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Notation

The following acronyms and mathematical notation are used throughout the entire thesis.
In addition, for clarity, chapter specific notations are listed explicitly.

Acronyms

Signalling pathways

Abbreviation Full name
EGF Epidermal Growth Factor
ERK Extracellular signal-Regulated Kinase
MAPK Mitogen-Activated Protein Kinase
MEK MAPK/ERK Kinase
NGF Nerve Growth Factor
p53 tumour suppressor protein
PC12 cell line derived from a PheoChromocytoma of the rat adrenal medulla
Raf Rapidly Accelerated Fibrosarcoma

Experimental techniques

Abbreviation Full name
CS Control Strategy
KD Knockdown
NS Normalization Strategy
OE Overexpression
RT-qPCR Reverse Transcription Quantitative Polymerase Chain Reaction
WB Western Blot
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Notation

Mathematical concepts

Abbreviation Full name
AIC Akaike Information Criterion
AUC Area Under the Curve
BIC Bayesian Information Criterion
GRC Global Response Coefficient
ML Maximum Likelihood
LRC Local Response Coefficient
ODE Ordinary Differential Equation
ROC Receiver Operating Characteristic

Statistical quantities

Abbreviation Full name
CV Coefficient of Variation
EM Error Model
GR Gaussian Ratio distribution
IQR Interquartile Range
LMC Left Medcouple
LN Log-Normal distribution
MC Medcouple
MSE Mean Squared Error
N Normal distribution
pdf Probability Density Function
RMC Right Medcouple
RV Random Variable
SD Standard Deviation

Algorithms

Abbreviation Full name
MLE Maximum Likelihood Estimation
MRA Modular Response Analysis
OLS Ordinary Least Squares
TLS Total Least Squares
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Notation

Sets of numbers

Symbol Description
N Natural numbers
R Real numbers
R>0 Positive real numbers
R+ Non-negative real numbers
RN

+ Non-negative real vectors of size N
C1 Continuous differentiable real functions

Mathematical variables

Symbol Description
x, y, z Simple letters: deterministic variables and random variates (realizations)
x,y, z Bold letters: random variables
py(y) Probability density function of y
N Gaussian distribution
Mr Molecular mass
Da Dalton, unit of measurement of molecular mass
αj WB membrane and antibody specific constant for each replicate j = 1, . . . , J

T1 First step transformation: noisy raw measurements → normalized data
T2 Second step transformation: normalized data → inferred parameters

Chapter 2: Statistical inference

Symbol Description
xc, xc Noisy protein amount of x under control condition
xk, xk Noisy protein amount of x under knockdown condition
ỹjc , ỹ

j
c Measured optical density of x under control condition for replicate j

ỹjk, ỹ
j
k Measured optical density of x under knockdown condition for replicate j

yk, yk Normalized data of x under knockdown condition w.r.t. the control case
θ̂1, θ̂1 ML estimate of the N error model (scenario 1)
θ̂2, θ̂2 ML estimate of the LN error model (scenario 2)
θ̂3, θ̂3 ML estimate of the GR error model (scenario 3)
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Notation

Chapter 3: Dynamical model calibration of biochemical reaction

networks

Symbol Description
θ Unknown model parameter
θ0 True parameter value
xi(tk, θ0) True noise-free concentration of protein xi at time point tk
z(t, θ) Simulated model output
x̃i(tk), x̃i(tk) Noisy concentration of protein xi at time point tk
ỹji (tk), ỹ

j
i (tk) Measured optical density of xi at time point tk for replicate j

yi,NS(tk),yi,NS(tk) Normalized measurement of xi at time point tk
according to normalizations strategy NS

θ̂MLE, θ̂MLE Noisy ML estimate of model parameter θ

Chapter 4: MRA based network reconstruction

Symbol Description
ss Steady-state
x̄0
i True ss concentration of protein xi in the control condition
x̄ji True ss concentration of protein xi after perturbation j
pj Perturbation parameter affecting the corresponding node j
Rtrue
ij True analytical definition of GRC

rtrueij True analytical definition of LRC
R̃ij Noise-free approximation of GRC
r̃ij Noise-free approximation of LRC
z̄0
i , z̄

0
i Noisy ss concentration of protein xi in the control condition

z̄ji , z̄
j
i Noisy ss concentration of protein xi after perturbation j

Rij, Rij Noisy GRC obtained from noisy ss data
rij, rij Noisy LRC estimated from noisy GRC
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Abstract

Inference problems in Systems Biology are primarily based on the theoretical assumption
that a measured dataset comprises noisy realizations following some underlying stochas-
tic distribution, having well-defined statistical properties. This uncertainty in the input
quantities propagates through the inference process, influences the uncertainty of the
estimated model parameters and subsequently affects the quality and reliability of model
predictions. Understanding the mechanisms of noise propagation over an inference problem
will therefore be instrumental in designing an optimal and robust experimental protocol to
reduce the uncertainty of the estimated quantities of interest. This thesis investigates the
underlying mechanisms of noise propagation from measured experimental data to estimated
parameters by developing a statistical framework to characterize and analyse non-linear
transformations of stochastic distributions. Among such non-linear transformations, data
normalization, a required step for some common experimental techniques, requires specific
attention, representing an additional modification of noise properties. Mathematically,
the normalization step translates into ratios of two distributions. We consider standard
assumptions on the distributions associated with biological raw data. In this thesis we
explore three specific classes of inference problems relevant for Systems Biology applications.
At first we consider the problem of statistical inference of different parametrized error
models for normalized data. Subsequently, we investigate the effect of such error models
when coupled with different normalization strategies on results of parameter estimation for
dynamic models of biochemical reaction networks. We conclude this thesis by analysing the
effects of noise propagation on Modular Response Analysis based network reconstruction.
From our simulation results, we observe that non-linear noise transformations may lead to
very uncertain and/or erroneous inference results. Additionally, based on the quantification
of statistical measures for accuracy and precision of the inference results, we derive practical
advice for an optimized and robust experimental design in order to reduce the uncertainty
of the estimated quantities.

Keywords — Inference problems, Systems Biology, noise propagation, ratio distributions,
parameter estimation, Maximum Likelihood Estimation, statistical inference, dynamic
modelling, network reconstruction, experimental design.
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Deutsche Kurzfassung

Ein statistisches Framework zur
Optimierung des experimentellen
Designs für Inferenzprobleme in der
Systembiologie basierend auf
normalisierten Daten

Inferenzprobleme in der Systembiologie basieren in erster Linie auf der theoretischen Annah-
me, dass ein gemessener Datensatz verrauschte Stichproben nach einer zugrunde liegenden
stochastischen Verteilung mit klar definierten statistischen Eigenschaften umfasst. Diese
Unsicherheit in den Eingangsgrößen pflanzt sich im Inferenzprozess fort, beeinflusst die
Unsicherheit der geschätzten Modellparameter und beeinflusst anschließend die Qualität
und Zuverlässigkeit der Modellvorhersagen. Das Verständnis der Mechanismen der Rausch-
propagierung bei Inferenzproblemen wird daher entscheidend dazu beitragen, ein optimales
und robustes experimentelles Protokoll zu entwickeln, um die Unsicherheit der geschätzten
Interessengrößen zu verringern. Diese Arbeit untersucht die zugrunde liegenden Mecha-
nismen der Rauschpropagierung von gemessenen experimentellen Daten zu geschätzten
Parametern mit Hilfe eines statistischen Rahmens zur Charakterisierung und Analyse
nichtlinearer Transformationen stochastischer Verteilungen. Unter solchen nichtlinearen
Transformationen erfordert die Datennormalisierung, ein notwendiger Schritt für einige
gängige experimentelle Techniken, besondere Aufmerksamkeit, da eine zusätzliche Änderung
der Rauscheigenschaften vorliegt. Mathematisch übersetzt sich der Normalisierungsschritt
in Verhältnisse von zwei Verteilungen. Wir machen Standardannahmen über die Verteilung
der biologischen Rohdaten. In dieser Arbeit analysieren wir drei spezifische Klassen von
Inferenzproblemen, die für systembiologische Anwendungen relevant sind. Zuerst betrachten
wir das Problem der statistischen Inferenz verschiedener parametrisierter Fehlermodelle
für normalisierte Daten. Anschließend untersuchen wir die Wirkung solcher Fehlermodelle
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Deutsche Kurzfassung

in Verbindung mit verschiedenen Normalisierungsstrategien auf die Ergebnisse der Para-
meterschätzung für dynamische Modelle von biochemischen Reaktionsnetzwerken. Wir
schließen diese Arbeit mit der Untersuchung der Auswirkungen der Rauschpropagierung
auf die Modulare Response-Analyse basierte Netzwerkrekonstruktion ab. Anhand unserer
Simulationsergebnissen stellen wir fest, dass nichtlineare Rauschtransformationen zu sehr
unsicher und/oder irrigen Inferenzergebnissen führen können. Darüber hinaus leiten wir auf
der Basis der Quantifizierung statistischer Messgrößen für die Genauigkeit und Präzision
der Inferenzergebnisse praktische Hinweise für ein optimiertes und robustes experimentelles
Design ab, um die Unsicherheit der geschätzten Größen zu reduzieren.

xviii







1 Introduction

1.1 Data-driven inference problems in Systems Biology

Biological processes are governed by highly complex regulatory schemes at the molecular
level, taking place at different spatial and temporal scales. Research in the field of Systems
Biology has brought to the stage many challenging problems, which find their motivation in
the experimental observations of biological systems and are analysed from systems theoretical
and mathematical perspectives. Mathematical modelling approaches can provide useful
insight of such intertwined cellular systems, such as signal transduction mechanisms or gene
regulation, aiming to interpret experimental results and to unravel unobserved mechanisms
(Álvarez-Buylla Roces et al., 2018; Barnes and Chu, 2010). In particular, the strength of
Systems Biology is the synergy between combined experimental, modelling and simulation
techniques, which allows better understanding of very complex intra- and intercellular
processes, despite unavoidable limitations from both experimental and computational sides
(Cho and Wolkenhauer, 2003). This collaboration between theoreticians and experimental
biologists opens a more advanced and interdisciplinary form of research domain. This
leads to the possibility of describing complex biological phenomena by using a precise
mathematical description and of simulating and predicting in silico the outcomes of
expensive lab experiments with the help of advanced computational methods.

Mathematical modelling has therefore emerged as an effective tool which assists biologists
to find answers to many open problems which have been raised based on experimental
observations, and to investigate innovative therapeutic strategies for many biomedical
applications. Interesting examples concern cancer mechanisms (Werner et al., 2014),
secretion processes (Weber et al. (2015), Thomaseth et al. (2013)), auto-immune diseases
(Kim et al., 2014), metabolic disorders (Schadt and Lum, 2006) and many more. During
the last decades, a vast amount of studies was published about multi-scale and multi-
dimensional models describing and analysing complex biological systems (Clarke et al.,
2019; Martins et al., 2010). An extensive review is provided in Walpole et al. (2013).

One of the core tasks in this context involves inference problems, dealing with experimental
data as input to estimate unknown model parameters. Such inference problems include
paradigms like parameter estimation and identifiability, whose origins lie in different fields,
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1 Introduction

such as statistics (Kay, 1993; Koopmans and Reiersol, 1950; Seber and Wild, 1989), control
and systems engineering (Åström and Eykhoff, 1971; Ljung, 1987). Experimental data
are therefore the input information for a general inference problem. The investigated
model predictions depend on the estimated unknown model parameters, which represent
the output of the inference problem. Provided unavoidable error sources due to detection
limitations and biological random fluctuations effecting experimental measurements, a
statistical model assumes that the dataset :

D = {yi, i = 1, ..., N}, (1.1.1)

comprises noisy variates following some underlying stochastic distribution. For the inference
process it is important to take into account the statistical properties of the experimental
observations, since this uncertainty in the input data propagates over the calculated
quantities and effects the inferred outputs and subsequently model predictions.
In this thesis, we consider inference studies in which we describe the dataset (1.1.1) by

means of a mathematical model, expressed as a deterministic non-linear regression model :

z = h(x, θ). (1.1.2)

The variables z ∈ RQ
+, often called observables or dependent variables, represent the

simulated variables of the mathematical model describing the measurable quantities. These
functions depend on the unknown model parameters θ ∈ RM to be estimated and on other
variables x ∈ RN

+ , usually called regressors or independent variables, used to explain the
behaviour of z (Seber and Wild, 1989). In order to maintain biological feasibility, the
quantities z and x assume only non-negative values. Regressor variables may be fixed
conditions or random quantities too, depending on the applications. For example, if we
consider the application of dynamical systems modelled as Ordinary Differential Equation
(ODE) systems, the observables z may depend on the independent variable t, i.e. the time.

As mentioned in Seber andWild (1989), especially in the biological sciences, the underlying
processes are usually very complex and often not well understood. The model (1.1.2)
represents in these cases an approximation of the reality and the goal is to obtain the most
simple regression model which is able to fit the data in a reasonable way. An inference
problem consists therefore in an optimization problem in which a function C(D, z(x, θ)),
relating measured data and simulated variables, has to be optimized:

θ̂ = arg optimum
θ∈Θ

C(D, z(x, θ)). (1.1.3)

The set Θ ⊆ RM represents a subset of the parameter space, in which the optimal value is
assumed to lie. Most common estimation methods are related to a minimization problem, in
which a measure of the “distance” between data and model predictions has to be minimized.

In this thesis, we will focus on three concrete data-driven inference problems, which

2



1.2 Motivation and focus

are very relevant in the field of Systems Biology, namely statistical inference, dynamical
model calibration of biochemical reaction networks and finally network reconstruction. In
Section 1.2 we introduce the key topic which inspired and motivated all analyses and results
presented in this thesis. Furthermore, we present the motif of the whole thesis, which will
be further elaborated in the next chapters for the three application studies. Section 1.3
summarizes the outline and contents of the thesis.

1.2 Motivation and focus

One of the most common types of experimental data used for a semi-quantitative description
of biochemical systems are western blot data (see e.g. Hood et al. (2019); Santos et al.
(2007)). Western blot (WB), or immunoblotting, is an experimental procedure that allows
the detection and quantification of specific proteins inside a complex mixture.

Fig. 1.1. Western blot experimental procedure. The lysate obtained from a sample
of cells (left) undergoes the process of fractionation in order to separate proteins according
to their molecular mass Mr, measured in kDa (center). The separated proteins on the gel
are then transferred (blotted) onto a membrane (right), which is then incubated sequentially
with two different antibodies, leading finally to the quantification of the desired protein
concentrations. Figure taken from: Bio-Rad Laboratories webpage.

In the following we highlight in a simplified way the key steps of the method, which are
also schematically summarized in Figure 1.1: a sample of cells in a particular experimental
condition undergoes the process of lysis in order to release the molecular content of the cells;
all proteins are then separated according to their molecular mass Mr by two-dimensional
polyacrylamide-gel electrophoresis (fractionation); the separated proteins on the gel are
transferred (blotted) onto a membrane; this membrane is then treated with a solution of
labelled antibodies that attach only to the specific proteins of interest; these antibodies
are then detected by a second group of antibodies that are coupled with a label emitting a
fluorescent or chemiluminescent signal; finally, by quantification of these light signals, the
concentration of the desired proteins can be calculated (Alberts et al., 2008; Taylor and
Posch, 2014).

3
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1 Introduction

A peculiarity of WB data is that the measured optical densities must undergo two
different steps of normalization for a precise quantification and to ensure a correct and
reliable comparison of protein levels in different experiments (Degasperi et al., 2014; Taylor
and Posch, 2014). As stated in Taylor and Posch (2014), normalization for an appropriate
loading control is necessary to take into account possible irregular loading among the lanes
of the blot, and therefore to assure that the observed fold changes of the protein levels
reveal real changes and are not artefacts. We show an exemplary schematic representation
in Figure 1.2, in which four values of one representative protein and of the corresponding
loading control α-tubulin (commonly used in cellular systems) are detected via WB (left).
The raw data {y1, y2, y3, y4}, shown on the right, represent the protein response in terms of
the measured optical density of the protein normalized for the loading control. Without
loss of generality, we assume that these raw data, obtained after the first considered
normalization step, define the dataset D (1.1.1), assuming that the variance in the protein
used as loading control is small compared to the variance in the signal. From our discussions
with biologists we arrived to the conclusion that this is a reasonable assumption, although
it has not yet been investigated in full detail. Furthermore, the same assumption is also
implicitly used in similar studies (Degasperi et al., 2014; Kreutz et al., 2007).

Western blot experiment

1 2 3 4

Protein

α-tubulin
=⇒

Fig. 1.2. WB data quantification. The amount of one exemplary protein and of the
loading control α-tubulin are measured via WB in four experimental conditions (left part).
The dataset D = {y1, y2, y3, y4} (right part) represents the protein response in terms of the
measured optical density of the protein normalized for the loading control.

After this, a second step of normalization is required in order to allow comparison of
several replicates1 quantified in different blots (Degasperi et al., 2014). Different strategies
can be considered at this point. Commonly applied options are those with respect to some
“control” experiment, e.g. the untreated culture or one representative time point in a time
course study. In the case that there is no unique choice for one specific condition to be the
control case, data can also be normalized to the mean value of the data on one blot or by
optimal alignment for variance minimization (Degasperi et al., 2014).

1We refer to Blainey et al. (2014) for a nice overview on measurement replication in biological applications.
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1.2 Motivation and focus

As we will explain more in detail in Chapter 2, data post-processing techniques usually
entail a significant change of the statistical properties of the experimental data, an issue
which has not been broadly taken into consideration in the literature yet. Relating to the
inference problems considered in this thesis, data processing by normalization defines the
new dataset:

D̃ = {ỹj, j = 1, ..., Ñ}, where ỹj = T1(yi ∈ D), (1.2.4)

which is used in place of the original dataset (1.1.1) for parameter estimation via (1.1.3).
The total number of available data Ñ may also change, as we will see in Chapter 3. The
transformation function T1 and which data yi of the original dataset enter as input of the
transformation (1.2.4) depend on the chosen normalization strategy.

One main focus of this thesis is to characterize how the statistical properties of the
transformed noisy data may change due to normalization, considering some standard
assumptions on the stochastic process underlying data generation of the original dataset
(1.1.1). A second main goal of this thesis is to analyse how uncertainty propagates to the
estimated parameters, solution of the optimization problem (1.1.3), solved for the new
dataset D̃ = {ỹj, j = 1, ..., Ñ}. The optimization problem provides in fact the solution θ̂ as
a non-linear function of the normalized data:

θ̂ = T2(ỹj ∈ D̃), (1.2.5)

implying the fact that the estimated parameter represents a sample of some underlying
random distribution, too. The transformation function T2 depends of course on the
chosen normalization strategy via T1, but also on the assumed statistical description of the
normalized data, whose mathematical formulation impacts the cost function C(D̃, z(x, θ))
for some estimation methods.

In summary, starting from noisy input raw data (1.1.1), we aim to analyse the effects of
the two transformation steps T1 and T2 on the uncertainty of the inferred quantities, for
three specific inference problems in Systems Biology. Noise propagation over the inference
problem due to these two transformation steps is schematically represented in terms of
continuous probability density functions (pdf) in Figure 1.3. Throughout the thesis, bold
letters indicate random variables and simple letters refer to realizations.

The problem regarding the effects of data normalization and the subsequent transfor-
mations of statistical distributions, as discussed above, has remained unaddressed in the
literature so far. Nevertheless, we consider it a relevant investigation since relative data are
largely spread in Systems Biology studies, and not only WB data, but also multiplexed
Elisa, proteomica or RT-qPCR, as mentioned in Degasperi et al. (2017).

In Degasperi et al. (2014), the authors analyse the effects of different normalization
strategies for WB data on the coefficient of variation (CV) and on the results of hypothesis
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T1

=⇒
T2

=⇒

Fig. 1.3. Noise propagation over the inference problem. Raw noisy data are
interpreted as samples of an underlying distribution, described by the probability density
function (pdf of yi) arising from the measurement noise. We schematically show how the
results of the considered inference problem are affected by the variability of the measured
protein concentrations in terms of propagation of distributions over the two transformations
T1 and T2: from the measurements (left), via normalization (center), to the estimated
model parameter θ̂ (right).

testing, e.g. the effects on the number of false positives and false negatives, when using
normalized data. This is the first work addressing the effects of normalization on the
statistical properties of the data and was motivating the analysis of this doctoral thesis on
the effects on the results of inference problems.

In an earlier work (Kirch et al. (2016)), we started having a closer look at dynamical models
of intracellular networks, and analysed the effects of model rescaling and normalization
on the results of sensitivity analysis. In particular, we considered both cases of local and
global sensitivities of model outputs normalized to a reference experiment. Results show
that normalization of model outputs has a large impact on the results of both sensitivity
analyses and in particular complicates their interpretation.
Therefore, in this thesis, we aim to address the following questions:

• How does noise propagate from input measurement data to output estimated parame-
ters via the two non-linear transformations T1 and T2, whose relationships in general
cannot be solved analytically?

• How can we eventually optimize the experimental design and the computational
methodology to obtain more precise and/or more accurate inference results?

• How robust is a particular experimental and computational design with respect to
larger noise in the input data?

6
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1.3 Outline and contributions of this thesis

The main focus of this thesis can be summarized as following: For specific inference problems
of interest for Systems Biology studies, we want to develop a statistical framework to analyse
noise propagation from noisy measured WB data to uncertain parameter estimates, going
through the data normalization step. We evaluate the effects of non-linear transformations
of statistical distributions and, based on the outcomes of the suggested approach, we derive
practical recommendations to optimize the experimental design required for the considered
inference problems.

Throughout the thesis, this analysis is formulated for three specific examples of inference
problems: starting from the statistical inference of different error models for normalized
WB data, we look at the effects on dynamical model calibration of biochemical reaction
networks. We conclude applying our statistical framework to Modular Response Analysis
based network reconstruction.

In the following, we outline the structure of this thesis and summarize the main results.

Chapter 2: The impact of western blot data normalization on

statistical inference

In this chapter, we elaborate on the statistical description of normalized WB data. Starting
from two common assumptions on the distribution of noisy raw data, namely Gaussian and
log-normal distributions, we regard three different classes of statistical error models for the
obtained relative data. In particular, we consider ratio distributions as the straightforward
formal mathematical characterization of the statistical properties of normalized data. Based
on a real case study of knockdown experiments for steady-state concentrations, we analyse
the impact of normalization on the results of statistical inference, i.e. parameter estimation
of the statistical error model describing the fold change between the amount of a protein
after knockdown with respect to the untreated control case. Making use of the Maximum
Likelihood Estimation (MLE) method, we obtain parameter estimates for the different
stochastic models assumed to underlie data generation. Results show that the choice of the
error model partially affects the estimated distributions and their moments, even in cases
of low number of replicates and large variance across them, which is very common in real
studies. This indicates that the three considered error models, under plausible simplifying
assumptions, can be fairly compared among each other as suitable description of normalized
WB data.

Remark. Parts of the content (text and pictures) presented in Chapter 2 are taken from
the following publication by the author of this thesis:
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• Thomaseth and Radde (2016).

The specific contributions of the author of this thesis in those publications consist in:
characterizing the different scenarios of statistical description of normalized WB data,
summarizing the properties of Gaussian ratio distributions from different published sources,
running all numerical simulations and making the analysis of the results.

Chapter 3: Normalization, experimental design and error model

choice affect dynamical model calibration of biochemical reaction

networks

This chapter continues the statistical analysis presented in the previous one, extending
the investigation on the effects of noise propagation on inference results in the context
of dynamic modelling of biochemical reaction networks. We introduce an in silico study
of an ODE model for a reversible phosphorylation reaction with unknown kinetic rate
constants to be estimated from WB time series data. By assuming realistic noise levels for
the raw measured data, we analyse the impact of the choice of different error models on
the results of model calibration via MLE. Furthermore, we look at the effects of different
experimental design features, like the total number of selected time points and alternative
normalization strategies, and derive practical recommendations to allow more precise and
more accurate parameter estimates. This study on a simple test-bed model highlights the
fact that standard noise levels of detected signals and commonly used amounts of data lead
to uncertain parameter estimates. Therefore, a sufficiently large amount of measured data
is necessary to precisely infer model parameters and subsequently obtain reliable model
predictions.

Remark. The results presented in Chapter 3 are partially supported by the work presented
in Wang (2018), a student thesis that was supervised by the author of this doctoral thesis.
Additionally, parts of the content (text and pictures) are taken from the following publication
by the author of this thesis:

• Thomaseth and Radde (2021).

All contents of this chapter are specific contributions of the author of this thesis and consist
in: defining the whole theoretical problem, formulating the statistical framework for the
analysis of noise propagation, running all numerical simulations and making the analysis
of the results.
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Chapter 4: Impact of measurement noise, experimental design,

and estimation methods on Modular Response Analysis based

network reconstruction

In this chapter, we present a statistical analysis of noise propagation in the context of
signalling network reconstruction, which is the third and last inference problem considered
in this thesis. Considering Modular Response Analysis (MRA) as theoretical method to infer
and quantify protein interactions based on steady-state perturbation data, we investigate
the effects of noisy data processing, experimental design and estimation methods on the
uncertainty of the individual inferred protein interactions. We design an in silico study
of the MAPK and the p53 signalling pathways with realistic noise settings. By means of
statistical concepts and measures, we assess accuracy and precision of inferred pairwise
interactions and resulting network structures. From our simulated results we draw clear
suggestions on how to optimize the performance of MRA based network reconstruction,
concerning the choice of experimental and computational features. A robustness analysis of
the MRA workflow is also presented, corroborating the recommended strategy for a reliable
network reconstruction.

Remark. The main content (text and pictures) presented in Chapter 4 is taken from the
following publication by the author of this thesis:

• Thomaseth et al. (2018).

The specific contributions of the author of this thesis in the published study consist in:
developing the statistical framework for the analysis of noise propagation, selecting the
proper measure for tail weight of statistical distributions, running all numerical simulations
and making the analysis of the results.

Chapter 5: Conclusion & outlook

We conclude the thesis by summarizing all results presented in the three previous chapters,
providing additional discussion points, and suggesting possible extensions of these research
findings for future investigations.

Appendix

For a better understanding of the content of this thesis, in this section we present rele-
vant mathematical definitions, calculations, and proofs. In addition, we provide pictures
illustrating some extensions of the numerical results.

