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Zusammenfassung

Die Fehlersuche in analytischen Anfragen an verteilte Systeme wie Apache
Spark, Flink oder Hive ist ein aufwendiger Prozess, insbesondere wenn große
Datensätze mit geschachtelten Daten analysiert werden. Um diesen Fehlersu-
cheprozess zu erleichtern, stellen wir in dieser Arbeit neue Ansätze vor, die
Erklärungen für vorhandene und fehlende Daten im Anfrageergebnis liefern.
Diese Ansätze basieren auf einem formalen Daten- und Ausführungsmodell,
das die Ausführungssemantik von verteilten Systemen möglichst direkt ab-
bildet. Die direkte Abbildung ermöglicht die Erstellung von praxisnahen
und relevanten Erklärungen, die beschreiben, warum Daten im Ergebnis
vorhanden sind oder fehlen.

Unser erster Beitrag ist ein neuartiger, verteilter und skalierbarer Algo-
rithmus zum Abgleich von sogenannten Tree-Patterns auf verschachtelten
Daten in datenparallen Systemen. Die Patterns ermöglichen es, geschach-
telte Datenwerte beliebig zu kombinieren und somit präzise zu adressieren
und abzufragen. Sie sind eine wichtige Voraussetzung, um die genannten
Erklärungen für einzelne geschachtelte Datenelemente zu erhalten. Der
Algorithmus gleicht ein Tree-Pattern in zwei Schritten mit den Daten ab.
Er berechnet im ersten Schritt Übereinstimmungen auf dem Schema und
wendet diese Übereinstimmungen in einem zweiten Schritt auf die Daten-
werte an. Dadurch wird ein komplexer globaler Zustand vermieden, der
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bisherige Algorithmen daran hindert, auf großen verteilten Systemen und
großen Datensätzen zu skalieren.

Außerdem stellen wir neuartige Methoden zur Berechnung von Erklärun-
gen auf geschachtelten Daten vor. Sie basieren auf Provenance. Provenance
beschreibt im Allgemeinen die Herkunft und Ableitung der Ergebnisdaten
einer analytischen Anfrage. Um Erklärungen für vorhandene Daten bereit-
zustellen, führen wir die neuartige strukturelle Provenance ein. Zusätzlich
zu Datenabhängigkeiten erfasst sie strukturelle Veränderungen auf den ge-
schachtelten Daten. Sie liefert umfassendere Erklärungen als existierende
Ansätze, da sie zwischen Lese- und Schreibzugriffe auf den Daten unterschei-
det und zwar so feingranular, dass sie zwischen einzelnen, geschachtelten
Datenattributen unterscheidet. Wir definieren Regeln, die unser Ausfüh-
rungsmodell erweitern, um die strukturelle Provenance zu erfassen. Die
nach diesen Regeln erfasste strukturelle Provenance verursacht einen hohen
Laufzeitzuwachs beim Ausführen der analytischen Anfrage. Deshalb stel-
len wir den Pebble-Algorithmus vor, der eine optimierte, leichtgewichtige
strukturelle Provenance erfasst. Sie ermöglicht eine Skalierung auf große, ge-
schachtelte Datensätze. Da Pebbles Erklärungen umfangreicher sind als die
bisheriger Provenance-Lösungen, kann man Pebble für neue Anwendungs-
fälle jenseits der Fehlersuche einsetzen, wie beispielsweise einem Auffinden
von Datennutzungsmustern oder eines feingranularen Auditing.

Darüber hinaus stellen wir in dieser Arbeit einen neuartigen Ansatz vor,
der Erklärungen für fehlende Daten im Ergebnis einer analytischen Anfrage
liefert. Diese Erklärungen finden Operatoren in der analytischen Anfrage, die
verhindern, dass fehlende Daten im Ergebnis auftauchen, dort aber erwartet
werden. Unser Ansatz ist der erste, der geschachtelte Daten unterstützt und
Operatoren findet, die das Schema und die Struktur der Daten verändern,
wie beispielsweise die Projektion. Außerdem berücksichtigt er fälschlicher-
weise referenzierte Attribute in der Anfrage. Daher sind die Erklärungen
von unserem Algorithmus im Vergleich zu den Erklärungen existierender,
provenance-basierter Lösungen auf eine größere Vielfalt von Datensätzen
und auf neuartige Fehlerszenarien anwendbar. Um diese umfangreicheren Er-
klärungen zu erhalten, erweitert unser Ansatz provenance-basierte Lösungen
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um Reparametrisierungen. Reparametrisierungen beschreiben Parameter-
änderungen in den Operatoren einer Anfrage. Wir führen diese formal ein,
basierend auf unserem Ausführungsmodell, und leiten eine formale Definiti-
on unserer abfragebasierten Erklärungen ab. Um die Erklärungen effizient
auf großen, verschachtelten Datensätzen zu berechnen, schlagen wir einen
neuartigen heuristischen Algorithmus vor, den wir Breadcrumb nennen. Er
setzt zwei neuartige Konzepte um. Erstens nutzt er sogenannte Schemaalter-
nativen, um falsch referenzierte Attribute zu berücksichtigen, und zweitens
validiert er das Zwischenergebnis nach jedem Operator in einer analytischen
Anfrage erneut. Damit prüft er, welche Daten zur fehlenden Antwort beitra-
gen können. Das ist notwendig, um korrekte Erklärungen für verschachtelte
Daten zu liefern.
Wir implementieren den Algorithmus für die Tree-Patterns, den Pebble-

Algorithmus, und den Breadcrumb-Algorithmus exemplarisch in Apache
Spark, um zu zeigen, dass die drei Algorithmen mit wachsenden Datenmen-
gen skalieren. Deshalb führen wir sie auf mindestens zwei verschachtelten
Echtweltdatensätzen mit bis zu 500 GB Größ aus. Wir veranschaulichen
außerdem, dass die Tree-Pattern die Anfragekomplexität verringern und
zeigen, dass Pebble und Breadcrumb umfassendere Erklärungen liefern als
andere zeitgemäße Lösungen. Dadurch können sie für neuartige Anwen-
dungsfälle genutzt werden.
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Abstract
Debugging analytical queries in big data analytics systems, such as Apache
Spark, Flink, or Hive is a tedious process, especially when large datasets
with nested data are involved. To ease this debugging process, we present
novel approaches to obtain explanations for existing and missing data in
the query result based on a formal data and execution model that faithfully
captures the execution semantics of big data analytics systems to provide
practically meaningful explanations. These explanations describe why data
are present or absent from the result.
Our first contribution is a novel, distributed, and scalable algorithm that

matches tree-patterns on nested data in big data analytics systems. It en-
ables us to precisely address and query nested data values and arbitrary
combinations of them. We leverage this tree-pattern matching algorithm
to request explanations for queries over large, nested data. The algorithm
matches the pattern onto the data in two steps. It computes matches on
the schema in the first step and applies these matches on the data values
in a second step. Hence, it avoids complex global state that prevents other
state-of-the-art algorithms to scale horizontally on large compute clusters
and dataset sizes.
In addition to the tree-pattern matching algorithm, we leverage prove-

nance to find the explanations. Provenance describes the origins and deriva-
tion of the result data. To provide explanations for existing data, we introduce
the novel structural provenance. It traces structural manipulations in addition
to data dependencies through the query pipelines. It provides more compre-
hensive explanations than other existing approaches since it distinguishes
between accessed and manipulated data at the granaluratity of individual
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nested attributes. We define formal capture rules for the structural prove-
nance that extend our execution model. Capturing the strucural provenance
according to these rules imposes a high runtime overhead. Thus, we con-
tribute the Pebble algorithm that implements an optimized, lightweight
structural provenance to scale to large, nested datasets. Pebble’s explana-
tions enable novel use-cases beyond debugging, such as finding data-usage
patterns or fine-grained auditing.
Furthermore, we contribute a novel approach to query-based explana-

tions for missing data in a query result. Query-based explanations pinpoint
operators in the query that prevent expected data from appearing in the
result. This data is called missing data or missing answer. Our approach is
the first to support nested data and to consider operators that modify the
schema and structure of the data such as the nesting or projection operator
as potential causes of missing answers. Additionally, it accounts for mistak-
enly referenced attributes in the query. Hence, our explanations apply to a
wider range of datasets and to novel error scenarios compared to existing,
provenance-based solutions. Our approach extends these solutions with
reparameterizations. Reparameterizations describe parameter modifications
in query operators. We formally introduce them based on our execution
model and derive a formal definition of our query-based explanations. To
efficiently compute the explanations over large, nested datasets, we propose
a novel heuristic algorithm, called Breadcrumb. It applies two unique tech-
niques: (i) It reasons about multiple schema alternatives to account for the
mistakenly referenced attributes and (ii) it re-validates each intermediate
result to check whether its data can contribute to the missing answer. That
is necessary to provide correct explanations for nested data.
We implement the tree-pattern matching algorithm, Pebble, and Bread-

crumb in Apache Spark to show that each algorithm scales with increasing
dataset sizes. Therefore, we run the algorithms on at least two nested real-
world workloads of up to 500GB. We illustrate that tree-patterns simplify the
query pipelines and show that Pebble and Breadcrumb provide more com-
prehensive explanations than other state-of-the-art solutions which enable
novel use-cases.
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Introduction

Big data analytics systems, such as Apache Spark, Apache Flink, or Apache
Hive, process vast amounts of heterogeneous data. They run on computing
clusters with distributed computing nodes and provide an interface that
takes SQL-like queries as input.
Such systems have become popular in recent years for multiple reasons.

Among these are their ability to scale with an increasing number of compute
nodes in the system and to support the processing of nested data formats.
When more nodes are added to such a system, it can process bigger datasets
or process the same datasets faster. Furthermore, the big data analytics
systems support data formats, such as JSON, Parquet, or ProtocolBuffer,
commonly used to exchange data across the internet. Unlike relational
data formats, these data formats allow for nesting tuples and relations
into attributes. Furthermore, these systems provide rudimentary means to
transform nested tuples and relations, such as a flatten operator that unnests
tuples in nested collections or a nesting operator that collects tuples into a
new nested relation.
However, the systems lack means to query arbitrary nested data values

and combinations of them. A well-established means to address individual
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nested data values is tree-pattern matching. A tree-pattern allows to specify
the structure and values of nested data [HD13]. Its nodes describe attributes
in the data and may hold further constraints on attribute values. Its edges
describe structural dependencies between the attributes. A tree-pattern
matching algorithm applies the tree-pattern onto the nested data to obtain
all data that comply with all constraints in a tree-pattern.
Furthermore, the demand to debug complex queries grows because of

the increasing popularity of big data analytics systems. Therefore, mul-
tiple debugging approaches are being researched. For instance, BigDe-
bug [GIY+16] extends Apache Spark with debugging primitives to sup-
port simulated breakpoints, watchpoints, and fine-grained latency moni-
toring. Other approaches, such as Titian [IST+15], Lipstick [ADD+11],
Newt [LDY13], and RAMP [IPW11], capture provenance to reason about
data in the query result.

In general, provenance describes any information about an end product’s
production process, which can be anything from a piece of data to a physical
object [HDB17; MBC13]. In the context of this work, provenance describes
data dependencies between input data and output data of entire queries
or the individual operators within queries. These dependencies allow for
reasoning about existing and missing data in the output. Existing data are
part of the result, whereas missing data are not part of the result, even
though they are expected.

Leveraging provenance to find explanations for existing and missing data
has been the subject of prior research. The works that focus on provenance-
based explanations for existing data are either of three types. (i) They are
designed for flat relational data [AFG+18; MDG18] and do not trivially
extend to nested data. (ii) They are designed to scale in big data analytics
systems [IPW11; IST+15; LDY13] but lack provenance support for nested
data. (iii) They are designed for nested data but cannot scale on big data
analytics systems [ADD+11; CAA14; FGT08; ZAI19].

Research that focuses on provenance-based explanations for missing data
falls into one of three categories. (i) The first group of publications computes
instance-based explanations, which provide missing data in the input as
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explanations [HH10; HHT09; LKLG17; LLG20; MGMS10]. (ii) The second
group of publications focuses on query-based explanations [BHT14; BHT15;
CJ09]. They reveal operators in a query that prevent the missing data from
appearing in the queries’ results. (iii) The last group of publications provides
refinement-based explanations [ILZ14; TC10]. They provide information
on how to modify the query to obtain the missing data. To the best of our
knowledge, these existing approaches are all limited to small, relational
datasets.
This thesis addresses the previously mentioned shortcomings of existing

approaches to provide comprehensive query debbugging means for analytical
queries that process large amounts of nested data in big data analytics
systems. Its overarching research question is how to leverage provenance
to explain existing and missing query results in big data analytics systems
when processing nested data. This thesis studies the problem from the
ground up. Hence, it addresses the following research questions in the
context of nested data: (i) How can a big data analytics system support
tree-pattern matching to pinpoint and retrieve nested data in a scalable and
distributed way, e.g., to identify the data to be explained. (ii) How can a
system compute explanations for existing data in a more comprehensive and
scalable way than existing solutions? (iii) How can a system comprehensively
compute explanations for missing data in a scalable way? The next subsection
summarizes our main contributions and research results that address the
aforementioned questions.

1.1 Contributions

To explain existing and missing query results in big data analytics systems
that process nested data, we make the following contributions:

(1) Data and execution model. We define a nested data model and a
nested relational algebra for bags to formally describe the explanations
for existing and missing data. The nested data model supports nested
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tuples and bags to faithfully depict the data structures of commonly
used nested file formats such as JSON, Parquet, or ProtocolBuffer.
The nested relational algebra for bags (NRAB) describes the operators
available to query the data. The operators in the algebra are closely
corresponding to commonly available operators in big data analytics
systems to provide meaningful explanations. For each operator, the
algebra provides an inference rule that describes the operator’s seman-
tics. Together, the data model and the relational algebra allow for
richer explanations than the ones provided by most other state-of-the-
art solutions. We leverage them to formalize the research questions
and the explanations and express the limitations of our approaches.
The definitions relating to the nested data model and algebra have
been published as part of [DH20b; DLHG21a; DLHG21b].

(2) Distributed, scalable tree-pattern matching. We contribute a dis-
tributed, scalable tree-pattern matching algorithm to query arbitrary,
nested data in big data analytics systems. Tree-patterns generally
allow for precisely exploring and exctracting arbitrarily nested data.
We further leverage them to query and compute the explanations for
nested data values.
Our matching algorithm is designed to scale horizontally on distributed
computing clusters. Unlike state-of-the-art algorithms, our algorithm
avoids using global state machines or computing large amounts of
intermediate results. They hinder the other algorithms from scaling on
distributed systems. Instead, it exploits the fact that big data analytics
systems process collections of tuples that share a common schema.
It splits the matching into two distinct phases: a schema matching
phase and a data matching phase. In the schema matching phase, the
algorithm matches the tree-pattern’s nodes onto the schema to obtain
schema matches. It uses the schema matches to prune the search
space when matching the data values. In the data matching phase,
it is indeed sufficent to check for each tuple in the input relation if
it conforms to a schema match. When this is the case, the algorithm
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checks further constraints defined in the tree-pattern, such as value
constraints. If all constraints are satisfied, the tuple matches the tree-
pattern. Since the algorithm applies each schema match on every
tuple in the input relation independently, this phase scales out to the
compute resources in the big data analytics system. The tree-pattern
matching algorithm has been published in [DH20a].

(3) Explanations for existing data. We use the tree-patterns to request
explanations for data existing in a result and propose the novel concept
of structural provenance that captures the access to and the maniplua-
tion of nested data in addition to mere data dependencies. That allows
for fine-grained explanations and efficient provenance capture at the
same time. Existing provenance solutions for nested data only trace
manipulated data and lack scalability to large datasets.
We formally extend our algebra’s operators with capturing rules for
structural provenance annotations. The annotations are sufficient to
compute explanations for arbitrary nested data elements but hold
redundant information. Therefore, we introduce a lightweight version
of the structural provenance annotations that reduces the annotation
overhead to the amount of state-of-the-art solutions that exclusively
capture annotations for flat data.
We implement the lightweight structural provenance in the Pebble al-
gorithm. It captures the lightweight annotations during query pipeline
execution and computes explanations for nested data when an ex-
planation for selected data in the result is requested. These expla-
nations carry information on the accessed and manipulated data at
the granularity of individual nested data values. We illustrate that
the explanations enable novel use-cases beyond debugging such as
identifying data-usage patterns or comprehensive auditing analytics.
We further show that Pebble scales to large dataset sizes. Work relating
to Pebble has been published in [DH19; DH20b]

(4) Explanations for missing data. In addition to the explanations for
existing data, we contribute a novel approach to query-based explana-
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tions for missing, nested data. Existing, provenance-based approaches
are limited to flat relational data. Hence, our approach supports a
wider variety of input data formats. Furthermore, existing approaches
exclusively find selective operators that remove the missing data from
the output. Our approach extends them with the novel concept of repa-
rameterizations. Reparameterizations reflect any changes to operator
parameters in a query. Therefore, our explanations reveal more error
scenarios than previous approaches, such as misinterpreted attributes
that prevent data to appear in the result.
We formally introduce the nested reparameterizations and explanations
based on our nested algebra to define allowable reparameterizations.
To avoid superfluous operator reparameterizations, our explanations
only consider query reparameterizations that modify exactly the op-
erators needed to obtain the missing data in the result. To avoid
unnecessary changes to the query result, the explanations further con-
sider side-effects on the query result. Side-effects are all data that
appear or disappear in the result in addition to the expected data after
reparameterizations. Given a tree-pattern that describes the missing
data, we define successful reparameterizations as reparameterizations
that yield the missing answer. They are minimal if no other successful
reparameterization exists that modifies a subset of its operators and,
additionally, has fewer side-effects on the query result. Explanations
correspond to the set of reparameterized operators in the minimal
successful reparameterizations.
Finding these explanations is computationally infeasible. Therefore,
we propose the scalable, heuristic Breadcrumb algorithm that leverages
schema alternatives and revalidation to approximate the explanations
for a practically relevant set of queries. The schema alternatives repre-
sent sets of reparameterizations that replace attributes in the query
with alternative attributes. They allow Breadcrumb to trace large
amounts of reparameterizations simultaneously. The revalidation en-
sures that Breadcrumb does not mark data as potentially contributing
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to the missing result that cannot produce the missing result. Based
on these concepts, Breadcrumb provides larger numbers of more com-
prehensive query-based explanations than state-of-the-art solutions.
It computes them on nested datasets that are 1000+ times larger
than the datasets used to evaluate previous solutions. We have pub-
lished our research on Breadcrumb in [DGHL19; DLGH21; DLHG21a;
DLHG21b].

(5) Implementation and evaluation. To evaluate the tree-pattern match-
ing algorithm, the Pebble algorithm, and the Breadcrumb algorithm,
we integrate them into Apache Spark. While Apache Spark is our big
data analytics system of choice the concepts introduced in this work
also apply to other big analytics systems, such as Apache Flink, Apache
Hive, and Apache Pig.
We conduct multiple experiments on at least two real-world datasets of
up to 500GB size to show that the three implemented algorithms scale
with increasing dataset sizes on distributed compute resources. We fur-
ther conduct algorithm-individual experiments to measure algorithm-
specific runtime or space properties.
Furthermore, we show that the tree-pattern matching algorithm signif-
icantly simplifies the query pipeline definition. Pebble provides such
comprehensive explanations that it enables novel use-cases such as
auditing or identifying data-usage patterns. Breadcrumb yields more
comprehensive explanations than other state-of-the-art solutions. We
can even show that it is the only query-based solution that finds correct
and complete explanations in multiple real-world scenarios. The re-
sults have been published alongside the algorithms in the publications
cited above.

The five contributions directly address this thesis’ research question on
explaining existing and missing query results on nested data in big data
analytics systems. Contribution (1) provides the formal data and execution
model used to formally describe and scope the problem of our explanations.
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Contribution (2) directly addresses the research question (i). Contribu-
tions (3) and (4) leverage the tree-patterns from Contribution (2) to query
the explanations. Contribution (3) provides explanations for existing data
and addresses research question (ii). Contribution (4) yields explanations
for missing data. Hence, it answers research question (iii). Contribution (5)
emphasizes on the scalability of Contributions (2) to (4) and the explanation
quality of Contributions (3) and (4). Together, all five contributions provide
a detailed answers to the thesis’ overall research question.

Next, we introduce a running example that illustrates the explanations for
existing and missing data. Furthermore, it motivates the need for a scalable
tree-pattern matching algorithm, since Pebble and Breadcrumb need to
leverage it to compute the explanations.

1.2 Running example

To illustrate our contributions throughout this work, we introduce a running
example based on nested customer data. Table 1.1 shows five customers with
their firstname and lastname and the two address attributes address1 and
address2, which could represent the billing and shipping address along with
a timestamp of their last usage. The address attributes hold nested relations
that hold collections of tuples with a city a year attribute. For conciseness,
we limit the example addresses to the mentioned two attributes. The italic
numbers serve as tuple identifiers. They do not belong to the actual input
data.
The company’s retail analysts like to compute all cities to which the

company delivered goods in 2019. For each of these cities, they obtain a

flatten
address1

à
address

1
selection

year
≥ 

2019 

2
projection

firstname,
city

3 nesting
firstname

à
nList

4

Figure 1.1: Example query pipeline
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firstname lastname address1 address2

1 Peter Jones
city year
LA 2010
SF 2018

city year
LA 2019
LV 2018
SF 2017

2 Sue Miller
city year
LA 2019
NY 2018

city year
NY 2019
LA 2018

3 Sue Walker
city year
SF 2018
LA 2019

city year
LV 2018
NY 2019

4 Tom Smith city year
LA 2019

Table 1.1: Example input data

city nList

101 LA
firstname

Sue
Sue
Tom

Table 1.2: Example output data

nested relation of customer names. For that purpose, they define the big
data analytics query in Figure 1.1. The four boxes describe operators. The
numbers in circles represent the unique operator ids. The query pipeline
flattens the nested relation address1 out and filters by the year. Then, it
selects only the firstname and city to create a nested relation nList of
the firstname for each city.
The query’s result is shown in Table 1.3. It contains only one tuple with

the city LA. This tuple has a nested relation of the three firstnames: Sue,
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Sue, and Tom. The company’s retail analysts did not expect this result for
two reasons.
(i) They wonder why Sue occurs twice in the nested relation nList of

city LA as highlighted in the result Table 1.3.
(ii) One of the analysts further remembers that the company has shipped

to NY, too. However, NY does not appear in the result. Thus, the analysts
expect a tuple like the one shown in Table 1.4. The asterisk represents a
placeholder for arbitrary tuples in the nested relation.

city nList

101 LA

firstname

Sue
Sue
Tom

Table 1.3: Unexpected data that is
existing in the example
output

city nList

; NY
firstname

*

Table 1.4: Expected data that is
missing in the example
output

The first question can be answered with an explanation for existing data
and the second one with an explanation for missing data. To obtain these
explanations the analysts first need to concisely address the highlighted data
in Table 1.3 and in Table 1.4. However, state-of-the art big data analytics
systems such as Apache Spark, Flink, or Hive lack built-in means to address
them accurately. Tree-patterns would enable the analysts to accurately
address the highlighted attributes. Therefore, we contribute an integrated
tree-pattern matching algorithm that matches tree-patterns as the ones
shown in Figure 1.2 onto nested relations as the one shown Table 1.2.
As listed in Figure 1.2c, the tree-patterns have nodes that represent at-

tributes except for the root node. This node matches any top-level tuple and
serves as the entry point to its attributes. Edges either represent parent-child
relationships between attributes when they are single-lined or ancestor-
descendant relationships when they are double-lined. Parent-child edges
require the child to be a direct descendant of the referenced parent. In
contrast, ancestor-descendant edges only require a descendant with the
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root

city
=

“LA”

nList

firstname
=

“Sue”

[2,2]

(a) existing data

root

city
=

“NY”

(b) missing data

[2,2]

root

= “NY”

tree-pattern node

cardinality constraint

value constraint

parent-child 
relationship edge

ancestor-descendant 
relationship edge

(c) syntax

Figure 1.2: Tree-patterns that match the corresponding data in Table 1.3
and Table 1.4 with syntax legend

defined attribute name in the ancestor’s nested attributes. The number of
attributes between the ancestor and descendant does not matter. Black
boxes impose cardinality constraints over the associated node. They only
apply to attributes of nest relation types. Nodes only match the data if
the node’s subtree occurs n times in the data. The number n has to be in
the interval defined in the black box. Conditions in the node impose value
constraints over the data. They only match if the according attribute satisfies
the condition in the node.
The tree-pattern in Figure 1.2a matches exactly the highlighted data in

Table 1.3. A look at the pattern’s left branch shows that the city node in
Figure 1.2a matches the city attribute in Table 1.3 for two reasons. First,
the node name equals the attribute name. Second, the attribute’s value is LA,
as required by the city node’s value constraint. Analogously, the firstname
node in the right branch matches on both occurrences of the name Sue in
the nested nList. Since there are two occurrences, they also satisfy the
cardinality constraint defined on the nList node.
In contrast to the tree-pattern in Figure 1.2a, the tree-pattern in Fig-

ure 1.2b must not match onto a tuple in Table 1.2 since it describes an
expected but missing result. However, it concisely describes the missing
tuple in Table 1.4, which requires the city to be NY.
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firstname lastname address1 address2

1 Peter Jones
city year
LA 2010
SF 2018

city year
LA 2019
LV 2018
SF 2017

2 Sue Miller
city year
LA 2019
NY 2018

city year
NY 2018
LA 2019

3 Sue Walker
city year
SF 2018
LA 2019

city year
LV 2018
NY 2019

4 Tom Smith city year
LA 2019

Table 1.5: Explanations for the existing example output, with contributing
and influencing data

We contribute the Pebble and Breadcrumb algorithms. Given the tree-
patterns in Figure 1.2, the algorithms precisely point the analysts to the
causes for the duplicate Sue in the nested relation and the missing city New
York in the result.

The novel Pebble algorithm that implements the structural provenance
yields the highlighted data in the input Table 1.5. Data are highlighted in
two colors. The dark green color describes contributing data and the light
green color influencing data. In the example, the two firstnames Sue and
the city entries LA, are highlighted as contributing since they are precisely
those values that yield the highlighted values in Table 1.3. Furthermore,
the Pebble algorithm highlights those year values as influencing that are
associated with the city LA because the selection in Figure 1.1 accesses the
highlighted years to filter on them.

When the retail analysts look at the explanation, they immediately under-
stand that Sue occurs twice in the result because this firstname belongs to
two different persons who share a common firstname and city. Thanks to
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explanations

operator
2

operator
1

Table 1.6: Explanations for the missing example output

Pebble, the analysts did not need to conduct any manual debugging to under-
stand the root cause for duplicate entry in the result. They saved time and
money. Pebble’s structural provenance further reveals that the year influences
the result even though it not exposed in it. This information is not needed
to understand the duplicate Sue in the result. However, for instance, it helps
in understanding which personal information the query reveals about the
customers. Here, both Sues have been recent customers. This small example
already illustrates potential applications for structural provenance beyond
debugging. In this work, we illustrate further applications for structural
provenance.
Satisfied with the explanation for the duplicate Sue in the result, the

analysts investigate why the city NY is absent from the result. Thus, they
apply the novel Breadcrumb algorithm, which yields the list of operators
in Table 1.6. The numbers refer to the operator identifiers in the query
pipeline in Figure 1.1. Each entry in the table describes one explanation
that makes NY appear in the result. The first result in the table indicates
that NY appears in the result if the analysts modify the selection operator
with identifier 2. If they replaced the constant year 2019 with 2018, for
instance, NY appears in the result. The second result describes that the
flatten operator with identifier 1 requires modification. If the analysts replace
attribute address1 with address2 in the depict flatten operator NY also
appears in the result. Hence, both explanations are correct, because operator
reparameterizations exist that make the city New York appear in the result.
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Eventually, the retail analysts realize that they have misinterpreted
address1 as the shipping address. However, it is the billing address. Ac-
tually, address2 is the shipping address. They modify the flatten operator
accordingly and obtain the desired query pipeline. Once again, the analysts
saved time and money when debugging the query, since Breadcrumb pointed
them directly to the operators of interest.
This example is kept small on purpose to illustrate the ideas behind

the concepts and algorithms contributed in this thesis. The concepts and
algorithms particularly play out their full potential on large nested datasets
with wide schemata and multiple nesting layers as we highlight throughout
the thesis. Next, we provide an overview of the thesis’ structure.

1.3 Thesis structure

This work is structured in multiple chapters that gradually introduce our
contributions in detail.
Chapter 2. In this chapter, we relate our contributions to state-of-the-art
work. In particular, we compare our tree-pattern syntax to other syntaxes.
We also describe our tree-pattern matching algorithm’s unique features
that make our algorithm scale on big data analytics systems. Additionally,
we describe provenance solutions for nested data and big data analytics
systems and highlight how they differ from the structural provenance and
Pebble algorithm. Moreover, we compare the reparameterization-based
explanations and the Breadcrumb algorithm to related approaches that
explain missing data.
Chapter 3. To address Contribution (1), we introduce a formal nested data
model and a nested relational algebra for bags to transform the nested
data. Furthermore, we provide an architecture overview, that illustrates the
interplay between the tree-pattern matching algorithm and the Pebble and
Breadcrumb algorithms.
Chapter 4. In this chapter, we formally introduce the tree-patterns and
the tree-pattern matching algorithms. We first describe the tree-pattern
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syntax and matching formalism, followed by a detailed description of our
tree-pattern matching algorithm. This chapter focuses on Contribution (2).
Chapter 5. Once we have defined the tree-pattern matching algorithm, we
provide details on the explanations for existing data to address Contribu-
tion (3). We formally introduce the structural provenance and describe the
Pebble algorithm. It computes explanations for existing data in the result.
We define inference rules that describe the provenance collection. We show
how to optimize the collection for scalability reasons. Further, we describe
the backtracing algorithms needed to compute the explanations from the
collected provenance.
Chapter 6. Afterward, we focus on the query-based explanations for missing
data to address Contribution (4). We formally introduce operator reparame-
terizations, successful reparameterizations, and minimal successful reparam-
eterizations to define the query-based explanations for missing data. Since
computing these explanations is NP-hard in the general case, we propose
the heuristic Breadcrumb algorithm, which approximates the explanations.
Chapter 7. We implement the three novel algorithms into the a big data
analytics system Spark and describe our implementation decisions. We
emphasize on optimizations that allow our algorithms to scale to large
datasets and describe implementation limitations. This chapter is part of
Contribution (5).
Chapter 8. To demonstrate that our algorithms scale to large dataset sizes
in big data analytics systems, we conduct experiments on two real-world
workloads of up to 500GB. We further assess the explanation quality of
the Pebble and Breadcrumb algorithms. We sketch use-cases and applica-
tions for our algorithms beyond debugging. This chapter mainly addresses
Contribution (5). It further reinforces Contributions (2) to (4).
Chapter 9. In the last chapter, we summarize our work and provide an
outlook on future work.
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Given the motivation, the research questions, the contributions, the run-
ning example and overview of the thesis structure, we introduce the related
work in the next chapter.
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Related Work

The tree-pattern matching algorithm and the explanations for existing and
missing data are related to existing works. In this chapter, we show simi-
larities and differences between them and our work to highlight our con-
tributions. It extends and updates our survey [HDB17] and the related
work sections of our published papers on tree-pattern matching [DH20a],
explanations for existing data [DGHL19; DH20b], and explanations for
missing data [DLGH21; DLHG21a; DLHG21b]. First, we compare existing
tree-pattern research with our tree-pattern matching algorithm. Next, we
distinguish our provenance-based explanations for existing data from other
provenance systems for big data analytics systems and provenance models for
nested data. Finally, we distinguish our work on missing data from existing
work that explains missing data.

2.1 Tree-pattern matching

Multiple surveys have summarized the state-of-the-art research for tree-
patterns and tree-pattern matching [HD13; LLBW11; TPL+13; TTT19].
Hence, we keep our comparison with related tree-pattern research short.
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2.1.1 Tree-pattern syntax

According to Hachicha et al. [HD13], the expressiveness of tree-patterns
varies in multiple properties. These properties are either defined for the tree-
pattern’s edges or nodes. Few tree-patterns only support parent-child edges;
others only support ancestor-descendant relationships. Most tree-patterns
support both edge types like our tree-pattern syntax. Further, state-of-the-art
tree-patterns for XML data also support optional edges and absent edges.
Optional edges indicate that the linked descendant nodes can match the
data, but they do not need to match. Absent edges enforce that a match
on the data must not have the linked descendant nodes. Our tree-pattern
syntax supports neither of these two edge types because the data model
of big data analytics systems does not allow for optional schema elements
in the data. These systems process relations of tuples that share the same
schema. Thus, an edge is either present for all tuples or no tuples, making
optional and absent edges superfluous.
The nodes in the tree-patterns typically describe attribute names, like in

our tree-pattern syntax. The nodes can further be associated with a boolean
expression to constrain the value on matching data. The node only matches
the data if the boolean expression over the data value evaluates to true.
Our tree-pattern syntax supports these boolean expressions since they are
needed to pinpoint data values of interest.
Rigid tree-patterns enforce order upon siblings. Siblings are nodes that

share the same parent node. They only match the data if the attributes’
order in the data is the same as the siblings’ order in the tree-pattern. Our
tree-patterns ignore the ordering of siblings because the names of sibling
attributes must be unique in big data analytics systems. Thus, the enforced
node order does not increase the expressiveness of the tree-pattern.

Furthermore, tree-patterns may support logical nodes and wildcard nodes.
Logical nodes describe logical operators, such as AND, OR, or NOT and
impose logical relationships between their subtrees. For instance, the logical
OR operator implies that at least one of the subtrees must match the data,
which one does not matter. Our tree-pattern syntax does not support logical
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nodes since they are mainly syntactical sugar that our system does not need
to compute provenance-based explanations. Wildcard nodes match any
data. While our system generally does not support wildcard nodes, we add
wildcard nodes to the tree-patterns that query explanations for missing data.
That allows us to express intricate patterns with deep nesting efficiently.

Tree-pattern nodes may also come with associated cardinality annotations.
They describe how often the node or its subtree has to occur in the data to
obtain a match. Our tree-pattern syntax supports cardinality annotations
since this is important for debugging. For instance, it makes debugging
duplicates in nested relations efficient.
In summary, our tree-pattern syntax supports precisely those syntax ele-

ments that make them powerful enough to support sophisticated debugging
scenarios over nested data processed by big data analytics systems. To match
our tree-patterns onto the data, we apply a novel tree-pattern matching al-
gorithm tailored to the distributed data processing of big data analytics
systems.

2.1.2 Tree-pattern matching

We distinguish our matching algorithm from existing algorithms. These
focus either on minimizing the tree-pattern size or on optimizing the data
access [HD13].

Since an increasing tree-pattern size leads to an increasing effort to match
the tree-pattern onto the data, noticeable works on tree-pattern match-
ing [ACLS01; MS02] aim at minimizing the tree-pattern. They show that
minimizing the pattern reduces the matching time on the data. While this
work is a promising path to pursue, our algorithm focuses on optimizing
data access.

Those algorithms that optimize the data access have two phases. The first
phase applies a labeling scheme on all nodes in the data before the second
phase computes the matches based on the labels [HD13]. The algorithms
divide into two approaches: Structural join approaches and holistic twig join
approaches. Structural join approaches typically apply a region encoding

2.1 | Tree-pattern matching 33



on the data, which indicates each data value’s position in the document.
After labeling, these approaches split the tree-patterns into smaller parts,
match these smaller parts against the data, and merge them to a complete
tree-pattern match [AJK+02; ZND+01]. They have the caveat that they
produce a large amount of potentially unnecessary intermediate results.

Holistic twig join approaches aim at reducing the massive amounts of inter-
mediate results. Therefore, they apply more effective labeling schemes, such
as Dewey labeling, that encodes the root-to-leaf paths and the nesting depth
to identify and index the data more efficiently than region encoding [LLCC05;
LML11]. Furthermore, they make use of global data structures [GBH10],
such as stacks [BKS02; LCL04] and state machines [LLCC05; LML11]. The
TwigVersion [WL08] algorithm further identifies repetitive structures in the
nested data to improve the tree-pattern matching. The S3 [IHH09] algo-
rithm extends this idea. It creates a QueryGuide structure that extracts all
paths from the nested data. Then it applies a matching on these paths before
accessing the actual data.

The algorithms that optimize the data access are all designed for matching
tree-patterns on a single XML document on a stand-alone computer. They
either produce a large amount of potentially unnecessary intermediate results
or make use of global data structures. Both properties are unacceptable for
distributed execution. Distributing large amounts of intermediate results
across distributed computing resources leads to network contention and,
thus, to low overall performance. Maintaining global data structures inhibits
the algorithms to scale horizontally across the computing resources because
of lock contention on the global data structures. Notably, TwigVersion and S3

consider constraints on the schema and the data separately. However, they
still operate on the complete input XML document, labeling and indexing
each element in the data.

In contrast to the existing algorithms, our approach scales on distributed
clusters since our algorithm only applies labeling on the common schema that
all top-level tuples in the input data share. Furthermore, our algorithm can
directly access the nested data, given the labeled schema. It does not require
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indexing each element in the data. Hence, it neither requires synchronized
global data structures nor yields extensive intermediate results.

Our solutions that compute the explanations for existing and missing data
in the result leverage the tree-pattern matching algorithm to compute the
explanations. We discuss related work on explanations for existing data
next.

2.2 Explanations for existing data

This section provides an overview of related research on provenance and
distinguishes our work from existing research results. Our survey [HDB17]
describes a provenance hierarchywith four potentially overlapping layers that
categorize provenance research by their provenance models and provenance
instrumentations. The two layers with the most specific provenance model
and the highest degree of instrumentation are particularly relevant for this
work: workflow provenance and data provenance. Workflow provenance
only applies to workflows with a directed graph structure. In this graph,
nodes represent arbitrary functions or modules with input, output, and
parameters; and edges describe dataflow or control flow. Data provenance
is even more restrictive. It tracks the processing of individual data items,
such as tuples or data values. It typically applies to structured data models
and declarative query languages with clearly defined operator semantics.

We point out the similarities and differences between our work and existing
work on workflow and data provenance closely related to our work. First,
we provide an overview of workflow provenance to put our work into the
context of workflow provenance. In particular, we introduce and compare
related workflow provenance solutions for big data analytics systems. Next,
we discuss related data provenance solutions that explain existing results.
We put focus on solutions that handle nested data. Finally, we discuss data
provenance solutions that explain missing answers.
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Solution Granularity Form
Coarse Fine ProspectiveRetrospectiveEvolution

Data Analytics
Differential DF [CLMR16] ✓ ✓ ✓
HadoopProv [ASH13] ✓ ✓ ✓

Inspector Gadget [OR11] ✓ ✓ ✓
Lipstick [ADD+11] ✓ ✓ ✓

Newt [LDY13] ✓ ✓ ✓
RAMP [IPW11] ✓ ✓ ✓

SAMbA [GMF+20; GSM+18] ✓ ✓ ✓ ✓
Titian [IES+18; IST+15] ✓ ✓ ✓
Pebble [DH19; DH20b] ✓ ✓ ✓ ✓

Table 2.1: Overview of big data analytics provenance solutions (adapted
from [HDB17]; updated)

In our survey [HDB17], we have created a categorization of workflow
provenance. It has three dimensions based on the application domain, the
provenance granularity, and the provenance form.
We identify four major domains: business, science, data analytics, and

general programming. Concerning the granularity of captured provenance,
we consider provenance solutions from coarse-grained to fine-grained prove-
nance. Coarse-grained provenance captures dependencies between input
datasets and output datasets in their entirety. Fine-grained provenance
captures dependencies between individual elements in the input and output
datasets. Regarding the form of provenance, we distinguish retrospective,
prospective provenance, and evolution provenance. Retrospective prove-
nance captures information on the workflow’s execution. Prospective prove-
nance captures information on the workflow’s structure that is independent
of the workflow’s execution. Evolution provenance captures modifications
of the workflow definition itself. In this work, we focus on fine-grained
provenance in data analytics and refer the interested reader to the sur-
veys [FKSS08; Gla21; HDB17; Mor10; PFMB19; RESC15] for research on
workflow provenance in other domains.
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2.2.1 Provenance in big data analytics systems

In big data analytics systems, multiple provenance solutions that compute
explanations for existing data have emerged in the past ten years. Table 2.1
provides an overview of such provenance solutions and the granularity and
form they provide. Our solutions are highlighted in bold text at the bottom
of the table. Regarding the supported granularity, all of the listed solutions
capture the provenance of individual tuples in the processed data. Thus,
they all collect fine-grained provenance.
Further, all the solutions in Table 2.1 capture retrospective provenance

about the processed data. Notably, only SAMbA [GMF+20; GSM+18], our
Pebble algorithm explicitly exploit prospective provenance. SAMbA employs
the prospective provenance for two purposes. First, it uses prospective prove-
nance to support so-called black-box operators. Black-box operators are
operators whose internal behavior is not precisely defined or even known.
In big data analytics systems, typical examples for black-box operators are
user-defined functions or integrated library code. Second, SAMbA employs
prospective provenance to illustrate the big data pipeline, including opera-
tor parameters in their web-based debugging interface. In contrast, Pebble
exploits prospective provenance to minimize the amount of collected retro-
spective provenance needed to trace nested data accurately. For instance, it
captures operator parameters, such as a filter condition to record transfor-
mations on the schema rather than for each tuple in the dataset.

2.2.2 Data provenance models for nested data

The transition from fine-grained workflow provenance to data provenance
is seamless. Some of the provenance solutions mentioned in the previous
section capture provenance that comply with formal provenance models
- at least to some extent. Here, we discuss different kinds of provenance
models for nested data and their applicability to big data analytics systems.
At least three significant directions to formalize provenance models have
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been researched: (i) models for why-, how-, and where-provenance, (ii)
graph-based provenance models, and (iii) program slicing models.
The provenance models for why-, how-, and where-provenance are typ-

ically based on provenance polynomials. The polynomials formally de-
scribe the dependencies between the output and the input data. The
why-provenance polynomials captures the input data that witness the ex-
istence of result tuple [CCT09]. The how-provenance polynomials further
carry information on how a query derives a result tuple from the input
data [CCT09]. Where-provenance captures where a data value in the result
is copied from [CCT09]. We summarize the research on models for why-,
how-, and where-provenance as follows. For unions of conjunctive queries,
Buneman et al. [BKT01] define a why- and where-provenance model for
nested data. This model does not extend to the programs defining data ana-
lytics pipelines in big data analytics systems, like the one shown in Figure 1.1,
since they may include map or reduce functions or any other higher-order
functions in general. To model the how-provenance of nested data, Foster et
al. [FGT08] and Karvounarakis et al. [KG12] propose a semiring-model for
a small subset of XQuery operators. However, this model does not include
complex operations over nested data, such as aggregations. The only how-
provenance model supporting aggregations that we are aware of applies to
relational data only [ADT11]. PROVision [ZAI19] applies a how-provenance
model for relational data and accounts for nesting and unnesting by nest-
ing and unnesting the associated provenance expression, respectively. This
model is not capable of tracking individual nested data values as the other
mentioned models. All mentioned models have in common that they only
capture dependencies of data values. They do not explicitly capture struc-
tural manipulations on the data and do not distinguish between access and
manipulation of data.
Multiple contributions rely on graph-based provenance models. Lipstick

[ADD+11] makes use of a graph model to describe the how-provenance
where possible. It lacks a formal model definition for aggregations, nesting,
and flattening of nested data. For these operators, it only tracks dependencies
between data values. Kwasnikowska and Acar et al. [ABC+10; KV08] also
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employ provenance graphs to model data dependencies. Their models are
essentially limited to the operations defined in the Nested Relational Calculus
(NRC) [BNTW95], which do not include aggregations or joins. In summary,
these graph-based provenance models only capture provenance at a high
degree of detail on simple queries, e.g., without aggregations. Then, the
models even allows for capturing data structure and dependencies between
data values.
In most aspects, program slicing is closest to our structural provenance

model. Program slicing is a frequently used method in general programming
to analyze dependencies between individual instructions [Gla21]. Applied
to big data analytics pipelines, this method captures fine-grained prove-
nance for nested data. In that respect, the work closest to our structural
provenance model is Cheney et al.’s program slicing model [CAA14], which
tracks provenance traces for nested relational calculus operators over nested
data. The model is limited to a small set of semantically fully specified NRC
operators to provide formal guarantees. In practice, it is infeasible to provide
semantics for all higher-order functions, such as map operations, which allow
for user-defined functions. Via trace slicing, it is possible to query prove-
nance for individual nested items. However, like the other described models,
this model is designed to trace data values and manipulations rather than
structural manipulations. It is not expressive enough to faithfully capture
and query structural manipulations.
In contrast to the existing models, our structural provenance model is

tailored to big data analytics systems since it captures changes in the data
structure and the data values. It distinguishes between access and manipula-
tion of data items to capture contributing and influencing data items simul-
taneously, of which none of the existing approaches is capable. Furthermore,
we follow a best-can-do approach for higher-order functions supporting
user-defined functions, such as a map-operator, rather than not supporting
them at all. While possibly not achieving the most precise provenance for
some operators, this makes our approach support a broader set of big data
analytics queries compared to previous systems. Finally, our model is the
first to allow structural query processing explicitly.
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To concisely illustrate the similarities and differences between our struc-
tural provenance and other formal provenance models for nested data and
between Pebble and other provenance solutions for big data analytics systems
we conduct a feature comparison.

