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Abstract

In the past we have seen many great successes of Bayesian optimization as a black-box and
hyperparameter optimization method in many applications of machine learning. Most
existing approaches aim to optimize an unknown objective function by treating it as a
random function and place a parametric prior over it. Recently an alternative approach
was introduced which allows Bayesian optimization to work in nonparametric settings to
optimize functionals (Bayesian functional optimization).

Another well recognized framework that powers some of today’s most competitive ma-
chine learning algorithms are artificial neural networks which are state of the art tools
to parameterize and train complex nonlinear models. However, while normally a lot of
attention is paid to the network’s layout and structure the neuron’s nonlinear activation
function is often still chosen from the set of commonly used function. While recent work
addressing this problem mainly considers steepest-descent-based methods to jointly train
individual neuron activation functions and the network parameters, we use Bayesian func-
tional optimization to search for globally optimal shared activation functions. Therefore,
we formulate the problem as a functional optimization problem and model the activation
functions as elements in a reproducing kernel Hilbert space.

Our experiments have shown that Bayesian functional optimization outperforms a simi-
lar parametric approach using standard Bayesian optimization and works well for higher
dimensional problems. Compared to the baseline models with fixed sigmoid and jointly
trained shared activation function we achieved an improvement of the relative classifica-
tion error over 39% and over 20%, respectively.



Kurzfassung

In der Vergangenheit konnte Bayesian Optimization viele Erfolge als Black-Box und
Hyperparameter-Optimierungsverfahren in vielen Anwendungen des maschinellen Ler-
nens erzielen. Die meisten bestehenden Ansätze zielen auf die Optimierung einer un-
bekannter unbekannten Zielfunktion ab, indem sie diese als zufällige Funktion behan-
deln und einen parametrischen Ansatz wählen. Kürzlich wurde ein alternativer Ansatz
vorgestellt, der es ermöglicht Bayesian Optimization in nicht parametrischen Szenarien
zu verwenden (Bayesian functional optimization).

Eine weiteres viel beachtetes Framework, dass in viele wettbewerbsfähigen Algorithmen
des maschinellen Lernens verwendet wird, sind künstliche neuronale Netze, die zu den
state-of-the-art Werkzeugen zum Parametrisieren und Trainieren komplexer nicht lin-
earer Modelle gehören. Während dem Layout und der Struktur des Netzwerks viel
Aufmerksamkeit zukommt, wird die nichtlineare Aktivierung der Neuronen oftmals aus
einer Menge von oft benutzten Aktivierungsfunktionen gewählt. Während bisherige Ar-
beiten vor allem Trainingsverfahren untersuchen, die individuelle Aktivierungsfunktionen
zusammen mit den Netzwerkparametern optimieren, verwenden wir Bayesian Function
Optimization, um gemeinsame global optimale Aktivierungsfunktionen zu suchen.

Wir formulieren das Problem als Optimierungsproblem für Funktionale und modellieren
die Aktivierungsfunktion als Element in einem Hilbertraum mit reproduzierendem Kern.
Unsere Experimente haben gezeigt, dass Bayesian Function Optimization einen ähn-
lichen parametrischen Ansatz mit Standard Bayesian Optimization schlägt und gut für
höhere dimensionale Probleme funktioniert. Verglichen mit den zugrundegelegten Mod-
ellen mit fester Sigmoid-Aktivierungsfunktion und gemeinsam trainierten Aktivierungs-
funktionen erzielen wir eine Verbesserung des relativen Klassifikationsfehlers von 39%
beziehungsweise 20%.
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1 Introduction

Artificial neural networks are used in a wide variety of fields, reaching from neuro science
to image recognition, natural language processing, and the design of intelligent agents.
In fact, neural networks are state of the art tools to parameterize and train complex non-
linear models and power some of today’s most competitive algorithms in their respective
fields. The nonlinearity of the neural network models come from the nonlinear activation
function which is used in each artificial neuron. Different choices of these activation func-
tions may lead to a very different behavior and performance of the network. However,
while the structure of the network such as its depth, layer size, and type is generally
considered to be crucial, often the activation functions are chosen from a small set of
commonly used functions without further consideration.

In contrast, recent work by Agostinelli et al. [AHSB14] and Eisenach et al. [ELw17] showed
that individual adaptive activation functions that are jointly trained with the network
are clearly beneficial. However, they are still initialized with functions from the pool of
commonly used activation functions. With steepest-descent-based training methods such
as the standard backpropagation algorithm the resulting activation functions might be
strongly related to their initialization as they get caught in near local minima. Turner and
Miller [TM14] used an evolutionary algorithm that combines the strategy of selecting from
previously defined activation functions and training of an additional scaling parameter.
While both methods on their own were found to be beneficial, the combined strategy did
not offer further advantages. However, they stated that the set of predefined activation
functions and the range of the scaling parameter were very limited.

At the same time Bayesian optimization established itself as a main framework for hyper-
parameter optimization especially for objective functions that are expensive to evaluate.
Bayesian optimization, however, does not scale well to higher dimensional problems. The
number of samples needed to sufficiently cover the search space grows exponentially with
its dimension. Wang et al. [WZH+13] (REMBO) and Djolonga et al. [DKC13] (SI-BO)
address this problem by considering a lower dimensional embedding of the full search
space that is expected to hold a good solution. Building on this idea, Ngo [Ngo16] (iGP-
UCB) recently introduced the iGP-UCB algorithm for Bayesian functional optimization
in possibly infinite dimensional reproducing kernel Hilbert spaces. The resulting search
space does not rely on a set of predefined features or corresponding basis functions but
adapts to the problems complexity.
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Our work contributes to both of the presented research domains, as we aim to com-
bine the search for optimal neural network activation functions with recent techniques in
Bayesian optimization. More specifically, our goal is to find a near globally optimal acti-
vation function shared by all neurons for a given problem instance. Therefore, we model
our activation functions as elements of a reproducing kernel Hilbert space and formulate
the problem as a functional optimization problem. For finding optimal functions we use
Bayesian functional optimization with Ngo’s iGP-UCB algorithm. The training method
with Bayesian functional optimization outperforms standard parametric Bayesian opti-
mization. The resulting models achieve a significant lower classification error compared to
the jointly trained models and models with commonly used fixed activation functions.

Outline

In the remainder, we first discuss related work in the field of neural networks and Bayesian
optimization methods. In chapter 3 we introduce some basic theory and methods that
will be required in the following chapters. In chapter 4 we first give a problem statement
followed by the introduction of the sum of Gaussian activation function. Then we describe
the Bayesian functional optimization framework with Ngo’s iGP-UCB algorithm and the
kernel matching pursuit algorithm for sparsifying sum of Gaussian activation functions.
In chapter 5 we present a detailed evaluation of the introduced training method for a
multilayer perceptron that is trained on the MNIST data set.
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2 Related Work

Research on neural network architecture that focused on the choice of the activation func-
tion goes back over twenty years. In 1996 Chen and Chang [CC96] used adaptive sigmoids
that were trained by a steepest-descent-based autotuning algorithm. They found them to
be beneficial compared to multilayer perceptrons with fixed sigmoid activation function.
A different approach from Piazza et al. [PUZ92] investigated multilayer perceptrons that
were using polynomial activation functions with adaptive coefficients. While this allowed
them to reduce the size and complexity of the network, there were also drawbacks due
to the unboundness of the activation function and global influence of the coefficents. As
the coefficients have a global effect on the polynomial, changes that lead to locally bet-
ter behavior in one part of the activation function may lead to worse behavior in other
parts. Addressing these problems, Vecci et al. [VPU98] and Guarnieri et al. [GPU99]
used cubic splines with adaptive control points as activation functions. Those have the
advantage that a change of one control point does not influence the activation function
globally. To initialize the control points, uniform spaced samples from a sigmoid activa-
tion function were used. In recent work, Scardapane et al. [SSCU16] also used individual
cubic spline activation functions for each neuron, but in a more efficient batch training
setting. Additionally they introduced a novel regularization of control points to prevent
overfitting. Here, the control points were initialized using samples from the hyperbolic
tangent function with additional Gaussian noise. But also other than polynomial-type
activation functions were studied. Agostinelli et al. [AHSB14] investigated the use of
individual adaptive piecewise linear activation (APL) functions for deep neural network
architectures. While the number of hinges of the activation functions was treated as
a hyperparameter, the slopes of the single segments and the location of the hinges were
trained jointly with the network by using standard gradient descent. Compared to a fixed
rectifier linear activation function, they measured a relative improvement of 9.4% on the
CIFAR-10 data set and 7.5% on the CIFAR-100 data set. They trained their network sev-
eral times starting with randomly initialized activation functions. However, most of the
learned activation functions were still very close to their initialization. Recently, another
type of activation function was presented by Eisenach et al. [ELw17]. They were using
a Fourier series basis expansion for nonparametric estimation of the activation functions
for each neuron. Therefore, they presented a two-phase training procedure for convo-
lutional neural networks which can be incorporated in the backpropagation framework.
They initialized the activation functions of the fully connected layers to the Fourier series
approximation of the hyperbolic tangent activation function. They achieved a relative
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improvement of up to 15% on the MNIST and CIFAR-10 data set which gives further
evidence for the potential of using problem specific trained activation functions.

