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Abstract

This Bachelor’s Thesis investigates the effects of learning rates on the learning speed of Residual
Neural Networks, training on the CIFAR-10 and CIFAR-100 data sets. Besides the optimal
constant learning rate setting, we discuss the option of learning rate scheduling and calculating
the learning rate. Cyclical schedules with large maximum learning rates are used to recreate a
phenomenon called super-convergence, which speeds up the training procedure by as much as
orders of magnitude and leads to better generalization capabilities of the network. We present
an intuition as to why cyclical learning rates lead to better regularization of the network. We
show that super-convergence can be reproduced for the optimizer Adam by introducing cyclical
learning rates. Lastly, a method which calculates the learning rate, rather than requiring it
as a hyper-parameter, is investigated. This algorithm promises to use statistical element-wise
curvature information to automatically tune the learning rate for each iteration and each
parameter separately. We show that while the approach of calculating the learning rate is
valid, it neither leads to super-convergence nor to a higher validation accuracy achieved by the
network when compared to the ones trained with cyclical learning rates.

Kurzfassung

In dieser Bachelorarbeit untersuchen wir die Effekte von zyklischen Lernraten auf die Kon-
vergenzgeschwindigkeit Residualer Neuronaler Netze, welche auf dem CIFAR-10 und dem
CIFAR-100 Datensatz trainiert werden. Neben der optimalen Einstellung konstanter Lernraten,
werden dynamische ("scheduled") und berechnete Lernraten analysiert. Wir rekreiren ein
Phenomän, genannt Super-Convergence, welches durch zyklische Lernraten, mit außergewöhn-
lich großen Maximal-Lernraten, hervorgerufen wird und das Training um ein vielfaches
beschleunigt. Als positiver Seiteneffekt generalisiert das trainierte Netzwerk außerdem besser.
Wir liefern eine intuitive Erklärung der Ursachen von Super-Convergence und der besseren
Regularisierung der Netze. Des Weiteren zeigen wir, dass Super-Convergence auch für
den Optimierer Adam emergiert wenn zyklische Lernraten verwendet werden. Zusätzlich
analysieren wir eine Methode, welche die Lernrate berechnet, anstatt sie als Parameter
übergeben zu bekommen. Dieser Algorithmus verspricht über statistische, elementweise
Kurveninformationen die Lernrate, für jeden Parameter des Netzes separat, zu bestimmen.
Wir zeigen, dass dieser Ansatz valide ist. Jedoch zeigen wir ebenfalls, dass die Berechnung
der Lernrate auf diese Art, im Gegensatz zur Nutzung zyklischer Lernraten, weder zu einer
höheren Validation Accuracy, noch zu Super-Convergence führt.
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1. Introduction

Deep neural networks have achieved tremendous success in recent years [1]. While they find
application in many areas, the research field of image classification has seen especially strong
advances through deep learning. Residual Neural Networks (ResNets) have been successfully
used to achieve high accuracy on data sets such as the CIFAR-10 and CIFAR-100 image
classification data sets [2, 3]. These image classification data sets consist of 50,000 training
images and 10,000 validation images, each. The CIFAR-10 data set provides 10 distinct labels,
i.e. classes, for these images. The CIFAR-100 data set contains 100 distinct classes. While the
overall performance of ResNets on these data sets is high, they need well over 100 epochs to
fully converge to these results when using conventional training settings [2]. The fine-tuning
of hyper-parameters, especially of the learning rate, remains an open topic for research [1]. An
optimal learning rate setting can lead to faster learning speeds for neural networks. This speed-
up is of interest to us as it means that less valuable computational resources and time are spend
on the training of neural networks, which is a very time-consuming and resource-intensive
task for most problems. As a secondary effect the resulting networks may even achieve a
higher overall performance than those trained with less optimal learning rate settings. This is
obviously another desirable effect as it provides better classifiers.

In this thesis we investigate the influence of learning rates on the learning speed of neural
networks. For this, a phenomenon called super-convergence, a term which was coined by
Smith and Topin [1], is investigated. Super-convergence arises when cyclical learning rates
(CLR) are used with stochastic gradient descent (SGD). The learning rate ranges for these
cycles use very large maximum learning rates during the midsection of a cycle and small or
very small minimum learning rates in the beginning and end of a cycle. It has previously been
shown that these CLR schemes lead to a speed-up of training by order of magnitude [1, 4].
We validate this observation and extend its workings to function with Adam [5], a popular
momentum-based descent algorithm. In this thesis various reasons for the emergence of super-
convergence are discussed and evidence supporting or contradicting these ideas is presented.
Furthermore, the sensitivity of the training results to the exact choice of learning rate ranges
used is investigated. Lastly, the inter-dependencies of CLR, network depth, and training data
available are analyzed.

As an alternative to setting the learning rate, an optimizer which calculates it, called AdaSe-
cant [6], is examined an compared to super-convergence in terms of convergence quality and
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1. Introduction

speed. As there currently exists no implementation of this algorithm in PyTorch1, we propose
one. As an alternative to AdaSecant, a simpler variation, based on the same underlying concept,
is introduced and conveniently named Simple AdaSecant. Both implementations are evaluated
with regards to their influence on the training speed and quality of neural networks and the
learning rates they calculate. This learning rate is then compared to the optimal cycle settings
found for SGD with CLR.

The contributions of this work include:

1. The extension of systematic analysis on super-convergence.

2. The validation of the speed-up of training neural networks with CLR.

3. The proposal and examination of a new explanation for the success of CLR and the
examination of alternative explanations.

4. The implementation of a second-order directional Newton Method with a secant approxi-
mation of the Hessian for optimization and its evaluation.

Structure of this work

This work is structured as follows:

Chapter 2 – Optimization Methods for Neural Networks: Here the theoretical fundamen-
tals of this work are laid out. Firstly, ResNet architectures and their advantages for this
thesis are introduced and explained in 2.1 – ResNet Architectures. In 2.2 – Stochastic
Gradient Decent the basic concept underlying SGD is explained, followed by the introduc-
tion of momentum in 2.3 – Momentum-Based Descent Methods. We will further discuss
the settings of hyper-parameters in 2.4 – Hyper-Parameter Settings in Training Neural
Networks. In 2.5 – Super-Convergence the speed-up of the training procedure of neural
networks caused by CLR is explained. Lastly, 2.6 – AdaSecant an optimizer that does not
require the setting of the learning rate is introduced.

Chapter 3 – Implementations and Extensions of the Theoretical Foundations This chap-
ter discusses implementations and extensions to existing optimizers made for the purposes
of this thesis. In 3.1 – Standard Implementations and Libraries we briefly show the li-
braries and standard implementations used in this work. Two adaptations to Adam are
proposed in 3.2 – Combining Momentum and Cyclical Learning Rates. These adaptations
have the purpose of introducing update step size cycles to the optimizer in order to allow
for super-convergent-like behavior with Adam. Lastly, in 3.3 – Implementing AdaSecant a

1https://github.com/pytorch/pytorch/tree/88032d894311e5c0aed8bbc21a4306bc6be4af82
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proposal for the implementation of AdaSecant in PyTorch is discussed. Furthermore, a
simplification to AdaSecant is proposed as an alternative to using AdaSecant.

Chapter 4 – Experiments This chapter discusses the main part of this work, which is the
assessment of different learning rate schemes. 4.1 – Set-Up of Experiments and Inter-
Dependencies of Hyper-Parameters discusses the set-up of the experiments and the reasons
behind the choices made, especially regarding the setting of hyper-parameters other than
the learning rate. In 4.2 – Overview of the Results we present a summary of the findings of
these experiments. Details of these results are discussed separately, sorted by optimizer,
in 4.3 – SGD and General Insights into Super-Convergence, 4.4 – Super-Convergence for
Adam, and 4.5 – AdaSecant.

Chapter 5 – Conclusion and Outlook This chapter concludes this thesis and gives an outlook
on future work that can be done to complete the findings of this work.
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2. Optimization Methods for Neural Networks

The focus of this chapter is on the preceding research that was used as a foundation for any
further development of algorithms and experiments. Furthermore, we use this chapter to
introduce the most important notations used in the upcoming parts of this work. In Section 2.1
the neural network architecture used in this thesis is laid out. Sections 2.2 and 2.3 discuss
classical and momentum-based descent methods for solving the optimization problem (i.e.
minimizing the loss function). The algorithms presented are later used in the experiments
of Chapter 4. We discuss the hyper-parameter settings in training in Section 2.4 as they
have an influence on the results of training. In Section 2.5 a phenomenon that speeds up
the training process by using CLR is presented. This phenomenon called super-convergence
was a main driver that motivated this thesis. The results are later replicated and compared
to other learning rate choices in Sections 4.2–4.5. Finally, Section 2.3 discusses the option
to calculate the learning rate for each iteration of the optimization algorithm. This is an
interesting approach as calculating the learning rate could potentially replace the necessary
task of setting a learning rate if the results are promising.

2.1. ResNet Architectures

Since the main focus of this work is setting the learning rate of a neural network, this
introduction to the type of network used in this work is kept brief. A ResNet is a type of
(convolutional) neural network which is optimized for very deep learning. It is significantly
better suited for high number of layers than plain (convolutional) neural networks [2]. The
reason for this lies in the special architecture of the ResNet and the difficulty of learning the
identity function.

While a neural network’s performance on new data might decrease with more layers due
to overfitting, this should not be the case for its performance on the training data. More
specifically, if Network A has more layers than Network B, Network A should yield at least the
same accuracy on the training data as Network B. The reason being that if Network B has nB

layers and Network A has nA = nB + n∆ layers, Network A could theoretically learn the first
nB layers just as they were learned by Network B. For the following n∆ layers Network A could
simply learn the identity function. Thus, Network A would produce the exact same results as
Network B. But in practice this could not be observed [7].
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2. Optimization Methods for Neural Networks

Figure 2.1.: The skip connection as a building block of a ResNet [2].

The problematic assumption here is that the identity function can be learned easily. In reality
this is a rather complicated function to learn for a neural network. ResNets therefore use skip
connections, as indicated in Fig. 2.1. It is easy to learn a function that maps all inputs to zero,
especially when exploiting the activation function. Therefore, the ResNet can easily learn the
identity mapping between two non-subsequent layers by finding a zero mapping and adding it
to the identity function supplied by the skip connection.

We define Fi′ as the function of the i′-th building block of the ResNet’s plain counterpart
(i.e. the function of the building block without skip connection); see Fig. 2.1 for a visual
representation. Then the i′-th building block Hi′ of a ResNet can be defined as [2]

ŷi′ := Hi′(xi′ , {θi}i=li′ ,...ui′ ) (2.1)

= Fi′(xi′ , {θi}i=li′ ,...ui′ ) + xi′ , (2.2)

where xi′ = ŷi′−1, i′ ∈ {1, ..., n′} is the input of the building block’s first layer. The output of
the building block is ŷj . The term θi refers to the i-th parameter of the network, with li′ and
ui′ denoting the first and last index of the parameters found within building block i′. The
ResNet consists of n′ such residual building blocks Hi′(xi′ , {θi}i=li′ ,...,ui′ ). The total network
has n parameters θi, i ∈ {1, ..., n}.

We further define the final output of the ResNet R with input x as1

ŷ := R(x) (2.3)

= Fn′+1(ŷn′) (2.4)

= Fn′+1(Hn′(Hn′−1(...(H1(F0(x)))))). (2.5)

1The parameters as an argument of the function are implied and therefore left out for the purpose of simplicity.
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2.1. ResNet Architectures

with Fn′+1, F0 being the first and last building blocks of the network, which are non-residual.
This then yields

x1 = F0(x) (2.6)

as the first residual building block’s first input. A complete visual representation of a 34-layer
ResNet is shown in Fig.2.2

In this thesis we use f to denote the objective function (i.e. the loss function). This notation
was chosen over the notations l or L because it is the term used in the three most important
papers for this thesis [1, 5, 6]. The respective loss of the ResNet’s prediction is, just as for any
other network, defined as

f(y, ŷ) = f(y, x, θ) (2.7)

= f(y,R(x, θ)) (2.8)

with y being the actual target (i.e. the correct label or value) associated with x and f being the
loss function (e.g. cross-entropy loss, mean squared error). We adjust the network’s parameters
θ in order optimize f .

Li et al. [8] argue that using skip connections in neural networks modifies the geometry of
the loss function in an important way. The loss function of a ResNet is much smoother than
the loss function of a plain neural net, see Fig. 2.3. A smooth surface of the loss function is
much more suited for optimization problems. Usually increasing a networks size will make the
loss function more rough. Therefore, very deep neural networks might not be well-suited for
training as their associated loss functions may be too irregular. This is another explanation for
why large ResNets train better than their plain counterparts.

Because ResNets are specialized for very deep learning, we use them as the architecture in
the experiments of this thesis. The smoothness of the loss function yields flat saddles and
saddle-like structures. This we can exploit when setting the learning rate; the details of which
are explained in 2.4 when we discuss CLR. For those two reasons, ResNets are a favorable
option for the experiments performed in this work. Furthermore, ResNets have been used
in the work of Smith and Topin 2.5 whose results we are trying to replicate and compare to
other learning rate choosing techniques. From a stance of comparability, using ResNets is the
preferred approach as well.
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2. Optimization Methods for Neural Networks

Figure 2.2.: Comparison of a 34-layer ResNet with a 34-layer plain network and the VGG-19
architecture. Image source [2].
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2.2. Stochastic Gradient Decent

(a) Plain 56 layer network (without skip connec-
tions).

(b) ResNet56 (with skip connections)

Figure 2.3.: The loss surfaces of a 56 layer neural network on the CIFAR-10 data set with and
without skip connections. Image source [8].

2.2. Stochastic Gradient Decent

A crucial step on the path of developing a deep learning model lies in solving the underlying
optimization problem. SGD is one of the most popular optimizers due to its simplicity [9].
Nonetheless, weaknesses such as inherent noise have lead to the development of newer
optimizers [9]. While nowadays more refined algorithms, such as Adam [5], are gaining
more popularity, SGD still remains a useful algorithm in practice and an essential theoretical
foundation for more advanced algorithms. SGD is derived from the Method of Steepest
Descent [10].

The Method of Steepest Descent is used to find a local minimum of a function by iteratively
moving in the direction of the steepest descent d. The distance for which this direction
is followed is defined through a scalar α. Suppose we want to minimize a loss function
f(y,R(x, θ)) associated with a ResNet R. The inputs x and targets y are given by the training
data and are therefore fixed. Furthermore, the function R(x, θ) refers to the forward pass of
the input x by the ResNet R with parameters θ. Therefore, the functionality of R is defined
by the ResNet architecture. Hence, we can rewrite the optimization problem as minimizing
the loss function f(θ). In order to achieve this we must adjust the network’s parameters θ

towards the direction of the vector d with a scalar step size α. The direction is evaluated using
the current parameter settings. As the parameters θ change, so does the direction of steepest
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2. Optimization Methods for Neural Networks

descent d. Therefore, from the current position we can only determine the direction of steepest
descent for an infinitesimally small scalar α. We want to find the one d which minimizes

lim
α→0

f(θ + αd) = dT∇θf(θ). (2.9)

Solving this [10], we obtain the direction of steepest descent:

d = −∇θf(θ). (2.10)

The update of the network parameters follows in the direction of the negative gradient,
evaluated for the current parameter settings. Practically speaking, we obviously cannot limit
the algorithm to an infinite amount of infinitesimally small update steps. Therefore, we pick a
scalar α > 0 as the learning rate. The size of the learning rate conveys how much confidence is
put in the update step:

θ(j+1) = θ(j) − α∇θf(θ(j)), (2.11)

with j referring to the j-th iteration of the update routine. We call α the learning rate. Smaller
values for the learning rate mean that a step is more likely to be optimal in direction. Larger
values for the learning rate mean that less evaluations must be performed to traverse a fixed
distance. Finding an optimal setting for the learning rate of an optimizer is the central objective
of this thesis.