9





2 The impact of western blot data
normalization on statistical inference

In this chapter we investigate the impact of normalization of the data obtained from WB
experiments on statistical inference, dealing with parameter estimation of the underlying
stochastic models. Normalization is an important pre-processing step required to enable
comparison across different replicates. Variations may arise in fact due to inconsistent
sample preparation, unequal sample loading across lanes of a blot and various other
experimental conditions. The normalization procedure takes place in two steps: first, the
detected signals are normalized to a loading control, and then to a reference condition.
Complications in parameter estimation for biochemical network reconstruction arise when
the signals are themselves normally distributed, and hence the normalized data are described
by the ratio of two normal distributions. In this chapter, we recapitulate a few important
properties of such Gaussian ratio distributions and we provide plausible conditions for
various approximations that facilitate further statistical analysis. Besides, we analyse the
structural identifiability of its parametrization and we investigate convergence properties of
the maximum-likelihood estimator by means of an in silico study. Results show that many
samples are needed to be in the asymptotic regime. In contrast, fold changes, determined
as the expected value of the inferred distributions, can relatively accurately be estimated
despite large uncertainties in distribution parameters and heavy-tailedness of the ratio
distribution. We illustrate the obtained results on a case study in which WB data are used
to infer the fold change in a knockdown experiment.

Parts of the content of this chapter are taken from Thomaseth and Radde (2016).
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2.1 Introduction

Western blotting, introduced by Towbin et al. (1979), is an analytical technique to detect
and quantify concentrations of proteins as well as their phosphorylation states. With this
technique, proteins isolated from a cell culture are transferred to a membrane and incubated
with a specific primary antibody. After that the membrane is incubated with a secondary
antibody, which is directed against the first antibody and serves as signal amplifier. This
second antibody is chemically linked to an enzyme that catalyzes a chemiluminescence
reaction. Finally, exposure of an X-ray film placed against the western blot produces bands,
indicating the location of a protein-antibody complex (see Section 1.2 for more precise
details about the WB experimental procedure). In the linear range, the band intensity
is proportional to the amount of protein. Since proportionality factors are membrane
and antibody specific, normalization has to be performed to enable comparison between
different replicates. This normalization is commonly carried out in two steps. Signals are
first normalized to a loading control to reduce the variance resulting from loading differences
among the lanes. In a second step the data are additionally normalized to a control or
reference condition. For example, if monitoring the temporal change of the phosphorylation
state of a protein in an intracellular signalling cascade upon stimulation with a ligand, the
state in the unstimulated case might serve as such a reference condition. Thus, normalized
data are given as multiples of this reference state. Similarly, the altered concentration of a
protein in a perturbation experiment, e.g. overexpression or knockdown, is normalized to
the signal in the unperturbed case. Originally, western blotting was mainly used to detect
differences in the amount or activity state of proteins across different conditions, but there
is a continuous trend to extract also more quantitative information, such as concentrations
of proteins over time or at steady-state. In recent times, experimental protocols have been
improved to determine linear ranges between optical densities and protein concentrations,
as well as to perform proper background corrections (Taylor et al., 2013). Coupled with
these, further developments in experimental technique (see e.g. Taylor and Posch (2014))
resulted in a more frequent use of WB data for parameter estimation of quantitative models
(see e.g. Weber et al. (2015)).

Researchers have also started to characterize the statistical properties of WB data
(Degasperi et al., 2014; Kreutz et al., 2007). In this context, it should be mentioned
that, although often not explicitly stated, the representation of different replicates using
summary statistics, such as mean and variance, as well as their calculation, implicitly
assumes an underlying distribution of the data. In this respect, a common assumption
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consists in defining normally distributed data when it comes to represent them via summary
statistics or in the application of hypothesis testing. Examples include t-test or ANOVA
to determine the significance of differences in mean values (see e.g. Möller et al. (2014);
Zinöcker and Vaage (2012)). On the other hand, based on a comparison of different error
models, the authors in Kreutz et al. (2007) argue that WB signals rather follow a log-normal
distribution.

In this study we investigate normal and log-normal distributions as statistical models
underlying WB data generation. Subsequently, we show that such assumptions have
different implications on the distributions of the normalized data, whose straightforward
mathematical characterization is given by ratio distributions. In particular, we primarily
focus on Gaussian ratio distributions. We review properties of this class of distributions and
demonstrate that the parameters of the inverse problem are structurally non-identifiable.
This motivated us to use a reduced parametrization and to introduce two simplifying
assumptions for the estimation problem. Convergence properties of the maximum likelihood
estimator using the alternative parametrization are investigated in an in silico study.
Results show that fold changes can accurately be estimated despite large uncertainties in
distribution parameters. Moreover, our simplifying assumptions highly facilitate parameter
and state estimation, since otherwise those parameter estimates are not in the asymptotic
limit even for large data set sizes.

We exemplify the theoretical and numerical findings with a real-world case study, in
which measured data are used to determine the fold change of a protein quantified in
the control as well as in a knockdown experiment (Santos et al., 2007). Using maximum
likelihood (ML) estimators, we demonstrate that, under plausible simplifying premises,
different assumptions on the underlying distribution of the data may lead to comparable
calibrated statistical distributions of the normalized data and corresponding moments.

2.2 Problem formulation

A stochastic modelling framework describes data y ∈ R as random variates that are
generated by an underlying stochastic model {yi}i∈B, where y is a random variable (RV)
indexed by i ∈ B, with B some general set of finite or infinite conditions. This process defines
the distribution pyi

(yi) (probability density function in the case of continuous variables).
Statistical inference deals with the problem of estimating pyi

(yi) from observations. Here we
consider the case of distributions that are parametrized using a set of parameters denoted
by θ, such that statistical inference is equivalent to the estimation of θ from observations y.
We analyse three different stochastic models underlying data generation for the description
of a knockdown (KD) experiment.
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2.2.1 Statistical description of a knockdown experiment

We consider a WB dataset from a KD experiment, in which the amount of protein has
been quantified under control and KD conditions. In order to estimate the fold change, i.e.
the factor by which the protein amount is reduced compared to the amount in the control
case, the data of the KD experiments are commonly presented normalized to the control
case. Here we consider three different scenarios of the stochastic processes underlying
experimental data generation.

• Scenario 1:
No error in the control data and KD data are normally distributed
This is the simplest scenario, in which data xc of the control experiments are assumed
to have zero error, while data xk from the KD experiments are assumed to be normally
distributed:

xc = δ(µc)

xk ∼ N (µk, σ
2
k)

(2.2.1)

• Scenario 2:
Control and KD data are log-normally distributed
If xc and xk follow a log-normal distribution, their logarithms are normally distributed:

log xc ∼ N (µc, σ
2
c )

log xk ∼ N (µk, σ
2
k)

(2.2.2)

• Scenario 3:
Control and KD data are normally distributed
Here we consider the case:

xc ∼ N (µc, σ
2
c )

xk ∼ N (µk, σ
2
k)

(2.2.3)

We will consider two subcases of scenarios 2 and 3, namely 2A-B and 3A-B, respectively.
For scenarios 2A and 3A, we assume that xc and xk are independent RVs, i.e. Cov(xc,xk) =
ρ = 0. On the other hand, in scenarios 2B and 3B, we consider the more general assumption
in which xc and xk are correlated, i.e. ρ 6= 0. Indeed, correlated experimental errors may be
systematically introduced due to gel and transfer inhomogeneities (Schilling et al., 2005).

The RVs xc and xk describe absolute protein amounts, which cannot be observed directly
in western blots. Instead, optical densities from secondary antibodies are measured, which
are assumed to be proportional to these amounts, with membrane and antibody specific
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Table 2.1. Distributions of the raw WB signals ỹjc and ỹjk and of the data yc and yk

normalized to the control experiment.

Scenario 1 Scenario 2 Scenario 3

ỹjc δ(αjµc) logN (logαj + µc, σ
2
c ) N (αjµc, (αjσc)

2)

ỹjk N (αjµk, (αjσk)
2) logN (logαj + µk, σ

2
k) N (αjµk, (αjσk)

2)

yc δ(1) δ(1) δ(1)

yk N
(
µk
µc
,

(
σk
µc

)2
)

logN (µk − µc, σ2
k + σ2

c − 2ρσkσc)
N (µk, σ

2
k)

N (µc, σ2
c )

constants αj for each replicate. Hence, the distributions of signals ỹjc and ỹjk that describe
the observed optical densities in each replicate j = 1, . . . J are given by:

ỹjc = αjxc,

ỹjk = αjxk.

(2.2.4)

Finally, in order to cancel out the unknown pre-factors αj, all replicates are normalized
to the control condition, which gives normalized data yc and yk as:

yc =
ỹjc
ỹjc

=
xc

xc
= 1, ∀j (2.2.5a)

yk =
ỹjk
ỹjc

=
xk

xc
= T1(xk, xc). (2.2.5b)

Equation (2.2.5b) indicates how normalization represents a transformation T1 of the
absolute noisy data in the two experimental conditions. According to our statistical
assumptions, the normalization step implies therefore a transformation of the statistical
properties of the normalized data with respect to those assumed for the raw measured data.
As highlighted in Chapter 1, in general, when applying T1, the analytical form of the

resulting distribution is unknown. In this application study instead, given the three
presented scenarios, we can easily derive the respective distributions of variables ỹjc/k and
yc/k, which are listed in Table 2.1. For scenarios 1 and 2 the distribution of yk belongs
to the same class of distributions as assumed for the original concentrations xk, namely
normal and log-normal distributions. Mean and variance are sufficient statistics for these
distributions. In scenario 3, yk is described by the ratio distribution of two normal random
variables, which is called Gaussian ratio (GR) distribution. This family of distributions
does not belong to the family of exponential distributions (for details on this class see
Gelman et al. (2004)), and can show some peculiarities that will be recapitulated in Section
2.3.
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2.2.2 Maximum Likelihood estimates

We consider the inverse problem of the inference of the parameters θ = (µk, µc, σk, σc, ρ) of
the underlying distribution pyk(yk) from a set of observations {yik}i=1,...,N , for each of the
three scenarios, see last row of Table 2.1. Our final goal is then to estimate the expectation
value E(yk) as a measure for the KD fold change. Therefore, for each assumed error model
we calculate the ML estimate θ̂ that maximizes the conditional probability pyk(yik|θ) of the
observed data yik. Assuming independence across different replicates, this reads:

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

∏N
i=1 pyk(yik|θ)

= arg min
θ∈Θ

∑N
i=1− log pyk(yik|θ).

(2.2.6)

The set Θ ⊆ RM represents a subset of the parameter space, in which the estimated
value is assumed to lie. For completeness, basic principles along with the properties of
MLE are given in Appendix 6.1.

Under some regularity conditions, the ML estimator is often a good estimator in the
sense that it is consistent, i.e. it converges in probability to the true parameters θ∗ as
the number of samples increases, θ̂ p−→ θ∗. This implies that θ̂ is asymptotically unbiased.
Furthermore, it is asymptotically normal, i.e.

√
N(θ̂ − θ∗) d−→ N (0, I(θ∗)−1) with Fisher

information matrix I(θ∗), which guarantees that it converges fast enough (with a rate
1/
√
N). And last, the MLE is asymptotically efficient, meaning that θ̂ achieves the minimum

possible variance among all unbiased estimators, or the Cramér-Rao lower bound, for large
sample sizes, making it a precise estimator. These properties of ML estimators date back
to Fisher (Fisher, 1922), and can be found in any statistics textbooks (see e.g. Gelman
et al. (2004)).

Regularity conditions for consistency are smoothness of the likelihood function, iden-
tifiability of θ̂, and existence of the mean value Eθ∗ log pyk(yk|θ). Furthermore, θ̂ must
not lie on the boundary of the defined domain Θ. In addition, for asymptotic normality
Varθ∗ log pyk(yk|θ) has to exist. If these conditions are satisfied, then the distribution of θ̂
is for large sample sizes approximately normal with a small variance.

MLE for scenario 1

For scenario 1 we have to estimate:

θ1 = (µ1, σ
2
1) :=

(
µk
µc
,

(
σk
µc

)2
)

(2.2.7)
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with

pyk(yik|θ1) =
1√

2πσ2
1

exp

[
−1

2

(
yik − µ1

σ1

)2
]
. (2.2.8)

This is a well-known problem (see e.g. Whittaker (1990)), and the solution is given by the
sample mean and variance:

µ̂1 =
1

N

N∑

i=1

yik and σ̂2
1 =

1

N

N∑

i=1

(yik − µ̂1)2. (2.2.9)

MLE for scenario 2

In scenario 2 the log-transformed data are normally distributed, and we have to estimate:

θ2 = (µ2, σ
2
2) :=

(
µk − µc, σ2

k + σ2
c − 2ρσkσc

)
(2.2.10)

with

pyk(yik|θ2) =
1√

2πσ2
2

exp

[
−1

2

(
log yik − µ2

σ2

)2
]
. (2.2.11)

Accordingly,

µ̂2 =
1

N

N∑

i=1

log yik and σ̂2
2 =

1

N

N∑

i=1

(log yik − µ̂2)2. (2.2.12)

As can be seen from the equations (2.2.7), (2.2.9) and (2.2.10), (2.2.12), the individual
original parameters θ = (µk, µc, σk, σc, ρ) are not identifiable for scenarios 1 and 2. In fact,
there exist infinite combinations of values of the original parameters µk, µc, σk, σc and ρ
corresponding to the calculated parameters µ̂1, σ̂

2
1, µ̂2 and σ̂2

2, respectively. In particular, we
are not able to distinguish between the two cases 2A (ρ = 0) and 2B (ρ 6= 0) and for this
reason we will refer in the following to scenario 2 only. Here, it should be noted that σ̂2

1 and
σ̂2

2 underestimate the variance in particular for small sample sizes. These estimates could
be corrected by multiplication with the factor N/N−1, which corresponds to an unbiased
variance estimator.

MLE for scenario 3

The parameter vector that characterizes the Gaussian ratio distribution consists of four
(scenario 3A) or five (scenario 3B) variables, respectively,

θ3 = (µk, µc, σk, σc, ρ). (2.2.13)
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The probability pyk(yik|θ3) is given as:

pyk(yik|θ3) =
b(yik)d(yik)

a3(yik)
√

2πσkσc
erf

(
b(yik)√

2
√

(1− ρ2)a(yik)

)

+

√
(1− ρ2)

a2(yik) · πσkσc
exp

(
− c

2(1− ρ2)

)
,

where the terms a(z), b(z), c, d(z) and erf(z) will be defined in equation (2.3.21), with z
equivalent to yik. In the following Section 2.3 we will present the main statistical properties
of this class of distributions. Unlike the previous two scenarios, there is no analytical
expression for the ML estimate θ̂3 in this case. The negative-log likelihood function can
therefore be minimized numerically by multi-start local optimization, which is done here
with a Latin hypercube sampling of the parameter space.

2.3 The Gaussian ratio distribution: statistical

properties, structural identifiability and

convergence properties of ML estimators

In this section we recapitulate some important properties of the Gaussian ratio distributions,
we investigate the structural identifiability of its parametrization and analyse convergence
properties of its maximum likelihood estimator by means of an in silico study.

2.3.1 Statistical properties of ratio distributions of normal

random variables

Ratio distributions z = x/y of two normal RVs x ∼ N (µX , σ
2
X) and y ∼ N (µY , σ

2
Y ) and

correlation ρ have intensively been studies in the 60’s and 70’s, see e.g. Hayya et al. (1975);
Hinkley (1969); Marsaglia (1965), with some refined work described in Marsaglia (2006). It
was shown in Marsaglia (1965, 2006) that after rescaling and translation, the distribution

of z̃ = r(z − s) equals that of t =
a+ v

b+ w
, with v,w independently standard normally

distributed and r, s, a, b defined as:

r = ± σY

σX
√

1− ρ2
s =

ρσX
σY

a = ±µX/σX − ρµY /σY√
1− ρ2

b =
µY
σY

.

(2.3.14)

The sign ’+’ or ’–’ in the equations for a and r has to be chosen equally such that a
has the same sign of b, in order to ensure that pt(t) is a proper density. In particular, we
will focus on the case in which a and b are both non-negative. In fact we want to describe
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protein concentrations with assumed positive mean values, for which reason we assume
that µY ≥ 0 and therefore b has to be non-negative.

The uncorrelated case ρ = 0 corresponds to s = 0 and the accordingly simplified equations:

r =
σY
σX

s = 0

a =
µX
σX

b =
µY
σY

.

(2.3.15)

In this case, the sign for both parameters a and r has been set to ’+’, since we assume that
µX ≥ 0.

The density of t is given by:

pt(t) =
e−

1
2

(a2+b2)

π(1 + t2)

[
1 + qe

1
2
q2
∫ q

0

e−
1
2
x2dx

]
, (2.3.16)

with
q(t) =

b+ at√
1 + t2

. (2.3.17)

The integral contained in pt(t) makes it slightly difficult to infer properties of the
distribution directly via simple analysis. However, we can recognize some properties from
equation (2.3.16). First, it can be expressed as a convex combination of the Cauchy density
function (defined as p1(t)) and another density (p2(t)), which describes always a bimodal
distribution:

pt(t) = fp1(t) + (1− f)p2(t), f = e−
1
2

(a2+b2) (2.3.18)

with

p1(t) =
1

π(1 + t2)
, p2(t) =

q
∫ q

0
e−

1
2

(x2−q2)dx

π(1 + t2)(e
1
2

(a2+b2) − 1)
. (2.3.19)

The Cauchy density p1(t) is independent of a and b, while proportions f and 1−f , as well
as p2(t), are functions of a and b. The modality of the mixture distribution pt(t) depends
then on a and b. Figure 4 of Marsaglia (2006) depicts the regions in the (a, b)-plane, where
the density function pt(t) is uni- or bimodal. In particular, from there it can be seen that,
if the signal to noise ratio µY /σY of the variable in the denominator (represented by the
parameter b) is large enough, say 10, then ã = 2.256 serves approximately as a threshold
for these two regions: pt(t) is unimodal for a < ã and bimodal otherwise, although the
second mode is often so small and quite distant from the first that it is insignificant in
practice (Marsaglia, 2006).

The Cauchy distribution and also the mixture distribution pt(t) belong to the class
of heavy tailed distributions, since their tails decay slower than exponentially. As a
consequence of this heavy-tailedness, the integrals

∫∞
−∞ t

ipt(t)dt, for some i ∈ {1, 2, . . .},
are infinite and hence moments do not exist. The degree of heavy-tailedness is determined
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by the significance of the Cauchy component p1(t) of pt(t) (Pham-Gia et al., 2006).

These facts hold also for pz(z), since t and z are linearly related. Backtransformation of
the distribution of t, via scaling and translation,

z =
1

r
t + s, (2.3.20)

gives the ratio distribution of z in terms of µX , µY , σX , σY , ρ, (see Hinkley (1969) for details):

pz(z) =
b(z)d(z)

a3(z)
√

2πσXσY
erf

(
b(z)√

2
√

(1− ρ2)a(z)

)

+

√
(1− ρ2)

a2(z) · πσXσY
exp

(
− c

2(1− ρ2)

) (2.3.21)

with

a(z) =

√
1

σ2
X

z2 +
1

σ2
Y

− 2ρz

σXσY

b(z) =
µX
σ2
X

z +
µY
σ2
Y

− ρ(µX + µY z)

σXσY

c =
µ2
X

σ2
X

+
µ2
Y

σ2
Y

− 2ρµXµY
σXσY

d(z) = exp

(
b2(z)− ca2(z)

2(1− ρ2)a2(z)

)

erf(z) =
2√
π

∫ z

0

e−u
2

du.

Heavy-tailedness has several consequences for inference. The Central Limit Theorem
does not apply and the sample mean is not necessarily a consistent estimator for the mean
of the distribution. For example, the sample mean of Cauchy-distributed RVs is Cauchy-
distributed, and hence the variance does not decrease with sample size. It has been shown
in Caginalp and Caginalp (2017) that the tails of a GR distribution decrease proportional
to x−2, with a proportionality factor that depends on the parameters of the distribution.
For some applications it is useful and reasonable to approximate a GR distribution with
a normal distribution, which is under some conditions a good approximation around the
distribution’s mode, as detailed in Díaz-Francés and Rubio (2013); Shanmugalingam (1982).

Of particular interest for this study is the assumption that the CV of y, σY /µY is small,
or, equivalently, the signal to noise ratio b = µY /σY is large and y > 0. The parameter b
determines the probability for y to be negative, py(y < 0), and plays the role of a shape
parameter of pz(z) (Díaz-Francés and Rubio, 2013). If b is large, it is reasonable to use a
normal distribution for the denominator of t that is truncated at 0 from the left. In this
case, mean and variance of t and z are well-defined (Hayya et al. (1975); Hinkley (1969);
Pham-Gia et al. (2006), see also Marsaglia (2006) for examples). Approximate formulas
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2.3 The Gaussian ratio distribution

for mean and variance are obtained by a second-order Taylor series expansion of those
quantities, leading to (Hayya et al., 1975):

E(z) ≈ Ẽ(z) =
µX
µY

+
σ2
Y µX
µ3
Y

− ρσXσY
µ2
Y

(2.3.22)

and
Var(z) ≈ Ṽar(z) =

σ2
Y µ

2
X

µ4
Y

+
σ2
X

µ2
Y

− 2ρ
σXσY µX
µ3
Y

. (2.3.23)

In the case ρ = 0 (scenario 3A) these formulas are simplified accordingly:

E(z) ≈ Ẽ(z) =
µX
µY

+
σ2
Y µX
µ3
Y

(2.3.24)

and
Var(z) ≈ Ṽar(z) =

σ2
Y µ

2
X

µ4
Y

+
σ2
X

µ2
Y

. (2.3.25)

Additionally, for not too large values of the parameter a, the distribution pt(t) itself
becomes quite similar to a normal distribution. A practical rule, described in Marsaglia
(2006), states that z can be approximated with a normal distribution if a < 2.256 and b > 4.
Similar rules of thumb can be found in Hayya et al. (1975). All those agree in the condition
that the CV of y has to be sufficiently small. We note here that the normal approximation
might even be appropriate for parameters a and b for which pt(t) falls into the bimodal
region.
The RV z, as presented in this subsection, represents then yk in scenario 3, as given in

the last column of Table 2.1, in which case the parameters µX , µY , σX , σY , ρ are equivalent
to µk, µc, σk, σc and ρ.

2.3.2 Structural non-identifiability of GR distributions

In the following, we analyse structural identifiability of the parameter vector θ3 of the
GR error model, corresponding to scenario 3. As described in the problem formulation
(Section 2.2), the final goal of our statistical investigation is to estimate the expected value
E(yk) from experimental observations, for all three scenarios, related to the fold change
estimation of knockdown experiments. In particular for scenario 3, assuming that the
conditions for the existence of mean and variance are valid, we aim to obtain an estimate
for the approximating value Ẽ(yk) of E(yk), given in equation (2.3.22). For this purpose,
we shall at first estimate the five original parameters µk, µc, σk, σc, ρ, or accordingly four in
the uncorrelated case. As already mentioned in Section 2.2, in this case, unlike scenarios 1
and 2, we do not have analytical expressions for the ML estimator. We should therefore
rely on numerical optimization to obtain an ML estimate for the full parameter vector.

From the theory, we demonstrate that the full inference problem with θ = (µX , µY , σX , σY , ρ)
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2 Statistical inference

constitutes an ill-posed inverse problem with structurally non-identifiable parameters. We
can, in fact, rewrite pz(z) as a function of the equivalent parametrization a, b, r, s, given
in the equations (2.3.14), by transformation of probability density functions. Given the
monotone relationship between the RVs z and t:

z = f(t) =
1

r
t + s,

we get:

pz(z) = pt(t)∣∣
t=f−1(z)

·
∣∣∣∣
df−1(z)

dz

∣∣∣∣ = pt(r(z − s)) · |r|

=
e−

1
2

(a2+b2)

π(1 + t2)

[
1 + qe

1
2
q2
∫ q

0

e−
1
2
x2dx

]
∣∣
t=r(z−s)

· |r| . (2.3.26)

The function q(t) is defined in equation (2.3.17). Therefore, given the formula of pt(t) (equa-
tion (2.3.16)), which is parametrized only in a and b, we obtain that pz(z) is parametrized
only in the four defined parameters a, b, r, s or, in case of ρ = 0, in the three parameters
a, b, r, as also mentioned in Díaz-Francés and Rubio (2013).

Thus, there exist infinite combinations of values for the parameters µX , µY , σX , σY , ρ
that correspond to the same values for a, b, r, s. For this reason, we will consider this
reduced parametrization for MLE. In particular, we can obtain the expressions of the set
of equivalent solutions for the parameters µX , µY , σX , σY , ρ as functions of the uniquely
determined values for a, b, r, s if we set a fixed value for one of the five parameters, for
example σX :

µX =
a+ brs√
r2s2 + 1

· σX (2.3.27)

µY =
br√

r2s2 + 1
· σX

σY =
r√

r2s2 + 1
· σX

ρ =
rs√

r2s2 + 1
.

We note that ρ is always univocally determined given the estimated values of r and s.
The other four parameters (means and standard deviations) are linearly dependent among
each other. In the uncorrelated case (scenario 3A) we have s = 0 and the formulas simplify
accordingly:

µX = a · σX (2.3.28)

µY = br · σX
σY = r · σX .
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2.3 The Gaussian ratio distribution

From the set of equations (2.3.27) we can, in particular, rewrite the equations (2.3.22)
and (2.3.23) as functions of the four identifiable parameters, thus giving the approximations
for E(z) and Var(z), which are valid for sufficiently large values of the parameter b:

Ẽ(z) =
a+ brs

br
+
a+ brs

b3r
− s

b2
(2.3.29)

Ṽar(z) =
(a+ brs)2

b4r2
+

1 + r2s2

b2r2
− 2s

a+ brs

b3r
. (2.3.30)

Again, the case ρ = 0 implies s = 0 and the formulas simplify accordingly:

Ẽ(z) =
a

br
+

a

b3r
(2.3.31)

Ṽar(z) =
a2

b4r2
+

1

b2r2
. (2.3.32)

Implication of non-identifiability for GR distributions

We want to understand the practical implication of structural non-identifiability of the GR
error model under the following two simplifying assumptions:
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Assumption 1: Control and perturbation measurements are not correlated and s∗ = 0.
In fact, this is a reasonable assumption for a proper experimental design. Although
correlated experimental errors of WB data may be systematically introduced due to gel
and transfer inhomogeneities, a reduction of correlated errors in WB experiments can be
experimentally obtained by proper randomization of sample loading (Schilling et al., 2005).

Assumption 2: In addition, we assume that the two normally distributed random
variables have the same standard deviation before normalization, resulting in r∗ = 1, which
is reasonable if measurement errors are the main source of noise.

Consequently, we then get indistinguishable GR distributions if we also keep a and b
constant. We can therefore derive that, under these specific conditions, we obtain the
same GR distribution when normalizing uncorrelated measured data by scaling the means
and standard deviations of both numerator and denominator by the same factor. In other
words, due to structural non-identifiability, we cannot distinguish between GR distributions
obtained by normalizing samples from different Gaussian distributions having fixed signal
to noise ratios (or equivalently coefficient of variation) for numerator and denominator.
These constant values are exactly the definition of a and b. This fact can be illustrated by
choosing two different sets of values for the parameters µX , σX , µY and σY which produce
the same values for a and b of the resulting GR distributions, according to equation (2.3.15)
(Figure 2.1).

