular contraction of the
body, while a negative determinant could be interpreted as self-penetration of the matter.

Hence, as the deformation gradient is invertible under any circumstance, its polar
decomposition F = RU = V R is unique. It yields the rotational part R, with the
property RTR = RRT = I and the symmetric positive definite right and left stretch
tensors U and V , respectively.

2.2 Measures of strain
2.2.1 Geometric nonlinearity
This subsection serves as a brief and standard introduction into the concept of strain
tensors. Serving primarily the purpose of nomenclature definition, extended theoretical
arguments are spared for the sake of brevity. The reader is referred to standard text books
for more details, e.g. [Ogden, 1984, Chapter 3] or [Altenbach, 2018, Chapter 3.5]. All
quantities introduced in this subsection are commonly referred to as finite strains or large
strains for reasons that will be clear in the sequel.

A natural way of introducing the concept of strains in nonlinear mechanics is to start
with infinitesimal line elements in the reference configuration Ω0 and in the current
configuration Ω, dX and dx respectively. Observing their coupled changes in length
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due to deformation of the body, geometric considerations lead to the relationship
dx · dx = dX · C dX , with the right Cauchy-Green tensor C = F TF . This
tensor hence acts as a metric tensor relating the square of the length of the line elements
of the two configurations Ω0 and Ω. Similar considerations lead to the left Cauchy-
Green tensor B = FF T, the inverse of which has an analog geometric meaning. Just
as the stretch tensors U and V , the right and left Cauchy-Green tensors C and B
are rotationally invariant. This is important, as the subsequent definition of strains are
required to show this invariance, too. One of the major reasons why the following line of
thoughts is based on the Cauchy-Green tensors instead of the stretch tensors is that the
computation of the former only requires simple arithmetics whereas that of the latter is
more involved.

Measures of strain are required to yield zero not just for rotations but for rigid body
motions in general. Therefore, one possibility to construct a strain tensor is by
considering the difference of the squares of line elements, e.g. dx · dx − dX · dX .
Substitutions and elementary modifications lead to Green’s strain tensor,

EG =
1

2
(C − I) =

1

2
(H +HT +HTH), (2.1)

as well as Almansi’s strain tensor,

Ea =
1

2
(I −B−1). (2.2)

The key characteristic by which these two quantities differ is the fact that Green’s strain
measures strains in the reference configuration, while Almansi’s strain measures strains
in the current configuration.

These two measures of strain are special cases of the more general one-parameter families
{

1
2r

(U2r − I) if r ∈ R\{0}
log(U) if r = 0

, (2.3)

{
1
2r

(I − V −2r) if r ∈ R\{0}
log(V ) if r = 0

, (2.4)

parametrized by the real number r. The measures in (2.3) go back to the seminal works of
Seth [1961] and Hill [1968] and are Lagrangian, while the measures in (2.4) are Eulerian
quantities. The logarithmic quantities are continuous extensions to the case r = 0. For
(2.3), this measure is called the Hencky strain,

EH = log(U), (2.5)

which is crucial to the present work and which will be discussed after the next subsection.
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2.2.2 Geometric linearity
The nonlinear nature of finite strain measures, e.g. the last term in (2.1), causes
significant complexity in the formulation of the Finite Element Method (FEM). First
and foremost, in case of the popular Green strain, the assembly of the element stiffness
matrix is influenced by a second term, cf. [Wriggers, 2008, (4.67)]. This term does not
depend on the material stiffness tensor but is a pure artifact of the nonlinear dependence
of the kinematic quantity EG on the gradientH of the displacement u.

Furthermore, the FEM may be implemented with respect to either the Lagrangian or the
Eulerian description, cf. [Wriggers, 2008, Chapter 4.2]. In combination with infinitely
many possible strain measures, e.g. (2.3), (2.4), numerous considerations regarding
physical modeling are to be made.

A standard simplification, cf. e.g. [Oliver & Agelet de Saracibar, 2017, Definition 2.5],
[Altenbach, 2018, Chapter 10], is to assume small displacement gradients,

‖H‖Fro =

∥∥∥∥
∂u

∂X

∥∥∥∥
Fro

� 1. (2.6)

Here, the Frobenius norm of the matrix representations of the respective tensors is used,

‖•‖Fro =
√∑3

i,j=1 •ij . In practice, this assumption is used to justify neglection of
higher-order terms of the displacement gradient in strain measures.

For a displacement gradient with decreasing Frobenius norm the strain measuresEG and
Ea asymptotically coincide. The resulting quantity emerging from either (2.1) or (2.2)
is the popular small or infinitesimal strain measure,

ε =
1

2
(H +HT). (2.7)

Depending on the level of scrutiny, one may also argue that the configurations Ω0 and Ω
become indistinguishable. This is formally implied by (2.6) only for quantities depending
on gradients of the displacement. An extension of this assertion to the position vectors
themselves is possible, X ≈ x, if rigid body movements are carefully excluded from
the discussion. Here, the spatial coordinate of the infinitesimal strain field is taken to be
identical to that of the displacement gradientH = H(X), i.e. ε = ε(X).

Thus, the just mentioned drawbacks induced by nonlinearities of strain measures are
circumvented. However, the assumption of small strains poses a severe limitation to
the range of validity of the employed mathematical model. Most significant is the fact
that rigid body rotations R are no longer admissible as they would induce a non-zero
infinitesimal strain ε.

2.2.3 The special role of the Hencky strain
There is an intimate relationship between the infinitesimal strain ε and the Hencky strain
EH. This has been comprehensively summarized in Neff et al. [2016] where geometric
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motivations and thorough discussions regarding possible interpretations ofEH are stated.
For many reasons given therein, the Hencky strain should be regarded as the “natural”
extension of the small strain tensor to the geometrically nonlinear description. Among
the most intriguing arguments for this standpoint is the fact that the geodesic distance
of the deformation gradient F from the rotation group SO(3) (which contains R) can
be expressed by the dilatational part of the Hencky strain, trace(EH) = log(J), the
deviatoric part, EH − trace(EH)/3 I and two material dependent scalar parameters.
This physically meaningful decomposition of the Hencky strain will be exploited multiple
times in the present work.

Moreover, most of the benign properties possessed by the small strain tensor carry
directly over to the Hencky strain. Among these is linearity: linear combinations of
Hencky strains always result in Hencky strains. The analog is not true for the quantities
F , C, EG, etc. This is due to multiple constraints that are violated by arbitrary linear
combinations, the most obvious of which is the positivity of the determinant, J > 0.
The fact that the space of Hencky strains is closed under linear combinations will prove
essential in the sequel.

2.3 Compatibility conditions
The definitions of the deformation gradient, F , and the small strain tensor, ε, are
essentially based upon the displacement, u. Hence, there exists a unique field
of deformation gradients and small strain tensors, respectively, for each field of
displacements. Later in this work, it will be of importance to answer the inverse question:
given a field of second order tensors, A, does there exist a field of displacements such
that A is the corresponding field of deformation gradients or small strain tensors? The
circumstances under which this question has an affirmative answer are known as the
compatibility conditions and read

∇X × F = 0, (2.8)

∇X × (∇X × ε) = 0 (2.9)

for the deformation gradient, Acharya [1999], and the small strain tensor, [Lubliner,
2008, (1.2.4)], respectively. The employed notation is defined in Appendix A.

One may note that the assumption of small strains, while advantageous for the formula-
tion of the mathematical model and the implementation of the FEM, comes along with
increased complexity when considering the compatibility conditions. However, the left-
hand sides of both (2.8) and (2.9) are linear, which is a key fact to the present theory.

These conditions rely on the non-trivial assumption made in Chapter 2 that the physical
body be simply connected. For instance, RVE’s with continuous periodic voids are
excluded by this assumption. This is not to say that such non-simply connected bodies
could not be treated in general: compatibility conditions of the deformation gradient for
such cases were found in Yavari [2013].
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2.4 Balance equations
2.4.1 Stresses
Physical bodies exhibit reactions to changes of their kinematic state as well as to
applications of forces. These reactions are forces exerted both on the spatial surrounding
as well as internally among material points. Let the resulting force vector be t(x) ∈ R3

at each point of the current configuration.

Due to Cauchy’s stress theorem, see e.g. [Wriggers, 2008, (3.64)], there exists a
corresponding unique second-order tensorσ(x) that linearly relates the force vector t(x)
to the normalized normal n(x) ∈ R3 of a (presumed) surface passing through the point
x ∈ Ω,

t(x) = σ(x)n(x). (2.10)

The tensor σ is accordingly denoted Cauchy stress and entirely belongs to the Eulerian
framework. The latter is to be understood in the sense that both the force vector and the
surface normal are Eulerian quantities, i.e. they are defined with respect to the current
configuration Ω.

Alternative stress tensors may be formulated with respect to other configurations. Most
notably and most important to the present work are the following two examples. The
first Piola-Kirchhoff stress P (X) relates surfaces normals n0(X) of the reference
configuration Ω0 to forces t(x) in the current configuration Ω,

t(x) = P (X)n0(X). (2.11)

For the second Piola-Kirchhoff stress S(X), all quantities are assumed to be defined in
the reference configuration Ω0,

t0(X) = S(X)n0(X). (2.12)

The stress S is, therefore, a Lagrangian quantity. A useful relation among the
aforementioned two Piola-Kirchhoff stresses is the equation P = FS.

2.4.2 Balance of momentum and conservation of mass
With these modeling capabilities at hand, the differential equations necessary for a
complete description of the mechanical behavior of the considered physical body can
be stated. Again, multiple different formulations are equally valid and may be chosen
depending on the preferred framework. Here, the Lagrangian description with respect to
the first Piola-Kirchhoff stress is sufficient:

DivX(P ) + b0(X) = 0 + (BC) (2.13)

The divergence operator is accordingly formulated with respect to the reference coordi-
nates. The vector b(X) ∈ R3 denotes the volumetric force load. No inertia terms are
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considered in this work. These equations, essentially based upon Newton’s third law of
motion, thus define the quasi-static balance of linear momentum. Alternative formula-
tions as well as additional details regarding their derivations may be found in standard
text books, e.g. [Wriggers, 2008, Chapter 3.2], [Altenbach, 2018, Chapter 5.2.2].

Sufficient boundary conditions (BC) have to be provided in order to render the problem
(2.13) well-posed. Kinematic, static and mixed boundary conditions are suitable to this
end, with some kinematic constraints eliminating at least the rigid body motion being
necessary.

Considerations on the balance of angular momentum lead to the following condition on
the stress tensors:

F−1P = P TF−T. (2.14)

Although this system of equations does not require attention in the formulation of
standard solution schemes to (2.13), e.g. the FEM, attention must be payed with certain
numerical methods that approximate the stress on a component-by-component basis.

Furthermore, conservation of mass is stated as

ρ0 = Jρ, (2.15)

where ρ0 and ρ are the mass densities in the reference and in the current configuration,
respectively. The physical interpretation of this equation is that related infinitesimal
volume elements in the initial and the current configuration must contain the same
mass. This highlights the meaning to the determinant J and its strict positivity
requirement. Algorithmically, the condition (2.15) does not require dedicated attention in
the numerical methods considered in the present work. However, the determinant J may
become negative during intermediate iterations in which case the failure of the scheme
is physically necessary. The circumstances under which this might occur are discussed
later in this work.

In the case of geometric linearity the balance equations of linear momentum,

DivX(σ) + b0(X) = 0 + (BC), (2.16)

are formulated with respect to the unique measure of stress, σ, and unique spatial
coordinates, X , as discussed in Chapter 2.2.2. Again, necessary kinematic boundary
conditions must be prescribed. Angular momentum is balanced via

σ = σT. (2.17)

2.5 Hyperelasticity
The partial differential equations (2.13) require closure, i.e. the relationship between
the stress field P and displacement field u are yet to be defined. By the principle of
translational invariance, the relationship is formulated in terms of gradient quantities
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such asH or F . The most essential facts relevant to the present work are now stated and
the reader is referred to standard literature for more details, e.g. [Ogden, 1984, Chapter
4], [Hackett, 2016, Chapters 1, 4].

In this work, all bodies are assumed to consist of hyperelastic materials. Hyperelasticity
is characterized by the existence of a single scalar quantity depending only on the
deformation gradient and completely describing the material response. This quantity
is denoted the stored-energy density function WF(F ). The principle of local action
is assumed, i.e. WF(F ) = WF(F (X)). Oftentimes, the stored-energy density is
equivalently formulated with respect to other measures of deformation, e.g. WC(C),
or strain, e.g. WEG(EG). The physical dimension is energy

volume and it carries the derived SI
unit N·m

m3 .

The stored-energy density function gives rise to the stress and the stiffness by means of
the first and the second derivative, respectively, e.g.

P =
∂WF

∂F
CF =

∂2WF

∂F 2 (2.18)

S =
∂WEG

∂EG
CEG =

∂2WEG

∂EG
2 . (2.19)

As the gradient kinematic quantities are dimensionless, the physical dimension asso-
ciated with both the stress and the stiffness is force

area , employing the derived SI unit for
pressure, Pa.

By the term material response, in this work, the stress and the stiffness are jointly
addressed.

The determination of a stress which is energy-conjugate to a strain in the sense of
(2.18) and (2.19) is highly non-trivial for some members of the strain families (2.3)
and (2.4). Most notably, the stress conjugate to the important Hencky strain EH has
widely only been utilized under additional simplifying assumptions, cf. [Ogden, 1984,
Equation (3.5.23)]. The generalEH-conjugate stress has been determined no earlier than
in [Hoger, 1987, Equation (49)]. There, it was also proven that the Eulerian logarithmic
strain log(V ) – in general – does not have a conjugate stress.

In the context of small strains, i.e. for (2.16), uniqueness prevails and it is straight-
forward to define

σ =
∂Wε

∂ε
Cε =

∂2Wε

∂ε2 . (2.20)

More general kinds of elasticity theories exist, such as Cauchy elasticity, cf. [Ogden,
1984, Chapter 4.2], or Gradient elasticity, Mindlin & Eshel [1968]. While the latter
enlarges the class of stored-energy density functions to also possibly depend on second
gradients of the displacements, the former does not require a stored-energy density
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function to exist at all but only assumes a functional relationship between the stresses
and the strains. These theories are beyond the scope of the current work.

Unique solubility of the partial differential equations (2.13) respectively (2.16) is
assumed throughout this work. That is, the topic of different kinds of convexity of the
hyperelastic energy density function and related stability issues are not addressed here.
The interested reader may find an introduction to this topic in [Ball, 1976].





Chapter 3:
Introduction to homogenization

Nevertheless, our result proves rigorously that even a perfect, complete description of
the microscopic interactions between a material’s particles is not always enough to

deduce its macroscopic properties.

[Cubitt et al., 2018, p. 37]

3.1 Many-scale modeling
It is assumed that the physical body under consideration exhibits geometrical properties
that are of M + 1 characteristic sizes on the order of

0 m <
(0)

L �
(1)

L � · · · �
(N)

L � · · · �
(M)

L (unit m,M ∈ N). (3.1)

The range of each of the sizes
(N)

L (0 ≤ N ≤ M ) defines its corresponding length scale.

The scale with the smallest characteristic size
(0)

L is bounded from below only by the
general assumptions of continuum mechanics. The number M is assumed small enough
such that the theory of hyperelasticity can be considered reasonable.

Periodicity of the geometric features on scales N < M is assumed throughout the whole
domain. Details on local periodicity are postponed until later in this chapter. For theories
avoiding the assumption of periodicity, the reader is referred to standard literature such
as [Suquet, 1987, Chapter 2.1] and the references therein.

The many-scale model is now deduced successively in a scale-by-scale manner. Adapting
the notation from Chapter 2 to the current setting, the original domain on the structural

engineering scale M is denoted
(M)

Ω 0 3
(M)

X . At this scale, all geometrical features on

the order of
(M−1)

L and below are neglected for the moment:
(M)

Ω 0 may be treated by
the engineer as if no complicated micro-structure was present. In terms of classical FE

analysis, this is to speak that the mesh of the domain
(M)

Ω 0 may be comparatively coarse
and need not to resolve geometric sub-scale objects, topologies etc. At each material

point
(M)

X , a homogeneous material is assumed to exist regardless of a possibly neglected
sub-scale heterogeneity. Under this assumption, the balance of linear momentum (2.13)
becomes

Div(M)

X

((M)

P
)

+
(M)

b 0(
(M)

X ) = 0 + (BC). (3.2)

15
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Closure of these equations requires a constitutive law relating the stress
(M)

P to the

deformation gradient
(M)

F
((M)

X
)
. As in general no explicit form of this relationship is

given, the sub-scale information that is neglected in (3.2) must be taken into account.

To this end, the concept of a Representative Volume Element (RVE) is utilized: let
(M−1)

Ω0 3
(M−1)

X be a cuboid region within the original domain containing one period of the

geometrical features of size
(M−1)

L . This implies that no voids are present within the RVE.
Porous domains will be treated later in this chapter. For efficiency reasons, RVE’s are
usually chosen to contain only a single period. There, the next smaller scale properties of

sizes
(N)

L , 0 ≤ N < M − 1, are neglected for the moment and only those on the order of
(M−1)

L are considered. The RVE
(M−1)

Ω0 is representative of the scale M − 1 and thought to

be attached to each material point
(M)

X of the macroscopic scale. More details on RVE’s
will be discussed in the next section.

It is a key result of homogenization theory, cf. e.g. [Bensoussan et al., 1978, Chapter 1,
Remark 8.5 and Section 16], Pruchnicki [1998], that the closure of (3.2) can be implicitly
achieved via the following boundary value problem on the scale M − 1:

Div(M−1)

X

((M−1)

P
)

= 0 +
(
PFBC;

(M)

F
((M)

X
))
. (3.3)

These balance equations are coupled to (3.2) via kinematic periodic fluctuation boundary
conditions (PFBC). These emanate from the kinematic state of the macro-structure

at a material point,
(M)

F
((M)

X
)
, and are characterized by periodic fluctuations of the

displacement
(M−1)

u and anti-periodic fluctuations of the traction
(M−1)

t0 on the boundary

∂
(M−1)

Ω0 of the RVE. From here, elementary considerations lead to the scale coupling
relationship

〈(M−1)

F
〉
(M−1)
Ω 0

=
(M)

F
((M)

X
)

(3.4)

where the general volume averaging operator

〈
•
〉
(N)
Ω0

=
1

vol
((N)

Ω0

)
∫

(N)
Ω0

(N)• d
(N)

V (0 ≤ N ≤M − 1) (3.5)

is employed with N = M − 1.
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In the two-scale setting, i.e. when M = 1, the equations (3.3) are closed as the material
laws on the smallest scale,N = 0, are assumed to be known explicitly. In the many-scale
case, i.e. when M > 1, the same procedure is “reiteratively” (coined in [Bensoussan
et al., 1978, Chapter 1, Remark 8.5]) performed on scales of decreasing sizes: for each
scale N = M − 1, . . . , N = 0, the boundary value problem

Div(N)

X

((N)

P
)

= 0 +
(
PFBC;

(N+1)

F
((N+1)

X
))

(3.6)

is stated with the boundary condition represented by the deformation gradient on the next

larger scale,
(N+1)

F
((N+1)

X
)
. Notably, there exists a cascade of domains

(N)

Ω0 transitioning
from the engineering domain on scale N = M down to the RVE of the smallest
considered scale N = 0. Accordingly, equation (3.4) becomes

〈(N)

F
〉
(N)
Ω0

=
(N+1)

F
((N+1)

X
)

(3.7)

The closure of the balance equations (3.6) is standard for N = 0 due to the assumption
of explicitly known hyperelastic material laws. For N > 0, the closure is performed in
ascending order, N = 1, . . . ,M . To this end the fundamental Hill-Mandel condition is
employed,

〈(N)

P · d
(N)

F

dt

〉
(N)
Ω0

=
(N+1)

P · d
(N+1)

F

dt
, (3.8)

cf. Hill [1965], Mandel [1972]. Here t ∈ R represents the temporal variable in non-static
problems. This condition represents conservation of power across scales and allows for
the formulation of the upscaling relations

〈(N)

P
〉
(N)
Ω0

=
(N+1)

P
((N+1)

X
)
, (3.9)

which are applicable to the present quasi-static case. The systems of equations (3.6)
together with the characterizations (3.7) of the boundary conditions are posed in a
top-down manner, N = M − 1, . . . , 0 and closed via (3.9) in reverse order, N =
0, . . . ,M − 1.

These systems of equations translate directly to the case of geometric linearity,

Div(M)

X

((M)

σ
)

+
(M)

b 0(
(M)

X ) = 0 + (BC), (3.10)

Div(N)

X

((N)

σ
)

= 0 +
(
PFBC;

(N+1)

ε
((N+1)

X
))

(3.11)

with 0 ≤ N < M , in correspondence to (2.16).
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Lastly, as with the hyperelastic laws on the smallest scale N = 0 in Chapter 2.5, it shall
be noted that stability issues are not subject to the current study. The interested reader is
referred to [Braides, 1994] for classical and to [Schneider, 2016] for more recent results
on this topic in the context of homogenization theory.

3.2 Representative Volume Elements and pores

The concept of a Representative Volume Element was introduced in the context of
homogenization theory at least since Hill [1963], albeit rather informally. A modern and
comprehensive disquisition on this topic can be found, e.g., in Ostoja-Starzewski [2006].
Multiple qualitative definitions are put into context in [Schröder, 2014, Section 2.4]. In
essence, the idea behind the RVE is to choose a subdomain of a sub-scale structure, small
enough to purge it of redundancy but large enough to maintain representativeness.

The definition of an RVE is straight-forward for the case of periodicity of microscopical
features, as described in Chapter 3.1. However, non-periodicity is oftentimes present both
in natural and in industrial composite materials. In such cases, more general concepts
such as ergodicity or statistical homogeneity can be taken into account, cf. [Torquato,
2006, Section 2.2.2].

The many-scale case M > 1 is most meaningful when periodicity occurs only locally.
Examples for this scenario are small inclusion particles surrounded by a heterogeneous
matrix material or foams containing pressure-free voids with sizes of different orders of

magnitudes. In such cases, one would choose a distinct RVE
(N−1)

Ω0(
(N)

X ) for a material

point
(N)

X ∈
(N)

Ω0 (N > 0), depending on the micro-structure in the vicinity of
(N)

X . This
includes the trivial cases of either an analytical material model if there is no heterogeneity

near
(N)

X , or no material at all if
(N)

X lies within a void. In the latter case, one must take

the domain
(N)

Ω0 to also contain the voids when evaluating the volume averaging operator.

More precisely, for the operator defined by the right-hand side of (3.5) the RVE
(N)

Ω0 is

actually replaced by the smallest cuboid containing
(N)

Ω0, and the integrated quantity is
assumed to be zero-continued inside the voids.

The determination of an appropriate size for an RVE is a delicate topic. Even the term
“size” may depend on the context since it may refer to either an absolute measure in the
dimension of length or to a relative measure counting the number of features that are
included in the RVE, cf. Fritzen et al. [2012]. Among others, Kanit et al. [2003] is a
standard reference in this regard. Gitman et al. [2007] additionally addresses the issue of
non-existence of RVE’s under certain conditions. In the present thesis, the existence of
an RVE and the availability of its definition is assumed for 0 ≤ N < M .
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3.3 The effective tangent modulus

For the widely used Finite Element Method, it is necessary to provide the tangent
modulus to the stress. More precisely, for the formulation with respect to the initial

configuration (3.6), it is usually required to have access to the stiffness tensor
(N)

CEG =

∂
(N)

S /(2∂
(N)

C ). The fully stated dependency
(N)

CEG =
(N)

CEG(
(N)

X ;
(N)

S (
(N)

X )) is abbreviated
for the sake of readability. For N > 0, there is no simple expression for the stiffness and
multiple methods for evaluation or approximation were proposed in the past.

In [Miehe, 1996, Box 1], a finite difference approach was proposed for the approxi-
mation of general fourth-order stiffness tensors, i.e. not necessarily in the context of
homogenization. Seven stress evaluations are required and the accuracy depends on the
perturbation parameter which is not a straight-forward choice.

It was briefly mentioned in [Smit et al., 1998, Section 5.2] that the effective tangent
modulus may be computed explicitly from microscopical knowledge. This was much
more comprehensively described in later works, e.g. [Miehe, 2003, Box 4]. There, one
large system of equations for all boundary nodes of the RVE is assembled and intricately
modified into the effective tangent modulus. This method utilizes the Schur complement
of the global stiffness matrix of the RVE with respect to the boundary nodes.

Earlier, a closed form of the effective stiffness tensor
(N)

CF was given in [Miehe et al.,
1999a, Equation (31)]. It was based on sensitivity analysis, cf. also [Saeb et al., 2016,
Theorem 2.3.4], and has very descriptive physical interpretations: the naive and overly

stiff volume average
〈(N−1)

CF

〉
is softened by means of subtraction of contributions from

fluctuations. However, the complexity of the FE discretization is not reduced, wherefore
the computation is impractical for real-world applications.

The softening effect originating from microscopic fluctuations is comprehensively
described in [Miehe, 2002, Section 3.3]. An analog phenomenon persists even if an
order reduction technique is applied to the inelastic phases of the material, cf. [Fritzen
& Hodapp, 2016, Section 4.4]. In the latter case, a compact method for the evaluation of
the consistent tangent modulus is provided. It can be computed by means of six solutions
of a comparatively low-dimensional linear system of equations.

A shortcut was taken in Yvonnet & He [2007]. There, the overall stiffness of a porous
RVE was roughly approximated by assuming it to be identical with the stiffness of the
matrix material. This is a harsh simplification of the real circumstances and may be
severely detrimental to the accuracy of the stiffness, depending on the volume fractions
of the voids or of different material phases. It is noteworthy that in the case of different
phases, it is generally preferable to choose the highest of the present stiffnesses. This is
due to the fact that an over-estimation of the tangent modulus is likely to just increase the
number of necessary iterations while an under-estimation is detrimental to the stability
of Newton-Raphson solution schemes.
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An alternative formulation based on a penalty method was developed in Temizer &
Wriggers [2008]. There, a single evaluation of the homogenized stiffness leads to
compute time on the order of a minute. Even when accounting for the advances of
available hardware ever since, this method is not suitable for realistic simulations of
multiple scales.

Therefore, the important question of how the effective tangent modulus may be efficiently
approximated is still open. Progress at this front will be presented in the sequel.

3.4 Short summary of homogenization methods
3.4.1 Classical analytical methods
The history of homogenization theory reaches back at least to the nineteenth century.
At that time, pioneering German physicist Voigt expressed a certain discontent with the
lack of agreement between the theoretical material models developed by Poisson on the
one hand, and measurement data on the other hand, Voigt [1889]. By considering the
multi-crystalline structure of metals and rocks, the question of the effective material
stiffness was brought up. In this seminal work, the arithmetic mean of the local
stiffness values was proposed as an approximation, [Voigt, 1889, eq. (7)]. Effectively,
this method assumed a homogeneous strain distribution throughout the multi-crystalline
microstructure.

Decades later, an alternative approach was introduced by Reuß who suggested to
additionally consider the case of a homogeneous stress distribution on the microscopic
scale, [Reuß, 1929, Section 5]. For the stiffness tensor, this assumption lead to taking the
harmonic mean of the local stiffness values. Reuß explicitly stated that the assumption
of either homogeneous stresses or homogeneous strains is necessary in order to perform
any calculations at all. It was not within the scope of his work to discuss which of those
exclusionary methods was more realistic. He did, however, compute approximations to
the effective yield stress of heterogeneous crystalline materials, too.

The works by Taylor [1938] and Sachs [1929] are credited with additional key contribu-
tions in line with Voigt and Reuß, respectively, in the context of metal plasticity. These
included the explicit consideration of the shear components of the strains and stresses,
which were particularly meaningful for metals.

In Boas & Schmid [1934], the methods of Voigt and Reuß were compared to experimental
data. It was found that Voigt’s method yielded Young’s moduli and torsion moduli above
the measured data. In contrast to this, Reuß’ method resulted in moduli lower than the
experimental results. These observations were mathematically proven a general rule
in Hill [1952], i.e. the effective material properties computed by means of these two
different method constituted upper and lower bounds to the actual quantities.

Additional analytical, increasingly sophisticated methods were developed thereafter. For
more information in this regard, the reader is referred to the references provided in the
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above mentioned sources and exhaustive standard literature, such as Nemat-Nasser &
Hori [1999], Yvonnet [2019]. Brief overviews are given by various review articles, such
as Saeb et al. [2016], Geers & Yvonnet [2016].

3.4.2 Modern computational and hybrid methods

In Smit et al. [1998], the concept of “multi-level” FE simulations was introduced. The
paradigm followed by this branch of multi-scale mechanics is a compromise between
the analytical school, e.g. as in Chapter 3.4.1, and the naive, brute-force approach
of fully resolving the microstructure on the engineering scale. The former suffers
from the drawback of relying on restrictive or overly simplifying assumptions, the
latter is impractical for realistic applications due to the extreme demands it makes on
computational resources.

In essence, multi-level FE methods are specific realizations of the homogenization
scheme of Chapter 3.1 for M = 1 with both the macroscopic problem (3.2) and the
sub-scale problems (3.3) being solved by FE computations. It was the work Feyel [1999]
that popularized this concept under the descriptive term “FE2” (read: “F E square”).
Depending on the specific setup, possibly much less memory is required compared to the
full resolution of the microstructured macroscopic simulation. Furthermore, multi-level
schemes always allow for trivial parallelization during the assembly of the macroscopic
quantities. However, the computational complexity is still extreme, rendering methods
of this kind impractical for real-world applications even today. On the upside, it must
be mentioned that, at least in theory, arbitrary accuracy can be realized by multi-level
schemes. This is also due to the fact that no simplifying or phenomenological modeling
assumptions are required, except for the separability of scales which is mathematically
backed by convergence theories. Therefore, after refinement and generalization, e.g. by
Miehe [2003], this class of schemes became the benchmark for future ideas and still serve
this purpose today.

Earlier, another line of thought was pursued with the establishment of the “Transfor-
mation Field Analysis” (TFA), cf. Dvorak & Benveniste [1992], Dvorak et al. [1994].
Assuming the scale-coupled problem formulations (3.2), (3.3), and the existence of an
RVE, the TFA is a way of reducing the number of unknowns in inelastic processes. Ini-
tially, on the microscopic scale, the internal variables are assumed to be constant within
each material phase. Thus, the coefficients of the microscopic fields of internal variables
become macroscopic quantities. However, this simplifying assumption in turn requires
assumptions on the evolution equations of these macroscopic objects. From a modeling
perspective, this reliance on additional closure equations is a significant disadvantage.
Furthermore, it soon became obvious that the assumption of phasewise constant inter-
nal variables was an oversimplification of reality and that accuracy suffered from this.
This assumption was therefore soon eased to piecewise uniform fields within the mate-
rial phases. Also, the introduction of additional sub-domain within the phases could in-
crease the accuracy, albeit at additional computational costs. An extension of the method
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including damage models can be found in Kruch & Chaboche [2011] and the review
article Kanouté et al. [2009] is suggested.

As it became clear that more resolution on the microscopic scale was necessary, a
generalization of the TFA was proposed in Michel et al. [2002], Michel & Suquet
[2003]. The main idea behind this “Nonuniform Transformation Field Analysis” (NTFA)
was to allow the fields of internal variables to be linear combinations of previously
determined, actually occurring, varying fields. However, the determination of these fields
was proposed in an ad hoc manner only, lacking generality. It shall be noted that the
concept of an offline stage was established within the homogenization community at
least since then. While much more accurate than the TFA, this method still suffered from
the inherent drawback of relying on additional modeling assumptions on the macroscopic
scale.

Another significant step in the evolution of this family of methods was the “Potential
Based Reduced Basis Model Order Reduction” (pRBMOR), Fritzen & Leuschner [2013].
By means of this hybrid computational method, many of the issues associated with the
NTFA were solved. First and foremost, no modeling assumptions on the macroscopic
scale were necessary any longer. In addition, the incorporated alternative formulation
variational formulation was less restrictive in terms of material laws on the micro-scale.
Concerning the offline phase, a rather systematic procedure was proposed based on
classical best-approximation theory. It was demonstrated that the pRBMOR is applicable
to real-world multi-scale problems by means of massively parallel implementations on
GPU’s, Fritzen et al. [2014], Fritzen & Hodapp [2016]. However, this method was limited
to the case of small strains. The generalization to finite strains is still an open question.

Although no longer competitive by itself, the TFA approach was picked up rather recently
and combined with other methods. The “Self-Consistent Clustering Analysis” (SCCA),
Liu et al. [2016], combined the original TFA idea with the Lippmann-Schwinger equation
(which is comprehensibly derived in, e.g., [Schneider et al., 2017, Section 4.1]). This
novel method was adapted to the regime of finite strains, Yu et al. [2019]. Notably,
the online CPU time was shown to be reduced with respect to reference methods under
certain circumstances. On the other hand, the CPU time of the SCCA grows with a
higher order than that of its benchmark schemes as the resolution of the microstructure is
increased. This is significant since only structured voxel discretizations, i.e. regular grids,
are considered and, therefore, very fine-grained microstructures could not be treated as
efficiently as with sophisticated FE meshing techniques.

In fact, this issue with voxel discretizations is shared by many homogenization schemes
based on the “Fast Fourier Transformation” (FFT), which is a popular operation
whenever convolutions need to be computed en masse. Prominent examples include
the already mentioned family of Lippmann-Schwinger equation based methods, e.g.
Moulinec & Suquet [1998], Schneider et al. [2017] in addition to the SCCA. A method
equivalent to Schneider et al. [2017] but derived from FE-formulations and not explicitly
dependent on the Lippmann-Schwinger equation is presented Leuschner & Fritzen
[2018]. Another use case of the FFT is the projection of vectors onto curl-free or
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divergence-free spaces, as has been done in Rambausek et al. [2019] for homogenization
of magneto-active materials. Although distinct algorithmic differences are present, all of
these schemes share the essence of evaluating convolutions in Fourier space. Another
commonality is the reliance on regular discretization. This is a core feature as the
employed formulations in Fourier space are based on the translational invariance of the
spatial discretization. On one hand, this is possibly advantageous for automated image-
based modeling. However, the required global spatial resolution is possibly very large
and may result in much more degrees of freedom than an unstructured finite element
mesh, e.g. when comparing to second-order tetrahedra.

Another successful branch of efficient mechanical simulations is based on projection.
Belonging to the set of “Reduced Order Modeling” (ROM), these methods classically
employ a projection of the primal variables, e.g. displacements, onto a low-dimensional
subspace. The key characteristic of ROM is that the underlying mathematical problem,
e.g. (2.13) or (2.13), is unchanged but only the complexity associated with its solution
is reduced. Naturally, a certain sacrifice of accuracy has to be accepted along with the
order reduction.

The reduction of the number of degrees of freedom is widely conducted by means of
the “Karhunen-Loève expansion”, Karhunen [1946], Loève [1963], which also goes by
the name ”Proper Orthogonal Decomposition“ (POD), Sirovich [1987]. Essentially, it
extracts typical fields of the primal variables from a large set pre-computed, unreduced
solution fields. Famously, the ”a priori Hyperreduction“, Ryckelynck [2005], contributed
to the field by reducing the large amounts of costly pre-computations and by coupling
this with an adaptive procedure. In the field of mechanical homogenization of solids, the
projection method was introduced with the work Yvonnet & He [2007] the latest. There,
the displacement degrees of freedom of the micro-scale problem (3.3) are reduced. The
above mentioned pRBMOR utilizes the POD on the micro-scale, too, although not on
the primal but on the internal variables. This has even been extended to displacement
discontinuities at microstructural cohesive interfaces, see Fritzen & Leuschner [2015].

In general, POD based schemes are supported by accessible mathematical theorems
that admit physical interpretations. However, original implementations may come along
with difficulties when strong nonlinearities are involved or when adaptivity is required.
Countermeasures include, e.g., a larger set of pre-computed solution fields and a larger
set of basis fields, i.e. less reduction of the number of degrees of freedom.

3.4.3 Data-based methods

The era of modern computing initiated another branch of efficient homogenization
methods. Just as in many other parts of science, rapid advancements on both the hardware
and the software side lead to increasingly available in silico data. As a consequence, it
was worthwhile exploring whether the explicit mathematical modeling on the micro-
scale (3.3) could be replaced by data. The basic idea was that this data would implicitly
contain the underlying physical laws and serve as the setup data for a numerical surrogate
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of the effective material law. In contrast to Reduced Order Modeling, where solely the
order of the approximation was efficiently reduced, data-based methods compromise the
original model for efficiency.

Perhaps the earliest occurrence of such a method in homogenization literature was the
idea of a ”material map“, Temizer & Zohdi [2007]. Assuming effective isotropy of the
microstructure, this method interpolated the coefficients of a simple constitutive equation
on the macro-scale between values determined by means of pre-computations. It was set
up in the context of geometric nonlineariy and quickly extended to the case of effective
orthotropy, Temizer & Wriggers [2007]. Although only academic numerical experiments
were considered, the limited available compute power was shown to be significantly more
efficiently used with the proposed method than with the FEM. One of the most significant
contributions was the extremely quick computation of the macroscopic stiffness, which
is the most expensive part of the unreduced FE2.

A more general way of approximating the effective material response was proposed in
Yvonnet et al. [2009] with so-called ”Numerically Explicit Potentials“ (NEXP). There,
the effective hyperelastic energy function was approximated by means of interpolation
techniques in the space of small strains. Among the candidate methods, the ansatz based
on separation of variables proved most efficient due to the fact that the response could
be approximated by means of multiple one-dimensional interpolations. The interpolation
was supported by pre-computed data which had been obtained by means of unreduced FE
simulations on the microscale. Therefore, the setup phase was very demanding in terms
of computational efforts and crucially depended on the number support points, i.e. on the
density of the sampling of the strain space. More difficulties were encountered with the
adaption to geometric nonlinearity, Yvonnet et al. [2013], where the microsopic problem,
similar to (3.3) could not be solved for all of the sampled macroscopic right Cauchy-

Green tensors
(M)

C (M = 1). Hence, an extrapolation based on additional assumptions
was necessary. Overall, this interpolation method delivered highly accurate results
for simple test cases and clearly outperformed the classical FE2 method. However, it
obviously suffered from the curse of dimensionality during the setup phase, not reducing
the computational efforts for realistic three-dimensional examples to manageable levels.

A very general method of function approximation are Artificial Neural Networks
(ANN’s). An outline of recent developments in this active field of research can be found
in Abiodun et al. [2018], as well as a short introduction. Probably the first application
of this popular method in the field of computational mechanics was in the context of
material modeling, Wu et al. [1990], Ghaboussi et al. [1991]. Homogenization was
subject to treatment by ANN’s, e.g., in Le et al. [2015]. There, it was attempted to
approximate the effective hyperelastic energy density of an RVE as a function of the
(small) strain. The well-known drawbacks of classical ANN’s, especially the very large
amounts of necessary setup data, proved a limitation to the ansatz: as the training data
was obtained by means of unreduced FE simulations, significant compromises had to
be made either on the density of the sampling, on the complexity of the RVE or on
the compute time. Nonetheless, many others have employed ANN’s in the context of
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homogenization, including but not limited to Barkaoui et al. [2013], Lißner & Fritzen
[2019], Göküzüm et al. [2019], Fritzen et al. [2019], Nguyen-Thanh et al. [2020], Rao
& Liu [2020]. There, the details of the specific ansatzes vary widely, from the direct
approximation of the target function and iterative ANN applications to hybrid methods
that adaptively switch between ANN’s and more classical methods.

Hyperelastic materials and any other path-independent types of materials may appear
obvious candidates for modeling via ANN’s. This is due to the fact that path dependency,
such as with dissipative material laws, leads to a significant increase of the dimension of
the input space. As this input space requires comprehensive sampling, an overly large
dimension may render the (naive) setup of ANN’s practically impossible. However, there
are delicate issues that require special attention in the case of hyperelasticity, too. One
example is the fundamental requirement of zero energy corresponding to zero strain.
Also, smoothness and monotonicity of the energy density and the stress are strongly
desirable both from a modeling perspective and from the viewpoint of numerical stability.
One can conclude that this class of methods faces significant challenges but exhibits a
very promising development with increasing success.

The ”Matrial Knowledge System“ (MKS), Kalidindi et al. [2010], is a mathematical
framework for efficient homogenization of microstructure properties based on regular
voxel discretizations, the FFT and influence coefficients. These influence factors are pre-
computed in the setup phase of the method by means of a regression analysis based on
FE results. After this, the homogenized response function can be quickly evaluated. The
key contribution is that the opposite direction of homogenization, i.e. the determination
of the micro-structural fields from macroscopic loading conditions, can also be computed
very efficiently. This is a major advantage over more methods based on function
approximation, such as ANN’s and interpolation schemes, in which the micro-structural
information is lost during the homogenization. An associated software project, Brough
et al. [2017], has become very popular and contributed to the accessibility of the method.





Chapter 4:
Outline

The present work proposes a multi-staged computational method for the efficient
approximation of hyperelastic material responses that are homogenized successively
on multiple spatial scales. This generalizes and advances the field of in silico data-
driven methods, cf. Chapter 3.4.3. Certain aspects of this work also contribute to more
general areas of research, such as efficient interpolation of general functions in moderate-
dimensional spaces. Moreover, insight into the purely mathematical field of potential
theory is gained while investigating the setup of such interpolation schemes.

Along the way to these achievements, issues both on the computational and on the
conceptual side have to be solved. The computational issues mostly originate from the
degree of detail with which RVE’s are resolved – not only on one but on numerous
hierarchical scales. From the theoretical side, the treatment of both geometric and
material nonlinearities poses a significant challenge. Sophisticated methods are required
for both the setup and the application phase of the data-driven model: nonlinearities of
both kinds necessitate specialized techniques for the discretization of the input space.
The outputs, too, are obtained by means of dedicated techniques formulated with respect
to carefully chosen function spaces. The overall achievement is reached with four journal
articles that are outlined in the following sections.

Only the main concepts are stated and few key equations are presented in this outline. In
particular no emphasis is put on completeness at this point. Comprehensive details are
given in the chapters containing the papers.

4.1 First publication – Two-stage data-driven ho-
mogenization of nonlinear solids using a Re-
duced Basis model

To begin with, the comparatively simple case of geometric linearity and only a single
scale transition is addressed, M = 1. By means of this simplifying choice, the main
ideas can be conceptually studied without the hurdle of nonlinear kinematic quantities
and without cumbersome arbitrary-scale case differentiation. However, it is important
to point out that pronounced nonlinearities are considered with respect to the material
laws: pseudo-plasticity models with and without hardening imitate dissipative material
behavior for proportional loading conditions.

27
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The two-stage reduction concept is introduced in this initial phase of research. Building
on data generated by means of high-fidelity simulations, e.g. FE analyses, the first
and the second reduction stage each introduce a significant decrease of computational
complexity as compared to the original high-fidelity method. Naturally, trade-offs have to
be accepted, which in this case consist of additional approximation errors and increased
setup times.

4.1.1 Projection based Reduced Order model

Roughly speaking, during the first stage, data from the FE simulations is processed in
order to setup a projection based reduced order model. This model serves the purpose

of approximating solution strain fields, i.e. the strain fields
(0)

ε
((0)
X;

(1)

ε
)

associated with
the solutions of (3.11). This efficient strain approximation on the RVE in turn yields
an efficient approximation of the homogenized material response to the strain on the

macroscopic scale,
(1)

ε .

More precisely, for the setup of the first stage, the strain fields corresponding to FE
solutions of (3.11) for different boundary conditions are processed into fluctuation fields,

ε̃
((0)
X;

(1)

ε
)

=
(0)

ε
((0)
X;

(1)

ε
)
− (1)

ε . The notion fluctuation is motivated by the zero mean
property, 〈 ε̃ 〉(0)

Ω0

= 0. Furthermore, a classical, truncated analysis of correlations within

this set of solution fluctuation fields is carried out. The result is a set of fields carrying
most of this linear relation information,

Bε = {ε̃(1)
((0)
X
)
, . . . , ε̃(NRB)

((0)
X
)
}, (4.1)

denoted Reduced Basis for the strain ε, or ε-RB. The size or dimension of this basis,
NRB, is by many orders of magnitude smaller than the number of Degrees of Freedom
(DOF) of the FE model.

On a side note, it is interesting to note that this ε-RB is orthogonal with respect to

the standard L2(
(0)

Ω0) inner product. It might be interpreted as a u-RB, orthogonal

with respect to a Sobolev H1
0 (

(0)

Ω0)-like inner product. This theoretical consideration
is not directly relevant for the sequel but helps justifying the approach and makes the
relationships between ε-RB’s and u-RB’s more obvious.

After this setup of the second stage, general solution strain fields are approximated via
the RB ansatz

(0)

ε
((0)
X;

(1)

ε
)
≈ (0)

ε RB
((0)
X;

(1)

ε
)

=
(1)

ε +

NRB∑

i=1

ξi ε̃
(i)
((0)
X
)
. (4.2)
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The vector of coefficients ξ = ξ(
(1)

ε ) ∈ RNRB is determined by numerical approximation
of the solution to the unconstrained minimization problem

ξ(
(1)

ε ) = arg min
ξ∈RNRB

〈
(0)

Wε
(

(0)

ε RB
((0)
X;

(1)

ε
))〉

(0)
Ω0

. (4.3)

On one hand, this formulation is based on the fundamental variational principle of
mechanics, cf. Hill [1956]. Related formulations have been used for decades in works on
fundamental theorems of homogenization, e.g. [Ponte-Castañeda, 1991, (2.14)]. On the
other hand, this method is notably different from established efficient homogenization
methods based on a projection of the solution displacement field, e.g. Ryckelynck
[2005], Yvonnet & He [2007]. In contrast to these methods, the presented RB scheme
directly operates on the strains and completely avoids computations of strains from
displacements, which leads to a significant decrease of the overall computational effort.

One can verify the consistency of the RB approximation process (4.3) with the solution
of the original problem (3.11) in multiple ways. Here, it shall only be noted explicitly
that the RB ansatz (4.2) unconditionally yields a compatible displacement field. This is
due to the linearity of the small strain compatibility conditions (2.9).

After the energy minimization process (4.3), the effective stress is readily obtained via

(1)

σ
((1)
ε
)

=

〈
σ
(

(0)

ε RB
((0)
X;

(1)

ε
))〉

(0)
Ω0

. (4.4)

Even more importantly, the effective stiffness is computable via

(1)

C ε

((1)
ε
)

=
〈(0)

C ε

〉
(0)
Ω0

−
NRB∑

i,j=1

D−1
ij

〈(0)

C ε

((0)
ε RB

)[
ε̃(i)
]〉

(0)
Ω0

⊗
〈
ε̃(j) :

(0)

C ε

((0)
ε RB

)〉
(0)
Ω0

,

(4.5)

Dij =
〈
ε̃(i) :

(0)

C ε

((0)
ε RB

)
[ ε̃(j)]

〉
(0)
Ω0

= Dji, (4.6)

where the colon and the bracket operators are defined as the standard double contraction
of a fourth-order tensor with a second-order tensor from the left and from the right,
respectively.

The recipe (4.5) – although still computationally demanding – is significantly more
efficient than the methods described in Chapter 3.3 and is one of the major contributions.