2.2.3 Feature comparison of provenance approaches

We compare structural provenance as implemented in Pebble to the prove-
nance solutions from Section 2.2.1 and the provenance models from Sec-
tion 2.2.2 to show the range of supported features. Table 2.2 and Table 2.3
provide an overview of the provenance solutions from Section 2.2.1 and
the models from Section 2.2.2, respectively. In both tables, Pebble is in
the rightmost column for convenience. If another solution, such as Lip-
stick [ADD+11], is a big data analytics solution and comes with its own
provenance model, it only appears in Table 2.2 to preserve clarity.

Since we have discussed the first three features listed in the tables in the
previous sections, we focus on the last five features in this section. Pebble
can capture provenance eagerly and lazily. Eager provenance is active when
the big data analytics pipeline is executed. In contrast, lazy provenance is
only active at provenance query time. It imposes no overhead on the actual
query execution. Depending on the provenance application, either of the
approaches has advantages. Like Pebble, Cheney et al.’s program slicing
[CAA14] supports both ways to query the provenance. Most provenance
solutions for big data analytics systems only support eager provenance
computation since they prevent the entire query from re-executing. Especially
in the context of big data, that may be prohibitively expensive. A notable
exception is PROVision [ZAI19]. It collects provenance lazily in an external
provenance solution that runs in memory.
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Differential DF HadoopProv Inspector Gadget Lipstick Newt PROVision Ramp SAMbA Titian Pebble
[CLMR16] [ASH13] [OR11] [ADD+11] [LDY13] [ZAI19] [IPW11] [GMF+20] [IST+15] [DH20b]

Data provenance for nested data ❌ ❌ ❌ ✓ ❌ ✓ ❌ ❌ ❌ ✓
Provenance of acces and manipulation ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓
Provenance of data item structure ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓
Eager/lazy provenance computation ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓  / ❌ ✓ / ✓
Implementation-independent 
provenance query formalism

❌ ❌ ❌ ✓ ❌ ❌ ❌ ✓ ❌ ✓
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Table 2.2: Feature overview of provenance solutions for big data analytics systems
(from [DH20b]; updated and extended)

HowProv Nested Why/Where Prov Kwasnikowska Acar Program Slicing Pebble
[FGT08] [BKT01] [KV08] [ABC+10] [CAA14] [DH20b]

Data provenance for nested data ✓ ✓ ✓ ✓ ✓ ✓
Provenance of acces and manipulation ❌ ❌ ❌ ❌ ✓ ✓
Provenance of data item structure ❌ ❌ ❌ ❌ ✓ ✓
Eager/lazy provenance computation n.a. n.a. n.a. ❌  / ✓ ✓ / ✓ ✓ / ✓
Implementation-independent 
provenance query formalism n.a. n.a. n.a. n.a. n.a. ✓

DISC system compatibility/integration  ❌ / ❌  ❌ / ❌  ❌ / ❌  ❌ / ❌  ❌ / ❌ ✓ / ✓
Reported implementation no no no Haskell Haskell Spark Datasets 
Evaluated for scalability ❌ ❌ ❌ ❌ ❌ ✓ ✓S
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Table 2.3: Feature overview of provenance models for nested data
(from [DH20b]; updated and extended)
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Furthermore, only Lipstick [ADD+11], SAMbA [GMF+20; GSM+18], and
Pebble [DH20b] provide an implementation-independent provenance query
formalism. Lipstick and SAMbA both provide a visual exploration interface to
navigate through the provenance graph they capture during query execution.
While this interface is nice to explore data dependencies between data values,
it lacks the means to systematically address and trace the structure of nested
data and arbitrary combinations of data values. In contrast, Pebble provides
a tree-pattern interface that overcomes the mentioned shortcomings. It
allows users and applications to query arbitrary combinations of nested data
values and structures effectively.

In contrast to the provenance models from Table 2.3, the solutions from
Table 2.2 are all at least compatible with one big data analytics system.
However, only Newt [LDY13], Ramp [IPW11], and Titian [IST+15] provenly
scale to data sizes beyond a few Gigabytes. These three solutions only support
flat data. Thus, they are incapable of tracking nested data elements precisely.
On the contrary, those solutions and models that support nested data have
never been evaluated on noticeable amounts of data because they require to
annotate each nested item individually [ADD+11]. Pebble scales like Newt,
Ramp, and Titian to large data sizes while providing the detailed structural
provenance for nested data.
We apply Pebble and other existing solutions on our running example to

illustrate why it is important to precisely track nested data on large datasets.

2.2.4 Comparison of explanations on the running example

To illustrate the benefits of a scalable provenance solution for big data ana-
lytics systems that faithfully captures structural provenance for nested data,
we compare the explanations that different provenance solutions provide on
the running example from Section 1.2. For that purpose, we show the input
data in Table 2.4 again. This time, we do not only highlight Pebble’s expla-
nations but also those of Newt [LDY13], Ramp [IPW11], Titian [IST+15],
PROVision [ZAI19], and Lipstick [ADD+11].
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firstname lastname address1 address2

1 Peter Jones
city year
LA 2010
SF 2018

city year
NY 2010
LA 2019
LV 2017

2 Sue Miller
city year
LA 2019
NY 2018

city year
NY 2019
LA 2018

3 Sue Walker
city year
SF 2019
LA 2018

city year
LV 2017
NY 2019

4 Tom Smith city year
LA 2019

Table 2.4: Example input data with highlighted explanations. The color cod-
ing indicates contributing explanations, influencing explanations,
nesting-aware tuple-based explanations, and non-nesting-aware
tuple-based explanations.

As mentioned in Section 1.2, our solution identifies the contributing data
and the influencing data. Lipstick identifies only the contributing data.
Thus, it lacks crucial information for applications beyond debugging, such
as identifying indirectly leaked personal data as described in Section 1.2.
PROVision supports tuple-based provenance that is aware of nested data.
Thus, it yields the entire tuples 2 and 3 as an explanation. In the running
example, that is no problem since the dataset is small. However, PROVision
is unable to identify nested elements in the input data. If the nested lists
have hundreds of nested tuples as in the real-world Twitter dataset, which
we use for our evaluation, identifying the correct nested data becomes a
tedious manual task. Newt [LDY13], Ramp [IPW11], Titian [IST+15] only
support non-nesting-aware tuple-based provenance. Thus, they yield tuple 4
in addition to tuples 2 and 3 as an explanation. More generally, they yield
all tuples that contributed to the result tuple. Hence, in large nested data,
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the meaningful part of the explanations may become occluded by irrelevant
explanations.
In the context of explanations for existing data, we have distinguished

our structural provenance and the Pebble algorithm from other provenance
approaches and showed their explanations on the running example. The
example illustrates that Pebble provides more comprehensive explanations
than other existing solutions. Next, we discuss the solutions that compute
explanations for missing data.

2.3 Explanations for missing data

Little more than a decade ago, the seminal works of Huang et al. [HCDN08]
and Chapman et al. [CJ09] introduced why-not provenance that provides
explanations for missing data in the result. Since then, three significant
why-not flavors of provenance based explanations have emerged [HDB17].
(i) Instance-based explanations provide data to be inserted in the query’s
input. (ii) Query-based explanations reveal operators in the query that need
modifications. (iii) Refinement-based explanations yield precise modifica-
tions to the query to obtain the missing data. In [HDB17], we provide a
comprehensive overview of existing solutions that compute all three flavors
of explanations. Here, we summarize the three flavors and distinguish our
reparameterization-based explanations and the Breadcrumb algorithm from
each flavor’s solutions. Further, we show similarities to non-provenance-
based solutions that are related to our reparameterization-based explana-
tions.

2.3.1 Provenance-based explanations for missing data

Here, we discuss the three flavors of provenance-based solutions that com-
pute explanations for missing data.

Instance-based solutions, such as the Missing-Answers algorithm [HH10],
the Artemis algorithm [HHT09], the provenance games [KLZ13; LKLG17;
LLG20], the Conseil [Her15] algorithm, andMeliou et al.’s algorithm [MGMS10],
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compute explanations that suggest inserting tuples in the input. Once tuples
are inserted into the input relations as suggested, the output appears in the
result. These algorithms are limited to flat relational data. Further, they
suggest manipulating the query’s input data rather than the query itself,
which our reparameterization-based explanations do.

Therefore, our explanations are related closest to query-based why-not
provenance solutions since these solutions point at operators in the query that
need modification. Existing works in this field [Bel18; BHT14; BHT15; CJ09;
DFGH18; DFGH20; Her15] target flat relational data. The solutions [BHT14;
BHT15; DFGH18; DFGH20] also support only queries limited to subclasses
of the relational algebra extended with aggregation. In contrast, the so-
lutions [Bel18; CJ09] target workflows. They are more flexible than the
other solutions regarding query expressiveness. All mentioned solutions are
limited to finding explanations based on operators that remove data from
the result. Our explanations may yield any operator types in the explanation
that have parameters.
Refinement-based provenance solutions, such as the ConQueR [TC10]

and the EFQ [TC10] algorithm, do not only point at operators that require
modifications. They provide a refined query with operators being rewritten so
that the missing data appear in the result. While the Breadcrumb algorithm
does not provide rewritten queries, it adopts and extends features from
these algorithms. Like the ConQueR algorithm, the Breadcrumb algorithm
considers side-effects, i.e. data in the result that appears in the result, but
is not needed to explain the missing data. Further, ConQueR considers
adding relations to the query if the missing data cannot be produced from
the query’s input data. Our reparameterization-based explanations extends
this idea to alternative attributes in nested data.
In summary, all the mentioned provenance-based solutions that yield ex-

planations for missing data target flat relational data. Consequently, they
further lack support for operators that manipulate nested data, such as flat-
tening. Extending these solutions to support nested data is at least as difficult
as extending the solutions that compute explanations for existing answers.
However, that task is non-trivial, as we have illustrated in Section 2.2.4. The
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Breadcrumb algorithm supports nested data and operators manipulating the
nested data. It is the first algorithm that computes explanations for missing
data over nested data to the best of our knowledge.
Except for the ConQueR algorithm, the introduced algorithms do not

take alternative data into account. ConQueR considers other relations for
explanations when it cannot generate explanations from the initial input
relations. The Breadcrumb algorithm considers individual attributes as
alternatives and provides explanations based on these alternatives. Thus,
the Breadcrumb algorithm provides explanations that no other provenance-
based solutions can provide, even on relational data.

Finally, the mentioned solutions have all been evaluated on datasets with
a few thousand to a few million samples. In contrast, our implementation
of the Breadcrumb algorithm scales to billions of data samples. To achieve
such as scalability to big data, we optimize our implementation.

2.3.2 Non-provenance-based explanations for missing data

Our query-based explanations leverage reparameterizations to find explana-
tions to missing data. Hence, they are not only related to provenance-based
solutions that explain missing data. We have identified four non-provenance-
based approaches that are related: (i) Query-by-example techniques, (ii)
query reverse engineering algorithms (QRE), (iii) interactive query refine-
ment, and (iv) solutions to the empty answer problem.
The Breadcrumb algorithm, in particular, and the query-based explana-

tions, in general, are closely related to query-by-example techniques [DAB16;
DG19; Zlo77] and query reverse engineering techniques [Bar19; KLS18;
TCP14; TZES17]. The former techniques generate a query from scratch
given a set of input-output samples provided by the user. The latter tech-
niques [Bar19; KLS18; TCP14; TZES17] compute a query equivalent to
an original, but unknown, query based on the original’s query input and
output. Like the query-by-example techniques, they generate an entire query.
Hence, these techniques resemble algorithms for query-based explanations
since both generate explanations based on input data and output data. In
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contrast to query-by-example techniques, the algorithms for query-based
explanations assume a given query to be erroneous. They do not generate an
entire query. Instead, they point to operators in a given query that requires
modification.

Further, our explanations for missing data are related to interactive query-
refinement techniques and the empty answer problem [MK09; MKZ08;
MMR+16]. Query refinements come in two forms: queries can be relaxed
to return more results or contracted to return fewer results. The former is
commonly used to address the empty answer problem where a query fails to
return any result, and the latter to deal with queries that return too many an-
swers. While initially employed for database testing, for instance [MKZ08],
recent approaches [MMR+16] offer probabilistic, cost-based means to define
different flexible optimization goals that are not limited to mere cardinality
constraints. Query refinement describes the relaxation or contraction of a re-
lational query [MK09]. While query relaxation describes query modifications
that increase the cardinality of a query’s result, query contraction describes
query modifications that reduce the cardinality of a query’s result. In general,
query refinement addresses quantitative constraints on the query result: the
rewritten query should return more or less answers. It does not care what
these answers are. These constraints are loosely related to the side-effects
that Breadcrumb considers for its explanations. Breadcrumb only judges the
number of side effects, not their quality. However, the Breadcrumb algorithm
distinguishes from query-refinement techniques and empty answer problem
because it makes qualitative assumptions on the expected but missing data
in the result, which has a specific structure and content.

The techniques mentioned in this section are limited to flat relational data.
Unlike the Breadcrumb algorithm, they do not extend to nested data and a
query language capable of processing nested data.

2.3.3 Comparison of explanations on the running example

This section illustrates the explanations of the above solutions on the running
example from Section 1.2. Neither of the mentioned solutions supports
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explanations

operator
2

operator
1

Table 2.5: Query-based explanations for the missing example output based
on reparameterizations. The highlighted explanation is the only
one based on the address1 attribute used in the original query
in Figure 1.1.

nested data, and extending them to nested data is non-trivial. Thus, strictly
put, neither of the solutions can compute any of the explanations in Table 1.6.
Here, we assume that they support nested data and a query language that is
powerful enough to support the running example.
We start with the explanations from Table 1.6 that the Breadcrumb al-

gorithm provides. For convenience, we display them again in Table 2.5.
First, we compare our explanations with explanations of related query-based
algorithms. These solutions would only yield the highlighted explanation.
They miss the second explanation, because they require the flatten opera-
tor to flatten out the with the address2 attribute instead of the originally
referenced address1 attribute.
The provenance-based solutions that yield refined queries would most

likely have provided a query pipeline, as shown in Figure 1.1 with a modified
selection condition: address.year≥ 2018. It is an open question, whether
these solutions also find explanations that flatten address2 rather than
address1, because the flatten operator is only applicable on nested data,
which the mentioned solutions do not support.

The instance-based solutions would yield an input tuple that complies
with the input data, such as the one shown in Table 2.6. The ? describes
placeholders for arbitrary values in the domain of the attribute type. While
the values of the firstname, the lastname, and the address2 do not matter
to generate the missing data in the result, the values in address1 play a key
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firstname lastname address1 address2

? ? city year
NY 2019 ?

Table 2.6: Possible instance-based explanation for the missing example out-
put

role. The address1 attribute has to contain a tuple that has the city NY
and the year 2019. While these solutions also employ provenance to yield
the explanations, the explanation from Table 2.6 vastly differs from the ones
in Table 2.5 since it targets the input data rather than the query.

The query-by-example techniques could yield a query pipeline that resem-
bles the ones that provenance-based algorithms yield. Here, the provided
examples highly impact the resulting pipeline. If the example output was lim-
ited to the missing tuple, these techniques would most likely have provided
a query pipeline that yields precisely the missing tuple. The query-reverse-
engineering techniques are a little more rigid in this sense. They assume
that the described output is in the result of an existing but unknown query.
Therefore, they require a fully specified output without placeholders, e.g.,
in the why-not question. Then, they will try to exactly match the output. If
only the why-not-tuple is provided, they will generate a query that matches
exactly this tuple. If the actual output and the why-not-tuple form the en-
tire output, the query-reverse-engineering techniques will create a query
that yields exactly the combined output. However, it may be impossible to
create precisely this result, which makes the query-reverse-engineering tech-
niques fail. Both the query-by-example and the query-reverse-engineering
techniques are likely to find explanations that build on address1 as well
as address2. In that sense, they are closer to our explanations than the
provenance-based solutions.
Interactive query-refinement techniques that address the empty answer

problem, among other problems, allow the users to make the selection less
selective or to modify the flatten operator to flatten address2 instead of
address1. Then, the users would find queries that yield the missing answer
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more or less by accident. However, the techniques provide no means to the
users to request a particular tuple in the result, as Breadcrumb does.
In summary, our query-based explanations that build on reparameteri-

zations combine unique features from provenance-based appraoches and
non-provenance-based approaches to compute explanations and extends
them to nested data.

2.4 Summary

This chapter has provided an overview of the state-of-the-art research on
tree-pattern matching and the explanations for existing and missing data.
We have found that, in these fields of research, no solutions exist that support
nested data and, at the same time, scale to significant amounts of data in
big data analytics systems. In the next chapter, we introduce our data and
execution model, as well as our system architecture.
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Data model, execution
model, and architecture

After we have put our work in the context of related research, we introduce
the nested data model and execution model as Contribution (1). On purpose,
both are similar to the data and execution model supported by big data
analytics systems. This similarity ensures that our explanations for existing
and missing data, which we define based on the formal models, directly
correspond to the data and queries in the systems. The models are published
in [DH20b; DLHG21a; DLHG21b]. While the models help to understand the
concepts behind our contributions, they shed no light on the implementation.
To understand the interplay of the algorithms implemented in the context
of this thesis, we provide an overview of our solution’s system architecture.

3.1 Data model

Our data model is inspired by the nested relational algebra for bags [GM93]
because its data model closely resembles the data format that big data
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analytics support. It consists of nested relations, tuples, and primitive types.
Nested relations are bags of tuples that share the same type. Tuples have
named attributes that are either of primitive types (e.g., booleans or integers),
tuple types, or nested relation types. Next, we define the schema and
instances of our data. Afterward, we introduce helper functions to access
and manipulate the data in this section.
Definition 3.1 (Nested Relation Schema)
Let L be an infinite set of names. A nested type τ is an element conforming to
the context-free grammar below. P represents a primitive type, R the nested
relation type, and T the tuple type. The tuple type holds a set of name and
type pairs Ai : A. Each name Ai is an element of the name set Ai ∈ L. The type
A is either of the primitive type P , the tuple type T , or the nested relation type
R. Any nested relation type R is called a nested relation schema. A nested
database schema D is a set of nested relation schemas.

P := int | str | bool | . . . R :={{T }}
T :=〈A1 : A, . . . , An : A〉 A :=P | T |R

The nested relation schema only defines types over the data. It does not
define the actual data values. For that purpose, we introduce instances for
the nested types. The structure of an instance I of a type τ is defined as
follows.
Definition 3.2 (Nested Relation Instance)
Let I denote the set of integers, B either t rue or f alse, S the domain of strings,
and D the domain of datetimes. In all these domains, a special⊥ exists denoting
the absence of a domain value. The inference rules below recursively define
instances I of type τ. The function type(A) yields the type of any data instance.
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I∈I
type(I)=int

I∈B
type(I)=bool

I∈S
type(I)=str

I∈D
type(I)=date

type(I1)=τ,...,type(In)=τ
type({{I1,...,In}})={{τ}}

type(I1)=τ1,...,type(In)=τn
type(〈A1:I1,...,An:In〉)=〈A1:τ1,...,An:τn〉

The inference rules in Definition 3.2 hold conditions in the numerator
(top part) and consequence in the denominator (bottom part). For instance,
the first rule in Definition 3.2, I∈I

type(I)=int translates to: “if I is an element of I,
then I ’s type is int.”. Furthermore, the instance definition trivially extend to
additional atomic types.
In the following, we will use t, t ′, t1, . . . to denote tuples, R, S, T, . . . to

denote nested relations, and D, D′, . . . to denote nested databases, which are
sets of nested relations. As a convention, when R and D are a nested relation
and database, then R and D denote thei types, respectively. In addition the
compact data model representation above, we may also employ an equivalent
tree-based representation for visualization purposes. In addition to the type,
we define a label function on tuples that returns the set of labels naming the
attributes.
Definition 3.3 (Label function)
Given a tuple t = 〈A1 : τA1, A2 : τA2, . . . , An : τAn〉, the label function LBL(t)
returns the set of attribute labels in t.

LBL(t) :={A1, A2, . . . , An}

We overload the label function to also apply on any relation R. Then,
LBL(R) yields the labels of the top-level tuples in the relation: LBL(R) =
{LBL(t)}, where t ∈ R. Next, we define the tuple projection function that
reduces the attributes in a tuple, and the tuple concatenation function that
merges two input tuples into a single output tuple.
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Definition 3.4 (Tuple projection)
Let t = 〈A1 : τA1, A2 : τA2, . . . , An : τAn〉 be a tuple and L be a set of attribute
labels L ⊆ LBL(t). Further, let i be an index over L (i ∈ {1, . . . , l}) and j be
an index over LBL(t) ( j ∈ {1, . . . , n}). Then the tuple projection function t.L is
defined as:

t.L :=〈A1 : τA1, A2 : τA2, . . . , Al : τAl〉, where τAi = τAj for Ai = A j

Definition 3.5 (Tuple concatenation)
Given two tuples tA = 〈A1 : τA1, A2 : τA2, . . . , An : τAn〉 and tB = 〈B1 : τB1, B2 :

τB2, . . . , Bm : τBm〉 with disjunct attribute label sets
{A1, A2, . . . , An} ∩ {B1, B2, . . . , Bm}= ;, the tuple concatenation function tA ◦ tB

concatenates tA and tB as follows:

tA ◦ tB

=〈A1 : τA1, A2 : τA2, . . . , An : τAn〉 ◦ 〈B1 : τB1, B2 : τB2, . . . , Bm : τBm〉

:=〈A1 : τA1, A2 : τA2, . . . , An : τAn, B1 : τB1, B2 : τB2, . . . , Bm : τBm〉

The above tuple concatenation function is only defined for tuple instances.
We overload it to apply to tuple types analogously. Furthermore, we introduce
the concatenation function on relation types. Given two relation types
R= {{τR}} and S = {{τS}}, the concatenated schema is R◦S :={{τR ◦τS}}.
Furthermore, we introduce the concept of multiplicities. By definition,

relations can hold multiple tuples that are indistinguishable by their value
and type. Multiplicities indicate the number of these indistinguishable tuples.
Definition 3.6 (Multiplicities)
Given a relation R, tn ∈ R denotes that tuple t has the multiplicity n in relation
R. In plain, t occurs n times in R. Arithmetic operations on multiplicities of a
tuple t indicate that the multiplicity of t amounts to the result of the arithmetic
operations. Further, the multiplicity 0 in t0 ∈ R indicates the absence of tuple
t in relation R. It is equivalent to t ̸∈ R. The function mult(R, t) yields the
multiplicity of tuple t in relation R. It returns n for tn ∈ R.

54 3 | Data model, execution model, and architecture



The multiplicities are releveant in the definition of our execution model.
They model that the values and types of tuples in a relation are indistin-
guishable. However, these tuples may still be distinguishable by a unique
idenfier, such as the position inside a nested relation. While our execution
model does not require these tuples to be distinguishable the tree-pattern
matching algorithm, Pebble, and Breadcrumb need distinguishable tuples for
distingushable paths into the nested data. These paths allow the algorithms
to uniquely identify and access nested attributes, tuples, and relations.
Definition 3.7 (Path)
In the context of tuple t, the following grammar recursively defines the path p:

p := t.p′

p′ :=A′ | A′.p′

A′ :=A | A[id]

The expression t.p′ denotes the projection of tuple t on the sub-path p′. The
sub-path p′ resolves to either the placeholder A′ or the A′ associated with a
further sub-path A′.p′. The placeholder A′ resolves to an attribute A of the
relation type R, the tuple type T , or a primitive type P. If A′ resolves to an
attribute A that is of a nested relation type R, it may also carry an identifier
placeholder id, which refers to the element with identifier id in the nested
relation A, denoted as A[id]. The context of p′ is recursively updated to the
context A′.

Paths may appear similar to the tuple projection function, since they are
both denoted with a “.”. However, the tuple projection function is defined
on attribute sets. In contrast, the path is defined on individual attributes.
According to the above definition, the paths only apply to tuples t ∈ I

in relation instances. We overload the path notation to also apply to the
schema of the data. A path on the tuple type T resembles the path on a
tuple t. The only difference is regarding the identifier id. Referencing a
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nested tuple type T inside a relation type R is indicated by keeping the id
placeholder of Definition 3.7 in the path. Then, it represents a placeholder
for any tuple in the relation instance. Further, we introduce a root label to
represent the types of top-level tuples in the relation types R.
We further introduce an identifier function that yields the unique identi-

fiers of tuples and relations. The identifier function id(R) yields the unique
identifier for a nested relation. Similarly, id(t) provides the identifier of a tu-
ple t that resides in a nested relation. Next, we illustrate our data model and
provide an example for the path definition leveraging our running example.
Example 1
The customer data in our example input Table 1.1 conforms to the data model
defined in this section. For instance, the tuple t1 in the table has the following
representation in our data model:

*

firstname : Peter, lastname : Jones,address1 :

¨̈

〈city : LA,year : 2010〉,
〈city : SF,year : 2018〉

««

,address2 :













〈city : NY,year : 2010〉,
〈city : LA,year : 2019〉,
〈city : LV,year : 2017〉













+

The above tuple representation resembles the tabular representation in the
input relation Table 1.1. It has the multipliticity n= 1, since it occurs exactly
once in the input data. Further, t1 holds the following label set:

LBL(t1) = {firstname, lastname,address1,address2}

Like the other tuples in the input relation, t1 has the schema type(t1) = τ1:
¬

firstname : STR, lastname : STR,address1 :
¦¦

〈city : STR,year : INT〉
©©

,address2 :
¦¦

〈city : STR,year : INT〉
©©¶

Note that this example does not have a tuple value as an attribute value even
though our data model supports it.

We derive the tree-representation of the above tuple and schema straightfor-
wardly. Figure 3.1 shows the above tuple in tree-representation. Analogously to
the tuple itself, we can express its schema in the tree-representation, as shown
in Figure 3.2. As described above, we name the top-level tuple (type) root in
both figures.
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root
〈 〉

firstname
Peter

lastname
Jones

address1
{{ }}

address2
{{ }}

city
LA

year
2010

〈 〉

city
SF

year
2018

〈 〉

city
NY

year
2010

〈 〉

city
LA

year
2019

〈 〉

city
LV

year
2017

〈 〉

Figure 3.1: First tuple in Table 1.1 represented as a tree. Dotted lines indicate
the example path.

root
〈 〉

firstname
STR

lastname
STR

address1
{{ }}

address2
{{ }}

city
STR

year
INT

〈 〉

city
STR

year
INT

〈 〉

Figure 3.2: Schema of the tuples in Table 1.1 represented as a tree. Dotted
lines indicate the example path.

To illustrate our path definition on the tree-representation, we assume that
the nested tuple identifiers are 1-indexed from left to right in Figure 3.1. We
have added dotted lines to Figure 3.1 and Figure 3.2 to show the example path
on the tree-representation. In Figure 3.1, these lines start at the root node and
lead to the city attribute with the value NY. According to our path definition,
the path expressing this route is:

root.address2[1].city

The path starts at the root node and ends at the city attribute via the
address2 attribute. Since the address2 attribute is a nested relation, the
path has the nested tuple identifier 1 attached to the attribute reference. Thus,
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the path leads precisely to the value NY. Like we apply paths to the data, we
apply paths to the schema. In Figure 3.2, we highlight a path from the schema
root to the type of the value NY:

root.address2[id].city

This path differs from the previous path on the identifier placeholder [id]. The
placeholder indicates that all tuples nested in address2 have the same type,
regardless of their identifier value.

Based on the data model defined in this section, we introduce the execution
model in the forthcoming section.

3.2 Execution model

The execution model defines the processing semantics of a query Q. These
queries process data complying with the data model from Section 3.1. The
query is a directed acyclic graph (DAG) of operators, such as filter, flatten or
join, which returns a relation after execution. Each of these operators has its
own execution semantics. The query execution semantics are motivated by
the query execution semantics in big data analytics systems. We want them
to closely correspond to obtain meaningful explanations for existing and
missing data. In this section, we define the query execution, the operator
semantics for each operator in our nested relational algebra for bags (NRAB),
and the DAG that associates the operators in a query Q. We start with the
query execution.
Definition 3.8 (Query execution)
The execution of a query Q over a database instance D is denoted as JQKD. The
executed query returns a relation of a fixed type denoted as type(Q) defined
inductively over each operator in Q.
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We omit the database instance D in JQKD and write JQK instead if D is
clear from the context or irrelevant to the discussion. The query Q consists
of operators whose semantics we define next.
All operators in our NRAB take one or two input relations and return

a single output relation. The two input relations are the n-ary relation R
of type type(R) = R :={{〈A1 : τA1, A2 : τA2, . . . , An : τAn〉}} and the m-ary
relation S of of type type(S) = S :={{〈B1 : τB1, B2 : τB2, . . . , Bm : τBm〉}}.
Our algebra supports the operators table access, projection, renaming,

selection, union, aggregation, deduplication, and different join, flatten, and
nesting operators. It facilitates inner joins, left outer joins, right outer joins,
and (full) outer joins. Further, it promotes flatten and nesting for tuples
and nested relations since our data model allows nested attributes to have
either type. We depict these operators because big data analytics systems
natively support these operators. Consequently, we can closely correspond
the operators in our algebra to the operators in the systems. That is important
to obtain meaningful explanations for existing and missing data in the result.
In [DLHG21a], we show how our operators relate to the operators in

a standard nested relational for bags, such as [GM93]. We provide an
overview of all supported operators and their semantics in Table 3.1 before
we describe each operator below.
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Operator Semantics Output type type(·)
Table access JRK= {{tn | tn ∈ R}} R
Projection JπL(R)K= {{t l |l =

∑

t′ :t′ .L=t mult(R, t ′)}} {{〈Ai1
: τi1

, . . . , Aim : τim 〉}} for L = {Ai1
, . . . , Aim }

Renaming JρB1←A1,...,Bn←An (R)K= {{〈B1 : τ1, . . . , Bn : τn〉}} for type(Ai) = τi

{{t l |t ′ l ∈ R∧ t = 〈B1 : t ′.A1, . . . , Bn : t ′.An〉}}
Selection Jσθ (R)K= {{t l |t l ∈ R∧ t |= θ}} R
Inner Join JR\θ SK= {{(t ◦ t ′)k·l |tk ∈ R∧ t ′ l ∈ S ∧ t ◦ t ′ |= θ}} R ◦S
Left Outer Join JR⟕θ SK= R\θ S ∪ R ◦S

{{(t ◦ t⊥)
k |tk ∈ R∧ t /∈ (R\θ S)∧ t⊥ = 〈B1 :⊥, . . . , Bm :⊥〉}}

Right Outer Join JR⟖θ SK= R\θ S ∪ R ◦S
{{(t ′⊥ ◦ s)l |t ′ l ∈ S ∧ t ′ /∈ (R\θ S)∧ t ′⊥ = 〈A1 :⊥, . . . , An :⊥〉}}

Outer Join JR⟗θ SK= (R⟕θ S ∪ R⟖θ S)− (R\θ S) R ◦S
Tuple Flatten JF T

A (R)K= {{(t ◦ t.A)k |tk ∈ R}} R ◦ {{τ}}
Relation Inner Flatten JF I

A(R)K= {{(t ◦ u)k·l |tk ∈ R∧ ul ∈ t.A}} R ◦τ
Relation Outer Flatten JFO

A (R)K= F I
A(R)∪ R ◦τ

{{(t ◦ u⊥)
k |tk ∈ R∧ t /∈ (F I

A(R))∧ u⊥ = 〈B1 :⊥, . . . , Bm :⊥〉}}
Tuple Nesting JN T

N→C (R)K= {{(t.G ◦ 〈C : t.N〉)k | tk ∈ R}} {{τG ◦ 〈C : τN 〉}}, where G = LBL(R)− N
Relation JN R

N→C (R)K= {{(t.G ◦ ns(R, G, N , C , t))1|t ∈ gr(R, G)}} {{τG ◦ 〈C : {{τN }}〉}}, where G = LBL(R)− N
Nesting gr(R, G) = {t.G | tn ∈ R}, ns(R, G, N , C , t) = 〈C : JπN (σt′ .G=t.G({{t ′ | t ′

n ∈ R}}))K〉
Aggregation Jγ f (A)→B(R)K= {{(t ◦ 〈B : f (t.A)〉)k |tk ∈ R}} R ◦ {{〈B : type( f (A))〉}}
Union JR∪ SK= {{tk+l | tk ∈ R∧ t l ∈ S}} R

Table 3.1: Evaluation semantics and output types for the operators of our NRAB.
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Table access. The table access operator reads the relation R without
conducting any manipulations on the data. It is denoted as R.

JRK :={{tn | tn ∈ R}}

type(R) :=R

The first line states that the table access operator preserves each tuple’s
multiplicities in relation R. The second line describes that the type of R is
unaffected by the table access.
Projection. Given the input relation R, the projection returns a relation of

tuples that hold a specified subset of the input tuples’ attributes. Let L be set
of labels to be projected on. L is a subset of L ⊆ LBL(R). Further, let i be an
index over L (i ∈ {1, . . . , l}) and j be an index over LBL(R) ( j ∈ {1, . . . , n}).
Then, the projection on a tuple yields the output type τout :=〈A1 : τA1

, . . . , Al :

τAl
〉 where τAi

= τA j
for Ai = A j . Given the constraints, the projection πL(R)

of relation R on L is defined as:

JπL(R)K :={{tm|type(t) = τout ∧m=
∑

t ′:t ′.L=t

mult(R, t ′)}}

type(πL(R)) :={{τout}}

The first line ensures that the output relation JπL(R)K has the same number
of tuples as the input relation R. Since input tuples t ′ that are distinguishable
in R may become indistinguishable after the projection, the multiplicies of
t ∈ JπL(R)K have to be re-evaluated. The output type of the projection is a
bag type of tuple types τout .
Renaming. Let f be an injective function whose domain is the attribute

labels in LBL(R). We write f as a list of input-output pairs Bi ← Ai, which
describe the re-labeling of Ai to Bi. Renaming ρ renames the attributes of
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relation R using function f .

JρB1←A1,...,Bn←An
(R)K :=

{{t l |t ′ l ∈ R∧ t = 〈B1 : t ′.A1, . . . , Bn : t ′.An〉}}

type(ρB1←A1,...,Bn←An
(R)) :={{〈B1 : τ1, . . . , Bn : τn〉}}

The data types of the renamed attributes remain unaffected by the renaming.
Selection. Let θ be a condition consisting of comparisons between at-

tributes from relation R, constants, and logical connectives. Further, let
t |= θ denote that tuple t fulfills condition θ . The selection σθ (R) removes
all tuples from R that do not fulfill condition θ .

Jσθ (R)K :={{t l |t l ∈ R∧ t |= θ}}

type(σθ (R)) :=R

Since the selection only removes tuples from the input relation R, it does not
influence R’s schema R.
Join. Let θ be a condition over the attributes of relations R and S. The

inner, left outer, right outer, and (full) outer joins are defined as follows:

• Inner join. The inner join returns the concatenated tuples from R and
S that satisfy the condition θ :

JR\θ SK :={{(t ◦ t ′)k·l |tk ∈ R∧ t ′ l ∈ S ∧ t ◦ t ′ |= θ}}

type(R\θ S) =R ◦S

• Left outer join. The left outer join returns all concatenated tuples of
the inner join and tuples from the input relation R that do not join with
any tuple in S. To conform to the output schema, the operator extends
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them with the attributes from S and assigns them the null value ⊥:

JR⟕
θ

SK :=R\θ S ∪ {{(tR ◦ t⊥)
k|tk ∈ R

∧ t /∈ (R\θ S)∧ t⊥ = 〈B1 :⊥, . . . , Bm :⊥〉}}

type(R⟕
θ

S) :=R ◦S

• Right outer join. The right outer join returns all concatenated tuples
of the inner join and tuples from the input relation S that do not join
with any tuple in R. To conform to the output schema, the operator
extends them with the attributes from R and assigns them the null
value ⊥:

JR⟖
θ

SK :=R\θ S ∪ {{(t ′⊥ ◦ t ′)l |t ′ l ∈ S

∧ t ′ /∈ (R\θ S)∧ t ′⊥ = 〈A1 :⊥, . . . , An :⊥〉}}

type(R⟖
θ

S) :=R ◦S

• Outer join. The outer join returns all concatenated tuples of the inner
join, the tuples from the input relation R that do not join with any
tuple in S, and the tuples from the input relation S that do not join
with any tuple in R. To conform to the output schema, the operator
extends them with the according attributes and assigns them the null
value ⊥:

JR⟗
θ

SK :=(R⟕
θ

S ∪ R⟖
θ

S)− (R\θ S)

type(R⟗
θ

S) :=R ◦S

The defined join types match commonly available join operators in relational
database management systems and big data analytics systems. Thus, we only
briefly point out that the types of output relations are the same regardless
of the join type.
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Flatten. To account for nested tuples and relations, we introduce the flat-
ten operator. It flattens the values of an attribute A∈ LBL(R) into attributes of
the top-level tuples, assuming A’s type is either the tuple type or the relation
type. We define three different flatten operators to account for the different
cases. The tuple flatten operator applies exclusively to tuple types. The inner
and outer flatten operators apply to relation types. Conceptually, the inner
flatten only returns tuple combination for tuples whose attribute A holds at
least one nested tuple. The outer flatten also returns tuple combinations
from tuples whose values in A are the empty bag or the null value.

All three flatten operators require that the flattened attribute labels LBL(A)
are distinct from the attribute labels of the top-level tuples LBL(R), i.e.,
LBL(A)∩ LBL(R) = ;.

• Tuple flatten. The tuple flatten operator F T
A unnests an attribute A

of tuple type. If A is a tuple type: τ = 〈B1 : τ′1, . . . , Bm : τ′m〉, then the
tuple flatten F T

A (R) operator semantics are:

JF T
A (R)K :={{(t ◦ t.A)k|tk ∈ R}}

type(F T
A (R)) :=R ◦ {{τ}}

• Inner flatten. The inner flatten operator F I
A targets an attribute A

that holds a nested relation. If A’s type is a nested relation type:
τ= {{〈B1 : τ′1, . . . , Bm : τ′m〉}}, then the inner flatten F I

A(R) is defined as:

JF I
A(R)K :={{(t ◦ u)k·l |tk ∈ R∧ ul ∈ t.A}}

type(F I
A(R)) :=R ◦τ

• Outer flatten. Like the inner flatten operator, the outer flatten opera-
tor FO

A unnests an attribute A of nested relation type. In addition to the
result of the inner flatten operator, the outer flatten operator yields tu-
ples that have an empty bag ; or the null value ⊥ in A. It creates a new
tuple u⊥ of type type(u⊥) = type(A) to concatenate it with the these tu-
ples. If A’s type is a nested relation type: τ= {{〈B1 : τ′1, . . . , Bm : τ′m〉}},
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then the outer flatten FO
A (R) is defined as:

JFO
A (R)K := F I

A(R)∪ {{(t ◦ u⊥)
k|tk ∈ R

∧ (t.A= ; ∨ t.A=⊥)∧ u⊥ = 〈B1 :⊥, . . . , Bm :⊥〉}}

type(FO
A (R)) :=R ◦τ

Nesting. Our algebra offers two nesting operators: the tuple nesting
operator to create nested tuples and the relation nesting operator to create
nested relations. Before we introduce the operators, we define the nesting
attributes N and the grouping attributes G over the input relation R. Let
N ⊆ LBL(R) be the nesting attributes, then G = LBL(R) − N is the set of
grouping attributes. Further, let t be a tuple in R, then the projections t.N
and t.G, yield tuples of type τN and τG , respectively.

• Tuple nesting. The tuple nesting operator N T
N→C constructs a tuple

from the nesting attributes N and nests this tuple into a new tuple-
typed attribute C . It concatenates t.G with the attributes obtained
from a tuple-projection t.N for the result.

JN T
N→C(R)K :={{(t.G ◦ 〈C : t.N〉)k | tk ∈ R}}

type(N T
N→C(R)) :={{τG ◦ 〈C : τN 〉}}

• Relation nesting. The relation nesting N R
N→C operator groups the

input tuples based on the grouping attributes G. For each group,
it yields a tuple with the attributes in G plus a new attribute C of
relation type that contains all tuples in the group. Before the operator
nests these tuples, it applies a projection on the tuples on the nesting
attributes N .
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JN R
N→C(R)K :={{(t.G ◦ ns(R, G, N , C , t))1|t ∈ gr(R, G)}}

gr(R, G) :={t.G | tn ∈ R}

ns(R, G, N , C , t) :=〈C : JπN (σt ′.G=t.G({{t ′ | t ′
n ∈ R}}))K〉

type(N R
N→C(R)) = {{τG ◦ 〈C : {{τN}}〉}}

The definition of the relation nesting operator utilizes two helper
functions gr(R, G) and ns(R, G, N , C , t). While the former function
creates the groups, the latter function creates the nested relations for
the new attribute C .

Aggregation. The aggregation operator γ f (A)→B aggregates the values in
a nested relation into a new value based on the aggregation function f .
We are given the aggregation function f of type {{τ}} → τout , where τout

represents a primitive type P . For each tuple t in the input R the aggregation
operator applies f to attribute A’s value, which has to be of relation type
type(A) = {{τ}}. The function returns a value of τout , which the operator
associates with the attribute label B and adds to the output tuple.

Jγ f (A)→B(R)K :={{(t ◦ 〈B : f (t.A)〉)k|tk ∈ R}}

type(γ f (A)→B(R)) :=R ◦ 〈B : τout〉

Union. The union operator merges the input relations R and S, which
have the same type type(R) = type(S) into a single output relation. Further,
t0 ∈ R is true by convention if the tuple t is not part of relation R.

JR∪ SK :={{tk+l | tk ∈ R∧ t l ∈ S}}

type(R∪ S) :=R

A query Q is a composition of the operators defined above. Each operator
O in the query Q is identifable by a unique identifier id(O). To illustrate
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how to compose a query from the operators, we apply the algebra on our
example query shown in Figure 1.1.
Example 2
Given the input data from Table 1.1, which we call Rexample from here on, the
example query Qexample illustrated in Figure 1.1 has the following representation
in our algebra:

N R
firstname→nList

�

π{firstname,city}
�

σyear≥2019

�

F I
address1

�

Rexample

����

The query Qexample has four operators, like the pipeline in Figure 1.1. It first
flattens the address1 attribute F I

address1, before it applies the filter σyear≥2019

on the year. Then, the query retains only the firstname and city by applying
a the projection π{firstname,city}. Finally, it nests the firstnames into a nested
relation named nList with the nesting operator N R

firstname→nList. When the
query Qexample is executed, JQexampleK yields the relation displayed in Table 1.2.