While the stated results clearly show that adaptive activation functions can be benefi-
cial and outperform commonly used fixed activation function, one crucial point remains
the choice of their initialization. Especially when trained with steepest-descent-like al-
gorithms, due to the local minima problem the initialization has great influence on the
results. Therefore, the initialization with a specific function, e.g. the sigmoid or the hy-
perbolic tangent function, might force a strong prior over the potential space of activation
functions. Early work that tried to explore the space of potentially very different types of
activation functions was mainly focused on genetic and evolutionary algorithms that can
choose from a predefined set of possible activation function as described by Yao [Yao99].
More recent work from Turner and Miller [TM14] combined the strategy of selecting from
a predefined set of activation functions with the training of an additional scaling param-
eter for each neuron in the network. While both the strategies on their own were found
to be beneficial, the combined strategy did not offer any additional advantage in their
setting. However, they state that they only used a very limited set of activation functions
to start with and optimized a single scaling parameter over a small range only.

Recently, we have also seen great successes of Bayesian optimization as a black-box and
hyperparameter optimization method in many applications of Machine Learning. Espe-
cially for objective functions that are expensive to evaluate a good choice of evaluation
points is crucial and the computational expense of Bayesian optimization becomes neg-
ligible. This makes Bayesian optimization a perfect fit for optimizing hyperparameters
of neural networks as their training is time consuming and thus expensive. Snoek et
al. [SLA12] used Bayesian optimization to optimize nine different hyperparameters of
a three-layer convolutional neural network for the CIFAR-10 data set. The found hy-
perparameters were compared to hyperparameters that were hand tuned by experts to
achieve state of the art performance and outperformed them by over 3%. However, stan-
dard Bayesian optimization does not scale well to higher dimensional search spaces. To
converge to a globally optimal point, one needs samples that cover the search space suf-
ficiently well. The amount of samples needed grows exponentially with the dimension of
the search space. This was addressed by several papers in the past. Tyagi et al. [TGK14;
TKGK16] presented an efficient sampling scheme for learning sparse additive models
(SPAM) of cubic spline estimates. Their algorithm recovers a robust uniform approxi-
mation of the component functions using at most O(dsparse(log d)2) samples. Different
approaches from Wang et al. [WHZ+16; WZH+13] (REMBO) or Djolonga et al. [DKC13]
(SI-BO) assume that the possibly very high dimensional problem has only a small num-
ber of important dimensions which are dominating the problems solution. Once these
dimensions are identified one can use Bayesian optimization in the lower dimensional
embedding of the otherwise very high dimensional search space. While these approaches
are concerned with the optimization of functions, Ngo [Ngo16] (iGP-UCB) proposed a
framework for Bayesian functional optimization by defining the Bayesian optimization
framework on a possibly infinite dimensional reproducing kernel Hilbert space. There-
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fore, the used Gaussian process defines a distribution over functionals. The posterior
belief over the loss functional is computed using a sparsified version of the previously
found functions which keeps the computational cost under control. This results in a very
flexible search space that does not rely on a set of predefined features or corresponding
basis functions, but adapts to the problem’s complexity.
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3 Background

This chapter will briefly introduce some of the concepts and techniques that are used in
chapter 4. First, there will be a brief introduction to reproducing kernel Hilbert spaces
and why they are useful for machine learning. We will then discuss Gaussian processes as
statistical models that define distributions over functions and how they enable us to infer
an unknown target function. Based on this we will introduce the Bayesian optimization
framework using a Gaussian process. Last, we will give a brief introduction to artificial
neural networks and how they are trained and evaluated.
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3.1 Reproducing Kernel Hilbert Spaces

A Hilbert space H is a possibly infinite dimensional inner product space that is complete
and separable with respect to the norm defined by the inner product. These requirements
will basically enable us to to apply concepts of finite dimensional linear algebra to infinite
dimensional function spaces. In the following, we assume X be a nonempty compact set,
e.g. Rn, and H a Hilbert space of real valued functions f : X → R with domain X .
Probably the most common example for a Hilbert space is the space of square integrable
functions L2 with an inner product

〈f, g〉H =

∫ ∞
−∞

f(x)g(x) dx

that contains all function f for which the integral of absolute square values is bounded∫ ∞
−∞
‖f(x)‖22 dx ≤ ∞.

Now consider the function f ′(x) that equals f(x) everywhere, but on a finite set of points
X ′. As the resulting function

f ′(x) =

{
c if x ∈ X ′

f(x) otherwise

only differs from f(x) on a finite number of points it is itself a squared integrable function.
However, this also implies that ‖f − f ′‖H = 0 although f(x) 6= f ′(x)∀x ∈ X ′. Thus,
if we want the functions f and g to be pointwise close when they are close w.r.t. the
norm ‖·‖H, the square integrable condition is not strong enough. This is, however, what
we want for a lot of machine leaning tasks where we aim to learn a model to predict
the outcome of an unknown target. Therefore, functions which are similar to the target
function should predict similar outcomes on every possible data point. Reproducing
kernel Hilbert spaces do fulfill this requirement. The definitions in this section are based
on the work by Gretton [Gre13].

Definition 3.1 A reproducing kernel Hilbert (RKHS) space is a Hilbert space of functions
where all evaluation functionals ex(f) : f 7→ f(x), f ∈ H are bounded

|exf | ≤ λx ‖f‖H .

This implies that if two functions are converging w.r.t. the RKHS norm ‖·‖H they also
need to converge pointwise. Equivalently, one might define a reproducing kernel Hilbert
space over his reproducing kernel where it also gets its name from.

Definition 3.2 A reproducing kernel Hilbert space is a Hilbert spaceH with a reproducing
kernel k whose span {k(x, ·) | x ∈ X} is dense in H.

To understand this definition we first define what we understand to be a kernels and the
properties that make it a reproducing kernel.
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Definition 3.3 A kernel is a function k : X×X → R that fulfills the following conditions:

1. k(x, x′) = k(x′, x) ∀x, x′ ∈ X (symmetry)

2.
n∑

i,j=1

αiαjk(xi, xj) ≥ 0 ∀x1, . . . , xn ∈ X , α1, . . . , αn ∈ R. (semi pos. def)

Definition 3.4 A kernel k is a reproducing kernel of a Hilbert space H if

1. ∀x ∈ X : k(x, ·) ∈ H
2. ∀f ∈ H, x ∈ X : f(x) = 〈k(x, ·), f(·)〉 . (reproducing property)

As k(x, ·) is itself a function in H, it must hold that there exists a function k(y, ·) such
that k(x, y) = 〈k(x, ·), k(y, ·)〉. Let k be a reproducing kernel for a Hilbert space H
consisting of the span of {k(x, ·)|x ∈ X} and its completion then

|exf | = |f(x)| = |〈k(·, x), f(·)〉| (Reproducing property)

≤ ‖k(·, x)‖H · ‖f‖H (Cauchy-Schwarz inequality)

= 〈k(·, x), k(·, x)〉1/2 · ‖f‖H
=
√
k(x, x) ‖f‖H

implies that all evaluation functionals ex are bounded and thus H is a RKHS. More-
over, as the reproducing kernel can be written in terms of an inner product, it must
be a positive definite symmetric kernel. But interestingly, also the reverse holds. The
Moore–Aronszajn theorem states that every positive definite symmetric kernel defines an
unique RKHS with itself being the reproducing kernel.

Another point that make reproducing kernel Hilbert spaces especially useful for machine
learning is the existence of several representer theorems. These theorems essentially state
that the minimizer of an empirical regularized risk function defined on a RKHS can be
represented as a finite linear combination

f ∗(x) =
n∑
i=1

αik(xi, ·) =
n∑
i=1

αi 〈k(xi, ·), k(x, ·)〉

of kernel products that only depend on the inputs of the training data. The theorem was
first introduced by Kimeldorf and Wahba [KW71] for a squared error formulation and
additional L2 regularization ‖f‖H. A more general version by Schölkopf et al. [SHS01]
extended the theorem to arbitrary cost functions and regularizations g(‖f‖), where g
is a strictly monotonically increasing real valued function. Ultimately, this means that
despite the RKHS being an infinite dimensional space, it is sufficient to search in a finite
dimensional subspace defined by the training data. Such finite dimensional optimization
problems are well understood and can be solved computationally.
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3.2 Gaussian Processes

A Gaussian process (GP) GP(µ, σ2) is the generalization of a multivariate Gaussian
distribution to infinite dimensions. It describes a distribution over an infinite amount of
random variables, where any final subset of these random variables is distibuted jointly
Gaussian. Like a Gaussian distribution that is specified by its mean and covariance, a
GP is specified by its mean function µ(·) and covariance function k(·, ·).

