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Abstract

The goal of this work is to investigate an approach to model predictive control in
constrained settings, where the motion involves constraints and compliant motion is
desired. Specifically, the fixed Lagrangian should be evaluated on a simulated two link
serial robot model performing a motion that involves sliding.

For this task, it is needed to setup a simulation environment for the modeled system, to
implement the control strategy and to analyze this control strategy with respect to the
stiffness along the planned trajectory. Further on, there will be a theoretical investigation
of the closed-loop system regarding stability. As an advanced test scenario a position
error in the sliding surface is introduced. Hence, only position control will fail, since
either the system could be damaged due to a high-gain feedback behavior or the contact
and thus the sliding motion will not occur. Therefore, it is investigated whether it is
possible to extend the control structure in order to ensure that the sliding motion takes
place as desired.

Zusammenfassung

Das Ziel dieser Arbeit ist es, einen Ansatz zur modellprädiktiven Regelung in beschränk-
ten Szenarien, bei welchen die Bewegung beschränkt ist und weiche Bewegungen
gewünscht sind, zu untersuchen. Im Speziellen soll die feste Lagrange-Funktion an
einem zweisegmentigem seriellem Roboter, welcher eine gleitende Bewegung durchführt,
untersucht werden.

Für diese Aufgabe ist es notwendig eine Simulationsumgebung für das modellierte
System aufzusetzen, die Regelstrategie zu implementieren und das Analysieren dieser
Regelstrategie bezüglich der Steifheit entlang der geplanten Trajektorie. Weitergehend
wird es eine theoretische Untersuchung des geschlossenen Kreises hinsichtlich der Stabil-
ität geben. Als weiterführendes Testszenario wird ein Positionsfehler in der Oberfläche,
welche zum Gleiten genutzt werden soll, eingeführt. Daher wird eine reine Positions-
regelung fehlschlagen, weil entweder das System durch ein high-gain feedback Verhalten
beschädigt werden könnte oder der Kontakt und somit die gleitende Bewegung nicht ein-
treten wird. Daher wird untersucht, ob es möglich ist die Regelstruktur so zu erweitern,
dass die gleitende Bewegung wie gewünscht stattfindet.
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1 Introduction

Control in robotics for trajectory tracking is well known nowadays. In industry, there
exist very precise robots for fabrication tasks and several other purposes. But when the
planned trajectory has contact involved, the control strategies used in industry are really
stiff. This means, if the contact point is not precisely known then these robots would
either not go in contact because the planned trajectory stays above or would force the
end-effector into the object. Such a behavior is often undesired, e.g. for tasks like object
interaction with soft/ fragile objects. Especially, this becomes more and more important
for tasks, where robots and humans interact. There it is really important, that the robot
can be operated safely without the fear that it tries to interpenetrate the human, even
if the human is not where the robot expects him to be. Another very challenging task
is legged motion, where it is essential to hit the contact point in a manner that the
robot does not fall or fails to complete the planned task. There it might be impossible to
generate a precise preplaned trajectory if the terrain is changing or can’t be observed
precisely due to perception issues like the lack of high precision sensors or malfunction.
Thus, compliant motion control is a challenging task in modern robotics and is still an
active research field.

One simple and often used approach to this problem is to heuristically design controllers
based on motion primitives. This can be achieved by trying to reproduce natural behavior
motions. A simple example scenario is a end-effector of a robotic arm which should
slide on a table. There a simple motion primitive is sense if the contact takes place at
the desired time and if not move the end-effector down until the contact takes place.
Then execute the rest of the task. But this scheme requires often expert knowledge and
does not generalize to different tasks once a controller is designed for a specific task.

As a more generic approach the problem can also be viewed from the trajectory opti-
mization side. Here it is well known how to design objectives for planning a trajectory
around obstacles for various tasks. But it is clear that a position controller alone on
the trajectory is not able to execute the desired task, if compliant motion is required.
For instance a PID position controller stabilizing the error between robot position and
reference trajectory would result in the behavior mentioned above, thus it would not
be possible to perform a compliant execution of the motion. Due to the close relation
between trajectory optimization and optimal control, it is easy to transfer the objective
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1 Introduction

into an optimal control problem and hence design a control trajectory. But this is still an
open-loop controller not using the information for any sensors or state estimates. The
naive idea of a complete replanning of the whole task trajectory is too costly and thus
infeasible to execute in the real time loop. The central question is how to use the new
information and execute the task in an approximate optimal way.

In the control theory community there exists a control scheme called model predictive
control, short MPC. This scheme can handle nonlinear system dynamics and constraints
explicitly. Here a short horizon optimal control problem is solved in every time step
and then only the first time step is applied to the real system. Then this procedure
repeats iteratively. Through the insights on trajectory optimization it is easier to define
meaningful objectives. Usually the MPC scheme is an approximation or overestimation
of the underlying optimal control problem with infinite horizon. Therefore my supervisor
proposed in [Tou16] an approach to MPC based on the Bellman’s principle and quadratic
approximation of the fixed Lagrangian for a underlying fixed horizon optimal control
problem. This scheme will be derived in more detail later.

In this work I will derive an algorithm to apply the approximate constraint model predictive
control scheme and evaluate this method on two numerical examples, a simple trajectory
optimization between two points and a two link serial robot. The purpose of the first
example is getting insights into the control scheme and the latter is to evaluate the
physical behavior in the contact phase. The special interest of the evaluation is to judge
how compliant the resulting behavior is. Especially if some constraints are uncertain or
even unknown.

In the next chapter I will evaluate some of the related work, which motivated us
to look deeper into the topic. There, I want to point out different approaches how
controllers are designed to handle contact situations for communities with different
backgrounds. In chapter 3 the basics on efficient trajectory optimization using the
k-order constrained motion optimization framework and on standard model predictive
control will be derived. Chapter 4 presents a derivation of approximate constraint model
predictive control. Here the cost-to-go approximation is explained in detail and a design
scheme for the application of the control strategy is presented. The evaluation of the
approximate constraint MPC controller on two simulation examples with special focus
on the compliance in contact situation will be in chapter 5. Chapter 6 discusses the
results of the evaluation, alternative control structures and the gained insights through
the work. In the end a conclusion will be given.
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2 Related Work

Here some of the work motivated us to look deeper into the topic is presented. Also
I want to give a brief overview of the different approaches how people with different
backgrounds tackle the control problem involving contact. In Figure 2.1 the different
types of approaches to this task are shown. These domains are not directly separated
and often share common ideas which is indicated by the intersection. In the following,
some elected approaches are reviewed and their main targets and drawbacks are pointed
out.

Robust
Trajectory
Execution

Control
Theory
(MPC)

Heuristical
Controllers

Figure 2.1: Pictorial representation of the different approaches for designing a con-
troller.

