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A B S T R A C T

In this dissertation, I study two topics in network science, namely, phenomena in
growing networks, and machine learning across networks.

The first topic of the dissertation includes the empirical study of different phenomena
in real networks at both the microscopic and the macroscopic level, as well as the ana-
lytical study of preferential attachment network models. I review existing preferential
attachment network models, and give remarks on what exactly the models explain and
what can emerge from the models in terms of real-world phenomena at different levels.
In the empirical study that follows, I particularly look into two citation networks, and
find that (1) the network size grows exponentially over time; (2) the degree growth in
citation networks is time-invariant. Existing preferential attachment models cannot
explain these two additional phenomena at the same time. I propose a novel analytical
framework for a general set of preferential attachment network models, where I
connect the growth of the network size and the growth of the node degrees as an
eigenproblem. I show that there exist only two solutions to the eigenproblem: Network
size growing linearly or exponentially with time. The sometimes lack of solution to
the eigenproblem corresponds to the breaking of the system’s time-invariance, which
explains the winner-takes-all effect in some model settings, revealing the connection
between the Bose-Einstein condensation in the Bianconi-Barabási model and a similar
condensation in superlinear preferential attachment. I also show how to estimate the
network properties using our framework, for instance the degree distribution and the
exponential growth rate of the network. I prove that the ageing effect is necessary to
reproduce realistic node degree growth curves, and can prevent the winner-takes-all
effect under weak conditions. At last, I use extensive numerical simulations to verify
our analytical results, and show that the generated networks have realistic scale-free
degree distributions depending on the parameters.

In the second topic of the dissertation, I investigate how machine learning techniques,
in particular transfer learning, can be applied in real-world networks. Akin to human
transfer of experiences from one domain to the next, transfer learning as a subfield
of machine learning adapts knowledge acquired in one domain to a new domain.
I systematically investigate how the concept of transfer learning may be applied to
the study of users on Web platforms, and propose our transfer learning approach,
TraNet. TraNet is based on feature transformation from each network’s local feature
distribution to a global feature space. I explain our approach in detail with the
experiments on the user interaction networks of Wikipedia in different languages. I
then show how TraNet is applied to tasks involving the identification of trusted users
on Web platforms. I compare the performance of TraNet with other approaches and
find that our approach can best transfer knowledge on users across platforms in the
given tasks.
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Z U S A M M E N FA S S U N G

In dieser Dissertation untersuche ich zwei Themen der Netzwerkwissenschaft, nämlich
Phänomene in wachsenden Netzwerken und netzwerkübergreifendes maschinelles
Lernen.

Das erste Thema der Dissertation umfasst die empirische Untersuchung verschiedener
Phänomene in realen Netzwerken sowohl auf mikroskopischer als auch auf makro-
skopischer Ebene, sowie die analytische Untersuchung von Preferential Attachment
Netzwerkmodellen. Ich überprüfe die bestehende Preferential Attachment Netzwerk-
modelle, und gebe Anmerkungen dazu, was genau die Modelle erklären und was sich
aus den Modellen in Bezug auf Phänomene der realen Welt auf verschiedenen Ebenen
ergeben kann. In der folgenden empirischen Studie untersuche ich insbesondere zwei
Zitationsnetzwerke und stelle fest, dass (1) die Netzwerkgröße mit der Zeit exponenti-
ell wächst; (2) der Gradwachstum in Zitationsnetzwerken zeitinvariant ist. Bestehende
Preferential Attachment Modelle können diese beiden zusätzlichen Phänomene nicht
gleichzeitig erklären. Ich schlage einen neuartigen analytischen Rahmen für einen
allgemeinen Satz von Preferential Attachment Netzwerkmodellen vor, wobei ich das
Wachstum der Netzwerkgröße und das Gradwachstum als Eigenproblem verbinde. Ich
zeige, dass es nur zwei Lösungen für das Eigenproblem gibt: Netzwerkgröße wächst
linear oder exponentiell mit der Zeit. Die manchmal fehlende Lösung des Eigenpro-
blems korrespondiert mit dem Aufbrechen der Zeitinvarianz des Systems, was den

”Winner-takes-all“ Effekt in einigen Modellsettings erklärt und den Zusammenhang
zwischen der Bose-Einstein-Kondensation im Bianconi-Barabási-Modell und einer
ähnlichen Kondensation in superlinearer Preferential Attachment aufdeckt. Ich zeige
auch, wie man die Netzwerkeigenschaften mit unserem Rahmenwerk schätzen kann,
zum Beispiel die Gradverteilung und die exponentielle Wachstumsrate des Netzwerks.
Ich beweise, dass der Alterungseffekt notwendig ist, um realistische Gradwachstums-
kurven zu reproduzieren, und dass er den ”Winner-takes-all“ Effekt unter schwachen
Bedingungen verhindern kann. Zuletzt verwende ich umfangreiche numerische Si-
mulationen, um unsere analytischen Ergebnisse zu verifizieren, und zeige, dass die
generierten Netzwerke realistische skalenfreie Gradverteilungen in Abhängigkeit von
den Parametern haben.

Im zweiten Thema der Dissertation untersuche ich, wie Techniken des maschinellen
Lernens, insbesondere Transfer-Lernens, in Netzwerken der realen Welt angewen-
det werden können. Ähnlich dem menschlichen Transfer von Erfahrungen von ei-
ner Domäne in die nächste, passt Transfer-Lernen als Teilbereich des maschinellen
Lernens das in einer Domäne erworbene Wissen an eine neue Domäne an. Ich un-
tersuche systematisch, wie das Konzept des Transfer-Lernens auf die Untersuchung
von Benutzern auf Web-Plattformen angewandt werden kann, und schlage unseren
Transfer-Lernansatz TraNet vor. TraNet basiert auf der Merkmalstransformation von
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der lokalen Merkmalsverteilung jedes Netzwerks in einen globalen Merkmalsraum.
Ich erläutere unseren Ansatz im Detail anhand der Experimente zu den Benutzerinter-
aktionsnetzwerken von Wikipedias in verschiedenen Sprachen. Anschließend zeige ich,
wie TraNet auf Aufgaben angewendet wird, bei denen es um die Identifizierung von
vertrauenswürdigen Benutzern auf Web-Plattformen geht. Ich vergleiche die Leistung
von TraNet mit anderen Ansätzen und stelle fest, dass unser Ansatz das Wissen über
Benutzer in den gegebenen Aufgaben am besten plattformübergreifend übertragen
kann.
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Chandan Kumar, for the great time working together.

I would like to thank my colleague Sarah de Nigris for the helpful discussion on the
topic of network models. I would like to thank Albert-László Barabási for clearing my
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1
I N T R O D U C T I O N

Network science is a highly interdisciplinary area in terms of both its
theoretical foundation and practical application due to the ubiquity
of network structures in many fields of study. To understand the
relations between one and another of these fields is both beneficial
and challenging. The dissertation of mine covers two major topics
in network science, namely, generative network models and machine
learning across networks, respectively from two different fields.