Goodfellow, et al. [11] describe the difference between SGD and the Method of Steepest Descent
(i.e. Gradient Descent) as the introduction of a separation of the training data. In SGD one
views the gradient as an expectation over the number of samples. Therefore, instead of using
the full data set available for calculating the gradient, the data D = {(x1, y1), ..., (xnD , ynD )},
which consists of nD values and corresponding labels, can be separated into smaller batches
B = {(xlB , ylB ), ..., (xuB , yuB )} ⊂ D. Each batch contains a subset of uB − lB samples from
the full data set. For each batch the (expected) gradient can be calculated as

g = 1
uB − lB

uB∑
k=lB

∇θf(yk, xk, θ). (2.12)

SGD then follows this stochastic gradient downhill. Thus, we obtain the update step

θ(j+1) = θ(j) − αg(j). (2.13)

for j ∈ {1, ..., niter} where niter = nepochs · nbatches denotes the number of total iterations
performed.

Algorithm 2.1 shows the complete optimization via SGD.
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2.3. Momentum-Based Descent Methods

Algorithmus 2.1 SGD
Require: The parameters of the network θ.
Require: The learning rate α.
Require: The data set D.
Require: The objective function f .
Require: The network architecture R.

procedure SGD(θ, α, D, f , R)
while stopping criterion is not met do

for all B ⊂ D do // for batch B in data set D
x← GETVALUES(B)
y ← GETLABELS(B)
g ← 1/|B| ·

∑|B|
k=1∇θf(yk,R(xk, θ)) // compute average gradient for samples in B

θ ← θ − α · g
end for

end while
end procedure

2.3. Momentum-Based Descent Methods

Plain SGD does not perform well in all areas where neural networks are used (e.g. robotics) [9].
Therefore, in this section we discuss momentum-based descent methods as alternative opti-
mizers. We can take SGD as explained above and generalize it by introducing a momentum
vector m (m(j) refers to the momentum vector of the j-th iteration). This momentum replaces
the gradient in the update step. The resulting descent resembles the trajectory of a heavy ball
rolling down the loss function [10]. Introducing momentum can cause the descent to escape
small ditches (i.e. local minima) and has been shown to reduce oscillation and provide faster
convergence [10]. We define the update routine as [12]

m(0) = 0, (2.14)

m(j) = βm(j−1) + (1− β)g(j), (2.15)

θ(j+1) = θ(j) − αm(j) (2.16)

Then classical SGD is just a special case of the equation above where β = 0.

The idea of heavy-ball momentum strongly resembles that of using an expected value over the
gradients. Consider m(j) to be a moving average for g. Therefore, m(j) is a good estimator for
E[g], the expected value of g. This only holds true for large j (i.e. after many iterations have
passed) because we initialize the first momentum vector with m(0) = 0 instead of m(0) = g(1)

which would yield a true moving average. Nonetheless, since we usually perform many
iterations and therefore m(0) becomes exponentially less influential, this intuition still holds
true over the major part of training. The stochastic implication of this is a more stable descent
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2. Optimization Methods for Neural Networks

(a) Isolines indicating the values of f(w1, w2). (b) Grid indicating the values of f(w1, w2).

Figure 2.4.: Comparison of optimization with Adam and SGD. The slope of the descending
curve for Adam shows the effects momentum on the descent line. Each minimum
found by each algorithm is equally good.

due to more well-balanced directional vectors and less distortions caused by outliers. This is
because all gradients are weighted with (1− β) which is usually rather small [5, 13].

Liu et al. [12] show that momentum-based SGD has the same convergence bound as classical
SGD, even if a function has multiple local minima. Better yet, in practice these methods even
tend to outperform plain SGD [10, 12]. Fig. 2.4 is a visual comparison of the descent lines
formed by Adam (a special case of momentum-based descent – details follow in the next
paragraphs), compared to those of SGD. We clearly observe the added momentum in the
descent of Adam. Both algorithms terminate on a different minimum. Nonetheless all the
minima are equally good solutions to the optimization problem.

Adam

There are many forms of momentum in gradient descent, such as the algorithm proposed by
Nesterov [14] and the stochastic optimization methods AdaGrad [15] and AdaDelta [16]. In
this work we will focus on a more modern momentum-based descent algorithm called Adam [5].
The name Adam is derived from adaptive moment estimation. Besides the advantages of
including momentum, Adam is associated with two properties that form the core idea of the
algorithm. Firstly, Adam is invariant to the scaling of the gradients. Secondly, Adam performs
some form of step size annealing, meaning that towards later iterations (i.e. larger values for
j) the step size decreases. In the following we will explain why these properties are desirable
and how they arise.
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2.3. Momentum-Based Descent Methods

First of all, we analyze the invariance to the gradients’ scale and why other forms of
(momentum-based) descent do not yield this property. Since the learning rate α has been a
constant scalar, so far differences in the size of the update steps ∆(j) = −αg(j) between the
iterations j only depended on the scale of the gradient g. The possible size of the update
step can be described as a region of confidence. For (momentum-based) SGD the region of
confidence is determined by the product of learning rate and gradient. The steepness of the
gradient and the direction to which it points determine the size and direction of the update
step and thus, the confidence in the correctness associated with it. Fig. 2.5(a) illustrates the
region of confidence depending on the size and direction of the gradient. Rather than showing
a single gradient, the possibilities of what the gradient might look like are indicated. The idea
is to show that instead of being uniformly set, the region of confidence depends on the actual
stochastic gradient.

Nonetheless, the scale of the gradient is not necessarily an indicator for the optimal scaling
of the update step. If we examine Fig. 2.3 from Section 2.1, we actually observe that the
steepest gradients correspond to smaller regions that can easily be overshot with large update
steps. Flatter regions, with less steep gradients, tend to span larger distances. Therefore, the
difference in the approach for Adam is to set a uniform region of confidence which is invariant
to the re-scaling of the gradients. The update step ∆(j) is approximately bounded by the
learning rate α [5]: ∣∣∣∆(j)

∣∣∣ ⪅ α. (2.17)

Thus, α forms a trust region around the current parameters’ values, beyond which the current
gradient estimation does not provide sufficiently reliable information. Further descent within
the iteration is therefore discouraged by the learning rate settings. Fig. 2.5(b) illustrates this
idea.

In order to achieve this, Adam uses two momentum vectors instead of one. The momentum
vector m(j) and its bias-corrected version m̂(j) are closely related to the momentum vector
introduced for momentum-based SGD. The second momentum vector v(j) and its bias-corrected
version v̂(j) are tied to the distance already traversed by the end of iteration j. The update
step is defined as [5]

θ(j+1) = θj − α · m̂(j)
√

v̂(j)
(2.18)

≈ θj − α · E[g]√
E[g2]

. (2.19)

The bias-corrected first momentum vector m̂(j) is a good estimator for the expected value of
the gradients regardless of the iteration j. This is because the bias correction term undoes the
initial bias towards zero, which we observed in momentum-based SGD.
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2. Optimization Methods for Neural Networks

(a) SGD (or momentum-based SGD if gradient g

is substituted for momentum m) with arrows indi-
cating possibilities for scaled gradients one might
encounter at this position.

(b) Adam with the region of confidence limited by
the learning rate.

Figure 2.5.: Regions of confidence indicating how large the update step ∆ can be.

The expected value over the gradient g, approximated by the bias-corrected first momentum
vector m̂(j), is formed over positive and negative values for g. The expected value over the
squares of the gradients g2, approximated by the bias-corrected second momentum vector v̂(j),
is formed over positive values only. Therefore, over time the root of the expected values of the
gradients squared becomes larger than the expected value of the gradients. This gives rise to
Adam’s second advantageous property. Because

lim
j→∞

∆(j) = lim
j→∞

(
α · m̂(j)
√

v̂(j)

)
= 0 (2.20)

Adam naturally performs some form of update step annealing. Step size annealing can be
advantageous because the distance between the current solution and the optimal solution
might become too small towards later iterations [17]. If not treated by reducing the step size
towards later iterations, the algorithm oscillates around the optimum [10]. As an alternative
to using Adam, update step annealing for (momentum-based) SGD through learning rate
scheduling is discussed in Section 2.4.

The pseudocode for Adam is given in Algorithm 2.2. Please note that while var(j) refers to the
variable in the j-th iteration, varj refers to the variable raised to the power of j. This holds true
not only for the algorithm but also for any mathematical statement found in this thesis. For
additional information on Adam, which is not relevant to understanding the rest of this thesis
but might nonetheless be of interest to the reader, we kindly refer to Appendix A.1.
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Algorithmus 2.2 Adam
Require: The parameters of the network θ.
Require: The learning rate α. Recommended setting is α = 0.001.
Require: The exponential decay rates β1, β2 ∈ [0, 1). Recommended settings are β1 = 0.9,

β2 = 0.999.
Require: The data set D.
Require: The objective function f .
Require: The network architecture R.

procedure ADAM(θ, α, β1, β2, D, f , R)
m← 0 // initialize first momentum vector
v ← 0 // initialize second momentum vector
j ← 0
while stopping criterion is not met do

for all B ⊂ D do // for batch B in data set D

j ← j + 1
x← GETVALUES(B)
y ← GETLABELS(B)
g ← 1/|B| ·

∑|B|
k=1∇θf(yk,R(xk, θ)) // compute average gradient for samples in B

m← β1 ·m + (1− β1) · g // update the first momentum estimate
v ← β2 · v + (1− β2) · g2 // update the second raw momentum estimate
m̂← m/(1− βj

1) // compute bias-corrected first momentum estimate
v̂ ← v/(1− βj

2) // compute bias-corrected second raw momentum estimate
θ ← θ − α · m̂/(

√
v̂ + ϵ) // update parameters, recommended setting is ϵ = 10−8

end for
end while

end procedure

2.4. Hyper-Parameter Settings in Training Neural Networks

The aforementioned algorithms require special hyper-parameters to be set by the user. Setting
these hyper-parameters will have a non-negligible effect on an algorithm’s performance in
training the network. These effects are either the object of research of this thesis (learning rate
and scheduling and their effects on number of epochs required) or they must be accounted
for (batch size and momentum) when performing experiments with these algorithms. In
this section we will provide an overview of the most common hyper-parameters required by
descent algorithms. Note that these are the most well-known and most widely used parameters.
However, there might by other highly specialized training environments requiring additional
hyper-parameters that we cannot cover here.
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2. Optimization Methods for Neural Networks

Epochs

Firstly and maybe most importantly, the number of iterations performed by the descent
algorithm has to be defined. In Algorithms 2.1 and 2.2 we iterated for as long as the "stopping
criterion is not met." In practice, this usually is defined by specifying a number of epochs for
which to perform the loop. We do this because it usually cannot be known when a minimum is
reached. In other words, we usually do not know what the optimum value foptimum for the
loss function f will be. Thus, we cannot define a condition which depends on such a value (e.g.
"while f > foptimum"). The preferred solution is therefore to perform a predefined number
of epochs and take the optimal state of the neural network, found within this period. This
optimal state is the released network.

A single epoch is defined as a complete run through the training data. An iteration is a single
update step of the iterative optimizer. The number of iterations performed by the optimizer
niter equals the number epochs nepochs times the number of batches nbatches in the data set.

Batch Size

In Section 2.2 we explained that we can separate our data set into batches. Technically speaking,
the most important aspect of this choice is the advantage we gain on computational power
needed [10]. Calculating the loss and gradient for smaller batches uses less GPU memory. This
might be an essential modification for us to even be able to perform the necessary calculations
since data sets tend to be very large containing at least many tens of thousands of samples,
possibly even millions.

However, we also have to acknowledge that our choice of the batch size will directly affect
our results. Keskar et al. [18] argue that large batch sizes converge to sharp minima. Rather
than giving a theoretical explanation they show their results experimentally. Fig. 2.6 illustrates
why sharp minima are problematic. The likelihood of a sharp minimum, evaluated on the
training data, coinciding with a near-minimum point of the loss function, evaluated on the test
data, is less than when we are at a flat minimum. Training with large batch sizes might yield
trained networks which perform just as well on the training data as those that were trained
using smaller batches. Nonetheless, the solutions to the optimization problem in Fig. 2.6 do
not generalize well on new data. Normally, an optimal batch size lies in the range between 32
and 512 samples [18].

Please note that it is neither certain that sharp minima cannot generalize for deep networks,
nor is the definition of a sharp minimum undisputed [19]. Nonetheless, the findings of Keskar
et al. [18] are frequently cited and remain an important foundation for explaining the effect
of batch sizes on training success [1, 20, 21]. Takase et al. [22] speculate that large batch
sizes stabilize the loss function, which makes escaping a poor local minimum less likely. The
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2.4. Hyper-Parameter Settings in Training Neural Networks

Figure 2.6.: Sketch of both a sharp and a flat minimum found within the loss function. The
y-axis shows the values of f , the loss function, and the x-axis indicates the value
of the parameter of the model. Image source [18].

quintessential taking from this subsection is that we have to account for the choice of batch
size in the upcoming experiments of Chapter 4.

Learning Rate

The learning rate α is the main focus of this work. Initially the learning rate was defined as a
constant scalar. Essentially, the learning rate conveys the degree of confidence in the current
gradient. When α is large we strongly trust the gradient and take large steps in its opposite
direction. When α is small we have little faith in the extent to which this gradient represents
any future descent direction. Thus, our steps are small in the direction of the negative gradient
−∇θf(θ).

If α is small, we gradually move towards a local minimum. Nonetheless, too small steps mean
that the descent algorithm needs to perform many iterations. Each iteration is very costly as
it involves large amounts of data to be processed. If α is too large, on the other hand, the
optimizer might not converge at all. Fig. 2.7 shows this diverging process.

Later some configurations to the learning rate are introduced. These configurations are
scheduling and vectorization – see the next subsection and Section 2.6 respectively.

Learning Rate Scheduling

So far we have considered the learning rate α to be a fixed value across all iterations of the
descent algorithm. We can extend the previously introduced algorithms (SGD and Adam) by
making α(j) a scheduled variable whose value depends on the iteration j ∈ {1, ..., niter}.

One way a scheduler can be constructed is by introducing a decay rate γ for the learning
rate α(j). This decay rate is used as a factor (γ < 1) which decays the learning rate in
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2. Optimization Methods for Neural Networks

Figure 2.7.: Sketch of a diverging attempt at optimization due to a learning rate that was
chosen too large.

each epoch. A decaying learning rate introduces step size annealing. This form of step size
annealing differs from the one mentioned in Section 2.3. Instead of decaying the quotient of
the momentum vectors it decays the learning rate directly. We can choose between a variety
of decay settings such as linear decay [23], exponential decay [23], or piece-wise constant
learning rate schedules [1].

The result of a decaying learning rate might be that learning rates, which were initially
chosen too large, could still produce a converging descent. Furthermore, the optimizers can
descent quickly towards the general direction of the optimum and then slowly find it without
constantly overshooting. This process can be thought of as a two part optimization. At first, we
optimize quickly but imprecisely. Towards the end we trade speed for precision. Our last steps
become smaller and smaller and thus, more accurate. With small steps we then find a precise
optimum.

Decaying the learning rate is not the only form of scheduling it. We might also choose to
preform a cycle [4]. This CLR scheme might even produce incredible results for the convergence
of the algorithms [1, 4]; the details of which are discussed in Section 2.5.

A CLR scheme usually starts with an initially small value αmin (minimum learning rate) and
continuously increases the learning rate to a larger value αmax (maximum learning rate), after
which it the decreases the learning rate back down to αmin. The update of the learning rate
usually happens after each iteration. The ascent and descent of the learning rate parameter
itself are usually linear [4]. Nonetheless, alternatives can be thought of and have already been
implemented and tested successfully [24]. This cycle can be performed arbitrarily often during
the training. If exactly one complete cycle is performed over the predefined number of epochs,
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2.4. Hyper-Parameter Settings in Training Neural Networks

(a) Arbitrary CLR. (b) 1-cycle.

