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Abstract 
 

Despite many efforts in the field of Robotics, human-robot interface still suffers from                         
unnecessary complexities that in turn restricts the application of robots. A plausible solution                         
is an intuitive interface to teach robots variety of tasks via demonstration. In this work, we                               
attempt to design such a framework that allows the robot to learn multi step object                             
manipulation tasks from only a handful of demonstration. In particular, we are interested in                           
the   problem   of   pick   and   placing.  

To make the learning process tractable and allow the skills to be generalized, we break down                               
the monolithic policies to hierarchical skills. In other words, Robot acquires different set of                           
skills such as grasping different object and variety of trajectories from different learning                         
sessions and is then able to combine those skills to achieve the objective of a novel task the                                   
might require a combination of the previously learned skills by the robot. To accomplish this,                             
we define a notion of action types and use them as labels to train our segmentation model.                                 
The process of features extraction from the segmentation process will then be merged with                           
the training process of our controller model where it helps the controller to more carefully                             
learn the relevant features that are associated with the preconditions and postconditions of                         
each   segment.   

To efficiently extract visual features from the cameras installed on the robot, we propose a                             
novel method of training an encoder to transform RGB stereo images into their                         
corresponding depth map, and while doing that, extracting the most important visual                       
features that are relevant to object positions and their corresponding distance from the                         
camera. This is implemented using convolutional neural networks with a bottleneck (feature                       
vector) in the middle to reduce the dimensionality of the data. Next, the extracted visual                             
features are combined with the kinematic features of the demonstrations i.e. pose of the                           
robot’s   end-effector   as   an   input   to   our   segmentation   and   controller   modules. 

Moreover, we introduce a novel methods of grasp prediction using a two-step prediction                         
model. Our algorithm uses a coarse to fine approach to predict the position and orientation                             
of the free grasping points on different object. Also grasp predictions are based on the user                               
predefined position on each object, which is one of the practical requirements in robot                           
grasping   tasks   in   industrial   applications. 

Only the simulated scenes has been used in this work. This might raise the concern over the                                 
transferability of the learned skills to the real world applications. We address this issue by                             
suggesting   different   ways   to   mitigate   this   problem,   especially   for   the   grasp   prediction   skill. 
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Chapter   1 

Introduction 
 

Over the past decade, the problem of learning from demonstration [2] has become one of                             
the main streamlines in the robotics research. As many have stated, once solved, it can                             
revolutionize the relation between human and robot. It would help to bring out the robot                             
from laboratories to our daily lives, allowing people without extensive robotics knowledge to                         
interact with and program robots. And most importantly, it will help to automate many                           
laboring   tasks.  

Every year we observe the decreasing price of the robotic hardware and evidence suggest                           
that the software and control systems are the bottleneck on having robots in the human                             
environment. Robots have been used in industry for many years, but for only specific tasks                             
where the coordinates of the robot's end effector, joint configurations or the desired path                           
have been precisely calculated and hardcoded on the robot’s controller to achieve the                         
desired objective. This approach is not scalable to dynamic environments where the                       
conditions   which   can   affect   the   robot’s   behavior   are   subjected   to   random   changes. 

We   summarize   the   main   problems   with   the   robotic   software   in   three   major   categories: 

1. Robots should be able to cope with the randomness in the dynamic environment and                           
still   be   able   to   follow   their   trajectory   to   achieve   the   predefined   goals. 

2. There needs to be a revolution in the way human interacts and programs robots. The                             
Traditional way of spending hours of coding and testing even to achieve simple robot                           
behaviors   should   be   replaced   by   an   efficient   and   more   natural   approach.  

3. Robots program should be abstracted from the specific hardware. There needs to be                         
a method to teach/program robots while the same program can efficiently be                       
transferred to other robots and an underlying process can translate the abstracted                       
information   to   the   robot’s   specific   hardware. 

Attacking the first problem requires gathering many observations from the human                     
environment. If an adaptive behavior is to be achieved, patterns of the random events in the                               
environment needs to be predictable and appropriate responses to those events should be                         
practices and learned by the system. For the second problem, One good way would be to                               
program robots via demonstration. This approach allows non-expert people to interact with                       
the robots via natural movement and the system ideally would be able to interpret the                             
objective and constraints of the task and generate its own program or sequence of steps that                               
will lead to the desired behavior meant by the demonstrator. And a possible solution to the                               
third problem would be to use the task space as the only source of information while training                                 
a   robot   and   adaptation   to   individual   hardware   can   be   accomplished   by   the   robots   interfaces. 

Learning from demonstration has been a popular research topic in the robotics community                         
for many years. Different approaches have been proposed to solve variety of problems such                           
as teaching helicopter complex maneuvers [3] ,  pendulum swing up by robotic arm [32] etc.                           
However many of those approaches disregard the importance of encoding the visual                       
features in the learning process and simply treat the task as learning pure trajectory. Whereas                             
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in the real world applications tasks such as object manipulation. E.g. Pick and placing,  are                             
directly   related   to   the   environment   status   and   visual   features.  

This leads to the question that is it possible to efficiently combine both the trajectory and                               
visual features and use them to learn a robot controller that is capable of predicting the                               
robot’s   configuration   based   on   both   environment   and   robot’s   status? 

 

1.1.   Motivation 
 

We are concerned with the task of robot manipulation learning from the demonstration and                           
in particular grasping problem. To narrow it down, we would like to implement a framework                             
for the robot to learn multi-step tasks with the focus on the pick and placing. There’s                               
enormous need in the industry, and in particular, manufacturing for this application. Despite                         
all the advances in the in the field of Robotics and AI, and efforts such as [4][5][6] , There’s is                                     
still no concrete solution to this problem with the accuracy and precision needed for the                             
manufacturing   sector.  

Although we do not claim that the method offered in this work will solve this problem,                               
however, it’s an attempt to design a simple framework which can be expanded and improved                             
incrementally   over   time   to   reach   the   accuracy   required   for   the   industrial   applications. 

 

1.2.   Contributions 
 

Our   contribution   in   this   work   can   be   summarized   as   follows: 

- A simplified framework to combine visual and trajectory features of the                     
demonstrations and efficiently incorporate them to learn the task of segmentation                     
and   trajectory   generation. 

- A   novel   hierarchical   method   in   grasping   from   homogeneous   piles.  

- A   novel   method   for   generating   training   data   for   the   robot   grasping   task. 

