
INSTITUTE FOR COMPUTATIONAL PHYSICS

UNIVERSITY OF STUTTGART

SIMULATION TECHNOLOGY DEGREE COURSE

Master thesis

Simulating Stochastic Processes with Variational Quantum Circuits

Examiner

Prof. Dr. Christian HOLM

Institute for Computational Physics

Submitted by

Author Daniel FINK

Matriculation number 3148684
SimTech-Nr. 87
Submission date February 22, 2022

Preface and Declaration on Autonomy

This thesis was created as part of the Simulation Technology master degree course in the winter
semester of 2021/2022 as a collaboration between the Institute of Computational Physics from
the University of Stuttgart (US) and the AG Eisert from the Free University of Berlin (FUB). The
advisors of the project were Prof. Dr. Jens Eisert (FUB), Prof. Dr. Christian Holm (US), Dr. Nora
Tischler (FUB), Dr. Ryan Sweke (FUB), and M.Sc. Paul Fährmann (FUB).

I would first like to express my thanks to Prof. Jens Eisert, who made it possible for me to carry
out my work as this collaboration and whose expertise was invaluable in formulating the re-
search questions of this work. Moreover, I want to thank you for giving me insights into your
wonderful research group in Berlin.

Furthermore, I would like to express my gratitude to the members of the AG Eisert. I would
particularly like to single out Nora Tischler, Ryan Sweke, and Paul Fährmann for their extraor-
dinary support throughout the entire project. I have enjoyed every single meeting with you
and it has always moved me forward. Even in times when it was very stressful, you were always
there to help and advise me.

In addition, I would like to thank the Quantum Machine Learning group of the AG Eisert. At
each meeting, I was able to learn a lot and the subsequent discussions inspired me enormously.

I hereby declare that I wrote this master thesis independently and did not make use of any
support or sources other than those mentioned in the paper.

Stuttgart, February 22, 2022

Abstract

Simulating future outcomes based on past observations is a key task in predictive modeling
and has found application in many areas ranging from neuroscience to the modeling of fi-
nancial markets. The classical provably optimal models for stationary stochastic processes are
so-called ϵ-machines, which have the structure of a unifilar hidden Markov model and offer a
minimal set of internal states. However, these models are not optimal in the quantum setting,
i.e., when the models have access to quantum devices. The methods proposed so far for quan-
tum predictive models rely either on the knowledge of an ϵ-machine, or on learning a classical
representation thereof, which is memory inefficient since it requires exponentially many re-
sources in the Markov order. Meanwhile, variational quantum algorithms (VQAs) are a promis-
ing approach for using near-term quantum devices to tackle problems arising from many dif-
ferent areas in science and technology. Within this work, we propose a VQA for learning quan-
tum predictive models directly from data on a quantum computer. The learning algorithm is
inspired by recent developments in the area of implicit generative modeling, where a kernel-
based two-sample-test, called maximum mean discrepancy (MMD), is used as a cost function.
A major challenge of learning predictive models is to ensure that arbitrarily many time steps
can be simulated accurately. For this purpose, we propose a quantum post-processing step
that yields a regularization term for the cost function and penalizes models with a large set of
internal states. As a proof of concept, we apply the algorithm to a stationary stochastic process
and show that the regularization leads to a small set of internal states and a constantly good
simulation performance over multiple future time steps, measured in the Kullback-Leibler di-
vergence and the total variation distance.

Contents

1 Introduction 1

2 Basics and Literature Review 3
2.1 Foundations of Stochastic Processes . 3

2.1.1 Measure Theory and Probabilities . 3
2.1.2 Stochastic Processes . 5
2.1.3 Distance Measures for Probability Distributions 6

2.2 Quantum Computing . 7
2.2.1 Quantum Measurements . 9
2.2.2 Quantum Gates . 10
2.2.3 Quantum Circuits . 12
2.2.4 Variational Quantum Algorithms . 13

2.3 Predictive Models . 16
2.3.1 Exact Models . 17
2.3.2 Approximate Models . 21

2.4 Implicit Generative Models . 22
2.4.1 Maximum Mean Discrepancy . 23
2.4.2 Relation to Predictive Models . 25

2.5 Discussion . 25

3 Methodology 26
3.1 Model Problem . 27
3.2 Validation Metrics . 30
3.3 Quantum Learning Algorithm . 33

3.3.1 General Structure of the VQC . 34
3.3.2 Cost Function . 34
3.3.3 Classical Pre-Processing . 35
3.3.4 Quantum Post-Processing . 36

3.4 Quantum Circuit Ansatz . 37
3.4.1 Construction of a q-simulator . 38
3.4.2 Quantum Circuit Decomposition . 41

3.5 Quantum Gradients . 48
3.5.1 Common Parameter-Shift Rule . 49
3.5.2 Generalized Parameter-Shift Rule . 51
3.5.3 Gradient of the Cost Function . 54

3.6 Summary . 57

4 Results 59
4.1 Setup . 59
4.2 Stochastic Error . 59
4.3 Learning Stage . 61
4.4 Validation . 63

5 Conclusion and Outlook 66

List of Figures

1 Bloch sphere representation for single qubit states 8
2 Quantum circuit for preparing the GHZ state and measurement of a single qubit 12
3 Schematic illustration of a variational quantum algorithm 13
4 Illustration of a problem-inspired ansatz for a VQC 14
5 Illustration of the distinction of predictive models 17
6 ϵ-machine representation of a fair coin toss process 18
7 Illustration of classical and quantum predictive models 19
8 ϵ-machine of the period-N uniform renewal process 27
9 Schema of the quantum learning algorithm . 33
10 Illustration of the quantum post-processing step 37
11 Components of the q-simulator for the period-2 uniform renewal process 40
12 Construction of the data encoding unit for the q-simulator 41
13 Decomposition of the unitary T of the q-simulator 42
14 Quantum circuit representation of the Ansatz for the VQC 45
15 Illustration of the decomposition of the quantum post-processing step 46
16 Decomposition of the controlled rotation gates . 47
17 Stochastic error of the MMD for the period-2 and period-3 uniform renewal process 60
18 Cost function and validation metrics during the training 61
19 Validation metrics of the two models for the period-2 uniform renewal process . 63
20 Visualization of the quantum states of the memory register 64

List of Tables

1 Conditional probabilities, stationary past distributions and causal state mappings
of the period-2 and period-3 uniform renewal process 29

1 Introduction

1 Introduction

Can we predict the future based on past observations? In certain scenarios, this is the case, for
example in classical mechanics where the trajectory of a particle can be uniquely determined
based on the location and the momentum. However, if the system to be modeled becomes
more complex, it may not be possible to include all influences, such that the future can be pre-
dicted exactly. Moreover, many processes observed in nature behave stochastically and there-
fore do not exhibit one unique trajectory, but only a probability for the occurrence of certain
events. For such stochastic processes, simulation techniques can be used to show possible fu-
ture outcomes. Nowadays, simulations are a major component in many different areas, rising
from the natural sciences of biology, chemistry, and physics to the areas of finance, sports, and
social sciences. Here, simulating is commonly understood as taking a model with given initial
starting conditions, and showing possibilities for how a system evolves in time. Such simula-
tion models for stochastic processes are called predictive models [1] since they show possible
futures based on past observations. The more complex these processes are, the more complex
a predictive model must be to faithfully simulate possible futures [2]. However, these models
can also be used to gain more insights into the process itself [3–6], and it is thus of great inter-
est to build simple models and to avoid unnecessary complexity, which follows the principle of
Occam’s razor. In general, a predictive model must use some memory to store relevant infor-
mation about the past of a process [7], which is related to the process’s Markov order [2] and
can be associated with some internal states of the model. The simulation of more complex
stochastic processes thus has higher memory requirements [2], i.e., the models require more
internal state. A limited memory size therefore necessarily leads to statistical errors during
the simulation. These memory-limited models can be seen as approximate predictive models
since they only approximate the true behavior of the underlying stochastic process. Further-
more, such approximate models also arise when a predictive model is learned based only on
finitely many observations of a process [8–11]. However, recent developments in the domain
of quantum computing have shown that these errors can be reduced if the model has access
to quantum devices [11]. Yet, the proposed methods so far for obtaining such quantum pre-
dictive models [11, 12] are memory inefficient, since they make use of classical representations
of the models, which require exponentially many resources in the Markov order. Thus, these
approaches are insufficient for practical applications.

Meanwhile, in the area of quantum machine learning, an approach for training quantum mod-
els directly on quantum devices shows promise, which is known as variational quantum algo-
rithms (VQAs). Here, a quantum model is given as a quantum circuit that is executed directly
on a quantum device. The circuit itself offers trainable parameters and is called a variational
quantum circuit (VQC). With the use of classical resources, the parameters of the model are
trained in a hybrid quantum-classical optimization procedure and it is shown that such algo-
rithms can already be applied to near-term quantum devices [13–16]. Learning a predictive
model directly on quantum devices can be memory efficient, since the model itself is given as
a quantum circuit, and no classical representation is needed. Therefore, such an approach can
be beneficial for practical applications. Thus, the overall goal of the work at hand is to develop
a variational quantum learning algorithm for approximate predictive models. Here, we take as
input only some observations of a given stochastic process, which offers a way to directly ob-
tain a model based only on data and without further knowledge of the process itself.

Within this work, we focus on discrete-time stochastic processes. These are processes that
emit an output symbol x from some alphabet A ⊂N0 at discrete points in time t ∈Z. Moreover,
we consider stationary processes, which means that the process’s unconditional joint proba-
bility distribution is the same for any time step t ∈ Z, as explained later in more detail in Sec-
tion 2.1.2. To develop a quantum learning algorithm for such processes, we first define a class of

1

1 Introduction

stochastic processes, namely the period-N uniform renewal processes [11], that are considered
in detail throughout this work. Based on that, we derive an ansatz for the variational quantum
circuit, which is the set and structure of quantum operations that are performed on a quan-
tum computer. This ansatz offers a similar structure to already proposed ansätze in the field
of supervised machine learning [11, 17, 18]. Next, we define a cost function for the learning
algorithm, where one part is taken by the so-called maximum mean discrepancy (MMD) [19],
which is a kernel-based two-sample test that has already been successfully used in the field
of implicit generative modeling [18, 20]. The other part of the cost function is a regulariza-
tion term, which is specifically chosen to learn quantum predictive models and we show that
it can be computed based on a quantum post-processing step that is applied only during the
training. Furthermore, we derive expressions for the gradient of the proposed cost function
and show that it can be estimated efficiently with the use of similar quantum circuits. For this
purpose, we use a common technique from the field of quantum machine learning, called the
parameter-shift rule [21], but extend it to be applicable for our ansatz.
The output of our learning algorithm is a set of parameters that can be used together with the
quantum circuit to simulate arbitrarily many future time steps of a stochastic process. We vali-
date the algorithm by applying two versions of it to the period-2 uniform renewal process and
study the learned models. Here, one version takes only the MMD as a cost function, whereas
the other version also includes the proposed regularization term. We show that a model train-
ing solely based on the MMD can only simulate one future time step accurately, while the other
version shows a constantly good performance over multiple future time steps. Herein, the sim-
ulation performance is measured with the Kullback-Leibler (KL) divergence and the total vari-
ation (TV) distance – two commonly used distance measures for probability distributions [11,
17]. The best model learned by our algorithm offers a value for the KL divergence of less than
10−4 and the TV distance does not exceed a value of 10−2 over 15 simulation steps. Moreover,
we visualize the internal states of the quantum models and show that using our proposed reg-
ularization term leads to a small set of internal states, which is in particular responsible for a
consistently good simulation performance over multiple future time steps.

The work at hand is structured as follows. First, the basics of stochastic processes, quantum
computing, and predictive models are introduced in Chapter 2. Additionally, a literature re-
view of related works on classical and quantum predictive models, as well as an overview of
variational quantum algorithms is given. Next, in Chapter 3, the methodology of developing
a variational quantum learning algorithm is presented. This includes in particular the intro-
duction of the used validation metrics, i.e., the KL divergence and TV distance, as well as the
definition of the cost function. The latter also includes the definition of the proposed regular-
ization term as well as a way how it can be computed based on a quantum post-processing step.
Moreover, the construction of a suitable quantum circuit that serves as an ansatz is discussed.
Furthermore, the parameter-shift rule is extended and expressions for the gradient of the cost
function are derived. Next, the results of the numerical experiments are presented and dis-
cussed in Chapter 4. Here, we analyze the inherent stochastic error of the MMD, which offers a
way to determine what values can be expected for the cost function, and present the validation
results afterward. This includes the simulation performance over multiple future time steps as
well as visualizing the internal quantum states of the model. Lastly, the work is concluded and
an outlook is given in Chapter 5.

2

2 Basics and Literature Review

2 Basics and Literature Review

Within this chapter, we introduce the definitions and the basic theory related to stochastic pro-
cesses and quantum computation. Additionally, methods and results of prior publications re-
lated to simulating stochastic processes with quantum devices and the use of variational quan-
tum circuits are presented. The chapter is arranged as follows. In Section 2.1, we start with
explaining the foundations of stochastic processes, which includes the concepts of measure
theory and probabilities in Section 2.1.1, that leads to the formal definition of stochastic pro-
cesses in Section 2.1.2. Distance measures for probability distributions that are crucial for this
work are presented in Section 2.1.3. Afterward, the fundamental principles of quantum com-
putation are explained in Section 2.2, which includes quantum measurements, quantum gates,
and quantum circuits, that lead to the framework of variational quantum algorithms in Section
2.2.4. An overview of predictive models is given in Section 2.3, where a distinction is made be-
tween exact and approximate models. In Section 2.4, a brief overview about implicit generative
models is given, which includes in particular the maximum mean discrepancy in Section 2.4.1
and a discussion about the relation to predictive models in Section 2.4.2. At the end of this
chapter, we briefly summarize the related works discussed earlier and outline which compo-
nents are put together and built on top of another to develop a quantum learning algorithm for
predictive models.

2.1 Foundations of Stochastic Processes

The goal of this section is to formally define a stochastic process. Therefore, necessary defi-
nitions from measure theory are introduced first. Afterwards, based on these definitions, the
concepts of probability theory are briefly explained. Finally, we formally define stochastic pro-
cesses based on these concepts.

2.1.1 Measure Theory and Probabilities

The following definitions can be found in introductory textbooks about measure theory and
probabilities such as “A Modern Approach to Probability Theory” by B. Fristedt and L. Gray [22].
Within this section and throughout this work, only discrete probability spaces are considered.

Given a set Ω of possible outcomes of a stochastic experiment, the starting point in measure
theory is the definition of measurable subsets ofΩ, which are characterized by a quantity called
the σ-algebra.

Definition 2.1. LetΩ be an arbitrary set. A σ-algebra ofΩ is a set F ⊆ 2Ω fulfillingΩ,;∈ F and
is closed under complementation and countable unions. The members A ∈ F are said to be
measurable with respect to F .

In the above definition, 2Ω refers to the power set of Ω. Based on the σ-algebra, measurable
spaces can be defined as follows:

Definition 2.2. A measurable space is a pair (Ω,F), whereΩ is a non-empty set and F ⊆ 2Ω is a
σ-algebra.

Adding a probability measure to a measurable space yields a probability space:

Definition 2.3. A probability space is a triple (Ω,F,P) consisting of a measurable space (Ω,F)
and a probability measure P , which is a function P : F → [0,1], such that P (Ω) = 1 and

P
(∞⋃

m=1
Am

)
=

∞∑
m=1

P (Am) (1)

for each pairwise disjoint sequence (Am)m∈N of members of F . For A ∈ F , P (A) is called the
probability of A.

3

2 Basics and Literature Review

Based on that, mappings between measurable spaces can be defined, leading to the concept of
a random variable:

Definition 2.4. Let (Ω,F) and (Ψ,G) be measurable spaces. A measurable function from (Ω,F)
to (Ψ,G) is a function X :Ω→Ψ such that X −1(B) ∈ F for every B ∈G . If (Ω,F,P) is a probability
space, then X is called a random variable.

With the use of random variables, stochastic experiments can be modeled formally. Of central
importance here is the probability distribution of a random variable:

Definition 2.5. Let X be a random variable from (Ω,F,P) to (Ψ,G). Then, the function PX de-
fined as PX : G → [0,1], PX (A) = P (X −1(A)) is a probability measure and (Ψ,G ,PX) a probability
space. PX is called the probability distribution of X .

The probability distribution PX is a probability measure by definition. On the other hand, us-
ing the identity map as a random variable, a probability distribution becomes a probability
measure and the terms probability measure and probability distribution become essentially
synonyms. Thus, one usually does not care about the underlying probability space and just
talks about the random variable itself [22]. Following this, the probability distribution of a ran-
dom variable X is simply denoted as P and the event that X takes the value x ∈Ψ is denoted as
X = x. Thus, one writes P (X = x) = P

(
X −1(x)

)
.

The definition of a probability distribution can be extended to take multiple random variables
into account, leading to the definition of the joint (probability) distribution:

Definition 2.6. Let (Ω,F,P) be a probability space and (Ψ1,G1), (Ψ2,G2) be measurable spaces.
Moreover, let X1 and X2 be random variables, both defined on (Ω,F,P), with values in (Ψ1,G1)
and (Ψ2,G2), respectively. The joint probability distribution of X1 and X2 is the probability
measure PX1,X2 defined on (Ω×Ω,F ⊗F) by

PX1,X2 (A) = P
(
(X1, X2) ∈ A

)
(2)

for all A ∈ F ⊗F , where F ⊗F denotes the σ-algebra on the Cartesian productΩ×Ω.

Similar to the case with two random variables, this can be extended for finitely many random
variables X1, X2, . . . , Xn ,n ∈N. Additionally, having n random variables Xi and n possible out-
comes xi ∈ F , one simply writes P (X1 = x1, X2 = x2, . . . , Xn = xn) for the value of the joint dis-
tribution. The independence of random variables is characterized by their joint distribution as
well.

Definition 2.7. Two random variables X1 and X2 are called independent if and only if

P (X1, X2) = P (X1)P (X2), (3)

i.e., if their joint distribution is the product of the individual probability distributions.

Here, the notation P (X) is used as an abbreviation for P (X = x) for all x ∈Ω. In this context, the
individual distributions P (X1) and P (X2) are called the marginal distribution of X1 and X2, re-
spectively. Besides the joint distribution, the distribution of a random variable X1 conditioned
on the outcome of another random variable X2 can be defined as well.

Definition 2.8. Let (Ω,F,P) be a probability space, X1, X2 random variables defined on Ω,
x1, x2 ∈ F and P (x2) > 0. The conditional probability of X1 = x1 given X2 = x2 is defined as

P (X1 = x1|X2 = x2) = P (X1 = x1, X2 = x2)

P (X2 = x2)
. (4)

4

2 Basics and Literature Review

For conditional probabilities, also the short notations P (X1|X2 = x2),P (X1 = x1|X2) and P (X1|X2)
are used throughout this work. One helpful lemma about conditional probabilities is the fol-
lowing law of total probability.

Lemma 2.1. Let X1, X2 be random variables defined onΩ and (xi) a countable infinite partition
ofΩ. Then

P (X1) =∑
i

P (X1, X2 = xi) =∑
i

P (X1|X2 = xi)P (X2 = xi). (5)

Given the basic definitions from probability theory, stochastic processes can now be defined
formally.

2.1.2 Stochastic Processes

Definitions of stochastic processes can also be found in common textbooks about probabilis-
tic models and probability theory. One of these is “Introduction to Probability Models” by
S. Ross [23], which the following definitions are based upon.

Definition 2.9. A stochastic process {X t , t ∈ T } is a collection of random variables, i.e., for each
t ∈ T , X t is a random variable. The set of possible values Ω that the random variables can
assume is called the state space of the stochastic process.

Within this work, only the case of T = Z is considered. Such a stochastic process is called a
discrete-time process and the values of the index set t ∈ T are called time steps. Additionally,
the state space is considered to be a finite alphabet A. Without loss of generality, it is assumed
that the alphabet is a finite subset of the natural numbers, i.e., A ⊂N0. Throughout this work,
only a special class of stochastic processes are considered, namely stationary stochastic pro-
cesses.

Definition 2.10. A stochastic process is called stationary or time-invariant if all random vari-
ables have the same joint distribution. That is, for any set of n index values t0, t1, ...tn ∈ Z and
any τ ∈Z it holds that

P (X t0+τ, X t1+τ, ...X tn+τ) = P (X t0 , X t1 , ...X tn). (6)

As a short-hand notation, we define the future and the past of a stochastic process.

Definition 2.11. Let {X t , t ∈ Z} be a stationary stochastic process and t0 ∈ Z be arbitrary. We

define
←−
X = ..., X t0−2, X t0−1 as the past and

−→
X = X t0 , X t1 , ... as the future of the stochastic process.

Moreover, we define the sequences Xm:n = Xm , Xm+1, ..., Xn−1, m < n. Sequences in the state
space xt ∈ A are defined analogously as xm:n = xm , xm+1, ..., xn−1 as well as ←−x = x−∞:t0 and−→x = xt0,∞.

Note that for stationary stochastic processes, the future and the past are independent of any
specific t0 ∈ Z. Stochastic processes can also be characterized by the “amount” of past infor-
mation needed to accurately sample future time steps.

Definition 2.12. Let {X t , t ∈Z} be a stochastic process. The process is said to have Markov order
κ ∈N0 if

P (X1|←−X) = P (X1|X−κ+1:1), (7)

i.e., if the future state depends only on the past κ states.

A special class of stochastic processes are Markov chains.

5

2 Basics and Literature Review

Definition 2.13. A stochastic process {X t , t ∈ N0} is called a Markov chain or described as
Markovian, if it has Markov order κ= 1, i.e., if

P (X1|←−X) = P (X1|X0). (8)

A stationary stochastic process has either a finite Markov orderκ ∈N0 or an unbounded Markov
order κ→∞, which are then also called non-Markovian. For Markov chains, a central quantity
is the transition matrix, that represents the transition probabilities of the process.

Definition 2.14. Let {X t , t ∈Z} be a Markov chain with alphabet A. The matrix P ∈R|A|×|A| with
elements Pi , j = P (X1 = x j |X0 = xi) is called the transition matrix of the process. These elements
describe the probability of the process to transition from state xi to x j within the next time step.

A specific past ←−x together with a specific future −→x is called an instance of a stochastic process,

which occurs according to the conditional probability P (
−→
X =−→x |←−X =←−x).

It can be confusing to deal with probability distributions P (
−→
X |←−X) with an uncountable set of

random variables. Or in other words, how does a joint probability distribution P (X−∞,∞) look
and is it well defined? In practice, stochastic processes are modeled based on finite sets of
random variables. This means, that one considers joint probability distributions P (X−i ,i) for
arbitrary but fixed i ∈ N. These can be grouped together into the family of finite probability
distributions {P (X−i ,i)}i∈N. The Extension Theorem of Kolmogorov [24] then guarantees that if
this family fulfills certain requirements, there exists a stochastic process with probability space
(Ω,F,P ′) such that all finite probability distributions coincide with P ′.
Within this work, a learning algorithm is developed to train a model that can be used to simu-
late a stationary stochastic process. Here, simulating is meant as replicating the future behavior
of a stochastic process, given some past observations. Formally, let P (·|←−x) be the conditional
probability distribution of a stationary stochastic process for a specific past ←−x . A model is then
initialized based on ←−x and produces outcomes x1, x2, . . . according to a conditional probability
distribution P̂ (·|←−x). We call an outcome of fixed length L ∈ N a future trajectory. How well a
model can simulate the true process, i.e., how much the two distributions differ, is referred to
as the performance of the model. Training a model is therefore understood as gradually fine-
tuning the parameters of the model with the aim to increase its performance. A natural ques-
tion is how the performance can be quantified. Mathematically, the difference between two
probability distributions can be expressed with the use of a distance measure for probability
distributions. Two commonly used measures for this task are introduced next.

2.1.3 Distance Measures for Probability Distributions

In general, we want to have a measure D(P, P̂) to be small, if the two distributions are similar in
some sense. There are several ways to quantify the similarity of two probability distributions,
where one way is based on so-called f -divergences.

Definition 2.15. Let f : (0,∞) →R be a convex function with f (1) = 0. Moreover, let P and P̂ be
two probability distributions with supp(P) ⊆ supp(P̂), where supp(P) = {x ∈Ω : P (x) ̸= 0}. The
f -divergence of P from P̂ is then defined as

D f (P, P̂) = ∑
x∈Ω

P̂ (x) f
(P (x)

P̂ (x)

)
. (9)

Different choices of the function f lead to different f -divergences. One commonly used di-
vergence is the Kullback-Leibler (KL) divergence, which can be obtained by choosing f (x) =
x log2(x).

6

2 Basics and Literature Review

Definition 2.16. Let P and P̂ be probability distributions with supp(P) ⊆ supp(P̂). The Kullback-
Leibler (KL) divergence is defined as

DK L(P, P̂) = ∑
x∈Ω

P (x) log2

(P (x)

P̂ (x)

)
. (10)

While the KL divergence is a distance measure for probability distributions, it is not a metric in
the mathematical sense. This is because it is not symmetric and does not satisfy the triangle
inequality. An f -divergence, which is also a metric, is the total variation (TV) distance and it
can be obtained with f (x) = 1

2 |x −1|.
Definition 2.17. Let P and P̂ be probability distributions. The total variation (TV) distance is
defined as

DT V (P, P̂) = 1

2

∑
x∈Ω

|P (x)− P̂ (x)|. (11)

This distance is a particularly strong metric insofar as it sums up all statistical errors with-
out taking the relative occurrence of these errors into account. On the other hand, the KL
divergence is also relatively strong since it upper bounds the TV distance, which is known as
Pinsker’s inequality.

Lemma 2.2. Let P and P̂ be probability distributions with supp(P) ⊆ supp(P̂). Then

DT V (P, P̂) ≤
√

1

2
DK L(P, P̂). (12)

Both distance measures compare probability distributions in some sense. However, in the do-
main of predictive modeling, we are dealing with conditional probability distributions and we
are aiming to compare the distribution of a model with the distribution from the underlying
stochastic process. Thus, we extend these measures within this work to also include the con-
ditional behavior and to be applicable for stochastic processes. The extension is not straight-
forward and we therefore present it later in Section 3.2.
In this work we will focus on an algorithm whose training is performed with the use of quantum
devices, i.e., a quantum learning algorithm. Therefore, the foundations of quantum computing
are introduced next.

2.2 Quantum Computing

In the following paragraphs, the concepts of quantum computing that are important for the
development of a quantum learning algorithm for predictive models are explained. Basic defi-
nitions and an introduction to quantum computation can be found in common textbooks such
as “Quantum Computation and Quantum Information” by Nielsen and Chuang [25], which the
following section is based on.

