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Abstract

Tangibles have shown to enrich the interaction space on touchscreens already in the early 2000s. On
early tabletop installations, camera-based systems were used for tracking tangibles. On mainstream
projected-capacitive screens, the ability to recognize objects other than fingers is limited. Lately,
researchers have utilized deep learning to bring back the capabilities of recognizing conductive
tangibles on capacitive screens. The main drawback of sufficiently working neural networks is that
they require huge amounts of data for training, domain-specific knowledge for hyper-parameter
tuning, and are often single-purpose networks. With this thesis, we propose a toolkit that allows
designers and developers to train a deep learning recognizer that is purely trained on simulated
data. Our toolkit makes use of a pre-trained Conditional Generative Adversarial Network that,
based on sketches of the footprint of conductive tangibles, simulates the corresponding capacitive
representation. Furthermore, we use this simulated data to train a deployable recognizer network.
Therefore, using our toolkit, designers require no domain knowledge or need to collect data. Our
evaluation shows that our approach can reliably recognize conductive fiducials with an average
accuracy of 99.3 % with a recognizer network solely trained on simulated data. Additionally, our
recognizer architecture can predict the tangible’s orientation with an average absolute error of
4.8◦.
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Kurzfassung

Bereits in den frühen 2000er Jahren haben sich Tangibles als Bereicherung des Interaktionsraums
mit digitalen Medien erwiesen. Auf den ersten Tabletopinstallationen wurden kamerabasierte
Systeme zur Verfolgung von Tangibles eingesetzt. Auf alltäglich verwendeten, projiziert-kapazitiven
Touchscreens sind die Möglichkeiten, andere Objekte als Finger zu erkennen, begrenzt. Zuletzt
wurde von Forschern Technik aus dem Bereich des Deep Learnings angewandt, um die Fähigkeit
zur Erkennung von leitfähigen Tangibles auf kapazitiven Bildschirmen wiederzuerlangen. Der
größte Nachteil gut funktionierender neuronaler Netze besteht darin, dass große Datenmengen für
das Trainieren vonnöten sind. Zusätzlich wird domänenspezifisches Wissen zur Abstimmung der
Hyperparameter benötigt. Die resultierenden Netze sind trotz hohem Aufwand oft nur für einen
Zweck geeignet. In dieser Arbeit schlagen wir ein Toolkit vor, mit welchem Designer und Entwickler
ein Deep Learning Erkennernetzwerk auf ausschließlich simulierten Daten trainieren können. Unser
Toolkit nutzt ein vortrainiertes Conditional Generative Adversarial Network, welches auf der
Grundlage von Skizzen des Fußabdrucks von leitfähigen Tangibles die entsprechende kapazitive
Repräsentation simuliert. Ferner verwenden wir diese simulierten Daten, um ein einsatzfähiges
Erkennernetzwerk zu trainieren. Mit unserem Toolkit benötigen Designer weder großes Fachwissen,
noch müssen Daten für das Trainieren aufgenommen werden. Unsere Ergebnisse zeigen, dass der
von uns entwickelte Ansatz es ermöglicht, aufgenommene Bilder leitender AprilTag Marker mit
einer durchschnittlichen Genauigkeit von 99,3 % zu klassifizieren. Jenes Erkennernetzwerk wurde
ausschließlich auf simulierten Daten trainiert. Darüber hinaus kann unsere Erkennungsarchitektur
die Rotation der Tangibles mit einem durchschnittlichen absoluten Fehler von 4,8◦ vorhersagen.
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1 Introduction

Interaction with digital environments has become ubiquitous to the point where the functioning
of our society depends on it. Especially, interaction with touch screen devices such as mobile
phones has increased over the recent years [20]. Our primary way of interacting with the digital
world is through a graphical user interface (GUI). Here touchscreens fulfill two functions; first,
they visualize the content of the digital world, and second they resemble the manipulable barrier
between the physical and the digital world. For GUIs, one might think that simple touch input is
sufficient, but the capacities of touch-based techniques are not even close to being fully utilized
with such input. Research tried to introduce additional input modalities to enrich present interaction
possibilities with GUIs, e.g., through the use of the palm [40], the knuckle [73], or touch pressure
as an additional modality for input [64]. While GUIs are currently our primary way to interact with
digital environments physically, earlier research envisioned and implemented so-called tangibles as
a means to embed and control digital content through physical objects [11]. Tangibles immerse
digital information in graspable, manipulable objects that reflect the coupled digital information
within so-called tangible user interfaces (TUI) [25]. The first TUIs were realized on large and bulky
tabletop installations that used camera-based tracking systems to differentiate between fingers and
tangibles, cf. [30, 59]. With the introduction of capacitive devices operated by touch input, the
manipulation of digital content was easy to implement, and thus, tabletop systems have been mostly
displaced [51]. Integrating TUIs into touch-based capacitive devices has therefore become a new
challenge for research and is, to this day, only partially solved [51, 71].

Current touchscreens and related touch-sensing technologies in consumer devices are optimized to
detect single or multiple fingers touches to initiate the actions desired by the user. Ordinary devices
are not able to distinguish which finger has triggered a touch event [41]. In fact, users can trigger
touch events using any conductive object, as long as the user grounds the object. Without any
additional software running in the background, devices simply register touch events. Additionally,
the resolution with which capacitive screens sense input is many times lower than the resolution with
which content is displayed to the user [76]. This poses the most prominent challenge for enabling
TUIs on capacitive devices; how to enable a stable detection of tangibles. Research has shown that
additional information about objects triggering touch events can be obtained if the entire contents of
the capacitive images are used [40, 50, 73]. By treating the capacitive matrix as an image containing
rich information, researchers utilized Convolutional Neural Networks (CNN), popular for extracting
information from images to detect diverse objects touching the screen otherwise classified as simple
touch events. CNNs are promising in the image domain, but a sufficiently performing network
requires a large-scale and well-annotated dataset [37, 38, 74]. Concerning detecting tangibles on
capacitive screens, this would require a comprehensive dataset containing the capacitive footprints
of all tangibles later in use. Additionally, it would be required to record new capacitive images and
repeat the training of a classifier for adding new tangibles [71].
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To avoid time-consuming data collection studies, we suggest using a simulator network as a data
source for generating capacitive images suited for domain-specific use cases. Research has shown
that Generative Adversarial Networks (GAN) can be utilized as means to circumvent the data
collection study process [6, 28]. As a simulator network, we propose using a Conditional Generative
Adversarial Network (cGAN) [53] that can be conditioned on sketches of the tangibles that are
later in use, thereby allowing us to simulate the respective capacitive images of tangibles on
capacitive touchscreens. Using a simulator network as a data source, we can obtain capacitive
images and immediately train a recognizer network to identify conductive tangibles on capacitive
screens [71].

In this thesis, we develop a pipeline that utilizes a simulator network to immediately train a
recognizer network only on synthesized capacitive footprints of fiducial tangibles. We show that
our simulator, which we trained on 10 different marker templates of 3 different sizes, can reliably
synthesize diverse unseen capacitive footprints of fiducial tangibles (e.g., AprilTags [85]) in our test
set with an average absolute pixel error of 7.9 (SD = 18.4). Additionally, we show that by using
our simulator as a data source, our recognizer architecture can classify capacitive images in our
test dataset with an average accuracy of 99.3%. With our toolkit, consisting of the pre-trained
simulator network and the recognition architecture, designers of TUIs can focus on developing new
interaction modalities on capacitive screens without worrying about hyper-parameter tuning and
data collection.
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2 Related Work

This thesis is situated in the field of tangible interaction, capacitance in HCI, and data simulation
tasks. We, therefore, structured this chapter the following: first, we give an overview of previous
research on tangibles followed by an investigation on how tangibles can enrich existing or create
new interaction taxonomies. Since our work builds on accessing the capacitive matrix of mobile
devices, we look into related work that used this data to solve diverse sets of problems. However,
the main challenge of this work is the simulation of capacitive data, which is why the last part of
this chapter deals with data generation through simulation.

2.1 Tangibles

Today, the interaction between users and digital devices is ubiquitous. With our hands as the
primary actuator, we operate user interfaces, e.g., through computer mice, keyboards, or on mobile
devices by touch. Embedding inputs into various physical objects, augmenting items with digital
information, and thereby pushing computers into the background was explored early on [67, 77,
87, 88, 89]. As an additional input modality for digital devices Fitzmaurice et al. [11] proposed
“Bricks”, a physical mechanism to enable graspable user interfaces. “Bricks” lay the foundation for
having physical objects able to manipulate virtual, graspable user interfaces. Acting as an input
device, a brick, being tightly coupled to the computer, passes on information about its position,
rotation, and selection information. They argue that using bricks can be superior to using our hands,
as the tactile feedback guards and guides users’ intention. Ishii and Ullmer [25] philosophically
called this coupling between the digital and physical world “Tangible Bits” and introduced a new
terminology for this interaction taxonomy called Tangible User Interfaces (TUI). TUIs extend
the interaction with digital devices by abstracting controls in physical objects, so-called tangibles.
Tangibles embody digital information in physical objects and enable the user to guide actions within
digital media through the physical manifestation. Not only do they sense their location, but they
were envisioned to sense their surroundings, including other tangibles as well.