- Design and implementation of hierarchical manipulation learning where new                 
grasping skills can be added to the system and robot’s skills in manipulation can be                             
expanded   over   time. 

- A novel way to extract features from the images using convolutional neural networks                         
(2.4) by converting stereo images to depth maps. This method allows the algorithm to                           
encode the features of the scene that are more relevant to the object positions and                             
their distance from the camera. And as we will see, these features can be used to                               
generate   robot   commands   that   are   affected   by   the   status   of   the   environment. 
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1.3.   Chapters   outline 
 

Chapter   2:   Background   and   literature   review 

Background on learning by demonstration, manipulation skills, Convolutional and Recurrent                   
Neural Networks and their application in robot control. However, materials provided in this                         
chapter   are   restricted   to   their   relevance   to   this   work.  

 

Chapter   3:   Simulation   and   demonstrations 

In this chapter, we introduce our approach to demonstrate a multi-step pick and placing task                             
to the robot. Next, we design a simulated scene and perform few demonstration and                           
visualize the acquired data that later will be used to teach our algorithms the desired                             
behaviors. 

 

Chapter   4:   Grasp  

This chapter demonstrates our solution to solve the grasping problem with the focus on                           
grasping from a pile of cluttered but homogeneous objects. We present our algorithm which                           
attempts to predict collision free grasp points on an object via multi-step  grasp proposal                           
network . 

 

Chapter   5:   Segmentation   and   trajectory   generation 

This chapter introduces our approach to defining phases in the demonstration and train a                           
controller for our simulated robot via the combination of visual and trajectory features in the                             
task space. Throughout this chapter, we attempt to segment the demonstrated trajectory via                         
defining the relevant “Action types”  to the task of pick and placing. Moreover, we propose                             
our controller design using recurrent neural networks to generate robot configurations                     
based   on   kinematics   and   visual   features   of   the   input. 

 

Chapter   6:   Conclusion   and   future   work 

A brief discussion over the shortcomings of the proposed method, future plans to improve                           
our framework and suggestions for possible directions in the research of learning                       
manipulation   skills   from   demonstration.  
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Chapter   2 

Background   and   Literature   Review 
 

This chapter will provide an overview of the topics relevant to our work. First, we define the                                 
problem of learning by demonstration and provide some insights over different categories of                         
problems relevant to this topic. Next, we introduce the problem of trajectory segmentation                         
which will lead to our discussion over the task phase definition and a brief introduction to                               
Markov processes. Next, we discuss different approaches in designing the robot controller                       
and trajectory generation. Then we briefly discuss the advances in the application of                         
convolutional neural networks. Finally, we provide an overview of the recurrent neural nets                         
and   their   application   in   processing   sequences.  

 

2.1.   Learning   from   Demonstration  

One of the main objective in robots programming is to find an appropriate map between the                               
world state and robot actions, which is also called  policy [2]. It enables the robot to select                                 
actions   based   on   the   observations   on   the   current   (and   possibility   the   history)   world   state.  

 

 

Figure   2.1.    Process   of   learning   by   demonstration.   From   a   set   of   demonstrations   by   the   teacher   a 
policy   is   derived   which   is   then   used   to   select   robot   actions   based   on   the   observation   from   the   world 

state. 

 

Policies can be acquired in different ways. A trivial way would be to design them by hand.                                 
This has been the most common approach sofar in the industry, Where a team of                             
programmers will study the problem carefully, determine all the constraints and program the                         
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robot controller for every step of the process. The process is time consuming and requires                             
many hours of testing. Another approach is learning through examples provided by the                         
teacher's   demonstration,   or   as   it’s   called,    Learning   from   Demonstration .  

Examples are defined as sequences of world states and actions. LfD then utilizes this                           
information to derive the policy for the robot to accomplish the same task demonstrated by                             
the teacher (figure 2.1). However, to provide the demonstration different design choices are                         
available.   Basically,   the   designer   has   to   choose:  

1. How   to   demonstrate   the   data.  
2. How   the   data   would   be   presented   to   the   learning   algorithm.  

The former is referred to as the choice of the demonstrator and the latter as the                               
demonstration technique (the way designer choose to feed the data to the learner algorithm)                           
[2].  

Alternative choices for the demonstrator includes a human demonstration in front of a                         
camera, teleoperating the robot, kinesthetic teaching [1], hand-written code etc. In this work,                         
we choose the hand-written code as our mean to demonstrate the task to the robot. This can                                 
later be replaced by teleoperation if needed. One main advantage of using the robot's body                             
is that it automatically solves the  correspondence problem. As no intermediate mapping from                         
the   teacher’s   body   to   the   robot   is   necessary.   

As for the demonstration technique, we will feed the recorded trajectories, images, and the                           
robot’s configuration directly to our algorithm. In brief, our technique will learn a function to                             
map raw images and the pose of the end-effector directly to the policy which is defined as                                 
the   joint   values.   In   other   words: 

 
(2.1) 

Where       is   the   learned   mapping   function,    z’    is   the   collection   of   the   camera   images   and   poseπ  
values,    a’    is   the   joint   values,    z    is   the   observations   during   the   execution   of   the   task   by   the 
robot,   and    a    is   the   action   taken   by   the   robot.  

 

2.2.      Trajectory   Segmentation   and   Controller   design 

While many attempts in LfD in the past has been focused on learning monolithic policy, more                               
recent approaches have incorporated different methods to segment the demonstrations and                     
learn a policy for each segment [5][8][1], which will lead to more flexibility in learning of                               
complex, multi-step tasks. This approach also offers generalization of the learned policy to                         
novel situations where the system will be able to pick any of the learned skills and connects                                 
them in such a way that can solve the problem at hand. However, the power of these                                 
methods differs in term of their generalization flexibility as we discuss later in the next                             
chapter. 
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Traditionally, trajectory segmentation has been considered as a statistical problem where                     
methods such as BP-AR-HMM [9], Change point [10] and ST-AR-HMM [5] are used to split the                               
demonstrated trajectory (usually based on kinesthetic demonstration) into separate                 
segments   in   order   the   learn   the   underlying   motion   controller.  

To discuss some of the mentioned approaches we need to first provide a brief introduction                             
to Markov processes.  Markov process is defined as a sequence of random states, where                           
(assuming the Markov condition), Given the current state, the probability of the future states                           
are   conditionally   independent   of   the   past.  