For classical computing, the fundamental unit of storing information is the bit, which is often
physically realized by a silicon-based transistor that can be either in the 0 or 1 state. The analo-
gous unit in the quantum computing realm is the qubit (quantum bit), which can be physically
realized, e.g., by the spin of an electron. Here, the spin-up state of an electron can correspond
to the classical 0 state and the spin-down state to the 1 state. Just as the spin of an electron
can be in superposition, this also applies to the state of a qubit. Thus, a quantum state can be
written as

|ψ〉 =α |0〉+β |1〉 , (13)

7

2 Basics and Literature Review

Z

Y

X

ȁ ۧ0

ȁ ۧ1

ȁ ۧ𝑖

ȁ ۧ+

ȁ ۧ𝜓𝜃

𝜙

Figure 1: The Bloch sphere representation for an arbitrary qubit state |ψ〉 defined by the rota-
tion angles θ andφ. The computational basis states |0〉 , |1〉 as well as the special states
|+〉 and |i 〉 are illustrated. The figure is based on Figure 1.3 from Ref. [25].

with α,β ∈ C and using the bracket notation |·〉. This is yet not the general form of a qubit,
since we also need to take measurement probabilities into account. When measuring a qubit,
e.g., measuring the spin of an electron, the outcome is either 0 corresponding to a spin-up with
probability |α|2, or 1 corresponding to a spin-down with probability |β|2, and the state of the
qubit collapses to either |0〉 or |1〉, respectively. While the qubit is defined by a quantum me-
chanical property like the spin, in quantum computing it is treated as an abstract mathematical
object, hiding hardware-specific details, which allows to simply work with abstract mathemat-
ical spaces as the domain of computation. Thus, the state of a qubit is generally described by a
unit vector |ψ〉 in a two-dimensional complex Hilbert space, denoted as H2, i.e.,

|ψ〉 =α |0〉+β |1〉 =
[
α

β

]
∈ H2 with |α|2 +|β|2 = 1, (14)

and the states |0〉 and |1〉 are called the computational basis. The normalization condition is
introduced, such that the squared amplitudes |α|2 and |β|2 can be interpreted as probabilities.
Unless further specified, matrices and vectors are specified with respect to this basis.
Since there are infinitely many possible states of a qubit, an intuitive understanding can be
difficult. One way of representing a qubit state geometrically is with the use of the Bloch sphere.
This is a three-dimensional sphere, where each point on the surface represents one pure qubit
state. Since such a state is a unit vector, it can be rewritten as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+eiφ sin

θ

2
|1〉

)
= cos

θ

2
|0〉+eiφ sin

θ

2
|1〉 , (15)

where the term eiγ is called a global phase factor. Due to the nature of measurements in quan-
tum mechanics, such a global phase factor is unobservable and hence can be omitted. The
Bloch sphere for a qubit state |ψ〉 with the two rotation angles θ and φ is illustrated in Figure 1.
Some special qubit states are

|+〉 = 1p
2

(|0〉+ |1〉), (16)

|−〉 = 1p
2

(|0〉− |1〉), (17)

|+i 〉 = 1p
2

(|0〉+ i |1〉), (18)

8

2 Basics and Literature Review

|−i 〉 = 1p
2

(|0〉− i |1〉), (19)

which are often referred to in the literature and thus have their own label.
Similar to classical computing, multiple qubits are grouped together to perform computations.
Such groups are called quantum registers and are mathematically defined as the tensor product
of the Hilbert spaces of the individual qubits, i.e.,

|ψ〉 =α |0〉⊗ |0〉+β |0〉⊗ |1〉+γ |1〉⊗ |0〉+δ |1〉⊗ |1〉 ∈ H2 ⊗H2, (20)

for a general two-qubit quantum register |ψ〉. The tensor product symbol ⊗ between the states
is often omitted, e.g. |1〉⊗|1〉 = |11〉, and the bit-string is interpreted as the binary representation
of the corresponding decimal number, i.e., |00〉 = |0〉, |01〉 = |1〉, |2〉 = |10〉 and |3〉 = |11〉. This
can be extended to a group of n ∈ N qubits, which is called an n-qubit quantum register. The
state of such a register can be generally written as

|ψ〉 =
2n−1∑
i=0

αi |i 〉 ∈ H⊗n
2 , (21)

with
∑2n−1

i=0 |αi |2 = 1. The dimension of the product Hilbert space is 2n and thus grows expo-
nentially with the number of qubits.
Fundamental for quantum computing is the concept of entanglement. The state of a quantum
register is said to be entangled if it cannot be written as the tensor product of all individual
qubits. This leads to a correlation of the measurement outcomes of an entangled quantum
register. It can be seen, e.g., for the so-called GHZ state:

|GHZ〉 = 1p
2

(|000〉+ |111〉). (22)

If the first (leftmost) qubit is measured to be in the |0〉 state, the entire quantum register col-
lapses to the |000〉 state and futher measurements of the remaining qubits will always result in
the |0〉 state as well.
The core idea of quantum computing is to apply operations onto quantum registers. Such op-
erations can be divided into gates and measurements. These two types of quantum operations
are briefly explained in the following sections, starting with the quantum measurement.

2.2.1 Quantum Measurements

Generally, a quantum measurement can be defined as follows.

Definition 2.18. A quantum measurement is defined as a set {Mi } of measurement operators,
acting on the state space of a quantum register and satisfying the completeness equation∑

i
Mi

†Mi = I . (23)

The indices i are referring to the possible measurement outcomes and the probability to mea-
sure i for a quantum register being in state |ψ〉 is given by

P (i) = 〈ψ|Mi
†Mi |ψ〉 , (24)

and the state after the measurement is given by

|ψ′〉 = Mi |ψ〉√
〈ψ|Mi

†Mi |ψ〉
. (25)

9

2 Basics and Literature Review

In contrast to the general definition of a quantum measurement above, a special class of mea-
surements are so-called projective measurements that are easier to work with.

Definition 2.19. A projective measurement is described by an Observable, i.e., an Hermitian
operator M : H⊗n

2 → H⊗n
2 , with spectral decomposition

M =∑
i

i Pi , (26)

where i are the eigenvalues of M and Pi the projectors onto the corresponding eigenspace.
Possible measurement outcomes of M are the eigenvalues i . The probability to measure i for a
register being in state |ψ〉 is given by

P (i) = 〈ψ|Pi |ψ〉 , (27)

while the post-measurement state is

|ψ′〉 = Pi |ψ〉p
P (i)

. (28)

One useful property of projective measurements is the ability to calculate expectation values,
which is summarized in the following example.

Example 2.1. Let M be a projective measurement and |ψ〉 ∈ H⊗n
2 . The expectation value of M

for a quantum state |ψ〉 is then given by

E|ψ〉(M) =∑
i

i P (i) =∑
i

i 〈ψ|Pi |ψ〉 = 〈ψ|∑
i

i Pi |ψ〉 = 〈ψ|M |ψ〉 . (29)

A special class of projective measurements is the measurement in the computational basis.

Definition 2.20. The measurement associated with M : H⊗n
2 → H⊗n

2 , M =∑2n−1
i=0 i |i 〉〈i | is called

measurement in the computational basis.

The outcome of an n-qubit quantum register measured in the computational basis is a bit-
string of length n. While measurements with respect to different bases exist, unless otherwise
specified, throughout this work only measurements in the computational base are considered.
In contrast to quantum measurements, quantum gates can be defined a bit more straight for-
ward, which is done next.

2.2.2 Quantum Gates

Formally, a quantum gate is also an operator acting on the state space of a quantum register.

Definition 2.21. A quantum gate is a unitary operator U : H⊗n
2 → H⊗n

2 acting on the state space
of an n-qubit quantum register. The application of a gate transforms the state according to the
unitary, i.e., U |ψ〉 = |φ〉 with |ψ〉 , |φ〉 ∈ H⊗n

2 .

Multiple gates can be applied one after another and since each gate is unitary, all operations
together form a unitary as well. Quantum gates acting only on a single qubit are called single-
qubit gates. These gates can be described by a complex 2×2 matrix. If such a gate U is applied
to one qubit of a quantum register, it means that the operator I ⊗·· ·⊗U ⊗ . . . I is applied to the
entire register, where I denotes the identity operator on H2. Important single-qubit gates are
the Pauli gates X ,Y and Z :

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (30)

10

2 Basics and Literature Review

The X gate acts on the states |0〉 and |1〉 like the classical “NOT” operation, while the Z gate flips
the relative phase in the computational basis of a qubit in superposition. Y is a combination of
both, the negation and a phase flip. Moreover, the Hadamard gate H , the phase gate S and the
T gate play an important role in quantum computation:

H = 1p
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0
0 ei π4

]
. (31)

The Hadmard gate H creates uniform superpositions when acting on the computational basis
states, i.e.,

H |0〉 = 1p
2

(|0〉+ |1〉) = |+〉 , (32)

H |1〉 = 1p
2

(|0〉− |1〉) = |−〉 . (33)

Both the S and the T gate shift the relative phase of state by i and ei π4 , respectively. Based on
the Pauli gates, the (Pauli) rotation gates RX,RY,RZ are defined as

RX(θ) = exp
(
− i

θ

2
X

)
=

[
cos θ2 −i sin θ

2
−i sin θ

2 cos θ2

]
, (34)

RY(θ) = exp
(
− i

θ

2
Y

)
=

[
cos θ2 −sin θ

2
sin θ

2 cos θ2

]
, (35)

RZ(θ) = exp
(
− i

θ

2
Z

)
=

[
e−i θ2 0

0 ei θ2

]
. (36)

These gates perform a rotation of θ around the corresponding axis on the Bloch sphere, see
Figure 1. The inverse of the rotation gates can be easily obtained via rotating in the opposite
direction, e.g., RX(θ) ·RX(−θ) = I . Compared to the single-qubit gates X ,Y , Z , H ,S and T , the
rotation gates offer a degree of freedom – the parameter θ. This degree of freedom allows to
fine-tune a quantum operation, and it is these parameters in particular that are trained as part
of a variational quantum circuit, as described later in Section 2.2.4.
Quantum gates can also be defined on multiple qubits, which are then called multi-qubit gates.
One important two-qubit gate is the “Controlled-NOT” (CNOT) gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (37)

which flips the second qubit if the first qubit is in state |1〉, e.g., CNOT |10〉 = |11〉. Therefore, the
first (left) qubit is called the control and the second (right) qubit the target qubit. The CNOT
gate is also called CX gate, since it can be written as

CNOT = |0〉〈0|⊗ I +|1〉〈1|⊗X , (38)

which is interpreted as applying the X gate to the target qubit if the control qubit is in state
|1〉, i.e., a controlled-X operation. Similarly, controlled-U operations for arbitrary single-qubit
gates U can be defined via the block-matrix

CU =
[

I 0
0 U

]
. (39)

11

2 Basics and Literature Review

ȁ ۧ0 H

X

X

ȁ ۧ000 +ȁ ۧ111

2
ȁ ۧ0

ȁ ۧ0

ȁ ۧ0 H M

0,1

a) b)

Figure 2: a) A quantum circuit for preparing the GHZ state. The circuit has three wires, corre-
sponding to three qubits, together with three gates, the Hadamard gate H and two CX
gates. b) A one-qubit quantum circuit with Hadamard gate and measurement opera-
tion. The output is either 0 or 1 with equal probability.

Quantum gates can also be controlled by qubits being in the |0〉 state. We denote these gates as
C̃U and call them |0〉-controlled gates. They can be generally written as

C̃U = |0〉〈0|⊗U +|1〉〈1|⊗ I . (40)

Another widely used two-qubit gate is the SWAP gate

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (41)

which simply swaps the states of the two qubits, i.e., SWAP |10〉 = |01〉.

For classical computing, a small set of logical operations can be used to compute any classi-
cal function [25]. These sets are called universal. In the quantum computing realm, a similar
result for universality exists. It is shown that one- and two-qubit gates can be used to construct
unitary operators of arbitrary dimension [25]. Moreover, single-qubit gates together with, e.g.,
the CNOT gate, can be used to construct any two-qubit gate [25]. Thus, any unitary operator
acting on n qubits can be implemented using single-qubit and CNOT gates. However, while
this construction is exact, it is also highly inefficient since it requires O(n24n) single qubit and
CNOT gates [25]. Therefore, universality in the quantum computing realm is defined slightly
differently: A set of quantum gates is said to be universal if any unitary operation can be ap-
proximated to arbitrary accuracy by a sequence of gates from this set [25]. It is shown that the
set {H ,S,T,CNOT} is universal. To be more precise, any unitary U containing m single-qubit
and CNOT gates can be approximated up to accuracy ϵ > 0 with O(m · logc (m/ϵ)) gates from
this set [25]. Here, the accuracy is with respect to an operator norm and c ≈ 2 is a constant.

2.2.3 Quantum Circuits

The sequences of gates and measurements acting on qubits can be graphically represented
with quantum circuits. Here, each wire corresponds to a qubit and the quantum gates are rep-
resented as rectangles. The time goes from left to right and the initial states of the qubits are
written on the left-hand side of each wire. If a rectangle is connected to another wire with a dot,
it means that the corresponding gate is controlled by the connected qubit. An example quan-
tum circuit that prepares the GHZ state from Equation (22) is presented in Figure 2 a). Here,
one Hadamard gate is applied on the first qubit followed by two CX gates acting on the second
and third qubit, controlled by the first one.

12

2 Basics and Literature Review

Data

𝒙
Quantum Circuit

𝑈 𝒙, 𝜽

Measurement

෠𝑂𝑖 = 𝑚𝑖

Optimizer

arg min
𝜽

𝐶 𝜽

Parameters

𝜽

Cost Function

𝐶 𝜽 =෍
𝑖
𝑓𝑖 𝑚𝑖

update

𝜽 𝑛 → 𝜽(𝑛+1)

Figure 3: A schematic illustration of a variational quantum algorithm. The quantum circuit
U (x ,θ) is initialized with training data x and free parameters θ. After the execution,
some observables Ôi are measured and a cost function C (θ) is calculated based on
the measurement outputs mi . A classical optimizer uses the cost function and up-
dates the parameters, such that another iteration can be performed with the goal to
minimize the cost.

A quantum measurement is often denoted as a rectangle including a “meter” symbol. Another
way to illustrate measurements is to simply let the qubit wire end after the rectangle and write
down the measurement outcome, see Figure 2 b) for an example circuit that measures a qubit
in the H |0〉 = |+〉 = 1p

2
(|0〉 + |1〉) state. Here, the measurement outcome is either 0 or 1 with

equal probability.
Two important properties of a quantum circuit are its depth and its width. The depth of a cir-
cuit can be obtained by simply moving all gates in the circuit to the left without changing their
order for acting on the same qubits. Then, the number of gates for the qubit with the largest
number of gates involved is defined as the depth of the circuit. In contrast, the width is simply
the number of qubits that are manipulated by the quantum gates from the circuit.
The field of quantum computing is currently entering the area of noisy intermediate-scale quan-
tum computing (NISQ) [26]. This name was introduced by J. Preskill in 2018 and the term
“intermediate-scale” refers to quantum devices with less than a few hundred qubits, while
“noisy” emphasizes that the physically implemented gates offer only imperfect control over
the qubits [26]. Therefore, quantum circuits must have a low depth in order to be executed
with reasonable accuracy on current quantum devices. One category of quantum algorithms
that take these considerations into account are variational quantum algorithms (VQAs), which
are introduced next.

2.2.4 Variational Quantum Algorithms

The core idea of a VQA lies in the fact that quantum circuits can offer free parameters with
the use of rotation gates, which can be utilized in an optimization procedure. These quantum
circuits are called parameterized quantum circuits (PQCs), which emphasizes the parameteri-
zation of the circuit. Often, PQCs are also referred to as variational quantum circuits (VQCs)
to highlight that the parameters are varied iteratively. VQAs are hybrid quantum-classical algo-
rithms, where the classical part is taken by a classical optimization algorithm. The execution
of the quantum circuit is thus a quantum subroutine within a classical optimization proce-
dure. Variational quantum circuits have been proposed for many fields and tasks such as ap-
proximating the solution of combinatorial optimization problems [27], calculating the energy
ground states of molecules [13] and machine learning [28].
The general structure of a VQA is illustrated in Figure 3. A quantum circuit, denoted as a uni-
tary U , is initialized with some training data x ∈ Rd and an initial set of parameters θ(0) ∈ Rn .
The circuit is then executed multiple times and some observables Ôi are measured to approx-

13

2 Basics and Literature Review

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

Data Encoding Unit

𝐷(𝒙)

Training Unit

𝑇(𝜽)

Encoding

Block

𝐸 𝝓

Entangling

Block

𝐸

… …

M

M

M

M

Encoding

Block

𝐸 𝝓

𝑅 𝜙1

𝑅 𝜙3

𝑅 𝜙5

𝑅 𝜙7

𝑅 𝜙2

𝑅 𝜙4

𝑅 𝜙6

𝑅 𝜙8

…

…

…

…

=

Entangling

Block

𝐸

=
X

X

X

X

1st layer 2nd layer

a)

b)

c)

d)

Figure 4: Illustration of a problem-inspired ansatz for a VQC. a) The circuit is made up by two
units, one data encoding unit D(x) and one training unit T (θ). b) Such units contain
several layers of alternating encoding and entangling blocks. c) One encoding block
E(φ) applies a fixed number of Pauli rotation gates R ∈ {RX,RY,RZ}. d) The entangling
block E applies CX gates between each neighboring qubits.

imate the expectation values 〈Ôi 〉 = mi . This information is used to construct a cost function,
which is mostly of the form of C (θ) =∑

i fi (mi), where fi can be some classical post-processing
of the measurement outcome. A classical optimizer is then used to update the parameters,
θ(n) → θ(n+1), with the goal to minimize the cost. The updated parameters are used to perform
the next iteration until a convergence criterion is satisfied or until a maximal number of itera-
tions is reached.
The choice of the observables Ôi depends on the cost function that is used. The structure of
U , i.e., the choice of gates and their arrangement, is called the ansatz. Different ansätze have
been proposed in the literature, some of which are tailored to specific optimization problems
and thus are called problem-inspired ansätze. On the other hand, problem-agnostic ansätze
have been proposed to offer generic quantum circuits that can be used when no relevant in-
formation about the problem is available. One example of an ansatz for a VQC consisting of
four qubits is shown in Figure 4. This ansatz is a problem-inspired ansatz and has been used
in the field of supervised machine learning [11, 17, 18]. Here, the VQC is split into two units,
one data encoding unit D(x) that encodes some data x , and one training unit T (θ) with the free
parameters θ, see Figure 4 a). Such a unit is build up by l ∈N layers, where each layer is a com-
bination of an encoding block E(φ) and an entangling block E . The encoding block contains
a fixed number of Pauli rotation gates R ∈ {RX,RY,RZ}, whereas the entangling block connects
each qubit with its neighboring qubit via a CX gate, see Figure 4 d). A VQC following this ansatz
can be written as a unitary U (x ,θ) and contains only Pauli rotation gates and CX gates.
To formally work with a VQC, it can be understood as a function, mapping the parameters to
an expectation value.

Definition 2.22. Given an observable Ô, a VQC is a function f : Rn → R, mapping n ∈ N real-
valued parameters to the expectation value of the observable, i.e.,

f (θ) = 〈Ô〉 = 〈0|U (θ)†ÔU (θ)|0〉 , (42)

with U (θ) being the unitary representing the VQC.

It is important to note that in practice, a quantum circuit can only be executed finitely many
times and the expectation value 〈Ô〉 is thus approximated.

14

2 Basics and Literature Review

Within this work, a quantum circuit will serve as a quantum predictive model, that samples
future trajectories of a stochastic process. The measurement outcomes of such a circuit are
bit-strings, i.e., a collection of zeros and ones, and will be interpreted as the future samples.
Therefore, the probability to measure qubits in a certain state is of interest. Based on Definition
2.22, these probabilities can be obtained as follows:

Example 2.2. Consider the observable Ôi = |i 〉〈i | for a fixed |i 〉, i.e., the projector onto one
state of the computational basis |i 〉 ∈ {|0〉 , |1〉}⊗d built up by d qubits. Applying Definition 2.22
then yields

fi (θ) = 〈Ôi 〉 = 〈0|U (θ)† |i 〉〈i |U (θ)|0〉 = 〈ψ(θ)|i 〉〈i |ψ(θ)〉 = |〈ψ(θ)|i 〉 |2, (43)

with |ψ(θ)〉 = U (θ) |0〉 being the state prepared by the circuit U (θ). | 〈ψ(θ)|i 〉 |2 represents the
probability to measure i ∈ {0,1}d in the computational basis. Therefore, one can simply write

fi (θ) = Pθ(i). (44)

The above example shows that executing and measuring the VQC many times results in an ap-
proximation of the probability distribution of the VQC. Within this work, we propose a VQC
that uses two quantum registers A and B , where we are only interested in the probability dis-
tribution of measuring B . For such a VQC, a similar result holds.

Example 2.3. Consider a VQC acting on the quantum registers A⊗B , A = H⊗NA
2 ,B = H⊗NB

2 , i.e.,
the first register consists of NA ∈N and the second of NB ∈N qubits. Next, define the observable
Ôi =∑2NA−1

j=0 | j i 〉〈 j i | for fixed |i 〉 ∈ {|0〉 , |1〉}⊗NB . Applying Definition 2.22 then yields

fi (θ) = 〈Ôi 〉 (45)

= 〈00|U (θ)†
2NA−1∑

j=0
| j i 〉〈 j i |U (θ)|00〉 (46)

=
2NA−1∑

j=0
〈00|U (θ)†| j i 〉〈 j i |U (θ)|00〉 (47)

=
2NA−1∑

j=0
〈ψ(θ)| j i 〉〈 j i |ψ(θ)〉 (48)

=
2NA−1∑

j=0
| 〈ψ(θ)| j i 〉 |2 (49)

=
2NA−1∑

j=0
Pθ(j , i) (50)

= Pθ(i), (51)

with |ψ(θ)〉 =U (θ) |00〉. Pθ(i , j) is the probability to measure register A in j and register B in i ,
while Pθ(i) is the probability to measure register B in i , regardless of the measurement outcome
of register A.

The success of a VQC depends on the efficiency of the optimization procedure, and the de-
sign of the ansatz and the cost function. In principle, any classical optimizer can be used for
the hybrid quantum-classical loop. However, specifically gradient-based optimizers have been
proposed in the literature, since they are known to be robust against sampling noise [18, 29].
Therefore, the gradient of the cost function with respect to the free parameters θ needs to be
calculated. Thus, we need to calculate the partial derivatives ∂θi f (θ). While several ways exist
to calculate these expressions, one method has shown promise, known as the parameter-shift

15

2 Basics and Literature Review

rule [21]. Here, the derivative of the expectation value f can be obtained via calculating expec-
tation values of a “similar” circuit. To be more precise, consider a VQC as shown in Figure 4
with only CX and Pauli rotation gates. Moreover, assume that the parameter θi is affected only
by one Pauli rotation gate R(θi). The partial derivative of f with respect to θi is then given by

∂θi f (θ) = 1

2

[
f (θ+ π

2
·e i)− f (θ− π

2
·e i)

]
, (52)

with e i being the i -th unit vector in Rn [21]. Therefore, the gradient can be obtained by eval-
uating the same circuit twice, shifting the parameter θi ±π/2, and aggregating the values on
a classical computer. Note that while the expression for the gradient is exact, the expectation
values are approximated based on finite measurements.
VQCs have a number of useful properties in conjunction with NISQ devices. On the one hand,
it is shown that there exist classes of low-depth VQCs that can produce highly non-trivial out-
puts. One example are so-called instantaneous quantum polynomial (IQP) circuits that pro-
duce probability distributions which cannot be classically simulated efficiently [30]. On the
other hand, most ansätze lead to scalable circuits in depth and width, such that VQCs can scale
up with future improvements of the devices. While a VQC can only offer an estimation of the
cost function and its gradient, it is shown that these estimators together with a gradient-based
optimizer essentially implement a stochastic gradient descent optimization scheme, which of-
fers fast convergence rates in many settings [31]. Since the training is performed directly on
the imperfect hardware, errors are implicitly taken into account within the optimization pro-
cedure.
Using quantum resources for predictive modeling has already been studied in the literature [11,
12, 32]. However, before listing these findings, predictive models are first formally introduced
in the next section.

2.3 Predictive Models

In general, the goal of predictive models can be formulated as follows. Let {X t , t ∈ Z} be a sta-
tionary stochastic process. Based on a given past ←−x , the predictive model samples a future
trajectory −→x with the use of a physical memory. To this end, the memory stores suitable con-
figurations such that after emitting one time step x1, the state is updated based on x1, allowing
the model to generate the next time step x2. This process can be applied sequentially to pro-
duce arbitrarily long future trajectories x1, x2, x3, . . . [11]. Within this work, a distinction of pre-
dictive models is made based on their accuracy, i.e., the aim of exact or approximate modeling,
as well as based on the technology used (classical or quantum). This distinction is illustrated
in Figure 5. Exact predictive models produce trajectories governed by the same conditional

probability distribution P (
−→
X |←−X) as the underlying stationary stochastic process. By contrast,

approximate predictive models produce trajectories based on an approximation P̂ (
−→
X |←−X) of the

distribution of the process. Classical predictive models use only classical resources for infor-
mation processing, whereas quantum models can use quantum and classical resources. Ap-
proximate models can arise in different situations, such as when a model is learned based on a
finite sample set or when the memory, either classical or quantum, is constrained. The “differ-
ence” between the approximate distribution P̂ and the true distribution P is called distortion
and reflects statistical errors in sampling the trajectories. Distance measures for probability
distributions such as the KL divergence can be used to quantify these errors.
The use of a quantum resources for information processing can lead to an advantage in either
the accuracy for approximate models [11] or lower memory requirements for exact models [12].
How this advantage is quantified and in which situations it occurs is investigated in detail in the
following sections. The focus of this comparison lies on the different technologies, i.e., classical
or quantum resources, while the comparison of exact and approximate models is not consid-
ered within this work.

16

2 Basics and Literature Review

CE CA

QE QA

exact approx.

Accuracy

cl
as

si
ca

l
q
u
an

tu
m

T
ec

h
n
o
lo

g
y

Figure 5: Illustration of the distinction of predictive models based on the accuracy (exact vs.
approximate) and the technology (classical vs. quantum).

2.3.1 Exact Models

Before a comparison can be done, the predictive models are formally defined first, starting with
an exact predictive model.