4.1.2 Sampling scheme
The sampling procedure by means of which the setup data of the first stage is gathered,

i.e. the way in which the space of the macroscopic strain
(1)

ε is sampled, is a novelty in
its own right. Previously available methods, as described in Sections 3.4.2 and 3.4.3, are
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driven by variations of regular Cartesian discretization of the components of the strain
tensor or by somewhat controlled randomness. In contrast to these, the method proposed
here seeks to discretize the space of macroscopic strains in a way that is considerate
of the possibly present anisotropy of the effective material law. It is desired that one
can explicitly control the degree with which the phenomenon of effective anisotropy is
resolved. Anisotropy denotes the dependence of the material response to the kind of the
applied kinematic loading condition – as opposed to its magnitude. This distinction is
respected by the novel sampling scheme, which is now briefly outlined.

By introduction of the multiplicative split of the macroscopic strain tensor
(1)

ε into its
magnitude ε and directionN , i.e.

(1)

ε = εN , ε = ‖(1)ε ‖Fro, N =

(1)

ε

ε
, (4.7)

the macroscopic strain space may be sampled concentrically:

Sε = {εiN (j)}i=Nmag,j=Ndir
i,j=1 . (4.8)

Figure 4.1 illustrates the way in which the set of sampling points Sε contains sites
at identical Nmag magnitudes (or radii) εi along each of Ndir directions N (j). The
particulate choices for the sampling magnitudes εi are made on an empirically derived
rule. For the sampling directions N (j), a discretely uniform distribution in the space
of small strain tensors is promoted. This way, no assumption on the anisotropy of the
generally unknown effective material law is made. The larger the number Ndir, the
more information on anisotropy can be captured. This parameter is independent of the
number Nmag which controls the resolution of the effective material behavior along each
direction, i.e. the evolution of the response for a constant kind of loading.

PSfrag replaements

ε1 ε2 ε3

N (1)

N (2)

N
(3)

N (4)
N (5)

Figure 4.1: Schematic example of place-
ment of samples in the space of infinitesimal
strains.

This sampling method is utilized twice in the overall homogenization scheme. For the

preparation of the first stage, the set of FE boundary conditions, i.e.
(1)

ε in (3.11), is
constructed in this manner. For the setup of the second stage, too, a comparable set of
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boundary conditions is created, i.e.
(1)

ε in (4.3). However, since the RB method is more
efficient than the FEM, the number of boundary conditions NmagNdir is chosen larger
for the RB simulations.

4.1.3 Interpolation scheme

The second reduction stage extremely accelerates the evaluation of the effective material

law. It does so by interpolating the values of the effective energy
(1)

Wε provided by the RB
model, cf. left-hand side of (4.3). Thus, the interpolation method is constructed in a way
specialized to this geometric feature of the sampling method (4.8). It is defined as

(1)

Wε(
(1)

ε ) ≈ W̃ (ε,N) = p(ε)TK−1k(N), (4.9)

where p(ε), k(N) ∈ RNdir and K ∈ RNdir×Ndir . The vector p(ε) consists of Ndir one-
dimensional interpolants of the effective energy as a function of ε. The components of the
vector k(N) are spherical Gaussian kernel functions centered at the support directions
N (j), cf. (4.8), and evaluated at the query directionN ,

kj(N) = exp
(
−γ acos2(N (j) ·N)

)
(j = 1, . . . , Ndir, γ > 0). (4.10)

These functions utilize a angular measure of distance and, hence, in combination with the
corresponding kernel matrix K, form a spherical interpolation scheme. The coefficients
of the latter are defined via Kij = Kji = kj(N

(i)).

The effective stress
(1)

σ and stiffness
(1)

Cε are computed by means of differentiation of
W̃ . This is performed in an algorithmically efficient manner resulting in unconditional

compatibility of W̃ ,
(1)

σ and
(1)

Cε. Notably, the latter is also unconditionally symmetric.

Overall, this two-staged method falls into the class of data-based methods, cf. Chap-
ter 3.4.3, and stands out from it for several reasons. The two most significant improve-
ments over concurring methods are

• Speed-up of the setup phase: the sampling data set (4.8) is determined in a manner
based upon physical reasoning (consideration of anisotropy) instead of indiscriminate
brute force (e.g. Cartesian grid sampling) or chance (e.g. random sampling).

• Speed-up of the application phase: the interpolation method (4.9) is demonstrably ap-
plicable to realistic two-scale simulations in three dimensions on standard computers.
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4.2 Second publication – Finite Strain Homogeniza-
tion Using a Reduced Basis and Efficient Sam-
pling

4.2.1 Suitability of nonlinear kinematic measures
Building on the successful demonstration of the ε-RB approach (4.2), and still settling
with two scales, M = 1, the concept of an RB for kinematic non-displacement quantities
is transferred to the case of large strain hyperelasticity. That is, the first stage of the two-
stage procedure of Chapter 4.1 are now modified in order to be applicable to geometric
nonlinearity. However, the lack of the small strain assumption (2.6) comes along with
additional difficulties. Among these is the question of which kinematic non-displacement
quantity should be approximated by means of an RB. For instance, the displacement
gradientH , the deformation gradient F , the right Cauchy-Green tensorC and any of the
infinitely many measures of strain (2.3), (2.4) could be candidates for an approximation
similar to (4.2).

There are several reasons for and against each of these possibilities. Among them, the
dimension of the involved quantity directly affects the computational efforts necessary to
determine a particular RB approximation. For example, symmetric tensors such as the
right Cauchy-Green tensor are readily represented as six-dimensional vectors. In contrast
to this, the deformation gradient is generally asymmetric and therefore only representable
by nine-dimensional quantities. This is a significant factor as it means that 50% more
memory is required. The number of algebraic operations involved in the evaluation of
the homogenized material response also grows at least linearly with the dimension of the
involved kinematic quantity. There is even some quadratic dependence on this number,
cf. [Kunc & Fritzen, 2019a, Table 1].

Another factor is the effort necessary to ensure compatibility with the displacement field
u. While the compatibility condition for the deformation gradient (2.8) is linear, the
one for the right Cauchy-Green tensor involves sophisticated differential geometrical
considerations, cf. Acharya [1999] and the references given therein. In the context of
this work, preliminary studies of an efficient approximation of the latter have not come
to fruition. For this reason, anF -RB approach is chosen here. This is not to say that other
kinematic quantities may not possibly be successfully approximated by means of reduced
bases and additional computational steps. However, this alternative line of thought is not
pursued in this work.

4.2.2 Projection based Reduced Basis model
Hence, by choosing an F -RB ansatz of the form

(0)

F (
(0)

X;
(1)

F ) ≈ FRB(
(0)

X;
(1)

F ) =
(1)

F +

NRB∑

i=1

ξi F̃
(i)

(
(0)

X), (4.11)



4.2 Second publication 33

compatible fields of deformation gradients are produced without any assumptions on the
vector of coefficients ξ ∈ RNRB . Similar to (4.1), the L2(Ω0)-orthogonal RB

BF = {F̃ (1)
(
(0)

X), . . . , F̃
NRB

(
(0)

X)} (4.12)

is obtained by means of a standard, truncated analysis of correlations among a set of

fluctuation snapshots. These have the form F̃ (
(0)

X;
(1)

F ) =
(0)

F (
(0)

X;
(1)

F ) −
(1)

F , where the

fields
(0)

F (
(0)

X;
(1)

F ) correspond to solutions of (3.3) obtained during the first stage.

In analogy to (4.3), the RB coefficients ξi = ξi(
(1)

F ) are determined by means of
numerical minimization of the approximation of the effective hyperelastic energy,

ξi(
(1)

F ) = arg min
ξ∈RNRB

〈
WF(FRB(

(0)

X;
(1)

F ))

〉
(0)
Ω0

. (4.13)

Likewise, the expressions for
(1)

P (
(1)

F ) and
(1)

CF(
(1)

F ) are obtained in direct correspondence
to their small strain equivalent, cf. (4.4)-(4.6). As with the ε-RB, a major advantage of
this F -RB over the methods mentioned in Chapter 3.4.2 is the efficient representation of
the homogenized stiffness.

4.2.3 Sampling scheme

The sampling procedure for the first stage, i.e. the choice of the boundary conditions of
(3.3), comes along with increased complexity compared with the method developed in
the geometrically linear case, cf. (4.8). The considerations there were based on the split

of the loading condition
(1)

ε into its magnitude ε and its directionN . The correspondence

between this loading direction and the kind of the loading
(1)

ε was exploited. However, this
does not immediately carry over to the case of the deformation gradient. For example,
consider the case of pure planar shear which can be represented by

(1)

F (α) ∼




√
1 + α2 α 0

α
√

1 + α2 0

0 0 1


 , (4.14)
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where α ≥ 0 parametrizes the loading from the relaxed state (α = 0) to the final
condition. The same kind of loading is representable as a small strain tensor,

(1)

ε (α) ∼




√
1 + α2 − 1 α 0

α
√

1 + α2 − 1 0

0 0 0




α→0−→




0 α 0

α 0 0

0 0 0


 =

√
2α︸︷︷︸
ε




0 1√
2

0
1√
2

0 0

0 0 0




︸ ︷︷ ︸
N

.

(4.15)

It is the small strain linearization (2.6) that simplifies the isochoric condition

det(
(1)

F (α)) =
(1)

J (α) = 1 to trace(
(1)

ε (α)) = 0, respectively shaping (4.14) and the
last expression in (4.15).

A representation of this example for large strains that is more similar to the small strain
formulation (4.15) can be obtained via the Hencky strain

(1)

EH(α) = log

(
(1)

F (α)

)
∼
√

2 sinh−1(α)︸ ︷︷ ︸
t




0 1√
2

0
1√
2

0 0

0 0 0




︸ ︷︷ ︸
N

, (4.16)

where t andN are defined in analogy to (4.7),

(1)

EH = tN , t = ‖
(1)

EH‖Fro, N =

(1)

EH

t
. (4.17)

The resemblance of the last terms of (4.16) and (4.15) is striking.

The zero-trace condition for isochoric deformations holds for the Hencky strain, too.
However, in contrast to the infinitesimal strain tensor, not a direct linearization in the
sense of a negligence of higher-order terms is the cause. Instead, the well-known general
relationship det(exp(tM)) = exp(trace(tM)) (M ∈ Rn×n, n ∈ N, t ∈ R), cf.

[Kühnel, 2011, Satz 6.2], implies trace(
(1)

EH) = 0 as the isochoric condition of the
Hencky strain space. The Hencky strain space can be considered a linearization in a
differential geometric context: it is the tangent space to the space of isochoric stretch
tensors, i.e. the set of all U with det(U) = 1. Readers interested in this fundamental
relationship are referred to standard textbooks on Lie groups, such as [Faraut, 2008,
Kühnel, 2011] and to [Neff et al., 2016] for a mechanical viewpoint.

Another important consideration for the setup of the sampling procedure is made
possible by the well-known principle of material frame-indifference: WF(QF ) =
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WF(F ) for all Q with QQT = QTQ = I , representing rigid body rotations of the

deformed configuration. Substituting the inverse
(1)

RT of the rotational part of the polar

decomposition
(1)

F =
(1)

R
(1)

U proves that such rotations do not affect the energy. In fact,

the rotation
(1)

R needs not to be considered when sampling the effective material response
(1)

WF(
(1)

F ),
(1)

P (
(1)

F ),
(1)

CF(
(1)

F ): the effect of the rotation
(1)

R on
(1)

WF(
(1)

U ) is trivial and can be

applied to
(1)

P (
(1)

U ) and
(1)

CF(
(1)

U ) obtained in the canonical frame, i.e. one may assume
(1)

R = I during the sampling phase without loss of generality.

Therefore, the sampling of the boundary condition
(1)

F =
(1)

U in the balance of linear
momentum (3.3) may be conducted in the six-dimensional space of Hencky strains. The
formulation

SF =

{(
(1)

J (m)

)1/3

exp
(
t(p)N (n)

)}m=Ndet,n=Ndir,p=Nmag

m,n,p=1

(4.18)

is suggested. HereNdet is the number of sampled determinants,Ndir denotes the number
of sampled directions of isochoric Hencky strains andNmag states the number of sampled

isochoric Hencky strain magnitudes. Moreover, the scalars
(1)

J (m) ∈ [
(1)

J min,
(1)

J max] and
t(p) ∈ [0, tmax] denote certain measures of the magnitudes of the dilatational and of

the deviatoric strain, respectively. Their limits
(1)

J min,
(1)

J max and tmax may be chosen
reasonably and independently of each other. The tensorsN (n) are directions in the five-
dimensional space of isochoric Hencky strains, i.e. they are symmetric and traceless. Just
as for the small strain case, an approximately uniform distribution of these directions is
advised in order to sample the possibly anisotropic behavior in an unbiased manner.

The Hencky strain EH is identified as the key ingredient to this sampling procedure:
directions in the space of Hencky strains carry the same information as those in the space
of small strains ε. The close relationship between these two quantities is discussed in
great detail in Neff et al. [2016]. The proposal to conduct the sampling of the kinematic
state space via the Hencky strain tensors is a major novelty. A large part of the data-
driven methods described in Chapter 3.4.3 could directly benefit from the utilization of
Concentric Sampling in the Hencky strain space.

Summarizing the finite strain RB method, the most important advancements compared
to the methods mentioned in Chapter 3.4.2 are the following:

• Speed-up of the setup phase: the selective sampling data set (4.18) is considerate of

both the anisotropy and the determinant
(1)

J . Therefore, it places the sampling sites
within a physically meaningful range of the Hencky strain space. Simpler methods

(e.g. Cartesian grid or random sampling of the components of
(1)

U ) suffer much more
from the six-dimensionality of the sampling space and fail either to contain the samples
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within a reasonable range of the determinant (e.g.
(1)

J ∈ [1− ε, 1 + ε]), to explore this
range thoroughly or to keep the number of samples within practical bounds.

• Speed-up of the application phase: the F -RB method yields good results for the
homogenization of realistic, complex three-dimensional microstructures for arbitrary
loading conditions, given that the latter lie within the sampling range of the setup
phase. At the same time, computational complexity is significantly reduced. In many
cases, the algorithmic complexity of the F -RB is advantageous to that of competing
displacement-based methods, cf. Kunc & Fritzen [2019a].

In analogy to the case of infinitesimal strains, it is intended to establish an interpolating
third stage, and to create its supporting points using the efficient F -RB model from
the second stage. Before elaborating on the adaption of the interpolation method from
Chapter 4.1 to the case of finite strains, more studies of the method in general are
conducted.

4.3 Third publication – Generation of energy-
minimizing point sets on spheres and their ap-
plication in mesh-free interpolation and differ-
entiation

4.3.1 General interpolation scheme

The performance of the interpolation ansatz (4.9) is influenced by the geometrical
distribution of the supporting directions. Here, it is investigated which influence this
distribution has on the interpolation quality. Moreover, special emphasis is put on the
way such distributions can be found.

As the context is – for the moment – more general and purely mathematical, a few
changes are made to the underlying conceptions. For one, the dimension of the
interpolation domain is generalized to Rd+1, d ∈ N. Consequently, the interpolant is
generalized to be a scalar valued approximant,

f(x) ≈ f̃(x,n) = p(x)TK−1k(n), (4.19)

where x ∈ Rd+1, x = ‖x‖, n = x
x
∈ Sd ⊂ Rd+1 and p, K, k are defined in analog

to Chapter 4.1 with n(j) ∈ Sd. Furthermore, instead of directions in Rd+1 only points
on Sd are spoken of. The number of support points (formerly the number of support
directions Ndir) is renamed N in this publication, i.e. j = 1, . . . , N .

The term Concentric Interpolation (CI) denotes the ansatz (4.19) due to the straightfor-
ward interpretation that for each query point x ∈ Rd+1 the one-dimensional interpolants
pj(x) take values on the surface of the origin-centered sphere of radius x, i.e. on xSd.
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4.3.2 Point distributions and asymptotic uniformity
In order to formalize the concept of distributions of points, a measure theoretic approach
is chosen. For the sake of this outline, two kinds of measures on Sd are sufficient. First,
the discrete measure corresponding to a point set XN = {n(1), . . . ,n(N)} ⊂ Sd is

µXN (A) =
1

N

N∑

i=1

δn(i)(A) (A ⊂ Sd, measurable), (4.20)

where the single point measure δn(i) is the characteristic function of the point n(i),

δn(i)(A) =

{
1 if n(i) ∈ A
0 else

. (4.21)

The main features of µXN are the equal weight associated with each point and the
normalization property, µXN (Sd) = 1. Second, the standard uniform measure on the
sphere is required in the sequel:

σ(A) =
surface area of A
surface area of Sd (A ⊂ Sd, measurable). (4.22)

At this point, a distribution of a spherical point set XN is characterized by means of the
properties of its corresponding measure µXN . A very special feature of certain kinds of
point sets is asymptotically uniform distribution:

Definition 1 A sequence of point sets (XN )N∈N is said to be asymptotically uniformly
distributed if the corresponding sequence of measures (µXN )N∈N converges to the
standard uniform measure σ as N →∞. A suitable definition of convergence is chosen
to this end. 2

Such convergence behavior is relevant to many kinds of applications. Roughly speaking,
whenever it is desired to have point sets that are “evenly spread out” across the sphere
Sd, asymptotic uniformity is usually the first choice formal definition. A detailed list of
research projects from various domains utilizing such point sets is given in the full paper.

4.3.3 Kernel functions and energies of point sets
One possible realization of such appealing convergence behavior is by means of energy-
minimizing point sets. This concept is now briefly formalized.

It is standard to base the theory of energy-minimizing spherical points on the family of
Riesz s-kernels,

ks(x,y) =
1

‖x− y‖s (x,y ∈ Sd, s ∈ R>0). (4.23)

This family of functions was originally motivated by physical considerations. For
instance, the repulsive behavior of equally charged electric particles confined to a



38 4 Outline

conductive spherical surface (d = 1, 2) is modeled by the case s = 2. This is due to
the resemblance of the 2-kernel with the electrostatic force according to Coulomb’s law.

The associated potential-theoretic s-energy of a point set XN ⊂ Sd is defined as

Is(XN ) =
1

N(N − 1)

N∑

i,j=1
i6=j

ks(xi,xj). (4.24)

It is this energy of which a minimization is sought-after. Again, the minimization has a
physical background as mentioned above. Mathematically speaking, the following well-
known theorem states a characteristic of energy-minimizing point sets that is crucial to
the present work.

Theorem 1 Sequences of s-energy-minimizing points (XN )N∈N are asymptotically
uniformly distributed, cf. Definition 1. 2

4.3.4 Energy-minimizing point sets as interpolation support

In this sense, minimum energy points, i.e. energy-minimizing points, are “evenly
distributed”. It is this descriptive property upon which the intuitive choice of energy-
minimizing points as support for the interpolation (4.19) is based. Notably, there exist
alternatives which base the choice of the supporting points on direct, formal association
with the interpolant. For instance, in Chen et al. [2011] the distribution of the support
points is optimized with respect to the condition number of the interpolation matrix.
However, it is known that the resulting point sets of certain alternative methods are also
asymptotically uniformly distributed, cf. Marzo & Ortega-Cerdà [2009].

Although the choice of minimum energy points as interpolation support is somewhat
arbitrary, there are good reasons to take this path. For one, one may take advantage of
the long-grown respective theory and of existing databases, e.g. Hardin et al. [1997],
Womersley [2003]. Additionally, some of the most fundamental open problems in
Mathematics are concerned with energy-minimizing points, see Smale [1998]. Possibly,
there may be interdisciplinary synergies when investigating the suitability of minimum
energy points for different kinds of applications.

It is known that notable differences of the resulting point distributions occur when the
value of s is changed. In particular, larger values lead to more locally repulsive behavior,
while smaller values result in a more global influence of each point.

Here, it is suspected that the interpolation (4.19) should generally perform more
accurately for lower values of s. Thus, an exemplary numerical study is conducted
with the aim of quantifying this effect for a constant target function f(x) = 1.
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Moreover, the effect is anticipated to be even more significant for the log-kernel,
klog(x,y) = log(2/‖x− y‖). As a novelty, the LOG-kernel

kLOG(x,y) = ‖x− y‖(log
‖x− y‖

2
− 1) + 2 (4.25)

is introduced. In a certain sense, the functions klog and kLOG are the first and the second
primitive of k1, respectively. Hence, with the new kernel function kLOG, the interaction
of the points within the set XN is even more dominated by global effects than with the
previously available kernels.

From a physical perspective, it is interesting to observe the behavior of the energy and its
derivative associated with this kernel. On one hand, kLOG still leads to infinitely strong
repulsive forces for touching particles, in alignment with many real-world observations.
On the other hand, the energy ILOG is bounded even for coinciding particle locations,
x = y. This fact very significantly simplifies the analysis of the energy of point
sequences.

Numerical experiments show that support points generated for lower values of s indeed
lead to more accurate CI approximations of the constant function. Also, the log-kernel
and the LOG-kernel outperform the s-kernels in this sense. The novel LOG-kernel
becomes superior to the log-kernel for larger dimensions, i.e. d ≥ 5.

The main result of this work consists of the proof of Theorem 1 for the novel LOG-case.
This is an essential contribution to the rich history of potential theory, where numerous
proofs for the log-kernel and the Riesz s-kernels have been long-known. Furthermore,
the following contributions are made

• to the field of energy-minimizing spherical point sets:
• open source MATLAB code for the generation of energy-minimizing point

sets, with emphasis on an easy-to-use GUI and automated point quality
evaluation, cf. Figure 4.2

• introduction of symmetrized variants of the kernel functions for highly
efficient generation of symmetric, large, energy-minimizing point sets, cf.
Figure 4.3

• to the field of interpolation on spheres Sd and their surrounding spaces Rd+1:
• definition of the general Concentric Interpolation method
• open source C++ code with emphasis on efficiency, e.g. allowing for tens

of thousands of evaluations per second on a single CPU core, depending on
the dimension d and the number of support points N

• demonstration of highly accurate black-box applicability of the CI method
for an arbitrary engineering function in R8

• exemplary demonstration that, for increasingly high dimension d, support-
ing points generated by the LOG-kernel lead to slightly more accurate in-
terpolation results than points associated with classical log- or s-kernels.

With this strong confidence in the CI method at hand, finally, the ambitious task of
designing a second stage on top of the RB method of Chapter 4.2 is addressed.
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Figure 4.2: Graphical User Interface (GUI) of the provided open source MATLAB code.
In this example, 321 points are arranged on the sphere S2 ⊂ R3 such that they minimize
the energy corresponding to the symmetrized LOG-kernel. The result is a set of N=642
symmetric points which is visualized in Figure 4.3.

Figure 4.3: Plot of the 321 points (blue dots) and their antipodes (red dots) resulting from
the program run depicted in Figure 4.2. The red crosses mark estimates of the centers of
the largest point gaps.
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4.4 Fourth publication – Many-scale finite strain
computational homogenization via Concentric
Interpolation

4.4.1 Concentric Interpolation of the material response

The two-staged scheme of Chapter 4.1 is now adapted to the case of large strains. To this
end, the RB method of Chapter 4.2 is employed in the first stage in order to sample the
material response. Subsequently, the CI method of Chapter 4.3 is utilized in the second
stage for the efficient interpolation of these samples. Here, in contrast to the case of small
strains, multiple quantities are interpolated. This is now addressed in brevity.

As argued in Chapter 4.2, the deformation gradient fluctuation snapshots required in
the setup phase of the RB method are obtained via Concenric Sampling of the space of
Hencky strain tensors. For the same reasons, the supporting points of the Concentric
Interpolation method are placed in the Hencky strain space. However, the choice of
which quantity to interpolate has significant impact on the overall many-scale procedure.

Since it is desired to conduct realistic FE simulations on the macroscopic scale, the
CI implementation ideally returns quantities that do not require post-processing by the
routines from which it is called. This is crucial for efficiency as the evaluation of
the material response takes place at the innermost loop, i.e. at integration point level.
Efficiency is thus increased if the CI scheme directly interpolates the stress and the
stiffness in the formulation used by the FE method.

A common choice is to formulate the FE method with respect to the initial configuration
Ω0. In this case, the second Piola-Kirchhoff stress tensor S and its associated stiffness
tensor C are standard choices as they lead to efficient assembly of the residuum and the
element stiffness. For this reason, the CI scheme is here set up to interpolate 27 scalar
values simultaneously:
[
S

C

]
≈ f̃(t,N) = p(t)TK−1k(N) (4.26)

Here, f̃ ∈ R27, p ∈ RN×27, K ∈ RN×N and k ∈ RN . The Hencky strain EH is
split into t and N in analog to (4.17). Therefore, each component of an appropriate
vectorization S ∈ R6 of S and C ∈ R21 of C is interpolated separately on the space of
Hencky strains.

Although the ansatz (4.26) does not guarantee consistency among the stress and the
stiffness, it turns out to lead to highly accurate results in cases in which a reference
solution is available. Moreover, the convergence of CI-based FEM on the next-larger
scale is rather robust as long as the load is confined within certain (reasonable) bounds.
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These bounds can be controlled by the user during the setup phase of the scheme, i.e.
during the Concentric Sampling steps for the setup and the application of the first stage.

4.4.2 Many-scale homogenization
If the domain on this lager scale is an RVE in its own right, one could wonder whether
the material behavior could be upscaled once more, i.e. to obtain the effective response
on a presumed third scale. To this end, certain gentle assumptions on the physical model
must be made, which do not represent any practical limitation of the present method.
This topic has been thoroughly addressed in one of the first comprehensive summaries of
homogenization theory in general, [Bensoussan et al., 1978, Remark 8.5], where it was
coined “reiterated homogenization”.

The suggested homogenization scheme iterates through scales and is a numerical solution
approximation to the many-scale scheme introduced in Chapter 3.1. It is visually
described in Figure 4.4.

It is demonstrated that bridging of four scales on a standard workstation is viable
from a computational point of view. Scale-softening for porous micro-structures is
observable, however high-fidelity reference solutions were not findable to the author for
such sophisticated homogenization examples. Physically speaking, four is probably close
to the upper limit of the number of scales that can be realistically homogenized under the
assumption of hyperelasticity although no such claim is made at this point. Essentially,
the entire range of hyperelastic scales is treatable by means of this truly many-scale
homogenization method.

A multitude of parameters is involved in the formal statement of the proposed many-
scale homogenization scheme. This fact calls for a thorough investigation of the inter-
dependencies and of how each choice affects the robustness of the overall method. The
present work settles with a successful proof of principle that evaluations of a fourth-scale
homogenized material law can be quickly evaluated on laptop computers.
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Figure 4.4: The proposed many-scale homogenization scheme begins with the Finite
Element Method on the smallest modeled scale, N = 0. Deformation gradient fluctuation
snapshots are generated for the subsequent, classical Proper Orthogonal Decomposition.
This yields the Reduced Basis, which is utilized for efficient generation of the supporting
points for the Concentric Interpolation method. Its computational efficiency allows for
FE simulations on the next larger scale, N = 1, with this CI scheme substituting for
the homogenized material response emerging from the previous scale. Subsequently,
many upscaling processes are conducted until the FEM is set up on the engineering scale,
N = M .
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Fritzen, F. & Kunc, O.: Two-stage data-driven homogenization for nonlinear solids
using a reduced order model. European Journal of Mechanics - A/Solids 69 (2018c),
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Abstract. The nonlinear behavior of materials with three-dimensional microstructure is
investigated using a data-driven approach. The key innovation is the combination of
two hierarchies of precomputations with sensibly chosen sampling sites and adapted
interpolation functions: First, finite element (FE) simulations are performed on the
microstructural level. A sophisticated sampling strategy is developed in order to keep
the number of costly FE computations low. Second, the generated simulation data serves
as input for a reduced order model (ROM). The ROM allows for considerable speed-ups
on the order of 10-100. Still, its performance is below the demands for actual twoscale
simulations. In order to attain the needed speed-ups, in a third step, the use of radial
numerically explicit potentials (RNEXP) is proposed. The latter combine uni-directional
cubic interpolation functions with radial basis functions operating on geodesic distances.
The evaluation of the RNEXP approximation is realized almost in real-time. It benefits
from the computational efficiency of the ROM since a higher number of sampling points
can be realized than if direct FE simulations were used. By virtue of the dedicated
sampling strategy less samples and, thus, precomputations (both FE and ROM) are
needed than in competing techniques from literature. These measures render the offline
cost of the RNEXP manageable on workstation computers. Additionally, the chosen
sampling directions show favorable for the employed kernel interpolation. Numerical
examples for highly nonlinear hyperelastic (pseudo-plastic) composite materials with
isotropic and anisotropic microstructure are investigated. Twoscale simulations involving
more than 106 DOF on the structural level are solved using the RNEXP and the influence
of the microstructure on the structural behavior is quantified.

Keywords: reduced order model; data-driven computational homogenization; RNEXP
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5.1 Introduction

The aim of homogenization methods is the prediction of the effective properties of
microstructured solids. Examples for such materials are particle or fiber reinforced
thermoplastics, porous metals, foams and polycrystalline solids. Many promising
methods have been suggested which extend the early first order estimates proposed by
Voigt [1910] and Reuß [1929]. For linear materials estimates and bounds of various
type have been proposed, e.g. the well-known upper and lower Hashin-Shtrikman
bounds [Hashin & Shtrikman, 1963]. Various monographs on the topic have been
published (e.g. Nemat-Nasser & Hori [1999], Torquato [2006]). For nonlinear materials
the estimation is more difficult, especially when path-dependent problems are considered
(see, e.g., Klusemann et al. [2012], Matouš et al. [2017] for review articles). The
simple first order Taylor and Sachs estimates lead to overly stiff or soft predictions.
Variational estimates can achieve better accuracy (e.g. Ponte-Castañeda [1992, 2002],
Agoras & Castañeda [2011]), but are more involved. For specific applications the general
homogenization problem is often specialized, e.g. in the Gurson model [Gurson, 1977]
for porous metals and the many extensions thereof (e.g. Bilger et al. [2007], Shen et al.
[2012]).

While analytical methods are often useful in the presence of isotropic microstructures
or simple topologies and morphologies (e.g. spheroids with specific orientation distribu-
tion), computational methods can help to predict the material behavior in the presence
of more complicated microstructures. Simulations can provide reliable information on
the hardening and damaging behavior and they can predict viscous effects. For solid
mechanical problems the finite element method (FEM) can be considered as the method
of choice for general problems although schemes based on the Fast Fourier Transform
(FFT) are seeing increasing attention for homogenization problems, e.g. [Mishra et al.,
2016].

A short-coming of the FEM (and more general of simulation methods) is their high
computational cost: each simulation requires billions of algebraic operations and
produces a lot of information that often needs to be stored (e.g. history variables). For
instance the numerical studies presented for porous materials in [Fritzen et al., 2012]
dealt with rather simple materials but required massive computational resources. In
order to alleviate the computational burden, reduced order models have become rather
fashionable, especially in the context of nonlinear homogenization. A major development
in this direction was the Nonuniform Transformation Field Analysis (NTFA, [Michel &
Suquet, 2003, 2004]). Later the NTFA has been extended in terms of the potential-based
reduced basis model order reduction (pRBMOR) of the authors [Fritzen & Leuschner,
2013]. The pRBMOR is based on a mixed incremental variational principle that provides
the evolution law for the reduced degrees of freedom. In combination with GPU
acceleration [Fritzen et al., 2014, Fritzen & Hodapp, 2016] this variational method
has proven to provide reliable predictions at computational complexity allowing for
three-dimensional twoscale simulations with consideration of the microstructure of the
material and of the nonlinearities therein. However, the computational demands remain
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significant. A recent proposal for tackling some disadvantages of the NTFA is the self-
consistent clustering analysis (SCCA, [Liu et al., 2016]). The SCCA consists of two
steps: First, a partitioning of the spatial domain according to a cluster analysis of the
linear elastic strain localization operator is performed. Second, a TFA-like (e.g. [Dvorak
& Benveniste, 1992]) procedure is applied to the subdomains. Other state of the art
techniques from the model reduction community include the (a priori) hyper-reduction
[Ryckelynck, 2005] or the proper generalized decomposition (PGD, e.g. [Néron &
Ladevèze, 2010, Relun et al., 2013]). Despite the recent progress, such reduced order
models are computationally still too involved. Noteably, the NTFA, SCCA and pRBMOR
all incorporate micromechanical considerations into the reduced model which is a key
difference to general (Galerkin) projection based reduced order models such as the R3M
proposed by Yvonnet & He [2007]. The reduced basis is obtained via snapshot proper
orthogonal decomposition (see also [Radermacher & Reese, 2015, Soldner et al., 2017]
for applications). The derived reduced problems are low-dimensional and nonlinear.

A different branch has developed in terms of data-driven techniques (or generalized
look-up-tables) during the past decade. Temizer & Zohdi [2007] have developed
material maps. They calibrated a linear interpolation of the parameters of an asserted
effective constitutive model by means of numerical computations (see also [Temizer
& Wriggers, 2007]). Another approach has been pursued by Yvonnet et al. [2009]
in terms of numerically explicit potentials (NEXP; see also [Clément et al., 2012,
Yvonnet et al., 2013]). They approximated the effective hyperelastic material model
of a microstructured solid based on a substantial amount of sampling points in strain
space. Each sample consists of the effective strain energy of the microstructure subjected
to the given loading (defined by the position of the sample). The NEXP are differentiable
and, hence, the symmetry of the tangent stiffness operator is assured. Unfortunately, the
number of required offline computations is overly large for general three-dimensional
problems. An interesting application of the NEXP in multiscale optimization is due to
Xia & Breitkopf [2015].

Le et al. [2015] used neural networks in order to determine black-box function approxi-
mations in the spirit of the NEXP for multi-parametric problems. The resolution of the
sampling (in strain space) is rather limited, especially at very small strain amplitudes.
This could lead to some deficiencies in the prediction of the homogenized material re-
sponse. Further, the number of precomputations (hundreds of thousands are reported in
[Le et al., 2015]) exceed nowadays computing capabilities by far.

Adressing the topic from a different perspective, Bhattacharjee & Matouš [2016]
proposed a homogenization method for (moderately) nonlinear hyperelastic solids at
finite strains in terms of a manifold-based reduced order model (MNROM). A machine
learning approach is used that exploits large data sets obtained from several thousand
FE simulations. The computational cost of the offline phase of this approach remains
pronounced due to the large number of required high-fidelity solutions (e.g.,≈16,000 FE
solutions in [Bhattacharjee & Matouš, 2016]). It must be emphasized that the MNROM
works purely data-driven, i.e. independent of (reduced) equilibrium conditions, which is
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a notable difference to reduced basis methods for hyperelastic solids (e.g. [Yvonnet &
He, 2007, Soldner et al., 2017]).

In the current investigation we focus on hyperelasticity (here confined to the small
strain regime). In this context we propose a highly structured overall strategy which
combines different computational techniques with a particular layout of the sampling
positions. The latter plays a crucial role and contributes to both accuracy and
performance of the resulting scheme. As a starting point the hyperelastic problem is
rephrased as a minimization problem (Section 5.2.3). Next, a snapshot proper orthogonal
decomposition (similar to, e.g., [Yvonnet & He, 2007]) is employed to construct a
Galerkin reduced order model (ROM) in Section 5.3. The ROM is used to approximate
the high-fidelity model at significantly reduced computational cost, thereby allowing
for thousands of samples for the subsequent data-driven approach. The general layout
of the homogenization procedure is developed in Section 5.4. Following this layout
the radial numerically explicit potentials (coined RNEXP analogous to the NEXP of
[Yvonnet et al., 2009]) are constructed through the two stages developed in Section 5.5.
Detailed algorithms of POD, ROM and RNEXP are provided in the Appendix. A
selection of numerical examples is provided in Section 5.6. These include a comparison
of RNEXP twoscale simulations to FE2R-type computations (FE Square Reduced, cf.
[Fritzen & Hodapp, 2016]) that are computationally significantly more expensive. The
capability to treat realistic three-dimensional geometries with underlying microstructure
is exemplified via realistic twoscale simulations involving more than 106 structural
degrees of freedom in manageable computing time.

5.1.1 Notation

In the following an index free notation of tensors is used. Bold face letters denote
first order (e.g. x, u, n), second order (e.g. σ, ε) and fourth order (e.g. C) tensor,
respectively. Differentiation of a field • with respect to y is written as ∂y•. Alternatively,
the differentiation of functions of multiple arguments y1, . . . with respect to yi is
denoted by ∂yi•. In the case of the spatial variables x and x̄ the common gradient
operators ∇x and ∇x̄ are employed. For the sake of simplicity we confine attention
to an orthonormal basis and introduce vector representations of symmetric second and
fourth order tensors. Vectors and matrices are denoted by underlined quantities and, if
not mentioned otherwise, canonical identities such as σ ↔ σ hold. The selection of an
orthonormal basis is crucial (see also [Yvonnet & He, 2007]), e.g. in terms of

B1 = ex ⊗ ex, B2 = ey ⊗ ey, B3 = ez ⊗ ez, (5.1)

B4 =
√

2 sym (ex ⊗ ey) , B5 =
√

2 sym (ex ⊗ ez) , B6 =
√

2 sym (ey ⊗ ez) .
(5.2)
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For the computation of effective properties the averaging operator 〈•〉 is defined as

〈•〉 =
1

|Ω|

∫

Ω

• dV. (5.3)

5.2 Framework

5.2.1 Twoscale formulation
In the following we assume a standard twoscale framework at small deformations as
considered in many works related to linear and nonlinear homogenization (see, e.g.,
[Feyel, 1999, Fritzen et al., 2012, Fritzen & Leuschner, 2013]). A crucial assumption
in this context is the asserted separation of length scales: the gradients of the fluctuations
of the macroscopic (or effective) quantities must be small relative to the physical length
of the reference volume element (RVE). The latter is assumed to exist, to be well-selected
(cf., e.g., [Galli et al., 2012]) and, further, the material properties at the small length scale
are considered to be available.

On the macroscopic (or structural) domain Ω̄ we consider the displacement field ū, the
infinitesimal strain tensor ε̄ and the stress tensor σ̄. On the microscopic domain, i.e.
inside of the RVE Ω, the respective quantities are u, ε and σ. On either scale the strain
tensor is the symmetric gradient of the displacements

ε̄ =
1

2

(
∇x̄ū+ (∇x̄ū)T

)
, ε =

1

2

(
∇xu+ (∇xu)T

)
, (5.4)

where ∇x̄ denotes the gradient with respect to the macroscopic coordinate x̄ and ∇x
with respect to the microscopic coordinate x. Balance of linear and angular momentum
on both scales needs to be satisfied in the sense that

∇x̄ · σ̄ + b̄ = 0 σ̄ = σ̄T + BC, (5.5)

∇x · σ = 0 σ = σT + BC, (5.6)

where BC denotes the usual (Dirichlet and Neumann type) boundary conditions on the
structural level and b̄ are volumetric forces. On the microscopic scale the boundary
conditions BC are obtained from the scale coupling relations

σ̄ =
1

|Ω|

∫

∂Ω

t⊗ x dA =
1

|Ω|

∫

Ω

σ dV,

ε̄ =
1

|Ω|

∫

∂Ω

sym (u⊗ n) dA =
1

|Ω|

∫

Ω

ε dV,

(5.7)

with the surface traction t and the unit surface normal n. Pores call for special attention,
for instance in terms of the consideration of cavity stresses (pore pressure, whose
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diffusion can actually be interpreted as a viscous contribution on the macro-scale, e.g.
as in [Jänicke et al., 2015]) and cavity strains (see, e.g., [Fritzen et al., 2012]). The
Hill-Mandel condition restricts the microscopic fields to satisfy an integral identity (e.g.
[Bishop & Hill, 1951])

1

|Ω|

∫

Ω

σ · ε̇ dV =
1

|Ω|

∫

∂Ω

(σn) · u̇ dA. (5.8)

The condition (5.8) is satisfied by linear displacement boundary conditions or by periodic
displacement fluctuations. Due to reasons discussed in detail by, e.g., Miehe [2002] we
focus on periodic fluctuation fields which have favorable properties. We refer to the large
body of literature on the topic with respect to other types of boundary conditions and
their algorithmic realization (see also, e.g., [Ostoja-Starzewski, 2006, Fritzen & Böhlke,
2010]).

5.2.2 Hyperelastic material models
In the following attention is confined to hyperelastic materials with free energy den-
sity ψ(ε) on the microscopic scale. For these materials the stress tensor σ and the stiff-
ness C are given by

σ =
∂ψ(ε)

∂ε
, C =

∂2ψ(ε)

∂ε ∂ε
. (5.9)

Of course the consideration of dissipative materials is a key objective which cannot be
achieved by hyperelasticity. Still, hyperelastic materials allow for many meaningful
investigations regarding for example porous materials [Bilger et al., 2005] or the
investigation of materials undergoing (mostly) proportional loading: hyperelastic models
can mimic the stress-strain response observed in elasto-plastic materials.

In this work two different hyperelastic models mimicking plasticity are studied: first, a
deformation type plasticity model without and with linear hardening is considered. It is
closely related to the one used by Bilger et al. [2005] and others. Its free energy is given
by (ε′ = ε− tr(ε)/3 I)

ψ′e(ε) = G‖ε′‖2,

ψ′1,p(ε) =

√
2

3
σc

(
‖ε′‖ − εc

2

)
+

1

2

2Gh

3G+ h

(
‖ε′‖ − εc

)2
,

(5.10)

ψ1(ε) =
K

2
(I · ε)2 +

{
ψ′e(ε) ‖ε′‖ ≤ εc,
ψ′1,p(ε) ‖ε′‖ > εc,

, with εc =

√
2

3

σc

2G
, (5.11)

where K,G, h denote bulk, shear and hardening modulus, respectively. More details
can be found in Appendix 5.8.1. The linear elastic material parameters K and G
correspond to classic isotropic linear elasticity and σc, h correspond to the yield stress
and hardening modulus in von Mises elasto-plasticity, respectively. The free energy of
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Figure 5.1: Deformation plasticity model as, e.g., used in the limit analysis of porous
materials (e.g. [Bilger et al., 2005]) without hardening (black, dashed) and with linear
hardening (blue, solid line) (left: free energy; right: corresponding (deviatoric) stress-
strain curve)

the model with and without hardening and the relation between the deviatoric stress and
the applied deviatoric strain are illustrated in Figure 5.1. Note that unlike elasto-plastic
models, the presented model has no dissipation and the stress-strain relation becomes
unphysical upon unloading. Still, the constitutive response can mimic elasto-plasticity
for proportional strain paths.

Further, a nonlinear material similar to the one employed in [Yvonnet et al., 2009] is
investigated:

εc = ε0

(
σ0

3Gε0

) 1
1−p

, εeq =

√
2

3
‖ε′‖, (5.12)

ψ′2,p(ε) =
σ0ε0

p+ 1

[(
εeq
ε0

)1+p

−
(
εc
ε0

)1+p
]

+
3G

2
ε2
c , (5.13)

ψ2(ε) =
K

2
(I · ε)2 +

{
ψ′e(ε) εeq ≤ εc,
ψ′2,p(ε) εeq > εc.

(5.14)

In addition to the elastic constants K,G, this model has the hardening exponent 0 < p <
1, the reference stress σ0 and the reference strain ε0 as additional parameters (see 5.8.1
for details). In contrast to the model in [Yvonnet et al., 2009] our modified free energy ψ2

shows linear elastic behavior with prescribed shear modulus G until the (pseudo-)yield
stress is reached. Thereby the overly stiff behavior shown by the model proposed and
used in [Yvonnet et al., 2009] (i.e. stiffer than the linear elastic material) at low strains
due to the singularity of the gradient of the free energy is prevented. For higher strains
the nonlinear stress-strain behavior of the original model is preserved. Graphically, the
difference between the original and modified free energy and the related stress-strain
relations are shown in Figure 5.2.
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Figure 5.2: Nonlinear material model (black, dashed; see, e.g., [Yvonnet et al., 2009])
and a modified version thereof (blue, solid line) with linear elastic regime at small strains
(left: free energy; middle, right: deviatoric stress-strain curve for different ranges of ‖ε′‖)

Remark 1 Differentiability of the free energy ψThe potentials that we propose are
continuous up to the first derivative with respect to ε′ and smooth with respect to
the volumetric strain. The second derivative (i.e. the stiffness tensor) is, however,
discontinuous for ‖ε̄′‖ = εc. While the continuity of the first gradient is important since
it guarantees continuous stresses, the continuity of the second derivative is not mandatory.
Further, we would like to emphasize that both models possess a strictly convex free
energy which is desirable from the viewpoint of solution theory (i.e. existence and
uniqueness are a priori guaranteed) if h > 0 is considered for ψ1. The original model
from [Yvonnet et al., 2009] is not differentiable at ε = 0 which is delicate from a
computational perspective.

It shall be noted that, assuming a Galerkin formulation, the weak form of balance of
linear momentum of the hyperelastic RVE problem can be expressed by the minimum
problem (similar to [Moulinec & Suquet, 2003])

W (ε̄) = min
ε∈Kε

Π(ε), with Π(ε) =
1

|Ω|

∫

Ω

ψ(ε) dV. (5.15)

Here Kε denotes the strain fields derived from the set of all admissible displacement
fieldsKu that are in accordance with the prescribed deformation ε̄ and with the boundary
conditions. In the following Kε and Ku are used alternately since they are isomorphic
Kε ∼ Ku. Analogously we identify Π(u) ≡ Π(ε), where ε = ε(u). The sets Ku,Kε
can be written in terms of a displacement fluctuation field w and the macroscopic strain
ε̄ via

Ku =
{
u = u0 +w with u0 = ε̄x,w ∈ H1

#

}
,

Kε =
{
ε = ε̄+ ε̃(w) withw ∈ H1

#

}
.

(5.16)

Here H1
# is the space of all periodic fields in the usual Sobolev space of continuous

functions with square integrable gradient. Since the macroscopic strain ε̄ is prescribed in
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strain-driven homogenization, the minimum problem (5.15) can be written as: Find the
displacement fluctuations ũ ∈ H1

# such that

δΠ(ε̄+ ε̃(ũ)) =
1

|Ω|

∫

Ω

ε̃(w) · σ (ε̄+ ε̃(ũ)) dV
!
= 0 ∀w ∈ H1

#. (5.17)

5.2.3 Effective hyperelastic material model

The effective energy W (ε̄) defines the effective stress and stiffness via

σ̄ =
∂W (ε̄)

∂ε̄
=

〈
∂ψ

∂ε

〉
, C̄ =

∂2W (ε̄)

∂ε̄ ∂ε̄
= 〈C(ε)〉+

〈
C(ε) · ∂ε̃

∂ε̄

〉
. (5.18)

The tensor C̄ has the two minor and the major symmetry and is positive definite for
convex microscopic strain energy functions. By inspection of (5.18) the solution of the
microscale variational problem (5.17) can be omitted, if the function W and its gradients
are known. Hence, the hyperelastic homogenization problem is reformulated as:

Find W ∈ C2,1(Sym(R3),R) such that W (ε̄) = inf
ũ∈H1

#

Π(ε̄+ ε̃(ũ)). [H]

Here C2,1 denotes all piecewise twice differentiable functions with continuous first
derivative. The structure of [H] immediately confirms that the actual field w realizing
the infimum of Π is not necessarily needed, if W is available. In the following the
homogenization problem is re-phrased in terms of a function approximation problem: a
surrogate W̃ ≈W is sought-after.