 
(2.2) 

In many cases, the actual state of the system are not accessible, but only latent variables                               
which represent some features of the underlying state can be seen. This process is called                             
Hidden Markov Model , and latent variable is called the observation of the state. In the                             
standard HMM, same transition matrix describes the evolution of the system, and                       
observations,   given   the   corresponding   state   (figure   2.2)   are   independent   of   each   other. 

 

 

Figure   2.2 .   Standard   hidden   markov   model   (HMM)   where   at   each   state,   only   the   the   latent 
variables   (observations)   are   accessible 

 

Now we’re ready to explain some of the above mentioned approaches in the trajectory                           
segmentation. BR-AR-HMM (Beta Process Autoregressive Hidden Markov Model) is first                   
proposed by fox et. al. [9]. The main advantage of this method over the standard HMM is two                                   
fold. First, the Beta process allows each segment of the demonstration to be represented by                             
a set of primitive motions or features that are discovered by the system earlier. Second,                             
Autoregressive can relax the independence assumption of the observations and allow                     
temporal connections between the latent values of the HMM. Niekum et. al. [1]  then used this                               
method and introduced semantic segmentation by clustering the segments to their specific                       
coordinate frame which could be placed on any objects or the robot depending on the                             
subgoal of that segment to construct a library of skills which can later be used. However, in                                 
their experiment, objects were represented by AR tags. All the relevant object to the task had                               
to be present and their pose was extracted prior to the execution. Kroemer et. al. [5] used                                 
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ST-AR-HMM (State-based Transition Autoregressive Hidden Markov Model) as the starting                   
point to capture the phase transitions. They then defined an extension to this approach to                             
encode   entry   and   exit   conditions   of   each    phase    of   the   demonstration.  

Konidaris et. al. [10] have used the Change point detection as the segmentation tool. The                             
algorithm works by detecting points on the trajectory where either the most relevant                         
abstraction changes or where the trajectory on both sides of the point is too complex to                               
represent as a single segment. Where abstractions are the most relevant motor and                         
perceptual features to the task. Their goal was to segment demonstration trajectories into                         
skill chains and merge skill chain from multiple demonstrations into a skill tree. However, they                             
approach fails to detect repeated skills and an efficient design of the abstraction set for each                               
task   is   not   practical   for   real   world   scenarios. 

Other Similar methods have been used to segment the demonstration in an unsupervised                         
way. However, they usually totally ignore, use AR tags or tailor the visual features of a natural                                 
scene   to   the   specific   objects   and   predefined   tasks.  

More recently Garg et. al. [8]  has shown the potential of using Convolutional neural Networks                             
(2.4) in the task of segmentation and more specific Transition State Clustering with Deep                           
Learning. Where they use the features extracted from a CNN together with the kinematics                           
features of the task to discover the transition points in the demonstration. Our approach is                             
similar   to   this   method   as   we’ll   see   in   Chapter   5. 

Traditionally, the task of segmentation and learning the low-level controller for each segment                         
has been separated and control algorithm has been more focused on learning monolithic                         
policies. Works such as [28][8][1] has shown that the trajectories for more complex tasks can                             
be segmented automatically into  sub-skill and learned independently with separate                   
controllers specialized for each skill to command the robot. One of the main choices among                             
the controllers, has been DMP (Dynamic Movement Primitive) [29]. This method uses a set of                             
nonlinear differential equations to control dynamical systems. It worth noting that this is a                           
powerful method in which by introducing an additional canonical system, the stability and                         
convergence are guaranteed. Moreover, this controller can easily facilitate the trajectory                     
scaling   in   both   time   and   space.   

However, in more recent approaches, CNNs have also been used to generate motor                         
commands. [6][11][12],  In our opinion, this is a more robust approach as visual features of                             
the scene are directly used to infer the state and adjust the robot’s configuration accordingly                             
to   achieve   the   desired   objective.  

 

2.3.   Grasping 

Grasping has been a research topic in the robotics community for many years. More recent                             
works have adopted the CNNs as the main tool to extract relevant information for the                             
grasping task. Levin et. al. [6] uses the CNN to predict the probability of success for the                                 
sample   motor   commands   before   the   grasp   attempts.  
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Figure   2.3.       multiple   robots   are   attempting   to   grasp   diverse   set   of   objects   to   gather   training   data   for 
the   task   of   success   prediction   [6] 

 

Davison et. al [19] uses the pre-processed depth images to predict the probability of the                             
grasp in a long vector which represents the location and 2D orientation of the grasping                             
points along with the probability of success. Lenz et. al. [20] uses a multi-step approach of                               
generating   many   grasp   proposals   and   then   ranking   them   to   find   the   most   suitable   one. 

 

Figure   2.4.    multi   step   approach   of   generating   grasp   proposals   and   ranking   [20] 

Another class of methods is focused on visual servoing where a closed loop between the                             
image feed and motor commands is designed to guide the robot continuously toward the                           
suitable grasping point [11][20]. Our approach is similar to [19], more details will be provided                             
in   chapter   4. 

 

2.4.   Convolutional   Neural   Networks 

Over the past few years, CNNs [17] have revolutionized the image processing problem. They                           
have been successfully used to detecting objects, semantic segmentation [22] and more                       
recently they have been applied to the field of reinforcement learning, or as it is called, Deep                                 
Reinforcement Learning, such as Playing Atari games [13], continuous control [23]  and visual                         
servoing   of   robots   [11]. 
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As the trend shows, CNNs are becoming more mature, and they have been increasing used                             
to extract visual features in the robotics research as a vital source of information when                             
interacting with the environment. For the above reason, we will be using this model in our                               
framework in multiple places, where generally there is a need to encode features or reduce                             
the dimensionality of the image data in order for us to efficiently combine the visual features                               
with robot kinematics features to achieve better stability and reliability in our segmentation                         
and   control   modules. 

 

2.5.   Recurrent   Neural   Networks 

In general, Neural network is a powerful class of computational models that can be applied                             
to many different fields. Depending on their architecture, they can internally represent linear                         
and nonlinear maps. However, one main disadvantage of these models, including the CNNs,                         
is that they cannot hold the state, or basically they’re not designed to process sequences.                             
Luckily, recurrent neural networks and in particular, LSTM [24] solves this problem. Moreover,                         
these models have shown better performance and more generalization capabilities                   
comparing to the traditional Markov models [25]. Another recent application of the RNNs is                           
the visual attention [26], where these model can help to extract and process only the relevant                               
parts of the image to acquire the necessary information versus in traditional models where                           
every   pixel   in   the   images   are   processed   which   would   increase   the   learning   time.  