Definition 2.23. Let {X t , t ∈ Z} be a stationary stochastic process. A classical exact predictive
model for {X t } is a 3-tuple (E , Mc ,P), where E is a deterministic map that encodes each past ←−x
to a suitable state E(←−x) within a classical physical memory Mc , such that the same systematic
action P on Mc at each subsequent time step sequentially outputs x1, x2, x3, ... with probability

P (
−→
X =−→x |←−x).

For such models, knowing the state E(←−x) of the memory Mc is as useful as knowing the partic-

ular past ←−x for the purpose of generating future samples. Therefore, we write P (
−→
X =−→x |E(←−x))

and read it as the probability of generating the future −→x given the memory Mc is in state E(←−x).
One important property of predictive models is that they are unifilar, which means that if a
predictive model is in state E(←−x) and emits some output x1, the model will transition with cer-
tainty to the state E(←−x , x1). It is this property in particular that allows predictive models to
sample faithful future trajectories of arbitrary length. All the states {E(←−x)} can be collected and
indexed with some i ∈N, referring to the i -th state, which is then denoted as Si .
One example of a classical exact predictive model is the so-called ϵ-machine, which has been
studied in diverse contexts such as spike trains [3], stock markets [4, 5], and complex sys-
tems [6]. These models exploit the fact that if two pasts ←−x and ←−x ′ offer the same future statis-
tics, they can be grouped together to generate future samples. This is formally done via dividing
all possible pasts into equivalence classes according to

←−x ∼←−x ′ iff P (
−→
X |←−x) = P (

−→
X |←−x ′). (53)

For each class, the ϵ-machine allocates one state E(←−x) = Si in the memory. These states are
called causal states and it has been shown that the ϵ-machine is the classical exact predictive
model with provable minimal memory dimension [1]. Moreover, the causal states are a unique
property of the process itself [1]. Therefore, properties of the ϵ-machine can be translated to
properties of the underlying stationary stochastic process. Two important properties are the
topological and the statistical complexity.

Definition 2.24. Let {X t } be a stationary stochastic process. Moreover, let {Si }n
i=1 be the n ∈N

causal states of {X t }. The classical topological complexity of the process is defined as

dc = log2 n. (54)

17

2 Basics and Literature Review

H T

H|
1

2

H|
1

2
T|
1

2

T|
1

2

Figure 6: Graphical representation of the ϵ-machine of a fair coin toss process. The circles
denote the causal states and the arrows the possible transitions between the states.
Each label x|P (x) indicates a transition with probability P (x) while emitting x.

Definition 2.25. Let {X t } be a stationary stochastic process. The classical statistical complexity
of the process is defined as

Cc =−∑
i
πi log2πi , (55)

with πi being the stationary probability distribution of the i -th causal state.

The stationary distributions are understood as the asymptotic probability to be in a certain
causal state for many i.i.d. simulations, i.e., πi = P (Si). Similarly, the statistical complexity can
be seen as the mean asymptotic memory requirement, measured in bits, of many parallel and
i.i.d. processes [32]. By contrast, the topological complexity is the minimal memory require-
ment in bits that is needed to store all the causal states for a single instance of the process.
ϵ-machines can often be calculated analytically, given that a mathematical description of the
underlying process is available. Moreover, methods have been proposed to reconstruct an ϵ-

machine from empirical estimates of the joint distribution P (
←−
X ,

−→
X) [8, 9]. Another way to con-

struct an ϵ-machine directly from data is proposed by Shalizi et al. in Ref. [10] and named causal
state splitting reconstruction. The core idea of this algorithm is to assume that one causal sate
is already sufficient, but new states are added if necessary. This is the case if the model de-
fined by the current causal states is not Markovian. Once the states define a Markov model, the
algorithm is finished and the model is unifilar by construction. Whether or not the model is
Markovian is determined via hypothesis testing.
An ϵ-machine offers a natural graphical representation. Figure 6 shows the ϵ-machine of a fair
coin toss. In each step of the process, a fair coin is tossed with probability 1/2. The ϵ-machine
thus has two causal states H ,T with equal transition probabilities 1/2. Causal states are rep-
resented by circles and transitions by arrows labeled with their transition probability P (x) and
the emitting output symbol x.
The graphical representation of ϵ-machines is very similar to the notation of hidden Markov
models (HMM). These models are widely used in the area of probabilistic modeling, and thus
their relation to each other is briefly pointed out. Formally, an HMM is a pair of stochastic pro-

cesses ({X t }, {Yt }) with {X t } being a Markov chain and P (Yt |←−X) = P (Yt |X t). The states X t are not
directly observable, i.e., hidden, and the second process {Yt } is used to model the emissions of
the system, whose probabilities are only dependent on the current hidden state X t . From this
perspective, an ϵ-machine can be seen as a unifilar hidden Markov model [1]. This is because
due to the unifilarity of the model, one does not need to distinguish between emission and
transition probabilities.
Within this work, we are interested in utilizing quantum devices for predictive modeling and
thus define a quantum exact predictive model.

18

2 Basics and Literature Review

𝑥1 𝑥2

ȁ ۧ𝐸 ശ𝑥
𝑈

ȁ ۧ0 ȁ ۧ0

𝑈

Classical Model

Quantum Model

𝑀𝑐

𝑀𝑞

𝐴𝑞

𝐸 ശ𝑥

𝑥1 𝑥2

Figure 7: An illustration of the comparison between classical and quantum predictive mod-
els. Classical models start from a classical state E(←−x) and act on a classical memory
Mc . Quantum models start from a quantum state |E(←−x)〉, acting on both a memory
and auxiliary quantum register and a measurement of the latter one generating future
samples x1, x2, The figure is based on Figure 2 from Ref. [11].

Definition 2.26. Let {X t } be a stationary stochastic process. A quantum exact predictive model
for {X t } is a 4-tuple (E , Mq , Aq ,U). E is a deterministic map that encodes each past ←−x to a
quantum state |E(←−x)〉 within a quantum register Mq . Aq is an ancillary quantum register that
is initialized to the same fixed quantum state |p〉 before each time step. U is a time step inde-
pendent unitary that acts sequentially on Mq ⊗ Aq , such that at each subsequent time step, a

measurement of Aq outputs x0, x1, x2, ... with probability P (
−→
X =−→x |←−x).

For convenience, we set |p〉 = |0〉, but it should be noted that the fixed quantum state can be ar-
bitrarily complex, as long as this is respected in the structure of the unitary U . Just like classical
predictive models, quantum predictive models are also unifilar. A comparison of classical and
quantum predictive models is illustrated in Figure 7. The classical models store their causal
states in their classical memory. By contrast, quantum models use a quantum register Mq for
this purpose but also have another register Aq that is measured to generate future samples.
The quantum analogue to the ϵ-machine was theoretically introduced by Gu et al. [33]. Later,
Binder et al. named these models q-simulators and showed a practical way to construct these
models on a classical computer, given as input the ϵ-machine of a stationary stochastic pro-
cess [12]. A q-simulator is a quantum exact predictive model in the sense of Definition 2.26
and features a set of internal states |σi 〉, each corresponding to one causal state Si from the
stochastic process. The core of a q-simulator is the unitary U , which acts on Mq ⊗Aq according
to

|1i 〉 =U |σi 〉 |0〉 =
∑

x1∈A

√
P (x1|Si) |σλ(Si ,x1)〉 |x1〉 , (56)

with A being the alphabet of the stochastic process, P (x1|Si) the probability to emit x1 when
being in state Si and λ(Si , x1) the transition function that outputs the next causal state when
emitting x1 from Si . Equation (56) shows the application of U for one single time step and
denotes the resulting state with |1i 〉. This can be written in a more general way for the case of
applying U L times, L ∈N, onto the memory and L auxiliary registers, i.e.,

|Li 〉 =U L |σi 〉 |0〉⊗L = ∑
x1:L∈AL

√
P (x1:L |Si) |σλ(Si ,x1:L)〉 |x1:L〉 , (57)

with defining λ recursively as λ(Si , x1:L) = λ(λ(Si , x1:L−1), xL). From here, it can be seen that
after preparing the state |Li 〉 one measures a length-L sequence x1:L ∈ AL with probability

19

2 Basics and Literature Review

P (x1:L |Si), while the memory register collapses to the state |σλ(Si ,x1:L)〉. Binder et al. showed
that such a unitary exists and that it can be calculated classically based on the Gram-Schmidt
procedure [12].
The optimality of the ϵ-machine led to the definition of the classical topological and statistical
complexity and we would like to define its quantum counterparts for the purpose of compari-
son. While it has been shown that the q-simulator is the optimal quantum predictive model for
some classes of stochastic processes [7, 32], it is not known whether this also holds in general
for arbitrary stationary stochastic processes. As a result, we cannot derive the quantum ana-
logues of the classical complexities from the q-simulator. We can, nevertheless, define these
measures as the minimal complexity over all valid models.

Definition 2.27. Let {X t } be a stationary stochastic process. The quantum topological complex-
ity of {X t } is defined as

dq = min
Mq

(
log2

(
dim Mq

))
, (58)

where the minimization is done over all valid quantum exact predictive models.

Definition 2.28. Let {X t } be a stationary stochastic process. The quantum statistical complexity
of {X t } is defined as

Cq = min
ρ

(
− tr

(
ρ log2ρ

))
, (59)

with ρ =∑
i pi |σi 〉〈σi | being the quantum stationary state and the minimization is performed

over all valid quantum exact predictive models.

With respect to these measures, an advantage for quantum predictive models over classical
ones has been shown, which is summarized in the following paragraphs.

Gu et al. [33] showed that there exist stationary stochastic processes that have a strictly lower
quantum statistical complexity, i.e.,

Cq <Cc . (60)

In particular, this holds true for all stationary stochastic processes that have the so-called irre-
versibility condition. That is, given the ϵ-machine of the stochastic process, the existence of two
causal states Si , S j and a non-zero probability to transition from these causal states to another
state Sk while emitting the same output x ∈ A. This means that given the last output x and the
current causal state Sk , one is not able to determine the previous causal state with confidence.
One example of such a stochastic process is the perturbed coin, where at each time step a box
including the coin is perturbed, such that the coin flips with probability 0 < p < 1 and the state
of the coin is observed [33].
A similar result was shown by Thompson et al. [7] for the quantum topological complexity.
Here, dq was analyzed for stochastic processes together with their time-inverted counterparts,
i.e., the stochastic processes that run from the future to the past. Let d+

c ,d−
c ,d+

q ,d−
q be the

classical/quantum topological complexity for a stochastic process (+) and the time-inverted
counterparts (−), respectively. It was shown that

max(d+
q ,d−

q) ≤ min(d+
c ,d−

c), (61)

holds for any stationary stochastic process. This means in particular that the quantum topo-
logical complexity never exceeds the classical one, or in other words, a quantum model has
at worst the same topological complexity as its classical counterpart. Moreover, Thompson et
al. showed that

dq < dc (62)

20

2 Basics and Literature Review

holds true for a concrete example, the heralding coin, which is a simple extension to the per-
turbed coin with some post-processing of the observed states. Additionally, it was shown that
there exists a family of processes, parameterized by some n ∈ N, such that the advantage is
unbounded, i.e.,

|Cq (n)−Cc (n)|→∞ and |dq (n)−dc (n)| for n →∞. (63)

The findings above indicate that quantum predictive models can have an advantage over clas-
sical ones in terms of the topological and statistical complexity. dc and dq are defined for
stochastic processes and reflect the minimum dimension of the memory for any predictive
model in order to faithfully sample future trajectories, i.e., without distortion. If processes be-
come more and more non-Markovian, the amount of past information that is needed for exact
simulation grows and thus the topological complexity grows as well [2]. Therefore, finite mem-
ory of classical/quantum predictive models necessarily lead to distortions. In this case, predic-
tive models can only approximate the true stochastic behavior and thus are called approximate
predictive models.

2.3.2 Approximate Models

Approximate predictive models can be defined analogously to Definition 2.23, respectively Def-
inition 2.26 for the quantum case. The only difference is that the model outputs future samples

x0, x1, . . . according to the distribution P̂ (
−→
X = −→x |←−x), which is an approximation to the true

probability distribution of the underlying stationary stochastic process. Such models arise in
the setting when predictive models are learned based on a finite sample set or when imperfect
hardware is used, such as NISQ devices. Moreover, one defines the following two properties of
approximate predictive models.

Definition 2.29. Let (E , Mc ,P) be an approximate classical predictive model with causal states
{Si }n

i=1, n ∈N. The classical memory size of the model is defined as

d̂c = log2 n. (64)

Definition 2.30. Let (E , Mq , Aq ,U) be an approximate quantum predictive model. The quan-
tum memory size of the model is defined as

d̂q = log2 dim Mq . (65)

Note that unlike the causal states of exact models, the states of approximate models are not
called causal, but simply memory states or configurations of the memory. Also note that even
if predictive models satisfy d̂c = dc or d̂q = dq , they can be approximate. This can occur in sit-
uations when a model is learned based on a finite sample set or when imperfect hardware is
used, such as NISQ devices.
Yang et al. [11] showed that approximate quantum predictive models can have an advantage
over classical ones in terms of accuracy. To be more precise, they showed that there exist quan-
tum approximate predictive models with quantum memory dimension d̂q such that the distor-
tion is provably lower compared to any classical approximate predictive model with classical
memory dimension d̂c = d̂q . In order to show that, two major contributions where made. The
first one is a classical discovery algorithm that only takes as input the desired model memory di-
mension d̂q together with a length L sequence from the process x1:L . It outputs a classical rep-
resentation of a quantum predictive model for the stationary stochastic process that governs
the distribution of x1:L . The second contribution is a systematic way of finding a lower bound
on the distortion of any classical predictive model, given a stochastic process with Markov or-
der κ and the classical memory dimension d̂c . The distortion here is expressed with the KL
divergence. In the following, the idea of the discovery algorithm and the systematic way of

21

2 Basics and Literature Review

finding lower bounds on the distortion are sketched.
The goal of the algorithm is to output a unitary U together with the encoding function E , which
encodes the pasts ←−x to suitable quantum states |σ←−x 〉. In order to utilize machine learning tech-
niques for this task, the discovery algorithm is formulated as a learning algorithm, with the goal
of minimizing some cost function over a parameter set θ. It is shown that the model’s output
behavior can be defined by some operators A = {Ax }, where Ax = 〈x|U |0〉 reflects the action of
the memory when interacting with the auxiliary system. Instead of optimizing over A, Yang et
al. devise a way to optimize over some set of d̂q × d̂q complex matrices B = {Bx }, with the de-
grees of freedom in B being the trainable parameters θ. This is done since the operators {Ax }
are constrained to satisfy the completeness equation (cf. Definition 2.18). For the matrices B ,
the negative log-likelihood − log2 PB (x1:L) of producing the input sample x1:L can be efficiently
computed and serves as the cost function that drives the learning. From the optimized ma-
trices {Bx }, the operators {Ax } and thus the unitary U as well as the encoding map E can be
reconstructed.
The idea of finding lower bounds on the distortion of any classical predictive model is based
on merging causal states and then optimizing over the next κ future samples. Importantly, the
algorithm does not assume that the models have access only to a finite sample set. Thus, the
search for the lowest distortion becomes an infinite dimensional problem. Yang et al. overcame
this issue by defining a class of models for which a lower bound on the distortion turns out to
be a finite dimensional search problem. Moreover, they showed that classical predictive mod-
els are part of this class and thus satisfy the same lower bound [11].
While the work of Yang et al. proves a superior accuracy of quantum approximate predictive
models, it has the caveat that the learning algorithm remains classical. Since the memory re-
quirement for a classical description of a quantum system scales exponentially in the number
of qubits, the limit of a few tens of qubits that can be described classically is reached rapidly.
Therefore, the approach is insufficient for practical applications. Learning a quantum model
directly on a quantum computer, however, could overcome this issue, since no classical rep-
resentation of the model is needed. This motivates the work at hand, namely to develop a
quantum learning algorithm for quantum approximate predictive models. However, quantum
circuits cannot provide direct access to the sample distribution, which leads to challenges in
training such models. This issue has been studied in the context of so-called implicit genera-
tive models, which will be briefly discussed next.

2.4 Implicit Generative Models

In general, the task of generative modeling can be defined as follows. Given samples xi from
some unknown probability distribution P , output with high probability an efficient algorithm
for generating new samples x̂ j from a good approximation P̂ of the original distribution [17].
Generative models can be classified into prescribed and implicit models [34]. Prescribed gen-
erative models offer an explicit parameterization P̂θ(x) of the distribution for generating new
samples. This has the advantage that the distribution can be used to construct a cost function
for the purpose of learning such models. Therefore, distance measures for probability distribu-
tions such as the KL divergence or the TV distance can be used for training and validation. By
contrast, implicit generative models only define a stochastic procedure that directly generates
new samples. That raises the question of which cost functions can be used to learn such mod-
els. Different approaches have been proposed in the literature, and some of them are presented
next.
Liu et al. proposed a variational quantum circuit approach for generative models, the so-called
quantum circuit Born machine (QCBM) [18]. The name QCBM derives from Born’s rule, which
refers to identifying the squared amplitude of a wave function as probability distribution [35].
Thus, the variational circuit generates samples via projective measurements, i.e., it generates a

22

2 Basics and Literature Review

sample x with probability

Pθ(x) = |〈x|U (θ)|0〉 |2, (66)

where U (θ) represents the parameterized unitary of the VQC. In order to train the variational
circuit, a cost function is needed. Liu et al. used the so-called maximum mean discrepancy
(MMD) for this task, which is a kernel-based two-sample test [19], i.e., a statistical hypothesis
testing technique that utilizes kernel methods. The MMD plays a crucial role in the present
work and is thus described in detail in the next section, together with a brief overview about
kernel methods. The quantum circuit for the QCBM consists of layers of arbitrary rotation
gates U (θ1,θ2,θ3) = Rz (θ1)Rx (θ2)Rz (θ3) together with layers of CX gates to induce correlations
between qubits. For this ansatz, the gradient of the MMD can be calculated and gradient-based
optimizers such as ADAM can be employed [36]. While non-gradient-based optimizers can also
be used in principle, they failed to scale up to use a larger number of parameters [18]. Thus,
gradient-based optimizers are preferred. As a proof of concept, the QCBM was tested for the
Bars-and-Stripes dataset as well as for Gaussian mixture distributions [18].
Coyle et al. defined a QCBM with a special circuit structure, leading to an Ising Hamiltonian
for the circuit [20]. For this model, they extended the methodology of the QCBM in two ways.
First, the kernel in the MMD for the cost function is replaced by a quantum kernel, which is
evaluated on quantum hardware. Second, the cost function itself is replaced by the Sinkhorn
divergence [37], which is another method to compare probability distributions, similar to the
MMD. Numerical results show that these two alterations can outperform previous approaches
that are based only on the MMD [20].
While the works of Coyle et al. offer promising alternatives to the MMD, they are outside of
the scope of this work. Yet, it is of great interest how these alternatives would perform in the
domain of predictive modeling.

2.4.1 Maximum Mean Discrepancy

Proposed by Gretton et al., the MMD is a measure on the space of probability distributions [19],
similar to the KL divergence or the TV distance from Section 2.1.3. However, a major difference
lies in the fact that the MMD can be calculated based only on samples, and without direct
access to the probability distributions. It is therefore particularly interesting for the area of
implicit generative modeling. The following definitions and theorems are taken from Ref. [19].
The problem the MMD tries to solve can be formulated as follows. Let X and Y be random
variables with respective probability distributions P and P̂ . Moreover, let x = x1, ..., xm and y =
y1, ..., yn be independently and identically distributed observations from P and P̂ , respectively.
Based on that, can it be decided whether P ̸= P̂? Theoretically, this can be answered with the
following criterion.

Lemma 2.3. Let (X ,d) be a metric space. Then P = P̂ if and only if

Ex∼P [f (x)] = Ey∼P̂ [f (y)] for all f ∈C (X), (67)

where C (X) is the space of all bounded continuous functions on X .

While this lemma can be used theoretically to check whether P = P̂ , it can not be used prac-
tically since C (X) has infinite dimension. However, a more general condition can be defined
that nevertheless allows to uniquely determine whether P = P̂ , which is the maximum mean
discrepancy.

Definition 2.31. Let F (X) be a class of functions f : X →R. The maximum mean discrepancy
(MMD) is defined as

MMD[F,P, P̂] = sup
f ∈F

(
Ex∼P [f (x)]−Ey∼P̂ [f (y)]

)
. (68)

23

2 Basics and Literature Review

For practical applications, the expectation values in the MMD can be approximated, which
gives an estimate

MMDe [F,P, P̂] = sup
f ∈F

(1

m

m∑
i=1

f (xi)− 1

n

n∑
i=1

f (yi)
)
. (69)

If one chooses F (X) =C (X), one can use Lemma 2.3 to get MMD[C (X),P, P̂] = 0 if and only if
P = P̂ . However, the key lies in the fact that a more handy function space F can be chosen that
yields the same outcome. In particular, the unit ball of a so-called universal reproducing kernel
Hilbert space (RKHS) is used [19]. The theory about RKHS and kernel functions is an indepen-
dent discipline within mathematics and thus not discussed here in detail. An introduction to
RKHSs can be found in textbooks such as in Ref. [38]. In essence, a reproducing kernel Hilbert
space F (X) is a Hilbert space of functions f : X → R, where the point evaluation functionals
are continuous. For such spaces, a function k : X ×X →R exists, such that

k(·, ·) is symmetric and positive semi-definite and (70)

k(x, y) = 〈k(·, x),k(·, y)〉F for all x, y ∈X . (71)

k is called reproducing kernel. A RKHS F (X) is called universal, if it is dense in C (X). For these
spaces, Gretton et al. have shown that the MMD has the desired property to decide whether
P ̸= P̂ [19]:

Lemma 2.4. Let F (X) be the unit ball in a universal RKHS, defined on the compact metric
space X . Then

MMD[F,P, P̂] = 0 if and only if P = P̂ . (72)

Having a suitable RKHS, one can obtain the squared MMD via kernel function evaluations [19]:

Theorem 2.1. Let X , X ′ be independent random variables with probability distribution P and
Y ,Y ′ be independent random variables with probability distribution P̂ , respectively. Then

MMD2[F,P, P̂] = Ex∼P,x ′∼P [k(x, x ′)]−2 ·Ex∼P,y ′∼P̂ [k(x, y)]+Ey∼P̂ ,y ′∼P̂ [k(y, y ′)]. (73)

The random variables X ′,Y ′ in Theorem 2.1 are understood as independent copies of X , re-
spectively of Y , with the same probability distribution. For practical applications, an estimator
for the MMD is obtained via

MMD2
e [F,P, P̂] = 1

m(m −1)

m∑
i=1

m∑
j ̸=i

k(xi , x j)− 2

mn

m∑
i=1

n∑
j=1

k(xi , y j)+ 1

n(n −1)

n∑
i=1

n∑
j ̸=i

k(yi , y j). (74)

The proper choice of the RKHS, i.e., the choice of the kernel functions, can often be non-trivial
and problem-dependent. It was shown that Gaussian RKHSs are universal [39] and can thus be
used for the MMD. These RKHSs are induced by Gaussian kernel functions

k(x, y) = 1

nα

nα∑
i=1

exp
(
− |x − y |2

2αi

)
, (75)

with nα ∈ N and so-called bandwidths αi ∈ R. Gaussian kernels have been successfully used
in practice for the QCBM [18] which is why we also rely on them for calculating the MMD for
predictive models.

The areas of implicit generative and predictive modeling have been introduced separately from
each other within this work. We did this because the two fields are also separately discussed in
the literature, using different notations and semantics. However, both areas do relate to each
other in several ways. To avoid confusion, the relationship between the two will be discussed
in more detail in the next section.

24

2 Basics and Literature Review

2.4.2 Relation to Predictive Models

We start our discussion by noting that both fields aim to learn models where samples can be
drawn according to some probability distribution. In the typical setting of implicit genera-
tive models, as introduced by Shakir and Balaji [34], this probability distribution is fixed, i.e.,
the output of one sample does not change the behavior of the model for outputting the next
sample. Moreover, the framework of implicit generative modeling is embedded in the area of
machine learning and therefore shares notations and semantics that is focused on learning pat-
terns from data. By contrast, predictive models heavily rely on updating some internal states
based on the output of previous samples. The generated samples thus follow a conditional
probability distribution instead and can be arbitrarily long. A central quantity in predictive
modeling is the memory, which is reflected in discussions about the topological and statisti-
cal complexity. The semantic and notation of predictive models is influenced by the field of
information theory. In this field, a core concept is entropy, which is a measure for the average
information or uncertainty of the outcome of a random variable. Thus, the classical statisti-
cal complexity is simply the Shannon entropy applied to stochastic processes [32]. Similarly,
the quantum statistical complexity is the Von Neumann entropy [32]. The information-centric
approach of predictive models is often motivated by Occam’s razor; the internal states should
encapsulate all the necessary information about the future but nothing more.
Within this work, we understand predictive models as a generalization of implicit generative
models. This is motivated as follows. If a predictive model is iteratively applied to produce an
output of length n ∈N, while being always initialized with the same fixed input, we essentially
define a stochastic procedure that generates new samples of size n from a fixed probability dis-
tribution. This is precisely the definition of implicit generative models that we are referring to
within this work. Therefore, we extend several concepts of the domain of implicit generative
modeling to the domain of predictive modeling, which includes the KL divergence, the MMD
and the QCBM.
To the end of this chapter, the different methods from the field of predictive modeling are sum-
marized and discussed.

2.5 Discussion

In summary, the existing approaches for quantum predictive models either assume the avail-
ability of an ϵ-machine and derive quantum models from it (q-simulators) or train a quantum
model on classical resources (discovery algorithm). The ϵ-machine of a particular stochastic
process is mostly unknown and needs to be constructed with, e.g., the causal state splitting re-
construction algorithm [10]. However, since it has been shown that quantum predictive models
perform at worst as well as the ϵ-machine, one could essentially skip learning the ϵ-machine
and directly learn a quantum predictive model instead. For this purpose, the discovery algo-
rithm by Yang et al. can be used [11]. This, however, leads to the problem that only models with
a relatively small-sized quantum memory can be learned.
In contrast to this, we propose a way to learn a quantum predictive model directly on quantum
devices, that, nevertheless, only takes data as input. This approach is inspired by the quan-
tum circuit Born machine [18], where a VQC is trained iteratively with a cost function based on
the MMD. For learning predictive models, however, the MMD needs to be extended to take the
conditional behavior of the probability distributions into account. Moreover, the VQC of our
learning algorithm features two quantum registers Mq and Aq , where the first one is used to
store the quantum memory states and the second is used for measuring future samples. The
learned model can thus be seen as an approximated q-simulator, which follows the same idea
of repeatedly measuring Aq , letting Mq collapse to a memory state. Furthermore, we employ
the same validation metrics as Yang et al. [11], allowing a direct comparison between classical
and quantum learned predictive models.