Figure 2.8.: CLR schemes with αmin = 0.001 and αmax = 1.

we call that a 1-cycle. Fig. 2.8 shows two CLR schemes over 100 epochs – 2.8(a) a cycle that
repeats itself four times and 2.8(b) a 1-cycle. The learning rate in a 1-cycle can be defined as

α(j) :=


αmin + 2(j−1)(αmax−αmin)

niter
, j ∈

{
1, ...,

⌈niter
2
⌉}

αmax + 2(j− niter
2 )(αmin−αmax)

niter
, j ∈

{⌈niter
2
⌉

+ 1, ..., niter
}

,

(2.21)

yielding the special points

α(1) = αmin (2.22)

α( niter
2 ) = αmax, if niter uneven (2.23)

α(niter) = αmin. (2.24)

To conclude this subsection, we showed that the learning rate does not need to be a constant
scalar. The value of the learning rate can be adjusted in each epoch or, more commonly,
each iteration in training. The way in which the learning rate is scheduled can have a direct
influence on the quality of the results [1, 4, 23, 24].

Momentum

We already discussed momentum in Section 2.3. Nonetheless, for the purpose of completeness,
we review the momentum decay rate β as a hyper-parameter. Most descent algorithms have
a single momentum vector, but algorithms such as Adam might have more. The momentum
vector can be described as a moving average. The way we calculate this moving average can be
defined by the momentum decay rate β ∈ [0, 1), with β = 0 yielding a momentum-less descent.
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Larger decay rates indicate a greater importance given to past gradients. Smaller decay rates
discount the past gradients heavily and thus, lay a stronger emphasis on the current gradient.
This importance or emphasis can be seen as a level of trust divided between the past and the
present gradients.

2.5. Super-Convergence

The term super-convergence was coined by Smith and Topin [1]. It refers to an emergent
phenomenon when using CLR with large maximum learning rates. Essentially, the training
of a ResNet [2], Densenet [25], or LeNet [26] on the CIFAR-10, CIFAR-100, Imagenet and
MNIST image classification data sets speeds up by orders of magnitude. Furthermore, the
finished network generalizes better on data it has not seen before. Lastly, the boost in
performance becomes more significant when training data is limited or the network architecture
is shallower [1].

Speeding up the network’s training is the main focus in this work. Super-convergence therefore
provides an interesting insight related to the objective. When it comes to why this speed-up
occurs, the reason remains an open topic for research and discussion. Smith and Topin [1]
give two possible intuitions to why this may happen.

Their first intuitive explanation is related to the topology of the underlying loss function.
Assuming a smooth loss function, we might expect a traversal to occure as follows:

• In the beginning, the loss function has steep descending slopes which yield large gradi-
ents.

• During the next phase of training we may experience flat saddles with small gradients.

• Finally, we want to find a sharp optimum within a flat semi-optimum. In other words,
within that wide valley there may be another sub-valley with an even better optimal
value for f(θ).

This would mean that in the beginning we would desire small learning rates to counteract
the large gradients. Intuitively speaking we can think of a local optimizer seeking the right
initial direction to step towards. Too large learning rates in the beginning might lead towards
a misguided direction. Having figured out the initial directions, the algorithm traverses the
wide saddle. Here we prefer larger learning rates in order to take larger steps through a long,
mostly featureless plane. We call this the global optimizer. On the final part of the function we
want to avoid overstepping and thus, choose a smaller learning rate to find the exact minimum.
Here we return to a local optimizer.

This intuition should be viewed critically as it works well only when one assumes the smooth
loss functions observed from ResNets [8], see Section 2.1. Nonetheless, super-convergence is
not limited to ResNets but works well with LeNets, too [1]. Another issue with this explanation
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2.5. Super-Convergence

Figure 2.9.: Oscillating around the optimal constant learning rate with a CLR.

is that it favors sharp minima as solutions to the optimization problem. Since training with
CLR also results in better generalization, this would be in contradiction to the findings of
Keskar et al. [18]. Nonetheless, these findings are not undisputed. Dinh et al. [19] argue that
sharp minima can generalize for deep networks. To conclude, this explanation is to be viewed
critically but can nonetheless be used as an intuition for the success of CLR.

The second possible explanation given by Smith and Topin [1] is much simpler. Assuming there
is an optimal constant learning rate, then we are unlikely to exactly choose it. If we choose
a CLR with large enough ranges for the learning rate α, we experience phases of training
with a smaller than optimal learning rate and phases with a larger than optimal learning
rate, see Fig. 2.9. The assumption is that this yields better performance than always using
a smaller or larger than optimal learning rate. The problem with this explanation are the
underlying assumptions that (1) there is such an optimal constant learning rate and (2) under-
and overestimating it yields better performance. Especially the existence of such an optimal
learning rate is to be viewed critical. Super-convergence might just as well be a phenomenon
emerging only from CLR.

These two explanations are nothing more than intuitions. They are both problematic in their
own way. Nonetheless, together they might explain at least some aspects of why the phe-
nomenon of super-convergence emerges in training. More importantly, the speed-up of training
neural networks can be observed experimentally and can be exploited in practice. A positive
side effect is the better generalization [1]. Therefore, using CLR is a favorable alternative to
constant learning rates or decaying learning rates when training neural networks.
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2.6. AdaSecant

So far we have viewed the learning rate α as a scalar, either constant or prescheduled. In this
last section of the theoretical foundations we want to explore the possibility of calculating α in
each iteration using curvature information. If successful, this method could replace the task of
manually setting or scheduling a learning rate.

In addition to being calculated, the learning rate α will be vectorized, meaning instead of
being a scalar for the gradient we will introduce a learning rate that scales each component
gi of the gradient g differently. An algorithm which does this is called AdaSecant. AdaSecant
uses information about the gradient and the curvature of the Hessian in order to compute the
learning rate [6]. In this section we will first explain the numerical method that forms the
foundation for AdaSecant. In the next step we will introduce the specific adjustments made to
that method.

The Underlying Numerical Method

So far, we have not discussed any descent algorithm that solves for the learning rate. We rather
used a fixed or scheduled learning rate for each iteration. This means that there might be
better, more efficient solutions for solving the optimization problem (i.e. finding a minimum
of the loss function). On the other hand, the problem of finding a root of a function has
been solved efficiently with methods such as Newton’s Method or the Secant Method [27].
Unfortunately, in almost all cases the loss function will not have any real-valued roots. In fact
most loss functions are strictly positive.

Nonetheless, we do know that the first derivative of the loss function has real-valued roots that
correspond to the loss function’s local minima, local maxima, and true saddle points. Using
this information we can use Newton’s Method in order to find a root of the loss function’s
first derivative. How we make sure that we converge towards a root corresponding to a local
minimum, instead of one that corresponds to a local maximum, will be explained later in
this section. Essentially we will develop a derivation of the Newton Method that follows
the negative gradient within a deviation of no more than 90 degrees. But first of all, we
must understand how directional Newton Methods work and how we can use them for the
optimization problem at hand, which is finding a minimum of the loss f .

The Newton Method is an iterative optimizer for finding the root of a function ϕ(w). For this, the
point where the tangent line, drawn at the parameter value of the j-th iteration w(j), evaluates
to zero is taken. The assumption is that the tangent line is a good enough approximation
for the function in the local region. In other words, we use the linear approximation of the
function to guess a point closer to the root of the actual function. Fig. 2.10 visualizes the idea
behind this underlying assumption. In order to compute this update step, the value ϕ(w(j)) of
the function f with the parameters w(j) of the j-th iteration and the curvature information from
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Figure 2.10.: The update step of Newton’s Method visualized. Red line indicates the gradient
at position w(1). The point where the resulting tangent line crosses the x-Axis is
the new value w(2)

the first derivative ϕ′(w(j)) are necessary. The algorithm finds a root by repeatedly calculating
the update step [27]

w(j+1) = w(j) − ϕ(w(j))
ϕ′(w(j))

. (2.25)

In Equation 2.27 we transfer this idea to the second order, meaning that the gradient will be
divided by the Hessian. In the n-dimensional setting this requires a matrix inversion [6]. The
directional Newton Method, as proposed in [28], avoids this issue by introducing a directional
vector d(j). Given the directional vector d(j), we obtain

w(j+1) = w(j) − ϕ(w(j))
∇wϕ(w(j)) · d(j) d(j). (2.26)

Note that ∇wϕ(w(j)) · d(j) denotes the dot product of the gradient and the directional vector.
Thus, the denominator evaluates to a scalar and no matrix inversion is necessary. If the
directions d(j) are sufficiently close to the gradients ∇wϕ(w(j)), the method provides quadratic
convergence [28].
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Because the loss function does not have a real-valued root, we use the second-order directional
Newton Method with the Hessian H as the second derivative to find a root of the first
derivative:

θ(j+1) = θ(j) − ∇θf(θ(j))
H(j)d(j) d(j) (2.27)

= θ(j) − g(j)

H(j)d(j) d(j) (2.28)

= θ(j) − d(j)

H(j)d(j) g(j). (2.29)

This can be calculated separately for each parameter θi of the network

θ
(j+1)
i = θ

(j)
i −

d
(j)
i

h
(j)
i · d(j)

g
(j)
i , (2.30)

with hi := ∇θ
∂f(θ(j))

∂θi
referring to the i-th row of the Hessian and h

(j)
i · d(j) to the dot product.

The resulting update ∆(j)
i for parameter θ

(j)
i is thus

∆(j)
i = − d

(j)
i

h
(j)
i · d(j)

g
(j)
i , (2.31)

So effectively the learning rate is2

α
(j)
i = d

(j)
i

h
(j)
i · d(j)

. (2.32)

Following the direction of the update ∆(j)
i and then the numerical approximation of the Hessian

along that direction H∆ ≈ ∇θi
f(θ(j) + ∆(j))−∇θi

f(θ(j)), we obtain

α
(j)
i = ∆(j)

i

h
(j)
i ·∆(j)

(2.33)

= lim
|∆(j)|→0

∆(j)
i

∇θi
f(θ(j) + ∆(j))−∇θi

f(θ(j))
. (2.34)

2In the original paper, the term α refers to the approximation for ∇θi f(θ) − ∇θi f(θ). Nonetheless, internal
consistency is more important than external consistency. We therefore name this approximation a and let α be
the learning rate (called η in the original paper).
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Using finite differences and the update step of the last iteration, this term can be approximated
as

α
(j)
i ≈

∆(j−1)
i

∇θi
f(θ(j−1) + ∆(j−1))−∇θi

f(θ(j−1))
(2.35)

= ∆(j−1)
i

g
(j)
i − g

(j−1)
i

(2.36)

=⇒ θ
(j+1)
i = θ

(j)
i −

∆(j−1)
i

g
(j)
i − g

(j−1)
i

g
(j)
i . (2.37)

We write the difference of the current and the past gradient as a
(j)
i := g

(j)
i − g

(j−1)
i .

What we are left with is a second-order directional Secant Method [6] which corresponds to
the one-dimensional first-order variation [27]

θ(j+1) = θ(j) − ∆(j−1)

f(θ(j−1) + ∆(j−1))− f(θ(j−1))
f(θ(j)) (2.38)

= θ(j) − f(θ(j))(θ(j) − θ(j−1))
f(θ(j))− f(θ(j−1))

. (2.39)

Lastly, one more adjustment to Equation 2.37 must be made. The current update will find a
root of the first derivative which either corresponds to a local minimum, a local maximum,
or a saddle point. If we only update towards the general direction (with a deviation of less
than 90 degrees) of the negative gradient, we eventually follow the Secant Method to a local
minimum. This works because we either follow the update step exactly as calculated when
iterating towards a local minimum or we traverse in the exact opposite direction. Hence, the
learning rate should not convey any directional information which deviates more than 90
degrees from the gradient, which is achieved by taking the absolute values only. The final
definition of the update step is

θ
(j+1)
i = θ

(j)
i −

∣∣∣∣∣∆
(j−1)
i

a
(j)
i

∣∣∣∣∣︸ ︷︷ ︸
=α

(j)
i

g(j). (2.40)

The result is a second-order directional Newton Method with a secant approximation of
the Hessian, using the differences of subsequent gradients. The method iterates towards the
negative gradients and thus, towards a local minimum. The gradient and curvature is evaluated
separately for each parameter and thus, for each dimension of the loss function. Therefore, we
have a calculated learning rate that scales each element of the gradient individually.
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The Adjustments

While this more or less simple idea represents the underlying concepts of AdaSecant, the actual
algorithm is much more sophisticated with elements added that target numerical stability.
These differences are [6]

1. substituting current values for their expected value,

2. the introduction of a numerically stable term for the learning rate α,

3. and a variance-reduced gradient g̃.

All central variables var (gradients g and gradients squared g2, update step ∆ and squares ∆2,
curvature information a and squares a2, product of curvature information and update step
a∆) are substituted with moving averages which approximate the expectation of this variable.
Other than most moving averages, the update is defined differently in that it uses a calculated
weight τ (j) for each iteration j. The moving average is calculated as

E[vari]j =
(

1− 1
τ

(j)
i

)
E[vari]j−1 + 1

τ
(j)
i

var
(j)
i (2.41)

τ
(j)
i =

(
1− E2[∆i]j−1

E[∆2
i ]j−1

)
τ

(j−1)
i + 1, (2.42)

with ∆(j−1) = −α(j−1)g(j−1) being the update step from the previous iteration and thus,
E[∆]j−1 the moving average of ∆ over the past iterations. The same goes for any variable var.
The expected values E[var]j is calculated as the moving average of a variable over j iterations,
as given in Equation 2.41.

The learning rate α in AdaSecant is then substituted for a more stable term:

α
(j)
i =

√
E[∆2

i ]j−1√
E[a2

i ]j
− E[ai∆i]j−1

E[a2
i ]j

≈
∣∣∣∣∣∆

(j−1)
i

a
(j)
i

∣∣∣∣∣ . (2.43)

Lastly, a more robust version is developed by introducing the variance-reduced gradient g̃

g̃
(j)
i = g

(j)
i + γ

(j)
i E[gi]j

1 + γ
(j)
i

, (2.44)

γ
(j)
i = E[(gi − g′

i)(gi − E[gi]j)]j
E[(gi − E[gi]j)(g′

i − E[gi]j)]j
, (2.45)

with g′(j) := 1
|B′|

∑|B′|
k=1∇θf(θ(j)) being the gradient calculated with the current parameter

settings θ(j) on the next batch B′.
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Algorithm 2.3 shows the full implementation of AdaSecant. The authors of the original
paper [6] were unspecific about many details such as the initialization of their moving averages
and other variables. Furthermore, their actual implementation3 seems to diverge from their
theoretical design [6]. Ambiguities which could not be resolved were left in, while those that
were resolvable were adjusted for in the pseudocode. If the practical implementation solved
an ambiguity, it was solved in the pseudocode accordingly. If the practical implementation
contradicted or extended the theoretical proposal, the feature was left as in the theoretical
proposal.