Since the task of robot control can naturally be represented as time series, using RNNs are                               
one of the natural choices to process the sequences of kinematics and even visual features                             
that are extracted from the robot's behavior, or in our case the demonstrator’s trajectory in                             
order to predict the motor commands. As we will see in chapter 5, this model will be the at                                     
the   center   of   our   segmentation   and   trajectory   generation   module. 
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Chapter   3 

Simulation   and   Demonstrations 
 

We start this chapter by introducing our approach in demonstration of a multi-step pick and                             
placing task to the robot. All the demonstrations have been done in a simulated                           
environment. (A clear concern regarding the use of simulation would be transferring to the                           
real-world application which will be addressed in section 4.4). We then step through the                           
process   of   data   collection   and   preparing   datasets   to   train   our   models. 

 

3.1.   Simulated   scene 

In this work, we’ve used the V-REP (Virtual Robot Experimentation Platform ) [14]  to simulate                           1

the learning process. Our robot is the Universal Robots UR10 with 6 DOF arm available in the                                 
simulation software. A two finger gripper (RG2) is attached to the robot as shown in figure                               
3.4. A stereo RGB camera captures the images on both sides of the gripper and a depth                                 
camera is placed in the middle of the gripper. The reason behind this design will be                               
explained   in   the   next   chapter. 

 

 

Figure   3.1 .   A   screenshot   of   the   V-REP   simulation   software   used   in   this   work   [14] 

 

1   The   educational   edition   of   V_REP   is   available   for   free   download 
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Using the remote API designed to communicate with the simulated scene and ROS (Robot                           
Operating System from Willow Garage) [15]  the robot has been programmed to demonstrate                         
predefined   multi-step   tasks   as   explained   in   the   next   section. 

 

3.2.   Demonstrations   and   Objectives 
To evaluate the performance of our framework, two tasks were designed with the goal that                             
the   skills   learned   from   the   first   task   would   be   transferrable   to   the   second   task. 

 

Task 1:  In the first task, the model should learn to find the free grasping points. To make the                                     
predictions more robust, (and to tackle one of the old problems in the robot grasping,                             
namely,  Bin Picking ) instead of individual items, the model will learn how to pick an object                               
from a homogeneous pile. The goal here is to encode the user-defined grasping points on                             
each specific object and later use this skill when required in a novel situation. Figure 3.2 and                                 
Figure 3.3 show a randomly generate piles of the two object used in our experiment (cup and                                 
nut). Two cameras (1 RGB + 1 Depth) are placed in the same location above the pile. The                                   
image on the top-right corner shows the depth map. The details of our grasp point detection                               
will   be   elaborated   in   the   next   chapter. 

 

 
Figure   3.2.    Randomly   generate   pile   of   cups. 
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Figure   3.3.    Randomly   generate   pile   of   nuts. 

 

 

Task 2:  In order to demonstrate the trajectory of a multi-step manipulation task which                           
involves picking and placing sub-tasks, the following scenario is defined. (Figure 3.4 shows                         
the   designed   scene   for   task   2) 

 

Step   1:    Pick   up   the   cup   from   its   initial   position 

Step   2:    Place   it   vertically   in   the   empty   box   on   the   right   hand   side   of   the   robot 

Step   3:    Pick   up   the   nut   from   its   initial   position 

Step   4:    Drop   it   into   the   cup 

Step   5:    Pick   the   cup   containing   the   nut  

Step   6:    Place   it   on   the   table 

 

In the next section, we explain in more details how the demonstrations are provided. But it                               
worth noting that injected randomness into the initial environment’s state lets the learning                         
process to be more robust. The task might seem simple, however the goal here is to evaluate                                 
the proposed solution and verify whether the previously learned skills can efficiently be used                           
to   imitate   the   demonstration   in   a   multi-step   pick   and   placing   task. 
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Figure   3.4.    Designed   scene   for   the   demonstration   of   task   2. 

 

3.2.   Task   demonstration 
 

As previously discussed, there are different choices of the demonstrators [2] (By Human                         
teacher in front of the camera, explicit coding, kinesthetic, teleoperation, etc.). In our                         
experiment, after randomly initializing the object positions in the scene we used an explicit                           
program with injected randomness in the solution of the IK solver to demonstrate the task.                             
For this purpose, we use trac-IK [16], a generic Inverse kinematics solver available as a ROS                               
package. We implement an interface for the IK solver to make it accessible to the client                               
program   as   a   service.   Figure   3.5   shows   an   overview   of   the   demonstration   procedure. 
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Figure   3.5.    Overview   of   the   demonstration   procedure 

 

Also,   the   algorithm   one   shows   the   pseudo-code   of   the   demonstrations: 

 
Algorithm   1:   Task   demonstration   procedure 

 

demonstrate( Task-name ) : 
1:                  O:     collection   of   the   object   names   from   the   configuration   file   of   the   task 
2:                      JL:   Robot’s   Joint   limits   retrieved   randomly   from   a   set   of   predefined   valid   joint 
values   for   the   task 
3:                   Initialize_IK_server( JL ) :   Using   the   robot’s   definition   and   joint   limits   initialize   the
IK   solver   service 
4:                   Initialize_the_scene( O ) :   Initialize   the   scene   and   set   a   new   position   for   the 
graspable   objects   within   their   containers   boundary  
5:                   Repeat : 
6:                                    query   the   relevant   object   pose   for   the   current   step   from   the   simulation 
7:                                    retrieve   the   position 
8:                                    send   a   request   to   IK   server   to   find   the   desired   robot’s   configuration 
9:                                    retrieve   the   robot’s   configuration   (joint   values) 
10:                              send   the   joint   values   to   the   robot     

  

Figure 3.6 and 3.7 show two sample demonstrations of the task 2 generated using the above                               
procedure. As shown, even though generated sequences have obvious differences, they                     
share the similar set of constraints or keypoint, which identifies the phase transitions (more                           
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about this in chapter 5), by which the higher purpose of the demonstration can be extracted                               
by   the   algorithm. 