The idea to approximate W has a rich history. The simplest approximation is given
by the Taylor approximation (which goes back to the early work of Voigt [1910]).
It defines a strict upper bound for the effective strain energy by asserting ũ = 0,
i.e. asserting constant strain in the entire microstructure. Other approaches include
the Hashin-Shtrikman estimate [Hashin & Shtrikman, 1963] or the various variational
methods by Ponte-Castañeda, Suquet and others [Ponte-Castañeda, 1991, Lahellec &
Suquet, 2007a,b, Agoras et al., 2016]. The (semi-) analytical techniques have their
up- and downsides: often they are computationally rather inexpensive. However, they
cannot account for arbitrary microstructural geometries. The presence of pronounced
geometrical features attracts computational methods. Most often these methods are
realized in terms of finite element simulations on the microstructural level or, more
recently, the techniques based on the Fast Fourier Transform (FFT; e.g. [Zeman et al.,
2010, Kabel et al., 2014, Mishra et al., 2016]). In the following an approach that is
realized using a FE discretization is used. However, FFT or Finite Difference based
schemes could be used, as well.
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5.3 Hyperelastic Reduced Order Model

5.3.1 Galerkin Reduced Order Model

The reduced order model (ROM) for the hyperelastic problem is constructed based on
the minimum problem (5.15). Therefore it is assumed that a reduced basis (RB) E of
the strain fluctuations ε̃ is given (see Section 5.3.2 regarding the construction of the RB).
The RB thereby defines a subset of kinematically admissible strain fields K̃ε via

K̃ε(ε̄) =

{
ε = ε̄+ ε̃ with ε̃ =

N∑

i=1

ξi Ei
}
⊂ Kε, (5.19)

where Ei denotes the ith basis function of the N -dimensional basis E (derived from a
displacement fluctuation ũi) and ξi is the related activity coefficient. For brevity the
fluctuation field in (5.19) is denoted by ε̃(ξ). The reduced problem stemming from (5.17)
reads

W̃ (ε̄) = min
ε∈K̃ε

1

|Ω|

∫

Ω

ψ(ε) dV = min
ξ∈RN

1

|Ω|

∫

Ω

ψ
(
ε̄+ ε̃(ξ)

)
dV. (5.20)

Allowing for arbitrary variations of ξ leads to a set ofN nonlinear equations representing
the necessary conditions for a minimum of (5.20):

fi(ξ) =
1

|Ω|

∫

Ω

Ei ·
∂ψ
(
ε̄+ ε̃(ξ)

)

∂ε
dV

!
= 0 (i = 1, . . . , N). (5.21)

For convenience a vector notation for the strains is used (see Section 5.1.1), i.e.

ε↔ ε, ε̄↔ ε̄, σ ↔ σ, . . . . (5.22)

Then the RB for the strain fluctuation ε̃ can be expressed by a matrix-valued field

E(x) =
[
E1(x) E2(x) · · · EN (x)

]
∈ Ω 7→ R6×N . (5.23)

The reduced problem (5.21) is then rewritten in the compact form

f(ξ) =
1

|Ω|

∫

Ω

ETσ dV
!
= 0, σ ↔ σ =

∂ψ
(
ε̄+ ε̃(ξ)

)

∂ε
. (5.24)

Due to K̃ε ⊂ Kε the effective free energy in the reduced setting W̃ denotes an upper
bound to the effective strain energy density W for arbitrary macroscopic strains ε̄

W̃ (ε̄) ≥W (ε̄). (5.25)
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The numerical solution of the nonlinear problem (5.24) can be obtained via a Newton-
Raphson iteration requiring the Jacobian

J(ξ) =
1

|Ω|

∫

Ω

ETC E dV C ↔ ∂2ψ

∂ε ∂ε
. (5.26)

The Jacobian is also needed for the computation of the algorithmic stiffness operator. In
order to derive the latter, the differential of (5.24) is investigated:

df = J dξ + Σ dε̄ = 0 ⇒ dξ = −J−1Σ dε̄, Σ =
〈
ETC

〉
(5.27)

The condition df = 0 enforces the stationary condition f = 0 under changes of the
strain dε̄. Substituting dξ from (5.27) into the differential of the microscopic strain
dε = dε̄+ E dξ implies

dσ̄ = 〈C dε〉 = 〈C〉 dε̄+ 〈C E〉 dξ =
[
〈C〉 − ΣTJ−1Σ

]
dε̄. (5.28)

The symmetry of C (since C is the Hessian of ψ) is exploited in (5.28). The tangent
stiffness is thus

C
A

=
dσ̄

dε̄
= 〈C〉 − ΣTJ−1Σ. (5.29)

The algebraic structure of (5.29) confirms that the effective stiffness operator is uncon-
ditionally symmetric. Further it is bounded from above by the Taylor/Voigt approxima-
tion C =

〈
C
〉

. In order to show this an arbitrary strain e↔ e is introduced. Then

eTC
A
e = eTC e− eTΣTJ−1Σ e (5.30)

holds. The local stiffness C is positive (semi-) definite and, thus, the Jacobian J is
symmetric positive (semi-) definite. By defining y = Σ e and accounting for the
positivity of J , equation (5.30) induces the inequality

eTC
A
e = eTC e− yTJ−1y ≤ eTC e ⇔ ρ(C

A
) ≤ ρ(C), (5.31)

where ρ(•) denotes the spectral radius.

A comprehensive algorithm for the Galerkin ROM for hyperelastic solids is presented in
Appendix 5.8.2.

5.3.2 Generation of the reduced basis via snapshot POD
The reduced basis E (RB) (or E, respectively) was assumed to be given in Section 5.3.1.
In the current work the RB is identified using a snapshot proper orthogonal decompo-
sition (POD). The POD is performed on the strain fluctuation fields ε̃ gathered during
precomputations performed using the high-fidelity discretization (here: using the FEM)
on the fully resolved microscale problem. The standard L2(Ω) inner product was cho-
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sen for simplicity (operating on the strain fluctuations), but different inner products for
the computation of the snapshot correlation matrix could be chosen at will. The authors
would like to emphasize that taking the L2(Ω) inner product is equivalent to a weighted
inner product on the periodic displacement fluctuationsw but is different from taking the
L2(Ω) product of the displacements which is a crucial observation.

In contrast to standard POD Galerkin procedures the method proposed in Section 5.3.1
does not operate directly on primal fields (i.e. on the displacements). Instead it operates
directly on the strain fluctuations which is favorable from an algorithmic view-point.
In contrast to assembling a displacement field and deducing therefrom the strains, the
direct computation of the strains requires less floating point operations and allows for a
straight-forward implementation at moderate programming effort. Still, the displacement
field leading to the strain is stored and, therefore, the deformations can be computed for
postprocessing purposes. An algorithm for the implementation of the snapshot POD can
be found in Appendix 5.8.3.

5.4 Data-assisted homogenization using reduced or-
der models

5.4.1 Layout

In order to find the function W̃ approximating the solution of the hyperelastic homoge-
nization problem [H] (see p. 53), a hierarchical procedure based on three approximation
levels is proposed:

• Level 1: A (small) set of computationally involved finite element simulations are
effected and NFE

comp field solutions are computed.

• Level 2: The FE results are processed by a snapshot POD in order to identify a reduced
order model (ROM; see Section 5.3). The ROM is solved NROM

comp times in order to
generate snapshots of W and σ̄.

• Level 3: Based on the data generated from the mechanically and mathematically
supported ROM, a data-assisted interpolation algorithm is trained (see Section 5.5).

The procedure is summarized in Figure 5.3. The scores at the bottom of each box
rate some of the properties, i.e. the reproduction capability (recover solution used for
the model generation), the prediction ability (prediction of solutions for new loadings),
the amount of recovered field information (e.g. local stress/strain information) and the
overall computational efficiency (for computation of W, σ̄, C̄).

The RNEXP (Level 3) is constructed in two stages:

• Stage 1: Construction of the ROM [L.2] using FE solution from [L.1].

• Stage 2: Construction of the data-driven RNEXP [L.3] based on data from Stage 1.
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Level 1: FE

• full resolution finite element

computations

• effort ∼ O(NFE
compnFE)

◮ gather full-field information

reproduction • • • • •
prediction • • • • •
field information • • • • •
computational efficiency ◦ ◦ ◦ ◦ ◦
number of samples • ◦ ◦ ◦ ◦

◮

Level 2: ROM (Section 3)

• hyperelastic reduced order

model

• effort ∼ O(NROM
compnROM)

◮ sample W and stress σ̄

reproduction • • • • •
prediction • • • ◦ ◦
field information • • • • ◦
computational efficiency • • • ◦ ◦
number of samples • • • • ◦

◮

Level 3: RNEXP (Section 5)

• interpolatation scheme based

on ROM data

• effort ∼ O(Ndata)

◮ effective response (W, σ̄, C̄)

reproduction • • • • •
prediction • ◦ ◦ ◦ ◦
field information • ◦ ◦ ◦ ◦
computational efficiency • • • • •
number of samples (all)

Figure 5.3: Sampling strategy for the staggered reduced order/data-driven homogenization
procedure

Key ingredients in this construction are:

• Clever design of experiments to reduce the number of sampling points (see Sec-
tions 5.4.3 and 5.4.4). The definition of the sampling points has implications for all
levels and is essential for the proposed homogenization scheme.

• The use of a (ROM, c.f. Section 5.3) for fast data-provisioning.

• A data-driven function approximation related to the NEXP [Yvonnet et al., 2009,
Clément et al., 2012, Le et al., 2015] is used: the RNEXP.

5.4.2 Analysis of the NEXP of Yvonnet et al.
Yvonnet and co-workers [Yvonnet et al., 2009, Clément et al., 2012] have suggested
the use of Numerically EXplicit Potentials (NEXP) in order to approximate the effective
free energy W of hyperelastic, microstructured materials. The NEXP approximation is
obtained by first computing via microscale FE simulations the effective strain energy on a
regular grid1 in strain space followed by a subsequent spline interpolation of the gathered
data. The identification of the spline was much eased by using a tensor decomposition
(referred to as NEXP2 in [Yvonnet et al., 2009] but called NEXP in the remainder of
this paper). Similar tensor decomposition techniques include but are not limited to the
recent TT-Cross [Drozdov et al., 2017] and hierarchical Tucker tensors (e.g. [Grasedyck,
2010]).

The main outputs of the NEXP are the effective stress σ̄NEXP and the stiffness C̄NEXP

which are determined by the first and second gradient of the data-driven approximation
of the effective free energy W̃NEXP, respectively:

σ̄NEXP =
∂W̃NEXP

∂ε̄
, C̄NEXP =

∂2W̃NEXP

∂ε̄ ∂ε̄
. (5.32)

1Irregular or nonuniform strain grids are briefly mentioned in Yvonnet et al. [2009], but have
not been investigated to the best of our knowledge (also not in the follow-ups [Clément et al., 2012,
Yvonnet et al., 2013]).
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While the NEXP approach is generally appealing, the construction of the surro-
gate W̃NEXP requires a substantial amount of training simulations. In the following let
D be the resolution of the grid spanning the strain space along one direction (with three
directions being needed for plane strain and six for general three dimensional problems).
Then the grid required for building the approximation W̃NEXP consists of D6 sampling
points for general 3D problems. At each sampling point a finite element simulation on
the RVE level is needed. The number of D6 simulations is prohibitive, even if D is
rather small/moderate: a coarse grid consisting of D = 10 points in each direction in
strain space would require a total of 1 Mio. finite element solutions of the nonlinear RVE
problem. This is clearly beyond nowadays computing capabilities and (most likely) also
beyond the ones that are expected in the near future, especially, if additional parameter
variations accounting for changing microscopic characteristics are considered.

After closer inspection it is also found that the regular grid in strain space assumed for
the original NEXP has an additional short-coming: At low strain amplitudes (i.e. for
‖ε̄‖≪ 1), the regular grid has a limited accuracy with respect to resolving possible
anisotropic material response of the microstructured solid. On the other hand the uniform
grid spacing leads to a sort of oversampling at larger strain amplitudes. In order to
illustrate this more clearly, the six-dimensional effective strain ε̄ is decomposed into
its amplitude ε̄ and a six-dimensional directionNε (with ‖Nε‖ = 1) according to

ε̄ = ε̄Nε, ε̄ = ‖ε̄‖2, Nε =
ε̄

ε̄
. (5.33)

Making use of an orthonormal basis {B(i)}6i=1 spanning Sym(R3), the grid points are
parameterized via

ε̄ =

6∑

i=1

nihB
(i), ni ∈ {−nh,−(nh − 1), . . . , nh − 1, nh} (5.34)

where nh = (D − 1)/2, ni is the discrete grid position and h is the grid spacing2 .
At the lowest non-zero amplitudes (i.e. for ε̄ = hB(i) for arbitrary i ∈ {1, . . . , 6}) the
minimum angle to a neighboring3 (not co-linear) data point is

φmin(hB
(i)) = acos

(
hB(i) · h

(
B(i) +B(j)

)
√

2h2

)
= acos

(√
2

2

)
=
π

4
≡ 45◦ (5.35)

and the largest angle to a neighboring grid point is

φmax(hB
(i)) = acos

(
1√
6

)
= acos

(√
6

6

)
≈ 0.366π ≡ 65.9◦. (5.36)

A graphical representation of φmin and φmax is shown in Figure 5.4.

2(D should be odd in order to include zero strain as a sample point)
3Neighboring points denote points that can be reached by moving (at most) one grid width along

each coordinate axis.
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φmax = acos
(

1√
d

)

φmin = acos
(√

2
2

)

B(1) B(2)

B(d)

Figure 5.4: Hyper-cube for illustration of φmin = π/4, φmax = acos(1/
√
d) (where d is

the spacial dimension, i.e. d = 6 for strains in Sym(R3); here d = 3 is used in order to
allow for a reasonable graphical representation)

Thus, directional information can only be provided in a rather scarce way which implies
that the anisotropy of the effective behavior cannot be captured accurately for low strain
amplitudes. However, at higher strain amplitudes we have

φmin(nhhB
(i)) = acos

(
n2
h

nh

√
n2
h + 1

)
= acos

(
nh√
n2
h + 1

)
≈ acos(1) = 0. (5.37)

More precisely, data is provided at states for which the directions are nearly parallel and
the amplitudes are comparable, too. Even for moderate values like D = 11, the angle
gets as low as 0.0628π ≡ 11.31◦ and for D = 21 it is 0.0317π ≡ 5.71◦. Note also that
along the diagonal of the hyper-cube in strain space parameterized via

Dk = kh

6∑

i=1

B(i), (5.38)

the minimum nearest neighbor angle is much lower (numerical values are for D = 11):

Θmin (D1) = acos

(
7

3
√

6

)
nh=5≈ 0.0984π ≡ 17.72◦, (5.39)

Θmin (Dnh) = acos

(
6n2

h + nh√
6nh

√
5n2

h + (nh + 1)2

)
nh=5≈ 0.0229π ≡ 4.13◦. (5.40)

In summary for p = 11 the nearest angle to neighboring data points varies between
approximately 4.13◦ and 45◦ for a uniform grid. For D = 21 (i.e. for nh = 10) the
number of data points is increased by a factor ≈ 48 = (21/11)6. Still, around the origin
the minimum nearest neighbor angle is π/4 ≡ 45◦ and the smallest possible nearest
neighbor angle is 0.0117π ≡ 2.10◦. This means that the resolution of the data sampling
with respect to the direction (i) depends on the strain amplitude and (ii) is anisotropic.

Another limitation of the regular grid in strain space is the coarse resolution in radial
direction (i.e. with respect to the strain amplitude): at low strains the nonlinearity of the
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materials presented in Section 5.2.2 is pronounced and it decays quickly at higher strain
amplitudes.

The above observations show that – although it can lead to good results of the
interpolation function in parts of the strain space – the representation of the data is
heterogeneous within the grid and, hence, a lot of near redundant computations are
performed at the outer boundary. Additionally it is found that the behavior for low
amplitudes of the strain tensor is approximated in a rather coarse way although this
domain is likely to be important for practical applications.

The authors of the NEXP have more recently accounted for some of these short-comings
in [Le et al., 2015] where they combine the idea of numerically explicit potentials with
neural networks trained by the high-dimensional model representation method (HDMR;
see, e.g., [Manzhos & Carrington Jr, 2006]). The data sampling is performed using
Monte Carlo type sampling, i.e. unstructured random samples are drawn.

5.4.3 Sampling strategies: preliminary considerations

The levels 1 and 2 provide information samples for the next level of the model which
is eventually used for the prediction of the homogenized response in the purely data-
driven level 3. In order to perform the data sampling on either of the levels 1 and 2 (in
the following [L.1] and [L.2], respectively) efficiently, the sought-after outputs and the
algorithmic properties of the underlying numerical procedure (i.e. FE for [L.1] vs. ROM
for [L.2]) must be considered:

• Stage 1 ([L.1] I data for [L.2]): Finite Element simulations for building the ROM
In order to provide reasonable inputs for [L.2] the full parameter space should be
explored. This implies that (i) strain amplitudes from 0 to the expected maximum
strain should be considered, (ii) a sufficient accuracy in the straining direction (e.g. in
terms of angle to neighboring directions) should be considered and (iii) at low strain
amplitudes the load increments should be small while they may increase gradually4.

Input during [L.1] are the microstructural geometry (in terms of a FE mesh), the
material properties and the loading directions and amplitudes. The FE simulations
benefit from constant loading direction which lead to good performance during
Newton-Raphson iterations. The outputs of [L.1] used for [L.2] comprise the
displacement field u(x) and the strain field ε(x).

• Stage 2 ([L.2] I data for [L.3]): Data generation using the ROM for training the
RNEXP
The reduced order model (see Section 5.3) allows for rapid computations of the
effective free energy W (ε̄) and of the effective stress σ̄. The performance of the
ROM computations benefits from the proportional loading for the same reasons stated

4The optimal strain amplitudes depend strongly on the microscopic materials and partially on the
considered microstructure.
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in Stage 1 for the FE simulations. The data samples (W , σ̄) gathered in [L.2] provide
the inputs for the data-assisted predictions of the RNEXP [L.3].

5.4.4 Discretization of load amplitudes and directions
In order to easily account for the directional dependency of the constitutive response
as well as for the higher strain amplitude sensitivity at low amplitudes, a coordinate
separation into direction and amplitude is suggested according to (5.33). The proposed
split can be seen as a special case of stratified sampling (cf. [Mckay et al., 2000]). It is
noteworthy that for the purpose of general twoscale simulations a large part of the strain
space (i.e. arbitrary directions up to a considerable load amplitude) need to be sampled.
This is due to the fact that the loading within the macroscopic structure is usually a
priori unknown and can be strongly heterogeneously distributed with unexpected peaks.
Therefore, no lower dimensional manifold can be identified for the sampling which could
allow for further compression of the sampling set.

In this section, we explain the proposed discretization of the strain space in general. The
question of exactly how many points to choose and where to locate them for a particular
problem will be addressed in Section 5.5.5, as well as notes on refinement.

Along a constant direction Nε
i different load amplitudes ε̄j are considered. In order to

capture the often pronounced dependency on the load amplitude at low strains, a simple
geometric series is proposed with parameters ε̄1 > 0, R ≥ 0:

∆ε̄1 = ε̄1 > 0, ∆ε̄k+1 = (1 +R)∆ε̄k, ε̄k+1 = ε̄k + ∆ε̄k+1 (k = 1, . . . , q).
(5.41)

For given number of radial steps q and final strain amplitude ε̄max, the initial load step ε̄1

can be computed as a function of R through

ε̄1(R, q, ε̄max) =
ε̄maxR

(1 +R)q − 1
. (5.42)

Alternatively, R can be identified for given ε̄1, ε̄max numerically. An example for
R = 0.3, q = 10 and ε̄max = 2.5% is given in Table 5.1. These numerical values
show that a high sampling point density at small loadings (e.g. close to the yield point)
can be recovered.

Table 5.1: Example values for the nonuniform sampling in radial direction (R = 0.3,
q = 10, ε̄max = 2.5%)

i 1 2 3 4 5

ε̄i [%] 0.0587 0.1349 0.2341 0.3629 0.5305

i 6 7 8 9 10

ε̄i [%] 0.7483 1.031 1.400 1.878 2.500



62 5 First publication

In order to efficiently generate training directions the approach presented by Fritzen &
Leuschner [2015] (see Section 3.6 therein) is adopted. In brief, a procedure mimicking
electrostatic repulsion is used to attain a near-homogeneous distribution of points on the
hyper-sphere in R6. The symmetry of the material behavior is accounted for by using
a symmetrized version of the repulsive potential (in accordance with Section 5.5.4; see
below). The method takes as parameters the number of directions to be generated and
one fixed direction (Nε

1 = ex ⊗ ex in our examples). A refined version of the algorithm
is currently under development and will be the topic of another study.

Examples of the outputs of the algorithm are shown in Figure 5.5: First, preliminary
results for two-dimensional point sets are presented which highlight that a perfectly
homogeneous neighbor distance distribution function can be achieved. For the general
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Figure 5.5: Left: Illustration of point sets on a two-dimensional hyper-sphere (with point
symmetry); initial random points blue) and after repulsion algorithm (black); distribution
of the geodesic distance function for random points in R2 (middle) and R6 (right);
initial data: blue lines; processed data: black lines; each line represents the probability
distribution for one directionNε

i , i = 1, . . . , 512 (symmetry cf. (5.72) applies).

six dimensional space the probability distribution of the neighbor distance is significantly
improved after the processing: The distribution functions of the k-nearest neighbor for
different Nε

i are almost identical and they have an almost uniform nearest neighbor
distance which avoids unwanted oscillations and overshooting in the kernel based
interpolation of Section 5.5.

5.5 Radial numerically explicit potentials (RNEXP)

5.5.1 Data sampling strategy
For the reasons given in Section 5.4.4, the data sampling is done by using an amplitude–
direction split. Therefore, normalized loading directionsNε

i ∈ Sym(R3) (i = 1, . . . , n)
and nonuniformly spaced amplitudes rj ∈ (0, ε̄max] (j = 1, . . . , q) are considered. This
split results into a total of Ncomp = nq sampling positions, where Ncomp corresponds to
NFE

comp (in [L.1], Fig. 5.3) and NROM
comp (in [L.2], Fig. 5.3) and q could depend likewise on

the hierarchical approximation level. It is chosen identical in this study. The proposed
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discretization helps to retain the important physical information while minimizing the
number of sampling positions.

For each of these sampling positions the free energy and the stress in radial direction are
stored:

Dij = W (rjN
ε
i ), D ∈ Rn×q, i ∈ {1, . . . , n}, j ∈ {1, . . . , q}, (5.43)

Tij = Nε
i · σ̄(rjN

ε
i ), T ∈ Rn×q, i ∈ {1, . . . , n}, j ∈ {1, . . . , q}. (5.44)

The coefficients Tij correspond to the uniaxial stress in the loading direction. At the
same time, Tij is the derivative of W with respect to the load amplitude:

∂W (ε̄)

∂r
=
∂W (ε̄)

∂ε̄
· ∂ε̄
∂r

= σ̄ ·Nε (5.44)↔ Tij . (5.45)

The storage of both, Dij and Tij is a noteworthy difference to existing interpolation
strategies where only W is sampled. Note that the amplitudes rj have nonuniform
spacing cf. Section 5.4.4, Table 5.1.

5.5.2 Interpolation scheme

In order to attain the sought-after outputs (i.e. the effective free energy, the effective
stress and the stiffness operator), accurate approximations of the free energy and its first
and second gradient are required based on the sampling of Section 5.5.1.

Along each training direction Nε
i a C1-continuous piecewise cubic polynomial Si(r) is

fitted. The function Si ∈ P3(R) : [rj , rj+1) 7→ R needs to satisfy the conditions

Si(rj) = Dij , S ′i(rj) = Tij , Si(rj+1) = Di(j+1), S ′i(rj+1) = Ti(j+1), (5.46)

which uniquely define cubic polynomials on all intervals. The additional conditions
W (0) = 0 and σ̄(0) = 0 are used, i.e. the undeformed configuration is assumed
to be stress-free and, hence, with zero free energy5. In Figure 5.6 a representative
example is shown in which the interpolation (blue curve) and the provided data are
shown together. At each sampling point the slope (represented by Tij) is illustrated
via black line segments. By the metric of vision the piecewise cubic interpolation
seems to provide accurate approximations of the data which was also confirmed by
comparison to additional computations with different load increments. The functions Si
are straight-forward to adjust to the data and they are independent of the nonuniform
radial discretization. In contrast to cubic spline interpolations no additional algebraic
conditions are needed at the boundary.

5Chemical, thermal and other contributions to the free energy can be disregarded in the present,
purely mechanical, setting.
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Figure 5.6: Comparison of the data (energiesDij and slopes Tij ; black symbols/line seg-
ments) to the piecewise cubic interpolation (blue) defined by (5.46); the data corresponds
to a training loadings for a microstructure including 10% particles); full load range (left)
and first load steps (right)

Next, a coordinate separation is proposed according to

W (ε̄Nε) ≈ W̃ (ε̄,Nε) =

n∑

i=1

wi(N
ε)Si(ε̄). (5.47)

Here wi(N
ε) denotes the interpolation weight for the ith radial interpolation func-

tion Si(ε̄). More precisely, first the energy along the training directions Nε
i is inter-

polated via Si(ε̄). Then the weights w(Nε) perform the tangential interpolation on the
hyper-sphere in R6 at constant strain amplitude ε̄. They depend on the distance ofNε to
the training directionsNε

i only, and they are constrained by
n∑

i=1

wi(N
ε) = 1. (5.48)

In order to allow for accurate reproduction of the data Dij and Tij the weights need to
satisfy

wi(N
ε
j) = δij =

{
0 i 6= j,

1 i = j.
(5.49)

In the following the weight wi is computed by a radial basis functions (RBF) operating
on the geodesic distance ξi of the directionNε to the training directionNε

i . The distance
ξi is computed through

θi(N
ε) = Nε ·Nε

i = cos(ξi) ∈ [−1, 1] ⇒ ξi(N
ε) = acos(θi). (5.50)

Next the Gaussian kernel function

ζi(N
ε) = exp

(
−γ ξ2

i (Nε)
)

(5.51)
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with positive parameter γ > 0 is considered as RBF. For the training directions Nε
i the

symmetric kernel matrix

Kij = Kji = exp
(
−γ ξ2

i (Nε
j)
)

(5.52)

is defined. Note that for unique (i.e. non-repeated) training directions K is positive
definite, i.e. invertible. Then the weights w(Nε) ∈ Rn can be computed via

w(Nε) = K−1ζ(Nε), (5.53)

where ζ ∈ Rn is a vector with components defined via (5.51). Through (5.53) the
Kronecker delta property (5.49) is a priori satisfied. The normalization condition (5.48)
is more intricate to investigate. The authors have found that for the training directions
provided through the algorithm of Section 5.4.4, the weights (very) closely satisfied the
partition of unity condition for all γ that lead to reasonable interpolations, i.e. in the
considered examples the deviations were on the order of 10-5 and below which can be
considered negligible (for n = 512 training directions). Note that the condition (5.48)
could be enforced by uniform a posteriori correction of the weights.

Finally, the approximation W̃ is expressed through

W̃ (ε̄,Nε) = ST(ε̄)K−1ζ(Nε) = ST(ε̄)w(Nε), wi =

n∑

k=1

(
K−1

)
ik

(
ζ(Nε)

)
k
.

(5.54)

The representation (5.54) emphasizes the radial–tangential (or amplitude–direction) split:
first the data in radial direction is interpolated along all training directions Nε

i at the
amplitude ε̄ of the query point. This data is then interpolated in tangential direction, i.e.
on the hyper-sphere in R6, through the weights w emerging from the Gaussian kernel.

Remark 2 Oscillations and overshootingKernel methods with the Kronecker prop-
erty (5.49) can produce strongly oscillatory function interpolations. Here, the sensible
selection of the training directions via the procedure described in Section 5.4.4 pays off:
the geodesic distance between the training directions is (almost) identically distributed.
This leads to a well-conditioned kernel matrix for near arbitrary values of γ and, impor-
tantly, the accuracy of the RNEXP is not too sensitive with respect to γ.

5.5.3 Computation of stress and stiffness
The stress and the stiffness will now be computed via the gradients of (5.54). For this
purpose one could, principally speaking, store only the energy (5.43) resulting from
[L.2]. Instead, the stress in radial direction (5.44) is also stored and used as input
to the radial interpolation, cf. (5.46). Taking this gradient information into account
increases the accuracy of the piecewise cubic polynomial interpolation considerably, see
also Figure 5.6. Although generally possible within the proposed interpolation scheme,
a direct interpolation of the stresses is not followed in this work by purpose. This
is motivated by the fact that the related tangent operator would lose symmetry which
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contradicts the existence of a hyperelastic energy function. Further, the energy density
reconstructed from a direct interpolation of the stresses could lead to numerically induced
path-dependency which should be avoided.

In order to evaluate (5.54) the constant kernel matrix K is pre-computed and its
inverse K−1 is stored. Then at each evaluation point ε̄ = ε̄Nε the cubic interpolations
along the training directions S(ε̄) and the vector ζ(Nε) composed of the Gaussian kernel
functions is computed. The effort for one evaluation is O(n2) due to the (dense) matrix-
vector product involving the inverse of the kernel matrix K. However, all operations are
simple explicit function evaluations operating on independent data in an algorithmically
favorable form (see also Appendix 5.8.4).

In order to evaluate the gradients of the approximation (5.54) some intermediate steps
are useful. The following relations hold for the derivatives of θi and ξi with respect to
the total strain:

∂θi
∂ε̄

=
1

ε̄
PεNε

i =
1

ε̄
(Nε

i − θiNε) =
sin(ξi)

ε̄
Qε
i , (5.55)

∂2θi
∂ε̄ ∂ε̄

=
1

ε̄2
(3θiN

ε ⊗Nε − θiI− 2 sym (Nε
i ⊗Nε))

= − 1

ε̄2
(θiPε + 2 sin(ξi) sym (Qε

i ⊗Nε)) ,

(5.56)

where Pε = I−Nε ⊗Nε. Geometric considerations motivate the definition of the
direction Qε

i pointing from Nε towards Nε
i within the tangent plane defined by the

normalNε (see also Figure 5.7):

Qε
i =

1

sin(ξi)
PεNε

i =
1

sin(ξi)
(Nε

i − θiNε) , ‖Qε
i‖ = 1, Nε ·Qε

i = 0. (5.57)

N ε

N ε
iθi

sin(ξi)

Qε
i

ξi

Figure 5.7: Geometric interpretation ofQε
i
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Using the presented abbreviations the derivative of ξi with respect to ε̄ can be expressed
via

∂ξi
∂ε̄

= − 1

sin(ξi)

∂θi
∂ε̄

= −1

ε̄
Qε
i , (5.58)

∂2ξi
∂ε̄ ∂ε̄

=
1

ε̄2

(
θi

sin(ξi)
(Pε −Qε

i ⊗Qε
i ) + 2 sym (Qε

i ⊗Nε)

)
def.
=

1

ε̄2
Qi. (5.59)

Combing the derivatives of ζi

ζ′i =
∂ζi
∂ξi

= −2γ ξiζi, ζ′′i =
∂2ζi
∂ξi ∂ξi

= −2γ
(
ζi + ξiζ

′
i

)
= −2γζi

(
1− 2γ ξ2

i

)
,

(5.60)

with (5.58) and (5.59), the derivatives of the kernel function ζi with respect to the
macroscopic strain ε̄ are

∂ζi
∂ε̄

= ζ′i
∂ξi
∂ε̄

= −ζ
′
i

ε̄
Qε
i =

2γ ξiζi
ε̄

Qε
i , (5.61)

∂2ζi
∂ε̄ ∂ε̄

= ζ′i
∂2ξi
∂ε̄ ∂ε̄

+ ζ′′i
∂ξi
∂ε̄
⊗ ∂ξi
∂ε̄

=
ζ′i
ε̄2

Qi +
ζ′′i
ε̄2
Qε
i ⊗Qε

i . (5.62)

The derivatives of the radial approximation Si are

S ′i =
∂Si
∂ε̄

, S ′′i =
∂2Si
∂ε̄ ∂ε̄

,
∂Si
∂ε̄

= S ′iNε,
∂2Si
∂ε̄ ∂ε̄

= S ′i
1

ε̄
Pε + S ′′i Nε ⊗Nε.

(5.63)

Last, the following partial derivatives of W̃ are provided in convenient matrix-vector
notation:

∂W

∂S = K−1ζ,
∂W

∂ζ
= K−1S, ∂2W

∂S ∂ζ =
∂2W

∂ζ ∂S = K−1 (5.64)

With these technical, yet required, abbreviations at hand the effective stress can be
derived:

σ̄ =
∂W

∂ε̄
=
∂W

∂S
∂S
∂ε̄
Nε +

∂W

∂ζ

∂ζ

∂ε̄
= Nε

(
S ′TK−1ζ

)
− 1

ε̄

n∑

i=1

(
K−1S

)
i
ζ′iQ

ε
i .

(5.65)

The stress can be rewritten in a convenient format via

σ̄ = σ0N
ε +

n∑

i=1

τiQ
ε
i , σ0 = S ′TK−1ζ, τi = −1

ε̄

(
K−1S

)
i
ζ′i, (5.66)

where σ0 is the stress acting in direction of the current strain and the components τi
denote stress contributions in the normal plane defined by Nε pointing towards the
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ith training direction, see Figure 5.8 for a schematic representation. Note that the
computational effort for the stress prediction is proportional to the number of training
directions, i.e. O(n), in addition to the computation of the matrix-vector products in
(5.65) which are in O(n2).

N ε
1

N ε
2

N ε

τ1Q
ε
1

τ2Q
ε
2

σ0N
ε

Figure 5.8: Schematic representation of the stress cf. eq. (5.65); σ0 is the stress in loading
directionNε and τi denotes components within the tangent plane defined by its normalNε

After some straight-forward but nevertheless rather technical steps the tangent stiffness
is obtained as

C =
∂2W

∂ε̄ ∂ε̄
=
∂W

∂S
∂2S
∂ε̄ ∂ε̄

+
∂W

∂ζ

∂ζ

∂ε̄ ∂ε̄
+

∂2W

∂S ∂ζ
∂S
∂ε̄
⊗
∂ζ

∂ε̄
+

∂2W

∂ζ ∂S
∂ζ

∂ε̄
⊗ ∂S
∂ε̄

(5.67)

= ᾱ Is +

n∑

i=1

βiQ
ε
i ⊗Qε

i + 2 sym
(
Qε ⊗Nε

)
+ µ̄Nε ⊗Nε. (5.68)

The coefficients ᾱ, µ̄, βi, ωi and the tensorQε are given by

αi =
1

ε̄2

θi
sin(ξi)

(
STK−1

)
i
ζ′i, ᾱ =

1

ε̄

(
S ′TK−1ζ

)
+

n∑

i=1

αi, (5.69)

µ̄ = S ′′TK−1ζ − ᾱ, βi =
(
K−1S

)
i

ζ′′i
ε̄2
− αi, (5.70)

Qε =
1

ε̄2

n∑

i=1

(
K−1

(
S − ε̄S ′

))
i
ζ′iQ

ε
i . (5.71)

Obviously, C is unconditionally symmetric. Further algorithmic advantage could be
drawn from substituting Qε

i through Nε and Nε
i via (5.57) which is omitted here for

brevity.

Similar to the representation of the effective stress cf. (5.66), the tangent stiffness (5.68)
has a particular structure. The assembly of the tangent stiffness can be realized with good
computational efficiency:
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• one matrix-vector product with O(n2) in order to get K−1ζ′ (needed for τi,Qε),

• n rank one updates (due toQε
i ⊗Qε

i ),

• one tensor averaging (forQε),

• few algebraic operations (e.g., averaging of scalars; final rank one updates containing
Qε etc.).

5.5.4 Symmetry considerations
In order to improve the accuracy of the interpolation scheme without the need of
additional training data, the consideration of symmetries in the material response is of
interest. Assuming symmetric material behavior in the sense of W (ε̄) = W (−ε̄), the
modified kernel function

ζ̃i = ζi + exp(−γ(π − ξi)2). (5.72)

can be defined. The derivatives of ζ̃i are given by

ζ̃′i = ζ′i + 2γ(π − ξi) exp(−γ(π − ξi)2), (5.73)

ζ̃′′i = ζ′′i − 2γ exp(−γ(π − ξi)2) + 4γ2(π − ξi)2 exp(−γ(π − ξi)2). (5.74)

Replacing ζ in eq. (5.51) by the symmetrized kernel function defined through (5.72) and
substituting ζ′i and ζ′′i by ζ̃′i and ζ̃′′i respectively, the interpolation scheme automatically
considers the material symmetry:

ζ̃i(N
ε) = exp(−γξ2

i ) + exp(−γ(π − ξi)2)

= exp(−γ(π − ξi)2) + exp(−γξ2
i ) = ζ̃i(−Nε).

(5.75)

The symmetry consideration allows to double the number of effective sampling points
without additional training simulations.

Further, the implementation via the symmetrized kernel function ζ̃ affects the computing
time only marginally. This is a key advantage over a modified data-set which includes
the mirrored loadings: Then the number of points in the interpolation would be doubled
and the computing time would increase by a factor ranging from two to four, since the
effort for the multiplication with the (inverse) kernel matrix is O(n2) and all other terms
are O(n).

5.5.5 Choice of sampling points and adaption
The question of how to choose the numbers q and n of different amplitudes ε̄i and of
the directions Nε

j , respectively, is important for the overall performance of the method
and depends on the microstructure under consideration. The coordinate separation
isolates directional information, i.e. information about the anisotropy. This means that
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the constitutive response along different Nε
j can vary considerably. In case that the

anisotropy is pronounced, n should be large in order for the RBFs to yield accurate
geodesic information, i.e. the sampling directions must be sufficiently dense. If
the distribution of the sampling directions is chosen according to Section 5.4.4, the
proposed interpolation can be applied as black-box technique (mostly) independent of
the anisotropy. Further, the calibration of the kernel parameter γ benefits from the
homogeneous sampling directions (see Section 5.6.2). For example, in the numerical
investigations of the next section, the number n = 512 is chosen as a result of pre-
calculations with different values, i.e. the decision-making is experience-driven. Due
to the sign symmetry of W discussed in Section 5.5.4, 1024 directions are considered
effectively.

The number q of amplitudes ε̄i is motivated by the stress–strain curves of the considered
constitutive laws (see Section 5.2.2). Since the nonlinearities of the matrix materials
occur at low strains, the sampling of the macroscopic strain amplitudes is chosen denser
at low values (e.g., q = 10 is taken in the examples). Note that the sampling strategy is
limited to hyperelasticity, meaning that a thorough adaption will be required if dissipative
effects are taken into account. This is postponed to future investigations.

A refinement or coarsening of the sampling directions in the current proposal is not
possible in a straight-forward way: Adding directions would imply a loss of the
homogeneity of the distribution of the sampling directions which is unfavorable for
the accuracy of the underlying kernel method (e.g. in the sense of the partition of
unity property). However, it shall be noted that the radial discretization can be chosen
individually for each training direction without further modifications.

5.6 Numerical examples

5.6.1 Layout

First composites with spherical inclusions are investigated. The matrix is assumed to
be “plastic” without hardening (model 1; σc =100 MPa; h = 0 MPa) and the elastic
parameters of aluminium are taken (Em =75 GPa, νm =0.3). The inclusions are modeled
as linear elastic (Ei =400 GPa, νi =0.2). Three different particle volume fractions f are
considered: 1, 5 and 10%. For each volume fraction two different geometric realizations
are considered: first, a simple RVE with a single centered particle is investigated. Then
a near isotropic distribution of nP =20 particles is considered. All microstructures
are periodic. The single particle composites lead to a cubic response and the (near)
isotropic microstructures show near isotropic overall behavior. Four of the six different
discretizations are shown in Fig. 5.9. The DOFs for the different models are on the order
of 200k for the single inclusion models and 1000k, 540k and 300k for the 20 particles
and 1, 5 and 10% vol. of the inclusions, respectively.

The same training strategy was pursued for all of the microstructures
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Figure 5.9: RVEs for particle volume fractions 1% and 5% (leftmost two; nP = 1),
5% and 10% (rightmost two; nP = 20)

• In [L.1] FE simulations along 32 distinct directions (generated cf. Section 5.4.4) with
10 load increments for each leading (cf. Table 5.1) with maximum strain amplitudes
of 2.5% are performed. More precisely 320 snapshots are collected for each of the six
RVEs.

• A POD (see Appendix 5.8.3) of the snapshots provides a reduced bases with 80 strain
fluctuation modes for each RVE.

• In [L.2] the ROM (Section 5.3) is evaluated along 512 directions (same load incre-
ments), leading to 5120 samples of W̄ROM and σ̄ROM for each RVE.6

• The RNEXP is trained from the 5120 samples of [L.2]. The symmetric kernel function
of Section 5.5.4 is used.

The accuracy and performance of the model are assessed for examples of increasing
complexity.

5.6.2 Calibration of the kernel width parameter

The only parameter of the RNEXP is γ ∈ R+ which controls the width of the Gaussian
kernel function. It is identified in a two-step procedure: first, a “leave one out” (LOO;
e.g. [Rippa, 1999, Hickernell & Hon, 1999]) optimization of γ is performed in order to
get a good initial value without additional computations. Then some additional ROM
computations are performed in order to find optimal values for directions that could be
seen as furthest away from the training data. Therefore, the geodesic distance map of all
training directions is computed first. Then k pairs (Nε

i,1,N
ε
i,2) (i = 1, . . . , k) with the

largest nearest neighbor distances are selected. For each pair the intermediate direction
is computed with account for the symmetry of the directions:

a = sign
(
Nε
i,1 ·Nε

i,2

)
, Mε

i =
Nε
i,1 + aNε

i,2

‖Nε
i,1 + aNε

i,2‖2
. (5.76)

6The ROM computations require few hours (per microstructure; single CPU core) in contrast to
almost one full day for the 320 FE snapshots. Since the direct comparison of the ROM to the FE
problem is not the focus of the current paper, no detailed benchmarks were done.
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The geodesic distance of M i to its generating directions is exactly half of the distance
between these points. In practice M i can be seen as a tough validation case due its
maximum distance to the available data. Along the k new directions M i additional
ROM computations are performed. Then the value of γ is adjusted such that the new
data is captured accurately.

The results for the interpolation of W are verified along geodesic lines connecting
arbitrary point (Nε

α,N
ε
β) pairs. They are constructed for θ ∈ [0;^(Nε

α,N
ε
β)] via

Nε(θ;α, β) = Nε
α cos(θ) +Qα,β sin(θ). (5.77)

The construction of the bi-sectorMε
i and the interpolationNε(θ;α, β) are illustrated in

Figure 5.10.

N ε
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N ε
i,2

M ε
i N ε

α
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β
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Figure 5.10: Construction of bi-sector Mε
i (ρ = acos(Nε

i,1 ·Nε
i,2)) and interpolation

Nε(θ;α, β) of directionsNε
α,Nε

β cf. (5.77)

Along this geodesic line the ROM is used to sample verification data (W , σ̄, C) that can
directly be compared to the prediction of the interpolation scheme. Comparisons of the
RNEXP predictions for one of the RVEs presented in Section 5.6.1 (f = 10%, nP =20
inclusions) are plotted in Fig. 5.11. The energy is predicted to a relative accuracy ≈10-4

and better. Regarding the stress predictions, the relative errors are well below 1% (for
the full tensor) and on the order of few percent for the deviatoric stress. The comparison
of the deviatoric stress could lack from the bad proportion of hydrostatic vs. deviatoric
stress.

In order to confirm that for low hydrostatic stresses the error is not increasing unpropor-
tionally, four additional deviatoric load cases that are chosen randomly and differ form
the training data are considered. The results are shown in Figure 5.12 for the relative
error in the energy and in the effective stress. The findings reported in Figure 5.11 and
5.12 are confirmed for other loadings and for the other microstructures. During these
comparisons it was also found that the kernel parameter, which was fixed to γ = 2.0,
has rather little influence on the overall accuracy, which is related to the homogeneous
nearest neighbor distance of the sampling sites. The latter emphasizes the importance of
the layout of the sampling directions following Section 5.4.4.
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5.6.3 Validation for strain-driven RVE computations

Next, the error of the interpolation scheme with respect to ROM computations (N = 80
modes are used through-out this section) performed over a set of 512 validation directions
(10 load steps cf. Table 5.1) is evaluated in order to judge on the accuracy of the RNEXP
and, thereby, on its suitability for large twoscale simulations. The validation loadings
are not randomly chosen, but they are determined using the same procedure as for the
training directions albeit with different initialization leading to a set of complementary
directions.

The results for microstructures consisting of a single inclusion at 1% inclusion volume
fraction are shown in Figure 5.13 as well as the ones for 10% and 20 particles in
Figure 5.14. The results state good accuracy and the 99% percentiles indicate less than
1% of all validation cases showed an error in the effective stress prediction of more than
≈1% for either microstructure.
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Figure 5.13: Distribution of the error of the RNEXP in the total stress (left) and deviatoric
stress (right); the 99% percentile is also shown (microstructure: f = 1%, nP = 1)
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Figure 5.14: Distribution of the error of the RNEXP in the total stress (left) and deviatoric
stress (right); the 99% percentile is also shown (microstructure: f = 10%, nP = 20)

5.6.4 Nonlinear hardening materials with anisotropic mi-
crostructure

Besides the previous investigations without hardening, the nonlinear hardening material
(cf. model 2 in Section 5.2.2) can also be processed using the RNEXP. The same
procedure discussed before was applied to a material characterized by an anisotropic
microstructure with high particle concentration within a planar layer (10% particles
overall, locally ≈40%). The FE mesh (169,349 nodes/508,047 DOF; 122,918 TET10
elements) and the FE results of one training simulation are shown in Figure 5.15.

The same FE and ROM computations as in the previous examples were performed.
Importantly, the anisotropy was not explicitly considered during training, but the RNEXP
was applied as black box procedure. The statistic distribution of the relative stress errors
over the 512 validation cases (comparison RNEXP vs. ROM, N = 80) is shown
in Figure 5.16. The results confirm good accuracy of the RNEXP for the anisotropic
material in the presence of nonlinear hardening.
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Figure 5.15: Anisotropic microstructure with spherical inclusions concentrated into a
layer; left: mesh; right: result of the first FE training simulation (matrix material for
εeq ≥ 4% is shown)
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Figure 5.16: Distribution of the error of the RNEXP in the total stress (left) and deviatoric
stress (right); the 99% percentile is also shown (anisotropic particle microstructure)

5.6.5 RNEXP twoscale simulation with data-acceleration

Comparison of multilevel FE using RNEXP and ROM

The previous tests validated the accuracy of the RNEXP predictions for selected loading
conditions. Thereby confidence is gained for the application of the RNEXP in actual
twoscale computations. In this Section twoscale problems of gradually increasing
complexity are explored.

First, a simple macroscopic domain consisting of cuboid with centered spherical pore
(10% porosity; see Fig. 5.17, left) is used. At the integration point level the homogenized
material behavior of the RVE with single inclusion and 5% inclusion volume fraction was
considered (RVE of Figure 5.9 second from left; material model 1 without hardening).

Different approximations of the actual homogenized material response were used:

• reduced order models cf. Section 5.3.1 using different mode sets (N ∈ {16, 32, 80};
examples of the modes are shown in Figure 5.17);
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Figure 5.17: Porous macroscopic FE mesh (dimension: 1×1×1 m3; left) and three strain
fluctuation fields of the reduced basis for the single-inclusion microstructure (coloring
indicates ‖ε′‖)
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Figure 5.18: Results of the uniaxial tension test for the porous macrostructure

• RNEXP model obtained from 512 training directions with 10 load steps each and
trained using the ROM with N = 80 modes (c.f. Section 5.5).

The porous cuboid made of the heterogeneous material was subjected to uniaxial tension
with 2% final strain applied along one of the structures’ priciple axes. A rather
coarse macroscopic FE discretization (see Fig. 5.17, left) was chosen (6567 DOF;
1082 quadratic tetrahedra) in order to keep computing times for the largest ROM in a
reasonable range. Due to the excessive computational cost, we did not consider FE2

simulations (i.e. substituting the microscopic material model by FE simulations on RVE
level).