Early TUI research used different approaches to track physical objects ranging from electronic
ID tags [80], over triangulation laser scanners [62] and Radio Frequency Identification (RFID)
tags [27], to electromagnetic sensing through sensing tablets [58]. The development of technology
encouraged camera-based systems as the preferred way for tracking physical objects, allowing to
recognize different shapes [69, 91], or visual fiducial markers [19, 30, 31].
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2.2 Tangible User Interfaces

Classical graphical user interfaces (GUI) are operated using a mouse and a keyboard to access data
or change visual aspects of the data representation. One might think that mice and keyboards are
tangibles since they have a physical form and manipulate digital bits. While this is partially true,
the physical representation of mice and keyboards has little to do with manipulating the digital bits;
quite unlike actual tangibles, whose physical appearance directly impacts the expected result of the
manipulation. An extensive implementation of this property was done by Underkoffler and Ishii [81].
They used tangibles in the form of buildings on a workbench to simulate and visualize different
variables of urban planning (Urp). Placed tangibles, resembling buildings, allowed shadows to be
cast depending on the daytime, mapped to a clock tangible. Different materials could be assigned to
buildings using a material-changing tangible, or airflow around the buildings could be simulated by
placing a physical wind tool on the workbench. Since the Model-View-Controller pattern (MVC)
could not represent these interactions, Ullmer and Ishii [79] introduced a new interaction model
for TUIs called “MCRpd”, short for model-control-representation (physical and digital). This
revised model splits the view component of MVC into a graspable, physical representation of
digital information (realized through tangibles) and a non-graspable, digital representation (realized
through video projection or sound). The control component is coupled tightly with the physical
representation enabling mechanisms for interactive control. In turn, the physical representation is
“perceptually coupled to actively mediate with the digital representation” [79]. As an example, the
physical representation of the time-tangible by Underkoffler and Ishii [81] gives the user control
over changing the digital representation of, for example, the cast shadows of buildings. Other basic
design principles were explored by Ishii [24].

Many applications implementing TUIs made use of tabletops as a ground plane for placing tangibles.
Some research used the Microsoft Surface (later rebranded PixelSense [52]) to build TUIs [2, 5].
Jordà et al. [30] built the reacTable, a tabletop installation using multiple different tangibles to
compose music. By pairing or placing building blocks on the tabletop, each of which modulates
or generates a sound, users can assemble live music pieces. Using an infrared camera, they were
able to track fingers and tangibles from beneath the tabletop surface. The tangible tracking was
performed using reacTIVision fiducials at the bottom of tangible objects [31]. Jordà [29] later
argues that by arranging tangibles on the reacTable, a horizontal, circular tabletop was envisioned
to support collaboration because data can be controlled in real-time by multiple users. Zufferey
et al. [101] used cameras and ARTag fiducials for a paper-based tangible tabletop simulation. Olwal
and Wilson [56] combined computer vision techniques with RFID technology to take advantage
of both approaches. Using RFID allowed them to recognize which tangibles are placed on the
tabletop while computer vision allowed locating objects. Dalsgaard and Halskov [9] presented a 3D
tangible tabletop that uses three projectors that allow augmenting the tangibles and the tabletop with
additional information, e.g., augmenting a physical object to act as a lens on a map that is projected
onto the tabletop. The tangible tracking was performed with a camera under the translucent table
using reacTIVision fiducials [31]. Pedersen and Hornbæk [59] also made use of reacTIVision
fiducials to realize tangible bots. Their setup is similar to that of Jordà et al. [30]. A projector
and two cameras underneath the tabletop surface were used to augment the surface and finger
and fiducial tracking, respectively. The motorized tangible bots and the tabletop implemented
multiple interaction techniques, including, for example, haptic feedback through motor activation,
and interaction assistance through visual guidance. Additionally, group interactions allowed to
group multiple active tangibles and control them by interacting with only one group member. [44]

14



2.3 Application Examples of Tangibles on Capacitive Screens

present Geckos, tangibles for pressure-based interaction. Using pressure-sensitive foil and unique
tangible footprints, they could track and identify different physical objects. One tangible object
could be used for multiple functions because its footprint can be dynamically changed by magnets
retracting certain metallic parts of the footprint used for detection.

TUIs are considered superior to GUIs by some researchers [10, 11] because they can create
environments used for collaboration, learning, and planning. To this day, TUIs are hardly used in
everyday life, if at all. Although using a GUI may be objectively more practical, a well-implemented
tangible interface allows users to experience a physical interaction with a digital environment
that provides haptic feedback, creates a high level of realism, and thus generates a more positive
subjective perception [100]. However, it is essential to analyze when a TUI is preferable to a GUI
since expensive hardware is often required, and task efficiency might suffer.

2.3 Application Examples of Tangibles on Capacitive Screens

With thinner form factors, lower cost, and greater accessibility of the wide crowd, devices with
capacitive sensing technologies displaced camera-based tabletops. Capacitive sensing on mobile
devices can be classified as surface-capacitive and projected-capacitive techniques [55]. For
surface-capacitive techniques, a capacitive layer with four synchronized electrodes at each corner
senses contact with a conductive object. This technique does not recognize multiple touches at the
same time. Projected-capacitive techniques use two separate conductive layers, one of which senses
contact with conductive objects horizontally and one vertically, thus allowing to capture multiple
touches at different x and y positions. Modern smartphones and tablets utilize the technique of
projected-capacitive [4]. However, the resolution with which current commercial capacitive screens
sample input is low, making the detection of small structured elements like tangibles hard.

To overcome these limitations, researchers introduced various techniques to realize the usage of
physical objects on capacitive platforms [36, 46, 66, 96]. Yu et al. [95] built TUIC, a technique
that can simulate finger touches. TUIC utilizes passive materials and a frequency modulator to
encode information in a low resolution spatial tangible. By modulating, for example, IDs through
touch activation at specific intervals, they could decode this information to trigger certain actions,
e.g., opening a keyboard or unlocking a device. However, their approach requires the user to touch
the tangibles to be recognized by the screen. Additionally, the tangibles must be equipped with
batteries; otherwise, the frequency modulation can not be achieved. To overcome the problem of
having to touch and thereby ground the tangibles, passive tracking tangibles can be used [83, 84].
However, these types of tangibles are fabricated in specific ways for being recognized passively.
Chan et al. [8] enriched touchscreen interaction with CapStones and ZebraWidgets. Their tangibles
consist of multiple building blocks stacked on top of each other. Combining these building blocks,
they can sense the number of elements incorporated and thus trigger different functionalities based
on the activated conductive elements of the tangible’s footprint. Xiao et al. [93] paired devices
using the capacitive screen of one device and the camera of the other. Pairing works through
selectively activating specific LCD pixels. By estimating the position of the rear camera using a
contour-based approximation of the device dimensions through capacitive images, said pixels under
the rear camera are activated. By illuminating the pixels in certain colors in specific sequences, they
could transfer data with a throughput of 150 bits per second. Project Zanzibar by Villar et al. [82]
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presents a portable TUI. The flexible mat utilizes capacitive sensing to detect hovering gestures,
touch, rotation of placed conductive objects, and up to 16 tangibles placed on it. Through NFC, the
mat can identify and communicate with tagged objects up to 30mm above it.

A large body of research looked at how to 3D-print tangibles for capacitive surfaces [13, 14, 15, 22,
34, 35, 70]. 3D printers allow designers to quickly fabricate geometric shapes previously modeled
using digital tools. Typical 3D printers can switch between the materials they use for printing,
allowing them to print both conductive and normal polylactide in one printing session. Schmitz
et al. [72] built Flexibles, flexible tangibles that can sense spatial and intensity deformation. The
key contribution of this work is informing designers how to build deformation-sensitive tangibles
for capacitive screens using standard 3D printers. 3D-Auth by Marky et al. [48] tries to extend
authorization processes on capacitive touch devices by using different 3D-printed tangibles as
the secret for authorization. A problem most tangibles on capacitive screens have is that they
occupy large areas of valuable screen space. Unlike tabletop displays that span 40", commercial
smartphones only span around 6" and tablets around 10". Schmitz et al. [71] built Itsy-Bits,
tangibles for capacitive screens with small footprints to cover as little display as possible. They
fabricated 40 distinct tangibles (10 different shapes in 4 sizes) and recognized them on screen
using a Convolutional Neural Network (CNN). Their CNN approach allowed them to recognize the
different markers and sizes and approximate the tangibles’ orientation. This work eases the process
of detecting small tangibles on capacitive screens.

On tabletop TUIs, the tangibles are mostly tracked by camera-based systems and identified through,
for example, RFID. A small portion of researchers tried to identify and track tangibles on capacitive
devices by using conductive fiducials and their resulting capacitive footprint. Ikeda and Tsukada
[21] built markers that are conductive on one side and have a visual fiducial on the other side,
allowing the markers to be detected by both a camera (using the visual fiducial side) and the
capacitive screen. With ForceStamps, Han et al. [16] present a pipeline for rapid prototyping of
3D-printed fiducial conductive markers to enable physical controls for pressure-sensitive touch
surfaces. Their work guides designers in how to build and utilize them in different applications.
However, they still discovered problems in correctly identifying fiducials the moment they touched
the screen. In addition, they note that currently, the design of physical markers is dependent on two
things: the physical size of the devices on which the tangibles will be used and the resolution of the
capacitive matrix. Although the trend went towards ever-larger devices, the capacitive resolution
remained low. This problem was addressed by Mayer et al. [51] with Super-Resolution Capacitive
Touchscreens. By borrowing super-resolution techniques from biology and astronomy, they could
reliably upscale low-resolution capacitive images. Their technique scales up conductive objects on
capacitive screens, so the details that are otherwise hidden become visible. They show standard
and up-scaled capacitive images of different conductive objects, e.g., coins, keys, or AprilTag [85]
fiducials. They show the feasibility by using an out-of-the-box AprilTag detector and show a
significant increase of detection rate between standard and super-resolved images.