The above data and execution model address this thesis’ Contribution (1).
We leverage them to formally introduce the tree-pattern matching algorithm
(Contribution (2)), the explanations for existing data (Contribution (3)),
and the explanation for missing data (Contribution (3)) in the following
chapters. They are system-independent, i.e., they do not designed with a
particular big data analytics system in mind. Given that the overall research
question of this thesis focusses on big data analytics systems, it is nontheless
crucial to devise an architecture that exploits common features these systems.
Hence, in the next section, we propose a system architecture that illustrates
the interplay of our algorithms with each other and the big data analytics
system.
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API 
for explaining existing 

results

Big data analytics system query interface supporting the operators defined in Section 3.2

Big data analytics system core supporting the nested relations defined in Section 3.1

Application

API 
for tree-patterns

API 
for explaining missing 

results

Pebble algorithm
(Chapter 5)

Tree-pattern 
matching algorithm

(Chapter 4)

Breadcrumb algorithm
(Chapter 6)

Query execution with provenance capture
Explanation request for existing results

Tree-pattern query
Explanation request for missing results

Figure 3.3: System architecture. Spark modules and applications are grey. Our system’s modules are blue. The
arrows indicate the execution interactions of the modules.
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3.3 Architecture

The tree-pattern matching algorithm, the Pebble algorithm that computes
explanations for existing data, and the Breadcrumb algorithm that computes
explanations for missing data are designed for big data analytics systems. To
understand how they interact with each other and with the analytics system,
we introduce our system architecture in this section.

Figure 3.3 provides an overview of the system architecture. In the center,
it shows the three algorithms in blue. The applications on the top (light grey)
access the algorithms via an API (blue). Furthermore, the algorithms access
the big data analytics system on the bottom (dark grey) via an interface
that supports the operators defined in 3.2. Internally, the analytics system
processes data complying with the data model defined in 3.1. The arrows
in Figure 3.3 describe the interactions between the modules, the application,
and the big data analytics system. In the following, we describe the blue
algorithm modules along with the corresponding interactions.

We start with the tree-pattern matching module in the center of Figure 3.3
that addresses Contribution (2). It implements a tree-pattern matching
algorithm that scales to large datasets in big data analytics systems because
it avoids global state and large amounts of intermediate results. As the
orange arrows show, applications call the tree-pattern matching algorithm
in the corresponding module via a dedicated API. The API passes the tree-
pattern to the tree-pattern matching algorithm that we describe in detail
in Chapter 4. The algorithm has two major steps. The first step - the schema
matching step - computes schema-matches from the tree-pattern and the
relation’s schema without accessing the data values. The second step - the
data matching step - generates a big data analytics query based on these
schema-matches. By executing the query, it obtains the matching data from
the system. The algorithm returns the matching data to the application via
the API.
To query explanations for existing data, the applications leverage the

Pebble algorithm module shown in blue on the left in Figure 3.3. It ad-
dresses Contribution (3) since it provides fine-grained explanations based
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on structural provenance. We describe the details of the Pebble algorithm
in Chapter 5. Here, we focus on Pebble’s interaction with the applications,
the big data analytics system, and the tree-pattern matching module. Recall
that Pebble eagerly captures the provenance. Therefore, the application has
to activate Pebble before query execution. The light-green arrows show the
activation and capture process. The application requests the Pebble module
to capture the provenance for an analytical query. Then, the Pebble module
triggers the execution of the query on the big data analytics system via
the query interface. During the execution, Pebble collects the structural
provenance and stores it in the big data analytics system. It does not return
any explanations, so far. Hence, the light-green arrows do not return to the
application but end in the big data analytics system.
To obtain explanations another Pebble API call is necessary as indicated

by the dark-green arrows in Figure 3.3. This call contains the previously
executed query and a tree-pattern that describes the existing data of interest.
Once the API module receives the call, it checks that the provenance has been
collected for the given query. It returns an error if the check is not successful.
If the check succeeds, the API forwards the request to the Pebble module.
This module first matches the input tree-pattern onto the query’s result data.
For that purpose, it leverages the tree-pattern matching module. That module
yields all data in the result that match the tree-pattern. Given the matching
data, the Pebble module moves backward in the query operator by operator.
It leverages the previously captured provenance to undo manipulations on
the data structure and dissolves data dependencies. Once it reaches the
input, it maps the traced data structures and dependencies onto the input
data to obtain the explanation. It returns the explanation to the application
via the API.

While the Pebble module computes explanations for existing data, the
Breadcrumb module calculates explanations for missing data. The Bread-
crumb algorithm addresses our research Contribution (4) since it yields
query-based explanations for missing data leveraging the novel concept of
reparameterizations. We describe it in detail in Chapter 6. Here, we focus
on Breadcrumb’s interactions with the tree-pattern matching module and
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the big data analytics system. The red arrows in Figure 3.3 describe the
control flow. To obtain an explanation, the application provides a why-not
question to the Breadcrumb API. This question references the input data, the
query, and a tree-pattern that describes the missing data. The API forwards
the question to the Breadcrumb module. That module leverages the schema
matching step of the tree-pattern matching algorithm to identify attributes
that match the tree-pattern’s nodes. Then, it traces these attributes back to
the query’s input relations. To identify data that potentially contribute to
the missing data described in the tree-pattern, Breadcrumb applies the data
matching step of the tree-pattern matching algorithm with the backtraced
attributes. Then, Breadcrumb re-executes the query and forward traces the
data through the query. During the query re-execution, Breadcrumb adds
annotations to the processed data. After the query execution, Breadcrumb
computes the approximated explanations based on the annotations and
returns them to the application via the API.

3.4 Summary

In this chapter, we have defined a nested data model and an execution model
that closely resemble the data and execution model of big data analytics
systems. These models form the basis for the following contributions. We
have further provided an architecture overview that illustrates the interplay
of the algorithms developed and implemented in the context of this work.

In the following, we dedicate one chapter to each of the three algorithms
to describe the internals the modules’ internals in detail. Since Pebble and
Breadcrumb rely on the tree-pattern matching module, we start with the
tree-pattern matching in the next chapter.

3.4 | Summary 71





Ch
ap

te
r 4

Tree-pattern matching

Today’s big data analytics systems provide rudimentary means to address
individual nested data values. They lack sophisticated means to address
arbitrary combinations of them. Tree-patterns allow us to declaratively
address combinations of nested data related by their structure, constrained
by their value, or restricted by their number of occurrences. They are not
only necessary to query explanations but also convenient to query nested
data directly. However, big data analytics systems do not support them
because state-of-the-art tree-pattern matching algorithms heavily rely on
global state. That inhibits distributed computation. Thus, we devise a novel
tree-pattern matching algorithm for big data analytics systems that scales to
large dataset sizes. It utilizes the fact that big data systems process nested
relations of data that share the same schema. In the first step, it matches the
tree-pattern exclusively on the schema. In the second step, it accesses the
actual data to obtain the tree-pattern matches. The algorithm can parallelize
and distribute the execution of the second step to achieve scalability. As
illustrated in Section 3.3, it utilizes the big data analytics system for that
purpose.
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This chapter describes Contribution (2) in detail and is based on our
publication on distributed tree-pattern matching [DH20a]. In the beginning,
we introduce our tree-pattern syntax and formally describe when a tree-
pattern matches data corresponding to our data model in Section 3.1. Then,
we introduce the distributed tree-pattern matching algorithm. We illustrate
both in our running example. We conclude the chapter with a discussion on
the algorithm’s complexity.

4.1 Tree-pattern syntax

In Figure 1.2, we have informally introduced two example tree-patterns that
describe the highlighted data in Table 1.3 and Table 1.4. Furthermore, we
have informally described the supported syntax elements in Figure 1.2c.
We define value constraints on nodes, cardinality constraints on nodes, and
the tree-pattern nodes first. Then, we define structural constraints and
tree-pattern edges. Eventually, we introduce tree-patterns.

The constraints are necessary to precisely address arbitrary combinations
of nested data. Informally described, value constraints make a tree-pattern
node match an attribute only if the node name matches the attribute name,
and the value constraint matches the attribute value. They only apply to
primitive types.
Definition 4.1 (Value constraint)
A value constraint vc = 〈comp, const〉 with respect to an attribute A of primi-
tive type PA is a tuple holding a comparison operator comp ∈ {=, ̸=,>,≥,<

,≤, contains} and a constant value const in the domain of PA, denoted as
τ(const) = PA.

Since value constraints only apply to primitive types, they must be leaf
nodes in our tree-pattern, i.e., they must not have any descendants. In
contrast, cardinality constraints do not apply to leaf nodes. If a node holds
a cardinality constraint, it only matches attributes of relation type R. The
constraint defines an upper and lower bound that constrains the occurrence
of the node’s subtree in the data.
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Definition 4.2 (Cardinality constraint)
A cardinality constraint with respect to an attribute A of relation type R is a
tuple cc = 〈min, max〉 with min, max ∈ N+ ∪∞ defining the minimum and
the maximum number of occurrences of tuples in the instance of A.

The default lower bound is min = 1 and the default upper bound is
max =∞. Hence,a node without an explicit cardinality constraint, may
still match an attribute of relation type R. Given the value and cardinality
constraints, we define the tree-pattern nodes. Each tree-pattern node has a
label to match an attribute label in the data. Furthermore, it has an attribute
for a value and a cardinality constraint. It additionally has a boolean value
that describes whether the value on which the tree-pattern node matches
becomes part of the tree-pattern matching output. The tree-pattern node is
the following 4-tuple.
Definition 4.3 (Tree-pattern node)
A tree-pattern node n is a 4-tuple n = 〈A, vc, cc, on〉, where A ∈ L ∪ {{root}}
is an attribute name, vc either ⊥ or a value constraint, cc is a cardinality
constraint, and the boolean value on is true if it is an output node and false
otherwise.

Asmentioned in the running example Section 1.2 and in the datamodel Sec-
tion 3.1, we introduce a root label to refer to top-level tuples in the input
relation. Edges connect the tree-pattern nodes to form a fully specified
tree-pattern. These edges have either of two types, which define structural
constraints over the data.
Definition 4.4 (Structural constraint)
A structural constraint with respect to two tree-pattern nodes n1 and n2 is a
boolean value sc = {true|false} that encodes a parent-child relationship (PC)
between n1 and n2 when true or an ancestor-descendant relationship (AD)
when false.

Given the structural constraints, a tree-pattern edge is:

4.1 | Tree-pattern syntax 75



Definition 4.5 (Tree-pattern edge)
A tree-pattern edge is a triple e = 〈n1, n2, sc〉, where n1 ̸= n2 are tree-pattern
nodes and sc is a structural constraint with respect to nodes n1 and n2.

The tree-pattern is a tree whose edges connect the tree-pattern nodes. It
roots in a dedicated node that is the only node without a parent.
Definition 4.6 (Tree-pattern)
A tree-pattern is a triple T = 〈r, N , E〉. Here, r is a tree-pattern node, N is a set
of tree-pattern nodes (including r), and E is a set of tree-pattern edges. N and
E form a single tree rooted at r.

To illustrate our tree-pattern definition, we demonstrate it on the running
example.

root

city
=

“LA”

nList

firstname
=

“Sue”

[2,2]

Figure 4.1: Example tree-pattern
T (Figure 1.2a)

city nList

101 LA

firstname

711 Sue
712 Sue
713 Tom

Table 4.1: Unexpected data that is
existing in the example
output (Table 1.3)

Example 3
Recall that our example tree-pattern describes the existing, but unexpected
data in our running example. For convenience, we show the tree-pattern again
in Figure 4.1 and the unexpected output data again in Table 4.1.
Now, we express the tree-pattern in our formal tree-pattern syntax. It has

four nodes, of which two have a value constraint, and one has a cardinality
constraint. Two out of three edges describe a PC-relationship. We first define
the set of tree-pattern nodes Nex ist ing , starting with the root node:
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Nex ist ing =















nroot = 〈root,⊥, 〈1,∞〉,false〉,
nci t y = 〈city, 〈=,LA〉, 〈1,∞〉,false〉,

nnList = 〈nList,⊥, 〈1,2〉,false〉,
n f irstname = 〈firstname, 〈=,Sue〉, 〈1,∞〉,false〉















Like the tree-pattern in Figure 4.1, the set of nodes Nex ist ing has four nodes. The
two tuples 〈=,LA〉 and 〈=,Sue〉 represent the value constraints in the ci t y and
f irstname node, respectively. Further, the tuple 〈2,2〉 describes the cardinality
constraint on the nList node. To connect these nodes, we define the set of edges
Eex ist ing next.

Eex ist ing =







〈nroot , nci t y ,true〉,
〈nroot , nnList ,true〉,

〈nnList , n f irstname,false〉







The top two edges define PC relationships between the root node and the
ci t y node, and the root node and the nList node, respectively. The lower edge
describes an AD relationship between the nList node and the f irstname node.
Given the set of nodes Nex ist ing and the set of edges Eex ist ing , the tree-pattern
Tex ist ing is:

Tex ist ing = 〈nroot , Nex ist ing , Eex ist ing〉

Unlike our tree-pattern Tex ist ing , the built-in means of state-of-the-art big
data analytics systems cannot directly address and associate the two nested
f irstnames Sue. The following section describes the tree-pattern matching
algorithm, which identifies the highlighted data in Table 4.1, given Tex ist ing .

In this section, we have defined the tree-pattern syntax. In the following
section, we formally define when a tree-pattern matches the data.
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4.2 Tree-pattern matching definition

Once the tree-pattern is defined, it has to be matched on the data in our
nested relations. Here, we introduce a novel matching definition for matching
tree-patterns on nested relations corresponding to our data model in Sec-
tion 3.1. The definition distinguishes from previous definitions, since it
explicitly exploits the fact that data in our nested relations share the same
schema. Previous approaches have mainly targeted semi-structured XML
data sources, for which the schema property generally does not hold. Based
on our matching definition we can devise our novel, distributed tree-pattern
matching algorithm in the next section.

Given a Tree-pattern T and a relation R, tree-pattern matching identifies
all data in R that have counterparts to all nodes N and all edges E in T .
Further, the data must fulfill all value, cardinality, and structural constraints
that the pattern defines.

According to our data model in Section 3.1, all tuples in a nested instance
comply with the same schema. Our tree-pattern matching algorithm uti-
lizes this property to divide the matching into a data-independent schema-
matching and a data-dependent data-matching phase. During schema-
matching, the matching algorithm checks for matches in (i) the node names
in the tree-pattern and (ii) compliance to all structural constraints. During
data-matching, it further checks cardinality and value constraints. In the fol-
lowing, we formally define the schema-matching and data-matching before
we introduce our two-phase tree-pattern matching algorithm. The schema
matching is defined as follows.
The schema-matching finds all possible trees that only have parent-child

edges, correspond to the nested relation’s schema and satisfy all structural
conditions in the tree-pattern.
Definition 4.7 (Schema-matching)
Given T = 〈r, N , E〉 and the schema R of a nested relation R, a schema match
M fulfills the following constraints over R:
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1. All nodes n ∈ N match an attribute label AR ∈R, denoted M(n) = AR:
∀n= 〈A, vc, cc, on〉 ∈ N ,∃AR ∈R |= A= AR

2. All PC relationships ePC ∈ E match in R, denoted M(ePC) = 〈AP , AC〉:
∀ePC = 〈nP , nC , t rue〉 ∈ E,∃AP , AC ∈ R |= M(nP) = AP ∧ M(nC) =
AC ∧ (path(AC) = path(AP).AC ∨ path(AC) = path(AP)[id].AC)

3. All AD relationships eAD ∈ E match in R, denoted M(eAD) = 〈AA, AD〉:
∀eAD = 〈nA, nD,false〉 ∈ E,∃AA, AD ∈ R |= M(nA) = AA ∧ M(nD) =
AD ∧ path(AA) is a prefix of path(AD)

Each match M maps T to a tree with nodes MN and edges ME , i.e., M(T ) =
〈MN , ME〉 where MN =

⋃

n∈N M(n) and ME =
⋃

e∈E M(e). In this tree, nodes
are uniquely identified by their path and edges by the according path pairs.
All value constraints vc, cardinality constraints cc, and output flags on are
transferred from the nodes in T to their matching nodes in M . Furthermore,
the tree-pattern T may match multiple times onto the schema R. The schema-
matching M is the set of all possible schema-matches of T in R.

The schema-matches in M serve as blueprints for the full tree-pattern
matches over the input relation R of typeR. They guarantee that all required
attribute labels are present and all structural constraints are satisfied. There-
fore, in the data-matching step, the algorithm only checks the cardinality
constraints and value constraints for each match M ∈M on each tuple t ∈ R.
Definition 4.8 (Data-matching)
Given a schema match M and a tuple t ∈ R, t is a data match of M , if:

1. all value constraints hold:
∀n ∈ MN , vcn ̸=⊥ |= the value of path(n)t satisfies vc

2. all cardinality constraints hold:
∀n ∈ MN : ccn ̸= ⊥ |= subtree of M rooted at n matches tuples in the
nested relation at path(n)t at least mincc times and at most maxcc times
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root
0

city
0.0

nList[pos]
0.1

firstname
0.1.0

root
〈 〉

city
STR

nList
{{ }}

firstname
STR

〈 〉〈 〉

(a) Example schema R
of the output in Ta-
ble 1.2

root

city
=

“LA”

nList

firstname
=

“Sue”

[2,2]

(b) Example tree-pattern
T as introduced in
Figure 1.2a

root

city
=

“LA”

nList

firstname
=

“Sue”

[2,2]

root

city
=

“LA”

nList[id]

firstname
=

“Sue”

[2,2]

(c) Schema match M1 ob-
tained from the tree-
pattern to the left

Figure 4.2: Schema matching example

A tuple t ∈ R may match multiple schema-matches M ∈M. We illustrate
the schema-matching and data-matching on our running example, before
we discuss the algorithm.
Example 4
Recall that we have shown the example data and tree-pattern again at the
beginning of this chapter in Table 4.1 and Figure 4.1, respectively. For con-
venience, we show the schema R of the example output in Figure 4.2a, the
example tree-pattern in Figure 4.2b. Matching the tree-pattern in Figure 4.2b
onto the schema R in Table 4.1 yields the schema match M1 in Figure 4.2c. As
described above, each node in the tree-pattern has a counterpart in the schema
match M1. Further, the schema match does not have any ancestor-descendant
(AD) edges anymore, unlike the tree-pattern. It has an AD edge between the
nList node and the firstname node. Furthermore, all value and cardinality
constraints are transferred from the tree-pattern to the according nodes in M1.

The data matching applies the schema match M1 on each tuple in the result
R in Table 4.1 to validate the value and cardinality constraints. The only tuple
t in R fulfills both value constraints since the city attribute holds the value
“LA” and the nested relation nList holds tuples whose attribute firstname
matches “Sue”. Since the relation has exactly two occurrences of “Sue”, the
tree-pattern T matches the tuple t.
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We refer the interested reader to [DH20a] for a more complex example with
multiple matches.

4.3 Tree-pattern matching algorithm

Given the tree-pattern T and the dataset instance R of schemaR, we propose
a novel two-phase algorithm to match T onto R. It is designed for distributed
execution on big data analytics systems since it leverages the schema prop-
erties of the nested relations and avoids global state. The algorithm has two
phases that correspond to the definitions of the schema-matching and the
data-matching provided in Section 4.2. Algorithm 1 provides an overview of
the two phases.

Algorithm 1: t pm(T, R)
Input: Tree-pattern T , relation R of type R
Output: Relation R′ of type R′

1 M← matchSchema(T,R)
2 R′← matchData(M, R)
3 return R′

The matchSchema function computes the schema matches M as defined
in Definition 4.7 based on the tree-pattern T and the relation R’s schema
R. It does not access the data in R. The algorithm exclusively accesses R
when calling the matchData function. Given the schema matches M and
the relation R, this function yields the output relation R′ with the matching
tuples. The separation of the schema-matching and data-matching phases
allows for distributed tree-pattern matching, because the algorithm can apply
the data matching phase in parallel on the tuples in R. That is imperative
when processing data in big data analytics systems. In the following, we
describe the two phases of the algorithm in detail.
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Algorithm 2: matchSchema(T,R)
Input: Tree-pattern T , schema R
Output: SchemaMatches M

1 M← ;
2 RD ← dewe y I D(R)
3 IR← dewe y Id x(RD)
4 RC ← IR(T.r.name)
5 for rc ∈ RC do
6 C ← ;
7 for l ∈ leaves(T ) do
8 C ← C ∪ 〈node : l, candidates : {{lc|lc ∈

IR(l.name)∧ pre f i x(rc, lc) = t rue}}〉
9 for c ∈ {{〈cc1.node : lc1, ..., cc|C |.node : lc|C |〉|lci ∈

cci .candidates ∧ cci ∈ enum(C)}} do
10 Mc ← mer ge(rc, c)
11 if validate(Mc) = t rue then
12 M←M∪ {{transferConstraints(Mc)}}

13 return M

4.3.1 Schema matching

Algorithm 2 computes the set of schemamatchesM. During the initialization
phase (ll. 1-4), the algorithm labels each attribute in R with a unique
DeweyID to obtain the annotated schema RD. The DeweyID [LLCC05]
encodes the nesting and sibling relationship of attributes. Based on these ids,
the algorithm creates an index IR, that maps each unique node label to a
collection of DeweyIDs. Next, it retrieves the DeweyIDs of all root candidates
RC from the index. All identifiers in RC match the root node r of T (l. 4).

While iterating over the root candidates (ll. 5-12), the algorithm computes
the schema matches M for each root candidate rc ∈ RC . First, it associates
each leaf node l in the tree-pattern T with a set of candidate attributes of
RD in a map C . It identifies the attributes with the DeweyID (ll. 6-8). The
candidate matches to each leaf node l are the nodes that match l ’s label
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root
0

city
0.0

nList[pos]
0.1

firstname
0.1.0

root
〈 〉

city
STR

nList
{{ }}

firstname
STR

〈 〉〈 〉

id

Figure 4.3: Example DeweyIDs applied on the schema in Figure 4.2a

and that are descendants of the root candidate (pre f i x(rc, lc) = t rue). The
algorithm retrieves them from index IR (lc ∈ IR(l.name)) .
In lines 9-12, the algorithm computes the schema matches from C . It

computes the cross product of the DeweyIDs stored in each leaf label’s set
in C (l. 9). Then, for each combination c comprising |C | DeweyIDs, the
algorithm merges the root to leaf paths into a schema match candidate Mc

using the DeweyIDs (l. 10). Next, it validates that Mc fulfills the tree-pattern
T ’s structural constraints. When the validation is successful, it transfers
the value and cardinality constraints from nodes in T to the corresponding
nodes in Mc and adds Mc to M.
Example 5
When the algorithm computes the schema matches from the tree-pattern in
Figure 4.2b and the schema in Figure 4.2a, it assigns each attribute in the
schema a unique DeweyID, as shown in Figure 4.3. For instance, the nList
attribute has the label 0.1. It is a child of the root with label 0 and sibling of
the city with label 0.0. Further, it is the parent to firstname with the label
0.1.0. The unlabeled tuples in nested relations indicated by the tuple-brackets
between the nList and the firstname do not receive a DeweyID, since they do
not have a label.
From the schema with DeweyIDs, the algorithm computes the index IR.
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IR =















〈root : {0}〉,
〈city : {0.0}〉,
〈nList : {0.1}〉,

〈firstname : {0.1.0}〉















In this example, each label occurs precisely once. Thus, each entry in IR
contains one DeweyID. In general, the entries can contain multiple identifiers.
The algorithm obtains the root candidate set RC = {{0}} from IR. It contains
only the root’s DeweyID 0. Then, the algorithm computes the following leaf
candidate mapping C:

C =

¨

〈city : {0.0}〉,
〈firstname : {0.1.0}〉

«

By forming the cross-product of leaf idenfiers in themapping C , the matchSchema
algorithm computes the leaf candidates c. In our example, it is exactly one
candidate c1:

c1 = 〈city : 0.0,firstname : {0.1.0}〉

The algorithm uses the candidate c1 to merge the root to leaf paths into a
schema match candidate Mc1:

Mc1 =

®

{0,0.0, 0.1,0.1.0}
{〈0,0.0〉, 〈0,0.1〉, 〈0.1.0〉}

¸

The candidate Mc1 has four nodes (upper line) and three edges (lower line).
After successful validation, the algorithm transfers the contraints to obtain the

84 4 | Tree-pattern matching



schema match M1 as shown in Figure 4.2c. It adds M1 to the set of schema
matches M, before returning M, since there are no further candidates to be
validated.

Once the algorithm has computed all schema matches, it starts the data
matching phase.

4.3.2 Data matching

As shown in Algorithm 1, the algorithm calls the matchData function in Algo-
rithm 3 after computing the schema matchesM to compute the tree-pattern
matches on the data. It realizes the data-matching defined in Definition 4.8.

The matchData function has three different implementations to address
the needs of the Pebble and Breadcrumb algorithms. They only differ in the
return types:

(i) The first type adds a boolean attribute to the input relation that in-
dicates whether a top-level tuple in the input relation matches the
tree-pattern. Breadcrumb leverages this matchData function to iden-
tify data that potentially contribute to the missing data in the result.

(ii) The second type returns a nested relation of the type defined by the
output nodes in the tree-pattern. It exclusively returns the data that
matches the nodes in the tree-pattern with the output flag on set to
true. The stand-alone tree-pattern matching algorithm leverages this
function type to return the requested, matching data.

(iii) The third type returns a relation that holds the exact paths the tree-
pattern has matched on. Pebble leverages this type to compute the
structural provenance for the data that match the tree-pattern.

Since the algorithm to compute the matches is conceptually the same
for all three types, we exclusively describe the first variant here. In the
implementation Chapter 7, we describe the implementation details for all
three types.
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Algorithm 3: matchData(M, R)
Input: SchemaMatches M, relation R of type R
Output: Relation R′ of type R′

1 R′← ;
2 for t ∈ R do
3 match← false
4 for M ∈M do
5 match← match∨ checkTuple(t, M .r, M .r)

6 R′← R′ ∩ {{t ◦ 〈match : match〉}}

7 return R′

The matchData function checks the value and cardinality constraints
of each schema match M ∈M against every tuple t ∈ R to mark them as
matching or non-matching. For that purpose, it associates an additional
boolean attribute match to each t. It holds the true value, if t matches any
M ∈M and the false value otherwise.
After initializing the output collection R′ to an empty relation ;, Algo-

rithm 3 iterates over each t ∈ R (ll. 2-6) to check whether it matches. The
variable match holds the boolean value indicating a match. The algorithm
updates the variable while iterating over the schemamatches M ∈M (ll. 4-5)
in a nested loop. It becomes true if any call to the checkTuple function
returns true. This function recursively checks the value and cardinality
constraints of every M against each tuple t. After checking all Ms for a t, it
concatenates t with the new attribute match and which holds the value of
the variable match and adds the concatenated tuple to R′.

When the algorithm calls the recursive checkTuple function in Algorithm 4,
it provides the parameters t, M ’s root node r as initial node n, and p = r.
In general, the function verifies that tuple t satisfies all the constraints of
node n. The method keeps track of its nesting through path p. If the schema
match node n, holds a value constraint, the function assesses the constraint
on the value at t.p (l. 3). If the value does not satisfy constraint vcn of node
n the function does not check any children of node n any more since t cannot
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Algorithm 4: checkTuple(t, n, p)
Input: tuple t, node n ∈ NM , path p
Output: boolean value indicating if t matches constraints of subtree

of M rooted at n (true) or not (false)
1 isValid ← true
2 if vcn ̸=⊥ then
3 isValid ← eval(t.p, vcn)

4 if isValid then
5 for c ∈ child renO f (n) do
6 if c matches a collection type then
7 isValid ← isValid ∧ checkCol(t, c, p.namec)

8 else
9 isValid ← isValid ∧ checkTuple(t, c, p.namec)

10 return isValid;

match M anymore. If the value satisfies the constraint or if n has no value
constraint vcn =⊥, the function recursively checks n’s subtree in depth-first
order. If n matches an attribute of primitive type, the recursion terminates
because n does not have children in this case. Otherwise, the function iterates
over n’s children c. During the iteration, the function distinguishes two cases
for each child: (i) If the node c refers to an attribute of tuple or primitive
type, the method calls itself to match the child node c reachable via the path
p.namec, where namec represents the attribute name. (ii) If the child node
c refers to an attribute of the nested relation type, the algorithm further
checks potential cardinality constraints on c. Then, it calls the checkRel
method in Algorithm 5.

To verify cardinality constraints, the algorithm applies the checkRel func-
tion in Algorithm 5, which has the same parameters as the checkTuple
function. The checkRel function first retrieves the nested relation REL from
path p evaluated on t. Then, it iterates over the elements in REL, counting
the nested tuples that match the subtree of M rooted in n. The function has
to validate all constraints of the whole subtree. Thus, it calls checkTuple in
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Algorithm 5: checkRel(t, n, p)
Input: tuple t, node n ∈ NM , path p
Output: boolean value indicating if t matches constraints of subtree

of M rooted at n (true) or not (false)
1 REL← pt

2 cnt ← 0
3 for el ∈ REL do
4 if checkTuple(t, n, p[pos(el)]) then
5 cnt ← cnt + 1

6 isValid ← true
7 if ccn ̸=⊥ then
8 isValid ← f alse
9 if mincc ≤ cnt ≤ maxcc then

10 isValid ← t rue

11 return isValid

line 4 with an updated path pointing to a tuple in the nested relation. Only
if all constraints on the tuple hold, it increments the counter cnt. If n has
an associated cardinality constraint ccn ̸=⊥, the function checks that cnt is
within the range defined by the cardinality constraint (ll. 4-6). Eventually, it
returns true if the check was successful and false otherwise.
After the matchData algorithm in Algorithm 3 has checked all tree-

patterns M ∈M on all tuples in the input relation t ∈ R, the algorithm
terminates. It has identified and marked all matching tuples utilizing the
checkTuple function in Algorithm 4 and the checkRel function in Algo-
rithm 5.
The following example illustrates the matchData algorithm on our run-

ning example.
Example 6
Given the set of schema matches M, which contains the match M1 computed
in Section 4.3.1 and the tuple t in the example output Table 4.1, matchData
starts checking t at M ’s root node root with the path root. It will call the
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functions introduced in this section multiple times. Hence, we use a superscript
index that indicates the call order of these functions. It starts with calling the
checkTuple1 function with the specified parameters. Since there is no value
constraint associated with the root node, the algorithm checks the child ci t y
next. It updates the path to root.city and calls the checkTuple2 with the
ci t y node and the updated path.
The city node holds the value contstraint vcci t y = 〈=,LA〉. Thus, the

checkTuple2 function compares the constraint’s LA to the root.city attribute’s
value LA. Since they match, checkTuple2 advances to check the ci t y node’s
children. The ci t y node does not have any children. Thus, it returns true to
checkTuple1.

checkTuple1 calls checkCol3 on node nList with path root.nList. The
checkCol3 function now checks the three tuples in the nested relation. It calls
checkTuple4 with node f irstname and path root.nList[711].firstname
to find the value Sue in root.nList[711].firstname match the f irstname’s
value constraint. Thus, checkTuple4 returns true to checkCol3, which in-
creases counter cnt by 1. checkCol3 repeats calling checkTuple5 with path
root.nList[712].firstname and checkTuple6 with path
root.nList[713].firstname. Like checkTuple4, checkTuple5 returns true
since the value at path root.nList[712].firstname is also Sue. checkTuple6

returns false because the firstname Tom does not match Sue.
After checkCol3 has checked all nested tuples in root.nList, cnt equals

2. checkCol3 compares the cnt to the upper and lower bound of the cardi-
nality constraint associated with the nList node. Both bounds are 2. Hence,
checkCol3 returns true to checkTuple1, which also returns true after ob-
taining true from checkCol3 and checkTuple2. Thus, matchData associates
true to the input tuple t before adding it to the output relation R′.

4.3.3 Discussion

We conclude this section on the tree-pattern matching algorithm with a
discussion on two crucial aspects of the algorithm. First, we discuss the
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runtime complexity of the algorithm’s two phases. Second, we elaborate on
the distributed execution of the algorithm to highlight our contributions.
Runtime complexity. We first discuss the runtime complexity of the

schema matching algorithm. Afterward, we focus on the data matching
algorithm. Given a tree-pattern T with n= |N | nodes, the schema matching
algorithm (Algorithm 2) holistically computes schema matches M over the
data’s schema, which has r = |R| attributes. More precisely, the nodes in
the tree are either leaves l or inner nodes i. Hence, the number of nodes
in the tree-pattern is the sum of leaves and inner nodes n = nl + ni. The
algorithm first identifies all potential root-to-leaf paths in (ll. 6-8). Since
the algorithm can leverage the DeweyID to check whether a leaf is the
child of the root node, the loop can conduct the prefix check in constant
time. In the worst case, the leaf node has the same attribute label as all
attribute names in R. Furthermore, the leaves in the tree may all share
the same name. In this case, the complexity of this loop is in O(r ∗ nl)
because the algorithm has to check all attributes for all leaf nodes. The
loop yields all root-to-leaf path matches for each leaf node. In the second
loop (ll. 9-12), the algorithm iterates over all possible combinations of
the previously computed root-to-leaf path matches. Hence, the loop is
exponential in the number of leaf nodes. The root-to-leaf path matches are
bound by r for each leaf node. Therefore, the loop introduces a complexity
of O(rnl ). In the loop, the algorithm calls the merge function that verifies
whether the combination is a schema match. For each combination, the
merge function has to check multiple node merge options, when ancestor-
descendant relationships appear in the tree-pattern. In this case, the merge-
function potentially has to match all inner nodes onto the merged tree. That
has a worst-time complexity of O(rni ). Therefore, the second loop has a
worst-time complexity of O(rnl · rni ) = O(rnl+ni ) = O(rn). Combining the
complexity of the first and second loop yields O(r ∗n+ rn). Since the schema
typically has more attributes than the tree-pattern, i.e., r > n, the runtime
is dominated by the second loop and the worst-case complexity for the
schema matching phase becomes O(rn). The average runtime complexity is
much lower, though, because the worst-case complexity requires all nodes
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in the tree-pattern and the schema to share the same labels, which is highly
unlikely in practice.
Given the set of schema matches M from the schema matching phase,

the data matching phase computes the actual matches on the data. Let us
assume the data holds d top-level tuples in the data and the number of
schema matches is m=M. The data matching phase accesses every tuple
exactly once for each schema match. Hence, the data matching phase has
a theoretical complexity of O(m · d). In practice, the number of schema
matches is orders of magnitudes smaller than the number of top-level tuples
in the data. Therefore, the complexity is close to O(d).

In comparison, other holistic state-of-the-art algorithms like TJFast [LLCC05]
or TwigStack [BKS02] match directly on the data. They enumerate all pos-
sible combinations of attribute instances for each node in the tree-pattern.
Given d top-level tuples, which have up to r attributes each, they have a
worst-case runtime complexity of O((d · r)n). This is much worse than our
runtime complexity since d typically is orders of magnitudes larger than r.
Scalability. As stated in the introduction (Contribution (2)), we con-

tribute a novel tree-pattern matching algorithm that scales with the compute
resources in a distributed big data analytics systems. Recall from the re-
lated work in Section 2.1 that existing algorithms do not simply extend
to distributed systems because they rely on global state or produce large
intermediate results. To avoid these limiting factors, our novel tree-pattern
matching algorithm exploits the fact that the tuples in the nested relations
of the analytics systems share the same schema. Hence, the algorithm
splits the matching into two distinct phases. The schema matching phase
runs single-threaded on a single compute node in the cluster. Distributing
this phase will not improve the overall runtime since it computes schema
matches exclusively on the schema, and the schema typically is orders of
magnitude smaller than the data. Hence, we distribute the execution of the
data matching phase.
Big data analytics systems typically partition the nested input relations

into disjunct chunks of top-level tuples. Given the schema matches, the
data matching function iterates over these top-level tuples to find the tree-
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pattern matches. It checks each top-level tuple independently of all other
top-level tuples in the nested relation. Thus, we can execute the function
on the individual partitions as well as on the entire nested relation without
influencing the result. That makes the algorithm scale to large dataset sizes
on increasing distributed compute resources. We will show these properties
in the evaluation chapter in Section 8.2. Here, we conclude the chapter with
a summary.

4.4 Summary

In this chapter, we addressed our Contribution (2). For that purpose, we
have introduced the tree-pattern syntax. We have further defined when a
tree-pattern matches the data that complies with our data model. Based on
these definitions, we have introduced a novel, scalable tree-pattern matching
algorithm for big data analytics systems. This algorithm already improves
the query capabilities of big data analytics systems, for it allows to query
arbitrary combinations of nested data values. However, it shows its full
potential only when leveraged in Pebble and Breadcrumb. They use the
tree-pattern matching algorithm to compute explanations for existing data
and missing data, respectively. In the next chapter, we will introduce the
explanations for existing data and Pebble in detail.
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Explanations for existing
data

Big data analytics systems lack sophisticated means to debug analytical
queries, especially when the queries process nested data. That is why we
propose structural provenance as new means to obtain explanations for
existing data in the query result. These explanations point at data in the
query input that are involved in producing the data in the result. The
explanations are more comprehensive than those of comparable state-of-the-
art solutions because they describe the access to and the manipulation of
individual nested attributes. To provide these comprehensive explanations,
the structural provenance captures structural manipulation of individual
data values in addition to mere data dependencies. Since our goal is to
efficiently compute the explanations obtained from structural provenance
in a big data analytics system, we further contribute the Pebble algorithm
that efficiently captures the structural provenance for nested input relations.
This algorithm scales to large datasets in distributed clusters.
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This chapter addresses Contribution (3) and describes the Pebble algo-
rithm module in our architecture in Section 3.3. It is further based on two
published papers [DH19; DH20b] and has the following structure. In Sec-
tion 5.1, we formally introduce the structural provenance and its capture
semantics. For that purpose, we extend the operator execution rules from
our execution model in Table 3.1 to additionally capture data dependencies
and the access to and manipulation of the data. The extended rules capture
highly redundant information. That prevents capturing full-blown structural
provenance at a large scale. Therefore, we introduce lightweight structural
provenance in Section 5.2. It aggregates redundant access and manipulation
information in the structural provenance so that it scales to large dataset
sizes. Our novel Pebble algorithm captures this lightweight provenance while
the big data analytics system executes the query. In Section 5.3, we describe
how Pebble constructs the explanations from the captured provenance once
an explanation is requested and discuss Pebble’s runtime complexity and
Pebble’s scalability features in distributed big data analytics systems.

5.1 Structural provenance capture semantics

We introduce structural provenance to compute explanations for existing
data. To provide more comprehensive explanations then other existing
provenance, the structural provenance distinguishes between access and
manipulation of data. Operators manipulate data when they change their
attribute structure, attribute name, or data value. For instance, the tuple
flatten operator unnests attributes. Hence, it manipulates the structure of
these attributes. The rename operator replaces attribute names with new
attribute names. The aggregation operator computes new data values from
existing data values. All three example operators manipulate the data and the
structural provenance captures these manipulations. Furthermore, operators
access data during processing, but do not change the data structure, name,
or value. For example, the selection operator accesses the data in the filter
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condition to judge whether a tuple passes the selection or not. It does not
manipulate the data structure, attribute names, or data values.

The structural provenance annotates top-level tuples in the nested relations
that the operators in an analytical query process. It consists of multiple
components to faithfully capture all access to and manipulation to arbitrarily
nested data. We will introduce these components one after the other using
color coding to improve understandability. Afterward, we will define the
provenance capture rules that describe the provenance capture semantics.
To capture the data access, the structural provenance records the access

provenance for each top-level tuple in each operator’s input relation. It
records all paths accessed in each tuple.
Definition 5.1 (Access provenance)
Let Ri be the input relations of an operator O and t ∈ Ri be a top-level input
tuple. Then, t ’s access provenance At is the set of paths that the operator O
accesses to obtain the corresponding data values in t. O needs the values to
process t. The access provenance stores each accessed path in a tuple with a
single attribute called p.

At :=
⋃

t.p accessed by O

{{〈p : t.p〉}}

type(At):={{〈p : STR〉}}

The access provenance is part of the input provenance, which is a nested
relation. Intuitively, this relation holds all top-level input tuples that con-
tribute to an output tuple together with their associated access provenance,
and their input relation.
Definition 5.2 (Input provenance)
Let Ri be the input relations of an operator O, t be a top-level input tuple t ∈ Ri ,
and t ′ be a top-level output tuple t ′ ∈ JOK. Then, t ′s’ input provenance It ′ is a
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nested relation with one 3-tuple for each input tuple t that contributes to t ′:

It ′ :=
⋃

t contributes to t ′
{{〈i t : id(t), iR : id(Ri),A : At〉}}

type(It ′) :={{〈i t : IN T, iR : IN T,A : type(At)〉}}

The 3-tuple has the identifier of the input tuple id(t), which is unique within
t ’s nested relation Ri. The tuple also references the nested relation Ri via its
globally unique identifier id(Ri) and stores the access provenance At .

The input provenance is sufficient to track dependencies between top-
level tuples in the input and the output of an operator. They do not record
any manipulations of nested attributes. We track them in the manipulation
provenance so that the structural provenance can yield explanations at the
granularity of individual nested attributes. The manipulation provenance
is a mapping between paths in top-level input tuples and paths in top-level
output tuples. For each input tuple that helps to produce an output tuple, the
mapping stores an entry for each attribute path in the input tuple that helps
to produce an attribute path in the output tuple. More generally, if input
data helps to produce output data, we say that the input data contributes to
the output data.
Definition 5.3 (Manipulation provenance)
Let Ri be the input relations of an operator O, t be a top-level input tuple t ∈ Ri ,
and t ′ be a top-level output tuple t ′ ∈ JOK. Then, t ′s’ manipulation provenance
Mt ′ is a nested relation that holds one tuple for each input attribute path t.p
that contributes an output attribute path t ′.p′:

Mt ′ :=
⋃

t.p contributes to t ′.p′
{{〈in : t.p, out : t ′.p′〉}}

type(Mt ′):={{〈in : STR, out : STR〉}}

The manipulation provenance and the input provenance together form
the structural provenance captured during query execution. It is associated
with each top-level output tuple.

96 5 | Explanations for existing data



Definition 5.4 (Strucural provenance capture extension)
Let t ′ be a top-level output tuple t ′ ∈ JOK and I,M ̸∈ L unique attribute labels.
The structural provenance capture extension SP and its type type(SP) are:

SP t ′ :=〈I : It ′〉 ◦ 〈M : Mt ′〉

type(SP t ′) :=〈I : type(It ′),M : type(Mt ′)〉

The capture extension’s type is independent of the output type type(t ′).
In fact, we have designed the type so generic that it applies to the output
of all supported operators. The capture extension for each top-level output
tuple is computed when an operator is executed.
Definition 5.5 (Structural provenance execution)
Let t ′ ∈ JOK of type τt ′ be a top-level tuple in the output of an executed operator
and SP t ′ its provenance capture extension. Then, the structural provenance
execution JOKSP is:

JOKSP :={{t ′ ◦SP t ′ | t ′ ∈ JOK}}

type(JOKSP) :={{τt ′ ◦ type(SP t ′)}}

In the following, we extend the operator execution rules in our execution
model (cf. Table 3.1) with the capabilities to capture the structural provenance
SP. For conciseness, we do not repeat the preconditions of the operator
semantics, even though they also apply to the following rules. We denote
top-level tuples in the operator’s input relations with t and the correspoding
top-level tuples in the output relation with t ′. The extended rules typically
have four lines. They have the output tuple t ′ in the first line, the input
provenance I in the second line, and the manipulation provenanceM in the
third line. The access provenanceA, which is part of I, and the manipulation
provenance M are highlighted for convenience. The fourth line describes
how the output tuple t ′ is generated from the input tuples. We do not show
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the output type for conciseness, since the provenance type is defined by the
generic definition above. We start with the table access operator.
Table access. The table access operator reads the only input relation R

without accessing particular attributes or manipulating the data. Thus, the
access provenance A and the manipulation provenance M are both empty,
denoted as ;.

JRKSP :={{t ′

◦ 〈I : {{〈i t : id(t), iR : id(R),A : ;〉}}〉

◦ 〈M : ;〉

| t ′ = t ∧ t ∈ R}}

Accessing the table preserves the multiplicity of all tuples. Thus, t ′m ∈ JRKSP

holds, if tm ∈ R.
Projection. Recall that the projection operator projects each input tuple

t to a new output tuple t ′ that has precisely the attributes L. Therefore, it
accesses all attributes with a label l ∈ L to add the attribute to the output
tuple t ′. Thus, A records all paths t.l andM the mapping between the input
path t.l and the output path t ′.l.