The accuracy is investigated through comparison of the effective force-displacement
curves (F̄ vs. ū). The results obtained using the ROM with N = 80 modes is considered
as reference solution. The relative deviations with respect to this reference are shown in
Figure 5.18, right. As stated in Section 5.3.1 the increasing dimension of the RB used
within the ROM leads to slightly softer overall response. It shall however be noted that
even when using only 16 modes, the deviation to the fine scale ROM was well below 1%
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during the entire macroscopic simulation. The RNEXP overestimates the force by only
1% and, hence, good accuracy is found.

The slopes of the force-displacement curves are approximated via finite differences in
Figure 5.19 using a logarithmic scale. It is found that all models predict the same effective
stiffness of the nonlinear problem up to 1% of tensile deformation (corresponding to ū
of 1 cm). Then saturation is observed and all slopes tend towards 0. Here it must be
emphasized that the logarithmic scale suggests larger deviations than actually observed.
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ū [cm]

ROM, N=16
ROM, N=32
ROM, N=80

RNEXP

Figure 5.19: Secant stiffness of porous macrostructure with heterogeneous micromaterial

The number of Newton-Raphson iterations was 45 (RNEXP) and 42 or 43 (ROM,
N ∈ {16, 32, 80}), respectively. This states that the accuracy of the tangent stiffness
operator provided by the RNEXP works reliably. Concerning runtimes an estimate of the
performance is provided in this work in terms of the relative runtime in non-laboratory
conditions. All models are fairly efficiently implemented (i.e. the implementations are
ruled out as limitations of the performance). The simulations were run on the same
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Figure 5.20: Relative overall runtime trel of the twoscale simulation of the voided
macrostructure relative to ROM with N = 16 (approximately 3.3 h; for comparison:
RNEXP 117 s)

workstation without using parallelization (in order to not deteriorate the benchmark) and
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Figure 5.21: Structure for investigation of the influence of the microstructure’s inclusion
volume fraction on the reaction forces F̄1, F̄2, F̄3 (arrows, pink ) recorded at the
inhomogeneous Dirichlet boundaries

no computationally intense tasks were executed in parallel7. The recorded computation
times are normalized with respect to the time of the ROM with N = 16 (≈3.3 h). The
nondimensional solution time denoted by trel is shown in Figure 5.20. The findings
indicate a superlinear scaling of the runtime with respect to the number of modes N
used in the ROM (trel ∼ N1.4), which is due to the efficient implementation including
quasi-Newton methods8. This is important as the observed scaling is significantly
more “gentle” than the quadratic dependence expected for standard Newton-Raphson
procedures where assembly of the Jacobian dominates the overall cost. In summary, the
RNEXP computation (computation time: 117 s) could outperform the ROM by factors
ranging from 100 (N = 16) to 1000 (N = 80).

Fine scale twoscale simulation

The second macroscopic structure consists of a complex three-dimensional geometry
with a truss-like structure, see Figure 5.21. A fine scale FE discretization involving
376,060 nodes (≈1.1 106 DOF) and 234,802 quadratic tetrahedra is used. Homogeneous
Dirichlet boundary conditions are prescribed to the bear surfaces extremal w.r.t. the x-
direction on the rear side. Inhomogeneous Dirichlet conditions are imposed on the tops
of the three transmission spots. The reaction forces F̄1, F̄2, F̄3 indicate the direction
of the prescribed displacements. The load amplitudes are 3.3 cm, 4.4 cm and 3.3 cm
respectively.

7Although not relevant, some hardware specifications are provided: 2x Intel Xeon(R) E5-2643 v3;
256 GB RAM

8As the solution of the ROM is not the focus of this work details may be presented in later works.



5.7 Résumé 79

Three different simulations of the structure were performed:

• the material model 1 without hardening defined in Section 5.6.1 (mimicking von Mises
plasticity);

• the RNEXP model for the single-inclusion RVE (f = 5%, nP = 1; see Figure 5.9
second from left);

• the RNEXP model for the multi-inclusion RVE (f = 10%, nP = 20; see Figure 5.9
right).

Details on the computations are provided in Table 5.2. Interestingly, the number of
Newton-Raphson iterations of the RNEXP are basically identical to the case without
inclusions, where the exact material stiffness was provided. This confirms the quality of
the tangent operator of the RNEXP.

Table 5.2: Number of required Newton iterations for each increment for the truss structure.

# iterations in . . .

material 1st inc. 2nd inc. 3rd inc. 4th inc. 5th inc.

homogeneous matrix 4 5 6 6 4

RNEXP, f = 5% 4 5 8 6 4

RNEXP, f = 10% 4 5 7 6 4

A comparison of the forces recorded during the three simulations can help to quantify
the effect of particle volume fraction on the nonlinear structural behavior. The results
are shown in Figure 5.22. Both the nonlinearity due to the pseudo-plasticity in the
microscopic matrix material, and the stiffening due to increasing inclusion volume
fraction are captured.

5.7 Résumé

5.7.1 Summary
A two-stage computational homogenization procedure starting from high-fidelity finite
element simulations [L.1], a therefrom derived reduced order model [L.2] and the
data-driven RNEXP [L.3] is presented. Each computational level has advantages and
drawbacks. More specifically high-accuracy is generally associated with increased
computing times and vice versa. The different computational schemes on each level
are combined by a particular layout of the directions and load amplitudes in order to
achieve accurate data (devoid of over- and undersampling) and, hence, predictions of the
constitutive response with rather few sampling points. The consideration of symmetries
(see Section 5.5.4) states that at (almost) constant computing time, the accuracy of the
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proposal can be improved considerably. In the presented examples 320 FE field solutions
(along 32 directions with 10 amplitudes each) yield the ROM for [L.2]. Using the
latter, 5120 samples per microstructure are computed. The entire preprocessing was
realized on a single workstation within a single day per microstructure without the use of
parallelization. The accuracy and the performance of the RNEXP are validated in several
stages: First the calibration of the kernel parameter (cf. Section 5.6.2) makes use of
loads along geodesic lines connecting different training directions. Next, a comparison
to rather extensive sets of validation loadings (cf. Section 5.6.3; here: of the same size as
the sampling data) is performed. Third, twoscale simulations are effected using different
ROMs and the RNEXP and the outputs are compared. Finally, the RNEXP is used in
large scale structural simulations in order to assess the effect of the microstructure in
Section 5.6.5 for which twoscale computations using the ROM are no longer practicable.

5.7.2 Discussion
The key innovation of the RNEXP is the combination of different (established) tech-
niques with a particular layout of the sampling sites. The latter is a key ingredient of
the overall procedure: It allows for an adaptive grid density and provides samples with
nearly homogeneous distribution of the loading direction. In our view this is a major
improvement over Monte Carlo sampling (e.g. [Le et al., 2015]) and regular grids (e.g.
[Yvonnet et al., 2009] and follow-ups) which do not provide optimal information content
per sample.

Further, two different discretizations and solvers (FE and ROM) are used. Each technique
is applied as sparsely as possible in order to build reliable foundations for the next
level/hierarchy: The accuracy of the ROM in [L.2] depends on the richness of the
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training data (gathered in [L.1]). Since the ROM contains information of the geometry
and of the microscopic materials on the microstructural level, a moderate amount of
FE simulations suffices to feed the ROM. Again, the homogeneous distribution of the
training directions is beneficial and leads to few training computations. Analogously, the
RNEXP predictions in [L.3] require samples of the energy and radial stress provided by
means of the ROM [L.2]. Since the RNEXP has no physics built-in, a larger number of
scalar inputs is required than in order to set up the ROM. Note that the use of the radial
slope of the stored energy helps to gain accuracy at no additional computational cost and
without sacrificing the symmetry of the tangent stiffness. On a side note, the adjustment
of the radial cubic interpolation functions is straight-forward and the radial interpolation
is unique without the need for further (algebraic) constraints.

Lastly, the kernel approximation used for the directional interpolation of the RNEXP ben-
efits from the homogeneous distribution of the directions: Overshooting and oscillations
are prevented, the solutions are not too sensible with respect to the kernel parameter γ,
and the kernel interpolation satisfies the partition of unity condition (cf. (5.48) on p. 64)
almost exactly. The applied radial-tangential (or amplitude–direction) split used in the
interpolation appears somehow intuitive given the origin of the training data, although
the choice is of course not unique and could be altered in the future.

The authors would like to point out that a machine learning related method using reduced
approximations was recently realized in terms of the MNROM of Bhattacharjee &
Matouš [2016]. Some ideas are similar to the present technique: a dedicated sampling
strategy in strain space employing the polar decomposition is used to set up training
simulations for moderately nonlinear hyperelastic solids in a finite strain framework.
The strain parametrization used in [Bhattacharjee & Matouš, 2016] can be considered a
variant of the method used herein with a preceding partitioning of the parameter/strain
space into four “modes”. The MNROM uses neural networks and manifold learning, i.e.
the approach is strongly data-oriented. In direct comparison to the MNROM the RNEXP
has advantages due to the lower algorithmic complexity (CPU time, memory) and the
availability of a symmetric algorithmic tangent stiffness. Ideas of combining concepts of
the MNROM with the RNEXP could potentially be investigated, e.g. during the sampling
[L.2].

5.7.3 Perspective

The present study focuses on small strain (pseudo-)hyperelasticity. We would like
to emphasize that the methodology can be generalized in several ways. Whithin the
field of small strain mechanics, any rate-independent material can be mimicked pseudo-
hyperelastically as long as there is next to proportional loading or if the path-dependency
is limited. This holds true for many structures undergoing simple load cases that are
relevant for practical use. The adaption to large strain hyperelasticity is subject to
ongoing research and has already yielded promising results. There, the choice of a
measure of deformation or strain has crucial influence on the particular form and the
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performance of computational levels [L.2], [L.3], and of the sampling strategy of section
5.4.4.

As more complex materials often show path-dependency, it is desirable to account for this
property in the present framework. However, the sampling strategy essentially relies on
the fact that the state space is rather low-dimensional (here: 6-dimensional). The space
of all possible macroscopic load trajectories has infinite dimensions and can thus not be
sampled directly. Any sampling of loading histories would require restriction to some
finite-dimensional subspace. Even with a rather coarse resolution of the trajectories, the
dimensionality of the remaining quantities would increase the computational demands,
quickly exceeding today’s compute capabilities. It is due to this obstacle that we cannot
provide a solution to the problem of path-dependency as of today.

Moreover, there remain open questions concerning the sampling strategy even in the
path- and rate-independent case. One of which is about the assessment of the quality
of a chosen point set, for both the training of the ROM in [L.2] and for the setup of
the interpolation method in [L.3]. For both of these stages, error estimators could be
one way to gain information about the suitability of the sampling points. For [L.2], a
posteriori error estimators are subject to current research. There, it can be exploited that
both the ROM and the FEM are Galerkin methods, which does not hold for [L.3]. Since
the latter is a purely mathematical model without any directly incorporated physics (e.g.
variational principle), error estimation requires a different approach for [L.3]. Although
some simplistic a posteriori tests were carried out in Section 5.6.2, this topic cannot be
regarded as sufficiently covered yet.

The RNEXP method is not restricted to mechanics but can be adapted to other kinds of
elliptic problems in a straight-forward way. To give just one example, nonlinear thermal
conduction problems could be treated analogously in [L.2] by identifying a RB for the
space of temperature gradients and in [L.3] by interpolating between samples of this
three-dimensional space. The proposed sampling strategy is general with respect to the
spatial dimension, and the radial resolution can be adapted to suit any constitutive law.
This emphasizes the generality of the chosen approach.

Last, the radial tangential split could as well be used for data of arbitrary dimension that is
provided along radial sampling paths. Notably the selection of the directions conforming
to section 5.4.4 is essential as it contributes to the efficiency and accuracy of the radial
basis function interpolation.
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5.8 Appendix
5.8.1 A – Hyperelastic potentials and their gradients

Deformation plasticity with linear hardening

We recall the energy of the model similar to the one used, e.g., by Bilger et al. [2005]
that mimics plasticity with linear hardening

ψ′e(ε) = G‖ε′‖2,

ψ′1,p(ε) =

√
2

3
σc

(
‖ε′‖ − εc

2

)
+

Gh

3G+ h

(
‖ε′‖ − εc

)2
,

(5.78)

ψ1(ε) =
K

2
(I · ε)2 +

{
ψ′e(ε) ‖ε′‖ ≤ εc,
ψ′1,p(ε) ‖ε′‖ > εc,

, with εc =

√
2

3

σc

2G
. (5.79)

The parameters of the model are the bulk modulus K, the shear modulus G, the linear
hardening modulus h and the initial yield stress σc. In the case of ‖ε′‖ ≥ εc the apparent
(not physical) plastic strain in the model is (with 〈•〉+ = max{0, •})

εp = E∗
〈
‖ε′‖ − εc

〉
+
N ′, E∗ =

3G

3G+ h
, N ′ =

ε′

‖ε′‖ . (5.80)

The abbreviation E∗ comes in handy and allows to represent the hardening stress σh and
the stress tensor in a rather straight-forward notation

σh = σy − σc =

√
2

3
h‖εp‖ =

√
2

3
hE∗
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)
(5.81)
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(5.82)
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The second gradient of the free energy provides the stiffness of the material. At sub-
critical strains (i.e. for ‖ε′‖ ≤ εc) the isotropic elastic stiffness tensor

C0 = K I ⊗ I + 2G

(
Is − 1

3
I ⊗ I

)
= 3K P1 + 2GP2 (5.83)

is found. At strains leading to states by-passing the (pseudo-)yield stress σc, the stiffness
is

Cc = 3K P1 +
2

3
hE∗P2 +

√
2

3

E∗σ0

‖ε′‖
(
P2 −N ′ ⊗N ′

)
, (5.84)

where the abbreviation E∗ and the relation between σc and εc are incorporated. Note
that Cc is not positive definite for non-hardening materials, i.e. for h = 0. The first part
contributes the volumetric stiffness, the second is due to the hardening while the last part
can be interpreted as a secant stiffness for all strain changes that are orthogonal to the
current strain. It states that any change of ε′ perpendicular to the current direction will
only affect the direction of the stress but not its amplitude which is in full accordance
with the proposed model.

In summary, the stiffness of ψ1 is

C =
∂2 ψ1

∂ε ∂ε
=

{
C0 ‖ε′‖ ≤ εc,
Cc ‖ε′‖ > εc.

(5.85)

A graphical representation of the energy contributions is given in Figure 5.23: By ψe the
energy due to the initial elastic deformation is expressed, i.e. before reaching the yield
stress. Then the energy W 0

p is the plastic work due to constant yield stress σc and Wh is
the energy due to the linear hardening.
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Figure 5.24: Comparison of the free energy ψ(ε) for σ0 = 100 MPa, ε0 = 0.01 and
p ∈ {0.1, 0.2, 0.3, 0.4}

Nonlinear hardening model with linear elastic domain

The second model under investigation is similar to the nonlinear model employed by
Yvonnet et al. [2009]. It has a pronounced nonlinear (hardening-like) behavior. In order
to prevent unphysical behavior at small strains and to preclude non-differentiability at
ε = 0, the model has been modified in the sense that a linear elastic domain has been
added. The free energy of the model is

εc = ε0

(
σ0

3Gε0

) 1
1−p

, εeq =

√
2

3
‖ε′‖, (5.86)

ψ′2,p(ε) =
σ0ε0

p+ 1

[(
εeq
ε0

)1+p

−
(
εc
ε0

)1+p
]

+
3G

2
ε2
c , (5.87)

ψ2(ε) =
K

2
(I · ε)2 +

{
ψ′e(ε) εeq ≤ εc,
ψ′2,p(ε) εeq > εc.

(5.88)

Parameters of the model are the isotropic elastic moduliK anG, the critical stress σ0 and
exponent p ∈ (0, 1]. The stress in the elastic domain (i.e. for strains satisfying εeq ≤ εc
is linear in the strain and coincides with the previous model. In the nonlinear regime the
stress and the stiffness are

σ = K (I · ε) I +

√
2

3
σ0

(
εeq
ε0

)p
N ′, (5.89)

C = 3K P1 +
2

3

σ0

εeq

(
εeq
ε0

)p [
P2 + (p− 1)N ′ ⊗N ′

]
. (5.90)

Example free energy and deviatoric stress-strain curves are shown in Figure 5.24 for
σ0 = 100 MPa, ε0 = 0.01 and different values of the exponent p (elastic parameters:
E = 75 GPa, ν = 0.3).
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5.8.2 B – Algorithm: Galerkin ROM for hyperelasticity

Algorithm 5.1: Galerkin Reduced Order Model for hyperelasticity
Input : macroscopic strain ε̄↔ ε̄;

Reduced Basis at integration points xj : E(j);
normalized weights w̃j = wj/V (V =

∑ngp

j=1 wj);
tolerance TOL;
[OPTIONAL] initial guess ξ

0

Output: effective energy W̃ ;
effective stress σ̄;
[OPTIONAL] algorithmic stiffness C

A

1 initialize ξ = 0 or ξ = ξ
0
; set convergence flag to FALSE

2 while convergence flag = FALSE do
3 set f = 0 ∈ RN , J = 0 ∈ RN×N

4 for j = 1, . . . , ngp do
// compute local strain

5 ε(j) ← ε̄+ E(j)ξ
// compute material response

6 ψ(j) ← ψ(xj , ε
(j)); σ(j) ← ∂εψ(xj , ε

(i)); C(j) ← ∂2
εεψ(xj , ε

(i))
// compute residual and Jacobian

7 f ← f + w̃j E
(j)Tσ(j); J ← J + w̃j E

(j)TC(j)E(j)

8 end
9 if ‖f‖ < TOL then

10 set convergence flag to TRUE
11 else
12 update ξ ← ξ − J−1f

13 end
14 end
15 set W̃ = 0, σ̄ = 0 ∈ R6, C

A
= 0 ∈ R6×6, Σ = 0 ∈ RN×6

16 for j = 1, . . . , ngp do
17 W̃ ← W̃ + w̃jψ

(j); σ̄ ← σ̄ + w̃j σ
(j); C

A
← C

A
+ w̃j C

(j);

Σ← Σ + w̃j E
(j)TC(j)

18 end
19 C

A
← C

A
− ΣTJ−1Σ
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5.8.3 C – Algorithm: snapshot POD for hyperelasticity

Algorithm 5.2: Snapshot POD for the generation of an RB for the ROM of
Appendix 5.8.2

Input : snapshot data:
ε̄(k) and strain field ε(k)(xj) (k ∈ {1, . . . , ns}: snapshot index);

normalized weights w̃j = wj/V (V =
∑ngp

j=1 wj);
POD threshold δ or number of modes N ;

Output: reduced basis E(xj)
// compute correlation matrix

1 for i, j = 1, . . . , ns do
2 Sij ← Sij +

∑ngp

k=1 w̃k ε
(i)(xk) · ε(j)(xk)

3 end
4 compute eigen-decomposition S = U ΛUT (diagonal Λ with decreasing entries)
5 if threshold δ > 0 is given then
6 find N such that

∑N
i=1 Λii > (1− δ2)

∑ns
i=1 Λii

7 end
8 truncate U to the first N columns
9 set E(j) = 0 ∈ R6×N (j = 1, . . . , ngp)

10 for i = 1, . . . , N and j = 1, . . . , ngp do
11 E(j)

• i =
∑ns
k=1 Uki ε

(k)(xj)

12 end

5.8.4 D – Algorithm: RNEXP

Initialization of the kernel method

• Given n directions Nε
i (i = 1, . . . , n) compute the kernel matrix K and its

inverse K−1 via

Kij = Kji = ζ
(
acos(Nε

i ·Nε
j)
)
. (5.91)

• For given data Dij , Tij , cf. equations (5.43), (5.44), define the piecewise cubic
interpolation functions Si(ε̄) through conditions defined via (5.46).
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Computation of stress and stiffness

Algorithm 5.3: Interpolation of the stress σ̄ and of the tangent stiffness C
A

Input : strain ε̄;
kernel matrix K;
N ∈ R6×n (columns correspond to the n training directions);

Output: effective stress σ̄;
[OPTIONAL] effective stiffness C

A

1 decompose ε̄ into amplitude ε̄ and directionNε ↔ Nε

2 evaluate θ = NTNε; set ξi = acos(θi) // compute geodesic distance

3 compute S ← S(ε̄), S ′ ← S ′(ε̄), ζi ← ζ(ξi), ζ′i ← ζ′(ξi) // helpers

4 compute w = K−1ζ, y = K−1S // weights and helper vector

5 set σ0 = wTS ′, τ = −1

ε̄
y� ζ′ // normal and tangential stress components

6 evaluate σ̃0 = σ0 −
∑n
i=1

θi
sin(ξi)

τi and τ̃i =
τi

sin(ξi)
// substitute Qε

i

7 compute stress via σ̄ = σ̃0 N
ε +N τ̃ // (5.66)

// optional: computation of effective stiffness

8 compute ζ′′i ← ζ′′(ξi), S ′′ ← S ′′(ε̄), z = K−1S ′ // helpers

9 set αi =
θi

sin(ξi)

yi ζ
′
i

ε̄2
, ᾱ =

1

ε̄
wTS ′ +∑n

i=1 αi, µ̄ = wTS ′′ − ᾱ,

βi =
1

ε̄2
yi ζ
′′
i − αi

10 determine direction Qε =
1

ε̄2

∑n
i=1 (yi − ε̄ zi) ζ′iQε

i // (5.71)

11 compute C
A

= ᾱ I+ µ̄ NεNεT + 2 sym
(
QεNεT

)
+
∑n
i=1 βiQ

ε

i
Qε
i

T // (5.68)
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Abstract. The computational homogenization of hyperelastic solids in the geometrically
nonlinear context has yet to be treated with sufficient efficiency in order to allow for
real-world applications in true multiscale settings. This problem is addressed by a
problem-specific surrogate model founded on a reduced basis approximation of the
deformation gradient on the microscale. The setup phase is based upon a snapshot
POD on deformation gradient fluctuations, in contrast to the widespread displacement-
based approach. In order to reduce the computational offline costs, the space of relevant
macroscopic stretch tensors is sampled efficiently by employing the Hencky strain.
Numerical results show speed-up factors in the order of 5–100 and significantly improved
robustness while retaining good accuracy. An open-source demonstrator tool with 50
lines of code emphasizes the simplicity and efficiency of the method.

Keywords: computational homogenization; large strain; finite deformation; geometric
nonlinearity; reduced basis; reduced-order model; sampling; Hencky strain

MSC: 74Q05, 74B20, 74S30

6.1 Introduction

6.1.1 Purpose
The description of solid mechanics under finite strains is of particular interest in both
academia and industry. It allows for accurate descriptions of rotations and stretches
under mild assumptions. Thus, many geometric effects can be captured. For instance,
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alignments and rearrangements of the respective structures may trigger pronounced
stiffening or softening effects.

In such cases where rotations and deformations are not suitable for linearization,
dissipative effects also play a notable role for many materials. Regardless of the kind
of dissipation involved in a certain process, hyperelasticity usually persists to a certain
extent. Therefore, it is worthwhile investigating this comparatively simple case at first,
before introducing history dependence into the description. Prominent examples of
materials that require a hyperelastic description at finite strains include carbon black-
filled rubber [Rendek & Lion, 2010] and amorphous glassy polymers [Nguyen et al.,
2016], to name just two.

The main purpose of this work is the computationally efficient quasi-static homogeniza-
tion of hyperelastic solids with full account for geometric nonlinearities. The employed
methodology is twofold. First, a Reduced Basis (RB) model for the microscopic problem
is established. The term Reduced Basis, used in this work, is not to be confused with the
homonymous method introduced by Barrault, Maday, Nguyen, and Patera Barrault et al.
[2004]. Once set up, it enables more efficient evaluations of the homogenized material
response as compared to the Finite Element Method (FEM). Second, an efficient strategy
for sampling of the space of macroscopic kinematic states is proposed. This renders the
setup phase of the RB model more rational.

6.1.2 State of the Art
Efficiently determining the overall solid–mechanical properties of microstructures has
been investigated for decades, and a large body of literature is available. Comprehensive
review articles, such as Geers & Yvonnet [2016] and Saeb et al. [2016], summarize the
progress. Here, attention is restrained to few methods most similar or relevant to the
present work.

The FE2 method Feyel [1999] is theoretically capable of performing realistic two-
scale simulations with arbitrary accuracy. Therefore, it serves as a reference method
in the context of first-order homogenization based on the assumption of separated
length scales. In the FE2, the evaluations of the unknown macroscopic constitutive
law are approximated by microscopic FE simulations. However, this comes along with
computational costs that quickly exceed the capabilities of common workstations, both
at present and in the foreseeable future. Roughly speaking, the computational effort
required on the microscale multiplies with that of the macroscale, hence the method’s
name. It is thus worthwhile to develop order reduction methods for the microscopic
problem.

A common approach within the field of computational homogenization (and well beyond)
is to extract essential information from provided in silico data. To this end, schemes based
on the Proper Orthogonal Decomposition (POD) compute correlations within snapshot
data, [Sirovich, 1987]. Such methods include the R3M Yvonnet & He [2007] and can
be further enhanced by the use of, e.g., the EIM, as in Radermacher & Reese [2015].
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Numerical comparisons of various schemes were conducted in Radermacher & Reese
[2013], Soldner et al. [2017]. To the best of the authors’ knowledge, all published POD-
based methods addressing the finite strain hyperelastic problem choose to reduce the
number of degrees of freedom (DOF) of the displacement field. This results in sometimes
significant speed-ups. Another important feature is that they allow for reconstruction of
the microscopic displacement fields. The application of the snapshot POD to gradients of
the primal variables has been studied—e.g., for infinitesimal strain hyperelasticity Fritzen
& Kunc [2018c] and fluid mechanics Akkari et al. [2019]—but does not appear to have
been investigated for finite strain hyperelasticity yet.

Still, the solution of the reduced equations remains a complex task. It requires evaluations
of material laws and numerical integration over the microstructure. Promising progress
has been made in the field of efficient integration schemes, see for instance An et al.
[2008], Hernández et al. [2017]. A main reason for the speed-up of these methods is the
reduced number of function evaluations.

The highest speed-ups are achievable if the computational effort of the determination of
effective microstructural responses can be fully decoupled from underlying microstruc-
tural discretizations. Such homogenization methods directly approximate the effective
material law by means of a dedicated numerical scheme. Technically, this can be seen as
the direct surrogation of unknown functions, e.g., of the effective free energy or stress.
For instance, the Material Map Temizer & Zohdi [2007] interpolates the coefficients of
an assumed macroscopic material model. Another example is the NEXP method Yvon-
net et al. [2013], where the effective stored energy density is approximated using a tensor
product of one-dimensional splines. The authors treated the case of small strains by in-
troducing the RNEXP method Fritzen & Kunc [2018c], where the effective stored energy
is interpolated by a dedicated kernel scheme.

However, interpolatory and regressional methods suffer the inherent drawback of not
providing any explicit information on the microscale. For instance, microscopic
displacement or stress fields cannot be reconstructed from the solutions of macroscopic
interpolation. Another important open question is how to provide the supporting
data points for the interpolation in an efficient manner. The data at these points is
usually provided by the solution of a full-order model (FOM) and come along with the
corresponding numerical costs. Hence, the positions of data points in the parameter
space should be chosen carefully, as unnecessary or redundant solutions of the FOM
should be avoided. On the other hand, too sparsely seeded points might not capture the
homogenized properties of the microstructure appropriately.

6.1.3 Main Contributions and Outline

The present work generalizes parts of the previous paper Fritzen & Kunc [2018c] to
the finite strain regime. It aims at reducing the computational complexity for the
determination of the homogenized microstructural response, which is parametrized by
the macroscopic deformation gradient acting as a boundary condition. This is achieved
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by means of a Reduced Basis approximation of the microscopic deformation gradient.
The basis is obtained with the aid of a POD of snapshots of fluctuation fields of the
deformation gradient. Thus, the application of the RB model does not necessitate
the computation of gradients of displacement fields, and even does not require the
displacements to be available at all. In other words, microscopic displacement fields
are completely avoided. However, they can be reconstructed from the RB approximation
of the deformation gradient, uniquely up to rigid body motion.

Another key advantage is the sleek implementation of the method. A demonstration con-
taining a minimum working example of the RB model with 50 lines of MATLAB/Octave
code is provided, [Kunc, 2019].

As for the setup phase, the snapshot data is created by means of an efficient sampling
procedure for the microscopic boundary condition. To this end, the set of macroscopic
Hencky strains is identified as a suitable linear parameter space, within which the
sampling sites are placed based upon physical interpretation. This allows for controlof
the resolution of certain key characteristics of the effective material response while
keeping the total number of samples within bounds.

The Reduced Basis method is presented in Section 6.2. The basis identification is based
on the sampling strategy developed in Section 6.3. Numerical examples are presented
in Section 6.4. Both the numerical and the theoretical findings are summarized and
discussed in Section 6.5.

6.1.4 Notation

The set of real numbers and the subset of positive numbers greater than zero are denoted
by R and R+, respectively. Matrices are marked by two underlines and vectors by one
underline, e.g., A, a. Vectors are assumed to be columns, and the dot product of two
vectors of the same size is understood as the Euclidean scalar product, x · y = xTy.
First order and second order tensors in coordinate-free description are denoted by bold
letters, e.g., A, a. No conclusion can be drawn on the order of a tensor based on its
capitalization. Here, the underlying space is always the Euclidean space R3 with its
standard basis. First order and second order tensors can be represented as vectors and
matrices, e.g., A ↔ A ∈ R3 and B ↔ B ∈ R3×3, respectively. Norms of vectors
and matrices respectively denote the Euclidean and the Frobenius norm. The norm of a
tensor of second order equals the norm of its matrix representation for the chosen basis.
Fourth order tensors are denoted by blackboard bold symbols other than R, e.g., C and
I. Components of tensors of order M are with respect to the Euclidean tensorial basis
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e(1) ⊗ e(2) ⊗ · · · ⊗ e(M), e.g., Aij , Bij for second order tensors A, B and Cijkl,C′ijkl
for C, C′. The following contractions are defined:

A ·B =

3∑

i,j=1

AijBij ,

C ·B =

3∑

i,j,k,l=1

CijklBkl e
(i) ⊗ e(j) ,

A · C =

3∑

i,j,k,l=1

AijCijkl e
(k) ⊗ e(l) ,

C · C′ =

3∑

i,j,k,l,m,n=1

CijmnC
′
mnkl e

(i) ⊗ e(j) ⊗ e(k) ⊗ e(l) .

LetΩ ⊂ R3 be the domain occupied by a physical body undergoing elastic deformations,
and letΩ0 be its initial configuration. Then, x andX describe the coordinates of material
points within the current configuration Ω and within the reference state Ω0, respectively.
Their difference is the displacement u = x − X , see Figure 6.1. The gradient of a

vector field v = v(X) is defined as a right gradient and denoted by
∂v

∂X
= v ⊗ ∇X.

The divergence of a second order tensor field is the vector field resulting from row-wise
divergence. The boundaries of the respective configurations are denoted by ∂Ω and
∂Ω0. The set of square-integrable Lebesgue functions on the reference domain is tagged
L2(Ω0).

PSfrag replaements

u
Ω0 Ω

xX

Figure 6.1: Initial (Ω0) and current (Ω) configuration; elementary kinematic quantities.

The displacement gradient H = u ⊗ ∇X and the deformation gradient F = x ⊗ ∇X

are related through F = H + I , where I is the second order identity tensor in three
dimensions. The determinant J = det(F ) measures the relative volumetric change due
to the present deformation.

Unimodular quantities, i.e., second order tensors with determinant ones, may be
emphasized by a hat, e.g., F̂ = J−1/3F . This multiplicative decomposition is
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sometimes attributed to Flory Flory [1961] and also goes by the name Dilatational-
Deviatoric Multiplicative Split (DDMS).

In the two-scale context, overlined symbols represent quantities on the macroscopic
scale, e.g., A, a, while symbols without overline correspond to their microscopic
counterpart, e.g., A, a. Equivalently, macroscopic quantities are called global and
microscopic ones are called local. The volume average of a general local field ϕ

〈ϕ〉 = 〈ϕ(•)〉 =
1

|Ω0|

∫

Ω0

ϕ(•) dV (6.1)

is essential to the theory. The dependence of a microscopic quantity A on both the
microscopic coordinatesX and a macroscopic quantityB is denoted byA = A(X;B).
In such a case, the components of the macroscopic quantity B are called parameters of
the microscopic function A(•;B). The application of the volume averaging operator
is abbreviated by 〈A〉 =

〈
A(•;B)

〉
. The case of a concatenated function f(A) =

f(A(X;B)) is analogous, i.e. 〈f〉 = 〈f(A)〉 =
〈
f(A(•;B))

〉
, regardless of the

tensorial order of the image of the function f .

6.1.5 Material Models

In this work, hyperelastic materials are investigated. They are characterized by stored
energy density functions W = W (F ). The first Piola–Kirchhoff stress

P (F ) =
∂W

∂F
(F ) (6.2)

and the corresponding fourth-order stiffness tensor

C(F ) =
∂2W

∂F 2 (F ) (6.3)

characterize the material response.

Henceforth, for reasons of readability, the stored energy density function W will be
spoken of as an energy, and the terms stored and density will not always be mentioned
explicitly. In the infinitesimal strain framework, hyperelastic energies have been
formulated to model deformation plasticity [e.g., Fritzen & Kunc, 2018c, Yvonnet et al.,
2013, Bilger et al., 2005]. Although these models are only valid for purely proportional
loading conditions, they provide means to simulate highly nonlinear material behavior
in certain scenarios comparably easily within the context of hyperelasticity. Note
that genuine dissipative processes require additional state describing variables with
corresponding evolution laws.
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The proposed method is suitable for any type of hyperelastic constitutive law. As the
modeling of complex material behavior is not the main focus of this study, the Neo–
Hookean law

W (F ) = WDDMS(J, F̂ ) =
K

4

[
(J − 1)2 + (ln J)2

]
+
G

2

(
tr( F̂

T
F̂ )− 3

)
(6.4)

is used, with K the bulk modulus and G the shear modulus. The volumetric part of
the energy is taken from Doll & Schweizerhof [1999]. Using the DDMS, a decoupled
dependence on the volumetric and isochoric part of the deformation is assumed, which
is a common way to model the distinct material behavior with respect to these two
contributions, see e.g., [Simo, 1988].

6.1.6 Problem Setting of First Order Homogenization

Assuming stationarity and separability of scales, the following coupled and deformation-
driven problems can be derived by means of asymptotic expansion of the displacement
u and subsequent first order approximation. This procedure is carried out in Pruchnicki
[1998] with much detail. Here, the technical process is omitted and only the resulting
equations are stated.

Macroscopic Problem

Balance of linear momentum

DivX(P ) + b = 0, (6.5)

where b denote bulk forces, and balance of angular momentum

F
−1
P = P

T
F
−T

, (6.6)

along with well-posed boundary conditions constitute the macroscopic boundary value
problem. This system of equations is closed by means of the hyperelasticity law, cf. (6.2),

P (F ) =
∂W

∂F
. (6.7)

Note that, in general,W is a priori not available and (6.7) is thus a purely formal relation.
For reasons of readability, the dependence of any quantity on the macroscopic material
coordinateX is usually spared, e.g., F = F (X),H = H(X), or u = u(X).
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Microscopic Problem

The microscopic boundary value problem is given by the balance equations

DivX(P ) = 0 (6.8)

F−1P = P TF−T (6.9)

and suitable boundary conditions, e.g., as discussed in Miehe [2003]. In this work,
periodic displacement fluctuation boundary conditions are employed. The microscopic
displacements take the form

u(X;F ) = u+HX +w(X;F ). (6.10)

Therein, the macroscopic displacement is independent of microscopic quantities. The
second term, HX , corresponds to a homogeneous deformation of the microstructure.
The third term, w(X), is a displacement fluctuation with the zero mean property
〈w〉 = 0. Hence, the deformation gradient reads

F (X;F ) = F + H̃(X;F ) = F + F̃ (X;F ), (6.11)

where the fluctuation part H̃ = w ⊗∇X = F̃ , has the zero mean property
〈
F̃
〉

= 0. (6.12)

Thus, the volume average of the local deformation gradient equals its macroscopic
counterpart,

F = 〈F 〉 . (6.13)

This motivates the identification of F as the boundary condition to the microscopic
problem (6.8). As for the material response, the following relationships can be deduced:

W = 〈W 〉 , (6.14)

P = 〈P 〉 , (6.15)

C 6= 〈C〉 . (6.16)

Equations (6.13) and (6.15) are called kinematic and static coupling relations, respec-
tively. The inequality (6.16) generally holds for heterogeneous microstructures, even in
the most simple case of infinitesimal strains and linear elasticity. More precisely, the
volume average overestimates the effective stiffness in the spectral sense,

x · 〈C〉 · x ≥ x · C · x ∀ second order tensors x. (6.17)
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6.2 Reduced Basis Homogenization for Hyperelas-
ticity

6.2.1 Formulation

The Reduced Basis (RB) scheme is based on a direct approximation of the microscopic
deformation gradient F from Equation (6.11) without the need to explicitly have the
corresponding displacement at hand. The initial approximation is given by

F ξ(X;F , ξ) = F +

N∑

i=1

B(i)(X)ξi. (6.18)

The arguments F and ξ ∈ RN are the boundary condition to (6.8) and the reduced
coefficient vector, respectively. Note that the macroscopic coordinate X is not assumed
to influence the RB approximation, i.e., the same approximation is made throughout the
macrostructure. The set {B(i)}Ni=1 is linearly independent within the space L2(Ω0) and
is called RB of F . In a later context, it will also be referred to as the set of ansatz
functions. In order to enforce the relationship

〈F ξ〉 = F (6.19)

regardless of the reduced coefficients ξ, the basis functions are asserted to have the
fluctuation property, i.e., for i = 1, . . . , N
〈
B(i)

〉
= 0. (6.20)

For now, the RB is assumed to be given.

The ansatz (6.18) allows for evaluation of the energy at the macroscale as a function of
the macroscopic kinematic variable F and of the reduced coefficients ξ,

W ξ(F , ξ) = 〈W (F ξ)〉 . (6.21)

By the principle of minimum energy, the optimal coefficients

ξ∗(F ) = arg min
ξ∈RN

W ξ(F , ξ) (6.22)

are sought after. The unconstrained and unique solvability of this task is assumed for the
moment and will be addressed in Section 6.2.4. The solution of (6.22) defines the RB
approximation of the deformation gradient

FRB(X;F ) = F +

N∑

i=1

B(i)(X)ξ∗i (F ). (6.23)
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The microscopic energy, stress, and stiffness within the microstructure are then approxi-
mated by

WRB(X;F ) = W (FRB(X;F )), (6.24)

PRB(X;F ) =
∂W

∂F
(FRB(X;F )), (6.25)

CRB(X;F ) =
∂2W

∂F 2 (FRB(X;F )), (6.26)

respectively. The resulting effective energy is readily given by

W
RB

(F ) =
〈
WRB

〉
. (6.27)

Also, the effective responses P
RB

(F ) and CRB
(F ) may now be calculated. However,

before going into detail on that, it is advantageous to first elaborate on the solution of the
minimization problem (6.22). This short survey will reveal essential properties of some
occurring quantities that are important for the determination of the effective material
response.

The necessary, first order optimality conditions to (6.22) define the components of the
residual vector r ∈ RN ,

ri(F , ξ) =
∂W ξ

∂ξi
(F , ξ) =

〈
∂W

∂F
(F ξ) · ∂F ξ

∂ξi

〉
=
〈
P (F ξ) ·B(i)

〉
= 0. (6.28)

Note 1 The solution stress fieldPRB is L2(Ω0)-orthogonal to the RB ansatz {B(i)}Ni=1.

A viable choice for the solution of the minimization problem (6.22) is the Newton–
Raphson scheme, which necessitates the Jacobian D ∈ Sym(RN×N ) with the com-
ponents

Dij =

〈
B(i) · ∂P

∂ξj
(F ξ)

〉
=
〈
B(i) · C(F ξ) ·B(j)

〉
= Dji (i, j = 1, . . . , N) .

(6.29)

Then, the kth iteration to the solution ξ∗(F ) reads

ξ(k) = ξ(k−1) −
(
D(k−1)

)−1

r(k−1) (k ≥ 1) . (6.30)

The initial guess ξ(0) can be zero or a more sophisticated alternative.
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The deduction of the effective material response by means of Note 1 and the Jacobian D
is given in Appendix 6.6.2. The following list summarizes the homogenized quantities
arising from the F -RB:

F =
〈
FRB

〉
see (6.19)

W
RB

=
〈
WRB

〉
see (6.27)

P
RB

=
〈
PRB

〉
see Appendix 6.6.3

CRB
=
〈
CRB

〉
−

N∑

i,j=1

D−1
ij

〈
CRB ·B(i)

〉
⊗
〈
B(j) · CRB

〉
see Appendix 6.6.4

In total, the problem of determining both the local field F and the homogenized material
properties depends only on N degrees of freedom, namely on the N coefficients ξi.
Usually, the number of DOF N is in the range of 10 to 150, which compares to the full
order model’s complexity that can easily reach more than 105 DOF.

Remark 3 Despite this impressive reduction of the number of DOF, the computational
costs associated with the assembly of the residual r and of the Jacobian D still relate to
the number of quadrature points of the microstructural discretization.

This method extends corresponding methods for the geometrically linear case, where the
infinitesimal strain tensor ε = sym(H) is considered. For more information on these
topics, the reader is referred to the authors’ previous work Fritzen & Kunc [2018c] or
standard literature, such as [Castañeda & Suquet, 1997, part II.C].

6.2.2 Identification of the Reduced Basis

The basis {B(i)}Ni=1 is computed by means of a classical snapshot POD. In contrast
to many other POD based reduction methods, it is important to point out that here,
the primal variable is not taken to be the displacement field , u. Instead, the POD is
performed on deformation gradient fluctuations, F̃ .

During the snapshot POD, snapshots are first created by means of high-fidelity solutions
to the nonlinear microscopic problem (6.8) with different snapshot boundary conditions
F

(j)
, j = 1, . . . , Ns, which are also called training boundary conditions. Each of

these boundary conditions leads to a solution field F (j)(X;F ). Typically, the Finite
Element Method (FEM) or solvers making use of the Fast Fourier Transform [e.g., Kabel
et al., 2014] are used to this end. The RB method presented here is independent of the
discretization method utilized to obtain full field solutions. It is merely necessary to know
the quadrature weights and the related discrete values of the solutions F (j)(X;F

(j)
).

For better readability, the continuous notation is maintained for the moment. The
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corresponding fluctuation fields are computed by means of local subtraction of the
macroscopic deformation gradient

F̃
(j)

(X;F
(j)

) = F (j)(X;F
(j)

)− F (j)
(j = 1, . . . , Ns). (6.31)

Each of these Ns fluctuation fields F̃
(j)

represent one snapshot.

Second, the most dominant features of the snapshots are extracted. This is done by
means of the eigendecomposition of the correlation matrix. It consists of the mutual

L2(Ω0) scalar products of the snapshots,
〈
F̃

(i) · F̃ (j)〉
(i, j = 1, . . . , Ns), cf. (6.1). The

remaining procedure is standard, see for instance [Sirovich, 1987] or [Quarteroni et al.,
2016]: the Ns eigenvalues λj , corresponding to the eigenvectors E(j) ∈ RNs , are sorted
in descending order and truncated by only considering the firstN values, λ1 ≥ . . . ≥ λN .
The decision on a particular threshold indexN is based on consideration of the Schmidt–
Eckhard–Young–Mirsky theorem. Finally, the RB is constructed as

B(i)(X) =

Ns∑

j=1

1√
λi

(
E(i)

)
j
F̃

(j)
(X) (i = 1, . . . , N) (6.32)

where the factor 1/
√
λi accounts for L2(Ω0) normalization of the base elements.We

conclude that the RB is a collection of L2(Ω0) orthonormal H̃-like quantities.

6.2.3 Mathematical Motivation of the Reduced Basis model

Next, the obtained deformation gradient field FRB and the associated stress field PRB

are shown to weakly solve the original problem (6.8), DivX(P ) = 0.

Let δw ∈ H1
0 (Ω0) be an admissible test function, i.e., a once weakly differentiable

periodic displacement fluctuation field, and let δH = δw ⊗ ∇X denote its gradient.
Then, the well-known weak form of (6.8) is equivalent to the principle of virtual work,

δW =

∫

Ω0

P · δH dV = 0. (6.33)

The residual r from (6.28) coincides with the integral of the weak form, if the test
function δw is chosen suitably. As the basis elements B(i) are linear combinations of
deformation gradient fluctuations w(j) ⊗ ∇X, cf. (6.32), the equivalence of (6.28) and
(6.33) is obvious.

It follows that the Reduced Basis scheme is a Galerkin procedure, taking the displace-
ment fields corresponding to the RB elements B(i) as both ansatz and test functions.
Hence, the RB model is equivalent to the FEM, but with basis functions that are glob-
ally supported in Ω0\∂Ω0. In other words, the basis functions of the RB method span
a subspace of dimension N within the high-dimensional space of FE basis functions.
Although this property is shared with RB schemes based on POD of displacement snap-
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shots, a notable difference is that this novel approach directly operates on fields entering
the constitutive equations.

6.2.4 Details on the Coefficient Optimization

The coefficient optimization task (6.22) leads to a weak solution of the microscopic
boundary value problem, as was just shown. Hence, the well-established theories on
which the FEM is built, e.g., the calculus of variations, are applicable to the presented
method just as much. This implies that the well-known issues with suitable convexity
conditions and with existence and uniqueness of minimizers apply to the RB method,
too. We focus on ad hoc numerical treatments of these issues. For more details on the
theoretical part, the reader is referred to standard literature, such as Ball [1976], and
recent developments in this matter, e.g., Schneider [2016].

A constraint to the optimization problem is the physical condition

J = det(F ξ(X)) > 0 ∀X ∈ Ω0, (6.34)

which means that no singular (J = 0) or self-penetrating (J < 0) deformations shall
occur. This reduces the set of admissible coefficients ξ to a subset of RN that is
nontrivial to access. The positiveness of the microscopic determinant of the deformation
gradient introduces a constraint to the, thus far, unconstrained minimum problem (6.22),
representing the weak form of (6.8) in the RB setting.

In case of a violation of the inequality (6.34), the implementation of the RB method is
prone to failure as soon as the constitutive law (6.4) is evaluated. This occurs only in the
context of volume averaging, i.e., for the assembly of the residual, the Jacobian, or the
effective energy, stress, or stiffness. The numerical quadrature approximating the volume
averaging operation is

〈•〉 =
1

|Ω0|

∫

Ω0

•(X) dV ≈ 1

|Ω0|

Nqp∑

p=1

•(Xp)wp. (6.35)

Here, Nqp, Xp, and wp respectively denote the number of quadrature points, their
positions, and the corresponding positive weights. Moreover, even if the inequality
(6.34) is satisfied everywhere, the local field F ξ might possibly have some positive but
overly small values of the determinant, 0 < det(F ξ(X)) � 1, that are unphysical.
In such a case, the energy optimization, cf. (6.22), would be dominated by these
nearly singular points. Instead of allowing the optimization to focus almost exclusively
on these exceptional points, we interpret unphysically small values of the determinant
as limitations to the reliability of the RB method. On the other hand, large values
det(F ξ(X)) � 1 are not too detrimental to the functionality of the scheme, although
such values are just as questionable.