First, consider an approach for robust trajectory execution. One example for this is the
DIRCON-Algorithm proposed by [PKT16]. This Algorithm is evaluated on the ATLAS
robot in a walking and climbing task. The authors consider a constrained Lagrangian
system ẋ(t) = f(x(t), u(t)) with the constraint Φ(x(t)) = 0, where x(t) describes the
position and velocity of the robot in state space. The design phase for the overall task
follows in three steps:

1. Constrained Direct Collocation
A standard optimal control problem is solved via direct collocation for generating
the optimal state-control trajectories.
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2 Related Work

2. Design an equality-constrained LQR
A time-varying linear system constrained in the manifold F (t)x(t) = 0 based on the
linearization around the trajectory form step 1. is projected via a transformation
matrix P (t) into an unconstrained time-varying linear system. Then a LQR is
designed for this unconstrained system.

3. QP Feedback Controller
Based on the solution of the time-varying LQR and the Hamilton-Jacobi Bellman
equation the cost for the QP is derived.

Step 1. and 2. can be computed offline and only step 3. needs to be executed in real
time. The QP Feedback Controller is designed to explicitly handle input constraints
and compensate friction. Also minor variations in the planned contact time can be
handled. It also incorporates a no-slip condition. Thus the main target of the authors is
to design a generic design scheme for executing a preplanned trajectory in situations
where the contact point is known precisely. Hence the main disadvantage is that the
environment needs to be known precisely when planning the trajectory in order to have
the precise knowledge when and where the contact takes place and to be able to execute
the trajectory.

In the second domain of approaches, the Heuristical Controllers, there are controllers
which are designed to also execute a motion but not necessary stiff around the trajectory.
This means, that the trajectory is an optimal plan for an uncertain environment and the
target is to reproduce the contact profile to achieve the task. Usually, here are controllers
which try to mimic a specific information seeking behavior. An interesting approach
can be found in [TRB+14]. There, the authors design a switching controller between a
position and force controller depending whether the desired contact takes place or not. If
mismatches between knowledge of the environment and the real one occur, they mimic
a natural behavior. Specifically this means, that if no contact takes place (e.g. no contact
force is measured) at a time where the planned trajectory commands to be in contact,
then a PD behavior is designed, which pulls the end-effector in the constraint along the
constraint gradient direction. Also the task space trajectory is used as a feedforward
control, which creates only movement orthogonal to the constraint gradient. In the case
where contact is sensed and no contact is desired, a PD behavior, similar to the previous
case, is designed pushing the end-effector away from the constraint. The two remaining
cases are the application of the force or position controller if contact or not is desired
and takes place, respectively. This switching behavior of the dual-execution controller
is illustrated in Figure 2.2. The authors implemented this controller on a 7-DOF Kuka
arm with a 4-DOF Barrett hand. They were able to move a finger to a point on the
table. They achieved a good result for different table heights, which are unknown to the
controller. But such controllers use an optimal plan for the task and do not necessary
result in an optimal behavior (closed-loop trajectory) of the robot. This is due to the
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offline
optimization

position
controller

force
controller

movement
correction

Figure 2.2: Control architecture for the dual execution controller.

movement correction part, which is allowed to change the execution of the optimal plan.
Also it is not general how to design the movement correction, since just pulling into the
constraint may violate other objectives or constraints. One example could be the pick
up of an obstacle. If the obstacle is too far away the robot could fall if only the arm is
stretched forward. Then, more complex movement correction strategies are required.
Thus expert knowledge is needed to design these movement corrections.

For the control theory domain the focus is on model predictive control, since this scheme
is generic and directly handles nonlinearities. This is possible because it is based on a
repetitive solution of a small horizon optimal control problem. Thus, the resulting closed-
loop trajectories will be near to optimal or at least better than simply designing motion
patterns by hand. Rather than explaining this control scheme I refer to section 3.2 or
to [MA17], where the general idea of model predictive control is explained in detail.
Based on the knowledge from [Mül15], [MA17] and the approximate constraint model
predictive control scheme proposed by [Tou16] I will discuss the different approaches
to MPC. In the MPC community the MPC term refers to the stabilization of a set-point.
Here typically the involving cost function needs to be positive definite with respect to
this set-point. Then stability follows from Lyapunov when the cost function is used
as Lyapunov function and attractivity from Barbalat’s lemma. As a relaxation of the
standard MPC scheme the positive definiteness property in the cost is dropped. The
resulting MPC scheme is known as economic MPC in the control theory literature. In this
scheme the closed-loop behavior might not necessary be convergent to a set-point, e.g.
if a periodic movement has a lower cost than a stationary set-point. Applications of MPC
schemes in robotics are also known. One example is [ELT+13] and [TET12], where the
authors designed a MPC controller for a humanoid robot in simulation for different tasks.
They use as optimization framework their iterative LQG scheme [TL05] and explain in
detail how they create the objectives as a weighted sum of scalar objectives for different
tasks. With this MPC scheme they were able to achieve different motions like getting
up of the ground or walking as concatenation of smaller movements. For walking this
means a repetition of four states right step, right stance, left step and left stance.
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2 Related Work

For the above stated general MPC schemes, the drawback is that fixed time horizon tasks
are not obvious to encode. This is even harder if an economic cost is used and the overall
target is not visible in the optimization horizon. Thus the target must be encoded in the
terminal cost/ cost-to-go term of the MPC optimization. In the tutorial paper [Tou16] an
approximate constrained MPC scheme is proposed which designs a quadratic cost-to-go
term based on the Lagrangian of the finite time optimal control problem. This method
seems promising and is a different approach to MPC compared to the standard methods
for designing a MPC controller. Here a finite time optimal control problem is solved
offline and afterwards a controller tailored to execute this task is generically designed.
Further informations on how this is achieved are given in chapter 4.
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3 Background

This chapter presents the background used in this work. Here a framework for efficient
path optimization is explained. Furthermore a relation to optimal control is shown.
As second topic the standard model predictive control approach is presented. The
extensions to the economic MPC scheme are also shown. This scheme is similar to the
method presented in chapter 4.

3.1 k-order Constrained Path Optimization

For model predictive control it is necessary to deal with fast optimization algorithms.
Therefore it is important to create structured optimization problems. For this purpose
consider the k-order constrained path optimization framework.

A path/ trajectory x consists of T time steps for n dimensional position xt in joint
space X ⊆ Rn. Hence the path x is a n× T dimensional optimization variable over the
domain R. This leads to a general nonlinear program

min
x

f(x)
s. t. g(x) ≤ 0

h(x) = 0,

where f : Rn×T 7→ R is the objective and g : Rn×T 7→ Rdg and h : Rn×T 7→ Rdh are the
inequality and equality constraints, respectively. Further, let all functions be sufficiently
smooth, in order to use a Newton method for optimization.