P (f) = GP (µ(·), k(·, ·))

To gain some intuition, consider an infinite set of random variables {f ∗x : x ∈ Rn} and
an unknown smooth target function f ∗ : Rd → R. Each variable f ∗x represents the belief
over the value of f ∗(x) at the corresponding evaluation point x∗ ∈ Rd. As we want to
model a distribution over a continuous smooth function it seems natural to assume that
function values of close evaluation points are more correlated than distant ones. Therefore
it makes sense to define the covariance function cov(f ∗x , f

∗
x′) = k(x, x′) as some measure

of similarity between the corresponding evaluation points. Moreover, we define µ(x) to
represent the mean of the random variable f ∗x that is corresponding to the evaluation
point x. By construction there exists a random variable for any possible evaluation point
in the domain of the target function. Therefore, we eventually described a distribution
over functions. The function k is also referred to as the Gaussian process kernel and
should be a positive definite symmetric kernel. A commonly used GP kernel for many
standard problems is the squared exponential kernel k(x, x′) = exp(−‖x− x′‖2 /2l2) with
bandwidth l. However, in general, as the kernel function is crucial for the behavior and
later performance of the Gaussian process it should be chosen regarding to the specific
problem domain.

If we want to take samples from the GP prior for computational reasons, we can not
sample full functions but have to choose a finite subset of random variables F = {f ∗i }ni=1.
For this subset we define the vector f ∗1:n = (f ∗1 , . . . , f

∗
n)> with the corresponding matrix

of evaluation points X∗ = (x∗i , . . . , x
∗
n)>. Further we define the matrix of pairwise GP

kernels as

K(X,X ′) =

k(x1, x
′
1) . . . k(x1, x

′
t)

...
. . .

...
k(xn, x

′
1) . . . k(xn, x

′
t)

 for X ∈ Rn×d, X ′ ∈ Rt×d.

The resulting joint normal distribution of the random variables in F can be written in
terms of the n-dimensional mean vector m and the n× n-dimensional covariance matrix
K(X,X). For simplicity we chose the prior mean m = 0n.

P (f ∗1:n) = N (m, K(X∗, X∗)) ,

18



Now consider that we additionally have access to data D = {(yi, xi)}ti=1 sampled from f ∗

and want to incorporate these information to update our prior belief P (f ∗1:n). Moreover,
we assume that the samples yi = f ∗(xi) + ε suffer from some additive Gaussian noise
ε ∼ N (0, σ2I). Let y1:t = (y1, . . . , yt)

> be the vector of sampled values and X =
(x1, . . . , xt)

> be the matrix of corresponding evaluation points then the resulting joint
normal distribution can be written as follows.

P

([
y1:t
f ∗1:n

])
= N

(
0,

[
K(X,X) + σ2I K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
For a general joint Gaussian distribution P (a, b) the conditional distribution P (a | b) is
also distributed jointly Gaussian and takes the following form.

P (a, b) = N
([
ma

mb

]
,

[
A C
CT B

])
⇒ P (a | b) = N

(
ma + CB−1(b−mb), A− CB−1C>

)
Applying this to the joint prior P (y1:t, f

∗
1:n) results in the posterior distribution P (f ∗1:n |

y1:t) with posterior mean m̃ and posterior covariance matrix K̃. We also introduce the
shorthand notation Kt = K(X,X) for the Gram matrix of kernels between the t samples
from the target function.

P (f ∗1:n | y1:t) = N
(
m̃, K̃

)
m̃ = K(X∗, X)(Kt + σ2

nI)−1y,

K̃ = K(X∗, X∗)−K(X∗, X)(Kt + σ2
nI)−1K(X,X∗)

However, in the end we are interested in the posterior mean function µ̃(x) and the poste-
rior covariance function k̃(x, x′) of the GP. We can identify them by taking a look at the
single entries m̃i = µ̃(x∗i ) and K̃ij = k̃(x∗i , x

∗
j) and define them for arbitrary x, x′ ∈ Rd.

To have a nice and compact notation we defined kt(x) = (k(x, x1), . . . , k(x, xt))
>.

µ̃(x) = kt(x)(Kt + σ2
nI)−1y

k̃(x, x′) = k(x, x′)− kt(x)>(Kt + σ2I)−1kt(x
′)

σ̃2(x) = k̃(x, x)

The posterior mean function represents our best guess of the target function given the
observed data. It is also interesting to note that the mean function is just a finite linear
combination

t∑
i=1

αik(xi, x) with α = (Kt + σ2
nI)−1y

of t kernels centered at the observation data point {xi}ti=1 , although the GP can rep-
resent any function in the infinite dimensional RKHS defined by the positive definite
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symmetric kernel k(x, x′). This is in fact a manifestation of the representer theorem dis-
cussed in section 3.1 as the mean function is just essentially just a formulation of kernel
ridge regression. As the computation of the posterior mean and covariance involves the
inversion of the N ×N covariance matrix it scales cubically with the number of samples.
In practice, this means that we can not incorporate arbitrary many samples, if we want
to compute the GP update in reasonable time. Figure 3.1 shows the mean function, the
standard deviation, and sample functions drawn from the prior distribution and the pos-
terior distribution for a 1D GP with a squared exponential kernel. The contents of this
section are manly founded on the work of Rasmussen [Ras06] and Brochu et al. [BCD10].

Figure 3.1: The mean, standard deviation, and samples from the GP prior (top) and GP
posterior (bottom) for a 1D Gaussian process with squared exponential kernel.
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3.3 Bayesian Optimization

Algorithm 3.1 Generic Algorithm for Bayes Optimization

Input Objective f , prior belief P (f ; θ0), data D0

1: repeat
2: Compute posterior P (f | Dt; θt+1)
3: Select xt+1 = argmaxx u(x; θk+1)
4: Sample yt+1 = f(xt+1) + ε
5: Update data Dt+1 = Dt ∪ {(xt+1, yt+1)}
6: Tuning kernel hyperparameters
7: until Convergence

In the following, we consider maximization only, however, one can easily transform a
given minimization problem into a maximization problem

min
x
g(x) = −max

x
(−g(x)) .

Another assumption that is often made, is to require the objective function to be Lipschitz-
continuous. This ensures that f(x) can not change arbitrarily when varying x but is
bounded by a constant times the change. This is important as we want the samples we
take to be locally representative for the values of the function. Without such assumptions
we have no guarantees of finding a sufficiently good point in reasonable time. Therefore,
in the following we assume sufficiently smooth objective functions.

Bayesian optimization is a sequential framework for global optimization and optimization
of black-box functions. It typically assumes that the objective function f is sampled from
a stochastic process and maintains a posterior distribution over the function as it samples
more data over the course of the algorithm. When using a Gaussian process this results in
updating the posterior mean and covariance functions based on samples Dt = {(xi, yi)}ti=1

as described in section 3.2. In each iteration the current belief over f is used to determine
the next sample point by maximizing an so-called acquisition or utility function u(x). As
indicated by the name, the acquisition function is a heuristic used to acquire the next
evaluation point. Therefore, it rates potential evaluation points by their utility in finding
the optimum. We usually want to select evaluation points that are expected to have a
high value. On the other hand we also want to explore areas of high uncertainty which
might lead to the discovery of even better locations for future function evaluations. The
acquisition function balances exploration against exploitation and acts as a guide in the
search for the optimum. The objective function is then evaluated at the selected position
and the result is added to the data. Optionally, at the end of each iteration we can use the
newly gained information to automatically tune the hyperparameters of our GP kernel,
e.g. the bandwidth of the squared exponential kernel. This is normally done by selecting
the parameters that maximize the log-likelihood on the data.
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For the choice of the acquisition function u(x) there exist various options. Well known and
often used heuristics are the Maximum Probability of Improvement (MPI), the Expected
Improvement (EI) and the Upper Confidence Bound (UCB).

MPI: xt = argmax
x

∫ y∗

−∞
N (y | µ(x), σ(x)) dx

EI: xt = argmax
x

∫ y∗

−∞
N (y | µ(x), σ(x)) dx(y∗ − y)

UCB: xt = argmax
x

µ(x) + βtσ(x)

While the best choice of the acquisition function is arguably related to the specific prob-
lem, due to its simplicity and good performance UCB is often the default choice for
many tasks. Furthermore, it was proven Srinivas et al. [SKKS09] that for an appropriate
scheduling of parameter βt the resulting heuristic (GP-UCB) with high probability has no
regret. Still the maximization of a general acquisition function is a nonlinear nonconvex
optimization problem. Thus, we need find a sufficiently good maximum to ensure that
we take at least near optimal samples.

