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Abstract

General relativistic visualization addresses optical effects in the realm of general relativity, such
as bending of light around massive objects like black holes and stars, affecting the appearance of
objects in their proximity. In this thesis, we propose a method for real-time relativistic visualization
of triangle meshes in the proximity of black holes, based on polygon rendering and a precomputed
table containing information about the distortion and apparent locations of points to a static observer.
The visualization process is based on standard polygon rendering through the OpenGL pipeline, but
we apply a subdivision to heavily distorted triangles to achieve more accurate results (approximating
the curving of straight lines in proximity of a black hole). We consider a static observer with a freely
rotating camera, as well as movable objects (considered ‘quasistatic’, i.e. movement itself does not
impact appearance, only its location in space). Some results are compared with renders from the
ray tracing software GeoVis and we provide additional example visualizations of different objects
and scenarios, as well as benchmarks for both the visualization as well as the precomputation-step
of our method.
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1 Introduction

1.1 Task Description and Scope

Goal of this thesis is to develop and evaluate a novel method for real-time visualization of distortion
effects in the vicinity of a Schwarzschild black hole based on “classic” polygon-rendering. This
method should be used to transform a triangle mesh accordingly, and subdivide it where necessary.
In developing the method, only static Schwarzschild-spacetime is considered, and its symmetry
is taken advantage of where possible to increase efficiency in terms of performance and memory.
Object movement from interaction is considered ‘quasistatic’, which means visualizations appear as
if the object was standing still at any given time (in general relativity, movement heavily affects
visual effects). The observer is static in all cases. Algorithms are implemented in C++ with the
OpenGL graphics specification.

Figure 1.1: Deformed VISUS-lettering

1.2 Time Management

The task can be split into three more or less separate parts:

• Getting familiar with literature, the current state of research and the available tools
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1 Introduction

• Developing a program to precompute lookup-textures used in step 3

• Developing the actual visualization making use of the lookup-textures generated in step 2

Each step is estimated to take roughly 2 months to complete.
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2 Fundamentals

2.1 Physical Fundamentals

This section is divided into 3 parts: A short introduction to Special Relativity (SR), an introduction
to General Relativity (GR) and how it relates to SR, and lastly a more formal part in which relevant
equations and mathematical elements are presented.

2.1.1 Special Relativity

Prior to Einstein’s proposal of SR in 1905 it was assumed that light (like sound) could be described
as a wave phenomenon [BMW16, Chapter 2.1] and thus relies on a carrier medium, the postulated
“luminiferous aether”. There existed multiple different theories about the exact properties and
behavior of said aether, like the (partial) aether drag hypothesis, which assumes that the aether is
in some way tied to matter and moves with it in space, and on the opposite the hypothesis of a
stationary aether encompassing all matter. Towards the end of the 19th century, attempts were made
to determine precisely specific parameters in said theories.

Hypothesis of a stationary aether

The “Michelson-Morley-Experiment” (1881/1887) for example had the purpose of determining
the velocity of the earth relative to the aether, but its results turned out to be incompatible with a
stationary aether: The basic idea was that the speed of light on earth should depend on its direction
“inside” the aether and the postulated “aether wind” dragging or slowing it, similar to how a paper
ball thrown into the wind will travel slower when thrown against the wind direction, and faster
when thrown in the same direction. The experiment consisted of a light source, a beam splitter
splitting the emitted beam into two perpendicular parts which then travel the same distances to a
mirror and into a telescope where the split beams interfere (Figure 2.1). The entire setup is then
slowly rotated while observing the effects in the telescope. Were the hypothesis about a stationary
aether true, one would expect the interference pattern in the telescope to change periodically while
rotating, since the different angles to the proposed aether would lead to different travel times and
travel speeds in the split beams. Michelson and Morley were however unable to observe any change
in the interference pattern, thus making the hypothesis of a stationary aether indefensible.
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2 Fundamentals

Figure 2.1: Schematic drawing of the Michelson-Morley-experiment (taken from [BMW16])

Aether drag hypothesis

The aether drag hypothesis postulates a “full” attachment of the aether to matter, but is incompatible
with observed stellar aberration, a phenomenon where a moving observer observes apparent motion
of celestial objects relative to their original positions depending on the speed and direction of the
observer. In a world where the aether drag hypothesis is true, the expected offset would depend on the
direction and velocity of the observed object as well as the observer, however this is not observable in
experiments, as it seems the magnitude of the effect is only determined by the observer’s velocity.

