
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

New Evaluation Method for
Reference Architectures Utilized to

Design a Software Reference
Architecture for Liquid Handling

Devices
Mohammad El Naofal

Course of Study: Computer Science

Examiner: Prof. Dr. Marco Aiello

Supervisor: Andreas Bitter,
Valentin Busch

Commenced: April 21, 2021

Completed: October 21, 2021

Abstract

Software development is important to ensure the system’s requirements and qualities. If the
architecture is implemented poorly, then the system might not be fulfill the users’ expectations.
A reference architecture can facilitate the process of achieving a concrete architecture because it
provides architectural approaches, designs, and components as starting point that can be followed. A
reference architecture can be helpful in the laboratory device domain especially for liquid handling
devices because of the common requirements and qualities that the devices share. To reach a
reference architecture, it needs to be evaluated. Unfortunately, there is not an evaluation method that
is oriented towards evaluating reference architectures. As a result, this thesis presents an adapted
evaluation method from Architecture Tradeoff Analysis Method (ATAM) to evaluate reference
architectures. The adapted evaluation method was tested by applying it to the liquid handling device
domain to obtain a reference architecture. The obtained reference architecture is also presented
in this thesis and is tested by using it as a facilitator to implement a small prototype of a liquid
handling device.

2

Contents

1 Introduction 8
1.1 Problem . 8
1.2 Goal . 9
1.3 Contribution and Research Methodology . 9

2 State of the Art 11

3 Understanding Software Architecture and Software Design 12
3.1 Software Architecture . 12
3.2 Distinction between Software Design and Software Architecture 14
3.3 Software Reference Architecture . 14

4 Architecture Evaluation 17
4.1 Architecture Evaluation Approach . 17
4.2 Architecture Evaluation Methods . 18
4.3 ATAM Problems for Software Reference Architectures 18
4.4 Architecture Evaluation Method for Software Reference Architecture 19

5 Software Reference Architecture for Laboratory Devices 32
5.1 Introduce the Evaluation Process . 32
5.2 Discuss Business Drivers . 32
5.3 Identify Common Requirements . 34
5.4 Identify Quality Attributes and Scenarios . 37
5.5 Define Architectural Approaches . 40
5.6 Analyze Architectural Approaches . 41
5.7 Document Results and Decisions . 47

6 Testing the Liquid Handling Device Architecture 48
6.1 Requirements of I.DOT One and I.DOT Mini 48
6.2 Qualities Attributes of I.DOT One and I.DOT Mini 48
6.3 Concrete Architecture of I.DOT One . 49
6.4 Prototype Implementation of I.DOT One . 50

7 Conclusion and Future Work 52

Bibliography 53

A Appendix 56
A.1 Applicable Evaluation Methods . 56
A.2 In-Applicable Evaluation Methods . 57

3

A.3 Architectural Approaches for Liquid Handling Devices 58
A.4 Architectural Approaches Comparison for Liquid Handling Devices 60
A.5 Architectural Approaches Weighted Score for Liquid Handling Devices 63
A.6 Architectural Design Comparison . 73
A.7 Frontend Database Diagram . 74
A.8 Backend Database Diagram . 75
A.9 Audit Database Diagram . 76

4

List of Figures

1.1 Research Methodology . 10

4.1 A Brief Utility Tree Example . 25
4.2 Flowchart of the evaluation steps . 31

5.1 I.DOT One Laboratory Device . 33
5.2 High Level Diagram . 35
5.3 Deployment View with Building Blocks for Liquid Handling Devices 43
5.4 Database Host Locations . 44
5.5 Client Server Building Block View for Liquid Handling Devices 45
5.6 Message Bus Building Block View for Liquid Handling Devices 46

6.1 Software Architecture for IDOT.One . 49

A.1 Frontend Database Diagram . 75
A.2 Backend Database Diagram . 76
A.3 Audit Database Diagram . 77

5

List of Tables

4.1 Example Common Requirements Table . 22

5.1 Liquid Handling Devices Common Requirements 35
5.2 Utility tree . 38
5.3 Architectural Approaches for Audit Logging . 41
5.4 Architectural Approaches for Log Data Handling Advantages & Disadvantages . 42
5.5 Architectural Approaches for Log Data Handling Weighted Score 42

A.1 Applicable Evaluation Methods . 56
A.2 Inapplicable Evaluation Methods . 57
A.3 Architectural Approaches for Liquid Handling Devices 58
A.4 Architectural Approaches Advantages and Disadvantages for Liquid Handling Devices 60
A.5 Architectural Approaches Weighted Score . 63
A.6 Architectural Design Weighted Score . 73

6

Acronyms

ALMA Architecture-Level Modifiability Analysis. 25

ALPSM Architecture Level Prediction of Software Maintenance. 57

ARID Active Reviews for Intermediate Design. 58

ASAAM Aspectual Software Architecture Analysis Method. 57

ATAM Architecture Tradeoff Analysis Method. 2

Architecture Tradeoff Analysis Method for Reference architectures. 57

CBAM Cost Benefit Analysis Method. 57

CIPA Creative Innovative Patterns for Architecture Analysis. 57

DoSAM Domain-Specific Software Architecture Comparison Model. 26

EBAE Empirically-Based Architecture Evaluation. 57

ESAAMI Extending SAAM by Integration in the Domain. 57

FAAM Family Architecture Assessment Method. 22

ISAAMCR Integrating SAAM in Domain-Centric and Reuse-Based. 58

SAAM Software Architecture Analysis Method. 18

SAAMCS SAAM for Complex Scenarios. 56

SAAMER Software Architecture Analysis for Evolution and Reusability. 24

SACAM Software Architecture Comparison Analysis Method. 57

SALUTA Scenario based Architecture Level Usability Analysis. 22

SBAR Scenario-Based Architecture Re-engineering. 57

SPE Software Performance Engineering. 57

SRA Software Reference Architecture. 8

UML Unified Modeling Language. 34

7

1 Introduction

Software architecture is a crucial part of any system. It helps technical and non-technical people
understand how the system will be implemented and deployed. If the software architecture is not
designed properly, poor architectural decisions in fulfilling requirements and qualities can be seen.
Furthermore, software architecture can be time consuming if it has to be designed from scratch
for each system, even if the systems share a similar domain. Thus, having a Software Reference
Architecture (SRA) for a particular domain can provide benefits to reduce the time and effort
needed to achieve concrete systems within a domain. It can act as a facilitator to ease the process
of achieving concrete software architectures since the common requirements and qualities will be
already handled by the SRA.

To achieve a good SRA an evaluation method needs to be used. There are many architecture
evaluation methods, the most well known one is ATAM. However, none of them are specific towards
SRAs which can lead to some disadvantages. As a result, the paper presents an architectural
evaluation method that was adapted from ATAM. The adapted evaluation methods guide the
architects and the software team to reach an SRA that can fulfill the requirements and qualities that
the stakeholders expect from a domain.

Furthermore, to prove the effectiveness of the adapted evaluation method, it was applied on the
laboratory device domain in particular for liquid handling devices. It resulted in an SRA for liquid
handling devices which is also presented in this paper. I.DOT One is a laboratory device which was
used as a test subject to test the effectiveness of the SRA by trying to reach a concrete architecture
and implementing a small prototype using the SRA. In the end, the paper mentions future work that
can be done.

1.1 Problem

Currently a software architecture has to be developed from scratch for each laboratory device even
though they share some of the basic usage scenarios and functionalities such as data sharing, remote
access, and automation. The development of a software architecture for each system within a
particular domain is time-consuming because common software features have to be evaluated more
than once. Common features such as how the user interacts with the devices, automation, security,
connectivity, cloud integration, and maintainability.

A software architecture needs to be designed to implement and fulfill the required functionalities,
quality attributes, constraints, and principles [Bro18]. If one of these requirements wasn’t considered,
then multiple issues might arise during and after the development of the software application which
can affect response time, security, and maintainability [Bro18]. Moreover, poorly designed software

8

1 Introduction

architecture will cause the business logic, user interface, and hardware code to be strongly coupled.
Unnecessary strong coupling makes it harder to maintain, enhance, and understand the software
because of the dependencies they introduce.

Problems from poorly designed software architecture can be seen in any domain. They can for
example affect the maintainability, which is the ability of the architecture to cope with unexpected
scenarios after designing or implementing the system. For example, in the laboratory device
domain, new common features need to be introduced to a developed device. The new features are
for example remote accessibility, automation, or cloud integration. To enable these features, several
technical decisions and risks have to be evaluated such as communication protocols, security issues,
and hardware constraints. If not dealt with properly, inadequate architectural decisions are taken.

1.2 Goal

The main goal of this thesis is to develop an SRA for a specific subset of laboratory devices which
are liquid handling devices. It shall act as a facilitator to reach the concrete software architecture.
An SRA facilitator acts as a base for future systems [CMV+09]. It is a starting point for architects to
prevent the reinvention and revalidation of common scenarios and quality attributes in a particular
domain [CMV+09]. An SRA should cover all the common scenarios and quality attributes of a
laboratory device subset. It shall be easily adapted, if needed, to fit a specific device and to construct
the concrete software architecture.

However, before introducing an SRA for the laboratory device subset, different architectures need
to be compared against each other. This will be performed using an evaluation method to assess the
architectures and obtain the most suitable one. The evaluation method indicates whether an SRA
is applicable for a domain and if it covers common scenarios and quality attributes. In addition,
depending on the SRA evaluation, multiple SRAs might be introduced to serve different laboratory
device domains. Based upon the need of architectural comparison, the evaluation method for SRA
will be introduced first in the thesis.

To achieve the goal, two research questions need to be answered. These are:

• RQ1: Is there an existing evaluation method that can be used to evaluate SRA for laboratory
devices? Can existing methods be adapted to fit this specific case?

• RQ2: What is a suitable SRA for liquid handling devices, measured by the previously
determined evaluation method?

1.3 Contribution and Research Methodology

The contribution behind this thesis comes from several factors. The first one is to solve the time-
consuming software design and development of laboratory devices that is faced with companies
and to provide a base on how to implement automation, cloud connectivity, and remote access for
laboratory devices. There is not a lot of papers that discuss laboratory device software architecture
more specifically very few talks about liquid handling devices. The second contribution is to fill a

9

1 Introduction

research gap that is found with architecture evaluation methods. Not a lot of papers discuss how to
evaluate reference architectures or present an evaluation method that is oriented towards designing
and analyzing a reference architecture.

Figure 1.1 shows the research methodology that is going to be followed in this thesis to answer the
research questions.

Figure 1.1: Research Methodology

10

2 State of the Art

There is a common problem for automating laboratories [KYZC12]. Systems are designed without
considering integration with other systems or devices [KYZC12]. This can make it tedious
trying to integrate different systems together. Some research have been made to standardize the
communication and data between laboratory devices [PSL+20] [20]. One of the well-known ones is
SilA2 [PSL+20] [20] [SA17]. Kong et al. [KYZC12] mentions that a lot of accessories can be added
to a liquid handling device, which increases the importance of planning requirements to achieve
a system with a friendly user interface that is easy to use and can integrate with other devices.
Other research papers provide an architecture for an entire laboratory that has multiple devices.
The architecture specifies how the devices can be automated and integrated with each other. For
example, [KGFČ15] presents an architecture for automated control of remote laboratories. Another
examples are [ZSZ11] and [Bis13] which present an architecture to make a laboratory virtually
(remotely) available. There is also paper [SA17] that provides a centralized reference architecture
to integrate different laboratory devices such as liquid handling devices. The reference architecture
is supposed to address technical issues when adding platforms in an automated laboratory [SA17].
All other software components such as the user interface and data transfer will integrate with the
main centralized system via plugins [SA17].

Unfortunately, there are not a lot of public documentation about problems faced with software
development for liquid handling devices. The problems occur within the companies. Problems
such as what frameworks, architectural patterns, and data formats should be followed. None of
them specify the software architectural structure of liquid handling devices. They cover the entire
laboratory without focusing on a single laboratory device or a certain kind of laboratory devices.
They offer an architecture that requires the customer to host a centralize machine that will integrate
with multiple devices. This adds complexity to the customer especially if they don’t have a lot
of laboratory devices and if they do not want certain aspects of the architecture such as remote
communication or automation. Also, having one database for all devices can also increase the
complexity of the system since different laboratory devices require different schemas. In respect to
the laboratory device, the presented architectures are generic and does not provide different views
of the architecture. As a result, this thesis plans to fill this gap and provide a detailed reference
architecture for liquid handling devices.

11

3 Understanding Software Architecture and
Software Design

Before introducing an SRA for laboratory devices, this chapter will briefly define the terms software
architecture, software design, and reference architecture since there isn’t a commonly agreed
definition for them.

3.1 Software Architecture

A software architecture definition is going to be provided first followed by the software architectural
drivers.

3.1.1 Definitions

Several definitions of software architecture have been proposed. The common requirement among
them is to ensure that the overall vision and goal of the system is satisfied. Software architecture,
if followed accordingly, determines the final system outcome. At first, four software architecture
definitions are mentioned, followed by a chosen definition based on the knowledge from the four
definitions and their correspondence to an SRA:

• The first definition is from the Software Engineering Institute [CBB+10] which is also
mentioned by Fairbanks [Fai12]. It states that “software architecture of a computing system
is the set of structures needed to reason about the system, which comprise software elements,
relations among them, and properties of both.”

• The second definition is from Solms [Sol12] where he defines software architecture as the
“software infrastructure within which application components providing user functionality
can be specified, deployed and executed ... Application components are software components
which address functional requirements of the software system.”

• The third definition is the definition from [RW12]. The authors define software architecture
as a system that is made up of system elements and relations between them, system properties
that are composed of system functionalities and quality attributes, and design principles that
act as guidelines to the architecture’s definition.

• The last and fourth definition is from [Bro18] where the author defines software architecture
as a “combination of application architecture and system architecture, again in relation to
structure and vision.” Application architecture describes how the application is organized,
designed, and built. System architecture has a higher view where it is composed of many
deployable unites put together to understand the software and hardware.

12

3 Understanding Software Architecture and Software Design

All the definitions are about reaching the system’s goal and delivering the stakeholders’ vision.
The first and third definition are the most suitable ones for this paper since they consider all the
different architectural aspects that should be modeled in an SRA. The architectural aspects are:
software elements, relations between them, and properties of each to describe a system’s structure.
These architectural aspects describe how the system is organized, designed, and built to deliver the
required system’s functionalities, quality attributes, scenarios, constraints, and principles that are
provided by the stakeholders. The deliverables of the software architecture (functionalities, quality
attributes, scenarios, constraints, and principles) are also the architectural drivers that shape the
final software architecture.

3.1.2 Architectural Drivers

Architectural drivers are composed of five elements that the system needs to deliver. They are
briefly explained below.

Functional Requirements

Use cases and functional requirements are often the first aspect that is discussed since they provide
an overall understanding of the system’s main goals. They specify the system capabilities and the
end-users. System capabilities provide stories of what the end-user can achieve with the system
[Bro18] [RW12].