1.1 background and motivation : phenomena in grow-
ing networks

Growing network models investigate the underlying mechanics of
how networks are formed from preferably simple rules, leading to
better understandings of how different phenomena in real networks
can emerge. The original work on the preferential attachment network
growth model [5] has importantly contributed to the formation of the
interdisciplinary field of network science [7, 55]. The basic preferen-
tial attachment mechanism, also known as the rich-get-richer or the
Matthews effect, dictates that nodes attract new links at a rate that is
proportional to the degree that they already have. This microscopic
mechanism induces a positive feedback loop that results in a network
degree distribution that is power-law (scale-free) under some model
settings [3]. Similar broad degree distributions, though seldom of an
ideal power-law shape, are found in many real-world networks [18,
52]. Since then, preferential attachment-based network models have
been used to model the evolution of a broad range of networks, such
as the World Wide Web [1, 5], citation networks [35, 50], and social
networks [16, 52]. The most important generalisations of the original
preferential attachment model are the inclusion of the node-specific
fitness parameter [10], and ageing that suppresses the attractiveness
of old nodes to new links [22].

What motivates our study in this topic is our empirical observation,
particularly from two citation networks, that (1) the network size grows
exponentially over time; (2) the degree growth in citation networks
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2 introduction

is time-invariant, i.e., the average number of citations received by a
paper after τ years is independent of the paper’s publication time.
When reviewing existing preferential attachment network models, we
analyse what exactly the models explain and what can emerge from
the models in terms of real-world phenomena at both microscopic and
macroscopic levels. We argue that existing preferential attachment
models cannot explain the observed phenomena at the same time.

Moreover, different network condensation phenomena have been stud-
ied in literatures, for instance in the Bose-Einstein condensation in the
Bianconi-Barabási model with skewed fitness distributions [9], and in
the superlinear preferential attachment model [40]. The condensation
in networks corresponds to the “winner-takes-all” effect in the real
world, as an extreme case of the rich-get-richer effect. However, the
connection between the different network condensation phenomena
still remains unrevealed [9].

Thus, we aim at proposing a novel analytical framework for a general
set of preferential attachment network models, that can connect the
growth of the network size and the growth of the node degrees, and
can clarify the difference and connection between the linear network
growth which is usually assumed by existing preferential models,
and the exponential network growth which is often observed in re-
ality. Within our framework, we also aim at unifying the different
network condensation phenomena that have been studied separately,
and studying under what circumstances we can prevent the network
from undergoing a condensation.

1.2 background and motivation : learning across
networks

Network is a powerful tool not only to study citation and growth pat-
terns as we have mentioned in the first topic. It can also model many
other real systems, such as communities of people. Individual actors
(nodes) in the communities and the interactions (links) among them
are often modelled as different types of social networks. A detailed
understanding of the actors in the network can contribute to the under-
standing of the whole community. For example, individual actors can
have different labels in social networks: Some nodes are people bridg-
ing two sub-communities, some are central people through which a
large part of communication passes, some outliers. Other examples of
labels can be, for instance, “trolls” or users’ trustworthiness.
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For large online social networks, the only scalable way to annotate all
users with labels is through automatic labelling of nodes, i.e., using
machine learning to train a model from existing, annotated data,
and infer the labels of unknown nodes. However, when studying
a completely new network where no labels are known, we have to
rely on our knowledge about existing networks, because the labels
cannot be inferred from the network itself. An unsupervised learning
algorithm could be used, but it would only output unlabelled classes
without meaning attached to the classes.

The main challenge of learning from existing networks lies in the fact
that different communities are so heterogeneous in terms of size and
structure. As a simple example, a user with 20 friends in a small-
scale network (e.g., a friendship network in a classroom) might be
considered influential, while a user with the same number of friends
in Facebook is far from being influential. Some platforms such as
Slashdot contain negative user relationships such as “foes”, and others
do not.

Quantifiable cross-community analyses have been undertaken by, e.g.,
Rowe et al. [64]. They have proposed several measures useful to
quantify differences between communities, such as the number of
initiative-takers or the length of discussions. Considering these mea-
sures, however, it still remains open whether and how they could
actually be re-used to transfer experiences from one community to
another. The learning process would be cut short greatly, if mea-
surements of social behaviour could be transferred from previous
experiences to new ones, not just based on qualitative observations,
but also based on quantifiable rules. For example, a new Web platform
might want to discourage trolls and encourage trusted users without
running through the learning cycle multiple times by transferring
quantitative experiences from previous Web platforms.

As the second topic of the dissertation, we aim at investigating how
transfer learning can be applied in real-world networks. Akin to human
transfer of experiences from one domain to the next, transfer learning,
as a subfield of machine learning, enables one to learn knowledge
from other labelled datasets, and apply the learnt knowledge to the
unlabelled dataset [61]. In transfer learning approaches, an algorithm
is trained on one dataset (the source dataset) and applied to another
dataset (the target dataset). In practice, this only works as stated if
the two datasets have very similar structural (and other) properties.
Thus, we also need to additionally investigate different functions
that effectively transfer features from one dataset to another, or to
a common feature space. Such transfer is particularly challenging
due to the above-mentioned heterogeneity of Web platforms and the
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sometimes drastic differences in structural network features such as
the degree distribution.

1.3 outline

In this section we outline the overall structure of the remaining disser-
tation.

chapter 2 introduces the foundational concepts that will be used
throughout this dissertation, including the basic math-
ematics that is needed to follow the derivations in the
dissertation, and the notational conventions.

chapter 3 introduces the observation of various phenomena in
growing networks, and our work on preferential attach-
ment network models that try to explain the phenomena.
This chapter makes the following contributions:

• We systematically review various existing preferen-
tial attachment network models, and analyse how
they each explains various phenomena in real sys-
tems such as growing networks.

• We empirically observe the exponential network
growth and the time-invariance of the degree growth
in real networks.

• We propose a novel analytical framework for pref-
erential attachment network models based on the
observations.

• We reveal the connection between different conden-
sation effects using our new framework.

chapter 4 introduces our work on machine learning techniques for
cross-network learning. This chapter makes the follow-
ing contributions.

• We propose our transfer learning approach, TraNet,
for cross-network learning tasks such as user stud-
ies in online platforms.

• We propose a method of feature transformation for
power-law distributions, which can be used effec-
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tively in cross-network learning tasks on features
such as node degrees.

• We evaluate TraNet with concrete use cases: Classi-
fying users into different roles study the user inter-
action networks of Wikipedia in different languages,
and identifying trusted users in ARIS Community.

chapter 5 concludes the whole dissertation.

In addition, Appendix A provides the supplementary experimental
results for Chapter 3, and Appendix B provides the supplementary
experimental results for Chapter 4. Appendix C describes the Wiki-
talk datasets in detail, and illustrates how to extract the datasets in
order to reproduce the results in Chapter 4.

1.4 publications , talks and own contributions

This dissertation contains material in papers that were published
already in conference proceedings and journals as listed below [69–72].
Papers that are not relevant to this dissertation are omitted.

• Time-invariant degree growth in preferential attachment network
models
Sun, J., Medo M., & Staab S. In: Physical Review E 101.2 (2020).

• Decay of Relevance in Exponentially Growing Networks
Sun, J., Steffen S., & Fariba K. In: Proceedings of the 10th ACM
Conference on Web Science (2018).

• Understanding Social Networks using Transfer Learning
Sun, J., Staab, S., & Kunegis, In: Computer 51.6 (2018).