25

3 Methodology

3 Methodology

The overall goal of this work is to develop a quantum learning algorithm for quantum approx-
imate predictive models. After training these models, they should be able to simulate the cor-
responding stationary stochastic process with high accuracy. This chapter explains how this
issue is investigated in detail, after a rough overview is given first.
The learning algorithm follows the idea of a variational quantum algorithm, where a VQC is
trained based on a cost function in an iterative hybrid quantum-classical optimization proce-
dure. We are aiming for learning a model based only on data, without further knowledge of the
process. Therefore, the algorithm is given access only to a sample x1:L ∈ AL , drawn from the
stationary stochastic process. In order to achieve a reasonable performance of the model, the
input sample should be sufficiently long. Consequently, it is infeasible to load the entire sample
into the VQC at once. Therefore, the learning algorithm features a classical pre-processing step
that splits x1:L into a training data set consisting of past-future-pairs {(←−x ,−→x)}, where the length
of the past and future samples are lp and l f , respectively. The VQC is initialized alternately
with pasts from this set and the generated outputs −→y are compared with the known futures−→x . This comparison is implicitly done by calculating the maximum mean discrepancy, which
serves as a distance measure for the two underlying probability distributions and is used as a
cost function for the learning algorithm.
The classical pre-processing step raises the question of how long the samples −→y and −→x should
be. In the domain of predictive modeling, we are aiming to have models that can simulate
arbitrarily many future time steps. Yet, we only have access to finite samples and thus can
only perform a two-sample test based on a finite length. This means that we are essentially
minimizing |P (X1:l f |←−x)−P̂ (X1:l f |←−x)|, for some distance measure |·|. However, there is no reason
to assume that a model trained based on such a cost function will perform well for time steps
larger than l f . The ability of exact predictive models to accurately simulate arbitrarily many
time steps relies on the use of causal states in the classical setting and memory states in the
quantum setting. We therefore add a regularization term to the cost function that penalizes
models with a rich set of internal states. This is heuristically motivated since the causal states of
an ϵ-machine are the minimal set of states that is needed to faithfully sample future trajectories.
Within this chapter, we show that such a regularization term can be obtained via performing a
quantum post-processing step.
To utilize gradient-based optimizers, the cost function needs to be differentiable and the gra-
dient efficiently computable. We show that our proposed cost function is differentiable and
define an ansatz, for which gradients can be efficiently calculated. This ansatz is created based
on the following steps. We start with defining a class of stochastic processes that are consid-
ered in detail throughout this work and that we use to validate the learned models. Based on
these stochastic processes, the next step is then to construct a static quantum circuit that cor-
responds to the q-simulator of these processes, i.e., a quantum exact predictive model. The
circuit is called static because no rotation gates are used here. Next, we decompose these gates
step by step into rotation and CX gates, such that the output is a parameterized quantum cir-
cuit, which serves as the ansatz for the learning algorithm. While this ansatz can be used in
general, the approach described above has the advantage that the models can easily be vali-
dated for the stochastic processes that we consider, since the ansatz contains an optimal solu-
tion by construction. Moreover, we can use the parameter-shift rule to calculate gradients with
respect to the trainable parameters.

The chapter is arranged as follows. Section 3.1 starts with the introduction of the model prob-
lem that is used throughout this work. Next, in Section 3.2, the KL divergence and the TV dis-
tance are extended to the domain of predictive modeling such that they can be used to validate
the learned models. Afterward, in Section 3.3, the quantum learning algorithm is presented in
more detail, which includes the choice of the cost function, the classical pre-processing step,

26

3 Methodology

𝑆0 𝑆1

0|
𝑁 − 1

𝑁

1|
1

𝑁 − 1

1|
1

𝑁 𝑆2 … 𝑆𝑁−1

0|
𝑁 − 2

𝑁 − 1
0|
𝑁 − 3

𝑁 − 2
0|
1

2

1|
1

𝑁 − 2
1|1

Figure 8: Illustration of the ϵ-machine of the period-N uniform renewal process. The nodes
indicate the causal states S0,S1, . . . ,SN−1 and the labels x|P (x) indicate that the output
x is produced with probability P (x) when transitioning to the next causal state. The
figure is based on Figure 6 from Ref. [11].

and the quantum post-processing step. The ansatz for the VQC is derived in Section 3.4, where
we construct the circuit for the q-simulator first and gradually decompose the gates yielding a
parameterized quantum circuit. Subsequently, Section 3.5 covers the computation of the gra-
dient for the cost function. This includes in particular the common parameter-shift rule as well
as an extension thereof. At the end of this chapter, the quantum learning algorithm is summa-
rized in Section 3.6.

3.1 Model Problem

An iconic non-Markovian process will serve as the model problem, namely the period-N uni-
form renewal process [11]. This process uses the binary alphabet A = {0,1} and produces bit-
strings as output, where the number of zeros between two adjacent ones is uniformly dis-
tributed between 0 and N −1. The corresponding ϵ-machine is illustrated in Figure 8. It shows
N causal states, where past observations ending with a 1 are mapped to S0 and past observa-
tions ending with n-times a 0, n ∈ {1,2, . . . , N −1}, are mapped to Sn .
In the following paragraphs, some important properties of the period-N uniform renewal pro-
cess are presented. This includes the Markov order, transition probabilities, stationary proba-
bilities, and conditional probabilities for future samples based on past observations. Moreover,
the topological and classical complexities are calculated. The analysis of the period-N uniform
renewal process is limited to the periods N = 2 and N = 3 since we consider these in practice.
We start with the Markov order of the process.

Lemma 3.1. The period-N uniform renewal process has Markov order N −1.

Proof. The longest past observation that is needed to identify the corresponding causal state
has length n = N −1. This observation is n times a 0, and it is mapped to the state SN−1. Thus
we get

P (X1|←−X) = P
(
X1|E(

←−
X)

)= P
(
X1|E(XN−1:0)

)= P (X1|XN−1:0), (76)

i.e., the next time step depends at most on the past N −1 time steps.

Since the ϵ-machine has the structure of a hidden Markov model, it is based on transition prob-
abilities Ti , j to transition from causal state j to i . We can read out these probabilities from
Figure 8 and organize them in a matrix, leading to

T (2) =
[

1/2 1
1/2 0

]
and T (3) =

1/3 1/2 1
2/3 0 0

0 1/2 0

 , (77)

for the period-2 and the period-3 uniform renewal process, respectively. Note that the super-
script indicates the period of the process. Based on the transition probabilities, the stationary
distributions of the process can be calculated.

27

3 Methodology

Lemma 3.2. The period-2 and period-3 uniform renewal processes have the following station-
ary distributions:

π(2) =
[

2/3
1/3

]
, π(3) =

1/2
1/3
1/6

 . (78)

Proof. The stationary distribution is defined as the fixed-point of the transition matrix, i.e.,
Tπ = π. Thus, the distribution can be obtained by calculating the eigenvector for the eigen-
value λ= 1, which is

π(2) = x(2) ·
[

2
1

]
, π(3) = x(3) ·

3
2
1

 , (79)

where x(2), x(3) ∈ R can be chosen arbitrarily. Since the vectors are interpreted as a probability
distribution, the normalization condition

∑
i πi = 1 yields x(2) = 1/3 and x(3) = 1/6.

These distributions are understood as the asymptotic probability to be in a certain causal state
for many i.i.d. simulations, i.e., πi = P (Si). Given the distributions for the causal states, the

stationary distribution of past observations P (
←−
X) can be calculated.

Lemma 3.3. The period-2 and period-3 uniform renewal processes have the following station-
ary distribution of past observations:

P (2)(X0 = 0) = 1/3, P (2)(X0 = 1) = 2/3, (80)

and

P (3)(X−1 = 0, X0 = 0) = 1/6, P (3)(X−1 = 0, X0 = 1) = 1/3, (81)

P (3)(X−1 = 1, X0 = 0) = 1/3, P (3)(X−1 = 1, X0 = 1) = 1/6. (82)

Proof. In order to calculate the stationary past distributions, we apply the law of the total prob-
ability, i.e.,

P (X) =∑
i

P (X |Si)P (Si), (83)

with the stationary distributions P (Si) =πi . For the period-2 uniform renewal process, we get

P (2)(X0 = 0) =
1∑

i=0
P (X0 = 0|Si)π(2)

i = 1/3, (84)

P (2)(X0 = 0) =
1∑

i=0
P (X0 = 0|Si)π(2)

i = 2/3, (85)

and for the period-3 uniform renewal process

P (3)(X−1 = 0, X0 = 0) =
2∑

i=0
P (X−1 = 0, X0 = 0|Si)π(3)

i = 1/6, (86)

P (3)(X−1 = 0, X0 = 1) =
2∑

i=0
P (X−1 = 0, X0 = 1|Si)π(3)

i = 1/3, (87)

P (3)(X−1 = 1, X0 = 0) =
2∑

i=0
P (X−1 = 1, X0 = 0|Si)π(3)

i = 1/3, (88)

P (3)(X−1 = 1, X0 = 1) =
2∑

i=0
P (X−1 = 1, X0 = 1|Si)π(3)

i = 1/6, (89)

where the conditional probabilities can be read off from the ϵ-machine, see Figure 8.

28

3 Methodology

Period-2 uniform renewal process
←−x State P (←−x) P (0|←−x) P (1|←−x)

0 S1 1/3 0 1
1 S0 2/3 1/2 1/2

Period-3 uniform renewal process
←−x State P (←−x) P (0|←−x) P (1|←−x)

00 S2 1/6 0 1
01 S0 1/3 2/3 1/3
10 S1 1/3 1/2 1/2
11 S0 1/6 2/3 1/3

Table 1: Conditional probabilities and stationary past distributions of the period-2 (left) and
period-3 (right) uniform renewal process. Additionally, the mappings from past obser-
vations to the causal states are listed.

The conditional probabilities, stationary past distributions and causal state mappings are sum-
marized in Table 1. These properties are used for validating the learned models.
Besides the probability distributions, we also calculate the classical statistical and topological
complexity.

Lemma 3.4. The period-2 and period-3 uniform renewal process have the following classical
topological and statistical complexities:

d (2)
c = 1, C (2)

c ≈ 0.92, (90)

d (3)
c ≈ 1.59, C (3)

c ≈ 1.46. (91)

Proof. The topological complexities can be calculated by counting the number of causal states
of the corresponding ϵ-machine and taking the base-2 logarithm (see Definition 2.24). This
yields

d (2)
c = log2 2 = 1 and d (3)

c = log2 3 ≈ 1.59. (92)

For the statistical complexities, we apply Definition 2.25 which results in

C (2)
c =−

1∑
i=0

π(2)
i log

(
π(2)

i

)=−2

3
log2

(2

3

)
− 1

3
log2

(1

3

)
≈ 0.92 (93)

and

C (3)
c =−

2∑
i=0

π(3)
i log

(
π(3)

i

)=−1

2
log2

(1

2

)
− 1

3
log2

(1

3

)
− 1

6
log2

(1

6

)
≈ 1.46, (94)

respectively.

Lemma 3.4 shows that one bit is sufficient for classical models to faithfully sample future tra-
jectories for the period-2 uniform renewal process. Therefore, a quantum model using only
one qubit as a memory register is sufficient as well. By contrast, for the period-3 uniform re-
newal process, at least two bits are required. If the memory was restricted to only one bit, no
classical predictive model would be able to exactly simulate the period-3 uniform renewal pro-
cess. However, since the quantum topological complexity can be strictly lower than its classical
counterpart, a quantum model with only one qubit might perform better, i.e., with fewer sta-
tistical errors. In order to quantify these errors, some metrics are needed. In Section 2.1.3, we
introduced the KL divergence and the TV distance, which are distance measures for probabil-
ity distributions. However, stochastic processes offer a conditional probability distribution and

include uncountably many random variables
−→
X = X1, X2, We thus extend these measures in

the next section to be applicable for comparing the distributions of stochastic processes with
the distributions of predictive models.

29

3 Methodology

3.2 Validation Metrics

The KL divergence compares two probability distributions P and P̂ according to

DK L(P, P̂) = ∑
x∈A

P (x) log2

(P (x)

P̂ (x)

)
, (95)

cf. Definition 2.16. We extend this formula in two ways. On the one hand, we introduce the
conditional behavior and average over the pasts ←−x . On the other hand, we include multiple
future time steps X1:L and take the limit L →∞. This extension to the KL divergence has already
been done by Yang et al. [11], which we follow here, albeit using a slightly different notation.
In the following, the probability distribution P refers to a stationary stochastic process {X t },
whereas P̂ denotes the distribution of an approximate predictive model for {X t }.

Definition 3.1. The normalized conditional KL divergence is defined as

DK L(L,P, P̂ |←−x) = 1

L
DK L

(
P (X1:L |←−x), P̂ (X1:L |←−x)

)
(96)

for any L ∈N and possible past ←−x .

This measure can be taken to compare models for one particular past ←−x and a fixed number of
time steps L. However, we are interested in the overall performance and thus average over all
possible pasts.

Definition 3.2. The normalized KL divergence is defined as

DK L(L,P, P̂) =∑
←−x

P (←−x)DK L(L,P, P̂ |←−x) (97)

for any L ∈N.

The use of ←−x indicates an infinitely long past sample. However, for stochastic processes of
finite Markov order, the sum in Equation (97) is finite as well. The last step now is to take the
limit L →∞ to get the mean value over all future time steps.

Definition 3.3. The mean KL divergence is defined as

DK L(P, P̂) = lim
L→∞

DK L(L,P, P̂). (98)

This measure is able to capture all the important properties, i.e., the statistics for all future time
steps based on all possible pasts. We can fully write it down as

DK L(P, P̂) = lim
L→∞

∑
x1:L∈AL

∑
←−x

P (←−x) ·P (x1:L |←−x)

L
log2

(P (x1:L |←−x)

P̂ (x1:L |←−x)

)
. (99)

An important question at this point is if the mean KL divergence is well-defined, or in other
words, if the limit in Equation (99) exists. Yang et al. [11] showed that this is the case. Further-
more, they showed that the mean KL divergence can already be obtained by considering only a
single future time step:

Lemma 3.5. Let P and P̂ be the probability distributions of two stationary stochastic processes
{X t } and {X̂ t }, respectively. Moreover, let L ∈N be arbitrary but fixed. Then

DK L(P, P̂) = DK L(L,P, P̂) = DK L(1,P, P̂). (100)

30

3 Methodology

The proof is based on Bayes’ theorem and exploiting the property of stationarity. 1

A word of caution: In general, Lemma 3.5 cannot be applied to a predictive model and its un-
derlying stationary stochastic process directly. This is the case since the probability distribution
P̂ defined by an approximate predictive model does not need to be stationary. The general case
is that we can only upper bound the normalized KL divergence, as described in the following
lemma.

Lemma 3.6. Let P and P̂ be probability distributions and L1,L2 ∈N. Then

DK L(L1,P, P̂) ≤ L2

L1
DK L(L2,P, P̂) (101)

for L1 < L2.

Proof. Let L ∈N be arbitrary but fixed. Then for any n ∈Nwe have

LDK L(L,P, P̂) = ∑
x1:L

∑
←−x

P (←−x) ·P (x1:L |←−x) log2

(P (x1:L |←−x)

P̂ (x1:L |←−x)

)
(102)

=∑
←−x

∑
x1:L

P (←−x) ·P (x1:L |←−x) log2

(P (x1:L |←−x)

P̂ (x1:L |←−x)

)
(103)

=∑
←−x

∑
x1:L

P (←−x)
(∑

xL:L+n

P (x1:L+n |←−x)
)

log2

(∑
xL:L+n

P (x1:L+n |←−x)∑
xL:L+n

P̂ (x1:L+n |←−x)

)
(104)

≤∑
←−x

∑
x1:L

P (←−x)
∑

xL:L+n

P (x1:L+n |←−x) log2

(P (x1:L+n |←−x)

P̂ (x1:L+n |←−x)

)
(105)

=∑
←−x

∑
x1:L+n

P (←−x) ·P (x1:L+n |←−x) log2

(P (x1:L+n |←−x)

P̂ (x1:L+n |←−x)

)
(106)

= (L+n)DK L(L+n,P, P̂), (107)

where we used the log sum inequality(∑
i

ai

)
log

(∑
i ai∑
i bi

)
≤∑

i
ai log

(ai

bi

)
. (108)

Thus, we have

DK L(L,P, P̂) ≤ L+n

L
DK L(L+n,P, P̂), (109)

which completes the proof.

Therefore, if we calculate the mean KL divergence for approximate predictive models, we ex-
pect it to increase with increasing time steps i . Thus, calculating DK L(i ,P, P̂) for i = 1,2,3, . . .
can offer an indication of “how well” the approximate model is able to produce multiple future
time steps.
Besides the KL divergence, we have also introduced the TV distance as a distance measure for
probability distribution in Section 2.1.3. This measure can be extended to stochastic processes
in a similar way.

Definition 3.4. The conditional TV distance is defined as

DT V (L,P, P̂ |←−x) =DT V
(
P (X1:L |←−x), P̂ (X1:L |←−x)

)
, (110)

for any L ∈N and possible past ←−x .

1The full proof can be found in [11] as Lemma 2 in Appendix F.

31

3 Methodology

To get an overall performance, we sum up all the values for different pasts.

Definition 3.5. The full TV distance is defined as

DT V (L,P, P̂) =∑
←−x

DT V (L,P, P̂ |←−x), (111)

for any L ∈N.

We can write the full expression as

DT V (L,P, P̂) = 1

2

∑
x1:L∈AL

∑
←−x

|P (x1:L |←−x)− P̂ (x1:L |←−x)|. (112)

Note that while we include multiple future time steps X1:L , we do not divide by L. Similarly, we
sum over all pasts but do not weigh each past with its likelihood P (←−x). This is because for the TV
distance, we are interested in the absolute point-wise difference between the two distributions.
At this point, we took the limit L →∞ for the normalized KL divergence to get the mean value.
However, this can not be done for the full TV distance since the limit does not need to exist in
general. Yet, we can upper bound the full TV distance similarly to the normalized KL divergence
as follows.

Lemma 3.7. Let P and P̂ be probability distributions and L1,L2 ∈N. Then

DT V (L1,P, P̂) ≤ DT V (L2,P, P̂) (113)

for L1 < L2.

Proof. The result is a direct application of the triangle inequality, i.e.,

DT V (L1,P, P̂) = 1

2

∑
x1:L1

∑
←−x

|P (x1:L1 |←−x)− P̂ (x1:L1 |←−x)| (114)

= 1

2

∑
←−x

∑
x1:L1

|P (x1:L1 |←−x)− P̂ (x1:L1 |←−x)| (115)

= 1

2

∑
←−x

∑
x1:L1

∣∣∣ ∑
xL1:L2

P (x1:L2 |←−x)− ∑
xL1:L2

P̂ (x1:L2 |←−x)
∣∣∣ (116)

= 1

2

∑
←−x

∑
x1:L1

∣∣∣ ∑
xL1:L2

(
P (x1:L2 |←−x)− P̂ (x1:L2 |←−x)

)∣∣∣ (117)

≤ 1

2

∑
←−x

∑
x1:L1

∑
xL1:L2

|P (x1:L2 |←−x)− P̂ (x1:L2 |←−x)| (118)

= 1

2

∑
←−x

∑
x1:L2

|P (x1:L2 |←−x)− P̂ (x1:L2 |←−x)| (119)

= DT V (L2,P, P̂). (120)

Therefore, we also take the full TV distance as a validation metric for fixed numbers i = 1,2,3, . . .
of time steps. Similar to the normalized KL divergence, we expect the full TV distance to in-
crease for multiple future time steps.
Now that we have discussed the validation metrics, we present the learning algorithm in more
detail in the next section.

32

3 Methodology

Input

Sample 𝑥1:𝐿
Model dimension መ𝑑𝑞

Classical Pre-Processing

𝑥1:𝐿 → ശ𝑥, Ԧ𝑥 , 𝑤 ശ𝑥

Output

Optimized parameters 𝜽∗

Hybrid Optimization

arg min
𝜽

𝐶 𝜽

Pasts ശ𝑥 Quantum Circuit

U ശ𝑥, 𝜽

Measurement 𝑴𝒒

Quantum Post-Processing

Optimizer

𝜽 ← 𝜽 − 𝜂∇𝐶 𝜽

Parameters 𝜽

Cost Function & Gradient

𝐶 𝜽 , ∇C 𝜽

Measurement 𝑨𝒒

Samples Ԧ𝑦

Two-Sample Test

Ԧ𝑦 ↔ Ԧ𝑥

Figure 9: Schema of the quantum learning algorithm. The algorithm takes as input one sam-

ple x1:L , together with the desired model memory size d̂q . At first, a classical pre-
processing step is done, which outputs past-future-pairs {(←−x ,−→x)} and some weights
w←−x . Afterward, the hybrid optimization is performed. Here, a VQC is initialized with
some past observations, executed, and measured. The measurement of the auxil-
iary register Aq leads to samples of future trajectories −→y , that are used to perform a
two-sample test. Measuring the memory register Mq corresponds to a quantum post-
processing step that yields a regularization term which penalizes models with a rich
set of internal states. Both pieces of information together are used to calculate the
cost function C (θ) and its gradient ∇C (θ), and a classical optimizer updates the train-
able parameters based on that. The output of the learning algorithm are the trained
parameters θ∗.

3.3 Quantum Learning Algorithm

Within this section, the proposed quantum learning algorithm for predictive models is ex-
plained in detail. The overall procedure is illustrated in Figure 9. As input, the learning al-
gorithm is given access to a sample x1:L ∈ AL of length L ∈N, and the desired model quantum
memory size d̂q . A classical pre-processing step takes the sample and splits it into pairs of pasts
and futures {(←−x ,−→x)} of a certain length. Additionally, some weights w←−x are calculated which
will be part of the cost function and take the frequencies of different pasts into account. This
pre-processing step is done only once, as an initialization step of the learning algorithm. Af-
terward, the hybrid optimization loop is performed. Here, the VQC is initialized with a given
past ←−x and the trainable parameters θ, and both registers, the auxiliary register Aq as well as
the memory register Mq are measured. On the one hand, the measurement outcomes of Aq are
interpreted as future trajectories and are used to perform a two-sample test via calculating the
MMD. The samples thus follow the probability distribution P̂θ defined by the VQC. On the other
hand, the measurement of Mq corresponds to the outcome of a quantum post-processing step
yielding a regularization term that penalizes models with a rich set of internal states. Both out-
comes are used together to compute the cost function C (θ) and its gradient ∇C (θ). The value
of the cost function determines whether a convergence criterion is satisfied and the gradient is
used to update the trainable parameters according to a classical gradient-based optimizer. The
output of the learning algorithm is an optimized parameter set θ∗, which can be used together
with the quantum circuit to simulate the underlying stationary stochastic process.
One important part of a learning algorithm is the cost function, which should reflect “how
well” a model candidate solves the given problem. In principle, the KL divergence and the TV
distance can be used for this task. However, both measures take as input the probability distri-

33

3 Methodology

bution of the model, which is not directly accessible in the quantum setting. We therefore only
take these measures as validation metrics, i.e., to measure their simulation performance, and
propose a cost function that can be used as a computable proxy instead. Our cost function is
strongly related to the structure of the VQC. Thus, an overview of the VQC is given first, and the
cost function is derived based on that afterward.

3.3.1 General Structure of the VQC

In general, we split the VQC into two parts, one data encoding unit E and one unitary T , both
of which are trained within an optimization loop. In the setting of predictive models, E corre-
sponds to the deterministic map that encodes pasts ←−x to a memory state, i.e.,

E(←−x) |0〉 = |σ←−x 〉 , (121)

with |σ←−x 〉 being the memory state for a past ←−x and |0〉 the initial state of the memory register.
Following the idea of the q-simulator, the unitary T is acting on these states together with an
auxiliary register Aq , such that a measurement of the latter generates a future sample while the
memory register Mq collapses to another memory state. We can write this formally as

T |σ←−x 〉 |0〉 =
∑
x∈A

√
P (x|←−x) |σ←−x ,x〉 |x〉

I⊗M−−−→ |σ←−x ,x∗〉 |x∗〉 , (122)

with |σ←−x ,x〉 being the memory state associated with the observation of (←−x , x) and x∗ being the
measurement outcome of Aq . Note that Equation (122) exactly describes the property of a q-
simulator, cf. Equation (56).
Within this work, we consider VQCs with a fixed ansatz, i.e., a fixed structure of gates, but pa-
rameterized by some real values θ ∈ Rn . Thus, the unitary T as well as the data encoding unit
become dependent on these parameters, i.e., T = T (θ) and E(←−x ,θ). The goal of the learning
algorithm is to train these parameters, such that the unitaries E(←−x ,θ∗) and T (θ∗) for an opti-
mized parameter setθ∗ act according to the above formulas. However, depending on the ansatz
and the stochastic process, it is possible that no optimal solution exists, or in other words, that
no choice of θ leads to the unitaries described above. In this case, the best we can hope for is
to have unitaries that offer a good approximation P̂θ of the true underlying probability distri-
bution, i.e.,

T (θ) |σ←−x 〉 |0〉 =
∑
x∈A

√
P̂θ(x|←−x) |σ←−x ,x〉 |x〉 . (123)

This requires that we are able to successfully learn two unitaries with different targets; the data
encoding unit E(←−x ,θ) to generate memory states and the unitary T (θ) to approximate the pro-
cess’ probability distribution while acting on these states. In general, the output of T (θ) might
not be a memory state, but simply one internal state of the model. However, it is desirable to
have memory states since we can only train the VQC to approximate finitely many future time
steps. If the output states of the unitary T matches the memory states of the data encoding
unit E , we call these states a valid set of memory states. For the case that we can ensure both,
T (θ) approximates finitely many time steps accurately and outputs memory states, we know
that T (θ) satisfies Equation (123) and thus accurately approximate arbitrarily many time steps.
These two goals are treated separately within the proposed cost function, which is introduced
next.