102 6 Second publication

Thus, the following weighted numerical quadrature rule is introduced:

〈•〉 ≈



Nqp∑

p=1

•(Xp)φ(Jp)wp


 /



Nqp∑

p=1

φ(Jp)wp


 . (6.36)

Therein, the almost smooth cutoff function φ : R→ R≥0 is empirically defined by

φ(J) =





1 if J > 0.6

0.5 erf(30 J − 15) + 0.5 if 0.4 < J ≤ 0.6

0 if J ≤ 0.4

. (6.37)

which makes use of the well-known error function. The cutoff function is depicted in
Figure 6.2. This reliability indicator could, in principle, be modified, e.g., the steepness,
the smoothness, and its center could be adjusted. Thus, it should be regarded as an
example only.

 0
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Figure 6.2: Cutoff function φ. Its value is used as a reliability factor in the numerical
quadrature.

This weighted numerical quadrature rule is used henceforward for all numerical volume
averaging operations. Its application will not be noted explicitly. However, the
theoretical derivation of the RB method, as described in Section 6.2.1, is not affected
by this, i.e., volume averaging operations remain exact as far as the theory is concerned.
The two most important consequences of this numerical tweak are:

• The RB method is robust with respect to outlier values of the determinant. The
modified quadrature rule extends the set of coefficient vectors ξ for which effective
quantities can be computed, albeit approximately, to the whole space RN .

• The significance of local fields varies with the value of the cutoff function. When φ
attains values less than one, information is considered accordingly less reliable. In this
sense, microscopic information is filtered based on a trust region for J defined by φ
can be seen as a reliability indicator.
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6.3 Sampling

6.3.1 General Considerations
The proposed sampling strategy builds on the previous work Fritzen & Kunc [2018c],
in which the authors proposed an analogous sampling procedure for the small strain
setting. However, substantial modifications are required in order to account for the finite
rotational part, R, of the macroscopic deformation gradient, F , and the nonlinearity of
the volumetric part of the deformation, J , with respect to the local displacements, u.
For the setup of the Reduced Basis model as described in Section 6.2.2, the space of
macroscopic deformation gradients,

F = {second order tensors F | det(F ) > 0}, (6.38)

needs to be sampled, i.e., the discrete sampling set F s = {F (m)}Ns
m=1 ⊂ F is to be

defined. Two contradictory requirements need to be satisfied when constructing F s:

1. The samples should be densely and homogeneously distributed within the space of
all admissible macroscopic kinematic configurations. This is owing to the desire
that the POD may extract correlation information from a holistic and unbiased set.
In other words, the samples should be as uniformly random as possible within the
anticipated query domain of the surrogate.

2. The sample number Ns should not exceed a certain limit. Only with this property
may the RB be identified within the bounds of available computational resources
(e.g., memory and CPU time).

6.3.2 Large Strain Sampling Strategy

The set of admissible macroscopic deformation gradients F is a subset of a nine-
dimensional space (F ∈ R3×3 ∼ R9) restricted by the inequality

det(F ) > 0. (6.39)

Therefore, a regular grid in the components of F might lead to a prohibitively large
amount of samples, and even to a violation of (6.39). For instance, such a grid with a
rather moderate resolution of just 10 samples of each component would require 1 billion
solutions of the FOM. Also, the subsequent POD would involve a snapshot matrix and/or
correlation matrix of accordingly huge dimensionality.

In order to decrease the dimension of the sampling space, recall the polar decomposition
of the deformation gradient, F = RU , where R is a rotation and U is the symmetric
positive definite (s.p.d.) stretch tensor. Material objectivity implies the energy function
to be independent of the frame of reference,

W (RU) = W (U), (6.40)
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and the transformation behavior

P (RU) = RP (U) (6.41)

for the first Piola–Kirchhoff stress and

Cijkl(RU) =

3∑

m,n=1

RimCmjnl(U)Rkn (i, j, k, l = 1, 2, 3) (6.42)

for the components of the corresponding stiffness tensor C, see Appendix 6.6.1. These
known facts lead to

Note 2 In order to collect representative samples of the hyperelastic response functions
W , P , and C, it suffices to evaluate them on samples of the stretch tensor U ∼ R6

instead of evaluating them on samples of the deformation gradient F ∼ R9.

This effectively reduces the number of dimensions of F from nine to six. The same
dimensionality is attained when considering the response functions with respect to a
symmetric measure of strain, e.g., as is done in Miehe [1996] where the tangent stiffness
is efficiently computed using a perturbation technique. However, such measures are
unsuitable for reduction by means of the proposed RB method.

The remaining six-dimensional space of s.p.d. tensors is not linear but a convex cone
(which does not include the zero element). Moreover, linearly combining elements
within this space quickly leads to values of J = det(U) describing unphysically large
changes in volume. For instance, U = 1.3 I equates to more than 100% volumetric
extension, which is well beyond the regime of usual hyperelastic materials that are often
nearly incompressible. On the other hand, 100% deviatoric strain is within the range
of many standard materials, such as rubber. Hence, in order to describe the space of
practically relevant stretch tensors, we propose to apply the DDMS to the macroscopic
stretch tensor,

U = J
1/3
Û . (6.43)

Let Û denote the manifold of unimodular macroscopic stretch tensors Û = (J)−1/3U .
The multiplicative split (6.43) is the basis for:

Proposition 1 The set of practically relevant macroscopic stretch tensors U can be
sampled via sampling of both the macroscopic determinants,
{
J

(m)
}Ndil

m=1
⊂ R+ ,

and the macroscopic unimodular stretch tensors,
{
Û

(j)
}Ndev

j=1

⊂ Û ,
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where Ndil and Ndev are the numbers of the samples. The sampling set is determined by
the product set
{(

J
(m)
)1/3

Û
(j)
}m=Ndil, j=Ndev

m,j=1

⊂ U . (6.44)

The choice of the dilatational samples is relatively straightforward. For many common
materials, the expected range of J is rather narrow, so a few equisized or adaptive sub-
intervals around J = 1 deliver sufficient resolution.

For the space of unimodular s.p.d. matrices representing Û ∈ Û , basic results of Lie
group theory can be exploited. We restrict to stating well-known facts that are necessary
at this point. For more details, the interested reader is referred to standard text books,
such as Faraut [2008].

Corollary 1 Let

symsl =
{
Y ∈ R3×3

∣∣Y = Y T, tr(Y ) = 0
}

be the tangent space and

SymSL+ =
{
U ∈ R3×3

∣∣U = UT, det(U) = 1, xT U x > 0 ∀x ∈ R3
}

be the manifold of unimodular s.p.d. matrices. The matrix exponential maps the tangent
space bijectively onto the manifold,

exp : symsl→ SymSL+ .

The proof of this statement is standard, e.g., by means of the eigenvalue decomposition,
and does not necessitate the reference to the abstract setting of Lie groups. In fact,
all of the following arguments could be given without the notion of tangent spaces and
manifolds. However, this notion is a fundamental concept in nonlinear mechanics. For a
very descriptive and comprehensive work on this topic, the reader is referred to Neff et al.
[2016]. We choose to build upon this concept, as it comes along with vivid interpretations
of the function spaces U and Û .

The set SymSL+ is the set of matrix representations of the stretch tensors Û ∈ Û .
The tangent space symsl is the set of Hencky strains, which is linear. Hence, by virtue
of the matrix exponential, the sampling of the nonlinear manifold Û can be reduced to
the sampling of a linear space. Moreover, the restrictions of symmetry and zero trace
render the tangent space five-dimensional. This property is, by definition, shared with
the manifold SymSL+.

The two-dimensional case is now addressed for the sake of visualization. In this setting,
the nonlinearity of the manifold and the structure of the sampling set U can be illustrated
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figuratively. With the subscript (2) denoting two-dimensional quantities, a basis of the
tangent space is given by

Y (1)

(2)
=

√
1

2

[
1 0

0 −1

]
and Y (2)

(2)
=

√
1

2

[
0 1

1 0

]
.

The stretch tensors are obtained through

U
(2)

= J
1
2 exp

(
t
(
αY (1)

(2)
+ βY (2)

(2)

))
=

[
a b

b d

]
.

A visualization of such samples is depicted in Figure 6.3. There, for the sake of visual
clarity, the determinant J is sampled by four equidistant (and rather unrealistic) values
between 0.1 and 4. The value t ∈ [−2, 2] is called deviatoric amplitude. A densely
uniform sampling ϕ ∈ [0, 2π) yields the coefficients α = cosϕ and β = sinϕ.

Figure 6.3: Visualizations of the family of U -manifolds with constant determinant
J ∈ {0.1, . . . , 4.0} for the two-dimensional case from two different perspectives. The
green line represents the set {λI |λ > 0}.

This emphasizes the important role of the DDMS in the context of sampling, as utilized
in (6.44) – it allows for the identification of a physically meaningful sampling domain
that is much smaller than the surrounding space of all admissible stretch tensors. On a
side note, the isodet surfaces are perpendicular to the line representing the dilatational
stretch tensors.

The proposed sampling procedure for U in three dimensions is given in Algorithm 6.1.
For this purpose, an orthonormal basis Y (1), . . . , Y (5) of the tangent space symsl is
fixed, cf. Appendix 6.6.5. The numbers of different kind of samples Ndet, Ndir, and
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Namp relate to the quantities Ndil and Ndev introduced in (6.44) by Ndet = Ndil and
NdirNamp = Ndev.

Algorithm 6.1: Sampling of the macroscopic stretch tensor.

Input : Jmin, Jmax minimum and maximum determinant with
Jmin < 1 < Jmax

tmax > 0 maximum deviatoric amplitude
Ndet number of macroscopic determinants
Ndir number of deviatoric directions
Namp number of deviatoric amplitudes

Output: NdetNdirNamp samples of U
1 Place Ndet determinants regularly between the extremal values,

Jmin = J
(1)

< . . . < 1 < . . . < J
(Ndet) = Jmax .

2 Generate any approximately uniform distribution of Ndir directions in R5, e.g.,
as in Fritzen & Kunc [2018c],

{
N (n)

}Ndir

n=1
⊂
{
N ∈ R5 : ‖N‖ = 1

}
.

3 Place Namp deviatoric amplitudes regularly between 0 and the expected
maximum value,

0 ≤ t(1) < . . . < t(Namp) = tmax .

4 Return the set of samples of U :

{(
J

(m)
)1/3

exp

(
t(p)

[
5∑

k=1

(
N (n)

)
k
Y (k)

])}m=Ndet, n=Ndir, p=Namp

m,n,p=1

⊂ U

(6.45)

The order of Steps 1 to 3 is interchangeable. Details on these parts are now presented:

Step 1. Uniform seeding of the determinants is actually not required, but any pattern
implying the sampling determinants {J(k)}Ndet

k=1 to be dense in [Jmin, Jmax]
as Ndet → ∞ works without loss of generality. In this way, the dilatational
response may be resolved adaptively.

Step 2. The generation of uniform point distributions on spheres is a research topic
on its own, see [Brauchart & Grabner, 2015] for an overview. The method
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described in Fritzen & Kunc [2018c] is based on energy minimization, which
is also used in the present work. Some point sets of various sizes are
included in the example program [Kunc, 2019]. More detailed investigations
on this topic and an open-source code of a point generation program are
part of another work, [Kunc & Fritzen, 2019c]. Alternatively, Equal Area
Points [Leopardi, 2006] may be used as a rough but quickly computable
approximation of such point sets.

Step 3. As in Step 1, the uniform placement of the deviatoric amplitudes, t(p), may
be substituted by adaptive alternatives. In [Fritzen & Kunc, 2018c], we have
suggested to use an exponential distance function.

The result of Steps 2 and 3, i.e., the sampling of the tangent space, is exemplified in
Figure 6.4 for the two-dimensional case (u ∈ R2) and for Ndir = 5 and Namp = 3.
There, an adaptive spacing of the deviatoric amplitudes is applied. This might be
beneficial for capturing strongly changing material behavior near the relaxed state.

PSfrag replaements
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Figure 6.4: Example of a discretization of the two-dimensional tangent space. The
samples are placed along the equidistant (in higher dimensions—uniformly distributed)
directions with nonuniformly increasing amplitude.

In general, the vector N ∈ R5, ‖N‖ = 1, corresponding to a macroscopic Hencky strain
characterizes the direction of the applied stretch U , which we also coin the load case.

6.3.3 Application of the Stretch Tensor Trained Reduced Basis
Model

Since the RB model is trained on only the rotationally invariant part of F but should be
applied to general deformation gradients, the transformation rules (6.41) and (6.42) are
incorporated during the evaluation of the surrogate model. Details on the procedure are
given in Algorithm 6.2.
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Algorithm 6.2: Online phase of the stretch tensor trained Reduced Basis method

Input : F macroscopic deformation gradient
Output: PRB

(F ), CRB
(F ) effective material response

1 Compute polar decomposition F = RU .

2 Compute approximations of effective stress P
RB

(U) and effective stiffness

CRB
(U).

3 Transform effective responses to correct frame P
RB

(F ), CRB
(F ), usingR, cf.

(6.41), (6.42).

6.4 Numerical Examples
6.4.1 Reduced Basis for a Fibrous Microstructure
The applicability of the proposed RB method in combination with the sampling scheme
is now numerically studied for a fibrous microstructure roughly resembling polymers
with woven reinforcements. The goal is to prove the efficiency of the F -RB scheme in
principle and under “worst-case” conditions, the latter meaning that the phase contrast
is chosen to be rather large. Yet, at this stage, it is explicitly not aspired to provide
fully realistic examples. These would require investigations on the proper size of the
microstructure and should employ dissipative material laws, both of which are not within
the scope of this work.

A cubical microstructure with two fibrous inclusions is considered, see Figure 6.5a and
cf. [Kim & Swan, 2003] for a related example. The inclusions are periodic and occupy
approximately 0.7% of the volume. The mesh contains 35, 516 nodes in 25, 633 quadratic
tetrahedron elements (C3D10).

(a) (b) (c) (d)

Figure 6.5: (a) fibrous microstructure. (b)–(d) random F -reduced basis (RB) elements.

For the matrix, the material constants are chosen to beKm = 400 MPa andGm = 0.4 MPa,
resembling rubber-like material properties. For the fibers, the values are Kf = 800 MPa
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and Gf = 240 MPa. The latter parameters approximate the behavior of stiffer polymers,
such as polyethylene. The phase contrast is 600 with respect to the shear moduli, and the
Poisson ratios are νm = 0.4995 and νf = 0.3636.

The training boundary conditions are defined with Ndir = 128 deviatoric directions,
N (n), and Namp = 10 deviatoric amplitudes, t(p), which are regularly distributed in
the interval [0.05, 0.5]. In order to also consider response to volumetric extension in the
training data, an additional set of Ndet=10 boundary conditions of the form

(
J

(m))1/3
I

is included in the training set, with the determinant J
(m)

being linearly increased from 1
to 1.02.

The validation load cases are 640 mixed dilatational-deviatoric boundary conditions.
Along Ndir = 64 new deviatoric directions, both the deviatoric amplitudes (t(p) =

0.05, . . . , 0.5) and the dilatational amplitudes (J
(m)

= 0.9995, . . . , 0.9950) are applied
in 10 equidistant increments.

The results for various values N of the RB-size are compared with the results of FE
simulations with the same boundary conditions. To this end, the error measures

errW =
‖WRB −WFEM‖
‖WFEM‖

and errP =
‖PRB − P FEM‖
‖P FEM‖

(6.46)

are employed. Figures 6.6 and 6.7 visualize the results.
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Figure 6.6: Cumulative energy error distribution per direction for the RB of the fibrous
microstructure under validation boundary conditions.
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Figure 6.7: Cumulative stress error distribution per direction for the RB of the fibrous
microstructure under validation boundary conditions.

The distribution of the energy error, errW, improves monotonically as the RB is enriched
from N = 8 to N = 128 elements. This enrichment corresponds to the inclusion
of additional subtrahends in the computation of CRB

, improving the spectral over-
estimation by the volume average of the stiffness, cf. (6.17). It is also noteworthy that
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the error tends to be higher for larger magnitudes of the applied kinematic boundary
condition, although that is not always the case.

In contrast to this, the stress error errP distribution monotonically improves only up to a
certain threshold value of the number of basis elements, which isN = 64 in this example.
For the greater bases withN = 96 andN = 128, the quality of the results deteriorates as
far as the stress error is concerned. This is most likely due to an excessively oscillatory
nature of the higher order modes—at some critical level 1 � i = Ncrit < N , the
POD constructs eigenvectors E(i) with the L2(Ω0)-norm

√
λi � 1. Therefore, the POD

would construct basis vectors out of numerical fluctuations, which would be unphysical.
While the enrichment of the optimization space with unphysical information cannot
increase the minimum energy error errW, it might lead to fluctuations in the displacement
field that have significant impact on the overall stress response. This is especially the case
for numerical fluctuations within the stiff inclusion phase where low overall displacement
errors still could lead to notable impact on the effective stress.

Nonetheless, all observed errors are less than 20% and stay below 3% for the optimal
sampled size N = 64. For half the basis size, N = 32, the errors max at approximately
5%, which is still acceptable considering the uncertainties involved in realistic two-
scale simulations. Note that the maximum errors strongly depend on the maximum load
amplitude, which is chosen to be very large in this example (50% deviatoric strain and
0.5% compression).

The runtimes of the RB model for different sizes N are depicted in Figure 6.8. A nearly
linear growth of the runtime with respect to the basis size can be asserted. It is noteworthy
that the online time of the RB method is strongly dominated by the assembly of the
Jacobian D. Therefore, a Quasi-Newton implementation was chosen, resulting in only
two assemblies per load increment.
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Figure 6.8: Laptop computer runtimes of the RB model for the fibrous microstructure for
various sizes N of the basis. Each data point represents the time needed for all 10 load
increments. The spread of the individual times of the 64 validation cases around these
average values is negligible.
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Speed-ups become impressive when very large load increments are considered. In
all examples observed thus far, the RB converges to the final load amplitude in a
single increment, requiring 7–13 Quasi–Newton iterations, with only 2–4 assemblies
of the Jacobi matrix D and a runtime of 10–50 seconds.This is in strong contrast
to the FEM which is very sensitive to large load increments as they come along
with a high probability of a violation of the condition det(F ) > 0. By means of
standard implementation, such occurrences are usually treated with cutbacks of the load
increment, which is detrimental to the runtime of the FEM.

No rigorous speed-up analysis is intended at this point. Both the codes of the FEM
and of the RB method are fairly efficient in-house C/C++ developments and perform
exact line searches. While the FEM has not yet been equipped with a Quasi–Newton
procedure, the linear solver makes use of parallelization. This is in contrary to the
current implementation of the RB method. Depending on the microstructure (especially
the geometry, material nonlinearities, and phase contrast), the loading conditions, and the
size N of the RB, speed-up factors are in the order of 5–100.

6.4.2 Reduced Basis for a Stiffening Microstructure

The second example takes the “worst-case” approach further by considering a noncubical
microstructure with even higher phase contrast and significant topological nonlinearity.
To this end, a cuboid microstructure occupying the domain [−0.5, 0.5] × [−0.3, 0.3] ×
[−0.05, 0.05] ⊂ R3 and containing a hash-like inclusion is investigated, see Figure 6.9a.
The mesh is periodic and contains 33, 923 nodes in 21, 726 quadratic tetrahedron
elements (C3D10). The reinforcement makes up approximately 13.3% of the volume.
Due to this large volume fraction, a pronounced geometry-induced nonlinearity of the
effective response is expected under uniaxial loading conditions along the x-axis. As it is
elongated, the hashlike part is straightened and thus increasingly aligned with the external
loading, see Figure 6.9b. Such effects might be desirable when designing microstructures
for functional materials.

(a) (b) (c)

Figure 6.9: (a) Cuboidal microstructure with hashlike inclusion phase. (b) Deformed
state under uniaxial tension loading. Only inclusion is shown, coloring indicates P xx. (c)
Straight inclusion substitute microstructure, leading to a comparable effective stress.
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The material parameters are Km = 19.867 MPa, Gm = 0.4 MPa, Kf = 19, 867 MPa,
and Gf = 400 MPa, implying a Poisson ratio of 0.49 in both materials and a phase
contrast of 1000.

The training boundary conditions are the deviatoric ones of the set considered in
Section 6.4.1, i.e., Ndir = 128 deviatoric directions and Namp = 10 regularly spaced
deviatoric amplitudes from the interval [0.05, 0.5]. No dilatational training cases are
considered, i.e., only points from a five-dimensional submanifold of the space U are
sampled.

Uniaxial tension boundary conditions are applied for the validation. More precisely, the
stretch component Uxx is increased from 1.0 to 1.5 in 10 increments of equal size. The
other components are chosen such that all but the xx-component of the effective stress P
vanish.

Figure 6.10 depicts the results for different sizes N of the RB. The influence of the
stiffening effect on the stress curve is emphasized by the black dashed line corresponding
to a similar microstructure with a straight, cuboid inclusion that leads to the same final
stress value under these boundary conditions, see Figure 6.9c.
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Figure 6.10: Stress curves for a microstructure with geometric stiffening (cf. Figure 6.9a),
comparing the FEM result to the RB for various number of basis elements N . A
similar microstructure without geometric stiffening but with the same final stress value
(cf. Figure 6.9c) leads to the black dashed curve.

In this example, the geometric stiffening effect is captured by the RB with high accuracy,
with as few as N = 24 basis elements. For moderate stretches, even an RB size of
N = 16 suffices. These results are somewhat more impressive when noticing that the
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applied boundary condition contains more than 1.2% volumetric compression, i.e. the
validation loading actually lies outside the submanifold covered during training.

In order to examine the action of the cutoff function φ, the following two indicators are
introduced:

cqp = # quadrature points with (φ(J) < 1) , (6.47)

Vexcl =


|Ω0| −

Nqp∑

p=1

φ(Jp)wp


 /|Ω0|. (6.48)

The first quantity, cqp, counts the number of quadrature points at which the cutoff
function has an influence. The second one, Vexcl, measures the relative excluded volume,
interpreting the value of φ as a scaling of the corresponding quadrature weight. The
values of these indicators are depicted in Figure 6.11.
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Figure 6.11: (Left) Number of quadrature points at which the cutoff function φ attains a
value less than one. (Right) Relative excluded volume.

Most notably, the cutoff function does not have any effect before the eighth load
increment in this example. Only for large load amplitudes does this numerical stability
tweak become necessary. Even then, the number of points at which it has an influence is
small, considering the total number of quadrature points, Nqp = 86, 904. This example
is representative for all conducted numerical experiments.
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6.5 Discussion

6.5.1 Discussion of the Reduced Basis Method

Relation of the RB Homogenization to Analytical Estimates

Zero coefficients, ξ = 0, correspond to the Taylor homogenization, i.e., to the nonlinear
counterpart of the Voigt estimate [Voigt, 1910], which provides an upper bound for the
material response, cf. (6.17). Starting with the initial guess ξ(0) = 0, the evolution
of the coefficients corresponds to a (possibly not monotonous) relaxation of this overly
stiff response into a more natural state. In view of improved computational efficiency, a
nonzero initial guess ξ(0) combined with an exact line search has proven reasonable and
easy to realize. For instance, such a guess might stem from previous load steps or an
interpolation/extrapolation of available coefficient data.

Reconstruction of Displacement Fields

Given an RB approximation of the deformation gradient, FRB, one can reconstruct the
corresponding displacement field uniquely up to rigid body motion. This is possible due
to the linear dependence of the deformation gradient fluctuations on the displacement
fluctuations. Recall the definition of the RB in (6.32),

B(i) =

Ns∑

j=1

1√
λi

(
E(i)

)
j
F̃

(j)
(i = 1, . . . , N).

The corresponding displacement fluctuations are

ũ
(i)
B =

Ns∑

j=1

1√
λi

(
E(i)

)
j
ũ(j) (i = 1, . . . , N). (6.49)

The displacement fluctuation fields ũ(j) are defined by ũ(j)(X) = u(j)(X)−H(j)
X ,

where the displacement fields u(j) are the solutions computed during training, and
H

(j)
= U

(j) − I . Thus, a displacement field compatible to the RB result FRB(X;F )
is given by

uRB(X;F ) = HX +

N∑

i=1

ξ∗i (F )ũ
(i)
B (X). (6.50)

The missing term u(X), cf. (6.10), cannot be reconstructed.
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Relation to Classical Displacement-Based POD Methods

In a certain sense, the entries of the correlation matrix used in the offline phase, cf.
Section 6.2.2, are “weighted” scalar products of the displacement fluctuation fields w̃(i)

within the Sobolev spaceH1
0 (Ω0). “Weighted” is to be understood in that the zeroth order

derivative is multiplied by zero. Classical displacement-based POD methods compute
correlations of the fluctuations w̃(i) within the Lebesgue space L2(Ω0). The change
to H1

0 (Ω0)-like scalar products is physically motivated by the fact that the local energy
W = W (F ) explicitly depends on the gradient of the displacement, F = u⊗∇X + I ,
but not on the displacement, u.

Advantages Compared to General Displacement-Based Schemes

The proposed method is advantageous compared to both displacement-based POD
methods and the classical FEM for the following reasons:

• No gradients need to be computed from displacement fields, which displacement-based
schemes always require prior to the evaluation of the material law.

• The residual r and the Jacobian D are algorithmically sleek and trivial to implement.

• The absence of element formulations in the assembly of the reduced residual r and
of the Jacobi matrix D contributes to both the simplicity and the efficiency of the
method—no incidence matrices occur, allowing for linear memory access. Moreover,
the algebraic operations associated with reference element formulations are bypassed.
This is also in favor of parallel computations. Such an implementation is still
outstanding for the problem at hand, but has been conducted for related problems in
the small strain setting in [Fritzen & Hodapp, 2016].

Although the storage of the basis {B(i)}Ni=1 requires 9NqpN double precision values, the
basis is compact enough to be completely loaded into random access memory of standard
computers. For instance, the bases considered in Section 6.4 occupy only ~200 Mb of
memory for N = 32.

We now briefly address the algorithmic complexity associated with the proposed F -
RB method and with the u-RB method that was employed in previous works, such
as [Radermacher & Reese, 2015] and [Yvonnet & He, 2007]. To this end, the fully
discretized versions of the residual r and of the Jacobian D as well as discrete quantities
associated with the u-RB method are introduced in the following listing.

• P (Xp) ∈ R9: Nine values of the stressP (F ξ(Xp)) at the quadrature pointXp ∈ Ω0

• C(Xp) ∈ R9×9: Symmetric stiffness tensor

• B(Xp) ∈ R9×N : F -RB matrix, nine values of each basis elementsB(i) as columns

• wp: The quadrature weight atXp
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• NDOF: Three times the number of nodes, ∼ Nqp

• r FE ∈ RNDOF : Global FE residual vector

• Bu ∈ RNDOF×N : u-RB matrix, columns contain the nodal displacement values

• K FE ∈ RNDOF×NDOF : Global FE stiffness matrix

Table 6.1 compares the algorithmic complexity of the presented F -RB method with that
of standard u-RB schemes. First of all, both methods share a quadratic dependence
of their Jacobi matrices on the number of modes, N . Therefore, the assembly of the
Jacobian is usually the most costly operation. Secondly, both approaches’ complexities
suffer a linear dependency on the number of quadrature points,Nqp. In the displacement-
based approach, this is included in the assembly of the residual and of the stiffness, which
relate to the factor 9 and 92, respectively. Thirdly, the novel F -RB scheme spares the
computational overhead associated with FE formulations rFE and KFE. More details on
this matter are currently being investigated.

Table 6.1: Algorithmic complexities of the well-established u-based RB method and the
novel F -based RB method. In any case, N denotes the size of the RB. The assembly of
the FE residual and of the FE stiffness depend on Nqp.

RB Method Quantity Complexity

F -based

r =

Nqp∑

p=1

B(Xp)
TP (Xp)wp O(9NNqp)

D =

Nqp∑

p=1

B(Xp)
TC(Xp)B(Xp)wp O([92N + 9N2]Nqp)

u-based

r =
(
Bu
)T
rFE O(NNDOF)

+ assembly of rFE

D =
(
Bu
)T
KFEBu O(NN2

DOF +N2NDOF)

+ assembly of KFE

Outlook

Future research should aim at an application of the introduced Reduced Basis method
within realistic two-scale simulations, in analog to [Fritzen & Kunc, 2018c, Fritzen
& Hodapp, 2016, Rambausek et al., 2019, Kochmann et al., 2017]. Hyperreduction
methods, cf. Ryckelynck [2005], might give rise to additional speed-ups in the online
phase. Further, modifications of the cutoff function, φ, should be investigated—a
function with compact support might be more appropriate. The construction of the
RB from large sets of snapshots is computationally intense, as much data needs to
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be processed. In the above examples, the POD consumed multiple hours of time.
Hierarchical approximations, such as Himpe et al. [2018], might mitigate the effects
by enabling parallel computations. Overall, the long-term perspective is to extend this
RB framework efficiently to the context of dissipative materials.

6.5.2 Discussion of the Sampling Strategy
The proposed sampling strategy is meant to serve as a template. As exemplified in
Section 6.4.1, the samplings can be modified and still lead to a coverage of the set of
macroscopic boundary conditions that is sufficient for the problem at hand. The example
of Section 6.4.2 took this idea further and showed that it might not even be necessary to
sample the macroscopic determinant. Hence, the sampling can sometimes be reduced to
the five-dimensional subspace of isochoric macroscopic stretch tensors.

In any case, the exact choice of both the inputs to Algorithm 6.1 and the distributions
of the deviatoric amplitudes and the macroscopic determinants remains to be based on
knowledge and sophisticated guesses, at least at the current state of the art. Further
research on this matter might lead to a refined alternative to Algorithm 6.1, possibly
involving the evaluation of error estimators.
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RB Reduced Basis
FE(M) Finite Element (Method)
POD Proper Orthogonal Decomposition
DOF degree(s) of freedom
FOM full-order model
s.p.d. symmetric positive definite
DDMS Dilatational-Deviatoric Multiplicative Split

6.6 Appendix
6.6.1 Material Objectivity
The transformation behavior of the components of the stiffness tensor C is now
deduced. To this end, Green’s strain tensor E = 1

2
(F

T
F − I), the corresponding

stored energy density function W
E

(E) = W (F ), the second Piola–Kirchhoff stress
S = ∂W

E
/∂E|E , and the corresponding stiffness tensor CE

= ∂2W
E
/(∂E)2|E are

introduced. Starting from the well-known relationship P = F S between S and the first
Piola–Kirchhoff stress P = ∂W/∂F |F (see for instance Bertram [2008]), we express

the components of C in terms of those of S and of CE
:

Cijkl =
∂2W

∂F ij∂F kl
=
∂P ij

∂F kl
=

3∑

m=1

∂F imSmj

∂F kl

=

3∑

m=1

(
δikδlmSmj + F im

∂Smj

∂F kl

) (6.51)

= δikSlj +

3∑

m,n,o=1

F im
∂Smj

∂Eno

∂Eno

∂F kl
(6.52)

= δikSlj +

3∑

m,n,o=1

F imC
E
mjno

∂Eno

∂F kl
(6.53)

= δikSlj +

3∑

m,p=1

F imC
E
mjplF kp . (6.54)

In the last step, the minor symmetry C
E
mjno = C

E
mjon has been exploited, and i, j, k, l =

1, 2, 3 above and throughout. From this, the inverse relation

C
E
ijkl = −

(
U
−2
)
ik
Slj +

3∑

m,n=1

(
F
−1
)
im
Cmjnl

(
F
−T
)
nk

(6.55)
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can be derived. The fact that Green’s strain tensor is frame invariant, i.e. E(RU) =

E(U), implies that both the left hand side C
E
ijkl = C

E
ijkl(E) and the second Piola–

Kirchhoff stress Slj = Slj(E) are independent of R. This is in contrast to Cmjnl =
Cmjnl(RU) from which follows that

3∑

m,n=1

(
F
−1
)
im
Cmjnl(RU)

(
F
−T
)
nk

=

3∑

m,n=1

(
U
−1
)
im
Cmjnl(U)

(
U
−T
)
nk
.

(6.56)

By contraction of the indices i and k with the second index of F and the first index of
F

T
, respectively, equation (6.42) follows.

6.6.2 Effective Material Responses of the RB

Let I denote the fourth order identity tensor and let the arguments of the F -RB
approximation (6.23) be omitted, i.e. here FRB = FRB(X;F ). Its derivative with
respect to the boundary condition F is

∂FRB

∂F
= I +

N∑

i=1

B(i) ⊗ ∂ξ∗i
∂F

(F ). (6.57)

6.6.3 Effective Stress

P
RB

=
∂W

RB

∂F
=

∂

∂F

〈
WRB

〉
=

〈
∂WRB

∂F
· ∂F

RB

∂F

〉

(6.57)
=
〈
PRB

〉
+

N∑

i=1

〈
PRB ·

(
B(i) ⊗ ∂ξ∗i

∂F
(F )

)〉

=
〈
PRB

〉
+

N∑

i=1

〈
PRB ·B(i)

〉
⊗ ∂ξ∗i
∂F

(F )
(6.28)
=
〈
PRB

〉

(6.58)

6.6.4 Effective Stiffness

CRB
=

∂P
RB

∂F

(6.58)
=

∂

∂F

〈
PRB

〉
=

〈
∂2WRB

∂F ∂F

〉
=

〈
∂2WRB

∂F 2 · ∂F
RB

∂F

〉
(6.59)
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(6.57)
=
〈
CRB

〉
+

N∑

i=1

〈
CRB ·

(
B(i) ⊗ ∂ξ∗i

∂F
(F )

)〉

=
〈
CRB

〉
+

N∑

i=1

〈
CRB ·B(i)

〉
⊗ ∂ξ∗i
∂F

(F )

(6.59 continued)

For
∂ξ∗i
∂F

(F ), we demand that the residual ri(F , ξ) from (6.28) is stable with respect to

the boundary condition F when converged to ri(F , ξ∗(F )) = 0,

∂ri

∂F
(F , ξ∗(F )) =

〈
B(i) · ∂P

RB

∂F

〉

=

〈
B(i) ·

(
∂PRB

∂F

∂FRB

∂F

)〉

=
〈
B(i) · CRB

〉
+

N∑

j=1

〈
B(i) · CRB · ∂F

RB

∂ξ∗j

∂ξ∗j

∂F

〉

=
〈
B(i) · CRB

〉
+

N∑

j=1

〈
B(i) · CRB ·B(j)

〉

︸ ︷︷ ︸
Dij

∂ξ∗j

∂F
= 0.

(6.60)

It follows that

∂ξ∗j

∂F
(F ) = −

N∑

i=1

(
D−1

)
ij

〈
B(i) · CRB

〉
. (6.61)

6.6.5 Basis for Symmetric Traceless Second Order Tensors
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Kunc, O. & Fritzen, F.: Generation of energy-minimizing point sets on spheres
and their application in mesh-free interpolation and differentiation. Advances in
Computational Mathematics 45 (2019c), 3021–3056, Springer Science and Business
Media LLC, doi:10.1007/s10444-019-09726-5

Abstract. It is known that discrete sets of uniformly distributed points on the
hypersphere Sd ⊂ Rd+1 can be obtained from minimizing the energy functional
corresponding to Riesz s-kernels ks(x,y) = ‖x − y‖−s (s > 0) or the logarithmic
kernel klog(x,y) = −log‖x − y‖ + log 2. We prove the same for the kernel
kLOG(x,y) = ‖x−y‖(log ‖x−y‖

2
−1)+2 which is a front-extension of the sequence of

derivatives klog, k1, k2, k3, . . . , up to sign and constants. The boundedness of the kernel
simplifies the classical potential-theoretical proof of the asymptotic uniformity of the
point distributions. Still, the property of a singular derivative for x → y is preserved,
with the physical interpretation of infinite repulsive forces for touching particles. The
quality of the resulting point distributions is exemplary compared to that of Riesz- and
classical logarithmic point sets, and found to be competitive.

Originally motivated by problems of high-dimensional data, the applicability of LOG-
optimal point sets with a novel concentric interpolation and differentiation scheme is
demonstrated. The method is significantly optimized by the introduction of symmetrized
kernels for both the generation of the minimum energy points and the spherical basis
functions.

Both the point generation and the Concentric Interpolation software are available as Open
Source software under the GNU GPL License v3 and selected point sets are provided.
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7.1 Introduction
In the first part of the present work, the existence, the generation and the properties of
energy minimizing point sets on spheres Sd = {x ∈ Rd+1 : ‖x‖ = 1}, where ‖x‖
denotes the Euclidean norm of x, in arbitrary dimension d ≥ 1 is studied.9

The application of these point sets as support sites for data-assisted, mesh-free methods
represents the second part of this work. An easy to use interpolation scheme including
the automatic and computationally efficient differentiation of the data is provided.

7.1.1 Part 1: Generation of LOG-energy minimizing point sets
Directional data and sampling over the sphere are required in earth sciences, medicine,
psychology and physics, see e.g. Mardia & Jupp [1999]. Further, sampling the high-
dimensional state space of physical problems in order to identify pronounced material
properties requires the non-trivial generation of sample directions for d ≥ 4, see e.g.
Fritzen & Kunc [2018c]. Other fields of research applying certain distributions of
directions include microstructure characterization: Dietrich et al. [2012]; anisotropy
evaluation: Pérez-Ramírez et al. [2013]; crystallography: Morawiec [2004]; flow
visualization: Ma et al. [2013]; electromagnetism: Martini et al. [2010]; astronomy:
Roşca [2010]; meteorology: Staniforth & Thuburn [2011]; distributed computing:
Andelfinger et al. [2014] and image compression: Lovisolo & Da Silva [2001]. It is
therefore of notable importance to develop schemes for the generation of directions
with specific properties. In many cases, uniformity of the distribution of directions is
important and the main objective is to reduce the number of samples while meeting
accuracy requirements of the subsequent computational schemes.

Directions in Rd+1 can be represented as points on the unit sphere Sd. The generation of
point sets on Sd with particular distribution has been an active field of research for many
years, cf., e.g., Saff & Kuijlaars [1997] for a brief introduction.

Among the characteristics of point sets that might be desired, asymptotic uniformity is
a prominent example. The term was introduced more than a century ago, probably by
Weyl [1916], and initiated a branch of research that is still seeing notable attention today.
A physical approach for the approximation of asymptotically uniform point sets was the

9In the present work the name sphere is used for arbitrary dimension d, i.e. it is used as a synonym
for hypersphere. Also, we call Sd the d-sphere.
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minimization of an assumed electric potential. As a generalization of this special case,
the Riesz kernel ks(x,y) = ‖x− y‖−s (s > 0) is central to the theory.

By standard arguments of potential theory, cf. Landkof [1972], it is well-known that point
sets minimizing the energy corresponding to the Riesz s-kernel ks with 0 < s < d are
asymptotically uniformly distributed. With some modifications, cf. Landkof [1972], the
arguments prove the same for the log-kernel klog(x,y) = − log‖x− y‖+ log 2, where
the non-standard additive constant log 2 does not affect the validity of the proof. These
cases are part of the potential-theoretic regime, as the double integral of the respective
kernels is finite, cf. Brauchart & Grabner [2015]. The case s ≥ d comes along with
integrability issues. In Hardin & Saff [2005] it is shown that in this hyper-singular
regime, too, energy-optimality is sufficient for asymptotic uniformity of the distribution.

It is interesting to note that the Riesz-kernels for integral values of s and the log-kernel
can be connected in the following way: let the Euclidean distance of two points be
denoted by z(x,y) = ‖x − y‖, and let the kernel functions with respect to this scalar
argument be k̃log(z), k̃s(z). Then each element of the series
(

(−1)nan
∂nk̃log

(∂z)n
(z)

)

n∈N≥0

= k̃log(z), k̃1(z), k̃2(z), k̃3(z), . . . , (7.1)

with the factor a0 = 1 and an = 1
(n−1)!

for n ∈ N, is known to lead to
asymptotically uniform point distributions. The main contribution of this work is
to show that the same holds for a front-extension of the above series by the kernel
k̃LOG(z) = z(log z

2
− 1) + 2, which satisfies ∂k̃LOG(z)/∂z = −k̃log(z). Thus, to the

best knowledge of the authors, the set of potential-theoretic cases is extended.

7.1.2 Part 2: Mesh-free interpolation and differentiation
Energy minimizing point sets are not only appealing due to their asymptotic uniformity,
which could also be realized by a proper sequence of random points. Rather, their
beauty lies in their inherent “evenness” or “regularity”, two terms that intuitively
describe multiple formal definitions. The goal of the second part of the present work
is to exemplary prove the applicability of LOG-optimal points to a novel concentric
interpolation and differentiation scheme. Based on spherical basis functions, a sense of
“regularity” is a property one would expect sets of supporting points to have in order to
be well-suited for this application.

The Concentric Interpolation method addresses the problem of high-dimensional data. In
science and engineering, modern experimental methods produce ever increasing amounts
of data. Novel in silico methods can efficiently produce data at exactly predefined
positions within the admissible parameter domain, which may be of large dimension.
However, the processing of the data sets often remains challenging, e.g., if differential
operators such as the divergence or gradient should be applied to discrete data, cf.,
e.g., Esmaeilbeigi et al. [2017]. The higher the dimension and the greater the size
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of the data set, the more desirable it is to have a robust meshless interpolation and
differentiation method at hand. Generality of the method, also known as “black-box”
character, contributes to the ease of use and to avoiding operational errors.

The Concentric Interpolation method provides an application of the point sets from the
first part in terms of a mesh-free interpolation and differentiation scheme on the sphere
Sd with an extension to the surrounding space Rd+1.

7.1.3 Outline
The first part begins with Section 7.2 where the theorem of asymptotic uniformity of
LOG-optimal point sets is set up. The theorem is proved in Section 7.3. In Section 7.4,
the algorithm behind the provided Matlab code for the generation of sets of energy-
minimizing points is described. The first part concludes with Section 7.5, where the
quality of LOG-optimal point sets and the evolution of their energy is numerically
studied.

The second part begins with Section 7.6. There, the Concentric Interpolation scheme is
introduced. The suitability of various kinds of energy-optimal point sets is numerically
exemplified in Section 7.7. The paper closes with a summary and discussion in
Section 7.8.

7.2 Minimum energy point sets

7.2.1 Kernels

By kernels, we denote a family of symmetric functions ks : Sd × Sd → R≥0 ∪ {∞}
which are parametrized by s ∈ R≥0 ∪ {log,LOG} and which are defined by

ks(x,y) =





1

‖x− y‖s if s ≥ 0,

log
2

‖x− y‖ if s = log,

‖x− y‖(log
‖x− y‖

2
− 1) + 2 if s = LOG.

(7.2)

If s > 0 in the first case, the kernel ks is usually denoted a Riesz-kernel. In the second
case, klog is usually referred to as the logarithmic kernel, where the natural logarithm is
employed. Note the constant log 2 by which this definition deviates from the standard
literature. In order to avoid possible confusions, we will denote this the “log-kernel” and
speak of the “log-case”, in contrast to the capitalized “LOG-kernel” of the “LOG-case”
for s = LOG. In the latter, the definition is continuously extended for equal arguments,
kLOG(x,x) = 2. In contrast to this, the Riesz- and the log-kernel are only lower semi-
continuous and exhibit a singularity, limy→x ks(x,y) = ∞. The case s = 0 is only
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of formal interest and does not deserve special nomenclature. As the case s = LOG is
introduced by the current work, the other cases (s 6= LOG) are referred to as classic.

The family of kernels ks depends only on the Euclidean distance z = ‖x−y‖. Therefore,
it is useful to introduce the univariate function k̃s : [0, 2]→ R≥0∪{∞} and its derivative
k̃′s, defined by

k̃s(z) = ks(x,y) k̃′s(z) =
dk̃s
dz

(z). (7.3)

Some of the introduced kernels are visualized in Figure 7.1.
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Figure 7.1: Left: various Riesz-kernels, the log-kernel and the LOG-kernel. The latter
(solid black thick line) has infinite slope at z = 0 but is bounded. Right: respective
derivatives.

The univariate kernel function may be symmetrized with respect to z =
√

2, correspond-
ing to a mirror symmetry at the origin, independently of s, via

k̃sym
s (z) = k̃s(z) + k̃s(

√
4− z2). (7.4)

The expression
√

4− z2 arises from the curvature of the manifold Sd and measures the
Euclidean distance to an antipode, e.g. if z = ‖x − y‖, then

√
4− z2 = ‖x + y‖.

This function k̃sym
s is the effective kernel resulting from two antipodal centers. Such

symmetrized kernels are exemplary visualized in Figure 7.2.

7.2.2 Measures, potentials, energy, and asymptotic uniformity

LetM denote the set of non-negative Borel-measures on Sd with respect to the topology
that is induced by the Euclidean metric z(x,y) = ‖x− y‖, x,y ∈ Rd+1. Additionally,
the geodesic metric zg(x,y) = acos(xTy) is introduced, x,y ∈ Sd, which relates to
the former metric via z = 2 sin(zg/2). Let B(Sd) be the Borel sigma algebra, and Hd
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Figure 7.2: Left: symmetrized kernels of Riesz, log, and LOG type. The minimum value
of all kernels is attained at z =

√
2. Right: respective derivatives with respect to z.

denote the d-dimensional Hausdorff measure on the metric space (Sd, zg). Then the
uniform measure σ, defined by

σ(A) =
Hd(A)

Hd(Sd) , (7.5)

where A ∈ B(Sd), is a common example for an element ofM. Another element ofM
is the Dirac measure corresponding to a single point x∗ ∈ Sd,

δx∗(A) =

{
1 if A 3 x∗
0 else

, (7.6)

with A ∈ B(Sd). These two examples both belong to the subset of normalized measures
M = {µ ∈M|µ(Sd) = 1}. Henceforth, we shall restrict our attention to M, which
contains all measures that are of interest for our purposes, although many definitions
equally apply to the larger setM.

Convex combinations of countably many Dirac measures shall be called discrete
measures, while all others are referred to as continuum measures. The term continuum
is to be understood in the sense of uncountably large sets, not addressing continuity.
The support of a measure, supp(µ), is defined as the complement in Sd of the largest
open set A ∈ B(Sd) with µ(A) = 0. A sequence of measures (µn)n∈N ⊂ M weakly
converges to µ ∈ M, denoted by µn

·→ µ, if for all test functions f ∈ CK =
{compactly supported, continuous functions : Sd → R}

lim
n→∞

∫

Sd
f(x) dµn(x) =

∫

Sd
f(x) dµ(x). (7.7)

Finite sets of arbitrary but fixed points on the hypersphere will be denoted by XN =
(x1, . . . ,xN ) ⊂ Sd. Although the order within point sets is irrelevant for our purposes,
the N -tuple notation (x1, . . . ,xN ) is used (in contrast to the notation {x1, . . . ,xN} of
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an unordered set) in order to unambiguously allow for identical elements, i.e. possibly
xi = xj for some i 6= j. For convenience, only the term (point) set is used hereafter.
Further, the notation of a sequence of point sets (XN )N∈N allows for non-hierarchical
sets, i.e. possibly XN 6⊂ XN+1. For every point set XN , there is a corresponding
discrete normalized measure µXN ∈M with equal weights,

µXN =
1

N

N∑

i=1

δxi . (7.8)

Discrete measures of this form are weakly dense inM, meaning that for all µ ∈M there
exists a sequence of point sets (XN )N∈N such that µXN

·→ µ.