• Predicting User Roles in Social Networks using Transfer Learn-
ing with Feature Transformation
Sun, J., Kunegis, J., & Staab, S. In: Proceedings of the IEEE 16th
International Conference on Data Mining Workshops (2016).

In addition, I participated the following conferences as a speaker
for regular talks. Contributions to these conferences include peer
reviewed conference or workshop papers (see above) and abstracts
with figures. This dissertation contains material in the presentations
of these talks. Talks that are not relevant to this dissertation are
omitted.
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• IEEE, 16th International Conference on Data Mining (ICDM
2016), Regular talk (Workshop), Barcelona.

• ACM, 10th Conference on Web Science (WebSci 2018), Regular
talk, Amsterdam.

• Network Science Society, International School and Conference
on Network Science (NetSci 2018), Regular talk, Paris.

• Network Science Society, International School and Conference
on Network Science (NetSci 2020), Regular talk, Rome (Online).

I am the main author of the publications, and the main contributor of
the talks listed above. Material included from these publications and
presentations was authored by myself.



2
F O U N D AT I O N S

In this chapter, we introduce the foundational concepts that will be
used in this dissertation. First, we illustrate the mathematics that is
needed to follow the calculations in the dissertation, and define the
notational conventions in Section 2.1. Then, we introduce concepts
on graphs and networks, including the basic definitions of graphs
and networks in Section 2.2, matrix representations of networks in
Section 2.3, network degree distributions in Section 2.4, and structural
properties in graphs in Section 2.5.

2.1 mathematics

To make sure that the text clearly reflects our thoughts and avoid
ambiguity as much as possible, very often we use the language of
mathematics to explain the ideas, although some of the derivation
might seem a little bit hand waiving in the eyes of the most rigorous
mathematicians. Mathematics also helps deriving new knowledge that
is otherwise difficult to derive. In this section, very briefly, we illustrate
the necessary mathematics that is needed to follow the calculations
in the dissertation, and define the notational conventions that will be
used consistently.

2.1.1 Matrices and vectors

Matrices and vectors are widely used to represent different kinds of
information. They can also conveniently express linear transformation.
In this dissertation in particular, they will be used when discussing
both topics: Phenomena in growing networks, and machine learning
across networks. In this subsection, we introduce basic notions of
matrices and vectors.

7



8 foundations

Matrices

A matrix is essentially a table of numbers arranged in rows and
columns. For instance,

X =

(
1 −1 2
−1 2 0

)
(2.1)

is a matrix of 2 × 3 real values. Without explicitly mentioning, aWe will use a bold,
upper-case Latin
letter to denote a

matrix, for instance,
A, X, Y, etc.

matrix will contain only real numbers in this dissertation, i.e., a matrix
X ∈ Rm×n of size m× n consists of mn real numbers arranged with
the indices i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, where “m× n” is called
the dimension of the matrix. The element in the ith row and jth column
of X is denoted as Xi,j. The ith row of X is denoted as Xi,:. The jth
column of X denoted as X:,j.

A matrix is called a square matrix if m = n. The transpose of a square
matrix X, denoted as XT, is defined via

(XT)i,j = Xj,i. (2.2)

A square matrix X is called a symmetric matrix if X = XT.

A square matrix X is called a diagonal matrix if its off-diagonal elements
are all zeros, i.e., Xi,j = 0 whenever i 6= j.

A diagonal matrix I is called an identity matrix if its diagonal elements
are all ones, i.e., Ii,j = δ(i, j), where δ(i, j) is the Kronecker delta
function. In denotes the n× n identity matrix.

The product of two matrices X ∈ Rm×l and Y ∈ Rl×n is an m× n matrix
XY, whose elements are defined via

(XY)i,j =
l

∑
k=1

Xi,kYk,j. (2.3)

The inverse of a square matrix X ∈ Rn×n, denoted as X−1, is defined
via

X−1X = XX−1 = In (2.4)

Note not all square matrix have an inverse.
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Vectors

A vector is a list of numbers, arranged in a row or column. For
instance,

x =
[

1 −1 2
]

(2.5)

y =




1
−1
2


 (2.6)

are a row vector of size 3, and a column vector of size 3, respectively.
Without explicitly mentioning, a vector will contain only real numbers We will use a bold,

lower-case Latin
letter to denote a
vector, for instance,
v, x, y, etc.

in this dissertation, i.e., a vector x ∈ Rn of size n consists of n real
numbers, arranged with the indices i ∈ {1, . . . , n}. The ith element in
x is denoted as xi.

A column vector of size m can be seen as an m× 1 matrix. A row
vector of size n can be seen as a 1× n matrix. Thus, in the example
given above, the row vector x and the column vector y can be seen as
the transpose of each other, i.e., x = yT and y = xT.

The dot product of two real vectors x, y ∈ Rn is defined as

x · y =
n

∑
i=1

xiyi. (2.7)

If x · y = 0, the two vectors x and y are said to be orthogonal.

The norm of a real vector x ∈ Rn, denoted as ‖x‖, is defined as the More strictly
speaking this is the
vector’s L2 norm,
which is also the
vector’s Euclidean
length.

square root of the dot product of x and itself, i.e.,

‖x‖ =
√

x · x =

√
n

∑
i=1

x2
i . (2.8)

If ‖x‖ = 1, the vector x is called a unit vector. A unit vector has
length 1.
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2.1.2 Matrix multiplication as linear transformation

Now we look into a special case of matrix multiplication. Let M be an
m× n matrix, and v be a column vector of size n. Now we multiply
the matrix M with the vector v:

w = Mv. (2.9)

The resulting vector w is a column vector of size m. The multiplication
Mv itself can be seen as applying a transformation, represented by
the matrix M, to the column vector v. In other words, the matrix M
defines a mapping from Rn to Rm.

Moreover, the transformation represented by matrix multiplication is
linear. Let u be a column vector of the same size as v. Let c be any
real valued scalar. By using the definition of the matrix multiplication
we can getLinearity of matrix

multiplication

Mv + Mu = M(v + u), (2.10)

cMv = M(cv). (2.11)

The two equations above show that the transformation represented by
matrix multiplication fulfils the two properties of linearity: additivity
and homogeneity of degree one.

• Equation (2.10) shows that the transformation is additive: The
order of the addition and the matrix multiplication does not
affect the end result.

• Equation (2.11) shows that the transformation is homogeneous
of degree one: The order of the constant scaling and the matrix
multiplication does not affect the end result.

Thus we say that the transformation represented by matrix multiplica-
tion is a linear transformation.

2.1.3 Eigenvalue problems

Let M be an n× n matrix, and v be a column vector of size n. If

Mv = λv, (2.12)
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the vector v is called a right eigenvector of the matrix M, and λ is
called the corresponding eigenvalue. Intuitively, applying the linear
transformation M upon the eigenvector v does not rotate the direction
of v, but merely scales v by a factor of λ, and in case λ < 0, the
direction of v is reversed.

Similarly, if v is a row vector of size n, and

vM = λv, (2.13)

the vector v is called a left eigenvector of the matrix M, and λ is called
the corresponding eigenvalue. However, without explicitly mentioning,
eigenvectors will always refer to right eigenvectors in this disserta-
tion.