Figure 3.2: A 1D Gaussian process using a squared exponential kernel. The evaluation
of the UCB and MPI acquisition functions at the next query point (selected
by UCB) is shown graphically.
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3.4 Artificial Neural Networks

For difficult supervised learning problems often complex and highly nonlinear models are
needed to learn a sufficient mapping. Neural Networks offering a flexible framework to
parameterize and train such models based on the combination of simple computational
units called artificial neurons. The information processing is inspired by the way bio-
logical neural networks are working. Strongly simplified, neurons are connected through
synapses that can transmit electrical signals. When the sum of input signals that a
neuron receives surpasses a certain threshold the neuron itself starts sending signals to
its peers. The networks working on this principle are typically referred to as multilayer
perceptrons (MLP). Recent computational neural networks also involve advanced struc-
tures, e.g. convolutional layers and additional pooling layers. However, here we will
focus on basic multilayer perceptrons. More formally such an artificial neuron consists
of weights w1:n, biases b1:n, and a nonlinear activation function h. When inputs x1:n are
received the neuron calculates their weighted sum z =

∑n
i=1wixi + b. The sum is then

used as an input to the activation function to compute the final output of the artifi-
cial neuron h(z) as shown in Figure 3.3. Common choices of the activation function are

x1 w1

x2 w2
...
xn wn

1 b

Σ h h(
∑n

i=1wixi + b) = h(w>x+ b)

Figure 3.3: Input-output mapping of a single artificial neuron.

the logistic sigmoid, Gaussian, or hyperbolic tangent function stated in Equation 3.1.
The choice of the activation function is important for several reasons, e.g. it might im-
ply bounds for the neuron’s output by squashing the inputs into its co-domain. More
importantly, it adds a layer of nonlinearity to the artificial neuron and to the result-
ing classifier or regression model. Otherwise the artificial neuron would just represent
a linear model on the input data. One may notice that for choosing the activation
function to be the logistic sigmoid the single neuron model corresponds to the class prob-
ability mapping of binary logistic regression. Also the performance and training of the
later network can be strongly influenced by the choice of the actual activation function.

−4 −2 0 2 4
−1

−0.5

0

0.5

1

σ(x)

g(x)

tanh(x)

σ(x) =
1

1 + exp(x)

tanh(x) =
2

1 + exp(2x)
− 1 (3.1)

g(x) = exp

(
−(x− c)2

2l2

)
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A single neuron with fixed activation function h does not offer a rich model suited for
complex supervised learning tasks. Therefore a MLP uses multiple connected artificial
neurons that are organized in layers. In fact, such feed forward networks are capable
of universal function approximation as shown by Hornik [Hor91]. The first layer of the
MLP is referred to as the input layer. It takes a vector x and passes it into the network.
The predicted outcome computed by the network is given by the output of the last layer
which we call the output layer. The layers in between are referred to as the hidden lay-
ers as the states of their artificial neurons are normally not observed. Passing an input

· · ·input x
W0 W1 WL−1 WL

b0 b1 bL−1 bL
output y

x0 x1 xL−1 xL

Figure 3.4: Forward propagation of an input vector through a multilayer perceptron with
L-layers. The output layer gives out the computed output vector.

vector to the network and receiving a predicted outcome is called forward propagation.
Rather than computing the outputs for each neuron individually we can express the com-
putation for a full layer as a linear transformation of the layer’s input vector followed
by the element-wise evaluation of the activation function. The transformation matrix of
the l-th layer Wl is a dim(xl−1) × dim(xl) dimensional matrix where the each row rep-
resents the weight vector of the corresponding neuron in the same layer. Considering a
network with L hidden layers the forward propagation of inputs can be written as stated
in Equation 3.2.

x0 = x

∀l = 1, . . . , L :

zl = Wl−1xl−1 + bl−1

xl = hl(zl)

(3.2)

In the case of a regression problem the activation function of the output layer is often
chosen to be the identity such that only the linear transformation remains. Whereas in
case of classification it is common to choose the softmax function to map the output to
class probabilities.

Consider a supervised learning problem with the goal of learning a mapping f : Rd → Rm

given training data D = {(xi, yi)}ni=1 and a loss function J . To find optimal parameters
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for the neural network we are using the so-called backpropagation algorithm which is
essentially a gradient descent method with recursive gradient computation. First, an
input vector x from the training data is propagated forward through the network. The
computed output y′ is compared to the real output y from the training data by using
the loss function J(W1:L, b1:L;x, y). The computed error is then propagated back to the
single neuron weights and biases. Finally, each parameter is updated w.r.t. its contribu-
tion to the overall error. In order to back-propagate the error and update the neuron’s
parameters one needs to compute the partial derivative w.r.t. the individual weights Wl,ij

and biases bl,i. This is done recursively by computing the layer’s derivatives w.r.t. zl from
back to front by using the chain rule as shown by Toussaint [Tou16].

∀L, . . . , 1 :

dJ

dzl
=

dJ

dzl+1

∂zl+1

∂xl

∂xl
∂zl

, δl

dJ

dWl

= δ>l+1 x
>
l

(
dJ

dWl,ij

= δl+1,i xl,j

)
dJ

dbl
= δl+1

(
dJ

dbl,i
= δl+1,i

)

When the derivatives w.r.t. the parameters are computed, we can update them by using
standard gradient descent.

Wl ← Wl − α
d

dWl

J(W1:L, b1:L)

bl ← bl − α
d

dbl
J(W1:L, b1:L)

As we want to minimize the loss on the whole data set we do not want to calculate the
gradient for an individual pair of training data only. The training inputs {xi}ni=1 are used
to construct a matrix X = (x1, . . . , xn)>. Then forward propagating the whole matrix
X results in an output matrix Y ′. By extending the loss function to summing over the
individual losses of all training examples it allows us to compute the gradient w.r.t. the
full set of the training data. However, when working with large data sets computing the
full gradient might be computational expensive and thus slow. Whereas the computation
of gradient updates w.r.t. individual training samples is very cheap. Indeed, repeatedly
doing gradient steps w.r.t. random samples of the training data leads to a stochastic
approximation of standard gradient descent that is shown to almost certainly converge
to a local minimum of the loss function with an appropriate decreasing schedule of the
learning rate α [Bot98]. This method of training is called stochastic gradient descent. On
the other hand the update of the parameters suffers from a high variance as the gradients
are computed w.r.t. individual training samples that may not agree on one particular
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descent direction. This might lead to a much slower convergence compared to using the
full gradient. Batch gradient descent tries to get the best out of both methods by con-
sidering small random batches of training data. This has the advantage of still being
considerable fast while having a lower update variance compared to plain stochastic gra-
dient descent. As the batches for training are selected randomly and each training session
typically starts with parameters that are initialized with some degree of randomness, dif-
ferent training session lead to potentially very different network parameters. Therefore,
multiple training sessions are launched and the best of the resulting models is selected.

To evaluate the resulting models we have to take data which was not used for training
the network as we are interested in the model that generalized best to yet unseen data.
The initial set D of training data is split into a training set Dtrain, validation set Dval,
and test set Dtest. Then the network is trained on Dtrain only while the error on the
validation data set can be used to evaluate and tune the model’s hyperparameters across
training sessions or as a stopping criterion for the training algorithm to avoid overfitting.
For estimation of the classification or regression error of the final model the test set is
used. If one would use the test or validation set for this task the error estimate would be
biased and therefore be too low as the test and validation set were also involved in the
selection or even training of the final model.

At the end, as it is a currently very active field of research, we want to briefly discuss
an example that should give some basic intuition on how neural networks are related
to kernel methods and reproducing Kernel Hilbert spaces. Considering a 1D regression
problem and a squared loss function the corresponding MLP model as discussed above
looks like

f(x) = wTL hL−1(WL−1 hL−2(. . . h0(W0x+ b0) . . .) + bL−1)︸ ︷︷ ︸
φL(x)

+bL

= wTLφL(x) + bL = wTφ(x).

One interpretation is that the network is actually learning a feature map to represent
the input data. The inner product of these feature maps implies a symmetric positive
definite kernel k(x, x′) = φ(x)>φ(x). Due to this we also say the network is learning a
kernel. This gets even more clear if we solve the linear regression problem and rewrite it
by using the Woodbury identity (kernel trick).

w∗ = (Φ>Φ)−1Φ>y = Φ>(ΦΦ>)−1y ⇒ f(x) = φ(x)TΦT︸ ︷︷ ︸
kt(x)>

(ΦΦT )︸ ︷︷ ︸
Kt

−1
y.

This is a kernel regression formulation similar to the one of the mean function of Gaussian
processes stated in section 3.2 but without regularization, where kt the vector of kernels
between the input and the training data points and Kt is the Gram matrix of pairwise
kernels between training data points.
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4 Methods

Instead of using predefined activation functions like the sigmoid or hyperbolic tangent
activation function we want to find an activation function that is optimized for a given
problem instance. This is done by optimizing an loss functional with methods from
Bayesian optimization. To point this out we will refer to this method as Bayesian func-
tional optimization (BFO). This section describes the steps that we have taken in detail
starting with a problem statement. We will further introduce the Bayesian functional op-
timization framework and the sum of Gaussians (SoG) activation function. Last, we will
discuss the sparsification of SoG activation functions using the kernel matching pursuit
algorithm.
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4.1 Problem Statement

In the following we consider a multilayer perceptron with L hidden layers. The corre-
sponding model f : Rn → Rm is a function that maps a n-dimensional input vector x ∈ Rn

to a m-dimensional output vector y ∈ Rm and is parameterized by weights W0:L, biases
b0:L and an activation function h ∈ H. While the activation function h is the same for
all hidden layer neurons the neurons in the output layer may have an activation function
g that is different from h. E.g. for classification, the output layer might use the softmax
function in order to map the output to class probabilities. This results in the model

f(x;h,W0:L, b0:L) = g(WL h(WL−1 h(. . . h(W0x+ b0) . . . ) + bL−1) + bL).