JπL(R)K
SP :={{t ′

◦ 〈I : {{〈i t : id(t), iR : id(R),A :
⋃

l∈L

{{t.l}}〉}}〉

◦ 〈M :
⋃

l∈L

{{〈in : t.l, out : t ′.l〉}}〉

| t ′ = t.L ∧ t ∈ R}}

The multiplicity of t ′ is t ′m where m=
∑

t:t.L=t ′ mult(R, t).
Renaming. The renaming operator renames attributes of top-level input

tuples t. Each input tuple yields exactly one output tuple t ′ with the renamed
attributes. The input provenance I is similar to the the projection’s input
provenance. Instead of referencing the attribute labels that the projection
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obtains as parameters, the renaming references all attribute labels that
appear in t. The manipulation provenanceM also resembles the projection’s
manipulation provenance. Instead of recording the same paths for input
and output, the M records the old path with attribute label Ai for the input
tuple and the path with the new attribute name Bi for the output tuple.

JρB1←A1,...,Bn←An
(R)KSP :={{t ′

◦ 〈I : {{〈i t : id(t), iR : id(R),A :
⋃

i∈{1,...n}
{{t.Ai}}〉}}〉

◦ 〈M :
⋃

i∈{1,...n}
{{〈in : t.Ai , out : t ′.Bi〉}}〉

| t ∈ R∧ t ′ = 〈B1 : t ′.A1, . . . , Bn : t ′.An〉}}

If the multiplicity of t ∈ R is t l , then t ′ occurs l times in the output: t ′ l .
Selection. The selection operator removes all tuples from the input rela-

tion R that do not satisfy the selection condition θ . It does not manipulate
the structure or values of the tuples, thusM is empty. However, the selection
operator accesses all paths occurring in the filter condition θ for each input
tuple t. The access provenance A records these accesses.

Jσθ (R)K
SP :={{t ′

◦ 〈I : {{〈i t : id(t), iR : id(R),A :
⋃

t.p ∈ θ 〉}}〉

◦ 〈M : ;〉

|t ′ = t ∧ t ∈ R∧ t ′ |= θ}}

The multiplicity of all tuples t ′ in the output t ′k is equal to the multiplicity
in the input relation tk ∈ R if t satisfies the filter condition and 0, otherwise.
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Join. The join operator has four variants. We extend the inner join
semantics with the structural provenance capture. Afterward, we informally
describe the structural provenance capture for the three outer join variants.

• Inner join. The inner join operator concatenates the tuples from two
input relations t1 ∈ R and t2 ∈ S to an output tuple t ′ if t ′ satisfies the
join condition, denoted as t ′ |= θ . The input provenance I holds two
records per output tuple. These records point to the two contributing
tuples in each of the input relations. Further, their access provenance
A records all paths accessed in t1 and t2 to evaluate the condition
θ . It resembles the access provenance in the selection operator. The
manipulation provenance M records mappings between all attributes
in t1 and t2 to their corresponding attributes in t ′. For that purpose, it
leverages the label function LBL(R) that returns the attribute labels in
LBL(R).

JR\θSKSP :={{t ′

◦〈I:{{〈i t:id(t1),iR:id(R),A:
⋃

{{t1.p∈θ}}〉,〈i t:id(t2),iR:id(S),A:
⋃

{{t2.p∈θ}}〉}}〉

◦〈M:
⋃

l∈LBL(R)
{{〈in:t1.l,out:t ′.l〉}} ∪

⋃

l∈LBL(S)
{{〈in:t2.l,out:t ′.l〉}}〉

|t ′=t1◦t2∧t1∈R∧t2∈S∧t1◦t2|=θ}}

The multiplicity of t ′ is t ′k·m, where t1
k ∈ R∧ t2

m ∈ S.
• Outer joins. The inner join only adds concatenated tuples to the result

when two tuples in the input become join partners. The left outer
join, the right outer join, and the full outer join also yield tuples in
the result that originate from one input tuple only. For these output
tuples, the input provenance holds just a single record that refers to the
only contributing input tuple. Further, the manipulation provenance
captures only those path mappings that originate in the contributing
input tuple.

Flatten. The flatten operator flattens a nested tuple or a nested relation.
We extend the rules for the tuple flatten operator and the inner flatten
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operator with structural provenance capture. Then, we informally describe
how to modify the rule for outer flatten based on the extended inner flatten
operator.

• Tuple flatten. The tuple flatten operator unnests an attribute A of
type T . If A is of tuple type: τ= 〈B1 : τ′1, . . . , Bm : τ′m〉, then the tuple
flatten F T

A (R) operator semantics with structural provenance collection
are:

JF T
A (R)K

SP
:={{t ′

◦ 〈I : {{〈i t : id(t), iR : id(R),A :
⋃

l∈LBL(t.A)
{{t.A.l}}〉}}〉

◦ 〈M :
⋃

l∈LBL(t.A)
{{〈in : t.A.l, out : t ′.l〉}}〉

| t ′ = t ◦ t.A∧ t ∈ R}}

The output tuple t ′k has the same multiplicity as the input tuple tk ∈ R,
from which t ′ is generated. The input provenance I has exactly one
entry with t for each t ′. Further, it keeps track of all paths accessed in
the attribute t.A in the access provenance since the flatten operator
accesses them to flatten out the nested tuple in t.A. The manipulation
provenance M holds mappings between the paths to the attributes
in the nested tuple t.A.l and the attributes in t ′.l to account for the
manipulated structure.

• Inner flatten. The inner flatten operator concatenates each top-level
input tuple t ∈ R with the tuple u in the nested relation attribute t.A.
If the attribute t.A has the null value ⊥or an empty relation ;, t does
not contribute to the output.
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JF I
A(R)K

SP
:={{t ′

◦ 〈I : {{〈ir : id(t), iR : id(R),A :
⋃

l∈LBL(t.A)
{{t.A[id(u)].l}}〉}}〉

◦ 〈M :
⋃

l∈LBL(t.A)
{{〈in : t.A[id(u)].l, out : t ′.l〉}}〉

| t ′ = t ◦ u∧ t ∈ R∧ u ∈ t.A}}

The multiplicity of t ′ is t ′k·l , where tk ∈ R and ul ∈ t.A. Each output
tuple t ′ originates in one input tuple t. Thus, the input provenance I
has one record referencing t. Its access Provenance A records all paths
to the attributes in u, which the operator accesses to flatten t.A. The
manipulation provenance M holds mappings between the attributes
in u and the newly added attributes in t ′.

• Outer flatten. The outer flatten operator resembles the inner flatten
operator. However, it preserves tuples t whose attribute t.A has the
null value ⊥ or an empty relation ;. The access and manipulation
provenance are empty for these tuples because the operator cannot
access attributes in non-existing tuples u.

Nesting. The nesting operator nests attributes into nested tuples or relations.
We extend both versions of the nesting with structural provenance.

• Tuple nesting. The tuple nesting operator N T
N→C constructs a tuple

from the nesting attributes N and nests this tuple into a new tuple-typed
attribute C . It concatenates the new attribute C with all attributes
G = LBL(t)− N for the result.
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JN T
A→C(R)K

SP
:={{t ′

◦ 〈I : {{〈i t : id(t), iR : id(R),A :
⋃

l∈N

{{t.l}}〉}}〉

◦ 〈M :
⋃

l∈N

{{〈in : t.l, out : t ′.C .l〉}}〉

| t ′ = t.G ◦ 〈C : t.G〉 ∧ t ∈ R∧ G = LBL(t)− N}}

The output tuple t ′ has the multiplicity of t ′k, if the input tuple t has
the multiplicity tk ∈ R. The input provenance I holds a reference to
the input tuple t that t ′ is derived from. Additionally, it holds the paths
to all attributes in t.N in its access provenance A because they are
accessed to form the new nested tuple. The manipulation provenance
M records the mappings between the attributes in t.N and the newly
nested attributes in t ′.C .

• Relation nesting. The relation nesting N R
N→C operator groups the

input tuples based on the grouping attributes G = LBL(t)−N . For each
group, it yields a tuple with the attributes mentioned in G plus a new
attribute C of relation type that contains all tuples in the group. Before
the operator nests these tuples, it applies a projection on the tuples on
the nesting attributes N .
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JN R
N→C (R)K

SP :={{t ′

◦〈I:
⋃

t′′∈i g(R,G,t)
〈i t:id(t ′′),iR:id(R),A:

⋃

l∈LBL(t′′)
{{t ′′.l}}〉〉

◦

®

M:
⋃

t′′∈i g(R,G,t)

��

⋃

l∈N
{{〈in:t ′′.l,out:t ′.C[id(t ′′)].l〉}}

��

¸

|t ′=(t.G◦ns(R,G,N ,C ,t))1∧t∈gr(R,G)∧G=LBL(t)−N}}

gr(R,G) :={t.G|tn∈R}

i g(R,G,t) :=J(σt′ .G=t.G({{t ′|t ′
n∈R}}))K

ns(R,G,N ,C ,t) :=〈C:JπN (i g(R,G,t))K〉

Each t ′ occurs exactly once in the output, as indicated by the super-
script 1 in t ′ = (t.G ◦ ns(R, G, N , C , t))1. The definition of the relation
nesting operator makes use of the the three helper functions gr(R, G),
i g(R, G, t), and ns(R, G, N , C , t). Recall that gr(R, G) groups the tuples
by the attributes G, and that ns(R, G, N , C , t) creates the attribute C
with the new nested relation. For the provenance collection, the oper-
ator semantics make use of the additional i g(R, G, t) function, which
yields all tuples in the group of t.
The relation nesting operator has one record for each input tuple t ′′

in the input provenance I that is in the group of tuples from which
the operator computes t ′. For each of the input tuples t ′′, the accesses
provenance A marks all attributes of t ′′ as accessed because the op-
erator accesses the attributes in G to assess the group of t ′′ and the
attributes in N to form the tuple to be added to the new nested relation
in t ′.C . Further, G ∪N = LBL(t ′′) holds. The manipulation provenance
M holds mappings for each input tuple t ′′s’ nesting attributes in t ′′.N ,
which map to the corresponding attribute in the nested relation t ′.C .
By definition, the identifier of the input tuple t ′′ also is the identifier
of the newly created tuples in t.C .
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Aggregation. The aggregation operator γ f (A)→B aggregates the values in a
nested relation t.A into a new attribute B of primitive type for each input
tuple t.

Jγ f (A)→B(R)K
SP :={{t ′

◦ 〈I : 〈i t : id(t), iR : id(R),A :
⋃

u∈t.A

{{t.A[id(u)]}}〉〉

◦ 〈M :
⋃

u∈U⊆t.A

{{〈in : t.A[id(u)], out : t ′.B〉}}〉

| t ′ = t ◦ 〈B : f (t.A)〉 ∧ t ∈ R}}

The multiplicity of the output tuple t ′k is equal to the multiplicity of the
input tuple tk ∈ R. Note that U is the subset of nested tuples in t.A, that
f (t.A) computes the aggregated value from. By default, U = t.A, which
yields the correct provenance for sum, avg, or count functions. However, for
other functions, such as min or max , U may be the true subset of tuples that
hold the minimum or maximum values, respectively.
The input provenance I holds a reference to the single input tuple t ∈ R.

It adds the paths to the tuples u nested in the relation t.A to its access
provenance A. The manipulation provenance M keeps record of those
tuples that actually contribute to the value in t ′.B. For that purpose it holds
mappings for all nested tuples in U to t ′.B.
Union. The union operator merges two input relations R and S that share

the same schema, i.e., type(R) = type(S), into a single output relation. It
does not access any attribute values. Neither does it manipulate any data
structure of the tuples in R and S. Thus, the union operator with structural
provenance extension can reuse the extended table access operator to get the
provenance extensions I and M in a first step. Once R and S are extended
with their structural provenance, the regular union operator can merge the
extended R and S into a single output relation.

JR∪ SKSP :=JJRKSP ∪ JSKSPK
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The provenance extension has no impact on the multiplicities in the output
relation. The multiplicities defined in JR∪ SK also apply here.
We illustrate the extensions introduced by the structural provenance on

our running example from Section 1.2.
Example 7
We execute the flatten operator in the example pipeline F I

address1 on the short-
ened example input relation Rshor t shown in Table 5.1. Unlike the full input
in Table 1.1, the shortened example input only holds the two “Sue” tuples
from Table 1.1. The output of the executed flatten operator JF I

address1(Rshor t)K
SP

is shown in Table 5.2.
The output consists of four tuples. As the input provenance I indicates, the

flatten operator generates the first two tuples with identifier 113 and 114 from
the input tuple with identifier 2. Analogously, it computes the last two tuples
with identifier 115 and 116 from the last input tuple with identifier 3. The
input provenance I further captures the nested tuple that the flatten operator
concatenates with the top-level input tuple. The paths in I ’s access provenance
show that the flatten operator accesses the city and year attribute of tuple 31
in the nested relation address1.
The manipulation provenance M further reveals that the city and year

attribute in the output tuple 113 originate from tuple 31 in the nested relation
address1.

In summary, the input and manipulation provenance in Table 5.2 show that
each tuple in the output is computed from a different pair of a top-level tuple
and a tuple nested in its address1 attribute. It further captures the origins of
the unnested attributes city and year.

The above example shows that the structural provenance stores depen-
dencies for individual input and output attributes in nested relations. The
example also illustrates that the structural provenance stores a lot of redun-
dant information when faithfully implemented as described in this section.
For instance, the captured paths in the access provenance point at actual
values in the input data. They only distinguish in the identifiers of the
nested tuples. The following section generalizes this observation to derive
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firstname lastname address1 address2

2 Sue Miller
city year

31 LA 2019
32 NY 2018

city year
41 NY 2019
42 LA 2018

3 Sue Walker
city year

51 SF 2018
52 LA 2019

city year
61 LV 2017
62 NY 2019

Table 5.1: The example input relation Rshor t , which is the example relation
from Table 1.1 reduced to the two “Sue” tuples; italic numbers
indicate tuple identifiers

a lightweight provenance capture extension. This extension utilizes the
prospective provenance introduced in Section 2.2 to minimize redundant
information.
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firstname . . . address1 . . . city year I M

113 Sue . . .

city year
31 LA 2019
32 NY 2018 . . . LA 2019

it iR A

2 Rshor t

p
address1[31].city
address1[31].year

in out
address1[31].city city
address1[31].year year

114 Sue . . .

city year
31 LA 2019
32 NY 2018 . . . NY 2018

it iR A

2 Rshor t

p
address1[32].city
address1[32].year

in out
address1[32].city city
address1[32].year year

115 Sue . . .
city year

51 SF 2018
52 LA 2019

. . . SF 2018

it iR A

3 Rshor t

p
address1[51].city
address1[51].year

in out
address1[51].city city
address1[51].year year

116 Sue . . .
city year

51 SF 2018
52 LA 2019

. . . LA 2019

it iR A

3 Rshor t

p
address1[52].city
address1[52].year

in out
address1[52].city city
address1[52].year year

Table 5.2: Output of the flatten operator in the example pipeline Figure 1.1, when applied to Rshor t :
JF I

address1(Rshor t)K
SP ; italic numbers indicate tuple identifiers; the attributes lastname and address2

are hidden for conciseness

108
5

|E
xplanations

forexisting
data



5.2 Lightweight provenance capture

The provenance capture extensions introduced in the previous section have
the potential for optimization. Since our goal is to provide a scalable and
efficient Pebble algorithm, we leverage prospective provenance to minimize
redundantly stored information in the capture extensions. We identify two
potential optimization hooks.

First, the extensions store the paths accessed and manipulated repeatedly
for each tuple in the output. They only differ in the identifiers of the top-level
tuples and of the tuples in nested relations. Thus, recording the accessed and
manipulated paths at schema level using placeholders for tuple identifiers
prevents recording similar paths repeatedly.
Second, the capture extensions have such a generic data structure that

they accomodate all operators in the same way. Tailoring the extensions to
individual operators further reduces redundancies in the capture structure.
For instance, the selection operator generates each top-level output tuple
from exactly one top-level input tuple. The join operator requires exactly
two top-level input tuples from different input relations. Providing custom
extensions for each operator type further improves scalability and efficiency,
but requires tracking the operator type.

The lightweight provenance capture exploits the two observations to keep
overhead at capture time low. It has two components, the lightweight schema
extension LSPS

O, and the lightweight instance extension LSP I
O, which we

define next.
Definition 5.6 (Lightweight schema extension)
Let O be an operator that computes the output relation T = JOK from the input
relations Ri ∈ {R1, . . . , Rn}. Further, let type(O) yield the operator type. Then,
the lightweight schema extension LSPS

O is the following 4-tuple:

LSPS
O = 〈oR : id(T ),otype : type(O),IS :

⋃

Ri

{{〈iR : id(Ri),AS : AS
Ri
〉,MS : MS

T }}〉

The oR attribute holds the identifier id(T ) of the output relation T . The
otype attribute holds the operator type of O. The attribute IS holds the input
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provenance at schema level. It is a nested relation that contains one tuple for
each input relation Ri . The tuple holds the identifier of the input relation id(Ri)
in the attribute iR. Additionally, it holds the attribute AS to record the schema-
level access provenance AS

Ri
of the output relation T . AS resembles the access

provenance A of Definition 5.1. It records the accessed path on the schema of Ri

and replaces tuple idenfiers with placeholders. The manipulation provenance
attribute MS resembles the manipulation provenance M in Definition 5.3 like
AS resembles A. It holds paths on the schema level with placeholders for tuple
identifiers.

The lightweight schema extension LSPS
O still has the same operator-

independent structure for all operators. The following lightweight instance
extension LSP I

O depends on the operator type.

Definition 5.7 (Lightweight instance extension)
Let operator O compute the output relation T = JOK from the input relations
Ri ∈ {R1, . . . , Rn}. Further, let t ′ ∈ T , t, t1 ∈ R1, t2 ∈ R2, and u be an element of
nested relation in t according to the operator semantics defined in Section 5.1.
Then, the operator-dependent lightweight instance extensionsLSP I

O are defined
in Table 5.3.

The table access, projection, renaming, selection, tuple flatten, and tuple
nesting operator hold pairs of a single input tuple identifier in : id(t) and a
single output tuple identifier out : id(t ′) because they all have exactly one
input relation that computes each output tuple from a single input tuple.
The join and the union operator have two input tuple identifiers l in and
rin for each output tuple identifier to account for the two input relations.
The relation flatten operator holds a nest identifier in addition to the in and
out identifiers to reference the nested tuple, from which the output tuple
is generated. The relation nesting operator holds a nested relation inRel
that has the identifiers of all input tuples which form the output tuple. The
aggregation operator holds a nested relation nRel which holds references to
tuples in the attribute, to which the aggregate function is applied. nRel only
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Operator Lightweight instance extension
table access LSP I

R = {{〈in : id(t), out : id(t ′)〉}}
projection LSP I

π = {{〈in : id(t), out : id(t ′)〉}}
renaming LSP I

ρ = {{〈in : id(t), out : id(t ′)〉}}
selection LSP I

σ = {{〈in : id(t), out : id(t ′)〉}}
join LSP I

\ = {{〈l in : id(t1), rin : id(t2), out : id(t ′)〉}}
tuple flatten LSP I

F T = {{〈in : id(t), out : id(t ′)〉}}
relation flatten LSP I

F IO = {{〈in : id(t), nest : id(u), out : id(t ′)〉}}
tuple nesting LSP I

N T = {{〈in : id(t), out : id(t ′)〉}}
relation nesting LSP I

N R = {{〈inRel : {{〈in : id(t)〉}}, out : id(t ′)〉}}
aggregation LSP I

γ = {{〈in : id(t), nRel : {{〈nest : id(u)〉}}, out : id(t ′)〉}}
union LSP I

∪ = {{〈l in : id(t1), rin : id(t2), out : id(t ′)〉}}

Table 5.3: Operator-dependent lightweight instance extension LSP I

holds identifiers of those nested tuples that contribute to the aggregated
output value.
The schema extension LSPS

O and the instance extension LSP I
O of an

operator O form the lighweight structural provenance LSPO.
Definition 5.8 (Lighweight structural provenance)
Given an operator O, its lightweight structural provenance is:

LSPO :=〈LSPS : LSPS
O,LSP I : LSP I

O〉

To illustrate that the lightweight structural provenance stores less redun-
dant information than the full-blown structural provenance from the previous
section, we demonstrate it on our running example.
Example 8
We apply the lightweight structural provenance on the flatten operator in the
example pipeline F I

address1. It is the same operator that we used to illustrate the
full-blown structural provenance in Example 7. We re-use the shortened input
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in Table 5.1 from our previous example. We further assume that the input
relation has the identifier 0 and the flatten operator’s output relation has the
identifier 1. Then, the lightweight schema extension is:

LSPS
F I

address1
= 〈 oR : 1,

otype : F I ,

IS :

¨̈ ®

iR : 0,AS :

¨̈

〈p : address1[id].ci t y〉,
〈p : address1[id].year〉

««¸««

,

MS :

¨̈

〈in : address1[id].ci t y, out : ci t y〉,
〈in : address1[id].year, out : year〉

«« 〉
Each line in the tuple brackets holds one of LSPS

F I
address1

’s attributes. The first
line has the output relation 1, the second line the operator type F I . The third
line keeps the input provenance IS , which refers to the input relation and holds
the access provenance AS. Its paths are tuple-independent as indicated by the
identifier placeholder id. Similarly, the manipulation provenance MS in the
last line has a tuple-independent mapping between the input and output paths.
The lightweight instance extension LSP I

F I
address1

holds the identifiers needed to
replace the identifier placeholders id in LSPS

F I
address1

. As defined in Table 5.3 the
instance extension holds a relation of tuples with three attributes. The input
tuple with identifier in and the nested tuple with identifier nest contribute to
the output tuple out:

LSP I
F I

address1
=





























〈in : 2, nest : 31, out : 113〉,
〈in : 2, nest : 32, out : 114〉,
〈in : 3, nest : 51, out : 115〉,
〈in : 3, nest : 52, out : 116〉





























The instance extension LSP I
F I

address1
holds one record for each output tuple.

When the path identifier placeholders id in LSPS
F I

address1
are substituted with

the identifiers in LSP I
F I

address1
, we obtain exactly the same paths as the ones
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in Table 5.2, which holds the “uncompressed” structural provenance next to the
operator output.

Together, they form the lightweight provenance capture LSP F I
address1

:

LSP F I
address1

:=〈LSPS : LSPS
F I

address1
,LSP I : LSP I

F I
address1

〉

The example has illustrated that it is possible to recover the “uncompressed”
structural provenance from the lightweight schema and instance extensions.
Generally, it is easy to see that the lightweight schema and instance exten-
sions together suffice to recover the “uncompressed” structural provenance
for all defined operators. Next, we introduce the Pebble algorithm that
captures the lightweight provenance introduced in this section to compute
explanations for existing answers.

5.3 Computing explanations for existing data

Recall from Section 3.3 that the Pebble algorithm computes explanations
for existing data in the result. It has a capture and a query phase. In our
architecture overview Figure 3.3, we have illustrated the capture phase
with bright-green arrows and the query phase with dark-green arrows. In
this section, we briefly summarize how Pebble captures the lightweight
provenance in the following paragraph. Then, we put the focus on how
Pebble computes the explanations based on the captured provenance.

Pebble captures the lightweight provenance during the actual query execu-
tion. It stores the captured provenance in dedicated nested relations in the
big data analytics system to query them once an explanation is requested.

5.3.1 Backtracing

Pebble computes the explanations for existing answers in its backtracing
procedure. For that purpose, it needs pointers to the result data, for which
an explanation is requested in addition to the lightweight provenance. It
stores these pointers in so-called provenance trees. To obtain the pointers,
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Pebble requires a tree-pattern as input parameter to the backtracing phase.
It utilizes the tree-pattern matching algorithm introduced in Chapter 4 to
obtain the paths in the result data that match the tree-pattern. Recall that the
third variant of the data matching algorithm in Section 4.3.2 returns exactly
the needed paths. Pebble computes a so-called provenance tree from these
paths before it starts the backtracing procedure. The backtracing procedure
moves backward from the output relation to the input relations operator
by operator. This section illustrates the complete backtracing procedure
starting with the tree-pattern.
Definition 5.9 (Provenance tree)
The provenance tree PT = 〈root, N〉 has a root node root and a node collection
N . The root node always refers to a top-level tuple of a relation. Each node
n ∈ N is a 6-tuple:

n= 〈name : namen, parent : parentn, C : Cn, A : An, M : Mn, c : cn〉

The name attribute matches an attribute name or represents a tuple identifier
if its parent parent has nested relation type. Further, n references its children
C . These attributes define the structure of the provenance tree. To maintain
the access and manipulation provenance during backtracing n further holds a
set of operators A that access the referenced attribute and a set of operators M
that manipulate the attribute. The boolean value c indicates whether the node
contributes to the data (c = t rue) or whether it influences the data (c = f alse),
for which an explanation is queried.

Recall that contributing data is all input data that produce the output
data. Influencing data is all input data that does not directly produce the
output data. However, it is accessed during query evaluation. Therefore, it
has influenced the existance of the output data.

The provenance tree PT is only defined for top-level tuples in a relation.
Hence, it needs context. The backtracing structure provides this context
because it holds tuple identifiers and a relation identifier.
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Definition 5.10 (Backtracing structure)
When R is a relation, the provenance structure holds a provenance tree PT t

for each t ∈ R:

B = 〈rR : id(R), rT : {{〈r t : id(t),PT : PT t〉}}〉

The attribute rR references a relation by identifier and the attribute rT holds a
nested relation of tuple identifiers in r t and provenance trees PT rooted at t.

To illustrate the provenance tree and the backtracing structure, we provide
an example tree and backtracing structure based on our running example.

city nList

101 LA

firstname

711 Sue
712 Sue
713 Tom

Table 5.4: Unexpected data that is
existing in the example
output (Table 1.3)

root

city
=

“LA”

nList

firstname
=

“Sue”

[2,2]

Figure 5.1: Example tree-pattern
T (Figure 1.2a)

root

city
=

“LA”

nList

firstname
=

“Sue”

[2,2]

root

city nList

711 712

firstname firstname

Figure 5.2: Example provenance tree PT ex obtained from matchting the
tree-pattern in Figure 5.1 on tuple 101 in Table 5.4

Example 9
When the tree-pattern matching algorithm applies the tree-pattern in Figure 5.1
on tuple 101 in the example output in Table 5.4, it yields the provenance tree
PT ex shown in Figure 5.2. The green nodes in that provenance tree correspond
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to the green fields in Table 5.4. Given that the relation in Table 5.4 has identifier
4, the complete backtracing structure is:

B4 = 〈rR : 4, rT : {{〈r t : 101,PT : PT ex〉}}〉

Pebble updates the content of the backtracing structure while stepping
backward operator by operator. Before the update, the backtracing structure
corresponds to the output of an operator. After the update, the backtracing
structure corresponds to the input of the same operator. Hence, Pebble
modifies the relation and tuple identifiers as well as the provenance trees to
pinpoint the input data that precisely explain the existence of the selected
data in the initially provided tree-pattern.
Pebble utilizes two helper methods to manipulate the provenance trees

during backtracing. Their execution context is the lightweight provenance
capture LSP and the backtracing structure B.
The manipulatePath method performs two tasks to track any data and

structure manipulations. First, it manipulates the nodes in B’s provenance
treesPT . For each pathmapping that exists inPT , it finds the corresponding
path in the manipulation provenance M. More precisely, it matches an
output path out in M and transforms it to the corresponding input path in
in M. After the transformations, the nodes in the tree PT conform to the
schema of the input relation. Second, it adds the current relation identifier
rR from B to each node’s manipulation relation M .
The accessPath method adds the accessed attributes in the data to the

nodes of the provenance tree PT . It iterates over all accessed paths recorded
in LSP. For each path, it marks the visited nodes in the PT . During the
iteration, either of two cases occurs. In the first case, all nodes of the path
already exist in PT . Then, the method adds the current relation identifier
rR from B to each node’s access relation A. In the second case, nodes that
occur in the access path do not exist in the provenance tree PT . This is
possible because the accessed attributes are neither needed to reproduce
the result nor have been accessed by other operators in the query. Then, the
accessPath method adds the missing nodes to PT and sets their contribution
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value to c = f alse since the nodes do not directly contribute to the requested
data.

Given the backtracing structure with the provenance trees obtained from
the tree-patternmatching algorithm and the helpermethods manipulatePath
and accessPath, Pebble starts the backtracing with Algorithm 6. The pro-
cedure recursively traces the data in the backtracing structure B back from
the query’s output relation to its input relations. Its input is the lightweight
provenance capture LSP and the backtracing structure B. Based on the
operator type in LSP , the algorithm recursively calls an operator-dependent
backtracing procedure that returns its input’s lightweight provenance capture
LSP ′ and an updated backtracing structure B′. The recursion terminates
when LSP ′ is not defined. Then, the procedure has reached an input re-
lation. In the following, we introduce the operator-dependent backtracing
procedures.
Table access, projection, renaming, selection, tuple flatten, tuple nest-

ing. The operators that have a single input relation and yield at most one
top-level output tuple for each top-level input tuple share a generic back-
tracing procedure shown in Algorithm 7.

The algorithm has two major steps in addition to initialization (ll. 1-2) and
finalization (ll. 9-11). During the initialization, the algorithm obtains the
operator identifier oid and the input provenance IS

1 . This is the only tuple
in LSP .LSPS .IS because the operators have exactly one input relation.

In the first step (l. 3), the backtracing algorithm joins the tuple identifiers
in the backtracing structure B.rT with the output tuple identifiers in the
lightweight provenance LSP .LSP I . As a consequence, the input tuple
identifiers in the lightweight provenance become the updated backtracing
tuple identifiers in rT ′. This join is essentially the same join that existing
lineage solutions [IPW11; IST+15; LDY13] apply for backtracing flat data.

In the second step (ll. 4-8), the algorithm iterates over all the tuples t in
rT ′ to update the provenance trees t.PT . It undoes all recorded structural
manipulations in the manipulatePath method (l. 6). Further, it marks the
nodes in t.PT with the oid to indicate manipulations. The algorithm also
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Algorithm 6: backtrace(LSP ,B)
Input: LSP , B
Output: LSP ′, B′

1 switch LSP .LSPS .ot ype do
2 case π∨ρ ∨σ ∨ F T ∨N T do
3 〈LSP ′,B′〉 ← backtraceGeneric(LSP , B)
4 case N R do
5 〈LSP ′,B′〉 ← backtraceRelationNesting(LSP , B)
6 case F I do
7 〈LSP ′,B′〉 ← backtraceRelationFlatten(LSP , B)
8 case γ do
9 〈LSP ′,B′〉 ← backtraceAggregation(LSP , B)

10 case \ do
11 〈LSP ′,B′〉 ← backtraceJoin(LSP , B, dir)
12 case ∪ do
13 〈LSP ′,B′〉 ← backtraceUnion(LSP , B, dir)

14 if LSP ′ is defined then
15 backtrace(〈LSP ′,B′〉)
16 return 〈LSP ′,B′〉

records the attribute access in t.PT by calling accessPath (l. 8) with the
oid.
Once all paths in rT ′ are updated, finalization starts. The algorithm

packages an updated backtracing structure B′ with rT ′ and the input’s
relation identifier IS

1 .iR. It obtains the input’s lightweight provenance LSP ′

from the big data analytics system that is captured and stored during the
initial query execution and returns a tuple with LSP ′ and B′ (ll. 9-11).
Relation Nesting. The relation nesting creates nested relations as de-

scribed in Section 5.1. Therefore, the relation nesting’s lightweight prove-
nance holds a collection of input tuples inRel for each top-level output tuple
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Algorithm 7: backtraceGeneric(LSP ,B)
Input: LSP , B
Output: 〈LSP ′,B′〉

1 oid ← LSP .LSPS .oR
2 IS

1 ← f irst(LSP .LSPS .IS)
3 rT ′← Jρin←r t(πin,PT (B.rT ▷◁r t=out LSP .LSP I ))K
4 for t ∈ rT ′ do
5 for m ∈ LSP .LSPS .MS do
6 manipulatePath(t.PT , m, oid)

7 for a ∈ IS
1 .AS do

8 accessPath(tPT , a, oid)

9 B′← 〈rR : IS
1 .oR, rT : rT ′〉

10 LSP ′← get(IS
1 .iR)

11 return 〈LSP ′,B′〉

out (cf. Section 5.2). Given the lightweight provenance LSP and the back-
tracing structure B, Algorithm 8 traces back the relation nesting operator.
Algorithm 8 has the same initialization and finalization routine (ll. 1-2
and 9-11) as the generic backtracing algorithm. Thus, we do not describe
them again. The algorithm also has the two steps that join the backtracing
structure with the lightweight provenance and update the provenance trees.
However, the internals of these steps distinguish from the internals in the
generic backtracing algorithm.

Before the algorithm conducts the same join as the generic algorithm (l. 4)
to obtain rT ′, it flattens the nested relation inRel in LSP .LSP I into LSP I ′

(l. 3). Each entry in the flattened LSP I ′ matches one top-level input tuple.
After the join, the algorithm adds a column inProv to rT ′ which defaults
to false (l. 5). It needs the additional column later to remove entries from
rT ′ that are not part of the structural provenance.
The algorithm iterates over all tuples t in rT ′ (ll. 6-16) to update the

provenance trees t.PT and to mark attribute access and manipulation. For
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Algorithm 8: backtraceRelationNesting(LSP ,B)
Input: LSP , B
Output: 〈LSP ′,B′〉

1 oid ← LSP .LSPS .oR
2 IS

1 ← f irst(LSP .LSPS .IS)
3 LSP I ′← JF I

inRel(LSP .LSP I )K
4 rT ′← Jρin←r t(πin,PT (B.rT ▷◁r t=out LSP I ′))K
5 rT ′← JrT ′ ▷◁true {{〈inProv : false〉}}K
6 for t ∈ rT ′ do
7 for m ∈ LSP .LSPS .MS do
8 out ← m.out
9 if out contains id then

10 out ← replace id with t.in in out

11 if out ∈ t.PT then
12 t.inProv = true
13 manipulatePath(t.PT , 〈in : m.in, out : out〉, oid)
14 removeNodes(t.PT , m.out)

15 for a ∈ IS
1 .AS do

16 accessPath(t.PT , a, oid)

17 rT ′← Jπr t,PT (σinProv=true(rT ′))K
18 B′← 〈rR : IS

1 .oR, rT : rT ′〉
19 LSP ′← get(IS

1 .oR)
20 return 〈LSP ′,B′〉

each t, it iterates over all paths m recorded in the manipulation provenance
LSP .LSPS .MS (ll. 7-14). Since the output path m.out contains the identi-
fier placeholder id, the algorithm replaces the placeholder with the tuple
identifier t.in (l. 10) and stores the path in the variable out. If the path
out occurs in t.PT , the algorithm sets inProv to true to indicate that t
remains part of rT ′. Further, the algorithm updates the provenance tree so
that it complies with the schema of the input relation. That is why it calls the

120 5 | Explanations for existing data



manipulatePath method to undo the schema manipulations of the nesting
operator. It also calls the removeNodes method with the unmodified output
path m.out to remove all nodes in the provenance tree that refer to tuples in
the nested relation the operator has created (ll. 11-14). As the final step in
the loop over rT ′, the algorithm records the accessed attributes (l. 16).
Before the finalization step starts, Algorithm 8 removes all tuples t from

rT ′ whose inProv equals false. These are tuples that reside in the nested
relation but are not part of the requested provenance. The following example
illustrates the need for this filter.
Example 10
We apply Algorithm 8 on the nesting operator in the running example to
illustrate its internals. We reuse the backtracing structure B4 from Example 9
to find the cause for the duplicate “Sue” in “LA”:

B4 = 〈rR : 4, rT : {{〈r t : 101,PT : PT ex〉}}〉

The relation identifier is 4 and the nested relation backtracing relation rT
contains exactly one tuple that references output tuple 101 in Table 5.4 and holds
the provenance tree PT ex in Figure 5.2. Let the input lightweight provenance
capture LSP4 contain the manipulation provenance:

MS
4 : {{〈in : firstname, out : nList[id].firstname〉}}

and the instance provenance:

LSP I
4 =













*

inRel :













〈in : 711〉,
〈in : 712〉,
〈in : 713〉













, out : 101

+













After initialization, the algorithm flattens LSP I
4, joins it with rT , and adds

the inProv column to rT ′ (ll. 3-5). The resulting rT ′ is:
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r t PT inProv

711 PT ex false
712 PT ex false
713 PT ex false

Now, each top-level input tuple has its own record t in rT ′. It holds the input
tuple identifier in r t, a copy of the unmodified tree-pattern PT ex in PT and a
false value in the attribute inProv. Since the tree-pattern PT ex holds a node
that refers to the nList attribute in the output, Algorithm 8 updates the PT ex

for each record t in rT ′ based on the record in MS
4 (ll. 6-16).

For record 711, the algorithm replaces the identifier placeholder id in path
nList[id].firstname with 711 (l. 10). Since the path nList[711].firstname
is in PT ex as shown in Figure 5.3, the algorithm sets inProv to true and
replaces the path with the input path to firstname. After the replacement, the
provenance tree still holds paths into the nList relation, e.g, to the nested tuple
712. Thus, the algorithm removes node nList and all its children from the tree
by calling removeNode (ll. 11-14).
The algorithm repeats the loop over rT ′ for the tuples 712 and 713. It

handles 712 in the way as 711 because both contribute to the explanation for
the duplicate “Sue” in the query result. When the algorithm checks tuple 713,
the condition in line 11 fails, since the path with 713 does not occur in PT ex .
It initially referred to the firstname “Tom”, for which we did not request an
explanation. After the algorithm has checked each t in rT ′, rT ′ contains:

r t PT inProv

711 PT preNest true
712 PT preNest true
713 PT ex false

where PT preNest is shown in Figure 5.3. The algorithm filters out the record
with r t = 713, since inProv is false (l. 17). Now, rT ′ exclusively contains
provenance information for the requested firstname “Sue”. The algorithm
returns an updated provenance structure B′ with the filtered rT ′ and the
lightweight provenance of the nestings’ predecessor LSP ′.
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root

city nList

711 712

firstname firstname

root

firstname city

root

city firstnameyear

Figure 5.3: Example provenance tree PT preNest obtained from Algorithm 8
for tuples 711 and 712

Relation flatten. To backtrace the relation flatten operator F I , Algo-
rithm 6 calls the backt raceRelat ionF lat ten procedure in Algorithm 9. It
resembles the generic backtracing procedure in Algorithm 7 because it has
roughly the same twomain steps wrapped in an initialization and finalization
step.
After initialization (ll.1-2), the algorithm applies the same join as the

generic algorithm (l. 3) but preserves the nest attribute in LSP .LSP I . This
attribute holds the tuple identifier in the nested relation that is flattened
out.
Then, the algorithm updates the provenance trees PT (ll. 4-8) like the

generic Algorithm 7. Since the input paths in in the manipulation prove-
nance LSP .LSPS .MS contain an identifier placeholder id, nodes in the
provenance trees may hold the placeholder after the update. Further, recall
that the flatten operator generally flattens one top-level input tuple into
multiple top-level output tuples. Algorithm 9 considers this one-to-many
relationship between input and output tuples. It has to merge multiple
provenance trees from the output tuples into one provenance tree for each
input tuple.

Therefore, the backt raceRelat ionF lat ten procedure nests the provenance
tree PT and the identifier of the nested tuple in attribute nest into a nested
relation X ′ for each distinct tuple identifier r t in rT ′ (l. 9). Then, it applies
the mer geTrees aggregate function on X ′ to merge the trees under each r t
into a single tree. It moves attributes the flatten operator unnests under
a single node that represents the nested collection that the operator has
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Algorithm 9: backtraceRelationFlatten(P ,B)
Input: LSP , B
Output: 〈LSP ′,B′〉

1 oid ← LSP .LSPS .oR
2 IS

1 ← f irst(LSP .LSPS .IS)
3 rT ′← Jρin←r t(πin,nest,PT (B.rT ▷◁r t=out LSP .LSP I ))K
4 for t ∈ rT ′ do
5 for m ∈ LSP .LSPS .MS do
6 manipulatePath(t.PT , m, oid)

7 for a ∈ IS
1 .AS do

8 accessPath(t.PT , a, oid)

9 rT ′← Jγmer geTrees(X ′)→PT (N R
X→X ′(N

T
{nest,PT }→X (rT ′)))K

10 B′← 〈rR : IS
1 .oR, rT : rT ′〉

11 LSP ′← get(IS
1 .iR)

12 return 〈LSP ′,B′〉

flattened out. During that process, the function replaces the placeholder id
in the merged trees with the actual values in nest.
Eventually, the algorithm conducts the same finalization steps as the

backt raceGeneric algorithm to obtain and return B′ and LSP ′.
Example 11
To illustrate the backtracing of the relation nesting operator, we apply Algo-
rithm 9 on our running example. Recall that we like to get an explanation for
the duplicate firstname “Sue” in the nested list of the city “LA”. Example 8 has
shown the lightweight provenance capture for the flatten operator LSP F I

address1
.

When the algorithm has applied the generic backtrace function in Algorithm 7
to backtrace the projection and filter operator in the query pipeline of Figure 1.1,
it has computed the backtracing structure B1 that contains the following rT :

r t PT
113 PT postF lat ten

116 PT postF lat ten
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root

city nList

711 712

firstname firstname

root

firstname city

root

cityfirstname year

Figure 5.4: Example provenance tree PT postF lat ten obtained after backtrac-
ing the pipeline in Figure 1.1 to relation flatten operator for
tuples 113 and 116

root

firstname address1

52

yearcity

firstname year city

a3,m4 m1, a2 m1, a2, a3, a4

root

firstname address1

31

yearcity

(a) PT preF lat ten2
of input tuple 2

root

firstname address1

52

yearcity

firstname year city

a3,m4 m1, a2 m1, a2, a3, a4

root

firstname address1

31

yearcity

(b) PT preF lat ten3
of input tuple 3

Figure 5.5: Provenance trees PT on the input relation, which yield exactly
the highlighted cells in Table 5.5

Figure 5.4 shows the provenance tree PT postF lat ten. In addition to the three
nodes in the tree of Figure 5.4, the provenance tree PT postF lat ten has a light
green year node since the selection in the example pipeline accesses the year
and the backtracing algorithm marks it as an influencing attribute.
Algorithm 9 joins the LSP F I

address1
with rT (l. 3) and obtains rT ′:

r t nest PT
2 31 PT postF lat ten

3 52 PT postF lat ten

Then, it iterates over the two records in rT ′ to replace the paths to year
and ci t y with address1[id].year and address1[id].ci t y, respectively (l. 6).
In our example, the two records in rT ′ have different values in r t. Thus, the
algorithm does not merge them into a single record, when it merges the trees
(l. 9). However, it replaces the placeholder id in address1[id] . . . with the
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firstname lastname address1 address2

1 Peter Jones
city year
LA 2010
SF 2018

city year
LA 2019
LV 2018
SF 2017

2 Sue Miller
city year
LA 2019
NY 2018

city year
NY 2018
LA 2019

3 Sue Walker
city year
SF 2018
LA 2019

city year
LV 2018
NY 2019

4 Tom Smith city year
LA 2019

Table 5.5: Explanations for the existing example output, with contributing
and influencing data (Table 1.5)

identifiers in nest. The resulting trees are shown in Figure 5.5. Eventually the
algorithm returns a backtracing structure B′ that holds the following rT ′:

r t PT
2 PT preF lat ten2

3 PT preF lat ten3

When this rT ′ is applied to the input data, we obtain exactly the highlighted
cells in Table 5.5. Note, that this step does not require any tree-pattern matching,
since the paths in the provenance trees directly point to the highlighted values
in Table 5.5.

Even though the algorithm has reached the input relation in the running
example, we have not described the backtracing procedure for the aggrega-
tion, join, and union operator. We sketch the algorithms for these operators
below.
Aggregation. The backtracing procedure for the aggregation operator

resembles the generic backtracing procedure in Algorithm 7, for the ag-
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gregation has one input relation and creates exactly one output tuple for
each input tuple. However, it differs from the generic backtracing procedure
in updating the manipulated paths. Recall that the aggregation computes
an aggregated value from a nested relation. Thus, for each manipulation
path in LSP .LSPS .MS that contains an identifier placeholder id, the al-
gorithm iterates over all records t ′ in the attribute nRel that is part of the
lightweight instance provenance LSP I

γ. It replaces the placeholder with the
value in t ′.nest and updates the provenance tree accordingly. The rest of the
procedure matches the generic procedure.
Join and union. Unlike the other operators, the join and the union

operator have two input relations. Hence, the backtracing procedures require
an additional direction parameter dir that specifies the input relation to
which the algorithm traces the provenance back. Based on that parameter,
the algorithms choose the correct input provenance in the lightweight schema
provenance LSP .LSPS .I and choose the correct attribute l in or rin in the
lightweight instance provenance LSP .LSP I (cf. Table 5.3). Then, they call
the generic backtracing procedure from Algorithm 7. Afterward, the join
algorithm removes all nodes in the provenance trees PT that are not part of
the chosen input schema since they reference elements in the schema of the
other input by calling the removeNodes method known from Algorithm 8.
The algorithm for the union operator filters out all items in rT ′ whose value
is undefined in the chosen attribute l in or rin. These items originate from
the other input relation of the union operator.