2.1.3.1 Eigendecomposition

From Equation (2.13) one can see that, any eigenvalue of the matrix
M must fulfil the following characteristic equation:

det(M− λI) = 0, (2.14)

where det() represents the matrix determinant. Equation (2.14) is an nth
order polynomial equation which has n solutions for the eigenvalue
λ, denoted as λi where i = 1, 2, · · · n. The set of all eigenvalues λ

is called the spectrum of M. The spectrum can be arranged in the
diagonal eigenvalue matrix Λ such that

Λi,i = λi (2.15)

with
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. (2.16)

If the n × n matrix M has n linearly independent eigenvectors v(i) Here we use the
notation v(i) in order
to differentiate with
vi, the ith element in
the vector v.

corresponding to the eigenvalues λi where i = 1, 2, · · · n, they can be
arranged in the eigenvector matrix Q such that the ith column of Q is
the ith unit eigenvector v(i), i.e.,

Q:,i = v(i) (2.17)

with ∥∥∥v(i)

∥∥∥ = 1. (2.18)



12 foundations

The matrix M can be decomposed as the product of three matrices,
i.e.,

M = QΛQ−1. (2.19)

This is called the eigendecomposition of M.

In addition, if M is a real symmetric matrix, the eigenvector matrix Q
can be arranged to be an orthonormal matrix, i.e.,“Orthonormal” means

both orthogonal and
normal. UUT = I. (2.20)

2.1.3.2 Operators and eigenfunctions

We have shown that, if a vector y of size n equals the multiplication of
an n× n matrix A and a vector x of size n, i.e.,

y = Ax, (2.21)

then y can be seen as the result of performing a linear transformation
represented by the matrix A upon the vector x. Particularly, if y = λx,
with λ being a scalar value, both x and y are eigenvectors of the matrix
A with the corresponding eigenvalue λ. In other words, the direction
of the vectors x and y is invariant under the linear transformation
A.

Similarly, one can extend the notion of eigenvalue and eigenvector for
any linear transformation (not necessarily represented by a matrix) to
a continuous function. The corresponding equation that defines theA continuous

function can be seen
as a vector of infinite

size.

eigenvalue problem is similar to Equation (2.13):

D f = λ f , (2.22)

where the function f is called the eigenfunction of the linear operator
D, and the scalar value λ is called the corresponding eigenvalue. The
left hand side of the equation represents the linear transformation
represented by D on the function f , while the right hand side of the
equation represents the function f scaled by the scalar value λ.We will use

calligraphic letters to
represent linear

operators in the rest
of the dissertation.

For example, the derivative operator d
dx takes the first order derivative

of a function. The eigenfunction of the derivative operator is the
exponential function f (x) = eλx, i.e.,

d
dx

eλx = λeλx. (2.23)
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As one can see, the derivative operator has infinitely many eigenvalues
λ. This is different to the case of a matrix whose number of eigenvalues
is limited by the dimension of the matrix.

2.1.4 Laplace transform

The Laplace transform1 of a function f (t), denoted as L{ f (t)}, is 1 Named after its
inventor,
Pierre-Simon Laplace

an integral transform that converts the function f from its original
domain t ∈ R, to a function of another variable σ. The transformed
function is often denoted as f̂ (σ).

f̂ (σ) = L{ f (t)} =
∫ +∞

0
f (t)e−σt dt. (2.24)

The original domain t ∈ R of the function f often represents the time Note f and f̂ are two
functions defined in
two different
domains.

in real applications, while the transformed domain σ is called the
σ domain, or sometimes the (complex) frequency domain. In this
dissertation we will only deal with situations where σ is also a real
variable, i.e., σ ∈ R.

2.1.4.1 Linearity

The Laplace transform L is also a linear transformation.

Let f and g be two continuous functions defined in the same domain
t ∈ R. Let c be any constant scalar. By using the definition of the
Laplace transform we can get Linearity of the

Laplace transform

L{ f (t)}+ L{g(t)} = L{ f (t) + g(t)}, (2.25)

cL{ f (t)} = L{c f (t)}. (2.26)

Similar to the matrix multiplication case in Section 2.1.2, the two equa-
tions above show that the Laplace transform fulfils the two properties
of linearity: additivity and homogeneity of degree one.

• Equation (2.25) shows that the Laplace transform is additive:
The order of the addition and the Laplace transform does not
affect the end result.
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• Equation (2.26) shows that the Laplace transform is homoge-
neous of degree one: The order of the constant scaling and the
Laplace transform does not affect the end result.

Thus we say that the Laplace transform is a linear transformation.

2.1.4.2 Region of convergence

Now we look at the definition of the Laplace transform again.

f̂ (σ) = L{ f (t)} =
∫ +∞

0
f (t)e−σt dt. (2.24)

The Laplace transform of a function f (t) is the integral of the product
of the function itself and an exponential function, e−σt, over the entire
positive real axis t ∈ (0, +∞). However, there is no guarantee that this
integral converges.

For example, consider the simple constant function

f1(t) = 1. (2.27)

The Laplace transform f̂1(σ) is simply the integral of the exponential
function e−σt:

f̂1(σ) = L{ f1(t)} =
∫ +∞

0
e−σt dt. (2.28)

Thus σ must be larger than 0 in order for the integral to converge.

The set of σ for which f̂ (σ) converges is defined as the region of
convergence of the Laplace transform. When σ is positive, the term
e−σt is a decaying function of t, and the larger σ is, the faster e−σt

decays. Thus, intuitively, the larger σ is, the “easier” it is for the
Laplace transform f̂ (σ) to converge. Indeed, if the Laplace transformFor the most general

case when complex σ

is allowed, the real
part is compared, i.e.,

Re(σ) > Re(σ0).

converges at σ0, then it also converges for all σ > σ0.

Obviously, the region of convergence depends on the growth be-
haviour of the function f (t). Intuitively, if f (t) grows faster, σ needs
to be larger to “compensate” the growth of f (t). However, this is not
always true. Consider the function

f2(t) = t−1, (2.29)
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which, decays faster than the constant function f1(t) = 1. If we take
σ = 0, given the fact that

f̂2(0) =
∫ +∞

0
t−1 dt (2.30)

still diverges, the region of convergence for f2(t) is (0, ∞), still the
same as for f1(t) = 1.

The region of convergence can also be empty in some cases. This
happens for some f (t) which grow faster than exponentially, for
instance, consider Consider f3(t) as the

solution to
dy/dt = y2, as
compared with
dy/dt = σy for the
exponential function.

y = f3(t) =
1

c− t
, t ∈ (0, c). (2.31)

f3(t) already reaches infinity when t takes the finite limit of t → c−.
Thus, no σ is large enough to compensate the growth of f3(t), and its
region of converges is empty.

2.1.5 Linear time-invariant system

In this subsection, we introduce the linear time-invariant (LTI) sys-
tem.

2.1.5.1 Convolution

The convolution of two continuous functions f (t) and g(t), denoted as
f ? g, is defined as integral of the product of the two functions after
one is reversed and shifted:

( f ? g)(t) =
∫ +∞

−∞
f (τ)g(t− τ) dτ. (2.32)

Note the result is still a function of t.