3.3.2 Cost Function

Formally, the two requirements are introduced by splitting the cost function C (θ) into two
parts, one as a measure D(θ) of the distortion and one as a measure R(θ) for the ability of

34

3 Methodology

T (θ) to output memory states, i.e.,

C (θ) = D(θ)+R(θ). (124)

From this form, R(θ) can be seen as a regularization term which introduces our knowledge
about an optimal solution to the problem. Since the model needs to be initialized based on a
given past ←−x , the two measures depend on ←−x and the overall cost function is split per past, but
summed up together such that

C (θ) =∑
←−x

D←−x (θ)+R←−x (θ). (125)

So far, the future statistics of each past are treated equally. However, if a past ←−x occurs relatively
rarely in the stochastic process, it should be given a lower priority, since its impact on the overall
performance is also relatively small. Imagine a past ←−x ′ which occurs only a few times. Even
if a model fails to faithfully sample future trajectories for ←−x ′, it will only happen a few times
and thus will not significantly influence the overall performance. Therefore, weights w←−x are
introduced with the aim to prioritize frequent pasts. In order to balance the two measures, a
hyper-parameter c ∈R+ is added, such that the overall cost function can be read as

C (θ) =∑
←−x

w←−x D←−x (θ)+ cR←−x (θ). (126)

Measuring the distortion in the sense of the KL divergence or the TV distance is not possible,
since the probability distribution of the VQC is not accessible. However, the MMD can be used
for the same task but can also be estimated based only on samples drawn from the training
data set and the model. For repetition, given a universal RKHS F with kernel k, the MMD can
be calculated as

MMD2[F,P, P̂] = Ex,x ′ [k(x, x ′)]−2 Ex,y [k(x, y)]+Ey,y ′ [k(y, y ′)], (127)

where x, x ′ are drawn from P and y, y ′ from P̂ , respectively, cf. Theorem 2.1. The MMD is
based on probability distributions P (x), but can be straightforwardly extended to take con-
ditional probabilities into account. Thus, P and P̂ are simply replaced by P (·|←−x) and P̂θ(·|←−x),
respectively, and the MMD becomes dependent on a particular past ←−x , which we denote as
MMD2[F,P, P̂θ|←−x]. Inserting this into the cost function yields

C (θ) =∑
←−x

w←−x MMD2[F,P, P̂θ|←−x]+ cR←−x (θ). (128)

The term R←−x (θ) will be calculated based on a quantum post-processing step, which is investi-
gated in detail in Section 3.3.4. For now, we continue with the classical pre-processing step and
how the weights w←−x are calculated.

3.3.3 Classical Pre-Processing

Since it is infeasible to load the entire input sample x1:L ∈ AL into the quantum circuit at once,
a classical pre-processing step is needed. This step is only applied once in the initialization
phase of the algorithm. Note that without loss of generality, we assume that A ⊂N0. Thus, the
input sample is an int-string, i.e., a string consisting of integers. The goal of the pre-processing
step is to split the input sample into pairs of sequences {(←−x ,−→x)}, and to calculate the weights
w←−x . This is done as follows. First, we choose lengths lp , l f ∈N for past and future sequences,
respectively. Next, we partition the int-string x1:L into sequences of length lp + l f , where the
first lp integers are interpreted as the past ←−x and the remaining l f integers are interpreted as
the future −→x . This interpretation can be done since the underlying stochastic process is sta-
tionary, i.e., P (X t+τ, . . . X t+τ+n) = P (X t , . . . ,P (X t+n) for all n,τ ∈ N. Afterward, these sequences

35

3 Methodology

are grouped if their pasts coincide. This yields a training data set, where for each unique ob-
served past ←−x of length lp , a set of future outcomes {−→x }, each of length l f , can be accessed. The
future outcomes {−→x } are not unique. On the contrary, the number of possible futures offers a
way to indicate which pasts occur often in the input sample and thus have a greater impact on
the performance of the model. Hence, the last step is to count the number of futures per past,
denoted as f←−x , and divide it by the total number of futures, L

l f +lp
, to calculate the weights, i.e.,

w←−x = f←−x
L

l f +lp

= f←−x
l f + lp

L
. (129)

Due to the construction of the weights, we have 0 ≤ w←−x ≤ 1 for all ←−x ,
∑←−x w←−x = 1 and w←−x is

large if ←−x occurs often in the input sample. Besides calculating the weights, the training data
sets are also used to perform the two-sample test, i.e., to calculate the MMD dependent on a
particular past. The classical pre-processing step additionally introduces the hyper-parameters
lp and l f , which, in general, can be optimized by validating the learned model with different
choices of lp and l f and taking the values that performed best. However, the length of the past
samples should be at least the Markov order of the underlying stochastic process to ensure that
all memory states can be learned in principle. Moreover, we choose l f = 1 within this work,
since learning to accurately sample one future time step should be sufficient as long as valid
memory states are present. How this can be quantified and calculated with a quantum post-
processing step is investigated in the next section.

3.3.4 Quantum Post-Processing

In general, the regularization term R(θ) should be small if the unitary T (θ) outputs memory
states, and it should be large if this is not the case. Normally, a quantum register has to be
prepared and measured several times to reconstruct the underlying state via quantum state to-
mography. However, we are not interested in the exact representation of the state, only whether
it is a valid memory state. We therefore take a shortcut and measure how close the output of
T (θ) is to the corresponding memory state as determined by the encoding unit E . This can
be done based on the following observations. One the one hand, we know how to create valid
memory states |σ←−x 〉, which is simply applying the data encoding unit E(←−x ,θ) for the corre-
sponding past ←−x . On the other hand, we also know the memory states that the unitary T (θ)
should output, which is |σ←−x ,x∗〉 for the case that the auxiliary register is measured to be x∗.
Therefore, we can apply the appropriate inversion of the data encoding onto the memory reg-
ister Mq which yields the |0〉 state if and only if Mq was in the correct memory state before,
i.e.,

E−1(←−x , x∗,θ) |σ←−x ,x∗〉 = |0〉 . (130)

Measuring the memory register Mq in the computational basis then yields an approximation
for the probability of T (θ) outputting correct memory states. We denote this probability as
Pθ(Mq = 1), since we want to minimize this term, and identify it as the missing part R←−x (θ) in the
cost function. Note that the probability distributions P̂θ and Pθ are not the same. The first one
refers to the model’s output distribution, i.e., the distribution for generating new samples. This
is implicitly defined by measuring the auxiliary register Aq , whereas Pθ is defined by measuring
the memory register Mq .
This approach introduces the overhead of applying additional gates during training, which can
be seen as a quantum post-processing step. Applying the correct inverse data encoding unit
E−1(←−x , x∗,θ) generally requires knowing the measured outcome x∗ before the circuit is exe-
cuted. However, this is not possible in the quantum setting. Therefore, we propose two ways
to overcome this issue. The first one relies on performing a fixed inverse data encoding, irre-
spective of the measurement outcome of the auxiliary register, but post-selecting the events

36

3 Methodology

ȁ ۧ0

ȁ ۧ0

𝐸 ശ𝑥, 𝜽
𝑇 𝜽

𝐸−1 𝜽 𝑀

𝑀

𝑥∗

𝑟

ห ൿ𝜎 ശ𝑥,𝑥∗

ȁ ۧ𝑥∗

𝐸 ശ𝑥, 𝑥∗ = 0, 𝜽 𝐸 ശ𝑥, 𝑥∗ = 1, 𝜽𝐸−1 𝜽
=

Figure 10: Illustration of the quantum post-processing step. The quantum circuit uses a single
qubit as memory and auxiliary register and thus x∗ ∈ {0,1}. After the application of
the data encoding unit E(←−x ,θ) and the unitary T (θ), the inverse of the data encod-
ing unit E−1(θ) is performed. This quantum post-processing step consists of a |0〉-
controlled application of the inverse data encoding for an observation of (←−x , x∗ = 0)
and a controlled application of the data encoding for (←−x , x∗ = 1), respectively.

that correspond to a valid run. To be more concrete, assume we have a stochastic process that
uses the binary alphabet A = {0,1}, e.g., the period-N uniform renewal process. Thus, the aux-
iliary register Aq is simply one qubit, and a measurement of Aq yields either 0 or 1. Moreover,
assume we run the quantum circuit n times for one specific past ←−x to collect n future trajecto-
ries −→y . Given the fixed past ←−x , we apply E−1(←−x , x∗ = 0,θ) for the first half of the runs, i.e., we
assume the measurement outcome to be −→y = 0. Then, we count how often we have measured
the memory register to be in the |0〉 state, but we do not count a run if the generated output was−→y = 1 instead. For the other half, we do the same, but apply E−1(←−x , x∗ = 1,θ) and do not count
a run if the generated output was −→y = 0, respectively.
By contrast, the other way is to perform the inverse data encoding for all possible outcomes,
but let this operation be controlled by the auxiliary register. We refer to this approach as con-
trolled inverse data encoding. Thus, the state of Aq determines which inverse data encoding is
applied. This way is illustrated in Figure 10, where the empty node is meant as a |0〉-controlled
operation. If Aq is in state |x∗〉 = |0〉, the first operator is applied, i.e., E−1(←−x , x∗ = 0,θ) that
corresponds to a measurement of x∗ = 0. However, if |x∗〉 = |1〉, the first operator is omitted
and just the second is applied, which corresponds to x∗ = 1.
In principle, the post-selection, as well as the controlled inverse data encoding, can be used to
calculate R←−x (θ), with each having its advantages and disadvantages. On the one hand, post-
selection leads to a fractional loss in the approximation of the probability distribution. On the
other hand, the circuit is relatively shallow, since only one operation is applied. By contrast, the
depth of the circuit for the controlled approach increases with the size of the alphabet, since all
possible outcomes need to be taken into account. However, each run of the circuit contributes
to the approximation of the desired probability distribution. Throughout this work, we use the
latter approach, since the period-N uniform renewal processes use a binary alphabet and thus
the resulting circuit is relatively shallow as well.
How the inverse data encodings look in detail is dependent on the ansatz of the VQC. Thus, the
ansatz that we will use within this work is explained next.

3.4 Quantum Circuit Ansatz

While the general structure of the VQC was explained in Section 3.3.1, it remains open which
gates should be used to construct the unitaries E , T and E−1, respectively. The goal of this sec-
tion is therefore to propose a fixed ansatz for the VQC, which offers trainable parameters θ. In
general, different ansätze have been proposed in the literature, as explained in Section 2.2.4. In

37

3 Methodology

this work, we take the approach of starting with a known solution for our model problem and
gradually decomposing the involving gates into rotation and CX gates to construct an ansatz.
To be more precise, in the following we construct a quantum circuit that corresponds to the
q-simulator for the period-2 uniform renewal process, i.e., a quantum exact predictive model.
The gates used for this circuit are static, which means that they do not offer trainable parame-
ters. The next step then is to derive decompositions for these gates, such that the circuit can be
gradually decomposed into a parameterized quantum circuit. This PQC offers the same struc-
ture as the problem-inspired ansatz for supervised machine learning from Section 2.2.4, i.e.,
alternating blocks of encoding and entangling layers. This approach has the advantage that
we know the optimal parameter set for our model problem and can thus use this information
to validate the learned models. Note that we follow this approach only to validate our mod-
els, such that we can show the proposed learning algorithm works as expected. Deriving an
ansatz from a known solution is, in general, not necessary and even not possible since the true
underlying stochastic process is a priori unknown.

3.4.1 Construction of a q-simulator

The period-2 uniform renewal process has two causal states S0 and S1, where past observations
ending with 1 are mapped to S0 and observations ending with 0 are mapped to S1, respectively,
cf. Figure 8. We therefore want to have two memory states |σ0〉 and |σ1〉 that correspond to
the two causal states. By contrast to the ϵ-machine, we would like to have the mapping ←−x =
0 → |σ0〉 and ←−x = 1 → |σ1〉, i.e., we swap the indices of the memory states. This makes the
following calculations a bit easier to read since a memory state |σi 〉 can be directly associated
with the mapped observation i ∈ A. These two states together define the data encoding unit
E(←−x) according to

E(x0 = 0) |0〉 = |σ0〉 , (131)

E(x0 = 1) |0〉 = |σ1〉 . (132)

The unitary T will act on these memory states together with the auxiliary register, which is
initially in state |0〉. Applying T once should lead to

T |σi 〉 |0〉 =
∑
x∈A

√
P (x|i) |σx〉 |x〉 , (133)

which is the formula of the q-simulator, cf. Equation (56). For a system prepared in this state,
the second qubit will be measured to be x ∈ A with probability P (x|i), while the first qubit col-
lapses to |σx〉. If we insert the values for the conditional probability distribution of the period-2
uniform renewal process (see Table 1), we get

T |σ0〉 |0〉 =
√

P (0|0) |σ0〉 |0〉+
√

P (1|0) |σ1〉 |1〉 (134)

= |σ1〉 |1〉 (135)

and

T |σ1〉 |0〉 =
√

P (0|1) |σ0〉 |0〉+
√

P (1|1) |σ1〉 |1〉 (136)

= 1p
2
|σ0〉 |0〉+ 1p

2
|σ1〉 |1〉 . (137)

The question now is how to construct the two unitaries E and T . A natural approach would be
to define the memory states |σi 〉 and to derive the structure of E and T from there. However,
the memory states cannot be chosen arbitrarily, which is reflected in the following lemma.

Lemma 3.8. The orthogonal states |0〉 and |1〉 can not be the memory states for the period-2
uniform renewal process.

38

3 Methodology

Proof. Assume the mapping 0 → |σ0〉 = |0〉 and 1 → |σ1〉 = |1〉. Thus, the unitary operator T
needs to satisfy

T |00〉 = |11〉 , (138)

T |10〉 = 1p
2

(
|00〉+ |11〉

)
. (139)

Writing T as a 4×4 matrix, the first two columns are determined by the two equations and can
be calculated as

T =


0 1p

2
#

0 0 # #
0 0 # #
1 1p

2
#

 (140)

in the computational basis. Since these two columns are not orthogonal, the matrix can never
be filled out to become unitary. The reversed mapping 0 → |1〉 and 1 → |0〉 can be done analo-
gously, which concludes the proof.

This result shows that the memory states must be chosen with caution. We therefore take a
closer look at the ϵ-machine and see if we can find a better candidate for the memory states. If
the ϵ-machine is in state S1, i.e., a 0 was observed last, the next state will be S0 with confidence.
On the other side, if the ϵ-machine is in state S0, the next state will be either S0 or S1 with
equal probability. The quantum memory states can be chosen to reflect the same behavior.
Thus, one way is to fix one state |σi 〉 = |i 〉 for one i ∈ {0,1}, and define the other as an equal
superposition of the first one. Following this, one possible choice is 0 → |σ0〉 = |1〉 and 1 →
|σ1〉 = |+〉 = 1p

2
(|0〉+ |1〉), which turns out to be a valid set of memory states. To prove this, we

first derive the corresponding unitary T . For this set of memory states, the action of T onto the
memory states needs to be

T |σ0〉 |0〉 = T |10〉 = |+1〉 ,

T |σ1〉 |0〉 = T |+0〉 = 1p
2
|10〉+ 1p

2
|+1〉 . (141)

Let us first focus on the action onto |σ0〉. Here, T essentially changes the first qubit from state
|1〉 to |+〉 and the second from |0〉 to |1〉. This can be done by applying a Hadamard gate onto
the second qubit, controlled by the first one, and swapping the qubits afterward. More formally,
this can be written as

|σ0〉 |0〉 =|10〉 (142)

CH−−−−→|1+〉 (143)

= 1p
2

(
|10〉+ |11〉

)
(144)

SWAP−−−−→ 1p
2

(
|01〉+ |11〉

)
(145)

=|+1〉 , (146)

and the corresponding unitary would be T ′ = SWAP ·CH. We write T ′ because this is not yet the
final form of the operator. This can be seen by applying it onto |σ1〉, i.e.,

|σ1〉 |0〉 =|+0〉 (147)

= 1p
2

(
|00〉+ |10〉

)
(148)

39

3 Methodology

ȁ ۧ0 H

a) b)

ȁ ۧ𝜎𝑖

Hȁ ۧ0 X M

𝑥

ȁ ۧ𝜎𝑥

c)

ȁ ۧ+ = ȁ ۧ𝜎1ȁ ۧ0 X ȁ ۧ1 = ȁ ۧ𝜎0

Figure 11: Components of the q-simulator for the period-2 uniform renewal process. a) The
data encoding unit for |σ0〉 which is the Pauli-X gate. b) Applying the Hadamard
gate creates the second memory state |+〉. c) The circuit of the q-simulator that acts
on |σi 〉⊗ |0〉 and consists of a controlled Hadamard, a Pauli-X and a SWAP gate.

CH−−−−→ 1p
2

(
|00〉+ |1+〉

)
(149)

= 1p
2

(
|00〉+ 1p

2

(
|10〉+ |11〉

))
(150)

= 1p
2
|00〉+ 1

2
|10〉+ 1

2
|11〉 (151)

SWAP−−−−→ 1p
2
|00〉+ 1

2
|01〉+ 1

2
|11〉 (152)

= 1p
2
|00〉+ 1p

2
|+1〉 , (153)

which includes 1p
2
|00〉 instead of 1p

2
|10〉, cf. Equation (141). However, this can be fixed by

simply applying an X gate onto the first qubit,

1p
2
|00〉+ 1p

2
|+1〉 X⊗I−−→ 1p

2
|10〉+ 1p

2
|+1〉 , (154)

which works since X |+〉 = |+〉. Due to the same reason, the additional gate does not change the
effect onto the memory state |σ0〉 = |+〉. There is no difference if we swap the two qubits and
apply the X gate onto the first one, or apply X to the second qubit first and swap afterward. The
latter approach, however, has the advantage that the decomposition of the circuit has fewer
gates, which is explained in the next section. Thus, we conclude that the operator T can be
written as

T = SWAP · (I⊗X) ·CH. (155)

The quantum circuit corresponding to the unitary T is presented in Figure 11 c). What is still
missing is the data encoding unit E. However, the two memory states can be easily prepared
with either an X or a Hadamard gate:

X |0〉 = |1〉 = |σ0〉 , (156)

H |0〉 = |+〉 = |σ1〉 . (157)

Thus, if we want to start the simulation based on a past observation ending with ←−x = 0, we
apply the X gate first to the memory qubit and perform the unitary T afterward. Similarly, we
can use the H gate to start the simulation based on past observations ending with ←−x = 1. The
data encoding units are illustrated in Figure 11 a) and b), respectively.

While we have successfully constructed a q-simulator for the period-2 uniform renewal pro-
cess, the resulting circuit is static and can only be used to simulate this particular process. Thus,
we gradually decompose these static gates into rotation and CX gates in the following.

40

3 Methodology

ȁ ۧ0 H ȁ ۧ+ = ȁ ۧ𝜎1

ȁ ۧ0 RY 1 ∙ 𝜋
2

ȁ ۧ+ = ȁ ۧ𝜎1

ȁ ۧ0 RY ശ𝑥 ∙ 𝜋
2

ȁ ۧ𝜎 ശ𝑥X

ȁ ۧ0 RY ശ𝑥 ∙ 𝜋
2

ȁ ۧ𝜎 ശ𝑥RX 𝜋

ȁ ۧ0 𝐸 ശ𝑥 ȁ ۧ𝜎 ശ𝑥

Figure 12: Illustration of the construction of the data encoding unit for the q-simulator. The
different steps are read from top to bottom. First, the Hadamard gate is replaced by
an RY gate, such that the observation of ←−x = 1 can be encoded via RY(←−x ·π/2). A
Pauli-X gate is then added such that past observations ←−x = 0 can also be encoded.
Lastly, the X gate is replaced by RX(π), leading to the data encoding unit E(←−x).

3.4.2 Quantum Circuit Decomposition

We start the decomposition of the circuit with the data encoding unit E(←−x). For the q-simulator,
depending on the past observation, either the Pauli-X or Hadamard gate is applied, leading to
|σ0〉 = X |0〉 = |1〉 or |σ1〉 = H |0〉 = |+〉, respectively. However, we are aiming for a fixed ansatz,
i.e., a fixed set of gates, which does not need to be changed for encoding different past observa-
tions. Thus, we are looking for a sequence of rotation gates that can encode 0 →|1〉 and 1 →|+〉,
while acting on the initial state |0〉. The procedure to construct such a circuit is illustrated in
Figure 12 and will be explained step by step in the following.
We start with preparing the |σ1〉 = |+〉 state. Here, an RY gate can be used with a rotation angle
of π2 , i.e.,

RY
(π

2

)
|0〉 = cos

π

4
|0〉+ sin

π

4
|1〉 = |0〉+ |1〉p

2
= |+〉 = |σ1〉 . (158)

Therefore, we can encode an observation of ←−x = 1 by multiplying this value with the rotation
angle π

2 leading to

E ′(←−x) = RY
(←−x · π

2

)
. (159)

We write E ′ since this is not yet the final form of the decomposition. This can be seen via
performing the encoding of an observation ←−x = 0:

E ′(←−x = 0) |0〉 = RY
(
0 · π

2

)
|0〉 = |0〉 ̸= |1〉 = |σ0〉 . (160)

However, we can perform a Pauli-X operation afterward in order to transform the |0〉 state to
|1〉. Thus,

E ′′(←−x = 0) |0〉 = X ·RY
(
0 · π

2

)
|0〉 = X |0〉 = |1〉 = |σ0〉 , (161)

which does not change the encoding of ←−x = 1 since X |+〉 = |+〉 = |σ1〉. However, we have now
introduced the Pauli-X gate which is not parameterized. Yet, the Pauli gates can easily be writ-
ten as rotation gates as follows.

Lemma 3.9. The Pauli gates {X ,Y , Z } can be written as rotation gates according to

X = RX(π), Y = RY(π), Z = RZ(π), (162)

up to an unobservable global phase.

41

3 Methodology

ȁ ۧ𝜎𝑖

Hȁ ۧ0 X RY 𝜋
4 XX

=
RY −

𝜋
4

RY 𝜋
4 X

=
RY −

𝜋
4

RX 𝜋

RY 𝜋
4 X

=
RY −

𝜋
4

RX 𝜋 X X

X

RY 𝜋
4 X

=
RY −

𝜋
4

RX 𝜋 X H

H

X H

H

X

RY 𝜋
4 X

=
RY −

𝜋
4

RX 𝜋 X X XRY 𝜋
2

RY 𝜋
2

RX 𝜋

RX 𝜋 RY 𝜋
2

RY 𝜋
2

RX 𝜋

RX 𝜋

Figure 13: Decomposition of the unitary T of the q-simulator. The first step is to rewrite the
controlled Hadamard gate as two rotation gates; RY and a CX gate. Next, the Pauli-X
gate is replaced by its corresponding rotation gate RX. The last step is to decompose
the SWAP gate. This is done in three steps, where the gate is first decomposed to three
CX gates, where one gate is upside down. A transformation to the Hadamard base is
applied to swap the upside-down gate and the Hadamard gates are subsequently
rewritten as a sequence of two rotation gates RX ·RY.

Proof. Using the definition of the rotation gates from Section 2.2.2 we get

RX(π) = exp
(
− i

π

2
X

)
=

[
cosπ/2 −i sinπ/2

−i sinπ/2 cosπ/2

]
=

[
0 −i
−i 0

]
=−i X , (163)

RY(π) = exp
(
− i

π

2
Y

)
=

[
cosπ/2 −sinπ/2
sinπ/2 cosπ/2

]
=

[
0 −1
1 0

]
=−i Y , (164)

RZ(π) = exp
(
− i

π

2
Z

)
=

[
e−iπ/2 0

0 e iπ/2

]
=

[−i 0
0 i

]
=−i Z . (165)

Thus, we simply replace X with RX(π) and get the data encoding unit E that only depends on
rotation gates:

Theorem 3.1. The data encoding unit for the q-simulator of the period-2 uniform renewal
process can be written as

E(←−x) = RX(π) ·RY
(←−x · π

2

)
, (166)

with ←−x ∈ A.

The next step is to decompose the unitary T = SWAP · (I ⊗ X) ·CH. The different steps are il-
lustrated in Figure 13. We start with the controlled Hadamard gate, which can be decomposed
into rotation gates as follows.

Lemma 3.10. The controlled Hadamard gate can be decomposed into

CH =
(
I ⊗RY

(
− π

4

))
·CX ·

(
I ⊗RY

(π
4

))
. (167)

42

3 Methodology

Proof. In order to prove this decomposition, we analyze the effect onto the target qubit for
both cases, the control qubit being in state |0〉 and |1〉. On the one hand, if the control qubit
is in state |0〉, no X gate is applied onto the target qubit and the two rotation gates thus cancel
out, leading to no effect. On the other hand, if the control qubit is in state |1〉, a Pauli-X gate is
applied between the two rotation gates and we perform

RY
(
− π

4

)
·X ·RY

(π
4

)
(168)

onto the target qubit. In order to finish the proof, we show that this sequence of gates acts as
the Hadamard gate onto the computational basis. Thus, we get

|0〉 RY(π/4)−−−−−−→cos
π

8
|0〉+ sin

π

8
|1〉 (169)

X−−−−−−→sin
π

8
|0〉+cos

π

8
|1〉 (170)

RY(−π/4)−−−−−−→sin
π

8

(
cos−π

8
|0〉+ sin−π

8
|1〉

)
+cos

π

8

(
− sin−π

8
|0〉+cos−π

8
|1〉

)
(171)

=
(

sin
π

8
cos−π

8
−cos

π

8
sin−π

8

)
|0〉+

(
sin

π

8
sin−π

8
+cos

π

8
cos−π

8

)
|1〉 (172)

=sin
(π

8
−

(
− π

8

))
|0〉+cos

(π
8
−

(
− π

8

))
|1〉 (173)

=sin
π

4
|0〉+cos

π

4
|1〉 (174)

=|0〉+ |1〉p
2

(175)

=|+〉 , (176)

with using the trigonometric identities

sin(x − y) = sin(x)cos(y)−cos(x)sin(y), (177)

cos(x − y) = sin(x)sin(y)+cos(x)cos(y). (178)

Analogously we can calculate that

RY
(
− π

4

)
·X ·RY

(π
4

)
|1〉 = |−〉 . (179)

which concludes the proof.

We can use this decomposition for the unitary T and rewrite the controlled Hadamard gate as
a sequence containing two rotation gates and one CX gate, see Figure 13. The next gate is the
Pauli-X gate, for which we know already that it can be written as RX gate, cf. Lemma 3.9. Lastly,
the SWAP gate needs to be decomposed. We do that step-wise and decompose the gate first
into a sequence of CX gates.

Lemma 3.11. The SWAP gate can be expressed with only CX gates as

SWAP = CXc,t ·CXt ,c ·CXc,t , (180)

with the subscript c, t indicating that the first qubit is the control and the second the target
qubit.

Proof. Applying the sequence of CX gates onto the basis vectors {|00〉 , |01〉 , |10〉 , |11〉} yields

CXc,t ·CXt ,c ·CXc,t |00〉 = |00〉 , (181)

CXc,t ·CXt ,c ·CXc,t |01〉 = CXc,t ·CXt ,c |01〉 = CXc,t |11〉 = |10〉 , (182)

CXc,t ·CXt ,c ·CXc,t |10〉 = CXc,t ·CXt ,c |11〉 = CXc,t |01〉 = |01〉 , (183)

CXc,t ·CXt ,c ·CXc,t |11〉 = CXc,t ·CXt ,c |10〉 = CXc,t |10〉 = |11〉 , (184)

i.e., the qubits have been swapped.