=⇒

Fig. 2.1. Structural non-identifiability of θ = (µX , µY , σX , σY ). We consider two
couples of uncorrelated Gaussian RVs x1,y1 and x2,y2 defining the GR RVs z1 = x1/y1

and z2 = x2/y2. Distributions pz1(z1) and pz2(z2) are equal for example for σX1 =
σY1 = 1, σX2 = σY2 = 2, µX1 = 3, µY1 = 2, µX2 = 6 and µY2 = 4. This corresponds to
x1 ∼ N (3, 1),y1 ∼ N (2, 1) (black curves on the left) and x2 ∼ N (6, 22),y2 ∼ N (4, 22)
(blue curves on the left). Here, the signal to noise ratios of both numerator and denominator
of z1 and z2 (parameters a and b) are kept constant and both parametrizations correspond
to (a, b, r, s) = (3, 2, 1, 0) (black curve on the right).
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2.3 The Gaussian ratio distribution

2.3.3 Convergence properties of ML estimators for GR

distributions

In the first two parts of this section we discussed some of the statistical properties of GR
distributions and investigated the structural identifiability of this error model (see Equation
(2.3.26)). However, to the best of our knowledge, the inverse problem of parameter estimation
of such distributions from normalized data has not been studied so far. In Morisugu
et al. (2009), the authors introduce methodology to evaluate confidence intervals for the
estimated approximation of the mean of a GR distribution based on samples of the normally
distributed variables of numerator and denominator and corresponding sample estimates of
the means, variances and covariance. These calculations are, however, not applicable in our
context, since we lack information about the absolute values of the observed data before
normalization.

Therefore, the open question now is whether the ML estimate of the reduced parametriza-
tion θ3 = (a, b, r, s), obtained as solution of the optimization problem from a given set of
observations {zi}i=1,...,N , is reliable. In other words, we want to investigate now what are
the statistical properties of the ML estimator (e.g. unbiasedness) and how does it behave
asymptotically.

In this subsection we present an in silico Monte Carlo study in which we investigate
properties of the ML estimator for the parameters of the GR distribution from simulated
data. It is not clear whether the conditions for asymptotic convergence of the ML estimator
θ̂ are fulfilled in our setting and how the compact set Θ has to be chosen, if it exists
at all. Moreover, θ̂ is not available in analytic form, and we do not know the degree of
heavy-tailedness beforehand, which may also cause problems for the estimation of the
mean fold change, and probably also for the distribution parameters. Thus, we decided to
investigate properties of the ML estimator computationally via simulations. Therefore, we
approximated the distribution of the ML estimator via calculating estimators for a large
amount (n = 10,000) of simulated data sets. This was done by numerically minimizing the
neg-log likelihood function. Different sizes N = 10, 100, 1000 of the data set {zi}i=1,...,N are
used to visually investigate asymptotic properties of the estimator.

We simulated a KD experiment by using the following parameter values for the two
Gaussian distributions x and y, defining the GR z = x/y:

µ∗X = 18 σ∗X = σ∗Y = 4 µ∗Y = 32 ρ∗ = 0,

where we assume uncorrelated measurements and the same standard deviations for KD and
control conditions, as described before. This parametrization corresponds to (a∗, b∗, r∗, s∗) =

(4.5, 8, 1, 0) with Ẽ(z) = 0.57. Approximations Ẽ(z) and Ṽar(z) for mean and variance are
valid for this parameter set and estimates ̂̃E(z) and ̂̃Var(z) are calculated by inserting â, b̂, r̂
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2 Statistical inference

Fig. 2.2. GR distribution describing the statistics of a KD experimental sce-
nario used for the Monte Carlo study. The parameters characterizing the distribution
are a∗ = 4.5, b∗ = 8, r∗ = 1 and s∗ = 0. The vertical dashed line represents the approxima-
tion of the expected value of the distribution Ẽ(z) (equation (2.3.29)).

and ŝ into equations (2.3.29) and (2.3.30), i.e.

̂̃E(z) = EMLE =
â+ b̂r̂ŝ

b̂r̂
+
â+ b̂r̂ŝ

b̂3r̂
− ŝ

b̂2
=

â

b̂r̂

(
1 +

1

b̂2

)
+ ŝ (2.3.33)

and
̂̃Var(z) =

(â+ b̂r̂ŝ)2

b̂4r̂2
+

1 + r̂2ŝ2

b̂2r̂2
− 2ŝ

â+ b̂r̂ŝ

b̂3r̂
. (2.3.34)

The GR pdf of the Monte Carlo study is represented in Figure 2.2. Of note is that this
distribution is bimodal (because a∗ > 2.256), but the second mode can be neglected.

Our assumptions r∗ = 1 and s∗ = 0 were included as prior information into the estimation
procedure. 2D scatter plots and 1D marginals are shown in Figure 2.3. Different N are
indicated by different color shadings. Axes ranges correspond to boundaries that have
been set for the optimization. The asymptotic theory seems to apply here, as the estimate
appears to be consistent: For large N the distribution mass concentrates about the true
parameter value. Moreover, scatter plots could approximately be described by bivariate
normal distributions. The parameters â and b̂ are strongly positively correlated, but EMLE

can relatively accurately be estimated already for N = 10 data points.

Next we pose the question whether estimation is still possible if our assumptions are not
used a priori. This was investigated by including first the parameter r in the optimization
problem, and in a second step additionally also the parameter s.

Respective 2D scatter plots and 1D marginals are shown in Figure 2.4. For N = 10

boundary effects for the chosen optimization range appear for the parameters â, b̂ and,
to a small extend, also r̂. The effect is much smaller but still present for N = 100. The
estimator converges much slower but seems to be in the asymptotic limit for N = 1,000.
Compared to Figure 2.3, correlations have changed. We can see a strong positive correlation
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2.3 The Gaussian ratio distribution

between â and r̂, while â and b̂ are negatively correlated. Furthermore, the product b̂r̂
could be approximated by a constant. We observe no significant changes in the distribution
of EMLE.

Finally, Figure 2.5 shows 2D scatter plots and marginal distributions when the full set of
parameters is estimated. For N = 10 some of the estimates accumulate at the boundaries,
which is the case for all four parameters â, b̂, r̂ and ŝ and most pronounced for the parameter
r̂, which accumulates at the lower and the upper boundaries. For N = 100 these boundary
effects decrease, but are still present for the parameters â and b̂ at the upper boundary.
Only for N = 1,000 the boundary effects have completely vanished, and the estimates start
concentrating at the correct values. However, also in this case the distributions are far from
being approximately normal. Distributions of â and ŝ are bimodal, which is in fact often
caused by boundary effects and correlation between parameters. In particular, while the
first mode of the distribution of â appears at a∗, the second mode is located at a quite high
value. The parameters b̂ and r̂ show long tails to the right. Moreover, all four parameters
seem to be correlated, â and b̂ positively, while â and ŝ as well as b̂ and ŝ negatively, and
the products b̂r̂ and r̂ŝ appear to be constant. Another peculiarity of these samples is the
symmetry with respect to the sign of r̂ and ŝ, which appears for N = 10 and N = 100

and which is broken for N = 1,000. Only the estimated expectation value EMLE is well
identifiable and in the asymptotic limit.
Despite the large differences in uncertainties of the distributions for the parameters of

the GR distribution in the three different settings, the interquartile range of EMLE is very
similar in all three settings (Figure 2.6a-c). The three scenarios only differ in the number
and spread of the outliers. As a comparison, we have also plotted the distributions of the
sample means (Figure 2.6d),

Êsm(z) =
1

N

N∑

i=1

zi, (2.3.35)

whose uncertainty decreases with increasing sample size and looks similar to Figure 2.6a,
indicating that the degree of heavy-tailedness is much smaller than that of the Cauchy
distribution. This is also supported by the interquartile ranges, which are IQR|N=10 =
0.0629, IQR|N=100 = 0.0198 and IQR|N=1000 = 0.0064 and thus decrease almost with 1/

√
N.

Figure 2.7 shows the n = 10,000 inferred pdfs in the case of estimating the full parametriza-
tion from N = 1,000 data points. The still high variances in the distribution parameters
are partly reflected in the percentiles of the pdf, especially about the distribution peak.

29



2 Statistical inference

F
ig.2.5.

E
ff
ects

ofin
creasin

g
size

ofth
e
d
ata

set
N

on
th
e
d
istrib

u
tion

ofth
e
M
L
estim

ates
ofth

e
G
R
p
aram

etrization
.

2D
scatter

plots
and

1D
m
arginaldistributions

ofthe
param

eters
â
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Fig. 2.6. Effects of increasing size of the data set N on estimates of the ex-
pectation value. Boxplots of EMLE for the three estimation settings: (a) Estimation
of a and b only (s∗ = 0, r∗ = 1), (b) estimation of a, b and r, (c) estimation of the full
parametrization a, b, r and s. (d) Boxplots of the sample mean Êsm(z) obtained from N
i.i.d. samples.

Fig. 2.7. Percentiles of estimated pdfs for the full parametrization with
N = 1,000. Pdfs pz(z) from the in silico study inferred with ML estimation and the full
parametrization.

31
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Table 2.2. Experimental silencing dataset of WB measurements normalized to the control
experiment, taken from Santos et al. (2007).

Stimulus Raf MEK ERK

EGF {0.596, 0.599, 0.411, 0.411} {0.567, 0.398, 0.778, 0.778} {0.440, 0.417, 0.846, 0.274}

NGF5 {0.534, 0.584, 0.544, 0.590} {0.615, 0.643, 0.757, 1.024} {0.375, 0.621, 0.723, 0.409}

NGF15 {0.489, 0.254, 0.670, 0.412} {0.393, 1.257, 0.622, 0.953} {0.474, 0.092, 0.234, 0.620}

In summary, convergence properties of the parameters a, b, r and s of the ratio distribution
are very different in all three scenarios. In particular, the asymptotic limit is still not
reached for the full parametrization even with N = 1,000 data points, and a considerable
uncertainty is also left in the inferred pdf. In contrast, a robust estimation of the mean of the
distribution was possible in all scenarios, with surprisingly similar interquartile ranges. For
practical applications we therefore recommend to work with the simplifying assumptions, if
they are reasonable, and to set large boundaries for parameter estimation to avoid spurious
results caused by boundary effects. Estimation of the mean value seems possible with few
data points only and can either be estimated with the estimated distribution parameters or
just by using the sample mean.
In the following section we want to apply our theoretical findings on a real case study

with measured data of a KD experiment and compare the three statistical error models
corresponding to the three statistical scenarios presented in the problem formulation.

2.4 Error model selection partially affects the calibrated

statistical distributions

In this section we apply our methodology to a real dataset of KD experiments taken from
Santos et al. (2007). In the following, all biochemical components will be introduced by
means of their acronyms, due to long full names. Please refer to the Notation chapter
at the beginning of the thesis for the complete list. The considered study analyses the
MAPK signalling pathway in PC12 cell lines. We focus in particular on the silencing
experiments, in which the three main proteins of the cascade, Raf, MEK and ERK, were
subsequently silenced and concentration fold changes were quantified in each of these
silencing experiments after stimulation with EGF and NGF, respectively. The data set
comprises 36 measured fold changes in total, listed in Table 2.2.
In particular, we compare fold change estimation by considering the three investigated

statistical scenarios (presented in section 2.2.1 and summarized in Table 2.1) and apply
MLE to all three error models. As argued in the previous section, for the GR error model
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Table 2.3. Estimator Ê(yk) of the expected value for yk for all error model variants.

Scenario 1 Scenario 2 Scenario 3A

Ê(yk)(θ̂) µ̂1 eµ̂2+σ̂2
2/2

â

b̂r̂
+

â

b̂3r̂

Raf EGF 0.5044 0.5044 0.5044

MEK EGF 0.6305 0.6318 0.6316

ERK EGF 0.4941 0.4925 0.4886

Raf NGF5 0.5629 0.5629 0.5629

MEK NGF5 0.7599 0.7593 0.7579

ERK NGF5 0.5318 0.5319 0.5314

Raf NGF15 0.4562 0.4576 0.456

MEK NGF15 0.8065 0.8107 0.8043

ERK NGF15 0.3551 0.3704 0.355

we will focus only on the uncorrelated case, assuming s∗ = 0 and r∗ = 1, focusing therefore
only on scenario 3A.
As described in section 2.2.2, while the ML estimator θ̂ is analytically given for the

normal and log-normal error models (equations (2.2.9) and (2.2.12)), it was obtained via
numerical optimization of the likelihood function in the GR case, given in equation (2.3.26).

Resulting ML estimates for the respective distributions pyk(yk) are shown in Figure 2.8.
It can be seen that all scenarios lead to nearly identical distributions in cases with small
variance across replicates, as it is for example the case for Raf in the NGF experiment
at t∗ = 5 min (first column, second row in Figure 2.8 and consistently in Table 2.2). If
the data, however, show larger variance, the distributions of the different scenarios differ
slightly more evidently. In these cases it can be seen that the inferred GR distributions lie
between the normal and the log-normal distributions.

Estimates for E(yk) can also be extracted from the ML estimators, as listed in Table 2.3.
In particular, we recall the fact that the ML estimator of the mean for the normal error
model µ̂1 coincides with the sample mean (equations (2.3.35)). All estimated expected
values are reasonable and we obtain almost the same value for all three scenarios. The
conditions for the approximation (2.3.29) are fullfilled for scenario 3A, since estimated b̂
values are sufficiently large (see Table 2.4, where all MLE values θ̂ are collected).
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Table 2.4. Full set of estimated parameters for the MAPK application study for all error
model variants.

Scenario 1 Scenario 2 Scenario 3A

µ̂1 σ̂1 µ̂2 σ̂2 â b̂

Raf EGF 0.5044 0.0934 -0.7018 0.1873 6.0237 12.0257

MEK EGF 0.6305 0.1593 -0.4973 0.2763 4.5069 7.2709

ERK EGF 0.4941 0.2129 -0.7898 0.4037 2.7183 5.7324

Raf NGF5 0.5629 0.0240 -0.5756 0.0428 26.8655 47.7490

MEK NGF5 0.7599 0.1616 -0.2954 0.1999 6.2147 8.3180

ERK NGF5 0.5318 0.1450 -0.6692 0.2754 4.1522 7.9378

Raf NGF15 0.4562 0.1498 -0.8435 0.3512 3.3408 7.4574

MEK NGF15 0.8065 0.3275 -0.3066 0.4398 3.0641 4.0426

ERK NGF15 0.3551 0.2050 -1.2649 0.7373 1.8126 5.2884

The only case which is at the limit (b̂ slightly larger than 4) refers to the MEK data set
for NGF15 stimulation (third row, second column in Figure 2.8 and eighth row in Table 2.4),
which is in fact the data set showing the largest uncertainty. Estimates for Var(yk) can be
extracted from the ML estimators as well (see Table 2.5), resulting in very similar values
among the three error models.
Summarizing, inference with the GR distribution under the two considered simplifying

assumptions gives very similar results as the simpler normal model in terms of estimated
means and variances and inferred distributions. This indicates that we are in the regime in
which the GR distribution can well be approximated with a normal distribution. Further-
more, the results obtained with this real case study indicate that the three considered error
models, under plausible simplifying assumptions, can be fairly compared among each other
as suitable description of normalized WB data. This is in accordance with other studies
which argue that, under some conditions, GR distributions can be approximated by normal
or log-normal distributions (Díaz-Francés and Rubio, 2013; Shanmugalingam, 1982).

35
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Table 2.5. Estimator V̂ar(yk) of the variance for yk for all error model variants.

Scenario 1 Scenario 2 Scenario 3A

V̂ar(yk)(θ̂) σ̂2
1 e2µ̂2+σ̂2

2

(
eσ̂

2
2 − 1

) â2

b̂4r̂2
+

1

b̂2r̂2

Raf EGF 0.0087 0.0091 0.0086

MEK EGF 0.0254 0.0317 0.0262

ERK EGF 0.0453 0.0429 0.0373

Raf NGF5 0.0006 0.0006 0.0006

MEK NGF5 0.0261 0.0235 0.0225

ERK NGF5 0.0210 0.0223 0.0202

Raf NGF15 0.0224 0.0275 0.0216

MEK NGF15 0.1072 0.1402 0.0963

ERK NGF15 0.0420 0.0991 0.0400

2.5 Summary and discussion

In this chapter we analysed different error models for WB data and compared their effect
on parameter estimation of the stochastic models underlying relative data generation. We
illustrated results on an exemplary case study, in which WB data were used to infer the fold
change between the amount of a protein in a knockdown experiment versus the untreated
control case. We employed MLE to predict the expected value of such fold change by
considering different assumptions on the distribution of the optical densities. Since WB
data provide only relative information about protein amounts, data have to be preprocessed
and in particular normalized in an appropriate way in order to enable comparison across
replicates. As a consequence of the considered transformation T1 of the data, normalized
data are described by ratio distributions that depend on the assumed distribution for the
unnormalized optical densities. Here we considered normal and log-normal distributions,
following the assumptions of e.g. Möller et al. (2014) and Kreutz et al. (2007), respectively.
The ratio of two log-normal distributions is again log-normal, which considerably simplifies
the subsequent analysis. Instead, the inference problem related to the distribution arising
from the ratio of two normally distributed RVs is not straightforward. We discussed some of
the properties of these ratio distributions and provided plausible approximations that can be
used for practical applications. We also dealt with the problem of structural identifiability
for the class of GR distributions and presented an in silico Monte Carlo study to calibrate
parameters of a GR distribution to i.i.d. samples and to analyse convergence properties
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of the ML estimator with increasing sample size. Estimated parameters were also used to
approximate the mean of the distribution, which was compared to the sample mean.

Based on only few replicates, for WB experiments typically two to four, it is usually
not possible to decide on the type of underlying distribution. There are good arguments
in favour of log-normal distributions (Kreutz et al., 2007), but on the other hand many
standard tests are implicitly based on the normal distribution (Möller et al., 2014). From
our results we could learn that, under plausible simplifying assumptions, which make the
estimation problem for the GR distribution much more well-posed, the three considered
error models can be fairly compared among each other as suitable description of normalized
WB data.

We are aware that western blotting is a semi-quantitative method and that a small dataset
does probably not contain the information required to select between our hypothetical
scenarios. Nevertheless, WB data are more and more frequently used for the calibration of
quantitative models, like ODE models, and in this context the selection of an appropriate
error model is a necessary step, which is required for the inference problem. In this respect,
our study shows that this decision also matters when it comes to parameter estimation of
probability density functions. Our results, in fact, demonstrate that the choice of the error
model affects the statistical properties of the inferred parameter distributions. According
to our statistical framework, the estimated solution θ̂, obtained via MLE from a set of
observations {yik}i=1,...,N (see Equation (2.2.6)), represents one sample of an underlying
statistical distribution as well, whose mathematical formulation is obtained as a non-linear
transformation of the distribution of the relative data:

θ̂ = T2(yk),

and therefore depends on the error model assumption. In the first two scenarios, the
distributions of the estimated parameters θ̂1 and θ̂2 (see Equations (2.2.7) and (2.2.10))
are known from theory. In particular, given the estimators (2.2.9) and (2.2.12), the mean
parameters µ̂1 and µ̂2 are samples from a normal distribution, while σ̂2

1 and σ̂2
2 from a X 2

(chi-squared) distribution. This is not the case for θ̂3, for which we do not have a defined
analytical form. By means of the in silico Monte Carlo analysis presented in subsection
2.3.3, we analysed some effects of T1 and T2 on θ̂ in the context of statistical inference for
GR error models from relative data. Estimation results of this simulation study show that
different restricting assumptions on the underlying GR distribution have profound impact
on the uncertainty of the inferred parameters. In the following two chapters 3 and 4, we will
present the analysis on the effects of the second transformation T2 on inferred parameters
from relative data in the context of two different kinds of inference problems, namely
dynamical model calibration of biochemical reaction networks and network reconstruction.
This is an important information because, as consequence, the choice of the error model
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has also an influence on variance estimation for any other model output as well, e.g. model
predictions. This is the case for example of the inferred expected values for the KD fold
change Ê(yk) considered in this chapter. Besides this, error models also impact the numerics
and well-posedness of the optimization problem. Taken together, the choice of the error
model influences statistical inference and model calibration, especially under the most usual
circumstance of large variances across replicates.

For dynamical model calibration we see several challenges that are due to normalization.
First, relative information about protein amounts can in some cases be much less informative
compared to knowledge about absolute concentrations. This problem can be faced by
appropriate rescaling of the model variables for a model-data comparison. However, there is
no guarantee to get rid of all non-identifiabilities that are due to this relative information only.
Furthermore, using GR distributions in a larger and more complex modelling framework
may easily become prohibitive, since it complicates the evaluation of the likelihood function.
In particular, the more general assumption of correlated samples at different experimental
conditions (considered in scenario 3B) implies non-zero correlation coefficients ρ among
samples of data at different conditions and the corresponding reference value and requires
the estimation of the complete parametrization represented by the set of four unknown
parameters. This may become computationally too complex to solve, already in the case of
a relatively simple model to be calibrated with a sufficient amount of experimental data. In
this respect, we maintain that the simpler assumption of “ideally” uncorrelated distributions
(scenario 3A) is sufficient for dynamical models calibration studies. This approximation is
supported by our investigation results, showing a consistent improvement of the estimation
results, when fixing the value of the parameter s to 0, see Figures 2.3, 2.4 and 2.5. In
this respect, experimental randomization of sample loading, suggested in Schilling et al.
(2005), helps towards reduction of correlated errors, supporting our argumentation of not
considering scenario 3B for dynamical model calibration purposes.
Nevertheless, from a theoretical point of view, it would be interesting and useful to

deeper investigate the reasons behind the large uncertainty of the estimate of the complete
parametrization of the GR error model. Possible reasons could be the larger flexibility in
its shape and the heavy-tailedness of such distribution, leading to a larger probability of
the presence of outliers in the dataset.

In summary, relative data and data normalization pose a challenge for model calibration,
and the development of appropriate methods is important for quantitative predictive
models when using these data. Till now this avenue of research related to the impact
of data normalization on model calibration has been partially unexplored and therefore
requires future investigations. In particular, we started analysing the effects of different
normalization strategies for WB data and different assumptions of statistical error models
on results of dynamical model calibration, by means of a simple test-bed ODE model. The
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results of our investigations are presented in the following Chapter 3.
Overall, we believe that the statistical characterization of experimental measurements

is an important part towards the quantitative description of intracellular processes, in
particular concerning the estimation of uncertainty and credibility intervals for any model
prediction.
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3 Normalization, experimental design
and error model choice affect
dynamical model calibration of
biochemical reaction networks

In this chapter we continue the statistical analysis presented in Chapter 2 and present a
statistical framework to investigate noise propagation from concentration measurements to
inferred parameters in the context of dynamic modelling of biochemical reaction networks.
We design an in silico study where the unknown kinetic rate constants of an ODE model
for a reversible phosphorylation reaction are estimated from WB time series data. By
assuming realistic noise levels for the raw measured data, we investigate the effects of
alternative normalization strategies as well as the effects of different error models on the
results of dynamical model calibration via MLE. Based on Monte Carlo simulation results,
we analyse the uncertainty of the ML estimators for increasing size of the experimental
dataset and we derive that a sufficiently large amount of data is necessary to obtain reliable
estimates of the model parameters. We also analyse how finite-size and boundary effects
may lead to counterintuitive results and erroneous conclusions on the quality of the inferred
solution. Based on statistical model comparison, we conclude that normalization by the
mean outperforms normalization by a fixed time point. The choice of the error model
does not seem to have a significant impact on model calibration results when considering a
proper rescaling of model variables for a model-data comparison and including simultaneous
estimation of error variances.

Some concepts and results presented in this chapter arose from the personal communica-
tion with Professor Jens Timmer and are explicitly pointed out in the text.

Parts of the content of this chapter are taken from Thomaseth and Radde (2021).
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3 Dynamical model calibration of biochemical reaction networks

3.1 Introduction

In Chapter 2 we have seen how the choice of the error model has a profound impact on
state estimation and on identifiability of the inferred parameters that characterize the
chosen statistical distribution. In particular, we investigated the practical identifiability of
the parametrization of the Gaussian ratio statistical model via a Monte Carlo study, and
obtained that we should avoid the correlated case for parameter estimation.
As a meaningful continuation, Chapter 3 addresses the impact of a combined choice of

the error model for normalized data and of the experimental design on the uncertainty
properties of inferred parameters by considering as particular application problem the
estimation of kinetic parameters characterizing dynamical models for biochemical pathways.
It is well known that ODEs are one of the most standard formalisms to model the

dynamics of biochemical cellular processes in a deterministic and quantitative way. Under
certain assumptions, ODE based modelling captures the average behaviour of a cell in a
population. The main limitation of such mathematical modelling approach is that it can
only provide an approximation to reality due to the high complexity of biological processes.
Therefore, the main aim is to capture only the most relevant key players of the process
in consideration, in order to virtually reproduce such a system under new experimental
conditions and correctly predict its behaviour under uninvestigated scenarios.
The process of translating biochemical molecular interactions into a set of ordinary

differential equations is not a trivial task, but nevertheless it follows well-established
modelling tools, like the law of mass action, the Michaelis-Menten model for enzyme
kinetics or the Hill equation for cooperativity effects (Alon, 2006; Murray, 2002). One
of the main problems in this framework is the presence of unknown parameters in the
derived kinetic equations. Since these values cannot be measured experimentally, this
problem relates to the challenge of parameter estimation from noisy experimental data
(Degasperi et al., 2017; Raue et al., 2013). Following the increase in size and complexity
of the investigated mathematical models, many difficulties arise due to experimental and
computational limitations. We refer to Fröhlich et al. (2019) for an “overview of the
state-of-the-art methods for parameter and model inference” for large-scale models.

Either for large or small-scale models, most common techniques for ODE model calibration
are statistical approaches that incorporate information about the stochastic nature of
experimental data and formulate an optimization problem, whose optimal solution is the
one that minimizes the error between measured data and model simulated values.
Mostly, researchers apply the MLE method, that consists in the definition of the likelihood
function, based on a specific assumption on the distribution of the noisy data. The estimated
parameter represents then the optimal value which maximizes the likelihood function, i.e.
the statistical distribution of the observed data. Several studies investigate the performance
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of different computation strategies and optimization algorithms for MLE (Degasperi et al.,
2017; Hass et al., 2019; Raue et al., 2013).

As described in Chapter 2, there are different options to characterize the statistical
properties of the process underlying noisy data generation. In particular, in this thesis we
focus on the usage of WB data, also described in Chapter 2. For this class of experimental
data, the most common assumptions on biological and experimental noise sources consist
in either additive normally distributed variability (see e.g. Degasperi et al. (2017); Fröhlich
et al. (2019); Hass et al. (2019)), or multiplicative log-normally distributed noise sources
(Kreutz et al., 2007; Raue et al., 2013).