Previous work shows that TUIs on capacitive devices can enrich the current interaction space.
However, ordinary capacitive screens are limited by their resolution making the detection of
tangibles hard. To identify tangibles on capacitive screens, researchers used their unique footprints
that imitate multiple finger touches [95]. Schmitz et al. [71] envisioned different shaped physical
objects with small footprints and utilized a DCNN to identify them based on the capacitive matrices.
Neural networks require vast amounts of data to train sufficient recognition models. One way to
gather them is through simulation.

16



2.4 Generating Data using GANs

2.4 Generating Data using GANs

With the introduction of GANs by Goodfellow et al. [12] in 2014, the training of neural networks that
generate data and match a data distribution took a huge step. GANs are composed of two separate
adversarial networks, namely a generator � and a discriminator �, that try to minimize their own
loss while maximizing the others’ in a minimax-game. � tries to generate images indistinguishable
from real images, while � tries to determine if images are from the data distribution or from �.
In the classical GAN formulation, � learns a mapping from a latent noise space ?I to the data
space ?30C0. To prove their concept, they generated new samples of different datasets, including
handwritten digits from MNIST [42] and low-resolution images from CIFAR-10 [37]. Where in
the original GAN formulation, � and � could be any differentiable function, i.e., a multilayer
perceptron, Convolutional Neural Networks (CNN) were found to be appropriate for image modeling
tasks [63]. Over the course of 7 years, GANs have evolved rapidly and have found use in e.g.,
producing high-resolution photorealistic images [7, 32, 33], generating 3D shapes [92], resolving
blurry images [43, 94, 97], or enhancing audio signals by denoising [57]. Streli and Holz [76]
implemented a Wasserstein GAN [3] to upsample low-resolution capacitive images of finger touches
to make adjacent touches more distinguishable. Goodfellow et al. [12] state that instead of generating
random images by sampling from the latent noise space, both� and � can be conditioned on certain
information H by passing it as additional input to � and �. Mirza and Osindero [53] introduced
Conditional Generative Adversarial Networks (cGAN). CGANs give specific control over what the
output will look like. CGANs condition both generator and discriminator on the multimodality of
the data. Therefore bot can learn the data distribution of different classes rather than that of the
entire dataset. Say the distribution to be learned is of pictures of garments. With classical GANs, a
noise vector I from the latent space produces samples that can be anything from, for example, a shoe,
a sweater, or a hat. With cGANs, one can exclusively sample shoes or exclusively sample hats by
passing a class information representation. Instead of conditioning on class labels, Reed et al. [65]
conditioned their GAN on text, allowing them to synthesize images based on text descriptions.

Image-to-image translation is a challenge in computer vision. These problems define a source
domain - , a target domain . , and the objective is to learn a function 5 : - → . that maps images
G ∈ - from the source domain to images H ∈ . of the target domain. It has been found that
cGANs can cope with these kinds of problems. Isola et al. [26] propose pix2pix, an cGAN for
image-to-image translations. Their generator is a U-Net [68], a unique form of an encoder-decoder
network [18], that uses skip connections from encoder layers directed to decoder layers in order to
pass over information that might otherwise get lost during the encoding step. Their discriminator, a
Markovian discriminator [45] which they call PatchGAN, is a deep convolutional neural network
(DCNN) that, instead of classifying if a whole picture is real or fake, classifies if # × # patches
are real or fake. Isola et al. [26] prove their architecture by conditioning their cGAN on several
problems, among which fall generating photo-realistic images from segmentation maps, generating
segmentation maps from photos, coloring images, or generating satellite images by conditioning on
maps. Zhu et al. [99] extend the image-to-image translation to a cyclic translation, simultaneously
learning two mappings, one from domain - to domain . and one from . from - . Recently, Hao
et al. [17] translated pixelated Minecraft worlds into photo-realistic scenes utilizing GANs. Their
approach renders high-quality scenes from low-resolution information.
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One promising application domain for image-to-image translation GANs is synthesizing new, unseen
data. This simulated data can then, in turn, be used to train classifiers without the need for recorded
datasets, as the generated data may already have labels attached to it [6, 98]. Jahanian et al. [28]
trained classifiers by utilizing implicit generative models [54] as dataset synthesizers, while having
no control over the training data of the generative models. Based on their results, they propose to
include GANs as a viable data source for training tasks of image-based neural networks.

2.5 Summary

In this thesis, we synthesize capacitive images of fiducial markers using an cGAN to ease the process
of data collection and train recognizer networks solely on simulated data. These recognizers can
be used to identify active tangibles equipped with conductive fiducials on capacitive touchscreens.
Thus, we presented an overview of tangibles and their application within TUIs. Such TUIs
give a physical meaning to digital information and enable digital manipulation through physical
interaction [25, 79]. While early research about TUIs utilized large tabletop installations that mainly
used cameras for tangible tracking, recently, researchers tried to enable tangibles on capacitive
sensing surfaces [36, 46, 51, 66, 71, 96]. One way for identification of tangibles on capacitive
screens is to use CNNs, which perform well in image recognition tasks [71]. While CNNs and
other types of neural networks require vast amounts of training data, GANs [12] and other types of
generative networks can function as a form of a dataset by synthesizing new training data [28]. Next,
we will discuss how we collected our ground truth capacitive images used for training, validating,
and testing our cGAN.
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3 Data Collection for Simulator

Our objective is to simulate capacitive images. We define our simulation problem as a mapping
from conductive marker image space to capacitive image space. We fabricated and recorded a wide
range of conductive fiducial markers on a capacitive touchscreen to train and test our simulator.
Our collected data comprises a total of 448,261 capacitive frames of 120 recorded fiducial markers.
The following section describes how we recorded the ground truth capacitive images and the
pre-processing steps required for training our cGAN.

3.1 Apparatus

To record our ground truth capacitive data, we used a Samsung Galaxy Tab S2 SM-T813. The
display spans 9.7", having a resolution of 2048 × 1536px. Since commercial smartphones and
tablets rarely grant permissions for accessing the capacitive screens’ matrix, we flashed a custom
kernel onto the device to access the 37 × 49 capacitive images (6.33PPI, 4.0127mm per pixel). We
developed an application that logs the capacitive matrices at a sample rate of 9FPS.

In line with prior work, e.g., [50, 71], we tracked the rotation of the capacitive markers using an
OptiTrack-V120:Trio, an optical motion capture system, which records motion data at 120FPS. We
calibrated the upper left corner of the tablet as the origin of the tracking area. Using three reflective
markers attached to a custom apparatus, we defined a Motive rigid body to track the orientation of
the tangibles relative to the tablet.

Since we collect capacitive data on the tablet and OptiTrack data in Motive simultaneously, we
captured each data point with a continuous timestamp. For later timestamp synchronization, we
connected the computer running Motive and the tablet sampling the capacitive images (using an
application called ClockSync) to the same NTP server.

As capacitive markers we used 2 Types of fiducials, AprilTags of tag family 16h5 and of tag family
36h11. Each fiducial was built with 3 different Sizes per pixel (4, 6, 8mm). For each Type we built
15 markers which resulted in a total of 2 × 15 × 3 = 90 fiducial markers. Additionally, to ensure
the generalization ability of our simulation we built 10 custom shapes with three different Widths
(8, 12, 16mm). Combining the custom shapes with the AprilTag fiducials, we built a total of 120
capacitive markers. Figure 3.1 shows two AprilTag markers of Type 36h11 and 16h5 in all Sizes.

The construction process for each physical marker was the same. We scaled the graphics of the
markers to the intended Sizes and cut them out on aluminum foil which was attached to thin
cardboard. Additionally, we added an extra strap to each physical marker so the current can flow
into the recording person’s finger without touching the capacitive display. The cut-out markers were
then attached to a 5mm thin foam plate.
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3 Data Collection for Simulator

Figure 3.1: Comparison of the physical fiducial markers 4836ℎ11, 2116ℎ5 in all Sizes.

3.2 Procedure

Using double-sided adhesive tape, we attached the tablet to our recording table. With the three
reflective markers on the corners of the tablets’ display, we calibrated the OptiTrack system, setting
a ground plane and the direction of the tracking axes.

Before each recording, we synchronized the tablet’s and computer’s local time to the same NTP
server. We attached our rotation tracker to the tangibles using velcro adhesives. Subsequently, we
started the recording application on the tablet and the Motive recording on the computer. Using
circular motion on the tablet while simultaneously manipulating the markers’ yaw axis, we captured
multiple frames of every marker in all rotations. To record clear capacitive images, we were
grounded by touching the tablet frame.
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3.3 Pre-processing & Data Augmentation

Figure 3.2: Our data capturing setup showing the OptiTrack-V120:Trio that streams motion data
of the rigid tracking body attached on the physical markers to our Motive PC. Simul-
taneously we record capacitive images on a Samsung Galaxy Tab S2 of conductive
fiducials.

3.3 Pre-processing & Data Augmentation

To generate our dataset, we mapped the recordings of the capacitive touch screen to the rotational
data captured via OptiTrack using time stamps. Given OptiTrack’s documented system latency of
8.33ms, we manually matched the sub-latency shifts by visually comparing the orientation and
change of the capacitive image to the corresponding recorded angles. In total, we recorded 448,261
capacitive frames over the course of 13h and 41 min. We recorded each marker for an average
duration of 6min 51sec (SD = 33sec). We identified all capacitive blobs (an imprint of the fiducial
maker) during pre-processing by finding the contours [78] on a thresholded and flipped version of
the capacitive image. We flipped the capacitive images to match the imprints to the footprints of
the physical fiducial markers. Here, we removed all images without any fiducial markers present.
Next, we cropped a 32 × 32 patch around the center of the blob. This allows us to recognize fiducial
markers with a diameter of up to 128mm (32dots * 4.0127mm dot pitch). For data augmentation,
we rotated each 32 × 32 sample 3 times by 90◦, adding three times the amount to the initial data.
Thus, we are left with 1,699,044 samples (655,392 36h11 AprilTags, 640,684 16h5 AprilTags, and
402,968 shapes). Finally, we clipped the capacitive image values between 0 and 255 and normalized
the resulting images between -1 and 1 to help the training process. Figure 3.3 highlights the steps
performed for each capacitive matrix without the normalization step.