   

Figure   3.6.    Sample   demonstration   of   the   task   2,   trajectory   shows   the   evolution   of   the   robot’s 
end-effector   Cartesian   coordinates  

 

Figure   3.7.    Another   sample   demonstration   of   the   task   2 

 
Also, Figure 3.8 shows the full pose information (3D Cartesian coordinates and 4D                         
quaternion)   of   the   end-effector   as   recorded   during   a   sample   demonstration. 
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Figure   3.8.    Robot’s   end-effector   pose   values   duration   the   task   demonstration 

 

While   demonstrating   the   task,   beside   recording   the   pose   of   the   robot’s   end-effector,   the 
images   from   both   RGB   and   the   depth   camera   and   the   robot’s   configuration   has   also   been 
stored   for   further   processing.   Figure   3.9   shows   a   sample   recording   of   the   robot’s   joint   values 
corresponding   to   a   trial   in   the   task   2. 

 

Figure   3.9.    Robot   joint   values   duration   the   task   demonstration 

 

Also,   figure   3.10   shows   a   sample   of   the   recorded   images   from   the   cameras   and   the   scene 
status   while   capturing   those   images. 
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Figure   3.10.    The   simulation   scene   while   the   demonstrator   program   is   running   and   the   top-right 
corner   of   the   image   shows   the   stereo   RGB   camera   images 

 

To summarize, table 3.1 shows the data recorded during the demonstrations in each time                           
step   of   the   simulation: 

 

Table   3.1.    summary   of   the   recorded   data   during   the   task   demonstrations   (per   time   step) 

Data   Type  Size   Description 

Pose  7  Cartesian   coordinates:   3 
Orientation   (quaternion):   4 

Joint   values  6  Robot’s   DOF:   6 

Gripper  1  Openness   value   of   the   gripper: 
1 

Images  7   x   128   x128  Stereo   RGB   images:   2 
Depth   Image:   1 
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Chapter   4 
Grasp 

 
In this chapter, we propose our approach to grasping objects, particularly from a                         
homogeneous pile. We introduce a new approach to define grasping points on different                         
objects and use camera filters to extract the ground truth vectors and use them to train our                                 
CNN model. Next step we demonstrate an efficient way to generate training data for the                             
model training. Then we move on to our model architecture and we close this chapter by                               
discussing the issue of transfer learning. Note that our goal is to separately learn the                             
grasping skill of different objects and add them to the skill library. Later, based on the object                                 
similarities, the robot will automatically fetch the relevant grasping skill from the library when                           
it   faces   a   grasping   segment   in   the   demonstration. 

4.1.   Grasp   point   detection 
We train our model to predict the grasp points in a pile. Why training on a pile instead of                                     
separate objects? The reasoning behind using the pile is to make the prediction more robust.                             
Learning in presence of more limitation makes the prediction more reliable. Also grasping                         
from a pile, or  Bin Picking has been a problem in the industrial application for more than 30                                   
years,   we   hope   this   would   be   a   step   toward   solving   that   problem.  

However, we try to simplify the problem. Instead of considering the general grasping                         
problem, we want the robot to learn a predefined grasping locations on different objects                           
due   to   the   practicality   as   required   by   the   nature   of   the   bin-picking   problem. 

To define the grasping points, we use a layer of visualization in the simulated scene that is                                 
invisible to the robot’s hand camera. Grasping points are defined as a small pair of cubes                               
around   the   object.   (Figure   4.1) 

 

 
 

Figure   4.1.    User   defined   grasp   point   on   the   nut   (left)   and   the   cup(right) 
 
The way it works is by enabling collision detection between each pair of these cubes with all                                 
other objects in the scene and hiding them when the collision is true. This way, true labels                                 
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will only correspond to collision free grasp points. While the input to the predictor is a raw                                 
depth   image.   Figure   4.2   shows   a   sample   of   the   training   data   generated   to   train   the   model.  
 

 
Figure   4.2.    left   image   show   the   color-coded   collision   free   grasp   points   and   the   right   image   is   the 

visualization   of   the   ground   truth   label   on   the   corresponding   depth   image. 
 
We   would   like   to   design   this   problem   as   a   classification   to   make   the   learning   more   tractable.   
Our approach in detecting the grasping points is based on the work of Davison et. al. [19].                                 
But we extend the idea by introducing a two-step approach to extract the location and 2D                               
orientation of the grasping point. (An extension to this work will further add efficient 3D pose                               
extraction,   however,   to   simplify,   we   restrict   this   paper   to   two   dimensions).  
  
In   the   first   step,   we   lay   a   2D   grid   on   a   horizontal   plane   above   the   pile,   as   shown   in   figure   4.3: 
 

  
Figure   4.3.    visualization   of   the   2D   grid   to   estimate   the   approximate   location   of   the   available   grasps 

in   the   first   layer   of   our   prediction   algorithm 
 
Our model will learn to predict the probability of finding a grasp on each point in the grid. We                                     
treat this problem as  multi-class,multi-label case where the multi-class refers to the fact that                           
each point in the grid is treated as a separate class and multi-label means, there can be more                                   
than one true label in the prediction. In simple worlds, there are multiple possible grasping                             
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points available in a single image of the pile. Next step will then post-process these areas to                                 
find   the   highest   probability.  
 
To further process the areas with predicted probability of finding a grasp point more than a                               
defined threshold, we crop those areas of the image. Figure 4.4 shows a sample collection of                               
such   cropped   images 
 

 
Figure   4.4.    Cropped   areas   of   the   original   image   with   high   probability   of   finding   a   free   grasping   point 

 
The next layer of our prediction model has three objectives. First, to further analyze the                             
predictions and discard them if they don’t pass a certain threshold of probability of success,                             
second, to improve the predicted position of the grasping point center, and third, to predict                             
the orientation of the grasp (2D in this work). Figure 4.5 demonstrates possible labels for the                               
second   layer   of   the   prediction   model. 
 

 
Figure   4.5.    Possible   predicted   location   of   the   grasp   point   center   and   orientation   of   the   grasp   in   the 

second   layer   of   our   model. 
 
This   problem   is   considered   as    multi-class,   single-label ,   where   maximum   one   true   label   can 
exist   in   this   layer   of   prediction.  
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4.2.   Training   data   generation 
 
To generate training data, a 3D grid above the bins are defined to randomly place each                               
instance of the object and let them fall into the bin to generate random images which then                                 
used to train our two-layer model. Figure 4.6 shows a sample random pile generate for the                               
objects used in this work. Worth noting, there’s no restriction for this method to be used for                                 
other   objects.  
 