Partial aether drag hypothesis

One experiment on the aether drag hypothesis, the “Fizeau-experiment” (1851), was carried out
to determine the effect of moving water on the speed of light. According to the hypothesis, any
moving matter should drag some aether with it, thus affecting the speed of light depending on
its direction, and determining the magnitude of this effect was the goal of the experiment. The
setup again consists of a light source and a beam splitter, this time redirecting the two beams
through a pipe in opposite directions, again reuniting them in a telescope (Figure 2.2). Water then
flows through the pipe and one observes interference in the telescope Again, were the aether drag
hypothesis true, one would expect different speeds and different travel times for the beams and thus
interference depending on the speed at which water flows through the pipe, but the observations
made do not match the predictions in case of “full” aether drag. The results match predictions
made in the partial aether drag hypothesis, but this would already contradict the results of the
Michelson-Morley-experiment.

Fundamentals of Special Relativity

The basic postulates in Special Relativity as used by Einstein are (Chapter 7.1 in [Gol80]):

18



2.1 Physical Fundamentals

Figure 2.2: Schematic drawing of the Fizeau-experiment (taken from [BMW16])

• “Principle of Relativity”:The laws of physics are the same to all inertial (= not experiencing
acceleration) observers.

• “Principle of Invariant Light Speed”:The speed of light is the same to all inertial observers.

This means that all inertial frames of reference are equivalent in terms of formulating physical laws
(more particularly it is impossible to distinguish one inertial frame of reference with an absolute
velocity of 0 (Chapter 2.4 in [BMW16])).

2.1.2 General Relativity

The equivalence Principle

“A little reflection will show that the law of the equality of the inertial and gravitational mass is
equivalent to the assertion that the acceleration imparted to a body by a gravitational field is

independent of the nature of the body. For Newton’s equation of motion in a gravitational field,
written out in full, it is:

(Inertial mass) · (Acceleration) = (Intensity of the gravitational field) · (Gravitational mass)
It is only when there is numerical equality between the inertial and gravitational mass that the

acceleration is independent of the nature of the body.” - (P. 59, [EA03])

The equivalence Principle at the base of the theory of GR states that gravitational mass (measured
by reaction to gravitation) and inertial mass (its resistance to acceleration) are equivalent. This
implies for example that an observer in a laboratory can not determine whether he is experiencing
gravity in a “stationary” laboratory or acceleration in space (without gravity). The equivalence
Principle alone is already enough to predict curved light beams close to massive objects: Consider
a constantly accelerating laboratory with a laser pointer for example, where the laser is pointed
horizontally at a detector on the opposite side of the room (2.4). From an outsider’s perspective,
the light beam in the accelerating laboratory will be a straight line from left to right - however in
the time it took the beam to reach the detector, the laboratory has moved a certain distance, hence
curving the ray from the perspective of an observer inside the room. The equivalence principle
now implies that the accelerating laboratory is equivalent to a laboratory in a gravitational field,
hence predicting the same bent beam of light there. The bending of light around massive objects
was first observed by Arthur Stanley Eddington during a solar eclipse in 1919: the moon covering
the sun made it possible to observe stars close to its position in the sky that would have usually been
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overpowered by the sun’s brightness. During the solar eclipse, they appeared to be further away
from the sun than usual - an effect known as ‘gravitational lensing’, causing the light beams from
the stars to be slightly bent when passing the sun, thus changing their apparent positions in the sky
(2.3).

Figure 2.3: Stars during a solar eclipse appearing further away from the sun (grey) than they actually
are (black) (taken from [BMW16])

Figure 2.4: A constantly accelerating laboratory (a) is equivalent to a laboratory in a corresponding
gravitational field (b) (taken from [BMW16])

2.1.3 (Schwarzschild) Black Holes

Gravitation on the surface of spherical objects increases with their density (1.4.2 in [BMW16]). The
“Schwarzschild radius” AB (2.1) is a measurement for an object’s gravitational impact (the bigger an
object’s AB the more noticeable its gravitational pull).