Quality Attributes

Quality attributes, also known as non-functional requirements, specify what qualities the system
should deliver. Quality attributes are for example performance, security, maintainability, usability,
stability, understandability, and changeability. System requirements can be implemented using
different architectural decisions. However, each architectural decision satisfies the quality attributes
differently because of the different tradeoffs and risks they introduce. Consequently, it is important
that these quality attributes are discussed, captured, and prioritized by stakeholders to give reasons
behind following a decision [Bro18] [RW12] [Fai12].

Scenarios

A scenario is a short description of a stakeholder’s interaction with the system [KKC00]. A designed
software architecture should be evaluated on how well they satisfy the scenarios. According to
Kazman et al. [KKC00], scenarios can be divided into three different types: Use case, growth,
and exploratory scenarios. A use case scenario is similar to the functional requirements defined
previously. They specify the different use cases that the end-user can have with the system. A
growth scenario is a scenario that anticipates future changes that may occur to the system. An
exploratory scenario is a scenario that explores extreme changes to the system. This is done to
stress the system and test its capabilities under unusual circumstances [RW12].

13

3 Understanding Software Architecture and Software Design

Constraints

Constraints specify system architecture limits. They are often given by stakeholders, and they set
boundaries on how well functional and non-functional requirements can be captured. Constraints
can be time, cost, technologies to be used, and the organization or team implementing and developing
the system. Constraints can be based on the team’s familiarity with certain technology domains
limiting the options that can be utilized to implement the architecture [RW12] [Bro18].

Principles

Architectural principles are rules and fundamentals that are followed to guide the design and
implementation of the system. Principles can act as a good starting point to transition from the
problem space to the solution space while providing reasons behind the architectural decisions.
[RW12]. Architecture principles could be the type of architectural style that is going to be followed.
For example, an N-tier layered architecture, pipes-and-filter, or a data center architecture. Moreover,
architectural principles can also refer to the concepts that the architecture should have, such as
coupling or the statefulness of the components. They can also set the communication protocols and
formats that should be followed such as HTTP, XML, SOAP, and JSON. [Bro18] [RW12] [Fai12]

3.2 Distinction between Software Design and Software Architecture

Software architecture is software design but not vice versa [Bro18]. Software design is about
choosing a solution from the many possible solutions of implementing the system [Bro18]. An
architect should focus more on quality attributes than functionalities when designing a software
architecture because functionalities can be achieved using different software design methods with
different qualities [Fai12]. Software design dives more into lower-level scope of how the components
are built.

To give a clear separation between software architecture and software design, software architecture
should consist of the application significant decisions that are not easily changeable at later software
life cycles [Bro18]. Software architecture is more important than software design in handling
system related issues, like unexpected usage or change scenarios and quality attributes, because
the system structure reflects on these issues [Fai12]. Software architecture embodies the details
required to achieve an overall quality attribute of the system, on the other hand, software design is
the implementation solution to deliver the functionalities and satisfy the quality attributes.

3.3 Software Reference Architecture

Similar to software architecture and design, there is no commonly agreed definition about SRA
[CMV+09]. However, SRA is commonly known as a standard or a facilitator to achieve a concrete
software architecture. It is designed at a higher level of abstraction compared to concrete software
architecture [AGG12]. This makes an SRA applicable as a standard or a facilitator to multiple

14

3 Understanding Software Architecture and Software Design

different contexts within a similar domain. A standard SRA aims at system interoperability while
the facilitator aims at providing inspirations and guidelines for the concrete software architecture
design [AGG12].

Cloutier et al. [CMV+09] and Angelov et al. [AGG12] define SRA as a goal that captures
existing architectures and domain knowledge to assist in development by implementing the shared
functionalities and data flow of the software architecture. An SRA can also be seen as a high-level
software architecture that captures common functionalities, quality attributes, constraints, and
principles for a specific domain.

Benefits of SRA are:

• Reduce development costs and time [MAFA13] [MSA+15].

• Improve the architecture understandability and communication among teams and stakeholders
[CMV+09] [MAFA13].

• Reduce risks [CMV+09].

• Increase overall software quality [MAFA13] [MSA+15].

• Eliminate revalidation and reinvention of solutions since it provides a standard to facility
design and development [CMV+09] [AGG12].

• Can be well adapted in companies and organizations that are expanding with multiple similar
software application projects [MSA+15].

• Suitable for architecting a given application domain to define the common architectural
drivers including the quality attributes [MSA+15].

Drawbacks of SRA are:

• Introduces a learning curve for architects and developers if they are not familiar with SRA
[MSA+15] [MAFA13].

• Initial time investment in building the SRA can be a problem if the system needs to be
deployed in a short time period [MAFA13].

• Dependency issues on the SRA because it must be changed first before applying it to the
systems if a new common architectural driver is introduced [MAFA13].

• Limited flexibility on systems because it is constrained to a specific domain [MAFA13].

The purpose of an SRA is to contain the vision or the case scenario that is being modeled, which
are laboratory devices in this thesis’ case [CMV+09]. The domain and vision guide and place the
team on the same page to answer the different dimensions of an SRA. The thesis will show later on
how these dimensions can help in setting the SRA domain and the high-level architecture of the
evaluation process. The dimensions are explained in detail in Angelov et al. [AGG12] and Chauhan
et al. [CBS17], but this thesis will briefly summarize them since they will be used to set the design
scope of the SRA’s goal:

• SRA Classification Dimension: This dimension is used to classify the SRA. It answers the
following questions:

15

3 Understanding Software Architecture and Software Design

– “Where will it be used?”: Answers the question about the intended type of organization
[AGG12] [CBS17].

– “Who defines it?”: Answers the question if the SRA is intended for a single or multiple
organizations [AGG12] [CBS17].

– “When is it defined?”: Answers the question if the SRA is being implemented before
or after the development of the concrete software architecture and application [AGG12].

– "What is the maturity stage of the domain?": Checks whether the domain is mature
to ensure that an SRA can be designed without a lot of changes in the future [CBS17].

• SRA Design Dimension: This dimension sets how the SRA will be used and operated
[AGG12]. It also includes how the SRA is detailed, described, and represented [AGG12]
[CBS17]. It answers the following questions:

– "What is described?": Explains what the SRA will include [CBS17]. It can also list
the basic elements at a high level [AGG12].

– "How is it represented?": Describes if the SRA is going to be represented in an
informal, semi-formal, or formal manner [AGG12] [CBS17].

– "How is it described?": Specifies the format (textural, graphical, ...) on how the SRA
is described [CBS17].

16

4 Architecture Evaluation

An architecture evaluation is a process or a framework to guide the design of a software architecture
and to provide reasons for following certain architectural decisions. It is used to explain the
architecture, check whether adequate decisions and tradeoffs were made, and provide decision
points and formal agreements among stakeholders [RW12].

The scope of an SRA in this paper is focused on applying an SRA on a single organization that acts
as a facilitator (not a standard) to guide and simplify the design of concrete architectures that are
under the same domain as the SRA’s. Moreover, the SRA will not include deployable hardware
components but rather the common software components and their interactions between them. The
SRA’s scope is defined to limit the different possibilities of evaluation methods and approaches that
can be followed in this thesis and to help better define the SRA’s abstraction layer.

4.1 Architecture Evaluation Approach

An architecture evaluation can follow five different, or a combination of several, approaches to
evaluate an architecture:

• Previous experience of developers and stakeholders [PS15a].

• A mathematical model to evaluate quantitative quality attributes such as performance, latency,
and reliability [PS15a].

• A simulation approach to mimic architectural components at a high level [PS15a].

• A prototype system as a proof-of-concept [RW12].

• A scenario-based approach to identify scenarios in order to analyze their effects on quality
attributes [PS15a] [RW12].

Using previous experience as an evaluation approach can be difficult to assess its credibility because
experience varies between each and every person. Furthermore, it is impossible to use it if previous
experience is not present. As for the mathematical model, it is an appropriate approach to use
when quantitative quality attributes are of high priority. However, this paper assumes that the SRA
will not include hardware component details which makes the mathematical model an inadequate
approach.

As for the simulation and prototype approaches, they can be used as a proof-of-concept to evaluate
the usability of the SRA by designing and implementing prototype concrete architecture based on
the SRA. The scenario-based approach captures the different quality attributes and scenarios from
stakeholders and provides reasons for following certain architectural decisions. The scenario-based
approach will be used in this paper because it evaluates the SRA’s quality attributes and assesses

17

4 Architecture Evaluation

how the SRA copes with different scenarios in a particulate domain. While the prototype approach
can be used to evaluate the usability of the SRA on how much it facilitates the design of multiple
concrete architectures.

4.2 Architecture Evaluation Methods

Several scenario evaluation methods have been proposed, mainly to evaluate software architectures.
However, there are not many architecture evaluation methods specific towards SRAs. As a result,
this paper determines an evaluation method that is more oriented and focused on the evaluation of
SRAs. The evaluation method will be based on architectural comparison according to how well the
SRAs satisfy different system architectural drivers.

To determine an evaluation method for SRAs, previous evaluation approaches need to be studied
whether they can be taken as a potential source. The evaluation methods were taken from [BZJ],
[PS15b], [MGM06], [RZRK19], and [SS12]. Table A.1 in Appendix A contains the evaluation
methods that may be used as a source to determine an evaluation method for SRA. On the other
hand, table Table A.2 contains the evaluation methods that cannot be used for reaching an evaluation
method for SRA.

ATAM and Software Architecture Analysis Method (SAAM) are the most common used evaluation
methods and they are both referenced by more than 800 papers each. ATAM is an improvement on
SAAM and it is a process that describes how an architecture can be evaluated based on captured
quality attributes and scenarios from stakeholders. The evaluation determines risks, sensitivities,
and tradeoffs that each architectural decision introduces according to a specific quality attribute or
scenario. ATAM is a mature method that provides a clear structure on how to evaluate architecture
and is widely used by many different organizations. Out of all the applicable evaluation methods
that are mentioned in Table A.1, ATAM will be used as a base to adapt it for evaluating SRA instead
of concrete software architecture.

4.3 ATAM Problems for Software Reference Architectures

ATAM is a mature well documented evaluation method that gives a concrete structure to follow in
order to evaluate and give reasons behind making certain architectural decisions. In this section, the
disadvantages are mentioned and then an extended ATAM method will be presented to address the
disadvantages. The drawbacks are based on applying ATAM to evaluate an SRA that its scope was
defined at Chapter 4:

• Drawback 1: Obtaining quality attributes and scenarios for an SRA is not specified [ATG14]
[ATG08]. Stakeholders are used to provide functionalities, quality attributes, and scenarios
based on a specific system. This can be challenging for stakeholders if they consider every
available and future context the SRA can be applied. It would lead to scenario duplication
and an unwanted increase in scenarios that are applicable to one system [ATG14] [ATG08].

18

4 Architecture Evaluation

• Drawback 2: It does not provide a clear method to evaluate quality attributes for a reference
architecture [ATG14] [ATG08]. An SRA is at a higher level of abstraction compared to
concrete architecture, and ATAM is used to define the low-level details of each quality
attribute as a form of scenarios. For example, for the performance quality attribute, there
might be a scenario where the run-time threshold must not be exceeded by the system.

• Drawback 3: The number of stakeholders can increase a lot if the SRA will be applied to
different organizations in the same domain [ATG14] [ATG08] [GVV05]. ATAM suggests
to involve as many stakeholders as possible. However, it can be impossible to involve
stakeholders from different organizations to list and prioritize quality attributes and scenarios
[ATG14] [ATG08] [GVV05]. This issue can still be seen if the SRA is going to be applied to a
single organization but stakeholders from different organizations can be interviewed (Example,
customers and partners from different organizations that work in the SRA’s domain).

• Drawback 4: ATAM doesn’t support the comparison of architectures against each other to
reach the optimal one [BRST05]. ATAM is designed to evaluate the tradeoffs of a single
architecture without the consideration of other architecture methods.

4.4 Architecture Evaluation Method for Software Reference
Architecture

The evaluation method will be used to answer RQ1 in Section 1.2. More precisely, it is trying to
answer the following question to eliminate ATAM’s disadvantages when applying it to SRAs:

• Question 1: How to obtain quality attributes and scenarios for an SRA?

• Question 2: What procedure can be followed to evaluate the SRA quality attributes and
scenarios?

• Question 3: If an SRA is applied to multiple organizations, how can stakeholders from one
organization represent the other organizations?

– Is it possible to unite stakeholders from multiple organizations without duplicating
quality attributes and scenarios between the organizations?

• Question 4: How can different SRAs be compared against each other based on the quality
attributes and scenarios?

In this thesis, ATAM is taken as a base and its disadvantages are addressed based on different
evaluation methods mentioned in Table A.1 and based on the paper’s suggested solutions. In the
following sections, ATAM’s steps are summarized, discussed, and modified, if needed, to find an
evaluation method for SRAs. ATAM’s steps are not strict to be followed in a waterfall approach.
They can be followed in different order and on several reiterations [KKC00]. In the steps, an
architect is mentioned to perform some tasks. The term architect is not strict to an architect person.
The architect can be a software team/person, a software evaluator, or whichever person that is
running the evaluation process. For simplicity, the term architect is mentioned throughout the
paper.

ATAM consists of nine steps:

19

4 Architecture Evaluation

• Step 1: Present the ATAM

• Step 2: Present Business Drivers

• Step 3: Present Architecture

• Step 4: Identify Architecture Approaches

• Step 5: Generate Quality Attribute Utility

• Step 6: Analyze Architecture Approaches

• Step 7: Brainstorm and Prioritize Scenarios

• Step 8: Analyze Architecture Approaches

• Step 9: Present Results

4.4.1 Step 1: Present the ATAM

ATAM’s Summary

This step presents briefly the evaluation process to a small team of stakeholders. A large team of
stakeholders will be identified in Step 2. The presentation will also include the techniques that will
be used to analyze and evaluate architectures and the final output of the evaluation process. The
purpose of this step is to answer any stakeholders’ questions and to ensure that everyone knows
their responsibilities [KKC00].

Discussion

A similar approach to ATAM’s can be followed since the step is simple and achieves its purpose of
informing the initial small team of stakeholders about the evaluation process and the next steps.

Modification

No modifications are made to this step.

4.4.2 Step 2: Present Business Drivers

ATAM’s Summary

A high-level picture of the system will be presented to the stakeholders. The system needs to
be understood by all participants. For example, the presentation should include the high level
requirements, business goals and constraints, technical constraints, and major stakeholders to be
involved in the upcoming steps (the larger stakeholder team) [KKC00].

20

4 Architecture Evaluation

Discussion

ATAM focuses in this step in presenting the system business drivers. It doesn’t go into details about
defining the domain which will set boundaries to better define the SRA and to help in comparing
different architectural approaches [LBK97]. A well-defined domain will eliminate revalidation and
reinvention of already solved solutions [CMV+09] [AGG12]. The architect and stakeholders must
find a balanced point to define the domain. If the domain is too specific, then the SRA will be
limited and difficult to apply to similar systems. Similar problems can be seen if the domain is too
generic where it doesn’t capture any valuable information.

Furthermore, ATAM’s method is rather focused towards capturing and achieving goals that are
related to a system. Additional information can be provided to better explain the goal behind an
SRA.