Now, we have introduced all backtracing procedures. Hence, we move on
to a discussion on the algorithm’s runtime complexity and capability to scale
to large datasets in big data analytics systems.

5.3.2 Discussion

The Pebble algorithm has a dedicated provenance capture and query phase.
Here, we describe the runtime complexity of these phases and explain how
these phases scale to large datasets in big data analytics systems.
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Runtime complexity. The lightweight provenance capture computes
unique identifier annotations to annotate top-level tuples. Pebble can com-
pute these annotations in constant time and with constant space for each
tuple. Thus, the runtime complexity for lightweight provenance capture
is O(d) for each operator in the query, where d is the number of top-level
tuples in the output relation of that operator. The only exception is the
relation nesting operator that collects a nested relation of input identifiers
for each output tuple. It has a complexity of O(i), where i is the number
of top-level input tuples of the relation nesting operator. Note that all op-
erators have a minimum runtime complexity of O(max(d, i)). Hence, the
lightweight provenance capture does not have an impact on the theoreti-
cal query complexity. However, computing the annotations takes time in
practice. Therefore, measurable runtime overhead exists as we will show
in Chapter 8.

Computing the explanations based on the lightweight provenance annota-
tions first requires applying the tree-pattern matching algorithm from Chap-
ter 4. Its runtime complexity is described in Section 4.3.3. Furthermore,
Pebble conducts one join operation for each operator in the query. When
Pebble applies hash-join, each join’s runtime complexity is approximated as
O(max(d, i)). Note that the number of input tuples i and output tuples d
varies within a query and depends on the operator type. For each operator,
Pebble further conducts a number of path updates p on each top-level tuple.
The number of path updates is bound by the number of data values in the
top-level tuples. Thus, the explanation computation has the per-operator
complexity of O(max(d, i) · p). Given that the query pipeline has q operators,
the resulting complexity is O(max(d, i) · p · q). While the theoretical com-
plexity is feasible, the explanation computation is computationally intensive
in practice.

As we will discuss in detail in Chapter 8, the size of the intermediate results
and the join operations are mainly responsible for the high practical overhead.
Recall that Pebble collects each operator’s annotations in separate nested
relations during query execution. When computing the explanations, Pebble
has to load all annotations for each operator from the big data analytics
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system. The explanations may reference only a small subset of the processed
data. Hence, Pebble potentially loads large amounts of data without needing
it. Furthermore, the backtracing requires one join for every operator in
the query, even for selections and projections. The latter two operators do
not require shuffling the data across computing nodes. However, the join
operations require shuffling the data. That involves time-consuming network
I/O, which lets the runtime further increase compared to the original query.
Nonetheless, Pebble is capable of providing explanations on large datasets
in distributed computing environments as we discuss next.
Scalability. In the introduction (Contribution (3)), we have stated that we

contribute the novel Pebble algorithm to compute explanations for existing
data in the result. We claim that it scales to large datasets. Here, we discuss
how Pebble’s execution can be distributed on big data analytics systems. The
lightweight provenance capture phase exclusively computes annotations for
individual top-level tuples. Since computing the annotations of one top-level
tuple is independent of computing the annotations for all other top-level
tuples, this phase is trivially parallelizable. Hence, the provenance capture
phase scales to large datasets on big data analytics systems.
Computing the explanations in Pebble’s second phase mainly consists of

joins and the manipulation of the provenance trees. The big data analytics
systems provide the means to execute joins in a distributed and scalable
fashion on compute clusters. Hence, Pebble scales towards that end. Recall
that provenance trees correspond to exactly one top-level tuple in the pro-
cessed relation. Thus, manipulating different trees simultaneously is trivial.
Therefore, computing the explanations also scales on distributed big data
analytics systems.

5.4 Summary

In this chapter, we have described our research Contribution (3) in detail. We
have defined the formal provenance capture semantics for our novel structural
provenance to faithfully capture provenance for nested data. Structural
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provenance yields more comprehensive explanations than other existing
provenance since they provide information on the access and manipulation
of the data at the granularity of individual attributes.

However, directly capturing the provenance according to the formal prove-
nance capture semantics implies collecting large amounts of redundant
information. Therefore, we introduce the lightweight structural provenance
that avoids collecting redundant information by splitting the provenance
into a schema-based component and an instance-based component.

Our novel Pebble algorithm captures this lightweight provenance to com-
pute explanations on request for select nested data. During the explanation
computation, Pebble resolves structural dependencies and data dependen-
cies at the granularity of individual nested attributes. The computation is
designed to scale to large datasets on big data analytics systems. Therefore,
Pebble is the first algorithm that provides explanations at the granularity of
individual nested attributes and, at the same time, scales to large datasets.
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Explanations for missing
data

Complex analytical queries process nested data in big data analytics systems.
If they yield a result that misses expected data, the systems provide no
built-in means to analyze the root cause of the missing data. We provide
the first solution that finds query-based explanations for missing data in
the result of big data analytics queries over nested data. Related existing
solutions are limited to flat relational data and do not scale to large datasets.
Furthermore, their query-based explanations exclusively rely on provenance.
Hence, their explanations only contain selective operators, which remove
data that potentially contribute to the missing result.

In this chapter, we propose a novel approach to query-based explanations
that overcomes the threementioned shortcomings. It extends the provenance-
based approach with reparameterizations. Reparameterizations modify
operator parameters such that the missing answer appears in the result.
Hence, our novel approach potentially contains any parameterizable operator
type in the explanations. It even accounts for misinterpreted attributes
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referenced in the analytical query. Therefore, it even finds explanations on
flat data that existing solutions cannot find. Further, it is the first approach
to support nested data and to scale to practically meaningful dataset sizes
on distributed big data analytics systems.
This chapter describes Contribution (4) in detail and is based on four

published papers [DGHL19; DLGH21; DLHG21a; DLHG21b]. The topics
discussed in this work focus on those aspects in the papers that I have
contributed to them. In this chapter, we formally introduce the why-not
question in Section 6.1. It describes the missing data in the result of a big
data analytics query. Then, in Section 6.2, we define reparameterizations
based on the execution model in Table 3.1 to set the bounds for allowable
changes to the big data analytics query. Based on the reparameterizations, we
introduce minimal successful reparameterizations. They let the missing data
described in the why-not question appear in the result and keep the impact
to query and result as low as possible to avoid unnecessary modifications to
the query and prevent a blow-up of the query result. The reparameterized
operators in the minimal successful reparameterizations become our query-
based explanations for missing data in the result.

Even in large, distributed big data analytics systems, it is computationally
infeasible to precisely compute these explanations. Hence, we propose the
heuristic Breadcrumb algorithm in Section 6.3, which computes approxi-
mated explanations based on the reparameterizations. The Breadcrumb
algorithm is one major module in our overall architecture in Section 3.3. We
discuss in detail, how Breadcrumb computes the explanations in the dedi-
cated section. We conclude the chapter with a summary of the contributions
discussed in this chapter. Next, we introduce the why-not question.

6.1 Why-not question

Breadcrumb takes a why-not question as input. This section formally intro-
duces the why-not question. In brief, the question describes a non-empty
set of missing, yet expected top-level tuples in a query’s result. For conve-
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nience, the missing set may hold placeholders. The instance placeholder ?

represents any value of any type. The multiplicity placeholder ∗ describes
tuples in nested relations. They represent an arbitrary number of nested
tuples, including 0. We call the of missing top-level tuples nested instances
with placeholders (NIP).
Definition 6.1 (Nested instances with placeholders)
Let I be nested instance of the nested type τ as defined in our data model
in Section 3.1, the instance placeholder ?, or the multiplicity placeholder ∗.
Then the rules to recursively construct nested instances with placeholders (NIPs)
of type τ are:

• Instance placeholder. If I =?, then I is a NIP of type τ.
• Primitive type. If type(I) = τ, then I is a NIP of type τ.
• Tuple type. If τ= 〈A1 : τ1, . . . , An : τn〉, then 〈I1, . . . , In〉 is a NIP of type
τ if each Ii is a NIP of type τi .

• Relation Type. If τ= {{τtup}}, then {{I1, . . . , In}} is a NIP of type τ if
(i) ∀ Ii either type(Ii) = τtup, Ii =?, or Ii = ∗ and
(ii) ̸ ∃ i ̸= j ∈ {1, . . . , n} such that Ii = I j = ∗

For finite domains, why-not questions with NIPs do not add expressive
power to questions without them. However, efficiently supporting the former
avoids an exponential blow-up when naively translating the former to the
latter.
Next, we formally define the set of nested instances encoded by a NIP.

Those are instances that match the NIP. To ensure that a why-not question
asks for a tuple that is not part of the result, we require that none of the
result tuples matches the why-not question’s NIP.
Definition 6.2 (Matching NIPs)
An instance I of type τ matches a NIP I ′ of type τ written as I ≃ I ′ if one of
these conditions holds:

• Instance placeholder. I ′ =?
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• Primitive type. I = I ′

• Tuple type. type(I) = 〈A1 : τ1, . . . , An : τn〉 and ∀i ∈ [1, n], I .Ai ≃ I ′.Ai

• Relation type. type(I) = {{τtup}} and there exists an assignment M ⊆
I × I ′→ N with the following properties:
(i) ∀〈t, t ′〉 ∈M : t ≃ t ′ ∨ t ′ =?∨ t ′ = ∗

(ii) ∀t ∈ I , t ′ ∈ I ′ : M(t, t ′)> 0

(iii) ∀t ∈ I :
∑

t ′∈I ′M(t, t ′) = mult(I , t)

(iv) ∀t ′ ∈ I ′ :
∑

t∈I M(t, t ′) = mult(I ′, t ′)∨ t ′ = ∗

The first three conditions cover the instance placeholder, primitive types, and
tuple types. These conditions are self-explanatory. The last condition covers
relation types. It ensures proper handling of bag semantics. For instance,
consider a nested relation R with a single tuple t appearing three times
(mult(R, t) = 3). Then the NIP R′ with mult(R′, t) = 1 and mult(R′, ?) = 2

matches R by assigning the two duplicates of ? to t.
To ensure that a why-not question asks for a tuple that is not part of the

result, the NIP must not match any tuple in the query result. Then, the
why-not question is the following triple.
Definition 6.3 (Why-not question)
Let Q be a query, D a database, and type(JQKD) = {{τ}}. A why-not question Φ
is a triple Φ :=(Q, D, t) where the why-not tuple t is a NIP of type τ that does
not match any tuple in the result, i.e,. ∀t ′ ∈ JQKD : t ′ ̸≃ t.

We illustrate the why-not question on our running example.

city nList

; NY firstname
*

Table 6.1: Expected data that is missing in the example output as introduced
in Table 1.4
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Example 12
In the running example, the query Qexample ’s result lacks the city “NY”. There-
fore, we have informally described the missing tuple in Table 1.4, which we
show again in Table 6.1 for convenience. The according NIP tmissing is:

tmissing = 〈ci t y : NY, nList : {{∗}}〉

The tuple tmissing requires the city attribute to hold the value “NY”, while it
allows for arbitrary number of tuples in the nList attribute, as indicated by
the nested relation with the multiplicity placeholder {{∗}}.
Given the NIP tmissing , the why-not question Φexample is:

Φexample = 〈Qexample, Dexample, tmissing〉

The why-not questionΦexample holds the example queryQexample over database
instance Dexample that holds the input relation in Table 1.1 and the NIP tmissing .

6.2 Query reparameterizations and explanations

This section describes our novel definition of query-based why-not explana-
tions for a given why-not question. Our explanations hold sets of operators.
These sets have the following three main characteristics:

(i) The set of returned explanations pinpoints all possible combinations
of operators that conjunctively cause tuples matching the NIP t of our
why-not question to be missing from the query result.

(ii) The set of returned explanations takes into account parameteriza-
tions of all query operators. Thus, each explanation may include any
operator of Table 3.1 with parameters.

(iii) The set of returned explanations only holds minimal explanations
regarding the operators and the data in the query result. It considers
changes to the original query result beyond the appearance of missing
answers, called side-effects.
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Existing lineage-based explanations lack all three characteristics. (i) They
possibly yield incomplete explanations (false negatives) [BHT14; CJ09;
Her15], when multiple operators require changes to make the missing
data appear in the result. That shortcoming motivated alternative defi-
nitions [BHT15; DFGH18] which are limited to conjunctive queries. (ii) They
are limited to explanations that contain only data-pruning operators (i.e.
selections and joins). Thus, they miss causes at the schema level such as
projecting on the wrong attribute. (iii) Finally, they disregard side-effects.
They have only been considered for instance-based and refinement-based
explanations as surveyed in [HDB17]).

Our explanations address all three characteristics for more complex queries
than conjunctive queries and apply to flat and nested data. They are based
on reparameterizations, which we introduce before the explanations.
Reparameterizations are modifications to the query in the why-not ques-

tion that preserve the query structure and the result schema. Thus, they
preserve operator types and dependencies between the operators but modify
the operator parameters. We consider the following parameter changes ad-
missible. This selection of changes is motivated by commonly arising errors
in the field. Nonetheless, our formalism applies to alternative definitions of
valid parameter changes as well.
Definition 6.4 (Valid parameter changes)
Given an operator O of a query Q, the operator’s parameters are defined as
param(Q, O). Their valid changes as summarized in Table 6.2.

To illustrate the content of Table 6.2, we discuss allowable changes to the
selection in the following example.
Example 13
Recall that the selection in our running example filters on the year σyear≥2019.
According to Table 6.2, we can replace the year attribute with another attribute
of the same type. Furthermore, we can replace the comparison operator ≥ with
any other operator {=,>,≥,<,≤, ̸=}. Finally, we can substitute the constant
value 2019 with any other value of the same type.
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Operator op Parameters param(Q,op)
Valid parameter changes

Projection πA1,...,An (R) {(A1, . . . , An)}
Any substitution of an attribute Ai with an attribute A j from R
Renaming ρB1←A1,...,Bn←An (R) {(B1 ← A1, . . . , Bn ← An)}
Changing the output attributes based on a permutation of (B1, . . . , Bn)
Selection σθ (R) {θ}
(i) Replacing any reference to an attribute A in θ with another attribute B from R with the same data type;
(ii) modifying comparison operators in {=,>,≥,<,≤, ̸=} to one another; and
(iii) changing constant values to other constants of same type.
Joins op = R ⋄θ S, where ⋄ ∈ {\,⟕,⟖,⟗} {θ , type(op)}, where type(op) = ⋄
(i) Changing the join type of op;
(ii) replacing a reference to an attribute A with a different attribute B in θ ;
(iii) modifying comparison operators in {=,>,≥,<,≤, ̸=} to one another.
Tuple Flatten F T

A (R) {A}
Replacing A by an attribute B in R of tuple type
Relation Flatten F I

A(R) or FO
A (R) {A, type(op)}, type(op) = inner for inner

flatten, type(op) = outer for outer flatten
(i) Changing the attribute A to be flattened out and(ii) changing the flattening type
Nesting N R

A→C (R) or N T
A→C (R) {A, C}

(i) Changing the attributes to be nested / grouped-on (A) or
(ii) the name of the attribute storing the result of nesting (C)
Aggregation γ f (A)→B(R) {A, B, f }
(i) Changing the aggregation function f ,
(ii) the attribute that we are aggregating over (A), or
(iii) the name of the attribute storing the aggregation result (B)

Table 6.2: Valid parameter changes
The reparameterizations of a query Q are all those queries Q′ that can be

derived from Q through valid parameter changes.
Definition 6.5 (Reparameterizations (RPs))
Let Q be a query. The query Q′ is a reparameterization of Q if a sequence of
valid parameter changes exists that transforms Q into Q′.

For the ease of presentation, the operators O in Q retain their identifier in
Q′ after reparameterization. The reparameterizations are unrelated to a why-
not question Φ. They do not indicate whether the reparameterization causes
Q′ to produce a result tuple that matches the why-not tuple in Φ. Therefore,
we define successful reparameterizations, which are the reparameterizations
that produce the missing data.
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Definition 6.6 (Successful Reparameterizations (SRs))
Let Φ= (Q, D, t) be a why-not question and let Re(Q) denote the set of all RPs
for the query Q in Φ. Then, the set of successful reparameterizations with respect
to Φ is:

SR(Φ) = {Q′ | ∃t ′ ∈ JQ′KD, t ′ ≃ t ∧Q′ ∈ Re(Q)}

While successful reparameterizations yield an explanation to the why-not
question, they have two shortcomings. On the one hand, SRs may apply
unnecessary changes to the Q. On the other hand, some SRs potentially
cause more changes to the original query result than others.

Let O1 and O2 be operators in Q and let a parameter change in O1 yield a
successful reparameterization Q′. Further, let Q′′ be derived from Q′ such
that it is still a successfully reparameterization. Furthermore, let the result
of the two reparemeterizations be the same, i.e., JQ′K= JQ′′K. Then, Q′ and
Q′′ are both successful reparameterizations, but only the former SR precisely
pinpoints the set of operators, i.e., {O1}, that causes the missing data in the
result. It is a true subset of the operators modified in Q′′, i.e., {O1} ⊂ {O1, O2}.
Extending this experiment to further operators in Q, shows that the set of
reparameterized operators in the explanations should be minimal, in the
sensce that removing an operator from the successful reparameterization
makes the reparameterization fail to produce the missing data.

A selection in a query Q may have two reparameterizations that both yield
the missing data in the result, but one is more restrictive than the other. In
this case, the former reparameterization may be favorable since it imposes
less data changed in the result than the latter one. The data changed in the
result that do not match the why-not tuple are side-effects. The goal is to
minimize these side-effects.

Our goal is to keep the set of operators to a minimum and keep side-effects
as low as possible. Since the two goals potentially conflict with each other,
we define a partial order ⪯Φ over SRs.
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Definition 6.7 (Partial order over SRs ⪯Φ)
Let Q be a query, D a database, Φ = (Q, D, t) a why-not question, and Q′,Q′′

be two SRs of Q. Let ∆(Q,Q′) denote the set of operator identifiers whose
parameters differ between Q and Q′, i.e., ∆(Q,Q′) = {O | param(Q, O) ̸=
param(Q′, O)}. Further, let d be a distance function quantifying the distance
between two nested relations. We define a partial order Q′ ⪯Φ Q′′ as follows:

(i) ∆(Q,Q′) ⊆∆(Q,Q′′)

(ii) d(JQKD, JQ′KD)≤ d(JQKD, JQ′′KD)

The definition of MSRs provides an open choice on the distance function
that measures the differences between two query results. To support nested
and flat data equally well, we resort to the tree-edit distance for unsorted
trees [Bil05; PA11], which computes the minimum cost of transforming
one tree into another. It is restricted to the three edit operations: (i) node
insertion, (ii) node deletion, and (iii) node update. Computing the tree edit
distance of unordered trees is NP-hard [ZSS92]. We define the minimal
successful reparameterizations as SRs that are minimal according to the
partial order ⪯Φ.
Definition 6.8 (Minimal successful reparameterizations (MSRs))
Let Q be a query, D a database, Φ= (Q, D, t) a why-not question. Further let
Q′,Q′′ be two members of the set of all successful reparameterizations for the
given why-not question SR(Φ). Then, Q′ is a minimal successful reparameteri-
zation, if

¬∃Q′′ ∈ SR(Φ) : Q′′ ⪯Φ Q′

Based on the minimal successful reparameterizations, we define explana-
tions.
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flatten
address1

à
address

1
selection

year
≥ 

2019 

2
projection

firstname,
city

3 nesting
firstname

à
nList

4

Figure 6.1: Example execution pipeline from Figure 1.1

Definition 6.9 (Explanations)
Let Φ be a why-not question and MSR(Φ) be the set of MSRs for Φ. Then, the
explanations E(Φ) with respect to Φ are

E(Φ) :={∆(Q,Q′) |Q′ ∈MSR(Φ)}

According to the above definition, the explanations only contain the oper-
ators that are modified to obtain a minimal successful reparameterization.
Next, we provide an example for reparameterizations, successful reparame-
terizations, minimal successful and reparameterizations, and explanations
to illustrate their meaning.
Example 14
This example builds on the running example in Section 1.2. For convenience,
we show the query pipeline Qexample again in Figure 6.1.

While the number of possible reparameterizations is too large to be completely
listed here, we pick four reparameterizations for the example query Qexample to
illustrate the concepts introduced in the above section:

• Q0: Change the flatten operator 1 from an inner flatten to an outer flatten.
• Q1: Replace the filter condition in operator 2 from year ≥ 2019 to year ≥ 2018.
• Q2: Flatten address2 instead of address1 in operator 1.
• Q3: Combine Q1 and Q2.

Table 6.3 showsQexample ’s andQ0’s results, which are the same in this example.
Table 6.5 holdsQ1’s result, Table 6.4 exposesQ2’s result, and Table 6.6 illustrates
Q3’s result. We introduce the meaning of the colors later in this example.
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city nList

LA
firstname

Sue
Sue
Tom

Table 6.3: Result of Qexample and the
reparameterized query Q0

city nList

LA firstname
Peter

NY
firstname

Sue
Sue

Table 6.4: Result of the reparameter-
ized query Q2

city nList

LA
firstname

Sue
Sue
Tom

SF
firstname
Peter
Sue

NY firstname
Sue

Table 6.5: Result of the reparameter-
ized query Q1

city nList

LA firstname
Peter

NY
firstname

Sue
Sue

LV
firstname
Peter
Sue

Table 6.6: Result of the reparameter-
ized query Q3

Next, we assess the reparameterizations Q0 to Q3 based on the example why-
not question to identify successful reparameterizations. The example why-not
question expects a tuple in the result that holds the value “NY” in its city
attribute.

The reparameterized query Q0 does not produce a tuple with the value “NY”
in the attribute city. Thus, Q0 is an RP, but not an SR(Φexample). Unlike Q0,
the queries Q1, Q2, and Q3 yield a result tuple that holds “NY” in the attribute
city together with an associated bag of names in nList. The green fields in
Table 6.5, Table 6.4, and Table 6.6 highlight these tuples. They are successful
reparameterizations SR(Φexample).
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We advance to checking whether the successful reparameterizations Q1, Q2,
and Q3 are minimal successful repamaterizations MSRs. We start with Q1.
It only modifies the selection operator. Thus, no reparameterization exists,
that includes only a subset of the operators. However, it produces a red tuple
in Table 6.5 as side-effect. Given the example query, the input data and the
possible reparameterizations, this side-effect is minimal, because it changes the
value 2019 to the next smaller value 2018 in the filter condition. No other
modification of the filter condition yields the missing tuple and has less side-
effects at the same time. Thus Q1 is a minimal successful reparameterization. It
yields a set containing the selection with identifier 2, i.e., {σ2}, as explanation
to the example why-not question.
Now let us have a closer look into the reparameterizations that involve the

flattern operator. In general, we have to options to reparameterize the flatten.
We can replace an inner flatten with an outer flatten as in Q0 or replace the
attribute in the flatten as in Q2. As discussed, Q0 is no successful reparameteri-
zation, but Q2 is. Hence, Q2 also is a minimal successful reparameterization,
because it only modifies the flatten operator. However, it has more side-effects
than Q1 since replaces the firstnames “Sue” (2x) and “Tom” with “Peter” in
the “LA” tuple in Table 6.4.
Query Q3 modifies the flatten and the selection operator. When comparing

Q3 to Q2, the condition ∆(Qexample,Q2) ⊆∆(Qexample,Q3) holds. For, Q2 only
modifies the flatten operator. Comparing the result of Q2 in Table 6.4 to the
result of Q3 in Table 6.6, further reveals that Q3 has more side-effects than
Q2. Thus, d(JQexampleKD, JQ2KD)≤ d(JQ3KD, JQexampleKD) holds. Consequently,
Q2 ⪯Φ Q3 holds and Q3 is no minimal successful reparameterization.

We briefly discuss the complexity of computing the explanations according
to the above definitions before we introduce the Breadcrumb algorithm.
Recall that computing the tree-edit distance for unsorted trees is NP-hard.
Even if we considered an alternative polynomial time (PTIME) distance metric
d, computing the explanations is still NP-hard in terms of data complexity
for queries that comply to our execution model in Section 3.2. It is sensitive
to the choice of admissable parameter changes. For the reparameterizations
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shown in Table 6.2, it is intractable. However, we can restrict the allowed
reparameterizations in Table 6.2 so that the problem is in PTIME.
Theorem 1
Given a why-not question Φ= (Q, D, t) and a set of operators from the query Q,
testing the membership of the operator set in E(Φ) is NP-hard in the size of D
for queries that only consist of the operators aggregation, projection, renaming,
and join. The problem is in PTIME if aggregation functions are restricted to the
default ones in SQL.

Proof 1 (Proof Sketch)
We prove Theorem 1 for queries with aggregation through a reduction from set
cover and sketch a brute force algorithm for the PTIME result. The full proof is
available in [DLHG21b].

Since we can restrict the allowed reparameterizations in Table 6.2 so that
computing explanations in PTIME is possible, we introduce a novel algorithm
to compute them in the next section.

6.3 Computing Explanations for missing data

In this section, we introduce the Breadcrumb algorithm that computes ex-
planations for missing data in the query result. Breadcrumb restricts the
operator reparameterizations as described in the previous section to achieve
PTIME complexity on the data. To be efficient in practice, Breadcrumb fur-
ther leverages novel heuristics to approximate explanations E≈ that relax
E . After introducing Breadcrumb’s four steps to compute E≈ in detail, we
conclude this section with a discussion (i) on the relation between E≈ and
E from Definition 6.9, (ii) on Breadcrumb’s runtime complexity, and (iii)
Breadcrumb’s scalability features on big data analytics systems.

Algorithm 10 shows the Breadcrumb algorithm that computes the approxi-
mate explanations E≈ based on the why-not question Φ= (Q, D, t). It has four
main phases. In the first phase (l. 1), Breadcrumb computes a set of tuples
T over the input relations R of query Q in the why-not question Φ= (Q, D, t).
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Algorithm 10: Breadcrumb(Φ)
Input: WhyNot question Φ= (Q, D, t)
Output: A set of explanations E≈

1 〈Msbt , T 〉 ← schemaBacktracing(Φ)
2 S ← schemaAlternatives(Msbt , T ,Φ)
3 RA← dataTracing(S,Φ)
4 E≈← computeApproximateExplanations(RA,S,Φ)
5 return E≈

These tuples describe the data that potentially contribute to the missing, but
expected result. The algorithm further computes a mapping Msbt which
associates each attribute in t and each attribute referenced in the parameters
of an operator of Q with a set of attributes from the input. That is necessary
replace attributes in the operators with alternative attributes. We refer to
these input attributes as source attributes.
In the second phase, Breadcrumb computes alternatives for each source

attribute in Msbt to account for attributes that may not have been chosen
appropriately in the query Q (l. 2). Based on these alternatives, it generates
a set of schema alternatives S. Each schema alternative corresponds to a
possible reparameterization of attribute references in Q.

In the third phase (l. 3), Breadcrumb traces data from the input D through
the operators of Q to the query result. It extends each operator in Q to
compute annotations that account for the reparameterizations. These anno-
tations describe, e.g., which tuple exists for which schema alternative and
which values each tuple holds under each schema alternative. Breadcrumb
needs these annotations to compute the explanations in the next phase.
In the final phase, Breadcrumb computes the approximate explanations

E≈ from the previously collected annotations (l. 3). In the following, we
describe each of the four phases in more detail.
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6.3.1 Phase 1: Schema backtracing

Breadcrumb starts the computationwith the schemaBackt racing(Φ)method.
It takes the why-not question Φ= (Q, D, t) as input to compute (i) the set of
NIPs T (Definition 6.1) that are potentially relevant to produce t under some
reparameterizations and (ii) the attribute mappingMsbt that associates each
attribute in Q’s output with the set of attributes from the input and interme-
diate results. This mapping helps to indentify valid reparameterizations in
the query. Breadcrumb’s first phase is data-independent.
Breadcrumb utilizes the schema matching algorithm in Section 4.3.1 to

match the attributes of the missing tuple t in the why-not question onto
the schema of the result relation JQK. For that purpose, we extend the tree-
pattern syntax to also support the instance placeholder ? and the multiplicity
placeholder ∗. Once it obtained the schema match, it transfers all constraints
from t to the match to initiate the actual schema backtracing in the next
step.
Breadcrumb’s schema backtracing resembles Pebble’s backtracing algo-

rithm in Section 5.3. The biggest difference between these algorithms is that
Breadcrumb’s schema backtracing is data-independent. Thus, it applies the
same structural manipulations to the schema-match as Pebble, but does not
join tuple identifiers or replace identifier placeholders with tuple identifiers.
Breadcrumb preserves the constraints from t when possible, e.g., when
an attribute is renamed. It further removes the constraint when needed,
e.g., when a constraint is defined over an aggregated value. In addition
to manipulating t, Breadcrumb updates the mapping Msbt alongside the
backtracing.
Before returning from the schema matching algorithm Breadcrumb has

obtained T = {tR1
, . . . , tRn

}. It contains one NIP tRi
for each of Q’s input

relations R1 to Rn. This NIP describes all tuples in the input relation Ri that
potentially contribute tuples in the query output JQK matching the missing
tuple t under some schema alternative.
The output T is coupled with a mapping Msbt that associates each at-

tribute t.A of the why-not tuple t with source attributes from the schema of
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R1, . . . , Rn. To identify source attributes potentially relevant for operator repa-
rameterizations, Breadcrumb further adds an entry to Msbt for influencing
attributes O.A referenced by operator O.
To denote the two different association types, we apply color-coding.

When we refer to a source attribute t.X referencing an attribute in the why-
not tuple t.A, we denote A

X . Associations between a source attribute t.X and
an attribute O.A are written as O.A

X . Further, we represent a pair (t,Msbt) as
a single nested tuple mirroring the nesting structure of t by using mappings
from Msbt rather than attribute names. For instance, if A

X , O.A
X , and O.B

X , then
we substitute X with A,O.A,O.B

X .

Example 15
We illustrate the schema backtracing on the running example. Recall that the
example why-not tuple is:

t = 〈ci t y : “NY”, nList : {{∗}}〉

Further, the example query Qexample computes the result exclusively from the
input relation Rexample in Table 1.1.
Breadcrumb utilizes the schema-matching algorithm from the tree-pattern

matching algorithm to match the attributes in t on the result schema, before it
starts the schema backtracing. The schema backtracing yields Msbt example and
T example = {t example}, which we show in combined fashion:

t example=
¬

t.nList,π.name,N .nList,N .name
name :?, F.address1

address1 :{{〈 t.ci t y,π.ci t y
ci t y :“NY”, σ.year

year :?〉}},address2:?

¶

The denominators describe the attributes of the tuples in the input relation
Rexample. The blue numerators indicate attributes in the result tuple that match
attributes in the why-not tuple t. In this example the name attribute and the
nested attribute address1.city refer to attributes appearing in t. The lat-
ter requires the specific value “NY” to match t. The red numerators indicate
attributes accessed by operators in Qexample. For instance, the red numera-
tor F.address1 indicates that the flatten operator accesses address1. Then,
Breadcrumb should consider alternatives for attribute address1 to find all
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reparameterizations. Similarly, Breadcrumb should consider alternatives for
the nested attribute year, even though it does not appear in the why-not tuple.
However, the selection accesses the year.

6.3.2 Phase 2: Schema alternatives

When Breadcrumb returns from schema backtracing, it proceeds with de-
termining schema alternatives. A schema alternative replaces zero or more
attributes with alternatives in the query’s operator parameters. The schema
alternatives ensure that Breadcrumb considers all possible reparameteriza-
tions that involve changing an attribute to another. The set of all schema
alternatives covers all attribute replacements. Breadcrumb leverages the
schema alternatives since they encode sets of query reparameterizations.
They represent all reparameterizations that replace certain attributes in
the query with certain alternative attributes. For instance, the alternatives
account for misinterpreted attributes in the query.
Identifying attribute alternatives. To find the schema alternatives, Bread-

crumb starts with identifying alternatives for individual attributes in the
NIPs T . For each attribute X in each tRi

∈ T , Breadcrumb computes a set of
alternative attributes X ′:

X ′ :={X ′1, . . . X ′k}, where X ′j ∈ Ri ∧ type(X ) = type(X ′j)

Recall that we restrict the reparameterizations to operator parameter. We
do not allow for changing the query structure. Therefore, Breadcrumb only
considers attribute alternatives in the same relation because replacing an
attribute with an attribute from another relation generally requires more
changes to the query than the reparametrizations in Table 6.2. Breadcrumb
obtains the set of alternatives X ′ for each attribute X as input parameters.
Attribute alternatives can be determined based on the data type of attributes,
by the user asking the why-not question, or using schema matching tech-
niques [ADMR05; DR02]. This approach ensures that Breadcrumb only
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considers meaningful alternatives, which is necessary to avoid blowing up
computations through an impractically high number of alternatives.
Enumerating and pruning schema alternatives. Breadcrumb computes

the schema alternatives from the attribute alternatives. Formally defined, a
schema alternative is a tuple

S :=〈T ,M〉

that holds a set of NIPs T and a mapping M. The set T holds one NIP
per table accessed by Q. The mapping M resembles Msbt since for each
attribute X i ∈ t j ∧ t j ∈ T it records the operators accessing X i and the
output attributes in Q’s result to which X i contributes. Schema alternatives
replace attributes of one operator independently from attributes of another
operator. Thus, some schema alternatives may alter the query’s output
schema or lead to an invalid query, e.g., containing operators that reference
non-existing attributes. Breadcrumb prunes these schema alternatives. It
only considers schema alternatives that preserve the output schema and
yield valid reparameterizations for all operators in Q.
Example 16
In our running example, Breadcrumb obtains the following attribute alterna-
tives:

name′ = {name}

address1′ = {address2, address1}

ci t y ′ = {address2.ci t y, address1.ci t y}

year ′ = {address2.year, address1.year}

Based on these attribute alternatives, Breadcrumb incrementally enumerates
all schema alternatives as shown in Figure 6.2. It begins with the flatten opera-
tor, for which it either picks the original attribute address1 or its alternative
address2 as the attribute to be flattened. For either version of the reparame-
terized flatten operator, the selection operator can refer to address1.year or
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F?

!?=2019

Π?,?

"? -> ?

!?=2019

addres
s1

address2

address1.year

address2.year

name, address1.city

name, address2.city

name. nList

Π?,?

"? -> ?

address1.year

address2.year
name, address1.city

name, address2.city S2name. nList

S1

Figure 6.2: Enumerating and pruning schema alternatives (adapted
from [DLHG21a])

address1.year, given the alternatives for year ′. Breadcrumb continues the
search until it has assessed all alternatives for all operators.

While the solid lines in Figure 6.2 indicate the derivation of possible schema
alternatives, the dashed lines and subtrees in Figure 6.2 describe pruned alter-
natives. They are pruned, for they address attributes that do not exist at this
stage in the example query Qexample. When Breadcrumb flattens address1, it
can only access the alternative address1.year for year in the selection since
address2.year is still nested. Breadcrumb further prunes alternatives that
alter the output schema because the schema is fixed by definition. Let us as-
sume address1 has an additional nested attribute city1. If Breadcrumb uses
an attribute address1.city1 instead of address1.city flattening address1
changes the output schema to {{〈ci t y1, nList〉}}, which alters the query’s output
schema.

Finally, two schema alternatives remain, denoted as S1 and S2 in Figure 6.2:

S1 = 〈{t1},M1〉

S2 = 〈{t2},M2〉
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In S1, t1 is the same as t example shown in Example 15 and t2 replaces the
address attribute:

t2 =〈
t.nList,π.name,N .nList,N .name

name
:?,

address1 :?,
F.address2
address2

: {{〈
t.ci t y,π.ci t y

ci t y
: “NY”, σ.year

year
:?〉}}〉

Given the schema alternatives, Breadcrumb is ready to advance to the
third phase.

6.3.3 Phase 3: Data tracing

In the third phase, Breadcrumb identifies and traces the data that potentially
yields the missing tuple in the why-not question. Breadcrumb instruments
the operators in Q to simultaneously execute the query under all previously
computed schema alternatives. It ensures that the attributes referenced in
any alternative are retained in the output of each operator as long as they
are needed. Furthermore, it adds annotations to the processed data so that
it can extract the query results for each schema alternative.

Similarly to Pebble (cf. Chapter 5), Breadcrumb extends each operator with
an operator-specific tracing procedure. The procedure takes the operator
O, an annotated relation RA, and the schema alternatives S as input and
yields an annotated relation RA′ and an updated set of schema alternatives
S ′ as output. Breadcrumb modifies the default operator semantics to include
result tuples that could be produced by possible reparameterizations for
each schema alternative. Like Pebble, it extends the operator semantics to
track provenance annotations. These annotations are more comprehensive
than Pebble’s annotations since (i) they apply to each schema alternative
individually and (ii) record additional information that Breadcrumb needs
to compute explanations in Breadcrumb’s last phase.

We distinguish the following types of annotation columns that Breadcrumb
adds to each operator output RA′ . t ′ denotes a result tuple in RA′ .
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• id: Similarly to Pebble, Breadcrumb assigns a unique identifier to
each top-level tuple. Breadcrumb uses the identifiers to trace data-
dependencies correctly. That is necessary to identify distinct tuples
while computing explanations in the last phase.

• validSi: For each schema alternative Si , the boolean annotation validSi

describes whether t ′ is part of the output of an operator under schema
alternative Si. Since Breadcrumb considers multiple schema alter-
natives simultaneously, Breadcrumb sets validSi only to true, if the
top-level output tuple t ′ in joint output RA′ exists under schema alter-
native Si . Not every tuple exists under all alternatives simultaneously.

• consistentSi: For each schema alternative Si , the consistentSi boolean
annotation identifies if a tuple t ′ potentially contributes to the missing
answer.

• retainedSi indicates if t ′ is an output tuple in the query under schema
alternative Si without further operator reparameterizations, such as
modifying the filter condition beyond replacing the attributes accord-
ing to schema alternative Si. If t ′ is such a tuple, Breadcrumb sets
retainedSi to true, or false, otherwise.

While the tuple identifier is independent of the schema alternative. The
latter three annotations depend on the schema alternative. Let us assume,
we have s = |S| schema alternatives. Then, Breadcrumb computes 1+ (3 · s)
annotations for each top-level tuple in each operator output.
Breadcrumb adds the annotations as columns to the operator’s output

relation RA′ using the annotate method shown in Algorithm 11. Given a
tuple t, an annotation-value mapping avMap, a schema alternative Si , and
an operator O, the annotate method returns an annotated tuple t ′. It creates
one attribute for each entry in the avMap with a unique label generated
from the input parameters and concatenates it with t to create t ′.
Given the above preliminaries, we describe Breadcrumb’s tracing proce-

dures for the operators used in our running example, omitting the projec-
tion operator since it simply propagates the identifiers Si, the consistentSi
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Algorithm 11: annotate(t, avMap, Si , O)
Input: t, avMap, Si , O
Output: t ′

1 foreach 〈a : v〉 ∈ avMap do
2 label ← a+“S”+i+_+id(O)
3 t ′← t ◦ 〈label : v〉

4 return t ′

Algorithm 12: tableAccess(O, R, S)
Input: O, R, S
Output: RA′

1 RA′ ← ;
2 foreach t ∈ R do
3 t ′← t ◦ 〈“id”+ id(O) : id(t)〉
4 foreach Si = 〈T i ,Mi〉 ∈ S do
5 c← t ≃ tR ∈ T i

6 t ′← annotate(t ′, {{〈consistent : c〉}}, Si , O)

7 RA′ ← RA′ ∪ {{t ′}}

8 return 〈RA′ ,S〉

columns , and validSi columns from its input to its output. Our implemen-
tation features tracing algorithms for all operators from Table 3.1.
Table access. The tracing procedure of the table access operator adds the

necessary annotations to all tuples in the input relation. Algorithm 12 shows
the annotation algorithm. The input relation R is the original input relation,
which has no annotations so far. Further, the algorithm obtains the operator
O and the set of schema alternatives S for annotation purposes.
The algorithm iterates over each top-level tuple of the input relation R,

which is gradually extended with additional annotation attributes. First, it
adds an id attribute that stores a unique tuple identifier. Then, the algorithm
attaches a consistentSi attribute for each schema alternative Si, using the
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id_0 firstname lastname address1 address2 c_S1_0 c_S2_0

2 Sue Miller
city year

31 LA 2019
32 NY 2018

city year
41 NY 2019
42 LA 2018

1 1

3 Sue Walker
city year

51 SF 2018
52 LA 2019

city year
61 LV 2017
62 NY 2019

0 1

Table 6.7: Shortened input data Rshor t from Table 1.1 after annotation

annotate method in Algorithm 11. The attribute’s value c indicates whether
a tuple potentially contributes to the missing data. It is true when t matches
the tuple tR in the set of tuples T i of schema alternative Si, otherwise, it
is false. To asses whether t matches tR, the algorithm utilizes the data
matching algorithm introduced in Section 4.3.2. Once the algorithm has
computed all annotations for all top-level tuples t ′ ∈ RA′ , it returns RA′

together with the S. The latter is unmodified since the table access operator
does not change the structure of its input.
Example 17
We apply the tracing procedure on the running, but strip the example input.
Like in Chapter 5, we reduce the input data in Table 1.1 to the two “Sue” tuples
in Table 6.7. The shown table has the known top-level attributes firstname,
lastname, address1, and address2. In addition to them, it has three fur-
ther columns: (i) id_0, (ii) c_S1_0, and (iii) c_S2_0. The postfix 0 in the
column names indicate the operator identifier 0. S1 and S2 in the latter two
columns describe the schema alternatives S1 and S2. The c is an abbreviation
for consistent. Thus, column (i) holds the unique identifier, and columns (ii)
and (iii) indicate whether the tuple is consistent under schema alternative S1

or S2, respectively. For conciseness, the value 1 indicates true and the value 0

represents false in these columns.
In the example, tuple 2 is consistent under both schema alternatives S1 and

S2 since it holds nested city “NY” in address1 and another one in address2.
Tuple 3 only holds the city “NY” in address2. Thus, it is only consistent
under schema alternative S2.
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Algorithm 13: flatten(O, RA,S)
Input: O, RA, S
Output: 〈RA′ ,S ′〉

1 For each Si ∈ S, let Ui be the result of executing O wrt Si and
generalized to an outer flatten

2 For each Si ∈ S, let S′i = 〈T
′
i ,M

′
i〉 be the schema alternative reflecting

the flattening wrt Si

3 S ′←
⋃

Si∈S S′i
4 RA′ ← ;
5 foreach S′i ∈ S ′ do
6 foreach t ∈ Ui do
7 v← value of most recent validS′i

attribute
8 r ← t is in the result of original flatten wrt S1

9 c← t ≃ tU , where tU ∈ T
′
i

10 avMap← {{〈valid : v〉, 〈retained : r〉, 〈consistent : c〉}}
11 U ′i ← U ′i ∪ {{annotate(t, avMap, S′i , O)}}

12 t ← tU ∈ T
′
i

13 RA′ ← mer ge(RA′ , U ′i , Si , O, t)

14 return 〈RA′ ,S ′〉

Flatten. Since the flatten operator is the first operator in the example
query pipeline in Figure 6.1, we discuss the flatten operator next. Algo-
rithm 13 describes the corresponding tracing procedure. The tracing pro-
cedure considers the results Ui of the flatten operator under all schema
alternatives Si ∈ S. It applies an outer flatten to obtain Ui since changing
an inner flatten to an outer flatten is a possible reparameterization. Next, it
updates the schema alternatives Si to S′i to reflect the restructuring of tuples
through flattening. After computing S ′ and initializing the output relation
RA′ to an empty relation, the algorithm iterates over all the schema alterna-
tives S′i (ll. 5-13) to assign the proper annotations to each top-level tuple
t in the flattened Ui, which belongs to the schema alternative S′i (ll. 6-11).