21



3 Data Collection for Simulator

0 6 12 18 24 30 36

0

8

16

24

32

40

48

(a)

0 6 12 18 24 30 36

0

8

16

24

32

40

48

Bounding Box
Blob
centre

(b)

0

25

50

75

100

125

150

175

200

Figure 3.3: Pre-processing pipeline of capacitive images collected during our data collection. Image
a) shows an example 37 × 49 capacitive image of a capacitive marker (7036ℎ11, 8mm)
gathered during our data collection. Image b) visualizes the steps required to extract
capacitive blobs from our recordings. First, we clip the image between 0 and 255 and
find the center (depicted by the orange point) and the fiducial marker’s bounding box
(orange square). Next, we crop a 32 × 32 patch around the center (light blue square) to
extract the capacitive blob. If the borders of the patch exceed the screen’s dimensions,
we fill the exceeding pixels with zero values.

22



4 Recognizer Pipeline

To help designers create applications that work with capacitive images and conductive tangibles, we
envision a pipeline that outputs a trained neural network that can differentiate between multiple
capacitive markers and predict their current rotation. The key feature of our pipeline is that no
recorded capacitive data is required to train our recognizer. Our pre-trained simulator network
provides all training data. Our simulator network only needs to be trained once in order to simulate
capacitive footprints of conductive fiducials. Additionally, there is no need to collect capacitive data
when adding new markers to a marker set of an envisioned application. Designers and developers
need to restart the pipeline and add the new marker to the marker set to be simulated. The resulting
recognizer network is trained on the additional marker and can distinguish it from others. This
section covers the pre-processing steps that are required to prepare the data for training the simulator
network. We explored multiple network architectures for our simulator network components and
our recognizer model. We explain the best performing network structures of the components of our
simulator network, our recognizer network, and how they are interconnected to form our pipeline.

4.1 Pipeline Pre-processing

We call the final set of data obtained after our pre-processing and data augmentation step �( (see
Section 3.3). �( contains paired data {GC , G2 , G0} of templates GC , capacitive recordings G2, and
recorded angles G0. We excluded the shape recordings from �( and put them into a separate dataset
�((ℎ0?4. The sketches of these shapes are displayed in Figure 5.5 (a). To train, validate, and test
the simulator network, we used all recorded AprilTags of Types 16h5 and 36h11. More specific,
we split �( into two sets: one to train and validate the simulator network �(��# , and one to
test the capabilities on simulating unseen data �(' monitored through a recognizer network '.
We split the data, so that one AprilTag in all Sizes is either in �(��# or �('. This guarantees
no occurrence of overfitting between the simulator network and the recognizer network. �(��#
contained 5 different AprilTag ids of Type 16h5 and 5 different AprilTag ids of Type 36h11, see
Figure 4.3. �(' therefore contains the remaining 20 ids (10 of Type 16h5 and 10 of Type 36h11),
see Figure 4.4. In total �(��# contained 433,664 samples and �(' contained 862,412 samples.

Subsequently, to train and validate our simulator network we split the marker set �(��# into the
subsets �(CA08=

��#
and �(E0;

��#
used for training and validation, respectively. We, therefore, used a

70%/30% split, resulting in 303, 565 samples in �(CA08=
��#

and 130, 099 samples in �(E0;
��#

. While
this could potentially lead to overfitting, the simulator network has to generalize beyond the markers
used for training. This can be seen when training ', where the simulator network has to generate
markers contained in �(' that are not used during the training of our simulator. Therefore there
is no reason for a test set for the simulator network as the recognizer models will highlight any
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Figure 4.1: This image shows the training pipelines and the usages of our different models. Image a)
shows the training process of our cGAN. Image b) shows the training of our recognizer
network on a specific marker set where we use the frozen generator component acquired
from step a) to generate our training data. Image c) depicts the usage of a fully trained
recognizer network deployed on an end-device used to infer classes and rotations of
capacitive fiducial marker observations.

weakness of the simulator network. Because we train our recognizer models only on synthesized
data, we do not need to split �(', allowing us to use 100% of our test set (862,412 samples) to
evaluate our recognizer models.

4.2 Simulator Network

Generative models have been shown to accomplish similar tasks to ours, e.g., style transfer [26,
99]. A generative model G tries to replicate a data distribution ?�0C0 (H) with H being the ground
truth images by generating images H̃ ∈ ?#>8B4 (I). However, instead of a classical GAN [12], that
tries to map a noise distribution ?#>8B4 (I) to a data distribution . , � (I) → H with H ∈ . , we use
an cGAN, a refined GAN that can be conditioned on a given input. In our case, we condition our
cGAN on templates of fiducial markers (GC ). We train our simulator network using the dataset
�(CA08=

��#
introduced in Section 4.1, to learn a mapping from structural information of templates GC

to capacitive images G2 . Thus, G is a mapping � (GC ) → H6.

4.2.1 Simulator Network Objective

During our training process of the cGAN, the discriminator � tries to detect if an image is a fake
image (simulated image) or a real image. On the other hand, generator � wants to produce better
quality images to fool the discriminator (see Figure 4.1a)). This behavior can be expressed as:

(4.1) �∗ = arg min
�

max
�
L2��# (�, �)

Traditional GANs and various cGANs use a noise vector I to produce output that is not determinis-
tic [86]. However, often the model learns to ignore the noise [26, 49]. One common approach to
overcome this issue is to embed Dropout layers [75] into the model structure during training to
generate non-deterministic output, which will allow the generation of a wider range of outputs [26],
in our case, simulated capacitive markers G6. As we do replaced the typical noise vector I with
Dropout layer, our adversarial loss !2��# (�, �) can be described as the following:

(4.2) L2��# (�, �) = EGC ,G2 [log� (GC , G2)] + EGC [log(1 − � (GC , � (GC ))] .

24



4.2 Simulator Network

a) Generator Network
CNN

CNN + BatchNorm
+ MaxPool

Dense + BatchNorm

CNN + MaxPool

Upsampling
+ CNN + BatchNorm

Concatenate

b) Discriminator Network Input/Output

Skip Connections

c) Recognizer Network

y

xc / yg

32
x3

2x
32

xt

32
x3

2x
32

8x
8x

12
8

4x
4x

25
6

16
x1

6x
64

4x
4x

1

64
x6

4x
16

12
8x

12
8x

1

32
x3

2x
1

32
x3

2x
64

16
x1

6x
12

8

8x
8x

25
6

4x
4x

51
2

8x
8x

51
2

16
x1

6x
25

6

32
x3

2x
1

yg

64
x6

4x
32

12
8x

12
8x

1

xt

Upsampling + CNN

CNN + BatchNorm

Dropout*

xs

32
x3

2x
64

16
x1

6x
12

8

8x
8x

12
8

32
x3

2x
1

16
x1

6x
64

8x
8x

12
8

4x
4x

64

ya

51
2 2

yc

n

8x
8x

12
8

51
2

4x
4x

64 *

**

*

*

*

*

*

Figure 4.2: The structures of the different networks used in this work. a) is an encoder-decoder
network with skip connections that uses templates as input and produces the respective
capacitive images. b) shows the discriminator structure that is a CNN that distinguishes
4× 4 patches of the input image as real or fake. c) shows the structure of our recognizer
used to classify capacitive images and predict the orientation of conductive tangibles.

Moreover, prior work has shown that it is beneficial to only relay on the discriminator loss but also
on traditional losses [26], e.g., L1 loss. Thus, we add the L1 loss (pixel-wise loss) of � defined as

(4.3) L!1(�) = EGC ,G2 [‖G2 − � (GC )‖1]

to the initial objective function with a weighting parameter _. This results in the final objective
function:

(4.4) �∗ = arg min
�

max
�
L2��# (�, �) + _ ∗ L!1(�)

We weigh the pixel-wise loss 100 times more than the adversarial loss.

4.2.2 Generator

We define the objective of our generator � as a style transfer objective. Here, � learns to apply
a style from images H of a target domain . to images G of a source domain - , thus � : - → . .
In our case, � learns the mapping from templates GC to respective capacitive images G2, thus the
objective of our generator can be described as � : ) → �, with � (GC ) = H6. � is a special type of
encoder-decoder network [18], called U-Net [68], which was also utilized by Isola et al. [26] with
Pix2Pix. � encodes its input in downsampling layers and applies the style transfer in its upsampling
layers. Additionally, skip connections pass partially encoded information from downsampling layers
to upsampling layers. Therefore, information that otherwise might get lost during later encoding
steps can enrich the information space while decoding.

Model Structure

As shown in Figure 4.2 a), our generator is an encoder-decoder network. It has a total of 5,942,369
parameters. The structure of our generator is a modified version of the Pix2Pix model by Isola et al.
[26]. We chose to modify the Pix2Pix model as it comprises simplicity but also produces strong
results. Our encoder uses modules of structure 2D Convolution - LeakyReLU [47] - BatchNorm [23]
- MaxPooling, which we call Conv-Block. Our decoder uses modules of structure Upsample2D - 2D
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4 Recognizer Pipeline

Convolution - ReLU - BatchNorm, which we call Deconv-Block. A Conv-Block downsamples the
input by a factor 2 using MaxPooling with a pool size of 2 × 2. Deconv-Blocks upsample their
input by a factor 2.