3https://github.com/sotelo/scribe
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Algorithmus 2.3 AdaSecant
Require: The parameters of the network θ.
Require: The data set D.
Require: The objective function f .
Require: The network architecture R.

procedure ADASECANT(θ, D, f , R)
while stopping criterion is not met do

for all B ⊂ D do // for batch B in data set D
x← GETVALUES(B)
y ← GETLABELS(B)
B′ ← GETNEXTBATCHFROM(D)
x′ ← GETVALUES(B′)
y′ ← GETLABELS(B′)
g ← 1/|B| ·

∑|B|
k=1∇θf(yk,R(xk, θ)) // compute average gradient for samples in B

g′ ← 1/|B′| ·
∑|B′|

k=1∇θf(y′
k,R(x′

k, θ)) // compute average gradient for next batch
compute E[g] using 2.41
g ← g/ ||E[g]|| // normalize gradients
g′ ← g′/ ||E[g]|| // normalize gradients
a = g − glast // approximate curvature of Hessian
for i ∈ {1, ..., n} do // iterate over all parameters of the network

γi ←
E[(gi−g′

i)(gi−E[gi])]
E[(gi−E[gi])(g′

i−E[gi])] // compute variance correction term using 2.41

g̃i = gi+γiE[gi]
1+γi

// compute the corrected gradient

cond1← |gi − E[gi]| > 2
√

E[g2
i ]− E2[gi]

cond2← |ai − E[ai]| > 2
√

E[a2
i ]− E2[ai]

if cond1 or cond2 then
τi ← 2.2 // reset the memory size for outliers

end if
update moving averages according to 2.41

αi ←
√

E[∆2
i ]√

E[a2
i ]
− E[αi∆i]

E[a2
i ] // calculate learning rate

update τ according to 2.42
∆i ← −αig̃i

θi ← θi + ∆i // update parameters
glast ← g

end for
end for

end while
end procedure
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3. Implementations and Extensions of the
Theoretical Foundations

In the previous chapter we laid out the theoretical basis for the upcoming experiments of
Chapter 4. In this chapter we discuss the implementation of the algorithms in PyTorch1.
PyTorch was chosen because it is well-suited for research as it makes developing and debugging
realtively easy [29]. Another reason was the author’s familiarity with it. Section 3.1 is a short
summary of the standard implementations and libraries used. Sections 3.2 and 3.3 discuss
the implementations that needed more coding and analysis. We discuss how Adam can be
adapted for CLR in Section 3.2. Lastly, Section 3.3 is dedicated to the issues that were faced
when implementing AdaSecant. Furthermore, the solutions and alternatives that were found to
resolve those issues are presented. The final validation of all these approaches can be found in
Sections 4.2–4.5. The training environments and other code we developed for the experiments
and plots is provided in our GitHub repository2.

3.1. Standard Implementations and Libraries

PyTorch is a useful deep learning framework for Python. It provides data sets, models, compo-
nents, an automatic computation of the gradients, and many other useful features. PyTorch
uses dynamically generated computational graphs to represent mathematical expressions. Due
to its dynamic nature, it is well-suited for research [29].

PyTorch provides a number of neural networks that can be used for any classification problem,
requiring only small adaptations. The torchvision package3 includes the sub-package models
which contains ResNet architectures. These can be loaded as either pretrained or untrained.
Because the objective of this thesis is the optimal setting of the learning rate, which is a
hyper-parameter for the training, we chose the untrained version. Nonetheless, the models
from the torchvision package did not come close enough to the results that ResNets produce
on the CIFAR-10 and CIFAR-100 data sets in other works [1, 2, 3]. We suspect the problem to
lie in the first convolutional layer which discards a large portion of the pixels and therefore,

1https://github.com/pytorch/pytorch/tree/d5bfdd3dac33dfa84e2a511fa79c4ad4e0e6b822
2https://github.com/AverageDude0815/BA
3https://github.com/pytorch/vision/tree/5ef75d7bc666c9af3dd05b62b075df4c23ca467c/torchvision
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the information available. This layer was probably designed for the ImageNet data set which
contains images with a size of 224 × 224 pixels, compared to the 32 × 32 images from the
CIFAR-10 or CIFAR-100 data sets. Thus, the CIFAR images are simply too small to discard any
of the information available.

We found another package4 that provides ResNets which are better suited for the CIFAR-10 and
CIFAR-100 data sets and are in accordance with the designs used by He et al. [2]. The models
chosen in this work were partially determined by the models provided from that package since
using tested libraries leaves less room for errors. Therefore, different ResNet architectures
than in the work of Smith and Topin [1], which is the paper we are validating with this thesis,
were chosen. Nonetheless, the difference lies in the slight deviations in the number of layers
and therefore, these architectures are comparable with regards to their general behaviour in
training. We choose ResNet18 as the smaller network and ResNet50 as the larger network,
compared to ResNet20 and ResNet56 in the original paper [1].

The torchvision package further provides the CIFAR-10 and CIFAR-100 data sets via torchvi-
sion.datasets.

For the implementation of standard optimization algorithms, which are SGD and Adam, we
use the optim5 package from the PyTorch library. The algorithms in that package are tested
and fully functional. Therefore, an own implementation is unnecessary.

The scheduling of the learning rate can be done using the learning rate scheduler from the
optim package.

Since PyTorch does not provide a complete training environment, the implementation of the
training routine itself was done manually.

3.2. Combining Momentum and Cyclical Learning Rates

In this section we provide an insight into the interdependence between CLR and momentum.
This analysis is extended in order to cover Adam. We provide two possible variations of Adam
that should in theory produce cyclical update step sizes. This means that we do not only look
at CLR but rather the update step term as a whole.

The momentum of momentum-based SGD is biased towards zero which means that smaller
step sizes are expected in the early phases of training. Nonetheless, the influence of this
bias decreases exponentially. Therefore, the interactions of CLR and momentum should be
minimal. Momentum is rather a denoising functionality since it estimates the expected value

4https://github.com/kuangliu/pytorch-cifar/blob/49b7aa97b0c12fe0d4054e670403a16b6b834ddd/models
/resnet.py

5https://github.com/pytorch/pytorch/tree/093a12aaa984bd4a7768bb306157067f7c95b0ec/torch/optim
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of the gradients. No obvious reason exists for an undesired interfere with CLR. This is also
reflected by the results of Smith and Topin [1] who were able to show that momentum-
based descent methods such as Nesterov [14], AdaGrad [15], and AdaDelta [16] allow for
super-convergence.

Nonetheless, Smith and Topin [1] were not able to show the same results for Adam [5].
Therefore, we decided to further examine this case. As a first step, we review the naive
implementation of scheduling the learning rate without taking into account what happens to
the rest of the variables used to compute the update step. Since the update step is approximately
bounded by the learning rate, a CLR will affect the region of confidence for the step size,
see Fig. 2.5(b) from Section 2.3. However, we do know that Adam performs a type of step
size annealing, meaning that the update step size and the region of confidence decrease with
the number of iterations, even with constant learning rates. This property, which is a core
component to Adam’s success [5], could therefore be problematic when CLR are introduced.
Since 1-cycle schedulers decay the learning rate towards later iterations, the additional step
size annealing might cause the step sizes to become too small too quickly. Thus, different cycles
should be evaluated.

For this naive implementation we had to adjust the Adam algorithm provided by the PyTorch
optim package, which does not allow for learning rate scheduling. In order to achieve this,
a new learning rate parameter was created for the Adam class6. This learning rate is then
updated via an own scheduler that was specifically implemented for this task. The updated
Adam class passes the learning rate as an argument to the standard Adam function7. We
henceforth refer to this naive implementation as CLR-Adam or simply as Adam.

Following that line of thought, another approach for introducing a type of cyclical update
routine emerges. Consider that Adam performs automatic step size annealing. This means
that towards the end of training the effective step size decreases, even when the learning rate
stays constant. This already resembles the concept of decaying learning rates as discussed in
Sections 2.3 and 2.4. The missing link to creating a cyclical scheme can therefore be found
in the beginning of training. We remember that Adam uses a bias-corrected first momentum
vector m̂. If the bias-correction term (1− βj

1) is removed, the first momentum vector becomes
biased towards zero. Effectively, we replace the first bias-corrected momentum vector with
the normal first momentum vector; setting m̂ = m. This bias towards zero yields smaller
update steps in the beginning of training. Thus, this new version of Adam performs a form of
automatic cycling. We call this the Cyclical Update Step Adam or simply CUS-Adam.

CUS-Adam is implemented by adapting the Adam code provided by the PyTorch optim package.
Both CLR-Adam and CUS-Adam are evaluated in Section 4.4.

6https://github.com/pytorch/pytorch/blob/46c886e8a6d3d9f502fa8c0985784436ab7f9543/torch/optim/adam.py
7https://github.com/pytorch/pytorch/blob/46c886e8a6d3d9f502fa8c0985784436ab7f9543/torch/optim/

_functional.py#L54
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3.3. Implementing AdaSecant

In this last section of the implementations and extensions, the implementation of AdaSecant is
discussed. As mentioned in Section 2.6, the authors [6] were unspecific about many things,
mostly about the initialization of their variables. Furthermore, the actual implementation8

diverges from their theoretical design. For example, their implementation uses thresholds
for the weights τ (j) used for calculating the moving averages. These thresholds were not
mentioned in the paper. Another issue is that the sequence of operations differs from the
theoretical pseudocode. Therefore, we must make some decisions on how AdaSecant should be
implemented. Furthermore, we present a simpler implementation to be tested in the upcoming
experiments. We call this algorithm Simple AdaSecant.

AdaSecant

The implementation decisions for AdaSecant are laid out chronologically by the actual imple-
mentation used in this thesis:

1. The gradients are calculated using the autograd package9 of PyTorch. A prestep is taken
to calculate the current gradient on the current batch. With the execution of the step
method the gradient calculated on the next batch with current parameters is obtained.
Both gradients are passed to the optimizer. The step method triggers the iteration of
AdaSecant.

2. Inside each iteration j the moving average for the gradient E[g]j is calculated first. This
is coherent with both the pseudocode and the authors’ implementation.

3. The position of the gradient normalization in the sequence is ambiguous. We observed
no difference independent of where and if the normalization term was included. Hence,
the normalization is left out of the final algorithm.

4. Calculate the term a(j) = g(j−1) − g(j) to approximate the curvature of the Hessian. The
exact position of the approximation of the curvature in the code is not of importance
because the gradients stay constant over a single iteration. The only requirement is that
it is calculated before use.

5. Calculate the corrected gradient. The semantics of the order of statements regarding the
corrected gradient is equal in both pseudocode and implementation, even though the
syntax slightly differs.

8https://github.com/sotelo/scribe
9https://github.com/pytorch/pytorch/tree/93d2e5090f9823102debab3845117c8e8208995b/torch/autograd
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6. Update all moving averages. The pseudocode is unspecific here. The authors state to
"update moving averages according to Equation 23" [6] and Equation 23 is related to
the moving average for the update step ∆(j). Nonetheless, their implementation updates
all moving averages. Furthermore, the pseudocode does not include the update of the
other moving averages specifically. Thus, simply all moving averages are updated in this
step. The difference to the pseudocode is that the update of the memory size for the
weights τ (j) is done after this step in our implementation. The authors’ implementation
is consistent with our’s.

7. Update the weights τ (j) for calculating moving averages. This implementation choice
differs from the pseudocode only in that it is applied after calculating the learning rate.
This has no effect on the outcome of the learning rate if all moving averages have been
updated previously, which they have. Again, the syntax is slightly different but the
semantics are equivalent. The sequence is furthermore in accordance with the authors’
actual implementation.

8. Apply thresholds to weights τ (j). This information was left out of the pseudocode.
Nonetheless, we observed it to be essential for the algorithm’s convergence. Without it
the algorithm quickly returns some invalid values (e.g. infinity or nan). We copy the
position in the sequence from the actual implementation. The lower threshold is set to
1.5 and the upper threshold to 107, just as the authors’ implementation suggests.

9. Reset memory size for weights τ (j). This was the most challenging part. Neither sequence
nor necessary condition are the same when comparing pseudocode and implementation.
We use the formula as presented in the pseudocode because the objective of changing it
was not made clear in the implementation. The sequence is taken from the implementa-
tion because we consider it to be more senseful to reset the memory size after setting it.
After this, no ambiguities are left.

10. Compute the learning rate.

11. Compute the update step.

12. Update the parameters.

13. Save old values for next iteration.

All variables and moving averages are initialized with zero except for the weights τ (j) which
are initialized with one. This is also in accordance with the implementation of the original
authors. Note that the moving averages are not biased towards zero with this implementation
strategy. If the weights τ (j) are set to one, the first update of the moving averages will neglect
any initialization bias. Not quite an initialization, but related, the update of moving averages
that require the initial update step ∆(0), should use the negative corrected gradient −g̃ instead.
This corresponds to an update step with a learning rate of 1.0.
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To summarize, the sequence, initializations, and thresholds applied follow the actual implemen-
tation of the authors of AdaSecant. The formulas are interpreted as presented in the paper and
shown in Section 2.6 and Algorithm 2.3. The resulting implementation is henceforth simply
referred to as AdaSecant since it is the only implementation of the algorithm available to us in
PyTorch. The implementation is given with Algorithm 3.1.

Simple AdaSecant

Now, we want to present a different approach to implementing AdaSecant. Because so many
more or less arbitrary decisions had to be made, the resulting AdaSecant implementation
might not perform as desired. Thus, we propose a Simple AdaSecant that removes all the
sophisticated mathematical decisions. It can therefore be used to act as a validation experiment
for the underlying idea of AdaSecant. In Section 2.3 we developed a second-order directional
Newton Method with a secant approximation of the Hessian which is the update step we use
in Simple AdaSecant:

θ
(j+1)
i = θ

(j)
i −

∣∣∣∣∣∆
(j−1)
i

a
(j)
i

∣∣∣∣∣︸ ︷︷ ︸
=α

(j)
i

g(j). (3.1)

The advantage is that all decisions for implementation are clear from the start except for the
initial values. We choose

∆(0) = −g, (3.2)

a(1) = g. (3.3)

Thereby, we effectively set the learning rate of the first iteration to one. We choose ∆(0) = −g

(instead of ∆(0) = g) because it resembles a preceding update step with a learning rate of one.
Due to the absolute value function, this decision is only of matter for the code’s readability.
The approximation of the curvature, by the term a(1), is set to equal the gradient g(1) as it
resembles a preceding gradient g(0) of zero. Divisions by zero are set to evaluate to zero. This
is because they usually occur in settings where a gradient’s component gi evaluates to zero and
thus, no update step would be performed. Therefore, initializing either the curvature a(1) or
the previous update step ∆(0) with zero should be avoided as it implies a learning rate of zero
which implies an update step of zero. This loop is endless.

In practice we observed that this implementation is numerically unstable. Therefore, a
threshold for each component of the learning rate α

(j)
i had to be added. Different thresholds

are compared in Section 4.5. Interestingly, we observed that the algorithm only performs
well when values α

(j)
i which surpass this threshold are set to zero instead of being set to the
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Algorithmus 3.1 Our implementation of AdaSecant
Require: The parameters of the network θ.
Require: The data set D.
Require: The objective function f .
Require: The network architecture R.

procedure ADASECANT(θ, D, f , R)
glast = 0.0 // initialize last gradient
τ = 1.0 // initialize weights for updating moving averages
Initialize moving averages with zero.
while stopping criterion is not met do

for all B ⊂ D do // for batch B in data set D
x← GETVALUES(B)
y ← GETLABELS(B)
B′ ← GETNEXTBATCHFROM(D)
x′ ← GETVALUES(B′)
y′ ← GETLABELS(B′)
g ← 1/|B| ·

∑|B|
k=1∇θf(yk,R(xk, θ)) // compute average gradient for samples in B

g′ ← 1/|B′| ·
∑|B′|

k=1∇θf(y′
k,R(x′

k, θ)) // compute average gradient for next batch
compute E[g] using 2.41
g ← g/ ||E[g]|| // normalize gradients
g′ ← g′/ ||E[g]|| // normalize gradients
a = g − g′ // approximate curvature of Hessian
for i ∈ {1, ..., n} do // iterate over all parameters of the network

γi ←
E[(gi−g′

i)(gi−E[gi])]
E[(gi−E[gi])(g′

i−E[gi])] // compute variance correction term using 2.41

g̃i = gi+γiE[gi]
1+γi

// compute the corrected gradient
update all moving averages according to 2.41

// use ∆ = −g̃ where ∆ is undefined

cond1← |gi − E[gi]| > 2
√

E[g2
i ]− E2[gi]

cond2← |ai − E[ai]| > 2
√

E[a2
i ]− E2[ai]

if cond1 or cond2 then
τi ← 2.2 // reset the memory size for outliers

end if
αi ←

√
E[∆2

i ]√
E[a2

i ]
− E[αi∆i]

E[a2
i ] // calculate learning rate

update τ according to 2.42
∆i ← −αig̃i

θi ← θi + ∆i // update parameters
glast ← g

end for
end for

end while
end procedure
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Algorithmus 3.2 Simple AdaSecant
Require: The parameters of the network θ.
Require: The data set D.
Require: The objective function f .
Require: The network architecture R.

procedure SIMPLEADASECANT(θ, D, f , R)
glast = 0.0 // initialize last gradient
∆ = −g

while stopping criterion is not met do
for all B ⊂ D do // for batch B in data set D

x← GETVALUES(B)
y ← GETLABELS(B)
g ← 1/|B| ·

∑|B|
k=1∇θf(yk,R(xk, θ)) // compute average gradient for samples in B

a = g − g′ // approximate curvature of Hessian
for i ∈ {1, ..., n} do // iterate over all parameters of the network

αi ←
∣∣∣∆i

ai

∣∣∣ // calculate learning rate
∆i ← −αigi

θi ← θi + ∆i // update parameters
glast ← g

end for
end for

end while
end procedure

threshold’s value. This manipulates the direction in an undesired way. From a theoretical
stance it is unclear why this choice increases the performance.