The convolution process is commutative. This can be seen from the Commutativity of
convolutionfact that it does not matter which one of the functions f (t) and g(t) is

reversed and shifted before the integration:

( f ? g)(t) =
∫ +∞

−∞
f (τ)g(t− τ) dτ (2.33)

=
∫ +∞

−∞
f (t− τ)g(τ) dτ = (g ? f )(t). (2.34)
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2.1.5.2 Linearity and time-invariance

An LTI system is a system that produces an output function y(t) from
any input function x(t), subject to the constraints of linearity and
time-invariance.

• Linearity means that the relationship between the input x(t)We have explained
the linearity of

matrix
multiplication in

Section 2.1.2, and
here it is very similar.

and the output y(t) is linear, such that the LTI system has the
properties of additivity and homogeneity of degree one.

Additivity: If, in an LTI system, the input functions x1(t) and x2(t)
correspond to the output functions y1(t) and y2(t) respectively,
then for the input function x3(t) = x1(t) + x2(t), the output
function y3(t) will be the sum of y1(t) and y2(t), i.e., y3(t) =

y1(t) + y2(t).

Homogeneity of degree one: If the output due to input x(t) is y(t),
then the output due to input c · x(t) will be c · y(t− ∆t) for any
given constant scalar c.

• Time-invariance means that the LTI system is invariant underWhether we apply an
input to the system

now or ∆t from now,
the output will be

identical except for a
time delay of ∆t.

time shift: If the output due to input x(t) is y(t), then the output
due to input x(t− ∆t) will be y(t− ∆t) for any given time shift
∆t.

The impulse response of an LTI system, denoted as h(t), is an intrinsic
property of this particular system. The impulse response h(t) repre-
sents the system’s response in the output y(t) corresponding to a unit
impulse x(t) = δ(0) in the input.δ is the Dirac delta

function. δ(0) can be
intuitively

understood as “a
unit of input” at

time t = 0.

The output function y(t) represents the total response of the system.
Using the linearity and the time-invariance of the LTI system, one can
find that the output at given time t equals the integral of the product
of h(ta) and x(tb) where ta + tb = t, which is just the convolution of
the impulse response h(t) and the input function x(t):

y(t) = (h ? x)(t) =
∫ +∞

−∞
h(τ)x(t− τ) dτ. (2.35)

2.1.5.3 Eigenfunctions and eigenvalues of LTI systems

An LTI system with impulse response h(t) can be understood as
a transformation from the input x(t) to the output y(t), and this
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transformation is linear by definition. Thus an LTI system can also be
understood as a linear operator, which we denote as H:

y(t) = Hx(t) = (h ? x)(t) =
∫ +∞

−∞
h(τ)x(t− τ) dτ. (2.36)

The eigenfunction and eigenvalue of an LTI system can thus be defined See Section 2.1.3.2
for details about
operators and
eigenfunctions.

via
H f = λ f , (2.37)

where f is the eigenfunction, and the constant λ is the eigenvalue.
This means that the output of the LTI system is a scaled version of
input function, when the input function is f .

Now we proof that the exponential functions f = Aest are the eigen- As usual we only
deal with real-valued
A and s in this
dissertation, but in
general they can be
complex numbers.

functions of an LTI operator H, where A and s are both constants.
Starting from Equation (2.36) we can get

H f =
∫ +∞

−∞
h(τ) f (t− τ) dτ (2.38)

=
∫ +∞

−∞
h(τ)Aes(t−τ) dτ (2.39)

= Aest
∫ +∞

−∞
h(τ)e−sτ dτ (2.40)

= Aestĥ(s) = ĥ(s) · f , (2.41)

where ĥ(s) is the Laplace transform of the impulse response h(t), See Section 2.1.4 for
details about the
Laplace transform.

which depends on the constant parameter s in f .

Till now, we have recovered the eigensystem expressed in Equa-
tion (2.37), and proved that the exponential functions f = Aest are
the eigenfunctions of an LTI operator H. We have also seen that the
eigenvalues λ of an LTI operator H are the Laplace transform of its
impulse response h(t).

2.2 graphs and networks

Entities in the real world are often connected, and graphs or networks
are used to model their connections. While multiple definitions of
graphs and networks exist [13, 28, 54], there is no standard due to the
interdisciplinary nature of the field. In this dissertation we use the
similar definitions as defined in [28].

A graph or a network is a pair G = (V, E), where V = {v1, · · · , vn} is
a set of vertices or nodes, and E ⊆ V ×V is a set of edges or links. An
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edge e = (v1, v2) connects two nodes v1 and v2. Strictly speaking, a
network is an actual object, and a graph is the underlying mathemati-
cal representation of a network. However this difference is subtle and
causes no ambiguity in this dissertation. Therefore we will use these
terminologies interchangeably.

2.2.1 Network types

Networks can belong to different types depending on the actual use
cases. Here we list commonly used network types and their typical
use cases.

Directed and undirected networks

For a network G = (V, E), if E contains directed edges, the network
is called a directed network, or digraph. Conversely, if E contains only
undirected edges, the network is called an undirected network. Note it
makes sense to write an undirected edge e as the form {vi, vj}, since
the order of vi and vj does not distinguish two different edges.

Directed networks are suitable for modelling situations where the
direction of a relationship between entities is important. For example,
in the Twitter1 “mentioning” network [20], each node represents a
Twitter user, and each directed edge from user A to user B means
that user A has mentioned user B in a tweet using the “@username”
syntax.

Undirected networks are suitable for modelling situations where a
relationship between entities is bidirectional, or the direction of a
relationship is of no interest. For example, in the Facebook2 friendship
network [74], the friendship between two users is bidirectional.

Weighted and unweighted networks

For a network G = (V, E), if the edges in E have weights, the network
is called a weighted network. Conversely, if the edges in E do not have
weights, the network is called an unweighted network.

1 https://twitter.com
2 https://www.facebook.com
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Weights can carry different meanings. For instance, in a social network,
the weight of an edge can mean the strength of a relationship, or the
length of an interaction. In a transportation network, the weight of an
edge can mean the volume or the traffic flow of a connection.

Signed and unsigned networks

For a network G = (V, E), if the edges in E have signs (either positive,
denoted by “+”; or negative, denoted by “−”), the network is called
a signed network. Conversely, if the edges in E do not have signs, the
network is called an unsigned network.

Signed networks can be used to model social situations where friend-
ships and enmities coexist. For example, the Slashdot Zoo network [41]
contains directed, signed edges that connect users in the technology
news site, Slashdot3. A positive edge from user A to user B means
that user A has marked user B as a “friend”, increasing the scores of
user B’s posts as shown to user A; while a negative edge from user A
to user B means that user A has marked user B as a “foe”, decreasing
the scores of user B’s posts as shown to user A.

Multigraphs

For a network G = (V, E), if two nodes can be connected by any num-
ber of edges multiple times, the network is called a multigraph [63].

For instance, the Reality Mining network [23] is an undirected multi-
graph that contains human contact data among 100 students of the
Massachusetts Institute of Technology (MIT), collected in a social ex-
periment in 2004 as part of the Reality Commons project. A node
represents a person, and an edge represents a physical contact. Multi-
ple edges can exist between a pair of nodes.

2.2.2 Common terminology

In this subsection, we introduce the common terminology of graphs
and networks that will be used through the dissertation.

3 https://slashdot.org
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Figure 2.1: The SimGraph network.

Size and volume

The size of a network, often denoted by N, is the number of nodes in
the network, i.e., N = |V|. The volume of the network, often denoted
by M, is the number of edges in the network, i.e., M = |E|.