To introduce structure in the nonlinear program we assume the k-order Markov assump-
tion

f(x) =
T−1∑
t=0

ft(xt−k:t)

g(x) =
T−1⊗
t=0

gt(xt−k:t)

h(x) =
T−1⊗
t=0

ht(xt−k:t),

15
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x−2

x−1

x0

x1
x2

x3

f0(x−2:0)
g0(x−2:0)
h0(x−2:0)

f1(x−1:1)
g1(x−1:1)
h1(x−1:1)

f2(x0:2)
g2(x0:2)
h2(x0:2)

f3(x1:2)
g3(x1:3)
h3(x1:3)

pr
efi

x

Figure 3.1: Visualization of the structure for a 2-order constrained path optimization
problem.

Adapted form: [Tou16] Figure 1

where xt−k:t is the tuple notation for {xt−k, . . . , xt} and
⊗

denotes that g(x), h(x) consists
of stacked constraints gt(xt−k:t), ht(xt−k:t) for every time step t. This also implies that
the overall objective f(x) is a sum of objectives for every time step and all functions at
a time step t only depend on the current and the last k time steps. In the first k time
steps the dependency for ft leaves the range of the optimization variable. Hence define
the prefix x−k:−1 and encode there e.g. the initial state for the considered system. The
k-order structure is depicted in Figure 3.1 for a 2-order Markov assumption. The dotted
line indicates the local dependency of the involving functions at a time step. This leads
to the k-order Motion Optimization (KOMO)

min
x

T−1∑
t=0

ft(xt−k:t)

s. t. gt(xt−k:t) ≤ 0 ∀T−1
t=0

ht(xt−k:t) = 0 ∀T−1
t=0 .

For further details on the KOMO framework consider [Tou14b] or [Tou16].

For such optimization problems there exist efficient solvers, which can handle even
larger dimensions (dim(x) > 50). These solvers exploit the banded Lagrangian being
introduced by the KOMO framework. One such solver is the any time augmented
Lagrangian, which uses a row-shifted storage scheme for the gradients and hessians and
approximate the hessian of f(x) using the Gauss-Newton approximation for a squared
ft as cost. More information on this solver can be found in [Tou14b] or [Tou14a].
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3.1 k-order Constrained Path Optimization

3.1.1 Relation to Optimal Control

According to the lectures [Ebe14] and [Arn16] optimal control problems are usually
stated in continuous time, state-space (q =

(
x ẋ

)>
for second order systems like

mechanical systems) and use a control input u. An optimal control problem in Lagrange
Form is given by

min
u(t)

∫ tf

t0
f0(q(t), u(t), t)dt

s. t. q̇(t) = f(q(t), u(t), t) ∀t ∈ [t0, tf ]
g(q(t), u(t), t) ≤ 0 ∀t ∈ [t0, tf ]
Ψ(q(t0), q(tf )) = 0,

where f0 : Rn × Rp × R 7→ R is a scalar objective, g : Rn × Rp × R 7→ Rdg are inequality
constraints at every time step t on the trajectory and t0 and tf are the initial and end
time, respectively. Ψ : Rn × Rn 7→ RdΨ are the generalized boundary conditions. These
could encode the initial and end state. The first constraint is the dynamic equation for
the considered system.

For the KOMO framework the initial and end time are fix and use a grid with fixed
step size τ on the position. Thus the continuous problem is transformed with finite
differences into a discrete optimization problem with reduced optimization variables.
Through the dynamic equation the position trajectory x can be mapped on a control
trajectory u. For example for mechanical systems

u(xt−k:t) = M(x)xt − 2xt−1 + xt−2

τ 2 + F (x, xt − xt−1

τ
)

maps the position trajectory x onto a control trajectory u. If not the whole space is
reachable, e. g. for box constraints on the control input u or under actuated systems, it
is necessary to map these into the position space. The generalized boundary condition Ψ
needed to be encoded in the prefix and as constraints on the last time step. Some
boundary conditions might be not possible in the KOMO framework. For example a
periodic boundary condition

Ψ(q(t0), q(tf )) = q(t0)− q(tf )

is not possible to express in this framework, since the condition depends on two time
steps which lie not in a k + 1 neighborhood.
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3 Background

k +Hk + 1 k + 2k

Set-Point
Predicted Output
Measured Output
Predicted Control Input
Past Control Input

FuturePast

Prediction Horizon H

Time Step τ
. . .

Figure 3.2: Illustration of the MPC scheme.

Adapted form: http://math.stackexchange.com/questions/1098070/model-predictive-control

3.2 Model Predictive Control

Model predictive control is an optimization based control scheme. In the literature it is
also often referred to as receding horizon control. The key idea is to repetitively solve a
small horizon optimal control problem and apply the first step to the real system. Thus
it is easy to explicitly incorporate constraints on the state and control in the control
scheme. This idea is for the time step k depicted in Figure 3.2, where H denotes the
prediction horizon.

In order to state the MPC algorithm consider the system dynamics as nonlinear difference
equation

x(t+ 1) = f(x(t), u(t)), x(0) = x0,

where f : Rn × Rm → Rn, x(t) ∈ Rn and u(t) ∈ Rm are the system dynamics, state and
control input, respectively. The initial condition is given by x0 ∈ Rn. At every time step t
the state and input constraints are denoted by

x(t) ∈ X,
u(t) ∈ U,

18
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3.2 Model Predictive Control

Algorithm 3.1 Model predictive control iteration

1: x̄(0)← x(t) // Measure current state and set initial condition
2: x̄, ū← solve (3.1)-(3.5) // Solve the optimal control problem
3: u(t)← ū(0) // Apply the first control to the system
4: i← i+ 1 & goto 1 // Increment the iteration counter

where X ⊆ Rn and U ⊆ Rm are some constraint sets. Then the model predictive control
optimization with horizon H at every time step t is given by

min
ū

H−1∑
k=0

l(x̄(k), ū(k)) + V f (x̄(H)) (3.1)

s. t. x̄(k + 1) = f(x̄(k), ū(k)) ∀H−1
k=0 , (3.2)

x̄(0) = x(t), (3.3)

x̄(k) ∈ X, ū(k) ∈ U ∀H−1
k=0 , (3.4)

x̄(H) ∈ Xf , (3.5)

where quantities with bar ·̄ denote predicted state and input trajectories at time t. In
the objective (3.1) l : Rn × Rm → R is referred to as stage cost and V f : Rn → R is the
terminal cost. The constraint (3.2) represents a simulator for the predicted state and the
control sequence. (3.3) sets the first state equal to the measurement/ estimation of the
state. The sets X and U in (3.4) are the state and input constraints at every time step
for the predicted trajectories and Xf ⊆ X in (3.5) is a terminal set for the last state in
the prediction horizon. The application of the model predictive control scheme can be
found in Algorithm 3.1.