(2.1) AB = 2
�"

22

where � is the Gravitational constant, 2 the speed of light, and " the mass of the object. Given the
Schwarzschild radius, we can calculate the escape velocity E4 needed to ‘escape’ the object starting
from a radius ' using 2.2.
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(2.2) E4 = 2

√
AB

'

(2.1, 2.2 taken from [BMW16], Chapter 1.4). When an object’s actual radius A is smaller than its
Schwarzschild radius AB the escape velocity grows beyond the speed of light, and not even light
will be able to escape from the surface of such an object, rendering it black. In this thesis only
Schwarzschild black holes (non-rotating charge-free black holes) will be discussed, the speed of
light 2 will be normalized to 1 for readability. For Schwarzschild black holes, the surface of a sphere
with radius AB forms its ‘event horizon’, a surface below which no light (or matter) will be able to
escape.

2.1.4 Mathematical Formulation

We focus on the mathematical formulation with respect to so-called “null geodesics”, paths of
photons in Schwarzschild spacetime. In GR, our commonly used three-dimensional space is
extended to a four-dimensional “spacetime”, by including time as an additional dimension. In this
framework, mass and energy “curve” spacetime (just like a heavy object would deform a flexible
surface it rests on) and affect the paths of light traveling through it. To analyze trajectories in
spacetime, we need a way of calculating the distance between two points (a ‘metric’) - one that
also considers the time-component (as opposed to our usual three-dimensional space, where we
generally don’t consider time when calculating distances). In the case of point-symmetric mass
distribution (like it is the case with a Schwarzschild black hole), the metric that satisfies Einstein’s
field equations is the Schwarzschild metric:

(2.3) 3B2 = −
(
1 − AB

A

)
3C2 + 3A2

1 − AB/A
+ A2(3\2 + sin2(\)3q2)

In a spacetime with this metric, the paths of light rays (‘null-geodesics’, see Fig. 2.5 and 2.6) around
a Schwarzschild black hole are described with a set of differential equations (2.4 - 2.7), where _ is
used to parametrize a curve and (C, A, \, q) are spherical coordinates with a time component C. This
system of second order differential equations can be transformed into a system of first order, which
will be done in Chapter 3.

(2.4)
32C

3_2 = − AB

A (A − AB)
3A

3_

3C

3_

(2.5)
32A

3_2 =
AB

2A (A − AB)

(
3A

3_

) 2
− AB

2A3 (A − AB)
(
3C

3_

) 2
+ (A − AB)

[ (
3\

3_

) 2
+ sin2 \

(
3q

3_

) 2
]

(2.6)
32\

3_2 = sin \ cos \
(
3q

3_

) 2
− 2
A

3\

3_

3A

3_

(2.7)
32q

3_2 = −2
cos \
sin \

3\

3_

3q

3_
− 2
A

3q

3_

3A

3_
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2 Fundamentals

Figure 2.5: Examples for light trajectories in Schwarzschild spacetime

Figure 2.6: Examples for light trajectories in Schwarzschild spacetime

2.2 Thematic Introduction

Relativistic effects are relatively hard to grasp, especially for laymen, so accurate visualization
can be used to effectively explain its predicted phenomena as well as provide students or other
not-so-laymen with a better understanding of the consequences of SR and GR without having
them rely on a deep mathematical background. Generating accurate visual representations of black
holes and their surroundings especially has been a research topic investigated from multiple angles:
The standard approach for high-quality images in special general relativity is four-dimensional ray
tracing, used in [Mül14], and a parallelized approach of this is explored in [CPÖ13]. Other research
points include visualization of a black hole’s distant surroundings ([MW10]) with focus on real-time
performance enabling interactive applications [VE20]. There are also attempts to combine polygon
rendering with a local (more performant) variant of ray tracing [MGW10]. The here presented
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2.2 Thematic Introduction

approach will attempt to provide a highly performant variant of polygon-rendering, deploying a
precomputed lookup-table and a mesh subdivision procedure with the purpose of achieving frame
rates enabling interaction in real-time.

Figure 2.7: Visualization of an accretion disk around a Kerr black hole from [VE20]
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3 Outlining the new Method

The method is split into two parts:

• Computation of a two-dimensional lookup-table which stores light travel times and viewing
angles for a set of points in a plane containing the observer and the black hole itself,

• using said lookup-table to apply the distortions to a mesh of vertices and generate a visualiza-
tion

3.1 Functionality

3.1.1 Calculating the lookup-table

To calculate this table, we specify multiple parameters: the observer’s distance to the black hole
(in multiples of its Schwarzschild radius), a maximum radius for the sample values (we sample
points between the event horizon and the maximum radius), resolutions for angular and distance
sampling (specifying how many sample points we generate in each direction) and a step size for
numerical integration of the equations 2.4 -2.7. We then iterate through the different angular and
radial positions specified (restricting angles to [0, c] due to symmetry), calculate viewing distance
and angles, and store them in pairs in a table, such that each point corresponds to 4 values (2 angles
and 2 distances) (See 3.1). The relevant parameters and calculated values are then written to a file
for further usage.