154 6 | Explanations for missing data



It determines the values v, c, and r for the valid, consistent, and retained
annotations by evaluating boolean conditions. All values are false by de-
fault. The algorithm further preserves the valid value from the input data.
If an input tuple had valid = true, the corresponding output tuple also
has valid = true. Further, r = true if t is in the result of the original, e.g.,
inner flatten with respect to S′i . The value c = true if t matches the NIP
tU that is associated with the schema alternative S′i . The algorithm adds
valid, consistent, and retained annotations to the avMap and calls the
annotate function (Algorithm 11) to add the annotations to t. Then, it adds
the annotated tuple to the updated flatten result U ′i .
In the final step of the loop over all schema alternatives S′i (l. 13), the

algorithm calls the mer ge function. It merges the current annotated flatten
result U ′i with the flatten results from the other schema alternatives into
RA′ . The mer ge implements a concatenation of tuples with the same id
annotation across the outer flatten results of all schema alternatives. It
ensures not to replicate columns that remain the same across all schema
alternatives. Since the number of tuples with a given id may vary after the
flatten due to varying cardinalities of the alternative nested relations, the
mer ge method pads missing concatenation partners with null values (⊥).
Finally, it assigns each top-level output tuple a new unique id for further
identification and returns the merged relation RA′ together with the updated
schema alternatives S ′.
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id_1 firstname lastname address1 address2 city year city_S2 year_S2 . . . c_S1_1 r_S1_1 v_S1_1 c_S2_1 r_S2_1 v_S2_1

113 Sue Miller
city year

31 LA 2019
32 NY 2018

city year
41 NY 2019
42 LA 2018

LA 2019 NY 2019 . . . 0 1 1 1 1 1

114 Sue Miller
city year

31 LA 2019
32 NY 2018

city year
41 NY 2019
42 LA 2018

NY 2018 LA 2019 . . . 1 1 1 0 1 1

115 Sue Walker
city year

51 SF 2018
52 LA 2019

city year
61 LV 2017
62 NY 2019

SF 2018 LV 2017 . . . 0 1 1 0 1 1

116 Sue Walker
city year

51 SF 2018
52 LA 2019

city year
61 LV 2017
62 NY 2019

LA 2019 NY 2019 . . . 0 1 1 1 1 1

Table 6.8: Output RF of the tracing procedure for the flatten operator in the example pipeline in Figure 1.1,
when applied on Rshor t ; italic numbers indicate tuple identifiers
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Example 18
In our running example, the inner flatten takes the relation shown in Table 6.7
as input, together with the schema alternatives from Example 16. It produces
the annotated relation summarized in Table 6.8. First, observe that it combines
both schema alternatives since both attributes address1 and address2 have
been flattened. The attributes city and year originate from address1. Unlike
city_S2 and year_S2 which originate from address2, they are referenced in
the unmodified example query Qexample. Hence, they do not have any suffixes
which indicate the association to a schema alternative. Nonetheless, the alter-
native S1, which represents the unmodified schema alternative references these
attributes. The alternative S2 references the attributes city_S2 and year_S2
instead of city and year, respectively. The column marked with . . . summa-
rizes all annotation columns of the input, which are treated as “regular” input
columns when executing outer flatten for each schema alternative. Let us focus
on the new annotations, now.

Under schema alternative S1, only tuple 114 has the value 1 in column c_S1_1.
It is the only tuple that is consistent with the why-not question under schema
alternative S1. Indeed, once S1 has been processed to reflect the flattening,
T 1 becomes T

′
1 = {〈

nList
name :?, ci t y

ci t y : “NY”, year1 :?〉}. Note that only tuple 114
in Table 6.8 features “NY” in the city column and satisfies T

′
1. According

to the values in columns v_S1_1 and r_S1_1, the inner flatten (as originally
intended) on address1 yields 4 tuples since they are 1 for all four displayed
tuples. If the r_S1_1 annotation was 0 the corresponding tuple would have
been lost due to the flatten type (inner flatten rather than outer flatten). If
the v_S1_1 annotation was 0 the corresponding tuple could note have been
produced under schema alternative S1.
Under schema alternative S2, the tuples 113 and 116 are consistent (i.e.,

c_S2_1 = 1) with the updated T
′
2 because both have the value “NY” in the

attribute city_S2. Furthermore, all tuples are valid and retained as indicated
by the 1 values in the v_S1_1 and r_S1_1 columns.

Selection. As shown in Algorithm 14, the tracing procedure for the selection
operator adds additional annotation columns to the input relations before
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Algorithm 14: Selec t ion(σθ , RA,S)
Input: σθ , RA, S
Output: 〈RA′ ,S〉

1 RA′ ← RA

2 foreach Si ∈ S do
3 U ← ;
4 foreach t ∈ RA′ do
5 v← value of most recent validSi

attribute
6 r ← θSi

(t) = true

7 c← t ≃ tU , where tU ∈ T
′
i

8 avMap← {{〈valid : v〉, 〈retained : r〉, 〈consistent : c〉}}
9 U ← U ∪ {{annotate(t, avMap, Si ,σ)}}

10 RA′ ← U

11 return 〈RA′ ,S〉

returning it. To take all schema alternatives into account, the algorithm
iterates over each schema alternative Si ∈ S (ll. 2-10). It initializes the
intermediate output U to an empty relation before iterating through the
tuples in the annotated relation RA′ (ll. 5-9). In the inner loop, the algorithm
extends each tuple with its individual annotations valid (v), retained (r),
and consistent (c). It propagates the valid value from the previous valid
annotation and assesses the selection condition θSi

for the retained annota-
tion. That annotation indicates if the tuple survived the selection under the
current schema alternative Si . Note that the algorithm does not remove any
tuples, it just marks them with the retained attribute. To obtain the value
for the consistent annotation, the algorithm checks whether the current
tuple t matches the according N I P tU in Si. If it is the case, the consistent
value becomes 1, otherwise, it is 0. Once the annotations are computed, the
algorithm extends t with them and adds t to the intermediate result U . After
iterating through all ts in RA′ , the algorithm assigns U to RA′ , and repeats
the annotation process with the next schema alternative. After all schema
alternatives are processed, Algorithm 14 returns the updated RA′ and the set
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id_2 firstname . . . city year city_S2 year_S2 . . . c_S1_2 r_S1_2 v_S1_2 c_S2_2 r_S2_2 v_S2_2
113 Sue . . . LA 2019 NY 2019 . . . 0 1 1 1 1 1
114 Sue . . . NY 2018 LA 2019 . . . 1 0 1 0 1 1
115 Sue . . . SF 2018 LV 2017 . . . 0 0 1 0 0 1
116 Sue . . . LA 2019 NY 2019 . . . 0 1 1 1 1 1

Table 6.9: Output Rσ of the tracing procedure for the selection operator,
when applied on RF in Table 6.8; some attributes are hidden for
conciseness

of schema alternatives S. The algorithm leaves the id column unmodified
because each input tuple yields exactly one output tuple. Therefore, it does
not appear in Algorithm 14.
Example 19
When we apply the tracing procedure in Algorithm 14 on the selection with
identifier 2 in the query pipeline in Figure 6.1 on the annotated output RF

in Table 6.8, we obtain the output Rσ in Table 6.9. The procedure creates
annotations for both schema alternatives S1 and S2. The attribute values for
the consistent attributes c_S1_2 and c_S2_2 as well as the valid attributes
v_S1_2 and v_S2_2 are the same as the values in Table 6.8. The values for the
retained attributes differ from the values in Table 6.8, because they reflect the
selection result. For schema alternative S1, the attribute r_S1_2 holds a one
for the tuples 113 and 116, because their year is 2019. Similarly, for schema
alternative S2, the attribute r_S2_2 holds a one for the tuples 113, 114, and
116, because their year_S2 is 2019. Note that the procedure retains all tuples.
It does not remove the tuples that the selection would have removed, i.e. tuples
114 and 115 for S1 and tuple 115 for S2. Instead, their retained value is zero.

Projection, renaming, tuple flatten, and tuple nesting. The successor of
the selection in the example pipeline from Figure 1.1 is the projection. There-
fore, we describe its tracing procedure next. Since the tracing procedure for
the projection, renaming, tuple flatten, and tuple nesting operator are quite
similar, we describe common internals once for all of them and highlight
operator-specific differences. The tracing procedures of these operators
resemble the procedure for the selection shown in Algorithm 14.
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There are essentially two big differences between that procedure and the
procedures for the listed operators. First, the listed operators manipulate
the data structure. Therefore, the procedures must update the schema
alternatives right at the beginning of the procedure. Each operator conducts
different structural manipulations. Thus, each operator’s procedure has its
individual update routine. Nonetheless, the update routine is essentially the
same routine as the one in the relation flatten procedure in Algorithm 13 for
all operators. Second, the mentioned operators yield exactly one output tuple
for each input tuple. Hence, the procedure sets the retained annotation to 1

for all tuples. The rest of the procedure in Algorithm 14 remains unchanged
for all listed operators.
The valid and consistent annotations are computed exactly in the same

way as shown in Algorithm 14. Furthermore, the id annotation remains
untouched for the same reasons as in Algorithm 14. Due to the significant
similarity to the selection operator’s procedure, we skip a detailed example
and move on to the relation nesting procedure.
Relation nesting. The relation nesting operator is the last operator in our
running example. Recall that it nests the values of a specified attribute into a
nested relation for all tuples in the input relation that hold the same values
in all other attributes.
The tracing procedure for the relation nesting is shown in Algorithm 15.

Given the operator N R
B→C , the annotated input relation RA, and the schema

alternatives S ′, it computes an annotated output relation RA′ and an updated
set of schema alternatives S. The algorithm consists of three major steps.
First, it processes the schema alternatives (ll. 1-3). Next, the algorithm
computes the intermediate results for each schema alternative independently
(ll. 4-13). Eventually, it merges the intermediate results (ll. 14-17).

During the first step, Algorithm 15 identifies the annotation attributes X i

in RA for each schema alternative Si. Furthermore, it updates the schema
alternatives S′i to reflect the structural manipulations of the tuples in the
input relation. It stores the set of updated schema alternatives in S ′. The
algorithm leverages it for the annotation computation.
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Algorithm 15: relationNesting(N R
B→C , RA,S)

Input: N R
B→C , RA, S

Output: 〈RA′ ,S ′〉
1 For each Si ∈ S, let X i be the set of annotation columns in RA belonging to Si ,

including the identity column
2 For each Si ∈ S, let S′i = 〈T

′
i ,M

′
i〉 be the schema alternative reflecting the

nesting wrt Si

3 S ′←
⋃

Si∈S S′i
4 foreach S′i ∈ S ′ do
5 Ui ← JN R

〈B1 ,PX i 〉→〈Ci ,PX ′i 〉
(ρSi←S1 ,PX i←PX i

(πSi∪PX i
(N T

X i→PX i
(RA))))K

6 U ′i ← ;
7 foreach t ∈ Ui do
8 c← t ≃ tU , where tU ∈ T

′
i

9 v← t.PX ′i most recent valid column is 1 at least once
10 avMap← {{〈valid : v〉, 〈retained : 1〉, 〈consistent, c〉}}
11 t ′← annotate(t, avMap, S′i ,N

R
B→C )

12 t ′← nullPad(t ′, S′i , C ,S ′)
13 U ′i ← U ′i ∪ {{t

′}}

14 U ←
⋃

S′i∈S′
U ′i

15 C←
⋃

S′i∈S′
Ci

16 A←
⋃

S′i∈S′
annotation columns in U ′i

17 U ′← Jγ f irstNonNullValue(〈C,A〉)→〈C,A〉(N R
〈C,A〉→〈C,A〉(U))K

18 RA′ ← ;
19 foreach t ∈ U ′ do
20 t ′← t ◦ 〈“id”+ id(O) : id(t)〉
21 RA′ ← RA′ ∪ {{t ′}}

22 return 〈RA′ ,S ′〉

In the second step (ll. 4-13), the algorithm computes the valid, consistent,
and retained annotations for each schema alternative as the outer loop
indicates. It prepares an intermediate result Ui for each schema alternative
(l. 5). For that purpose, it nests all attributes X i into a dedicated provenance
tuple PX i and renames all attributes occurring in Si to the attribute names
in the original schema alternative S1. In the final preparation step for Ui,
it computes a nested relation of tuples holding PX i and the attribute to be
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nested B1. The algorithm further initializes the intermediate annotated result
U ′i to an empty relation. Then, the procedure annotates each tuple t ∈ Ui

with provenance annotations in the inner loop (ll. 7-13). It computes the
consistent attribute c in the same way the other algorithms do. It matches
the tuple t against the updated NIP tU . In case of a match, c becomes 1.
Otherwise, it is 0. To compute the valid annotation v, Algorithm 15 needs
to access the newly created nested relation PX i. It checks whether any
of the most recent valid annotations nested in PX i is 1. The most recent
valid annotations are those valid annotations that the relation nesting’s
predecessor has assigned to each input tuple of the relation nesting operator.
If at least one valid annotation with the value 1 exists, it sets v to 1 and to 0,
otherwise. The idea behind this annotation approach is that the output tuple
can be generated from the input if Breadcrumb can generate at least one
valid input tuple. Since the relation nesting operation is not selective, the
algorithm sets all retained annotation values to 1 for all tuples t. It obtains
the tuple t ′ from annotating t and calls the nullPad function since it has
to align t ′’s schema across all alternatives. This function adds annotation
attributes and the attributes C j holding the nested relations for all but the
current schema alternative Si and fills the added attributes with null values.
Additionally, it re-arranges the attributes, such that they have the same order
for all schema alternatives. As a final action of the second step, the algorithm
adds t ′ to the intermediate result U ′i , which holds the annotated relation
nesting result under schema alternative Si .

Once Algorithm 15 has computed the intermediate nesting results for all
schema alternatives, it merges the intermediate results U ′i (ll. 14-17). For
that purpose, it first unites all intermediate results U ′i into the relation U .
Now, the procedure could return and computation and Breadcrumb could
continue with the next operator. However, the result is blown-up, since the
tuples that only distinguish themselves from each other by their annotation
and the newly created nested relation potentially occur once in U for each
schema alternative. To compute side-effects effectively and keep further
computations efficient, the algorithm merges tuples that only distinguish
in the mentioned attributes. For that purpose, it collects all attributes with

162 6 | Explanations for missing data



the newly nested relations into C and the annotation attributes added in the
previous step into A for a final nesting and aggregation operation. In this
operation, the algorithm nests the tuples on all attributes but the attributes
in C and A (l. 17). For the attributes in C and A the aggregation picks
the first non-null value by applying the f irstNonNullValue function. That
yields the correctly merged output relation U ′ for three reasons. First, each
value combination for the attributes M= (LBL(U)−A)− C occurs at most
once in the input U , because the nesting in line 5 ensures that. Second, the
attributes in A and C are distinct for each schema alternative. Third, the
attributes that do not belong to a schema alternative are null-padded in
the second step of this algorithm. In a final step (ll. 18-21), the algorithm
assigns each tuple in U ′ a new unique identifier id and adds it to the final
result RA′ , before it returns RA′ together with S ′.

id_4 city nList . . . p_S1_4 c_S1_4 r_S1_4 v_S1_4 p_S2_4 c_S2_4 r_S2_4 v_S2_4

91 LA
firstname

711 Sue
712 Sue

. . . . . . 0 1 1 ⊥ 0 0 0

92 NY firstname
713 Sue . . . . . . 1 1 1 ⊥ 0 0 0

93 SF firstname
714 Sue . . . . . . 0 1 1 ⊥ 0 0 0

94 NY
firstname

715 Sue
716 Sue

. . . ⊥ 0 0 0 . . . 1 1 1

95 LA firstname
717 Sue . . . ⊥ 0 0 0 . . . 0 1 1

96 LV firstname
718 Sue . . . ⊥ 0 0 0 . . . 0 1 1

Table 6.10: Intermediate relation nesting results after nesting individual
schema alternatives; the upper half belongs to alternative S′1 and
the lower half to alternative S′2

. . . c_S1_1 r_S1_1 v_S1_1 c_S1_2 r_S1_2 v_S1_2 . . .
711 . . . 0 1 1 0 1 1 . . .
712 . . . 0 1 1 0 1 1 . . .

Table 6.11: Detailed captured annotations stored in attribute p_S1_4 of tuple
91 in Table 6.10
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city nList nList_S2 . . . p_S1_4 c_S1_4 r_S1_4 v_S1_4 p_S2_4 c_S2_4 r_S2_4 v_S2_4

991 LA
firstname

711 Sue
712 Sue

firstname
717 Sue . . . . . . 0 1 1 ⊥ 0 1 1

992 NY firstname
713 Sue

firstname
715 Sue
716 Sue

. . . . . . 1 1 1 ⊥ 1 1 1

993 SF firstname
714 Sue ⊥ . . . . . . 0 1 1 ⊥ 0 0 0

994 LV ⊥
firstname

718 Sue . . . ⊥ 0 0 0 . . . 0 1 1

Table 6.12: Relation nesting result RN R after merging the individual results
in Table 6.10

Example 20
We run the tracing procedure for the relation nesting operator on our reduced
running example. The procedure first updates the alternatives S1 and S2 to S′1
and S′2 to incorporate that the firstname attribute is nested into the newly
created nList attribute. Next, it iterates through both schema alternatives.
For each of them, it computes independent intermediate results as shown in Ta-
ble 6.10. The upper half belongs to the first schema alternative S′1 and the
lower half to S′2. Note that the non-annotation-related attributes all share the
names of the attributes referenced in the original schema alternative S′1. This is
necessary to merge the tuples later. The procedure has also added annotations
to the top-level tuples according to Algorithm 15. We describe the annotations
one by one starting with the valid attributes v_S1_4 and v_S2_4. In the upper
half v_S1_4 is 1 for all tuples, in the lower half it is 0 for all tuples because the
tuples in the lower half are computed from the S′2. Thus, they cannot be derived
from S′1. For the same reason, values of v_S2_4 are 0 in the upper half and 1 in
the lower half. Since the tuple nesting operator does not remove any items from
the result the retained attributes r_S1_4 and r_S2_4 are 1 for all valid tuples
under the associated schema alternative. Furthermore, the tracing procedure
has re-evaluated the valid tuples regarding their compatibility to the why-not
tuple. Since the why-not tuple requires the city attribute to hold the value NY,
only the tuples 92 and 94 hold the value 1 in the consistent attributes c_S1_4

and c_S2_4, respectively.
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The intermediate result further holds nested relations for the provenance
annotations, called p_S1_4 and p_S2_4. Table 6.11 shows the nested anno-
tations in p_S1_4 in tuple 91. As the identifiers 711 and 712 show, they are
associated with the two nested firstnames Sue in the same top-level tuple.
The consistent, retained, and valid attributes are the ones introduced by the
previous operators. They are displayed in Table 6.8 and Table 6.9.

Once all intermediate results are computed, the procedure merges the tuples
in Table 6.10 into the tuples shown in Table 6.12. It creates a dedicated attribute
for each newly created nested relation. In our example, these are nList for S′1
and nList_S2 for S′2. However, it keeps the non-modified attributes, such as
city in our example, a shared attribute across schema alternatives. In fact, the
tracing procedure even merges the attributes based on these attributes. When
tuples share the same values in the non-modified attributes. That is why tuple
991 in Table 6.12 holds the nLists of tuples 91 and 95 in Table 6.10.

The merge process further integrates the annotations. It retains the values of
those tuples whose valid attributes are set to 1. In tuple 991 the procedure has
transferred the annotation attributes p_S1_4, c_S1_4, r_S1_4, v_S1_4 from
tuple 91 and p_S2_4, c_S2_4, r_S2_4, v_S2_4 from tuple 95. If the values of
the non-modified attributes only occur in a tuple of a single schema alternative,
such as the city LV in tuple 994, the merge process fills the provenance attributes
of the other alternatives with zeros or null values.

Eventually, the procedure returns the nested relation RN R in Table 6.12
together with the updated set of schema alternatives S ′, which holds S′1, S′2.

Even though we have described the majority of supported operators while
walking through the running example, the procedures for the aggregation,
join, and union operators are not addressed, yet. In the following, we briefly
sketch their internals.
Aggregation. The tracing procedure for the aggregation operator is similar
to the procedure for the selection operator described in Algorithm 14 because
the aggregation also yields one output tuple per input tuple. Like the selection
procedure applies the filter condition on all alternatives, the aggregation
procedure applies the aggregation on all schema alternatives simultaneously.
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In addition to the selection procedure, the aggregation procedure updates the
structure of the schema alternatives. The rest of the procedure is analogous
to the procedure in Algorithm 14.
Join and Union. Unlike the operators described so far, the join and union
operators have two input relations. Therefore, both tracing procedures
need to combine not only two input relations but also two sets of schema
alternatives. Both operators compute the cross-product of the two input
schema alternatives to obtain the output schema alternatives. Note that the
cross-product only applies to the alternatives, not the processed data.
Based on these newly created alternatives the join procedure combines

the tuples of the two input relations as follows. It rewrites the join to an
outer join to identify tuples marked consistent that get removed since the
join is too rigid. Further, it rewrites the join condition for each newly created
alternative and combines them via disjunctive concatenation. Afterward, it
applies the same tuple checks as the selection procedure in Algorithm 14.
To identify the value for the valid attribute, it combines the values of the
two most recent valid attributes from each input tuple. Only if both are 1,
the new valid attribute becomes 1. Otherwise, it is 0.
The procedure for the union operator first aligns the schemata of both

input relations. While the input relations have matching schemata before
Breadcrumb annotates them, Breadcrumb adds attributes to account for the
schema alternatives and the provenance annotations. Thus, it applies the
same null-padding as in Algorithm 15 to align the schemata. Then, it applies
the union operator and annotates the resulting tuples as in Algorithm 14.
However, this procedure sets the valid attribute to 1, if either of the two
valid attributes is 1. Otherwise, it is 0.
Once Breadcrumb has executed the tracing procedure for all operators in

the query, it holds a nested relation, which extends the original query result
in two aspects. First, the relation may hold additional tuples and attributes
that could belong to the result under some schema alternatives. Second, it
holds the annotations that Breadcrumb leverages in the next step to compute
approximated explanations.
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Algorithm 16: computeApprox imateEx planations(RA,S,Φ)
Input: 〈RA,S,Φ〉
Output: E≈

1 E≈ = ;
2 foreach i ∈ {1, ..., |S|} do
3 Si ← ith schema alternative in S
4 ESi

← set of operators modified by Si

5 RA
Si
← recursively flatten nested provenance relations associated with Si

6 OI D← set of operator identifiers in Φ.Q
7 θSi

← false
8 RA← ;
9 foreach j ∈ OI D do

10 θSi
← θSi

∨ ((v_Si_ j = 1∧ c_Si_ j = 1)∨ (v_Si_ j =⊥∧ c_Si_ j =⊥))
11 RA← RA∪ r_Si_ j

12 RA
Si
← Jδ(πRA(σθSi

(RA
Si
))K

13 E≈Si
← for each tuple t in RA

Si
, extract all operator identifiers j for which

r_Si_ j = 0
14 E≈Si

′← ;
15 foreach E ∈ E≈Si

do
16 E≈Si

′← E≈Si

′ ∪ {ESi
∪ E}

17 E≈← E≈ ∪ E≈Si

′

18 Prune E≈ based on upper and lower bound of side-effects for each explanation
in E≈ and sort them according to the partial order defined by Definition 6.7.

19 return E≈

6.3.4 Phase 4: Computing approximate explanations

In the final step, Breadcrumb leverages Algorithm 16 to approximate the
set of explanations formally defined in Definition 6.9. The algorithm takes
the annotated relation RA, the set of schema alternatives S, and the why-not
question Φ as input. It computes and returns the approximate explanations
E≈, which holds sets of operators. If the operators in the sets are reparameter-
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ized in the right way, the missing answer appears in the result. Breadcrumb
does not provide the reparameterization though.

After initializing E≈ (l. 1), Breadcrumb computes the approximate expla-
nations for each schema alternative Si individually (ll. 2-17) and merges
them into E≈. In a final step, Algorithm 16 prunes E≈ based on upper
and lower bounds of side-effects for each explanation E in E≈. It sorts the
explanations according to the partial order in Definition 6.7 (l. 18).

Algorithm 16 iterates through the schema alternatives’ indices (l. 2) when
computing the explanations for each schema alternative, because the annota-
tions have the index encoded in their attribute name. It obtains the schema
alternative Si at index i for further processing and collects a set of operators
ESi

that are reparameterized in schema alternative Si. This set holds all
operators whose attribute references have been replaced with an alternative
attribute by Si . Then, the algorithm conducts preparations needed to obtain
the explanations based on Si. It recursively flattens the nested provenance
collections associated with Si into RA

Si
(l. 5), obtains the set of operator iden-

tifiers OI D in the query Φ.Q, initializes a selection condition θSi
to false,

and creates an empty attribute set RA. After the preparation, Breadcrumb
iterates through the operator identifiers j to extend the selection condition
θSi

and the attribute set RA. The selection condition θSi
ensures that Bread-

crumb only considers those tuples in RA
Si
that are valid and consistent.

Both attributes have to hold either 1 or the null value ⊥. The 1-values rep-
resent valid and consistent result tuples that match the why-not question.
However, Breadcrumb also has to check for null-values since operators with
multiple inputs may generate null-values. For instance, the join generates
them for tuples without a join partner. Furthermore, Breadcrumb adds the
operator- and alternative-dependent retained annotations to RA. After the
loop over the operators in OI D, Breadcrumb applies θSi

in a selection and
RA in a projection onto RA

Si
. It further deduplicates the remaining tuples and

updates RA
Si
(l. 12). RA

Si
now only holds retained annotations. Therefore,

each tuple in RA
Si
represents an explanation for the missing data in the result.

Breadcrumb iterates through the tuples in RA
Si
. For each tuple, it extracts

the operator identifiers j for which the retained attribute holds a zero (l.
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13) and stores the obtained set of operator identifiers in E≈Si
. Since Bread-

crumb has to account for the operators in ESi
that are reparameterized by

the schema alternative Si it loops through the explanations E≈Si
and merges

the operators ESi
with the operators in the explanations in E≈Si

(ll. 14-16).
Now, the resulting E≈Si

′ holds the set of approximate explanations for schema
alternative Si. Breadcrumb adds the set to E≈ (l. 17) before advancing to
the next schema alternative.
Once Breadcrumb has iterated through alternatives, it prunes and sorts

the explanations in E≈, before it returns E≈ and terminates.
Example 21
We apply the algorithm to the running example used in this chapter. As shown
in Figure 6.1, the example query has four operators with identifiers 1 to 4.
Annotation columns with the identifier 0 refer to the table access annotations
described in Example 17. Let us now assume, the algorithm has processed
the schema alternative S1, which does not apply any attribute replacements
on the query. The set of approximate explanations E≈ already holds a single
explanation {2}, which points to the filter in the example query. The algo-
rithm currently processes schema alternative S2, which replaces the address1
attribute with address2. Therefore, Breadcrumb initializes ES2

to ES2
= {1},

in which the identifier 1 represents the flatten operator that is reparameterized
on the address attribute. Further, Breadcrumb computes θS2

and RA as follows:

θS1
=(c_S2_0= 1)∨ (c_S2_0=⊥) ∨

(v_S2_1= 1∧ c_S2_1= 1)∨ (v_S2_1=⊥∧ c_S2_1=⊥) ∨

(v_S2_2= 1∧ c_S2_2= 1)∨ (v_S2_2=⊥∧ c_S2_2=⊥) ∨

(v_S2_3= 1∧ c_S2_3= 1)∨ (v_S2_3=⊥∧ c_S2_3=⊥) ∨

(v_S2_4= 1∧ c_S2_4= 1)∨ (v_S2_4=⊥∧ c_S2_4=⊥)
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RA={r_S2_1, r_S2_2, r_S2_3, r_S2_4}

When Breadcrumb has conducted the selection with θS1
, the projection on

RA, and the deduplication on our reduced running example, it obtains the RA
S2

in Table 6.13. It holds one tuple with 1-values in all retained attributes.
r_S2_1 r_S2_2 r_S2_3 r_S2_4

1 1 1 1

Table 6.13: retained tuples in RA
S2

after selection, projection, and deduplica-
tion

This tuple originates from the NY tuple 992 in Table 6.12. It holds two Sues
in the nList_S2 attribute with identifiers 715 and 716. Without deduplication,
RA

S2
would contain two entries with 1-values in all retained attributes because

of the two nested Sues. The deduplication ensures that each explanation is
unique in the context of a schema alternative.
Breadcrumb extracts the operators from RA

S2
. In this example, Breadcrumb

only adds the empty set ; to E≈S2
because it processes just one tuple and this

tuple holds only 1-values. If, for instance, RA
S2

contained another tuple with
r_S2_4 = 0, Breadcrumb would also add the set {4} to E≈S2

. In this example,
however, Breadcrumb unions ES2

= {1} with ; to obtain ES2

′ = {1}. It adds
ES2

′ to E≈S2

′ before returning from the loop that iterates through the schema
alternatives. Breadcrumb unions E≈S2

′ with E≈ = {{2}}. Now, E≈ contains the
two explanations E1 = {2} and E2 = {1}: E≈ = {{2}, {1}}. Since Breadcrumb
has computed the explanations, now, it advances to the pruning and sorting.

Breadcrumb prunes the approximate explanations E≈ based on upper
and lower bounds (UB and LB) for side-effects. These bounds are indepen-
dent of actual operator reparameterizations. They describe the maximum
and the minimum number of side-effects of any possible actual operator
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reparameterization. More precisely, there exist no actual operator reparame-
terizations that generate more side-effects than defined by the upper bound.
Similarly, there exist no actual operator reparameterizations that generate
fewer side-effects than defined by the lower bound.

Both bounds exclusively consider top-level tuples since computing the tree-
edit distance of unordered trees in the nested result data is NP-hard [ZSS92].
Furthermore, both bounds consider tuples that any operator reparameter-
ization in an explanation adds (∆+) or removes (∆−) from the original
query result JQK. Breadcrumb considers the original schema alternative,
consistently denoted as S1, differently than the other schema alternatives.
The upper bounds are computed as follows. For S1, UB(∆+) equals the

number of valid top-level tuples in the result that have at least one retained
flag set to 0 for one of the explanation’s operators. For all other schema
alternatives Si , i ̸= 1, UB(∆+) is the number of valid top-level tuples that can
become part of the result under Si but do not have all the retained and valid
flags set to 1 under S1. The number of removed tuples UB(∆−) equals |JQK|
minus the number of valid top-level tuples under the considered alternative
that match a tuple with all retained and valid flags set to 1 under S1.
Breadcrumb generally estimates the lower bounds

LB(∆+) = max(number of valid and retained tuples− |JQK|, 0)

and

LB(∆−) = max(|JQK| − number of valid and retained tuples, 0).

Intuitively these bounds describe top-level tuples that any reparameterization
based on an explanation adds or removes to or from the actual query result
JQK. Further, Breadcrumb sets lower bounds of explanations involving a
selection or join to 0 since it does not have the information whether a
reparametrization different from the “full relaxation” of the operator may
avoid the side-effects.
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We leave algorithms that compute tighter bounds to future work. Finally,
Breadcrumb orders the explanations based on the partial order defined in
Definition 6.8 leveraging the lower bounds, i.e., LB = LB(∆+) + LB(∆−).
Example 22
Recall that our reduced running example yields a query result that holds only
one top-level tuple with the city LA and two firstnames Sue in the nested
relation nList. Therefore, Breadcrumb computes the lower and upper bounds
for the explanations E1 as follows:

• UBE1
(∆+) = 2, because a reparameterization may add two tuples repre-

senting NY and SF
• UBE1

(∆−) = 0, because the LA tuple appears in all valid reparameteriza-
tions of explanation E1

• LBE1
(∆+) = 0, because the explanation contains a selection

• LBE1
(∆−) = 0, because the explanation contains a selection

The upper and lower bounds for E2 are:

• UBE2
(∆+) = 1, because the exclusive reparameterization of the flatten

operator yields at most one NY tuple in the result
• UBE2

(∆−) = 1, because the LA tuple does not appear in the result under
any reparameterization of E2

• LBE2
(∆+) = 0, because the size of the query result is 1 and the number

of valid and retained tuples from the unmodified query is 0 under all
reparameterizations of E2

• LBE2
(∆−) = 1, because the query result contains one tuple that is not

valid and retained under S1

Even without these bounds, Breadcrumb does not prune E1 or E2 from E≈,
because the operators in E1 and E2 distinguish from each other. However,
Breadcrumb considers the side-effects for the final ordering. Since E1 or E2

contain just one operator, it sums up lower bounds’ values. For E1, it is 0. For

172 6 | Explanations for missing data



E2, it is 1. Thus, in this example, Breadcrumb ranks E1 higher than E2. It
returns E≈ = {{2}, {1}}.

6.3.5 Discussion

Breadcrumb may miss or over-approximate explanations. In this section,
we describe the limitations of Breadcrumb regarding the approximated
explanations. We further describe the runtime complexity of computing the
explanations and provide reasoning why Breadcrumb scales to large datasets
in big data analytics systems.
Approximate explanations. Breadcrumb guarantees that any returned

explanation is correct, i.e., each explanation yields at least one successful
reparameterization. Due to the loose bounds on side-effects, not all explana-
tions are guaranteed to yield minimal successful reparameterizations.

Furthermore, Breadcrumb may miss some explanations due to its heuristic
nature. Essentially, the proposed algorithm applies the following systematic
optimizations for efficiency that cause certain cases not to be accurately
covered: First, it considers only equi-joins and does not model a reparameteri-
zation to theta-joins. As a consequence, it avoids computing the cross-product
from the two input relations and enumerating all possible outputs of join
reparameterizations. If such a reparameterization was part of an explana-
tion, our algorithm misses it. Second, Breadcrumb exclusively considers
reparameterizations for the selection, join, and flatten operators that are
less selective than the original operators after applying each schema alterna-
tive. Hence, it misses explanations that require a more restrictive selection
condition, join type, or flatten type. Third, for aggregations, Breadcrumb
generally does not consider changing the aggregation function. Further, it
does not trace the result for different subsets of the aggregation input data.
Thus, Breadcrumb may over-approximate or miss explanations for queries
in which selections, equi-joins, or flatten operators precede aggregations.
Runtime complexity. We briefly sketch Breadcrumb’s runtime complex-

ity given a query Q with q operators. The schema backtracing step first
applies a schema matching as described in Section 4.3.1 with the complexity
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described in Section 4.3.3. The schema backtracing then iterates through
the operators in the query starting at the last operator. For each operator, it
has to consider p path manipulations. Thus, the schema backtracing has an
overall complexity of O(q · p). However note, that the path manipulations
are bound by the maximum number of attributes in the input and output
schema of each operator. The exact number highly varies between the op-
erators. For instance, a filter does not conduct any path manipulations. A
renaming conducts one manipulation for each top-level attribute in the data.
In practice, p typically is much smaller than the number of attributes in the
schema.

In the second step, the algorithm searches for schema alternatives. Finding
the schema alternatives involves comparing all provided attribute alternatives
with each other. Let us assume n attributes referenced in the query have at
most a alternatives each, which is bound by the number of attributes in each
input relation. Then, computing all possible alternatives has exponential
complexity O(an). Note that the exponential complexity is on the schema,
not on the data. Hence, it is practically feasible to compute the schema
alternatives.
The data tracing step computes annotations for each operator and each

schema alternative. The number of schema alternatives is s = |S| ≤ an.
Remember that Breadcrumb annotates each top-level tuple in the output
of each operator in Q. Let the maximum number of top-level output tuples
that any of the operators in Q produce be d. For each top-level tuple, the
algorithm generates a unique identifier. Furthermore, it creates a consistent,
retained, and valid annotation. Hence, the algorithm produces at most
q · d · (1+ s · 3) annotations. Computing the annotations for each top-level is
in constant time for the retained, and valid attribute for all operators but the
relation nesting operator. The relation nesting operator needs to check all
valid annotations of the input tuples that contribute to each output tuple. The
consistent annotations require the execution of the tree-pattern matching’s
data matching step. It has a complexity of O(m) for each d (Section 4.3.3),
where m is the number of attribute nodes referenced in the why-not question.
Thus, the overall time complexity for data tracing per operator is O(m · s · d).
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Since s and m are typically orders of magnitude smaller than d and each
operator in the pipeline has at least a complexity of O(d), the data tracing
procedures do not impose practically infeasible runtime overhead. However,
the size of the annotations grows with each operator in Q by d · (1+ s · 3), as
described above. Thus, the data that has to be shuffled across the network
permanently grows. Therefore, in practice, the data tracing procedures have
a significant impact on the runtime.

Computing the explanations requires Breadcrumb to check all annotation
fields f = q · d · (1+ s ·3). Therefore, the runtime complexity to compute the
explanations is in O( f ). Next, the algorithm computes the lower and upper
bounds for each explanation. The algorithm potentially finds each possible
operator combination as an explanation. That leads to a total number of
e = 2q possible explanations, where e < d since one top-level tuple can
produce at most one explanation. Computing the lower and upper bounds
for each explanation only depends on the number of top-level tuples d. Thus,
this part has a complexity of O(e · d). Eventually, the algorithm sorts the
e explanations according to the partial order in Definition 6.7. Efficient
sorting has a complexity of O(e · log(e)). Replacing e with e = 2q yields
O(2q · log(2q)) = O(2q · q). However, in practice, the number of explanations
is significantly lower than e. It usually does not exceed two-digit figures.
Therefore, the runtime of this compute step is dominated by finding the
explanations.
Scalability. Part of our Contribution (4) is that Breadcrumb scales to large

datasets in distributed big data analytics systems. Here, we discuss why
Breadcrumb’s design allows the algorithm to scale. Recall that Breadcrumb’s
first two steps, the schema backtracing and schema alternative computation,
exclusively run on the schema. The schema typically is orders of magnitude
smaller than the data. Thus, distributing these steps will not have a signifi-
cant impact on Breadcrumb’s runtime. However, the final two steps, data
tracing and explanation computing process the data. Therefore, we focus
on distributing the execution of these two steps.
As the pseudo-code of Breadcrumb’s tracing procedures in Section 6.3.3

illustrate, the procedures iterate over each schema alternative and top-level
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output tuple to compute the annotations. Breadcrumb can parallelize and
distribute the annotation computation since computing them only requires
access to exactly the tuple for which the annotations are computed. Fur-
thermore, Breadcrumb can distribute the computation of the approximate
explanations described in Section 6.3.4 by leveraging the distributed opera-
tors of the big data analytics system. For each schema alternative, it applies
a selection, projection, and distinct operator. The big data analytics system
offers highly optimized, distributed implementations for these operators.
Hence, Breadcrumb distributes the explanation computation by utilizing
the underlying big data system. In Chapter 8, we confirm that Breadcrumb
scales to large datasets with an increasing number of schema alternatives.
Here, we conclude this chapter with a summary.

6.4 Summary

In this chapter, we have formally introduced the why-not question that
requests expected, but missing data in the result. To find query-based expla-
nations for the missing data in the question, we have introduced reparame-
terizations. They are successful if they produce the missing tuple described
in the why-not question. We have further introduced a partial order over
the successful reparameterizations to find minimal successful reparame-
terizations. They keep the impact on the query and result at a minimum.
Hence, the operators in these minimal successful reparameterizations form
the explanations for the missing answers.
We have described why computing these explanations is infeasible. That

is why we have proposed the heuristic Breadcrumb algorithm that computes
approximate explanations in four steps. Its schema backtracing step traces
the schema back from the output to the input. Its consecutive schema alterna-
tive step computes schema alternatives. Based on these schema alternatives,
the data tracing step annotates the data during processing. Based on the
previously annotated data, the final step computes the explanation. We
have discussed that Breadcrumb approximates the formally defined explana-
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tions, has reasonable theoretical runtime complexity, and scales on big data
analytics systems.

All in all, we contributed a novel approach to identify query-based expla-
nations for missing data based on reparameterizations that extends existing,
provenance-based approaches to provide more comprehensive explanations
than any previous approach can provide. While previous approaches were
limited to flat relational data, our approach also supports nested data. Hence,
it supports a larger variety of data input formats that are particularly relevant
in big data analytics systems. Our novel Breadcrumb algorithm computes the
explanations leveraging a distributed big data system. It scales to datasets
of practically relevant size as we show in the evaluation chapter (Chapter 8),
while other existing solutions have only been evaluated on floppy-disk-sized
datasets. In the next chapter, we discuss Breadcrumb’s, Pebble’s, and the
tree-pattern matching algorithm’s implementation.
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Implementation

The concepts and algorithms described in Chapters 4 to 6 are generally
applicable to big data analytics systems that support data-parallel batch-
processing, such as Apache Spark, Flink, or Hive. This chapter describes their
implementation and extends the implementation sections in our published
papers [DH20a; DH20b; DLHG21a; DLHG21b].

As part of Contribution (5), we implement them in Apache Spark [ZXW+16]
to demonstrate their feasibility and evaluate their scalability. For that pur-
pose, we briefly describe the internals of Spark needed to understand our
implementation before we discuss our implementation details.
We implement our concepts on top of Spark’s Dataframe API [AXL+15].

This API processes dataframes. These are distributed data collections with
bag semantics that support nested data collections. These nested data
collections are implemented as nested arrays, which provide a unique position
inside the array for each element. We leverage this position as unique
identifiers for nested tuples in the tree-pattern matching, the Pebble, and
the Breadcrumb implementation. Since dataframes offer bag semantics and
provide unique positions for nested elements they match the formal data
model introduced in Section 3.1.
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To manipulate the dataframes, Spark offers transformations. They re-
semble SQL operators, such as selections, projections, and joins. Further
transformations manipulate nested data, such as flatten and nesting. To-
gether, these transformations closely correspond to the operators in the
execution model introduced in Section 3.2. Therefore, Spark’s Dataframe
API meets the requirements to implement our concepts.

Transformations provide the blueprint to manipulate the dataframes. Com-
bining them leads to a blueprint of a query pipeline that resembles the query
definition in SQL. Before Spark starts the pipeline execution it analyzes
the processing pipeline definition and optimizes the pipeline similarly to
relational database systems that optimize SQL queries. Spark conducts these
optimizations exclusively based on the data’s schema and optional meta-
data, when available. We call this phase the planning phase. Since the
plan typically is orders of magnitudes smaller than the data to be processed,
Spark executes the planning on a single compute node.
Spark’s actions trigger the actual execution of the query pipelines. They

initiate the execution phase. During this phase, Spark reads the input data
to compute the query result on the distributed compute nodes of the big
data analytics systems. Common examples for actions are collect (which
provides the execution result in an in-memory array), write (which writes
the computed result into files on a filesystem), or count (which returns the
number of top-level tuples in the result).
After this brief introduction of the basic Spark concepts and terminology,

we focus on the implementation of our three algorithms. More precisely,
we describe how we leverage Spark’s Dataframe API to implement the tree-
pattern matching prototype (Section 7.1), the Pebble prototype, and the
Breadcrumb prototype. We describe the latter ones by comparing their
implementations (Section 7.2). We conclude the chapter with a discussion
on implementation decisions (Section 7.3).
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7.1 Tree-pattern matching implementation

We implement the distributed tree-pattern matching algorithm as a novel
transformation on Spark’s dataframes. This transformation seamlessly in-
tegrates with the other transformations. Developers can use and arbitrar-
ily combine it with other transformations when defining query pipelines.
The transformation integrates into Spark’s pipeline planning and execu-
tion phases to achieve optimal distribution and scalability on the big data
analytics system.
As summarized in Algorithm 1, the tree-pattern matching algorithm has

two major phases. In the schema-matching phase, the algorithm computes
the schema-matches and in the data-matching phase, the algorithm computes
matches on top-level tuples in the data. We describe the implementation of
the schema-matching phase before we explain the implementation of the
data-matching phase.