The implementation of Simple AdaSecant is given by Algorithm 3.2.

The results for Simple AdaSecant are evaluated in Section 4.5, which is also where we evaluate
AdaSecant. Simple AdaSecant can validate the approach if AdaSecant does not perform
successfully. Alternatively, Simple AdaSecant could validate the extensions made by AdaSecant
(e.g. corrected gradient, moving averages) if AdaSecant’s performance is superior to that of
Simple AdaSecant.
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In this chapter the experiments with corresponding results are presented and discussed in
the context of prior research. In Section 4.1 the experimental set-up is discussed and some
intermediate results, which influenced the set-up, are presented preemptively. A new intuition
as to why super-convergence emerges is introduced. Section 4.2 functions as an overview for
all the experiments conducted in this thesis. In Sections 4.3, 4.4, and 4.5 selected results are
presented and discussed within the context of prior research. SGD and fundamental research
on CLR and super-convergence are contained within Section 4.3. We also evaluate intuitions
to why super-convergence emerges. In Section 4.4 CLR-Adam and CUS-Adam are evaluated in
terms of convergence behavior. For the first time it is shown that super-convergence can be
applied to Adam as well. Lastly, in Section 4.5 we evaluate the implementations of (Simple)
AdaSecant as introduced and discussed in Section 3.3. These results, especially the values for
the calculated learning rates, are then compared to the findings on CLR and discussed within
that context.

4.1. Set-Up of Experiments and Inter-Dependencies of
Hyper-Parameters

In this section we discuss the experiments conducted in this thesis and the choices which had
to be made regarding the selection of data sets, networks, optimizers, and hyper-parameter
settings. The result of these choices is a tree of combinations, which are tested with regard
to their efficiency in training. Because of the rapidly increasing complexity of experiments
with multiple levels of independent variables, not all combinations can be evaluated within the
scope of this thesis. Therefore, some intermediate results have to be analyzed preemptively
in order to determine interesting cases that require further examination. These intermediate
results, which influence the structure of the experiments, are presented in this section instead
of Sections 4.3–4.5 which contains the major part of the results.

4.1.1. Choice of Data Sets

For training and validation of the networks the CIFAR-10 and CIFAR-100 data sets are selected.
These standardized image classification data sets are commonly used in research [1, 2, 3, 4, 8].
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The comparability of results is a major quality indicator for this work. Therefore, the CIFAR
data sets are good choices for our experiments. The data sets are provided as 32 × 32 pixel
images via the torchvision package1. Their relatively small size, which benefits computational
efficiency, and the easy access, granted through PyTorch, further confirms the CIFAR data sets
as the preferred choice for this thesis.

Both data sets consist of 50,000 images for training and another 10,000 images for testing.
The fundamental difference is that the CIFAR-10 data set contains 10 distinct classes and the
CIFAR-100 data set contains 100 distinct classes. This effectively means that when learning
the classifier for CIFAR-10 the network has 5,000 samples for each class while for CIFAR-100
only 500 samples per class are provided. Smith and Topin [1] claim that the fewer samples per
class are provided, the stronger the effects of super-convergence become. We want to verify
their observation and thus, compare the effects of CLR on the convergence speed of neural
networks for both, CIFAR-10 and CIFAR-100.

At this point it should be mentioned that the results in this thesis are not as good as the state of
the art. It was not possible to achieve the same accuracy on the data sets as other researchers
did [1, 2, 3, 4]. In these works the converged networks provided above 90% accuracy on the
CIFAR-10 data set. Our networks achieved between 80% and 90% accuracy in the settings
that provided good training results. Similarly, for the CIFAR-100 data set Smith and Topin [1]
achieve up to 69% accuracy, we achieve a maximum of 63.72% accuracy. We suppose that the
data sets need some normalization and padding to allow for better performance. Unfortunately,
this realization came too late to re-run all the experiments. However, the focus of this work
is on the convergence speed and quality compared between different learning rate settings.
We are very confident that the results of this work can be transferred to state of the art data
preparation, since we conducted earlier runs on the torchvision models2. These performed
below 80% because they are not suited for smaller images such as contained by the CIFAR data
sets. These results are comparable to our later runs presented in Section 4.2 with regards to
convergence speed but not maximum accuracy. This similarity in behaviour indicates that the
findings in this thesis are independent from the optimal convergence behaviour of the model
on the data set. We therefore belief that future researchers can obtain the same convergence
behavior when working with normalized and padded data. A selection of the results for the
torchvision models is presented in Appendix A.2.

4.1.2. Choice of Networks

In Section 2.1 we already explained the reasons for choosing ResNets. In Section 3.1 we
elaborated which networks were chosen for which reasons. To summarize, we choose ResNets
because they are well-suited for deep learning [2], they yield a smooth loss function on the

1https://github.com/pytorch/vision/tree/5ef75d7bc666c9af3dd05b62b075df4c23ca467c/torchvision
2https://github.com/pytorch/vision/tree/5ef75d7bc666c9af3dd05b62b075df4c23ca467c/torchvision
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CIFAR-10 data set [8], and they are used in the work of Smith and Topin [1], whose results
we want to replicate and extend. We chose ResNet18 and ResNet50 because they were easily
available to us and are close enough in number of layers to ResNet20 and ResNet56, which are
some of the networks used by Smith and Topin [1].

For CIFAR-10 we use both networks in order to compare the effects of CLR on different network
depths. For CIFAR-100 we use ResNet50, the results of which are compared to the results of
ResNet50 on CIFAR-10 in order to compare the effects of CLR on different number of samples
per class available for training. ResNet18 on CIFAR-100 is a combination we did not observe to
be tested in previously conducted research [1, 2, 3, 4, 6]. The high number of classes of the
CIFAR-100 data set are probably too difficult to classify for the relatively shallow architecture
of the ResNet18. Since this combination is not necessary for the comparisons in this thesis, we
are not using it either.

4.1.3. Choice of Optimizers

We investigate the influence of learning rates on the training speed of neural networks for
SGD, Adam, and AdaSecant. The latter calculates its learning rate rather than requiring it as
an argument passed. SGD was chosen to verify the results of Smith and Topin [1] and provide
more data on the behavior of super-convergence in general. Furthermore, we investigate
the effects of CLR on Adam because Smith and Topin [1] were not able to achieve super-
convergence-like behavior with Adam. Lastly, AdaSecant is chosen as an alternative to the CLR
scheme and to setting the learning rate in general.

4.1.4. Epoch Length Settings

Firstly, we must decide how long we train the networks. This choice yields a trade-off between
computational efficiency and quality of the trained networks. On the one hand, more epochs
lead to better results because they give the networks time to fully converge. Furthermore,
potential late training effects are accounted for. On the other hand, more epochs mean more
time spent training a single network, that is, conducting a single experiment out of many. The
longer we train for, the fewer experiments can be conducted. He et al. [2] needed 64,000
iterations for the full convergence of their networks. They used a batch-size of 128 which
means their 64,000 iterations correspond to 164 epochs. Smith and Topin [1] show that
the effects of super-convergence become noticeable after at most 100 epochs. We therefore
choose to train for 100 epochs as well since we are primarily interested in increasing the
speed of convergence rather than the effects during late training. Thus, we can conduct more
experiments with more variations.
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(a) 25-cycle. (b) 100-cycle.

Figure 4.1.: CLR schemes with αmin = 0.001 and αmax = 1 displaying the naming conventions
used in the experiments.

4.1.5. Learning Rate Schemes and Ranges

In this part of the thesis we use a different naming convention than the one provided by
Smith and Topin [1] used in Sections 2.4 and 2.5. Our CLR schemes are called 100-cycle,
25-cycle, and 10-cycle instead of 1-cycle. The number refers to the number of epochs needed
for the completion of a full cycle (minimum learning rate to maximum learning rate and
back to minimum learning rate). Hence, an N-cycle is equivalent to a 1-cycle as introduced
in Section 2.4 when simulated for N epochs. We choose this rephrasing of the cycle term to
better suit the experiments conducted. A cyclical scheme can thus be referred to for more than
one full cycle. The 25-cycle routine is simulated for four full cycles and the 10-cycle routine
is simulated for ten full cycles. Fig. 4.1 shows a 25-cycle and a 100-cycle. We use the same
cyclical schemes for SGD and Adam, but with different learning rate ranges.

For SGD we test the learning rates {0.001, 0.01, 0.1, 1, 3}. For Adam we test the learning
rates {0.0001, 0.001, 0.01, 0.1, 1}. For SGD the learning rate 0.0001 is left out and for Adam
the learning rate 3.0 is left out, as well. This is because the optimizers were already not
functioning well when we used the next higher or lower learning rate respectively. Further
increasing or decresing the learning rate thus, requires unnecessary computational energy,
a valuable resource when training many neural networks. On the constant learning rates
an interesting phenomenon emerges. When scaling the learning rate by a factor of 10, SGD
behaves similarly to Adam in terms of validation accuracy during training, as shown in Fig. 4.2.
Therefore the learning rate ranges for the CLR schemes were chosen accordingly. For SGD we
evaluate the lower bounds 0.01 and 0.001 and the upper bounds 1.0 and 3.0. These choices
were inspired by Smith and Topin [1] who use a range of [0.01, 3]. Hence, for Adam we use
the lower bounds 0.001 and 0.0001 and the upper bounds 0.1 and 0.3. Later we add the
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Figure 4.2.: When scaling the learning rate by a factor of 10, SGD behaves similar to Adam in
terms of validation accuracy during training.

ranges [0.0001, 0.01] and [0.0001, 0.03] as we experimentally observe better convergence
behaviours for Adam when using small upper bounds.

4.1.6. Choice of Batch Size

As discussed in Section 2.4, the selection of the batch size can influence the results in training.
We therefore examine different settings and how they influence the results. In other words,
we want to find a batch size that does not favor any schemes over others in order to control
the final results. The batch sizes tested are 32, 128, and 512, which are all in the commonly
used span of 32–512 [18]. Fig. 4.3 shows the influence of the batch size settings on the quality
of the training of a ResNet18 on the CIFAR-10 data set for SGD with constant learning rates
and CLR, as well as for Adam with a constant learning rate. For SGD the learning rates tested
are 0.01 and 0.1 as recommend by Bengio [30]. For SGD with CLR we experimentally found
the range of [0.001, 1] to yield good results. For Adam we used a learning rate of 0.001 as
recommended by the original proposal [5]. We use two different cycle routines to analyse the
effects of batch size. These routines are the aforementioned 100-cycle and 25-cycle schemes.

Figures 4.3(a) and 4.3(b) show that SGD with constant learning rates is sensitive to the
choice of the batch size. Larger batch sizes tend to yield worse results. We observe batch
sizes 32 and 128 to be similarly good measured by the overall convergence quality and speed.
Figures 4.3(c), 4.3(d), and 4.3(e) show that CLR schemes and Adam are less sensitive to the
choice of the batch size within the recommended range of 32–512 [18]. Fig. 4.3(d) indicates
that a cycle of higher frequency destabilizes training when batch sizes are too small. We choose
to run all further experiments with a batch size of 128 samples as this seems to be the one size
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(a) SGD with a constant learning rate of 0.01. (b) SGD with a constant learning rate of 0.1.

(c) SGD with a learning rate cycle of 100 epochs with
CLR of 0.001 to 1.0.

(d) SGD with a learning rate cycle of 25 epochs with
CLR of 0.001 to 1.0.

(e) Adam with a constant learning rate of 0.001.

Figure 4.3.: Comparing the effect of different batch size settings on the convergence speed and
quality of a ResNet18 on the CIFAR-10 data set for SGD and Adam with different
learning rate schemes.
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which does not favor any optimizer or learning rate scheme over the others. The effects of
batch sizes on AdaSecant were not considered in this optimization because the algorithm was
still not fully implemented at this point.

In Section 2.5 we already discussed two possible explanations for the phenomenon of super-
convergence. One was the optimized traversal of saddle-like planes and sharp minima and the
other one was the property of passing by the optimal learning rate within a cycle. The results
observed in Fig. 4.3 and especially in Fig. 4.3(d) indicate another possibility. In Section 2.4 we
thoroughly discussed the theory of sharp minima and their effect on generalization. Extending
this idea, we propose another hypothesis to why super-convergence works. We call this
intuition Stochastic Escape. Fig. 4.4 visualizes this idea. Consider parameter settings which
would usually converge to a sharp minimum when using small learning rates. The region
around a sharp minimum provides steep gradients to the optimizer. Furthermore, the spacial
region around a sharp minimum is smaller than that area around a wide minimum. Larger
learning rates multiplied with a large gradient are likely to leave that small region, as shown
in Fig. 4.4(a). On the other hand, around a wide minimum the gradients are flatter and the
distances required to leave that region are larger. It is therefore less likely to exit such a wide
minimum region, even with large learning rates; as shown in Fig. 4.4(b). After many iterations
it is stochastically less likely to converge to a sharp minimum than to a wide minimum. This
would explain the higher accuracy observed by super-convergence and the lower sensitivity of
CLR to batch size choices. Essentially, CLR destabilize the loss function just as small batch sizes
do [22]. After finding an initial descent direction (i.e. smaller learning rates) and stochastically
escaping sharp minima (i.e. larger learning rates), the CLR scheme transfers back to the local
optimizer (i.e. smaller learning rates). This final stage of the CLR scheme finds the local
minimum within the region surrounding it. The smaller learning rates towards the later stages
of optimization are needed as to not overshoot the local minimum.

4.1.7. Decay Rate Settings

In this work we do not focus on learning rate decay. Nonetheless, we want to show that only
CLR produce super-convergence instead of just the second part of the cycle, which can be seen
as a decaying learning rate. Two experiments are therefore run with learning rate decay in
order to control the results. We choose to decay the upper bounds chosen for SGD with CLR,
which are 1.0 and 3.0. The decay rate γ is applied after each iteration. For the last iteration
niter we desire a learning rate αmin of 0.001, which is equal to the lower bound for the most
successful CLR schemes we chose. For an initial learning rate αmax of 1.0 we choose

γ = niter

√
αmin

αmax
= 100× 50000

128
√

0.001 ≈ 0.9998231771 (4.1)

and for an initial learning rate αmax of 3.0 we choose

γ = niter

√
αmin

αmax
= 100× 50000

128

√
0.001

3 ≈ 0.99979505799 (4.2)
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(a) Escaping a sharp minimum due to a steep gradient paired with a large
learning rate and a resulting large update step.