Figure 3.1: The table contains the angles U, V in which the target point (circled in red) appears for
the observer on the right, as well as the light travel times along the green paths.
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3 Outlining the new Method

3.1.2 Table visualizations

In this section, we look at some visual representations of the data stored in the lookup-textures.

Figure 3.2: Lookup-texture of viewing angles for obsDist = 5AB, maxDist = 20AB

The horizontal coordinates in Fig 3.2 correspond to radial distances from the black hole, the vertical
components to the angle in the plane containing black hole, observer and vertex. In this visualization,
a viewing angle of 0° is colored black, an angle of 180° is colored white. The black hole in this case
‘sits’ at the left edge of the texture (where the radial component is 1AB) and the observer’s position
corresponds to the point in the bottom left where, going from left to right, the pixels change color
from black to white (the viewing angle ‘flips’ here as the vertex moves past the observer away from
the black hole). Another interesting aspect would be contour lines of these textures as seen in Fig.
3.3: These lines correspond to all the points that end up in the same apparent stellar position for the
observer.

We can do the same thing with the texture component storing the viewing distance (Fig. 3.4): here
the viewing distance increases (pixels turn from black to white) as we move away from the observer
at the bottom edge of the texture. Contour lines of this texture correspond to points that appear in
the same distance to the observer (Fig. 3.5)
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3.1 Functionality

Figure 3.3: Contour lines for the angles 45°, 90°, 135° (left to right)

3.1.3 Utilizing the lookup-table for visualization

Using the precomputed table, we can calculate and apply an offset vector for each vertex, and
calculate their apparent positions in this way. To do this, we need to compute each vertex’s distance
to the black hole, and its angular coordinate inside the plane containing the black hole, the observer
and the vertex itself, and use those to lookup the appropriate viewing angle and distance in the
previously computed table.

3.1.4 Subdivision

So far, this approach has the very obvious drawback of very bad visual results in case of a low
triangle count in the model being processed. To solve this problem, we subdivide the mesh where
its distortion is ”high”. Where the distortion is low, for example when far away from the black
hole in the observer’s field of view, no subdivision is needed, as straight edges also appear as
(almost) straight lines after distortion. The level of subdivision scales increasingly with the amount
of distortion applied to a triangle’s edge. (See 3.7)

27



3 Outlining the new Method

Figure 3.4: Lookup-texture of viewing distances for obsDist = 5AB, maxDist = 20AB

3.2 Implementation

The methods described are implemented in C++ using the OpenGL graphics specification.

3.2.1 Table calculation

The algorithms used to calculate the viewing angles and distances are outlined in 3.1 and 3.2. We
deploy a kind of ‘shooting method’ starting out with rays at angles 0 and c (pointing straight at
the center at the black hole and straight away from it), then iteratively calculating a new ray in the
middle between those rays until we find a ray that comes sufficiently close to our target vector. The
20;2D;0C4'0H-function (numerically) solves a (first-order) variation of the equations 2.4 - 2.7 with
the classical fourth-order Runge-Kutta method (Chapter 235 in [But03]). We obtain this variation
by introducing new variables for our first-order derivatives in these equations and substituting
accordingly (which introduces additional initial conditions):

28



3.2 Implementation

Figure 3.5: Contour lines for viewing distance

A1 := A

A2 :=
3A

3_

C1 := C

C2 :=
3C

3_

\1 := \

\2 :=
3\

3_

q1 := q

q2 :=
3q

3_

These substitutions lead to the following system of equations:

(3.1)
3C2
3_

= − AB

A1 − AB
A2C2

(3.2)
3A2
3_

=
AB

2A1(A1 − AB)
(A2)2 −

AB

2(A1)3
(A1 − AB) (C2)2 + (A1 − AB) [(\2)2 + sin2(\1) (q2)2]
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3 Outlining the new Method