43

3 Methodology

While the circuit for T now only contains rotation and CX gates, we are still not finished yet.
This is because we would like to have a quantum circuit that consists of alternating encoding
and entangling blocks. However, one CX gate has a wrong orientation, i.e., the control and
target qubits are swapped, see Figure 13. Yet, we can change this orientation with the use of
Hadamard gates as follows.

Lemma 3.12. The position of the control and target qubit of the CX gate can be swapped via

CXt ,c = H⊗2 ·CXc,t ·H⊗2, (185)

with H⊗2 = H ⊗H .

Proof. Applying the CXc,t gate onto the states of the Hadamard basis {|++〉 , |+−〉 , |−+〉 , |−−〉}
with |+〉 = H |0〉 = 1p

2
(|0〉+ |1〉) and |−〉 = H |1〉 = 1p

2
(|0〉− |1〉) yields

CXc,t |++〉 = CXc,t
1

2
(|00〉+ |01〉+ |10〉+ |11〉) = 1

2
(|00〉+ |01〉+ |11〉+ |10〉) = |++〉 , (186)

CXc,t |+−〉 = CXc,t
1

2
(|00〉− |01〉+ |10〉− |11〉) = 1

2
(|00〉− |01〉+ |11〉− |10〉) = |−−〉 , (187)

CXc,t |−+〉 = CXc,t
1

2
(|00〉+ |01〉− |10〉− |11〉) = 1

2
(|00〉+ |01〉− |11〉− |10〉) = |−+〉 , (188)

CXc,t |−−〉 = CXc,t
1

2
(|00〉− |01〉− |10〉+ |11〉) = 1

2
(|00〉− |01〉− |11〉+ |10〉) = |+−〉 . (189)

Therefore, in the Hadamard basis, the CXc,t gate acts as the CXt ,c gate, but onto |+〉 instead of
|0〉 and |−〉 instead of |1〉. Thus, one can simply change the basis before and after applying the
CXc,t gate and get the effect of the CXt ,c gate, i.e.,

H⊗2 ·CXc,t ·H⊗2 |00〉 = H⊗2 ·CXc,t |++〉 = H⊗2 |++〉 = |00〉 , (190)

H⊗2 ·CXc,t ·H⊗2 |01〉 = H⊗2 ·CXc,t |+−〉 = H⊗2 |−−〉 = |11〉 , (191)

H⊗2 ·CXc,t ·H⊗2 |10〉 = H⊗2 ·CXc,t |−+〉 = H⊗2 |−+〉 = |10〉 , (192)

H⊗2 ·CXc,t ·H⊗2 |11〉 = H⊗2 ·CXc,t |−−〉 = H⊗2 |+−〉 = |01〉 , (193)

and H⊗2 ·CXc,t ·H⊗2 can be identified as CXt ,c .

After applying this decomposition onto the unitary T , all the CX gates within our circuit have
the correct orientation. However, in order to achieve this, we have introduced some Hadamard
gates. Yet, we can decompose these gates into rotation gates as well.

Lemma 3.13. The Hadamard gate can be written as

H = RX(π) ·RY
(π

2

)
, (194)

up to a global phase.

Proof. A straightforward calculation yields

RX(π) ·RY
(π

2

)
= 1p

2
RX(π)

[
1 −1
1 1

]
(195)

= 1p
2
− i X

[
1 −1
1 1

]
(196)

= −ip
2

[
0 1
1 0

][
1 −1
1 1

]
(197)

= −ip
2

[
1 1
1 −1

]
(198)

=−i H , (199)

with using RX(π) =−i X from Lemma 3.9.

44

3 Methodology

𝑇 𝜽𝐷 ശ𝑥, 𝜽

RY 𝜃6 X … X XRY 𝜃17

RY 𝜃15 RX 𝜃16

RX 𝜃18

…

RY 𝜃5

RX 𝜃4RY 𝜃3RX 𝜃2RY ശ𝑥 𝜃1ȁ ۧ0

ȁ ۧ0

Figure 14: Illustration of the ansatz used for the VQC. The data encoding unit D(←−x ,θ) has two
parameters, θ1,θ2, where the first one is multiplied with the past observation←−x . Four
layers of alternating encoding and entangling blocks form the unitary T (θ) that of-
fers 16 trainable parameters θ3,θ4, . . . ,θ18.

Thus, a Hadamard gate can be written as two rotation gates, which we apply to our quantum
circuit for T and get the following final decomposition:

Theorem 3.2. The unitary T of the q-simulator for the period-2 uniform renewal process can
be decomposed into the circuit given in Figure 13. This circuit consists of 11 rotation gates from
the set {RX,RY} and 4 CX gates.

Based on this decomposition, we can now derive the ansatz for the VQC. We want to have
a circuit structure that can be written as alternating encoding and entangling layers. Since
RX(0) = RY(0) = I , we can add the missing rotation gates RX and RY such that the circuit con-
tains 4 encoding blocks, each of which being a sequence RX ·RY. In total, we have 4 encoding
layers, each offering 4 rotation gates, and thus we have 16 rotation angles for T . Together with
the two angles from the data encoding unit E(←−x) we have 18 rotation angles in total. Lastly,
we replace these fixed angles with free parameters θ ∈ R18 and get a parameterized quantum
circuit U (←−x ,θ). This circuit is illustrated in Figure 14 and will be used as the ansatz within this
work. Since the ansatz only contains CX and Pauli rotation gates, gradients can be computed
using the parameter-shift rule.
In order to drive the learning towards quantum memory states, we have introduced a quantum
post-processing step in Section 3.3.4. This step makes use of the inverse of the data encoding
unit. Given the two parameters for the data encoding, we have

E(x∗,θ1,θ2) = RX(θ2) ·RY(x∗ ·θ1) (200)

for x∗ ∈ {0,1}, and the post-processing step can be written as

V (θ1,θ2) = CE−1(x∗ = 1,θ1,θ2) · C̃ E
−1

(x∗ = 0,θ1,θ2), (201)

with C̃ E
−1

being the inverse data encoding, but controlled by the |0〉 state. Note that we deviate
from the usual notation here, as the inverse encoding is applied onto the memory (upper) reg-
ister and controlled by the auxiliary (lower) register, cf. Figure 10. Combining Equations (200)
and (201) leads to

V (θ1,θ2) = CRY−1(1 ·θ1) ·CRX−1(θ2) · �C RY
−1

(0 ·θ1) · �C R X
−1

(θ2), (202)

with using (A ·B)−1 = (A ·B)† = B † · A† = B−1 · A−1, for two unitaries A and B . Note that we
explicitly keep the values x∗ = 0 and x∗ = 1 in Equation (202) to show that the trainable pa-
rameters are multiplied with all possible observations x∗. The post-processing step V (θ1,θ2)
will not be used for simulating the stochastic process, but it is part of the circuit during the
training. Thus, we need to calculate the gradient of such circuits with respect to the trainable
parameters θ. For this purpose, we would like to apply the parameter-shift rule, which is given

45

3 Methodology

ȁ ۧ𝜎𝑥∗

ȁ ۧ𝑥∗

𝐸−1 𝑥∗ = 0, 𝜃1, 𝜃2 𝐸−1 𝑥∗ = 1, 𝜃1, 𝜃2𝑉 𝜃1, 𝜃2
=

RX−1 𝜃2 RY−1 0 ⋅ 𝜃1 RX−1 𝜃2 RY−1 1 ⋅ 𝜃1
=

RX −𝜃2 RY −0 ⋅ 𝜃1 RX −𝜃2 RY −1 ⋅ 𝜃1
=

RX −𝜃2 RY −0 ⋅ 𝜃1 RX −𝜃2 RY −1 ⋅ 𝜃1
=

X X

Figure 15: Illustration of the decomposition of the quantum post-processing step. First, the
controlled inverse data encoding is decomposed into controlled rotation gates. Sec-
ond, the inverse rotation gates are replaced by normal rotation gates but rotate in the
opposite direction. The last step is to decompose the |0〉-controlled gates into nor-
mal controlled gates with the use of Pauli-X gates before and after the application.

for circuits consisting of Pauli rotation gates. However, it does not work out of the box for their
controlled counterparts. Therefore, we also gradually decompose V (←−x ,θ1,θ2), such that the
controlled rotation gates are replaced by simple rotation and CX gates. The different steps are
illustrated in Figure 15. We start with replacing the inverse controlled rotation gates with their
controlled version via rotating in the opposite direction, e.g., CRX−1(θ) = CRX(−θ). The next
step is to rewrite the |0〉-controlled rotation gates, such that they become normal controlled
rotation gates. This can be done as follows.

Lemma 3.14. A |0〉-controlled gate C̃U can be written as

C̃U = (X ⊗ I) ·CU · (X ⊗ I). (203)

Proof. A general controlled-U gate can be written as

C̃U = |0〉〈0|⊗ I +|1〉〈1|⊗U , (204)

cf. Equation (38). Thus, we have

(X ⊗ I) ·CU · (X ⊗ I) = (X ⊗ I) · (|0〉〈0|⊗ I +|1〉〈1|⊗U
) · (X ⊗ I) (205)

= X |0〉〈0|X ⊗ I +X |1〉〈1|X ⊗U (206)

= |1〉〈1|⊗ I +|0〉〈0|⊗U (207)

= |0〉〈0|⊗U +|1〉〈1|⊗ I (208)

= C̃U . (209)

Therefore, we can simply add a Pauli-X gate before and after the application of the |0〉-controlled
rotation gates, see Figure 15. The next step now is to decompose the normal controlled rotation
gates into rotation and CX gates. This can be done in a way similar to the decomposition of the
controlled Hadamard gate, cf. Lemma 3.10.

46

3 Methodology

ȁ ۧ𝜓

ȁ ۧ𝜙

RX 𝜃
=

XRX 𝜃
2

H H RX −
𝜃
2

H X H

ȁ ۧ𝜓

ȁ ۧ𝜙

RY 𝜃
=

XRY 𝜃
2 RY −

𝜃
2

X

ȁ ۧ𝜓

ȁ ۧ𝜙

RZ 𝜃
=

XRZ 𝜃
2 RZ −

𝜃
2

X

a)

b)

c)

Figure 16: Decomposition of the controlled RX gate a), the controlled RY gate b), and the con-
trolled RZ gate c).

Lemma 3.15. The controlled rotation gates can be decomposed to

CRX(θ) = Ht ·CX ·Ht ·RXt

(
− θ

2

)
·Ht ·CX ·Ht ·RXt

(θ
2

)
, (210)

CRY(θ) = CX ·RYt

(
− θ

2

)
·CX ·RYt

(θ
2

)
, (211)

CRZ(θ) = CX ·RZt

(
− θ

2

)
·CX ·RZt

(θ
2

)
, (212)

with the subscript t indicating that the gate is applied only onto the target qubit.

Proof. In order to prove these decompositions, we analyze the effect onto the target qubit for
both cases, the controlled qubit being in state |0〉 and |1〉. First, consider the CRY gate. If the
controlled qubit is in state |0〉, the target qubit is rotated θ

2 , immediately followed by a rotation

of −θ
2 , ending up in no effect. With the controlled qubit being in state |1〉, a Pauli-X gate is

applied after the two rotations. A straightforward calculation shows that

X ·RY
(
− θ

2

)
·X RY

(θ
2

)
= RY(θ), (213)

i.e., a single rotation of θ around the Y axis is performed. The same holds true for the controlled
RZ gate. Consider now the CRX gate. For the RX gate, Equation 213 does not hold. However, it
can be shown that

H ·X ·H ·RX
(
− θ

2

)
·H ·X ·H ·RX

(θ
2

)
= RX(θ),

which is applied onto the target qubit if the control qubit is in state |1〉. If the target qubit is in
state |0〉, the Hadamard gates are applied one after the other. Since H 2 = I we get

R X
(
− θ

2

)
R X

(θ
2

)
= I ,

i.e., no effect onto the target qubit.

The decomposition of the controlled rotation gates are illustrated in Figure 16. Since we make
use of the CRY gate, we now have additional Hadamard gates within our circuit. Moreover, we
inserted Pauli-X gates in order to get rid of the |0〉-controlled gates. However, these gates do
not depend on the trainable parameters θ and are therefore no obstacle for the parameter-shift
rule.

47

3 Methodology

At the end of this section, we want to stress a few aspects of the ansatz. The first one is that
we have rotation gates within our circuit where the trainable parameter is multiplied by some
factor, e.g., RY(←−x θ1). This is the case for the data encoding unit E(←−x ,θ1,θ2) as well as for the
post-processing step V (θ1,θ2). Moreover, these two parts of the circuit use the same parame-
ters θ1 and θ2. Furthermore, the decomposition of one controlled rotation gate contains two
rotation gates depending on the same parameter but also multiplied by a constant factor, e.g.,
RX(θ2/2). We refer to this kind of ansatz as one that has shared weights and constant factors.
This observation is crucial since the common parameter-shift rule does not take this aspect
into account. We therefore extend the parameter-shift rule in the following to be applicable for
these circuit architectures as well.

3.5 Quantum Gradients

In order to train a quantum predictive model, we want to utilize gradient-based optimizers.
Therefore, the gradient of the cost function needs to be calculated, which is the goal of this
section. Recall that the proposed cost function from Section 3.3.2 reads as

C (θ) =∑
←−x

w←−x MMD2[F,P, P̂θ|←−x]+ cPθ(Mq = 1|←−x) (214)

with

MMD2[F,P, P̂θ|←−x] = Ex,x ′ [k(x, x ′)]−2 Ex,y [k(x, y)]+Ey,y ′ [k(y, y ′)] (215)

being the conditional maximum mean discrepancy, where x, x ′ are sampled from P and y, y ′

are sampled from P̂θ, respectively. Within this work, we make use of the Gaussian kernel

k(x, y) = 1

nγ

nγ∑
i=1

exp

(
−|x − y |2

2γi

)
, (216)

and thus omit the parameter F from the MMD in the following. P denotes the probability dis-
tribution of the underlying stochastic process and P̂θ, Pθ the distribution associated with mea-
suring the auxiliary and the memory register of the VQC, respectively. While P̂θ is understood
as the probability distribution of the corresponding quantum predictive model, Pθ is used to
determine if the model has a valid set of memory states. Both distributions are defined by the
VQC and can be written as expectation values, i.e.,

P̂θ(x|←−x) = 〈00|U (←−x ,θ)†ÔxU (←−x ,θ)|00〉 , (217)

with U (←−x ,θ) being the unitary of the VQC and Ôx =∑
y |y x〉〈y x| being the observable for mea-

suring the auxiliary register in x, cf. Example 2.3. Similarly, the distribution Pθ can also be
written as an expectation value according to

Pθ(Mq = 1|←−x) = 〈00|U (←−x ,θ)†Ô1U (←−x ,θ)|00〉 , (218)

with Ô1 =∑
y |1y〉〈1y | being the observable for measuring the memory register as 1. Taking the

derivative of the cost function therefore leads to taking the derivatives of these expectation val-
ues, for which the parameter-shift rule can be used. However, our ansatz uses shared weights
and constant factors but the common parameter-shift rule does not include these aspects out
of the box. We therefore extend the parameter-shift rule such that it can be applied onto Equa-
tions (217) and (218). Since the proofs for the extension are closely connected to the proof of
the common parameter-shift rule, we start with looking at those proofs in detail, which can
also be found in Ref. [21].

48

3 Methodology

3.5.1 Common Parameter-Shift Rule

Within this section, we are interested in taking the derivatives of functions f :Rn →Rwhich are
of the form of

f (θ) = 〈0|U (θ)†ÔU (θ)|0〉 , (219)

with an observable Ô and a unitary U (θ). We start by defining the gates which the common
parameter-shift rule can be applied to.

Definition 3.6. A single qubit rotation gate is a unitary G(µ) = e−i aµĜ with a,µ ∈R and Ĝ :C2 →
C2 some Hermitian generator with two distinct eigenvalues ±λ.

These gates have a useful property, which is summarized in the next Lemma.

Lemma 3.16. Let G be a single qubit rotation gate. Then

G(µ) = e−i aµĜ = I cos(r ·µ)− i
a

r
Ĝ sin(r ·µ), (220)

with r = aλ.

Proof. Since Ĝ is Hermitian, we can diagonalize the operator and get

Ĝ =U−1DU =U †DU , (221)

with some unitary U ∈ C2×2 and a diagonal matrix D ∈ R2×2 with entries ±λ. Thus, we can
rewrite the single qubit rotation gate as

G(µ) = e−i aµĜ (222)

= e−i aµU †DU (223)

=U †e−i aµDU (224)

=U †G ′(µ)U , (225)

where we defined G ′(µ) = e−i aµD . Note that for the diagonal matrix D we have

D2 =λ2I . (226)

Applying the definition of the matrix exponential together with Equation (226) yields

G ′(µ) = e−i aµD (227)

=
∞∑

k=0

(−i aµ)k Dk

k !
(228)

=
∞∑

k=0

(−i aµ)2k D2k

(2k)!
+

∞∑
k=0

(−i aµ)2k+1D2k+1

(2k +1)!
(229)

= I
∞∑

k=0

(−1)k (rµ)2k

(2k)!
− i

a

r
D

∞∑
k=0

(−1)k (rµ)2k+1

(2k +1)!
(230)

= I cos(rµ)− i
a

r
D sin(rµ), (231)

with the definition of r = aλ. The last step is to multiply this expression with U † from the left
and with U from the right side, such that

U †U cos(rµ)− i
a

r
U †DU sin(rµ) = I cos(rµ)− i

a

r
Ĝ sin(rµ) =G(µ). (232)

49

3 Methodology

Thus, single qubit rotation gates can be written as a sum of sin and cos terms. We get a special
case of Lemma 3.16 if we consider a rotation of ± π

4r .

Lemma 3.17. Under the same assumptions of Lemma 3.16 we get

G
(
± π

4r

)
= 1p

2

(
I ∓ i

a

r
Ĝ

)
(233)

respectively

I ∓ i
a

r
Ĝ =

p
2G

(
± π

4r

)
. (234)

This shows that we can write a single qubit rotation gate G as the identity I plus the generator
Ĝ for a specific rotation. Additionally, we show the following lemma:

Lemma 3.18. Let B , C be unitary, Ô some observable and |ψ〉 some state. Then

〈ψ|B †ÔC |ψ〉+〈ψ|C †ÔB |ψ〉 = 1

2

[
〈ψ|(B +C)†Ô(B +C)|ψ〉−〈ψ|(B −C)†Ô(B −C)|ψ〉

]
. (235)

Proof. We have

1

2

[
〈ψ|(B +C)†Ô(B +C)|ψ〉−〈ψ|(B −C)†Ô(B −C)|ψ〉

]
(236)

= 1

2

[
〈ψ|B †ÔB |ψ〉+〈ψ|B †ÔC |ψ〉+〈ψ|C †ÔB |ψ〉+〈ψ|C †ÔC |ψ〉 (237)

−〈ψ|B †ÔB |ψ〉+〈ψ|B †ÔC |ψ〉+〈ψ|C †ÔB |ψ〉−〈ψ|C †ÔC |ψ〉
]

(238)

= 〈ψ|B †ÔC |ψ〉+〈ψ|C †ÔB |ψ〉 . (239)

Based on these lemmas, we can now prove the common parameter-shift rule:

Theorem 3.3. Let U (θ) be unitary and Ô some observable. Define θi =µ and let the parameter
µ only affect one single qubit rotation gate G(µ). The derivative of f with respect to µ is then
given by

∂ f (θ)

∂µ
= r

[
f (µ+ s)− f (µ− s)

]
, (240)

with s = π
4r , r = aλ and µ± s = (θ1, . . . ,µ± s, . . . ,θN)T .

Proof. Since the parameter µ only affects one single gate, we can write the circuit as

U (θ) =V G(µ)W, (241)

with some unitary V and W that are independent of µ. Deriving f thus yields

∂ f (θ)

∂µ
= ∂µ 〈ψ|G(µ)†Q̂G(µ)|ψ〉 (242)

= 〈ψ|(∂µG(µ))†Q̂G(µ)|ψ〉+〈ψ|G(µ)†Q̂(∂µG(µ))|ψ〉 , (243)

where we defined Q̂ =V †ÔV and |ψ〉 =W |0〉. With the known form of G(µ), the derivatives can
be calculated according to

∂µG(µ) = ∂µ
(
e−i aµĜ

)
=−i aĜ e−i aµĜ =−i aĜ G(µ) (244)

50

3 Methodology

and

(∂µG(µ))† = (−i aĜ G(µ))† =G(µ)† (+i aĜ). (245)

Substituting these derivatives in Equation (242) yields

∂ f (θ)

∂µ
= 〈ψ′|(+i aG)Q̂|ψ′〉+〈ψ′|Q̂(−i aG)|ψ′〉 , (246)

with |ψ′〉 =G(µ) |ψ〉. Next, Lemma 3.18 can be applied, which leads to

∂ f (θ)

∂µ
= r

2

[
〈ψ′|

(
I − i

a

r
Ĝ

)†
Q̂

(
I − i

a

r
Ĝ

)
|ψ′〉−〈ψ′|

(
I + i

a

r
Ĝ

)†
Q̂

(
I + i

a

r
Ĝ

)
|ψ′〉

]
, (247)

where we used B = I , C =−i a
r Ĝ and r = aλ. With Lemma 3.17 we now get

∂ f (θ)

∂µ
= r

[
〈ψ′|G

(
+ π

4r

)†
Q̂G

(
+ π

4r

)
|ψ′〉−〈ψ′|G

(
− π

4r

)†
Q̂G

(
− π

4r

)
|ψ′〉

]
. (248)

Next, we remember |ψ′〉 = G(µ) |ψ〉 and exploit the fact that G(µ)G(s) = G(µ+ s) for any s ∈ R.
Thus

∂ f (θ)

∂µ
= r

[
〈ψ|(G(µ+ s))†Q̂G(µ+ s)|ψ〉−〈ψ|(G(µ− s))†Q̂G(µ− s)|ψ〉

]
(249)

= r
[

f (µ+ s)− f (µ− s)
]

, (250)

with s = π
4r and r = aλ.

We conclude that we can evaluate the gradient for the VQC for a single parameter µwhen shift-
ing µ with +s and −s and summing up the two expectation values. Since s and thus r depend
on the factor a, the parameter-shift rule needs to take the concrete parameterized gates into
account. For the case of Pauli rotation gates, a = 1

2 and thus we get the following Lemma.

Lemma 3.19. The common parameter-shift rule for the Pauli rotation gates reads as

∂ f (θ)

∂µ
= 1

2

[
f
(
µ+ π

2

)
− f

(
µ− π

2

)]
. (251)

Proof. The Pauli gates X ,Y and Z are unitary and Hermitian and have the eigenvalues ±1.
Thus, the Pauli rotation gates R X ,RY ,R Z are single qubit rotation gates with a = 1

2 and gener-
ators Ĝ ∈ {X ,Y , Z }.

The common parameter-shift rule allows calculating gradients for VQCs where each parameter
affects only one single qubit rotation gate. However, if we have shared weights or constant
factors, the parameter-shift rule can not be applied. We therefore generalize the parameter-
shift rule in the following to be applicable for such circuit architectures.

3.5.2 Generalized Parameter-Shift Rule

In particular, we now consider VQCs where a parameter µ= θi is transformed under a contin-
uously differentiable map α : R→ R and affects at most m ∈ N single qubit rotation gates. We
denote the gate that is affected by the j -th occurence of parameter θi with Gi , j , i.e., we have
Gi , j (αi , j (θi)). First, we consider the Pauli rotation gates G ∈ {R X ,RY ,R Z } and the case when θi

affects only one gate but is transformed via a map α.

51

3 Methodology

Lemma 3.20. Let U (θ) be a unitary, Ô some observable and α : R→ R continuously differen-
tiable. Define θi = µ and let the parameter µ only affect one Pauli rotation gate according to
G(α(µ)). The derivative of f with respect to µ is then given by

∂ f (θ)

∂µ
= 1

2
α′(µ)

[
f
(
α(µ)+ π

2

)
− f

(
α(µ)− π

2

)]
, (252)

with α(µ)± π
2 = (θ1, . . . ,α(µ)± π

2 , . . . ,θN)T .

Proof. Following Theorem 3.3, the circuit can be written as U (θ) = V G(α(µ))W . Applying the
chain-rule thus leads to

∂ f (θ)

∂µ
= ∂µ 〈ψ|G(α(µ))†Q̂G(α(µ))|ψ〉 (253)

=α′(µ)
[
〈ψ|(∂µ̂G(µ̂))†Q̂G(µ̂)|ψ〉+〈ψ|G(µ̂)†Q̂(∂µ̂G(µ̂))|ψ〉

]
, (254)

with µ̂=α(µ), Q̂ = V †ÔV and |ψ〉 = W |0〉. From here, the proof can be done analogously with
µ̂ instead of µ leading to

∂ f (θ)

∂µ
= 1

2
α′(µ)

[
f
(
µ̂+ π

2

)
− f

(
µ̂− π

2

)]
(255)

= 1

2
α′(µ)

[
f
(
α(µ)+ π

2

)
− f

(
α(µ)− π

2

)]
(256)

Next, we consider the case when multiple gates are affected by θi , but no function α is applied
onto the parameters.

Lemma 3.21. Let U (θ) be a unitary and Ô some observable. Define θi =µ and let the parameter
µ affect two Pauli rotation gates G1(µ),G2(µ). The derivative of f with respect to µ is then given
by

∂ f (θ)

∂µ
= 1

2

[
f1

(
µ,+π

2

)
− f1

(
µ,−π

2

)]
(257)

+ 1

2

[
f2

(
µ,+π

2

)
− f2

(
µ,−π

2

)]
, (258)

with fi (µ,η) indicating that the parameter for Gi (µ) is shifted by η but the other is fixed to µ.