In the literature there exist several different theoretical results for different assumptions.
There are mainly two big domains, the (stabilizing) MPC and economic MPC, where the
latter is a generalization of the first domain. For stabilizing MPC the stage cost l, the
terminal cost V f and the terminal set Xf need to fulfill certain conditions. E.g. the stage
cost function l needs to be positive definite w.r.t. a set-point and the terminal cost V f

form a local control-Lyapunov function w.r.t. an auxiliary local control law u = πloc(x)
on the terminal set Xf . Details on this specific approach can be found in [MA17] in
section 2.1. The economic MPC scheme allows for more general objectives, especially
the stage cost function l doesn’t need to be positive definite w.r.t. a set-point. The
optimal closed-loop behavior might also not be convergent to a set-point. A periodic
solution might result in a lower cost and is thus the optimal strategy. For more details on
different MPC schemes consider [MA17]. There, a good overview of different schemes
is presented and also approaches to distributed MPC schemes are discussed.
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4 Approximate Constrained Model
Predictive Control

In this chapter the control strategy approximate constrained model predictive control will
be derived from the k-order Bellman’s principle. The derivation will be based on the
fixed Lagrangian and a quadratic approximation of the cost-to-go. Special to this control
scheme is, that it is designed to handle fixed horizon tasks in an approximate optimal
way. Since model predictive control is a control scheme, which is based on optimization
in the real time loop, the involved optimization problem needs to be structured and thus
the solver can exploit this structure. Hence the KOMO framework will be used. For more
details on KOMO framework consider section 3.1.

4.1 Model Predictive Control Optimization

The optimization problem at every time step t is

πt : xt−k:t−1 7→ argmin
xt:t+H−1

 t+H−1∑
s=t

fs(xs−k:s) + J̃t+H(xt+H−k:t+H−1)

+ρ
∣∣∣∣∣∣x∗t+H−1 − xt+H−1

∣∣∣∣∣∣2


s. t. gs(xs−k:s) ≤ 0 ∀t+H−1
s=t

hs(xs−k:s) = 0 ∀t+H−1
s=t ,

(4.1)

where fs, gs and hs are the same functions as in the optimal control problem in (4.2).
The scalar objective function fs for every time step is called stage cost. The prediction
horizon is H. J̃t+H is the cost-to-go approximation, which will be derived in detail in the
following. The purpose of this cost-to-go approximation is to transfer the overall task
encoded in the finite time optimal control problem into the MPC optimization. The last
term in the objective is the tube term, which ensures that the cost-to-go approximation
J̃t+H stays valid since the cost-to-go term is based on a approximation. Thus the cost-to-
go approximation and the tube term form the terminal cost.
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4 Approximate Constrained Model Predictive Control

4.2 Approximate cost-to-go

The derivation of the approximate cost-to-go is based on a optimal control problem for
the overall task. The cost-to-go is an approximation of the part which is not covered
by the prediction horizon of the approximate constrained model predictive control
optimization. Thus the optimization problem for optimal control with time horizon T is
briefly restated in KOMO notation as

min
x

T−1∑
t=0

ft(xt−k:t)

s. t. gt(xt−k:t) ≤ 0 ∀T−1
t=0

ht(xt−k:t) = 0 ∀T−1
t=0 ,

(4.2)

where ft : Rn×k+1 → R is the scalar objective and gt : Rn×k+1 → Rdg and ht : Rn×T → Rdh

are the inequality and equality constraints, respectively.

Derivation cost-to-go: Motivated by the tutorial paper [Tou16] we use the k-order
Bellman’s principle on the fixed Lagrangian. Therefore the fixed Lagrangian for every
time step t is defined as

f̃t(xt−k:t) = ft(xt−k:t) + (λ∗t )
>gt(xt−k:t) + (κ∗t )

>ht(xt−k:t),

where λ∗t and κ∗t denote the fixed Lagrange parameter for the optimal solution to the
optimal control problem (4.2). Defining then the cost-to-go

J̃t(xt−k:t−1) = min
xt:T −1

T−1∑
s=t

f̃s(xs−k:s)

for the fixed Lagrangian over a k-order separator. A separator means the future becomes
independent from the past conditional to the separator in Markovian settings. Then
Bellman’s principle imply

J̃t(xt−k:t−1) = min
xt

[
f̃t(xt−k:t) + J̃t+1(xt−k+1:t)

]
, J̃T (xT−k:T−1) = 0.

In order to solve this analytically a quadratic approximation of the cost-to-go and the
fixed Lagrangian

J̃t(xt−k:t−1) = x>t−k:t−1Vtxt−k:t−1 + 2v>t xt−k:t−1 + ϑt

f̃t(xt−k:t) = 1
2(xt−k:t − x∗t−k:t)

>∇2f̃t(x∗t−k:t)(xt−k:t − x∗t−k:t)

+∇f̃t(x∗t−k:t)
>(xt−k:t − x∗t−k:t) + f̃t(x∗t−k:t)

is used, where the approximation of the fixed Lagrangian is a Taylor series expansion
around the solution x∗ to the optimal control problem (4.2). Using the quadratic
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4.2 Approximate cost-to-go

approximation to rewrite the optimization as an unconstrained quadratic program in
block matrix form

J̃t(xt−k:t−1) = min
xt

[(
xt−k:t−1

xt

)> (
Dt Ct
C>t Et

)(
xt−k:t−1

xt

)
+2

(
dt
et

)> (
xt−k:t−1

xt

)
+ct

]
, (4.3)

where the matrices are defined as

Dt Ct

C>t Et


=

(
1
2∇

2f̃t(xt−k:t)
)

11

(
1
2∇

2f̃t(xt−k:t)
)

12

(
1
2∇

2f̃t(xt−k:t)
)

13(
1
2∇

2f̃t(xt−k:t)
)

21

(
1
2∇

2f̃t(xt−k:t)
)

22
+
(
Vt+1

)
11

(
1
2∇

2f̃t(xt−k:t)
)

23
+
(
Vt+1

)
12(

1
2∇

2f̃t(xt−k:t)
)

31

(
1
2∇

2f̃t(xt−k:t)
)

32
+
(
Vt+1

)
21

(
1
2∇

2f̃t(xt−k:t)
)

33
+
(
Vt+1

)
22





dt
et


=

(
1
2∇f̃t(xt−k:t)− 1

2∇
2f̃t(x∗)x∗

)
1(

1
2∇f̃t(xt−k:t)− 1

2∇
2f̃t(x∗)x∗

)
2

+
(
vt+1

)
1(

1
2∇f̃t(xt−k:t)− 1

2∇
2f̃t(x∗)x∗

)
3

+
(
vt+1

)
2





ct = 1
2(x∗)>∇2f̃t(x∗)x∗ −∇f̃t(x∗)

>
x∗ + f̃t(x∗) + ϑt+1,

where the (·)ij is the sub block matrix and (·)k is the sub block vector notation ac-
cording to the dimensions of xt−k:t−1, xt, Vt+1 and vt+1. The explicit minimizer of the
unconstrained QP (4.3) is

x̄t = argmin
xt

[
f̃t(xt−k:t) + J̃t+1(xt−k+1:t)

]
= −E−1

t

(
C>t xt−k:t−1 + et

)
.