For fixed kernel ks and measure µ ∈M, the function Uµs : Sd → R≥0 ∪ {∞} is defined
by

Uµs (x) =

∫

Sd
ks(x,y) dµ(y) (7.9)

and is denoted the s-potential of µ at x ∈ Sd. The functional Is : M → R≥0 ∪ {∞},
called the s-energy of µ, is associated with the s-potential by

Is(µ) =

∫

Sd
Uµs (x) dµ(x) =

∫

Sd

∫

Sd
ks(x,y) dµ(x) dµ(y), (7.10)

which by the Fubini theorem is finite only if Uµs (x) is finite µ-almost everywhere (µ-
a.e.). Analogous conditions hold for the mutual s-energy of the measures µ, ν ∈ M,
Is :M×M→ R≥0 ∪ {∞}, defined by

Is(µ, ν) =

∫

Sd

∫

Sd
ks(x,y) dµ(x) dν(y) =

∫

Sd
Uνs (x) dµ(x) =

∫

Sd
Uµs (y) dν(y).

(7.11)

This is notationally distinct from the s-energy of a single measure by the number of
arguments, and relates to it by Is(µ) = Is(µ, µ).

In the discrete setting, the finiteness of the s-energy

Is(µXN ) =
1

N2

N∑

i,j=1

ks(xi,xj) (7.12)

depends on the parameter s. It is finite if s ∈ {0,LOG}. In fact, I0 ≡ 1 for any discrete
measure µXN . For the other classical cases, s ∈ R>0 ∪ {log}, one usually considers the
modified s-energy

Ĩs(µXN ) =
1

N(N − 1)

N∑

i,j=1
i 6=j

ks(xi,xj) =
2

N(N − 1)

∑

1≤i<j≤N
ks(xi,xj) (7.13)
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which is only meaningful for discrete measures µXN ∈ M. In the context of Riesz-
kernels it is naturally assumed that the point set XN contains no repeated elements. As
we mostly focus on the newly introduced LOG-case, this assumption is not made at this
point. Its minimum value,

Ĩs(N) = min
XN∈Sd

Ĩs(µXN ), (7.14)

exists due to the boundedness of the kernels, 0 ≤ ks, and the compactness of the domain
Sd. It is well-known, cf. Brauchart & Grabner [2015], that the classical kernels are
related via the s-expansion of the modified energy at s = 0,

Ĩs(µXN ) = Ĩ0 + s(Ĩlog(µXN )− log(2)) + o(s) (s→ 0). (7.15)

Note that the minimum LOG-energy with respect to point sets of size N exists,

ILOG(N) = min
XN⊂Sd

ILOG(µXN ). (7.16)

and denote a point set that realizes this minimum N -point LOG-energy by

ΞN = arg min
XN⊂Sd

ILOG(µXN ) = (ξ
(N)
1 , . . . , ξ

(N)
N ). (7.17)

Such point sets are coined energy optimal or energy minimizing. Note that energy min-
imizing point sets generally need not be unique, not even up to orthogonal transforma-
tions.

A sequence of point sets (XN )N∈N is said to be asymptotically uniformly distributed
(a.u.d.), cf. Brauchart & Grabner [2015], if it weakly converges to the uniform measure,
i.e. µXN

·→ σ. It is well-known, cf. Brauchart & Grabner [2015], that energy
minimizing point sets for the cases s ∈ R>0 ∪ {log} are a.u.d. The main contribution of
the present work is the following

Theorem 1 Sequences of LOG-energy optimal point sets (ΞN )N∈N are asymptotically
uniformly distributed, i.e. µΞN

·→ σ. 2

The proof is given in Section 7.3. There, it is also shown that the optimalN -point energy
ILOG(N) converges to the infimum value Ic

LOG of the energy ILOG(µ), i.e.

lim
N→∞

ILOG(N) = Ic
LOG := inf

µ∈M
ILOG(µ). (7.18)

The upper index c emphasizes that continuum measures are also considered in the
infimum operator. This is distinct from the definition (7.16) of ILOG(N), where the
minimum is taken from a subset ofM – albeit a dense subset.
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7.2.3 Evaluation of the asymptotic LOG-energy

The energy of optimal point sets and its limit behavior has been subject of investigation
for years, cf. e.g. Brauchart et al. [2012], Hardin & Saff [2005] and the literature
mentioned therein. As shown in the proof of Theorem 1 in Section 7.3, for a.u.d. point
sequences the relation

lim
N→∞

ILOG(N) = Ic
LOG =

∫

Sd×Sd
kLOG(x,y) dσ(x) dσ(y) (7.19)

holds. For the potential-theoretic Riesz-case, 0 < s < d, is known that the minimum
energy Ic

s = infµ∈M Is(µ) has the explicit expression

Ic
s = 2d−1−sΓ((d+ 1)/2) Γ((d− s)/2)√

π Γ(d− s/2)
, (7.20)

cf. [Brauchart & Grabner, 2015, (3.12)]. The hyper-singular case, s ≥ d, is characterized
by the lack of integrability, Ic

s =∞. A straight-forward, general, integral representation
of Ic

s for all potential-theoretic cases can be constructed by means of the following
modification of (7.19).

By Lemma 3 of Section 7.3, the potential Uσs (x) is σ-a.e. constant. Therefore, a single
integral is sufficient,

Ic
s =

∫

Sd
k̃s(z(x,y)) dσ(y) ∀x ∈ Sd. (7.21)

For further simplification and for later reference, the notion of a spherical cap is
introduced,

Cd(c, r) = {x ∈ Sd : zg(c,x) ≤ r}, (7.22)

where c ∈ Sd and r ∈ [0, π] shall be called the center and the radius of the cap,
respectively. Note that in contrast to the kernels, spherical caps are defined with respect
to the geodesic metric zg. Then the (geodesic) distribution function F d : [0, π] → [0, 1]
associated with the measure σ is given by

F d(r) = σ(C(c, r)), (7.23)

which is independent of the cap center c ∈ Sd. For example, the distribution functions
for d = 1, 2, 3 are

F 1(r) =
r

π
, F 2(r) =

1− cos(r)

2
and F 3(r) =

r − sin(r) cos(r)

π
. (7.24)

The respective density function fd : [0, π]→ R≥0 is given by

fd(r) =
∂F d(r)

∂r
. (7.25)
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With this at hand, (7.21) is equivalent to the simple equation

Ic
s =

∫ π

0

k̃s(2 sin(zg/2))fd(zg) dzg. (7.26)

Most importantly, the integration reduces to a one-dimensional integral, allowing for
arbitrarily exact evaluation using numerical quadrature. This holds for all potential-
theoretic cases, e.g. for all s satisfying 0 < s < d, s = log or s = LOG.

7.3 Proof of the asymptotic uniformity of LOG-
optimal point sets (Theorem 1)

The proof is largely based on the frequently cited standard textbook on potential theory
[Landkof, 1972, pp. 131–137 and 160–163], where it was conducted for the case
0 < s < d. The mentioned source also contains an adaption of the proof to the case
s = log. The boundedness of kLOG implies that the case s = LOG should be included in
the potential-theoretic regime, too, and hints at that the proof can be adapted. As it turns
out, the proof can actually be significantly simplified, such that the essential ideas can be
provided here comparatively briefly. For instance, the classic potential-theoretic proof is
based on the concepts of capacity and of the Fourier transform (of kernels or potentials).
Both of these are unnecessary in the LOG-case. Furthermore, the finiteness of potentials
and of energies is trivial to show. Also, the kernel requires neither “truncation” nor
additional limit considerations related to semi-continuity. Where technical details are
lengthy and require no modifications, we omit copying them and refer the interested
reader to the original source Landkof [1972]. We begin by collecting helpful facts in

Corollary 2 Let (µn)n∈N ⊂ M be a sequence of measures that weakly converges to
µ ∈M.

(a) The sequence of LOG-potentials converges to the LOG-potential of the weak limit,
i.e.

lim
n→∞

Uµn
LOG(x) = UµLOG(x) ∀x ∈ Sd. (7.27)

(b) The LOG-potential of any measure µ ∈M is a test function, i.e. UµLOG(x) ∈ CK.

(c) The sequence of LOG-energies converges to the LOG-energy of the weak limit, i.e.

lim
n→∞

ILOG(µn) = ILOG(µ). (7.28)

PROOF (a) In the definition of weak convergence (7.7), choose f(x) = kLOG(x,y∗)
which is clearly in CK for fixed y∗ ∈ Sd.

(b) This follows from the continuity of kLOG and from the linearity of the integral
operator. In other words, the LOG-potential is a test function because the LOG-kernel
kLOG(x,y∗) is a test function for fixed y∗ ∈ Sd, cf. (a).



7.3 Proof of the asymptotic uniformity of LOG-optimal point sets (Theorem 1)135

(c) Rewrite the energy of µn as ILOG(µn) =
∫
Sd U

µn
LOG(x) dµn(x). By (a), the integrand

converges to UµLOG(x). By (b), both the sequence of potentials (Uµn
LOG(x))n∈N and

its limit are test functions. Hence, the consecutive limit limn→∞ ILOG(µn) equals
ILOG(µ). �

Next, the existence and the uniqueness of a LOG-energy minimizing measure is deduced
in Lemmas 1-3.

Lemma 1 There exists λ ∈M such that for all µ ∈M : ILOG(λ) ≤ ILOG(µ). 2

PROOF Due to the bounds 0 ≤ kLOG ≤ 2, the compactness of Sd, the global support of
k̃LOG and the fact that k̃LOG(z) does not take its minimum value at z = 0, the infimum
value of the energy Ic

LOG exists and lies within the bounds

0 < Ic
LOG < 2. (7.29)

Therefore, there exists a sequence of energy minimizing measures,

(µn)n∈N ⊂M : lim
n→∞

ILOG(µn) = Ic
LOG. (7.30)

As this sequence is a subset ofM, it contains a weakly convergent subsequence,

(µnk )k∈N : µnk

·→ λ∗ , (7.31)

cf. [Landkof, 1972, Theorem 0.6]. It is clear that the weak limit measure λ∗ is contained
inM, too. Due to (7.28), limk→∞ I(µnk ) = I(λ∗). By (7.30) and (7.18), we can set
λ = λ∗ and the condition of the Lemma is met. �

By definition, the value Ic
LOG is unique. However, the uniqueness of the minimizing

measure λ requires additional considerations in the form of Lemmas 2 and 3. In the
former, it is shown that the energy minimizing potential is constant almost everywhere
on its support. In the latter, the support is shown to be global on Sd. Both lemmas share
the similar argument that, if λ does not satisfy the respective property, a contradiction
can be created by moving a part of the “mass” of λ.

Lemma 2 The potential of the minimizing measure λ of Lemma 1 equals the minimum
energy λ-almost everywhere, i.e.

UλLOG(x) = Ic
LOG for λ-almost all x ∈ Sd. (7.32)

PROOF First, we note that λ-a.e.

UλLOG(x) ≥ Ic
LOG. (7.33)

To prove this by contradiction, assume there was a compact set S ∈ B(Sd) with λ(S) > 0
such that UλLOG(x) < Ic

LOG for all x ∈ S. Take ν ∈ M with support in S, for instance,
ν = δx∗ with x∗ ∈ S. Then

ILOG(λ, ν) < Ic
LOG. (7.34)
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But, considering a convex combination µ = aν + (1 − a)λ ∈ M with any 0 ≤ a ≤ 1,
the opposite can be shown, too: the energy of the convex combination,

ILOG(µ) = a2ILOG(ν) + 2a(1− a)ILOG(ν, λ) + (1− a)2ILOG(λ), (7.35)

is not less than that of λ, i.e. ILOG(µ) ≥ ILOG(λ). Hence, the inequality

ILOG(λ, ν)− ILOG(λ) +
a

2
(ILOG(ν)− ILOG(ν, λ) + ILOG(λ)) ≥ 0 (7.36)

holds for all 0 < a ≤ 1. Therefore, the relation

ILOG(λ, ν) ≥ Ic
LOG (7.37)

is true, contradicting (7.34).

Second, the inequality

UλLOG(x) ≤ Ic
LOG (7.38)

holds everywhere in supp(λ). If not, there would exist x∗ ∈ supp(λ) with UλLOG(x∗) >
Ic

LOG. Corollary 2(b) implies that there is a neighborhood S ∈ B(Sd) of x∗ with
λ(S) > 0 on which UλLOG(x) > Ic

LOG holds for all x ∈ S. Hence,

Ic
LOG =

∫

S

UλLOG(x) dλ(x) +

∫

Sd\S
UλLOG(x) dλ(x)

(7.33)
> Ic

LOGλ(S) + Ic
LOG(1− λ(S)) = Ic

LOG,

(7.39)

which is impossible. Combining (7.33) and (7.38), the Lemma is proven. �

Lemma 3 The potential UλLOG(x) corresponding to the minimizing measure λ of
Lemma 1 is supported σ-almost everywhere, i.e. σ(supp(UλLOG)) = 1. 2

PROOF If σ(supp(UλLOG)) 6= 1, then there exists a compact set S ∈ B(Sd) with
σ(S) > 0 on which UλLOG(x) = 0 everywhere. Define the convex combination
µ = (1− a)λ+ aδx∗ with x∗ ∈ S and 0 < a ≤ 1. Then

ILOG(µ) = a2 kLOG(x∗,x∗)︸ ︷︷ ︸
=2

+2(1− a)UλLOG(x∗)︸ ︷︷ ︸
=0

+(1− a)2ILOG(λ) < ILOG(λ)

(7.40)

is equivalent to

a <
2ILOG(λ)

2 + ILOG(λ)
. (7.41)

This is satisfied by, e.g., a = Ic
LOG/(2 + Ic

LOG) < 1. This does not contradict a > 0
due to Ic

LOG > 0, cf. (7.29). Hence, (7.40) is true, which contradicts the definition of λ.
Therefore, the initial assumption σ(supp(UλLOG)) 6= 1 is wrong. �
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Lemmas 2 and 3 imply that the minimizing measure λ must be rotationally invariant. At
least since Christensen [1970], it is known that the normalized measure with this property
is unique, implying λ = σ.

In order to prove Theorem 1, it remains to be shown that the discrete measure associated
with LOG-optimal points ΞN converges to the rotationally invariant measure σ, i.e.
µΞN

·→ σ. By (7.16) and (7.17),

ILOG(N) ≤ ILOG(µXN ) (7.42)

holds for an arbitrary point sequence (XN )N∈N and its associated discrete measure µXN .
Again employing the theorem about convergence of sequences in M [Landkof, 1972,
Theorem 0.6], both the minimum energy sequence (µΞN )N∈N and the arbitrary sequence
(µXN )N∈N contain a weakly convergent subsequence,

µΞNk

·→ γ (k →∞) µXNk

·→ ν (k →∞). (7.43)

By Corollary 2(c), the inequality (7.42) is preserved in the limit k →∞,

ILOG(γ) ≤ ILOG(ν). (7.44)

As the sequence (XN )N∈N is arbitrary, the density of discrete measures in M implies
that (7.44) holds for arbitrary ν ∈ M. Hence, the measure γ is energy minimizing, i.e.
γ = σ. The same argument can be applied to any subsequence of (ΞN )N∈N, so the
whole sequence (µΞN )N∈N weakly converges to σ.

Alternatively, avoiding the density argument, one can study the evolution of the minimum
N -point energy and conclude asymptotic uniformity from

Lemma 4 The sequence of minimal N -point energies (ILOG(N))N∈N is convergent. 2

PROOF The optimal N -point energy ILOG(N) is decomposed into the “self-energy” of
the points and the mutual terms, i.e.

ILOG(N) =
1

N2




N∑

i=1

kLOG(ξ
(N)
i , ξ

(N)
i )︸ ︷︷ ︸

=2

+2
∑

1≤i<j≤N
kLOG(ξ

(N)
i , ξ

(N)
j )


 (7.45)

=
2

N
+

2

N2

∑

1≤i<j≤N
kLOG(ξ

(N)
i , ξ

(N)
j ). (7.46)

Obviously, the self-energy 2/N vanishes in the limit N → ∞. The mutual part
asymptotically behaves the same as ĨLOG(N). The latter is monotonically increasing,
which can be shown using the identity

∑

1≤i<j≤N
kij =

1

N − 2

N∑

l=1

∑

1≤i<j≤N
i,j 6=l

kij , (7.47)
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for arbitrary kij ∈ R, and exploiting the fact that the optimal point sets are in general not
hierarchical, i.e. ΞN−1 6⊂ ΞN . The argument is similarly carried out in [Landkof, 1972,
p. 160]. Once more, the boundedness of the kernel kLOG is invoked, this time to show
the existence of a limit of ĨLOG(N), and hence of ILOG(N). �

Since the limit measures of arbitrary subsequences of (µΞN )N∈N all attain the energy
Ic

LOG, these limits are energy minimizing. Thus, they equal the uniform measure σ,
wherefore again µΞN

·→ σ.

7.4 Generation of energy-minimizing point sets

7.4.1 Algorithmic implementation
The computation of energy-minimizing point sets requires the solution of a nonlinear
constraint optimization problem. The number of unknowns is (d + 1)N (i.e. N vectors
with d + 1 components each) and the number of nonlinear constraints is N . In order to
work around the nonlinear constraints, an algorithm based on unconstrained optimization
has been developed and implemented in Matlab. The key ingredients are:

• initialization of the point positions, see Section 7.4.2

• the gradient of the energy with respect to the point positions, g ∈ R(d+1)N , is
computed in closed form

• the unconstrained gradient descent algorithm is interrupted every nmin
it iterations in

order to perform a projection of the points onto Sd

• [OPTIONAL] refine via the application of a minimum least squares solver to the
gradient g

Algorithm 7.1 is provided in Appendix 7.9.2. Despite its simplicity and the lack of
incorporating the closed form expression of the Hessian of Is, reasonable performance
and robust results are achieved. However, large amounts of pointsN and high dimensions
d lead to substantial runtimes.

The runtimes may be notably reduced by employing symmetrized kernel functions, k̃sym
s .

A minor drawback of this approach is that N is required to be an even number. As an
advantage, the number of unknowns is reduced to (d+1)N/2. Only after the optimization
of the point set XN/2 is converged, it may be symmetrized, i.e. (XN/2,−XN/2). As
the computational complexity of the algorithm grows superlinearly in N , symmetrized
kernels speed up the computation by a factor of more than two.

In order to ensure an empirical robustness of the attained energy minimum, the converged
set is randomly perturbed by a small amount, and then further optimized. Only rarely,
this leads to a better local energy minimum, thus it is not included in the description of
Algorithm 7.1.
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The algorithm is implemented in Matlab and the software is made available as Open
Source under terms of the GNU GPL License v3, see the repository provided in Fritzen
& Kunc [2018b]. For already available databases of point sets of minimum energy type
and others, the reader is referred to Womersley [2003], Hardin et al. [1997].

7.4.2 Initial positions

In principle, any point set can be chosen to initialize the optimization algorithm, as long
as all points are separated (i.e. z(xi,xj) > 0 ∀i 6= j). Thus, random points, e.g. as in
Marsaglia [1972], are a natural choice. Such points can be generated efficiently by means
of the standard normal distribution. A random number generator with such distribution is
used to define each component of the coordinate vector of each point separately. This is
followed by subsequent normalization in order to ensure the initial points being located
on Sd. A detailed description is given in Appendix 7.9.1.

From a computational point of view the selection of the initial positions for the nonlinear
problem can heavily influence the convergence behavior. The closer an initial point set
is to its equilibrium state, the smaller the number of iterations and, hence, the computing
time. Further, the employed gradient-based optimization method is theoretically prone
to local minima. However, no significant outliers have been observed yet.

In the present work the easy to handle Matlab software provided by Leopardi’s Recursive
Zonal Equal Area Sphere Partitioning Toolbox Leopardi [2006] was used. It constructs
point sets on Sd such that each of the points is associated with an area of equal size and
bounded diameter. Such sets are denoted EQ point sets in the sequel. The algorithm
works in a recursive, analytical manner and thousands of points can be generated in
fractions of a second on a laptop computer, even for large dimensions. Although EQ sets
are not energy-minimizing for any of the investigated kernels, it is obvious that they are
a.u.d. In our program, such kinds of sets are included as one possible option for the initial
positions. However, small random perturbations are applied to initial EQ sets in order to
mitigate possible artifacts that might come along with this specific initialization.

Furthermore, EQ sets (x1, . . . ,xN ) are a practical choice for numerical integration on
Sd, i.e.
∫

Sd
f(x) dσ(x) ≈ 1

N

N∑

i=1

f(xi). (7.48)

Any a.u.d. point set has this integral approximation property (cf. Brauchart & Grabner
[2015]), but EQ sets captivate with the numerical performance of their generating
algorithm. Thus, for spherical integration in the manner of (7.48), EQ sets with
N = 10000 are used in what follows.
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7.5 Numerical examples I: point distributions
In this section, numerical results with respect to minimum energy points are pre-
sented. Various properties are compared for the cases s = LOG, log, 0.5, 1, 2, 3,
and for equal area (EQ) point sets, cf. Section 7.4.2. The sets are sized N =
32, 41, 64, 83, 128, 193, 256, 383, 512, 1024, 1319, 1889, 2048. The prime numbers are
chosen randomly in order to avoid possible non-generic regularities that might be implied
by the powers of two. For instance, EQ point sets of size N = 2k, k ∈ N, are symmetric.
All of the studied point sets are included as examples along with the source code Fritzen
& Kunc [2018b].

A rigorous study of the influence of the parameters of Algorithm 7.1 (stopping criteria,
initial positions, etc.) is not intended at this point. Also, since the number of local
minimum values of the energy ILOG(µXN ) might grow rapidly as N increases, a
comprehensive numerical investigation would have to address this issue, too. For
instance, in Ballinger et al. [2009] many starting positions were used in order to gain
confidence in the found energy minimum. Here, the aim is to exemplary compare the
properties of LOG-optimal points with the classical cases. Few, random examples of
different point sets with equal initial conditions have been compared and found to yield
only negligible deviations.

7.5.1 Mesh ratio

A common quality indicator for point sets and meshes is the mesh ratio ρ, see e.g.
Shewchuk [1996], Si [2015], Hesse et al. [2010], Narcowich et al. [2006a]. It is defined
by

ρ(XN ) =
h(XN )

q(XN )
, where h(XN ) = max

y∈Sd
min

x∈XN

z(x,y)

and q(XN ) =
1

2
min

x,y∈XN
x6=y

z(x,y).
(7.49)

The mesh ratio ρ is plotted for various point sets on S2 in Figure 7.3. The plot suggests
that the mesh ratio of minimum energy point sets is almost always bounded from above
by the EQ set’s mesh ratio. In other words, most of the times it is worthwhile to conduct
the energy optimization when starting with EQ points. No clear tendency between the
different energy minimum point sets is observed.

7.5.2 Empirical Distribution Functions (EDF)

Intuitively, one could describe the “regularity” of an energy optimal point set ΞN as a
measure of how much the neighbor relations vary among the points. To put this more
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Figure 7.3: Mesh ratio ρ as a function of the size N of point sets on S2. Data is linearly
interpolated for better visibility. The equal area set (EQ, orange solid line with points) is
used (after slight perturbation) as initial configuration for the generation of the minimum
energy point sets.

formal, we employ the definition of the Empirical Distribution Function of the geodesic
point distance towards a fixed point ξ(N)

i ∈ ΞN ,

P (zg(ξ
(N)
i , ξ

(N)
j ) < r) for r ∈ [0, π] and j = 1, . . . , N. (7.50)

There, P denotes the usual probability measure on discrete sets. The set ΞN may
be regarded as more regular the better the individual EDF’s (7.50) approximate the
distribution function F d(r) of the rotationally invariant measure σ, cf. (7.23).

The EDF’s of LOG-optimal and of EQ point sets on the 2-sphere are compared in
Figure 7.4. The very significant step-like curve of the EQ set for N = 128 originates
from the two poles, of which the neighbors are distributed along circles of latitudes. This
indicates comparatively strong non-uniformity. Nonetheless, convergence towards the
limit function F 2(r) can be observed for either kind of set.

EDF’s of energy minimizing point sets on the 2-sphere for the cases s = LOG and s = 2
are depicted in Figure 7.5. It is noteworthy that the curves behave less like step functions
as N increases. By the metric of vision, i.e. qualitatively, no significant difference in the
uniformity of the different kinds of energy optimal point sets can be observed.

7.5.3 Asymptotic behavior of the minimum energy

The asymptotic behavior of the modified energy Ĩs(N) for the classical cases is subject
of a large body of literature. Especially in the hypersingular case, d ≤ s, where the limit
of Ĩs(N) for N → ∞ is not finite, the growth rate of Ĩs(N) in orders of N is of much
interest, cf. Brauchart & Grabner [2015]. For instance, in Kuijlaars & Saff [1998] the
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case d = s = 2 is theoretically analyzed. Therein, the first order term of the energy
growth is proven to be logN , see Figure 7.6.

The limit value of the modified energy Ĩs(N) is finite and can be computed in the
potential-theoretic case. A noteworthy property of the bounded kernel kLOG is that even
the energy ILOG(N) = ILOG(µΞN ) is finite, which has certain advantages over the
modified energy ĨLOG(N).

First, additional insight into the nature of energy minimizing point sets can be gained.
Apart from the slightly different normalization factors, the difference between ĨLOG(N)
and ILOG(N) is mainly the self-energy N−2

∑N
i=1 kLOG(ξi, ξi) = 2/N , which was

introduced in in Lemma 4. It is due to the finiteness of the self-energy contribution that
an evaluation of the energy functional ILOG : M → R≥0 ∪ {∞} at discrete measures
is finite. Consequently, the concept of capacity (used in Landkof [1972], Brauchart &
Grabner [2015]) is unnecessary in the proof of Theorem 1.

Secondly and consequently, ILOG(N) is an approximation of the limit value Ic
LOG from

above. In Figure 7.7 (left), this is visualized. Moreover, ĨLOG(N) is an approximation
from below. The difference between the two lines is essentially related to the self-energy.
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Thirdly, Figure 7.7 (left) suggests that the quantity ILOG(N) is a more accurate
approximation of Ic

LOG than ĨLOG(N). Additionally, Figure 7.7 (right) is numerical
evidence for a faster convergence of ILOG(N).
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7.5.4 Universally optimal point sets
A point set is called universally optimal, cf. Cohn & Kumar [2007], if it is energy optimal
with respect to any kernel k̃(z) for which (−1)mk̃(m)(z) > 0 holds for all z in the open
interval (0, 2) and for all m ∈ N≥0. The kernel k̃LOG obviously has this property, and is
thus called completely monotonic, cf. Cohn & Kumar [2007].

It is known, cf. Cohn & Kumar [2007, Table 1], that there are exactly six universally
optimal point configurations on S2: A single point, two antipodal points, an equilateral
triangle, a regular tetrahedron, an octahedron, and an icosahedron. The provided energy
minimizing program was tested for its ability to find these point configurations. All of the
pre-implemented kernel functions (s = LOG, log, 0.5, 1, 2, . . . , 10) were tried multiple
times. As initial configuration, both perturbed EQ point sets and random point sets were
tested.

In all runs, and by the metric of vision, the program returned the respective universally
optimal point set. For the cases N = 3 and N = 6, the symmetrized kernel
functions yielded half of the point sets of the octahedron and of the icosahedron,
respectively. A rigorous analysis with a high number of varying parameters (initial
positions, convergence criteria, optimization routines, etc.) and with an automated
procedure to identify the points up to rotation has not been conducted.

It is interesting to observe that the EDF’s of all points within a universally optimal
configuration on S2 coincide. Random samples in higher dimensions yielded the same
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result. For an extensive numerical investigation on universal optimality, the reader is
referred to Ballinger et al. [2009].

7.6 Concentric Interpolation
7.6.1 Introduction
The Concentric Interpolation is a generalized version of the RNEXP of the au-
thors Fritzen & Kunc [2018c] which was suggested for a specific physical application.
The generalization lies in the arbitrariness of the dimension d and of the radial inter-
polants as explained below. Further, the source code is now available via GitHub Fritzen
& Kunc [2018a].

In many scientific applications an approximation of a continuous function, f : Rd+1 →
R, by a surrogate model, f̃ , is sought-after. If the function f is sufficiently smooth so
that the gradient∇xf or the Hessian∇2

xf exists, i.e.

∇xf(x) =
∂f

∂x
(x), ∇2

xf(x) =
∂2f

∂x2 (x), (7.51)

then it is desirable to also approximate these derivatives by means of the same surrogate
f̃ . Thus, under these circumstances, it is worthwhile if the surrogate relationship reads

x 7→ f̃(x) ≈ f(x), ∇xf̃(x) ≈ ∇xf(x), ∇2
xf̃(x) ≈ ∇2

xf(x). (7.52)

The Concentric Interpolation method provides means to realize such an approximation
of f and, if existent, of its first two derivatives.

7.6.2 Setup and Concentric Sampling
The starting point for the Concentric Interpolation (CI) scheme is the split of the
coordinate x into amplitude (or radius) x = ‖x‖ and direction n:

x = xn. (7.53)

The support points of the CI scheme are required to be arranged concentrically around
the origin of the domain Rd+1 of f in the following sense: assume that P ∈ N support
coordinates are provided in the form

{xp}Pp=1 = {lr ni}r=R,i=Nr=1, i=1 , (7.54)

utilizing the split notation (7.53). For simplicity, theR radii lr are assumed to be identical
along each of the N directions ni ∈ XN ⊂ Sd. Further, the directions XN are assumed
be an s-energy minimizing set of points, e.g. XN = ΞN for the case s = LOG.
Therefore, P = RN and this way of placing sampling sites is descriptively coined
Concentric Sampling, see Figure 7.8 (left).
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Note that this sampling is considerably different from sampling using a tensor product of
predefined point positions along different Cartesian coordinates (see Figure 7.8, right).
Concentric Sampling yields a “uniform” point density in all directions and the radial
refinement/coarsening is controlled by the choice of the sampling amplitudes {lr}Rr=1.

x1

x2

x1

x2

Figure 7.8: Illustration of sampling strategies in R2. Left: Concentric Sampling including
visualized sampling radii. Right: nonuniform Cartesian grid. In both graphs, the density
of the nine points closest to the origin is similar.

The specific structure of the coordinate split allows for both efficient sampling and
interpolation/differentiation of concentric data. The idea can be outlined as follows:
first, the concentrically sampled data is used to build one-dimensional interpolants
along the individual training directions, e.g. by using piecewise defined polynomials
with continuous first derivative, in order to allow for Radial Interpolation (RI). This
is followed by a Tangential Interpolation (TI) via Radial Basis Functions (RBF), more
precisely employing Gaussian kernel functions operating on the geodesic distance zg.
The latter are well-known from the context of Spherical Basis Functions (SBF, see e.g.
Sommariva & Womersley [2005]). In other words, TI interpolates data on the sphere Sd,
while RI interpolates data between scaled spheres lrSd = {x ∈ Rd+1 : ‖x‖ = lr},
r = 1, . . . , R. The general procedure is represented by Figure 7.9.

7.6.3 Interpolation
Radial Interpolation (RI)

Along all training directionsn1, . . .nN scalar interpolation functionsRi(x) are defined.
The interpolation conditions

f̃(lr ni) = Ri(lr) ∀i ∈ {1, . . . , N}, ∀r ∈ {1, . . . , R} (7.55)

hold. The radial interpolantsRi must be smooth enough in order to allow for the desired
derivatives of f̃ . Apart from this, no further conditions are imposed.

For example, in the recently proposed RNEXP Ri was taken to be a piecewise cubic
polynomial with continuous first derivative. In the present work, piecewise quadratic
polynomials are utilized. In the following the univariate vector-valued function R(x) ∈
RN represents a general interpolation along all N directions at radius x.
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Figure 7.9: Schematic representation of the Concentric Interpolation. Top left: query point
x, sampling points xp (blue dots) and sampling directions ni. Top right: query radius x
(red circle) for Radial Interpolation and query direction n for Tangential Interpolation.
Right: radial interpolantsRi evaluated along the directions ni.

Tangential Interpolation (TI) using radial basis functions

Interpolation on spheres has already been widely investigated, e.g. Fasshauer &
Schumaker [1998] addressing scattered data problems, Sloan & Womersley [2000] and
Womersley & Sloan [2001] considering spherical harmonics for this purpose, and Wang
et al. [2017] using needlet approximation. For the tangential part of the interpolation, we
choose the well-established concept of Spherical Basis Functions (see below).

The classic kernel approximation of a general function g : Rd+1 → R can be written as
(cf., e.g., Fasshauer & McCourt [2015])

g(x) ≈ g̃(x) =

N∑

i=1

wiki(x) = wTk(x), (7.56)
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where the weight vector w = [w1, . . . , wN ]T is constant and the components of
k(x) = [k1(x), . . . , kN (x)]T are symmetric positive definite kernel functions ki :
Rd+1 × Rd+1 → R centered at (general) sampling sites xi, i.e. ki(x) = k(xi,x).

The TI method is obtained by placing the kernel centers on the sphere Sd at the training
directions ni, and by employing kernels acting on the geodesic distance between the
center ni and the query direction n, i.e. k(ni,n) = k̃(zg(ni,n)) = ki(n). Gaussian
kernel functions with kernel width parameter γ > 0 have proven a viable choice,

ki(n) = exp
(
−γ (zg(ni,n))2

)
. (7.57)

However, the TI scheme is general with respect to the employed kernel function, as long
as it is positive definite and operates on the geodesic distance.

The same kernel parameter γ is used for the kernel functions ki at all supporting points
ni. This is a simplifying assumption which may be dropped if desired, i.e. the TI method
does not rely on the kernel parameters being equal. An algorithm for the optimization
of the parameter γ is described in Appendix 7.9.2, Algorithm 7.2. It makes use of a
bisection algorithm after a coarse-grained initial trial-and-error search.

In order to compute the weights, the Radial Interpolation must be accounted for, i.e. the
weight vector depends on the amplitude:

f̃(x) = w(x)Tk(n). (7.58)

The weight vector w(x) is specified such that the function values at the provided inputs
from Concentric Sampling are reproduced,

f̃(lr ni) = f(lr ni) = Ri(lr). (7.59)

In order to obtain the weight w(x) the kernel vector k is evaluated at the directions XN
in order to build the symmetric and positive definite (albeit poorly conditioned) kernel
matrix
(
K
)
ij

=
(
K
)
ji

= ki(nj) (i, j ∈ {1, . . . , N}). (7.60)

Equations (7.58), (7.59) and (7.60) yield

R(lr) = K w(lr) ⇒ w(x) = K−1R(x) (7.61)

and the overall surrogate reads

f̃(x) = R(x)TK−1k(n). (CI)

Thus, the radial dependence of the weight vector w(x) yields an extension of the
interpolation on the sphere (TI) to the surrounding space via radial interpolation (RI).
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7.6.4 Differentiation

The differentiation of the surrogate f̃ is effected step by step exploiting the chain
rule. First, the gradients of the amplitude x, of the direction n and of the geodesic
distance zi = zg(ni,n) are computed and transferred into matrix-vector notation
(underlines):

∇x x =
x

‖x‖ = n ↔ n ∈ Rd+1, (7.62)

∇2
x x = ∇n =

1

x
(I − n⊗ n) = P ↔ P ∈ R(d+1)×(d+1), (7.63)

∇x zi = − 1

sin(zi)
ni ≡ − 1

sin(zi)
ni ∈ Rd+1. (7.64)

The second gradient of n can be replaced by combination of the previous results. Next,
the gradient of f̃ is expressed in vector matrix notation (for convenience the arguments
x and n are omitted in the following):

∇xf̃ =
∂f̃

∂x
n+ P

∂f̃

∂n
=
∂R
∂x

T

K−1k + P
∂k

∂n
K−1R, ∂ki

∂n
= − k̃′(zi)

sin(zi)
P ni.

(7.65)

For algorithmic convenience the abbreviation R′ = ∂xR, the matrix of input direc-
tions N and the diagonal matrix κ defined by

N =




nT
1

nT
2

...
nT
N



∈ RN×d+1, κ = −diag

(
k̃′(z1)

sin(z1)
, . . . ,

k̃′(zN )

sin(zN )

)
(7.66)

are introduced. Thereby the gradient can be rewritten as

∇xf̃ = nR′TK−1k + P NTκK−1R. (7.67)

The computation is efficiently carried out as follows:

• compute v = K−1R and v′ = K−1R′

• compute (y)i = − vik
′
i

sin(zi)

• set

∇xf̃ = n
(
v′

T
k
)

+ P
(
NTy

)

= n
(
R′T(x)w̃(n)

)
+

1

x

(
I − nnT

)
NTκ(n)w(x)

(7.68)
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By construction the gradient is constituted by a part in radial direction represented by the
first term in (7.68) and a part within the tangential plane represented by the second term.

The second gradient is computed in a straight-forward way following the same concept
[see Fritzen & Kunc, 2018c, for details of the closely related RNEXP].

7.6.5 Symmetric Gaussian kernel function
In the spirit of the symmetric kernels used for the generation of energy minimizing
point sets, the use of symmetric kernel functions for TI is computationally appealing
for symmetric functions f(x) = f(−x). Therefore, the kernel function may be replaced
with

k̃(z)→ k̃sym(z) = k̃(z) + k̃(π − z). (7.69)

Then only half the number of points must be considered in comparison to the scheme
using the standard kernel function. Additionally, the symmetry of f is reproduced
exactly in the surrogate f̃ . Note that the number of points enters quadratically into
the computational effort due to the multiplication with the kernel matrix, i.e. the
computational savings due to the use of a symmetric kernel function are above a factor
of two.

7.7 Numerical examples II: Concentric Interpola-
tion

In this section, we present numerical examples of the CI method introduced in Sec-
tion 7.6. All of the direction sets used in this section are available in the Matlab software
package’s subfolder examples/exports, see Fritzen & Kunc [2018b], and in the C++
software packages subfolder data/directions, see Fritzen & Kunc [2018a].

7.7.1 Kernel parameter γ

Algorithm 7.2 is employed for the optimization of the global kernel parameter γ. First,
it is applied to energy minimizing point sets for the cases s = LOG, log, 0.5, 1, 2, 3
and to EQ point sets of size N = 512 on the spheres S3, S4, S5. As a target function,
the constant one-function, f(x) ≡ 1, is chosen. The evolution of the absolute error
‖f̃−1‖L2(Sd) as a function of γ, in the vicinity of the optimal parameter γbest, is depicted
in Figure 7.10.

Most notably, all energy optimal point sets exhibit similar overall behavior. Generally,
the approximation error is in the order of 10-10 to 10-7, with the minimum error seemingly
increasing with the dimension d. The apparent differences among the various cases of
s are rather subtle. If any, then the kernels k̃s(z) that are closer to the beginning of
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Figure 7.10: Partition of unity property of the interpolant, as a function of the kernel
width parameter γ in different dimensions. The N = 512 support points are varied among
different kinds of minimum energy point sets and the EQ point set. For the latter, the
minimum value is 1.5·10-9 on S3 (top left, out of range) and 2.1·10-6 on S5 (bottom, out of
range).

the sequence of derivatives (7.1), front-extended by k̃LOG(z), are somewhat superior to
those that appear later in the sequence. This might be due to the fact that the former
kernels have more “global” behavior than the latter, in the sense that the singularity of
the kernel as z → 0 is of increasing order as the kernel sequence index n increases.
In fact, the singularity is not present for s = LOG and only appears for s = log and
for the Riesz kernels. However, not enough numerical evidence is present to thoroughly
judge this conjecture, as multiple point sets of the same kind would have to be taken into
consideration. This is necessary if representativeness has to be guaranteed, i.e. when
the effect of possibly existent local minima in the energy optimization process should
be mitigated. However, it is very clear that minimum energy points are superior to their
initial EQ point positions in this context, as the errors of the EQ sets are mostly out of
range in Figure 7.10.

Further point sets are investigated in the dimensions d = 2 and d = 7. To this end,
LOG-optimal point sets of sizes N = 83, 256, 1319, 2048 are created. This time, the
symmetrized LOG-kernel is employed in the case d = 7. Consequently, the symmetric
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interpolant f̃ sym corresponding to the symmetrized Gaussian kernel (7.69) is applied in
this case. The results are shown in Figure 7.11
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Figure 7.11: Partition of unity
property of the interpolant, as
a function of the kernel width
parameter γ in different dimen-
sions for the LOG-case.

It is noteworthy that for the low-dimensional case, d = 2, larger sets of supporting points
do not necessarily increase the accuracy, as the level of machine precision is reached even
for moderate values of N , in this case for N = 1319. The symmetrization procedure,
combined in both the generation of the point set and in the spherical interpolation method,
enables accurate approximations of constant functions.

7.7.2 Application to an eight-dimensional engineering model
This section is concluded by a demonstration of the applicability of the Concentric
Interpolation method to a realistic example. In Morris et al. [1993], the eight-dimensional
scalar function f : x =

[
x1, . . . , x8

]
→ R,

f̂ (x) = 2πx3 (x5 − x6)


log

(
x2

x1

)
1 +

2x7x3

log
(
x2
x1

)
x2

1x8 + x3
x4





−1

, (7.70)
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is stated as a model of the water flow rate through a borehole. The ranges of the eight
variables are given in Table 7.1.

Table 7.1: Domain of the function f̂ from (7.70).

x1 x2 x3 x4 x5 x6 x7 x8

min 0.05 100 63070 63.1 990 700 1120 9855

max 0.15 50000 115600 116 1110 820 1680 12045

The CI scheme requires the support points to be centered around the origin, and the
present implementation also necessitates the function value to be zero at the origin.
Therefore, the argument is shifted by the center coordinate of the domain, xcenter, and
the corresponding function value, f̃(xcenter), is subtracted. Furthermore, the coordinates
are scaled in order to ensure that the split in amplitude and direction (7.53) respects each
of the eight dimensions equally. Thus, the equivalent function

f(xn) = f̂


x




∆x1 0

. . .

0 ∆x8


n+ xcenter


− f̂(xcenter) (7.71)

is approximated, where ∆xi = xi,max − xi,min is the range of the i-th coordinate.

For the supporting points on S7, minimum LOG-energy points are created in an
efficient manner by symmetrizing the point sets of Section 7.7.1 for the case d = 7.
Therefore, the supporting point sets are of sizes N = 166, 512, 2638, 4096, although the
minimum energy program was run with only N/2 points. This emphasizes the benefit of
symmetrized kernel functions.

The optimization of the kernel parameter γ, however, was not reused from Section 7.7.1,
as it was performed there with respect to the constant one-function and with symmetrized
spherical basis functions. The function f of (7.71) is significantly anisotropic, i.e.
dependent on the direction n, and not symmetric. Hence, the optimal kernel parameter
is determined for the usual, i.e. unsymmetrized kernel function (7.57) such that the
absolute error ‖f̃ − f‖(S7) is minimized for each point set. The resulting values
are γ = 0.6355, 0.3923, 0.308, 0.290 respectively for the point sets of sizes N =
166, 512, 2638, 4096.

As for the setup of the CI scheme, function values at the respective point positions are
provided at the radii x = 0, 0.25, 0.5, 0.75, 1. This means the total number of samples
provided is 4N + 1. Considering the range of N , this can be regarded as a quite sparse
sampling in R8. These samples are used to set up two piecewise quadratic polynomials
as radial interpolants along each direction. Differentiability is not guaranteed in this case,
but could easily be achieved if required.
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Results are depicted in Figure 7.12 with respect to the error ‖f̃ − f‖L2(rS7)/‖f‖L2(rS7),
i.e. on the spheres of radius r > 0. The initial decline of the error as r increases is
expected, as it is a relative error measure and the function f is zero for r = 0. It is
observable that the error attains local minimum values in the vicinity of the intermediate
supporting radii r = 0.25, 0.5, 0.75, at least for larger values of N . Most notably, the
error appears to be mostly monotonically decreasing as N increases.
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Figure 7.12: Relative error of the
CI approximation f̃ of the eight-
dimensional function f from (7.71)
on the spheres rS7 for 50 equidis-
tant radii r. The points in the graph
are linearly interpolated. The sup-
porting points are placed at the radii
r = 0, 0.25, 0.5, 0.75, and 1 along
the symmetrizations (XN/2,−XN/2)
of the corresponding point sets XN/2
of Section 7.7.1, cf. Figure 7.11 (right).

7.8 Résumé
7.8.1 Summary
It is shown that LOG-optimal point sets are asymptotically uniformly distributed. This
implies that all kernels of the sequence
(

(−1)nan
∂nk̃LOG

(∂z)n
(z)

)

n∈N≥0

= k̃LOG(z), k̃log(z), k̃1(z), k̃2(z), k̃3(z), . . . ,

(7.72)

where the factor sequence (an)n∈N≥0
is defined as

an =

{
1 if n = 0, 1

1
(n−2)!

else,
(7.73)

lead to a.u.d. point sets. In this sense, the regime of potential-theoretic cases is
“naturally” extended. These kernels are further compared in Table 7.2, where non-
integral values of s ∈ R≥0 are included. The property k̃′s(2) = 0 is investigated
for numerical reasons, as it might be computationally favorable if the gradient of the
energy of two antipodal points vanishes, and not just its projection onto the tangential
plane of the sphere. This may possibly be an issue for high accuracy computations
where round-off errors are not negligible. Furthermore, superharmonicity, as defined
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in [Landkof, 1972, p. 52], is included in this comparison. This property is interesting
if the a.u.d. characteristic is not only investigated on the sphere Sd but also on the ball
Bd+1 = {x ∈ Rd+1 : ‖x‖≤ 1}. For superharmonic kernels, the corresponding energy
optimal point sets lie on the boundary of Bd+1, i.e. on Sd, cf. [Landkof, 1972, p. 163].
As the Laplacian of the LOG-kernel is ∆xk̃LOG(‖x‖) = (1 + d log(‖x‖/2)) /‖x‖, it
is superharmonic on Bd+1 for d > 1. On a side note, it shall be mentioned that the
LOG-kernel is strictly majorized by some Riesz kernels, i.e. k̃LOG(z) < k̃s(z) for all
z ∈ [0, 2] and for 1.0624 ≤ s ≤ 1.2292, which are numerically determined bounds.

Table 7.2: Comparison of various properties of the different cases for s ∈ R≥0 ∪
{LOG, log}. If s = LOG or s = log, the formal index “s + 1” means LOG + 1 = log
or log + 1 = 1, respectively.

s = LOG s = log 0 < s < d d ≤ s
ks(x,x) = k̃s(0) 2 ∞ ∞ ∞
k̃′s(2) = k̃s+1(2) 0 > 0 > 0 > 0

ks(x,−x) = k̃s(2) 0 0 > 0 > 0

superharmonicity of ks if d > 1 if d > 1 if s < d− 1 never

Ic
s <∞ <∞ <∞ ∞

Conclusively, one can say that k̃LOG extends the series of kernel derivatives more
“regularly”, as it inherits all gentle properties of k̃log and additionally lacks a singularity.
Generally speaking, even if this intimate relationship to the classical cases were not
present, there would be some motivation to study new, yet unknown kernels. For instance,
in Tumanov [2013], biquadratic potentials were investigated due to the conjecture that
“known solutions for several potentials may yield a solution for another potential”.

Energy optimal point sets for any case of s lead to comparable mesh ratio and similar
empirical distribution functions. Also, the suitability as supporting points for spherical
basis functions in the context of meshless interpolation is comparable for all cases of
s. Kernels that are closer to the beginning of the sequence (7.72) yield point sets that
tend to be – slightly – more accurate when interpolating constant functions, compared to
kernels that appear later in the sequence. However, the provided numerical evidence for
this observation is not sufficient to claim this as a fact.

By all of the investigated quality indicators, the energy optimization procedure improves
the properties of Leopardi’s equal area point sets. They prove, however, to be an excellent
choice for the initial positions.