Furthermore, when working with WB data, normalization is a necessary post-processing
transformation step of the measured data, in order to enable comparison across different
replicates. Different normalization strategies are considered in practical problems (Degasperi
et al., 2014). The different normalization options lead to different datasets used for parameter
estimation and have to be accordingly related to model simulations in different ways, as it
will be described in more detail in Section 3.2.3.

It is clear at this point, that the choice of the error model (EM), i.e. the assumed
statistical distribution of the measured data, and the choice of the normalization strategy
(NS) may impact the estimated solution of model parameters. Indeed they modify the
mathematical definition of the cost function (i.e. the likelihood) for the optimization problem.
Despite the extensive literature concerning ODE models calibrated from noisy WB data, a
systematic study on the combined effects of different normalization strategies and statistical
error models on the results of parameter estimation with MLE is still missing.
The goal of this chapter, in line with the central idea of this doctoral thesis, is to

analyse how noise propagates from input data to estimated output variables and to derive
a statistical framework for uncertainty analysis in the particular context of dynamical
model calibration with MLE. By means of an in silico study, we quantify the impact of
experimental and computational strategies on parameter estimates and derive practical
advices for experimentalists and modellers for an optimal model calibration workflow. In
particular, we investigate:

1. the effects of increasing the number of time points and/or the number of replicates
on the improvement of accuracy and precision of the inference results;

2. the impact of the chosen NS on the uncertainty of the estimation results;

3. the subsequent effects of different assumptions on the statistical distribution of the
measured data, leading to different cost functions for the optimization problem;

4. the robustness to different noise levels in a general experimental setup.
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To compare comprehensively all experimental and computational combinations, we make
use of the well-known BIC for statistical model comparison (see Appendix 6.2). Results,
obtained through a simple test-bed model of a reversible phosphorylation reaction, show
that we need to measure a sufficiently large amount of data to obtain reliable estimates of
the model parameters. The choice of the EM does not lead to evident differences in the
quality of the estimation results, while it does when considering the computational cost.
Finally, normalization to the mean of all measured values outperforms normalization to a
single point.

3.2 Problem formulation

As mentioned in the introductory section, in this chapter we consider computational studies
in which cellular molecular interaction systems are described by means of ODE models.
We refer therefore to dynamical models of the form:

ẋ(t, θ) = f(x(t), θ), (3.2.1)

with state variables x = (x1, . . . , xN) ∈ RN
+ , describing the time-varying absolute protein

concentrations of the considered system, and unknown kinetic parameters θ = (θ1, . . . , θM ) ∈
RM

+ . In dynamic modelling the goal is to use the available set of experimental data
to estimate the unknown kinetic parameters θ of the considered dynamic model (3.2.1).
Therefore, associated to the ODE model, we introducemodel outputs (also called observables)
to describe the measurable quantities, whose simulated values will then be compared with
the measured data in the optimization problem for parameter estimation. We define the
output variables:

z(t, θ) = h(x(t), θ), (3.2.2)

with z = (z1, . . . , zQ) ∈ RQ
+, where Q ≤ N , since in general not all states (proteins) of the

investigated system are accessible experimentally (Degasperi et al., 2017; Raue et al., 2013).
The vector field f and the function h are in general non-linear continuous functions of x
and θ. To guarantee existence and uniqueness of the solution x(t, θ, x0) of (3.2.1) for a
specific initial condition x0 = x(t0) ∈ RN

+ , t0 ∈ R+, it is sufficient to assume f ∈ C1.
In our in silico study we assume that there exists a “true” noise-free dynamical model

describing the biological process under investigation. This hypothesis is equivalent to
assuming that there exists a “true” parameter value θ0 ∈ RM

+ , for which the correspond-
ing model ẋ(t) = f(x(t), θ0) produces the noise-free protein concentrations x(t, θ0) =

(x1(t, θ0), . . . , xN(t, θ0)).
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According to our statistical framework, time series data of protein concentrations are
described by random variables x̃i(tk), i = 1, . . . , N, k = 1, . . . , K, whose distribution is a
function of the simulated noise-free state variables xi(tk, θ0). To simulate noisy data, we
use a realistic mixed error model consisting of a multiplicative and an independent additive
part, similar to that suggested in Kreutz et al. (2007),

x̃i(tk) = xi(tk, θ0)·η+ε, η ∼ logN (0, σ2
η), ε ∼ N (0, σ2

ε ), i ∈ {1, . . . , N}, k ∈ {1, . . . , K}.
(3.2.3)

For the standard deviations (SDs) of the proportional log-normally distributed error
component (ση) and of the normally distributed additive part (σε) we assume realistic
experimental values (Schilling et al., 2005). In our in silico study, realizations of the
resulting random variable x̃i(tk) represent the simulated noisy absolute data.

According to the WB experimental setup, the quantified optical densities measuring
protein concentrations represent a scaled version of the absolute values, with unknown
scaling factors αj specific for each replicate j of the experiment, corresponding to one blot.
In our simulation framework, this is equivalent to defining quantified optical densities as
scaled versions of the noisy absolute data:

ỹji (tk) = αjx̃i(tk), i ∈ {1, . . . , N}, k ∈ {1, . . . , K}, j ∈ {1, . . . , J}. (3.2.4)

To enable comparison across several technical replicates j = 1, . . . , J , post-processing
normalization of the measured protein concentrations is required, as described in Chapter 2.
Different normalization strategies are used in practical applications (Degasperi et al., 2014).
In Section 3.2.2 we will describe in detail three normalization strategies considered in this
chapter. Independently from the chosen strategy, we can define the obtained normalized
dataset as a transformation T1 of the original dataset (3.2.4):

yi,NS(tk) = T1(ỹji (tk)), i ∈ {1, . . . , N}, k ∈ {1, . . . , K}, j ∈ {1, . . . , J}. (3.2.5)

The function T1 is a non-linear transformation of the time series data, leading in general
to a different distribution of normalized data yi,NS(tk), with respect to the original measured
experimental data. In our in silico study, depending on the chosen NS, which defines the
function T1, the correct distribution pyi,NS(tk)(yi,NS(tk)) is obtained by transformation of
the mixed error model (3.2.3), but its expression cannot be analytically derived.

The obtained normalized dataset (3.2.5) is finally used for the parameter estimation
problem. This requires the assumption of a statistical EM. As we just mentioned, for
the inference problem we cannot use the true underlying error model pyi,NS(tk)(yi,NS(tk))

generating the normalized dataset (3.2.5) (i.e. the “gold standard”), because we do not
know its analytical expression 1. We need therefore to assume an alternative statistical

1This clarification arose after the personal communication with Professor Jens Timmer.
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EM, which in general is always an approximation of the real distribution of the considered
dataset. In particular, the chosen EM relates the experimental data with the model outputs
(3.2.2), assuming that the measurements are a noisy version of the simulated values, and
therefore defines a function of the unknown model parameters:

pEM
yi,NS(tk)(yi,NS(tk)|θ), i ∈ {1, . . . , N}, k ∈ {1, . . . , K}.

Using the two common assumptions of normally or log-normally distributed WB raw
data (see Chapter 2), we consider three classes of EMs for the normalized dataset, which
will be described in detail in Section 3.2.3. In particular, as presented in Chapter 2, we
refer to normal, log-normal or Gaussian ratio distributions. Given a set of realizations
yi,NS(tk), i ∈ {1, . . . , N}, k ∈ {1, . . . , K}, the inference problem using the MLE method,
under the assumption that the parametrization contains the true model, involves an
optimization problem, whose solution is defined as:

θ̂MLE = arg max
θ
L(θ)

= arg max
θ

∏

k=1,...,K
i=1,...,N

pEM
yi,NS(tk)(yi,NS(tk)|θ). (3.2.6)

In this stochastic scenario, if we repeat the whole measurement process, due to noise we
would then obtain a different dataset {yi,NS(tk)} i=1,...,N

k=1,...,K
, given by the realizations of the

statistical processes yi,NS(tk), and subsequently a different ML estimate θ̂MLE. In analogy
to Chapter 2, we can therefore interpret the solution of the optimization problem (3.2.6) as
a random variable too, whose distribution is obtained through a non-linear transformation
T2 of the normalized dataset (3.2.5):

θ̂MLE = T2(yi,NS(tk)). (3.2.7)

The function T2 depends on the chosen combination of the NS and EM. In our in
silico study, the distribution of (3.2.7) is actually obtained as the concatenation of the
two non-linear transformations T1 and T2 of the mixed error model of the noisy protein
concentrations (3.2.3), whose mathematical expression cannot be derived analytically. We
apply therefore a Monte Carlo approach in which we generate experimental data by means
of the error model (3.2.3), and then propagate the noise via the transformations T1 and T2.

The utmost goal of this study consists in analysing the final distribution of the estimated
parameters θ̂MLE, considering the effects of different transformation functions T1 and T2. As
it was graphically described in Figure 1.3 in the Introduction of this thesis, noise propagates
in a non-linear manner from input noisy data ỹji (tk) to output inferred parameters θ̂MLE.
How the different probability density functions transform over the inference process depends
on many factors, consisting in several features of the experimental and computational
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designs. Furthermore, we also want to test the robustness of our results and therefore we
analyse the effects on noise propagation for different noise levels of the experimental data,
by varying the values of the SDs ση and σε in the mixed error model (3.2.3).

3.2.1 Test-bed model for a reversible phosphorylation reaction

For the study presented in this chapter we decided to consider a simple test-bed dynamical
model, in order to understand the basic effects of experimental and computational factors
on noise propagation for dynamical model calibration. This first investigation may even-
tually serve as starting point for later studies on more complex systems. We consider a
reversible phosphorylation reaction, represented in Figure 3.1, in which a protein p can be
phosphorylated into p∗.

k1
p p∗

k2

Fig. 3.1. Reversible phosphorylation reaction. A protein p can be phosphorylated
into p∗, with reaction rate constants k1 and k2.

We assume a closed system, absence of degradation effects, and conservation of the total
amount of phosphorylated and unphosphorylated proteins. By defining the state variable
x(t) ∈ R+ as the phosphorylated amount with respect to the total protein concentration:

x(t) =
p∗(t)

pTOT
=

p∗(t)

p(t) + p∗(t)
, (3.2.8)

we obtain the following ODE describing the dynamic of x(t) (for the derivation see Appendix
6.3):

ẋ(t) = k1 − (k1 + k2)x(t). (3.2.9)

In this particular case we obtain a linear ODE model, where the two parameters k1, k2

represent the two unknown reaction rate constants to be estimated, i.e. in this case we have
θ = (k1, k2).
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For a given initial condition of the state variable x(t0 = 0) = x0, we can derive the
analytical solution of the differential equation (3.2.9):

x(t) =
k1

k1 + k2

[
1− e−(k1+k2)t

]
+ x0e

−(k1+k2)t. (3.2.10)

As described in the previous section, we make the hypothesis that a “true” parameter value
θ0 of the ODE model exists, whose corresponding solution x(t, θ0) represents the noise-free
phosporylated protein concentration over time. The initial condition x0 is also assumed to
be known, so that we can generate a set of noisy measurements {x̃(tk)}k=1,...,K , tk > 0,∀k, by
means of the mixed error model (3.2.3) with realistic noise settings. For one set of normalized
data {yNS(tk)}k=1,...,K , the obtained estimated parameters are θ̂MLE = (k̂1,MLE, k̂2,MLE).

As analysed in the study thesis Wang (2018), we need to ensure that x0 6= 0 to avoid the
problem of parameter non-identifiability.

3.2.2 Normalization strategies of WB time series data

In dynamic modelling it is common to work with time series data, that means a set of
measurements of the investigated variables over time. The values collected for one run of
the experiment can be compared with other replicates only after normalization.
In this thesis, we consider three different normalization strategies for time series data,

which are commonly used in Systems Biology studies (Degasperi et al., 2017), similar to
those presented in Degasperi et al. (2014). The first two strategies belong to the category
of normalization by fixed point, while the third strategy is analogous to the category
of normalization by sum. These two categories are well represented in Figure 1A-B of
Degasperi et al. (2014), which we report in Figure 3.2 for convenience.
Let us consider a set of noisy data of one measured quantity ỹj(tk), j = 1, . . . , J,

k = 1, . . . , K. Since our case study is restricted to an ODE model with one single
state variable (i.e N = 1), from now on we do not consider the index i ∈ {1, . . . , N}
anymore, like we did in Equation (3.2.4). The index j represents the replicate, while the
index k is used to indicate different time points. Referring to Figure 3.2 as example, there
we have J = 3 total number of replicates and K = 5 different conditions, i.e. different time
points. The first two normalization strategies consider normalization by the value at the
first and last time point as reference condition, respectively, i.e. the measurements ỹj(t1)

and ỹj(tK),∀j = 1, . . . , J . As third strategy we consider normalization by the mean of all
values of the corresponding blot, i.e. 1/K

∑K
k=1 ỹ

j(tk) for a fixed j ∈ {1, . . . , J}, which is a
scaled version of the normalization by the sum.
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Fig. 3.2. Normalization strategies of WB data. The quantified optical densities
from different blots at different conditions need to be normalized, in order to guarantee
comparability among replicates of the same experiment. Two options are: (A) Normalization
by fixed point and (B) Normalization by sum of the replicate. This Figure is taken from
Degasperi et al. (2014).

In the following we summarize the three considered normalization strategies, which
provide three new different datasets:

1. Normalization by the value at the first time point:

yNS1(tk) =
ỹj(tk)

ỹj(t1)
, j = 1, . . . , J, k = 1, . . . , K. (3.2.11)

2. Normalization by the value at the last time point:

yNS2(tk) =
ỹj(tk)

ỹj(tK)
, j = 1, . . . , J, k = 1, . . . , K. (3.2.12)

3. Normalization by the mean value of all time points:

yNS3(tk) =
ỹj(tk)

1

K

∑K
k=1 ỹ

j(tk)
, j = 1, . . . , J, k = 1, . . . , K. (3.2.13)

Referring to Equation (3.2.5), the three defined NSs relate to three different forms of the
transformation T1 from noisy quantified optical densities to noisy normalized data. The
necessity of this transformation comes from the fact that each measured value ỹj(tk) is a
multiple of the corresponding absolute noisy protein concentration, defined as x̃(tk), with
unknown scaling factor αj, specific for each replicate j ∈ {1, . . . , J} (see Equation (3.2.4)).
Therefore, with all three NSs we cancel out the scaling factors, so that the normalized
intensities resemble the ratio of the absolute values. For example, in the case of the first
normalization strategy, the relative intensities can be expressed as ratio of the absolute
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intensities in the following way:

yNS1(tk) =
ỹj(tk)

ỹj(t1)
=
αjx̃(tk)

αjx̃(t1)
=
x̃(tk)

x̃(t1)
. (3.2.14)

In our statistical framework, we obtain therefore that the first transformation T1 of
random variables (3.2.5) is equivalent to the ratio of the random variables x̃(tk) divided by

either x̃(t1), x̃(tK) or
1

K

∑K
k=1 x̃(tk). These three random variables used as normalization

quantities have different statistical properties in a general experimental setup. This implies
that the random variables yNSs(tk), s = 1, 2, 3, describing the normalized data in the three
possible scenarios, also have different statistical properties among each other. We will
discuss this point further in section 3.3.2 by means of the results for our test-bed model.

We have to remark that, in the case of the first and second strategy, the obtained
normalized data in the first or last time point, respectively, will be set equal to 1. These
data will therefore be useless for parameter estimation, leading to a lower amount of
measurements used for parameter estimation. Instead, normalization by the mean value
does not change the total amount of data.

3.2.3 Statistical description of normalized time series data for

dynamic modelling

The different normalization strategies described in the previous section lead to different
datasets that we may use for calibration of dynamical models. We formulate different
possible options of formal statistical descriptions for the normalized datasets, an assumption
which is required for the formulation of the inference problem. These options relate to
different forms of the second transformation T2 of stochastic distributions from normalized
data to inferred parameters, see Equation (3.2.7).

In this chapter we consider the method of MLE for parameter estimation, whose basic
concepts and definitions are reported in Appendix 6.1. One key step to apply this estimation
method is the definition of a statistical error model : we assume that all noisy measurements
{yNSs(tk)}, k = 1, . . . , K, for a given normalization strategy NSs, s = 1, 2, 3, are realizations
of the same underlying random process. In particular, we suppose that noisy data are
obtained by introducing a measurement error to the defined model outputs (3.2.2), obtaining
therefore an underlying statistical distribution pEM

yNSs(tk)(yNSs(tk)|θ) which is a function of
the unknown model parameters θ. The conditional joint probability py(y|θ) of the whole
dataset y = {yNSs(tk)} is called the likelihood function.

For the purpose of this thesis, we assume that each model output zq(t, θ) corresponds to
one state variable, normalized in the same way as the considered dataset, i.e. we assume
Q = N . To keep the notation simple, and since we look at a one-dimensional case study,
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3.2 Problem formulation

we avoid the index referring to the specific state/output variable, considering the case
Q = N = 1.
We introduce therefore three possible output functions corresponding to the three

normalization strategies:

1. Normalization by the value at the first time point:

zNS1(t, θ) = h1(x, θ) =
x(t, θ)

x(t1, θ)
. (3.2.15)

2. Normalization by the value at the last time point:

zNS2(t, θ) = h2(x, θ) =
x(t, θ)

x(tK , θ)
. (3.2.16)

3. Normalization by the mean value of all time points:

zNS3(t, θ) = h3(x, θ) =
x(t, θ)

1

K

∑K
k=1 x(tk, θ)

. (3.2.17)

This choice for the model outputs is supported also by the results presented in Degasperi
et al. (2017). In this work the authors compare two approaches to scale model simulations
to relative measured data: 1) Introducing scaling factors to convert simulated data to the
scale of the experimental data (SF approach = scaling factor) or 2) Normalizing simulated
variables in the same way as the data (DNS approach = data-driven normalization of the
simulation). They test both methods with different objective functions and optimization
algorithms for parameter estimation of dynamical systems and conclude that the DNS
approach is favourable in terms of identifiability and convergence speed of the optimization
algorithms and should therefore be the preferred method in dynamic modelling studies.
With this definition of model outputs, we can directly compare the normalized dataset

(see Equations (3.2.11), (3.2.12) or (3.2.13)) with the simulated data and infer model
parameters θ by solving an optimization problem, whose solution gives the best possible
model fit of the experimental data.

In line with the statistical analysis presented in Chapter 2, which concerns the inference
of stochastic models, we consider three hypotheses on the underlying distribution of the
normalized time series data {yNSs(tk)}. Normal and log-normal distributions are standard
settings in Systems Biology studies. The authors in Fröhlich et al. (2019); Kreutz and
Timmer (2009); Raue et al. (2013); Weber et al. (2011), for example, assume independent
and identically distributed additive Gaussian noise to describe the variability of biological
measurements. In many other cases (see e.g. Thomaseth et al. (2013), Kreutz et al. (2007);
Limpert et al. (2001)) it is rather assumed that the main source of data variability is always
positive and multiplicative. Therefore the log-normal distribution is a straightforward
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description of this kind of noise, producing a noisy signal which is proportional to the
noise-free quantity.
As third scenario we consider the Gaussian ratio distribution, whose definition and

properties are presented in Chapter 2. This hypothesis follows from the implicit assumption
that the absolute protein concentrations are normally distributed. We can derive it easily
considering Equation (3.2.14). Assuming that each x̃(tk),∀k, is a realization of a Gaussian
distribution implies that the values yNS1(tk) are samples of a Gaussian ratio distribution.
The same holds for the other two normalization strategies. A possible correlation between
the two Gaussian random variables at numerator and denominator would represent the
most general assumption, according to which different samples of measurements of a protein
at different time points are correlated due to systematic experimental errors. Motivated by
the in silico study of Chapter 2 concerning the identifiabilty of the parametrization of the
GR distribution, in this analysis we decided to assume rather the “ideal” case, according to
which random variables x̃(tk) at different time points tk, k ∈ {1, . . . , K}, are independent
and therefore uncorrelated.

At this point, we want to remark the fact that none of the three investigated EMs is the
true statistical model generating the data. This, in fact, would be obtained as the ratio
of the mixed error model given in (3.2.3), but this kind of distribution cannot be defined
analytically. The normal, log-normal and Gaussian ratio EMs represent therefore three
approximations of the true statistical model underlying the generation of the normalized
WB data, which can be fairly compared among each other.

For the definition of the statistical error model we always have to specify the considered
normalization strategy (NS1, NS2 or NS3), in order to refer correctly to the corresponding
output function and to the set of time indices to be included in the dataset for the inference
problem. In particular, with the first normalization strategy we consider the set of time
indices INS1 = {2, · · · , K}, since all relative data at time point t1 are equal to 1. Similarly,
for the second normalization strategy we consider the set INS2 = {1, · · · , K − 1}, since
all data at time point tK are equal to 1. Finally, in the third case the set of indices is
INS3 = {1, · · · , K}, considering all time points.
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3.2 Problem formulation

We present here the mathematical formulation of the three statistical error models
pEM
yNSs(tk)(yNSs(tk)|θ) considered in this study:

1. Normal error model (N-EM):

yNSs(tk) ∼ N (zNSs(tk, θ), σ
2), s = 1, 2, 3, k ∈ INSs (3.2.18)

2. Log-normal error model (LN-EM):

yNSs(tk) ∼ logN (log zNSs(tk, θ), σ
2), s = 1, 2, 3, k ∈ INSs (3.2.19)

3. Gaussian ratio error model (GR-EM):

yNS1(tk) ∼
N (x(tk, θ), σ

2)

N (x(t1, θ), σ2)
, ρ = 0 k ∈ INS1 (3.2.20)

yNS2(tk) ∼
N (x(tk, θ), σ

2)

N (x(tK , θ), σ2)
, ρ = 0 k ∈ INS2 (3.2.21)

yNS3(tk) ∼
N (x(tk, θ), σ

2)

N
(

1

K

∑K
k=1 x(tk, θ),

σ2

K

) , ρ =
1√
K

k ∈ INS3 (3.2.22)

Let’s mention now some remarks concerning the three error models. First, in all three cases
we assume that the parameter σ ∈ R>0, related to the SD of the considered distributions,
is the same for all k of the dataset. In the case of the GR-EM, we assume that σ2 is the
variance of the Gaussian RVs at numerator and denominator x̃(tk), ∀k ∈ {1, . . . , K}. This
choice is corroborated by the results of Chapter 2, where we motivated the assumption
of equal SD in the knockdown and control experimental conditions. There exist usually
two options concerning the assessment of the value of σ for measurement errors: it can
be either a priori empirically determined from experimental data or it can be estimated
simultaneously with the model parameters θ. Several studies hint to the fact that the
empirical assessment is unreliable and should be avoided, since usually a low number of
technical replicates (at most four) is available, while simultaneous estimation should be
preferred (Degasperi et al., 2017; Raue et al., 2013). Many parametric models are suggested
for the estimation of the SD σ (Degasperi et al., 2017; Hass et al., 2019). Therefore, in this
study we implemented the estimation of σ simultaneously to θ = (k1, k2) and decided to
consider the most basic model, for which a unique parameter value σ̂MLE is estimated from
the available experimental dataset.

Concerning the GR-EM, as already mentioned, we will only assume independent Gaussian
RVs at numerator and denominator in the case of different experimental conditions, in
this case different time points, assumption corroborated by the analysis presented in
Chapter 2. It derives that in the first two cases of NS1 and NS2 the correlation coefficient
ρ is equal to 0. In the case of the third normalization strategy NS3 we calculate the

correlation coefficient ρ =
1√
K

, independently of the time point tk, k ∈ {1, . . . , K}, of the
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random variable at the nominator, as demonstrated in Appendix 6.4. From the assumption
that all x̃(tk) are independent random variables (for a given θ) at different time points
tk, k ∈ {1, . . . , K}, it can also be easily derived that the variance of the mean 1/K

∑K
k=1 x̃(tk)

equals σ2/K, as assumed in the EM (3.2.22). As we saw in Chapter 2, Section 2.3.2, the
GR distribution is characterized by four identifiable parameters (θ3 = (a, b, r, s)), which in
this context are related to the simulated quantities and therefore functions of the unknown
ODE model parameters. In Appendix 6.5, we show the definition of such parametrization
of the GR distributions for all three NSs (equations (3.2.20)–(3.2.22)), which were used for
the implementation of the Likelihood function in our simulation study.

3.3 Results

In this section we want to apply our statistical framework to investigate how uncertainty
propagates from the experimentally measured data, via normalization, to the estimated
kinetic parameters of an ODE model. In particular, we want to analyse if and how we
can improve the goodness of the estimation results by means of some features of the
experimental design. In particular we will look at the effects of increasing the number of
data points, at the differences of the three normalization strategies and of the chosen error
model defining the computational cost function.

3.3.1 Increasing the amount of time points improves the quality

of parameter estimates

Finite-size effects and boundary effects: Computational problems may lead to
erroneous conclusions under realistic experimental settings

The first component of the experimental design that we want to investigate is the amount of
time points at which to measure the considered time series dataset. In particular we want
to analyse how big is the benefit of increasing the amount of time points on the obtained
accuracy and precision of the estimation results with respect to the consequent increase in
experimental effort and costs.

We started therefore our investigations by simulating our test-bed model of a reversible
protein phosphorylation reaction using plausible biological noise levels for WB data. In
Schilling et al. (2005) the authors indicate a reference value of 10% for the proportional
component of the measurement noise, introduced due to errors in pipetting the cellular
lysates. In Figure 3.3 we show the noisy simulated time series data for four exemplary
time points tk, k ∈ {1, 2, 3, 4}, obtained with the considered noise-free test-bed model
(3.2.10) and the mixed error model (3.2.3) to introduce experimental noise. We recall
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the fact that, in this in silico study, the state variable x(t) resembles the percentage of
phosphorylated protein with respect to the total pTOT , therefore we always have x(t) ≤ 1.
For our simulation study we set θ0 = (4, 1) as “true” parameter values and x0 = 0.3 as initial
condition. We look at two noise levels obtained by varying the values of the parameters
ση and σε of the multiplicative and additive noise sources, to compare the effects for low
and high measurement noise. In Figure 3.3 we can observe the variability of the random
variables x̃(tk), k ∈ {1, 2, 3, 4} (left part) and of their mean value 1/K

∑K
k=1 x̃(tk), where

K = 4 (right part), illustrated via box plots of n = 10, 000 simulated samples.
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Fig. 3.3. Noisy simulated time series data. On the left we show the distributions
(illustrated through box plots) obtained from sampled noisy realizations of the state
variable x̃(tk) at four exemplary time points (t1, t2, t3, t4) = (0.2, 0.4, 0.8, 3). We generated
n = 10, 000 realizations via Monte Carlo simulations from the noise model (3.2.3). The
continuous line represents the noise-free time course of the state variable x(t, θ0), obtained
for x0 = 0.3 and θ0 = (4, 1). On the right we show the distribution of the mean of the
corresponding samples at the four time points shown on the left 1/K

∑K
k=1 x̃(tk), K = 4.