Plugging in the minimizer x̄t and the quadratic approximation of J̃t in the quadratic
Bellman equation (4.3) and a coefficient comparison yields in the update rules

Vt = Dt − CtE−1
t C>t , VT = 0

vt = dt − CtE−1
t et, vT = 0 (4.4)

ϑt = ct − e>t E−1
t et, ϑT = 0.

With these update rules it is possible to compute the cost-to-go approximation around x∗

for every time step t as a backwards in time recursion.
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4 Approximate Constrained Model Predictive Control

Algorithm 4.1 Application of the approximate model predictive control scheme

1: solve optimal control problem (4.2) // preparation phase
2: for k ← T − 1, T − 2, . . . , 0 do
3: apply update rule (4.4)
4: end for
5: for k ← 0, 1, . . . , T − 1 do // main control loop
6: if k +H < T − 1 then
7: solve approximate constrained MPC optimization (4.1)
8: else
9: solve optimal control optimization (4.2) with reducing horizon

10: end if
11: u← solve dynamics for control at time step k
12: apply control u
13: end for

4.3 Design Scheme

The derived approximate constrained model predictive control scheme is applied in four
steps to a real system:

1. Solve the optimal control problem (4.2) for generating an optimal trajectory

2. Compute the local approximations of the cost-to-go for every time step by repeti-
tively applying the update rules (4.4) backwards in time

3. Repetitively solve the approximate constrained model predictive control optimiza-
tion problem (4.1) and apply the first step as control input until the prediction
horizon hits the end point

4. Repetitively solve the optimal control problem (4.2) with a reducing prediction
horizon and apply the first step as control input until the end time is reached

Here the first two steps are computed offline and are not time critical. Only the last two
steps are computed in the real time loop. But the involving optimization has a reduced
size and is structured. Therefore these MPC optimizations are fast to solve.

This design procedure is summarized in a structured way in Algorithm 4.1.
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4.4 Stability investigation

4.4 Stability investigation

Stability in the sense of Lyapunov is defined as:
Let ẋ = f(x), f : Rn → Rn, f locally Lipschitz be a time invariant nonlinear
dynamical system with the initial condition x0 ∈ Rn. Further let x̄ be a
equilibrium point for the system. If for any ε > 0 there exists a δ > 0 such
that

∀x0 ∈ Bδ(x̄) ⇒ x(t) ∈ Bε(x̄) ∀t > 0,

then the equilibrium point is stable.

This definition clearly shows that stability is a property for dynamical systems, which
says that system stays close to the equilibrium if we start close for all future time. For
asymptotic stability the property limt→∞ x(t) = x̄ is added. Since we consider a finite
time task with the approximate constrained model predictive control scheme classical
asymptotic stability does not make sense to investigate. Because we allow general tasks,
like in the economic MPC setting, it is not clear to consider stability against what. E.g.
for a stable error between planned reference and system trajectory it would be necessary
that the target of the controller is a reference tracking (error stabilization). But exactly
this is not the purpose of the proposed control scheme, at least not in this work, since a
controller for executing compliant motion tasks is desired.

25





5 Evaluation

Here the derived method approximate constrained model predictive control is evaluated.
First a simple one dimensional trajectory optimization example is considered. This is
done in order to get insights into the method and represents a proof of concept. The
second example system is a two link serial robot. It can be seen as a simple practical
application of the control scheme and enables further investigations. Especially the
contact phase can be evaluated.

5.1 1D Trajectory Optimization

This is the simple 1D example, which is used as a first evaluation of the method. Here
a trajectory is discretized in T points and then the acceleration profile is minimized
between two points x∗−1 and x∗T−1. The initial and end velocity should be zero. This
yields in KOMO notation the optimization problem

min
x0:T −1

T−1∑
s=0
||xs−2 − 2xs−1 + xs||2

s. t. xs − x∗s = 0 for s ∈ {−1, T − 1}
xs−1 − xs = 0 for s ∈ {−1, T − 1},

(5.1)

where s = −1 define the prefix and s = T − 1 the target state.

The current implementation of the KOMO framework supports only sum-of-squares
cost features and the quadratic approximation can be passed as sum-of-squares via
a quadratic factor. For this a Cholesky decomposition is used and thus the quadratic
approximation needs to have full rank (det(Vt) 6= 0). The cost in this example has only
a local effect in every time step. Thus cancels out in the update law (4.4) and has no
influence on Vt. Since linear constraints have a linear impact on the approximation of
the cost-to-go, see (4.4) a method is needed to ensure that the cost-to-go approximation
is a full rank quadratic function. An easy and simple way is to base the approximation
on the fixed augmented Lagrangian

L̃t(x, λt, κt, ν, µ) = ft(x)+λ>t gt(x)+κtht(x)+µgt(x)>Iλt(x)gt(x)+νht(x)>ht(x), (5.2)
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Figure 5.1: Comparison between the forward shooting and the direct solution of a
1D trajectory optimization for different initial conditions x0.

which is also used in the solver of the optimization problem, instead of the fixed
Lagrangian for every time step t. The indicator matrix Iλ is given by Iλ(x) = diag([λt,i >
0 ∨ gt,i(x) ≥ 0]+) and i denotes the index of the corresponding inequality gt,i. The
notation [a]+ is 1 if a is true and 0 if a is false. The parameters µ and ν are chosen
to be the same as the last run in the augmented Lagrangian solver for the optimal
control problem (4.2). For details on the augmented Lagrangian and the solver consider
[Tou14a].

As first evaluation of the cost-to-go approximation we consider a forward shooting. This
means the cost-to-go approximation is used to find an optimal path by iteratively solving
one step optimization problems starting from the initial point. The optimization for
every time step t is

min
xt
||xt−2 − 2xt−1 + xt||2 + J̃t+1(xt−2:t−1)

s. t. xs − x∗s = 0 s ∈ {t− 1, T − 1}
xs−1 − xs = 0 s ∈ {t− 1, T − 1},

(5.3)

where the constraints are only active in the time step T − 1. The prefix in the first
time step is the same as in (5.1) and then it is chosen based on the results of the
optimization of the previous time steps. Only in the last time step the constraint of
the target point x∗T−1 affects the optimization. The solution to the forward shooting
problem (5.3) compared to a direct solution (5.1) is given in Figure 5.1. Also a variation
of the initial condition showed a good behavior. A slight deviation between the direct
solution and the forward shooting with the same initial condition is observed. Based on
the observation that the cost of the forward shooting trajectory is lower than the direct
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5.2 Two link serial robot

solution one, leads to the hypothesis that the KOMO solver could not converge exactly
to the minimum and the shooting could further improve the quality of the trajectory.