The input layer of our encoder is Conv-Block1 without BatchNorm. The 2D convolutions in this
layer are performed with 32 filters. After the input layer, 4 consecutive Conv-Blocks2,3,4,5 follow
with 64, 128, 256, 512 filters, respectively. To avoid deterministic outputs we employ a Dropout layer
after the last Conv-Block with a dropout rate of .5. The decoder receives the output of the Dropout
layer and passes it through two Deconv-Blocks1,2 with 256 and 128 filters, respectively. We add
skip connections from Conv-Block4 to Deconv-Block1 and from Conv-Block3 to Deconv-Block2.
The last Deconv-Block is followed by an Upsample2D layer and a Conv2D layer to map to the
number of output channels of the image (in our case with filter size 1).

All convolutions have a kernel size of 4 × 4 with a stride of 1. We use LeakyReLU units in the
encoder with a slope of .2 and standard ReLu units are used in the decoder. Each BatchNorm unit
has a momentum of .8. We initialized the weights of the generator from a normal distribution with
` = 0 and f = .02. Our generator � was trained with an Adam optimizer with a learning rate of
.0002 and the momentum parameter V1 = .5, V2 = .999.

4.2.3 Discriminator

The discriminator � is the adversary of our generator � described in Section 4.2.2. We adopt
the PatchGAN discriminator by Isola et al. [26], which is a Markovian discriminator [45] that
distinguishes if # × # patches of the input are either real or fake. This has shown to enforce � to
produce less blurry images. Additionally, PatchGAN discriminators have fewer parameters than
classical discriminators, making them faster to train and run. � and � are conditioned on the
templates GC used to produce the capacitive recordings G2 or simulating capacitive images H6.

Model Structure

As shown in Figure 4.2b), our discriminator � is a Convolutional Neural Network (CNN). It has a
total of 736,337 parameters. It has two input branches, one branch for 32 × 32 capacitive images
and one for 128 × 128 templates for conditioning �. The first branch adjusts capacitive images
to the same dimensions as the result of the second branch. The second branch is the input for
conditioning � on geometric templates GC . Here, the templates are passed through two blocks
consisting of 2D convolutions (4 × 4 kernel with a stride of 2) activated by a LeakyReLU unit and
followed by a BatchNorm unit. This results in the convolved templates having the same shape as
our capacitive images from the first input branch. The output of both branches is concatenated and
fed through three blocks consisting of 2D convolutions (4 × 4 kernel with a stride of 2) activated by
a LeakyReLU unit and followed by a BatchNorm unit (except for the first block). Finally, the output
of � is a 2D convolution with 1 filter to match the input channels of our capacitive images and
a kernel size of 4 × 4 with a linear activation function. Thus, resulting in 4 × 4 patches that are
classified as either real or fake.
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Figure 4.3: Images of the AprilTag fiducials used for recording the training data for our simulator
network.

See Figure 4.2b) for the number of filters used in each 2D convolution layer. Our discriminator �
was trained with an Adam optimizer with a learning rate of .0002 and the momentum parameter
V1 = .5, V2 = .999. We initialized the weights of the discriminators from a normal distribution
with ` = 0 and f = .02. All LeakyReLU units have a slope of .2. Each BatchNorm unit has a
momentum of .8.

4.2.4 Simulator Network Training

As proposed by Isola et al. [26], we train our simulator network consisting of� and � by alternating
between a gradient descent step on �, followed by a gradient descent step for � for each batch. We
trained the generator and discriminator for 500 epochs with a batch size of 128. Every 20 epochs,
we saved a checkpoint containing weights and biases of both networks. The checkpoints allowed us
to reload the state of the training phase in which both the generator and the discriminator performed
well in terms of the desired recognition rate of generated and real images by � and the performance
of � in generating realistic images (in terms of L1 loss between real and generated images). The
training time for the generator model was 66 hours on an Nvidia Tesla V100.

The task of � is to generate 32 × 32 capacitive images H6 based on templates GC representing the
footprint of fiducial markers. Initially, we built � to generate H6 based on 32 × 32 representations
of the templates. However, we found it beneficial to reduce the density of information stored in one
pixel by increasing the overall size of the template passed to �. Thus, we scaled GC by a factor of 4.
Therefore, � expects input templates of size 128 × 128px. See Figure 4.3 for the unscaled marker
templates used for training the simulator network.

To increase the variance of our training set "CA08=, we shifted templates GC by ±4 and ground truth
capacitive images G2 by ±1 in random x and y directions. The training time for the generator model
was 66 hours on an Nvidia Tesla V100.
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4 Recognizer Pipeline

4.3 Recognizer Network

Our recognizer network ' is a CNN that determines the class H2 and the rotation H0 given the
capacitive image GB of a conductive fiducial. Thus, '(GB) → H2 , H0. These models are common for
image recognition tasks, even in the domain of capacitive images [39, 71, 73].

4.3.1 Model Structure

Figure 4.2 c) shows the structure of our recognizer '. The input consists of a normalized 32 × 32
capacitive image between -1 and 1. It is passed through two blocks, each applying two layers of 2D
convolution (3 × 3 kernel, stride of 1) followed by a BatchNorm layer, a MaxPooling layer, and a
Dropout layer with a dropout rate of 0.4. The output is split into two separate branches, a rotational
regression branch, and a classification branch. Each branch passes its input through one of the
aforementioned blocks whose output is flattened and passed through a fully connected hidden layer,
followed by a BatchNorm layer and a Dropout layer with a dropout rate of 0.4. Finally, the output
layers for the classification branch, which uses a softmax activation function, and the rotational
regression branch, which uses a linear activation function, follow. The number of output neurons for
the classification branch is dependent on the number of classes = on which we train our recognizer
'. The number of classes = also impacts our recognizer networks parameter count (n=2: 1,758,788,
n=10: 1,762,892, n=30: 1,773,152, and n=60: 1,788,542).

4.3.2 Loss Function

Contrary to related work by, e.g., Mayer et al. [50], our recognizer predicts the sine and cosine
components of the angle H0 of marker observations GB, as suggested by White [90]. Schmitz
et al. [71] also used the sine and cosine components of the predicted angle but calculated them
post-prediction. We calculate the predicted angle 0 of our recognizer ' as:

(4.5) 0 = 0A2C0=2(?A43B8=, ?A432>B),

where ?A43 is the rotation branch output H0 of '. For our rotational regression branch, the network
tries to minimize the error

(4.6) L�=6;4 (') =

√√√
1
#

#∑
8=1
(0.5 ∗ ((CAD4B8=,8 − ?A43B8=,8)2 + (CAD42>B,8 − ?A432>B,8)2))

The loss for our classification branch is a categorical crossentropy with

(4.7) L�;0BB (') = −
1
#

#∑
8=1

;>6?' [H8 ∈ �H8 ] .

The final objective of our recognizer is described by

(4.8) '∗ = 0A6 <8=
'
L�=6;4 (') + L�;0BB (').
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Figure 4.4: Image showing the different AprilTag fiducials contained in our test set. We recorded
each marker with pixel sizes of 4, 6, and 8mm.

4.3.3 Recognizer Network Training

The unique feature of our recognizer ' is that it is trained exclusively on simulated data. We trained
' using an Adam optimizer with a learning rate of .001. We used a batch size of 64 and set the
number of training epochs of ' to 400. However, we applied early stopping with patience of 20,
monitoring the combined loss of the classification and rotation branch. The training time for a single
recognizer is between 0.07h and 7.38h on an Nvidia Tesla V100; however, the time is impacted by
the class count and the monitored loss during training (n=2: .07h, n=10: 1.17h, n=30: 3.42h, and
n=60: 7.38h).

The goal of ' is to correctly classify capacitive fiducials and predict their rotation, while being
trained solely on simulated data (see Figure 4.1 b)). The simulated data depends on the fiducials that
will be in use during inference on an end-device. We, therefore, generate a marker set " containing
all permutations of templates GC in all rotations (1◦ steps in [0, 360◦)). Additionally, we shift each
template permutation in " by ±4 as performed during the simulator training (see Section 4.2.4).
This increases the variance and counteracts inaccurate blob detections on the end-device, where the
detected blob GB may not be exactly centered for '’s input. As an example, a designer wants to use
10 fiducial markers during inference. The number of simulations used for training can therefore be
calculated as: #<0A:4AB × #A>C0C8>=B × #Bℎ8 5 CB = 10 × 360 × 9 = 32, 400. In turn, we simulate
one fiducial marker in 3240 different states.

To counteract overfitting and to add more variance to our training set, we add Perlin noise [61] to
the activated areas of simulated capacitive markers H6.
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5 Evaluation

The goal of this thesis was to develop a pipeline that utilizes a pre-trained simulator as data
generator for training recognizer networks. Our simulator network synthesizes training data in the
form of capacitive footprints of conductive fiducial markers. We trained each recognizer network
with synthetic capacitive data of markers which our simulator network has not seen before. We
tested our trained recognizer network only on recorded capacitive images. When evaluating our
trained recognizer networks, we considered both the classification accuracy, and the absolute
errors between the predicted rotation H0 and actual rotation G0 of the recorded capacitive images
G2. By using recordings of markers unknown to our simulator network, we infer insights into
the generalization ability of the simulator. Thus, instead of deploying each trained recognizer
model on an end-device for evaluation, we treated our recorded capacitive data as new, previously
unseen marker observations (see Figure 4.1c). When inferring baseline metrics, we could not pass
two-dimensional image data to the machine learning algorithms. We therefore flattened each 32×32
capacitive simulation for training and each 32 × 32 recorded capacitive blob into a one-dimensional
feature representation of length 1024. We performed a grid search on the number of estimators for
each baseline evaluation to find the best parameters. The overall results, including Random Forest
baselines for all evaluations, are listed in Table 5.1.