Distributions are given for low (top) and high (bottom) noise.
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From the shown simulated raw data, we obtained then n = 10, 000 normalized datasets
and solved the inference problem via MLE, for all the three considered normalization
strategies. All simulations were run with the software Matlab, and the neg-log likelihood
function was minimized numerically by multi-start local optimization with a Latin hypercube
sampling of the parameter space. To evaluate the quality of the obtained inference results,
we considered the statistical measure of bias of the median to quantify the accuracy of
the estimation and the interquartile range (IQR), representing a standard measure of the
dispersion of a distribution, as an indicator for precision.
Results obtained by doubling the amount of time points from K = 4 to K = 8 are

presented in Figure 3.4, where we visually summarize the two statistics considered as
indicators of accuracy and precision of the inference results for both estimated model
parameters θ̂MLE = (k̂1,MLE, k̂2,MLE). There we also visualize increasing noise levels with
different colours. These results were obtained by considering the N-EM, as assumption
for the definition of the likelihood, and the dataset obtained using the first normalization
strategy NS1. Furthermore, the data were generated considering only J = 1 replicate for
each measured time point.

Normal EM

N
S
1

Fig. 3.4. Effect of the amount of time points K under realistic experimental
settings. Absolute values of the bias of the median versus IQR values for both estimated
parameter values obtained with K = 4 or K = 8 time points and J = 1 replicate. These
statistics are given for different noise levels ση ∈ {0.05 (green/blue), 0.1 (red/magenta)}
and σε ∈ {0.01, 0.02} (indicated by increasing darkness). Green and red dots refer to the
parameter k̂1,MLE, while blue and magenta refer to k̂2,MLE.

Simulation results indicate a significant improvement in terms of accuracy and precision
of the estimation results in the case of k̂1,MLE when 8 measurement values are available, for
both low and high noise (green and red dots). Instead, in the case of k̂2,MLE we obtain that
the bias decreases but the IQR value slightly increases, which is not an expected behaviour.
The overview of all nine combinations of three EMs and three NSs is given in Appendix
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6.6, Figure 6.1, showing a very similar behaviour in all scenarios.

Concerning the effects of both multiplicative and additive noise components, we can
observe from Figure 3.4 that the main effect is given by the multiplicative component η: In
fact, dots with the same size but changing colors (green → red, blue → magenta) move
substantially. Instead, dots with the same size, same colour but different shades (i.e same
value for ση but increasing value of σε), do not vary significantly. For this reason, in the
following we will focus only on two noise levels, considering the two extreme cases in which
both noise components assume the lower value (low noise: ση = 0.05, σε = 0.01) or the
larger (high noise: ση = 0.1, σε = 0.02).

To find an explanation of the obtained counterintuitive results, we visualize the statistical
distributions of both parameters by means of the box plots of the n = 10, 000 estimated
realizations (Figure 3.5a). We also investigate the corresponding marginal distributions
(histograms) and scatter plots in the 2-dimensional parameter space (Figure 3.5b). In all
plots we visualize both low and high noise levels with different colors.

From Figure 3.5, looking at the box plots (top) and histograms (bottom) corresponding
to the second estimated parameter k̂2,MLE (blue and magenta for the two noise levels), we
can observe that its distributions accumulate at the lower bound used for the estimation,
i.e. zero. The same boundary effect can be observed in all the scatter plots corresponding
to all combinations of three EMs, three NSs and two noise levels (see Appendix 6.6.1).

The reason behind the encountered counterintuitive results can be ascribed to a finite-size
effect2. This means that the finite amount of available measured data is too small to learn
about the model parameters in a sufficiently good manner. Given the high variability of
many datasets, the ML estimator for k2 tried to search for a solution in the negative space
but the optimizer was blocked at the lower bound. This boundary effect causes a bimodal
characteristic of both estimated distributions (see the histograms in Figure 3.5b), for both
noise levels. As can be seen from all scatter plots, the ML estimator for k1 corresponding
to the peak of k̂2,MLE at the lower bound is represented by the second “hill” of the bimodal
distribution of k̂1,MLE for values larger than the true value, equal to 4.

This assumption is also supported by the interesting observation that in Equation
(3.2.10), defining the solution x(t, θ) of the ODE model under investigation, the parameter
k2 appears only as a term in the sum with k1. Subsequently, the same holds also for
the output functions zNSs(t, θ), s = 1, 2, 3 (see Equations (3.2.15), (3.2.16) and (3.2.17)),
which enter the optimization problem. Hence the boundary effect causes the bimodal
characteristic of the distributions. When doubling the amount of time points K from 4 to
8, while keeping the same noise level (i.e. left and right parts in Figure 3.5b), some of the
samples of k̂2,MLE estimated close to the 0 are “released” and the rest of the distribution

2The following explanations of the obtained counterintuitive results, the presented concepts about the
finite-size effect and the subsequent structure of the results presented in this chapter arose from the
personal communication with Professor Jens Timmer.
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Low noise High noise Low noise High noisea)

Low noise High noiseb)

Fig. 3.5. Effect of the amount of time points K under realistic experimental
settings. (a) Box plots of the estimated parameters k̂1,MLE and k̂2,MLE obtained with
K = 4 or K = 8 measurements of the phosphorylated protein concentration. (b) Marginal
distributions (histograms) and symmetrical scatter plots in the 2-dimensional parameter
space of k̂1,MLE and k̂2,MLE, obtained for J = 1, K ∈ {4, 8}. These results were obtained
using the N-EM, the first set of normalized data (NS1) and two noise levels (low on the
left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02).

moves towards the “true” parameter value. This is in line with what we observe in Figure
3.5a (right part), showing that the median of the distribution of k̂2,MLE gets closer to 1,
while the first quartile still starts at 0, causing a larger IQR value.

At this point, we have to underline the fact that the observed increase of the IQR values
for the parameter k̂2,MLE (Figures 3.4 and 6.1) should not lead to the erroneous conclusion
of a decrease of precision of the estimation results for increasing size of the dataset. In
fact, if we consider the mean squared error (MSE) as alternative measure of the estimate
precision, we can observe that this quantity always decreases by doubling the amount of
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measured data (see Appendix 6.6, Figure 6.2) 3.
Overall, we have learned that we cannot draw reasonable conclusions from the obtained

results, since the distributions of the estimated parameters are corrupted by the boundary
effects, which are related to the finite-size effect.

Larger boundaries and increased amount of measured data help towards
removing the boundary effects

One solution to overcome the aforementioned problems is to increase the size of the measured
dataset and try to obtain distributions of the parameter estimators that are not limited by
the boundaries imposed in the computational problem.

In a first step, we increased the number of replicates from J = 1 to J = 6 and compared
the same two values of measured time points K = 4 and K = 8. The corresponding results
for all scenarios are shown in Appendix 6.6.2. There, we still observe a considerable impact
of the boundary effect, motivating us to increase the size of the dataset even more.
We decided therefore to compare three numbers of time points, K ∈ {4, 8, 12} and to

consider J = 10 replicates, for a total number of 40, 80 and 120 simulated measurements,
respectively. Furthermore, this time we allowed the optimizer to search also for negative
values of the optimal solution and set therefore larger bounds in both directions of the
parameter space. The reason for this is that we want to observe the correct distribution of
the ML estimator, without boundary effects.
At this point we have to remark the fact that the estimation in the negative space was

possible only for the N- and GR-EMs, while it could not be implemented for the LN-EM. We
can understand this problem by looking at Equation (3.2.10), defining the solution x(t, θ)

of the ODE model. Allowing negative values for the model parameter θ, we may obtain
some negative values x(tk, θ

∗), for some time point tk and some combination θ∗ = (k∗1, k
∗
2).

Hence, the output functions zNSs(t, θ∗), s = 1, 2, 3, may assume negative values as well.
When inserting these terms into the LN Likelihood function (3.2.19), this causes an error
because taking the logarithm of a negative value.

In Figure 3.6 we can see the estimation results corresponding to the three EMs, obtained
with the first set of normalized data (NS1) and two noise levels (left and right columns). In
particular, the histograms and symmetrical scatter plots in the 2-dimensional parameter
space of k̂1,MLE and k̂2,MLE are shown, for each scenario and for the three increasing sizes
of the dataset, corresponding to K ∈ {4, 8, 12}. Despite the large amount of data used for
parameter estimation, we can observe that the boundary effects cannot be eliminated in the
case of the LN-EM (Figure 3.6b), for both noise levels. Concerning the N- and GR-EMs
(Figures 3.6a and 3.6c), we can see that the boundary effects disappear entirely for the low

3This clarification arose after the personal communication with Professor Jens Timmer.
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noise level (left column). Instead, for high noise, we consider only the case for K = 12 to
be almost unaffected.

In Appendix 6.6.3 we represent the complete set of the estimation results obtained from
all three different normalized datasets (NS1, NS2, NS3), where we can observed the same
behaviour for all different scenarios.

In Figure 3.7 we visually summarize the accuracy and precision of the inference results,
in terms of bias of the median versus IQR values, for both estimated model parameters
θ̂MLE = (k̂1,MLE, k̂2,MLE). In particular, we show the results only for the aforementioned
scenarios that do not present boundary effects. We focus, in fact, on the values obtained
with the N-EM (left column) and with the GR-EM (right column), for all three different
normalized datasets (different rows). There, we also visualize the increasing size of the
dataset with increasing size of the dots and the two noise levels with different colours. In
particular, we can observe that the green and blue dots are rather close to each other for
increasing sizes, respectively.

From these simulation results we can conclude that, for a very large amount of measured
data, for which the distributions of the ML estimators tend to the asymptotic behaviour,
the benefit of doubling or tripling the amount of measured data is rather minimal with
low input noise, while this is not the case for high noise. Furthermore, we observe that the
GR-EM is robuster than the N-EM considering the first and second NSs, especially for high
noise level. This topic will be further analysed in the following section.
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Fig. 3.6. Effect of the amount of time points K. Marginal distributions (histograms)
and symmetrical scatter plots in the 2-dimensional parameter space of k̂1,MLE and k̂2,MLE,
obtained for J = 10 and K ∈ {4, 8, 12}. These results were obtained using the first set of
normalized data (NS1) and the (a) N-EM, (b) LN-EM, (c) GR-EM, for two noise levels,
respectively (low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02).
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Fig. 3.7. Effect of the amount of time points K. Absolute values of the bias of the
median versus IQR values for both estimated parameter values obtained with K = 4, 8 and
12 time points and J = 10 replicates, given for low noise level (ση = 0.05 and σε = 0.01).
For high noise (ση = 0.1 and σε = 0.02) these statistics are given only for the case K = 12.
Green and red dots refer to the parameter k̂1,MLE, while blue and magenta refer to k̂2,MLE.
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3.3.2 Impact of normalization strategies on the uncertainty of

Maximum Likelihood estimates

As discussed in Section 3.2.2, normalization modifies the statistical properties of the
transformed relative data with respect to the raw measured values. This effect changes
depending on the chosen normalization strategy, due to the different distributions of the
random variables used as reference condition.

The question arises, how the three considered different strategies affect noise propagation
from the raw concentration measurements to the estimated model parameters, while keeping
fixed other features of the inference process.
Referring to our in silico study, in Figure 3.3 we can compare the variability of the

random variables x̃(t1), x̃(t4) (left part) and 1/K
∑K

k=1 x̃(tk), where K = 4 (right part), used
as reference quantities for normalization in the three considered strategies, and notice how
their statistical properties differ a lot among each other.
The corresponding statistical distributions (box plots) of the normalized data obtained

with the three considered normalization strategies are shown in Figure 3.8, also for the two
low and high noise levels, on the left and right columns, respectively. As a consequence of
the specific variability of the quantity used as reference condition for normalization, the
statistical properties of the obtained normalized datasets differ a lot among each other. In
particular, we can observe that data normalized with the first strategy (upper row) have
the largest uncertainty, followed by the second strategy and finally by the third, which has
the lowest uncertainty. This is due to the fact that the normalization variable in the third
case is calculated on a larger number of points and will therefore have a lower SD, as can
be seen in Figure 3.3 on the right, leading to lower noise. Furthermore, the first strategy is
the most sensitive to higher noise level (right column), showing many more outliers in the
right tails of the distributions, which were cut off for representative reasons.

These facts are in line with what was discussed in Degasperi et al. (2014), who suggested
to avoid choosing normalization points with low quantified intensities for hypothesis testing
studies, since this strategy results in large CV for normalized data. Instead, normalization
by the mean value redistributes the uncertainty among the random variables at the different
time points.

We continue therefore our analysis investigating the influence of all three normalization
strategies on the uncertainty of the estimated model parameters θ̂MLE = (k̂1,MLE, k̂2,MLE).
In particular we want to analyse the combined effects on accuracy and precision of the
results, and look therefore at the distributions of the inferred parameters obtained by noise
propagation from the raw simulated data.
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Low noise, ση = 0.05, σε = 0.01 High noise, ση = 0.1, σε = 0.02

Fig. 3.8. Noisy normalized time series data. The shown distributions (box plots) are
obtained from sampled noisy realizations of the normalized variables yNSs(tk), s = 1, 2, 3,
for the three different normalization strategies, marked with different colors, and are given
for low (left) and high (right) noise.
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Results are shown in Figures 3.9 and 3.10, in which we visualize the bias of the median
versus IQR values as statistical measures of accuracy and precision of the estimation results.
In this analysis, we focus only on the results obtained with N- and GR-EMs. In particular,
Figure 3.9 concerns the estimation results of the datasets obtained with K = 4 time points
and low noise level. Instead, Figure 3.10 relates to the case of high noise and K = 12.
Overall, the considered scenarios relate to all cases in which the estimation results did not
present boundary effects, as analysed in Section 3.3.1.

Normal EM Gaussian ratio EM

Fig. 3.9. Effects of three alternative normalization strategies on accuracy and
precision of parameter estimates. Absolute values of the bias of the median versus
IQR values for both estimated parameters k̂1,MLE and k̂2,MLE obtained with the three
considered normalization strategies: NS1 by first time point (magenta), NS2 by last time
point (blue) and NS3 by the mean of all time point values (yellow). These statistics were
obtained assuming either the N-EM (left) or GR-EM (right) as likelihood function for
the optimization problem, for K = 4 time points, J = 10 replicates and low input noise:
ση = 0.05, σε = 0.01.

First, we observe that the impact of the three normalization strategies is different for the
two estimated parameters, therefore we cannot derive a unique statement concerning the
impact of the three normalization strategies on the estimation results.
For low noise level (Figure 3.9) the different NSs affect mainly the accuracy of the

estimation, while for high noise (Figure 3.10) they impact both accuracy and precision.
Nevertheless, the trend is roughly maintained if considering the same EM and same
parameter with increasing noise.
One general unexpected result is that the first normalization strategy (magenta dots)

does not always lead to the worst results (i.e. both higher bias and higher IQR) even if the
corresponding normalized data used for estimation show the largest variability. Instead,
NS2 (blue dots) causes the largest IQR and also the largest bias for k̂1,MLE, for both noise
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levels. This is probably due to the fact that in this case we loose information of the data at
steady-state, and for fixed k̂2,MLE the uncertainty of the estimated value k̂1,MLE increases.

From this analysis we can affirm that the impact of different normalization strategies is
not univocal on all estimated parameters under realistic noise settings, despite the large
amount of data used for the estimation. We maintain that a good compromise is to choose
the third normalization strategy (by the mean value), which in general shows the lowest
bias also for larger noise level.

Normal EM Gaussian ratio EM

Fig. 3.10. Effects of three alternative normalization strategies on accuracy and
precision of parameter estimates. Absolute values of the bias of the median versus
IQR values for both estimated parameters k̂1,MLE and k̂2,MLE obtained with the three
considered normalization strategies: NS1 by first time point (magenta), NS2 by last time
point (blue) and NS3 by the mean of all time point values (yellow). These statistics were
obtained assuming either the N-EM (left) or GR-EM (right) as likelihood function for the
optimization problem, for K = 12 time points, J = 10 replicates and high input noise:
ση = 0.1, σε = 0.02.

3.3.3 Statistical model comparison

In the previous part of this Section, we presented a statistical analysis of our simulation
in silico study to analyse noise propagation from experimentally measured data to the
inference results of a test-bed non linear ODE model. We considered a realistic error model
and plausible noise levels to generate noisy data (see Figure 3.3). In particular, we analysed
the quality of the estimation results by looking at the statistical quantities considered as
indicators of accuracy and precision of the inferred parameters, namely bias of the median
and IQR. In a first step we analysed the effects of increasing the size of the dataset used
for one estimation run and we observed that finite-size and boundary effects may lead to

66



3.3 Results

counterintuitive results (see for example the results shown in Figure 3.5). In the particular
case of the LN-EM, we could still not eliminate the boundary effects also for a very large
size of the dataset. The reason for that was that we could not let the optimizer to search
in the negative parameter space, due to numerical problems, and we should have increased
the amount of considered measurements even more. Therefore, when using the LN-EM,
it becomes difficult to eliminate the boundary effects when estimating model parameters
whose true positive value is near the zero value, especially for high noise.

For a comprehensive comparison of the goodness of the estimation results for the other
two statistical EMs (N and GR) and the three NSs, we evaluate the distribution of the
BIC values calculated for each estimated parameter set corresponding to all six different
estimation scenarios (i.e. three NSs and two EMs). For more details about the BIC value
see Appendix 6.2. Given the definition of the BIC (see Equation (6.2.6)) we need to express
the number k of the estimated parameters, which equals 3 for both considered likelihood
functions, namely the two kinetic parameters k1 and k2 and the SD σ of each statistical
model (see Equations (3.2.18) and (3.2.20)-(3.2.22)). Furthermore we have to set the value
n defining the number of observed data, which changes depending on the chosen NS. In
particular, we have one data point less for the first two strategies NS1 and NS2 with
respect to the third strategy NS3. We loose in fact one data point due to normalization by
fixed point (see Figure 3.2).
In Figure 3.11 we show the distributions (box plots) of the BIC values obtained with

the dataset corresponding to K = 12 time points and J = 10 replicates, corresponding to
n = 110 for NS1 and NS2 and n = 120 for NS3, obtained for the low noise level of the
input data (ση = 0.05 and σε = 0.01). From these results we observe that the goodness of
the two error models is very similar among each other if using the same set of normalized
data (NS1, NS2 or NS3). The lowest BIC values are obtained with the third normalization
strategy, despite the larger size of the dataset (parameter n) that corresponds to a larger
penalty factor in the BIC definition. This result supports the conclusion of Section 3.3.2,
suggesting NS3 as the best normalization strategy to be applied for parameter estimation.
Looking at the effects of the two EMs for a fixed NS on the BIC value distributions,

we can observe that the median and the spread of the distributions corresponding to the
GR-EM are slightly lower than those of the N-EM for the first two NSs (compare the green
and orange straight lines), while the distributions are almost identical in the case of NS3.
The observed similarity between the BIC values of the N- and GR-EMs is probably due to
the validity of the condition for the approximation of the GR distribution with a Gaussian
distribution. As presented in Chapter 2, this approximation holds for a sufficiently large CV
of the RV at the nominator of the ratio distribution, in the case of assuming uncorrelated
signals.

Results obtained for the high noise level in the data (ση = 0.1 and σε = 0.02) are shown
in Appendix 6.7. These results show the same trend as that obtained with low noise, even
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Fig. 3.11. Statistical model comparison. Box plots of the BIC values (6.2.6) calculated
with the estimation results obtained using the different datasets from the three normalization
strategies NS1, NS2 or NS3 and two EMs (N and GR). These results were obtained with
K = 12 time points, J = 10 replicates and the low noise level of the input data: ση = 0.05
and σε = 0.01.

though in the case of higher input noise the distributions of the BIC values are shifted up
to higher values, and more outliers appear in the right tails of the distributions, especially
in the case of the first NS (NS1 on the left). Nevertheless, we can observe that the GR-EM
is slightly robuster than the N-EM for larger noise if using the first or second normalization
strategy.

Overall, these results confirm the conclusion of Section 3.3.2 of preferring the normalization
strategy by the mean value instead of that by fixed time point, for dynamical model
calibration purposes. As concerns the choice of the error model used as statistical description
of the relative dataset, we suggest to select the N-EM, since it is computationally faster to
optimize than the GR-EM.
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3.4 Summary and discussion

In this chapter, we presented the results of a statistical analysis of the combined effects of
different normalization strategies for WB time series data, different experimental design
approaches and different assumptions on the statistical model generating the noisy data
on the quality of parameter estimation via MLE for ODE models of biochemical reaction
networks. We developed a statistical framework to investigate noise propagation from input
measured data to output estimated parameters via Monte Carlo simulations. We considered
a reversible protein phosphorylation reaction as test-bed model for our in silico study,
which we used to generate noisy time series concentration measurements by means of a
realistic noise model for WB data (Kreutz et al., 2007; Schilling et al., 2005). Nevertheless,
for the inference problem we could not use the “gold standard” as definition of the error
model underlying normalized WB data generation, since we do not know its analytical
expression. We defined instead three alternative statistical models as approximations of the
true distribution. This choice resembles a real case scenario in which the true statistical
process generating the data is in general different from the EM assumed in the inference
problem. We made use of statistical measures such as bias of the median and IQR to
evaluate the accuracy, precision and robustness of the estimation results, as terms for
comparison of the goodness of the different experimental and methodological strategies for
parameter estimation.

From this study we could derive some interesting findings. First, concerning the choice of
the normalization strategy, we got the clear recommendation of applying the third strategy,
i.e. normalization by the mean value instead of normalization by a fixed point. Opting for
this normalization strategy, in fact, leads to the best inference results in terms of accuracy
and precision of the estimated parameters, independently from the chosen experimental
design and noise level in the input data.

Regarding the experimental design, we analysed the effects of increasing the total amount
of the measured data, and we observed, as expected, that increasing both amounts of time
points and replicates leads to a general improvement of the estimation quality. A less trivial
statement is, what is the minimal amount of data in order to obtain reliable ML estimates
of the model parameters. Due to finite-size effects, we can in fact run into erroneous
conclusions on the goodness of parameter estimation. The counterintuitive results, observed
in Figure 3.4 and in Appendix 6.1, are caused in fact by boundary effects. Therefore,
we cannot draw meaningful conclusions from those results and a solution is to increase
further the number of measured data and to allow the optimizer to search also for negative
values of the parameter space. This could not be implemented for the LN-EM. A quite
unexpected result of our simulation study is that we are not able to fully eliminate the
boundary effects, even for a large amount of measured data (up to 120 measurements). In
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the case of the LN-EM model this was not possible, both for low and high noise levels, for
which reason we decided not to consider it any more for the comparison among the three
EMs. Instead, in the case of the N and GR assumptions, this was possible for low input
noise, since a small part of the distribution of the ML estimates was allowed to spread also
in the negative space. By the way, the problem could not be totally eliminated for the
larger noise level, in which case we considered only the largest amount of data (120) for the
subsequent comparison of the results.

A surprising result was to observe no significant differences among the two investigated
statistical EMs, namely N and GR, as concerns the quality of the inference results. The only
observed difference is that, in the case of high input noise (see the figure in Appendix 6.7),
the GR-EM seems to be slightly more robust than the N one. An interesting study of Maier
et al. (2017) reveals that using heavier-tailed distributions, such as Laplace, Huber, Cauchy
or Student’s t, instead of the N distribution for parameter estimation of dynamical systems,
improves the quality of the inference results in terms of robustness against outlier-corrupted
datasets. Motivated by these findings, we speculate that using the GR distribution as
error model to describe normalized WB data, which belongs to the class of heavy-tailed
distributions, may be beneficial for ODE model calibration in the case of the presence of
outliers in measured data. This would be an interesting extension of our statistical analysis
and, related to this, we should be able to provide the necessary gradients and Hessian
matrices of the likelihood function in order to ensure an efficient optimization, as stated in
Maier et al. (2017). In fact, the main bottleneck of applying the GR distribution in the
likelihood function is the computational cost.

We are aware that our conclusions are based on the results obtained with a simple test-bed
model of one single equation and only two kinetic parameters. Common Systems Biology
studies consider larger models containing many unknown parameters to be estimated from
noisy relative data. Nevertheless, our simulation results highlight the importance of taking
noise transformation into account when dealing with data post-processing techniques like
normalization. The crucial fact is that measured input data generate uncertain estimated
parameters that subsequently lead to model predictions affected by uncertainty. In this
respect, our analysis lays the foundations for a bigger awareness that noise transformation
via normalization may lead to a significant uncertainty of the inference results, even for
a significant amount of the measured data, which may then lead to wrong or unreliable
model predictions.

A further aspect impacting the uncertainty of model predictions is the intrinsic uncertainty
of the calibrated EM, which is related to the SD of the assumed distribution. In general,
it is not trivial how to set this value, for which an empirical estimate is commonly used.
We opted, instead, for the simultaneous estimation of the unknown additional parameter
σ, characterizing all investigated EMs (see Equations (3.2.18)–(3.2.22)), as described in

70



3.4 Summary and discussion

Section 3.2.3. The corresponding obtained estimates σ̂MLE were not shown in the Results
section and are given for completeness in Appendix 6.8. In this case, we cannot compare
directly the obtained estimates with some “true” parameter value, because the SD of the
error model used to simulate the noisy data has a different meaning from the parameter σ
characterizing the EMs used in the inference problem.
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4 Impact of measurement noise,
experimental design, and estimation
methods on Modular Response
Analysis based network
reconstruction

Modular Response Analysis (MRA) is a method to reconstruct signalling networks from
steady-state perturbation data that has frequently been used in different settings. Since
these data are usually noisy due to multi-step measurement procedures and biological
variability, it is important to investigate the effect of this noise onto network reconstruction.

In this chapter we present a systematic study to investigate propagation of noise from
concentration measurements to network structures, in an analogous way to what we
presented in the previous chapter concerning dynamic modelling of biochemical reaction
networks. Therefore, we design an in silico study of the MAPK and the p53 signalling
pathways with realistic noise settings. We make use of statistical concepts and measures to
evaluate accuracy and precision of individual inferred interactions and resulting network
structures. Our results allow to derive clear recommendations to optimize the performance
of MRA based network reconstruction: First, large perturbations are favourable in terms of
accuracy even for models with non-linear steady-state response curves. Second, a single
control measurement for different perturbation experiments seems to be sufficient for network
reconstruction, and third, we recommend to execute the MRA workflow with the mean
of different replicates for concentration measurements rather than using computationally
more involved regression strategies.