In the numerical experiments it turns out that the quadratic approximation has its center
at the target point and gets steeper if the time gets closer to the end point. This makes
sense since via the squared penalty of the fixed augmented Lagrangian (5.2) a squared
potential on the end point is introduced. The closer the end time gets, the harder the
cost-to-go should pull to the target point. If the end time is hit then the larger eigenvalue
jumps to a high value (from 5.8 to 524290). This shows that an equality constraint pops
up.

5.2 Two link serial robot

In this section the second example is presented. Here a practical scenario is considered
and simulation experiments are evaluated. The considered example system is a two link
serial robot, which is schematically illustrated in Figure 5.2.

Table

Figure 5.2: Schematic illustration of the two link serial robot with contact to the table.

5.2.1 Setup and Simulation Environment

The robot consists of two cylindrical rigid links of the length l = 0.5 m, radius r = 0.05 m
and is made from aluminium which result in a mass of m ≈ 10.6 kg per link. The
end-effector is a PVC sphere with radius r = 0.1 m and mass of m ≈ 5.4 kg. In the zero
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position of the angle coordinates xt the arm is pointing downwards and the positive
direction is counter clockwise rotation. The dynamic equation is derived with Lagrange’s
second method in the form

M(x)ẍ+ F (x, ẋ) = u, (5.4)

where M(x) is the generalized mass matrix and F (x, ẋ) the generalized forces consisting
of Coriolis and gravitational forces. The robot is actuated via motors in the joints and
thus the control input u is the motor torque measured in Nm. Further we assume that
the control input is updated every τ = 10 ms. For simulation a Runge-Kutta method
of 4. order is used. To improve the accuracy of the integration 10 intermediate steps
between each control update are introduced. Thus the numerical integration runs with
a time step of 1 ms.

Since the evaluation scenario involves a contact phase the simulation environment needs
to handle contacts. This can be achieved via a spring damper model acting normal to the
constraint surface on the end-effector. The spring and damper coefficients are chosen
high to approximate a rigid body contact. This means, that if a contact in the simulation
is detected (interpenetration into a constraint) a generalized spring damper force is
added to the dynamic equation (5.4) used for simulation. In this case the dynamic of the
simulated system has a switching behavior and the accuracy of the numerical integration
may drop. This is e.g. the case when the time step for integration is too high and thus
the contact time is not covered precisely enough. When an adaptive step size in the
integration is used it is important to set a good lower bound of the step size since at the
discontinuity in the dynamics the integration step will be the lower bound.

5.2.2 Task

As task we consider a movement from a state A to state B using T time steps τ . Further,
the resulting movement should be smooth and should keep a constraint active — e.g.
sliding on the table.

In the proposed test scenario the arm should move from completely stretched to the
right to first segment pointing left and second segment pointing downwards, where
the velocities in the start and end point are zero. During this motion a sliding phase
on the table surface, which is located at y = −0.65 m for the end-effector center point,
should take place. Thus, the initial position of the robot is x∗−1 =

(
1
2π 0

)>
and the target

position is x∗T−1 =
(
−1

2π
1
2π
)>

. The smoothness is expressed via an acceleration penalty

||xs−2 − 2xs−1 + xs||2. The sliding phase can be controlled via a pull-to-table penalty
||Dc(xs)||2 for every time step s, where Dc is the difference function between end-effector
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Figure 5.3: Solution of the optimal control problem (5.5) for different values of ξ.

and the table y-coordinates and is negative when the end-effector is interpenetrating
the table. The time the motion should take is 0.5 s and with a time step of τ = 10 ms
the number of discretization points is T = 50. The initial and end state are encoded
as prefix and position constraints in terms of x∗s and x∗s−1 for s = −1 and s = T − 1,
respectively. Modeling the table position as inequality constraint for every time step
yields the optimal control problem

argmin
x0:T −1

[
T−1∑
s=0
||xs−2 − 2xs−1 + xs||2 + ξ ||Dc(xs)||2

]
s. t. −Dc(xs) ≤ 0 ∀T−1

s=0
x∗s − xs = 0 for s ∈ {−1, T − 1}
x∗s−1 − xs−1 = 0 for s ∈ {−1, T − 1}

(5.5)

for trajectory generation, where ξ is a trade off parameter between a smooth trajectory
and how long the sliding phase should be. The resulting angle and end-effector trajecto-
ries for different values of ξ can be found in Figure 5.3. In the left diagram 5.3(a) the
trajectories starting at 1

2π correspond to the first angle and starting a 0 corresponds to
the second angle.
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Figure 5.4: Forward shooting cost over all possible horizons H for different pull-to-
table weights ξ compared to the cost of the direct solution from trajectory
generation.

5.2.3 Forward shooting

For the evaluation of the proposed approximate constrained MPC scheme the effect of
the MPC horizon is investigated in a forward shooting evaluation. This excludes several
possibilities introducing numerical errors like the integration with a Runge-Kutta method.
Also the tube-term is neglected because the effect of the cost-to-go approximation J̃t+H
and the prediction horizon H should be evaluated. The forward shooting is tested for
all possibilities of different horizons H ranging from a 1-step optimization to a 50-step
optimization. To stay close to the proposed MPC scheme the fading out strategy is also
included in the forward shooting. Thus the 50-step optimization is a complete replanning
of the trajectory. Running the shooting for different different values of the pull-to-table
parameter ξ yields in the results shown in Figure 5.4.

The result in Figure 5.4(a) is close to the result of the 1D trajectory optimization. As
expected the shooting cost is lower than the cost for the direct solution. The spiking
down between prediction horizon H = 1 and H = 2 could be the effect of the fact
that the optimization is able to go in two steps towards the minimum of the cost-to-go
approximation instead of going in one step towards the minimum and getting on this
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Figure 5.5: Varying the parameter ρ of the tube-term.

one step a larger penalty since the movement is to aggressive. The getting worse with
a larger prediction horizon behavior could be due to the precision of the solver for
different large optimization variables. If the solver returns a better solution for low
dimensional optimization variables than for high dimensional optimization variables
then using an exact cost-to-go and solving the problem iteratively is a more precise way
than solving the optimization directly. In this case the cost-to-go approximation could
be good enough to cover this behavior. But these hypothesizes definitively need some
further evaluations.