The Concentric Interpolation method extends the well-known interpolation on Sd by
means of spherical basis functions to the surrounding space Rd+1. It allows for accurate
approximation of continuous scalar functions and, if existent, their gradient and their
Hessian. This claim is proved by means of a real-world example in R8, where an
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engineering function with pronounced nonlinearities is interpolated by the CI method
in a “black-box” manner, i.e. without considering any specific properties of the function.

The efficiency of both the energy minimizing routine and the CI scheme may be
significantly enhanced if the problem under consideration permits the utilization of
symmetric kernel functions.

The developed software, both for the generation of the point sets and for the interpolation,
is published as open source [Fritzen & Kunc, 2018b,a]. Special emphasis is put on self-
contained, modular, and accessible code.

7.8.2 Discussion
A notable feature of the CI method is that the radial accuracy is principally a mere
matter of offline cost. This is due to the fact that the evaluation of the radial
interpolantsR1, . . . ,RN (x) does not influence the algorithmic complexity of evaluating
the surrogate f̃ and its derivatives. In practice, a piecewise definition of the radial
interpolants had only negligibly negative effects on the runtime. By the results depicted
in Figure 7.12, it is expected that the insertion of additional supporting points along the
same training directions would notably improve the accuracy. As the radial interpolation
is independent of the tangential interpolation, such a radial refinement of an already set
up CI scheme can be done at negligible computational costs, if the corresponding data is
provided.

The currently employed LDL solver for the application of the inverse kernel matrix K−1

is not unconditionally stable as the kernel parameter γ approaches zero. However, it
greatly improves the stability of the method as compared to pre-computation of K−1.
Various suggestions on an improvement of the accuracy for small values of the kernel
parameter have been discussed in the literature. To name just two out of many, Rashidinia
et al. [2016] proposed a reformulation of the interpolant by means of Mercer’s theorem,
while Wright & Fornberg [2017] utilized vector-valued rational approximations. Further,
the efficiency of the method could possibly be improved by employing the idea of
localized bases, e.g. as in Fuselier et al. [2013]. These issues should be addressed in
future work on the software. A thorough error estimation within appropriate function
spaces, e.g. in the sense of Narcowich et al. [2006b], is yet outstanding.

One can also consider minimum energy points with respect to the kernels applied to the
geodesic distance, k̃s(zg), cf. e.g. Leopardi [2013]. In this case, the kernels and their
symmetrized variants have the appearance visualized in Figure 7.13. In this context, the
LOG-kernel is substituted with zg(log

zg
π
− 1) + π.

The energy minimization algorithm may easily be adapted to this geodesic case. Random
samples of such point sets did not exhibit notable differences to the corresponding point
sets of the Euclidean case. However, it shall be noted that geodesic Riesz kernels
come along with an additional drawback: if just two points are considered, then the
gradient of the respective energy, Is(N = 2), with respect to the point positions
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Figure 7.13: Geodesic kernels k̃s(zg) and their symmetric versions k̃sym
s (zg) for the cases

s = 1, 2, 3,LOG. See also Figures 7.1 and 7.2.

does not continuously approach zero as the points reach antipodal configuration. This
discontinuity in the gradient may be relevant in combination with certain stopping
criteria, but has not been investigated yet. The log- and the LOG-kernel do not have
this possibly disadvantageous property.

Finally, it might be worth speculating about the implications the newly introduced LOG-
kernel could have on Smale’s 7th problem, cf. Smale [1998]. This problem calls for an
algorithm that yields log-optimalN -point configurations on spheres Sd within a time that
is polynomial in N . Progress in this respect has been made, e.g. in Nerattini et al. [2014]
and by many others. The regularity of the LOG-case, cf. Table 7.2, might possibly give
rise to new approaches. For instance, the much studied theory of Reproducing Kernel
Hilbert Spaces, e.g. as in Damelin et al. [2010], could be the starting point for new
progress in this regard. We postpone further discussion of this highly speculative claim
to future works.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statement

All of the point sets used in the numerical examples are available in the Matlab software
package’s subfolder examples/exports, see [Fritzen & Kunc, 2018b], and in the C++
software packages subfolder data/directions, see [Fritzen & Kunc, 2018a].



158 7 Third publication

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – FR2702/6 and FR2702/8 – in the scope of the Emmy-Noether and
Heisenberg funding lines. Oliver Kunc also received funding by the DFG within the
Cluster of Excellence in Simulation Technology (Grant EXC 310/2, Project PN1-23) at
the University of Stuttgart which is highly appreciated. The authors thank the anonymous
reviewers for valuable comments that lead to significant improvements of the manuscript.

7.9 Appendix
7.9.1 Generation of random points on Sd

The generation of uniformly random points on Sd, can be realized in several ways. Two
prominent and convenient examples include:

• Generation using the normal distribution N [cf. Marsaglia, 1972]
The easiest way of generating the sought-after points is based on random variables ni
following a normal distribution N . A point x ∈ Sd is obtained by setting the
components of its coordinate vector xi ∼ N (i = 1, . . . , d + 1), followed by
normalization of the whole vector. A purely technical improvement of the algorithm
is to abandon random samples which have a vector norm close to machine precision
before the normalization in order to prevent numerical truncation.

• Generation using the uniform distribution U on [−1, 1]
Another option is to seed all components of candidate points according to a uniform
distribution U on the interval [−1, 1]. Next, points having a norm greater than 1 and
smaller than a tolerance determined by machine precision are rejected, i.e. only points
contained in a spherical shell are accepted. The remaining points are then projected
onto Sd.

The advantage of the method relying on random variables following a normal distribution
is that there is virtually no rejection while the second algorithm will lead to a substantial
amount of rejected points: for d = 1 the chance for rejection is 21.46%, for d = 2 it is
47.64% and for arbitrary spherical dimension d it is defined by

P (candidate is rejected) = 1− Ld+1(Bd+1)

2d+1
, (7.74)

where Ld+1 denotes the Lebesgue measure in Rd+1 and Bd+1 = {x ∈ Rd+1 : ‖x‖ ≤
1}. Since Gaussian random variables are available at little numerical expense in many
software libraries, the first algorithm is available as an option in the graphical user
interface of our Matlab software. If it is selected, the resulting point set is passed to
Algorithm 7.1 as initial configuration.
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7.9.2 Algorithms

Algorithm 7.1: Minimum energy algorithm without nonlinear constraints.
Input : number of points N ; case parameter s;

symmetrization flag (if true, then symmetrized kernels are employed);
number of cycles nmin

C and iterations per cycle nmin
it for the

minimization of the energy;
[OPTIONAL] number of cycles nF

C and iterations per cycle nF
it for the

subsequent minimization of the gradient;
[OPTIONAL] initial configuration X ∈ R(d+1)×N

Output: locally s-energy optimal point set X ∈ R(d+1)×N

1 if no initial X provided then
2 X ← equal area points, cf. Leopardi Leopardi [2006]
3 X ← RenormalizeColumns( X+ 0.01 RandomDirections(d+1,N) )

// see Appendix 7.9.1

4 end
5 for imin

C = 1, . . . , nmin
C do // part 1: energy minimization, unconstrained

6 X ← fminunc(X) // max. nmin
it iterations

7 X ← RenormalizeColumns( X )
8 check function and gradient: accept and exit? (else: continue)
9 end

10 for iFC = 1, . . . , nF
C do // part 2: gradient minimization, unconstrained

11 X ← lsqnonlin(X) // max. nF
it iterations

12 X ← RenormalizeColumns( X )
13 check function and gradient: accept and exit? (else: continue)
14 end
15 return X
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For Algorithm 7.2, the quantity f̃γ denotes the surrogate model f̃ , cf. (CI), with respect
to the kernel function k̃(zg) = exp(−γ z2

g), approximating the original function f .

Algorithm 7.2: Optimization of the kernel parameter γ.
Input : γmin, γmax: limits for the gamma search, 0 < γmin < γmax;

Nregular, Nbisec: maximum numbers of iterations for regular and
bisectional optimization (≥ 0);

β: bisection factor, 0 < β < 2, defaults to β = 1
Output: γbest minimizing Φ̃
// initialization

1 set ∆γ =
γmax − γmin

Nregular + 1
and γbest = γmin

// part 1: global optimization on regular γ grid

2 for γ = γmin, γmin + ∆γ, . . . , γmax // Nregular + 2 values of γ

3 do
4 if ‖f̃γ − f‖L2(Sd) < ‖f̃γbest − f‖L2(Sd) then γbest = γ

5 end
6 if γbest = γmin or γbest = γmax then exit with error message “Please restart

with different boundaries”
// part 2: local optimization via bisection

7 γ2 = γbest ±∆γ, i.e. neighbor of γbest with the lower value of ‖f̃γ − f‖L2(Sd)

8 for nbisec = 0, . . . , Nbisec − 1 do

9 γmid = γbest +
β

2
(γ2 − γbest)

10 if |γmid − γbest| < TOLγ then return γbest

11 if ‖f̃γmid − f‖L2(Sd) < ‖f̃γbest − f‖L2(Sd) then
12 set γ2 = γbest and γbest = γmid

13 else
14 γ2 = γmid

15 end

16 if

∣∣∣∣∣
‖f̃γ2 − f‖L2(Sd) − ‖f̃γbest − f‖L2(Sd)

‖f̃γbest − f‖L2(Sd)

∣∣∣∣∣ < TOLfunc then return γbest

17 end
18 return γbest
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Kunc, O. & Fritzen, F.: Many-scale finite strain computational homogenization via
Concentric Interpolation. International Journal for Numerical Methods in Engineer-
ing (2020), Wiley, doi:10.1002/nme.6454

Abstract. A method for efficient computational homogenization of hyperelastic mate-
rials under finite strains is proposed. Multiple spatial scales are homogenized in a re-
cursive procedure: starting on the smallest scale, few high fidelity FE computations are
performed. The resulting fields of deformation gradient fluctuations are processed by a
snapshot POD resulting in a Reduced Basis model (RB). By means of the computation-
ally efficient RB model, a large set of samples of the homogenized material response is
created. This data set serves as the support for the Concentric Interpolation scheme (CI),
interpolating the effective stress and stiffness. Then, the same procedure is invoked on
the next larger scale with this CI surrogating the homogenized material law. A three-scale
homogenization process is completed within few hours on a standard workstation. The
resulting model is evaluated within minutes on a laptop computer in order to generate
fourth-scale results. Open source code is provided.

Keywords: computational homogenization, multi-scale, hyperelasticity, Hencky strain,
reduced basis, concentric interpolation

8.1 Introduction
Homogenization of mechanical properties of solid bodies has caught the attention of
researchers for at least 110 years, [Voigt, 1910]. The ever-increasing interest in efficient
two-scale homogenization methods is fueled by the sustainable trend to digitize and
automate engineering tasks. This is relevant for both academia and industry.

The sub-field of finite strain homogenization comes along with additional difficulties
when compared to the infinitesimal strain context: the infinite amount of possible
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measures of strain and stress, dependencies on finite rotations, and the physical constraint
of material self-impenetrability. These are just few examples of increased conceptual and
computational complexity as compared to the infinitesimal strain context.

Nonetheless, notable progress in the field of two-scale finite strain homogenization
was made recently. An example is the production, experimental investigation and
analytical modeling of fibre reinforced rubber-like materials citepCiarletta2011. In other
cases, glass fibre reinforced polymers were efficiently homogenized using a Fast Fourier
Transformation (FFT) scheme, [Kabel et al., 2014]. A related method was developed for
magneto-active materials, [Rambausek et al., 2019].

Another interesting movement within the homogenization community is the quest
for multi-scale schemes that are capable of bridging more than one scale. For
instance, upscaling techniques for three-scale problems involving carbon fibers and
epoxy matrices, [Yuan & Fish, 2009], layered solids, [Ramírez-Torres et al., 2018], or
models of porous materials with cracks, [Takano & Okuno, 2004], were developed.
Impressively, the mechanical properties of a biological tissue modeled on seven scales
were reported, [Nikolov et al., 2010]. These and other works exemplify the applicability
of homogenization techniques based on multiple, hierarchical separations of scales.

Multiple spatial scales are also studied within scenarios of fractal or self-similar
microstructures. Recent examples for this include the analytical homogenization of the
elastic properties in the presence of fractal pores, [Wu et al., 2018] or (without assumed
separation of scales) fractal interfaces, [Heida et al., 2020, Jarroudi & Er-Riani, 2018].
Such considerations are motivated, e.g., by geology or fracture mechanics.

The present work investigates a computational method for the mechanical homogeniza-
tion of a large amount of spatial scales – hence the term “many-scale homogenization”. It
relies on the presence of exclusively hyperelastic constitutive laws on the smallest scale.
There, no assumptions are made on the degree of anisotropy or nonlinearity of the mate-
rial laws. Also, it allows for an arbitrary amount of material phases – including voids – in
any geometric layout, given periodic Representative Volume Elements (RVE). The latter
may or may not differ on each scale. The case of similar RVE’s on each scale relates this
method to fractal schemes.

The proposed scheme is based on the idea of transitioning from computationally
demanding, high fidelity methods to methods compromising some of the accuracy for
efficiency. This transition is conducted in a staged manner on each scale, and many
scales are processed successively. The scheme is illustrated in Figure 8.1. Starting
on Scale 0, high fidelity Finite Element (FE) solutions are produced. These are then
processed by means of a classical Proper Orthogonal Decomposition (POD) which yields
a Reduced Basis (RB). The latter is in turn used to evaluate the homogenized material
response at numerous specifically chosen sampling sites within the strain space. This
set of data serves as the support of the Concentric Interpolation (CI) scheme, which
rapidly approximates the effective constitutive response. With this fast, purely numerical
surrogate at hand, the next scale can be homogenized in a similar manner. Eventually,
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Figure 8.1: N = 0 Proposed many-scale homogenization scheme for finite strain
hyperelasticity. Each complete cycle corresponds to the homogenization of one scale. The
procedure is finished after the homogenization of Scales 0, 1, . . . , M − 1. At this point,

the material law
(M)

E 7→
(M)

S ,
(M)

C on Scale M is efficiently approximated by Concentric
Interpolation. Note that the FE method may be replaced by any high-fidelity method, e.g.
FFT.

the resulting CI method approximates the material law that is relevant on the engineering
Scale M .

The outline is as follows. In Section 8.2, essential notation is introduced and the multi-
scale problem as well as the RB scheme are recalled. Section 8.3 contains the many-scale
homogenization algorithm with detailed comments on each step. Numerical examples are
presented in Section 8.4. A summary and additional discussions are given in Section 8.5.

8.2 Notation, problem formulation and reduced or-
der model

8.2.1 Notation
Coordinate-free descriptions of first and second order tensors are denoted by bold letters,
e.g. X , F . The order of a tensor is not related to the capitalization of its representative
symbol. Fourth order tensors are written in blackboard bold symbols, e.g. C. Only
the set of real numbers R, its subset R+ = {x ∈ R : x > 0}, and the hypersphere
S5 = {x ∈ R6 : ‖x‖ = 1} are exceptions to this rule. Real vectors and matrices are
denoted by a single and a double underline, e.g. X and F , respectively. Vectors are
assumed to be columns, unless transposed, e.g. XT.
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In this work, all simulations are conducted in three spatial dimensions. Let Ω0 ⊂ R3 be
the domain of the simply connected physical body in its undeformed state, and Ω ⊂ R3

be the domain occupied by the deformed body. Points within these two sets are referred
to asX ∈ Ω0 and x ∈ Ω, respectively.

In order to measure the deformation, the deformation gradient F = ∂x/∂X and the
right Cauchy-Green tensor C = F TF are introduced. The physical impossibility of
material self-penetration implies the positiveness of the determinant J = det(F ) > 0,
which in turn guarantees the unique existence of the polar decomposition F = RU .
This yields the rotation tensorR, with the properties det(R) = 1 andRTR = I , where
I is the identity tensor, as well as the symmetric positive definite right stretch tensor U .
The Hencky strain E = log(U) is of utmost importance to the present work.

Hyperelastic material laws are characterized by elastic energy density functions WF(F )
or WC(C), respectively, which are equal if their arguments correspond to each other.
The F -energy WF density gives rise to the first Piola-Kirchhoff stress tensor via
differentiation, P = ∂W (F )/∂F , while the C-energy density WC defines the second
Piola-Kirchhoff stress tensor, S = ∂WC(C)/(2∂C). These two stress measures are
convertible by the relation P = FS. The tangent moduli of the first and of the second
Piola-Kirchhoff stresses read CF = ∂2WF(F )/∂F and C = ∂2WC(C)/(2∂C)2,
respectively.

For spatial descriptions, the standard Cartesian basis e(1), e(2), e(3) is employed. It is
orthonormal with respect to the Euclidean inner/dot product and the norm ‖•‖ induced
thereby, i.e. e(i) · e(j) = e(i)Te(j) = δij (i, j = 1, . . . , 3) holds for the vectorized
counterpart of the basis, and δij denotes the Kronecker symbol. Components of tensorial
quantities are with respect to the tensorial basis {e(i1)⊗· · ·⊗e(iA)}i1,...,iA=1,2,3, where
A ∈ {1, 2, 4} is the respective tensorial order. Thus, there are natural representations of
tensors of first and second order as vectors and matrices respectively, e.g. X ↔ X ∈ R3

or E ↔ E ∈ R3×3. For vectors and matrices of arbitrary dimensions, the Euclidean
norm and, respectively, the Frobenius norm are employed.

Two kinds of special tensorial bases are employed. Using a Voigt-like notation,
vectorizations of the symmetric second order stress tensor S ↔ S ∈ R6 are formulated
with respect to the basis

b(1) = e(1) ⊗ e(1), b(2) = e(2) ⊗ e(2), b(3) = e(3) ⊗ e(3),
b(4) = 1√

2
e(1) ⊗ e(2), b(5) = 1√

2
e(1) ⊗ e(3), b(6) = 1√

2
e(2) ⊗ e(3).

(8.1)

Likewise, the matrix variant of the fourth-order stiffness tensor C ↔ C ∈ R6×6 with
both minor and major symmetry employs the same basis. This basis is compatible with
the Euclidean norm, i.e. ‖S‖ = ‖S‖. In general, ambiguity of the components of a
second order tensor and of its vectorized counterpart is not possible since the former are
indexed by two variables, whereas the latter has only one index variable.
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Another basis is used with regard to the vectorization of the symmetric Hencky
strain E ↔ E ∈ R6. For this purpose, a family of special bases YJ∗ =
{Y (1), . . . , Y (5), Y (6)(J∗)} is introduced:

Y (1) =

√
1

6




2 0 0

0 −1 0

0 0 −1


 , Y (2) =

√
1

2




0 0 0

0 1 0

0 0 −1


 ,

Y (3) =

√
1

2




0 1 0

1 0 0

0 0 0


 , Y (4) =

√
1

2




0 0 1

0 0 0

1 0 0


 , (8.2)

Y (5) =

√
1

2




0 0 0

0 0 1

0 1 0


 , Y (6)(J∗) =

log(J∗)

3




1 0 0

0 1 0

0 0 1




These bases are parametrized by the constant dilatational scaling factor,

1 < J∗ = const, (8.3)

the meaning of which will be given towards the end of this subsection. The components
E1, . . . , E6 of E are the coefficients of the YJ∗ -representation of E,

E =

6∑

i=1

EiY
(i) ↔ E, (8.4)

where the explicit dependence of the sixth basis element on the scaling factor, Y (6) =
Y (6)(J∗), is dropped for notational convenience. The equivalence (8.4) occasionally
leads to a slight abuse of notation implying E = E, which can always be uniquely
resolved from the context. Further, the vector E is decomposed as

E = tN, t = ‖E‖, N =
1

t
E, (8.5)

where t ∈ R and N ∈ S5 ⊂ R6 are called the magnitude and the direction in Hencky
strain space, respectively. While the magnitude, t, is one possible scalar measure of
strain, the direction in Hencky strain space, N , characterizes the kind of the strain. For
instance, N = [1, 0, 0, 0, 0, 0]T ↔ Y (1) corresponds to isochoric uniaxial extension and
N = [0, 0, 0, 0, 0, 1]T ↔ Y (6)(J∗) corresponds to pure dilatation.

This vectorized notation requires a particular choice of YJ∗ . This choice will always
be clear from the context. For simplicity, we only consider Hencky strains with the
restriction

t ∈ [0, Tmax] (0 < Tmax ≤ 1). (8.6)
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Therefore, the constant dilatational scaling factor, J∗, determines the maximum and the
minimum possible determinant of the associated stretch tensor,

J = det
(
exp
(
t (±1)Y (6)(J∗)

))
∈
[ 1

J∗
, J∗
]
. (8.7)

In general, adaptions to Tmax as well as to the normalization of the basis elements
Y (1), . . . , Y (5) are admissible. For incompressible materials, it is reasonable to consider
only the five-dimensional Hencky strain space spanned by the first five elements of (8.2)
to which the following theory can be easily adapted, [Kunc & Fritzen, 2019b].

It is important to notice that the magnitude, which is the modulus of the vector
representation, is generally not the same as the norm of the matrix representation, i.e.
t = ‖E‖ 6= ‖E‖ whenever J∗ 6= exp(

√
3) and [0, 0, 0, 0, 0, 1]N 6= 0. While the

quantity ‖E‖ might be of significance in other contexts, we only ever use t instead.

8.2.2 Multi-scale setting

Recap of two-scale homogenization

The starting point is the (quasi-)static formulation of the balance equations of linear
momentum with respect to the reference configuration Ω0, DivX(P ) = Bext, where
Bext denotes the body forces. Complementary, sufficient boundary conditions are
assumed to be provided and the balance equations of angular momentum hold, F−1P =
P TF−T. The latter will not be addressed in the sequel for the sake of brevity.

In many cases, the domain Ω0 consists of a very detailed and heterogeneous micro-
structure that must be resolved for a sufficiently accurate approximation of the solution
of the above problem. On one hand, the microscopic details considered here are of a
much smaller characteristic length than that of the overall domain Ω0. On the other
hand, these micro-features are still large enough to justify the assumptions of general
continuum mechanics.

A well-known method to avoid an excessively fine discretization of the domain Ω0

(e.g. with a FE mesh containing an overly large number of elements) is the method
of asymptotic homogenization with assumed separation of scales, [Pruchnicki, 1998].
For more details on this well-established procedure, the reader is referred to standard
literature, [Nemat-Nasser & Hori, 1999].

Multi-scale problem

As mentioned in the introduction, some realistic scenarios make multiple, hierarchical
separations of scales desirable. Formally, this is achieved by iteratively stating the as-
sumptions of the classical two-scale procedure. A rigorous derivation and mathematical
analysis of this procedure can be found in the seminal works by Bensoussan et al., [Ben-
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soussan et al., 1978, Chapter 1, Section 8]. An informal motivating description of this
process is now stated briefly.

Consider a setting in which, after a single scale separation, the emanating Representative
Volume Element (RVE) of the smaller scale in turn exhibits geometric features that are
of a much smaller characteristic length than the RVE. Then, another scale separation
leads to an even smaller scale with its own RVE and so forth. The total number of
scales that is considered within this context is M + 1. We count the scales zero-based
and in ascending order, i.e. Scale 0 denotes the smallest scale and Scale M denotes the
engineering scale, e.g. the one on which we would like to resolve the original domain.
The index 0 ≤ N ≤M is reserved for reference to an arbitrary scale.

Quantities on Scale N are denoted by N overlines, e.g. F (X) and F (X) are the
deformation gradients on Scales 0 and 1, respectively. However, if N > 3 or if N is
not specified, the notation is switched to the corresponding number in parentheses as a

superset, e.g.
(2)

P = P or
(N)

C . For instance, the characteristic lengths of all scales are

0 < L︸︷︷︸
Scale 0

� L︸︷︷︸
Scale 1

� L︸︷︷︸
Scale 2

� . . .�
(N)

L︸︷︷︸
ScaleN

� . . .�
(M)

L︸︷︷︸
ScaleM

. (8.8)

Furthermore, for each separated Scale N (0 ≤ N < M ) there is a RVE which is denoted

by
(N)

Ω 0 in its undeformed configuration. Note that from now on Ω0 represents the RVE

of Scale 0 and
(M)

Ω 0 denotes the whole, original domain without geometric features that

are of characteristic length ≤
(M−1)

L .

The scale separation approach requires compatible kinematic boundary conditions.
Multiple such boundary conditions are available and they are characterized by the fact
that they fulfill the Hill-Mandel condition. For more details and a discussion of some
possible choices, the reader is referred to standard literature, [Miehe, 2003]. Here,

periodic fluctuation boundary conditions for the displacements,
(N)

u =
(N)

x −
(N)

X , are
chosen. These imply the kinematic scale-coupling relations

〈(N)

F
〉

=
(N+1)

F (
(N+1)

X ), (8.9)

employing the volume averaging operator

〈 (N)•
〉

=
1

∣∣(N)

Ω 0

∣∣

∫
(N)
Ω 0

(N)• (
(N)

X ) d
(N)

V . (8.10)

Moreover, the right-hand side of (8.9) representing the scale coupling induces a kinematic
boundary condition for the problem on Scale N . The complete set of coupled balance
equations is stated in the following box:
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Scale M : Div(M)
X

((M)

P
)

=
(M)

B ext (BC) (8.11)

Scale M − 1: Div(M−1)
X

((M−1)

P
)

= 0
〈(M−1)

F
〉

=
(M)

F (
(M)

X ) (8.12)

...
...

...

Scale N : Div(N)
X

((N)

P
)

= 0
〈(N)

F
〉

=
(N+1)

F (
(N+1)

X ) (8.13)

...
...

...

Scale 1: DivX

(
P
)

= 0
〈
F
〉

= F (X) (8.14)

Scale 0: DivX(P ) = 0
〈
F
〉

= F (X) (8.15)

The boundary conditions (BC) to Scale M may be of any generally admissible type, e.g.

kinematic, static or mixed. For each material point
(N)

X on Scale N (0 < N ≤ M ),

the deformation gradient
(N)

F (
(N)

X ) acts as a parameter on Scale N − 1, [Bensoussan
et al., 1978, Chapter 1, Remark 8.5] representing the corresponding boundary condition..
Hence, the problems (8.12)–(8.15) need to be solved in a nested manner. On Scale 0, the
material laws of all constituents are assumed to be given explicitly. The ridiculously large
computational effort associated with the solution of (8.11) becomes even more obvious
when considering that multiple iterations (e.g. of the Newton method) are required – on
each scale. This exponential growth of the algorithmic complexity is long-known and
was even literally indicated in the denomination of the FE2 method, [Feyel, 1999].

For notational clarity, the argument of the boundary condition will be omitted in the

sequel,
(N)

F (
(N)

X ) =
(N)

F . It is important to note that the body forces on all but the top

scale must equal zero,
(M−1)

B ext = . . . = Bext = Bext = 0, in order for the asymptotic
homogenization ansatz to remain valid.

As with the classical two-scale results, the hyperelasticity property is conserved by
upscaling, i.e. the characterizing energy density function on the next scale is the volume
average of the respective function on the current scale. The same holds for all additive
quantities, but especially not for those that are non-linear with respect to the displacement
(N)

u =
(N)

x −
(N)

X . The most relevant statements in this regard are given in the following
box:
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kinematics:
〈(N)

F
〉

=
(N+1)

F (8.16)

〈(N)

C
〉
6=

(N+1)

C =
(N+1)

F T
(N+1)

F (8.17)

energies:
〈(N)

WF

〉
=

(N+1)

W F (8.18)

〈(N)

WC

〉
=

(N+1)

W C (8.19)

stresses:
〈(N)

P
〉

=
(N+1)

P = ∂
(N+1)

W F / ∂
(N+1)

F (8.20)

〈(N)

S
〉
6=

(N+1)

S = ∂
(N+1)

W C /
(
2∂

(N+1)

C
)

(8.21)

tangent moduli:
〈(N)

C F

〉
6=

(N+1)

C F = ∂2
(N+1)

W F /
(
∂

(N+1)

F
)2 (8.22)

〈(N)

C
〉
6=

(N+1)

C = ∂2
(N+1)

W C /
(
2∂

(N+1)

C
)2 (8.23)

The inequality (8.17)1 stems from the quadratic nature of the right Cauchy-Green tensor.
From this, the inequality (8.21)1 follows, which can be shown by the corresponding
form of the Hill-Mandel condition. The non-additivity of stiffness tensors (8.22)1 and
(8.23)1 is adding to the complexity of the computational multi-scale homogenization.
Having the stiffness tensor for the subsequent scale accurately represented is required
in order to setup reliable multi-scale FE simulations with low numbers of nonlinear

Newton-Raphson iterations. The classical computational evaluation of
(N+1)

C F requires
the usage of numerical perturbation of the corresponding stress, [Miehe, 1996], or of
a computationally very demanding Schur complement technique, [Kouznetsova et al.,
2001]. The authors have previously introduced a Reduced Basis method, [Kunc &
Fritzen, 2019b], that can efficiently compute the effective stiffness tensor in a two-scale
setting. This method will now be briefly introduced and formally generalized to multiple
scales. It is crucial to the proposed computational many-scale homogenization method.

8.2.3 Reduced Basis homogenization

The essentials of the Reduced Basis (RB) homogenization method, [Kunc & Fritzen,
2019b], are now summarized in brevity. For more details, the reader is referred to
the original open access source. An algorithmic comparison with competing alternative
methods can be found in [Kunc & Fritzen, 2019a]. In the following, the transition from
Scale N to Scale N + 1 is considered, i.e. 0 ≤ N < M and M ≥ 1. In terms of
Figure 8.1, the RB_N method is now described.
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At the core of the RB ansatz is the approximation of the deformation gradient field
(N)

F (
(N)

X ). It is additively split into a constant part and a fluctuating part. The constant part,
(N+1)

F , represents the boundary condition of the respective boundary value problem on
ScaleN . The fluctuating part vanishes when volume averaged and is a linear combination

of the L2
((N)

Ω 0

)
-orthonormal RB ansatz functions,

{(N)

B (i)(
(N)

X )
}
i=1,...,NRB

= B. For the

notation of both the set of basis functions, B =
(N)

B , and its size, NRB =
(N)

N RB, we omit
the explicit N -dependence. The basis functions are assumed to be given at the moment,
their construction is algorithmically described in the next section of this paper. Thus, the

boundary condition and the vector of RB coefficients, ξ =
(N)

ξ ∈ RNRB , are included as
parameters in the RB approximation

(N)

F (
(N)

X ) ≈
(N)

F RB

((N)

X ;
(N+1)

F , ξ
)

=
(N+1)

F +

NRB∑

i=1

ξi
(N)

B (i)(
(N)

X ). (8.24)

As a fundamental principle of mechanics, the energy integral is sought to be minimized,

〈(N)

WF

((N)

F RB

((N)

X ;
(N+1)

F , ξ
))〉
→ min

ξ∈RNRB

! (8.25)

From this and from the fact that the ansatz (8.24) is a low-dimensional approximation
within the space of all deformation gradients, it follows from [Kunc & Fritzen, 2019b,
Sec. 2.3] that

〈(N)

WF

((N)

F RB

((N)

X ;
(N+1)

F , ξ
))〉
≥

(N+1)

W F(
(N+1)

F ), (8.26)

meaning that the solution to (8.25) realizes the best approximation of the true effective
energy density.

Once sufficient convergence, cf. [Kunc & Fritzen, 2019b, (28)], of (8.25) is achieved,

the RB approximations of the effective first Piola-Kirchhoff stress tensor
(N+1)

P RB and of

its corresponding tangent modulus
(N+1)

C F;RB are readily available, cf. [Kunc & Fritzen,
2019b, Appendix B]. Next, these are converted to their equivalents with respect to the
right Cauchy-Green tensor,
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(N+1)

SRB =
(N+1)

F −1
(N+1)

P RB (8.27)

((N+1)

C RB

)
ijkl

=

( 3∑

a,b=1

((N+1)

F −1
)
ia

((N+1)

C F;RB

)
ajbl

((N+1)

F −T
)
bk

)

−
((N+1)

C −1
)
ik

((N+1)

SRB

)
lj

(i, j, k, l = 1, 2, 3).

(8.28)

The formulation with respect to the second Piola-Kirchhoff stress and its tangent modulus
is widely used for the implementation of material routines, e.g. in the context of the FEM.
Thus, this RB method may be easily wrapped for the employment in such simulation
software. This holds true even for commercial products as long as a user-defined material
interface is provided, which usually is the case. The computational effort for a single
evaluation of the stress in (8.27) is significantly reduced compared to the FEM as the
solution of the minimization task (8.25) depends on just NRB DOF. Usually, NRB is on
the order of 20–100. Apart from this speed-up, a good approximation of the tangent
modulus is given by (8.28).

However, the volume averaging operator requires integration over the RVE
(N)

Ω 0,
cf. (8.10). This operator is invoked multiple times per iteration of the minimization
task (8.26). Thus, although the number of DOF is drastically reduced in comparison
to the FEM, the original spatial complexity is still present by the number of integration
points. For this reason, the unmodified RB method as described above is not suitable for
online application in many-scale simulations. Several opportunities for further speed-up
are discussed in the original paper, [Kunc & Fritzen, 2019b]. For now, we settle with
the moderate speed-up factor of 10–100 with respect to the FEM (not accounting for the
setup phase of the RB), as the RB method is part of the offline phase of the proposed
many-scale scheme.

8.3 Computational homogenization via Concentric
Interpolation

The Concentric Interpolation (CI) method was recently introduced by the authors, [Kunc
& Fritzen, 2019c], in its general form. Previously, it was employed in the RNEXP
method, [Fritzen & Kunc, 2018c], in an ad-hoc manner. It serves as another major
building block for the proposed many-scale computational homogenization scheme.
In terms of Figure 8.1, the RB method efficiently provides some evaluations of the
homogenized material law. This data is used as supporting data for the subsequent CI
method. While the RB method as treated in this context is based on the fundamental
physical principle of energy minimization, the CI method is a purely mathematical
means of function approximation. However, its particular design is specialized to the
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characteristics of material laws and enables very efficient numerical treatment of material
data, accounting for the usually rather sparse availability of the latter.

The C/C++ implementation of the CI scheme employed in this study is provided as open
source code, [Fritzen & Kunc, 2018a]. The repository includes an example in which the
hyperelastic material law ETM from Section 8.4.1 is interpolated. For this, compile
demo_largestrain in the subfolder examples, and then execute the corresponding
binary in the bin folder.

8.3.1 Basic scheme

The CI method is a specialization of the established general kernel interpolation method.
It is standard, [Fasshauer & McCourt, 2015], that the approximation f̃ of a scalar function
f : R → R by N supp symmetric positive definite kernel functions ki : R → R+

(i = 1, . . . , N supp) takes the form

f(x) ≈ f̃(x) = pTK−1k(x). (8.29)

The kernel functions ki(x) = k(xi, x) are identical up to the locations of the support
points, x1, . . . , xNsupp . These functions constitute the components of the kernel vector
k(x), whereas the kernel matrix K ∈ RN

supp×Nsupp

is composed of the values Kij =
ki(xj) = Kji. The function values at the kernel centers define the components of the
vector p, i.e. pi = f(xi).

In the multivariate case, f : RD → R, D ≥ 1, radial basis functions of the kind
k(x, y) = Φ(‖x − y‖), with Φ : R+ → R+, are common for use as kernel functions.
The restriction to the hypersphere, f : SD−1 → R, SD−1 = {x ∈ RD : ‖x‖ = 1}, by
substituting the geodesic (i.e. angular) distance function, acos(x · y), for the argument
in Φ is known as spherical basis function ansatz, [Fasshauer & Schumaker, 1998, §6]. A
popular choice for kernel functions is the Gaussian kernel, which then takes the form

k(x, y) = exp
(
− γ acos2(x · y)

)
. (8.30)

In the present work, attention is restricted to this kernel function and investigations of
possible alternatives is not within the current scope. Since the kernel centers are points
on a unit hypersphere, they are from now on denoted support directions, and accordingly
their number is N supp

dir .

The CI method is an extension of this spherical interpolation on the hypersphere SD−1

to the surrounding Euclidean space RD . This is achieved by first splitting the argument
x ∈ RD into its magnitude t and its direction N ,

x = tN t = ‖x‖ N =
1

t
x. (8.31)
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Then, the spherical interpolation ansatz from above, classically acting exclusively on
N ∈ SD−1, is complemented by the introduction of a dependence of the vector of
function values on the magnitude t ∈ R+,

f(x) ≈ f̃(t,N) =

{
p(t)TK−1k(N) if t 6= 0

0 if t = 0
. (8.32)

Here, it is assumed without loss of generality that f(0) = 0, which can always be
ensured by shifting the function values. Accordingly, the components of the function
value vector p(t), pi(t) : R+ → R, are chosen with the property pi(0) = 0. More
precisely, these functions are defined as piecewise linear polynomials and the same set
of support magnitudes 0 < t1 < . . . < tNsupp

mag
= 1 is chosen for all i = 1, . . . , N supp

dir .
Hence, there is a distinct one-dimensional approximation of the function values along
each of the N supp

dir supporting directions.

The total number of function values necessary for the setup of the CI scheme is
N supp

dir N supp
mag and can be adjusted according to the properties of the target function

f . Also, the placement of the magnitude support points t1, . . . , tNsupp
mag

may be
adapted in a problem specific manner. However, the choice of the support directions
N (1), . . . , NN

supp
dir is strongly constrained by the choice of identical kernel functions of

the kind (8.30) for each of the components of the kernel vector k(N), i.e. all kernel
functions share the same kernel parameter γ. Thus, the directions are sought to be
asymptotically uniformly distributed, [Kunc & Fritzen, 2019c].

8.3.2 Efficient implementation

The approximant f̃ from (8.32) can be highly efficiently implemented: by means of
dedicated matrix-vector representations of the involved quantities, the inverse kernel
matrix, K−1, can be multiplied with static data during the setup phase. Then, each
evaluation of f̃(t,N) reduces to the evaluation of the radial interpolation vector, p(t),
the kernel vector, k(N), and some matrix-vector multiplications.

For the sake of simplicity, this is now exemplified assuming the radial interpolation
vector, p(t) ∈ RN

supp
dir , is linear on the whole domain R+, i.e. not just piecewise. Then,

it has the discrete representation

p(t) =




a1 b1

a2 b2
...

...
aNsupp

dir
bNsupp

dir




[
t

1

]
. (8.33)
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Here, the components ai and bi are the polynomial coefficients of the component
pi = ait+ bi, i = 1, . . . , N supp

dir . Substitution into (8.32) yields

f̃(t,N) =
[
t 1

] [a1 a2 . . . aNsupp
dir

b1 b2 . . . bNsupp
dir

]
K−1

︸ ︷︷ ︸
constant

k(N). (8.34)

In the actual implementation with piecewise linearity of p, the polynomial coefficients
are stored in N supp

mag sets, each of which is multiplied with the inverse kernel matrix in
analog to (8.34) during the setup phase.

8.3.3 Concentric Interpolation of material laws

Finite Element software oftentimes provides an interface to user-defined material
routines. In finite strain hyperelasticity, material laws are usually defined with respect
to rotationally invariant kinematic descriptors, such as U or C = U2. However, as
the authors previously emphasized, [Kunc & Fritzen, 2019b], it is advantageous for a
number of reasons to sample mechanical response functions on the space of Hencky
strains, E = log(U). Additionally, the space of Hencky strains is isomorphic to R6,
cf. (8.4), allowing for the application of CI, f̃ : R6 → R. In principle, the form of
the interpolant, cf. (8.32), is suitable for approximating the hyperelastic energy density
function, WC = WC(exp(2E)). Further, if sufficiently smooth one-dimensional radial
interpolation functions, pi, were used instead of piecewise linear polynomials, the stress,
S, and its tangent modulus, C, could be computed by means of differentiation. However,
differentiation comes along with significant increases of the number of linear operations,
[Fritzen & Kunc, 2018c, Sec. 5.3]. Moreover, the involved derivatives of the matrix
exponential and of the matrix logarithm are highly non-trivial to implement. A different
approach is pursued here for these reasons.

Instead of interpolating the energy density function, the second Piloa-Kirchhoff stress,
S ↔ S ∈ R6, and its tangent modulus, C ↔ C ∈ R21 are directly interpolated over
the space of Hencky strains, E ↔ E ∈ R6. It is important to recall that the basis (8.1)
is employed for the stress and the stiffness, while the Hencky strain is formulated with
respect to the basis (8.2). The CI ansatz is modified into
[
S(E)

C(E)

]
≈ f̃(t,N) =

[
p(1)(t), . . . , p(27)(t)

]T
K−1k(N) ∈ R6+21, (8.35)

meaning that all 27 components (6 for the stress and 21 for the stiffness) are interpolated
separately but simultaneously: the respective functional data is independently interpo-
lated by the N supp

dir distinct components of the vector p(i)(t) (i = 1, . . . , 27). The mag-
nitude, t, and the direction, N , of the query Hencky strain, E, are computed as defined
in (8.5).
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By interpolating the components of the stress and of the stiffness separately, their
consistency is generally lost. Thus, a possibly negative effect on the convergence
behavior of Newton-Raphson is to be expected and will be investigated in the numeric
section of this paper. One way to principally attenuate this drawback could be to
incorporate FFT-based homogenization schemes, [Spahn et al., 2014, Leuschner &
Fritzen, 2018], on the lower scales as such schemes are generally less sensitive to the
tangent modulus. Alternatively, Automatic Differentiation (AD), [Rall, 1981], of the
energy density functionWC could possibly be employed for the evaluation of derivatives,
similar to previous works, [Fritzen & Kunc, 2018c].

8.3.4 Concentric Sampling of material laws
The CI method crucially depends on the Concentric Sampling (CS) method. The CS
algorithm employed in this work is a slight modification of the original, [Kunc &
Fritzen, 2019b, Algorithm 1], and is essentially described by the following construction
of Hencky strains, cf. (8.4), (8.5):

E(m,n) ↔ E(m,n) = tm

6∑

i=1

N
(n)
i Y (i) (m = 1, . . . , Nmag, n = 1, . . . , Ndir)

(8.36)

Here, a Hencky strain basis Y (i) ∈ YJ∗ (i = 1, . . . , 6) with fixed scaling factor J∗

is considered. Further, a set of asymptotically uniformly distributed points on the five-
dimensional unit hypersphere, N (n) ∈ S5 ⊂ R6 ∼ span (Y(J∗)), n = 1, . . . , Ndir,
is assumed to be provided. Such point sets may be constructed, e.g., by means of
the MinimumEnergyPoints open source Matlab/Octave code provided by the authors,
[Fritzen & Kunc, 2018b]. These hyperspherical points are interpreted as directions within
the Hencky strain space along which samples are placed. The distribution of the samples
along each direction is given by the set of sampling magnitudes, 0 < t1, . . . , tNmag = 1.
A visualization in two dimensions is provided in Figure 8.2, where Ndir = 5 and
Nmag = 3.

When the Hencky strains obtained through CS are utilized as support points for the
CI method, the nomenclature Ndir = N supp

dir and Nmag = N supp
mag is adopted. On the

other hand, if the CS points are evaluation points of the CI scheme, this is denoted by
Ndir = Neval

dir and Nmag = Neval
mag. Accordingly, when the resulting stretch tensors,

exp
(
E(m,n)

)
, are applied as boundary conditions to the boundary value problems

(8.12)–(8.15), this is again denoted by Ndir = Neval
dir and Nmag = Neval

mag, regardless
of the employed solution method, FE or the RB.

By means of this sampling approach, representative and unbiased sampling of the
Hencky strain space and, thus, after exponentiation, of the physically meaningful part
of the space of stretch tensors is realized:
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Figure 8.2: N (1) Sketch of Concentric Sam-
pling of the Hencky strain space. For visu-
alization purposes, only two of the six coor-
dinate axes of Y(J∗) are considered. Nmag

samples are placed alongNdir approximately
uniformly distributed directions. The former
characterize the load magnitudes, the latter
correspond to the type of the load.

• Representative means that the sampled space is covered in a manner that is dense with
respect to a certain metric, given a limited number of discrete sampling points. In
the case of material laws, the metric is the angular distance between different load
directions, acos

(
N (i) · N (j)

)
. Sampling the directions in an approximately uniform

manner ensures that the resolution of the anisotropy of the present material law can be
adjusted.

• Unbiased means that the resolution by which different regions of the domain are
covered is either constant or deliberately adapted. The radial density of the samples in
the CS method may be adjusted according to expected features of the present material
law. For instance, if a significant change of the material response is expected at
certain load magnitude, e.g. a transition from linear to non-linear behavior, then a
neighborhood of this critical point may be resolved more thoroughly.

• Physically meaningful, in the context of sampling of kinematic quantities, such as the
stretch tensor U = exp(E), means that the sampling domain is confined in such a
way that all contained points correspond to realistic deformations that might actually
occur in real-world problems. This is one of the main advantages of the CS method
in contrast to classical approaches that directly sample the space of stretch tensors,
right Cauchy-Green tensors, or deformation gradients with uniform Cartesian grids,
[Yvonnet et al., 2013, Brands et al., 2019]. Such grid-based sampling methods are
unable to keep the determinant J = det(U) within realistic bounds (e.g. 1 ± ε in
the quasi-incompressible case) while also exploring isochoric regions of the respective
kinematic state spaces to their whole physically meaningful extent, e.g. more than
100% strain for rubber-like materials.

8.3.5 Many-scale homogenization: overall algorithm
The proposed method is a many-scale solution to the multi-scale problem: it is empha-
sized that not just more than one scale but actually numerous scales are transitioned.
As indicated by Figure 8.1, the lowest M scales of the general multi-scale problem, cf.
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(8.12)–(8.15), are homogenized in a recursive manner. Then, the resulting numerical
surrogate of the homogenized material law can be applied on the engineering scale. The
complete procedure is formally stated in Algorithm 8.1. A thorough step-by-step de-
scription is given in the following. We omit the scale index N on top of some quantities
for the sake of enhanced readability.

Algorithm 8.1: Many-scale homogenization for finite strain hyperelasticity
Input : number M of scales to be homogenized;

set of RVE’s
{(N)

Ω 0

}
N=0,...,M−1

;
scalar parameters for the sub-algorithms 8.2–8.5

// loop Scales

1 for N = 0, . . . ,M − 1 do
// generate snapshots

2 call Algorithm 8.2: FE_N
((N)

Ω 0, Neval
dir , Neval

mag, J∗, Tmax

)
→ S

// determine RB

3 call Algorithm 8.3: POD_N (S, NRB)→B
// generate CI support data

4 call Algorithm 8.4: RB_N (B, Neval
dir , Neval

mag, J∗, Tmax)→D
// homogenized material law

5 setup CI_N (D, N supp
dir , N supp

mag , γ)
6 if N < M − 1 then

// use Algorithm 8.5

7 set CI_N as next scale material law in (one phase of) the RVE
(N+1)

Ω0

8 else
// use Algorithm 8.5

9 set CI_N as material law in (one phase of) the engineering Scale M

For the sake of brevity, the scaling parameter J∗ is fixed throughout the whole algorithm,
i.e. across all scales, which conforms with the numerical experiments of the next section.
If the query Hencky strain was ever out of the sampling range defined by Tmax and J∗,
the CI routine would still return a result by means of extrapolation.

Finite Element Simulations

On Scale N , the FE method is invoked by a call to Algorithm 8.2 which is denoted
FE_N . Kinematic periodic fluctuation boundary conditions, defined in terms of stretch
tensors corresponding to Hencky strains (8.36) on Scale N + 1, are prescribed to the

RVE
(N)

Ω 0. These boundary conditions are chosen by means of the Concentric Sampling
method of Section 8.3.4. In view of limited computational resources the parameters
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Neval
dir andNeval

mag are be chosen in order to balance data availability (and thereby accuracy)
and computational cost. A discussion of their physical interpretation is included in
Section 8.3.4. Moreover, the choice of these parameters depends on the complexity of

FE simulations, which is strongly influenced by the mesh of
(N)

Ω 0, the local material laws,
the stability of the element formulation, and the efficiency of the FE implementation.
Empirically speaking, Neval

dir = 100 and Neval
mag = 10 are practical starting points for the

present study.