Modification

Some additions need to be done to this step since an SRA depends heavily on the defined domain.
The domain should be discussed with the small stakeholder team. It is best specified based on the
architect’s and stakeholders’ knowledge and based on the previous experience of developed systems
in that domain. A good way to specify the domain is to set the different dimensions of an SRA. The
dimensions were mentioned at the end of Section 3.3.

The second modification is to better understand and present SRA’s goals and to identify the goal
behind following a specific architectural evaluation process. Examples for such goals are to build
a new system, extend an already existing system, assess system’s risks, predicate maintenance
costs, or reach the most appropriate architecture [KKC00] [LBVB00] [Dol01]. The architect should
discuss the goal with the stakeholders since it helps define the main purpose behind a facilitator
SRA. Potential goals could be:

• Improve time to market for new systems in the SRA’s domain.

• Ease future design of concrete architectures.

• Help non-technical members better understand the systems’ domain.

• Describe the desired common quality attributes.

• Capture the common requirements to avoid revalidation and reinvention.

4.4.3 Step 3: Present Architecture

ATAM’s Summary

The architect will present a high-level architecture at an appropriate level of detail. The level
of detail depends on several factors such as the available information and time. The high-level
architecture will contain information such as the different system interactions, technical constraints,
and the important use-case scenarios. This step is important as it affects the quality of the analysis
[KKC00].

21

4 Architecture Evaluation

Discussion

This step shows the current available architectural information which will affect the captured scenarios
and analysis in the upcoming evaluation steps. However, providing a high-level architecture of
an SRA can be confusing since the SRA is already at a higher level of abstraction compared to a
concrete architecture. As a result, further information about an appropriate level of detail needs to
be provided.

What is important for SRAs are the common requirements for a particular domain (not the
requirements that are applicable to a particular system). ATAM does not describe how the system
requirements are going to be captured. Stakeholders are most likely used to capture requirements
about a certain system and not a domain. Common requirements are at a higher level of abstraction
than normal system requirements. They are for example:

• The different user access points (remote, locally, ...) to a system in a domain

• Common business models

• Cloud integration to the system

• Automation

A method to capture the common requirements needs to be specified to ease the process.

Modification

The high-level architecture, should not be detailed. It is more of a diagram showing the overall
picture of the domain that was defined in Step 2. It should show where the SRA is going to be used
and which common system information it will describe. If certain information such as technical
constraints or different system interactions are known, then they should be shown in the high-level
architecture.

As for common requirements, this paper suggests representing them in a tabular fashion. The idea
of the table was taken from Family Architecture Assessment Method (FAAM) and Scenario based
Architecture Level Usability Analysis (SALUTA) [Dol01] [FGB04]. The table contains the roles,
their common requirements, and requirement type. The requirement type is about determining
whether the common requirement is core or additional. Core requirements are requirements that
must be available for each system in the specified domain. They must be taken from the SRA. As
for the additional requirements, they are requirements that can be added to the system that is being
developed in the specified domain. They can be either taken or not from the SRA. Further details
about the common requirements will be captured in Step 5 when capturing the scenarios of each.
An example common requirement table is shown in Table 4.1.

Table 4.1: Example Common Requirements Table
Roles Common Requirements Requirement Type

Admin, End-user The device execution can be automated remotely Core
Admin System files can be saved and retrieved from the cloud Additional

Continued on next page

22

4 Architecture Evaluation

Table 4.1 – continued from previous page
Roles Common Requirements Requirement Type

End-user System must provide undo-redo capability Additional
End-user Log-in capability Core

The purpose of the table is different from FAAM and SALUTA. Initially, it will be used by the
architect to present the common requirements to the stakeholders to shape their mindset to focus
on thinking about common requirements that can be in the domain rather than a specific system
requirement. The presented architect’s requirements may be false, but their main purpose is to act
as a starting point to let the stakeholders brainstorm the common requirements. Meetings with
stakeholders can be repeated on multiple sessions until all of the common requirements are captured
in the table and the stakeholders are satisfied with the results.

Additional benefits to obtain common requirements can be seen when stakeholders have previous
knowledge and experience on systems that are under the domain. If the stakeholders are still having
difficulties obtaining common requirements, then the architect can take some of their existing
system specific requirements and move them to a higher level of abstraction during the meeting to
let the stakeholders better understand the goal. Furthermore, setting the common requirements with
the stakeholders helps in answering parts of Question 1 since obtaining the quality attributes and
scenarios of an SRA is going to be based upon the common requirements.

4.4.4 Step 4: Identify Architectural Approaches

ATAM’s Summary

The architect will identify different architectural approaches that can be used. The architect will
only identify and not analyze them. It is important here to not disregard any architectural approach
because they will be later assessed. The architecture defines the structure of the system and how it
can cope with changes and integrate with other systems. The architecture is going to address the
requirements and the highest priority quality attributes and scenarios [KKC00].

Discussion

This step will be performed as how it is intended by ATAM because it fulfills the need of identifying
the different architectural approaches that can be followed to achieve the SRA. However, the common
requirements that are captured in Step 3 need to be further detailed to identify more suitable
architectural approaches. ATAM suggests to identify architecture approaches before getting the
quality attributes and the scenarios. However, other evaluation methods do the opposite [LBVB00]
[BRST05] [Dol01] [FGB04] [LBK97].

23

4 Architecture Evaluation

Modification

This paper suggests to perform this step after Step 5 because generating a quality attribute utility
tree helps better refine and detail the common requirements that the SRA should deliver, which
leads to better architectural approaches.

4.4.5 Step 5: Generate Quality Attribute Utility Tree

ATAM’s Summary

This step is about identifying the quality attributes and scenarios to generate a quality attribute
utility tree. Quality attributes and scenarios have been defined in Section 3.1.2 and Section 3.1.2.
The utility tree is a tree diagram that breaks the quality attributes into finer details until it reaches a
scenario that the architecture should cover [KKC00]. The scenarios will be prioritized according to
their importance and how easily they can be achieved [KKC00]. The utility tree is used to guide the
team during analyzes when the risks, tradeoffs, and sensitivity points need to be captured [KKC00].
A list of the most used quality attributes is available in the standard ISO/IEC 25010 [ISO11] and in
Arvanitou et al. [AAC+17]. From the list, ideas of what quality attributes to include can be taken.
Some of the standard quality attributes are maintainability, modifiability, testability, analyzability,
stability, changeability, reusability, and comprehensibility [ISO11].

Discussion

As previously mentioned in Drawback 1, identifying generic common scenarios for a domain is
difficult. Angelov et al. [ATG14] suggests a solution to this by identifying the different contexts
that the SRA can be applied to. A utility tree is then obtained for each context from the different
stakeholders in multiple organizations [ATG14]. Finally, the utility trees are merged together
to obtain the common quality attributes and scenarios for the SRA [ATG14]. This approach is
time consuming and causes the number of stakeholders to increase a lot, which was explained in
Drawback 3, and the approach assumes that the SRA will be applied to multiple organizations
which is not always the case.

Furthermore, ATAM suggests that the architect generates the utility tree first. Then the scenarios
are brainstormed in Step 7 with the other stakeholders to capture and prioritize further scenarios.
Then the utility tree is updated from all the different sources [KKC00]. For evaluating SRAs, an
architect can have difficulties generating a utility tree on his/her own because of the wide range of
contexts that a domain can cover. On the other hand, domain experts have a clearer vision about
what should be included in the domain.

Modification

Software Architecture Analysis for Evolution and Reusability (SAAMER) generates scenarios based
on the objectives that were captured from the stakeholders [LBK97]. Scenarios are generated until
domain experts and stakeholders are satisfied that the scenarios cover the objectives well [LBK97].
A similar approach is followed in this paper to obtain common quality attributes and scenarios

24

4 Architecture Evaluation

based on the common requirements identified in Step 3. In addition, the paper suggests following
the two approaches that are described in Architecture-Level Modifiability Analysis (ALMA) to
obtain the common scenarios. They are used because they help stakeholders generate the utility tree
from the only two possible perspectives: a top-down and a bottom-up approach [LBVB00].

• Top-down Approach

– Mentions the quality attributes first (or a subset of the quality attribute) and then
identifies scenarios, with the stakeholders, that are related to the quality attributes
[LBVB00].

• Bottom-up Approach

– Opposite to the top-down approach. It first lets the stakeholders mention scenarios and
then map the scenarios to their respective quality attribute [LBVB00]. If a scenario
can be mapped to more than one quality attribute, then the scenario should be divided
accordingly so that it only fits into one quality attribute.

The top-down and bottom-up approaches merge Step 5 (generating a utility tree) and Step 7
(brainstorm and prioritize scenarios) together. Similar to Step 3, capturing common quality
attributes and scenarios can be performed on several meetings until the stakeholders are satisfied
with the utility tree. Example of a brief utility tree is shown in Figure 4.1. It can be compared with
Table 4.1 to see how the common requirements for automation and protocol execution is further
defined in the utility tree.

Figure 4.1: A Brief Utility Tree Example

ATAM’s utility tree serves to concretize the scenarios [KKC00]. However, getting a concrete value
for common scenarios can be difficult. The stakeholders should try their best to refine the scenarios
until they reach a concretized value. By following Step 3 and this step, Question 1 is answered
since they give a structure to follow to obtain the requirements, quality attributes, and scenarios of
an SRA.

After constructing the utility tree, the scenarios (leaf nodes) are weighted by all the stakeholders.
Weighting scenarios will tell the architect the important quality attributes which will be used later
during the analysis step (Step 5) to obtain the score of each architecture. They are weighted
according to importance. Since prioritizing can be understood differently between stakeholders and
it is sometimes difficult to prioritize some scenarios over others [KKC00]. Thus, the prioritization
will be based on three levels: High, medium, and low.

25

4 Architecture Evaluation

4.4.6 Step 6: Analyze Architectural Approaches

ATAM’s Summary

This step is about getting sufficient information about the different architectural approaches to
assess them. The output of this step is to provide a reason about decisions and to help reach the
requirements and quality attributes of the final system. First, a scenario from the utility tree is
taken to identify the risks, sensitivities, and tradeoffs for each architectural decision. They are
identified by asking questions about how the approaches are related to the quality attributes. These
questions are based on the software team experience, software academic material, and documented
experience. Then the captured sensitivity points and tradeoffs are categorized as either risks or
non-risks. At the end, the team should have a list of risks and an idea about the important aspects of
the architecture and which approaches should be taken over the others [KKC00].

Discussion

ATAM’s analysis approach is an appropriate method to identify differences between the architectural
approaches. However, ATAM focuses on analyzing a single system architecture at a time [BRST05].
Since a facilitator SRA is the goal, it is better to also compare different whole architectures together
with comparing different architectural approaches. The whole architecture specifies how the
different architectural components can affect each other. Examples of architectural comparison
methods are ALMA, SALUTA, and Domain-Specific Software Architecture Comparison Model
(DoSAM). ALMA requires to list the affected components to evaluate the architectures modifiability
[LBVB00]. SALUTA and DoSAM suggest to give a score for each architecture based on how much
they fulfill the quality attributes if the goal is to compare different architectural candidates [FGB04]
[BRST05].

Furthermore, high level of abstraction is considered for SRA evaluation. Thus, some quality
attributes are less likely to be important or difficult to analyze them for an SRA. For example, the
usability and functional suitability quality attributes depend on the concrete implementation rather
than on the architecture itself.

Modification

A weighted score method is introduced to compare different SRAs and the architectural approaches
that were initially identified in Step 4. This step will help the architect reach the most suitable
SRA that can fulfill the quality attributes and scenarios that were discovered together with the
stakeholders. It is divided into seven sub-steps:

• Analysis Step 1: In this step, tradeoffs, risks, and sensitivity points are obtained for each
architectural approach that supports its corresponding scenarios. This is done by following
ATAM’s way. The architectural approaches were initially identified in Step 4. In addition,
the architecture components that either fulfill or cause risks for the scenarios should be noted
[LBVB00]. This will help in identifying the components that need to be further analyzed
when SRAs are being designed in Analysis Step 3.

26

4 Architecture Evaluation

• Analysis Step 2: Based on the obtained tradeoffs, risks and sensitivity points, the architect will
give a score from 1 to 5 on how much each architectural approach supports its corresponding
scenarios [FGB04]. If the architectural approach supports the scenario but with high tradeoffs,
risks, and sensitivity points then the score is low, and vice versa. Scoring from 1 to 5
was chosen for simplicity. The idea of scoring scenarios is taken from SALUTA [FGB04].
SALUTA sets a score for each scenario on how much the architecture or system supports
it. This scoring procedure gives a structure to answer Question 2 on how to evaluate
SRA’s quality attributes and scenarios. The procedure is mainly dependent on the architect’s
experience and knowledge in identifying tradeoffs, risks, and sensitivity points, and scoring
them.

• Analysis Step 3: Once the score of how much each architectural approach supports its
corresponding scenarios is set, the score has to be multiplied with the scenario’s priority to
get the weight. The architectural approach with the highest weight will be chosen to construct
different SRAs based on the different architectural patterns. For example, one SRA can be
designed using a client server architectural pattern while another SRA can be designed using
a server cluster architecture pattern. The highest weighted architectural approaches should be
included in the SRAs. For example, the type of database can be an architectural approach
that will be shown in the SRAs.

• Analysis Step 4: After constructing different SRAs, the architect scores from 1 to 5 how
each overall SRA satisfies each scenario. The entire architecture is considered when scoring
because some scenarios’ measurability depends on how multiple components function and
interact with each other. Similar to Analysis Step 3, once the score of each SRA for each
scenario is set, the score has to be multiplied with the scenario’s priority to get the weight.
Then all of the scenario weights that are under the same quality attribute are added together
to get the final weighted score of the architecture with respect to each quality attribute.

• Analysis Step 5: This step tries to achieve refined SRAs based on the obtained quality
attributes’ weighted scores. For each quality attribute, concepts and components from the
SRA with the highest weighted score should be taken. The architect should try to mix,
remove, add, or combine components and architectural decisions to achieve new possible
SRAs.

• Analysis Step 6: Repeat Analysis Step 4 but for the new SRAs to identify whether they will
get a better weighted score. This step can be repeated several times until no further SRAs can
be designed or if the new SRAs have a lower weighted score than the previous ones.

• Analysis Step 7: Pick the SRA with the highest weighted score.

This approach gives a framework that can be followed to answer Question 4. It provides a weighted
scoring method that allows to compare SRAs and to give reason for choosing an SRA over the other
options.

27

4 Architecture Evaluation

4.4.7 Step 7: Brainstorm and Prioritize Scenarios

ATAM’s Summary

This step is when stakeholders meet to brainstorm and identify scenarios. No ideas or opinions are
disregarded in this step. The identified scenarios are use-case, growth, and exploratory scenarios.
Use case scenarios are scenarios where the end-user will interact with the system. Growth scenarios
are modifications that might happen to the architecture or system. Exploratory scenarios are
unusual scenarios that are used to push the system to its limits. They can be of the form of major
modifications to the system or unusual high loads and stress tests. After the scenarios are identified,
they are prioritized by the stakeholders. Then the prioritized scenarios are compared with the utility
tree to see if they match. Any differences must be reconciled and explained. Finally, the initial
utility tree from Step 5 and the identified scenarios in this step are merged together to obtain a
single utility tree [KKC00].