Optimally we want to find parameters W ∗
0:L, b

∗
0:L and an activation function h∗ that are

minimizing the loss functional l over some distribution of data P (D). For a general
multilayer perceptron and loss functional l this is a nonlinear nonconvex optimization
problem

min
h,W0:L,b0:L

l(h,W0:L, b0:L; X, Y ) (4.1)

= min
h

(
min

W0:L,b0:L
l(W0:L, b0:L, h; X, Y )

)
. (4.2)

In general such optimization problems are hard to solve and may not have a closed form
solution. Using first or second order gradient-descent-based methods does not guarantee
to find a globally optimal solution. Thus, when jointly optimizing W0:L, b0:L, and the
parameterized activation function h, we observe that the resulting activation function h∗

is strongly related to its initialization, since it is not able to escape all the local minima
during training.

The problem is split into two coupled optimization problems as shown in Equation 4.2. In
case of finding the globally optimal set of parameters, these two formulations are exactly
the same. However, considering the local minima problem the separate formulation might
be of advantage. The inner optimization problem is the training of the network for a fixed
activation function h using gradient descent methods. Alternatively, for the training of
the network, we can still use a joint training procedure that uses the selected activation
function as an initialization only. The outer problem takes the loss of the trained network
as a response to select a new activation function using Bayesian functional optimization.
This allows a much better exploration of the space of possible activation functions. In
theory, if we neglect the potentially suboptimal response of the inner problem, this will
result in finding the globally optimal activation function h∗ as the number of iterations
converges to infinity. In practice, we do only have finite time and need to train the full
network for a new activation function in every iteration. Therefore, fast convergence to a
near global optimum must be ensured to be of practical use. Moreover, as we only have
a limited amount of data the final training routine needs to prevent overfitting to ensure
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good generelization to unseen data. This can be achieved by splitting the available data
into a training set Dtrain, a validation data set Dval, and a test set Dtest. While the
network is trained on Dtrain, the error on the validation data set Dval is monitored and it
used as a stopping criterion. The final training of the network is shown in algorithm 4.1.

Algorithm 4.1 Network Training

1: function trainNetwork(activation function h)
2: Initialize weights W 0

0:L and biases b00:L
3: Initialize patience p, minimal loss lmin ←∞
4: repeat
5: W k+1

0:L , bk+1
0:L ← GD-Optimizer(W k

0:L, b
k
0:L, h,Xtrain, Ytrain)

6: lk+1 = l(Xval, Yval; W
k+1
0:L , bk+1

0:L , h)
7:

8: if lk+1 < lmin then
9: lmin ← lk+1

10: else p← p− 1
11:

12: until p < 0
13: return lmin
14: end function

The Bayesian functional optimization routine which takes the loss of the network training
as an objective function is stated in algorithm 4.2. By considering the activation func-
tions to have a fixed size parameterization, we can represent them as simple parameter
vectors. Standard Bayesian optimization then works analogously to section 3.3. However,
Bayesian functional optimization with Ngo’s [Ngo16] iGP-UCB algorithm is used which
is described in detail in section 4.3.

Algorithm 4.2 Bayesian Functional Optimization for activation functions

1: function optimizeActivation
2: repeat
3: Update posterior distribution.
4: Select new activation function ht+1 (iGP-UCB)
5: lt+1 ← trainNetwork(ht+1)
6: Update data Dt+1 = Dk ∪ {(ht+1, lt+1)}
7: Optimize hyperparameters
8: until Convergence/Max number of iterations reached
9: return h∗

10: end function
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4.2 The SoG activation function

We choose the activation function h to be a linear combination of Gaussian radial basis
functions (RBF) k(x, x′). This is a very flexible model that offers a rich representation
and makes it easy to approximate various functions, including commonly used functions
such as the logistic sigmoid or hyperbolic tangent. Given any function f ∈ L2{R} an
arbitrary good approximation by a finite linear combination of RBFs ki with the same
scale exists as shown by Park and Sandberg [PS91] in the context of RBF networks. In
fact, the activation function h represents a RBF network with one hidden layer and N
neurons and is thus an universal function approximator

k(x, xi) = ki(x) = exp

(
−‖x− xi||2

2σ2

)

h(x) =
N∑
i=1

αi · k(x, xi), αi ∈ R.

An activation function h consists of N RBFs and can be represented parametrically by
centers x1:N , weights α1:N , and a single scale σ. More importantly, this allows us to model
the activation function in a reproducing kernel Hilbert space Hk with reproducing kernel
k(x, x′). This can be achieved for any positive definite kernel as described in section 3.1.
The kernel scale σ is chosen heuristically as

σ = γ
bu − bl
N

which offers good support on a desired interval with lower bound bl and upper bound bu.
The size of the interval should be chosen w.r.t. the corresponding problem. If the input
is normalized and the weights of the neural network are regularized one can normally
guess an appropriate symmetric interval with bl = −bu. If needed, e.g. when considering
outliers or unnormalized data with high variance, one might also chose h to keep up a
constant level outside of the supported interval.

h(x) =


h(bl) x < bl
N∑
i=1

αi · k(x, xi) x ∈ [bl, bu]

h(bu) x > bu

The limiting factor of the representation capability of the activation function is the num-
ber N of used RBFs. However, smaller N speed up the learning process as they decrease
the parameters and complexity of the activation function that is optimized by Bayesian
functional optimization and used to train the network. Less complex activation functions
might also be beneficial for the generalization capability of the resulting model. For ex-
ample the approximation of the hyperbolic tangent on the interval [−7.5, 7.5], a small
N = 10 is already enough to achieve a good approximation as shown in Figure 4.1.
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Figure 4.1: Approximation of the hyperbolic tangent function with a sum of Gaussians

4.3 Bayesian Functional Optimization in Reproducing
Kernel Hilbert Space using iGP-UCB

Using standard Bayesian optimization for optimizing the activation functions in the prob-
ably high dimensional joint parameter space of weights α1:N and centers x1:N has the
disadvantage of not scaling well to higher dimensional problems (d > 10). To converge
to a globally optimal point in some bounded subset X ⊂ Rd one needs samples that
cover X sufficiently well. However, as the dimension d of the search space increases,
the amount of samples needed to sufficiently cover X grows exponentially. Also optimiz-
ing the typically nonconvex aquisition function for selecting the next query point gets
increasingly challenging in higher dimensions. Finding appropriate step sizes and direc-
tions for steepest-descent-based optimization in the joint parameter is difficult. This is
due to the space of weight and centers are different metric spaces and are influencing the
activation functions in a very different ways. Even when fixing the centers xi and only
considering the weights αi, points that are close in weight space when measured with
the euclidean distance, may not correspond to close functions in function space H. The
Gaussian processes allows to fix this with the use of an appropriate kernel that describes
the connection between parameters and the corresponding functions in H. Additionally,
when optimizing the aquisition function we should take steps w.r.t. the correct metric of
the underlying space H.

Bayesian functional optimization (BFO) with iGP-UCB as described by Ngo [Ngo16]
implicitly addresses these problems by defining the optimization problem over a repro-
ducing kernel Hilbert space (RKHS). More specifically, it aims to optimize a loss func-
tional l : H → R, where the input space H is a RKHS with reproducing kernel k as
defined in section 3.1.
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Algorithm 4.3 Bayesian Functional Optimization with iGP-UCB

1: Initialize data D0 = ∅
2: Initialize prior mean µ0 = 0
3: repeat
4: Select ht+1 = argmaxh∈H ucbt(h)
5: Sparsify ht+1 to get a compact function h̃t+1

6: Sample yt+1 = f(h̃t+1) + εt+1

7: Update data Dt+1 = Dt ∪
{(
h̃t+1, yt+1

)}
8: Compute posterior mean µt+1 and covariance Kt+1

9: Tune kernel hyperparameter
10: until Convergence

Our Gaussian process kernel is defined as

K(h, g) = exp

(
−‖g − h‖2H

2l2

)
,

where ‖·‖H is the RKHS norm induced by the inner product of H. As an activation
function h ∈ H is just a finite linear combination of basis functions we can express
the squared distance between g and h in terms of the coefficients α1:N , β1:M and basis
functions with corresponding centers x

(g)
1:N , x

(h)
1:M . This results into

‖g − h‖2H = 〈g − h | g − h〉

=

N,N∑
i=1,j=1

αiαjk(x
(h)
i , x

(h)
j )

+

M,M∑
i=1,j=1

βiβjk(x
(g)
i , x

(g)
j )

− 2

N,M∑
i=1,j=1

αiβjk(x
(h)
i , x

(g)
j )

= α>K(gg)α + βTK(hh)β − 2α>K(hg).