We built our complete software stack for evaluation and visualization in Python 3.8.10 to enable
rapid prototyping. For image processing and manipulation, including value clipping, normalization,
and blob detection, we used OpenCV 4.5.3. For our baseline evaluation, we used scikit-learn
0.24.1 [60]. To train, validate, and test our different network architectures and our pipeline, we used
TensorFlow 2.5.0. We trained our models on an Nvidia Tesla V100-SXM2 graphics card with 32GB
memory.

5.1 Simulator Network

Our first step was to analyze the quality of our simulator. The quality of our simulator network is
largely determined by the similarity of synthesized images to real ones. During training, simulated
images that deviated from ground truth images were penalized by the L1 loss and the adversarial
discriminator. Therefore, our generator learned to map the data distribution in our training data set.
To gather the first insights into the generalization ability of our generator network, we investigated
the quality of synthesized images. Therefore we simulated each template in our datasets �(E0;

��#

and �('. We denormalized the simulations and capacitive ground truth blobs from pixel values
between -1 and 1 to range from 0 to 255. Figure 5.1 (a) and (b) show the capacitive pixel value
distribution of our validation and test set and the respective simulations. Each bar represents a
pixel value range of 15. We see that our simulator reliably maps the target data distributions of
both the validation and test set in the lower range of pixel values. However, our simulator produces
more pixel values in the range of 210 to 240 and fewer pixel values in the range from 240 to 255
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Figure 5.1: (a) and (b): pixel value distributions of simulations and ground truth capacitive
recordings. (c) Histogram depicting the average pixel errors between capacitive
recordings and the respective simulations. The height of a bar represents the percentage
of the dataset with pixel errors falling in the range shown on the x-axis of the graph.

than the ground truth data. Figure 5.1 (c) shows the average absolute pixel differences between
simulated and ground truth capacitive images for both �(E0;

��#
and �(', denoted as validation and

test dataset, respectively. We display which percentages of each dataset fall within a specific average
pixel error range. For our validation dataset �(E0;

��#
, our simulator achieves an average absolute

pixel error of 7.6 (SD = 18.1) and an average absolute pixel error of 7.9 (SD = 18.4) for �('. This
puts the concerns about different pixel activations from Figure 5.1 (a) and (b) into perspective. Even
though there are significant differences in the number of pixel values in the range from 210 to 255,
the average differences are 7.6 and 7.9 for �(E0;

��#
and �('.

To further investigate the feasibility of our simulator network, we look at actual simulated capacitive
fiducials. For this visual inspection, we simulated a total of 12 different classes from �('.
Figure 5.3 contains selected templates used for simulating capacitive footprints, respective ground
truth capacitive images recorded during our data collection, and simulated capacitive images. The
12 classes originate from 4 different markers, each in Size 4, 6, and 8mm. In addition to varying
Sizes of each marker, we simulate rotation changes with increasing Size by rotating the template by
45◦ and 90◦ for sizes 6mm and 8mm. Visually, our simulations reflect the ground truth capacitive
images in most details. Due to the limited touchscreen sensor resolution, our simulations and our
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(a) Model results by AprilTag Type and Size
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(b) Model results by AprilTag Type

Figure 5.2: This image shows the classification accuracies and absolute rotation errors for our first
and second experiments concerning our recognizer pipeline. (a) shows the results for
the 6 recognizers trained on markers of the same Type and have the same pixel Size.
(b) shows the results of two recognizers trained on all markers of one Type.

ground truth capacitive images of fiducials with a pixel size of 4mm lose most of their fine-grained
inner structure. With increasing pixel size, the visibility of the inner structure becomes clearer for
both simulations and ground truth images.

5.2 Recognizer Network on AprilTags

Since we trained our simulator on AprilTag fiducials, the second step of our evaluation involves
analyzing our detection pipeline on such fiducials. Therefore, we explored several combinations
for training our detection pipeline to gain further insight into its performance. We trained every
recognizer listed in this chapter as described in Section 4.3.3. Additionally, we only make use
of templates contained in �(' to train our recognizer on AprilTag fiducials which our simulator
was not trained on (see Figure 4.4). Depending on the experiment, we split �(', and only access
desired parts of it.

5.2.1 Recognition Within Type and Size

Our first experiment investigated the performance of our recognizer pipeline concerning AprilTags
of the same Type and Size. There are 10 markers for each Type (16h5, 36h11) of each Size (4, 6,
8mm) contained in �('. Thus, we trained one recognizer for each combination of Type × Size,
resulting in 6 independent recognizer networks that classify capacitive markers and predict their
rotation. We evaluated each recognizer on the respective ground truth capacitive images in �(' of
specified Type and Size. Figure 5.2a displays the test accuracies and the average absolute rotation
errors for this experiment. For the capacitive images of Type 16h5 contained in �(', we achieved
classification accuracies of 93.5%, 100%, 100% for Sizes 4, 6, and 8mm, respectively. For the
capacitive images of Type 36h11 contained in �(', we achieved classification accuracies of 99.9%,
100%, 100% for Sizes 4, 6, and 8mm, respectively. Concerning the absolute rotation errors, our
recognizers predict the rotation of 16h5 capacitive images with average errors of 9.8◦ (SD = 16◦),
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Figure 5.3: Each column shows a geometrical template, a recorded capacitive blob, and a simulation
result of the respective geometric template. The simulated templates in the top
image are 13, 1416ℎ5 × 4, 6, 8mm. The simulated templates in the bottom image are
38, 5536ℎ11 × 4, 6, 8mm. We illustrate the capabilities of our simulator network by
showing simulations in different orientations. All templates and capacitive recordings
shown in this image were not used for training the simulator network. For both
capacitive ground truth images and simulated capacitive images, the inner structure of
the AprilTag fiducials gets clearer with increasing Size.
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Figure 5.4: Test results for increasing the number of randomly sampled classes from �('. The
x-axis denotes the number of classes a recognizer was trained on. The left y-axis shows
the average classification accuracy, and the right y-axis depicts the average absolute
rotation error. We trained each step independently a total of three times. The light
areas enclosing data points correspond to the standard deviation over all runs.

3.4◦ (SD = 3.2◦), 2.2◦ (SD = 1.7◦) for Sizes 4, 6, and 8mm, respectively. For markers of Type
36h11 the average rotation errors are 3.3◦ (SD = 6.4◦), 1.3◦ (SD = 1◦), 1.6◦ (SD = 1.2◦) for Sizes 4,
6, and 8mm, respectively.

5.2.2 Recognition Within Type

In our second experiment, we looked at all markers of one Type, omitting the variable Size.
Additionally, we wanted to investigate how our model performs on more than 10 classes. Thus,
we trained two independent recognizer networks. Each network is responsible for distinguishing
between 30 different markers and predicting the rotation of the markers, all of the respective Type.
Figure 5.2b shows the results of the recognizers trained in this experiment. On the test set �(' our
recognizer for markers of Type 16h5 achieves a classification accuracy of 97.3 % and an average
absolute rotation error of 6.8◦ (SD = 10.6◦). Our recognizer for markers of Type 36h11 has a
classification accuracy of 97.3 % and an average absolute rotation error of 3.4◦ (SD = 4.5◦).

5.2.3 Stepwise Increase of Classes

Our third experiment aimed to determine the applicability and robustness of our recognizer pipeline
for a variable but steadily increasing number of classes. Here, we started with two random classes
and increased the number of classes step-wise by 2. The final class count was 60 (10 markers × 2
Types × 3 Sizes). To get a more informative result, we performed each training step three times
and thereby trained 90 recognizers. In summary, taking all trained recognizers into account, a
total of 40,107,376 capacitive images were used for testing. We present the final results of all 90
trained models in Figure 5.4. With an increasing number of classes, our recognizer still accurately
distinguishes between classes and predicts the rotation of markers. The average classification error
over all models is 99.31% (SD = .66). Classification accuracies range from 96.47% (20 classes) to
100%. The average rotation errors of all 90 models range from 1.71◦ to 7.01◦, and average 4.97◦
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Figure 5.5: This image depicts the shapes we used for testing our simulator network on generating
other shapes than AprilTag fiducials. (a) shows the shapes we used to generate �((ℎ0?4.
(b) shows the shapes by Schmitz et al. [71].

(SD = 1.19◦) for all models. For increasing classes, the models have an overall slight downward
trend for accuracies, as a linear fit reveals with '2 = .58 (slope = −0.020). For 60, the maximum
number of distinct AprilTags in �(', the 3 trained models achieve an average accuracy of 98.6%,
meaning that on average we can correctly classify 850,338 samples in �(', with an average rotation
error of 6.4◦ (SD = 9.2◦). However, for increasing classes, we also observe an increasing rotation
error. Using a linear fit, we show '2 = .89 (slope = .056). Table 5.1 highlights the average results
for the recognizers trained in the setting of 10, 30, and 60 classes.

5.3 Recognizer Network on Alternative Markers

To test the limits of our pipeline, we investigated the simulation of other markers than AprilTag
fiducials. For external validity and showcasing the quality of our simulator network, we investigated
the performance on other markers than AprilTag fiducials. To test our recognizer network only
trained on simulated capacitive footprints, we used the capacitive images contained within �((ℎ0?4.
Additionally, we used the recorded data provided by Schmitz et al. [71] to test our pipeline. This
allowed us to perform a cross-device validation as the authors used an LG Nexus 5 smartphone
(15 × 27 8-bit raw capacitive matrix, 4.1mm dot-pitch size) to capture capacitive images. We
trained our recognizer pipeline as described in Section 4.3.3. However, as templates GC , we used the
shapes used to generate our �((ℎ0?4 and the dataset by Schmitz et al. Both our shapes and the
shapes by Schmitz et al. can be seen in Figure 5.5 (a) and (b), respectively. The results gathered for
experiments in this section can be seen in Figure 5.7, and exact numbers can be found in Table 5.1.