(b) Staying within a wide minimum due to a flatter gradient paired with
a large learning rate resulting in a intermediate update step.

Figure 4.4.: Visualizing the idea of Stochastic Escape of sharp minima.

as the decay rate. Thus, we evaluate the same ranges as we do for CLR schemes. As a similiar
control trial, we test random learning rates within the range of 0.001 and 1.0 for SGD.

The final structure of experiments and a summary of the results can be found in Section 4.2 in
Tables 4.1 4.2, 4.3, 4.4, and 4.5.

4.2. Overview of the Results

In this section we simply provide a summarized overview of the results from the experiments.
Tables 4.1 4.2, 4.3, 4.4, and 4.5 contain these results, some of them are discussed in detail in
their respectively corresponding sections. The first thing one might notice is the relatively poor
performance of ResNet50 on the CIFAR-10 data set compared to that of ResNet18. We suppose
the reason for this is overfitting. Data normalization and image padding should prevent that.
Nonetheless, the results are still comparable for one network and one data set across the
classifiers and learning rate schemes and settings. The best setting in terms of maximum
validation accuracy within 100 epochs for each network and data set is marked in bold.
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Data Set Network Optimizer LR
Scheme

LR Batch
Size

Max Acc.
(%)

@epoch

CIFAR-10 ResNet18 SGD constant 0.001 128 76.58 27
CIFAR-10 ResNet18 SGD constant 0.01 32 86.29 70
CIFAR-10 ResNet18 SGD constant 0.01 128 85.02 44
CIFAR-10 ResNet18 SGD constant 0.01 512 80.32 30
CIFAR-10 ResNet18 SGD constant 0.1 32 83.28 70
CIFAR-10 ResNet18 SGD constant 0.1 128 82.28 97
CIFAR-10 ResNet18 SGD constant 0.1 512 74.06 92
CIFAR-10 ResNet18 SGD constant 1 128 74.1 76
CIFAR-10 ResNet18 SGD constant 3 128 60.99 83
CIFAR-10 ResNet18 SGD decay 1 128 81.95 53
CIFAR-10 ResNet18 SGD decay 3 128 75.77 28
CIFAR-10 ResNet18 SGD random [0.001, 1] 128 70.98 96
CIFAR-10 ResNet18 SGD 100-cycle [0.001, 1] 32 87.3 88
CIFAR-10 ResNet18 SGD 100-cycle [0.001, 1] 128 87.18 86
CIFAR-10 ResNet18 SGD 100-cycle [0.001, 1] 512 86.55 74
CIFAR-10 ResNet18 SGD 100-cycle [0.001, 3] 128 86.72 76
CIFAR-10 ResNet18 SGD 100-cycle [0.01, 1] 128 86.7 69
CIFAR-10 ResNet18 SGD 100-cycle [0.01, 3] 128 86.31 85
CIFAR-10 ResNet18 SGD 25-cycle [0.001, 1] 32 87.42 33
CIFAR-10 ResNet18 SGD 25-cycle [0.001, 1] 128 87.51 79
CIFAR-10 ResNet18 SGD 25-cycle [0.001, 1] 512 87.02 88
CIFAR-10 ResNet18 SGD 25-cycle [0.001, 3] 128 87.28 42
CIFAR-10 ResNet18 SGD 25-cycle [0.01, 1] 128 86.77 88
CIFAR-10 ResNet18 SGD 25-cycle [0.01, 3] 128 87.13 38
CIFAR-10 ResNet18 SGD 10-cycle [0.001, 1] 128 86.67 11
CIFAR-10 ResNet18 SGD 10-cycle [0.001, 3] 128 86.57 23
CIFAR-10 ResNet18 SGD 10-cycle [0.01, 1] 128 87.0 33
CIFAR-10 ResNet18 SGD 10-cycle [0.01, 3] 128 87.02 83

Table 4.1.: Results for ResNet18 on CIFAR-10 using SGD as an optimizer. All trainings were
run for 100 epochs. LR = learning rate, Max Acc. = maximal accuracy on the test
set, @epoch refers to the epoch at which maximum accuracy is reached. The best
setting for ResNet18 on CIFAR-10 is marked in bold.
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Data Set Network Optimizer LR
Scheme

LR Batch
Size

Max Acc.
(%)

@epoch

CIFAR-10 ResNet18 CLR-Adam constant 0.0001 128 81.79 98
CIFAR-10 ResNet18 CLR-Adam constant 0.001 32 85.54 62
CIFAR-10 ResNet18 CLR-Adam constant 0.001 128 85.98 80
CIFAR-10 ResNet18 CLR-Adam constant 0.001 512 86.14 78
CIFAR-10 ResNet18 CLR-Adam constant 0.01 128 83.56 82
CIFAR-10 ResNet18 CLR-Adam constant 0.1 128 81.07 89
CIFAR-10 ResNet18 CLR-Adam constant 1 128 10.8 0
CIFAR-10 ResNet18 CLR-Adam 100-cycle [0.0001,

0.01]
128 86.61 84

CIFAR-10 ResNet18 CLR-Adam 100-cycle [0.0001,
0.03]

128 87.07 100

CIFAR-10 ResNet18 CLR-Adam 100-cycle [0.0001,
0.1]

128 85.91 94

CIFAR-10 ResNet18 CLR-Adam 100-cycle [0.0001,
0.3]

128 86.04 100

CIFAR-10 ResNet18 CLR-Adam 100-cycle [0.001,
0.1]

128 86.22 87

CIFAR-10 ResNet18 CLR-Adam 100-cycle [0.001,
0.3]

128 86.0 99

CIFAR-10 ResNet18 CLR-Adam 25-cycle [0.001,
0.3]

128 87.28 27

CIFAR-10 ResNet18 CLR-Adam 10-cycle [0.001,
0.3]

128 86.63 20

CIFAR-10 ResNet18 CUS-Adam constant 0.001 128 85.56 65

Table 4.2.: Results for ResNet18 on CIFAR-10 using Adam as an optimizer. All trainings were
run for 100 epochs. LR = learning rate, Max Acc. = maximal accuracy on the test
set, @epoch refers to the epoch at which maximum accuracy is reached, CLR-Adam
with constant learning rate is normal Adam.
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Data Set Network Optimizer LR
Scheme

LR Batch
Size

Max Acc.
(%)

@epoch

CIFAR-10 ResNet18 AdaSecant calculated None 128 60.09 2
CIFAR-10 ResNet18 Simple

AdaSecant
calculated 3 128 81.33 62

CIFAR-10 ResNet18 Simple
AdaSecant

calculated 10 128 82.86 36

CIFAR-10 ResNet18 Simple
AdaSecant

calculated <∞ 128 10.03 0

Table 4.3.: Results for ResNet18 on CIFAR-10 using (Simple) AdaSecant as an optimizer. All
trainings were run for 100 epochs. LR = learning rate, Max Acc. = maximal
accuracy on the test set, @epoch refers to the epoch at which maximum accuracy
is reached, for Simple AdaSecant LR refers to the learning rate threshold.

Data Set Network Optimizer LR
Scheme

LR Batch
Size

Max Acc.
(%)

@epoch

CIFAR-10 ResNet50 SGD constant 0.01 128 83.7 97
CIFAR-10 ResNet50 SGD 25-cycle [0.001, 1] 128 85.83 69
CIFAR-10 ResNet50 CLR-Adam constant 0.001 128 86.28 68
CIFAR-10 ResNet50 CLR-Adam 25-cycle [0.001,

0.3]
128 88.21 26

CIFAR-10 ResNet50 CUS-Adam constant 0.001 128 86.89 72
CIFAR-10 ResNet50 Simple

AdaSecant
calculated 10 128 78.51 71

Table 4.4.: Results for ResNet50 on CIFAR-10. All trainings were run for 100 epochs.
LR = learning rate, Max Acc. = maximal accuracy on the test set, @epoch refers
to the epoch at which maximum accuracy is reached, CLR-Adam with constant
learning rate is normal Adam, for Simple AdaSecant LR refers to the learning rate
threshold. The best setting for ResNet50 on CIFAR-10 is marked in bold.
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Data Set Network Optimizer LR
Scheme

LR Batch
Size

Max Acc.
(%)

@epoch

CIFAR-
100

ResNet50 SGD constant 0.01 128 54.43 18

CIFAR-
100

ResNet50 SGD 25-cycle [0.001, 1] 128 63.27 39

CIFAR-
100

ResNet50 CLR-Adam constant 0.001 128 58.56 93

CIFAR-
100

ResNet50 CLR-Adam 100-
cyclea

[0.001,
0.3]

128 61.21 98

CIFAR-
100

ResNet50 CLR-Adam 25-cycle [0.001,
0.3]

128 63.72 27

CIFAR-
100

ResNet50 CUS-Adam constant 0.001 128 59.32 97

CIFAR-
100

ResNet50 Simple
AdaSecant

calculated 10 128 50.32 94

Table 4.5.: Results for ResNet50 on CIFAR-100. All trainings were run for 100 epochs.
LR = learning rate, Max Acc. = maximal accuracy on the test set, @epoch refers
to the epoch at which maximum accuracy is reached, CLR-Adam with constant
learning rate is normal Adam, for Simple AdaSecant LR refers to the learning rate
threshold. The best setting for ResNet50 on CIFAR-100 is marked in bold.

aThis does not fit the pattern used for ResNet50 on CIFAR-10 because it was an accidental run caused by wrongfully
setting the cycle length parameter.
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4.3. SGD and General Insights into Super-Convergence

In this section the effects of CLR on SGD are evaluated. Firstly, a comparison between the
constant scheme and different CLR schemes is made. Secondly, different learning rates and
learning rate ranges are compared for each scheme in order to determine the best settings
and show the schemes’ sensitivity to these settings. We then compare CLR schemes to other
learning rate schedules which cover the same learning rate range in a different manner,
namely exponential decay and randomly alternating learning rates for each iteration. Lastly,
the effects of super-convergence are analyzed for deeper architectures and data sets with
less samples per class. For this we use the ResNet50 architecture and the CIFAR-100 data
set respectively. This comprehensive analysis provides some fundamental insights into the
workings of super-convergence in general.

4.3.1. CLR Schemes Converge Faster

In Fig. 4.5 we present the results of different learning rate schemes for SGD. Fig. 4.5(a) shows
the full training with potentially multiple cycle completions and Fig. 4.5(b) shows what would
happen if we reduced the training length to the 1-cycle scheme as introduced by Smith and
Topin [1]. For the constant scheme a learning rate of 0.01 was used. For the CLR schemes
a learning rate range of [0.001, 1] was used. These were the best learning rate settings we
found for each scheme thus, giving each scheme its maximum potential for this comparison.

We observe the 25-cycle scheme to be the best setting in terms of overall accuracy of the trained
network. With a maximum validation accuracy of 87.51% in epoch 79 it is even the best
setting we found for CIFAR-10 with ResNet18 (see Table 4.1). Nonetheless, the 10-cycle scheme
converges even faster in the earlier stages of training. By the end of epoch 11 the network
achieves 86.67% accuracy (see Table 4.1). After that the increasing learning rates lead to a
temporal escape from the optimum. The 100-cycle scheme has no noteworthy advantage over
the shorter cycles. However, it also outperforms the constant scheme.

These results are in accordance with the results of Smith and Topin [1] and the prior results of
Smith [4]. We further observe that reducing the cycle to a 1-cycle might not always be a good
choice. For the 10-cycle scheme the eleventh epoch is particularly important and should not be
cut off in this trial. The 25-cycle scheme also shows some, if minor, improvements over further
iterations. Nonetheless, we observe the CLR schemes to not yield any major improvements
after the completion of a full cycle and a few epochs. The completion of many complete cycles
is not helpful to achieve higher validation accuracy. For efficient training, we recommend a full
cycle plus a few extra epochs, to ensure convergence.

Analyzing the cross-entropy error of these schemes provides more insights. Fig. 4.6 shows
the loss over time, full scale in Fig. 4.6(a) and logarithmically scaled in Fig. 4.6(b). SGD
with constant learning rates descents the loss function continuously. The cyclical schemes
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(a) Full plot over 100 epochs. (b) Cut off after one full cycle (1-cycle).

Figure 4.5.: Validation accuracy of ResNet18 on CIFAR-10 trained with SGD with best constant
learning rate (0.01) and different CLR routines with best range of [0.001, 1].

(a) Linear scale. (b) Log-scale.

Figure 4.6.: Training cross-entropy loss of ResNet18 on CIFAR-10 trained with SGD with
best constant learning rate (0.01) and different CLR routines with best range of
[0.001, 1].

experience more sections where the loss increases after an epoch. Nonetheless, the overall
convergence of the cyclical schemes is better than for the constant scheme.

In Section 4.1 we discussed the concept of Stochastic Escape. In short, CLR escape sharp minima
and are therefore successful in achieving high accuracy. Fig. 4.6(b) shows that CLR find smaller
minima and not just wider minima. Nonetheless, this is not a contradiction. We attribute the
encounter of smaller minima to the third phase of the cycle, which is the local optimizer with
small learning rates. This is because the results show that CLR minimize the loss function most
effectively during the phases of training corresponding to small learning rates. In Section 4.1
we stated that small learning rates are necessary in order to find the minimum after Stochastic

56



4.3. SGD and General Insights into Super-Convergence

Escape. Furthermore, if we take into account that the CLR schemes surpass the validation
accuracy of the constant scheme during the phases of larger learning rates, the argument for
Stochastic Escape is even strengthened. Further consider that during that phase of training
the loss function is minimized less severely than during the phases corresponding to smaller
learning rates. Fig. 4.5(b) shows that for the 25-cycle and 100-cycle schemes the validation
accuracy surpasses the validation accuracy of the constant scheme roughly around the middle
part of the circle (12.5 epochs and 50 epochs respectively). This is of course the part of the
cycle which uses large learning rates and would therefore be responsible for Stochastic Escape
and thus, better generalization (i.e. validation accuracy).

4.3.2. Low Sensitivity to Learning Rate Range

Fig. 4.7 shows different learning rate settings for SGD with constant learning rates and CLR
with 10, 25, and 100 epochs per cycle. From Fig. 4.7(a) we learn that SGD with constant
learning rates is very sensitive to the choice of learning rate. The learning rates 0.01 and
0.1 recommended by Bengio [30] perform best. Therefore, we confirm that smaller or larger
learning rates are not recommendable. We use a learning rate of 0.01 for further experiments
with SGD and constant learning rates as it is the best out of the five settings tested. Note that
this plot uses a different scale than the ones following it in order to accommodate for the vast
differences in convergence behavior.

Figures 4.7(b), 4.7(c), and 4.7(d) show that CLR schemes are less sensitive to the exact choice
of the learning rate range, at least within the lower bounds of 0.001 and 0.01 and the upper
bounds of 1.0 and 3.0. More ranges should be tested in the future to investigate where this
insensitivity stops. Earlier tests on the PyTorch models indicated that an upper bound of 10.0
is too large. Nonetheless, we did not find time to verify this on the current models. A learning
rate range of [0.001, 1] performs slightly better than others in all schemes except for the
10-cycle routine. We thus proceed to use this range for further experiments with SGD and CLR,
instead of the range of [0.01, 3] mainly used by Smith and Topin [1].

4.3.3. Super-Convergence Emerges from Cyclical Nature of CLR

In order to get a better understanding of what causes super-convergence, we examine the
training procedure for random learning rates, meaning that for each iteration a new learning
rate is randomly generated within the range of 0.001 and 1.0. This should reveal if simply
varying the learning rate over time can cause super-convergence-like behavior. Fig. 4.8(a)
shows the learning rates used for this random learning rate scheme and Fig. 4.8(b) shows the
resulting validation accuracy of a ResNet18 on the CIFAR-10 validation set. The performance
of this scheme is visibly worse than those of any of the cyclical schemes. Furthermore, we
observe similarities to SGD with a very large constant learning rate of 3.0 in Fig. 4.7(a). The
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(a) SGD with constant learning rates between 0.001
and 3.0 (full scale).