The coefficient vectors α and β can be represented in their joint basis {k(x, ·) | x ∈
x
(g)
1:N} ∪ {k(x, ·) | x ∈ x(h)1:M} and states the distance as a single quadratic term

‖g − h‖2H = (α− β)>K(α− β).

The kernel matrix K consists of all pairwise inner products of these basis. The update
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of the posterior mean and variance

µt = kt(h)>(Gt + σ2
nI)−1yt (4.3)

Kt(h, h
′) = K(h, h′)− kt(h)>(Gt + σ2

nI)−1kt(h
′)

σ2
t (h) = Kt(h, h) (4.4)

kt(h) = (K(h, h1), K(h, h2), . . . , K(h, ht))
>

Gt,ij = K(hi, hj) ∀i, j ∈ {1, . . . , t}

are very similar to the standard GP versions. Gt is the t × t dimensional Gram matrix
of pairwise GP kernels between the stored functions. The t-dimensional vector kt(h)
contains the GP kernels between the input and the stored functions. Using the mean
and variance as described in Equation 4.3 and Equation 4.4 lead to the expression for the
UCB aquisition function

ucb(h) = µt(h) + βt(h)
√
σ2
t (h).

In order to find the function h∗ that maximizes the aquisition function ucb(h) we compute
its functional gradient w.r.t. h. Therefore, we first compute the gradients of the GP
kernel

∂

∂h
K(h, h′) = (h′ − h)/l2 exp

(
−‖h′ − h‖2

2l2

)
and the posterior mean and variance functions

∂

∂h
µt(h) = ∇hkt(h)>(Gt + σ2

nI)−1yt

=
(
(h− hi)t/l2 ∗ kt(h)

)>︸ ︷︷ ︸
∇hkt(h)>

(Gt + σ2
nI)−1︸ ︷︷ ︸

G̃t
−1

yt (4.5)

∂

∂h
σ2
t (h) = −2∇h kt(h)>G̃t

−1
kt(h).

Remark, the expansion of ∇hkt(h) in Equation 4.5 which shows more intuitively that
the functional gradient is just a linear combination of stored functions hi and the input
function h. Further (h − hi)t = (h − h1, . . . , h − ht)

> and ∗ denotes the element-wise
multiplication. Hence, the overall UCB gradient is

∂

∂h
ucb(h) =

∂

∂h
µt(h) + βt

1√
σ2(h)︸ ︷︷ ︸
β̃t

1

2

∂

∂h
σ2
t (h)

= ∇hkt(h)>G̃−1t (yt − β̃tkt(h)).
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By applying the update rule

h← h+ Λ ((h− hi)t ∗ kt(h))> Ĝ−1t (y − β̃tkt(h)) (4.6)

with learning rate Λ, the functional UCB gradient can be used to do gradient steps directly
in RKHS. However, for computational reasons, the activation function is represented as a
finite linear combination of basis functions k(xi, x). Then the update of the corresponding
coefficients α can be expressed as

α← α + Λ(α− αi)1:t ∗ kTt Ĝ−1t (y − β̃tkt)). (4.7)

For the selection of an appropriate step size Λ a backtracking line search is used. Note
that the resulting update is the same as starting directly in the space of coefficients and
doing gradients steps w.r.t. the metric ‖h‖2H = αTKα given by the kernel matrix K.

It is important that the basis which spans the search space is chosen large enough and
well distributed to ensure a rich function representation in the supported domain of the
activation function. From Equation 4.6 and Equation 4.7 we can observe that this finite
basis consists of the basis functions which represent the sampled functions h1, . . . , ht and
the function h0 that is used to initialize the gradient descent optimizer. Thus, if the joint
basis representation of h0:t is large it will result in a large search space. On the other
hand functions with a large basis representation may slow down the GP update as the
computation of the GP kernel scales quadratically with the number of basis functions.

iGP-UCB sparsifies the function h∗ obtained from gradient descent and stores only the
sparse approximation h̃∗ consisting of the most significant basis functions. However, to
guarantee a rich representation of the search space, the initial function h0 for gradient
descent is chosen to have a large enough and well distributed basis. Therefore, we uni-
formly sample the centers xi that define the basis functions k(xi, ·) from the bounded
domain of the activation function. This choice implicitly fulfills the upper and lower
bound constraints on the domain of centers. Constraints on the coefficients are handled
in a soft manner by regularization during sparsification.

The resulting sparse function h̃∗ is used to evaluate the objective function. Here the
objective function is the loss on the validation data for the neural network that was
trained using h̃∗. We then append the sparse activation function and the returned loss to
the data setDt. This results in an incrementally extending search space that is spanned by
the significant basis functions from previous iterations and randomly sampled candidate
basis functions.

34



4.4 Sparsification of Activation Functions

We sparsify our activation functions using the kernel matching pursuit algorithm with
pre-fitting by Vincent and Bengio [VB02]. It takes data {(xi, yi)}li=1 sampled from a
function h and a dictionary of basis functions D = {ki}Mi=1 and computes a sparse ap-
proximation h̃ consisting of N of these basis function. This is achieved by solving N
times the optimization problem

min
kn+1,α1:n+1

∥∥∥∥∥
(

n∑
i=1

αi~ki

)
+ αn+1

~kn+1 − ~y

∥∥∥∥∥
2

∀n = 1, . . . , N

with ~y = (y1, . . . , yM)> , ~ki = (k(xi, x1), . . . , k(xi, xl))
> .

In contrast to the back-fitting approach which selects a new basis function and then op-
timizes the coefficients accordingly, the pre-fitting approach jointly optimizes the next
basis function and coefficients. In each iteration it selects new optimal coefficients and an
additional basis function that expands the so far solution. Following the notation of Vin-
cent and Bengio, ~y denotes the vector of evaluations of the function h at x1:l while ~ki is the
vector of evaluations of the i-th basis function at these points. The actual kernel matching
pursuit algorithm solves the optimization problem above very efficiently by making use of
orthogonality properties. It only takes two passes over the dictionary of basis functions
in each iteration. This results in an overall algorithm with time complexity O(NMl).
For a detailed algorithmic description and additional explanation regarding the kernel
matching pursuit algorithm we refer to the work by Vincent and Bengio [VB02].

Sparsifying a SoG activation function h with M basis functions k1:M as described in sec-
tion 4.2 is a special case of the algorithm, as we already know a good set of dictionary
functions and evaluation points. We select D exactly to contain the M basis function of h
and the evaluation points x1:l (l = M) to be the centers corresponding to these basis func-

tions. Therefore, ~ki is exactly the i-th row of the kernel matrix K with Kij = k(xi, xj).
Additionally, after the algorithm we do one more iteration of back-fitting with regulariza-
tion on the coefficients α. This regression problem can be solved analytically and gives
the final coefficients

min
α1:N

∥∥∥∥∥∥∥∥∥
(

N∑
i=1

αi~ki

)
︸ ︷︷ ︸

Kα

−~y

∥∥∥∥∥∥∥∥∥
2

+ ‖α‖2 ⇒ α∗ = (KK + λI)−1K~y.
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5 Evaluation

In this chapter we state our evaluation results of the presented methods for the MNIST
data set. Therefore, we first evaluated the performance of commonly used fixed activation
functions and the SoG activation function that was trained jointly with the network’s
parameters. Next, we evaluated the separate training procedure using Bayesian functional
optimization and compared it to standard parametric Bayesian optimization.
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5.1 MNIST Training with a Multilayer Perceptron

The MNIST database consists of labeled 28x28 pixel greyscale images of handwritten
digits. It contains a test data set of 10.000 data tuples and a training data set of 60.000
data tuples. From the training data set we use 5.000 data tuples as a validation data
set. Each data tuple consists of the vector representation of an image x ∈ [0, 1]784 and a
corresponding one-hot-encoded label y ∈ {0, 1}10 with

∑10
i yi = 1. We train a multilayer

perceptron with 2 hidden layers containing 500 and 300 neurons as depicted in Figure 5.1.
Each hidden layer neuron is using the SoG activation function described in section 4.2
while the neurons in the output layer are using the softmax function to map to final class
probabilities. The network is trained using the cross entropy loss and stochastic batch
gradient descent with batches of size 100. The multilayer perceptron and the training
procedure were implemented with the free machine learning library TensorFlow. For
stochastic batch gradient descent we used TensorFlow’s implementation of the adaptive
moment estimation optimizer (ADAM) by Kingma and Ba [KB14]. ADAM estimates the
mean and variance of past exponentially decayed gradients to balance new gradients and
computes adaptive learning rates for each parameter.