The main content of this chapter is taken from Thomaseth et al. (2018).
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4.1 Introduction

Advanced experimental techniques have facilitated our mechanistic understanding of in-
tracellular processes in the last decades. However, the problem of network reconstruction
from experimental data remains a challenging task, for which many different approaches
have been suggested. Among those, Modular Response Analysis (MRA) has been proven
successful in many applications (Gong et al., 2015; Santos et al., 2007; Speth et al., 2017;
Stelniec-Klotz et al., 2012). MRA uses steady-state data of experiments in which each
node of a network is perturbed successively (see Figure 4.1a). These steady-state data
are transformed into quantitative pairwise interaction strengths, denoted Local Response
Coefficients (LRCs), which define the network structure. This is done in a two-step process,
in which first concentration measurements are transformed into Global Response Coefficients
(GRCs), which are then used to calculate the LRCs. MRA is an elegant method that gives
reliable results in case that concentrations can be accurately measured and measurement
noise can be neglected (Kholodenko et al., 2002).
MRA is however often applied in settings in which one has to deal with real noisy

experimental data and few replicates, for example when using western blotting to investigate
signalling pathways, as exemplified in Santos et al. (2007); Stelniec-Klotz et al. (2012). In
these studies the authors addressed the issue of measurement noise by using statistical
approaches, like Monte Carlo simulations or ML, to estimate interaction strengths and
respective uncertainties. Despite the extensive usage of MRA, the effect of noise in the
input data on network reconstruction is not completely understood. Recent developments
include statistical reformulations of the MRA that have been suggested to address the issue
of noisy and sparse/insufficient data (Santra et al., 2018). A further extension combines
the classical deterministic MRA framework with advanced nonparametric single-cell data
resampling to discriminate between direct and indirect connectivities (Kang et al., 2015).

Despite the broad literature tackling the issue of experimental noise, a comprehensive and
systematic study on how network inference via MRA is affected by noise is still required.
In particular, some of the studies do not consider noise propagation from the input data to
the estimated LRCs, but start directly with the GRCs (Andrec et al., 2005). Furthermore,
a realistic statistical characterization of the MRA variables (measured data, GRCs and
LRCs) and a robustness analysis in a general experimental setup are also still missing.
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In this chapter, following the central motif of this doctoral thesis, we develop a statistical
framework to analyse noise propagation in the context of MRA based network reconstruction
(Figure 4.1b), proceeding with a similar scheme as we did for the study on dynamic modelling
for biochemical reaction networks, presented in Chapter 3.

By comparing different experimental and computational strategies in an in silico study,
we derive recipes for experimentalists and modellers regarding an optimal MRA workflow
design. In particular, we investigate:

1. how non-linear transformations and mathematical approximations of the MRA frame-
work affect noise propagation;

2. the influence of perturbation strength, control strategy and number of replicates on
the uncertainty of the estimated interactions;

3. the effects of different estimation methods on the performance of the network inference
problem.

To evaluate the resulting network structure, we apply a performance evaluation method
that was proposed in Bansal et al. (2006) and is schematically depicted in Figure 4.1c.
It works similar to a Receiver Operating Characteristic (ROC) and its Area Under the
Curve (AUC) value for evaluating the performance of a classifier but, additionally, taking
correctness of the sign of an inferred interaction into account. A correctly identified network
has an AUC value of 1 (whole square), the random case corresponds on average to an AUC
value of 0.25 (darker grey triangle).

Results are given for two test-bed examples of well-known signalling pathways, a model for
the MAPK pathway and a model for the tumour suppressor protein p53. These models show
very different non-linear properties regarding their steady-state behaviour in dependence
of perturbation strengths. Our results show that large perturbations and few technical
replicates, combined with a simple control strategy and a basic estimation method, lead to
an optimal ‘bias-variability’ trade-off of the estimated pairwise interactions and also give
robust results regarding network reconstruction.
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Fig. 4.1. Variability and noise in measurements affect network reconstruction
via Modular Response Analysis. (a) MRA workflow for a three-node network. After
subsequent perturbation of all nodes and quantification of concentration fold changes, LRCs
rij are calculated via a two-step non-linear transformation. (b) One exemplary realization
(one replicate) of the noisy measurement for protein 2 is evaluated in all experimental
conditions (left part). These values are interpreted as samples of the corresponding
distributions, described by the probability density function (pdf of z̄ji ) arising from the
measurement noise. On the right we describe how network reconstruction is affected by the
variability of the measured protein concentrations in terms of propagation of distributions
from the measurements z̄ji and z̄0

i via the GRCs Rij to the LRCs rij.
(c) Performance evaluation of inferred network structures is done by using the assessment
method presented in Bansal et al. (2006), which compares the inferred structure with a
reference structure. Similar to ROC analysis, the Area Under the Curve (AUC) serves as a
normalized measure for the fit quality, and varies from the average value 0.25 in the random
case (darker grey triangle) up to the optimal value 1 for a correctly identified network
(whole square).
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4.2 Problem formulation

MRA is a mathematical approach to reveal interaction strengths from steady-state pertur-
bation data of a dynamic network of interacting modules. In our examples each module
consists of a single protein, and we refer to them as nodes (Kholodenko et al., 2002).
Considering the network at equilibrium, pairwise interaction strengths between nodes are
characterized by quantifying the immediate change of the activity of one node of the network
caused by a small change of another node, whereas the rest of the network is unaffected.
Local Response Coefficients (LRCs) express these local effects among N nodes and are
defined as the fractional change of the steady-state concentration of node i (x̄i) with respect
to that of node j (x̄j), while keeping all other nodes x̄k, k 6= i, j, at a constant level,

LRCs : rtrueij =
∂ ln x̄i(x̄j, x̄k)

∂ ln x̄j
, x̄k = const, k 6= i, j, i 6= j, i, j = 1, . . . , N. (4.2.1)

These LRCs describe pairwise interactions between nodes when they act in isolation
and are not directly accessible. A perturbation of one parameter pj, which specifically
affects the activity of node j, spreads over the whole network, thus generating a global
change of the equilibria of all nodes. This global change can be quantified from fold change
measurements of concentrations relative to the unperturbed system. Formally, Global
Response Coefficients (GRCs) are defined as the total derivative of the logarithm of the
steady-state variables (ln x̄i) with respect to the perturbed parameter (pj) (see exemplary
network in Figure 4.1a),

GRCs : Rtrue
ij =

d ln x̄i(pj)

d pj
=

1

x̄i(pj)

d x̄i(pj)

d pj
, i, j = 1, . . . , N. (4.2.2)

The corresponding MRA equations (Kholodenko et al., 2002)
n∑

j=1,j 6=i
rtrueij Rtrue

jk = Rtrue
ik (4.2.3)

establish a mathematically exact relationship between the GRCs and LRCs and can be
used to extract LRCs from GRCs.

In our in silico study we assume that the investigated dynamical system can be de-
scribed by a true underlying noise-free ODE model ẋ = f(x, p), with state variables
x = (x1, . . . , xN) ∈ RN

+ and parameters p = (p1, . . . , pN) ∈ RN
+ . The state variable xi

represents the activity of node i. The parameters pj > 0, j = 1, . . . , N , are all equal
to one in the nominal setting (control experiment), and can be varied to simulate the
perturbation experiment affecting the corresponding node j. These parameters often affect
preserved quantities such as total protein concentrations or production rates. The true
LRCs rtrueij , i 6= j, are obtained by calculating the ‘normalized’ entries of the Jacobian
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matrix at steady-state (ss), as described in Kholodenko et al. (2002),

rtrueij = −
(
∂fi(x, p)

∂xj

/
∂fi(x, p)

∂xi

)
·
(
xj
xi

) ∣∣∣∣∣
ss

, i 6= j, i, j = 1, . . . , N. (4.2.4)

When the underlying ODE system is not known, LRCs can be inferred from concentration
measurements via two non-linear transformations. In a first transformation T1 , differential
GRCs are estimated from the steady states obtained in the control experiment (x̄i(pj) =: x̄0

i )
and respective steady states in the perturbation experiments (x̄i(pj + ∆pj) =: x̄ji ),

T1 : Rtrue
ij ∆pj ≈ R̃ij =

x̄ji − x̄0
i

1
2

(
x̄ji + x̄0

i

) = 2 · x̄
j
i − x̄0

i

x̄0
i + x̄ji

, i, j = 1, . . . , N, (4.2.5)

where we have approximated the derivative in (4.2.2) with finite differences and x̄0
i with the

average of x̄0
i and x̄

j
i . The N · (N − 1) LRCs are then obtained via substituting these R̃ij

into equation (4.2.3), which corresponds to solving N linear systems with N − 1 equations
in N − 1 independent variables each (Kholodenko et al., 2002; Kholodenko and Sontag,
2002),

n∑

j=1,j 6=i
r̃ijR̃jk = R̃ik, k 6= i; i, k = 1, . . . , N. (4.2.6)

We note here that ∆pk cancels out since it appears as a factor on both sides in this
system. Due to the approximation (4.2.5), the values r̃ij obtained in this way are also
an approximation of the true LRCs (rtrueij ), and depend in particular on the perturbation
strengths. In the following we will always consider R̃ij directly and thus refer to this
measure simply as GRC. A second non-linear transformation, defined as T2 , provides a
solution for all coefficients r̃ij. As shown in the Supplementary material S2 of Thomaseth
et al. (2018) for N = 3, we can rewrite equation (4.2.6) as a linear system,

~y(R̃ij) = A(R̃ij) · ~x, (4.2.7)

in which the vector ~x contains all unknowns r̃ij, while the vector ~y(R̃ij) and the matrix
A(R̃ij) are functions of the GRCs. The solution of this linear equation system, assuming
that A has linearly independent columns, is given by

T2 : ~x = (ATA)−1AT~y. (4.2.8)

The variables x̄ji , R̃ij and r̃ij are assumed to be continuous functions of the perturbation
parameters pj. For the following analysis, we refer to the difference

∆rij(pj) = |r̃ij(pj)− rtrueij |, i 6= j, i, j = 1, . . . , N (4.2.9)

as intrinsic bias which results from the approximations (4.2.5) and (4.2.8).

Our two considered test-bed models for the MAPK and the p53 signalling pathways (see
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Appendix 6.9) significantly differ in the courses of ∆rij over a large range of perturbation
strengths pj and thus can be considered as complementary examples concerning the
approximation quality (4.2.8) and the validity of results in dependence of the perturbation
strengths pj.

According to our statistical methodology, following the discussion in Chapter 3, Section
3.2, concentration measurements are described by random variables z̄0,j

i , i, j = 1, . . . , N ,
whose distribution is a function of the noise-free steady-state values x̄0,j

i (see Figure 4.1a-b).
In the same way as presented in Chapter 3, we consider a realistic error model consisting of
a multiplicative and an independent additive part:

z̄0,j
i = x̄0,j

i · η + ε, η ∼ logN (0, σ2
η), ε ∼ N (0, σ2

ε ), i, j = 1, . . . , N. (4.2.10)

The parameters ση and σε denote the SDs of the proportional (log η) and additive (ε) mea-
surement errors, respectively, x̄0,j

i are the simulated noise-free steady-state concentrations
in the control (0) and perturbed (j) conditions, and z̄0,j

i the resulting random variables
representing the noisy simulated data.

We note here that due to the experimental procedure we often do not directly obtain
concentrations but fold changes only, as explained in more detail in Chapter 2. Thus,
measurements z̄0

i and z̄ji are realizations of random variables which are proportional to the
real absolute concentrations. As shown in Figure 4.1b (left), we assume that measurements
refer to signals detected via western blotting which have been normalized to a loading
control. Without loss of generality, we neglect the proportionality factor α specific for
each blot. In fact, the GRCs calculated via equation (4.2.5), and hence the LRCs, are
independent of these factors, as long as the two samples z̄0

i and z̄ji have been quantified in
the same blot.

Due to the two non-linear transformations (4.2.5) and (4.2.8), the GRCs and LRCs
are also random variables, which we express as Rij and rij (see Figure 4.1a-b). Given
measurements of Rij, a solution of equation (4.2.7) is obtained by applying estimation
methods. The simplest choice is to use Ordinary (Linear) Least Squares, whose solution has
exactly the same form as equation (4.2.8). Changing the method corresponds to changing
the operator T2 , which remains a non-linear function of the GRCs in all cases.

Since it is impossible to derive the distributions of the LRCs directly from the error
model (4.2.10) of the measurements, we applied a Monte Carlo approach in which we used
our error model to simulate experimental data and propagated these to respective LRCs
via the transformations T1 and T2.
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4.2.1 MAPK and p53 test-bed models with complementary

dynamic behaviours

We used two test-bed examples to investigate noise propagation and impacts of the experi-
mental design on the MRA estimates. The models are similar in that they both consist of
three states (nodes) with two positive and one negative interactions (Figure 4.2). However,
both models feature very different equations, dynamics, and non-linear properties (see
Appendix 6.9 for details), allowing us to judge the generality of our results and to investigate
the impacts of moderate and strong non-linearities.

A model of signal transduction of the MAPK pathway upon EGF stimulation is illustrated
in Figure 4.2a. It consists of a three-tiered cascade of phosphorylation-dephosphorylation
cycles in which pRaf phosphorylates and thereby activates MEK, which then activates
ERK, which negatively feeds back to Raf (Kholodenko et al., 2010). Both MEK and ERK
require phosphorylation at two sites to become fully active, which is for simplicity assumed
to happen in a single reaction step for both proteins (Kholodenko, 2006). Variables x1, x2

and x3 represent protein activities. All reactions are modelled using Michaelis Menten type
equations (Appendix Figure 6.15a). This system exhibits moderate non-linearity for the
chosen parameters (Appendix Figure 6.15a).

The p53 model (Figure 4.2b) is based on the core signalling system of the DNA damage
response (Purvis et al., 2012). Here, ATM activates p53 by phosphorylation and protein
stabilisation, p53 activates MDM2 by inducing gene expression, and MDM2 mediates a
negative feedback loop to p53 by promoting p53 degradation (Fey et al., 2016). In contrast
to the MAPK system, the p53 system exhibits a strong degree of non-linearity (Appendix
Figure 6.15b), including three ultra-sensitive Hill type equations for the reaction kinetics
(Appendix Figure 6.15b).

a) Model scheme Correct
network

Raf pRaf

MEK ppMEK

ERK ppERK

x1

x2

x3

b) Model scheme Correct
network

ATM pATM

p53u p53a

p53total

MDM2

∅ ∅
∅

x1

x2

x3

Fig. 4.2. Two test-bed models. Shown are the reaction kinetic schemes (left) and the
arising network structure (right) for (a) the MAPK system; (b) the p53 system. The
coloured nodes (blue, green, red) indicate the measured species, which define the states of
the models.
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4.3 Results

4.3.1 Solving the MRA equations results in heavy-tailed

distributions for the estimated LRCs

We started our study by investigating the propagation of noise from the concentration
measurements to the estimated LRCs as a basis to deduce strategies for an optimal design
of experiments and estimation methods.

Therefore, we simulated the MAPK model with noise parameters that are in a biologically
plausible range for western blot data (Schilling et al., 2005; Taylor and Posch, 2014)1.
Exemplary results are shown in Figure 4.3a, where resulting distributions are illustrated by
box blots. While the variability of the resulting distributions of the GRCs is comparable
to those of the inputs (Figure 4.3a centre), we observe a much higher variability in the
distributions of the LRCs (Figure 4.3a right), which is mainly manifested in the number of
outliers and the range covered by them. The complete set of distributions is given in the
Supplementary material of Thomaseth et al. (2018) (Figures S2, S3, S4) and shows that
these results are representative.

Driven by our analysis, we decided at that point to consider, besides standard measures
for statistical dispersion such as interquartile ranges, also the amount of spread of the
outliers, which is a measure for the degree of heavy-tailedness of an underlying distribution.
Normalization of a signal obtained from a western blot to a signal of a respective control
experiment indeed corresponds to a transformation that may result in heavy-tailed distribu-
tions (Thomaseth and Radde (2016)). Since the tails of such distributions usually follow a
power-law decay, the probability mass in the tails exceeds that of a Gaussian distribution,
whose tails decay exponentially. As a consequence, samples from heavy-tailed distributions
will contain more outliers which are spread over a larger range. A characteristic feature of
heavy-tailed distributions is the fact that some or all moments do not exist. This severely
impedes network reconstruction in our framework, since empirical estimators of moments are
unstable due to the high occurrence of outliers. Empirical moments like the sample mean,
the sample variance, or skewness and kurtosis, which are standard measures of asymmetry
and tail-heaviness, do not provide meaningful estimates under these circumstances.

Thus, we decided to evaluate left and right medcouples (LMC and RMC) (Brys et al.,
2006) as suitable measures of left and right tail weights. The medcouple (MC) function
(see Appendix 6.10) was proposed as an efficient measure of the asymmetry of a univariate
continuous distribution alternative to the classical skewness estimator (Brys et al., 2004).
The medcouple applied to one single side of the distribution leads to LMC and RMC,

1All simulation results presented in this chapter were run with the software Matlab.
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a)

T1 T2

 

b) c) True network from noise free data
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Fig. 4.3. Non-linear propagation of measurement error in the MAPK test-bed
model. (a) The curves represent the dependencies of steady states (left), GRCs (centre)
and LRCs (right) over the changing parameters pj. Exemplary, on the left we show the
distributions (boxplots) obtained from sampled noisy realizations of the steady-state z̄2 in
the control experiment (p2 = 1) and in the 50% knockdown experiment of node 2 (p2 = 0.5).
We generated n = 10, 000 realizations via Monte Carlo simulations from the noise model
(4.2.10) with parameters ση = 0.1 and σε = 0.2. The ODE model with numerical values used
for simulations is given in the Appendix 6.9. The variability in the measured steady states
(left) translates into variability of the calculated GRCs (centre), which then translates into
variability of the LRCs (right). Two sample points have been indicated by an orange and a
grey cross and tracked during the transformations to illustrate consequences for network
inference from individual samples. (b) Propagation of LMC and RMC values during
the two-step transformation process reveals that heavy-tailedness is mainly introduced
by the transformation T2 . Numerical values are given in the Supplementary Table S1 in
Thomaseth et al. (2018). (c) True network structure of the MAPK test-bed model as
obtained via equation (4.2.4). As a comparison, also the two realizations of the LRCs r13

and r31 that result from the two tracked orange and grey sample points are shown.

which are monotonically increasing functions of tail-heaviness. They are robust to outliers,
since they only depend on quantiles and hence are suitable for heavy-tailed distributions.

82



4.3 Results

LMC and RMC values are put into context by comparison with the respective values for a
standard Gaussian and Cauchy distribution, which are 0.2 and 0.5, respectively.
LMC and RMC values for concentration measurements, GRCs and LRCs are depicted

in Figure 4.3b. LMCs and RMCs for the distributions of the measurement data and
of the GRCs are comparable to those of a Gaussian distribution. Respective values for
the distributions of the estimated LRCs are considerably larger, indicating that heavy-
tailedness is mainly introduced by the transformation T2 . This increase might have severe
consequences for network reconstruction, since it distorts estimation of moments of the
LRCs such as the mean and the variance from samples. Evaluation of LMC and RMC values
for the p53 test-bed model reveals similar results (Figure S5 in the Supplementary material
of Thomaseth et al. (2018)). Interestingly, MRA does not markedly affect the interquartile
range (IQR) over the two transformations, which is a frequently used bulk-measure of
variability (Figure S6 in the Supplementary material of Thomaseth et al. (2018)).

We conclude that MRA amplifies the variability of the measurement noise in terms of
degree of heavy-tailedness, while the IQR is not as much affected. Since heavy-tailedness
is directly related to the occurrence of samples in the tails, which appear as outliers in
the box plots, this impedes network reconstruction, as illustrated with two sample points
indicated with orange and grey crosses and respective wrongly inferred network structures
(Figure 4.3c).

The question arises how we can optimize network reconstruction by influencing the
distribution of the LRCs via experimental design and/or estimation procedures. In a first
step we analyse how to best design the experiments regarding the choice of the perturbation
strengths and the control strategy and subsequently investigate how to best handle multiple
replicates.

4.3.2 Large perturbations tend to improve the inference of

pairwise node interactions

Since the GRCs and LRCs are defined as derivatives, a precise approximation via finite
differences theoretically requires infinitesimal small perturbations, which is not feasible
in practice. Moreover, noise deteriorates estimation of derivatives particularly from small
differences. The question arises whether we are able to define perturbation strengths that
constitute a good trade-off. For the MAPK test-bed model we observe that the noise-
free approximated solution for the LRCs r̃ij is robust over a large range of perturbation
parameters pj and does not deviate much from the corresponding true value rtrueij (see right
of Figure 4.3a and Figure S4 in the Supplementary material of Thomaseth et al. (2018)).
This is different for the p53 test-bed model (Figure S9 in the Supplementary material of
Thomaseth et al. (2018)) and might also not be the case for other systems, which we usually
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don’t know a priori.

In order to answer our question, we compare the variability of the estimated LRCs resulting
from different perturbation strengths. Therefore, we consider three knockdown experiments
with downregulation of the 80%, 50% and 25% of the total protein concentrations with
respect to the control experiment, and one overexpression experiment with 150% of total
protein concentrations, resulting in a set of values for the perturbation strengths pj ∈
{0.2, 0.5, 0.75, 1.5}.

As can be seen in Figure 4.4a and Figure S10 in the Supplementary material of Thomaseth
et al. (2018), the distributions of the estimated coefficients differ significantly in the four
scenarios. The spread of the estimated coefficients is smallest for pj = 0.2 and rapidly
increases with decreasing perturbation strength, i.e. when pj approaches one. The spread
of the overexpression experiment is comparable to the 25% knockdown experiment, which
is probably a result of the fact that we are in the saturated regime. We also observe a
small and perturbation-dependent bias in the empirical estimate of the medians of all
distributions.

To investigate the influence of the perturbation strength on accuracy and precision of
the estimation more comprehensively, we collected values of the bias of the median and of
the LMCs and RMCs for the 80% and the 25% knockdown experiments. Results are shown
in Figure 4.4b, where we have also visualized different noise levels ση and σε with different
colours and corresponding different shades. We observe a ‘bias-spread’ trade-off between
large and small perturbations. A low bias and a low LMC can only be obtained with large
perturbations (large dots), while small perturbations lead to higher LMC values.

Increasing noise levels affect the bias markedly only for the small perturbation (small
dots), which is true for all coefficients (Figure S11 in the Supplementary material of
Thomaseth et al. (2018)). The influence of increasing noise levels on LMC and RMC values
is visible but moderate in the 80% knockdown experiment, while in case of 25% knockdown
a marked effect can only be seen for very small multiplicative noise ση (Figure 12 in the
Supplementary material of Thomaseth et al. (2018)). Intriguingly, in most of the cases
these quantities behave non-monotonically with respect to noise. Increasing noise does
not necessarily imply larger bias or medcouples, which is probably due to the non-linear
transformations T1 and T2. For the p53 test-bed model we observe similar trends (Figures
S13, S14, S15, S16 in the Supplementary material of Thomaseth et al. (2018)), even though
we observe a large bias of the median also for the large perturbation experiments here.
From this analysis we conclude that larger perturbations are generally preferable, since
they reduce the risk to infer erroneous network interactions.
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a) b)

Fig. 4.4. Effects of different perturbation strengths on network reconstruction.
(a) Boxplots of the estimated LRC r13 of the MAPK test-bed model, describing the negative
feedback from ERK to Raf, for different perturbation strengths: 80%, 50%, 25% knockdowns
(KD) and 150% overexpression (OE) of the total protein concentrations. (b) Absolute
values of the bias of the median versus LMC values for the entire set of LRC values obtained
with large (80%) or small (25%) knockdown strengths of the total protein concentrations.
These statistics are given for different noise levels ση ∈ {0.05 (green), 0.1 (yellow), 0.2 (red)}
and σε ∈ {0.1, 0.2, 0.5} (indicated by increasing darkness).

4.3.3 A simple control strategy is sufficient for the estimation of

the LRCs

The second component of the experimental design under investigation is the control strategy
(CS). Here we compare a single control for a node for all three perturbations (Figure 4.5a
left) versus individual controls for each perturbation (Figure 4.5a right). The steady-
state variable x̄0

i of the control experiment appears in the GRCs R̃ij of all perturbation
experiments j = 1, . . . , N (equation (4.2.5)). Simulating the first control strategy thus
translates into using the same realization of the random variable z̄0

i to calculate the
realizations Rij, j = 1, . . . , N , for fixed i, and results in block-wise positive correlations
between the GRCs, as can be seen in the Rij scatter plot matrix in Figure 4.5a (left).
These correlations disappear when performing multiple independent controls z̄0

i for each
perturbation experiment j (Figure 4.5a right).
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a) Control strategy CS1: Control strategy CS2:

One shared control Multiple independent controls
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0.37 0.37 -0.01 -0.01 -0.00 0.01 -0.01 -0.01

0.37 0.60 0.00 -0.01 0.00 -0.00 -0.00 0.01

0.37 0.60 -0.00 -0.01 -0.01 -0.01 -0.01 0.00

-0.01 0.00 -0.00 0.40 0.45 -0.00 -0.01 -0.00

-0.01 -0.01 -0.01 0.40 0.44 -0.01 -0.01 0.01

-0.00 0.00 -0.01 0.45 0.44 -0.00 -0.01 -0.01

0.01 -0.00 -0.01 -0.00 -0.01 -0.00 0.38 0.36

-0.01 -0.00 -0.01 -0.01 -0.01 -0.01 0.38 0.36

-0.01 0.01 0.00 -0.00 0.01 -0.01 0.36 0.36

-0.00 0.01 0.01 -0.01 0.01 0.02 -0.01 0.00

-0.00 -0.01 0.01 0.01 0.00 -0.00 0.01 0.01

0.01 -0.01 -0.01 -0.01 0.01 0.02 -0.00 -0.00

0.01 0.01 -0.01 -0.00 0.02 -0.00 0.01 -0.00

-0.01 0.01 -0.01 -0.00 0.00 -0.01 -0.01 -0.00

0.01 0.00 0.01 0.02 0.00 0.01 -0.00 0.01

0.02 -0.00 0.02 -0.00 -0.01 0.01 -0.00 0.00

-0.01 0.01 -0.00 0.01 -0.01 -0.00 -0.00 0.00

0.00 0.01 -0.00 -0.00 -0.00 0.01 0.00 0.00

 

b)

 

c)

Fig. 4.5. Effects of two alternative control strategies. (a) The first strategy (CS1)
considers one single control realization for the calculation of all samples Rij with j = 1, 2, 3,
while the second strategy (CS2) performs independent control experiments for each pertur-
bation experiment. Corresponding correlations can be seen in the Rij scatter plot matrices.
(b) Absolute values of the bias of the medians of the resulting LRCs rij for both control strate-
gies CS1 (left) and CS2 (right) in dependence of different noise levels ση ∈ {0.05, 0.1, 0.2}
and σε ∈ {0.1, 0.2, 0.5}. For every value of ση, i.e. for each specific column, the three shades
of the LRCs correspond to the three (increasing) values of the SD of the additive noise σε.
Lines indicate intrinsic bias values for each LRC. (c) Same illustration for the RMC values.