Discussion

ATAM relies on the architect to generate a utility tree in Step 5. Afterwards, the identified scenarios
from the stakeholders in this step are merged into the utility tree [KKC00]. For an SRA, an architect
can find difficulty in identifying most of the scenarios of a particular domain. Moreover, different
stakeholders can have different scenarios for the same domain

Modification

This step was merged with Step 5 to avoid unwanted analysis for architectural approaches since not
all scenarios would have been captured yet. For an SRA it is better to identify the utility tree with
the stakeholders before identifying different architectural approaches.

4.4.8 Step 8: Analyze Architectural Approaches

ATAM’s Summary

This step reiterates Step 6 if new scenarios have been identified in Step 7. If no changes were made
to the utility tree in Step 7, then this step is a testing activity to uncover any new information. If
new information is discovered, then the team should go back to Step 4 [KKC00].

Discussion

This is the same step as Step 6. According to ATAM, all of the steps can be done in an iterative
manner in different order.

28

4 Architecture Evaluation

Modification

The modifications to this step have been previously explained in Step 6.

4.4.9 Step 9: Present Results

ATAM’s Summary

The final step is to document the results to give reasons on why a specific architecture approach
was chosen over the others. ATAM suggests to present everything to the stakeholders but the
most important thing is the outputs of ATAM such as the utility tree and the architectural analyses
[KKC00].

Discussion

Documenting should be based on the goal of the analysis and the captured requirements [FGB04].
Furthermore, if previous systems exist in the domain, it would be also beneficial to document how
the concrete architecture can be adapted to the SRA.

Modification

No modifications are made to this step.

4.4.10 Steps Summary

Figure 4.2 is a flowchart that summarizes the modified ATAM evaluation process to orient it towards
SRAs. The steps are not in strict order and the flow can go back if previous steps need more
clarification or if new information has been identified.

The first step is to present the evaluation process to the initial small team of stakeholders. This step
will be followed the way ATAM proposed with no modifications.

The second step is to present the business drivers to the initial small team of stakeholders and to
identify the major stakeholders that will be involved in the next steps. In this step, ATAM does not
specify that a domain needs to be defined and focuses on achieving system goals. Therefore, two
modifications were made to this step. First modification is to define the domain by answering the
dimension questions that were presented at the end of Section 3.3. The second modification was to
better understand the SRA’s goals by listing some advantages of SRAs. The most notable one is to
ease future design of concrete architectures for multiple systems within the domain.

The third step is to present the high-level architecture to major stakeholders. For SRAs, details
on how to define a high-level architecture are needed since an SRA is already at a higher level of
abstraction compared to concrete architecture. Therefore, the high-level architecture for an SRA
is going to be a non-detailed diagram that represents the defined domain. Furthermore, ATAM
does not provide a way to capture common requirements. Thus, a tabular fashion was proposed to

29

4 Architecture Evaluation

capture them. The table will initially be used by the architect to present an initial set of common
requirements to shape stakeholders’ mindset towards focusing on the domain to capture common
requirements.

ATAM suggests to identify architectural approaches in the fourth step and generate a utility tree
in the fifth step. This paper suggests performing them in reverse order. First the utility tree will
be constructed, and then different architectural approaches will be identified. This helps in better
refining the captured common requirements which leads to better initial architectures. Also, further
details on how to capture common scenarios and quality attributes for SRAs were provided based
on ALMA’s approach in identifying scenarios.

The sixth step is to analyze the different SRAs according to the utility tree. A modified analysis
method from ATAM’s was introduced because ATAM focuses on analyzing a single system
architecture at a time. The analysis method consists of seven steps. The first analysis step is
to identify tradeoffs, sensitivity points, and risks for each architectural approach. The second
analysis step is to score the architectural approaches on how much they support there corresponding
scenarios based on the identified tradeoffs, risks, and sensitivity points. The third analysis step
gets the highest weighted architectural approaches to design different SRAs based on the different
architectural patterns. In the fourth analysis step, the architect scores how much each SRA satisfies
each scenario to obtain the overall weighted score of the SRA. The fifth analysis step tries to achieve
refined SRAs based on the obtained quality attributes’ weighted score by combining, modifying,
adding, or removing components from the different SRAs. The sixth analysis step is to repeat the
analysis from the fourth analysis step but for the refined SRAs. Finally, in the seventh analysis step,
the SRA with the highest weighted score will be chosen.

The seventh and final step of the evaluation process is to document the results and present them to
the stakeholders. This step is performed similar to how ATAM suggested.

30

4 Architecture Evaluation

Figure 4.2: Flowchart of the evaluation steps
31

5 Software Reference Architecture for
Laboratory Devices

In this chapter, the paper will present an example where the evaluation method was applied to obtain
an SRA for laboratory devices in particular liquid handling devices. The chapter presents how the
stakeholders performed each evaluation method and the results of each. It also presents challenges
or uncertainties faced, and slight changes to the evaluation proposed by the stakeholders or architect
when applying the evaluation steps.

Overall, the proposed evaluation method for SRA was proven to be beneficial because the architect
was able to reach an SRA for liquid handling devices based on the stakeholders’ needs and
requirements. Slight modifications to some evaluation steps were made to ease the process, but this
may vary for other stakeholders and architects that are applying the evaluation method.

5.1 Introduce the Evaluation Process

5.1.1 Evaluation Step Results

Software architecture and the problems that were mentioned in Section 1.1 were presented to the
initial small team of stakeholders. The main goal of designing a facilitator SRA was then presented
together with its benefits to ease the development of liquid handling devices. Then the evaluation
process was briefly explained so that each stakeholder will know their responsibilities for the next
steps. Finally, stakeholders’ questions were answered.

5.1.2 Comments About Evaluation Step

The architect and the initial small team of stakeholders didn’t have any difficulties with this step.

5.2 Discuss Business Drivers

In this step the primary stakeholders defined the domain and identified the secondary stakeholders
that can be involved in the process for the following steps.

32

5 Software Reference Architecture for Laboratory Devices

5.2.1 Domain Results

The team has defined the following domain based on the domain dimension questions mentioned at
the end of Section 3.3.

SRA Classification Dimension

• Where will it be used? The SRA will be used as a facilitator to reach concrete architectures
in organizations that develop software for laboratory devices. Since there are a wide variety
of laboratory devices, the scope of laboratory devices is going to be limited to liquid handling
devices to have a more accurate SRA. The outcome of liquid handling devices could be in the
form of a physical, for example mixing liquids, or data output, for example measuring liquid
volumes. The user interacts with it by passing protocols as inputs where the device’s output
is the output of running the protocol. A laboratory device protocol is a set of instructions set
by the user. It contains the steps that the device needs to follow to achieve the outcome. The
laboratory device protocols are usually created and executed using a software application that
is deployed on the device. An example of a laboratory device in this domain is the I.DOT One
shown in Figure 5.1. The I.DOT One is a device used to dispense liquids from one laboratory
plate to another in micro and nano-liter form. The protocol instructions of this device are
the liquid dispensing steps. The application that is used to create and run the protocols is
deployed on a tablet that is mounted on the device as shown in Figure 5.1.

Stakeholders also specified the device’s price range. Liquid handling devices can have
different requirements and scenarios based on the different devices’ price ranges.

• Who defines it? The SRA is intended for a single organization.

• When is it defined? Since the organization already has systems that are built in that domain,
the SRA is going to be defined after the development of concrete software architecture.

• What is the maturity stage of the domain? The domain is quite mature but new ideas about
laboratory device communication protocols, standards, cloud connectivity, and automation
are still under discussion and are implemented differently between organizations.

Figure 5.1: I.DOT One Laboratory Device

33

5 Software Reference Architecture for Laboratory Devices

SRA Design Dimension

• What is described? The SRA should describe the system elements and the relations between
them. It will also include the system properties and communication protocols that should be
followed, if any.

• How is it represented? The SRA will be represented in a semi-formal way.

• How is it described? The SRA will be described by a mix of graphical and textural notations.
The graphical notation, Unified Modeling Language (UML) like notation in this case, will be
used to represent the key components of the system. The textural notation will explain finer
details about the graphical components.

5.2.2 Comments About Domain

This is an improvement over the normal ATAM evaluation process. ATAM only presents the system
business drivers and does not specify the domain. While in this case, stakeholders did not have any
difficulties identifying the domain and found it easy to follow the dimension questions.

5.2.3 Stakeholder Results

Since the domain is defined for a single organization, stakeholders were identified within the same
organization. Stakeholders from different roles were chosen to capture liquid handling devices from
different perspectives. They comprised of firmware engineers, software developers, product owners,
and application scientists.

5.2.4 Comments About Stakeholder

Identifying stakeholders was simple because the organization is a small to medium scale organization.
Email communication was relied on as a consequence to the difficulty of bringing all stakeholders
for a meeting due to different time schedules.

5.3 Identify Common Requirements

5.3.1 Evaluation Step Results

Figure 5.2 shows the high level diagram that was presented. It shows the external system components
that are going to interact with the laboratory device software. The device is going to be accessed
via the software that is deployed on the device, external user personal devices, cloud service to save
and share device data, and a laboratory management system for automation.

34

5 Software Reference Architecture for Laboratory Devices

Figure 5.2: High Level Diagram

Table 5.1 shows the captured common requirements for liquid handling devices. The common
requirements were captured based on the stakeholders’ knowledge about the domain and previous
documentations for some parts of the liquid handling devices. First, the common requirements were
identified by the architect then they were shared with the stakeholders. Each stakeholder contributed
by modifying, suggesting, and adding requirements based on their knowledge.

Table 5.1: Liquid Handling Devices Common Requirements
Roles Common Requirements Priority
Laboratory-User User can create, view, save, edit, and delete plates. Core
Laboratory-User User can create, view, save, edit, and delete liquids. Core
Laboratory-User User can create, view, save, edit, and delete device protocols.

Device protocols consists of protocol settings, chosen liquids,
chosen plates, and protocol steps.

Core

Laboratory-User User can execute device protocols. Also, use can monitor
and interrupt running device protocols. Dispensing depends
on the device settings and device protocol.

Core

Laboratory-User Software displays feedback of the executed device protocol
whether it was successful or not.

Core

Laboratory-User Software displays a detailed result of the execute device
protocol.

Additional

Laboratory-User User can simulate the execution of a device protocol. The
simulation will show the protocol steps that the device will
follow without executing them.

Core

Laboratory-User A device protocol cannot be overwritten. A new device
protocol needs to be created every time the protocol is saved.

Additional

Laboratory-User User can undo and redo actions when editing a device
protocol.

Additional

Continued on next page

35

5 Software Reference Architecture for Laboratory Devices

Table 5.1 – continued from previous page
Roles Common Requirements Priority
Device Technical admin can run stress test device protocols that are

unsupervised for hours.
Core

Laboratory-User,
Laboratory-
Manager

System must record all the protocols that have been executed. Core

Laboratory-User Lab-Manager must assign a user group to a protocol where
only the assigned user group have access to the protocol.

Additional

Laboratory-
Manager

Protocols can be assigned to one user where only that user
can use the protocol.

Additional

Laboratory-
Manager, Technical
Admin

Lab-Manager can assign users to a user group. A user group
is a collection of users.

Additional

Device The system must support multiple hierarchical user roles. Additional
Laboratory-
Manager, Technical
Admin

Lab-Manager or technical admin can add, modify, and
remove device software settings.

Core

Laboratory-User,
Technical-Admin

Lab-Manager or technical admin can add, modify, and
remove device hardware settings.

Core

Technical-Admin User or technical admin can calibrate device hardware
settings.

Core

Laboratory-User Admin can update device’s firmware. Core
Laboratory-
Manager

User must log-in to use the system and device. Additional

Laboratory-User Lab-Manager can create, modify, and remove user accounts. Additional
Automation System User can automate the device via a laboratory information

management system (LIMS) using the SiLA 2 standard.
Additional

Laboratory-User Automation system can get the hardware component (instru-
ment) status.

Core

Laboratory-User User can use the device’s system locally (Example, screen
that is mounted on the device).

Core

Device User can use the device’s system remotely (Example, per-
sonal computer connected to the device via wlan etc.).

Additional

Device System logs information (Example: user actions) and errors
on the device.

Core

Laboratory-User System logs information (Example: user actions) and errors
on the cloud.

Additional

Laboratory-User,
Technical-Admin

User can save and share device protocols on and from the
cloud.

Additional

Laboratory-User,
Technical-Admin

The user can export logs from the software to a specified
location.

Additional

Continued on next page

36

5 Software Reference Architecture for Laboratory Devices

Table 5.1 – continued from previous page
Roles Common Requirements Priority
Laboratory-
Manager

A built in screenshot mechanism on the software that allows
the user to take screenshot of the software because it is hard
to take screenshots on the tablet when an action or error
occurs.

Additional

Laboratory-User The Lab-Manager has the ability to archive and unarchive
device protocols, liquids, plates, and settings.

Additional

Device The user can export and import device settings and data to
and from other similar devices.

Additional

Device Logging can be on debug, trace, or production level. Additional
Device The system can run as either 21 CFR Part 11 complaint or

not.
Additional

Device Only one user can access the device at a time (No transaction
methods are needed when data is being modified).

Core

Device All of the changes and actions done on device data, software
data, and protocols should be logged.

Core

5.3.2 Comments About Evaluation Step

Stakeholders were able to provide valuable common requirements for the domain instead of a
particular system. What helped them is their previous experience in the domain, the high level
architecture diagram in Figure 5.2, and the initial common requirements presented by the architect.
Unlike ATAM this gave stakeholders a structure to start in order to identify common requirements.

Choosing stakeholders from different roles also presented its benefit in capturing all the different
functionality aspects. Some stakeholders could not contribute to some requirements because they
were not related to their role or knowledge. Thus, stakeholders also suggested to specify if a
requirement is specific to a certain stakeholder group. This ensures that the software team or architect
will ask the right stakeholder group if additional clarification is needed about a requirement.

5.4 Identify Quality Attributes and Scenarios

5.4.1 Evaluation Step Results

The architect made an initial utility tree based on the common requirements that were previously
captured. The utility tree was then verified by the larger stakeholder team that were also identified in
the previous step. Stakeholders added, modified, and removed scenarios where needed. No specific
order of top-down or bottom-up approach was followed. The approaches were interchangeably
applied by the architect and the stakeholders. After the utility tree was constructed, the scenarios
were given a priority by each stakeholder individually. If the scenario priority matched with the
majority of the stakeholders, then the priority is set. If it did not match, then the scenario should be
rediscussed between the stakeholders to identify any concerns.

37

5 Software Reference Architecture for Laboratory Devices

Table 5.2 shows the final utility tree that was captured. The quality attributes are from the ISO/IEC
[ISO11] standard.

Table 5.2: Utility tree
Quality Attribute Scenario Priority -

High(H)
Medium(M)
Low(L)

Compatibility - Interop-
erability

Device can be operated via SiLA2. H

Functional Suitability -
Functional correctness

The ratio of successfully executed device protocol steps
over the failed ones should be greater than 90% on
average if hardware dependencies are correct.

H

Maintainability - Mod-
ifiability

Adapt a new protocol format in < 1 person week (Ex:
adding JSON as a new format).