Figure 3.6: The triangle mesh is far away from the black hole, no subdivision is applied to the left
instance

Figure 3.7: As the triangles in the mesh approach the black hole, the level of subdivision increases
to accomodate the increasing amounts of distortion

(3.3)
3\2
3_

= sin \1 cos \2(q2)2 −
2
A1
\2A2

(3.4)
3q2
3_

= −2
cos \1
sin \1

\2q2 −
2
A1
q2A2

(3.5)
3C1
3_

= C2

(3.6)
3A1
3_

= A2

(3.7)
3\1
3_

= \2
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(3.8)
3\1
3_

= \2

With the aforementioned initial conditions for C1/2, A1/2, \1/2, q1/2. In our case, the initial conditions
for the position are the coordinates of the observer:

(3.9) (C1(0), A1(0), \1(0), q1(0)) = (0, >1B�8BC,
c

2
, 0)

Some optimizations are made here: the 20;2D;0C4'0H-method only continues integrating until it
the ray passes the C0A64C-vector’s angular coordinates, since we are only interested in the ‘first-order’
images , not those involving multiple rotations of the ray around the black hole. This also means
that the method we use to check if the target is sufficiently close to a ray is only required to check
the end of the ray (since this is where the closest points would be). This speeds up computation
quite a bit and makes it less dependent on step size (since the amount of points calculated in a ray
does not impact the runtime of the method used to check this).

The generated table is then stored to disk together with the relevant parameters:

angularRes distanceRes observerDistance maxDistance results[][]
int int float float 4 · distanceRes · angularRes · float

the results[][] -vector (r) is stored as follows:

r[0][0] r[0][1] ... r[0][distanceRes-1] r[1][0] ... r[angularRes-1][distanceRes-1]

where every entry consists of four numbers with type 5 ;>0C.

Algorithm 3.1 Table generation
procedure table(BC4?(8I4, >1B4AE4A�8BC0=24, <0G�8BC0=24, 38BC0=24'4B, 0=6D;0A'4B)

BC0AC+42← (0, >1B4AE4A�8BC0=24, c
2 , 0)

>

for 3 = 0; 3 < 38BC0=24'4B; 3 + + do
2DAA4=C�8BC0=24 ← 1 + 3 · <0G�8BC0=24−1

38BC0=24'4B−1
for 0 = 0; 0 < 0=6D;0A'4B; 0 + + do

2DAA4=C�=6;4 ← 0 · c
0=6;4'4B

C0A64C+42 ← (0, 2DAA4=C�8BC0=24, c
2 , 2DAA4=C�=6;4)

>

3D<<H)0A64C ← (0, 2DAA4=C�8BC0=24,
?8

2 , 2c − 2DAA4=C�=6;4)>
// 3D<<H)0A64C used to streamline calculations

A4BD;CB[0] [3] [0] ← BC0AC)>)0A64C (BC0AC+42, C0A64C+42)
A4BD;CB[0] [3] [1] ← BC0AC)>)0A64C (BC0AC+42, 3D<<H)0A64C)

end for
end for
return results

end procedure
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3 Outlining the new Method

Algorithm 3.2 Calculating Light Path between points
procedure startToTarget(BC0AC, C0A64C)

<8=�=6;4 ← 0, <0G�=6;4 ← c

while true do
38A42C8>=1 ← (1,− cos(<8=�=6;4), 0, sin(<8=�=6;4)>
38A42C8>=2 ← (1,− cos(<0G�=6;4), 0, sin(<0G�=6;4))>
A0H1 ← 20;2D;0C4'0H(BC0AC, 38A42C8>=1, C0A64C)
A0H2 ← 20;2D;0C4'0H(BC0AC, 38A42C8>=2, C0A64C)
if A0H1 or A0H2 contain C0A64C then

return time component and angle of ray containing C0A64C

end if
=4F�=6;4 ← <8=�=6;4+<0G�=6;4

2
38A42C8>==4F ← (1,− cos(=4F�=6;4), 0, sin(=4F�=6;4))>
A0H=4F ← 20;2D;0C4'0H(BC0AC, 38A42C8>==4F , C0A64C)
if A0H=4F contains C0A64C then

return time component of A0H=4F and =4F�=6;4

end if
if target is between A0H1 and A0H=4F then

<0G�=6;4 ← =4F�=6;4

end if
if target is between A0H=4F and A0H2 then

<8=�=6;4 ← =4F�=6;4

end if
end while

end procedure

3.2.2 Visualization

The entire visualization process is done in the shader pipeline (except for the usual setup and
preprocessing like camera parameters etc.). The generated lookup-table from the previous segment
is read as a 2D-Texture and provided to the shaders as a sampler object. Objects are loaded with the
tinygltf library1 and then rendered twice with a 6;�A0F�;4<4=CB�=BC0=243-call, once for each
‘direction’ a vertex is visible in. The observer can freely rotate his camera and move loaded objects
around in real time. Each stage’s role in the pipeline will be laid out here:

Vertex Shader

The Vertex shader transforms the vertices to world coordinates by multiplying the vertex coordinates
with the model matrix.

1https://github.com/syoyo/tinygltf
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3.2 Implementation

Figure 3.8: Determining the distortion of an edge (the grey arc indicates a possible ‘true’ image of
the edge)

Tessellation Control Shader (TCS)

The TCS is responsible for determining the amount of distortion an edge experiences and setting its
tessellation levels accordingly. This is done by computing the distorted coordinates in clip space
of both vertices of said edge, as well as their midpoint’s image. Then, we compare this image of
the midpoint with the midpoint of the vertex images to determine how accurate the image would
be without any further tessellation (see 3.8). The distance 3 from here is plugged into a function
to ‘squeeze’ it into the interaval [0, 1] to determine the level of tessellation (with a maximum of
64.0 in our case). Possible functions for this are 3.10 and 3.11. Inner tessellation level is set to the
maximum of outer tessellation levels for a primitive.

(3.10) tessellationLevel = 64.0 ·
(
−4−: ·3 + 1

)
(3.11) tessellationLevel = 64.0 ·

(
− 1
: · 3 + 1

+ 1
)

Where : > 0 is a parameter determining the sensitivity of the tessellation level (in our visualizations,
k=4 is used). The transformation to clipping coordinates is done do avoid unnecessary high
tessellation levels where edges are barely visible (If we applied the same process to world coordinates
instead, we might produce very high tessellation levels for edges that point away from the observer,
appearing as a point, or only very short compared to their ‘true’ length). Note that the TCS does not
actually pass on any transformed vertices, it only transforms them for the purpose of determining
tessellation levels.
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3 Outlining the new Method

Tessellation Evaluation Shader (TES)

The TES now processes the generated vertices by applying the offset vectors stored in the lookup-
texture provided to the pipeline: First, we need to calculate the texture coordinates. As mentioned
in 3.2.1, the coordinates consist of the distance to the black hole and the angle between the black
hole/vertex vector and the black hole/observer-vector. These are calculated as follows:

(3.12) distance =

√
E4AC4G%>B.G2 + E4AC4G%>B.H2 + E4AC4G%>B.I2

(3.13) angle = arccos
(
E4AC4G%>B · >1B%>B
distance · >1B�8BC

)
Where E4AC4G%>B is the vertex position in world coordinates and >1B%>B/>1B�8BC are the observer
position/distance respectively.

Using these coordinates, we obtain a set of two offset-parameters (angle and distance). Depending
on the drawing instance we are in (as checked with 6;� =BC0=24�� which has been passed through
the pipeline from the vertex shader), we apply one of the other. To apply the offset in the plane
containing the obsever, the original vertex and the black hole, we rotate a normalized and inverted
version of the >1B%>B-vector around a normal vector of this plane, then scale it with the distance
from the lookup-texture and add it to the original >1B%>B-vector (See Figure 3.9) The rotated vector
is calculated by applying Rodrigues’ rotation formula (Equation 4.16 in [Kok06]):

(3.14) EA>C = E · cos(U) + (=̂ × −�>1B%>B) sin(U) + =̂(=̂ · −�>1B%>B) (1 − cos(U))

Where �>1B%>B is the normalized location vector of the observer, U is the viewing angle extracted
from the lookup-texture and =̂ is the normalized normal to the plane we want to rotate in:

(3.15) = =
>1B%>B × E4AC4G%>B
| |>1B%>B × E4AC4G%>B | |

Geometry Shader

Now that we know the proper final positions for the vertices, one problem remains: If the mesh
is rendered as is, some triangles behind the black hole will be stretched out immensely to cover
the entire black hole, and if they are rendered visible as a face, will obstruct vision and produce
unpleasant artifacts (see Figure 3.10). To combat this, TES passes the ‘original’ vertex position
along with the ‘distorted’ position, and the Geometry Shader discards triangles that have blown up
in size too much during their distortion (indicating that they are ‘stretching’ over the black hole).
This produces a more appropriate result (Figure 3.11)