The choice of the control strategy determines the correlation among the coefficients Rij

with the same index i, but it is unclear whether it also has a marked effect on the LRCs
rij and thus on network inference. In order to resolve this issue, we used the bias of the
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medians, the IQR, LMCs and RMCs as statistical measures of the distributions of the
LRCs to compare the two control strategies. Since large perturbations have already turned
out to be advantageous for MRA analysis, we simulated an 80% knockdown experiment
and additionally also analysed the effect of increasing noise levels. As can be seen in
Figure 4.5b-c, we do not detect significant differences between the two control strategies
with respect to the ‘bias-spread’ trade-off. In fact, bias and RMCs behave similarly in
the two cases. As before, we do not see a marked effect of increasing noise levels on the
LRC distribution measures. These observations also generalize to the IQRs and the LMCs
(Figure S18 in the Supplementary material of Thomaseth et al. (2018)).

The horizontal lines shown in Figure 4.5b represent the absolute values of the differences
between the true LRCs and the LRCs resulting from the noise-free approximation, defined
as ∆rij (equation (4.2.9)). For realistic noise levels, as used here, the bias of the medians
is centred around this corresponding intrinsic bias, showing that the main contribution
to the bias is caused by the approximation (4.2.5) rather than by the measurement noise.
As before, there is no clear monotonic relation visible between the considered statistics
and the levels of additive and multiplicative noise, respectively. The p53 test-bed model
behaves very similar in this analysis (Figures S19 and S20 in the Supplementary material
of Thomaseth et al. (2018)).
Taken together, since we could not observe marked differences of the LRC statistics

between the two control strategies in both models, we advice experimenters to use the first
control strategy of taking a single control measurement for a node for all corresponding
perturbations, since this requires less samples.

4.3.4 Using MRA with replicate mean values tends to outperform

linear regression techniques

Generally, perturbation data contain several replicates of the same experiment. This raises
the question of how to best handle these replicates during the MRA workflow. One solution
is to calculate the mean over the replicates. Another, is the use of linear regression, for
which several techniques have been suggested. The most common choice is to solve equation
(4.2.7) by applying a least squares method, like Ordinary Least Squares (OLS) and Total
Least Squares (TLS) (Andrec et al., 2005) (see Appendix 6.11). But whether regression,
and if so which, is better than using the mean over all replicates remains unclear.
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Therefore, we aim to solve the question about which estimation method, combined with
the proper experimental design and data normalization, allows the best results in terms of
accuracy, precision and robustness of the LRCs estimates.

We compare results obtained with three replicates, which is the typically required number
in many biological studies. In our simulations we mimic replicates by drawing independent
realizations z̄0,j

i , providing different realizations of the GRCs Rij. We considered the
methods of taking the mean over the three obtained GRCs replicates and solving the linear
regression problem (4.2.7), or determining GRC values for individual replicates and then
applying either OLS or TLS from noisy values Rij, delivering one estimate of the LRCs
rij, i, j = 1, . . . , N . Moreover, we consider yet another experimental approach, in which
we take multiple sample data not by repeating the same perturbation experiment but by
varying the perturbation strengths pj, j = 1, 2, 3. Our choice is to mix three realizations
obtained using three different knockdown strengths: 80%, 50% and 25% KD of the total
protein concentrations. The results of our analysis are summarized in Figure 4.6.

These results confirm that the experimental design with the large perturbation is superior
compared to small perturbations or a combination of different perturbation strengths (see
also Figures S21 and S22 in the Supplementary material of Thomaseth et al. (2018)). The
considered measures for dispersion (LMC, RMC and IQR) are low and robust to noise for
all three estimation approaches.

Interestingly, the mixture approach also delivers good results in terms of ‘bias-spread’
trade-off (right part of Figure 4.6, Figures S21 and S22 in the Supplementary material of
Thomaseth et al. (2018)). As before, the OLS method results in a larger bias, but the
dispersion measures are more sensitive to increasing noise if using TLS.

We can confirm that the experimental approach with the small perturbation strength
delivers unsatisfactory results, leading to a high risk to reconstruct an erroneous network
structure. Compared to the other two experimental designs, the bias is much larger and
sensitive to noise with all three estimation methods: This holds especially true for the three
non-zero coefficients r21, r32 and r13 (central part of Figure 4.6b and Figure S22 in the
Supplementary material of Thomaseth et al. (2018)). The measures for dispersion are low
for all coefficients only for very low noise and if using OLS.

Summarizing our results, we obtained the best estimation results in terms of accuracy,
precision and robustness to noise by performing large perturbations and a simple control
strategy. In terms of efficiency we recommend to use the simplest estimation method, which
means to solve the regression problem (4.2.7) with the GRC means. In comparison, the
mixture approach seems to be suboptimal in terms of ‘bias-spread’ trade-off, but it might
be beneficial for systems with higher non-linearities, as discussed later in Subsection 4.3.6.
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a)

 

 

b)

Fig. 4.6. Effects of different estimation methods for the linear regression prob-
lem with multiple replicates. (a) Boxplots of the estimated LRC r13 of the MAPK
model for two different perturbation strengths and different strategies to handle three
replicates. First, the LRCs are calculated by taking the mean values of the GRCs. Second,
GRC replicates are taken individually into account and LRCs are obtained by solving OLS
or TLS, respectively. The third column illustrates results from a mixture of measurements
from three knockdown experiments with different perturbation strengths. (b) Absolute
bias values of the estimated medians and RMC values for all LRCs and increasing levels of
multiplicative and additive noise, ση ∈ {0.05, 0.1, 0.2} and σε ∈ {0.1, 0.2, 0.5}. For every
value of ση, i.e. for a specific column, the three shades of the LRCs correspond to three
(increasing) values of the SD of the additive noise σε.

4.3.5 Replicates increase precision, but not accuracy

The choice of the number of replicates is another important question for experimental
design because of the trade-off between the experimental effort and cost, and the quality
of the inferred results (Blainey et al., 2014). We address this issue by investigating how
much the estimation of the LRCs is improved by increasing the number of replicates. We
compare results obtained with one, three and six replicates. For each Monte Carlo run, we
proceed by taking the mean value of these GRCs to further calculate one realization rij of
the LRCs, which we have seen to be the most efficient estimation method, combined with
large perturbations and the simple control strategy.

Results are depicted in Figure 4.7. As expected, the precision of the estimation increases
with the number of replicates, for both test-bed models. This manifests in a decrease of the
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considered measures for statistical dispersion, which are RMC and LMC values and the IQR,
for all coefficients and noise levels and both test-bed models (Figure 4.7a top, Figures S26
and S28 in the Supplementary material of Thomaseth et al. (2018)). In particular, RMC
and LMC values converge to the value 0.2 of the standard Gaussian distribution. This
effect is robust against increased multiplicative noise levels η.
In contrast, the biases in the medians are neither much affected by the number of

replicates nor by the level of multiplicative noise, as can be seen in Figure 4.7a (bottom)
and Figure S28 in the Supplementary material of Thomaseth et al. (2018). In some cases
increased additive noise ε (indicated by a darker shade of the coloured dots) leads to a
larger bias, but not in a monotonic manner. As before, the medians rather coincide with
the noise-free approximated values r̃ij (see also Figures S25, S27 c), whose deviations from
the true values result from the choice of a large perturbation, showing that the bias in the
medians is again dominated by the error of the approximation (4.2.5).

Summarizing, increasing the number of replicates reduces the dispersion of the distribution
and therefore increases precision, but the bias cannot be eliminated, which restricts the
accuracy of the estimates. We consider three replicates to be a good bias-spread trade-
off, since all RMC values decrease below 0.3 when going from a single measurement to
three replicates, while the decrease is much less pronounced when going from three to
six replicates. Thus we recommend to use at least three replicates, and to include more
depending on how much experimental effort is acceptable.

4.3.6 Non-linearity induces bias, but large perturbations are still

required for precision

In the MAPK model, the steady states show an approximately linear behaviour in de-
pendence of the perturbation strengths in all cases (see Figure S1a in the Supplementary
material of Thomaseth et al. (2018)), suggesting that the linear approximations (4.2.5) and
(4.2.8) do not induce unduly large errors even for large perturbations. This was confirmed
by our simulation results. When applying the MRA in practice, however, the course of
the steady states of the system for varying perturbation strengths is not known, and it
could also be highly non-linear. Do our recommendations and guidelines for an optimal
performance of network reconstruction via MRA still hold true for such cases? In order to
address this question, we used the p53 test-bed model as an example of a system whose
steady states are non-linear functions of perturbation strengths (see Figure S1b in the
Supplementary material of Thomaseth et al. (2018)). In this case the approximated LRCs
r̃ij are sensitive to the choice of the perturbation strength and it is not clear a priori whether
they are a good approximation of the true values rtrueij (compare Figures S4 and S9 of the
Supplementary material of Thomaseth et al. (2018)).
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a) b)

Fig. 4.7. Effects of different numbers of replicates on network reconstruction.
(a) RMCs and absolute bias values of the medians of the estimated distributions for the
LRCs of the MAPK model for one, three and six replicates and different noise levels in
the 80% KD perturbation experiments. Noise levels have been set to ση = {0.05, 0.1, 0.2}
(different columns) and σε = {0.1, 0.2, 0.5} (coded in different shades). The black line
indicates the RMC value for a normal distribution and the coloured lines show the intrinsic
bias values for each LRC. (b) Exemplary boxplots of the LRC r13 for different numbers of
replicates.

We applied our MRA workflow to this test-bed model and performed the same analysis
as before with the MAPK model. Summarizing, the results show that the most critical part
is indeed the appearance of a large bias in the median of the distributions of the estimated
rij if applying large perturbation experiments (see Figures S23 (left parts) and S24a in the
Supplementary material of Thomaseth et al. (2018)). This effect is related to the intrinsic
bias ∆rij(pj) and cannot be reduced by an increase in the number of replicates (see Figures
S28a in the Supplementary material of Thomaseth et al. (2018)).

Nevertheless, the goal is to estimate the correct network structure, and therefore it is
important to minimize the dispersion of the distributions of the estimated rij. This holds
especially if the intrinsic bias is significant for some of the LRCs, which is the case in the
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p53 example (Figure S23 in the Supplementary material of Thomaseth et al. (2018)). In
such cases it is necessary that the approximated LRCs r̃ij have the same sign as the true
values, leading to qualitatively correctly estimated interactions. The trend of the spread
of the estimated distributions shows that in general the lowest dispersion is still obtained
with the largest perturbation experiment, in a similar way for all three computational
approaches (see Figures S24b-d in the Supplementary material of Thomaseth et al. (2018)).
In all these cases this behaviour is robust to increasing noise levels.
From these results we conclude that, due to the noise sensitivity, larger perturbations

are generally still preferable, even for highly non-linear systems, since they reduce the risk
to infer erroneous network interactions.

4.3.7 Performance evaluation on the level of discrete network

interactions corroborates our quantitative results

So far, we have investigated the influence of different experimental designs, estimation
methods and noise levels on the statistical properties of the estimated LRCs. We have in
particular focused on the bias of the median and on LMC and RMC values as measures for
accuracy and precision of the individual estimates. In a final analysis step we transfer these
results onto network inference, where the set of inferred LRCs is used to decide upon the
network structure. The simplest way to do this is to arrange all LRCs according to their
absolute value and to define a threshold for an interaction to be present or not. Sensitivity
and specificity can then be calculated for an inferred network by a comparison with the
true or a reference network. Doing this with varying threshold values, the Area Under
the Curve (AUC) value is then an aggregated measure for the overall performance of the
inference method independent of the threshold parameter. For such an analysis, it is not
sufficient to look at each LRC separately. Here we applied an assessment method proposed
in Bansal et al. (2006), which is similar to a receiver-operator analysis, but also takes the
signs of the inferred interactions into account. Depending on the percentage of correctly
identified interactions, a normalized measure for the fit quality is assigned to an inferred
network structure (see Figure 4.1c), which is 0 in the worst and 1 in the best case. This
overall measure for fit quality was determined for the different scenarios considered before
and the distribution of this measure was investigated by sampling n = 10, 000 network
structures for each setting.
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Fig. 4.8. Performance evaluation of all MRA settings for network inference
obtained with the MAPK test-bed model. Empirical distributions of fit quality of
the inferred networks for different experimental designs and computational strategies for
intermediate (top row) and high (bottom row) noise levels.

Results are shown in Figure 4.8. Here, colour-coded empirical probability distributions of
the discrete set of fit-quality values are shown for different settings. The first and second row
depict results for intermediate and high noise levels, respectively. Different computational
strategies and different perturbation strengths are compared. It can be seen that network
inference works quite well in the 80% KD experiments for both noise levels and almost
independent from the number of replicates and from the strategy to handle replicates. For
intermediate noise levels, also the mixture method and the 50% KD perform very well,
but are more sensitive to increasing noise levels. Both 25% KD and 150% OE perform
worse in all scenarios. It can also be seen that results when considering replicates are not
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markedly different across almost all scenarios if averaging over the GRCs or when using
OLS or TLS. We also compared these statistics across the two control strategies CS1 and
CS2 (e.g. compare Figures S29a-b and S29c-d of the Supplementary material of Thomaseth
et al. (2018)), which shows that the simple control strategy (CS1) is sufficient and there is
no need to evaluate multiple independent control samples for each perturbation experiment.
Similar results were obtained for the p53 model (Figure S30 in the Supplementary material
of Thomaseth et al. (2018)). Taken together, these results further confirm the conclusions
drawn from the quantitative analyses in the previous sections: Firstly, due to noise, large
perturbation are preferable, even for systems with a high degree of non-linearity. Secondly,
it suffices to use a simple experimental strategy with one unperturbed control as reference
for all perturbed conditions.

4.4 Summary and discussion

In this chapter, we went through a comprehensive analysis of the effects of different
experimental and estimation approaches for MRA on the goodness of network inference
from noisy data, in terms of accuracy, precision and robustness. Our results led to some
interesting findings. First, Monte Carlo simulations of concentration measurements with a
realistic noise model for western blot data clearly show a strong increase of heavy-tailedness,
quantified in terms of LMC and RMC values, in the transformation from the GRCs to the
LRCs, while respective values for concentration measurements and GRCs are quite similar
(Figure 4.3). This is a very relevant result, since heavy-tailedness deteriorates estimation
of moments from samples, inducing as consequence a high risk of wrong outcomes for
the network inference problem. In extreme cases, i.e. when certain moments are not
defined, a stable estimation is not possible, even for large sample sizes. At least, this
implies that concentrations and GRCs can be estimated more accurately from concentration
measurements than LRCs. Second, for both test-bed models large perturbations are more
favourable than smaller ones. Estimation of LRCs and hence network inference is much
more accurate when using large perturbations. This is a non-trivial result, since estimation
of the LRCs is done via a finite difference approximation of the GRCs in the MRA workflow,
for which small differences would be beneficial in the absence of noise, since large differences
imply an intrinsic bias. In particular, Figure 4.4 shows a clear clustering of inferred LRCs
according to the perturbation strengths: Results from 80% knockdown simulations show
small biases and small LMC values, while 25% knockdowns show a much higher spread
of bias values and consistently high LMC values. This leads to the clear advice to use
large perturbations in the MRA workflow, even when the underlying model system features
a considerable amount of non-linearity. Furthermore, regarding experimental design in
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the number of controls, our results indicate that a single control for different perturbation
experiments, as often applied in practice, is sufficient (Figure 4.5). While a single control
causes correlations between GRCs, GRC marginals are not much affected. In particular,
there is not much difference in the bias and RMC values of inferred LRC values among
the two control strategies. The bias values are dominated by the intrinsic bias, and this is
true for all tested noise levels. Regarding the required number of measurements and the
estimation method, we advice to use the mean of at least three replicates. The spread of
inferred LRCs decreases monotonically with the number of replicates, while the bias of the
median is dominated by the intrinsic bias (Figures 4.6 and 4.7). Finally, our conclusions
also hold true for the overall network inference problem, as evaluated in this study by
a normalized quality measure for a classification problem (Figure 4.8). Our results in
particular show that learning the network topology is possible with very high accuracy also
for high noise levels in our setting with the 80% knockdown experiments and few replicates.
As pointed out in the introduction, the effect of noise and variability in the data used

for MRA network inference had already been an issue in earlier studies (Andrec et al.,
2005; Santos et al., 2007). In a later work (Santra et al., 2013), the authors developed
an advanced version of MRA, combining it with a Bayesian model selection algorithm,
relaxing also the restriction of required number of perturbation experiments to equal the
number of nodes of the network. However, none of these are comparable in considering
propagation of noise from concentration measurements via GRCs and LRCs to network
topology inference in a consistent stochastic framework with realistic noise assumptions.
These studies also use Monte Carlo techniques, but start with i.i.d. normal distributions
directly on the GRC values, and also completely neglect the effects of heavy-tailedness.
They are also lacking concrete recommendations for experimental design and computational
methodology regarding MRA based network inference.

As with all inference methods, our methodology has some limitations. The MRA frame-
work itself assumes a continuous functional dependence between perturbation parameters
and steady states of the system. This excludes for instance systems which exhibit bifurca-
tions, as they appear for example in positive feedback systems which exhibit multi-stability.
For those systems, the theory only holds as long as the perturbation does not induce a
switch of the system to a different fixed point branch. It might be difficult to decide whether
this is indeed the case in real settings, where the underlying dynamical system is not known.
Furthermore, there might be potential for improvement regarding methodology to solve the
regression problem to calculate the LRCs from the GRCs. Methods like feasible generalized
least squares or MLE might be beneficial in this respect. Finally, evaluation of our findings
and recommendations in a setting with real experimental data is an open issue for the
future.
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In this chapter, we recapitulate the central theme of the entire thesis and summarize
chapter-wise findings. Additionally, we debate some critical aspects, make general remarks,
and discuss few potential prospective extensions of the research presented in this thesis.

5.1 Summary and discussion

A general inference problem requires experimentally measured datasets as input information
for the estimation of the unknown parameters of a mathematical model, which is used to
describe the physical system under investigation.

Particularly in the field of Systems Biology, starting from experimental observations, biol-
ogists and theoreticians cooperate to unravel complex phenomena by means of mathematical
modelling and simulation frameworks. Like any experimentally measured dataset, biological
data suffer from noise sources due to intrinsic variability and measurement techniques. In
this thesis we developed a statistical framework to investigate how noise propagates from
the experimental data over the calculations of an inference problem, eventually affecting the
uncertainty of the estimated parameters. This understanding is essential for a fundamental
analysis of data-driven inference problems, since it contributes towards the optimization of
the experimental design, the development of robust theoretical and simulation frameworks
and finally the achievement of reliable model predictions.
Dealing with the stochastic nature of biological data is a well-established procedure for

inference problems in Systems Biology (Cho and Wolkenhauer (2003); Raue et al. (2013),
Thomaseth et al. (2017)). Nevertheless, a comprehensive analysis of the mechanisms of
noise propagation in terms of transformations of statistical distributions from the input
data to the estimated outputs was still missing in the literature.
This thesis focuses in particular on investigating the role of data normalization with

respect to noise propagation, a post-processing step required for some common experimental
techniques like western blotting (Degasperi et al., 2014; Taylor and Posch, 2014). The
work presented in this thesis was inspired by published results on the effects of data
normalization on hypothesis testing (Degasperi et al., 2014) and sensitivity analysis (Kirch
et al. (2016)). Anyway, there are no studies in the literature taking into account the change
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of the statistical properties of the normalized data with respect to the raw data and the
possible resulting effects on the uncertainty of inference results.
Our analysis begins with Chapter 2, where we investigate the impact of noise trans-

formation due to normalization on statistical inference, meaning the estimation of the
unknown parameters characterizing the statistical model assumed to describe the noisy
absolute protein concentrations. There, we provide an overview of WB measurement
technique and explain the reason behind the requirement of the post-processing step of
normalization. As core assumptions of our statistical framework, we consider the two most
common hypotheses on the nature of noise in the measured raw data, namely log-normal
and normal. In Kreutz et al. (2007) the authors maintain that WB data are generated
by a log-normal distribution, based on the analysis of a large real dataset. Anyway, the
second hypothesis of Gaussian error model is widely considered in the literature as well.
Based on these assumptions, we consider ratio distributions as the straightforward formal
mathematical characterization of the statistical properties of normalized data. We derive
three different classes of such ratio distributions, namely normal, log-normal and Gaussian
ratio. Among them, we primarily focus on the Gaussian ratio distribution and largely
discuss its statistical properties, such as bimodality and heavy-tailedness. These properties
complicate the characterization of summary statistics to quantify the mean and variance of
the distribution, but, under particular conditions, approximation formulas are provided.
Additionally, we investigate the structural identifiability for this class of ratio distributions
and identify a reduced parametrization which better characterizes it. We make use of a
statistical framework to analyse noise propagation from the measured sampled data to
the statistical distributions of the inferred parameters. Estimation results obtained by
means of a Monte Carlo simulation study show that different assumptions on the underlying
GR distribution have profound impact on parameter inference. Thus, from this study
we advice to use GR distributions for inference problems only with constraints, if only
few datapoints are available, as done here, or in cases where heavy-tailedness is explicitly
known to be present. Finally, a comparison of the three classes of error models for the
description of normalized WB data is illustrated through a real dataset of WB knockdown
data normalized with respect to the unperturbed control case, taken from Santos et al.
(2007). Results of statistical model calibration via MLE (see Figure 2.8) show that the
choice of the error model for normalized data has a partial impact on the estimation results.
Obtained estimates of the expected values of the knockdown fold change are also similar
among each other. From these results we could learn that the three considered error models
can be fairly compared among each other as suitable description of normalized WB data.
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Despite the fact that western blotting is a semi-quantitative measurement technique,
signals detected via WB are broadly used as training datasets for dynamic modelling studies.
In this regard, Chapter 3 deals with the problem of investigating noise propagation in
the context of dynamical model calibration for biochemical reaction networks from
relative time series data. This translates into the inference problem of estimating the
unknown kinetic parameters of an ODE model used to describe the dynamics of the
investigated biological system. In particular, we present a statistical framework to analyse
noise propagation in terms of non-linear transformations of statistical distributions, in a
similar way to what we introduced in Chapter 2. By means of a realistic mixed error model,
we generated in silico time series data of the absolute protein concentrations. To imitate the
real experimental scenario, according to which only scaled amounts of the absolute values
can be quantified, we consider three types of normalization strategies commonly used for
WB data. We apply MLE to infer model parameters from the different normalized datasets.
In particular, to define the likelihood function required for the optimization problem, we
consider the three classes of statistical distributions presented in Chapter 2 as possible
error models underlying relative data generation, namely normal, log-normal and Gaussian
ratio distributions. In order to analyse how distributions may be transformed from the
raw experimental data to estimated parameters via normalization, we run Monte Carlo
simulations and apply all combinations of normalization strategies and error models to
solve the inference problem. Finally, we characterize the quality of the estimates by means
of statistical measures to evaluate precision and accuracy of the obtained distributions. Our
analysis is illustrated by means of a simulation study of a test-bed model for a reversible
phosphorylation reaction. Our findings, based on a statistical model comparison, highlight
the fact that normalization by fixed time point should be avoided and we should rather opt
for the strategy of normalization by the mean value. This result holds true independently
from the input noise level. Instead, the choice of the error model used to describe the
normalized data surprisingly does not play a significant role in the considered inference
problem. Furthermore, we could derive some practical advices concerning the total amount
of measured data, with the aim of obtaining more precise and accurate parameter estimates.
Overall, this study highlights the fact that standard noise levels of detected signals and
commonly used amounts of data lead to uncertain parameter estimates, which profoundly
impact the reliability of model predictions.

In Chapter 4 we investigate the effects of noise propagation for the last class of inference
problems considered in this thesis, namely network reconstruction for biological appli-
cations. For this purpose, we consider the Modular Response Analysis (MRA) approach, a
theoretical method based on steady-state perturbation data, which has been frequently used
in the literature to reconstruct biological signalling networks. Following a similar scheme
and methodology of the simulation study described in Chapter 3 for dynamical model
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calibration, we went through a comprehensive analysis of noise propagation from noisy
measured data to estimated Local Response Coefficients (LRCs), quantities that character-
ize the interactions between the nodes of a network. By means of Monte Carlo simulations
and realistic noise assumptions, we could detect the appearance of heavy-tailedness in the
estimated LRCs, fact which entails a high risk of wrong inference results. Through the
quantification of statistical measures, we investigated the effects of different experimental
and estimation approaches on the goodness of MRA-based inference of network topology. By
means of our results, we could then derive useful practical advice to increase the reliability
and robustness of this method for network reconstruction.
As mentioned at the beginning of this section, the content of this thesis represents

a pioneer statistical analysis of noise propagation, which we expressed as a multi-step
non-linear transformation of random variables over the sequence of calculations of different
inference problems. In particular, our interest to understand the possible statistical
implications of WB data normalization on the results of parameter estimation problems
inspired our whole study. Our investigation started with the definition of the different
classes of ratio distributions presented in Chapter 2. Therefore, we analysed at first the
effects on statistical model calibration from normalized data and then extended these
concepts to the investigation of the effects on parameter estimation for dynamical models.
Finally, the last presented study on MRA-based network reconstruction arose from the
fruitful collaboration with Prof. Boris Kholodenko and his team at Systems Biology Ireland,
University College Dublin.
The considered methodological frameworks for parameter inference are broadly used

in the literature, but we are conscious that each considered experimental and estimation
approach has its own limitations, which could be improved at a later stage. For example,
concerning dynamical model calibration, it would be an interesting extension to consider
Bayesian estimation from the posterior distribution instead of the MLE method.

We are aware that our statistical framework cannot be formally generalized to any kind of
inference problem, but rather specifically applied to concrete case studies, taking into account
the experimental and computational specifications and the considered estimation method.
Anyway, we tried to formulate it in an abstract way, by defining the two transformation
levels T1 and T2 which generalize well on the three presented scenarios and possibly to
other application studies. In particular, a remarkable contribution of this thesis was to
characterize the three classes of ratio distributions, which represent the analytical solution
of the first transformation T1 for most of the Systems Biology applications. Therefore,
there is still open space for many utilisations of our statistical analysis and some possible
extensions of this study are discussed in the next section.
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Overall, thanks to this investigation, we were able to show the relevance of taking into
account the effects of noise transformation on inference results. In particular, this study
highlights the fact that non-linear transformations of statistical distributions may lead to
very uncertain and/or erroneous estimation results. Finally, from our statistical analysis
we were able to give practical recommendations on how to optimize the experimental and
methodological design of the considered inference problems.