In the two lower plots of Figure 5.4 the effect of the pull-to-table weight is evaluated. My
hypothesis is that the pull-to-table penalty makes the objective harder. Hence the quality
of the cost-to-go approximation J̃t+H gets worse and thus the result of the shooting also
gets worse. The spikes in Figure 5.4(c) are outliers with a really high cost (about 30),
where the solution between different time steps converged to different minima.

The effect of the tube term is evaluated in the same way. A simulation of different values
of ρ over all possible horizons H with a pull-to-table weight ξ fixed to zero is done. The
result is shown in Figure 5.5. Here it is visible that the parameter affects mainly the
small horizons, which is intuitively clear since the tube term is a penalty pulling the last
point of the prediction horizon back to the planned trajectory. For a horizon larger than
10 the cost of the shooting trajectory settles to its stationary value. This leads to the
assumption that the tube term does not significantly affect the quality of the trajectory
optimization in the nominal case for large enough horizons.
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5.2.4 Simulation results

For evaluation of the closed-loop system different scenarios are considered. The first
shows the basic scenario as described above and shows that the control strategy is
generally working. Then in the second case the initial condition of the controller will be
different than in the setup phase. Then a force will disturb the end-effector over a short
time and thus the reaction of the controller will be evaluated. This will show whether
the approximate constraint MPC scheme is capable of performing a compliant motion
task or not. In the last scenario a position error in the table constraint is introduced
and thus the results will show how uncertain constraint will be handled by the MPC
controller.

First scenario: In order to define a good test scenario the parameter for the pull-to-table
weight is chosen to ξ = 0.025. This leads to a long sliding phase and is not pulling too
aggressive to the table. For showing a robust execution an additive mean free noise with
a standard deviation of 25 Nm is added to the control signal before simulating one step.
This noise makes the above testing case, where the cost is evaluated over all possible
prediction horizons useless, because the noise makes the cost randomly varying in a
band. Thus the controller parameters are chosen to H = 5 for the prediction horizon
and ρ = 1 for the tube term based on the knowledge of the forward shooting results.

The position and control trajectories for the closed-loop simulation run compared to
the planned trajectories can be found in Figure 5.6(a). Here the position trajectory
deviates slightly from the planned one due to noise, but the controller does not force the
system back to reference. Instead, it tries to smoothly complete the motion. Thus the
control trajectories are also smooth and have no peak. The cost for the whole trajectory
is 0.012674. In Figure 5.6(b) the according trajectory for the center point of the robot’s
end-effector is shown. The first contact with the table takes place after 0.17 s. This is
also the time at which the trajectories in Figure 5.6(a) are really close to the planned
ones. Starting from this time step the control trajectories stay close to the planned ones,
because the constraint acts as a guide.

Second scenario: For evaluating the compliance of the control strategy a second
test scenario is evaluated. Under compliance we understand the reaction behavior to
disturbances during execution of the motion. A compliant controller should aim to
fulfill the motion task rather than trying to execute stiffly the position profile. Therefore
the initial condition for the simulation is changed to x̃−1 =

(
1.3 −0.26

)>
and thus the

controller will base the trajectory planning on an assumption with x−1 =
(

1
2π 0

)>
. This

is indeed a large offset of the initial position, but it clearly shows the compliant behavior
if the prediction horizon is chosen large enough. For further investigations the tube term
weight ρ is chosen to be 1.
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Figure 5.6: Trajectories of the two link robot in closed-loop with the approximate
constrained MPC compared to the optimal control problem solution.

In Figure 5.7 the first part of the position trajectory and a detail view of the end-effector
center around the initial condition are given. The shown behavior matches with the
expected behavior, because if the prediction horizon is too short, then the tube term
will pull the last point in the prediction horizon to the planned trajectory. Thus for the
case where the prediction horizon H is 1, the end-effector trajectory will first go towards
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Figure 5.7: Different initial condition for simulation and planning.

the initial point of the planned trajectory and then move along it. In Figure 5.7(b)
the trajectory for the prediction horizon H = 1 (red) will go close to x−1 and track
the planned trajectory. This is not what we understand under compliance. But if the
prediction horizon gets larger, the MPC optimization can handle such deviations in
a smooth way. In this scenario the MPC controller uses the mismatch of the initial
conditions if the last point of the prediction horizon is on the opposite side of the initial
condition of the simulator. Hence the MPC will use it as a benefit. This behavior is visible
for the case where the prediction horizon H is 10 or larger and in Figure 5.7 it looks like
the closed-loop trajectory is close to optimal. This is then a compliant execution of the
planned motion.
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scheme compliance ηc cost

complete replanning 2.50 0.054 314 9
approximate constrained MPC (H = 10) 4.76 0.043 348 2
approximate constrained MPC (H = 2) 6.67 0.043 032 1

approximate constrained LQR 8.33 0.082 747 6
PID 11.11 0.073 283 4

Table 5.1: Compliance and cost values for the different schemes.

When varying the tube term, simulations have shown similar results as for the variation
of the prediction horizon. This is intuitively clear since the tube term pulls the last point
of the MPC optimization to the trajectory. Thus if the weight is low the last point is
able to move more freely. But since the cost-to-go is based on quadratic approximations
without crude bounds, it is better to keep the weight of the tube term active. Hence the
overall objective is correctly transferred to the MPC optimization.

Third scenario: The second test for evaluating the compliant behavior of the
proposed control scheme is a force disturbance. Here a strong force distur-
bance fdist =

(
3000 4000

)>
N is given on the end-effector center during the time 0.07 s

to 0.08 s. Then the reaction of the approximate constrained MPC is compared for differ-
ent horizons similar to the second scenario and to a PID controller stabilizing the error
between the planned trajectory and the current state of the robot, hence in joint space.
For measuring the compliance of the controllers a measure

ηc = 1
tb

is proposed, where tb is the time the controller needs to steer the systems output back to
the planned trajectory. Figuratively speaking the longer the controller needs to steer the
system back to the planned trajectory the more compliant the controller is. This makes
only sense if the controller knows that not steering back to the planned trajectory is a
good/optimal strategy. In our setting this is the case, because the MPC optimization
is a local approximation of the optimal control problem for trajectory planning. For a
simple error stabilizing PID controller as in the above case, such a measure is not a valid
criteria.

The simulation results are shown in Figure 5.8. The disturbance in Figure 5.8(b) does not
always occur at the same point, because the disturbance force is active at a certain time
interval and the controller does not track the trajectory exactly due to noise. Through
the forward kinematic a small position error in joint space translates into a larger error in
cartesian space. Thus the center of the end-effector is at the disturbance time at different
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5 Evaluation
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(a) Position trajectories.
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(b) End-effector center trajectory

Figure 5.8: Force disturbance on the end-effector during execution of different control
schemes.

points. Based on the gained intuition the complete replanning strategy (H = 50) is
the most compliant scheme. Then the approximate constrained MPC scheme with long
horizon (H = 10) follows before the shorter horizon (H = 2). The least compliant
controllers are the approximate constrained LQR (H = 1) and the PID controller. It is
remarkable that the compliant execution of the motion already starts with a prediction
horizon of H = 2. The resulting compliance numbers and cost value of the closed-loop
trajectory are given in Table 5.1 and prove the intuitive behavior. Interestingly the cost
for the complete replanning scheme is higher than the approximate constrained MPC
schemes as in subsection 5.2.3.
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5.2 Two link serial robot
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Figure 5.9: Contact force profile of the table constraint moved 0.05 m upwards.