Fragment Shader

The Fragment Shader has the sole purpose of applying color to the vertices according to the texture
coordinates passed along (and interpolated in the TES).
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3.2 Implementation

Figure 3.9: Calculation of the apparent position of a vertex
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3 Outlining the new Method

Figure 3.10: The triangle mesh (top) produces undesirable visual results when filling faces (bottom)

Figure 3.11: Heavily distorted triangles are discarded
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4 Discussion

4.1 Visual Quality

We create visualizations of different objects (An overview is provided in Appendix A) with different
lookup-textures: Fig. 4.1 shows a comparison between the raytracing visualization by GeoVis
[Mül14] and our own. Lowering the resolution of the original mesh significantly decreases visual
quality (See 4.2 and 4.3: while the outline of the triangle stays roughly the same, the texture quality
close to the black hole degrades significantly). If the original mesh only has very few or very
big triangles, the result can even be almost unusable (Fig. 4.5) Decreasing the resolution of the
underlying lookup-texture does not seem to affect visual quality as much (See 4.4), but seems to
lead to significant gaps between the first and second image of the triangle (too many triangles are
discarded in the Geometry Shader).

Additionally, it seems like just increasing the resolution of the lookup-texture can possibly decrease
the visual quality of results (See Fig. 4.9). Fixing this requires a more strict version of the method
determining whether or not a ray contains the target in algorithm 3.2 (and accordingly a smaller
step size for the integration process). Fig. 4.10 compares two such lookup-textures, both with the
same resolution, but the texture used on the right was calculated with a much less forgiving method
of determining whether a ray is ‘good enough’ or not (Note the ‘staircasing’ effect at triangle edges
on the left and the much smoother edges on the right).

Figure 4.1: Triangle 5 behind black hole, our method (left) vs GeoVis (right). (Observer Distance:
5AB, maxDist = 20, lookup-texture resolution: 1000x1000)
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4 Discussion

Figure 4.2: Triangle 3 behind black hole, our method (left) vs GeoVis (right). (Observer Distance:
5AB, maxDist = 20, lookup-texture resolution: 1000x1000)

Figure 4.3: Triangle 2 behind black hole, our method (left) vs GeoVis (right). (Observer Distance:
5AB, maxDist = 20, lookup-texture resolution: 1000x1000)

4.2 Benchmarks

All renders are done on a desktop computer with the specs shown in 4.1 in a 1280 × 720 viewport.

GPU AMD Radeon RX 5700 XT
CPU AMD Ryzen 5 3600 6 Cores@3,60 GHz
RAM 16 GB

Table 4.1: Hardware used
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4.2 Benchmarks

Figure 4.4: Triangle 5 behind black hole, our method (left) vs GeoVis (right). (Observer Distance:
5AB, maxDist = 10, lookup-texture resolution: 100x100)

Figure 4.5: Triangle 1 behind black hole, our method (left) vs GeoVis (right). (Observer Distance:
5AB, maxDist = 10, lookup-texture resolution: 100x100). Criterion for discarding
triangles fails because of their big size in the original mesh.

4.2.1 Table generation benchmarks

As seen in table 4.2, it seems like the parameters affecting runtime the most are the angular and
distance resolutions, followed by step size and n . Combined with the observation made about
diminishing returns of increased resolution implies that, when calculating a table, one should first
decrease step size and n before increasing resolution. Generating tables with a higher maxDist also
takes more time than calculating a table with the same parameters except for a smaller maxDist due
to the higher number of integration steps required for points in the outer parts of the sampled area.
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4 Discussion

Figure 4.6: Accretion disk between A<8= = 6AB and A<0G = 10AB (Observer Distance: 15 AB,
maxDist = 30, lookup-texture resolution: 200x500 (angle × distance))

Step size maxDist distanceRes angularRes n Runtime
0.01 10 100 100 0.003 25 min
0.03 10 300 300 0.003 80 min
0.05 10 300 300 0.01 40 min
0.05 20 1000 1000 0.01 8 hours
0.05 10 50 50 0.01 70 sec