We performed a visual inspection to gather insights into the quality of simulations for �((ℎ0?4 and
small markers in general. Figure 5.6 depicts selected templates GC , capacitive ground truth blobs G2 ,
and simulations H6 of all Widths. The Widths (8, 12, 16mm) of our shapes are multiples of the
size of the capacitive pixels ( 4mm) with which the images were captured. However, for our 8, 12,
and 16mm shapes the footprint is 89%, 75%, and 56% smaller than our smallest AprilTag (16h5
4mm =̂ 576mm2). Thus, capacitive images are blurry, and their structure is hard to recognize. With
increasing size, the capacitive images gain more structural information, and our simulator can pick
up details.
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Figure 5.6: Each column shows a geometrical template, a recorded capacitive blob and a simu-
lation result of the respective geometric template. The shape markers simulated are
28A2;4, B@D0A4 × 8, 12, 16mm.

We trained 3 different recognizers on all 10 shapes within the three shape Widths. Compared to
our AprilTag fiducials, the accuracies strongly dropped with a value of 9.2% for Width 8mm, being
worse than picking a random class. However, for increasing Width, accuracies grow to 14.7%
and 42.9% for 12 and 16mm, respectively. The same pattern applies to rotation errors, where the
recognizer trained on 8mm shapes predicts the angle on average 90.4◦ (SD = 52.3◦) different from
the original orientation. With increasing Width errors decrease to 74.5◦ (SD = 52.1◦) and 48.9◦
(SD = 48◦) for 12 and 16mm, respectively.

Next, we used the shapes provided by Schmitz et al. [71], which were also recorded on a Samsung
Galaxy Tab S2 tablet. The training procedure was the same as for our shapes in �((ℎ0?4, where
we trained 3 different recognizers; however, now for the recording Widths 12, 16, and 20mm.
Especially for the 20mm markers, there is a drastic improvement allowing to correctly classify
85.9% of these markers. With decreasing Widths, we can see a trend towards the results gathered
for our 12mm and 16mm markers, but with lower classification accuracies and higher rotation errors
for the data by Schmitz et al. [71]. Therefore, we assume that this is due to the shape design.

When comparing our results of recognizer networks trained only on simulated data to the domain-
specific model results by Schmitz et al. [71], we see an overall reduction in performance. On
average, we are 48.7% worse in classification and 35.4◦ less accurate in predicting the correct
orientation. It is not surprising that our results are not as good as a domain-specific model. However,
the testing results on externally recorded data or with our recorded data are comparable and even
reach > 80% for large markers. This suggests that the recognizer network is not causing the bad
performance; but instead, our simulator is not yet capable of generating capacitive footprints of
small markers. This can be supported by our visual investigation that shows simulations of small
markers are blurry and not distinguishable from each other. However, this is unsurprising since our
simulator network has never seen such small markers during training.
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(b) Shapes rotation errors

Figure 5.7: Classification accacuracies (a) and absolute rotation errors (b) for our shape dataset
and the datasets by Schmitz et al. [71].

5.3.1 Recognition of Nexus 5 Data

We carried out all experiments with data recorded on one device with the same dot-pitch size of
4.022mm. Thus, we next investigated if our simulator network can generate sufficient data for
devices with a different dot-pitch by appropriately scaling the marker templates. We used the second
half of the dataset by Schmitz et al. [71], which contains capacitive recordings of fiducials from a
Nexus 5 device. Since we did not have a detailed description for the data extraction, we performed
our pre-processing steps based on a data investigation. Of the 269,867 frames from the Nexus 5
recordings, we filtered out 576 frames due to corrupted or missing data. Next, we used a 3 × 3
inverse identity kernel to remove noise artifacts that are no larger than one pixel. Afterward, we
filtered 7580 frames that did not contain a detectable blob. We used the remaining 261,711 blobs
for cross-device validation.

We trained four different recognizers for the four different Widths in this dataset. The trend
for the results is in line with the performance on �((ℎ0?4 and the Galaxy Tab S2 recordings by
Schmitz et al. [71]. With increasing Width, classification accuracies increase, and rotation errors
decrease. However, a comparison of the Nexus 5 and Galaxy Tab results shows that the simulations
tend to favor the Galaxy Tab’s pictures. For the markers of the same Width, accuracies drop
15.17% on average, and rotation errors increase on average by 6.53◦ for Nexus 5 recordings. The
domain-specific models of Schmitz et al. [71] surpass our Nexus 5 models by far with on average
59.1% better classification accuracies and rotation errors that are on average 61.2◦ lower. We reason
this because we trained our simulator with data recorded on a Galaxy Tab S2, which is why our
Galaxy Tab recognizers outperform the Nexus 5 recognizers. Still, we have shown that we can
simulate capacitive fiducials for other dot-pitches than 4.022mm to achieve classification accuracies
> 50% for sufficiently large markers.
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Table 5.1: Accuracies and rotation errors of our different recognizer networks. The first column
shows the data which we simulated for training and testing our networks. The third and
fourth columns denote the number of samples and classes in our test set. ZeroR is the
baseline accuracy for predicting only the most frequent class. Columns RF depict the
results of our random forest classifiers and regressors.

Classification Rotation

Baseline Baseline

Experiment Samples Classes Accuracy F1-Score ZeroR RF MAE SD RF

16h5 – 4mm only 139,652 10 93.5 % 0.93 10.5 % 9.8 % 9.8 16.0 86.3
16h5 – 6mm only 141,384 10 100.0 % 1.0 10.6 % 22.3 % 3.4 3.2 83.4
16h5 – 8mm only 145,460 10 100.0 % 1.0 11.5 % 45.4 % 2.2 1.7 69.7
36h11 – 4mm only 145,940 10 99.9 % 1.0 10.3 % 12.0 % 3.3 6.4 87.1
36h11 – 6mm only 145,456 10 100.0 % 1.0 10.5 % 36.7 % 1.3 1.0 57.9
36h11 – 8mm only 144,520 10 100.0 % 1.0 10.8 % 97.2 % 1.6 1.2 14.3

16h5 – all 426,496 30 97.3 % 0.97 3.9 % 24.7 % 6.8 10.6 81.1
36h11 – all 435,916 30 100.0 % 1.0 3.6 % 47.5 % 3.4 4.5 58.7

Random AprilTag 10 143,258 10 99.9 % 1.0 10.6 % 31.5 % 3.0 6.2 66.2
Random AprilTag 30 431,644 30 99.6 % 1.0 3.7 % 30.6 % 4.7 6.7 70.7
Random AprilTag 60 862,412 60 98.6 % 0.99 1.9 % 24.6 % 6.4 9.2 70.6

Shapes – 8mm only 123,812 10 9.2 % 0.04 11.1 % 11.2 % 90.4 52.3 89.2
Shapes – 12mm only 140,632 10 14.7 % 0.06 10.5 % 10.3 % 74.5 52.1 89.6
Shapes – 16mm only 138,524 10 42.6 % 0.4 10.6 % 9.8 % 48.9 48.0 86.5

External Shape Validity
12mm – Galaxy [71] 4,924 10 14.9 % 0.11 10.3 % 10.5 % 81.0 53.0 83.2
16mm – Galaxy [71] 4,950 10 33.1 % 0.24 10.6 % 10.0 % 57.0 48.6 83.2
20mm – Galaxy [71] 4,950 10 85.9 % 0.86 10.6 % 13.9 % 21.8 26.1 83.1

8mm – Nexus 5 [71] 66,645 10 11.7 % 0.06 11.3 % 12.2 % 88.0 51.9 92.4
12mm – Nexus 5 [71] 64,795 10 12.8 % 0.09 11.1 % 10.2 % 86.7 51.8 86.5
16mm – Nexus 5 [71] 66,239 10 25.3 % 0.21 12.0 % 11.7 % 72.9 52.0 84.3
20mm – Nexus 5 [71] 64,032 10 50.3 % 0.49 11.1 % 13.2 % 64.4 54.4 85.3
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6 Applications

In the following, we present several use cases of using or model in real-world applications. Here,
we first discuss how to prepare the model for on-device deployment. Then we present four possible
use cases using AprilTag fiducials.

6.1 Model Deployment

After freezing a trained recognizer, we exported it into a tflite file which we run with TensorFlow
Lite on our Samsung Galaxy Tab S2. For exporting, we used an 8-bit quantization to compress
the model file to a size of 1.79MB. First, we evaluated the effect of quantization and found that
it resulted in no performance loss for our Type 16h5 all Sizes model. We can still classify 30
AprilTag markers with an accuracy of 97.3% and predict their rotation with an average error of
6.83◦ (SD = 10.6◦). On the device, the prediction time for one sample was, on average, 42.15ms
(SD = 3.62ms) calculated on a total of 2370 samples. This allows us to process markers in real-time
as pre-processing (blob extraction and normalization) takes on average 15.45ms (SD = 3.62ms),
and we pull capacitive images every ∼ 110ms.

Our experiments in Chapter 5 show that we can classify AprilTag fiducials with accuracies > 93%.
We built an application that displays the class and the predicted rotation of detected AprilTags on
the capacitive screen (see Figure 6.1). For filtering out touches by fingers, we calculated the area of
blobs and excluded events if they were below a certain threshold. As a recognizer, we used the
Type 16h5 all Sizes model. The app reliably displays the correct class and approximated rotation
as soon as a valid blob is detected.