7.1.1 Schema matching

As described in Section 4.3.1, the schema matching phase computes schema-
matches given the schema of the input dataframe and the tree-pattern.
The schema-matching phase is fully implemented into Spark’s planning
phase. When Spark analyzes a pipeline definition containing a tree-pattern
matching transformation, the transformation’s implementation computes
the schema-matches during the planning phase based on the data’s schema.
For that purpose, it implements the DeweyIDs [LLCC05] that assign each
schema node a unique identifier as strings, the index IR that maps the
schema node labels to DeweyIDs as a hash-map, and the tree-patterns T and
schema-matches M ∈M as trees. While more efficient data structures exist
to realize the mentioned parts, the runtime performance is sufficient for our
prototypical implementation, particularly because our approach exclusively
conducts the matching on the schema.
The schema-matching further prepares the schema-matches M ∈M for

distributed processing. It applies a custom serialization that generates an
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array of the nodes in each schema-match M . This array becomes an input
parameter of the data matching implementation and is broadcasted to all
compute nodes in the cluster. This implementation integrates smoothly into
Spark’s data structures.
In a final step, the schema-matching implementation registers a user-

defined function in Spark’s execution engine and integrates it into the
pipeline execution plan. This user-defined function contains the code for
the data matching phase.

7.1.2 Data matching

Recall from Section 4.3.2 that the data matching phase takes the schema-
matches and the data as input to return the final tree-pattern matches.
The data matching phase is implemented as a user-defined function (UDF)
integrated into the pipeline plan during the schema matching phase. In
the execution phase, Spark leverages the built-in map transformation that
applies the UDF for each top-level tuple in the input data. The UDF first
deserializes the schema-matches M ∈M so that the UDF can recursively
and simultaneously iterate through the nodes in M and the data in each
top-level tuple. During this iteration, it verifies the nodes’ constraints against
the data in the top-level tuple to find matches.
Recall from Section 4.3.2 that the implementation of the data matching

phase has either of three types. The first type extends the input relation with
an attribute that holds boolean values. They indicate whether the top-level
tuple matches the tree-pattern. It is described in detail in Section 4.3.2. The
second type returns a nested relation of the type defined by some particular
output nodes in the tree-pattern. The third type returns a relation that holds
the exact paths the tree-pattern has matched on. While the former two are
exposed to the application via the API, the latter one is exclusively used by
the Pebble module to trace the structural provenance.

The second and third types distinguish from the first type in the number
of output tuples generated for each input tuple. The operator potentially
yields multiple output tuples per input tuple, because a tree-pattern may
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match multiple times on a single input tuple. Therefore, Spark leverages the
built-in f latMap transformation for the second and third type instead of
the map transformation for the first type to incorporate the varying number
of output tuples.
For the second type, the algorithm further restructures the input so that

the output matches the selected output nodes in the tree-pattern. Therefore,
it creates a temporary buffer for the output nodes. While iterating through
the data, it does not only verify the constraints but also copies the data
matching the output nodes into the buffer. Once the algorithm has filled all
output nodes in the buffer and has verified that all constraints are satisfied,
it emits the buffered content as a top-level output tuple.

For the third type, the algorithm computes an array for each match. This
array contains one entry for each path to the matching data. These paths
include the exact positions of the data in the input data, i.e. the position of
elements in the nested relations. For that purpose, the algorithm records
the exact paths while iterating through the data for verification purposes. It
buffers all matching paths until it has verified that the data in the top-level
tuple matches the tree-pattern. Then, it emits the array together with the
input tuple’s identifier as a newly created top-level output tuple.

In summary, we integrate the tree-pattern matching algorithm into Spark’s
query planning and execution phase. The schema-matching phase integrates
in Spark’s query planning phase and the data matching phase in Spark’s
execution phase. Since we have split the tree-pattern matching algorithm in
these two dedicated phases, it can evaluate each top-level tuple in the input
data independently of all other tuples. Hence, it can leverage Spark’s built-in
map and f latMap function to distribute the data matching phase. They
are optimized for distributed execution. Thus, our tree-pattern matching
algorithm scales with increasing data sizes and compute resources. Peb-
ble’s and Breadcrumb’s implementations utilize the tree-pattern matching
algorithm to efficiently identify and trace nested data. We describe their
implementations next.
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7.2 Pebble and Breadcrumb implementation

Like the tree-pattern matching implementation, Pebble’s and Breadcrumb’s
implementations also extend Apache Spark. While Pebble traces the prove-
nance of existing data, Breadcrumb traces the provenance of missing data.
Both trace provenance and, thus, share common implementation concepts.
Therefore, we jointly describe their implementation. We focus on two aspects
of their implementation. The first aspect covers the implementation details
needed to understand how we extended Spark with Pebble and Breadcrumb.
More precisely, we first describe the annotations implementation in Spark’s
dataframes. Pebble and Breadcrumb rewrite Spark’s transformations to up-
date the annotations. We describe the different approaches that Pebble and
Breadcrumb implement to rewrite the operators and give reason why they
pursue different approaches. The rewrite is a prerequisite to querying the
explanations. Both algorithms provide different means to query the prove-
nance. We describe and reason about their implementations. We further
elaborate on Breadcrumb’s schema alternative implementation. The second
aspect addresses optimizations that let Pebble and Breadcrumb scale to large
datasets. While both algorithms are designed to run in distributed big data
analytics systems they need further optimizations in Spark to scale to large
datasets. We describe these optimizations at the end of this section. We start
the section with the annotions implementation, next.

7.2.1 Annotations

As described in Chapters 5 and 6 the algorithms leverage annotations during
query pipeline processing to compute explanations. In both algorithm im-
plementations, these annotations are stored in additional attributes in each
top-level tuple. In Spark’s dataframes, they are then available as additional
columns. These columns typically are of primitive type (i.e., long type for
identifiers or boolean type for other annotations).
Notable exceptions are the annotation columns created for the relation

nesting and aggregation transformations since they are of nested relation
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type. In Spark, nested relations are implemented as arrays. Thus, each tuple
in the nested relation has a position and it is possible to access every tuple by
its position. For the two mentioned transformations, the algorithms collect
nested relations of annotation tuples which encapsulate the annotations
added by preceding transformations. For the relation nesting transformation,
the algorithms further ensure that the annotation tuple has the same position
in the nested annotation relation as the corresponding tuple in the newly
created nested collection. This implicit correlation by position allows for
associating the annotations with the correct nested tuple.

Similarly, Pebble and Breadcrumb leverage the position information when
unnesting a nested relation. They record the position as part of the unique
identifier for each unnested tuple from the nested relation. Therefore, they
can correctly track each unnested value back to its nested origins.

Recall that Pebble’s annotations only consist of tuple identifiers. However,
Breadcrumb’s annotations further record valid, retained, and consistent
annotations for each schema alternative. Thus, Breadcrumb’s annotations
are more comprehensive.
In summary, Pebble’s and Breadcrumb’s tracing procedures permanently

update and manipulate the annotations. To handle the annotations for
nested data, they leverage the positions implicitly provided in Spark. Next,
we describe how these tracing procedures are wrapped around each trans-
formation to achieve their purpose.

7.2.2 Transformations

In Spark, transformations are implemented as Scala classes that are instan-
tiated and parameterized for each occurrence in a query pipeline. These
classes implement an execute method that defines the execution behavior.
Both, Pebble and Breadcrumb extend these transformations to compute the
previously described annotations. However, their implementations signifi-
cantly differ from each other because Pebble stores annotations in seperate
relations alongside the query execution and Breadcrumb propagates the
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annotations through the query pipeline. We describe Pebble’s approach first
and Breadcrumb’s approach afterward.
Pebble directly derives an extended class from each transformation class.

This class extends the transformation-specific behavior of the original class
with the annotation tracing. For that purpose, Pebble overrides the execute
method for each transformation. While the actual implementation of each
transformation extension depends on the transformation, their extended
execute methods share a common structure. They all have a preprocessing
step, the transformation step, and the postprocessing step.
During the preprocessing, Pebble prepares the transformation execution.

It ensures that the consecutive transformation does not fail because some
preconditions are not met and the annotations are not removed or unintend-
edly modified during the actual transformation execution step. For instance,
the union operator requires dataframes with matching schemata. While the
input schemata for the union operator without annotations match, they may
not match for the annotated schemata. Thus, Pebble aligns the schemata
before executing the union operator. Furthermore, Pebble manipulates the
list of projection attributes prior to the projection’s execution so that the
projection does not remove the annotations.

The transformation step implements the transformation-specific behavior.
Pebble applies Spark’s transformation execution implementation in this step.
However, the parameterizations may have been modified in the previous
step.

During the postprocessing step, Pebble adds and updates the annotations.
In case the transformation yields at most one top-level tuple for each top-level
output tuple such as the selection or projection transformation, Pebble simply
propagates the provenance annotations in the post-processing step. When a
transformation such as the join or the relation nesting transformation com-
bines multiple top-level input tuples into a new output tuple, Pebble assigns
each top-level tuple a new unique identifier during the post-processing. In
either case, Pebble only propagates the most recently created provenance
annotations and caches the mapping between the input identifiers and the
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new output identifier. Hence, Pebble keeps the execution overhead during
query pipeline execution low.
Breadcrumb pursues another implementation approach to extend each

transformation with annotation tracking. After defining and before the
query pipeline execution, it rewrites the query plan to track the annotations.
Breadcrumb recursively iterates through the transformations in the query
and rewrites each transformation individually starting at the input and
finishing at the output.
During the recursion, it manipulates each transformation in the plan to

(i) preserve the provenance annotations added by previous transformations,
(ii) add new transformation-specific annotations, and (iii) retains tuples in
the transformation’s output that may be removed by the transformation and
may contribute to an explanation. Breadcrumb propagates all annotations
through the entire query pipeline. For instance, when a pipeline has four
operators, such as our running example pipeline, the query result contains
annotations from all four operators rather than only the final tuple iden-
tifier. Furthermore, Breadcrumb rewrites the transformations such that it
records the necessary valid, retained, and consistent annotations for the
transformation. For instance, it leverages the filter condition of a selection
transformation to compute the retained annotation value. Additionally,
Breadcrumb may replace transformations with other transformations to re-
tain tuples that may contribute to the explanation. For example, it replaces
the selection transformation with a projection that propagates all input tuples
to the output. It extends the projection such that the projection generates
the mentioned annotations.

As mentioned in the previous Section 7.2.1, Breadcrumb has to compute
the valid, retained, and consistent annotations for each schema alternative.
For that purpose, it parses all attribute references in the transformation
parameters and rewrites the parameters to take all schema alternatives into
account. For instance, Breadcrumb parses the attribute list in the projection
and, for each attribute in the list and each schema alternative, it adds the
alternative attribute to the projection list. Similarly, Breadcrumb parses the
filter condition of a selection transformation and replaces attribute references
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with their alternatives to compute the retainedannotations for each schema
alternative.
In summary, Pebble and Breadcrumb apply different implementation ap-

proaches to make the transformations collect the annotations. While we
found Breadcrumb’s approach of extending the transformations to collect
annotations easier to implement, it was not a viable approach for Pebble.
Recall that Pebble caches as many annotations as possible alongside query
execution and only propagates the latest annotations. Rewriting the plan
does not provide the flexibility to implement the caching mechanism, be-
cause Spark assumes that transformations in the plan always have exactly
one output relation. Hence, plan rewriting does not allow for caching the
annotations into a seperate relation alongside the query execution. In con-
trast, Breadcrumb propagates all annotations through the query. To account
for schema alternatives, Breadcrumb further computes significantly more
annotations than Pebble. To this point, it may not be obvious, yet, why
Pebble and Breadcrumb distinguish in these implementation details. Pebble
and Breadcrumb leverage different computation methods, which we discuss
next.

7.2.3 Lazy and eager explanation computation

Pebble and Breadcrumb only compute the explanations when developers
query them leveraging novel transformations that extend Spark’s dataframes
and compute the requested explanations. The general query flow is essen-
tially the same for both explanations and has the following steps. First, the
developers define a query pipeline. Then, they trigger one of Spark’s actions
to execute the pipeline and obtain a result. Next, they observe an unexpected
result and leverage Pebble to obtain an explanation for an existing result, or
Breadcrumb to obtain an explanation for a missing result.
Pebble and Breadcrumb integrate into different steps of the introduced

flow. Pebble eagerly collects the annotations when the developers execute
the pipeline for the first time to obtain the result. Pebble leverages these
annotations once it computes an explanation. In contrast, Breadcrumb does
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not impose any footprint on the execution that computes the query pipeline
result. It lazily collects the annotations right after the developers request
the explanation.
We made these implementation decisions to minimize the overall execu-

tion overhead. Pebble only adds lightweight annotations to each processed
dataframe, for it adds at most three annotation attributes to each interme-
diate result in the query pipeline. Furthermore, it only annotates tuples
in the intermediate and final results that actually occur in the respective
result. Therefore, the overall execution overhead is low, and collecting the
annotations during the initial pipeline execution is reasonable. On the con-
trary, Breadcrumb computes the identifier attribute and at least three further
annotation attributes for each schema alternative. It further has to preserve
attributes that serve as an alternative to the original attributes. Additionally,
Breadcrumb has to consider tuples that the unmodified execution pipeline
would have removed from the result. Therefore, Breadcrumb potentially
causes large intermediate and final results that are expensive to compute.
Consequently, Breadcrumb generally imposes such a high execution overhead
on the initial pipeline execution that it is unjustifiable to eagerly compute
annotations that may not be used, e.g., when the obtained result meets the
delevopers’ expectations.

During explanation computation, Pebble mainly needs to join the identifier
annotations of the intermediate results. While joins typically are more
compute intense than selections or projections, Pebble does not need to
re-execute the entire query pipeline. In contrast, Breadcrumb has to re-
execute the query pipeline from scratch and compute the annotations for all
schema alternatives simultaneously during the re-execution. If Breadcrumb
then cached the annotations of intermediate results like Pebble it would
have to join them after the re-execution. That imposes even more overhead
than propagating all annotations. Therefore, Breadcrumb propagates the
annotations.
In fact, we have implemented the latter approach in Pebble to compare

eager provenance capture with lazy provenance capture. The experiments
reported in the next chapter reassured us, that propagating the annotations
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in Breadcrumb is the most efficient way to compute the explanations lazily.
However, this is not the only design choice to make Pebble and Breadcrumb
scale on large datasets in distributed computing clusters. In the following
subsection, we highlight two of the implementation optimizations that make
the algorithms scale.

7.2.4 Rewrite optimizations and limitations

To make Pebble and Breadcrumb efficient and scalable, we conduct multiple
optimizations in their implementations. While Pebble’s implementation also
profits from the reported optimizations in Titian [IST+15], Breadcrumb’s
implementation required novel implementation optimizations particularly
due to the introduction of schema alternatives. Recall that Breadcrumb basi-
cally executes multiple queries simultaneously, (i.e., one query per schema
alternative). Naive implementations of the relation flatten transformation
and the relation nesting transformation do not scale to the extent needed
for large datasets. Therefore, we highlight our optimizations on these two
transformations. Afterward, we describe implementation limitations on the
join transformation imposed on Breadcrumb by Spark.
Flatten. Without schema alternatives, the relation flatten transformation

unnests a nested relation and merges the attributes of the nested tuple with
the attributes of the tuple that holds the nested relation. The naive approach
to implement the flatten transformation for schema alternatives is to apply
the flatten on each nested relation alternative individually and union their
results in a consecutive step. This approach has two caveats. First, Spark
computes the input of the flatten transformation from scratch for each nested
relation alternative. Breadcrumb could leverage Spark’s caching mechanisms
to overcome this caveat. Second, the result of the naive implementation is
blown up. It creates one row for each combination of the top-level tuple
holding the nested relation and the tuple in the nested relation for each
alternative nested relation. As a consequence, in the transformation’s output,
each combination is represented in its own top-level tuple. The result would
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be more compact if each tuple holds the combination of one input top-level
tuple and nested tuple per alternative.
Breadcrumb adapts concepts from functional programming to overcome

both caveats of the naive flatten implementation. In brief, Breadcrumb em-
ulates the zip function and the flatmap function to simultaneously flatten
alternative nested relations. In detail, Breadcrumb extends the flatten trans-
formation as follows. First, it computes the maximum number n of elements
of all alternative nested relations for each input top-level tuple. For each of
the input tuples, Breadcrumb iterates from 0 to n and creates one output
tuple for each iteration i (resembles flatmap). Thus, it generates n output tu-
ples for each input tuple. For iteration i, the output tuple holds the attributes
and values of the top-level tuple plus the attributes and values from the ith
tuple of each alternative nested relation (resembles iterating through zipped
relations). If one alternative relation holds less than i elements, Breadcrumb
sets the corresponding attribute values to null and the valid annotation for
that alternative to false. Eventually, Breadcrumb creates only n output tuples
for each input tuple instead of n times the number of schema alternatives.
Furthermore, Breadcrumb does not require to union intermediate results
obtained for individual schema alternatives because each output tuple con-
siders all schema alternatives. Therefore, Breadcrumb’s implementation of
the relation flatten transformation overcomes the two caveats and scales to
a high number of alternatives and a large number of top-level tuples as the
experiments in the next chapter validate.
Relation nesting/aggregation. In Spark, our formal relation nesting

and aggregation transformations map both to the groupby and aggregation
transformation known from SQL. They only distinguish in the aggregation
function. Extending this SQL-like transformation is particularly challeng-
ing when considering schema alternatives since the grouping attributes
may differ between alternatives. The naive implementation of the group-
by/aggregation transformation resembles the naive implementation of the
flatten transformation. Our extended transformation would compute an
individual result for each alternative and then union these partial results in
a consecutive step. It has the same caveats as the naive flatten implemen-
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tation. Additionally, this transformation requires shuffling the data across
the compute nodes in the distributed cluster. Thus, computing partial re-
sults is particularly compute-intensive and time-consuming. The following
optimized implementation addresses these caveats.

Breadcrumb replaces the single groupby/aggregation transformation with
one expand transformation and two succeeding groupby/aggregation trans-
formations. The expand transformation duplicates the top-level tuples in the
input for each schema alternative. The first groupby/aggregation transfor-
mation computes the nested relations or aggregated values for each schema
alternative. The second aggregation merges the results from each schema
alternative into a single output relation. The result relation then holds the
same grouping attributes for all schema alternatives and distinct attributes
for each alternative’s aggregation attribute. As a consequence, the rewritten
groupby/aggregation transformation always requires just two shufflings
regardless of the number of schema alternatives. Furthermore, it avoids the
recomputation from scratch to obtain intermediate results and provides a
compact representation of the result which positively impacts the perfor-
mance of succeeding transformations. It has a disadvantage over the naive
implementation, though. Duplicating the tuples is memory intensive. If the
compute cluster has insufficient memory to keep the duplicates in memory,
the computation significantly slows down due to necessary disk I/O.
Join. We have experienced another performance bottleneck when imple-

menting Breadcrumb’s join transformation extension. Breadcrumb rewrites
each join to a full outer join to ensure that it correctly tracks all tuples.
When a schema alternative substitutes an attribute in the join condition
with another attribute, Breadcrumb copies the join condition, replaces the
attribute, and disjunctively combines the condition with the original con-
dition. The combination of the full outer join and the disjunction in the
join condition make Spark perform a cross-product over the join’s input
relations. Consequently, the execution time grows infeasibly high on large
datasets. Therefore, Breadcrumb currently does not support alternative join
conditions on large datasets. We are optimistic that improvements in Spark
will overcome this shortcoming in the near future.
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Based on the implementation hints provided in this section, one can
understand why Pebble and Breadcrumb scale to large datasets in distributed
big data analytics systems. Next, we summarize this chapter.

7.3 Summary

In this chapter, we have described implementation details on the tree-pattern
matching algorithm, Pebble, and Breadcrumb. They are relevant to process
nested data in a scalable fashion on distributed systems as stated in Contribu-
tion (5). All algorithms are implemented as standalone Scala libraries that
are binary compatible with multiple Spark versions (i.e., Spark 2.2 - 2.4).
Furthermore, Breadcrumb is open-sourced and available on Github1. We
leverage the libraries in the next chapter to assess the algorithms’ scalability
on large datasets.

1https://github.com/UniStuttgart-DataEngineering/breadcrumb
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Evaluation

In this chapter, we experimentally evaluate the tree-pattern matching al-
gorithm, Pebble, and Breadcrumb. In Contributions (2) to (5), we claim
that the algorithms scale to large datasets on distributed big data analytics
systems. In this chapter, we present experiments that underline these claims.
Furthermore, we show that the tree-pattern matching operator that imple-
ments our tree-pattern matching algorithm has the potential to significantly
reduce the query pipeline complexity. We also illustrate that Breadcrumb
provides such comprehensive explanations that it enables novel applications.
Additionally, we compare Breadcrumb’s explanations with the explanations
of other state-of-the-art query-based explanations to show that Breadcrumb
outperforms them in multiple aspects. For that purpose, we first introduce
the hardware setup used for the evaluation (Section 8.1). Then, we describe
the three evaluation datasets (Section 8.1.2). To effectively evaluate the
algorithms, it is necessary to employ dedicated query workloads for each
algorithm. Therefore, we describe the query workload at the beginning of
each algorithm’s section. We start with the tree-pattern matching algorithm
(Section 8.2), continue with Pebble (Section 8.3), and finish with Bread-
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crumb (Section 8.4). We conclude this chapter with a general discussion on
the evaluation results.

8.1 Evaluation setup

Before we present evaluation results, we describe the common properties
of all conducted experiments. They run on the same compute clusters as
described next. Furthermore, they leverage the same datasets, which we
describe after the cluster setup. Additionally, all reported runtimes are
averaged over five consecutive runs embedded in an additional warm-up
and tear-down run.

8.1.1 Cluster setup

We conduct all experiments on either of two clusters if not mentioned other-
wise. We summarize their configurations in Table 8.1. Both clusters have
one dedicated management node. Furthermore, cluster 1 has three physical
compute nodes with overall 3 · 8 = 24 compute threads, 3 · 244 = 732 GB
memory, and 4TB SSD storage. Cluster 2 has more compute resources. It
comes with 6 ·20= 24 compute threads, 6 ·176= 1056 GB memory, and 4TB
main memory. While cluster 1 has fewer compute threads, their clock speed
of 3.5 GHz is higher than the clock speed of cluster 2. It has a clocking of
2.1 GHz. Both clusters have similar software stacks. They run Ubuntu 18.04
LTS, which has the OpenJDK 1.8 installed. Further, both have Scala 2.11
installed. While cluster 1 runs Hadoop 3.1.0 and Spark 2.3.1, cluster 2 runs
Hadoop 3.2.0 and Spark 2.4.0. Both clusters manage resources with Yarn.
The clusters have a similar software stack. However, they have different

hardware setups. Thus they have different execution configurations. Cluster
1 runs with 10 executors that have two execution threads and 60 GB main
memory, each. Cluster 2 has 50 executors with two execution threads and
20 GB main memory, each.

When we started the research presented in this work, we conducted the
experiments on the smaller cluster 1 because cluster 2 did not exist at
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Configuration Cluster 1 Cluster 2
Hardware Configuration

Management nodes 1 1
Compute nodes 3 6
Compute threads 24 120
CPU clocking (GHz) 3.5 2.1
Main memory (GB) 732 1056
SSD Storage (TB) 4 20

Software Configuration
Linux Ubuntu 18.04 Ubuntu 18.04
Java OpenJDK 1.8 OpenJDK 1.8
Scala 2.11 2.11
Hadoop 3.1.0 3.2.0
Spark 2.3.1 2.4.0
Cluster manager Yarn Yarn

Execution Configuration
Executors 10 50
Threads per executor 2 2
Executor memory 60 16

Table 8.1: Cluster setups of the two Spark clusters used for the evaluation

this time. Once the more powerful cluster 2 was available, we exclusively
leveraged this cluster for experiments.

8.1.2 Datasets

We base our evaluations on three nested datasets. The first dataset is a
modified, synthetic benchmark dataset. The second and third datasets are
real-world datasets. In the following, we describe the key properties of each
of the datasets.
Nested TPC-H.We leverage a nested version of the synthetic TPC-H bench-

mark. The TPC-H dataset holds customers, orders, lineitems, parts, and
suppliers in a normalized schema [Tra09]. Since we have designed the
algorithms with nested data in mind, we nest the lineitems into the orders
as described in [PCW17]. By default, our TPC-H dataset has a scale factor
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of 10. It has a size of 10GB and contains roughly 15 million orders, which
hold more than 60 million nested lineitems in total.
Twitter. The Twitter dataset contains nested tweets obtained from the

public Twitter API. In this real-world dataset, each tweet has up to 1000
attributes arranged in up to eight layers of nesting [WC17]. Among other
information, the attributes hold information about the tweeted texts, used
hashtags, the tweets’ authors, the users mentioned in the tweet, and media
links. Furthermore, they hold quoted and retweeted tweets. Many attribute
names repeat in the Twitter schema. For instance, the attributes of the
tweets’ authors highly overlap with the attributes of the users mentioned in
the tweets. Similarly, the tweet itself shares a large number of attributes with
the quoted and retweeted tweets. The dataset holds up to 130 million tweets
at its maximum size. Its size ranges from 100GB to 500GB in increments of
100GB. The default size in the following experiments is 100GB.

DBLP. The DBLP dataset describes computer-science-related publications,
conferences, journals, and authors [Ley09]. We have downloaded a single
dblp.xml file from dblp.org, which roughly has size of 2GB. To conduct
meaningful experiments on the dataset, we split the records in the XML file
by type. Records have one of ten types. In this work, we focus on the five
most significant types, i.e. proceedings, inproceedings, journals, articles and,
authors. We store each of the types in separate nested relations and scale
them in a way that preserves key characteristics in the dataset, such as the
average number of inproceedings per proceeding or the average number of
authors per article. Each relation has roughly 20 to 50 attributes which have
up to three layers of nesting. In total, the dataset holds up to 1.5 billion
records at a size of 500GB. Like the Twitter dataset, the DBLP dataset has a
size of 100GB to 500GB. The default dataset size also is 100GB.

In the following, we evaluate the tree-pattern matching algorithm, Pebble,
and Breadcrumb based on the Twitter, and DBLP dataset. We further use the
TPC-H dataset to judge the explanation quality of Breadcrumb’s explanations,
since it is the only dataset that comes with predefined queries. By injecting
errors into the queries, we can assess Breadcrumb’s explanation quality.
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8.2 Tree-pattern matching

We start the experimental evaluation with the tree-pattern matching algo-
rithm. This section is based on [DH20a]. We conduct the evaluation on
cluster 2. Furthermore, we briefly describe the evaluation workload before
we present evaluation results. We leverage the the evaluation workload
to conduct five experiments that validate the following five claims. First,
the algorithm’s schema matching phase is independent of the data size.
Consequently, the runtime of the schema-matching phase does not increase
with increasing data size. Second, the algorithm’s overall runtime scales
with the input dataset size. Third, the algorithm’s overall runtime scales
with the provided compute resources. Fourth, the algorithm has competitive
runtime to Spark native queries that compute the same result. Finally, the
tree-patterns reduce the effort needed to write big data query pipelines with
and without the tree-pattern matching algorithm. Next, we briefly describe
the evaluation workload.

8.2.1 Workload

We define seven evaluation queries based on the Twitter and DBLP datasets
and briefly summarize them in Table 8.2. For each scenario, we define a tree-
pattern and apply it to the test data. Our published work [DH20a] provides
further details on the scenarios and a detailed scenario description including
the tree-pattern definition is available online1. The seven queries are split
into five Twitter scenarios (T1 to T5) and two DBLP scenarios (D1 and D2).
The table’s leftmost column provides a short, informal description of each
scenario. The central column holds the number of the schema matches.
For instance, in scenario T1, the tree-pattern query requests all distinct

names occurring in the Twitter datasets. Data engineers may leverage this
query to explore the dataset. In addition to the root node, the query’s
tree-pattern has just one name node. These nodes are connected with an

1https://www.ipvs.uni-stuttgart.de/departments/de/resources/pebble/
pebble_tpm_workload.pdf
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S |M| Description (detailed descriptions available in [DH20a])
T1 14 Returns all distinct names occurring in the input
T2 10 Retrieves all names of persons who either have authored a user-

mentioning tweet or are themselves mentioned in at least one non-
retweeted tweet

T3 1 Computes the user and retweet_count of tweets with at least three
hashtags longer than five characters

T4 1 Computes a nested list of hashtags for each user_mentions
T5 1 Selects tweets with at least two user_mentions that have name longer

than 5 characters and at least two hashtags containing “BTS”
D1 4 Selects all inproceedings with their proceedings from the last century

that have more than 10 citations
D2 1 Selects all authors that have at least 2 aliases containing “Mill”

Table 8.2: Evaluation scenarios for the tree-pattern matching algorithm

ancestor-descendant relationship. This pattern matches 14 times on the
input dataset because the attribute name appears 14 times in the input
dataset. Once the tree-pattern matching algorithm has computed all non-
distinct names, the query leverages Spark’s distinct transformation to obtain
the distinct names.

While T1 has a simple tree-pattern, other scenarios, such as T2 or T3 have
more complex patterns with multiple nodes and constraints defined on the
nodes. In summary, we have created the scenarios in such a way that they
contain simple and complex tree-patterns with and without value and cardi-
nality constraints so that all our tree-pattern features occur in the workload.
We leverage the scenarios to conduct the following five experiments.

8.2.2 Schema-matching runtime

In the first experiment, we show that the runtime of the schema-matching
phase is independent of the dataset size. Figure 8.1 shows the respective
runtime (y-axis) with increasing dataset sizes (x-axis). Across the scenarios,
it is roughly constant over all dataset sizes, as it is computed independently
from the data. Furthermore, it is negligible (< 50 ms) compared to the
overall scenario execution time, which is multiple seconds to a few minutes.
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Figure 8.1: Runtime of the schema-matching with increasing dataset sizes

The matching phase is the shortest with the simplest tree-pattern and
increases with the complexity of the tree-pattern and the number of potential
schema matches. In scenario T1, the algorithm has to match only the name
node on the schema. It does not need to check dependencies between nodes
in the pattern. Thus, the runtime is only about 2.5 ms, even though the
pattern matches 14 times. In contrast, in scenario T2, the algorithm has to
check multiple paths from the tree-pattern leaves to the root. Further, it has
to validate at least 10 schema matches, so that the runtime for T2 is up to
50 ms. The runtimes for scenarios T3-T5 range between the runtimes of
T1 and T2, even though their tree-pattern is more complex than the one of
T2. However, compared to T2, the algorithm has to validate fewer schema
matches on the input schema. The scenarios D1 and D2 are not displayed,
but their schema-matching runtime was constantly below 5 ms since the
DBLP schema has significantly fewer attributes than the Twitter schema.

In conclusion, the conducted experiment confirms that the schema match-
ing phase is independent of the data size and the size of the schema always
remains the same regardless of the data size. However, the runtime varies
significantly across the scenarios due to different tree-pattern complexity
and schema complexity. Nonetheless, even for large schemata, such as the
Twitter schema, the schema-matching runtime is negligible compared to the
data-matching runtime, as we show next.
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(a) Increasing dataset size
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(b) Increasing compute resources

Figure 8.2: Runtime of the tree-pattern matching algorithm [DH20a]

8.2.3 Scalability with increasing dataset size

In the second experiment, we measure the overall runtime of the tree-pattern
matching scenarios, while we gradually increase the input data from 100GB
to 500GB. The results for the Twitter datasets are shown in Figure 8.2a. We
observe that our tree-pattern matching implementation scales linearly with
the input data size across all Twitter scenarios. The DBLP scenarios D1 and
D2 that are not displayed also scale linearly. The scenarios T3, T4, and T5
have similar runtimes because they have just one match on the schema. As
a consequence, the data matching boils down to simple attribute accesses
in the processed data. Scenario T2 has the highest runtime because the
algorithm validates ten schema matches M ∈M on the input data. For each
match, the tree-pattern matching algorithm has to check all nodes in the
pattern with all their constraints. That is more computationally intensive
than validating 14 matches on a single attribute (T1) and than checking
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Figure 8.3: Runtime with tree-pattern matching (TPM) and without
(Spark) [DH20a]

only one schema match (T3-T5). Hence, we have identified three properties
that directly impact the runtime: the dataset size, the complexity of the
tree-pattern, and the number of schema matches. This experiment further
confirms that our algorithm scales linearly with increasing dataset sizes.

8.2.4 Scalability with increasing compute resources

In the third experiment, we keep the dataset size constant at 100GB and
increase the number of executors to study horizontal scaling on the com-
pute resources. We report the speedup results for the Twitter scenarios
in Figure 8.2b. The results for the DBLP scenarios are not displayed but
in accord with the ones of the Twitter scenarios. The speedup s is s = r1

rn
,

where r1 is the scenario’s runtime with one executor and rn is the runtime
with n executors. The ideal speedup for n executors is n itself. We indicate it
with the diagonal grey line in Figure 8.2b. All scenarios have ideal speedup
up until n ≈ 15. Then, the speedup degrades, mainly because disk-I/O is
dominating the runtime and the executors share 12 dedicated SSD disks. In
conclusion, this experiment shows that the tree-pattern matching algorithm
scales linearly with increasing compute resources assuming that the compute
resources include all compute resources, not just the CPU and main memory.
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8.2.5 Runtime comparison with plain Spark

The fourth experiment compares the runtime of the pipelines with tree-
pattern matching (TPM) and with standard Spark operators (Spark). Fig. 8.3
shows the results for the Twitter scenarios. In scenarios T1 and T2, TPM
is two to four times faster than Spark because the Spark pipelines unify
intermediate results in a final step. More precisely, they trigger data shuffling
across the compute nodes, which imposes unnecessary overhead. The TPM
approach does not shuffle the data.

Since scenarios T3 to T5 only yield a single schema match, Spark does not
need to merge any intermediate results in these scenarios. As a consequence,
no additional shuffling occurs and TPM is marginally slower than plain
Spark. This performance gap grows in the DLBP scenarios. In D1 and D2,
Spark is about 30% faster than TPM. In these scenarios, the Spark pipelines
are highly optimized, benefitting from, e.g., filter push-downs and custom
code-generation for each pipeline. For instance, in D1 and D2, the filters
on year are applied before joining the proceedings and inproceedings in
plain Spark. In contrast, in the TPM pipelines, this push-down is not applied
because the filter condition is encoded in the tree-pattern. Overall, our
tree-pattern matching algorithm has competitive runtimes, even though it
does not benefit from the described optimizations.

8.2.6 Query pipeline complexity

In addition to the preceding experiments, we conduct an experiment to
assess the effort needed to define query pipelines. We compare the number
of operators in the pipeline. Table 8.3 shows the numbers with and without
tree-pattern matching in columns TPM Ops and Spark Ops, respectively. They
do not include read and write operations at the beginning and end of each
pipeline.

With the tree-pattern matching, the pipelines typically have the single tree-
pattern matching operator. In scenarios T1 and D1, they have two operators
in total since a deduplication operator succeeds the tree-pattern matching
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Scenario TPM Ops Spark Ops
T1 1 33
T2 2 29
T3 1 6
T4 1 6
T5 1 12
D1 2 8
D2 1 5

Table 8.3: Number of operators in the query pipeline, with and without tree-
pattern matching [DH20a]

operator. Without the tree-pattern matching, they have 5 to 33 operators.
The pipelines in T1 and T2 consist of 33 and 29 operators, respectively. These
numbers are particularly high since the pipelines consist of one projection
for each occurrence of the attribute name in the input data. Furthermore,
the pipelines have to flatten name attributes in nested collections. In D1,
the number is high since the year and the citation attributes occur multiple
times in the DBLP schema and each occurrence needs a separate operator.
Leveraging tree-patterns in these scenarios is particularly beneficial since
the node that holds an attribute’s name appears just once in the tree-pattern.
When developers use plain Spark, they must conduct multiple manual steps.
First, they have to find all occurrences of an attribute in the schema, then
they have to write sub-pipelines for each attribute. Eventually, they have to
integrate these pipelines. This process is error-prone and time-consuming.
In scenarios T3-T5 and D2, the number of Spark Ops is higher than the

TPM Ops because the pipelines need to express cardinality constraints and
value constraints at the same time. More precisely, the tree-patterns in these
scenarios define a cardinality constraint over at least one nested collection
whose elements are further constrained on a certain value. The Spark
pipelines have to implement these constraints. Therefore, they flatten the
nested collection, filter on the attributes with the value constraints, and
aggregate the filtered values to enforce the cardinality constraints. Defining
this pipeline is once again more complex than defining a tree-pattern.
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In summary, in all the above scenarios, tree-matching significantly reduces
the complexity of pipelines, allowing for a faster pipeline development
process, lower pipeline maintenance effort, and higher overall productivity.
We further leverage the tree-pattern matching algorithm in Pebble and
Breadcrumb whose evaluation results we discuss next.

8.2.7 Discussion

In this section, we have validated that (i) the runtime of the schema matching
phase is independent of the dataset size. This is a key property of our
algorithm and a prerequisite to scalability on large datasets. (ii) Furthermore,
the tree-pattern matching scales linearly with the data size and (iii) scales
linearly with increasing compute resources. Therefore, our algorithm is
the first to scale with increasing dataset sizes on big data analytics clusters.
(iv) Fourth, the algorithm yields better or comparable execution times than
plain Spark as long as Spark does not benefit from built-in optimizations.
(v) Finally, even in the cases, in which Spark currently outperforms our
tree-pattern matching implementation, it is appealing to use our algorithm
because it likely yields a simpler query pipeline.

8.3 Explanations for existing data

We conduct multiple experiments to validate our claims that Pebble scales
to large datasets and provides more comprehensive explanations than other
existing solutions. The evaluation is based on [DH20b] and consists of five
experiments conducted on cluster 1. The first two experiments measure
Pebble’s runtime and space overhead during provenance capture to vali-
date Pebble’s scalability properties during provenance capture. The third
experiment measures the time to query explanations based on the previously
captured provenance annotations. It shows that Pebble efficiently computes
the explanations from the captured provenance. The fourth experiment
compares Pebble’s capture overhead with Titian’s overhead in a microbench-
mark [IST+15] to show that Pebble imposes comparable overhead even
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S Description (detailed descriptions available in [DH20b])
T1 filters tweets containing the text good, flattens and groups by the mentioned

users to collect a bag of complex tweet objects
T2 flattens the nested lists: hashtags, media, and user mentions
T3 yields for each users a list tweeted texts that they have authored or are

mentioned in
T4 associates all occurring hashtags with the authoring and mentioned users
T5 finds all users that tweet about BTS, and are mentioned in a BTS tweet
D1 associates inproceedings from 2015 with the their according proceeding(s)
D2 unites and restructures conference proceedings and articles
D3 computes nested list for aliase, co-authors, and works per author
D4 computes nested list of all associated inproceedings for each proceeding
D5 is D4 extended with a UDF in map that returns the number of authors per

proceeding

Table 8.4: Evaluation scenarios for the Pebble algorithm

though it computes more precise explanations for nested datasets. In the
final experiment we leverage Pebble to show that Pebble enables two real-
world use-cases, in which existing provenance-based solutions fail to provide
sufficiently comprehensive explanations.

8.3.1 Workload

Before we start the evaluation, we introduce the query scenarios used in
the following experiments. As shown in Table 8.4, we define ten scenarios.
The scenarios T1 to T5 are defined on the Twitter dataset and D1 to D5 on
the DBLP data. The table provides a short description of each scenario and
points to [DGHL19] for more details. Furthermore, the scenario descriptions
are available online1.The scenarios are designed in such a way that they
cover all supported operators and different combinations of them.

For instance, the query pipeline in scenario T3 computes a relation of users
appearing in the Twitter dataset. These users occur in at least one tweet that
was retweeted. They have either authored the tweet or are mentioned in the

1https://www.ipvs.uni-stuttgart.de/departments/de/resources/pebble/
pebble_edbt_workload.pdf
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tweet. For each of these users, the pipeline computes a nested relation that
holds the texts of the tweets, in which they occur. This scenario contains
a filter, projection, union, tuple flatten, relation flatten, tuple nesting, and
relation nesting operator. It queries an explanation for a duplicate tweeted
text in a single user’s nested relation. Therefore, it conducts a very selective
provenance query.
While T3 has a complex pipeline and highly selective provenance query,

other scenarios exactly the opposite properties. T1 and T2 have rather simple
query pipelines that mainly consist of filters, projections, and relation flatten
operators. While T1 has a non-selective provenance query, T2’s provenance
query is very selective. We describe more scenarios during the evaluation
to explain the measured results. We also refer the reader to [DGHL19] for
more detailed workload descriptions. We leverage all ten scenarios for the
following quantitative evaluation.

8.3.2 Runtime overhead and scalability

The first experiment studies Pebble’s runtime overhead imposed by the
lightweight provenance capture on the defined scenarios. The experiment’s
goals are twofold. It shows (i) that Pebble scales over the input data size and
(ii) that Pebble keeps the relative runtime overhead constant with increasing
data size.
To show Pebble’s scalability, we report results for input datasets of up to

500GB. Related solutions that yield explanations for nested data [ADD+11;
ZAI19] have only been evaluated on datasets of a few hundred Megabytes
to a few Gigabytes. Hence, we report results on input data that is more than
100 times larger than the data used to evaluate the related solutions.

We measure the execution time for each scenario with and without prove-
nance capture on datasets from 100GB to 500GB and report the results on
the Twitter workload in Figure 8.4 and the DBLP workload in Figure 8.5.
The solid dark grey part of each bar shows the runtime that Spark requires
without provenance collection. The textured light grey part on top of each
solid bar shows Pebble’s provenance capture overhead. The percentages on
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Figure 8.4: Runtime overhead on Twitter dataset [DH20b]

top of the textured bars indicate the relative overhead between the former
and the latter series of measurements.

The runtime peaks at 22 minutes for the Twitter dataset and 32minutes for
the DBLP dataset. Constantly across all scenarios, the runtime increases when
Pebble captures the provenance annotations, since the capturing imposes
additional workload. The execution time with and without provenance
grows linearly with the data size. The overhead percentages indicate that
the relative capture overhead is quite constant with increasing data sizes.

However, we observe that the relative overhead varies significantly among
the scenarios. It ranges from 8% (D3) up to 75% (T3). In scenario T3, the
overhead is particularly high because T3 reads the input tweets twice to
perform a union operation. As a consequence, Pebble annotates the input
data twice during provenance capture. That prevents Spark from optimizing
the query pipeline so that it reads the input data just once rather than twice.
In scenario D3, the overhead is particularly low since I/O operations mask
the provenance capture overhead. In this scenario, Spark spills large final
and intermediate results to disk. Compared to the disk I/O, the time to
compute the extra provenance is small.
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Figure 8.5: Runtime overhead on DBLP dataset (right: D3) [DH20b]

To generalize our runtime overhead observations in the mentioned sce-
narios, we have conducted a few micro-benchmarks on individual operators.
They reinforce the following general observations. Recall that by defini-
tion, the filter, select, union, join, and flatten have constant provenance
annotation overhead since they compute at most two annotation columns
per processed top-level tuple. For these operators, the relative overhead
decreases with an increasing number of attributes in the input data. In
the case of the DBLP dataset, which has less than 50 attributes, the over-
head ranges between 5% and 25% for the mentioned operators. Unlike the
mentioned operators, the aggregation and relation nesting operators have
varying annotation overhead. It depends on the number of input tuples that
are reduced to a single output tuple. For these operators, Pebble stores a
nested relation with all tuple identifiers that contribute to the output tuple.
This collection typically is orders of magnitude larger than the output tuple
without annotation would be. Consequently, the observed runtime overhead
exceeds 100% of the actual execution time for the aggregation and relation
nesting. However, even this overhead is negligible when disk I/O operations
dominate the execution time.
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We conclude that Pebble (i) scales with input data sizes far beyond those
that other existing solutions have supported and (ii) keeps the relative
overhead constant across different input data sizes. Furthermore, the relative
runtime overhead depends on the operators in the query and the amount of
disk I/O needed to process the query.

8.3.3 Space overhead

The second series of measurements captures the space overhead that Pebble
imposes on Spark to store the captured provenance. We show (i) that
the provenance size depends on dataset and scenario characteristics, (ii)
that large provenance sizes do not necessarily correlate with high runtime
overhead, and (iii) that the captured structural provenance typically adds
an overhead of less than 200MB compared to lineage-based solutions that
only trace provenance at the granularity of top-level tuples.

We measure Pebble’s space overhead for each scenario on the 100GB real-
world datasets. We further compare Pebble’s lineage overhead with Pebble’s
structural provenance overhead. The lineage overhead is the overhead that
lineage solutions, such as Titian [IST+15], Newt [LDY13], or RAMP [IPW11]
would compute when applied to the scenarios. Pebble’s structural provenance
additionally holds positional information of nested elements and the access
and manipulation paths on the schema level. We write all dataframes
containing intermediate tuple identifiers onto disk and store them in Apache
Parquet files. We sum the sizes of each of the spilled dataframes to obtain
the total size of the produced structural provenance.