 

 
Figure   4.6.    Sample   randomly   generated   piles 

 

Algorithm   2   provides   the   pseudocode   to   generate   the   training   data. 

 
Algorithm   2:   Generate   training   data

 

generate_training_data   (m,   n): 
                            m :   3D   model   of   the   object  
                            n :   number   of   required   training   data 
                            i   =   0 :   number   of   generated   data   points,   initialized   to   zero 
1:                   while   i   <   n: 
2:                                     initialze_pile():    randomly   place   the   objects   above   the   bin   and   release   them   to
fall   into   the   bin 
2:                                     Capture_images():    capture   images   from   both   depth   camera   and   the   masked
camera   to   obtain   the   ground   truth   labels 
3:                                     Extract_labels():    Use   the   mask   images   to   extract   the   labels 
4:                                     Export_data():    export   depth   images   and   their   corresponding   label   vector 
5:                                    i   =   i   +   1  
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4.3.   GPN   (grasp   proposal   network)  
 
We call our two-layer grasp prediction model, GPN. It’s consist of two CNNs. The first layer                               
predicts the probability of grasp at each point on the grid. It takes an image as input and                                   
outputs 1D vector of values that can be interpreted as grasp proposals. Figure 4.7 shows our                               
architecture   of   the   CNN   for   the   first   layer: 
 

 
 

Figure   4.7.    Architecture   of   the   first   layer   of   our   predictor 
 
 
In the above CNN, traditional Relu activations are replaced by ELU (Exponential Linear Units)                           
[30]   which   is   claimed   to   increase   the   learning   speed.  
 
The output layer is a vector with the length of 225. Each scalar in the vector represents the                                   
probability of finding a grasp point in the 2D location on the grid corresponding to its index                                 
in this vector. As stated before, this is a multi-class, multi-label problem. To train our CNN, we                                 
used the  sigmoid_cross_entropy  cost function. This cost function measures the probability                     
error in discrete classification tasks in which each class is independent and not mutually                           
exclusive.  
 

  
(4.1) 

 
(4.2) 

 
(4.3) 

 
Where x = logits of the predictions and z = ground truth labels. As explained, predictions                               
represent probabilities for a successful grasp at each location on the grid. Next, areas                           
around the high probability grid points are cropped (figure 4.4) and passed to the second                             
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CNN which will further analyze those proposals. Figure 4.8 shows our architecture of the CNN                             
for   the   second   layer. 
 

 
 

Figure   4.8.    Architecture   of   the   second   layer   of   our   predictor 
 
 
Note that the proposed architectures are not claimed to be the most efficient. They’ve simply                             
performed   better   during   our   experiments.  
 
The output layer is a vector with the length of 486. This vector included both the corrected                                 
location of the grasp point center and its predicted 2D orientation. This is a multi-class,                             
single-label classification where at most one true label can exist in each prediction. To train                             
this model, we used softmax_cross_entropy cost function. It measures the probability error                       
in discrete classification tasks in which the classes are mutually exclusive (each entry is in                             
exactly   one   class). 
 

  
(4.4) 

 
(4.5) 

 
Figure 4.9 demonstrates a sample predicted grasp position using the above method. Note                         
that the model is now aware of a possible collision between neighboring objects and the                             
highlighted   prediction   has   enough   free   space   around   the   object   to   place   the   gripper.  
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Figure   4.9.    sample   predicted   grasp   point   using   the   GPN   model 

 

4.4.   Transfer   learning 
 
One obvious concern about using the simulation to train model is the issue of transferring                             
the knowledge to the real-world applications. First, we count some of the reasons that make                             
the   simulator   a   very   efficient   starting   point   for   the   learning   process: 
 

1. Camera filters to see only specific parts of the scene e.g. one camera captures raw                             
images,   while   the   other   captures   the   masked   grasp   points   from   the   same   viewpoint. 

2. Keep   track   of   objects   in   the   environment   to   train   the   collision   avoidance   algorithms. 
3. Generate over million training data points in very short time which are required to                           

train   CNN   models. 
 
And many other reasons convinced us that the simulator, can be a good place to pre-train                               
models   such   as   the   ones   used   in   this   work.  
To mitigate the problem of transferring, we propose the following solutions that are valid in                             
our   case: 
 

1. Better rendering engines with realistic texturing can help partially to solve this                       
problem. 

2. Depth images are used in the grasping and since there’s no interference of the colors                             
in   the   depth   images   it   can   easily   be   translated   to   the   real   world   applications 

3. Using Generative Adversarial Networks [31] to make the simulated images more                     
realistic   
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Chapter   5 

Segmentation   and   trajectory   generation 
 

We start this chapter by explaining our approach to the segmentation of the demonstration,                           
through this section, we will discuss the notion of the phases and transition points and the                               
trick of using the gripper status as the labeling mechanism for our segmentation. This will                             
then facilitate the supervised learning of this task using a Recurrent Neural Network. Next, we                             
will discuss our choice of the motion controller and again we’ll introduce yet another RNN                             
which can efficiently generate the corresponding joint values for us. Using these results we                           
will end up combining these network to a simple and yet powerful RNN model that can learn                                 
both of these tasks concurrently and use the mutual information to improve the efficiency of                             
both   components. 

 

5.1.   Segmentation 

5.1.1.   Statistical   approach 

As explained in the previous chapter, the reason behind the segmentation is to separate                           
different phases of the demonstration and make it possible to learn a complex multi-step                           
task. As in this work we are dealing with the task of pick and placing, clear phases in each                                     
demonstration can be easily defined by the teacher. These segments, in our case, can simply                             
be   the   same   as   the   steps   define   the   task   demonstrations.   i.e.   section   3.2,   task   2.  

If examined carefully, it’s clear that each task can be separately learned without affecting the                             
learning process of the neighboring phases. E.g. Grasping skill of different object can be                           
acquired independently of the joint trajectories that are necessary for the robot in each task                             
to   transform   the   gripper   pose   in   the   pre-grasp   and   post-grasping   phases.   

To examine how the Markov processes defined in Chapter 2, such as BP-AR-HMM can help us                               
to segment the trajectories, we ran an experiment with the code from [1], on a recorded data                                 
from 3 different demonstrations. Once on the robot’s configuration, including the gripper                       
values (figure 5.1), once without the gripper values and once only on the pose of the                               
end-effector   (figure   5.2). 