6.2 Example Applications

We explored multiple other examples where our approach can enhance the interaction space on
capacitive touchscreens. We built four applications that utilize the full capabilities of our recognizer
network architecture.

To support playful interaction such as discovering new information, we mapped semantic information
of the tangible to digital information and built an application that we envision in a museum setting
(see Figure 6.2 (a)). Especially children can benefit from such a hands-on interaction [1].

Tangibles can enrich the interactions for smart home environments, as we show with our tangible
smart home application (see Figure 6.2 (b)). Here, users can place the tangibles onto the control
panel and immediately receive the desired feedback. We used two tangibles that control light sources
within a prototypical smart home by simply placing and sliding them on the control panel.
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6 Applications

Figure 6.1: This sample application displays the capacitive matrix, including the blob boundaries,
current classification result, and rotation prediction of fiducial tangibles on the screen.

To give haptic feedback to today’s touch-enabled radios, we built a radio application that allows
changing radio stations and volume by placing and rotating the respective station or volume tangible
(see Figure 6.2 (c)).

Lastly, to support a collaborative gaming environment, we built a Minecraft-inspired D&D game,
where users can place painted metal figurines attached to AprilTag fiducials onto the screen (see
Figure 6.2 (d)). Based on the detected marker and figurine, its typical creature sound is played. We
prototyped actions that as soon a monster is detected, a placed hero can attack it, or a hero can trade
with detected merchants.

Figure 6.2: Demonstration of the capabilities of our proposed technique. We deployed different
recognizer networks on a Samsung Galaxy Tab S2 and built four different applications
that enable capacitive tangibles. (a) a tangible museum, (b) a tangible smart home, (c)
a tangible radio, and (d) a tangible game.
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7 Discussion

To avoid time-consuming data collection studies and to simplify the realization of TUIs on capacitive
devices, we have developed a pipeline in which capacitive images are simulated and subsequently
used to train recognizer models. Inspired by previous simulation techniques, e.g., [26, 99], we
decided to use an cGAN, which learns to transfer the style of a capacitive sensor to sketches of
conductive markers. Others in the domain of object recognition on capacitive screens required
domain knowledge and hyperparameter tuning for recognizers to function sufficiently [40, 50, 73].
Our pipeline eliminates the need for both. The overall results are promising, showing a path towards
tangibles on today’s capacitive screens. Finally, to real-time test our recognizer, we exported
them onto an end-device and built multiple apps featuring the direct output of the models. Using
AprilTags, both classification and rotation prediction work exceptionally when testing our example
applications.

We conditioned and trained our simulator solely on imprints and capacitive images of conductive
AprilTag fiducials. This is reflected in the evaluation of our trained recognizers, where we achieved
an average classification accuracy of 99.7% on unseen capacitive images for our simulator. The
same holds for our rotation predictions on AprilTags, where our models can estimate the orientation
of markers with an average error of 4.9◦ (SD = 1.4◦). Overall these are promising results. On the
other hand, we achieve the lowest classification accuracy and our highest rotation error with 93.5%
and 9.8◦ (SD = 16◦) for our smallest AprilTags of Type 16h5 Size 4mm . While 130,574 correctly
classified capacitive images out of 139,652 total capacitive images are still acceptable, deploying
this model onto an end-device might lead to users’ frustration due to wrongly classified markers or
falsely predicted rotations. We argue that this is because of the combination of the low-resolution
capacitive matrix with a dot-pitch of 4.022mm and might also result from slight deviations from
actual to recorded rotation. When our simulator network is conditioned on templates of fiducials in
specific rotations, it applies the style of the capacitive sensor to this exact template. Thus, if our
recorded ground truth rotation deviates from the actual rotation during training, the L1 loss penalizes
the simulator, which leads to a shift from recorded to actual rotation. This can result in a rounding
of the corners of our simulations and blurring the inner structures of the simulation (cf. Figure 5.3
Recording and Simulation). Especially for our smallest markers, the clearest representation of the
internal structure is necessary for a reliable classification as they encode 16 bits within 256mm2

or ∼ 16 capacitive pixels. This also explains why our accuracies for all other AprilTags are better
as they either encode more bits (Type 36h11) or encode the same amount of bits within a larger
capacitive area due to increasing Size. That statement is further supported by markers of Type
36h11 Size 4mm whose pixel size is equal to our worst-performing AprilTag, but they encode over
twice the amount of bits which shows that the information density for small markers is crucial.
Thus, our recognizer can extract more features, highlighting the need for design considerations
when developing small conductive fiducial markers.
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In addition, we would like to mention that the fabrication of our conductive markers could have
also led to inconsistencies between capacitive recordings and simulations. Since we produced
our markers by hand, we could not avoid slight deviations from the actual shape. Therefore,
our capacitive recordings may not reflect the desired dimensions of the markers. However, with
the ability to print conductive material using 3D printers within errors of submillimeter range,
such deviations could be avoided. Printing conductive material to enable tangibles on capacitive
touchscreens has shown to be effective since various restrictions compared to manufacturing by
hand can be omitted [71]. Also, additional functionalities can be embedded within 3D printed
tangibles [16, 72].

Our results suggest that for conductive AprilTags, our simulator can model the responses of the
capacitive touch sensor. Nevertheless, when evaluating the results of our experiments on shapes,
we can see that our simulations do not represent real sampled capacitive images as classification
accuracies are < 43%. There are multiple reasons why we can not simulate shapes as good as
pixel-based fiducials like AprilTags. For example, we previously stated, our simulator network was
only conditioned and trained on sketches and capacitive images of AprilTags. Thus, it is only natural
that our simulator can not recreate the level of detail for conductive shapes than for conductive
AprilTags. Additionally, as the Widths of our shapes were 8, 12, and 16mm, their imprint rests on
fewer capacitive pixels. The footprint of shapes with such Widths corresponds to 11%, 25%, and
44% of the footprint for our smallest AprilTag. Therefore, even if our simulations are good enough,
we argue that the Convolution layers of our recognizer network can not pick up enough information
from the capacitive image. Otherwise, for shapes of Width 20mm, we achieve a classification
accuracy of 85.9%, which strengthens us in the assumption that our simulations are suitable for
sufficiently large shapes.

While we performed most evaluations on capacitive data from one device, we also investigated
how our simulations perform for data captured on other devices with a dot-pitch other than that
of our device. Therefore, we used the shape data by Schmitz et al. [71] captured on a Nexus 5
that has a dot-pitch of 4.1mm. Again, we could better simulate large markers of Width 20mm
with an accuracy of 50.3% than 8mm, which we correctly classified in 11.7% of the cases. Overall
our results for classification and rotation prediction are not nearly as good as for our shape data.
However, it is hard to define whether the poor performance was due to incorrect simulations or
the quality of the data set as the capacitive matrix of the Nexus 5 tends to produce noisy images.
Since the authors did not specify how they filtered out the noise in their data to the state they
used for training their recognizer, we could not pre-process their data to this state. Schmitz et al.
[71] state that after their pre-processing steps, they had a usable 193,145 capacitive images, while
after applying our basic pre-processing were left with 261,711 images. Thus, as we observe the
same trend for higher accuracies with increasing Width, we argue that our simulator can generate
capacitive imprints for other devices However, the dataset quality had a strong impact on our
results.
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8 Conclusion

In this thesis, we have presented a toolkit for simulating capacitive footprints of conductive fiducials
which are used to train a recognizer network. Our contributions comprise a simulator network,
an cGAN, that simulates based on sketches of conductive fiducials the corresponding response
of a capacitive touch sensor. Additionally, we provide a recognizer network structure capable
of classifying conductive markers while simultaneously predicting the rotation with which the
markers rest on the capacitive screen. We trained our simulator network on the capacitive data
of 30 fiducial markers and evaluated its performance on over 90 unseen and structural different
markers. In an extensive evaluation, we have shown that our pipeline can predict the correct classes
for conductive AprilTag fiducials with an average accuracy of over 98%. On top of that, we can
predict the correct orientation of AprilTag fiducials with an average error of 4.8◦. Thus, to bring
back effortless tangibles to capacitive touchscreens, we evaluated our recognizer models, solely
trained on simulated data on a mobile device. As our models did not suffer any loss in performance,
we could fully utilize their capabilities within multiple developed prototype applications. After an
average training time of 3.4h, developers can export and use a trained recognizer model without the
need for manual data collection, hyper-parameter tuning, and domain knowledge.

Where our results are promising on AprilTag fiducials, we have not achieved the same results for
custom conductive shapes. As we have observed better classification accuracies and lower rotation
errors for bigger shapes, we argue that our simulator network is not yet fully capable of simulating
small-scale conductive shapes. Thus, future research needs also to consider small-scale shapes
when designing and training a simulator network. This should increase the simulator’s performance
on such markers. In this work, we evaluated the performance of our simulator and recognizer on
our recorded markers. However, the background of this work was to make the recording process
of markers obsolete for future designers. Therefore, one should provide future designers and
developers with a metric that highlights how likely it is for markers in their marker set to confuse
their recognizer. Our simulator network performed a style transfer from sketches of conductive
markers to the capacitive touch sensor’s response. Since these responses are low resolution, our
simulator also produces a low-resolution output. Research could change the simulation space,
currently a mapping from high-resolution sketch to low-resolution capacitive images, to be a
mapping from low-resolution capacitive images to high-resolution sketches. While the capacitive
super-resolution algorithm by Mayer et al. [51] already works on tangibles, it requires moving
objects across the screen. Streli and Holz [76] utilized a domain-specific GAN only to upsample
finger touches and estimate contact shapes on capacitive screens. For example, researchers could
integrate both solutions into a system that upscales any conductive object and allow designers to
create custom detection metrics on upscaled images of touched objects.
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