The measured results for both datasets are shown in Figure 8.6. The dark
grey part of each bar shows the size of the lineage for top-level items. The
stacked and textured bars show the additional space required by structural
provenance. The y-axis of the Twitter graph has a Megabyte scale, whereas
the y-axis of the DBLP graph has a Gigabyte scale.

The two graphs have different scales since Pebble mainly associates identi-
fiers to top-level tuples. The top-level tuples in the Twitter dataset have about
1000 attributes, whereas the items in the DBLP dataset have less than 50
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Figure 8.6: Size of collected provenance [DH20b]

attributes. Thus, 100GB of DBLP data contains more than 100 times as many
top-level tuples as 100GB of Twitter data. Therefore, Pebble stores more
than 100 times more annotations for the DBLP scenarios than the Twitter
scenarios. Hence, the DBLP provenance is orders of magnitude larger than
the Twitter provenance. We conclude that the provenance size significantly
depends on the number of tracked top-level data items in the input.

Furthermore, the provenance sizes significantly differ among the scenarios
of the same dataset. For instance, the provenance’s size in scenario T3
amounts to 750MB. This is 5.5 times the size of T1’s provenance. There are
three reasons for the different size: (i) As mentioned above, in T3, Pebble
annotates the input data twice; (ii) In T3 the pipeline has 7 processing steps
for each of which Pebble collects annotations, whereas T1’s pipeline consists
of only 5 steps; (iii) The filter in T1 reduces the total amount of tracked
data items early in the pipeline. Therefore we conclude that space overhead
also depends on the number of operators in a program and the number of
top-level items in intermediate results.
Next, we compare the runtime overhead with space overhead. As shown

in Figure 8.4, scenarios T3 and T1 have comparable runtime overheads of
around 70 - 75%. They are the highest across all scenarios. While scenario
T3 also yields the largest provenance space overhead, T1 has a five times
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smaller provenance overhead. Similarly, the relationship of the runtime and
space overhead is the inverse for scenarios D3 and D1. D3 has the largest
and D1 the smallest provenance space overhead. However, D1 has a runtime
overhead of 27%, whereas D3 only has 7%. Therefore, it is not generally
true that a high runtime overhead correlates with a high space overhead.

We finally compare the space overhead of lineage of top-level tuples with
the one of structural provenance. In all scenarios but D3, structural prove-
nance takes less than 200MB additional space, even in scenarios where
lineage itself takes Gigabytes. D3 is an exception since a relation flatten
operator appears early in the pipeline. While processing this operator, Pebble
captures not only the identifiers of the top-level tuples but also the identifiers
(i.e., positions) of the nested tuples that are flattened. Additionally, a highly
selective join operator succeeds the flatten operator in D3’s pipeline. It
significantly reduces the number of output tuples and, thus, causes the com-
paratively high size difference between lineage and structural provenance.
We draw the following generalized conclusions from the above experi-

ments. (i) The provenance size depends on the number of top-level tuples in
the input and intermediate results. (ii) Furthermore, the provenance’s space
overhead may not correlate with its runtime overhead. Other factors, such
as processing optimizations, data width, or significant disk I/O potentially
have a higher impact on the relative runtime overhead than the provenance
size. (iii) Additionally, the size difference between lineage and structural
provenance is small in many practical scenarios. However, it can noticeably
increase when flatten operators store positions of nested tuples that lineage
solutions do not capture. All in all, Pebble’s structural provenance overhead
is comparable to overhead of lineage-based solutions for big data analyt-
ics systems. However, Pebble can derive explanations at the granularity of
individual nested attributes rather than mere top-level tuples.

8.3.4 Explanation query time

The third experiment assesses the execution time that is needed to query
explanations from the captured provenance on the 100GB datasets. To
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show that Pebble’s holistic approach is faster than a fully lazy approach,
we compare two approaches to query the explanations. We report runtime
results on Pebble’s holistic approach and on a lazy provenance query ap-
proach. Pebble’s holistic approach eagerly captures lightweight provenance
during pipeline execution and builds detailed explanations once the expla-
nations are queried. Pebble also implements a fully lazy explanation query
approach. It completely computes the annotations and explanations once
the explanations are requested. One can consider this approach an extension
of PROVision [ZAI19] to our processing pipelines.
We show the explanation query time for both approaches in Figure 8.7.

Figure 8.7(a) shows the Twitter scenarios and Figure 8.7(b) shows the DBLP
scenarios on the x-axis. The y-axis reflects the explanation query time. The
reported times include the tree-pattern matching on the pipeline result and
the backtracing of the structural provenance. The dark bars are labeled with
eager and represent the times from our holistic approach. The brighter bars
show the times for the lazy approach.
Figure 8.7 does not show dedicated times for each of the two explana-

tion query steps because the matching is integrated into Spark’s processing
pipeline. It becomes part of Spark’s execution plan and undergoes optimiza-
tions such as filter push down. Therefore, we cannot reliably time each step
separately. However, we refer to the experiment in Section 8.2 to get an
impression of the tree-pattern matching performance.
Constantly across all scenarios, querying structural provenance eagerly

takes more time than the actual program execution (cf. Figure 8.4 and Fig-
ure 8.5). We identify two reasons for this behavior: (i) the backtracing
procedure performs a join operation for each operator in the actual program.
That happens even for computationally less expensive operators such as
filters and selects. (ii) Backtracing has to manipulate the provenance trees
for each operator.

When we compare the performance of Pebble’s holistic capture and query
approach with the completely lazy query approach, Pebble’s holistic expla-
nation querying approach is consistently faster than the lazy approach. In
scenarios T3, T5, and D3 the difference ranges between a factor of four
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Figure 8.7: Runtime of Pebble’s backtracing [DH20b]

to seven. That has two reasons. First, lazy processing needs to trace back
result items for each input dataset independently and these scenarios have
multiple input datasets. Hence, the extra time to query provenance lazily
adds up for each input. Second, the processing pipelines in these scenarios
are deep, yielding high provenance query times for each input dataset.
Based on the above series of measurements we draw the following con-

clusions. Pebble’s holistic explanation querying approach outperforms the
lazy querying approach. Furthermore, lazily querying explanations becomes
less attractive with increasing pipeline complexity. It is less time-consuming
to rerun a scenario from scratch with provenance capture and query the
explanation eagerly than to lazily query the explanations.

8.3.5 Comparison with Titian

In a micro-benchmark, we compare Pebble with Titian [IST+15] regarding
the provenance capture overhead. We choose Titian since it is the only
other provenance solution that is fully integrated into a big data analytics
system, such as Spark. We find it hard to conduct a more comprehensive
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Figure 8.8: Runtime comparison Titian [DH20b]

and reliable comparison because Titian neither supports nested data, nor
structural provenance, nor the programs in our scenarios.
We run the test on a local machine with two worker nodes, using the

unscaled articles and inproceedings records of the DBLP dataset. The test
program reads each record as a long string value and filters lines containing
2015. Then, the program computes the union over the filtered articles and
inproceedings. Titian’s program is implemented in the RDD API. Pebble’s
program is implemented in dataframes offered by the SparkSQL API.

Figure 8.8 shows the execution results. Without provenance computation,
the query pipelines have an average runtime of 7.13 seconds on RDDs and
7.36 seconds on dataframes. The overall runtime is lower for the RDD
program since the SparkSQL API imposes overhead on top of the underlying
RDD API. Titian’s overhead is 5.89%, Pebble’s overhead is 6.98%.
The result indicates that for workloads on flat data supported by both

systems, Pebble has marginally higher runtime overhead than Titian, even
though it is capturing structural provenance. The additional percentage point
resides in the different implementation approaches. Yet, the overhead for
provenance collection on flat data is comparable for both solutions. However,
Pebble outperforms Titian in other aspects. It additionally supports nested
data and structural provenance at the granularity of attributes rather than
tuples. These features play a key role in the following use-cases.
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Figure 8.9: HeatMap for 25 tuples in the DBLP inproceedings dataset after
running scenarios D1-D5 [DH20b]

8.3.6 Use-cases for structural provenance

To assess the practical benefits of structural provenance, we illustrate two
real-world use-cases, in which Pebble outperforms other existing provenance
solutions because it provides more comprehensive explanation with a finer
granularity. We prototypically implement a data-usage and an auditing
use-case to analyze how they benefit from structural provenance. We start
with the data-usage case.

Data-usage. In the first use-case, our goal is to find frequently accessed
and manipulated data to optimize the data layout on disk. Based on these
optimizations queries run faster in the future. We do not only want to find
out, which data is frequently accessed but also which attribute combinations
are accessed together to derive data-usage patterns. Further, we like to
identify hot and cold data. Hot data is frequently accessed, whereas cold
data is barely or never accessed by a query workload. Pebble can identify the
data-usage patterns and highlight hot and cold data. To obtain the patterns
and the hot and cold data, we run the DBLP scenarios D1 through D5 and
aggregate the explanations of the scenarios.
Figure 8.9 shows a heatmap of 25 randomly selected tuples from the

DBLP inproceedings dataset after running test scenarios. The first column
represents the access to the entire tuple. The second to last columns represent
the access to indiviual attributes within the tuple. The heatmap only shows
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top-level attributes due to space constraints. The more often the query
workload accesses an attribute, the deeper becomes the red color in the cells
of Figure 8.9. If an attribute is not accessed at all, it is colored blue.
All but three top-level items have influenced at least one query result.

However, only a fraction of all attributes contributes to the results. The _key,
_mdate, author, title, and year attributes are the only accessed attributes.
Therefore, in this example, a horizontal (tuple-based) partitioning of hot and
cold tuples may not significantly improve system performance or save space
in memory. In contrast, a vertical (column-based) partitioning of hot and cold
attributes is likely to improve system performance significantly. Furthermore,
the analysis of accessed and manipulated nodes in the structural provenance
reveals that the attributes author and title are frequently processed together.
Thus, system performance likely benefits from storing these items next to
each other.
A comparison with other provenance solutions highlights the perks of

Pebble. Lineage-based provenance solutions such as Titian [IST+15] only
provide the tuple counters. These tuple counters may even over-estimate
the tuple access when applied to nested data. PROVision [ZAI19] also pro-
vides the tuple counters. However, they are not over-estimated. Unlike the
previously mentioned solutions, Lipstick [ADD+11] can identify attribute
counters. However, Lipstick does not reveal information on access and ma-
nipulation and, thus, misses influencing attributes such as the attribute
exclusively accessed in filter conditions. Pebble correctly identifies the at-
tribute counters and takes influencing attributes into account. Hence, it
is the first provenance-based solution that faithfully captures data-usage
patterns on nested input data.
Auditing. We look into auditing to illustrate Pebble’s strengths in a second

use-case. In brief, auditing has two purposes. It finds leaked data and the
person who has leaked the data. Pebble addresses the first purpose. It
identifies directly or indirectly leaked data. Directly leaked data is the data
whose values got exposed. Indirectly leaked data is the data whose values
can be inferred, e.g., by combining the leaked data with additional data
from other sources. This process is called a reconstruction attack.
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Let us assume the DBLP scenarios were designed to obtain sensitive per-
sonal information on researchers. Then, all data in Figure 8.9 are leaked
whose counts are bigger than zero. Data with count zero (blue) is not leaked.
Since Pebble distinguishes access andmanipulation of items, it further reveals
the usage of the year value whose count is one. It is marked as influencing
since it does not contribute to any result item in D1 to D5. However, knowing
that the year is accessed helps to assess the risk of reconstruction attacks.
In the context of this use-case we compare Pebble with other existing

provenance solutions. Lineage solutions and PROVision [ZAI19] only provide
full tuples. Thus, they mark too much data as leaked. This is costly for a
company, e.g., if a non-leaked (blue) attribute holds credit card numbers.
Then, the company has to issue new credit cards to all marked customers,
even though the information is not leaked. Lipstick [ADD+11] potentially
misses leaked information since it misses influencing attributes like the year.
Thus, neither of the mentioned solutions allows for such a fine-grained risk
assessment as Pebble does.

We conclude, that Pebble enables novel use-cases because its explanation
quality outperforms the quality of other solutions in two aspects. First,
it provides explanations at the granularity of individual nested attributes
rather than mere tuples. Second, by implementing structural provenance, it
distinguishes between access and manipulation of data.

8.3.7 Discussion

In conclusion, the experiments explained in this section validate that Peb-
ble scales to large datasets in big data analytics systems. Furthermore, it
provides more comprehensive explanations than other existing solutions,
which enables novel use-cases. More precisely, we have shown that Pebble
scales with increasing input data size because the relative runtime overhead
stays constant. We have further shown that the provenance’s space overhead
may not correlate with the runtime overhead since other factors, such as
disk I/O mask the runtime overhead for provenance capture. Furthermore,
Pebble’s holistic approach to capturing the provenance and query the expla-
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nations outperforms fully lazy provenance solutions. Even though Pebble
provides explanations that are more comprehensive than others, it imposes
only marginally higher runtime overhead than Titian, which only collects
provenance for flat tuples. Pebble further supports nested data and structural
provenance. It provides explanations at the granularity of attributes rather
than tuples. Hence, it enables novel use-cases such as finding data usage
patterns and auditing.

8.4 Explanations for missing data

In this section, we assess the key properties of the Breadcrumb algorithm
leveraging cluster 2. The results presented in this section are based on our
publications [DLHG21a; DLHG21b]. We describe three experiments, here.
First, we conduct an experiment that shows Breadcrumb’s scalability on
increasing dataset sizes. Second, we assess the runtime impact of schema
alternatives. For that purpose, we conduct two series of measurements.
The first series sheds light on the runtime impact with schema alternatives
switched on and off. The second series of measurements gradually increases
the number of alternatives to show scalability with an increasing number
of schema alternatives. Third, we discuss the quality of the provided ex-
planations. We compare Breadcrumbs explanations computed with and
without schema alternatives with an improved version of the WhyNot al-
gorithm [CJ09]. All experiments are conducted on the nested datasets
described above. We refer the interested reader to [DLHG21b] for further
experiments on flat relational data.

In the following evaluations, we study the explanations that Breadcrumb
yields with (RP) and without (RPnoSA) multiple schema alternatives. We
further compare these to the explanations with WN++ in the quantitative
evaluation. WN++ extends the lineage-based Why-Not algorithm [CJ09]
in two aspects. It scales to the dataset sizes described in this work and it
supports nested data. Given the scenarios and the algorithms, we start the
quantitative evaluation next.
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S SAs Description (detailed descriptions available in [DLHG21b])
D1 2 All authors and titles of papers that are published at SIGMOD
D2 2 Number of articles for authors who do not have Dey in their name
D3 2 Lists all author-paper-pairs per booktitle and year
D4 2 Papers per author that have published through ACM after 2010
D5 2 List of (hompage) urls for each author
T1 2 List of tweets providing media urls about a basketball player
T2 2 All users who tweeted about BTS in the US
T3 2 Hashtags and medias for users that are mentioned in other tweets
T4 2 Nested list of countries for each hashtag of tweets containing UEFA
TASD 4 ASD example [SAC+17]: flatten, filter, project quoted tweets (2 mods)
Q1 6 TPC-H query 1 with one modified aggregation
Q3 12 TPC-H query 3 with two modified selections
Q4 12 TPC-H query 4 with a modified selection and aggregation
Q6 6 TPC-H query 6 with one modified selection
Q10 2 TPC-H query 10 with two modified selections and a modified projection
Q13 1 TPC-H query 13 with one modified join

Table 8.5: Evaluation scenarios for the Breadcrumb algorithm

8.4.1 Workload

Before we present the evaluation results, we briefly introduce the evaluation
scenarios. Table 8.5 summarizes the overall sixteen scenarios. The leftmost
column holds the scenario label, the center column the number of schema al-
ternatives including the original schema, and the rightmost column provides
a brief description of the scenario. We define five DBLP scenarios D1-D5
and four Twitter scenarios T1-T4, which cover a wide range of supported
operators and their combinations. For each of these scenarios, we define
one schema alternative in addition to the original schema alternative so that
they have two alternatives in total.
We derive the remaining scenarios TASD, Q1, Q3, Q4, Q6, Q10, and Q13

from existing scenarios. TASD is derived from the running example on adap-
tive schema databases [SAC+17]. The scenarios starting with a Q are
derived from the respective TPC-H queries [Tra09] over the nested TPC-H
dataset [PCW17]. We introduce errors to these scenarios and use the un-
modified queries as gold standard. We assess the quality of the explanations
based on this gold standard. Next, we describe the TASD and the TPC-H
workload, particularly Q3 and Q10 in more detail.

8.4 | Explanations for missing data 221



Scenario TASD originates in the work [SAC+17] on adaptive schema
databases. An adaptive schema database (ASD) extracts and refines re-
lational schemata from semi-structured or unstructured data. It computes a
set of possible relational candidate schemas for the input data and leverages
provenance to identify the ambiguity on the existing output data. TASD is
based on the Twitter dataset and extracts one relation each for the nested
retweeted tweets and the nested quoted tweets. To extract the retweeted
tweets the ASD (i) flattens them, (ii) filters a non-null retweet count, and (iii)
projects only the attributes from the retweet. As indicated in Table 8.5, we
add two errors to TASD to reflect the ambiguity between retweets and quotes.
We flatten the quoted tweets instead of the retweeted tweets and filter on the
quote count instead of the retweet count. We further provide two attribute
alternatives. The retweeted tweet is an alternative to the quoted tweet and
the retweet count is an alternative to the quote count. Breadcrumb derives
four schema alternatives from the two attribute alternatives. These schema
alternatives are important to systematically find a certain tweet that we ask
for in TASD ’s why-not question. It is initially absent from the TASD ’s result.
We derive the scenarios Q1, Q3, Q4, Q6, Q10, and Q13 from the TPC-H

queries with the same names [Tra09] by removing the top-k and sorting
operators from the queries. We further introduce errors into these queries
as mentioned in Table 8.5, so that Breadcrumb has to find them. For that
purpose, Breadcrumb may leverage schema alternatives. Breadcrumb com-
putes the schema alternatives from the following three sets of attribute
alternatives:

• {l_discount, l_tax},
• {l_shipdate, l_commitdate, l_receiptdate}, and
• {o_orderpriori t y, o_shippriori t y}.

As shown in Table 8.5, Breadcrumb computes up to 12 schema alternatives
in the mentioned scenarios, depending on the attributes occurring in the
scenario. For instance, Q4 references attributes from all three sets. Thus, it
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has 12 schema alternatives. In contrast, Q13 references neither attribute.
Hence, it only has the single original schema alternative.

Scenarios Q3 and Q10 become particularly important during the qualita-
tive evaluation. Hence, we describe them here in a bit more detail. Scenario
Q3 computes unshipped orders within a certain time frame in a selected
marketsegment. Since the query contains the l_discount, the l_shipdate, and
the o_shippriority, Breadcrumb computes 12 schema alternatives for this
scenario. To introduce errors to the query, we conduct two modifications to
it that Breadcrumb has to find. First, we add a typo in the constant commit-
date in one of the query’s filters. Second, we replace the marketsegment in
another filter. After these modifications, the query’s result lacks a certain
order. Therefore, the why-not question asks for this particular order.
Scenario Q10 computes customers who have returned items that have

recently been ordered. For each customer, it further computes the revenue
loss caused by the returns. The query references the attributes l_discount.
Therefore, this scenario has two schema alternatives. We introduce three
errors to the query that Breadcrumb has to find. We replace the constants in
the filter on the returnflag and in the filter on the orderdate. Additionally,
we substitute the discount with the tax in a projection that computes the
discount on the correct, non-zero revenue. After these modifications, the
query’s result does not contain a customer who generates noticeable revenue.
We define a why-not question that asks for this particular customer.

A detailed description of all scenarios with their schema alternatives, their
queries formalized in our algebra, and their why-not question is available
in [DLHG21b]. Their implementation is available on GitHub1. Given the
described workload, we discuss our experimental results, next.

8.4.2 Scalability with increasing dataset size

In the first experiment, we scale the Twitter and DBLP datasets from 100GB
up to 500GB and measure Breadcrumbs runtime on the Twitter and DBLP
scenarios with increasing dataset sizes. We run Breadcrumb RP and set a

1https://github.com/UniStuttgart-DataEngineering/breadcrumb
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Figure 8.10: Runtime overhead on the Twitter dataset [DLHG21a]

time-out of two hours. This experiments serves to demonstrate Breadcrumb’s
scalability on increasing dataset sizes.
Previous solutions that compute query-based explanations for missing

answers have only been evaluated on floppy-disk-sized datasets [BHT15;
CJ09; Her15]. Here, we report results on datasets that do not fit on 1000
floppy-disks to leave no doubt on Breadcrumb’s scalability.

We report the results for the Twitter scenarios in Figure 8.10 and for the
DBLP scenarios in Figure 8.11. In both figures, the y-axis reports the runtime
in seconds. It has a logarithmic scale. The x-axis shows the runtimes of each
scenario with increasing dataset size. The line reports the queries’ runtimes
when they are executed in plain Spark without Breadcrumb.

Across most scenarios (i.e., T1, T2, TASD, D1, D2, D3, D5) the runtimes
scale linearly with the input size. In scenarios D4 and T4, the runtime does
not grow linearly for the data sizes 100GB-300GB in T3 and 400GB-500GB
in D4, respectively. In these scenarios, the increased annotation overhead
causes Spark to spend most of the execution time with disk I/O, which masks
Breadcrumb’s actual runtime overhead.
Depending on the scenario, Breadcrumb exceeds Spark’s runtime by a

factor between 2.4 and 78.2. This overhead is in line with the reported
overhead of state-of-the-art solutions on relational data. It is particularly
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Figure 8.11: Runtime overhead on the DBLP dataset [DLHG21a]

low for scenarios whose queries have a low number of operators, such as
D3, T2, and TASD. The overhead is generally higher and does not necessarily
grow linearly any more when the queries become more complex (D4, D5,
T3, T4). For such scenarios, Breadcrumb’s annotations grow in size with
increasing dataset sizes. That causes additional runtime overhead. Hence,
T3 exceeds the time-out limit for larger dataset sizes.

We can further derive detailed performance insight from this experiment.
We observe the limitations on the join rewrite described in Section 7.2.4.
The Hash-Joins in D4 and T3 become much slower Sort-Merge-Joins causing
high overall runtime overhead regardless of the dataset size. Furthermore,
we observe high runtime overhead when the scenario’s output is based on
a small subset of the input tuples. For example, in D5, two inner flatten
operators on two different nested relations that are empty for most tuples
yield much fewer output tuples than input tuples. However, our tracing
algorithm retains at least one output tuple for each input tuple. Finally, for
T4, we only show results for 100GB input data because we did hit a Spark
limitation for larger sizes. It is related to a reported bug in Spark’s grouping
set implementation, which we use in the aggregation tracing procedure, and
Spark’s current item limit in nested collections (231).
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In summary, we have shown that Breadcrumb scales to large datasets in
big data analytics systems. Even though Breadcrumb imposes an overhead of
up to a factor 78.2 on the reported test scenarios, it outperforms all existing
solutions by more than a factor 1000 regarding the input dataset size.

8.4.3 Scalability with multiple schema alternatives

We conduct two experiments to compare Breadcrumb’s runtime with (RP)
and without (RPnoSA) multiple schema alternatives. Since other state-
of-the-art solution do not support schema alternatives, these experiments
are important to assess Breadcrumb’s scalability regarding the number of
schema alternatives. Each schema alternative imposese overhead on the
runtime. These experiments quantify the overhead. The first experiment
leverages the TPC-H scenarios since they have varying numbers of schema
alternatives per scenario. This experiment exclusively compares the runtime
overhead with schema alternatives enabled and disabled. To get a deeper
understanding of the runtime impact of individual alternatives, we conduct
a second experiment on select scenarios, in which we increment the number
of alternatives one by one.
The results of the first experiment are shown in Figure 8.12. The bars

in the figure describe the RP and RPnoSA runtimes for each scenario. For
convenience, the figure also displays the number of schema alternatives
when Breadcrumb runs in RP mode. In RPnoSA mode, the number always
is 1 by definition. Note that the y-axis has a logarithmic scale. The line
describes Spark’s runtime without any Breadcrumb extensions. Within a
single scenario, the time is the same for RP and RPnoSA.
The overhead between Spark and RPnoSA ranges between a factor of

3.9 and 10.1. Thus, it is significantly lower than the overhead imposed by
RP, which grows up to a factor of 105.2. The overhead is generally higher
than the overhead reported in the previous experiment because all TPC-H
queries use aggregations. Thus, their result size is insignificant compared
to the number of traced tuples (analogous to D5). When comparing RP
with RPnoSA, we further note that increasing numbers of SAs cause higher
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overheads. The relative overhead is highest in scenarios Q3 and Q4 since
they have the highest number of schema alternatives. In Q13, the overhead
does not grow between RPnoSA and RP because the scenario does not
have additional schema alternatives. Hence, we conclude that running RP
without additional schema alternatives does not impose additional overhead
compared to RPnoSA. But the experiment has some caveats. While the
experiment clearly indicates that the number of schema alternatives has
runtime impact, it does not quantify the impact. Therefore, we conduct
another series of measurements on select scenarios.

For the second experiment, we depict the scenarios D1, D4, T3, TASD since
they run on different input datasets and have different query complexities.
TASD represents the simple scenarios, D1 and T3 stand in for scenarios of
intermediate complexity with relation flatten and join operators, and D4
and Q3 serve as representatives for complex scenarios that feature flatten,
join, nesting, and aggregation operations. When we run the scenarios, we
gradually increase the total number of schema alternatives from 1 to 4 and
measure the runtime to understand how the number of schema alterna-
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tives influences the runtime. Figure 8.13 shows the increasing number of
alternatives on the x-axis and the runtime on the y-axis on a linear scale.
As Figure 8.13 illustrates, the runtime increases linearly in the scenarios

of simple and intermediate complexity. More precisely, the runtime increases
by the constant factor of 0.15 in TASD, 0.5 in D1, and 0.8 in T3 per added
schema alternative. Since the factor is below 1, adding a schema alternative
to the rewritten query is faster than executing separate queries for each
alternative. In the complex scenarios, the runtime increases with a factor
bigger than 1. Adding the first schema alternative to D4 yields a factor of
0.96. Adding the fourth alternative to the third alternative yields a factor
of 1.47. Similarly, the factor grows beyond 1 in Q3, even though this is
not clearly visible in the figure. Recall, however, that Q3 has up to 12
schema alternatives. When we run Q3 with 12 alternatives the runtime
increases by a factor of 17.92 compared to the execution with just one
alternative. We identify two root causes that explain factors beyond 1.
First, with each added schema alternative, each tuple’s size increases due to
additional attributes referenced in the alternatives and additional provenance
annotations. Second, Breadcrumb’s grouping set implementation for relation
nesting and aggregation operators (cf. Section 7.2.4) duplicates each input
tuple for each alternative. Thus, both the tuple width and the tuple number
increase with each SA. That explains the observed runtime factors that are
larger than 1.

We derive two conclusions from the two experiments. First, the overhead
imposed by schema alternatives is reasonable. Second, Breadcrumb scales
linearly with an increasing number of schema alternatives, as long as the
query pipelines do not contain aggregations or relation nestings. We conclude
that the overhead imposed by schema alternatives is justifiable to get higher
quality explanations. To reinforce this conclusion, we conduct another
experiment that assesses the quality of the explanations.
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8.4.4 Explanation quality

In this experiment, we evaluate Breadcrumb’s explanation quality. For
that purpose, we provide an overview of the explanations computed by
Breadcrumb with schema alternatives (RP), Breadcrumb without schema
alternatives (RPnoSA), and WN++ for all scenarios. Recall that WN++ is
the seminal Why-not alorithm [CJ09] extended to nested data and big data
analytics systems. Afterward, we focus on the scenarios with a gold standard,
namely TASD, and Q1 to Q13. We investigate whether the mentioned algo-
rithms find the errors we have introduced into the scenarios’ queries. When
the algorithms have found them, we also discuss the rank of the correct
explanation in the returned list of explanations. The lower the rank, the
better performs the algorithm. We have a detailed look at scenarios TASD, Q3,
and Q10 before we derive general conclusions on the explanation quality.

Table 8.6 summarizes the explanations that WN++, Breadcrumb RPnoSA,
Breadcrumb RP provide for all scenarios. Each row represents the scenario
shown in the leftmost column. The six center columns in Table 8.6 describe
the filter σ, projection π, join \, flatten F , nesting N , and aggregation γ
operator. If the cell is colored, the scenario’s query pipeline contains one or
multiple instances of this operator. For instance, the pipeline in D1 contains
all mentioned operators except from the aggregation. The pies in the cells
indicate the operators that WN++, Breadcrumb RPnoSA, and Breadcrumb
RP return as explanations. Pie describes that all algorithms find an
explanation involving the column’s operator type. The pie denotes that
WN++ misses an explanation involving an operator of the column’s type,
which RPnoSA and RP find. If only RP identifies an operator as part of
an explanation the related cell contains a pie . If WN++ produces an
incomplete explanation that involves the found operator but requires an
additional operator in the explanation, the cell is marked . When WN++
provides an operator as an explanation that is actually no explanation, the
cell contains a pie . Note that some cells contain multiple pies because a
query may contain multiple instances of the same operator type.
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S operators # explanations
σ π \ F N γ WN++ RPnoSA RP

D1 1 1 2
D2 0 0 1
D3 0 0 1
D4 1 2 4
D5 1 1 2
T1 1 1 2
T2 1 2 4
T3 1 1 2
T4 1 1 3
TASD 0 (-) 0 (-) 2 (2)
Q1 1 (-) 1 (-) 3 (2)
Q3 1 (-) 1 (1) 2 (1)
Q4 0 (-) 0 (-) 4 (3)
Q6 1 (-) 7 (2) 11 (2)
Q10 1(-) 2(-) 4 (4)
Q13 1 (1) 1(1) 1 (1)

: Found by all algorithms, : found only by RPnoSA and RP, :
found only by RP, : WN++ is incomplete WN++ is incorrect

Table 8.6: Summary of explanations returned for the lineage-based approach
WN++, our reparameterization-based approach without SAs (RP-
noSA) and our fully fledged approach RP. Shaded fields indicate
that a scenario’s query uses one or more operators of this type,
and the shaded circles indicate operators found by the different
approaches (see legend) [DLHG21a].

The rightmost columns in Table 8.6 hold the number of returned expla-
nations (not the number of operators in the explanations). The numbers
in brackets behind the number of explanations indicate the position of the
correct explanations accordig to their rank for the scenarios with a gold
standard. Across all scenarios, WN++ finds 12, RPnoSA detects 21, and
RP yields 48 explanations. WN++ finds at most one explanation in each
scenario since it always returns only the last operator that removes a tuple
that could potentially produce the missing answer. RP and RPnoSA often
return multiple explanations that themselves contain non-distinct sets of
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operators. In scenarios D2, D3, TASD, and Q4, RP is the only algorithm that
provides an explanation. In these scenarios, the missing answer only appears
in the result, when an attribute is exchanged with another attribute in the
marked operator.
A closer look at the scenarios with a gold standard reveals that WN++

only finds one correct and complete explanation in scenario Q13. RPnoSA
finds three out of seven correct explanations in scenarios Q3, Q6, and Q13.
RP identifies the correct explanations in all seven scenarios. Further note
that RP is the only algorithm that identifies non-selective operators, such
as projections π, nestings N , or aggregations γ as parts of explanations. To
get a better understanding of the returned explanations, we analyze the
scenarios TASD, Q3, and Q10 in more detail.

We start with the adaptive schema database scenario TASD. Recall that we
miss a certain retweet in the query result. In our Twitter dataset, this tweet
only appears in the retweet attribute. It does not occur in the quoted tweet
attribute. Therefore, WN++ and RPnoSA do not provide any explanation.
Only RP provides two explanations based on schema alternatives. RP returns
the tuple flatten operator as the first explanation that flattens the quoted
tweet attribute. The tweet appears in the result after reparameterizing
the attribute in the flatten operator from the quoted tweet to the retweet
attribute. Therefore, the explanation is syntactically correct. However, the
explanation does not point to the two manipulated operators. As shown
in Table 8.6, RP provides a second explanation, which contains the men-
tioned flatten operator and the filter operator that erroneously filters on the
quoted count instead of the retweet count. This explanation precisely points
to the two manipulated operators. Therefore, the second explanation also is
semantically correct. In conclusion, this scenario shows that Breadcrumb
finds explanations that lineage-based approaches such as WN++ miss since
they do not support schema alternatives. Note that we can apply this obser-
vation to scenarios over nested data as well as flat relational data because
exchanging attributes in operators is not limited to operators that exclusively
manipulate or access nested data as the filter in this example shows.
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Scenario Q3 computes unshipped orders and that we have manipulated
two different filter operators. In the why-not question, we request a missing
order. While RP provides two explanations, WN++ and RPnoSA return one
explanation each. The latter two explanations are not the same, though.
WN++ only returns the filter on the commitdate as an explanation since
this filter removes the order entirely from the query’s result. Unlike RPnoSA,
WN++ misses that the succeeding filter on the marketsegment would also
remove the missing order. Therefore, the corresponding cell on the filter
operator in the Q3 row in Table 8.6 contains a marker. RPnoSA and
RP return both mentioned filters as the first and correct explanation. RP
exclusively returns a second explanation that contains the final aggregation
in addition to the two filters. It is derived from the schema alternatives that
consider the tax as an alternative attribute to the discount. This explanation
also yields the missing order since the order is part of the grouping attributes
and not part of the aggregated attributes. In summary, this scenario shows
that Breadcrumb outperforms WN++ even without schema alternatives.
Remember that scenario Q10 reports returned items and the associated

revenue loss for each customer. We have introduced three errors in the
scenario’s query and request a customer with a non-zero revenue in the
why-not question that is absent from the erroneous query result. WN++
returns the join operator on customer and order as an explanation because
it removes the expected customer from the result. While the explanation
makes the customer appear in the result, it cannot yield a non-zero revenue,
which we explicitly ask for. Thus, this explanation is incorrect and marked
with a pie in Table 8.6. Breadcrumb does not return the join because it
cannot yield a non-zero revenue. Unlike WN++, RPnoSA and RP provide
the filter on the returnflag as the first explanation since the customer does
not have any lineitems with the modified returnflag. Consequently, the filter
removes all potential join partners for the expected customer. Therefore, a
pie appears in the filter column in Q10’s row in Table 8.6. As the second
explanation, RPnoSA and RP return both modified filters since the filter
on the orderdate also removes tuples that join with the expected customer.
Only RP returns two additional explanations. As the third explanation, RP
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returns the filter on the returnflag together with the projection that computes
the retail price of each returned lineitem. Finally, RP returns both filters
with the mentioned projection. The last two explanations are based on
schema alternatives. Thus, Table 8.6 holds two markers in Q10’s row.
The final explanation precisely points to the gold standard. It is ranked last
since it modifies the most operators. However, one would have obtained the
correct solution iteratively when observing the provided selections before
the projection. We have observed similar possibilities in TASD. Hence, we
summarize that observing the explanations with a higher rank helps to find
and understand the correct explanation with a lower rank.
We conclude the evaluation of the explanation quality with the follow-

ing general observations. Even RPnoSA provides explanations that WN++
misses (T1, T4, Q3, Q6, Q10) because RPnoSA traces tuples that poten-
tially contribute to the missing result through the entire query. While the
discussed results are obtained on nested data, WN++ exhibits the same
problem for flat relational data. Furthermore, RP may find explanations
based on schema alternatives that RP and WN++ miss (in all scenarios but
Q13). As shown in D2, D3, TASD, and Q4, leveraging schema alternatives
may be the only option to obtain any explanations. When multiple operators
need reparameterizations, Breadcrumb provides the correct explanation, but
possibly assigns it a low rank, like in Q10 and TASD. However, the operators
in higher ranked explanations typically overlap with the operators in the
correct explanation. Thus, starting investigations with the higher-ranked
explanations seems a viable option to incrementally correct a query pipeline.

8.4.5 Discussion

In this section, we have shown that Breadcrumb runs on nested datasets
that are more than a factor 1000 larger than the flat relational datasets used
to evaluate other state-of-the-art solutions. Even on these large datasets,
Breadcrumb scales with increasing dataset sizes as long as sufficient compute
resources are available. Furthermore, we have observed that Breadcrumb
scales with an increasing number of schema alternatives that other solutions
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do not even support. Thanks to these alternatives, Breadcrumb finds more
explanations than other existing approaches. Even without schema alter-
natives, Breadcrumb yields more accurate explanations than the why-not
algorithm [CJ09] because it traces the tuples that potentially contribute to
the missing result through the entire query.

8.5 Summary

In this chapter, we have addressed our Contributions (2) to (5). We have
shown that the tree-pattern matching algorithm, Pebble, and Breadcrumb
scale to large datasets in big data analytics systems. Further, algorithm-
specific experiments underline the algorithms’ scalability in varying as-
pects. Notably, Pebble and Breadcrumb are the first algorithms that compute
provenance-based explanations on 100+GB nested data and the tree-pattern
matching algorithm even outperforms plain Spark in some cases.
Additionally, the tree-pattern matching algorithm simplifies the query

pipeline definition compared to plain Spark. Pebble and Breadcrumb pro-
vide more comprehensive explanations than comparable state-of-the-art
algorithms. We have illustrated the need for these comprehensive explana-
tions in real-world use-cases beyond debugging.
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Conclusion & Outlook

Big data analytics systems, such as Apache Spark, Flink, or Hive support
nested data and scale with increasing computing resources. Thus, they
are frequently means of choice to process large amounts of heterogeneous
data. However, the systems have very limited means to systematically debug
analytical query pipelines that process the nested data.
In this context, we have studied the research question of how to explain

existing and missing query results in big data analytics systems when pro-
cessing nested data. We have addressed this question by contributing novel
means to provide explanations for existing and missing data in the result
of big data analytics queries that process nested data. We have studied the
problem from the ground up. First, we have defined a nested data model and
nested relational algebra which closely resembles the provided data formats
and operators in big data analytics systems. Second, we have contributed
distributed tree-pattern matching to define and retrieve data to be explained.
In a more general context, the tree-pattern matching enables the addressing
and accessing of individual nested data in big data analytics queries. Third,
we have provided novel explanations for existing data in the result of big data
analytics queries. Fourth, we have contributed explanations for missing data
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in the result of the analytics queries. Both explanation types help to debug
complex analytical queries over nested data. Finally, we have implemented
the concepts on top of the big data analytics system and evaluated them on
two nested real-world datasets of up to 500GB to show that they scale to
practically meaningful datasets. We summarize them here and provide an
outlook on future work.

9.1 Conclusion

We have defined a nested data model and a nested relational algebra that
faithfully capture the nested data formats and the execution semantics of
big data analytics systems [DLHG21a; DLHG21b]. They are necessary to
get explanations that correspond directly to the queries defined over nested
data in big data analytics systems. At the same time, the models allow us to
abstract from a particular big data analytics system and to express generally
applicable concepts and algorithms. All the following contributions rely on
the nested data model and a nested relational algebra.
To request explanations for selected existing or missing data and to con-

cisely address nested data during query processing, we have proposed tree-
patterns and contributed a tree-pattern matching algorithm that is tailored
to big data analytics systems [DH20a]. The algorithm leverages the following
key feature of these systems to scale to large datasets. The systems process
data that share a common schema. Hence, it can split the matching into two
phases to avoid global state. In its first phase, it computes schema matches
and applies these matches on the data in the second phase. Leveraging the
matches, the algorithm directly accesses nested data that is referenced in
the tree-pattern. It does not scrape each individual data value as many other
existing algorithms do. With experiments on two real-world workload we
have shown that the algorithm scales with increasing dataset sizes and in-
creasing compute resources. Furthermore, we have experimentally validated
that the schema-matching phase of the tree-pattern matching algorithm has
data-instance independent runtime. Moreover, we have shown that query
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pipelines with tree-patterns are less complex and potentially faster than the
same pipelines without tree-patterns.
We have further introduced the novel structural provenance to provide

explanations for existing data [DH19; DH20b]. These explanations are more
comprehensive than those of other solutions since they capture the access
to and the manipulation of the data at the granularity of individual nested
attributes. To precisely collect the structural provenance, we have extended
each operator in our nested relational algebra to capture manipulations and
access to the datas’ values and structure. Since the structural provenance
stores a lot of redundant data when captured precisely according to the
extended rules, we have introduced the lightweight structural provenance. It
captures structural manipulations on the schema and data dependencies on
the instance to minimize the cost of collecting the same. It allows the Pebble
algorithm to efficiently capture the structural provenance during query exe-
cution. Based on the lightweight provenance, Pebble computes fully-fledged
structural provenance explanations for existing data during backtracing. We
have conducted experiments on datasets that are 100+ times larger than
the ones used to evaluate other existing provenance solutions that support
nested data. These experiments show that Pebble scales with increasing
dataset sizes because Pebble barely imposes more space and runtime over-
head on the query execution than solutions that trace provenance at the
coarser-grained granularity of top-level tuples. The experiments finally show
that Pebble’s rich explanations enable novel use-cases beyond debugging,
such as finding data-usage patterns and auditing.
Moreover, we have contributed a reparameterization-based approach to

provide query-based explanations for missing answers in the result [DGHL19;
DLGH21; DLHG21a; DLHG21b]. To the best of our knowledge, it is the
first approach that supports nested data, which conforms to our data model.
Furthermore, we have formally introduced the novel concept of reparam-
eterizations based on our algebra to account for errors in the query that
existing solutions miss, such as misinterpreted attributes. Existing solutions
compute query-based explanations exclusively from provenance. They are
limited to finding operators that remove data from their input, such as se-
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lections and joins. Since our solution extends the existing solutions with
reparameterizations, it can find explanations that contain any operator type
with parameters, including projections, aggregations, or relation nesting
operators. Based on these reparameterizations, we have formally introduced
query-based explanations. These explanations consider the reparameterized
operators and the side-effects on the result to prevent unnecessary manipula-
tions of the query and excessive changes to the result. Since computing these
explanations is NP-hard in the general case and remains computationally
infeasible if we restrict the set of operators, we have proposed the heuristic
Breadcrumb algorithm. It applies two novel techniques to efficiently ap-
proximate the explanations given nested input data. It re-validates each
intermediate result to precisely identify the data that potentially contribute
to an explanation. That is particularly important when nested data are
involved in the query. Furthermore, it leverages schema alternatives to group
similar reparameterizations together and execute them simultaneously. That
is a prerequisite to scale to large datasets. Our experiments have shown
that Breadcrumb provides more explanations than existing state-of-the-art
solutions even on flat data. These explanations are more comprehensive
than those of existing solutions since they consider reparameterizations
rather than mere provenance. The experiments have further shown that
Breadcrumb scales to datasets that are 1000+ times larger than those used
to evaluate other solutions that compute query-based explanation.

9.2 Outlook

Based on the research contributions presented in this work, we propose
several avenues of future work. The concepts and algorithms introduced in
this work target big data analytics systems that process large, nested datasets.
With this knowledge in mind, the following topics are worth looking into in
future research.
Extensions to further operators occurring in analytical queries. While

the systems already support a rich set of operators, analytical queries in big
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data analytics systems typically rely on a richer set of operators. In particular,
it would be interesting to extend Pebble and Breadcrumb with support for
top-k queries and window functions since they frequently occur in complex
analytical queries.
Tighter bounds for the side-effect estimation in Breadcrumb. Bread-

crumb’s current implementation leverages very loose side-effect estimations
to identify minimal successful reparameterizations. A formal investigation
of tighter bounds for the side-effects allows for more effective pruning of the
returned explanations. That accelerates the debugging process.
Novel applications and use-cases. In the context of Pebble, we have

started investigating novel applications beyond debugging for Pebble’s ex-
planations. We are convinced that Pebble and Breadcrumb enable further
use-cases and applications that are worth looking into in the future. They
may be leveraged for (partial) view updates, query optimizations, or data
layout optimizations.

More generally, the contributions presented in this work are a cornerstone
for a rich set of novel research topics related to tracing nested data in
big data analytics queries. In particular, these systems have initially been
designed with debugging complex queries in mind. During this work, we
have encountered a wide variety of further applications in the direction of
data layout and query optimization that would be interesting to investigate
thoroughly in the future.
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