(b) SGD with 100-cycle and learning rate ranges with
lower bounds of 0.001 and 0.01 and upper bounds of
1.0 and 3.0 (partial scale).

(c) SGD with 25-cycle and learning rate ranges with
lower bounds of 0.001 and 0.01 and upper bounds of
1.0 and 3.0 (partial scale).

(d) SGD with 10-cycle and learning rate ranges with
lower bounds of 0.001 and 0.01 and upper bounds of
1.0 and 3.0 (partial scale).

Figure 4.7.: Effect of different learning rates and learning rate ranges on different learning
rate schemes with SGD. CLR schemes are less sensitive to the choice of learning
rate range than the constant scheme is to the choice of learning rate. Note the
different scaling for the constant scheme to accommodate for the full view of all
settings.
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(a) Learning rate history. (b) Validation accuracy.

Figure 4.8.: Comparing cyclical schemes to randomly setting the learning rate for each iteration
with ResNet18 on CIFAR-10.

most prevalent feature in both is the early phase of training. Both schemes do not improve
the network’s performance for around 20 epochs. Only after that initial phase the validation
accuracy increases. This indicates that the early phase of training requires small learning rates
in order to find the correct direction for descent. This is in accordance with the explanation
of Smith and Topin [1] for why super-convergence emerges, which we already discussed in
Section 2.5. This explanation states that initially small learning rates find the right direction of
descent, large learning rates speed up the training during the middle part, and finally small
learning rates optimize without overshooting an ideal minimum. Another explanation we
discussed was that an optimal constant learning rate might exist and with CLR we oscillate
around it. This explanation seems less likely, or only partially responsible for super-convergence,
as the results for random learning rates contradict that assumption. If it was the only reason,
random schemes would yield similarly good results as cyclical schemes.

Fig. 4.9 shows the results for using exponential decay with large initial learning rates of 1.0 and
3.0 and decay rates of 0.999823 and 0.999795 respectively, the details of which were already
discussed in Section 4.1. We choose a 100-cycle routine with the same maximum learning rates
used by the decaying schemes as a means of comparison because we set the decaying schemes
to complete after 100 epochs. Therefore, this comparison seems least biased to us. During
the first couple of epochs, when learning rates are still large (see Fig. 4.9(a)), exponential
decay with large learning rates shows no signs of super-convergence when compared to a
CLR scheme (see 4.9(b)). Over the entire 100 epochs the tested decay settings do not provide
results which are comparable to those of the cyclical schemes, in terms of quality and speed.
This indicates that the small learning rates during the early phases of training are needed for
super-convergence. This is probably due to the fact that the optimizer has to find a correct
direction of descent, which is done best when the learning rate is small and thus, the confidence
in a single update step is also small. Only after finding that initial direction should learning
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(a) Learning rate history. (b) Validation accuracy.

Figure 4.9.: Comparing 100-cycles to exponential learning rate decay with very large initial
learning rates for ResNet18 on CIFAR-10 using SGD.

rates be large in order to rapidly minimize the loss function. To visualize this, consider the
topology of the loss function of a ResNet on the CIFAR-10 data set. In Section 2.1, Fig. 2.3(b)
we presented a visualization of this loss function. Consider an optimization that, instead of
moving towards the global minimum found in the center, moves towards a bad local minimum
on the outer edges. This descent cannot converge optimally anymore.

Thus, it can be concluded that the full cycle of a CLR scheme is responsible for super-
convergence. The emergence of the phenomenon requires the cyclical nature of the scheduler
and not just random learning rates or decaying learning rates within that range. Of course, the
number of experiments conducted with decaying learning rates is limited and more settings
(e.g. cosine annealing used by He et al. [2]) should be tested for a final conclusion on this
topic. Nonetheless, we have presented evidence that the cyclical nature of CLR schemes is
responsible for super-convergence.

4.3.4. Super-Convergence is Independent of ResNet Depth

Since SGD works best with a 25-cycle scheme with a learning rate range of [0.001, 1], we
use this scheme to analyze the effects of super-convergence on deeper architectures, namely
ResNet50. Therefore, we compare it to the performance of a ResNet50 on the CIFAR-10 data
set using SGD with a constant learning rate of 0.01, which yields the best results for any
constant scheme. Fig. 4.10 shows the results. For ResNet18 we observed an increase of 2.49
percentage points of validation accuracy when using a 25-cycle routine instead of a constant
scheme (see Table 4.1). For ResNet50 we observe an increase of 2.13 percentage points of
validation accuracy when using a 25-cycle routine instead of a constant scheme, which is a
similar result (see Table 4.4). The speed up of convergence is also very similar and lastly,
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(a) Full plot over 100 epochs. (b) Cut off after one full cycle (1-cycle).

Figure 4.10.: Validation accuracy of ResNet50 on CIFAR-10 trained with SGD with best con-
stant learning rate (0.01) and best cyclical routine (25-cycle with learning rate
range of [0.001, 1]).

the performance peaks of the cyclical scheme at 69 epochs for ResNet50 and 79 epochs for
ResNet18 are also not too far apart. Smith and Topin [1] observe that super-convergence
works better with shallower network architectures. Our results do not confirm this observation.
They rather indicate similar behavior independent of the network’s depth and thus, a better
transferability of the concept of super-convergence to other architectures.

4.3.5. Effects of Super-Convergence Increase when Training Data is Limited

Fig. 4.14 shows the effects of CLR on the behavior of SGD when training a ResNet50 on
the CIFAR-100 data set. The validation accuracy increase of 8.43 percentage points between
the constant scheme and the cyclical scheme is notably large (see Table 4.5). The effects of
super-convergence are much more prevalent when training data is limited. The fewer samples
per class are contained in the training data set, the higher the advantage on training speed and
performance gained by CLR. These results are in accordance with the findings of Smith and
Topin [1].

4.3.6. Summary

To conclude this section, we have verified the concept of super-convergence for SGD, as
observed in prior works [1, 4]. In this thesis more learning rate ranges were tested than in
these works and it was shown that super-convergence shows little sensitivity to the exact
learning rate range used. Some intuitions to the reason for this phenomenon were examined,
namely explanations regarding the optimality of the learning rates, explanations regarding
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(a) Full plot over 100 epochs. (b) Cut off after one full cycle (1-cycle).

Figure 4.11.: Validation accuracy of ResNet50 on CIFAR-100 trained with SGD with best
constant learning rate (0.01) and best cyclical routine (25-cycle with learning
rate range of [0.001, 1]). Note that for CIFAR-100 we use the same scale but
display a different range for the validation accuracy than for the CIFAR-10 plots.

the topology, and the concept of Stochastic Escape. We have provided evidence that super-
convergence emerges from the cyclical nature of CLR, rather than from the learning rate range
covered. We have shown that super-convergence is independent of ResNet depth but decreases
in strength with the number of training samples per class available. The results we obtained
on ResNet depth were contradictory to those of Smith and Topin [1] and the results obtained
on training data availability were in accordance with theirs.

4.4. Super-Convergence for Adam

In this section the effects of CLR on Adam are evaluated. Firstly, a comparison between the
constant scheme and different CLR schemes is made. Secondly, different learning rates and
learning rate ranges are compared for classical Adam and CLR-Adam using the 100-cycle
scheme. This is done in order to determine the best settings and show the schemes’ sensitivity
to these settings. Lastly, the effects of super-convergence are analyzed for deeper architectures
and data sets with less samples per class. For this we use the ResNet50 architecture and the
CIFAR-100 data set respectively.

4.4.1. CLR Schemes Converge Faster

Fig. 4.12 shows the results generated traing a ResNet18 on the CIFAR-10 data set with
Adam and CLR-Adam with different cycle length. With a validation accuracy increase of 1.3
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(a) Full plot over 100 epochs. (b) Cut off after one full cycle (1-cycle).

Figure 4.12.: Validation accuracy of ResNet18 on CIFAR-10 trained with Adam with best
constant learning rate (0.001) and different CLR routines with best range of
[0.0001, 0.03].

percentage points compared to the 2.49 percentage points of validation accuracy increase when
introducing CLR to SGD, the effects are significantly less prevalent (see Tables 4.1 and 4.2).
Nonetheless, considering that the peak performance of the 25-cycle scheme is reached after
only 27 epochs, compared to 80 epochs needed for the constant scheme, we still consider
the introduction of CLR-Adam a success. Comparing the behavior of CLR-Adam presented in
Fig. 4.12 to that of SGD with CLR in Fig. 4.5 the same patterns emerge. This proves that CLR
provide a speed up of training by order of magnitude for Adam, just as they do for SGD. Thus,
it has been shown that super-convergence can be recreated for Adam, something that was not
shown by Smith and Topin [1].

Fig. 4.13 shows the cross-entropy loss for training a ResNet18 on the CIFAR-10 data set
using Adam with a constant learning rate of 0.001 and CLR-Adam with a learning rate range
of [0.0001, 0.03]. For CLR-Adam the 100-cycle, 25-cycle, and 10-cycle routines are shown.
Fig. 4.13(a) shows the full data generated and Fig. 4.13(b) shows the same data re-scaled as a
logarithmic plot to better show the optima reached. It can be observed that while Adam with a
constant learning rate scheme converges relatively smoothly, CLR-Adam enters and escapes
minima depending on the learning rate of the respective iteration. CLR-Adam escapes minima
when the learning rate is large and enters minima when it is small. This fits to the concept
of Stochastic Escape presented in Section 4.1. This is another indicator for the validity of this
concept where large learning rates are used to escape sharp minima and smaller learning rates
are used to optimize within the region surrounding the wider minimum.
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(a) Linear scale. (b) Log-scale.

Figure 4.13.: Training cross-entropy loss of ResNet18 on CIFAR-10 trained with Adam with
best constant learning rate (0.001) and different CLR routines with best range
of [0.0001, 0.03].

4.4.2. Low Sensitivity to Learning Rate Range

Fig. 4.14 shows different learning rate settings for Adam with constant learning rates and
with a 100-cycle scheme. In Fig. 4.14(a) it can be observed that Adam is already less sensitive
to the exact choice of learning rate than SGD (see Fig. 4.7(a)). This is true as long as the
learning rate is smaller than 1.0. The test run with a constant learning rate of 1.0 resulted in
the divergence of the network. In Fig. 4.14(b) a selection of learning rate ranges for CLR-Adam
using a 100-cycle routine is presented. The learning rate ranges which were tested but not
displayed showed very similar behavior to that observed in the plot. CLR-Adam, just as SGD
with CLR, shows almost no sensitivity to the exact choice of learning rate range within the
ranges tested in this thesis.

Another interesting observation regarding the smallest tested learning rate of 0.0001 can be
made. Note that, even though convergence is slow initially, the scheme continues to improve
even in the later stages of training when other schemes do not show any improvements
anymore. This is not surprising since we would expect smaller learning rates, i.e. smaller
regions of confidence as described in Section 2.3, to find good optima but also to approach
them slowly. However, this observation is interesting to us as it supports the idea of using
0.0001 as the lower bound for the learning rates used with CLR-Adam. Larger learning rates
during the middle of training can lead to faster convergence and maybe also Stochastic Escape.
Smaller learning rates towards the end optimize for improved results. This finding is in
accordance with the explanations for super-convergence used in Section 2.5.
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(a) Adam with constant learning rates between 0.0001
and 0.1 (1.0 was also tested but resulted in divergence
and is thus, left out).

(b) Adam with 100-cycle and a selection of different
learning rate ranges. Other learning rate ranges tested
behaved within the bounds of the ones displayed and
are left out for a better overview.

Figure 4.14.: Effect of different learning rates and learning rate ranges on different learning
rate schemes with Adam. CLR scheme is less sensitive to the choice of learning
rate range than the constant scheme is to the choice of learning rate.

4.4.3. Super-Convergence is Independent of ResNet Depth

Like we did for SGD, we choose the best learning rate range for Adam, which is [0.0001,
0.03], and the best cycle (25-cycle) to examine the effects of CLR-Adam using a ResNet50
trained on the CIFAR-10 data set. For comparison of the validation accuracy achieved during
training, Adam with the recommended [5] (and empirically best) learning rate of 0.001 is used.
Fig. 4.15 shows these results. We observe a slight increase of the effects of super-convergence
when using deeper architectures. Actually, this setting was the only one out of the six settings
tested that overcame the overfitting gap for the ResNet50 on the non-normalized CIFAR-10
data set. With ResNet18 an increase of 1.3 percentage points of validation accuracy was
observed whereas with ResNet50 that increase was at 1.93 percentage points (see Tables 4.2
and 4.4). However, we do not find this increase to be significant, especially when comparing
the validation accuracy for ResNet50 over time in Fig. 4.15 to that to ResNet18 in Fig. 4.12. We
encourage future researchers to test more cycles and deeper architectures to better understand
the dependency of super-convergence for Adam on the depth of the network.

4.4.4. Effects of Super-Convergence Increase when Training Data is Limited

Fig. 4.16 shows the effects of CLR on the behavior of Adam when training a ResNet50 on the
CIFAR-100 data set. A validation accuracy increase of 4.71 percentage points can be observed
within the first 100 epochs (see Table 4.5). For ResNet50 and CIFAR-10 we only observed
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(a) Full plot over 100 epochs. (b) Cut off after one full cycle (1-cycle).

Figure 4.15.: Validation accuracy of ResNet50 on CIFAR-10 trained with Adam with best
constant learning rate (0.001) and best cyclical routine (25-cycle with learning
rate range of [0.0001, 0.03]).

(a) Full plot over 100 epochs. (b) Cut off after one full cycle (1-cycle).

Figure 4.16.: Validation accuracy of ResNet50 on CIFAR-100 trained with Adam with best
constant learning rate (0.001) and best cyclical routine (25-cycle with learning
rate range of [0.0001, 0.03]). Note that for CIFAR-100 we use the same scale
but display a different range for the validation accuracy than for the CIFAR-10
plots.

an increase of 1.93 percentage points of validation accuracy (see Table 4.4). Furthermore,
CLR-Adam considerably speeds up the training procedure of ResNet50 on CIFAR-100, with the
validation accuracy already peaking at 27 epochs. This is in accordance with the results for
SGD and the observations of Smith and Topin [1] and thus, shows that Adam behaves similarly
to SGD when CLR are introduced.
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(a) ResNet18 on CIFAR-10. (b) ResNet50 on CIFAR-10.

(c) ResNet50 on CIFAR-100.

Figure 4.17.: Validation accuracy of CUS-Adam compared to Adam with a constant learning
rate scheme and Adam with a CLR scheme for different ResNet architectures and
data sets. Note that for CIFAR-100 we use the same scale but display a different
range for the validation accuracy.

4.4.5. CUS-Adam

Lastly, we evaluate the idea of CUS-Adam, introduced in Section 3.2. This implementation
does not produce any results which significantly differ from those of regular Adam with the
same constant learning rate. Fig. 4.17 shows the results for CUS-Adam compared to Adam with
constant learning rates and CLR-Adam with the 25-cycle routine. Independent of network depth
or data set used, the cyclical update step routine does not produce results which significantly
differ from that of Adam as introduced by Kingma and Ba [5]. This result indicates that the
bias-correction term of the first momentum vector is not very important to Adam’s performance.
This is plausible since the bias-correction term is a denominator which quickly converges
towards one.
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4.4.6. Summary

To conclude this section, the effects of CLR on Adam are comparable to those on SGD. We
therefore successfully extended the findings of Smith and Topin [1] who have shown that
super-convergence emerges with SGD, Nesterov, AdaGrad, and AdaDelta. Showing that super-
convergence also emerges when Adam is used as an optimizer indicates that this phenomenon
is not tied to the optimizer at hand but rather to the topology of the loss function. CLR seem
to exploit these topological properties. This is in accordance with the findings for SGD in
Section 4.3. Lastly, we found that CUS-Adam is not a viable alternative to CLR-Adam.