M

Maintainability - Mod-
ifiability

Implement, test, and deploy a new SiLA2 endpoint
automation command in < 3 person day.

H

Maintainability - Mod-
ifiability

Implement, test, and deploy a new communication
protocol endpoints to the system (For example: AutoIT)
in < 3 person weeks.

L

Maintainability - Mod-
ifiability

Implement, test, and deploy a new parameter to the
device settings in < 3 person days.

M

Maintainability - Mod-
ifiability

Implement (or modify), test, and deploy a protocol
format structure in < 1 person week (Ex: changing
plate names, introducing a new plate type).

H

Maintainability - Mod-
ifiability

Change log format structure in < 2 person days. L

Maintainability - Mod-
ifiability

Integrate a completely new software UI design in < 10
weeks of work (Ex: Only desktop UI apps are available,
and we would like to integrate a new website UI to the
system).

L

Maintainability - Mod-
ifiability

Implement (or modify), test, and deploy a software end
point and logic to a hardware component in <1 person
week.

H

Maintainability -
Reusability

80% of the architecture should be reusable for liquid
lab devices.

H

Performance - Capacity The entire device log size should not exceed 500 Mbs. L
Performance - Time be-
havior

Opening (loading) a protocol locally should not exceed
15 seconds.

H

Performance - Time be-
havior

When accessed remotely, the UI shall be able to interact
with the device in real-time without having visible
delays for 95% of the interaction time.

H

Continued on next page

38

5 Software Reference Architecture for Laboratory Devices

Table 5.2 – continued from previous page
Quality Attribute Scenario Priority -

High(H)
Medium(M)
Low(L)

Performance - Time be-
havior

The system can be automated by a lab-automation
system for a maximum of 77% of the time (The user
can use the device for 33% of the time).

H

Performance - Time be-
havior

The system must receive and send data in real time
over a network.

H

Portability - Adaptabil-
ity

The system should be able to run protocols, config
files, and all data related files that are at least 2 versions
behind.

M

Security - Accountabil-
ity

Log all the changes, and by whom they were made, for
any protocol at any point in time

H

Security - Accountabil-
ity

Log all the protocols that were executed with their
results and device settings that were used.

H

Security - Accountabil-
ity

Log all login details (failed/successful attempts, when
logged-in and logged-out).

H

Security - Accountabil-
ity

Log all changes and by whom they were made, to the
device hardware and software settings.

H

Security - Confidential-
ity

Only user accounts with access to automation are
allowed to run the automation commands.

H

Security - Confidential-
ity

The protocol is only accessible to the authorized group
specified by the protocol group.

H

Security - Integrity An unauthorized person should not be able to login to
the device and use it.

H

Usability - User inter-
face aesthetics

The size of the undo and redo buffer is at least 50
permutations.

M

Security - Integrity The protocol can be hashed with an electronic signature
which is saved on both the protocol and the DB, and it
cannot be copied.

H

Security - Integrity All data (database information) including log files can
be encrypted in production.

H

Maintainability - Mod-
ifiability

Backup entire database in <1 person day. L

Performance - Time be-
havior

Protocol, liquid, and plate data can be archived and
unarchived in less than 15 seconds.

H

Performance - Time be-
havior

Update device firmware should take less than 3 minutes. L

Performance - Time be-
havior

Save and retrieve protocols on and from an external
file storage (Ex: cloud) in real time (no noticeable
difference between a local and an external file storage).

L

Continued on next page

39

5 Software Reference Architecture for Laboratory Devices

Table 5.2 – continued from previous page
Quality Attribute Scenario Priority -

High(H)
Medium(M)
Low(L)

Maintainability - Mod-
ifiability

Change the cloud endpoint immediately from a config
file.

M

Maintainability -
Reusability

The remote system (that is connected to the device)
must be independent from the framework used to build
it.

M

Security - Confidential-
ity

Only users that have access to a protocol, can view
the changes that were made to the device protocol and
when was the protocol executed with the execution
results.

M

Compatibility - Interop-
erability

The hardware system should allow more than one client
system to subscribe to it. More than one client can
receive the hardware reply messages.

H

5.4.2 Comments About Evaluation Step

Stakeholders had no difficulty in using the top-down and bottom-up approach to identify scenarios.
They also prioritized the scenarios as high, medium, or low on how likely the scenario will occur or
is needed for liquid handling devices.

Even though there weren’t many stakeholders, it was difficult to schedule a meeting due to time
schedules overlapping. Thus, email communication was relied on. This resulted in delays as emails
had to be sent back and forth to explain the evaluation step. Scheduling a meeting would have been
faster and easier as stakeholders can share ideas and thoughts at the same time.

5.5 Define Architectural Approaches

5.5.1 Evaluation Step Results

Based on the identified common scenarios and requirements, the architect proposed different
architectural approaches. No approaches were disregarded at this step and none of the approaches
were analyzed. Furthermore, the architect found it easier to identify architectural approaches by
clustering scenarios and requirements based on whether the cluster is affected by the same approach
type. For example, scenarios and requirements that are related to data audit logging were grouped
together because the database type affects them. Table 5.3 shows the scenarios that are related to
audit logging and the different architectural approaches that can fulfill the scenarios. In the next
step, the architectural approaches will be analyzed according to how well they satisfy the scenarios
based on the advantages and risks of each. For a complete list of the architectural approaches for
the different scenario clusters, please refer to Table A.3 in Appendix A.

40

5 Software Reference Architecture for Laboratory Devices

Table 5.3: Architectural Approaches for Audit Logging
Scenario Architectural Approach
Log all the changes, and by whom they were made,
for any protocol at any point in time

Log on files (File management system)

Log all the protocols that were executed with their
results and device settings that were used

Log on database

Log all changes and by whom they were made, to
the device hardware and software settings
Logs all login details (failed/successful attempts,
when logged-in and logged-out)
Device log size should not exceed 500 Mbs
Change log format structure in < 2 person days

5.5.2 Comments About Evaluation Step

The architect suggested to cluster scenarios based on the architectural approach type. If multiple
scenarios are affected by an architectural approach, then they should be clustered together. This
made it easier for the architect to identify architectural approaches and to score them. Furthermore,
this step was done by the architect alone with some feedback from the software team.

5.6 Analyze Architectural Approaches

5.6.1 Evaluation Step Results

The first step was to identify tradeoffs and sensitivity points for each architectural approach according
to the scenarios that the architectural approach supports. However, the software team found it easier
to think of advantages and disadvantages of each approach. The terms advantages and disadvantages
are just easier to grasp for the team compared to the terms tradeoffs and sensitivity points. Fortunately,
tradeoffs and sensitivity points can be extracted from the approach’s disadvantages. Though it is
advisable to identify tradeoffs and sensitivity points as it gives a better distinction between the
architectural approaches.

Then the software team ranked from 1 to 5 how much each architectural approach can support its
corresponding scenario. The team didn’t have any difficulties ranking since they were ranking based
on the advantages and disadvantages that they have identified. The highest weighted architectural
approaches gave the team a clear idea of what components the potential SRAs should consist of such
as the type of database, file formats, and frameworks. For example, Table 5.4 shows the advantages
and disadvantages of each architectural approach related to audit logging. While Table 5.5 shows
the score and weighted score of each architectural approach with respect to a scenario. From
Table 5.5 it is concluded that the system should log audits on a database since it has a higher overall
weighted score than logging on files. For the complete list of architectural approaches and weighted
scores, please refer to Table A.4 and Table A.5 in Appendix A.

41

5 Software Reference Architecture for Laboratory Devices

Table 5.4: Architectural Approaches for Log Data Handling Advantages & Disadvantages
Architectural Approach Advantages Disadvantages
Log on files (File management
system)

The audit log can be easily shared
and copied if needed.

Hard to keep track of the log files
for multiple device protocols.
File has to be locked to ensure
that the user cannot change the
log manually.
A change in the log format struc-
ture will result in log files having
different format from the previ-
ous versions.

Log on database Can have a structured database
that contains the audit log of the
device protocols.
Log format depends on how the
audit log is retrieved from the
database.

Requires the device protocols to
be saved on the database and not
in the file storage.
Additional effort is required to re-
trieve the audit from the database.

Table 5.5: Architectural Approaches for Log Data Handling Weighted Score
Architectural Ap-
proach

Scenario Priority Score Weighted Score

Log on files
(File management
system)

Log all the changes, and by whom they
were made, for any protocol at any point
in time.

H 1 3

Log all the protocols that were executed
with their results and device settings that
were used.

H 3 9

Log all changes and by whom they were
made, to the device hardware and soft-
ware settings.

H 3 9

Log all login details (failed/successful
attempts, when logged-in and logged-
out).

H 3 9

Device log size should not exceed 500
Mbs.

L 5 5

Change log format structure in < 2 per-
son days.

L 3 3

Total 38
Log on database Log all the changes, and by whom they

were made, for any protocol at any point
in time.

H 4 12

Continued on next page

42

5 Software Reference Architecture for Laboratory Devices

Table 5.5 – continued from previous page
Architectural Ap-
proach

Scenario Priority Score Weighted Score

Log all the protocols that were executed
with their results and device settings that
were used.

H 5 15

Log all changes and by whom they were
made, to the device hardware and soft-
ware settings.

H 5 15

Log all login details (failed/successful
attempts, when logged-in and logged-
out).

H 5 15

Device log size should not exceed 500
Mbs.

L 5 5

Change log format structure in < 2 per-
son days.

L 5 5

Total 67

The architect and the software team found it best to use arc42 as a guideline to represent the SRAs
into multiple views: deployment, building block, and a database view. From the highest weighted
architectural approaches, the architect came up with Figure 5.3 which shows the deployment view
with the building blocks for liquid handling devices. The view shows how the users can interact
with the liquid handling device, either via the touch screen PC that is mounted on the device, from a
remote user PC, or from a laboratory information management system for automation. Also, the
application frontend has a connection to an external cloud provider to save, retrieve, and share data.
Components that are provided by 3rd party systems are noted as black boxes.

Figure 5.3: Deployment View with Building Blocks for Liquid Handling Devices

43

5 Software Reference Architecture for Laboratory Devices

As seen in Figure 5.3, there are two databases: Frontend Database and Backend Database. This is
because the architect and the software team had many different ideas on where to host the database.
Some suggested that the database can be hosted on the liquid handling device, on a on-premise
central machine, or on an off-premise cloud machine. Figure 5.4 shows all the different possibilities
on where the database can be hosted. After comparing the different locations, the architect and the
software team decided to settle with Option B from Figure 5.4 because of the following:

• It is applicable to all costumers independent of their data privacy policies.

• Does not require the costumer to have an IT team to manage the availability of a machine that
hosts the database.

• Makes the liquid handling device more appealing to customers since it comes configured
straight out of the box without the need of additional hardware to host the database.

• Using the Frontend Database, the user can use the liquid handling device’s software in an
offline mode without having to connect to the device.

• Hosting a database on a separate machine can increase complexity because of the different
requirements and privacy concerns that the customer might impose.

Figure 5.4: Database Host Locations

44

5 Software Reference Architecture for Laboratory Devices

As for the lower building block views, the architect came up with different SRAs from different
architectural patterns. A client server architecture and a message bus architecture shown in Figure 5.5
and Figure 5.6 respectively. The client server architecture uses ZeroMQ as a communication
framework between the client and the server, on the other hand, the message broker architecture
uses MQTT (HiveMQ) to implement the bus (broker). The software team analyzed both SRAs and
scored them from 1 to 5 on how much they satisfy each scenario. Then each score was multiplied
with the scenario’s priority to obtain the weighted score of each quality attribute and the overall
weighted score of the SRA.

The message bus architecture scored slightly higher only in the maintainability - modifiability
quality attribute. Thus, the client server SRA in Figure 5.5 was chosen. No new refined SRA
approaches were identified because the client server SRA has a higher score on all the other quality
attributes and the architect did not identify any possible improvements. For a detailed weighted
score difference between the client server and the message bus architecture, please refer to Table A.6
in Appendix A.

If the laboratory users would like to have a centralized machine that can control multiple laboratory
devices, then the bus architecture should be followed where both the database and the Application
Backend Bus are hosted on the centralized machine. Similar to following Option D in Figure 5.4
with the message bus architecture where the Application Backend Bus will be hosted on the on
premises machine.

For the database diagrams, please refer to Figure A.1, Figure A.2, and Figure A.3 in Appendix A.

Figure 5.5: Client Server Building Block View for Liquid Handling Devices

45

5 Software Reference Architecture for Laboratory Devices

Figure 5.6: Message Bus Building Block View for Liquid Handling Devices

5.6.2 Comments About Evaluation Step

The software team and the architect made several comments when following the analysis steps. The
first was that the terms advantages and disadvantage were more convenient than tradeoffs, risks,
and sensitivity points when comparing architectural approaches. This may be different with other
software teams, but this change of terms didn’t cause any problems with the analysis because the
main purpose is to score the architectural approaches.

In some cases when scoring architectural approaches, it was not possible to have a single architectural
approach as the winner because it can be dependent on the concrete system and the software team
that is implementing it. For example, using Object Rational Mapping (ORM) depends on whether
the database in the concrete system is required to be interchangeable or not. It also depends on the
software team’s knowledge in writing data queries and the complexity of the data queries that will
be implemented. Another example is the used logging framework. It depends on the programming
language and the communication framework (such as Apache Kafka, RabbitMQ, and MQTT) that
will be used.

46

5 Software Reference Architecture for Laboratory Devices

The software team also used arc42 to represent the SRA into a deployment and building block views
on different levels. That was based on preference, though other modeling techniques can be used.

It was also hard to score some scenarios especially the ones that depend on the actual system
implementation such as performance. Some of the scenarios were given a similar score across all
the different SRAs because it is not possible to score them without implementation. For example,
the scenario Opening (loading) a protocol should not exceed 15 seconds depends on the actual
implementation of the system. One could do prototype implementations to measure performance,
but that can be time consuming and ineffective especially if the performance scenarios have a low
priority. Fortunately, these scenarios are already captured and can be used to test the actual concrete
system once implemented.

Overall, the analysis steps gave the architect and the software team a structure that they followed to
reach an SRA for liquid handling devices.

5.7 Document Results and Decisions

5.7.1 Evaluation Step Results

All the requirements and scenarios were documented. They can be used by the stakeholders as a
starting point if they want to implement a concrete system under the same domain. This will ease the
process since most important aspects were already captured. The SRA was also documented which
is used by the stakeholders and software team to better understand how the concrete architecture
will look like and to provide them a reason why certain software approaches were not taken.

5.7.2 Comments About Evaluation Step

No comments or difficulties were faced in this step.

47

6 Testing the Liquid Handling Device
Architecture

The client server SRA was achieved and evaluated in Chapter 5 using the adapted evaluation method.
In this chapter, the paper will test the SRA’s effectiveness in facilitating the design and development
of concrete systems. The I.DOT One and I.DOT Mini liquid handling devices are used as a case
study. Due to the company’s privacy, the specific requirements and qualities of I.DOT One and
I.DOT Mini are not going to be specified. Instead, the paper will provide a brief discussion of the
effectiveness of the common requirements and quality attributes in covering the I.DOT One and
I.DOT Mini systems. Then a concrete architecture of the I.DOT One will be presented. Finally, the
results of implementing an I.DOT One prototype are presented.