...
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...
...
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· · ·
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Figure 5.1: Batch training of a MLP with 2 hidden layers for the MNIST data set. The
batches of the vectorized images and corresponding one-hot-encoded labels
are sampled randomly from the training data set.
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Training
Method

Mean CE
Val. Data

Std. CE
Val. Data

Mean Error
Val. Data

Test CE
Best Model

Test Error
Best Model

Activation
Best Model

Fixed
Tanh
AF

0.2682 0.0131 7.55% 0.2360 6.67%

Fixed
Sigmoid

AF
0.1124 0.0066 3.36% 0.0977 2.94%

Joint
Training
SoG AF
(3 BFs)

0.0938 0.0075 2.67% 0.0773 2.23%

Table 5.1: MNIST results for the fixed sigmoid, fixed hyperbolic tangent, and the SoG
activation function that was jointly trained with the network. Each version
was run for 100 times

To have a baseline we first evaluate 100 training sessions for each, the sigmoid and the
hyperbolic tangent activation function. As a stopping criterion for the network training
we used the monitored validation error with a high patience p = 2000. This is to ensure
convergence of the stochastic batch gradient descent as, due to its high update variance,
it often overcomes small local minima and jumps to better ones. For the presented MLP
the sigmoid activation function performs better than the hyperbolic tangent function
and achieves a classification error of 2.94% on the test data. Next, we evaluate the
performance of the SoG activation function with 3 basis functions, whos centers and
weights are trained jointly with the network parameters by stochastic batch gradient
descent. We randomly initialized the basis function centers from the interval [−5, 5] and
the corresponding weights from the interval [−1, 1]. As described in section 4.2 we chose
the bandwidth σ = 3.5 ≈ 5 + 5/3. Compared to the models with fixed sigmoid activation
function the SoG activation function achieves a relative improvement of over 16% of
the mean validation cross entropy and an improvement of over 24% of the relative test
classification error. The high standard deviation of the cross entropy and the fact that the
resulting activation functions greatly differ in their parameters and shape, indicate that
we have found different local minima of the loss function. This is due to the stochasticity
in the initialization of the network parameters and the randomly selected batches for
stochastic gradient descent. Most commonly, the resulting activation functions took a
Gaussian or sigmoid-like shape on the supported interval. The results for the different
activation functions are stated in Table 5.1. Based on this we can evaluate our separate
training procedure with Bayesian functional optimization as described in chapter 4.
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Training
Method

Mean CE
Val. Data

Std. CE
Val. Data

Best CE
Val. Data

Test CE
Best Model

Test Error
Best Model

Activation
Best Model

PBO
(3 BFs)
(7 runs)

0.0764 0.0107 0.0583 0.0548 1.92%

BFO
(3 BFs)

(10 runs)
0.0555 0.0025 0.0524 0.0532 1.78%

BFO
(5 BFs)
(3 runs)

0.0573 0.0011 0.0560 0.0639 1.95%

BFO
(10 BFs)
(3 runs)

0.0611 0.0008 0.0600 0.0664 2.17%

Table 5.2: MNIST results for the PBO and BFO training procedure.

We selected the objective functional for Bayesian functional optimization as the cross
entropy of the validation data set obtained by training the MLP model with the input
activation function. We described this in more detail in section 4.1. To compare the
performance of Bayesian functional optimization (BFO) with iGP-UCB we additionally
evaluate the parametric formulation with standard parametric Bayesian optimization
(PBO). PBO works in the joint parameter space of centers and corresponding weights
of the parameterized activation function. It uses a parameterized version of the squared
exponential inner product kernel that if used by BFO. For the evaluation we consider 100
iterations of BFO and PBO with the UCB acquisition function and a fixed schedule for
βt = 1. Beforehand we also tried to set the schedule according to GP-UCB but received
empirically better results for the constant βt. For the optimization of the acquisition
function PBO uses LBFGS while BFO uses functional gradient descent with a backtrack-
ing line search. To speed up the network training we chose a smaller patience p = 500. At
the end we used the activation functions of the best model w.r.t. the loss on the validation
data to train a final model with patience p = 2000. The final model was used to obtain
the final test cross entropy and relative test classification error. The evaluation considers
10 runs of BFO and 7 runs of PBO for activation functions consisting of 3 basis functions
resulting in 6 overall parameters for PBO. We additionally evaluated 3 runs of BFO for ac-
tivation functions consisting of 5 and 10 basis functions. However, we not evaluated PBO
for activation functions with more than 3 basis functions as the performance drastically
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(a) Mean and standard deviation for BO and BFO
with 3 basis functions

(b) Means for BO with 3 basis functions and BFO
with 3, 5, and 10 basis functions

Figure 5.2: Performance of PBO and BFO measured over 100 iterations

decreases. Again, we chose the supported interval of the activation functions as [−5, 5].
For BFO and PBO with 3 basis functions we chose the bandwidth σ = 3.5 ≈ 5 + 5/3.
However, to compare the performance of BFO for different numbers of basis functions
and see if they converge to the same optima we also used the same bandwidth σ = 3.5
for the evaluation of BFO with 5 and 10 basis functions. Compared to the joint training
procedure the best model of BFO for 3 basis functions achieves an improvement of the
mean cross entropy on the validation error of over 40%. Compared to PBO we observe
an improvement of over 27%. All results can be found in Table 5.2. We also observe that
PBO has difficulties to sufficiently explore the space and to eventually converge to some
good minima. The cross entropy and form of the resulting activation functions varies
greatly across the different runs as indicated by the high standard deviation. However,
there is one outlier in the PBO runs with a very low cross entropy compared to the
mean. On the other hand we observe that all versions of BFO converge much faster to
better solution. The low standard deviation of the cross entropy and the similar shapes
(neglecting symmetries) of the resulting activation functions indicate that we might have
found a near globally optimal activation function for the given problem and basis function
bandwidth σ = 3.5. Moreover, the outlier activation function found by PBO has a cross
entropy value and shape similar to the activation functions found by BFO. 5.2a depicts
the mean cross entropy and the corresponding standard deviation of BFO and PBO for
3 basis functions over the course of the algorithm. As mentioned earlier we not further
evaluated PBO for more than 3 basis functions as the performance decreases heavily and
we were not able to receive usable results. BFO however still performs good for 5 and
even 10 basis functions which correspond to 20 parameters in a parametric setting. 5.2b
depicts the mean for all evaluated versions. Plots of all activation functions computed by
BFO can be found on the following pages in Figure 5.3, Figure 5.4, and Figure 5.5.

41



Figure 5.3: Activation functions with 3 basis functions found by BFO
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Figure 5.4: Activation functions with 5 basis functions found by BFO
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Figure 5.5: Activation functions with 10 basis functions found by BFO
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6 Discussion

6.1 Results

Our evaluation showed that using a shared adaptive SoG activation function for our
multilayer perceptron is clearly beneficial compared to commonly used fixed activation
functions. However, the training method has a large impact on the quality of the resulting
models. As expected, the joint training of the parameters of the activation function
and the parameters of the network resulted in models with a lower cross entropy and
classification error. This can be explained by the additional degrees of freedom in the
nonlinear activation function which can be better adapted to the inputs. Due to the
high update variance, stochastic batch gradient descent is able to overcome small local
minima, but eventually still suffers from the problem of getting caught in local minima.
This is also indicated by the high standard deviation of the cross entropy of the resulting
models and the very different shapes of the corresponding activation functions. Despite
of performing clearly better than the fixed sigmoid activation function, the joint training
method had difficulties to fully explore the space of possible SoG activation functions as
it suffers from the local minima problem.

On the other hand, the separate training variants that are using Bayesian functional
optimization and standard parametric Bayesian optimization do not suffer from the local
minima problem directly. Therefore, they are better able to explore the space of possible
activation functions. However, the objective functional or function involves the training
of a neural network model which still uses gradient descent methods and therefore still
suffers from the local minima problem. BFO and PBO try to account for the local minima
problem and the stochasticity which is involved in the training of the network by modeling
it as additional Gaussian noise.

Our evaluation also compared the performance of BFO and PBO. Bayesian functional
optimization far outperformed standard parametric Bayesian optimization and works well
even for higher dimensional problems. As they are both using the same GP kernel, it must
be that the optimization of the parametric acquisition function did not find good optima.
This is due to the fact that PBO is working in the joint parameter space of the two
potentially very different metric spaces of coefficients (weights) and centers. In contrast
BFO only considers the coefficients of a fixed set of basis functions in every iteration
and computes the gradient and step size w.r.t. the underlying norm of the reproducing
kernel Hilbert space. The selection of these basis functions is handled separately and
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consists of the most significant basis function from previous iterations and randomly
sampled ones. Despite of working in a potentially much higher dimensional search space,
this results in the selection of better evaluation points. The similar shape of the found
activation functions and low variance of the cross entropy of their corresponding models
indicates that BFO might have found a near globally optimal activation function for the
given problem and kernel bandwidth. The results also showed that 3 basis functions
with bandwidth σ = 3.5 are seemingly enough to represent a good activation function
for the MNIST data set and our MLP on the chosen interval [−5, 5]. When observing
the resulting activation functions from BFO with 5 and 10 basis functions that used the
same bandwidth, we see that their representation basically collapsed to 3 or at most
4 significant basis functions. In our evaluation, the simple heuristic for selecting the
bandwidth worked well for the given interval and 3 basis functions. However, for higher
numbers of basis functions with heuristically selected bandwidths, e.g. 5 basis functions
with bandwidth σ = 2, we experienced much worse outcomes. Eventually, fewer basis
functions seem to work better and the resulting bandwidth should be taken as a first
estimate only.