Algorithm 8.2: Finite Element sub-routine FE_N

Input : RVE
(N)

Ω 0;
number of load directions Neval

dir ;
number of load magnitudes Neval

mag;
scaling factor J∗ of Hencky strain basis;
maximum load magnitude Tmax;
load directions

{
N (n)

}
n=1,...,Neval

dir

⊂ S6;

load magnitudes {tm}m=1,...,Neval
mag
⊂ [0, Tmax]

Output: deformation gradient fluctuation snapshots S with |S| = Nsnap(
Nsnap ≤ Neval

dir N
eval
mag

)

1 initialize snapshot list S =
{}

// loop directions

2 for n = 1, . . . , Neval
dir do

// loop magnitudes

3 for m = 1, . . . , Neval
mag do

// set boundary condition

4
(N+1)

U = exp
(
tm
∑6

i=1 N
(n)
i Y (i)

) (
Y (i) ∈ YJ∗

)

5 try to solve boundary value problem (8.13) on
(N)

Ω 0 with boundary

condition
(N+1)

U using FEM
6 if convergence then

// set fluctuation snapshot

7 subtract homogeneous deformation from local field,
(N)

F̃ (
(N)

X ) =
(N)

F (
(N)

X )−
(N+1)

U

8 include fluctuation snapshot in list, S ←[ S ∪
{(N)

F̃ (
(N)

X )
}

It is important to note the order in which the boundary conditions are applied: the
FE method generally converges quicker if only the load magnitude, t, is incremented
between load steps and the kind of the load, i.e. its direction N with respect to the
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Hencky strain representation, is kept constant. Furthermore, very simple parallelization
of the overall workload is possible by running multiple instances of the same program
with different sets of loading directions. For instance, if the number of available compute
threads is 10 and Neval

dir = 100, one might run 10 instances in parallel, each applying 10
different load directions successively.

The Newton iterations of the FEM are stopped when the maximum nodal residual is

below 10-5MPa ·
(N)

L 2 (where
(N)

L is the side length of the cubic RVE) or if its ratio to
the maximum reaction force is below 10-3. In the present study, the same stopping FE
criterion is employed on all scales. This is in contrast to other works, [Özdemir et al.,
2008], that eased the stopping criterion on larger scales.

Usual convergence issues are expected at some evaluation directions above few critical
load magnitudes, [Yvonnet et al., 2013, Section 3.2.5]. In practice, certain states of
(large) deformations simply cannot be reached by a given FE model. This effect depends
on the maximum magnitude Tmax, the properties of the mesh, the element stabilization
method, the material laws employed at the current Scale N , the scaling parameter J∗,
among other factors. Therefore, the number of available solutions is usually lower than
the number of boundary conditions provided by CS. In order to conservatively assess
the practicality of the proposed method, no FE stabilization method is employed in the
present study.

The converged resulting fields of deformation gradients are post-processed by pointwise
subtraction of the prescribed homogeneous deformation. Thus, the set S of deformation
gradient fluctuation fields is computed, denoted snapshots, and returned to the main
routine.

Proper Orthogonal Decomposition

The set of deformation gradient fluctuation snaphots, S, is processed by the POD
Algorithm 8.3, which is dubbed POD_N . Snapshot POD methods of this kind have
been successfully applied before, [Sirovich, 1987].

A popular way of deciding when to truncate the emanating set of basis functions, i.e.
how large to choose the number NRB = |B| of basis functions, is to employ the Eckart–
Young–Mirsky theorem. By this, the resulting projection error can be controlled based
on the eigenvalues of the correlation matrix. However, the authors have experienced a
deteriorating effect in terms of the stress approximation error with NRB values greater
than a certain optimum, [Kunc & Fritzen, 2019b]. This effect is interpreted as an artifact
stemming from spurious displacement patterns (e.g. strongly oscillating fields) mainly
located at the interface of high contrast materials. The severity of this effect has yet to be
investigated systematically.

For the moment, we settle with the empirically determined, [Kunc & Fritzen, 2019b],
number of NRB = 30 basis elements, which appears to give reasonably good
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Algorithm 8.3: Proper Orthogonal Decomposition sub-routine POD_N
Input : snapshot list S with |S| = Nsnap;

Reduced Basis size NRB with 1 ≤ NRB ≤ Nsnap;

RVE domain
(N)

Ω 0 (implicit)

Output: B =
{(N)

B (i)(
(N)

X )
}
i=1,...,NRB

// correlation matrix Γ

1 for i = 1, . . . , Nsnap do
2 for j = i, . . . , Nsnap do

3 Γij =
〈(N)

F̃ (i),
(N)

F̃ (j)
〉

= Γji

// eigendecomposition

4 solve eigenvalue problem of Γ ∈ RNsnap×Nsnap

→ eigenvalues κ1 > . . . > κNsnap > 0,
→ eigenvectors V (1), . . . , V (Nsnap) ∈ RNsnap corresponding to κ1, . . . , κNsnap

// assembly and truncation

for i = 1, . . . , NRB do

5
(N)

B (i)(
(N)

X ) =
∑Nsnap

j=1
1√
κi
V

(i)
j

(N)

F̃ (j)(
(N)

X ) // normalized Reduced Basis

approximation accuracy of both the energy density and the stresses. Also, the resulting
speed-up compared with the FE method remains significant. The truncated basis B is
returned to the main algorithm.

Reduced Basis Simulations

Just as the FEM, the RB model is evaluated at kinematic boundary conditions correspond-
ing to Hencky strains that result from CS. But in contrast to the FE model, the numbers
Neval

dir and Neval
mag are chosen significantly larger for the call of the RB_N Algorithm 8.4.

As a rule of thumb, the number of boundary conditions, Neval
dir N

eval
mag, applied to RB_N

can be greater than that of FE_N by the same factor as the speed-up of the RB with
respect to the FEM. This way, the computational work load associated with these two
stages of the overall homogenization process is comparable. Positive experiences were
obtained by increasing Neval

dir by a factor of 5 and Neval
mag by a factor of 2, corresponding

to the speed-up factor of approximately 10.

The choice of these parameters strongly depends on the size of the RB, NRB. On the one
hand, a smaller basis is advantageous in that a greater number of boundary conditions
can be applied, i.e. a greater sampling resolution can be achieved. On the other hand, the
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Algorithm 8.4: Reduced Basis sub-routine RB_N
Input : Reduced Basis B with |NRB|;

numbers of load directions Neval
dir and of load magnitudes Neval

mag;
scaling factor J∗ of the Hencky strain basis;
maximum load magnitude Tmax;
load directions

{
N (n)

}
n=1,...,Neval

dir

⊂ S6;

load magnitudes {tm}m=1,...,Neval
mag
⊂ [0, Tmax];

RVE
(N)

Ω 0

Output: Concentric Interpolation support data D
1 initialize CI support data D =

{}
; extrapolation counter Neval

ext = 0

// loop directions

2 for n = 1, . . . , Neval
dir do

// loop magnitudes

3 for m = 1, . . . , Neval
mag do

// set boundary condition

4
(N+1)

U = exp
(
tm
∑6

i=1 N
(n)
i Y (i)

) (
Y (i) ∈ YJ∗

)

5 try to solve minimization task (8.25) with boundary condition
(N+1)

U
using B

6 if convergence then

7 compute effective stress
(N+1)

SRB according to (8.27) and effective

stiffness
(N+1)

CRB according to (8.28)
8 else

9 linearly extrapolate
(N+1)

SRB and
(N+1)

CRB in t from magnitudes tm−2,
tm−1 (assume convergence at least for m = 2)

10 subtract initial stiffness (i.e. at t = 0) from current stiffness:
(N+1)

C ′
RB =

(N+1)

C RB −
(N+1)

C ini
RB

11 include vectorized support data in list,

D ←[ D ∪
{((N+1)

S RB;
(N+1)

C ′
RB

)
∈ R6+21

}

quality of this sampling data is increased by a larger basis. It is a complex task to choose
all parameters (of the RB but also of the overall method) in an optimal way.

Importantly, the robustness of the RB method is greatly increased in contrast to the FEM.
Hence, the maximum magnitude Tmax may be chosen much larger for the RB than for
the FE model. However, one should keep in mind that the reliability of the RB results is
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then decreased as the RB is evaluated far outside the domain of the snapshot data. Also,
the enhanced robustness is still limited and an occasional lack of convergence for (large)
magnitudes of certain kinds of deformations is to be expected.

Convergence in this context is defined as the RB residual, [Kunc & Fritzen, 2019b, (28)],

reaching a norm of less than 5·10-7MPa ·
(N)

L 2 (where
(N)

L is the side length of the cubic
RVE). Alternatively, convergence is assumed when the ratio of the residual to the current
increment’s initial residual is below 10-7.

In contrast to the FE_N , where partly unsuccessfully applied boundary conditions
simply reduced the number of snapshots, this is a more severe issue for the RB_N :
the outputs of this stage serve as inputs to the subsequent CI scheme. The latter
necessarily requires data at all support points (with the current assumption of piecewise
linear interpolants with identical support positions along all directions). We choose to
linearly extrapolate incomplete RB data along the respective direction. The number of
such interpolated RB results is counted in Neval

ext . Alternatively, any other means of data
completion could be employed, e.g. my means of specific choices of the radial data
functions pi(t) from (8.32).

Note that just like the FE method, the RB method is suitable for trivial parallelization by
simply running multiple instances of the program at the same time, each with different
sets of boundary conditions.

User-defined material function based on Concentric Interpolation

As the last step before the completion of one homogenization loop in Figure 8.1, the
CI_N scheme is set up according to (8.35). The interpolant f̃ is incorporated in the user-
defined material Algorithm 8.5. Lastly, the scale counter N is incremented by one and
Algorithm 8.1 proceeds correspondingly.

8.4 Numerical examples

8.4.1 Three-scale homogenization of fractal structures on stan-
dard workstations

Goals

The main goal of the following considerations is to provide an example of a three-scale
simulation based on Algorithm 8.1, cf. Figure 8.1. This is meant as a proof of concept
only and thorough investigations of important details, such as the influences of different
kinds of parameters, are not within the current scope. The geometries of the RVE’s on
Scales 0 and 1 are identical. On Scale 2, the same geometry is again utilized. In this
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Algorithm 8.5: User-defined material function of FE_(N+1) and of RB_(N+1),
wrapping CI_N

Input : right Cauchy-Green tensor
(N+1)

C ;

initial stiffness
(N+1)

C ini
RB (constant);

scale factor J∗ of the basis Y(J∗) (constant)

Output: stress
(N+1)

S CI and stiffness
(N+1)

C CI =
(N+1)

C ′
CI +

(N+1)

C ini
RB

// Hencky strain

1 compute
(N+1)

E = 1
2
log
((N+1)

C
)

// direction and magnitude w.r.t. basis Y(J∗)

2 transform
(N+1)

E by (8.4) and (8.5)→ N , t
// stress and shifted stiffness (cf. Algorithm 8.4)

3 evaluate the CI_N interpolant f̃ at (N, t)→
(N+1)

S CI,
(N+1)

C ′
CI

Figure 8.3: Geometry of the cubic structure
with a centered spherical void. The volume
fraction of the void is 10%.

sense, the geometric setup (cf. Table 8.1, top) is of self-similar fractal kind. Roughly
comparable scenarios were recently considered in other works, [Yang et al., 2020].

If the geometry on Scale 2 is again considered an RVE and no body forces are applied, the
resulting local stress field may be volume averaged and then interpreted as a fourth-scale
homogenized quantity. This subsection ends with selected evaluations of such stresses
on a hypothetical Scale 3.

Geometry and Scale 0 model

The geometry considered on all three scales is a cube with a centered spherical void, cf.
Figure 8.3. The mesh contains 4399 second-order TET10 elements with a total of 7531
nodes resulting in almost 22600 DOF. The mesh, i.e. the solid phase, occupies a volume
of 0.90 within the unit cube.



184 8 Fourth publication

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

 1  2  3  4  5

λx [-]

P
x
x

[M
P

a]

Neo-Hooke
ETM

Neo-Hooke

ETM

4.1

0.3
1

2

3

‖P
‖

[M
P

a]

Figure 8.4: Comparison of the Neo-Hookean and the Extended Tube Model under
isochoric uniaxial extension. As for the ETM, the Neo-Hookean material parameter is
chosen from a comparative study, [Marckmann & Verron, 2006, Table III]. Left: evolution
of the principal stress over the principal stretch. Right: composite image consisting of two
cut-out quarters of the deformed voided microstructure for comparison of the influences of
the different material laws. Coloring indicates the magnitude of the first Piola-Kirchhoff
stress per integration point.

For the material law on Scale 0, the Extended Tube Model (ETM), [Kaliske & Heinrich,
1999, Eq. (22)], together with a mixed quadratic-logarithmic volumetric model, [Doll &
Schweizerhof, 1999], is utilized:

WC(C) = WETM(J−2/3C) +
K

4
((J − 1)2 + log(J)2) (8.37)

As found by a comparative study, [Marckmann & Verron, 2006, Table III], the ETM
is a realistic model of rubber-like materials for the parameters Gc = 0.202 MPa,
Ge = 0.153 MPa, β = 0.178 MPa, δ = 0.0856 MPa, which are therefore employed
in the present work. The bulk modulus-like parameter K is empirically chosen as
K = 10 MPa in order to set a high ratio to the other parameters and, thereby, to approach
quasi-incompressible behavior. A nonlinearity that is more pronounced with the ETM
than with the widely used Neo-Hookean model is visible in Figure 8.4.

Three-scale setup

According to Algorithm 8.1 and Figure 8.1, the homogenization of Scale 0 and of
Scale 1 is performed in a staged manner. All parameters employed throughout this
homogenization process are listed in Table 8.1.

The kernel width parameter γ is determined via optimization of the stresses SCI with
respect to validation stresses SRB on a large set of validation Hencky strains: Neval

dir =
1000, Neval

mag = 100, J∗ = 1.2, Tmax = 1.0. For comparison, the optimization of
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Table 8.1: Three-scale setup: geometry and parameters

Scale 0 Scale 1 Scale 2
field variables E, S, ℂ, . . . E, S, ℂ, . . . E, S, ℂ, . . .
boundary condition U = exp(E) U = exp(E) U = exp(E) or arbitrary
material law ETM CI_0 CI_1
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FE_0: FE_1:
FE parameters Neval

dir = 100
Neval

mag = 10
J ∗ = 1.2

Tmax = 1.0

Neval
dir = 100

Neval
mag = 10
J ∗ = 1.2

Tmax = 0.3

POD_0: POD_1:
POD parameters Nsnap = 956

NRB = 30
Nsnap = 957
NRB = 30

RB_0: RB_1:
RB parameters

RB results extrapolation

Neval
dir = 500

Neval
mag = 20
J ∗ = 1.2

Tmax = 1.0
Neval

ext = 94

Neval
dir = 500

Neval
mag = 20
J ∗ = 1.2

Tmax = 1.0
Neval

ext = 1438

CI_0: CI_1:
CI parameters

CI action

N supp
dir = 500

N supp
mag = 20
 = 3.12
E → SCI,ℂCI

N supp
dir = 500

N supp
mag = 20
 = 3.12
E → SCI,ℂCI

the kernel parameter γ yields an optimal value of γ = 3.56 when the discrepancy
between the stiffnesses CCI and CRB is minimized. As the stress approximation directly
influences the balance equation, the result obtained from the stress optimization is
employed. The same value of γ is used for the interpolation scheme CI_1 without further
optimization.

Another noteworthy parameter is Tmax, which is 1.0 throughout Scale 0. However, it is
reduced for FE_1 to Tmax = 0.3 due to severe convergence issues, cf. Section 9. The
enhanced robustness of RB_1, cf. 5, allows for the choice of Tmax = 1.0 again. At
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this stage, 14% ≈ Neval
ext /(N

eval
dir N

eval
mag) of the applied boundary condition lacked RB

convergence.

Hardware setup and runtimes

In order to accelerate the setup phase (or offline phase), the FE, POD and RB
computations were performed on a standard workstation with an Intel(R) Xeon(R)
E5-2643 v3 CPU (12 threads) and 256 Gb of RAM. The memory intensive POD never
came close to requiring all memory.

An exact quantitative comparison of the various runtimes is not within the scope of
the current work. Depending on the method and on the stage, different kinds of
overhead data were created and stored during the multi-scale homogenization process,
e.g. visualization data, statistics, and debugging information. Also, important meta-
parameters were chosen as sophisticated guesses, e.g. stopping criteria, maximum
number of Newton iterations, behavior in case of convergence failure. Furthermore, the
FE and the RB simulations were conducted with multiple instances of the same program
running in parallel, each with a different set of boundary conditions. Most importantly,
the computations for the current case study were not always conducted on a dedicated
workstation. For these reasons, quantitatively exactly reproducible runtime values are set
aside for the moment.

The overall wall time to conduct the whole three-scale homogenization procedure on
the workstation, i.e. for FE_0, POD_0, RB_0, FE_1, POD_1 and RB_1 together,
was approximately 7 hours. The simulations on the third scale by means of FE_2
were conducted on a laptop computer and took approximately 2-3 minutes per load
path.

Results

As the overall porosity of the structure increases with each homogenized scale, a scale
softening effect is observed in the initial stiffnesses, i.e. in the stiffness tensors at zero
magnitude, t = 0, cf. Table 8.2.

Next, the geometrically identical structures on Scales 0, 1 and 2 are subjected to the
same boundary condition,U = U = U , with the principal stretches λx = λz = 0.9035,
λy = 1.225. The resulting deformations and stress distributions are depicted in
Figure 8.5. The effect of the scale softening is clearly visible which is in accordance
with Table 8.2.

We now address the question of how Reduced Bases of two scales compare to each
other. Although they are returned from identical routines POD_0 and POD_1, their
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Table 8.2: Initial stiffness matrices (t = 0) of the ETM and as output of RB_0 and RB_1.

C ini
ETM[MPa] =




10.5 9.77 9.77 0 0 0

10.5 9.77 0 0 0

10.5 0 0 0

0.704 0 0

sym 0.704 0

0.704




C
ini

RB[MPa] =




3.77 3.09 3.09 1.22·10−3 7.74·10−4 3.74·10−4

3.77 3.09 8.58·10−4 1.10·10−3 1.18·10−3

3.77 6.38·10−4 9.37·10−4 8.44·10−4

0.654 −4.02·10−5 2.15·10−4

sym 0.653 3.21·10−4

0.653




C
ini

RB[MPa] =




2.34 1.69 1.69 8.89·10−4 5.94·10−4 5.48·10−5

2.34 1.69 5.85·10−4 8.68·10−4 7.74·10−4

2.34 3.97·10−4 7.43·10−4 4.68·10−4

0.602 −5.57·10−5 9.85·10−5

sym 0.600 2.62·10−4

0.601




0.72 0.60 0.40 0.20 0.07
‖P ‖, ‖P ‖, ‖P ‖ [MPa]

Scale 0 Scale 1 Scale 2

Figure 8.5: Half sections of the porous structures on three scales, subject to isochoric
uniaxial extension with the principal stretches λx = λz = 0.9035, λy = 1.225. Coloring
indicates the stress magnitude per integration point.

underlying snapshot data differs in terms of the material law and, most significantly, the
parameter Tmax. Since the eigenvectors of the snapshot correlation matrix are ordered
descendingly with respect to the corresponding eigenvalues, the returned NRB = 30 RB
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elements represent the most significant information contained in the snapshots. Out of
this set, the first nine functions are depicted in Figure 8.6 for both scales.

B(1) B(2) B(3)

B(4) B(5) B(6)

B(7) B(8) B(9)

B
(1)

B
(2)

B
(3)

B
(4)

B
(5)

B
(6)

B
(7)

B
(8)

B
(9)

Figure 8.6: Lower halves of the deformation patterns corresponding to the first nine of the
30 Reduced Basis functions on Scale 0 (left) and on Scale 1 (right). Coloring indicates
displacement magnitude. See also Figure 8.7.

A systematic comparison of the two bases is possible when considering the absolute
correlation of the Reduced Bases, i.e. the mutual projections of the RB elements onto
each other,

∣∣∣
〈
B(i) ·B(j)〉∣∣∣. This is well-defined, cf. (8.10), when considering that the

geometries of the RVE are identical, Ω0 = Ω0. The RB correlations are visualized in
Figure 8.7

These correlation values reveal some similarities that one might expect from visual
inspection of Figure 8.6, e.g. B(4) ↔ B

(6) and B(6) ↔ B
(5). Moreover, some less

10 20 30
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15
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25

30

0.2

0.4

0.6

0.8

Figure 8.7: Correlations of the Re-
duced Bases B(1), . . . ,B(30) and
B

(1)
, . . . ,B

(30) of Scales 0 and 1,
respectively. See also Figure 8.6.
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Figure 8.8: Empirical distribution functions of the relative error of the first Piola-Kirchhoff
stress on Scale 1 (left) and on Scale 2 (right) as a homogenized results of the FE_N ,
RB_N , and CI_N methods with N = 0, 1, respectively.

obvious relationship are found, e.g. B(5) ↔ B
(4). One should bear in mind that the

visualization in Figure 8.6 might appear differently if another clipping plane was chosen.

Next, the accuracy of RB_N and CI_N is compared against FE_N for N = 0 and
N = 1. Recall the definition of the homogenized stress from (8.20). For N = 0, a set
of CS boundary conditions Evali are chosen with the parameters Tmax = 0.3, J∗ = 1.2,
Neval

dir = 150 and Neval
mag = 10, i.e. |E| = 1500. The same CS parameters are chosen for

Evali and N = 1. However, this set is reduced to contain only those boundary conditions
for which FE_1 successfully converges, wherefore effectively |Evali| = 1437. The set of
relative errors

err
((N)

P •,
(N)

P FE,
(N)

E vali

)
=

{
‖
(N)

P •(
(N)

E )−
(N)

P FE(
(N)

E )‖

‖
(N)

P FE(
(N)

E )‖

∣∣∣∣∣
(N)

E ∈
(N)

E vali

}
(8.38)

(N = 1, 2; • = RB,CI) is considered. The corresponding empirical distribution
functions are shown in Figure 8.8 One should keep in mind that FE_1 (and RB_1) utilizes
CI_0 as a material law. Hence, the comparison in Figure 8.8 right is with respect to an
approximate reference.

In any case, it is observed that the error in the stress approximation is within acceptable
bounds (≤ 8% on Scale 1, ≤ 1% on Scale 2). This has to be seen in the context of actual
engineering applications where many other additional uncertainties come into play, such
as the material models on Scale 0 and the geometry of the considered RVE’s.

Eventually, a couple of four-scale simulations are conducted. Isochoric uniaxial
extension boundary conditions of the kind

U = U = U = exp
(
tY (1)

)
(Y (1) ↔ Y (1), cf. (8.2)), (8.39)
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Figure 8.9: Evolution of stress magnitudes on Scales 0–3 (left) and of the number of
Newton iterations of the corresponding FEM (right) over the magnitude t of the uniaxial
isochoric extension boundary condition.
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Figure 8.10: Evolution of the effective stress (left) and of the number of Newton iterations
of the FEM (right) on Scale 3 over the boundary condition magnitude.

with t ∈ [0, 1], are applied to the three Scales 0, 1 and 2. The respective FE methods
are invoked and the resulting stress fields P (X), P (X) and P (X), respectively, are
computed. Subsequently, these are volume averaged, leading to P , P and P which are
quantities on Scales 1, 2 and 3, respectively (counted to base zero). The magnitudes
of these effective stresses are depicted in Figure 8.9 left. The amount of corresponding
Newton iterations are graphed in Figure 8.9 right.

By the number of iterations and by the maximum value of the magnitude t for which
FE convergence is obtained, one can clearly see a trend of deteriorating FE convergence
as more scales are homogenized, cf. Section 9. Also, the scale softening effect is again
noticeable.

More kinds of fourth scale boundary conditionsU = exp
(
tY (i)

)
are applied to Scale 2.

The evolution of the volume-averaged stresses for the choices i = 1, 2, 3 is shown in
Figure 8.10 left, with the corresponding Newton iteration count on the right.

As the maximum magnitude is comparatively low, t = 0.175 respectively t =
0.225, the resulting stress curves appear almost linear. Nonetheless, the capability
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of the proposed scheme to perform four-scale simulations on laptop computers is
successfully demonstrated.

8.4.2 Homogenized stress response of stiffening microstruc-
ture via CI

Goals

The aims of this numerical example are to

• prove the suitability of the CI method for the homogenization of a highly anisotropic
RVE, i.e. homogenize one scale only,

• modify the CI interpolant f̃ : R6 → R9 such that it interpolates the stress P as a
function of the Hencky strain E

• setup the CI interpolant directly on FE data, avoiding the offline stages POD and RB
as far as possible,

• gain insights into the influence of the parameters N supp
dir and γ on the accuracy of the

stress interpolation,

• study the influence of the parameter N supp
dir on the runtime of the CI scheme.

This subsection does not strictly employ Algorithm 8.1 but instead investigates the
possible shortcut FE→ CI. As pointed out in Section 8.2.2, the FE method is not nearly
as well suited as the RB for providing the tangent modulus, hence we now focus on the
stress only.

Model

The RVE under consideration is depicted in Figure 8.11. The FE mesh of the non-cubic
RVE consists of quadratic TET10 elements with a total of 33,923 nodes, resulting in over
105 total DOF. The hash-shaped inclusion phase has a volume fraction of 13.3% and is
the source of significant geometric stiffening effects under certain boundary conditions,
as was investigated previously, [Kunc & Fritzen, 2019b].

An isochoric Neo-Hookean material law together with a mixed logarithmic-quadratic
volumetric part, [Doll & Schweizerhof, 1999], of the form

WC(C) =
G

2

(
trace(J−2/3C)− 3

)
+
K

4

(
(J − 1)2 + log(J)2

)
(8.40)

is employed for both the inclusion and the surrounding matrix phase. While
Gm = 10 MPa and Km = 3000 MPa are chosen for the latter, the former is described
by the constants Gi = 100 MPa and Km = 3000 MPa, i.e. the phase contrast is 10 for
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Figure 8.11: Geometry and graded FE mesh of a periodic microstructure with hash-
shaped, stiff inclusion.

the shear modulus. These material parameters roughly correspond a soft polymer matrix
and a stiffer polymer inclusion.

As before, it is important to emphasize that the choice of the hyperelastic material model
is completely arbitrary and serves as an example only. The method is general with respect
to this choice.

Design of the interpolation scheme

For this example, the domain of interest within the Hencky space is defined via Tmax = 1
and J∗ = 1.005. Initially, it is assumed that a sufficiently accurate interpolant PCI of the
effective stress P should be attainable withN supp

dir between 50 and 1000. The supporting
magnitudes are chosen at N supp

mag = 10 values, wherefore the total numbers of supporting
points lie between 500 and 10000. If instead, for example, regular Cartesian grids were
employed, the same total numbers of points p6 would imply as few as p ≈ 2.8 to p ≈ 4.7
points per axis.

The N supp
mag = 10 supporting magnitudes are chosen as 0.1, . . . , 0.9, 1.0. The number of

supporting directions N supp
dir takes the values 50, 100, 200, 250, 500, 1000. These sets of

directions are mutually independent, i.e. no intersections and especially no hierarchies
are enforced.

In this example, a direct setup of the CI scheme is pursued, i.e. based on FE data in order
to circumvent the offline stages POD and RB. However, due to the complexity of the
microstructure, only the supporting points of the CI schemes with N supp

dir = 50, 100, 200
are computed by means of the FEM.
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For the larger values of N supp
dir , the original Algorithm 8.1 is made use of. For the

corresponding POD, the support data of the CI scheme with N supp
dir = 200 is taken

as snapshot data S. The results are again truncated at NRB = 30, which is based on
experience with an RVE of the same geometry, [Kunc & Fritzen, 2019b]. Some of the
RB elements are visualized in Figure 8.12. This RB model is employed for the creation
of the supporting data of the CI schemes with N supp

dir = 250, 500, 1000.

Figure 8.12: Displacement fields corresponding to some Reduced Basis elements.
Coloring indicates displacement magnitude.

Evaluation and results

A validation set of response stresses P FE is created at additional Hencky strain sampling
sites (i.e. disjoint from the training sites) parametrized by Neval

dir = 150 and Neval
mag = 16,

where the magnitudes are of the form t(i) = i/16, i = 1,. . . ,Neval
mag. Of these 150·16 = 2400

evaluation points, 17 are excluded due to a lack of convergence of the FEM, cf. Section 9.
Therefore, here, the validation set Evali consists of 2383 FE-homogenized stresses
corresponding to an incomplete set of concentric samples of Hencky strains E.

In order to assess the accuracy of the interpolant PCI compared to the result P of the
FEM, the error measure

errP =
‖PCI − P FE‖
‖P FE‖

(8.41)
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is evaluated on Evali. With this at hand, the quality of a given kernel parameter γ can
be judged. Figure 8.13 visualizes the influence of this parameter on the overall error for
each of the chosen number of supporting directions.
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Figure 8.13: Mean value of the stress error function of Equation (8.41) on the set of 2383
validation points.

One can observe an increase of the minimum mean error from N supp
dir = 200 to

N supp
dir = 250. This observation is interpreted as the effect of the additional error

introduced by the RB approximation in the latter case.

As is well-known, [Kunc & Fritzen, 2019c, Sec. 7], very small values of γ render
the method numerically unstable and lead to volatile results. For small numbers of
supporting directions, the optimum value marks the beginning of the numerically stable
domain, e.g. as is the case for N supp

dir = 50. As the number of supporting directions
increases, the best value of γ increases, shifting into the interior of the numerically stable
domain, e.g. as is the case for N supp

dir = 1000.

An important property of the CI method is that changes to the minimum mean error value
with respect to the kernel parameter are marginal within a notably large neighborhood of
the optimum. This confirms an empirical finding of the original study of the small strain
equivalent method, [Fritzen & Kunc, 2018c, p. 212]: the kernel parameter may be fixed
at γ = 2.0 for a wide range of N supp

dir without pronounced loss of accuracy. The found
optimum values of the present examples are visualized in Figure 8.14. A linear least
squares regression of these data points yields the approximate relationship

γ(N supp
dir ) ≈ 0.00456N supp

dir + 0.7208. (8.42)

Next, the distribution of the function errP is studied for these optimum γ values. To
this end, Figure 8.15 shows the empirical distribution functions (EDF’s) of this error
quantity for each value of N supp

dir and for each evaluation magnitude. In other words,
the EDF’s measure the probability, for each evaluation magnitude separately, of the error
lying within certain bounds when evaluated at any of the Neval

dir = 150 directions.
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Figure 8.14: Values of the kernel parameter
γ as results from the conducted optimizations
(points, cf. Figure 8.13) and the result of
a linear least squares regression (line, cf.
Equation (8.42))  1
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One can observe that the mean of the error errP is below 2% for as few as N supp
dir = 100

supporting directions. Also, the individual EDF’s are comparatively “smooth”, i.e. they
do not exhibit significant jumps or plateaus. This confirms at a lack of severe outliers of
the error function (8.41).

It is worth noticing that, just as with the results depicted in Figure 8.13, the mean of
the error seems to be decreasing monotonically with an increasing number of supporting
directions, except for the transition fromN supp

dir = 200 toN supp
dir = 250. This is very likely

due to the additional error introduced by the RB, slightly deteriorating the quality of the
data at the supporting points. Still, a further increasing number of supporting directions
leads, again, to a monotonic decrease of the mean error. In terms of the mean error,
parity of the RB-based CI scheme with the finest FE-based CI scheme is only reached
with Ndir > 500. However, even with N supp

dir = 1000 the ROM-based CI scheme is
notably more prone to the maximum error than the FEM-based one with just one fifth as
many supporting points.

Finally, the average CPU time of all CI evaluations on the validation set Evali are
depicted in Figure 8.16 as a function of N supp

dir . The average is taken with respect to
452770 evaluations of the stress interpolant PCI (2383 evaluation Hencky strains and
190 different values of γ, cf. Figure 8.13). For these computations, a standard laptop
computer was used. No parallelization was employed.

An almost linear relationship between the average CPU time T and N supp
dir can be

observed, T ≈ 1.91 · 10−7s ·N supp
dir + 2.91 · 10−6s. The actual relation barely notably

tends to superlinearity.

These CPU times correspond to more than 5100 evaluations per second for
N supp

dir = 1000 and 75000 evaluations per second for N supp
dir = 50. In particular, CI

enables 1 million evaluations of the homogenized finite strain constitutive model in
only ∼ 200 seconds (N supp

dir = 10000) and in 14 seconds (N supp
dir = 50), respectively.
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Figure 8.15: EDF’s of stress error errP of hash microstructure.

8.5 Summary and discussion
8.5.1 Summary
A novel method for the homogenization of many spatial scales in finite strain hypere-
lasticity was successfully demonstrated. The combination of moderate, simple paral-
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Figure 8.16: Average CPU time of a single
evaluation of the stress interpolant PCI, as a
function of the number of supporting direc-
tions N supp

dir . The average is taken with re-
spect to 452770 evaluations.

lelization on standard workstations and efficient numerical methods rendered the offline
homogenization across three scales possible within a couple of hours. The online phase
was conducted on a laptop computer within a few minutes of compute time. Many thou-
sands of evaluations of the numerical surrogate for the upscaled material response are
evaluated per second.

Qualitatively, the observed results matched the expectations, i.e. nested scales with
porous RVE’s resulted in a significant scale-softening effect. Also, a highly anisotropic
RVE was homogenized with good accuracy.

The main challenge was a deteriorating convergence behavior for the larger scales. This
is a widely-known issue that, to the best knowledge of the authors, is present in most
if not all computational multi-scale methods. Additionally, the interplay of the many
parameters for the main algorithm does not contribute to user-friendliness.

The workflow can possibly be significantly simplified and accelerated if one settles with
interpolation of data generated directly by the FEM. This is especially viable when
effective stiffnesses are not sought-after. As far as usability is concerned, it must be
emphasized that the scheme is non-intrusive in the sense that it can be utilized with any
simulation software that provides an interface to user-defined material routines.

8.5.2 Interpolation given different strain measures
Sticking to the Hencky strain space for the sampling comes with many advantages. Most
importantly, the Hencky strain space is isomorphic to the full space R6 while the spaces
of other deformation or strain measures are isomorphic to nonlinear manifolds embedded
into R6 (e.g. for C, U ) and R9 (e.g. for F ) due to constraints on the tensors such as
positive definiteness or preserved orientations. More precisely, any point in R6 will yield
an admissible Hencky strain while for other deformation measures (independent of the
chosen basis) additional checks on the admissibility are required. Further, the Hencky
strain allows to explicitly control the sampling of the determinant of F in a straight-
forward manner, which is a tricky procedure for other strain measures. It should be
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noted that regardless of what input strain is delivered, as long as the sampling is effected
with respect to strain states corresponding to the CS points in the Hencky strain space,
concentric interpolation can be performed after transforming the input to the Hencky
domain. However, this does not imply that the program calling the CI-based scheme
must work with the Hencky strain. Note also that the validity of the samples in more
obvious deformation measures (such as the right Cauchy Green strain) yields points for
which the requested samples cannot be obtained, as discussed in other works, [Yvonnet
et al., 2013]. Therefore, the authors decided to use and also to promote the use of CS in
the Hencky strain space and the related CI although this choice is not intrinsically unique
and explicitly not a rigorous requirement of CI.

8.5.3 Number of sampling directions
From the results of Section 8.4.2, it is concluded that the gains in accuracy by a larger
number of supporting directions is partly offset by the additional modeling error of the
RB scheme. Moreover, this error comes along with significant additional offline costs
for the identification and evaluation of the RB. Future investigations of the shortcut of
directly interpolating high-fidelity data – if available – might be fruitful. The trade-off
with respect to the resolution of anisotropic effects may be a delicate choice. Note that by
anisotropy, not just explicitly given material laws are meant but also geometry-induced
effects on higher scales.

8.5.4 Number and position of sampling magnitudes
Choosing the distribution of the N supp

mag radial supporting points relies on empiricism at
the current state of the art. Variations of the qualitative distribution as well as variations
of the number N supp

mag were exemplary treated previously, [Fritzen & Kunc, 2018c, Kunc
& Fritzen, 2019c]. It was found that CI is rather insensitive to the distribution of the
supporting points and that an increase of their amount correlates with the quality of
the interpolation. However, neither the positioning of the points nor the determination
of their quantity can be rigorously guided at the moment, e.g. by means of an error
estimation.

8.5.5 Kernel parameter
Also, the findings of Section 8.4.2 suggest that the determination of the optimum value of
the kernel parameter γ may be omitted if the value is chosen according to Equation (8.42).
The error induced by this possibly sub-optimal γ value may be justifiable depending on
the context. An optimization of the kernel parameter should generally be conducted on
data that is primary to the balance equations, i.e. on stresses and not on tangent moduli
or on energy densities. However, fitting to modulus data yielded a comparable result in
the present study.
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8.5.6 Accuracy

Errors propagate exponentially through scales. As far as errors stemming from the
data-driven approach are concerned, these might be assessed by performing unreduced
FE2 simulations – for a single scale transition. Concerning three or more scales, such
unmodified schemes are practically impossible with meaningful spatial resolution at
each scale, as the computational effort also grows exponentially with the number of
scales. Further, convergence issues with classical methods remain a serious hurdle,
as was also experienced in the present work. Thus, the application of the RB method
reduces the computational effort to a manageable level not just because of the numerical
economy but also due to the increased numerical robustness. Because of the latter,
larger load increments are possible and, as we experienced, certain load levels become
computationally feasible. For growing load magnitudes, the accuracy of the CI-model
tends to decrease. This effect was investigated in previous works, [Kunc & Fritzen,
2019c, Fig. 12]. There, it was also shown that an increase of N supp

mag generally improves
the accuracy – with only very minor effects on the computational effort during the online
evaluation of the surrogate model.

8.5.7 Generalization to other material models

In principle, a CI surrogate can be set up for any material model with exclusive state-
dependency. Gradient elasticity, where the energy density function also depends on
the second order deformation gradient, W = W (F ,∇XF ), is a candidate that belongs
to this category, [Forest, 2009]. In such a case, the interpolation domain should be
re-considered since the choice of the Hencky strain space was not made with higher
gradients in mind.

Dissipative material laws might be covered or at least assisted by CI. For instance,
standard viscoelastic material models, [Simo, 1987], contain a hyperelastic term that can
be directly treated by the CI method as in the present paper. History dependence might be
treated by means of a decisive super-model switching between multiple CI schemes, each
covering a certain region of the historic state space. However, the high dimensionality
of this space would drastically increase the computational effort. To begin with, the
numerical surrogate would be more complex. But even more severely, the state history
would need to be tracked at each integration point on the current Scale N , as is the
case in many classical dissipative material models involving internal variables. It could
be an option for the super-model to decide to retreat to unreduced FE simulations on
ScaleN−1 in case the state evolves along a path leaving the CI-covered domain, [Fritzen
et al., 2019]. Future works might reveal alternatives pathways for the consideration of
dissipative effects with notable contributions of CI for attaining computational efficiency.
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Chapter 9:
Outlook

9.1 Possible advancements of the current method

The demonstrated computability of fourth-scale results on laptop computers suggests
that the application phase of the proposed numerical scheme is sufficiently efficient.
Still, further improvements could possibly be achieved on the implementation side. For
instance, the efficient usage of platform-specific SIMD instructions (Single Instruction,
Multiple Data) is a popular method to comparatively easily boost algebraic operations.
In the published code, such an advanced set of instructions is not yet employed.

In contrast, it is desirable that the setup phase could be conducted in a more efficient
manner. A major bottleneck is the POD during which the pre-computed FE results are
searched for correlations. This memory-intense operation could be alternatively con-
ducted by the established Hierarchical Approximate POD (HAPOD) method, [Himpe
et al., 2018]. There, the monolithical POD approach is split into POD’s of smaller sub-
sets. This allows for parallelization and/or a decrease of the peak memory requirement.

Another significant bottleneck of the setup phase is the RB method. The major runtime
is spent on field operations, such as the evaluation of the material laws and the integration
over the RVE domain. This is somewhat disappointing when thinking of the tremendous
reduction of degrees of freedom from the FE model to the RB model. It is a well-known
drawback of the classical RB method that the complexity of the original domain prevails.
This problem was specifically targeted, e.g., by the Empirical Cubature Methode (ECM),
[Hernández et al., 2017]. It is to be expected that a reduced integration procedure similar
to this would lead to significant speed-ups. Comparisons of various reduction techniques
were conducted, e.g., in Brands et al. [2019]. It might also be worth to explore the
possibility to interpolate the RB coefficients via CI, based upon previous RB evaluations.
This could lead to quicker convergence due to better initial guesses of the coefficients.
Also, the option to migrate the implementation of the RB method onto a massively
parallel GPU framework, e.g. similar to Fritzen & Hodapp [2016], shall be mentioned.

In terms of usability and robustness, the current method may possibly be improved if
the amount of parameters could be reduced. For example, when thinking of Table 8.1,
it is suggestive that some relationships among the many parameters might be existent. It
could therefore be rewarding to conduct parameter studies in order reveal dependencies
or to at least be able to provide guidance as for how to choose the parameters.
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9.2 Extension to other non-dissipative material
classes

In principle, the CI-method is suitable for any non-dissipative material class. Since such
models have a unique relationship beween the kinematic state variables and the material
response, they fall within the regime of moderate-dimensional functions to which the
CI-method was proven applicable.

One example of a more general, non-dissipative class of materials is electro-elasticity, cf.
[Keip et al., 2014]. There, the material model consists of a potential that is dependent
on both the right Cauchy-Green tensor and the vectorial electric field, [Keip et al., 2014,
Equation (30)].

Another example is the class of magneto-active materials, cf. [Javili et al., 2013, Keip &
Rambausek, 2016]. There, the material model ([Javili et al., 2013, Equation (27)], [Keip
& Rambausek, 2016, Equation (56)]) is of extended hyperelasticity-kind, too. Besides
the right Cauchy-Green tensor only the vectorial magnetic field introduces an additional
dependency of the potential.

In both of these examples, the dimension of the input space of the model is nine. Since
the CI-method has demonstrated black-box capabilities for an arbitrarily chosen, eight-
dimensional scalar function, it is suggestive that it is well applicable to these electro- or
magneto-active cases, too. More specifically, one could apply Concentric Sampling and
subsequent Concentric Interpolation of the effective response of an RVE with respect to
the respective nine-dimensional input space.

9.3 Extension to dissipative material classes

It is fundamental to the present two-staged scheme that the relationship between strain
and the hyperelastic response is a mathematical function, cf. (4.26):

f̃ : EH 7→ S,C (9.1)

General material laws do not exhibit such a functional relationship. Path-dependency, i.e.
the significance of the load path through the space of state variables, requires knowledge
of the load history. It is thus necessary to increase the dimension of the domain of the
function f̃ . The number of required additional dimensions may be significant, as multiple
historic values might be required for each component of the strain.

A common and general modeling approach to path-dependent material behavior is the
concept of internal variables, cf., e.g., [Maugin & Muschik, 1994]. An internal variable
is a quantity that is not directly measurable but nonetheless affects the state of the
material. Past values of kinematic states, hardening variables, and viscous strains are
just few examples of this concept.
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Internal variables increase the dimension of the domain of the function f̃ and may even
require dedicated modeling assumptions. In [Fritzen & Leuschner, 2013], for instance,
the chosen material models allow for an efficient treatment of the internal variables by
means of non-kinematic RB’s. It remains an open task to generalize this method to the
case of geometric nonlinearity.

An application of the CI method in the context of path-dependent three-dimensional
problems would face many additional issues, including but not limited to:

• A careful choice of the state variables (as far as possible) in order to mitigate the
effects of the curse of dimensionality.

• Especially the setup phase with Concentric Sampling would be sensitive to an
excessive growth of the dimensionality, assuming a classical high-fidelity method
is utilized to compute the solutions at the sampling sites.

• It may be necessary to fix the temporal discretization, especially for rate-
dependent problems. An individual instance of CI may be necessary for each
discretization of time.

• The physical interpretation of the angular distance between sampling directions in
the space of state variables is lost. While in the present scheme this distance
measures how much loads differ in kind, such an interpretation is not readily
available if non-strain variables are included in the sampling space. Therefore,
it may possibly be advantageous to choose distributions of sampling directions
that are not homogeneous.

• Consequently, the spherical kernel interpolation would have to be adapted by
means of a suitable metric. A prototype of such an interpolation scheme is existent
but has not been published yet.

At this point, a sophisticated estimation of the suitability of the CI method for such
generalized applications is not made. It is recommended to apply CI to one-dimensional
path-dependent constitutive laws first in order to conduct initial proof-of-concept studies.

However, it is straightforward to assist homogenization by means of the present two-
staged method in other cases involving path-dependency: certain finite strain visco-
elastic material laws involve a hyperelastic part, cf., e.g., [Simo, 1987, Section 1.2],
[Hartmann, 2002, Section 2.2]. If the behavior on a scale N > 0 was sought to be
described by a model of such kind, the current method could be directly utilized to
identify the hyperelastic part.





Appendix A:
Appendix

The compatibility conditions (2.8) and (2.9) require the following additional standard
notation. Firstly, the Levi-Civita symbol is defined as

eijk =





1 if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if (i, j, k) ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}
0 else

, (A.1)

cf. [Lubliner, 2008, p. 2]. Secondly, let a = a(X) be a twice differentiable second order
tensor field on Ω0. Then the first derivative of a component aij of a with respect to the
k-th spatial coordinate is denoted as aij,k (i, j, k ∈ {1, 2, 3}). Likewise, aij,kl denotes
the differentiation of aij,k with respect to the l-th spatial coordinate (l ∈ {1, 2, 3}).

The ij-component of the second order tensor on the left-hand side of the compatibility
conditions (2.8) is defined via

(∇X × F )ij =

3∑

k,l=1

ekljFil,k , (A.2)

where the terms Fil coin the components of the deformation gradient and i, j ∈ {1, 2, 3}.

The ij-component of the second order tensor on the left-hand side of the compatibility
conditions (2.9) is defined via

∇X × (∇X × ε)ij =

3∑

k,l,m,n=1

emkienljεmn,kl , (A.3)

where the terms εil denote the components of the small strain tensor for i, j ∈ {1, 2, 3}.
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A novel computational homogenization method is proposed for
hyperelastic materials on an arbitrary number of spatial scales.
The scheme consists of two stages on each scale. First, a pro-
jection based reduced order model is constructed via a Reduced
Basis (RB) approximation of kinematic non-displacement quan-
tities. The computation of the effective material behavior is con-
ducted significantly more efficiently than with the unreduced,
original model. Second, samples of the homogenized mate-
rial response are interpolated by means of Concentric Interpo-
lation (CI). The support data for the CI is created at the first stage
whereas the RB setup is based on solution data of any high-
fidelity method, such as Finite Elements. An original Concentric
Sampling (CS) strategy alleviates the curse of dimensionality and
is applied to the kinematic state space at each stage and on ev-
ery scale. The application of the overall method to fibrous and
porous micro-structures is demonstrated successfully on up to
four scales. Only laptop computers and standard workstations
are utilized. It is exemplified in eight dimensions that CI is appli-
cable in a black-box manner to more general mathematical func-
tions. Source code is provided under a permissive license.
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