6.1 Requirements of I.DOT One and I.DOT Mini

All of the common requirements in Table 5.1 covered the requirements of both the I.DOT One
and I.DOT Mini. The core priority common requirements were needed to specify the systems
requirements. As for the additional priority requirements some were taken and some were neglected
depending on the system. In addition, further details about the devices’ requirements had to be
specified. For example, a device protocol in I.DOT One is different from I.DOT Mini. I.DOT One
is a liquid dispensing device with eight dispensing channels, on the other hand, I.DOT Mini only
has one. Similar detailed requirements differences can be seen to how liquids, plates, and device
parameters are specified on each device. This does not mean that the common requirements are
inadequate, they instead facilitated achieving the requirements.

6.2 Qualities Attributes of I.DOT One and I.DOT Mini

Unfortunately, the I.DOT One and I.DOT Mini did not have quality attributes and scenarios
documented. Thus, there was nothing to compare the common scenarios against. Not a lot of
effort have been made here to verify the common scenarios in Table 5.2. Fortunately, the common
scenarios and core qualities is what the stakeholders captured about liquid handling devices. It
should relate to both I.DOT One and I.DOT Mini and be taken as a starting point to specify further
details about the system.

48

6 Testing the Liquid Handling Device Architecture

6.3 Concrete Architecture of I.DOT One

Figure 6.1 shows the concrete software architecture that was achieved using the client server SRA
in Figure 5.5. As shown in the figure, only the relevant components for I.DOT One were taken
from the client server SRA. For example, the cloud adapters were removed as they are not needed.
Moreover, additional detailed software components were given to the architecture. For example, the
architecture specifies the hardware actors that the I.DOT One system must interact with and the
XML file type, in the file provider, that the system must be able to read. Reaching the concrete
architecture was relatively simple and quick because the SRA presented an architectural layout
containing the most important software components.

Figure 6.1: Software Architecture for IDOT.One

49

6 Testing the Liquid Handling Device Architecture

6.4 Prototype Implementation of I.DOT One

This section focuses on implementing a prototype using the I.DOT One concrete architecture in
Figure 6.1. The prototype’s main objective is to show that the SRA can be used to implement
liquid handling devices, such as the I.DOT One. Due to time constraints, the prototype does not
include the implementation of the components that are related to automation. Overall, using the
architecture was simple to implement the prototype and it answers RQ2. The following sub-sections
are comments about how different parts of the architecture were implemented.

6.4.1 Database

The database diagrams were used to create the database with SQL server. To implement data
auditing (logging), SQL triggers were used to audit data in a separate database. The SQL triggers
are convenient because they do not require any code to be written to handle audits. Moreover,
triggers are implemented on the database layer which means that only one code call is required to
save, update, and delete data as well as audit the data changes.

6.4.2 Application Backend

Implementing the backend was straight forward. No changes to the architecture were made. Each
software component in the Application Backend had its own data objects. This is because the data
objects in the database are represented differently than in the hardware or in the end-point. For
example, a bool in the end-point is represented as a string in the database and can be represented as
an int of 0 or 1 in the hardware components. The end-point also had a data transfer object which
ZeroMQ will use to transfer data to the Application Frontend.

6.4.3 Communication Protocol/Framework

ZeroMQ, a messaging library, was used for the communication because it operates without a broker
and offers request-reply and publish-subscribe messaging patterns. Both messaging patterns were
needed because in same cases a client would like to request something from the server, and in other
cases the liquid handling device needs to inform multiple clients about its status and results when
executing a certain action. For example, the device might want to share the results of executing
a device protocol in real time with multiple clients. Due to the lack of time, the performance
scenarios were not extensively tested in the prototype. However, the prototype behaved in real time
performance and ZeroMQ promises for asynchronous high-speed communication based on their
documentation.

50

6 Testing the Liquid Handling Device Architecture

6.4.4 System logging

Since the prototype was implemented using .NET Core, SeriLog with Microsoft Logging were
used to log system activities on files. Logging was implemented on a separate software component
(or software project) to make sure that all other software components can reference it. Having a
separate software component for logging is good since it decreases coupling and enabled the logging
format to be changed by changing only one software component without affecting the others.

51

7 Conclusion and Future Work

An SRA is beneficial to reduce the amount of time and effort needed to achieve concrete software
architecture and systems. However, there is not a specific evaluation method for achieving and
evaluating SRAs. ATAM is a well-known method for architecture evaluation, but it has some
disadvantages when applied towards a reference architecture. As a result, this thesis presented an
adapted evaluation method for SRA that was derived from ATAM. The adapted evaluation method
is focused towards achieving a reference architecture under a domain that will be identified by the
stakeholders. The adapted evaluation method answered RQ1 by providing a structure to follow
to obtain a suitable SRA that can fulfill the domain and qualities the stakeholders look for. The
adapted evaluation method includes how to define a domain, identify stakeholders, capture common
requirements, and identify common quality attributes and scenarios. The method also provided an
analysis method to compare different architectural approaches and SRAs by providing a score on
how much they fulfill the requirements and scenarios.

The adapted evaluation method was proven to be beneficial when it was applied to the liquid
handling device domain. The method helped stakeholders, architects, and software team, reach an
SRA that is suitable for liquid handling devices. The output of the evaluation method includes tables
that contain the common requirements, qualities, and scenarios that the stakeholders identified.
It also includes the score of different architectural approaches to help chose which architectural
approaches should be taken when designing the SRAs. The architect and the software team designed
two potential SRAs: a client server and a message bus architecture. After scoring both of them,
the client server SRA was followed. The SRA included how the device can be used locally and
remotely, automated, and integrated with the cloud. The presented client server SRA answered RQ2
because it captured the expected qualities and requirements that were provided by the stakeholders.
For future work, it is better to apply the adapted evaluation method to several different domains to
further verify its beneficial results as what this thesis proposed. Furthermore, the evaluation method
should be applied by different software teams and architects to eliminate the possibility that the
adapted evaluation method was beneficial for just a certain software team or architects.

The client server SRA will act as a facilitator to guide the software team and architects in achieving
concrete software architecture and systems that are within the liquid handling device domain.
To show the SRA’s usage, I.DOT One and I.DOT Mini liquid handling devices were used as a
case study. The requirements and qualities of the devices were specified based on the evaluation
method’s output. Moreover, a concrete architecture for I.DOT One was derived from the client
server SRA. The I.DOT One architecture was then used to implement a small prototype to validate
the architecture. Overall, the client server SRA facilitated the procedure in implementing the
prototype. For future work, the SRA needs to be applied to more different concrete systems to
better understand the flexibility of the SRA and its effectiveness in facilitating the concrete process
to reach a liquid handling device system.

52

Bibliography

[20] “Supporting standards: SOPHIA KTORI DISCUSSES THE IMPLEMENTATION
OF DATA STANDARDS FOR LABORATORY INFORMATICS.” In: 170 (2020).
url: https://link.gale.com/apps/doc/A621580904/AONE?u=anon~ac77588a&sid=
googleScholar&xid=a9a43e4a (cit. on p. 11).

[AAC+17] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, P. Avgeriou. “A
mapping study on design-time quality attributes and metrics”. In: Journal of Systems
and Software 127 (2017), pp. 52–77 (cit. on p. 24).

[AGG12] S. Angelov, P. Grefen, D. Greefhorst. “A framework for analysis and design of software
reference architectures”. In: (2012). doi: 10.1016/j.infsof.2011.11.009 (cit. on
pp. 14–16, 21).

[ATG08] S. Angelov, J. J. Trienekens, P. Grefen. “Towards a method for the evaluation of
reference architectures: Experiences from a case”. In: European Conference on
Software Architecture. Springer. 2008, pp. 225–240 (cit. on pp. 18, 19).

[ATG14] S. Angelov, J. J. Trienekens, P. Grefen. “Extending and Adapting the Architecture
Tradeoff Analysis Method for the Evaluation of Software Reference Architectures”.
In: (2014) (cit. on pp. 18, 19, 24).

[Bis13] P. Bisták. “Advanced remote laboratory for control systems based on Matlab and .NET
platform”. In: 2013 IEEE 11th International Conference on Emerging eLearning
Technologies and Applications (ICETA). 2013, pp. 35–39. doi: 10.1109/ICETA.2013.
6674400 (cit. on p. 11).

[Bro18] S. Brown. Technical leadership and the balance with agility: Software Architecture
for Developers - Volume 1. 2018 (cit. on pp. 8, 12–14).

[BRST05] K. Bergner, A. Rausch, M. Sihling, T. Ternité. DoSAM – Domain-Specific Software
Architecture Comparison Model. Springer Berlin Heidelberg NewYork, 2005, pp. 4–
20. isbn: 3540290338 (cit. on pp. 19, 23, 26).

[BZJ] M. A. Babar, L. Zhu, R. Jeffery. “A Framework for Classifying and Comparing
Software Architecture Evaluation Methods”. In: (). doi: 10.17485/ijst/2016/v9i30/
96653 (cit. on p. 18).

[CBB+10] P. Clements, F. Backmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord,
J. Stafford. Documenting Software Architectures: Views and Beyond. 2nd edition.
Addison-Wesley Educational Publishers Inc, 2010. isbn: 0321552687 (cit. on p. 12).

[CBS17] M. A. Chauhan, M. A. Babar, Q. Z. Sheng. “A reference architecture for provisioning
of tools as a service: meta-model, ontologies and design elements”. In: Future
Generation Computer Systems 69 (2017), pp. 41–65 (cit. on pp. 15, 16).

53

https://link.gale.com/apps/doc/A621580904/AONE?u=anon~ac77588a&sid=googleScholar&xid=a9a43e4a
https://link.gale.com/apps/doc/A621580904/AONE?u=anon~ac77588a&sid=googleScholar&xid=a9a43e4a
https://doi.org/10.1016/j.infsof.2011.11.009
https://doi.org/10.1109/ICETA.2013.6674400
https://doi.org/10.1109/ICETA.2013.6674400
https://doi.org/10.17485/ijst/2016/v9i30/96653
https://doi.org/10.17485/ijst/2016/v9i30/96653

Bibliography

[CMV+09] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, M. Bone. “The Concept of
Reference Architectures”. In: (2009). doi: 10.1002/sys.20129 (cit. on pp. 9, 14, 15,
21).

[Dol01] T. J. Dolan. “Architecture Assessment of Information-System Families : a practical
perspective”. In: (2001) (cit. on pp. 21–23).

[Fai12] G. Fairbanks. Just Enough Software Architecture: A Risk-Driven Approach. Marshall
Brainerd, 2012. isbn: 987-0-9846181-0-1 (cit. on pp. 12–14).

[FGB04] E. Folmer, J. van Gurp, J. Bosch. Software Architecture Analysis of Usability. Springer,
2004, pp. 38–58. isbn: 9783540260974 (cit. on pp. 22, 23, 26, 27, 29).

[GVV05] B. Graaf, H. Van Dĳk, A. Van Deursen. “Evaluating an embedded software reference
architecture-industrial experience report”. In: Ninth European Conference on Software
Maintenance and Reengineering. IEEE. 2005, pp. 354–363 (cit. on p. 19).

[ISO11] ISO/IEC. “ISO/IEC 25010:2011 Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software
quality models”. In: (2011) (cit. on pp. 24, 38).

[KGFČ15] M. Kalúz, J. García-Zubía, M. Fikar, Ľ. Čirka. “A Flexible and Configurable Architec-
ture for Automatic Control Remote Laboratories”. In: IEEE Transactions on Learning
Technologies 8.3 (2015), pp. 299–310. doi: 10.1109/TLT.2015.2389251 (cit. on p. 11).

[KKC00] R. Kazman, M. Klein, P. Celements. “ATAM: Method for Architecture Evaluation”.
In: (2000). url: https://resources.sei.cmu.edu/asset_files/TechnicalReport/
2000_005_001_13706.pdf (cit. on pp. 13, 19–21, 23–26, 28, 29).

[KYZC12] F. Kong, L. Yuan, Y. F. Zheng, W. Chen. “Automatic Liquid Handling for Life Science:
A Critical Review of the Current State of the Art”. In: Journal of Laboratory Automa-
tion 17.3 (2012). PMID: 22357568, pp. 169–185. doi: 10.1177/2211068211435302.
eprint: https://doi.org/10.1177/2211068211435302. url: https://doi.org/10.
1177/2211068211435302 (cit. on p. 11).

[LBK97] C.-H. Lung, S. Bot, K. Kalaichelvan. “An Approach to Software Architecture Analysis
for Evolution and Reusability”. In: (1997). url: https://resources.sei.cmu.edu/
asset_files/WhitePaper/1997_019_001_29775.pdf (cit. on pp. 21, 23, 24).

[LBVB00] N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch. “Analyzing Software Architectures
for Modifiability”. In: (2000). url: https://www.researchgate.net/publication/
30499164_Analyzing_Software_Architectures_for_Modifiability (cit. on pp. 21, 23,
25, 26).

[MAFA13] S. Martínez-Fernández, C. Ayala, X. Franch, D. Anmeller. “A Framework for
Software Reference Architecture Analysis and Review”. In: (2013). url: https:
//upcommons.upc.edu/bitstream/handle/2117/24040/eselaw2013_submission_14%

20%282%29.pdf?sequence=1&isAllowed=y (cit. on p. 15).
[MGM06] M. Mattsson, H. Grahn, F. Mårtensson. “Software architecture evaluation methods for

performance, maintainability, testability, and portability”. In: Second International
Conference on the Quality of Software Architectures. Citeseer. 2006 (cit. on p. 18).

[MSA+15] S. Martínez-Fernández, P. S. M. dos Santos, C. P. Ayala, X. Franch, G. H. Travassos.
“Aggregating Empirical Evidence about the Benefits and Drawbacks of Software
Reference Architectures”. In: (2015). doi: 10.1109/ESEM.2015.7321184 (cit. on p. 15).

54

https://doi.org/10.1002/sys.20129
https://doi.org/10.1109/TLT.2015.2389251
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13706.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2000_005_001_13706.pdf
https://doi.org/10.1177/2211068211435302
https://doi.org/10.1177/2211068211435302
https://doi.org/10.1177/2211068211435302
https://doi.org/10.1177/2211068211435302
https://resources.sei.cmu.edu/asset_files/WhitePaper/1997_019_001_29775.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/1997_019_001_29775.pdf
https://www.researchgate.net/publication/30499164_Analyzing_Software_Architectures_for_Modifiability
https://www.researchgate.net/publication/30499164_Analyzing_Software_Architectures_for_Modifiability
https://upcommons.upc.edu/bitstream/handle/2117/24040/eselaw2013_submission_14%20%282%29.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/24040/eselaw2013_submission_14%20%282%29.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/24040/eselaw2013_submission_14%20%282%29.pdf?sequence=1&isAllowed=y
https://doi.org/10.1109/ESEM.2015.7321184

Bibliography

[PS15a] A. Patidar, U. Suman. “A Survey on Software Architecture Evaluation Methods”. In:
(2015) (cit. on p. 17).