Proof. The circuit can be written as U (θ) = FG1(µ)V G2(µ)W where G1(µ) is the first and G2(µ)
is the second gate in the circuit containing the parameter µ, and F,V ,W some unitaries. Fol-
lowing Equation (242) we can derive the expectation value as follows:

∂ f (θ)

∂µ
= ∂µ 〈0|(FG1(µ)V G2(µ)W)†ÔFG1(µ)V G2(µ)W |0〉 (259)

= 〈ψ|(∂µG2(µ))†V †G1(µ)†Q̂G1(µ)V G2(µ)|ψ〉 (260)

+〈ψ|G2(µ)†V †(∂µG1(µ))†Q̂G1(µ)V G2(µ)|ψ〉 (261)

+〈ψ|G2(µ)†V †G1(µ)†Q̂(∂µG1(µ))V G2(µ)|ψ〉 (262)

+〈ψ|G2(µ)†V †G1(µ)†Q̂G1(µ)V (∂µG2(µ))|ψ〉 , (263)

where we used the product rule and defined |ψ〉 =W |0〉 and Q̂ = F †ÔU . Next, we define R̂(µ) =
V †G1(µ)†Q̂G1(µ)V and |ψ′(µ)〉 =V G2(µ) |ψ〉 and rewrite the sum as

∂ f (θ)

∂µ
= 〈ψ|(∂µG2(µ))†R̂(µ)G2(µ)|ψ〉 (264)

52

3 Methodology

+〈ψ|G2(µ)†R̂(µ)(∂µG2(µ))|ψ〉 (265)

+〈ψ′(µ)|(∂µG1(µ))†Q̂G1(µ)|ψ′(µ)〉 (266)

+〈ψ′(µ)|G1(µ)†Q̂(∂µG1(µ))|ψ′(µ)〉 . (267)

Taking a closer look at the four different expectation values, we see that we are in the same
situation as in Equation (242). Thus we can apply Theorem 3.3 twice and get

∂ f (θ)

∂µ
= 1

2

[
f1

(
µ,+π

2

)
− f1

(
µ,−π

2

)]
(268)

+ 1

2

[
f2

(
µ,+π

2

)
− f2

(
µ,−π

2

)]
, (269)

with

f1(µ,η) = 〈0|(FG1(µ+η)V G2(µ)W)†ÔG1(µ+η)V G2(µ)W |0〉 , (270)

f2(µ,η) = 〈0|(FG1(µ)V G2(µ+η)W)†ÔG1(µ)V G2(µ+η)W |0〉 , (271)

i.e., for f j , the j -th occurrence of the parameter µ is shifted by η but the other is fixed to µ.

Lemma 3.21 can be extended to multiple occurrences as follows.

Lemma 3.22. Let U (θ) be a VQC and Ô some observable. Define θi = µ and let the parameter
µ affect at most m Pauli rotation gates G1(µ),G2(µ), . . . , Gm(µ). The derivative of f with respect
to µ is then given by

∂ f (θ)

∂µ
= 1

2

m∑
j=1

[
f j

(
µ,+π

2

)
− f j

(
µ,−π

2

)]
, (272)

with f j (µ,η) indicating that the parameter for G j (µ) is shifted by η but all others are fixed to µ.

Proof. The proof follows the one from Lemma 3.21 but uses the product rule for m products
instead. Deriving the expectation value leads to a sum of terms of the following form:

〈0|F †
mGm(µ)† . . .F †

j (∂µG j (µ))† . . .F †
1G1(µ)†F †

0 ÔF0G1(µ)F1 . . .Gm(µ)Fm |0〉 (273)

together with their Hermitian conjugates

〈0|F †
mGm(µ)† . . .F †

1G1(µ)†F †
0 ÔF0G1(µ)F1 . . . (∂µG j (µ))F j . . .Gm(µ)Fm |0〉 . (274)

Thus, the parts that are independent of the derivative operator ∂µ can always be absorbed in
the state

|ψ′〉 = F j . . .Gm(µ)Fm |0〉 (275)

and the observable

Q̂ = F †
j−1G j−1(µ)† . . .Ô . . .G j−1(µ)F j−1, (276)

yielding a sum of the form of

〈ψ′|(∂µG j (µ))†Q̂G j (µ)|ψ′〉+〈ψ′|G j (µ)†Q̂(∂µG j (µ))|ψ′〉+ (277)

For each such a pair in the sum, Theorem 3.3 can be applied leading to

∂ f (θ)

∂µ
= 1

2

m∑
j=1

[
f j

(
µ,+π

2

)
− f j

(
µ,−π

2

)]
. (278)

53

3 Methodology

Next, we combine Lemma 3.20 with Lemma 3.22 to get the final result of the generalized parameter-
shift rule for shared parameters with constant factors.

Theorem 3.4. Let U (θ) be a VQC, Ô some observable and {α j ,α j : R→ R}m
j=1 a set of m con-

tinuously differentiable functions. Define θi =µ and let the parameter µ affect at most m Pauli
rotation gates according to G j (α j (µ)). The derivative of f with respect to µ is then given by

∂ f (θ)

∂µ
= 1

2

m∑
j=1

α′
j (µ)

[
f j

(
α j (µ),+π

2

)
− f j

(
α j (µ),−π

2

)]
, (279)

with f j (α j (µ),η) indicating that the parameter α j (µ) for G j is shifted by η, i.e., G j (α j (µ)±η),
but all others are fixed to α j (µ).

Proof. The proof follows Lemma 3.22 but applies the chain-rule to each pair in Equation (277)
leading to

α′
j (µ)

[
〈ψ′|(∂µ̂ j G j (µ̂ j))†Q̂G j (µ̂ j)|ψ′〉+〈ψ′|G j (µ̂ j)†Q̂(∂µ̂ j G j (µ̂ j))|ψ′〉

]
+ . . . , (280)

with µ̂ j =α j (µ). The rest of the proof follows Lemma 3.22 but with µ̂ j , leading to

∂ f (θ)

∂µ
= 1

2

m∑
j=1

α′
j (µ)

[
f j

(
µ̂ j ,+π

2

)
− f j

(
µ̂ j ,−π

2

)]
. (281)

Substituting µ̂ j =α j (µ) completes the proof.

The generalized parameter-shift rule in Theorem 3.4 can be applied onto VQCs with Pauli ro-
tation gates. As a remark, the result does also hold for general single qubit rotation gates as
defined in Definition 3.6. For these gates, the generalized parameter-shift rule reads as

∂ f (θ)

∂µ
=

m∑
j=1

r jα
′
j (µ)

[
f j (α j (µ),+s j)− f j (α j (µ),−s j)

]
, (282)

with s j = π
4r j

and r j = a jλ j .

With this rule in place, we can now take the derivative of the cost function, which is done next.

3.5.3 Gradient of the Cost Function

Taking the derivative of the cost function from Equation (214) leads to

∂C (θ)

∂θi
=∑

←−x
w←−x

∂MMD2[P, P̂θ|←−x]

∂θi
+ c

∂Pθ(Mq = 1|←−x)

∂θi
. (283)

Our overall goal is to get an expression for the two partial derivatives that we can use in order
to compute the gradient. In the following, we discuss the two terms separately and start with
the conditional maximum mean discrepancy. Here, we first neglect the conditional past and
simply derive the MMD from Equation (73) which leads to

∂MMD2[P, P̂θ]

∂θi
=∑

x,y
k(x, y)

(
P̂θ(y)

∂P̂θ(x)

∂θi
+ P̂θ(x)

∂P̂θ(y)

∂θi

)
−2

∑
x,y

k(x, y)P (y)
∂P̂θ(x)

∂θi
. (284)

We will include the conditional behavior again later, but for now, we focus on how to further
derive the partial derivative of the probability distribution, i.e., ∂P̂θ(x)/∂θi . We will see that
the calculation of this quantity depends on the ansatz, i.e., whether shared weights or constant
factors are used. Starting with a VQC that contains neither and subsequently introducing con-
stant factors and shared weights, we combine the results to get a formula for the conditional

54

3 Methodology

MMD. All of the following proofs are based on Equation (284) and apply the corresponding
parameter-shift rule to get an expression for the partial derivative of the probability distribu-
tion. We start with the simple case, in which the VQC does neither include shared weights nor
constant factors. This case has already been studied by Liu et al. for the quantum circuit Born
machine [18]. Here, the gradient of the MMD can be expressed as a sum of expectation values
over the probability distributions of the VQC with shifted parameters.

Lemma 3.23. Let U (θ) be a VQC where each θi affects only one Pauli rotation gate. The gradi-
ent of the MMD is then given by

∂MMD2[P, P̂θ]

∂θi
= E

x∼P̂θ+
i

y∼P̂θ

[k(x, y)]− E
x∼P̂θ−

i

y∼P̂θ

[k(x, y)]− E
x∼P̂θ+

i
y∼P

[k(x, y)]+ E
x∼P̂θ−

i
y∼P

[k(x, y)], (285)

with P̂θ±
i

(x) being the probability to measure x from the VQC with parametersθ±i = (θ1,θ2, . . . ,θi±
π
2 , . . . ,θn)T .

Proof. The probability to measure x can be expressed as expectation value via

P̂θ(x) = 〈0|U (θ)†ÔU (θ)|0〉 (286)

with the observable Ô = |x〉〈x|. Thus, we can apply the common parameter-shift rule (Lemma
3.19) and get

∂P̂θ(x)

∂θi
= 1

2

(
P̂θ+

i
(x)− P̂θ−

i
(x)

)
, (287)

i.e., the value of the probability distribution is the mean of two shifted probability distributions.
Therefore, we can substitute the partial derivative in Equation (284) which yields

∂M MD2[P,Pθ]

∂θi
= 1

2

(∑
x,y

k(x, y)P̂θ(y)P̂θ+
i

(x)−∑
x,y

k(x, y)P̂θ(y)P̂θ−
i

(x)
)

(288)

+ 1

2

(∑
x,y

k(x, y)P̂θ(x)P̂θ+
i

(y)−∑
x,y

k(x, y)P̂θ(x)P̂θ−
i

(y)
)

(289)

−
(∑

x,y
k(x, y)P̂θ+

i
(x)P (y)−∑

x,y
k(x, y)P̂θ−

i
(x)P (y)

)
. (290)

Since the kernel function k is symmetric, i.e., k(x, y) = k(y, x), we get

∂M MD2[P,Pθ]

∂θi
=∑

x,y
k(x, y)P̂θ+

i
(x)P̂θ(y)−∑

x,y
k(x, y)P̂θ−

i
(x)P̂θ(y) (291)

−∑
x,y

k(x, y)P̂θ+
i

(x)P (y)+∑
x,y

k(x, y)P̂θ−
i

(x)P (y). (292)

Calculating the gradient of the MMD thus makes use of calculating the expectation values for
the same VQC but with shifted parameters. For the data encoding unit of our ansatz, we multi-
ply a past observation ←−x with a trainable parameter θi , which we referred to as an ansatz with
constant factors. Thus, we essentially perform a mapping α(θi) = ←−x · θi , which will then be
the rotation angle of a Pauli rotation gate, i.e., Gi (α(θi)), for the Pauli gate Gi affected by the
parameter θi . Therefore, we extend the above formula for the partial derivative of the MMD to
also include such mappings.

55

3 Methodology

Lemma 3.24. Let {αi ,αi : R→ R}n
i=1 be a set of n continuously differentiable maps. Moreover,

let U (θ) be a VQC where each θi affects only one Pauli rotation gate according to Gi (αi (θi)).
The gradient of the MMD is then given by

∂MMD2[P, P̂θ]

∂θi
=α′

i (θi)
[
E

x∼P̂θ+
i

y∼P̂θ

[k(x, y)]− E
x∼P̂θ−

i

y∼P̂θ

[k(x, y)]− E
x∼P̂θ+

i
y∼P

[k(x, y)]+ E
x∼P̂θ−

i
y∼P

[k(x, y)]
]

, (293)

with P̂θ±
i

(x) being the probability to measure x from the VQC with parametersα(θ±i) = (α1(θ1),

α2(θ2), . . . ,αi (θi)± π
2 , . . . ,αn(θn))T .

Proof. The proof is analogous to the one of Lemma 3.23, but applies the generalized parameter-
shift rule for continuously differentiable maps α :R→R instead (Lemma 3.20), which leads to

∂P̂θ(x)

∂θi
= 1

2
α′

i (θi)
(
P̂θ+

i
(x)− P̂θ−

i
(x)

)
. (294)

Inserting this identity into Equation (284) finishes the proof.

Lemma 3.24 shows that the use of some mapsαi :R→R simply lead to a factorα′
i (θi) when cal-

culating the gradient. With the quantum post-processing step, we have also introduced shared
weights into our circuit. Thus we have parameters θi that affect j = 1,2, . . . ,m Pauli rotation
gates, which we denote as Gi , j (θi). The formula for the gradient can be extended to such archi-
tectures as follows.

Lemma 3.25. Let U (θ) be a VQC where each θi affects at most m Pauli rotation gates according
to Gi , j (θi) with j = 1,2, . . . ,m. The gradient of the MMD is then given by

∂MMD2[P, P̂θ]

∂θi
=

m∑
j=1

[
E

x∼P̂θ+
i , j

y∼P̂θ

[k(x, y)]− E
x∼P̂θ−

i , j

y∼P̂θ

[k(x, y)]− E
x∼P̂θ+

i , j

y∼P

[k(x, y)]+ E
x∼P̂θ−

i , j

y∼P

[k(x, y)]
]

, (295)

with P̂θ±
i , j

(x) being the probability to measure x from the VQC with parameters θ, but only the

j -th occurrence of θi is shifted according to θi ± π
2 .

Proof. Applying Lemma 3.22 to P̂θ(x) = 〈0|U (θ)†ÔU (θ)|0〉 with Ô = |x〉〈x| leads to

∂P̂θ(x)

∂θi
= 1

2

m∑
j=1

(
P̂θ+

i , j
(x)− P̂θ−

i , j
(x)

)
. (296)

This identity can be inserted into Equation (284) and the finite sums can be swapped, which
completes the proof.

Thus, the use of shared weights leads to a sum over all occurrences for the particular parameter
θi . The last step now is to combine Lemma 3.24 and Lemma 3.25 to get the final expression for
the gradient of the MMD.

Theorem 3.5. Let U (θ) be a VQC where each θi affects at most m Pauli rotation gates according
to Gi , j (αi , j (θi)) with i = 1,2, . . . ,n and j = 1,2, . . . ,m, and all maps αi , j : R→ R being continu-
ously differentiable. The gradient of the MMD is then given by

∂MMD2[P, P̂θ]

∂θi
=

m∑
j=1

α′
i , j (θi)

[
E

x∼P̂θ+
i , j

y∼P̂θ

[k(x, y)]− E
x∼P̂θ−

i , j

y∼P̂θ

[k(x, y)]− E
x∼P̂θ+

i , j

y∼P

[k(x, y)]+ E
x∼P̂θ−

i , j

y∼P

[k(x, y)]
]

,

(297)

with P̂θ±
i , j

(x) being the probability to measure x from the VQC with parameters α(θ), but only

the j -th occurrence of θi is shifted accordingly to αi , j (θi)± π
2 .

56

3 Methodology

Proof. Applying the generalized parameter-shift rule (Theorem 3.4) leads to

∂P̂θ(x)

∂θi
= 1

2

m∑
j=1

α′
i , j (θi)

(
P̂θ+

i , j
(x)− P̂θ−

i , j
(x)

)
. (298)

Substituting the partial derivative in Equation (284) and swapping the sums then yields the
final formula for the gradient of the MMD.

Therefore, the gradient of the MMD for a VQC with shared weights and constant factors can
be calculated as a weighted sum over the probability distributions of the VQC with shifted pa-
rameters. Moreover, Theorem 3.5 is a generalization of Lemma 3.23, that handles the case for
circuit architectures without shared weight and constant factors. This can be easily seen when
choosing αi , j (θi) = δi , j ·θi . Thus, αi , j (θi)′ = δi , j and the sum in Equation (297) reduces to the
formula given in Lemma 3.23.
Our VQC for predictive models is of the form of U (←−x ,θ) = V (θ)T (θ)D(←−x ,θ) where D(←−x ,θ) is
the data encoding unit, T (θ) the unitary that acts on memory states and V (θ) the quantum
post-processing step. The data encoding unit as well as the post-processing step use Pauli
rotation gates with shared parameters and constant factors to encode past observations ←−x .
Thus, the probability distribution of the VQC is conditioned on the initialized past and so is
the MMD. However, we can recover the conditional MMD via replacing the probability distri-
butions P̂θ±

i , j
(·), P̂θ(·) and P (·) in Theorem 3.5 with their conditional counterparts P̂θ±

i , j
(·|←−x),

P̂θ(·|←−x) and P (·|←−x), and set the mappings αi , j according to the ansatz. We conclude that we
can calculate the gradient of the conditional MMD via calculating a set of expectation values
over the probability distribution of the VQC with shifted parameters.
The remaining part of the gradient of the cost function is the second term, which is the partial
derivative of the probability distribution for measuring the memory register in the |1〉 state, i.e.,
∂Pθ(Mq = 1|←−x)/∂θi . However, this can be calculated analogously when using the generalized
parameter-shift rule, such that

∂Pθ(Mq = 1|←−x)

∂θi
= 1

2

m∑
j=1

α′
i , j (θi)

(
Pθ+

i , j
(Mq = 1|←−x)−Pθ−

i , j
(Mq = 1|←−x)

)
. (299)

To end this chapter, we will briefly summarize the quantum learning algorithm in the next
section.

3.6 Summary

Within this chapter, we have presented our proposed quantum learning algorithm for quan-
tum approximate predictive models. This algorithm takes as input only a sample x1:L ∈ AL ,
drawn from a stationary stochastic process and the desired quantum model memory size d̂q .
The model itself is given as a variational quantum circuit and is trained in a hybrid quantum-
classical optimization procedure. To perform the optimization, we have proposed a cost func-
tion C (θ) which is based on the maximum mean discrepancy – a distance measure for prob-
ability distributions. Thus, the optimization aims to minimize the distance between the true
underlying probability distribution P of the stochastic process and the model distribution P̂θ,
which is given by the measurement of the auxiliary register Aq of the VQC. The introduction
of a quantum post-processing step, together with a measurement of the memory register Mq ,
has led to a regularization term R(θ) for the cost function. This regularization term penalizes
models with a rich set of internal states, which captures our observation that optimal models
only have a minimal set of memory states. We have introduced a class of stochastic processes –
the period-N uniform renewal processes – and constructed a q-simulator for the case of N = 2,
i.e., a quantum exact predictive model. From here, we have gradually decomposed the circuit
such that the result is a parameterized quantum circuit. This circuit was used as an ansatz for

57

3 Methodology

the learning algorithm. To calculate the gradient of the cost function, we have introduced the
common parameter-shift rule and extended it to be applicable for ansätze with shared weights
and constant factors. This allowed us to derive expressions for the gradient that include the
execution of the same VQC but with shifted parameters. Furthermore, to validate the learned
models, we have applied the KL divergence and the TV distance to the domain of predictive
models.
The algorithm itself consists of four steps, where the first one is the classical pre-processing
step that takes the input sample and splits it into a training data set. Next, the VQC is initial-
ized based on samples from the data set together with the trainable parameters, and executed
several times. Both registers the memory and the auxiliary register are measured, where the
outputs of the latter one are interpreted as the future samples and the outcome of the first
one as the regularization term. Both pieces of information together form the cost function, for
which the gradient is calculated next. The last step is to apply a classical gradient-based opti-
mizer to update the parameters such that a next training iteration can be performed.
Now that we have presented the methodology of the quantum learning algorithm, we present
the results for the numerical experiments in the next chapter.

58

4 Results

4 Results

This chapter presents the results of the numerical experiments for the proposed learning al-
gorithm applied to the period-2 uniform renewal process. We start in Section 4.1 with an
overview of the setup for the numerical experiments. Next, in Section 4.2, we analyze the in-
herent stochastic error of the maximum mean discrepancy for different input sample lengths.
This yields a measure of the expected best value of the cost function for a given length, and
thus provides insight into how long the input sample should be. Afterward, we consider the
learning stage of our algorithm in more detail in Section 4.3. Here, we analyze the value of the
cost function for two versions of the algorithm, one with and one without the quantum post-
processing step. Additionally, we take a look at the mean KL divergence and the full TV distance
for one single time step and increasing number of training iterations. Next, in Section 4.4, we
validate the trained models by using the same validation metrics as before but applying them
to multiple future time steps. Furthermore, we present the learned memory states of the two
models that performed best and compare them with each other.

4.1 Setup

All numerical experiments were performed using the quantum computing library Qiskit [40].
For the execution of quantum circuits, we chose a noise-free simulator such that the states of
the quantum registers could be accessed directly. Thus, no measurements were needed and
the exact values for the probability distributions P̂θ and Pθ could be read out of the quantum
states. Therefore, the values for the gradient of the cost function were calculated exactly, which
can be seen as the limit of performing infinitely many measurements of the quantum circuit.
For each run of the learning algorithm, we chose the initial parameters θ(0) uniformly at ran-
dom from (−π,+π), ran six different instances with a fixed number of iterations, and computed
the mean for each training step. For the validation, we took the parameters θ∗ of the model for
the training step with minimal overall cost, i.e., θ∗ = argminθ(n) C (θ(n)).
To update the parameters, we used the gradient-based optimizer ADAM [36]. Recall that the
gradient descent optimizer computes an update according to θ(n+1) = θ(n) −η ·∇C (θ(n)) with a
learning rate of η > 0. The ADAM optimizer follows the same rule but fine-tunes the learning
rate adaptively via estimating the first and second moment of the gradient. We set the initial
learning rate to η = 0.02 and took the heuristically suggested values from Kingma and Ba [36]
for the remaining hyper-parameters.
The learning algorithm also includes the hyper-parameter c ∈R+ to balance between the MMD
and the regularization term R←−x (θ) in the cost function. We chose c = 1 for all runs, but note that
this hyper-parameter could be further optimized.
For calculating the MMD, we chose the Gaussian kernels

k(x, y) = 1

nγ

nγ∑
i=1

exp

(
−|x − y |2

2γi

)
(300)

with bandwidths γ= [0.1,0.5,1.0,5.0].
Before we present the results for the learning algorithm, we first discuss the inherent stochastic
error of the MMD, which offers some insights into what we can ideally expect for values of the
cost function.

4.2 Stochastic Error

Our proposed quantum learning algorithm requires as input a sample x1:L ∈ AL drawn from a
stochastic process. The sample should have a reasonable length such that all the necessary in-
formation describing the process can be captured from it. Practically, the length also depends
on the ability of the learning algorithm to exploit the structure of the sample. Both quantities

59

4 Results

102 103 104 105 106

Length L

10−7

10−5

10−3

10−1

101
M

ax
im

u
m

M
ea

n
D

is
cr

ep
an

cy

lp = 1, lf = 1

lp = 2, lf = 1

lp = 1, lf = 2

lp = 2, lf = 2

Period-2 Uniform Renewal Process

102 103 104 105 106

Length L

10−7

10−5

10−3

10−1

101

M
ax

im
u

m
M

ea
n

D
is

cr
ep

an
cy

lp = 1, lf = 1

lp = 2, lf = 1

lp = 1, lf = 2

lp = 2, lf = 2

Period-3 Uniform Renewal Process

Figure 17: Stochastic error for the MMD of the period-2 (left) and period-3 (right) uniform re-
newal process. The plots show the MMD for different lengths L ∈ N and different
choices lp , l f ∈ {1,2} used for the classical pre-processing step.

are hard to measure in general and especially based only on a given sample without further
knowledge of the underlying stochastic process. Therefore, we turn the question upside-down
and ask what we can ideally expect for a given sample of fixed length. We answer this question
as follows. Assume we are given a sample x1:L ∈ AL of length L ∈ N. The first step is to parti-
tion x1:L into two halves and perform the classical pre-processing step with both sub-samples,
yielding two training data sets {(←−x ,−→x)} and {(←−y ,−→y)} with pasts and futures of lengths lp and
l f , respectively. Then, we calculate the MMD based on these sets. Since the stochastic process
is stationary, we know that both sub-samples are drawn from the same distribution P and the
value of the MMD can thus be seen as an inherent stochastic error, i.e., the estimated distance
between two identical distributions but based on a finite sample set.
The results are presented in Figure 17 where the MMD refers to the sum of the individual con-
ditional MMD values, i.e.

∑←−x w←−x MMD2[P,P |←−x]. The two plots show the values for both, the
period-2 and period-3 uniform renewal process, and for input lengths L = 102–106 as well as
for different choices lp , l f ∈ {1,2}. For each data point, ten runs were performed and the mean
values were calculated.
We first note that the stochastic error decreases with increasing sample length L. This is the case
for both processes and all configurations of lp , l f . Furthermore, the configuration lp = l f = 1
shows the smallest error while the configuration lp = l f = 2 performs worst. The curves of the
remaining two configurations are in between. For a length of L = 106, all configurations show a
stochastic error of less than 10−5, except the configuration lp = l f = 2 for the period-3 uniform
renewal process, for which the value of the MMD is slightly higher.
The pre-processing step splits the input sample into two training data sets. For lp = l f = 1, the
resulting data sets are the largest of all configurations. By contrast, the data sets for the choice
of lp = l f = 2 are the smallest. For the period-2 uniform renewal process, we would expect
that the stochastic error associated with a larger data set is smaller, which is in line with the
numerical results.
The period-2 uniform renewal process has Markov order κ = 1 and thus the use of pasts with
lp ≥ 2 might be superfluous, i.e., a waste of information. On the other hand, the period-3 uni-
form renewal process has Markov orderκ= 2, yet the configuration with lp = 1 shows the lowest
stochastic error. This is counter-intuitive at first since we know that the distribution of one fu-
ture time step depends on two past time steps. Thus, we would expect that the configuration
with lp = 2, l f = 1 has the smallest stochastic errors. However, we calculate the MMD as a sum
over the conditional MMDs for all possible pasts. Thus, when using data sets with lp = 1, we
essentially perform a pairwise comparison of probability distributions of the form of P (−→x |x1),

60

4 Results

0 1000 2000 3000 4000 5000
Training Step

10−12

10−10

10−8

10−6

10−4

10−2

100

C
os

t
MMD2

θ without pp

MMD2
θ

Pθ(Mq = 1)

0 1000 2000 3000 4000 5000
Training Step

10−5

10−4

10−3

10−2

10−1

100

V
al

id
at

io
n

DKL(1, P, P̂θ) without pp

DTV (1, P, P̂θ) without pp

DKL(1, P, P̂θ)

DTV (1, P, P̂θ)

Figure 18: Left: The cost function as a function of the training steps. The MMD2
θ

without pp
refers to the version of the learning algorithm without the quantum post-processing
step. For the version with the post-processing step, the components MMD2

θ
and

Pθ(Mq = 1) are shown separately, while the weighted sum of both components would
be the overall cost function. Right: The mean KL divergence and full TV distance for
one future time step as a function of the training steps.

for a given x1 ∈ A. Since both underlying distributions are identical, the MMD simply shows
the smallest errors for the largest data sets, just as for the period-2 uniform renewal process.
Yet, when training predictive models, we are interested in comparing distributions of the form
of P (−→x |x0:κ) with Markov order κ. Thus, the length lp should chosen to be at least as large as
the Markov order to ensure that the conditional behavior is fully respected and the correct dis-
tributions are compared.
For the numerical experiments of the learning algorithm, we chose a configuration of lp = l f =
1 for the period-2 uniform renewal process. The choice of lp = 1 is sufficient due to the Markov
order and future samples of length l f = 1 are sufficient in general as long as valid memory states
are present.