Fourth scenario: For evaluating the contact behavior the table constraint is moved.
Therefore consider again the parametrization of the first scenario and use the results
as baseline, see Figure 5.6. Here only a small contact at the beginning and at the end
of the sliding phase takes place. The maximal contact force is 6402.51 N and the mean
is 4093.21 N. Thus the desired sliding behavior does not take place. First consider the
case where the constraint is moved up by 0.05 m. Then the desired sliding takes place
with a nearly constant contact force with mean and maximal value of 6499.16 N and
7355.07 N, respectively. The contact force for these two cases is plotted in Figure 5.9.
The negative peaks in the contact force happen because the contact model consists of
a spring and a damper. Since the damper acts in the opposite direction to the velocity
part of the end-effector normal to the constraint surface, and the spring force is always
pointing outwards and orthogonal to the constraint surface,it may happen that the sum
of these two constraint forces is negative. This is the case when the end-effector is
moving outwards of the constraint surface and being close to the boundary.

For smaller upwards deviations of the table constraints the contact is bouncy and for
larger deviations, the contact force in the sliding phase increases. If the table constraint is
moved downwards up to 0.03 m the sliding also takes place and for larger deviations the
resulting closed-loop trajectory is not close to optimal. This behavior is expected, because
in the MPC optimization the initial position in the prefix and the wrongly assumed table
constraint contradict. Hence the optimization pushes the first optimization variables for
the first time step in the prediction out of the constraint, but the imprecise simulation
is not able to perform this action. Thus the closed-loop stays below the expected table
position. For larger downwards deviations the closed-loop could get chaotic.
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6 Discussion

6.1 Results

As in the evaluations shown have we achieved a compliant execution controller based
on the trajectory optimization framework KOMO. This specifically means that we were
able to encode a more general objective directly in the control structure. Thus a general
design scheme for the execution controller based on the trajectory optimization is
derived.

Therefore two different testing setups were considered. The first test example is a
simple 1D trajectory optimization, which is a synthetic test of the derived cost-to-go
approximation. Here the first technical insight into the method was achieved and
showed that the cost-to-go approximation works good for such a simple case. The
second test example is a simulation of a two link serial robot, where the motion of the
end-effector is constrained by a table. This is a practical test of the control scheme,
where especially the compliance of the resulting closed-loop behavior can be evaluated.
The first test scenario showed that the approximate constrained MPC scheme is able
to execute the motion task. Then the next two scenarios showed that a long enough
prediction horizon is needed in order to compliantly execute the motion if the system
is disturbed. Therefore a disturbance on the initial condition in the simulation and a
disturbance force on the end-effector are introduced. A comparison between different
parametrizations of the proposed MPC controller and a stabilizing PID showed that a
good compliance can be achieved for medium large prediction horizons. The variation
of the prediction horizon to the extreme case recovers the approximate constrained LQR
and complete replanning of the trajectory. In the last test scenario the planned contact
phase is evaluated. For a precise model-world matching, the controller is not sliding
and only a small contact in the beginning and end of the planned sliding phase take
place. Thus the controller does not correctly execute the desired sliding motion. For
further evaluations the table constrained in the simulation is changed. For changing the
table position upwards a sliding motion with a constant contact force is achieved and
changing the table constrained slightly downwards the sliding takes place. But for larger
downwards deviations resulting closed-loop behavior is chaotic.
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6 Discussion

6.2 Alternatives

As alternative a possible extension for ensuring the sliding motion for the proposed
approximate constrained MPC scheme is discussed. Motivated by the approach used
for the dual execution controller proposed in [TRB+14] a separate controller could
handle the sliding. Hence during the planned sliding phase a drift force and a force
controller as an additional controller are added to the control signal. If the real position
would contradict to the constrained model of the controller then either the position seen
by the MPC controller could be moved to the next valid point on the boundary of the
constraint or the constrained model of the MPC could be adapted to satisfy the measured
position. In the two link serial robot example the first would move the y-coordinate of
end-effector position to the corresponding y-coordinate of the table position and the
latter would be a height adaption of the table constraint.

This extension should fix the sliding issue, but will not be the best strategy if the
disturbances are large as for the second and third scenario in the evaluations, because
then the planned sliding might not be the desired behavior anymore. Also an important
point is that the parametrization of the force controller will be highly sensitive to the
parametrization of the used contact force model.

6.3 Insights

The main insight during this work is the way people with different backgrounds approach
the problem of deriving a model predictive controller. In control theory (background
based on [Mül15] and [MA17]) a MPC controller is defined and then implications on
the closed-loop and thus on the underlying infinite horizon optimal control problem are
made. People from trajectory optimization background define the task in terms of an
optimal control problem and then try to derive an execution controller (MPC) based
on an approximation of the optimal control problem. An interesting research problem
could be to find bounds on the error introduced by the approximations and thus have
a guarantee for e.g. recursive feasibility of the approximate constrained MPC scheme
when constraints pop up. Also a nice insight is how optimal control problems are defined
as trajectory optimization and what people do to reduce the complexity of the involving
optimization problems by introducing structure.

Aside from these insights several technical ones are gained during this work. Mostly
dominated by insights into numerics, optimization and C++ programming, because
a simple simulation framework was built up from scratch. There everything from
numerical integration of the dynamical equation with a Runge-Kutta method over
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6.4 Conclusion

contact handling up to visualization with OpenGl of the progress is needed to setup
properly. Hence I gained lots of C++ experience and learned a lot about numerical
optimization and interfacing to Lapack through the self made array class (by the mlr).

6.4 Conclusion

In this work the control strategy approximate constrained model predictive control is
derived in detail and a design procedure based on the solution of a trajectory opti-
mization for planning is provided. This method is based on the fixed Lagrangian and
uses as optimization backend the k-order constrained path optimization framework
for a fast and reliable solution of the involving optimization problem. The evaluations
have shown that this method is capable of the execution of a compliant motion task
like executing a planned trajectory from different initial condition or with disturbances
without redesigning the cost-to-go approximation. Hence the approximate constrained
MPC scheme will outperform error stabilization based approaches like a PID for tracking
of the trajectory with respect to compliance. The main drawback is that sliding can not
be ensure during the execution. But this issue may be resolves as discussed in section 6.2
if sliding is desired.
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