5.2 Future outlook

As mentioned in the previous section, the analysis presented in this thesis may be generalized
to different classes of inference problems, in which the noisy measured raw data are first
transformed by some post-processing technique, for example, normalization, and after that,
the transformed data are used to solve an optimization problem to estimate the unknown
model parameters. Applying the statistical framework presented in this thesis would then
allow to investigate how the statistical properties of the random variables are transformed
at the different levels, via the two transformations T1 and T2, and how this may impact
the uncertainty of the estimated parameters. Some interesting applications may be, for
example, the estimation of cellular decision making related variables given noisy data of
the underlying molecular process (Balázsi et al., 2011) or the calibration of finite mixture
models from censored or uncensored data (Geissen et al., 2019; Steele and Raftery, 2010).

As future investigations it would be relevant to address some open issues concerning the
results presented in this thesis. First of all, as concerns dynamical model calibration and
MRA-based network reconstruction, it would be necessary to test our theoretical findings
and practical suggestions in settings with real available experimental datasets.

As non-trivial problem, another interesting future direction would be to single out the
factors that induce the appearance of heavy-tailedness in the inferred parameters. This
was the case for the estimated LRCs in Chapter 4, under some experimental conditions.
Instead, we did not observe this property in the estimated parameters θ̂MLE of the ODE
model in Chapter 3. This may depend on the cost function applied for the optimization
problem and probably MLE combined with the simultaneous estimation of error variances
represents a robuster approach in this respect. Another point is that the estimated LRCs
may have both positive or negative values, while we considered parameters, characterizing
dynamic modelling problems, assuming only positive values.

Our statistical approach is primarily based on Monte Carlo analysis. To explore the
whole distribution of all analysed random variables, we need therefore to sample a large set
of realizations, and propagate the noise by solving the inference problem. This approach
may be quite time consuming for rather simple case studies and, therefore, be suboptimal
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for more complex models with a larger amount of unknown parameters. This would be,
for example, the case of an ODE system with a large amount of state variables, whose
solution has to be obtained with numerical integration. For this reason, as future study, it
would be interesting to develop a formal tool to obtain functional relationships between
statistical quantities, e.g. moments, characterizing the transformed distributions. A first
application could be an extension of the results presented in Chapter 2, with the goal to
explore the statistical properties of MLE results of statistical inference for the Gaussian
ratio error model. In this regard, the work in von Luxburg and Franz (2007), presenting
a geometric method to determine confidence sets for the ratio of the mean values of two
random variables x and y, could be a first reference to look at. In this respect, another
option may be the calculation of the unscented transform via a set of selected sigma points.
This represents in fact an established method to estimate the propagation of means and
covariances of probability distributions, when applying non-linear transformations (Julier
and Uhlmann, 2002).
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6.1 Maximum Likelihood Estimation

We present here a brief overview of the method of Maximum Likelihood for parameter
estimation of dynamic models. Parts of the text of this section are taken from the Master
thesis Thomaseth (2012).

We introduce both the formal definition and the practical optimization problem that has
to be implemented, describing some related questions and problems that arise in the search
of the optimal solution. For further and more specific details about the theory we refer to
standard statistical texts, such as Ljung (1987) and Seber and Wild (1989).

This is a statistical framework for parameter estimation, relying on the hypothesis that
observations are realizations of stochastic variables.

We consider a set of observations yi ∈ Rn, i = 1, ..., N , where n is the number of measured
outputs, and i represents the index of the N observed experiments. We collect then all
values in the vector y ∈ Rq, which is simply the sequence of all observations yi, with
q = n ·N .

Suppose that y is a random vector, distributed with unknown probability density function
that belongs to the parametrized family {py(y|θ), θ ∈ Θ ⊆ RM}.
The likelihood function of the set of observations y0 = {yi, i = 1, ..., N} ∈ Rq is the

function Ly0 : Θ→ R+ defined by:

Ly0(θ) = py(y0|θ). (6.1.1)

The “Maximum Likelihood principle”, introduced by Gauss in 1809 and subsequently
popularized by R.A. Fisher, suggests to take as estimate of θ, referring to the observed
data y0, the vector θ̂MLE ∈ Θ that maximizes Ly0(θ):

Ly0(θ̂MLE) = max
θ∈Θ
Ly0(θ), (6.1.2)

that means:
θ̂MLE(y0) = arg max

θ∈Θ
Ly0(θ), (6.1.3)

assuming implicitly that the maximum exists. In this way the value of the vector θ̂MLE is
the one that maximizes the probability to see “a posteriori” the observation y0.
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For the goal of this thesis, we consider the special case when the observation y0 =

(y1, . . . , yN) consist of independent realizations of the random vector. Therefore, the joint
probability density function can be expressed as the product of the probability densities of
the individual observations Åström (1980):

Ly0(θ) = p(y1|θ)p(y2|θ) . . . p(yN |θ). (6.1.4)

6.1.1 Practical optimization problems

As concerns the practical solution of this optimization problem the main question that
arises is where the solution θ̂MLE has to be searched in the parameter space. In a general
framework we expect that the desired result should be a global one, but most of the times
finding the global maximum is a very difficult and complex problem. This occurs especially
if the dimension M of the given parameter vector θ is large and in some cases if the
likelihood function is a very irregular function, with many local maxima and minima or
with stiffness properties.

Moreover in a biological framework the estimated parameter values should be compatible
with their biological meaning, e.g. half-lives, synthesis rates, diffusion rates, and a partial
knowledge of the biochemical context under study can be useful to set some constraints for
parameters, e.g. at least positivity.

For these reasons to implement the optimization problem of interest the solution can not
be easily searched in the entire space RM and we need constraints for our problem. In this
sense we need to impose bounds for each parameter that has to be estimated, and it would
be reasonable to set these bounds in a region where we expect that the solution should lie.

This can be interpreted as an a priori information about the distribution of parameters,
and in a statistical framework this information can be expressed by a probability density
function p(θ), that represents the a priori knowledge about θ before having seen the data y,
and for this reason it is defined prior distribution over parameters.
From a practical point of view imposing bounds on parameters is a useful strategy for

ensuring convergence of MLE optimization algorithms by avoiding, during intermediate
optimization steps, inadmissible parameter values, e.g. negative values under positivity
constraints, that may either hinder recovery to the admissible parameter region or even
cause failure of numerical algorithms such as integration procedures. In a probabilistic
context, imposing hard bounds on parameters by means of lower and upper limits, e.g.
θmin ≤ θ ≤ θmax, can be interpreted as assuming a uniform prior distribution on parameters,
i.e. θ ∼ U(θmin, θmax). If the parameter bounds are wide enough that the maximum
of the likelihood function is attained inside the admissible parameter region then the
bounds are not influential and the MLE estimate coincides with the Maximum a Posteriori
(MAP) estimate, i.e. the parameter value that maximizes the posterior distribution of the
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parameters given the data, under the assumption of a uniform prior. This links the MLE
and the Bayesian inference Ljung (1987).
As last consideration, we underline the fact that building quantitative dynamic models

for intracellular processes is only possible for specific parts of a cell, for which we have
to assume that they function autonomously and can be described in isolation. Anyway
external manipulations made on the specific subsystem do not act only locally but have
certainly multiple effects on other parts spread all over the cell. These effects could involve
unmodelled components that are not considered in the simplified model, and there could
be unexpected results that cannot be explained by the model under study.

It is clear how choosing model constraints and bounds for parameters has a very important
meaning and at the same time it consists in a very difficult task in the construction of
predictive models.

6.2 Statistical models comparison: the Akaike and

Bayesian Information criteria

Both the Akaike Information Criterion and the Bayesian Information Criterion are criteria
for model selection based on the likelihood function, which favours models with the lowest
AIC/BIC values.

The concept of AIC is related to the information theory, indicating the relative amount
of information lost by a considered model when claiming to describe the statistical process
that generated the measured data: the less information a model loses, the higher the quality
of that model. The AIC value is defined as:

AIC = 2k − 2 ln(L(θ̂MLE)), (6.2.5)

with:

• k = # estimated parameters.

As can be read from Equation (6.2.5), the AIC rewards goodness of fit, but it also
includes a penalty that is an increasing function of the number of estimated parameters, in
order to penalize overfitting.
The BIC has a very similar definition to the AIC, but considers the total amount of

observations used for the estimation as prefactor in the penalty term for the number of
parameters:

BIC = ln(n)k − 2 ln(L(θ̂MLE)), (6.2.6)

with:

• n = # observed data
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• k = # estimated parameters

By comparing equations (6.2.5) and (6.2.6), it is evident that the penalty term of the BIC
is larger than that of the AIC when ln(n) > 2, i.e. n > e2 ≈ 7.4⇔ n ≥ 8.

6.3 ODE model of a reversible phosphorylation reaction

From Figure 3.1, we derive the following ODE for the phosphorylated protein concentration:

ṗ∗(t) = k1p(t)− k2p
∗(t)

= k1pTOT − k1p
∗(t)− k2p

∗(t)

= k1pTOT − (k1 + k2)p∗(t). (6.3.7)

In particular, we assume total mass concentration. By defining the state variable x(t) as
the phosphorylated amount with respect to the total protein concentration (see Equation
(3.2.8)), we divide Equation (6.3.7) by pTOT and easily obtain Equation (3.2.9), given by:

ẋ(t) = k1 − (k1 + k2)x(t).

6.4 The GR error model for data normalized by the

mean value: correlation coefficient

We consider the set of normalized measurements obtained with the third normalization
strategy yjN3(tk), which can be written as the ratio of the absolute protein concentration

x̃j(tk) and the corresponding mean value of all time points
1

K

∑K
k=1 x̃

j(tk). We consider
therefore the random variable:

yN3(tk) =
x̃(tk)

1

K

∑K
k=1 x̃(tk)

.

We want to prove that the correlation between numerator and denominator is equal to

ρ =
1√
K

.

For simplicity we write the proof for k = 1 and K = 4, i.e. we consider the random
variable:

yN3(t1) =
x̃(t1)

1

4
(x̃(t1) + x̃(t2) + x̃(t3) + x̃(t4))

.

The results can then be generalized ∀k ∈ {1, . . . , K} and for any value of K ∈ N.
We simplify the notation and define the variables:

• Xk = x̃(tk), k = 1, 2, 3, 4
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• X = X1 +X2 +X3 +X4 = x̃(t1) + x̃(t2) + x̃(t3) + x̃(t4).

We want to calculate the correlation between X1 and X:

Corr(X1, X) =
Cov(X1, X)√

V ar(X1)
√
V ar(X)

. (6.4.8)

• Cov(X1, X) = E[(X1 − E(X1))(X − E(X))]

= E
[
(X1 − µ1)

(
X − 1

4

∑
µk

)]

= E[X1X]− E[µ1X]− E[X1
1

4

∑
µk] + E[µ1

1

4

∑
µk]

= E[X1
1

4
(X1 +X2 +X3 +X4)]− µ1E[X]− E[X1]

1

4

∑
µk + µ1

1

4

∑
µk

= E[
1

4
X1X1 +

1

4
X1X2 +

1

4
X1X3 +

1

4
X1X4]+

− µ1
1

4

∑
µk − µ1

1

4

∑
µk + µ1

1

4

∑
µk

= E[
1

4
X1X1 +

1

4
X1X2 +

1

4
X1X3 +

1

4
X1X4]− µ1

1

4

∑
µk

=
1

4
E[X2

1 ] +
1

4
E[X1X2] +

1

4
E[X1X3] +

1

4
E[X1X4]− µ1

1

4

∑
µk

=
1

4
E[X2

1 ] +
1

4
E[X1]E[X2] +

1

4
E[X1]E[X3] +

1

4
E[X1]E[X4]− µ1

1

4

∑
µk

=
1

4
E[X2

1 ] +
1

4
µ1(µ2 + µ3 + µ4)− 1

4
µ2

1 −
1

4
µ1(µ2 + µ3 + µ4)

=
1

4
E[X2

1 ]− 1

4
µ2

1

=
1

4
V ar(X1) =

1

4
σ2.

• V ar(X) =
σ2

4

=⇒ Corr(X1, X) =

1

4
σ2

σ · 1

2
σ

=
1

2

In general for K timepoints we obtain:

Corr(Xk, X) =

1

K
σ2

σ · 1√
K
σ

=
1√
K

107



6 Appendix

6.5 Parametrization of the GR error model for the

ODE test-bed model application

For the parameter estimation study applied to the ODE test-bed model presented in
Chapter 3, we have to implement the Likelihood function for the three considered EMs (see
equations (3.2.18), (3.2.19) and (3.2.20)–(3.2.22)), which depend on the specific simulated
model outputs and on the chosen NS. In the particular case of the GR distribution we have
to define the parametrization θ3 = (a, b, r, s), specifically for all three NSs. In particular,
we compare equations (3.2.20)–(3.2.22) with the general case given in Section 2.3, which
defines the GR distribution of the RV z = x/y, ratio of the two normal RVs x ∼ N (µX , σ

2
X)

and y ∼ N (µY , σ
2
Y ) with correlation ρ. We also need equations (2.3.14) for the definition

of the four identifiable parameters a, b, r, s given µX , µY , σX , σY , ρ.
First, we look at the parameters s and r, which can be univocally determined for all

three NSs.

• NS1 and NS2: from the two assumptions of uncorrelated RVs x̃(tk) ∼ N (x(tk, θ), σ
2)

(ρ = 0) with the same SDs (σX = σY ), valid for different time points, we obtain:

– s = 0

– r = 1

• NS3: In this case we can prove that ρ =
1√
K

and that σY =
1√
K
σX (see equation

(3.2.22)). We obtain then:

– s = 1

– r =
1√

K − 1
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6.5 Parametrization of the GR error model for the ODE test-bed model application

As concerns the remaining two parameters a and b, we obtain that both depends on
the unknown parameters to be estimated, while a also depends on the time point of the
corresponding measurement tk, for all three different normalization strategies:

• NS1:

– ak(θ, σ) =
x(tk, θ)

σ
, k = 2, . . . , K

– b(θ, σ) =
x(t1, θ)

σ

• NS2:

– ak(θ, σ) =
x(tk, θ)

σ
, k = 1, . . . , K − 1

– b(θ, σ) =
x(tK , θ)

σ

• NS3:

– ak(θ, σ) =
(x(tk, θ)− xmean(θ))

√
K

σ
√
K − 1

, k = 1, . . . , K

– b(θ, σ) =
xmean(θ)

√
K

σ
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6 Appendix

6.6 Impact of number of time points on the uncertainty

of ML estimates

Normal EM Log-normal EM Gaussian ratio EM
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N
S
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N
S
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Fig. 6.1. Effect of the amount of time points K under realistic experimental
settings. Absolute values of the bias of the median versus IQR values for both estimated
parameter values obtained with K = 4 or K = 8 time points and J = 1 replicate. These
statistics are given for four different noise levels obtained combining the value ση ∈ {0.05
(green/blue), 0.1 (red/magenta)} and σε ∈ {0.01, 0.02} (indicated by increasing darkness).
Green and red dots refer to the parameter k̂1,MLE, while blue and magenta refer to k̂2,MLE.
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6.6 Impact of number of time points on the uncertainty of ML estimates
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Fig. 6.2. Effect of the amount of time points K under realistic experimental
settings. Absolute values of the bias of the median versus MSE values for both estimated
parameter values obtained with K = 4 or K = 8 time points and J = 1 replicate. These
statistics are given for four different noise levels obtained combining the value ση ∈ {0.05
(green/blue), 0.1 (red/magenta)} and σε ∈ {0.01, 0.02} (indicated by increasing darkness).
Green and red dots refer to the parameter k̂1,MLE, while blue and magenta refer to k̂2,MLE.
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6.6.1 Estimated parameters for increasing K – J = 1

• J = 1, K ∈ {4, 8}, Normal error model

Low noise High noise
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3

Fig. 6.3. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 1,
K ∈ {4, 8} and assuming the normal error model. The estimated parameters were
obtained with the three different sets of normalized data (rows) and two noise levels (low
on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each scenario
the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE (on the
diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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6.6 Impact of number of time points on the uncertainty of ML estimates

• J = 1, K ∈ {4, 8}, Log-normal error model

Low noise High noise
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Fig. 6.4. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 1,
K ∈ {4, 8} and assuming the log-normal error model. The estimated parameters
were obtained with the three different sets of normalized data (rows) and two noise levels
(low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each
scenario the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE

(on the diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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• J = 1, K ∈ {4, 8}, Gaussian ratio error model

Low noise High noise
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Fig. 6.5. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 1,
K ∈ {4, 8} and assuming the Gaussian ratio error model. The estimated parameters
were obtained with the three different sets of normalized data (rows) and two noise levels
(low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each
scenario the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE

(on the diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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6.6 Impact of number of time points on the uncertainty of ML estimates

6.6.2 Estimated parameters for increasing K – J = 6

• J = 6, K ∈ {4, 8}, Normal error model

Low noise High noise
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Fig. 6.6. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 6,
K ∈ {4, 8} and assuming the normal error model. The estimated parameters were
obtained with the three different sets of normalized data (rows) and two noise levels (low
on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each scenario
the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE (on the
diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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• J = 6, K ∈ {4, 8}, Log-normal error model

Low noise High noise
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Fig. 6.7. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 6,
K ∈ {4, 8} and assuming the log-normal error model. The estimated parameters
were obtained with the three different sets of normalized data (rows) and two noise levels
(low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each
scenario the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE

(on the diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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6.6 Impact of number of time points on the uncertainty of ML estimates

• J = 6, K ∈ {4, 8}, Gaussian ratio error model

Low noise High noise
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Fig. 6.8. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 6,
K ∈ {4, 8} and assuming the Gaussian ratio error model. The estimated parameters
were obtained with the three different sets of normalized data (rows) and two noise levels
(low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each
scenario the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE

(on the diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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6.6.3 Estimated parameters for increasing K – J = 10

• J = 10, K ∈ {4, 8, 12}, N-EM
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Fig. 6.9. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 10,
K ∈ {4, 8, 12} and assuming the normal error model. The estimated parameters were
obtained with the three different sets of normalized data (rows) and two noise levels (low
on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each scenario
the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE (on the
diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.

118



6.6 Impact of number of time points on the uncertainty of ML estimates

• J = 10, K ∈ {4, 8, 12}, LN-EM
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Fig. 6.10. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J = 10,
K ∈ {4, 8, 12} and assuming the log-normal error model. The estimated parameters
were obtained with the three different sets of normalized data (rows) and two noise levels
(low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02 For each
scenario the plot shows the two marginal distributions (histograms) of k̂1,MLE and k̂2,MLE

(on the diagonal) and the symmetrical scatter plots in the 2-dimensional parameter space.
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• J = 10, K ∈ {4, 8, 12}, GR-EM

Low noise High noise
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Fig. 6.11. Marginals and scatter plots of k̂1,MLE and k̂2,MLE, obtained for J =
10, K ∈ {4, 8, 12} and assuming the Gaussian ratio error model. The estimated
parameters were obtained with the three different sets of normalized data (rows) and two
noise levels (low on the left: ση = 0.05, σε = 0.01, high on the right: ση = 0.1, σε = 0.02

For each scenario the plot shows the two marginal distributions (histograms) of k̂1,MLE and
k̂2,MLE (on the diagonal) and the symmetrical scatter plots in the 2-dimensional parameter
space.
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6.7 Statistical model comparison - high noise level

6.7 Statistical model comparison - high noise level

Fig. 6.12. Statistical model comparison. Box plots of the BIC values (6.2.6) calculated
with the estimation results obtained using the different datasets from the three normalization
strategies NS1, NS2 or NS3 and two EMs (N and GR). These results were obtained with
K = 12 time points, J = 10 replicates and the high noise level of the input data: ση = 0.1
and σε = 0.02.
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6.8 Estimated σ̂MLE

Fig. 6.13. Box plots of σ̂MLE corresponding to the SD of the assumed N-EM or GR-EM,
obtained using the different datasets from the three normalization strategies NS1, NS2 or
NS3. These results were obtained with K = 12 time points, J = 10 replicates and the low
noise level of the input data: ση = 0.05 and σε = 0.01.

Fig. 6.14. Box plots of σ̂MLE corresponding to the SD of the assumed N-EM or GR-EM,
obtained using the different datasets from the three normalization strategies NS1, NS2
or NS3. These results were obtained with K = 12 time points, J = 10 replicates and the
high noise level of the input data: ση = 0.1 and σε = 0.02.

6.9 The MAPK and the p53 ODE models

Figure 6.15 shows the two test-bed models which are used in the study presented in Chapter4.
Both models are based on previously published models for the MAPK (Kholodenko, 2006)
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6.9 The MAPK and the p53 ODE models

and p53 (Fey et al., 2016) systems. Parameters have been chosen in order to obtain an
EGF-induced MAPK model that behaves relatively linear and a p53 DNA-damage response
model that behaves strongly nonlinear. This reflects the observed behaviour of these systems
(Kholodenko et al., 2010; Purvis et al., 2012).

A model of signal transduction of the MAPK pathway upon EGF stimulation is illustrated
in Figure 6.15a. It consists of a three-tiered cascade of phosphorylation-dephosphorylation
cycles in which pRaf phosphorylates and thereby activates MEK, which then activates
ERK, which negatively feeds back to Raf. Both MEK and ERK require phosphorylation at
two sites to become fully activated, which is for simplicity assumed to happen in a single
reaction step for both proteins. This system is described by a dynamical model in the
form of ODEs ẋ = f(x, θ), x ∈ R3

+. The state variables x(t) = [x1(t), x2(t), x3(t)]
> refer

to the active states of the three proteins pRaf, ppMEK and ppERK. The input u(t) =

EGF is set to a constant value u(t) = 1. The initial conditions of the state variables are
set to zero, i.e. there are no active states at time t = 0. The total concentrations of the
three states are RafTOT,MEKTOT,ERKTOT = 20. The kinetic rates and other parameter
values are: k1 = 5, K+

m1 = 20, Vm1 = 10, K−m1 = 20, k2 = 3, K+
m2 = 20, Vm2 = 10, K−m2 =

20, k3 = 1, K+
m3 = 20, Vm3 = 10, K−m3 = 20, Kmf = 5. Perturbation parameter p1, p2 and p3

correspond to fold changes in total protein amounts. One after the other they are set to
some defined value smaller or greater than 1, the same for all perturbation experiments.
To obtain the simulation results presented in the manuscript, we considered the values
pj ∈ {0.2, 0.5, 0.75, 1.5},∀j = 1, 2, 3, that represent 80%, 50% and 25% knockdown or 50%
overexpression of the total protein concentrations.

Figure 6.15b illustrates activation of p53 by pATM. Active p53 triggers expression of
MDM2, which is in turn involved in the degradation of p53, resulting in a negative feedback
loop. Both p53 and MDM2 are subject to synthesis and degradation, and model variables
x1, x2 and x3 correspond to pATM, p53 total amount and MDM2, respectively. As before,
perturbation parameters p1, p2 and p3 describe fold changes in ATM total amount, and in
p53 and MDM2 synthesis rates.

The initial conditions of the state variables are set to zero, i.e. there are no active states
at time t = 0. The input is set to a constant value u(t) = 1. The kinetic rates and
other parameter values are: k1 = 3, K1 = 0.5, k2 = 5, K2 = 0.5, k3 = 1, n5 = 5, K5 =

0.1, k4 = 1, KD = 0.01, k6 = 1, n6 = 5, K6 = 0.5, k7 = 1. The total concentration of ATM
is ATMTOT = 1.

In both subfigures, graphs indicate the steady states of the system variables as functions
of the perturbation parameters. While these curves can well be approximated by linear
functions in the first case, they show a more pronounced non-linear behaviour in the second
case.
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a)
u = EGF

Raf pRaf

MEK ppMEK

ERK ppERK

ẋ1 = k1 ·
(p1RafTOT − x1) · u

K+
m1 + p1RafTOT − x1

· Kmf

Kmf + x3
− Vm1 ·

x1

K−
m1 + x1

ẋ2 = k2 ·
(p2MEKTOT − x2) · x1
K+

m2 + p2MEKTOT − x2
− Vm2 ·

x2

K−
m2 + x2

ẋ3 = k3 ·
(p3ERKTOT − x3) · x2
K+

m3 + p3ERKTOT − x3
− Vm3 ·

x3

K−
m3 + x3

.

b) u

ATM pATM

p53u p53ak3

∅ ∅

p53TOT

MDM2∅

ẋ1 = k1 · u · (p1ATMTOT − x1)

K1 + (p1ATMTOT) − x1
− k2 ·

x1
K2 + x1

ẋ2 = p2k3 − k4 ·
(
1− xn5

1

xn5
1 +Kn5

5

)
· (1 + x3/KD) · x2 − k4 ·

xn5
1

xn5
1 +Kn5

5

· x2

ẋ3 = p3k6 ·
xn6
2

xn6
2 +Kn6

6

− k7 · x3.

Fig. 6.15. Two test-bed models. Shown are the reaction kinetic schemes (left), the
ODE system (right top) and the dependencies of the logarithm of the state variables on the
perturbation parameters (right bottom) for (a) the MAPK system; (b) the p53 system.

6.10 Medcouple

Given a set of n independent samples {x1, ..., xn} from a continuous univariate distribution,
with median mn, the medcouple is defined as

MC = med
xi≤mn≤xj

h(xi, xj), with h(xi, xj) =
(xj −mn)− (mn − xi)

xj − xi
,∀xj 6= xi. (6.10.9)

The kernel function h(xi, xj) measures the (normalized) difference between the distances
of xi and xj to the median. The medcouple represents a robust measure of the asymmetry
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6.11 MRA estimation methods

of a distribution, which can be computed also for distributions without finite moments,
which is not the case for the classical skewness coefficient (Brys et al., 2004). As robust
measure of tail weight, the authors propose to apply the medcouple only to one single side
of the distribution, leading to Left Medcouple (LMC) and Right Medcouple (RMC) (Brys
et al., 2006):

LMC = −MC(x < mn) and RMC = MC(x > mn). (6.10.10)

The calculation of such quantities for all datasets in our study was performed with the
Matlab toolbox LIBRA (Verboven and Hubert, 2010), developed by the same authors,
which can be downloaded from:
https://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home.

6.11 MRA estimation methods

For the estimation problem, we have to solve equation (4.2.7), y = A · x, which is a linear
regression model, in the unknown variable x. Assuming no error in the regression variables,
i.e. in the entries of the matrix A, and i.i.d. normal errors in the variable y, we obtain the
well known Ordinary Least Squares (OLS) solution, given in equation (4.2.8). However,
this assumption is wrong, since the entries in the matrix A are also affected by noise, being
samples of GRCs. One option is to consider error-in-variables models, such as Total Least
Squares (TLS), whose computation requires singular value decomposition and is presented
in Andrec et al. (2005).
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