Table 4.2: Different runtimes for the table calculation algorithm (n specifies the accuracy of the
generated rays, smaller means more accurate)

4.2.2 Visualization benchmarks

The visualization itself is very fast with frametimes of ≤ 1ms for all figures shown except for Fig.
4.8, where the frametime fluctuates between 10-20ms (50-100 Frames per Second (FPS))depending
on viewing direction. This is most likely caused by the amount of vertices and tessellation in the
model of Sphere 2 (See A.8), since replacing it with Sphere 1 (A.7) reduces the frametime to 2ms
(500 FPS)
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4.2 Benchmarks

Figure 4.7: Sphere 2 with radius 2AB on a circular trajectory around the black hole at angles 120°,
90°, 45°, 30°, 20°, 0°, -10° (top to bottom). (Observer Distance: 10AB, maxDist = 20,
lookup-texture resolution: 100x100)
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Figure 4.8: Sphere 2 with radius 8AB with the black hole in its center. (Observer Distance: 5AB,
maxDist = 20, lookup-texture resolution: 200x200)

Figure 4.9: GeoVis-rendering of a scene (middle) and the same scene with a low-res lookup-texture
(100x100, right) and a high-res texture (1000x1000, left)
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Figure 4.10: The same scene with textures of the same resolution, however a higher ray accuracy
on the right side
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5 Conclusion and Outlook

5.1 Conclusion

The presented method seems like a promising approach to general relativistic visualization in real
time, since it separates expensive and time-consuming calculations from the interactive part of the
visualization, enabling high framerates (compared to approaches like ray tracing). However, there
are (currently) drawbacks to this method: It seems to be rather sensitive to parameters (integration
step size, ray accuracy tolerance, original mesh size (especially when using models not intended
for this kind of application without preprocessing them)). Additionally, using numerical methods
brings with it inherent inaccuracies (although it makes transferring the model to different scenarios
easier). The method ‘as is’ also still struggles with the merging of multiple images of the same
object when it is behind the black hole. The boundary between the two images becomes very thin
when using high-resolution high-accuracy lookup-textures in combination with high tessellation
levels or fine (original) triangle meshes, but it is still visible. Another obvious limitation is the
spacial one, as the lookup-tables are only generated in a certain (spherical) space region around the
black hole. It should be possible to tackle most of these drawbacks with approaches outlined in the
next section.

5.2 Improvements/Outlook

To improve the visual quality of images, one could subdivide any triangle mesh used even before
forwarding it into the pipeline, avoiding big triangles causing effects like in Figure 4.5. This takes
more computing power however and might drastically reduce framerates. Parameter sensitivity is a
bit rougher to tackle, since it is not at all obvious which parameters lead to which inaccuracies/un-
desired results. A first step could be to determine how the integration step size (or estimated error if
a method with variable step size is used) relates to the accuracy parameter n (See also table 4.2).
A good estimate of this would increase performance of the table calculation (by increasing step
size) while maintaining accuracy (determined by n). Another approach to table calculation could
be a different sampling process - so far we have sampled uniformly in spherical coordinates, but
other methods are possible, like sampling in cartesian coordinates, or sampling something like 1/A
uniformly instead of A itself (causing more dense sampling close to the black hole, and less dense
sampling far away from it - also helping to mitigate the spacial limitations by covering a bigger area
with the same table size). For the Schwarzschild metric, there even exist analytical solutions to the
geodesic equations 2.4 - 2.7, which would remove some of the numerical inaccuracies inherent to
methods like Runge-Kutta. However, this would make it harder to transfer to different scenarios with
possibly different metrics (and geodesics). Probably the biggest potential speedup can be achieved
by parallelizing the calculation process. Similar to ray tracing, each iteration of the table calculation
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5 Conclusion and Outlook

is independent of the other ones, meaning it is possible to implement the precomputation in a highly
parallelized way. This speedup would also allow more precision during ray calculation without
having the pre-calculation span multiple days.
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A Models used

Figure A.1: Triangle 1, #triangles = 1



Figure A.2: Triangle 2, #triangles = 4

Figure A.3: Triangle 3, #triangles = 16



Figure A.4: Triangle 4, #triangles = 1024

Figure A.5: Triangle 5, #triangles = 16384



Figure A.6: Disk, #triangles = 1024

Figure A.7: Sphere 1, #triangles = 960



Figure A.8: Sphere 2, #triangles = 15360
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