4.5. AdaSecant

In this section the implementations of AdaSecant and Simple AdaSecant, both as discussed in
Section 3.3, are evaluated. Furthermore, the interesting behaviors of the presented algorithms
are investigated and connections to the previously discussed learning rate schemes are drawn.

4.5.1. Re-Implementation of AdaSecant in PyTorch

Fig. 4.18 shows the results of training a ResNet18 on the CIFAR-10 data set with AdaSecant
for the first 30 epochs of training. This AdaSecant implementation corresponds to the one
explained in Section 3.3 and the pseudocode of Algorithm 3.1. The validation accuracy peaks
at epoch 2 at 60.09% accuracy (see Fig. 4.18(a) and Table 4.3). The reason for this early, and
rather sub-optimal, peak can be found in Fig. 4.18(b), which displays the euclidean norm of
the learning rate vector calculated by AdaSecant. Note that we use a log-scale to plot the
learning rate. After relatively few iterations the learning rate drops below the value of 10−4.
From there on it decreases further. At such low levels the update step of AdaSecant becomes
too small to have any effect on the validation accuracy of the network. We were not able to
recreate the algorithm proposed by Gulcehre et al. [6] in PyTorch.

4.5.2. Simple AdaSecant Provides Convergence

In Section 3.3 we proposed an alternative to AdaSecant which we named Simple AdaSecant.
This algortihm requires a per-parameter learning rate threshold. In experiments the thresholds
3.0, 10.0, and infinity were tested. Any component of the learning rate vector equal to or
greater than that threshold would be set to zero. Fig. 4.19 shows the results of that Simple
AdaSecant with thresholds 3.0 and 10.0. Using infinity as a threshold produced a divergent
training routine and is therefore not shown. Fig. 4.19(a) shows the results for ResNet18 on
the CIFAR-10 data set, Fig. 4.19(b) for ResNet50 on CIFAR-10, and Fig. 4.19(c) for ResNet50
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(a) Validation accuracy. (b) Euclidean norm of calculated learning rates (log-
scale).

Figure 4.18.: First 30 epochs of training AdaSecant. Validation accuracy cedes to increase as
the learning rate drops too low.

on the CIFAR-100 data set. Note that for CIFAR-100 we use the same scale but display a
different range for the validation accuracy. While this alternative to AdaSecant produces
convergent training routines, the results are not as good as those achieved by simple SGD
with an optimized constant learning rate. Hence, they are also worse than the results of
super-convergent learning rate schemes using CLR. For deeper architectures the performance
gap increases and for data sets with less samples per class it decreases. This behavior is similar
to that of CLR and super-convergence as observed by Smith and Topin [1] but different to
the behavior of CLR which we observed in Section 4.3, regarding the deepness of ResNet
architecture.

To explain why Simple AdaSecant does not perform as well as other methods we review
the concept of sharp minima and Stochastic Escape. By construction Simple AdaSecant is
approaching the closest minimum, which might be a sharp minimum. This might explain why
the trained networks do not perform as well on new data as they do when trained with other
optimizers. Fig. 4.20 explains the reason for this belief. In Fig. 4.20(a) we observe Simple
AdaSecant to find smaller local minima than SGD does. Nonetheless, Fig. 4.20(b) shows that
these minima do not generalize well for new data. This is the same behavior we explained
in 2.4 when discussing sharp and wide minima; as discussed by Keskar et al. [18].

To validate this hypothesis, we propose to use SGD with CLR to escape sharp minima before
applying the update steps defined by Simple AdaSecant. If the first 13 epochs3 of a 25-cycle
routine are used, enough large learning rates will have been used to have escaped sharp
minima. Simple AdaSecant should then function as the local optimizer that finds the true

313 is approximately the middle of the cycle. Changing exactly at 12.5 made the implementation harder and
provides no theoretical advantage.

69



4. Experiments

(a) ResNet18 on CIFAR-10. (b) ResNet50 on CIFAR-10.

(c) ResNet50 on CIFAR-100.

Figure 4.19.: Validation accuracy of Simple AdaSecant for different networks and data set.
Note that for CIFAR-100 we use the same scale but display a different range for
the validation accuracy.

optimum within the region surrounding the wide minimum. Fig. 4.21(a) shows that this idea
works. SGD with CLR helps Simple AdaSecant to escape disadvantageous minima. Afterwards
Simple AdaSecant can locally improve the results of the network. Nonetheless, the results
are still worse than when the second part of the cyclical routine is used as a local optimizer.
However, the results are still superior to those of the constant scheme and Simple AdaSecant
does improve the network to some degree. Thus, Stochastic Escape can be used in order to
improve Simple AdaSecant.

4.5.3. Investigating the Learning Rates of Simple AdaSecant

Lastly, we analyze the learning rate calculated by Simple AdaSecant. Simple AdaSecant
calculates a learning rate vector with different learning rates for each parameter of the network
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(a) Training loss on logarithmic scale. (b) Validation loss on linear scale.

Figure 4.20.: Training and validation loss of ResNet18 on CIFAR-10 with Simple Adasecant
with per-parameter learning rate thresholds of 3.0 and 10.0 compared to SGD
with optimal constant learning rate 0.01.

(a) Validation Accuracy, vertical line indicating switch
to Simple AdaSecant.

(b) Euclidean norm of learning rate used in each itera-
tion.

Figure 4.21.: Validation accuracy and learning rates per iteration for a scheme using SGD with
CLR within the range of 0.001 and 1.0 for 13 epochs and then Simple AdaSecant
for the remaining 87 epochs. The network used is ResNet18 and the data set is
CIFAR-10.
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(a) Setting the per-parameter learning rate threshold
to 3.0.

(b) Setting the per-parameter learning rate threshold
to 10.0.

Figure 4.22.: Euclidean norm of learning rates calculated by Simple AdaSecant compared to
100-cycle with best learning rate range of [0.001, 1].

and thus, for each component of the gradient vector. To compare this learning rate vector to a
scalar learning rate we take the euclidean norm of that vector. The euclidean norm of a vector
is comparable to a scalar because it represents the distance spanned by that vector. Fig. 4.22
shows the learning rate for each iteration of Simple AdaSecant with per-parameter learning
rate thresholds of 3.0 and 10.0 compared to the learning rate of a 100-cycle with empirically
optimal learning rate range of [0.001, 1]. We observe that calculated learning rates lie mostly
within or close to the bounds of the optimal learning rate range for SGD with CLR. Hence, we
validated the optimality of the chosen learning rate range for SGD, even though the sensitivity
of SGD with CLR to the exact range chosen is low. We also validate the functionality of Simple
AdaSecant as the calculated learning rates lie within a reasonable range. Simple AdaSecant is
comparable to SGD but not Adam because no momentum is used for the update step of Simple
AdaSecant. Therefore, comparing the calculated learning rate of Simple AdaSecant with the
optimal learning rate range for SGD with CLR is feasible.

4.5.4. Summary

To conclude this section, we were not able to re-implement AdaSecant as proposed by Gulcehre
et al. [6]. However, we were able to implement an alternative algorithm that converges. Even
though our implementation did not achieve state of the art performance, we did validate
the core idea of AdaSecant which is the use of a second-order directional Newton Method
with a secant approximation of the Hessian. Furthermore, we were able to identify a reason
for the relatively poor performance of this naive implementation, namely the convergence
towards sharp minima. This can help future researches to improve Simple AdaSecant. Lastly
we cross-validated the optimally of the chosen learning rate ranges for SGD with CLR with the
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reasonability of the learning rates calculated by Simple AdaSecant. Especially this last insight
is an important contribution to understanding the influence of learning rates on the learning
speed of neural networks.
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5. Conclusion and Outlook

We have shown that the careful setting of learning rates can achieve tremendous improvements
to the learning speed and peak validation accuracy of ResNets. CLR have poven to lead to
super-convergent behavior, not only for SGD but for Adam as well. The use of CLR can speed
up the training procedure by as much as orders of magnitude. Furthermore, it was shown
that the exact range of CLR is less important to the speed and quality of convergence than the
chosen cycle length. A 10-cycle provides very fast convergence, with peak accuracy between
the 10th and 12th epoch. A 25-cycle, on the other hand, provides very high peak accuracy,
still relatively early in training. This holds true for both optimizers investigated, i.e. SGD and
Adam. Our results showed no dependency on ResNet depth of these effects. However, the
speed-up of training and accuracy improvement on new data through super-convergence are
greater with fewer training samples available.

Furthermore, we provided evidence that super-convergence can only arise from cyclical
schemes instead of just any scheme covering a certain learning rate range. We tested randomly
generated learning rates and decaying schemes with very large initial learning rates that cover
equivalent ranges as the most promising cyclical schemes. Non of these schemes could supply
a similar performance boost as CLR provide.

We tested two versions of Adam with cyclical update step sizes. While removing the bias-
correction term of the first momentum vector used in Adam (i.e. CUS-Adam) did not provide
advantages in training, the introduction of CLR did. We showed that learning rate ranges of
0.0001 and 0.03 provide strongly improved convergence speeds for Adam, just as ranges of
0.001 and 1.0 do for SGD. Therefore, it was shown that aside from SGD, Nesterov, AdaDelta,
and AdaGrad (previously shown by Smith and Topin [1]), also Adam can be improved with
CLR.

AdaSecant, the descent method proposed by Gulcehre et al. [6] that does not require the
learning rate to be set, could not be successfully implemented in PyTorch. Nonetheless, a
working alternative was proposed. This Simple AdaSecant algorithm validated the approach of
Gulcehere et al. [6], even though we could not validate their original proposal. Simple AdaSe-
cant yields satisfactory, but far from optimal, performance in training ResNets. Interestingly,
the learning rates calculated by the algorithm lie within similar ranges of those proven to be
successful for CLR schemes. This indicates some validity of the calculation procedure.

Lastly, with the concept of Stochastic Escape we provided another intuition for the success of CLR
and lack of success for calculated schemes. We provided evidence for this intuitive explanation
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by investigating the effects of different batch sizes on different schemes, investigating training
loss versus validation loss, and conducting experiments using SGD with CLR before switching
to a calculated scheme. Thereby, we were able to indicate that a core component responsible
for super-convergence is the destabilization of the loss function caused by very large learning
rates during the middle part of a cycle. We hope that this insight will help future researchers
to better exploit the advantages of super-convergence, not limited to but with special emphasis
on CLR.

Outlook

We encourage future researchers to normalize and padd the images of the CIFAR data sets
in order to achieve state of the art results and thereby confirm the results of this thesis. By
replicating the results with prepared data, the true superiority of CLR can be shown as the
results can then be compared to the schemes used by other researchers. We do belief that the
results are replicable, as the convergence speed seems to behave independently from the peak
accuracy achieved. Previous experiments with the torchvision models, which perform worse
than those used within this thesis, have shown this (see Appendix A.2).

To gain more insights into the effects during late training we encourage to run these experiments
for 200 instead of just 100 epochs. We chose the latter as it allowed for more variations.
Nonetheless, especially for constant schemes and 100-cycles the networks might still improve
after 100 epochs.

Furthermore, we recommend more variations of the experiments. These include but are not
limited to:

1. Smaller lower bounds and larger upper bounds for the learning rate ranges of CLR for
both Adam and SGD to test the points at which these schemes show sensitivity to the
choice of learning rate size.

2. Test more cycle lengths, such as a 5-cycle or a 50-cycle routine.

3. Evaluate against more decay settings with different initial learning rates and different
decay speeds. Furthermore, varying the decay type from exponential decay to cosine
annealing used by He et al. [2] may also produce interesting insights. These decay
settings should primarily be used as a means of control for proving that the cyclical
nature of CLR is responsible for super-convergence.

4. Choosing different data sets and neural network architecture types.

As CLR have proven to be very successful in efficiently and effectively training neural networks,
we propose to further investigate the cycle itself. Different cycles could be combined in
creative ways. A cycle could take the upward slope of a 10-cycle and the downward slope
of a 90-cycle to produce an unevenly balanced 100-cycle. Alternatively, schemes that use a
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full cycle completion of a smaller cycle and then another completion of a larger circle or vice
versa are also options. One can consider to combine exponential decay and CLR, either by
introducing a decaying downward slope or by decaying the peaks of a cycle with multiple
completions. These variations of the cycles themselves may provide new insights into the
reasons for super-convergence as well as provide even faster training routines than those that
have been found so far. The cycle variations used by Alyafi et al. [24] can be used as a starting
point for defining novel cyclical routines.

Regarding AdaSecant, we want to encourage future researchers to try a different imple-
mentation of the original proposal [6]. If these researchers are still unsuccessful with their
implementation, we propose to configure and extend Simple AdaSecant with elements inspired
from the original proposal. However, we also want to encourage new extensions such as the
introduction of momentum to Simple AdaSecant.

To conclude this outlook, we want to propose our view on and vision of the future development
of learning rate schemes. The optimal setting, scheduling, or calculating of learning rates
remains an open topic for researchers. As new algorithms develop, new insights into the
optimization strategies, best suited for neural networks, are being gathered. Currently, any
scheme that can successfully exploit CLR has an advantage over others. The escape of
disadvantageous minima is something that might not ever be possible to achieve by using
curvature information alone. Therefore, we recommend to use CLR with either SGD or Adam
for global optimization and Stochastic Escape. Nonetheless, we do belief in local optimization
through calculated learning rates. Hence, our vision is a combined algorithm that used CLR for
Stochastic Escape and calculated learning rates in a later phase for local optimization. Such an
algorithm must successfully exploit the complexity of the loss function by stochastically finding
advantageous minima, i.e. wide minima. Within that region we belief curvature information
to be reliable enough to provide further optimization to the network. In Section 4.5 a first
attempt at creating such an algorithm was made by combining SGD with CLR with Simple
AdaSecant. If improvements to Simple AdaSecant are made, we belief this approach to be the
future of learning rate settings.
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A.1. Relationship between Adam’s second momentum vector and the
distance covered by the gradients

We want to give an intuition for what
√

E[g2], and thus
√

v̂(j), represents. We can interpret√
E[g2], as the (expected) average distance covered by the gradients, separately in each

dimension, scaled by the square root of the number of iterations
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This intuition should help us to comprehend why the two properties (invariance to the scale
of the gradient and automatic step size annealing) arise. Firstly, the distance of the gradients
normalizes the gradients and thus, provides invariance to their scaling. Secondly, the quotient
of the expected value over the gradients and the average distance covered stays at least
approximately constant. Nonetheless, if gradients point in opposite directions it may also
decrease. In either case we are left with the square root of the number of iterations j in the
update step’s denominator and a constant c in the nominator. Because the learning rate α is
constant, the update step ∆(j) gets smaller over the iterations j:

∆(j) ≈ −α · E[g]√
E[g2]

⪅ −α · c√
j

. (A.5)

This property of Adam is responsible for the automatic step size annealing.
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A.2. Results Using Torchvision Models

(a) Results using the torchvision models. (b) Results from the main part of this thesis.

Figure A.1.: Comparing the performance of SGD with constant learning rates and CLR using
the models from this thesis and the torchvision models on CIFAR-10. We observe
that super-convergence emerges independently from the maximum accuracy that
the networks can achieve.

A.2. Results Using Torchvision Models

Fig. A.1 shows that super-convergence is independent of the maximum accuracy a network can
achieve on a given data set. This especially indicates that data normalization and padding will
result in similar results as those presented in the thesis. Interestingly, we observe the effects of
super-convergence to be slightly stronger when the networks perform worse. This behavior is
comparable to the behavior observed when less training data is available. Thus, for normalized
and padded data, we expect less of a boost from CLR. However, the performance increase is
still expected to be noticeable and significant.
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