As seen in the figure, many segments are detected based on only statistical analysis of the                               
trajectory. To include visual features of the scene, Niekum et. al. [1] added the position of all                                 
the relevant objects in the demonstration into the segmentation procedure by tracking the                         
AR tags on each of them. However, since our final goal is to learn the process of object                                   
picking   from   a   pile   in   the   industrial   setting,   this   approach   won’t   be   helpful   for   us.   
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Figure   5.1.    BP-AR-HMM   segmentation   of   the   joint   value,   including   the   gripper   status 

 

Figure   5.2.    BP-AR-HMM   segmentation   of   the   pose   values 

 

5.1.2.   Stereo   to   depth   encoder 
 

Our goal is to find a robust solution with ideally fewer hyperparameters to tune. While                             
efficiently   incorporate   the   visual   information   in   our   segmentation   method. 

As suggested by [8], we decided to use convolutional neural nets to extract visual feature that                               
would help us in both the segmentation and trajectory generation steps. We needed a set of                               
features that would contain information about the position of the objects that are visible to                             
the camera and their distance from the depth camera. To solve this problem we introduce a                               
convolutional   encoder   of   the   stereo   to   depth   images.   (figure   5.3). 
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Figure   5.3.          Architecture   of   our   Stereo   to   depth   encoder 

 

The two-way arrows between the layers indicated the parameter sharing. Since both layers                         
are processing similar images, there’s no need to separate the parameters and this will                           
drastically   reduce   the   training   time   and   unnecessary   complexity   of   the   model. 

Our architecture of the convolutional layers is inspired by the VGG model [18]. However with                             
much less convolutional layers as our datasets are not comparable to the ones, these models                             
has   been   designed   for.   Table   5.1   shows   a   summary   of   the   architecture. 

Also, note that here depth images are constructed out of the combination of 3 channels,                             
hence   the   size   of   the   last   layer.  

To train the model, we used a simple RMS error of the difference between the ground truth                                 
depth   images   and   the   reconstructions: 

 
(5.1) 

Table   5.1.    summary   of   the   architecture   of   our   Stereo   to   depth   encoder   model 

Layer   type  size 

1  input  2x3x128x128 

2  conv  3x3x32 

3  conv  3x3x64 

4  conv  3x3x64 

5  max   pool  2x2 

6  conv  3x3x128 

7  conv  3x3x128 

8  max   pool  2x2 
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9  fc  256 

10  fc   with   dropout  2048 

11  fc   with   dropout  12288 

12  output  3x64x64 

 

Figure 5.4 and 5.5 Show sample of reconstructions and their corresponding ground truth                         
images.  

 

Figure   5.4.    Sample   depth   image   reconstruction   from   the   stereo   RGB   images.   The   image   on   the   left 
is   the   ground   truth   depth   image   and   on   the   right   is   the   reconstruction.   Note   that   the   network 
learned   to   associate   visibility   of   part   of   the   gripper   to   the   high   probability   of   an   object   existing 
between   the   fingers,   hence   a   shadow   of   a   nut   or   half   a   cup   can   be   seen   in   the   reconstruction. 

 

 

Figure   5.5.    Another   example   of   the   stereo   RGB   to   depth   reconstruction. 
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5.1.3.   Actions   types 
 

In the next step, we use the intuition that the gripper status can be directly used to segment                                   
the demonstration as the main objective of our demonstrations are pick and placing. To                           
make this more clear, we’ve shown a sample gripper values from a demonstration of the task                               
2   in   figure   5.6: 

 

Figure   5.6.    Gripper   joint   values   from   the   recording   of   a   sample   demonstration 

 

As it can be seen in the Figure 5.6, the gripper values are highly correlated to the task steps                                     
that we’ve defined earlier and they can be used in our segmentation process. However, to                             
efficiently   use   this   information   we   defined   a   concept   of    Action   Types .  

Similar to approach in [5], we would like to distinguish between the gripper and non-gripper                             
actions. The reasoning behind this, is that, primarily for the task of pick and placing, actions                               
are centered around the gripper joint values, before grasping, gripper should be opened up                           
to an appropriate value required to grasp a certain object, then it closes to hold the object,                                 
then there’s a pure trajectory for the end-effector of the robot without any change in the                               
status of the gripper and finally, to place the object, gripper should be oriented accordingly                             
and   opens   up   to   release   the   object.  

To better visualize this concept, we’ll use a moving average with a window size of 30 data point                                   
on   the   raw   gripper   values   from   the   figure   5.6: 

 
(5.2) 

Where   n   represents   the   window   size. 
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Figure   5.7.    Running   moving   average   over   the   gripper   values   to   reduce   the   noise 

 

As   it   can   be   observed   in   figure   5.7,   3   types   of   actions   are   distinguishable   from   this   time   series: 

Type 1: Grasp action. It starts with some offset before the change in the gripper width and                                 
finishes   when   the   gripper   is   closed. 

   

 

 

 

Figure   5.8.    Grasp   action   (left),   Release   action   (middle),   Non-gripper   action   (right) 

 

Type 2: Release action. It starts with some offset before the change in the gripper width and                                 
finishes   when   the   gripper   is   opened   to   place   the   object   in   the   target   location. 

Type 3:  None gripper action. Where the width of the gripper doesn’t change. This is the                               
period   where   gripper   is   either   holding   an   object   or   is   simply   empty. 

 

Now   that   we   defined   the   action   types,   we   can   use   the   first   derivative   of   the   gripper   values   to   detect 
the   places   where   the   transition   between   different   action   types   happens. 
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Figure   5.9.    Derivative   of   the   gripper   values   correspond   to   the   defined   action   types 

 

At this point, it seems that we can hand-code the segmentation process, however, we would                             
like to train a Recurrent Neural Network with an LSTM cell to learn this segmentation. The                               
reason   will   become   clear   in   section   5.3. 

The input to our network will be the combination of the extracted features from the stereo                               
images   using   the   encoder   (5.1.2)   and   the   raw   pose   values   of   the   robot’s   end-effector. 