[PS15b] A. Patidar, U. Suman. “A survey on software architecture evaluation methods”. In:
2015 2nd International Conference on Computing for Sustainable Global Development
(INDIACom). IEEE. 2015, pp. 967–972 (cit. on p. 18).

[PSL+20] M. Porr, S. Schwarz, F. Lange, L. Niemeyer, T. Hentrop, D. Marquard, P. Lindner,
T. Scheper, S. Beutel. “Bringing IoT to the Lab: SiLA2 and Open-Source-Powered
Gateway Module for Integrating Legacy Devices into the Digital Laboratory”. In:
HardwareX 8 (2020), e00118. issn: 2468-0672. doi: https://doi.org/10.1016/j.
ohx.2020.e00118. url: https://www.sciencedirect.com/science/article/pii/
S2468067220300274 (cit. on p. 11).

[RW12] N. Rozanski, E. Woods. Software Systems Architecture: Working with Stakeholders
Using Viewpoints and Perspectives. 2nd edition. Pearson Education, Inc., 2012. isbn:
9780321718334 (cit. on pp. 12–14, 17).

[RZRK19] A. Raza, S. Zafar, S. U. Rehman, U. Khattak. “Software Architecture Evaluation
Methods: A Comparative Study”. In: International Journal of Computing and
Communication Networks 1.2 (2019), pp. 1–9 (cit. on p. 18).

[SA17] I. Schmid, J. Aschoff. “A scalable software framework for data integration in bioprocess
development”. In: Engineering in Life Sciences 17.11 (2017), pp. 1159–1165. doi:
https://doi.org/10.1002/elsc.201600008. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/elsc.201600008. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/elsc.201600008 (cit. on p. 11).

[Sol12] F. Solms. What is Software Architecture? Association for Computing Machinery,
2012, pp. 363–373. isbn: 9781450313087 (cit. on p. 12).

[SS12] P. Shanmugapriya, R. Suresh. “Software architecture evaluation methods-a survey”.
In: International Journal of Computer Applications 49.16 (2012) (cit. on p. 18).

[ZSZ11] S. Zhao, Z. Shi, S. Zhu. “A virtual laboratory architecture for engineering education”.
In: 2011 IEEE 3rd International Conference on Communication Software and
Networks. 2011, pp. 560–563. doi: 10.1109/ICCSN.2011.6013895 (cit. on p. 11).

All links were last followed on September 27, 2021.

55

https://doi.org/https://doi.org/10.1016/j.ohx.2020.e00118
https://doi.org/https://doi.org/10.1016/j.ohx.2020.e00118
https://www.sciencedirect.com/science/article/pii/S2468067220300274
https://www.sciencedirect.com/science/article/pii/S2468067220300274
https://doi.org/https://doi.org/10.1002/elsc.201600008
https://onlinelibrary.wiley.com/doi/pdf/10.1002/elsc.201600008
https://onlinelibrary.wiley.com/doi/pdf/10.1002/elsc.201600008
https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.201600008
https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.201600008
https://doi.org/10.1109/ICCSN.2011.6013895

A Appendix

A.1 Applicable Evaluation Methods

Table A.1 contains the evaluation methods that are applicable to be studied when designing an
evaluation method for SRA. It also contains the reasons behind the method’s applicability and its
usability for the SRA evaluation method.

Table A.1: Applicable Evaluation Methods
Applicable Evalua-
tion Method

Reasons for Applicability Usability for the SRA evalu-
ation method

ATAM Well documented and used method for architecture
design tradeoffs.
Evaluates and captures multiple quality attributes
and scenarios.
Provides risks, sensitivity points, and tradeoffs for
architecture decision.

As a base foundation for the
SRA evaluation method.

ALMA Evaluates the modifiability quality attribute and
obtains change scenarios.
The evaluation method goal can be to compare
different architectures.

Refine the evaluation steps of
obtaining modifiability qual-
ity attributes and change sce-
narios, and to take ideas on
how to do architecture com-
parison.

DoSAM Evaluates multiple quality attributes.
The evaluation method goal is to compare different
architectures.

Take ideas on how to do archi-
tecture comparison.

FAAM Focuses on interoperability and extensibility qual-
ity attribute.

Ideas on how to capture and
evaluate extensibility quality
attribute are taken.

SAAM for Com-
plex Scenarios
(SAAMCS)

Focuses on flexibility quality attribute.
Evaluated based on scenarios related to flexibility.
Applied to the final architecture version.

Ideas on how to capture and
evaluate flexibility quality at-
tribute are taken.

SALUTA An addition to ATAM that helps in obtaining
and evaluating the usability quality attributes and
scenarios.

Ideas on how to capture and
evaluate usability quality at-
tribute are taken.

SAAMER Method to identify if enough scenarios are avail-
able for each quality attribute.

Check whether enough scenar-
ios have been captured.

Continued on next page

56

A Appendix

Table A.1 – continued from previous page
Applicable Evalua-
tion Method

Reasons for Applicability Usability for the SRA evalu-
ation method

ISO 42030 A standard that contains the things that need to be
considered when having an evaluation method.

Take ideas of what the evalua-
tion method should contain.

Architecture
Tradeoff Analysis
Method for Refer-
ence architectures
(ATAM\')

An extended ATAM approach to evaluate SRA
for multiple organizations.
Designed to evaluate SRA designed for multiple
organizations.

Take ideas on how it ex-
tends ATAM, to find better
approaches and improvements
to evaluate SRA for a single
organization.

A.2 In-Applicable Evaluation Methods

Table A.2 contains the evaluation methods that are not suitable as a base or a reference to design an
evaluation method for SRA. It also contains the reasons behind the decision.

Table A.2: Inapplicable Evaluation Methods
Inapplicable Eval-
uation Method

Reasons for In-applicability

SAAM ATAM is an improvement on SAAM.
Extending SAAM by Integration in the Domain
(ESAAMI)

The method focuses on reusing assets and activi-
ties which is not applicable for SRA. The method
is also still not mature.

Architecture Level Prediction of Software Main-
tenance (ALPSM)

Evaluation based on previous maintenance data
(such as cost and time) which is not possible to
obtain for this paper’s case.

Scenario-Based Architecture Re-engineering
(SBAR)

Short iterative approach to re-engineer an existing
developed system.

Cost Benefit Analysis Method (CBAM) Focuses on expenses and profits quality attributes
which is not the focus of the SRA evaluation
method.

Software Architecture Comparison Analysis
Method (SACAM)

DoSAM is an improvement on SACAM.

RARE Tends toward evaluating the usability of the code.
Empirically-Based Architecture Evaluation
(EBAE)

Compares architectures after a code change.

Software Performance Engineering (SPE) Analyzes the performance of the system in regards
to executing operations.

Aspectual Software Architecture Analysis Method
(ASAAM)

Focuses on refactoring the architecture.

Creative Innovative Patterns for Architecture Anal-
ysis (CIPA)

Improves the quality attributes of existing software
architecture by refining them.

Continued on next page

57

A Appendix

Table A.2 – continued from previous page
Inapplicable Eval-
uation Method

Reasons for Applicability

Active Reviews for Intermediate Design (ARID) Fills a niche in the design review spectrum.
Integrating SAAM in Domain-Centric and Reuse-
Based (ISAAMCR)

Designed heavily to evaluate concrete architecture
and focuses on the re-usability aspect of a concrete
architecture.

A.3 Architectural Approaches for Liquid Handling Devices

Table A.3 contains all the different architectural approaches that were considered for liquid handling
devices according to a cluster of scenarios. The cluster name is shown at the top of the cluster of
scenarios.

Table A.3: Architectural Approaches for Liquid Handling Devices
Scenario Architectural Approach
SiLA2
Device can be operated via SiLA2. Set the SiLA2 commands using Tecan SDK.
Implement, test, and deploy a new SiLA2 endpoint
automation command in < 3 person day.

Set the SiLA2 commands using the provided skele-
ton example from the SiLA community.

Implement, test, and deploy a new communication
protocol endpoints to the system (For example:
AutoIT) in < 3 person weeks.

Implement internally an SDK that sets SiLA2
commands.

Audit Logging
Log all the changes, and by whom they were made,
for any protocol at any point in time.

Log on files (File management system)

Log all the protocols that were executed with their
results and device settings that were used.

Log on database

Log all changes and by whom they were made, to
the device hardware and software settings.
Log all login details (failed/successful attempts,
when logged-in and logged-out).
Device log size should not exceed 500 Mbs.
Change log format structure in < 2 person days.
Data
Adapt a new protocol format in < 1 person week
(Ex: adding JSON as a new format).

Save data on a file-based system.

Implement (or modify), test, and deploy a protocol
format structure in < 1 person week (Ex: changing
plate names, introducing a new plate type).

Save on SQL DB.

Continued on next page

58

A Appendix

Table A.3 – continued from previous page
Scenario Architectural Approach
Opening (loading) a protocol locally should not
exceed 15 seconds.

Save on NoSQL DB.

The protocol is only accessible to the authorized
group specified by the protocol group.
The protocol can be hashed with an electronic
signature which is saved on both the protocol and
the DB, and it cannot be copied.
All data (database information) including log files
can be encrypted in production.
Backup entire database in <1 person day.
Protocol, liquid, and plate data can be archived
and unarchived in less than 15 seconds.
The system should be able to run protocols, config
files, and all data related files that are at least 2
versions behind.
Only users that have access to a protocol, can view
the changes that were made to the protocol and
when was the protocol executed with the execution
results.
Implement, test, and deploy a new parameter to
the device settings in < 3 person days.
Communication to hardware
Implement (or modify), test, and deploy a software
end point and logic to a hardware component in
<1 person week.

Implement an individual interface/gateway for
each hardware component.

Implement one interface/gateway that communi-
cates with all the hardware components.
Implement a software bus for all the hardware
components.

Communication Protocol / Framework
When accessed remotely, the UI shall be able
to interact with the device in real-time without
having visible delays for 95% of the interaction
time.

REST

The system must receive and send data in realtime
over a network.

gRPC

The remote system (that is connected to the device)
must be independent from the framework used to
build it.

MQTT

Continued on next page

59

A Appendix

Table A.3 – continued from previous page
Scenario Architectural Approach
The hardware system should allow more than one
client system to subscribe to it. More than one
client can receive the hardware reply messages.

Apache Kafka

An unauthorized person should not be able to
login to the device and use it.

RabbitMQ

Only user accounts with access to automation are
allowed to run the automation commands.

ZeroMQ

Apache ActiveMQ
Firmware
Update device firmware should take less than 3
minutes.

Device firmware is saved on the device storage.

Device firmware is saved on an external DB.
UI
Integrate a completely new software UI design in
< 10 weeks of work (Ex: Only desktop UI apps
are available, and we would like to integrate a new
website UI to the system).

Split the (local and remote) UI from the rest of
the logic using an API.

Have the local UI be binded to the logic and the
remote UI binded to objects that get their data
from an API.

A.4 Architectural Approaches Comparison for Liquid Handling
Devices

Table A.4 contains the advantages and disadvantages of each architectural approach for liquid
handling devices. The cluster name is shown at the top of the cluster of scenarios.

Table A.4: Architectural Approaches Advantages and Disadvantages for Liquid Handling Devices
Architectural Approach Advantages Disadvantages
SiLA2
Set the SiLA2 commands using
Tecan SDK.

Tecan SDK is easier to initially
set commands (maintainability).
Tecan SDK auto generates the
needed XML files and classes for
SiLA.
The Tecan SDK license (BSD 3-
Clause) allows to modify it in
private use.

Dependent on a 3rd party license
(maintainability - Legality).

Continued on next page

60

A Appendix

Table A.4 – continued from previous page
Architectural Approach Advantages Disadvantages
Set the SiLA2 commands using
the provided skeleton example
from the SiLA community.

More time consuming than using
Tecan SDK.

Implement internally an SDK
that sets SiLA2 commands.

No licensing issues because SDK
is implemented internally.

Will take longer to imple-
ment compared to the other ap-
proaches.

Audit Logging
Log on files (File management
system)

The audit log can be easily shared
and copied if needed.

Hard to keep track of the log files
for multiple device protocols.
File has to be locked to ensure
that the user cannot change the
log manually.
A change in the log format struc-
ture will result in log files having
different format from the previ-
ous versions.

Log on database Can have a structured database
that contains the audit log of the
device protocols.
Log format depends on how the
audit log is retrieved from the
database.

Require the device protocols to
be saved on the database and not
in the file storage.
Additional effort is required to re-
trieve the audit from the database.

Data
Save data on a file based system. Can encrypt files if needed. No structure.

Cannot easily archive data.
Cannot easily audit data.
Cannot easily apply permissions
to data.

Save on SQL DB. Can encrypt data if needed.
Provide a structure for the data.
Can easily archive to another DB.
Can easily apply permissions to
data.
Can easily implement data audit
using SQL triggers.

Need a translator that will trans-
late file protocols to be saved in
the DB.

Save on NoSQL DB. Can encrypt data if needed.
Can easily archive to another DB.
Can easily implement data audit
using NoSQL triggers.
Can easily apply permissions to
data.

No structure.
Code logic has to be imple-
mented.

Continued on next page

61

A Appendix

Table A.4 – continued from previous page
Architectural Approach Advantages Disadvantages
Communication to hardware
Implement an individual inter-
face/gateway for each hardware
component.

Increases loose-coupling since
each hardware component has its
own interface.

The software must reference each
interface.

Implement one interface/gateway
that communicates with all the
hardware components.

The software will receive inputs
from one location (A single ref-
erence for the software to the in-
terface).

Increases coupling.

Implement a software bus for all
the hardware components.

The software will receive inputs
from one location (A single refer-
ence for the software to the bus).

Troubleshooting of individual de-
vice is difficult.
The bus should handle the re-
quired load from all the compo-
nents.

Communication Protocol / Framework
REST Offers request reply messaging

pattern.
Multiple clients listening to the
same message have to be imple-
mented manually.

gRPC Offers request reply, client
streaming, server streaming, and
bidirectional streaming messag-
ing patterns.

Does not allow multiple clients
to listen to the same message.

MQTT Offers request reply, publish sub-
scribe, broadcast, and fan-in mes-
saging patterns.
Message broker offers logging.

Need to deploy an additional
component which is the message
broker.
Additional effort is needed to set
the authentication between the
message broker and the clients.

Apache Kafka Offers publish subscribe messag-
ing pattern.
Message broker offers logging.

Need to deploy an additional
component which is the message
broker.
Additional effort is needed to set
the authentication between the
message broker and the clients.

RabbitMQ Offers publish subscribe messag-
ing pattern.
Message broker offers logging.
Supports topic authorization
which can help implement an
RBAC solution.

Need to deploy an additional
component which is the message
broker.
Additional effort is needed to set
the authentication between the
message broker and the clients.

ZeroMQ Offers request reply, publish sub-
scribe, push pull (pipeline), and
pair messaging patterns.

Continued on next page

62

A Appendix

Table A.4 – continued from previous page
Architectural Approach Advantages Disadvantages
Apache ActiveMQ Offers a message-oriented mid-

dleware (MOM) which is not
needed.

Firmware
Device firmware is saved on the
device storage.