Simple graphs and simple digraphs

A simple graph is an undirected, unweighted, unsigned graph without
loops or multiple edges. Figure 2.1 shows the SimGraph network, an
example of a simple graph with N = 10, M = 14.

Similarly, a simple digraph is a directed, unweighted, unsigned graph
without loops or multiple edges.

Terminology for undirected networks

Let G = (V, E) be an undirected network. Two nodes v1 and v2 are
called adjacent to each other, if {v1, v2} ∈ E, i.e., they are connected by
an edge {v1, v2}. The two nodes are then called neighbours. The edge
{v1, v2} is called incident to both v1 and v2.

The degree of a node v, denoted by k, is the number of edges that are
incident to v. If G is a simple graph, the degree of a node is equal to
the number of its neighbours.

Terminology for directed networks

Let G = (V, E) be a directed network. If (v1, v2) ∈ E, i.e., there exists
an edge from node v1 to node v2, the node v1 is called a parent of v2,
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and v2 is called a child of v1. The edge e is called an outgoing edge of
v1, and an incoming edge of v2.

The indegree of a node v, denoted by kin, is the number of incoming
edges of v. For a simple digraph, the indegree of a node is equal to
the number of its parents.

The outdegree of a node v, denoted by kout, is the number of outgoing
edges of v. For a simple digraph, the outdegree of a node is equal to
the number of its children.

2.3 matrix representations of networks

2.3.1 Adjacency matrix

The adjacency matrix A of a simple graph G = (V, E) with V =

{v1, · · · , vn} is an N × N matrix defined as follows:

Ai,j =

{
1 if {vi, vj} ∈ E
0 otherwise

(2.42)

More generally, the element Ai,j can be the weight of the edge {v1, v2}
for weighted networks, the sign of the edge {v1, v2} for signed net-
works, or the number of edges between vi and vj for multigraphs.
Equation (2.43) shows the adjacency matrix of the SimGraph net-
work.

A =




0 1 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 1 0 1
0 0 1 0 0 1 0 0 1 0




(2.43)

In general, for an undirected network G, the adjacency matrix A is
always symmetric, i.e., A = AT.
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Similarly, the adjacency matrix A of a directed network G = (V, E)

with V = {v1, · · · , vn} is an N × N matrix defined as follows:

Ai,j =

{
1 if (vi, vj) ∈ E
0 otherwise

(2.44)

More generally, the element Ai,j can be the weight of the edge (v1, v2)

for weighted directed networks, the sign of the edge (v1, v2) for signed
directed networks, or the number of edges from vi to vj for directed
multigraphs.

2.3.2 Degree matrix

The degree matrix D of an undirected network G = (V, E) with V =

{v1, · · · , vn} is an N × N diagonal matrix defined as follows:

Di,j =

{
ki if i = j
0 otherwise

(2.45)

where ki is the degree of vi. Equation (2.46) shows the degree matrix
of the SimGraph network.

D =




3 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 5 0
0 0 0 0 0 0 0 0 0 3




(2.46)

Similarly, one can define the indegree matrix Din and the outdegree matrix
Dout of a directed network G = (V, E) with V = {v1, · · · , vn}. The
indegree matrix and outdegree matrix of G are both N × N matrices
defined as follows:

Din
i,j =

{
kin

i if i = j
0 otherwise

(2.47)
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Dout
i,j =

{
kout

i if i = j
0 otherwise

(2.48)

where kin
i and kout

i are the indegree and outdegree of node vi, respec-
tively.

2.4 degree distribution

The degree distribution of a network is the probability distribution of
the node degrees in the entire network.

The degree distribution can be expressed as a discrete function P(k)

of the degree k, where P(k) is defined as the fraction of nodes in the
network with degree k. For example, the degree distribution of the
SimGraph network as in Figure 2.1 is

P(k) =





0.4 if k = 2
0.5 if k = 3
0.1 if k = 5
0 otherwise

(2.49)

Moreover, the degree distribution of a network can also be expressed
as P(K ≥ k), which is the complementary cumulative distribution
function (CCDF) of the degree k. P(K ≥ k) is the fraction of nodes in
the network that have degree not less than k.

By definition, P(K ≤ k) is a monotonically decreasing function of k.
P(K ≤ k) is also called the cumulative degree distribution of the network.
For example, the cumulative degree distribution of the SimGraph
network as in Figure 2.1 is

P(K ≥ k) =





1 if k ≤ 2
0.6 if 2 < k ≤ 3
0.1 if 3 < k ≤ 5
0 if k > 5

(2.50)

Similarly, one can define the indegree distribution and the outdegree
of a directed network.
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Figure 2.2: The theoretical degree distribution of the Erdős-Rényi model
G(5000, 0.3), and the degree distribution of an instance of a syn-
thetic graph generated from the model.

2.4.1 Degree distribution of the Erdős-Rényi model

In the Erdős-Rényi model G(N, π), a simple graph is constructed
by is constructed by connecting N nodes with edges randomly. The
probability that an edge exists between each pair of nodes is equal to
π, independent from every other edge [25].

The Erdős-Rényi model has a binomial theoretical distribution of

P(k) =

(
N − 1

k

)
πk(1− π)N−1−k. (2.51)

Figure 2.2 shows the theoretical degree distribution of the Erdős-Rényi
model G(5000, 0.3), as well as the degree distribution of an instance
of a synthetic graph generated from the model.

2.4.2 Degree distribution of real-world networks

Unlike the Erdős-Rényi model which has a symmetric bell-curved
degree distribution, a real-world network usually exhibits a highly
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right-skewed, heavy-tailed degree distribution, which means the ma-
jority of nodes have low degree, while a small but significant fraction
of nodes have significantly high degree.

Empirically, many networks, including the Internet, the World Wide
Web, and social networks have degree distributions that approximately
follow a power-law [18]:

P(k) ∼ k−α, (2.52)

where α is a constant that typically lies in the range 2 < α < 3,
although studies have shown that the observed degree distributions
almost always deviate from perfect power functions [14].

The degree distribution and the cumulative degree distribution of a
real-world network are usually visualised using plots with the log-log
scale. A pure power-law degree distribution is shown as a straight
line in the log-log plot.

Alternatively, one can use “frequency” (i.e., the number of nodes
with degree k) instead of “probability” as the Y-axis in the degree
distribution plot. Since the frequency is just the probability scaled by
the network size N which is constant for a network, using frequency
as the Y-axis does not change the shape of the curve in the log-log
plot.

As an example, Figure 2.3 shows the degree distribution of Gowalla, a
discontinued online social network [17].

2.4.3 Continuous approximation of the degree distribution

One can use continuous functions to approximate discrete degree
distribution functions. For example, the power-law degree distribution
as shown in Equation (2.52) can be approximated as

p(k) = c k−α, (2.53)

where c is a constant, and the exponent α typically lies in the range
(2, 3).