4.3 Learning Stage

Within this section, we consider two versions of the quantum learning algorithm, both applied
onto the period-2 uniform renewal process. The first one only takes the MMD as cost function,
whereas the second one includes the regularization, i.e., the application of the quantum post-
processing step. We refer to the first version as the learning algorithm without pp or without
regularization. Figure 18 shows the value of the cost function as well as the mean KL divergence
and the full TV distance for one future time step as a function over training steps. We start with
the left figure, i.e., the trend of the cost function. Here, the MMD represents the sum over all
possible pasts, i.e., MMD2

θ
= ∑←−x w←−x MMD2[P, P̂θ|←−x]. For the version with the post-processing

step, the regularization term Pθ(Mq = 1) is shown separately.
Our first observation is that all measures start to oscillate after reaching a certain number of
training steps. Here, the magnitude of the oscillation for the MMD without regularization is
larger compared to the other one. While the MMD without regularization shows its first peak
after 1,500 training steps, the MMD with regularization as well as the regularization term it-
self, starts to oscillate after 3,500 steps. Additionally, the regularization term shows the largest
magnitude of oscillation.
Next, we observe that the learning algorithm without regularization decreases the cost function
much faster. Already after 2,000 training steps, the value is smaller than 10−8, while this is not
the case for the version with regularization, even after 5,000 steps. Here, the value is at most
smaller than 10−7. On the other hand, the regularization term is even further decreased and

61

4 Results

takes a value below 10−10 after 2,500 steps. It shows a minimum at around 4,800 iterations
with a value of about 10−12.
A possible explanation for the oscillations is the periodical nature of the rotation gates together
with a high learning rate. Thus, if several parameters are updated based on ADAMs rule, the
values could exceed the period, leading to an intermediate rise of the cost function. With an
increasing number of training steps, the learning rate decreases such that the parameters are
updated more carefully. Additionally, this could explain why the cost function between two
consecutive peaks is further decreased. It should be noted that the same behavior has also
been observed for training the quantum circuit Born machine [18].
The regularization term and the corresponding MMD show a small peak after 500 steps. This
could indicate some minimum for the MMD, but a relatively large value for the regularization
term. That means that the parameters corresponding to this minimum offer a good approxi-
mation of the very first future time step, but no valid set of memory states are present. Recap
that we call the output states of the unitary T a valid set of memory states, if they match with
the memory states generated by the data encoding unit E . The version without pp lacks this in-
formation in the cost function, and therefore advances further into this minimum of the MMD,
while the version without pp is able to escape from it, advancing towards learning valid mem-
ory states.
It is particularly interesting that the MMD for both versions is decreased even below the stochas-
tic error, which is around 10−5 for the used sample length of L = 105, see Section 4.2. One ex-
planation could read as follows: a predictive model is trained given one input sample, which
corresponds to one training data set {(←−x ,−→x)}. This data set offers an implicit probability distri-
bution PD (−→x |←−x), and when we calculate the MMD, we draw values from the data set according
to this distribution. However, this distribution is fixed over the entire learning stage. Therefore,
optimizing based on the MMD leads to fine-tuning the parameters θ such that the model’s dis-
tribution P̂θ approximates PD , rather than P , a phenomenon known as overfitting. Generally,
we do not expect a model that has been trained beyond the stochastic error to perform better.
On the contrary, we expect the validation metrics for these models to worsen since they approx-
imate the data distribution well but not necessarily the true underlying process’ distribution.

The plot on the right side of Figure 18 shows the mean KL divergence and the full TV distance
for one future time step as a function of the training steps. We can see that both measures prin-
cipally follow the curves of the MMD, i.e., the values of the metrics decrease with an increasing
number of time steps and the values of the version without pp are smaller compared to their
counterparts. Additionally, the values of the full TV distance are always larger compared to the
mean KL divergence. Furthermore, we can observe peaks that correspond to the same number
of training steps as for the MMD, but with a much smaller magnitude. The full TV distance
approaches a value slightly above 10−3 for both versions, whereas the mean KL divergence is
below 10−4. Notably, the version without regularization offers a mean KL divergence which is
almost one order of magnitude lower.
For calculating the validation metrics, the a priori unknown probability distribution P is used.
Since the curves of the validation metrics decrease, this shows that the MMD can indeed be
used as a cost function to train predictive models towards low distortions, which is in line with
the observations of Liu et al. for the QCBM [18]. However, even for training steps that corre-
spond to an MMD below the stochastic error, the mean KL divergence and full TV distance are
further decreased. This contradicts our explanation of overfitting since we would expect the
validation metrics to worsen or at least stop decreasing. We leave this question open for fur-
ther investigation.
We conclude the discussion of the learning stage by noting that the version without regular-
ization offers a smaller value for the MMD as well as for the mean KL and TV distance for one
future time step. However, as we show in the next section, the regularization term is crucial to

62

4 Results

1 3 5 7 9 11 13 15
Time Step i

10−6

10−4

10−2

100

102

V
al

id
at

io
n

DKL(i, P, P̂θ) without pp

DTV (i, P, P̂θ) without pp

DKL(i, P, P̂θ)

DTV (i, P, P̂θ)

Figure 19: Mean KL divergence DK L and full TV distance DT V of the two models for the period-
2 uniform renewal process. Measures without pp refer to the model that was trained
without post-processing. The validation metrics compare the true underlying distri-
bution of the process with the models distribution P̂θ(X1:i |←−x) for time steps i ∈N.

train predictive models that can simulate stochastic processes for multiple future time steps.

4.4 Validation

Validating our predictive models is essential for determining whether they can be used for sim-
ulating stochastic processes over multiple future time steps. Thus, the goal of this section is
to present the validation results over multiple future time steps, where we again consider two
models – one that was learned with the regularization term and one without. To this end, we
consider two approaches; a quantitative approach in terms of the mean KL divergence and the
full TV distance, and a qualitative approach in terms of visualizing the learned internal quan-
tum states. We start with the quantitative results that are presented in Figure 19. Here, the two
validation metrics are shown as a function of future time steps i ∈ N, e.g., DK L(i ,P, P̂θ) shows
the value of the mean KL divergence for sampling a future trajectory of length i , i.e., the distor-
tion for the probability distribution P̂θ(X1:i |←−x).
Our first observation is that for the version without regularization, both metrics show a large
jump from the first to the second time step and stay almost constant afterward. By contrast, for
the model with regularization, the mean KL divergence is constant for all time steps, whereas
the full TV distance is just slightly increasing. Here, the value does not exceed 10−2 over 15 time
steps and the mean KL divergence is always below 10−4. For the version without regularization,
the full TV distance is larger than 100 after three steps and the mean KL divergence shows val-
ues above 10−1 starting with the second step.
The curves of the metrics for the model without regularization indicate that the model is able
to sample the very next future time step accurately. This means that if the unitary T acts on a
memory state, it outputs quantum states that correspond to a good approximation of the un-
derlying stochastic process. However, already for the second time step, the accuracy collapses
entirely. This shows, that no valid set of memory states was found during the training since the
unitary T would output correct future samples if it acted on a memory state. By contrast, the
mean KL divergence of the model with regularization stays constant, indicating a valid set of
memory states. While the full TV distance is slightly increasing, this is in line with our expec-
tation, since it captures the accumulated absolute values of all errors without averaging over
pasts or future time steps. However, the increase is very small, such that even large trajectories
can be sampled with reasonable accuracy. Moreover, we expect the performance of the mean
KL divergence to stay constant due to the same argument.

63

4 Results

x

y

|0〉

|1〉

x

y

|0〉

|1〉

x

y

|0〉

|1〉

Figure 20: Visualization of the quantum states of the memory register of models for the period-
2 uniform renewal process. The states of three models are shown: (left) a model with
random parameters θi ∈ (−π,π), (center) the model trained without the regulariza-
tion term, and (right) the model with the regularization term. The vectors point to
the states prepared by the data encoding unit E(←−x ,θ). Points on the surface repre-
sent quantum states of Mq after the models have output i ∈ {1,2,3,4,5} future time
steps. All states are shown at once and the blue points and vectors are associated
with the observation of xi = 0 and ←−x = 0, respectively. Similarly, the red points and
vectors refer to xi = 1 and ←−x = 1.

While these quantitative measures indicate that the model with regularization has a valid set
of memory states, we also show that this is indeed the case via visualizing the model’s internal
states. Since the memory register is a single qubit, we can represent these quantum states as a
point on the Bloch sphere.
The results are shown in Figure 20, where we present three models: one with random param-
eters θi ∈ (π,π), one with optimized parameters but without the regularization, and one with
the regularization. Here, the vectors are the two quantum states prepared by the data encoding
unit E(←−x ,θ), i.e., the memory states of the model. The points on the surface are the internal
quantum states of the memory register after generating i = 1,2, . . . ,5 future time steps. We per-
formed 1,000 runs for each past and each i ∈ {1,2,3,4,5}, and collected the resulting states. The
states for all time steps and all runs are shown at once. Their colors indicate the expected states,
i.e., the blue vector is pointing to the quantum state associated with ←−x = 0 and the blue points
represent the quantum states after the last output was measured to be xi = 0. Similarly, the red
vector and points are associated with xi = 1 and ←−x = 1.
The left picture of Figure 20 shows the result for the model with random parameters, where all
states are randomly distributed along the sphere. By contrast, the trained model without regu-
larization (center) shows much fewer states. Notably, the states associated with an observation
of xi = 0 concentrate, while the others are spread over. Additionally, the vectors do not point
onto a state that was subsequently observed to appear again. For the model with regularization
(right), all states are concentrated at two locations. Furthermore, these two locations coincide
with the memory states generated by the data encoding unit.
For the model without regularization, the vectors do not point to an internal state. Thus, these
states are not observed to appear again during the simulation of at least 5 future time steps.
Therefore, the internal states learned by the unitary T are not a valid set of memory states.
However, much fewer states are observed in general, which indicates that certain observations
were not encountered during the simulation. This includes in particular trajectories with two
consecutive zeros, e.g., “01001”, which are not valid outputs of the period-2 uniform renewal
process. Although the states associated with xi = 0 are very concentrated, they are not memory
states, since they don’t match with the states of the encoding unit E . By contrast, for the model
with regularization, the states of the data encoding coincide with the model’s internal states.

64

4 Results

No other states were observed over 5 time steps and we conclude that this model offers a valid
set of memory states.

65

5 Conclusion and Outlook

5 Conclusion and Outlook

Within this work, we have developed a hybrid quantum-classical learning algorithm for ap-
proximate predictive models. The algorithm only requires one long sample drawn by a stochas-
tic process as input. Classical resources are used to perform a pre-processing step and to up-
date the training parameters. The quantum part is taken by a quantum circuit that represents a
quantum approximate predictive model and generates future samples via quantum measure-
ments. Our learning algorithm is memory efficient since the training is directly performed on a
quantum computer and no classical representation of the quantum model is needed. Further-
more, the trained model is given as a quantum circuit and can thus be directly executed on a
quantum computer for simulation purposes.
An essential part of the work was the definition of a suitable cost function. Inspired by the field
of implicit generative modeling, we used the maximum mean discrepancy as a cost function
but extended it to be applicable for predictive models. However, we have shown with numer-
ical experiments that a cost function solely based on the MMD does not lead to a valid set of
memory states. Furthermore, these models exhibit a bad simulation performance for future
time steps L ≥ 2, i.e., a KL divergence of more than 10−1 and a TV distance of more than 100.
Therefore, we have added a regularization term to the cost function that penalizes models with
a large set of memory states, and that successfully led to the training of a valid set of memory
states. The regularization term itself is computed based on a quantum post-processing step,
which is applied only during the learning stage. Our overall cost function successfully leads to
a decrease of the KL divergence and the TV distance during learning the model.
Moreover, the learned models show a constantly good simulation performance over multiple
future time steps. Here, the KL divergence remains constant at a value below 10−4 and the TV
distance only slightly increases, but never exceeds a value of 10−2 over 15 future time steps.
As ansatz for the variational quantum circuit, we used a problem-inspired ansatz for super-
vised machine learning. To make sure that the ansatz contains an optimal solution, we have
first constructed a quantum circuit that contains only static gates and that corresponds to a
q-simulator, i.e., a quantum exact predictive model. Afterward, we have subsequently decom-
posed the gates involved into rotation and CNOT gates, such that the output is a parameterized
quantum circuit. We have filled up this PQC with additional rotation gates such that it follows
the same structure as commonly used ansätze for supervised machine learning.
Furthermore, to utilize gradient-based optimizers, we have generalized the common parameter-
shift rule for ansätze with shared weights and constant factors. Based on that, we have derived
a compact expression for the gradient of the MMD with respect to these ansätze. Beyond the
current work, this result can also be used to construct quantum circuit Born machines with
more complicated ansätze.

While we have successfully shown that the learning algorithm works for a specific process,
namely the period-2 uniform renewal process, it remains to be shown that it also performs
well for other stationary stochastic processes. The current version of the algorithm, however,
has two caveats. On the one hand, only past samples of length lp = 1 can be encoded, and on
the other hand, only processes with a binary alphabet A = {0,1} can be used. This lies in the
fact that the proposed data encoding unit, and thus the post-processing step, are specifically
designed to work with single bits. Yet, this can be overcome by applying the data encoding
unit multiple times sequentially, with each unit offering two independent trainable parame-
ters. Thus, if an observation x ∈N0 needs to be encoded, its binary representation can be used
and each bit can be encoded individually. Furthermore, past samples ←−x of length lp > 1 can
be encoded the same way. This, however, needs to be respected in the post-processing step as
well. On the one hand, the post-processing step then also corresponds to a sequence of inverse
data encoding units, but on the other hand, a single observation x ∈N0 is no longer sufficient to
apply the correct inverse encoding. In general, the post-processing step can still be performed

66

5 Conclusion and Outlook

by post-selecting the events that correspond to a valid run but again losing some precision for
the regularization term. Another way is to perform the same number of future time steps as the
encoding length lp , and let the inverse encoding units be controlled by these additional auxil-
iary qubits.
Additionally, we want to note that the MMD in the cost function can, in principle, be replaced
by any other distance measure for probability distributions. The only requirement is that train-
ing based on this cost function leads to a reasonable accuracy for approximating the under-
lying probability distribution of the stochastic process. One possibility is to use the recently
proposed Sinkhorn divergence [37], for which it is shown that in some situations, it can better
minimize the TV distance compared to the MMD [20].

While previous works on quantum predictive models were more focused on their theoretical
advantage over classical ones [7, 12, 32, 33], this work shows a practical approach to how these
models can be learned on quantum computers and how they can be used for simulation pur-
poses. Moreover, the proposed quantum learning algorithm opens a way for how a quantum
advantage can be rigorously shown. This can be done by calculating a lower bound on the
distortions of any classical model via the methods developed by Yang et al. [11] and compar-
ing them to models learned by our algorithm. However, for this purpose, the period-2 uniform
renewal process is insufficient, since it has a classical topological complexity of dc < 1 and a sin-
gle qubit is therefore enough to exactly simulate the process. Thus, the next natural step is to
learn a model for the period-3 uniform renewal process, which has a topological complexity of
dc > 1, i.e., any classical predictive model for this process with only one bit as memory exhibits
distortions. A quantum approximate model learned by our algorithm thus might perform bet-
ter and offers a provably better accuracy compared to any classical model. Furthermore, this
advantage could be shown on near-term quantum devices already.

67

References

References

[1] Cosma Rohilla Shalizi and James P. Crutchfield. “Computational Mechanics: Pattern and
Prediction, Structure and Simplicity”. In: Journal of Statistical Physics 104.3 (Aug. 2001),
pp. 817–879. DOI: 10.1023/A:1010388907793.

[2] Sarah E. Marzen and James P. Crutchfield. “Informational and Causal Architecture of
Discrete-Time Renewal Processes”. In: Entropy 17.7 (2015), pp. 4891–4917. DOI: 10.3390/
e17074891.

[3] Robert Haslinger, Kristina Lisa Klinkner, and Cosma Rohilla Shalizi. “The computational
structure of spike trains”. In: Neural computation 22.1 (Jan. 2010), pp. 121–157. DOI: 10.
1162/neco.2009.12-07-678.

[4] Joongwoo Brian Park et al. “Complexity analysis of the stock market”. In: Physica A: Sta-
tistical Mechanics and its Applications 379.1 (2007), pp. 179–187. DOI: 10 . 1016 / j .
physa.2006.12.042.

[5] Jae-Suk Yang et al. “Increasing market efficiency in the stock markets”. In: The European
Physical Journal B 61.2 (Jan. 2008), pp. 241–246. DOI: 10.1140/epjb/e2008-00050-0.

[6] Alexander B Boyd, Dibyendu Mandal, and James P Crutchfield. “Identifying functional
thermodynamics in autonomous Maxwellian ratchets”. In: New Journal of Physics 18.2
(Feb. 2016), p. 023049. DOI: 10.1088/1367-2630/18/2/023049.

[7] Jayne Thompson et al. “Causal Asymmetry in a Quantum World”. In: Phys. Rev. X 8 (3
June 2018), p. 031013. DOI: 10.1103/PhysRevX.8.031013.

[8] James P. Crutchfield and Karl Young. “Inferring statistical complexity”. In: Phys. Rev. Lett.
63 (2 June 1989), pp. 105–108. DOI: 10.1103/PhysRevLett.63.105.

[9] James P. Crutchfield. “The calculi of emergence: computation, dynamics and induction”.
In: Physica D: Nonlinear Phenomena 75.1 (1994), pp. 11–54. DOI: https://doi.org/10.
1016/0167-2789(94)90273-9.

[10] Cosma Rohilla Shalizi and Kristina Lisa Shalizi. “Blind Construction of Optimal Nonlin-
ear Recursive Predictors for Discrete Sequences”. In: Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence. UAI ’04. Banff, Canada: AUAI Press, 2004, pp. 504–
511. ISBN: 0974903906.

[11] Chengran Yang et al. Provable superior accuracy in machine learned quantum models.
2021. arXiv preprint: 2105.14434v2.

[12] Felix C. Binder, Jayne Thompson, and Mile Gu. “Practical Unitary Simulator for Non-
Markovian Complex Processes”. In: Physical Review Letters 120.24 (June 2018). DOI: 10.
1103/physrevlett.120.240502.

[13] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum proces-
sor”. In: Nature Communications 5.1 (July 2014), p. 4213. ISSN: 2041-1723. DOI: 10.1038/
ncomms5213.

[14] P. J. J. O’Malley et al. “Scalable Quantum Simulation of Molecular Energies”. In: Phys. Rev.
X 6 (3 July 2016), p. 031007. DOI: 10.1103/PhysRevX.6.031007.

[15] Abhinav Kandala et al. “Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets”. In: Nature 549.7671 (Sept. 2017), pp. 242–246. ISSN:
1476-4687. DOI: 10.1038/nature23879.

[16] J. S. Otterbach et al. Unsupervised Machine Learning on a Hybrid Quantum Computer.
2017. arXiv preprint: 1712.05771.

68

https://doi.org/10.1023/A:1010388907793
https://doi.org/10.3390/e17074891
https://doi.org/10.3390/e17074891
https://doi.org/10.1162/neco.2009.12-07-678
https://doi.org/10.1162/neco.2009.12-07-678
https://doi.org/10.1016/j.physa.2006.12.042
https://doi.org/10.1016/j.physa.2006.12.042
https://doi.org/10.1140/epjb/e2008-00050-0
https://doi.org/10.1088/1367-2630/18/2/023049
https://doi.org/10.1103/PhysRevX.8.031013
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/https://doi.org/10.1016/0167-2789(94)90273-9
https://doi.org/https://doi.org/10.1016/0167-2789(94)90273-9
2105.14434v2
https://doi.org/10.1103/physrevlett.120.240502
https://doi.org/10.1103/physrevlett.120.240502
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/nature23879
1712.05771

References

[17] Ryan Sweke, Jean-Pierre Seifertand Dominik Hangleiter, and Jens Eisert. “On the Quan-
tum versus Classical Learnability of Discrete Distributions”. In: Quantum 5 (Mar. 2021),
p. 417. DOI: 10.22331/q-2021-03-23-417.

[18] Jin-Guo Liu and Lei Wang. “Differentiable learning of quantum circuit Born machines”.
In: Phys. Rev. A 98 (6 Dec. 2018), p. 062324. DOI: 10.1103/PhysRevA.98.062324.

[19] Arthur Gretton et al. “A Kernel Two-Sample Test”. In: Journal of Machine Learning Re-
search 13.25 (2012), pp. 723–773. URL: http://jmlr.org/papers/v13/gretton12a.
html.

[20] Brian Coyle et al. “The Born supremacy: quantum advantage and training of an Ising
Born machine”. In: npj Quantum Information 6.1 (July 2020), p. 60. DOI: 10 . 1038 /
s41534-020-00288-9.

[21] Maria Schuld et al. “Evaluating analytic gradients on quantum hardware”. In: Phys. Rev.
A 99 (3 Mar. 2019), p. 032331. DOI: 10.1103/PhysRevA.99.032331.

[22] Bert Fristedt and Lawrence Gray. A Modern Approach to Probability Theory. Cambridge,
MA: Birkhäuser Boston, 1997. ISBN: 978-1-4899-2837-5. DOI: 10.1007/978-1-4899-
2837-5.

[23] Sheldon M. Ross. Introduction to Probability Models. 11th. San Diego, CA: Academic Press,
2014. ISBN: 978-0-12-407948-9. DOI: 10.1016/C2012-0-03564-8.

[24] Olav Kallenberg. Foundations of modern probability. Second. Probability and its Applica-
tions (New York). Springer-Verlag, New York, 2002. ISBN: 0-387-95313-2. DOI: 10.1007/
978-1-4757-4015-8.

[25] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, 2010. ISBN: 978-1107002173.
DOI: 10.1017/CBO9780511976667.

[26] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug.
2018), p. 79. DOI: 10.22331/q-2018-08-06-79.

[27] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimiza-
tion Algorithm. 2014. arXiv preprint: 1411.4028.

[28] Marcello Benedetti et al. “Parameterized quantum circuits as machine learning models”.
In: Quantum Science and Technology 4.4 (Nov. 2019), p. 043001. DOI: 10.1088/2058-
9565/ab4eb5.

[29] M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics 3.9 (Sept.
2021), pp. 625–644. DOI: 10.1038/s42254-021-00348-9.

[30] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. “Classical simulation of com-
muting quantum computations implies collapse of the polynomial hierarchy”. In: Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467.2126
(Aug. 2010), pp. 459–472. DOI: 10.1098/rspa.2010.0301.

[31] Aram W. Harrow and John C. Napp. “Low-Depth Gradient Measurements Can Improve
Convergence in Variational Hybrid Quantum-Classical Algorithms”. In: Phys. Rev. Lett.
126 (14 Apr. 2021), p. 140502. DOI: 10.1103/PhysRevLett.126.140502.

[32] Farzad Ghafari et al. “Dimensional Quantum Memory Advantage in the Simulation of
Stochastic Processes”. In: Phys. Rev. X 9 (4 Oct. 2019), p. 041013. DOI: 10.1103/PhysRevX.
9.041013.

[33] Mile Gu et al. “Quantum mechanics can reduce the complexity of classical models”. In:
Nature Communications 3.1 (Mar. 2012), p. 762. DOI: 10.1038/ncomms1761.

[34] Mohamed Shakir and Lakshminarayanan Balaji. “Learning in Implicit Generative Mod-
els”. In: (Oct. 2016). arXiv preprint: 1610.03483.

69

https://doi.org/10.22331/q-2021-03-23-417
https://doi.org/10.1103/PhysRevA.98.062324
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1007/978-1-4899-2837-5
https://doi.org/10.1007/978-1-4899-2837-5
https://doi.org/10.1016/C2012-0-03564-8
https://doi.org/10.1007/978-1-4757-4015-8
https://doi.org/10.1007/978-1-4757-4015-8
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.22331/q-2018-08-06-79
1411.4028
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1103/PhysRevLett.126.140502
https://doi.org/10.1103/PhysRevX.9.041013
https://doi.org/10.1103/PhysRevX.9.041013
https://doi.org/10.1038/ncomms1761
1610.03483

References

[35] Song Cheng, Jing Chen, and Lei Wang. “Information Perspective to Probabilistic Model-
ing: Boltzmann Machines versus Born Machines”. In: Entropy 20.8 (2018). DOI: 10.3390/
e20080583.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.
arXiv preprint: 1412.6980.

[37] Aude Genevay, Gabriel Peyre, and Marco Cuturi. “Learning Generative Models with Sinkhorn
Divergences”. In: Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics. Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84. Pro-
ceedings of Machine Learning Research. PMLR, Apr. 2018, pp. 1608–1617.

[38] Holger Wendland. Scattered Data Approximation. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, 2004. DOI: 10 . 1017 /
CBO9780511617539.

[39] Ingo Steinwart. “On the Influence of the Kernel on the Consistency of Support Vector
Machines”. In: Journal of Machine Learning Research 2 (2001), pp. 67–93.

[40] MD SAJID ANIS et al. Qiskit: An Open-source Framework for Quantum Computing. 2021.
DOI: 10.5281/zenodo.2573505.

70

https://doi.org/10.3390/e20080583
https://doi.org/10.3390/e20080583
1412.6980
https://doi.org/10.1017/CBO9780511617539
https://doi.org/10.1017/CBO9780511617539
https://doi.org/10.5281/zenodo.2573505

	Introduction
	Basics and Literature Review
	Foundations of Stochastic Processes
	Measure Theory and Probabilities
	Stochastic Processes
	Distance Measures for Probability Distributions

	Quantum Computing
	Quantum Measurements
	Quantum Gates
	Quantum Circuits
	Variational Quantum Algorithms

	Predictive Models
	Exact Models
	Approximate Models

	Implicit Generative Models
	Maximum Mean Discrepancy
	Relation to Predictive Models

	Discussion

	Methodology
	Model Problem
	Validation Metrics
	Quantum Learning Algorithm
	General Structure of the VQC
	Cost Function
	Classical Pre-Processing
	Quantum Post-Processing

	Quantum Circuit Ansatz
	Construction of a q-simulator
	Quantum Circuit Decomposition

	Quantum Gradients
	Common Parameter-Shift Rule
	Generalized Parameter-Shift Rule
	Gradient of the Cost Function

	Summary

	Results
	Setup
	Stochastic Error
	Learning Stage
	Validation

	Conclusion and Outlook