Our   network   has   the   following   architecture: 

 

Figure   5.10.    RNN   trained   to   predict   the   action   types   based   on   the   features   extracted   from   the 
stereo   images   and   pose   values   of   the   end-effector 

31 



 

A   sample   prediction   of   the   action   types   is   shown   in   the   figure   5.11: 

 

Figure   5.11.    Prediction   of   the   action   type   by   RNN,   Green   line   is   the   ground   truth   and   the   blue   line 
represents   the   prediction 

 

To train the network, predictions are passed through a  Softmax (4.3). The cost function for                             
training the RNN is the  categorical cross-entropy as it’s designed for the problem of                           
multi-class classification. Concretely, it calculates the entropy difference between a given                     
distribution    q(x)    and   the   target   distribution    p(x) .  

 

5.2.   Motion   controller 
Following the same intuition as the previous section, we would like to replace the traditional                             
use of controllers such DMP with a more generic approach that also considers visual features                             
in   generating   the   motor   command.  

Previously we trained an encoder to extract a vector of features from the images, now using                               
the similar approach as for the segmentation, we’ll train another RNN that accepts the                           
combination of the visual and kinematics features as the input and produces the robot’s                           
configuration as the output. Figure 5.12 shows the architecture of our RNN with one LSTM                             
cell: 
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Figure   5.12.       Architecture   of   the   trajectory   generator   using   a   single   LSTM   cell 

 

Figure 5.13 shows a comparison between the predicted values for a sample demonstration                         
and   the   ground   truth   values   recorded   during   the   demonstration. 

 

Figure   5.13.    Comparison   between   the   predicted   and   demonstrated   joint   values 

 

We   use   a   simple   mean_squared   cost   function   to   train   our   RNN.  
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5.3.   Combined   segmentation   and   trajectory   generation 
 

Considering the similarities between the segmentation and controller models, we decided to                       
combine   the   two   networks   together.   As   suggested   in   the   figure   5.14: 

 

Figure   5.14.    Combination   of   segmentation   and   controller   RNNs 

 

As discussed in chapter 2, the task of segmentation and learning the low-level controller for                             
each segment has been traditionally separated. However, in the above model, the controller’s                         
accuracy improved by combination with the segmentation. The intuition behind this would                       
be that the network will try to learn the features that are associated with the transition point                                 
and the trajectories at the same time which will results in the better prediction of the robot’s                                 
configuration   especially   around   the   phase   transitions.  

To replay the demonstrated task, we pass a moving average filter with the window size of 10                                 
over   the   predicted   joint   values   to   remove   the   high   frequency   noises. 

In the algorithm 3, a summary of all the post processing steps to train the models is                                 
presented.  
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Algorithm   3:   Segmentation   and   Trajectory   generation 

 

Post_Process    (P,   J,   G,   I): 
                               P :   sequence   of   pose   values   of   the   robot’s   end-effector 
                               J :   sequence   of   robot’s   joint   values  
                               G :   sequence   of   gripper   joint   values 
                               I :   2   x   RGB   +   1x   D   Images 
1:                      Update_encoder   ( I ):    update   the   stereo   to   depth   encoder   with   a   combination   of
old   and   new   images 
2:                   Extract_feature   ( I ):    pass   all   the   images   through   the   encoder   to   obtain   their 
corresponding   feature   vector    E 
3:                   Calculate_normalized_gripper_derivative   ( G ):    transform   the   gripper   values   to
their   corresponding   action   types   and   retrieve   the   transformed   vector    A   
4:                   Train_RNN   ( J,   E,   A,   P ):    train   the   combined   RNN   model   and   return   the   controller 
corresponding   to   the   demonstrated   task 

 

 
Figure   5.15   shows   the   process   of   training   the   controller. 
 

 
Figure   5.15.    training   the   controller 
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5.4.   Model   execution   phase  
Here we demonstrate the steps taken by the model while attempting to replay the              
demonstrated   task. 
 

 
 

Figure   5.16.    Execution   phase 
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Chapter   6 

Conclusion   and   Future   work 
 

In this work, we proposed a new framework for learning multi step object manipulation and                             
in particular, pick and placing task from a handful of demonstration. To facilitate learning                           
process we introduced the notion of action types and used them to separate the learning                             
process of sub-skills. Our framework can extract visual features from the images that are                           
recorded during the demonstrations and use them in combination with kinematics features                       
to   train   the   robot   controller.  

However, we targeted a simplified version of the problem. In particular, out of different                           
action types, we only focused on the grasping, and grasp point prediction happened in 2D.                             
Moreover, Trajectory segments could be separated and collection of robot maneuver skills                       
could   be   learned   independently   of   each   other,   which   was   not   addressed   in   this   work. 

Above statement suggests that there are many ways in which this work can be continued and                               
expanded.   Here   we   mention   few   of   them: 

- To simultaneously benefit from capabilities of the simulation as a starting point to                         
pre-train many robotic skills and enable transferring the knowledge to real world                       
applications, there needs to be more research focused on the problem of transfer                         
learning, or “Domain adaptation”. As discussed, in the image domain, one possible                       
solution would be to use GAN models, where by feeding images from both simulation                           
and real world, adversarial part tries to discriminate between these two domains                       
while the generator part will learn to generate more realistic images from the                         
simulated   ones   to   fool   the   discriminator. 

- Also, the performance of the GAN models in trajectory generation could be evaluated.                         
In this scenario, by feeding both the generated robot configurations and the real                         
data from the demonstration, the discriminator will try to separate these two domains                         
while the generator will try to generate better IK solutions. But it is important to                             
include the sequence analysis or recurrent connections into this structure                   
considering   the   nature   of   trajectory   as   a   time   series. 

- Trajectories learned by our RNN model could be splitted using their segment labels                         
and learned independently. Later, concatenation of the learned robot maneuvers for                     
different   manipulation   skills   could   suggest   new   solutions   to   novel   scenarios.  

- Reinforcement learning could be utilized to incrementally improve the performance                   
of each module in our framework, by learning a policy on top of the model                             
predictions. 

- In the pile grasping, approaches such as [33] could be utilized to extract the pose of                               
the   object,   in   order   to   generalize   the   proposed   solution   in   this   work   to   3D   domain. 

- Other gripper actions such as placing object could also be independently learned                       
and   used   in   the   robot’s   task   execution. 
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- Approaches such as [7] could be used to incrementally improve the performance of                         
object   grasping   from   a   pile. 

 

As above suggests, there are still many problems to be solved before the results from this                               
work can be used in the real world applications. We hope our suggested research directions                             
will   motivate   more   efforts   in   this   field. 
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