The continuous function p(k) must be a valid probability density
function, i.e.,

kmax∫

kmin

p(k)dk = 1. (2.54)
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Figure 2.3: The degree distribution of the Gowalla network. Panel (a) plots
the number of nodes (frequency) against degree k; Panel (b) shows
the cumulative degree distribution (complementary cumulative
distribution function).
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If k is assumed to have the range k ∈ [1, +∞), one can solve that the
constant c = α− 1, i.e., the approximated probability density function
of the degree distribution function is

p(k) = (α− 1) k−α, 2 < α < 3. (2.55)

If the cumulative degree distribution P(K ≥ k) is also approximated as
a continuous function, the approximated probability density function
p(k) can also be written as the derivative of −P(K ≥ k), i.e.,

p(k) = −dP(K ≥ k)

dk
. (2.56)

This however requires P(K ≥ k) to be differentiable.

2.5 structural properties

In this section, we describe various metrics that can characteristic the
structural property of a node, and sometimes, of an entire network.
Structural properties can be reflected in the structure of the network,
for instance the centrality of a node. Other non-structural properties,
such as the label of a node, are not reflected directly in the structure
of the network.

2.5.1 Degree centrality

The degree centrality of a node, denoted as cdeg, is defined as the degree
of the node.

cdeg
i = ki. (2.57)

The degree centrality reflects the simple idea that a node is more
centric if it has more neighbours.

2.5.2 Eigenvector centrality

The idea of node centrality is to differentiate nodes according to how
“centric” they are. However, according to the definition of the degree
centrality, each neighbour of a node contributes exactly the same
amount to the centrality value of the node, regardless of its structural
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differences to the others. This somehow contradicts the idea of node
centrality.

The eigenvector centrality instead, considers the “quality” of the neigh-
bours: A node is more centric if it has more neighbours, and its
neighbours are more centric.

Let G = (V, E) be an undirected network represented by its adjacency
matrix A. The eigenvector of a node, denoted as ceig, is proportional to
the sum of eigenvector centralities of all its neighbours. This recursive
definition can be expressed as follows:

ceig
i = λ−1 ∑

j
Ai,jc

eig
j , (2.58)

where λ is a positive constant, and the eigenvector centralities are all
non-negative. To avoid trivial solutions, all eigenvector centralities
must not be zero.

If the eigenvector centralities of all nodes column vector v of size N
such that vi = ceig

i . Equation (2.58) can be rewritten as an eigenvalue
problem:See Section 2.1.3 for

details about
eigenvectors,

eigenvalues and
eigendecomposition.

Av = λv, (2.59)

where v is the eigenvector of the adjacency matrix A, and λ is the
corresponding eigenvalue. Considering the above-mentioned other
constraints, λ is the dominant eigenvalue of A.

The eigenvector centrality can be obtained using power iteration, or
the eigendecomposition of the adjacency matrix A.

2.5.3 Random walk centrality

Consider the following random walk process of a random walker on
a simple digraph G = (V, E). At any timestep t the random walker
walks to one of the children of the node v where he is currently at,
with equal probability. If v has no child, the random walker randomly
teleports to any node in the network with equal probability.

Define the N × N matrix P such that

Pi,j =





1
kout

i
if kout

i > 0 and (vi, vj) ∈ E

0 if kout
i > 0 and (vi, vj) /∈ E

1
N if kout

i = 0
(2.60)
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P is the right stochastic matrix that describes the behaviour of the
random walker, with Pi,j denoting the conditional probability that,
the random walker will walk to vertex vi in the next step, given the
condition that it is at vertex vj in the current step. By definition, each
row of P sums up to 1.

Let v be a row vector of size N that denotes the stationary probability
distribution of the random walk process. v is given by the eigenvalue
problem

vP = v, (2.61)

where v is the left eigenvector of the right stochastic matrix P, and
the corresponding eigenvalue is exactly 1, which is also the dominant
eigenvalue of P. The value vi is called the random walk centrality of
node vi. The random walk centrality can be seen as a generalisation
of the eigenvector centrality, which can be obtained using power
iteration.

2.5.4 PageRank

PageRank is a node centrality metric by Page et al. [59], that is initially
used in Google to measure the importance of website pages. PageRank
is closely related to the random walk centrality.

Define the damping factor α ∈ (0, 1). At each timestep, the random
walker has α probability to the random walk process defined in the
previous section. In addition, the random walker has 1− α proba-
bility to randomly teleport to any node in the network, with equal
probability.

Define the N × N “Google matrix” G as

G = αP +
1− α

N
J, (2.62)

where J is the N × N all one matrix that guarantees the ergodicity of
the random process.

The Google matrix G is also a right stochastic matrix with each row
summing up to 1. G describes the behaviour of the random walker,
with Gi,j denoting the conditional probability that, the random walker
will walk or teleport to vertex vi in the next step, given the condition
that it is at vertex vj in the current step. The stationary probability
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distribution p of the random walk and random teleportation process
is given by the eigenvalue problem

pG = p, (2.63)

where p is the left eigenvector of the Google matrix G, and the corre-
sponding eigenvalue is exactly 1, which is also the dominant eigen-
value of G. The value pri = pi is called the PageRank of node vi.
PageRank can also be seen as a generalisation of the eigenvector
centrality, which can be obtained using power iteration.

2.5.5 Coreness and k-core

An undirected graph G is called a k-degenerate graph if every sub-
graph of G has a node of degree at most k.

The k-core number κ of an undirected graph G, also known as the
degeneracy of the graph, is defined as the smallest value of k for
which G is k-degenerate [47]. The k-core number of a graph gives the
information about how sparse the graph is.

A k-core of an undirected graph G is a maximal connected subgraph
of G, in which every node has a degree of at least k. A k-core of a
graph with a high k contains the most central nodes in the graph. For
instance, the people within a k-core with a high k are important for
spreading information in a social network and in building communi-
ties [37]. In social networks it would be the largest group of people,
which are connected to each other with almost the same degree.

Furthermore, one can define the coreness of a node in an undirected
graph, denoted as ccore. The coreness of a node is defined as the
maximum k of the k-core(s) it belongs to [56], i.e., a node vi has
coreness ccore

i if vi belongs to a ccore
i -core, but not to any (ccore

i + 1)-core
of the graph. The coreness of a node can also be seen as a centrality
measure.

The k-core number of a network and the coreness of the nodes in
the network can be obtained by recursively removing nodes with the
smallest degree.
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2.5.6 Clustering coefficients

Let G = (V, E) be an undirected network.

The local clustering coefficient of a node describes how clustered the
neighbours of the nodes are. Let Nv = {u|{v, u} ∈ E} denote the set
of neighbours of a node v. The local clustering coefficient Clocal of the
node v is defined as the ratio of the number of edges existing between
neighbours over the maximal possible number of edges, i.e.,

Clocal
v =

2|{u, w} | u, w ∈ Nv, {u, w} ∈ E|
|Nv|(|Nv| − 1)

(2.64)

For a simple graph, |Nv| equals the degree of v.

The global clustering coefficient of a network, also called the transitivity,
describes how clustered the nodes in the entire network are [76]. The
global clustering coefficient is defined as the probability that any two
incident edges are completed by a third edge to form a triangle, i.e.,

Cglobal =
|{u, v, w} | {u, v}, {u, w}, {v, w} ∈ E|
|{u, v, w} | {u, v}, {u, w} ∈ E| (2.65)

with u, v, w ∈ V.

The global clustering coefficient can take a value between zero and
one, where the value one denotes that all possible triangles are present,
and zero denotes a triangle-free network.