Device can run on its own and get
the firmware without the need of
any external connections to get
the firmware.

Device firmware is saved on an
external DB.

Device always needs a connec-
tion to the DB to get the firmware
(may affect performance).

UI
Split the (local and remote) UI
from the rest of the logic using
an API.

Decreases coupling.
Easier to maintain and debug in
the long run.

Takes more time to develop.

Have the local UI be binded to the
logic and the remote UI binded
to objects that get their data from
an API.

Easier and faster to develop. Increases coupling.
Harder to maintain in the long
run.

A.5 Architectural Approaches Weighted Score for Liquid Handling
Devices

Table A.5 contains the weighted score of each architectural approach within the scenario cluster.
The chosen architectural approaches are the ones with the highest total weighted score and are
marked in red color.

Table A.5: Architectural Approaches Weighted Score
Architectural Approach Scenario Priority Score Weighted Score
SiLA2
Set the SiLA2 commands
using Tecan SDK.

Device can be operated via SiLA2. H 5 15

Implement, test, and deploy a new
SiLA2 endpoint automation com-
mand in < 3 person day.

H 5 15

Implement, test, and deploy a
new communication protocol end-
points to the system (For example:
AutoIT) in < 3 person weeks.

L 5 5

Continued on next page

63

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

Total 35
Set the SiLA2 commands
using the provided skele-
ton example from the
SiLA community.

Device can be operated via SiLA2. H 5 15

Implement, test, and deploy a new
SiLA2 endpoint automation com-
mand in < 3 person day.

H 4 12

Implement, test, and deploy a
new communication protocol end-
points to the system (For example:
AutoIT) in < 3 person weeks.

L 5 5

Total 32
Implement internally an
SDK that sets SiLA2 com-
mands

Device can be operated via SiLA2. H 5 15

Implement, test, and deploy a new
SiLA2 endpoint automation com-
mand in < 3 person day.

H 3 9

Implement, test, and deploy a
new communication protocol end-
points to the system (For example:
AutoIT) in < 3 person weeks.

L 5 5

Total 29
Audit Logging
Log on files (File manage-
ment system)

Log all the changes, and by whom
they were made, for any protocol
at any point in time.

H 1 3

Log all the protocols that were exe-
cuted with their results and device
settings that were used.

H 3 9

Log all changes and by whom they
were made, to the device hardware
and software settings.

H 3 9

Logs all login details (failed/suc-
cessful attempts, when logged-in
and logged-out).

H 3 9

Device log size should not exceed
500 Mbs.

L 5 5

Change log format structure in <
2 person days.

L 3 3

Continued on next page

64

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

Total 38
Log on database Log all the changes, and by whom

they were made, for any protocol
at any point in time.

H 4 12

Log all the protocols that were exe-
cuted with their results and device
settings that were used.

H 5 15

Log all changes and by whom they
were made, to the device hardware
and software settings.

H 5 15

Logs all login details (failed/suc-
cessful attempts, when logged-in
and logged-out).

H 5 15

Device log size should not exceed
500 Mbs.

L 5 5

Change log format structure in <
2 person days.

L 5 5

Total 67
Data
Save data on a file based
system

Adapt a new protocol format in <
1 person week (Ex: adding JSON
as a new format).

M 5 10

Implement (or modify), test, and
deploy a protocol format structure
in < 1 person week (Ex: changing
plate names, introducing a new
plate type).

H 2 6

Opening (loading) a protocol lo-
cally should not exceed 15 sec-
onds.

H 5 15

The protocol is only accessible to
the authorized group specified by
the protocol group.

H 2 6

The protocol can be hashed with
an electronic signature which is
saved on both the protocol and the
DB, and it cannot be copied.

H 3 9

All data (database information) in-
cluding log files can be encrypted
using XX in production.

H 4 12

Continued on next page

65

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

Backup entire database in <1 per-
son day.

L 4 4

Protocol, liquid, and plate data
can be archived and unarchived in
less than 15 seconds.

H 4 12

The system should be able to run
protocols, config files, and all data
related files that are at least 2 ver-
sions behind.

M 5 10

Only users that have access to a
protocol, can view the changes
that were made to the protocol and
when was the protocol executed
with the execution results.

M 2 4

Implement, test, and deploy a new
parameter to the device settings in
< 3 person days.

M 5 10

Total 98
Save on SQL DB Adapt a new protocol format in <

1 person week (Ex: adding JSON
as a new format).

M 2 4

Implement (or modify), test, and
deploy a protocol format structure
in < 1 person week (Ex: changing
plate names, introducing a new
plate type).

H 5 15

Opening (loading) a protocol lo-
cally should not exceed 15 sec-
onds.

H 5 15

The protocol is only accessible to
the authorized group specified by
the protocol group.

H 5 15

The protocol can be hashed with
an electronic signature which is
saved on both the protocol and the
DB, and it cannot be copied.

H 4 12

All data (database information) in-
cluding log files can be encrypted
using XX in production.

H 5 15

Backup entire database in <1 per-
son day.

L 5 5

Continued on next page

66

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

Protocol, liquid, and plate data
can be archived and unarchived in
less than 15 seconds.

H 5 15

The system should be able to run
protocols, config files, and all data
related files that are at least 2 ver-
sions behind.

M 5 10

Only users that have access to a
protocol, can view the changes
that were made to the protocol and
when was the protocol executed
with the execution results.

M 5 10

Implement, test, and deploy a new
parameter to the device settings in
< 3 person days.

M 5 10

Total 126
Save on NoSQL DB Adapt a new protocol format in <

1 person week (Ex: adding JSON
as a new format).

M 2 4

Implement (or modify), test, and
deploy a protocol format structure
in < 1 person week (Ex: changing
plate names, introducing a new
plate type).

H 5 15

Opening (loading) a protocol lo-
cally should not exceed 15 sec-
onds.

H 5 15

The protocol is only accessible to
the authorized group specified by
the protocol group.

H 4 12

The protocol can be hashed with
an electronic signature which is
saved on both the protocol and the
DB, and it cannot be copied.

H 4 12

All data (database information) in-
cluding log files can be encrypted
using XX in production.

H 5 15

Backup entire database in <1 per-
son day.

L 5 5

Protocol, liquid, and plate data
can be archived and unarchived in
less than 15 seconds.

H 5 15

Continued on next page

67

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

The system should be able to run
protocols, config files, and all data
related files that are at least 2 ver-
sions behind.

M 5 10

Only users that have access to a
protocol, can view the changes
that were made to the protocol and
when was the protocol executed
with the execution results.

M 4 8

Implement, test, and deploy a new
parameter to the device settings in
< 3 person days.

M 5 10

Total 121
Communication to hardware
Implement an individual
interface/gateway for each
hardware component.

Implement (or modify), test, and
deploy a software end point and
logic to a hardware component in
<1 person week.

H 4 12

Total 12
Implement one interface/-
gateway that communi-
cates with all the hardware
components.

Implement (or modify), test, and
deploy a software end point and
logic to a hardware component in
<1 person week.

H 2 6

Total 6
Implement a software bus
for all the hardware com-
ponents.

Implement (or modify), test, and
deploy a software end point and
logic to a hardware component in
<1 person week.

H 5 15

Total 15
Communication Protocol / Framework
REST When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 4 8

Continued on next page

68

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 3 9

An unauthorized person should
not be able to login to the device
and use it.

H 2 6

Only user accounts with access to
automation are allowed to run the
automation commands.

H 1 3

Total 56
gRPC When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 4 8

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 2 6

An unauthorized person should
not be able to login to the device
and use it.

H 5 15

Only user accounts with access to
automation are allowed to run the
automation commands.

H 1 3

Total 62
MQTT When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

Continued on next page

69

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 3 6

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 4 12

An unauthorized person should
not be able to login to the device
and use it.

H 5 15

Only user accounts with access to
automation are allowed to run the
automation commands.

H 1 3

Total 66
Apache Kafka When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 3 6

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 4 12

An unauthorized person should
not be able to login to the device
and use it.

H 5 15

Only user accounts with access to
automation are allowed to run the
automation commands.

H 2 6

Total 69
Continued on next page

70

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score
RabbitMQ When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 3 6

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 4 12

An unauthorized person should
not be able to login to the device
and use it.

H 5 15

Only user accounts with access to
automation are allowed to run the
automation commands.

H 2 6

Total 69
ZeroMQ When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 4 8

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 5 15

An unauthorized person should
not be able to login to the device
and use it.

H 5 15

Continued on next page

71

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

Only user accounts with access to
automation are allowed to run the
automation commands.

H 1 3

Total 71
Apache ActiveMQ When accessed remotely, the UI

shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time.

H 5 15

The system must receive and send
data in real time over a network.

H 5 15

The remote system (that is con-
nected to the device) must be inde-
pendent from the framework used
to build it.

M 4 8

The hardware system should allow
more than one client system to
subscribe to it. More than one
client can receive the hardware
reply messages.

H 1 3

An unauthorized person should
not be able to login to the device
and use it.

H 5 15

Only user accounts with access to
automation are allowed to run the
automation commands.

H 1 3

Total 59
Firmware
Device firmware is saved
on the device storage.

Update device firmware should
take less than 3 minutes.

L 5 5

Total 5
Device firmware is saved
on an external DB.

Update device firmware should
take less than 3 minutes.

L 1 1

Total 1
UI
Split the (local and re-
mote) UI from the rest of
the logic using an API.

Integrate a completely new soft-
ware UI design in < 10 weeks of
work (Ex: Only desktop UI apps
are available, and we would like
to integrate a new website UI to
the system).

L 5 5

Continued on next page

72

A Appendix

Table A.5 – continued from previous page
Architectural Approach Scenario Priority Score Weighted Score

Total 5
Have the local UI be
binded to the logic and
the remote UI binded to
objects that get their data
from an API.

Integrate a completely new soft-
ware UI design in < 10 weeks of
work (Ex: Only desktop UI apps
are available, and we would like
to integrate a new website UI to
the system).

L 1 1

Total 1

A.6 Architectural Design Comparison

Table A.6 only shows the scenarios that had a different score between the client server architecture
in Figure 5.5 and the message bus architecture in Figure 5.6. The client server architecture has a
higher total weighted score than the message bus architecture.

Table A.6: Architectural Design Weighted Score
Scenario Priority Quality Attribute Architectural

Design
Score Weighted

Score
Device can be operated via SiLA2 H Compatibility - In-

teroperability
Client Server 5 15

Adapt a new protocol format in <
1 person week (Ex: adding JSON
as a new format)

M Maintainability -
Modifiability

Client Server 3 6

Implement (or modify), test, and
deploy a protocol format structure
in < 1 person week (Ex: changing
plate names, introducing a new
plate type)

H Maintainability -
Modifiability

Client Server 3 9

Implement (or modify), test, and
deploy a software end point and
logic to a hardware component in
<1 person week

H Maintainability -
Modifiability

Client Server 4 12

When accessed remotely, the UI
shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time

H Performance - Time
behaviour

Client Server 5 15

The system must receive and send
data in real time over a network

H Performance - Time
behaviour

Client Server 5 15

Continued on next page

73

A Appendix

Table A.6 – continued from previous page
Scenario Priority Quality Attribute Architectural

Design
Score Weighted

Score
Logs all login details (failed/suc-
cessful attempts, when logged-in
and logged-out)

H Security - Account-
ability

Client Server 5 15

Total 87
Device can be operated via SiLA2 H Compatibility - In-

teroperability
Message Bus 2 6

Adapt a new protocol format in <
1 person week (Ex: adding JSON
as a new format)

M Maintainability -
Modifiability

Message Bus 4 8

Implement (or modify), test, and
deploy a protocol format structure
in < 1 person week (Ex: changing
plate names, introducing a new
plate type)

H Maintainability -
Modifiability

Message Bus 5 15

Implement (or modify), test, and
deploy a software end point and
logic to a hardware component in
<1 person week

H Maintainability -
Modifiability

Message Bus 3 9

When accessed remotely, the UI
shall be able to interact with the
device in real-time without hav-
ing visible delays for 95% of the
interaction time

H Performance - Time
behaviour

Message Bus 4 12

The system must receive and send
data in real time over a network

H Performance - Time
behaviour

Message Bus 4 12

Logs all login details (failed/suc-
cessful attempts, when logged-in
and logged-out)

H Security - Account-
ability

Message Bus 3 9

Total 71

A.7 Frontend Database Diagram

Figure A.1 is the database diagram that will be deployed on the laboratory user’s PC. This database
is going to be only accessible to the respective user. Please note that the diagram does not include
all the table columns. It is a reference database diagram to facilitate the design of the concrete
database diagram.

74

A Appendix

Figure A.1: Frontend Database Diagram

A.8 Backend Database Diagram

Figure A.2 is the database that will be deployed on the liquid handling device. Please note that
the diagram does not include all the table columns. It is a reference database diagram to facilitate
the design of the concrete database diagram. Also, if the database is going to be deployed on a
centralized machine, then only the hardware settings need to be deployed on the liquid handling
device. The rest will be deployed on the centralized machine.

75

Figure A.2: Backend Database Diagram

A.9 Audit Database Diagram

Figure A.3 is the audit database that will be deployed on the liquid handling device to audit all the
data changes that are done to the backend database diagram. Auditing will be done using SQL
triggers to insert data in the audit database. The audit database is similar to the backend database
except it has additional columns on each table to indicate whom did the data change, when was the
data change made, and what was the data change. Please note that the diagram does not include all
the table columns.

Figure A.3: Audit Database Diagram

	1 Introduction
	1.1 Problem
	1.2 Goal
	1.3 Contribution and Research Methodology

	2 State of the Art
	3 Understanding Software Architecture and Software Design
	3.1 Software Architecture
	3.2 Distinction between Software Design and Software Architecture
	3.3 Software Reference Architecture

	4 Architecture Evaluation
	4.1 Architecture Evaluation Approach
	4.2 Architecture Evaluation Methods
	4.3 ATAM Problems for Software Reference Architectures
	4.4 Architecture Evaluation Method for Software Reference Architecture

	5 Software Reference Architecture for Laboratory Devices
	5.1 Introduce the Evaluation Process
	5.2 Discuss Business Drivers
	5.3 Identify Common Requirements
	5.4 Identify Quality Attributes and Scenarios
	5.5 Define Architectural Approaches
	5.6 Analyze Architectural Approaches
	5.7 Document Results and Decisions

	6 Testing the Liquid Handling Device Architecture
	6.1 Requirements of I.DOT One and I.DOT Mini
	6.2 Qualities Attributes of I.DOT One and I.DOT Mini
	6.3 Concrete Architecture of I.DOT One
	6.4 Prototype Implementation of I.DOT One

	7 Conclusion and Future Work
	Bibliography
	A Appendix
	A.1 Applicable Evaluation Methods
	A.2 In-Applicable Evaluation Methods
	A.3 Architectural Approaches for Liquid Handling Devices
	A.4 Architectural Approaches Comparison for Liquid Handling Devices
	A.5 Architectural Approaches Weighted Score for Liquid Handling Devices
	A.6 Architectural Design Comparison
	A.7 Frontend Database Diagram
	A.8 Backend Database Diagram
	A.9 Audit Database Diagram