In the end, our results give two core insights. First, the selection of a problem specific
activation function shared by all hidden layer neurons, can have a significant impact on
the resulting models and their test error. For the presented setting our training method
using BFO was able to find such problem specific activation functions that might be
nearly globally optimal. Second, for the given problem, Bayesian functional optimization
far outperformed standard parametric Bayesian optimization and was able to perform
well even for high dimensional problems.

6.2 Possible Extensions and Limitations

One can think of several extensions of the presented methods. In our work we chose
the loss functional to be the cross entropy of the validation data set. However, one may
use the loss functional to encode more wanted characteristics of the resulting activation
functions. For example, one might want to additionally penalize the time that was spend
on training or evaluation of the network to encourage activation functions that provide
a good computational performance. But while one can design arbitrarily complex loss
functionals with many penalizers, this might come with the drawback of needing more
samples to converge to a sufficiently good minima. While we only investigated the use
the Gaussian RBF kernel, one might also use different kernels that are better suited for
certain problems. For example, it might be interesting to use periodic kernels as they do
not suffer from vanishing gradients.

Another possible extension considers the construction of the search space to give more
control and guarantees for how well it covers the problem domain. This could be done
by introducing a schedule for the random sampling of basis function centers which are
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used to initialize the gradient descent optimizer. Therefore, in the early stages of the
algorithm, sampled centers that are close to a center of a basis function which is already
contained in the search space are discarded and resampled. As the algorithm continues,
the schedule gradually decreases the minimal allowed distance between the centers. This
leads to a better coverage of the problem domain especially in the early stages of the
algorithm. Moreover, such schedules might provide bounds for the sample density of
centers in the problem domain and state how good the search covers the current space of
possible solutions.

We are also aware that MLPs are not the state of the art network type for many problems.
However, we are confident that due to the very generic framework of Bayesian functional
optimization, our method can also be applied to different architectures like convolutional
neural networks (CNNs) or recurrent neural networks (RNNs). For CNNs, one could sim-
ply start by using Bayesian functional optimization to optimize the activation functions
of the fully connected layers only.

In chapter 2 we presented related work that uses joint steepest-descent-based training
methods to adapt each neurons activation function individually, but is likely to suffer
from the local minima problem. While our method does not directly suffer from the
local minima problem, it is also less flexible as each neuron shares the same activation
function. In general, there is no reason to belief that a good activation function is the
same for all hidden layer neurons. However, one may use the found activation functions as
an initialization for joint training methods that work on a per neuron level. The idea is,
that starting from a better initial activation function that is more intrinsic to the problem
might result in better per neuron activation functions and lower error models. Of course
we still have the local minima problem, but we expect that per neuron activation functions
that vary around a good shared activation function to be better than activation functions
that vary around some commonly used initialization. Further, instead of training the
model that is used in Bayesian functional optimization for a fixed activation function,
one could also use a joint per neuron training procedure and directly optimize to find the
best initialization function. However, these are just hypothesis and need further research
and evaluation.

Probably the biggest limitation of our method is that it has to train the network several
times before coming up with a good activation function and model. Therefore, for com-
plex networks that are time consuming to train, the number of samples that are needed
for a sufficiently good result might be too high. A different approach is to use more so-
phisticated training methods to overcome the local minima problem in the joint training
setting. For example, Lo et al. [LGP12] and Lo et al. [LGP13] (NRAE, NRAE-MSE)
presented a method that gradually convexifies the error surface of the mean squared
error loss for MLP training. Thereby, it creates shortcuts that can be used by gradient-
descent-based methods to overcome local minima. While the first introduced Normalized
Risk-Averting Error (NRAE) training method had an overall unsatisfying success rate,
the later proposed NRAE-MSE method reached a success rate of 100% in their numerical
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experiments with a fixed hyperbolic tangent activation function. However, this method
was designed for optimizing the weights of a multilayer perceptron for a fixed choice of
the activation function only. It is therefore unclear how well it can be extended to jointly
train the weights and activation function parameters, as the joint problem might result
in completely different error surfaces.

6.3 Conclusion

In this work we presented a training method for shared activation functions for multi-
layer perceptrons. Therefore, we formulated the problem of finding an optimal shared
activation function as a functional optimization problem. We then used Bayesian func-
tional optimization with iGP-UCB to search for activation functions that we modeled
as elements of a reproducing kernel Hilbert space. In contrast to training methods that
jointly train the activation functions parameters together with the network parameters,
our method does not suffer from the local minima problem. Our evaluation showed that
Bayesian functional optimization far outperforms the parametric approach with standard
Bayesian optimization and works well even for higher dimensional problems. Moreover,
the resulting activation functions have a significant lower test classification error com-
pared to their jointly trained variants and the commonly used fixed activation functions.
The similar shape of the found activation functions and low variance of the cross entropy
of their corresponding models are indications that we might have found near globally op-
timal activation functions. Compared our baseline models with fixed sigmoid activation
function and jointly trained SoG activation function, we were able to reduce the relative
classification error on the test data by over 39% and over 20% respectively.
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[TKGK16] H. Tyagi, A. Kyrillidis, B. Gärtner, and A. Krause. “Learning sparse ad-
ditive models with interactions in high dimensions.” In: proceedings of the
19th International Conference on Artificial Intelligence and Statistics (AIS-
TATS). 2016 (cit. on p. 12).

[TM14] A. J. Turner and J. F. Miller. “NeuroEvolution: Evolving Heterogeneous Ar-
tificial Neural Networks.” In: Evolutionary Intelligence 7.3 (2014), pp. 135–
154. issn: 1864-5917. doi: 10.1007/s12065- 014- 0115- 5. url: http:

//dx.doi.org/10.1007/s12065-014-0115-5 (cit. on pp. 9, 12).

[Tou16] M. Toussaint. “Introduction to Machine Learning.” University Lecture. 2016
(cit. on p. 25).

[VB02] P. Vincent and Y. Bengio. “Kernel Matching Pursuit.” In: Machine Learning
48.1 (2002), pp. 165–187. issn: 1573-0565. doi: 10.1023/A:1013955821559.
url: http://dx.doi.org/10.1023/A:1013955821559 (cit. on p. 35).

[VPU98] L. Vecci, F. Piazza, and A. Uncini. “Learning and Approximation Capabil-
ities of Adaptive Spline Activation Function Neural Networks.” In: Neural
Networks 11.2 (1998), pp. 259–270. issn: 0893-6080. doi: https://doi.
org/10.1016/S0893-6080(97)00118-4. url: http://www.sciencedirect.
com/science/article/pii/S0893608097001184 (cit. on p. 11).

[WHZ+16] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. De Freitas. “Bayesian
Optimization in a Billion Dimensions via Random Embeddings.” In: J. Artif.
Int. Res. 55.1 (2016), pp. 361–387. issn: 1076-9757. url: http://dl.acm.
org/citation.cfm?id=3013558.3013569 (cit. on p. 12).

51

http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/5466-efficient-sampling-for-learning-sparse-additive-models-in-high-dimensions.pdf
http://papers.nips.cc/paper/5466-efficient-sampling-for-learning-sparse-additive-models-in-high-dimensions.pdf
http://papers.nips.cc/paper/5466-efficient-sampling-for-learning-sparse-additive-models-in-high-dimensions.pdf
http://dx.doi.org/10.1007/s12065-014-0115-5
http://dx.doi.org/10.1007/s12065-014-0115-5
http://dx.doi.org/10.1007/s12065-014-0115-5
http://dx.doi.org/10.1023/A:1013955821559
http://dx.doi.org/10.1023/A:1013955821559
http://dx.doi.org/https://doi.org/10.1016/S0893-6080(97)00118-4
http://dx.doi.org/https://doi.org/10.1016/S0893-6080(97)00118-4
http://www.sciencedirect.com/science/article/pii/S0893608097001184
http://www.sciencedirect.com/science/article/pii/S0893608097001184
http://dl.acm.org/citation.cfm?id=3013558.3013569
http://dl.acm.org/citation.cfm?id=3013558.3013569


[WZH+13] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. Freitas, et al. “Bayesian opti-
mization in high dimensions via random embeddings.” In: AAAI Press/International
Joint Conferences on Artificial Intelligence. 2013 (cit. on pp. 9, 12).

[Yao99] X. Yao. “Evolving artificial neural networks.” In: Proceedings of the IEEE
87.9 (1999), pp. 1423–1447. issn: 0018-9219. doi: 10.1109/5.784219 (cit.
on p. 12).

http://dx.doi.org/10.1109/5.784219


Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature


	Introduction
	Related Work
	Background
	Reproducing Kernel Hilbert Spaces
	Gaussian Processes
	Bayesian Optimization
	Artificial Neural Networks

	Methods
	Problem Statement
	The SoG activation function
	Bayesian Functional Optimization in Reproducing Kernel Hilbert Space using iGP-UCB
	Sparsification of Activation Functions

	Evaluation
	MNIST Training with a Multilayer Perceptron

	Discussion
	Results
	Possible Extensions and Limitations
	Conclusion

	Bibliography