Alternatively, one can also use the average local clustering coefficient
of all nodes in the network as a metric to describes how clustered the
network is.
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P H E N O M E N A I N G R O W I N G N E T W O R K S

In this chapter, we describe our work on the topic of phenomena in
growing networks.

We start from reviewing related works on preferential attachment
network models in Section 3.1, which includes the Barabási-Albert
model, the Bianconi-Barabási model, and the relevance decay model.
At the same time, we also give remarks on different phenomena
that either are explained by these models, or are emergent behaviour
of them, such as the rich-get-richer effect and the winner-takes-all
effect.

In Section 3.2, we present our empirical findings in real data. Using
citation networks as an example here, the degree growth is time-
invariant: The average degree of nodes of different age has the same
functional dependency on node age regardless of when the nodes have
entered the network. This seemingly minor observation is actually
not trivial. First of all, preferential attachment models without ageing
are known to have a strong first-mover advantage: The first nodes
accumulate many more links than the nodes that enter the network
later [53]. We show that an accelerated network growth, a feature
that is common in real networks [21, 27, 62] yet usually overlooked
by network modelling, is an important part of the interplay between
preferential attachment and the macroscopic degree growth patterns.
In particular, of different growth forms that can be considered, the
exponential network growth is consistent with the time-invariant
degree growth.

To systematically explore the conditions under which a time-invariant
degree growth arises, we introduce a novel mathematical formalism
for preferential attachment-based models in Section 3.3, where ex-
ponential and linear network growth emerge as the only possible
solutions of an eigenvalue problem. Our new formalism also reveals
the connection between the Bose-Einstein condensation [9] in the
Bianconi-Barabási model [10] and a similar condensation phenomenon
seen in the superlinear preferential attachment [40]. Ageing [22, 50]
is necessary to recover realistic degree growth curves that are slower

33
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than exponential (e.g., power functions), and can prevent the network
condensation from happening.

In Section 3.6, we generate synthetic networks with different param-
eters to evaluate our analytical results, which include the network
growth curve, the node degree growth curve, the estimation of the net-
work degree distribution, and under what circumstances the network
undergoes a condensation.

In Section 3.7, we summarise the chapter.

3.1 related work

3.1.1 Preferential attachment models

Preferential attachment in networks refers to the mechanism that nodes
have the preference to attach to other nodes that are more connected.
Preferential attachment can arise from many nature processes. For
instance, in social networks [16, 52], well-known people are more
likely to make more relations to others. In the context of citation
networks [35, 50] and the World Wide Web [1, 5], scientific publications
and web pages with higher numbers of citations or incoming links
are more likely to be referred to again due to their advantages in
publicity.

As a simple example of the preferential attachment network growth
models, Albert and Barabási have proposed the well known Barabási-
Albert model [3]: The probability that a new node attaches to an
existing node vi is proportional to its degree ki. One of the realisations
of the Barabási-Albert model [12] is as follows.

• The network starts with one node with a self loop at the initial
timestep s = 1.

• At each later timestep s > 1, a new node joins the network
and creates a constant number of m undirected links to existing
nodes, each with the preferential attachment selection probability
Πi proportional to the degree ki of the existing node i, i.e.,

Πi =
ki

Z
, (3.1)

where Z is the normalisation factor, also known as the partition
function in some disciplines.
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Clearly, in the Barabási-Albert model Z equals the sum of the degrees
of all existing nodes in the network. If, for simplicity, we let m = 1,
since each undirected link corresponds to two degrees, we have Recall that N

denotes the size of
the network.Z = ∑

j
k j = 2N − 1. (3.2)

Since at each timestep exactly one node joins the network, we can see
that s = N. The timestep s here can be seen as the system time, whose
advance is driven by events in the system. We use the function ki(s, si)

to denote the degree growth of a node over (system) time, where si is
the timestep when node vi joins the network. When s = si, the initial
value of the node degree is 1, i.e.,

ki(si, si) = 1. (3.3)

When the network is large enough, we can apply the continuum
approximation to obtain the differential equation of the degree growth
of a node,

dki

ds
= Πi =

ki

Z
' ki

2s
. (3.4)

Combining Equations (3.3) and (3.4) we get the node degree growth
function in the Barabási-Albert model,

ki(s, si) =

(
s
si

)1/2

. (3.5)

The first-mover advantage

Equation (3.5) is a power-law degree growth function with the expo-
nent 1/2, in which the degree of a node is determined by, not only
the current system time s, but also the system time si when the node
joins the network. Figure 3.1 illustrates the expected degree growth
curves of three nodes that join the network at different times in the
Barabási-Albert model. At the same system time s, the older the node
(i.e., with a small si) is, the higher degree it has. Moreover, even
with the same age in system time (s− si), older nodes still have an
advantage over late comers. In other words, the degree growth in the
Barabási-Albert model exhibits a strong first-mover advantage.

The first-mover advantage is a microscopic phenomenon which hap-
pens at the node level. It is the immediate consequence of the positive
feedback loop introduced by the generative process of the network
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as explained earlier in this subsections, without which the degrees of
the nodes that join the network earlier will grow at a much slower
rate. Although the first-mover advantage is at the microscopic level, it
leads to the emergence of other phenomena at different levels in the
network. In the following subsections, we will discuss these emergent
phenomena and their relations with the first-mover advantage.

3.1.2 Mean-field estimation of the degree distribution

Barabási et al. [6] have proposed the mean-field method to estimate
the degree distribution of the Barabási-Albert model. Assuming s
is large enough for us to apply the continuum approximation, the
system time when any node joins the network, si, is thus uniformly
distributed in (0, s], i.e.,

P(S < si) =
si

s
. (3.6)

Recalling Equation (3.5), given a fixed network size s, the degree ki is
an monotonically decreasing function of si, thus,

si =
s
k2

i
. (3.7)

The cumulative degree distribution is then

P(K ≤ ki) = 1− P(S < si) = 1− k−2
i , (3.8)

where ki is in the domain [1, +∞) can be substituted with k, since it
represents the degree of any node. The probability density function of
the degree distribution is thus

p(k) =
dP(K ≤ k)

dk
= 2k−3, k ∈ [1, +∞) . (3.9)

Scale-free degree distribution

Figure 3.2 compares the degree distributions of two synthetic networks
with N = 50000 with the theoretical degree distributions as estimated
with the mean-field method.

In Figure 3.2a the network is generated with the Barabási-Albert model.
The approximate straight line shown with the blue dots in the log-log
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Figure 3.1: The expected degree growth curves of three nodes that join the
network at different times in the Barabási-Albert model, as func-
tions of the (a) system time; (b) node age.
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Figure 3.2: The degree distributions of two synthetic networks with N =
50000, (a) of the Barabási-Albert model; (b) where preferential
attachment is absent, and the selection probability Π is the same
for all nodes despite of their degrees. Note (a) uses the log-log
scale, while (b) uses the linear-log scale.
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plot indicates that the node degrees have a power-law distribution, or a
scale-free distribution [5]. This is in line with the theoretical estimation
p = 2k−3 as indicated with the green curve.

As a comparison, in Figure 3.2b the network is generated without the
presence of the preferential attachment mechanism, i.e., the selection
probability Π is the same for all existing nodes despite of their degrees.
Figure 3.2b uses the linear-log scale. The blue dots which show as
an approximate straight line in the linear-log plot indicate that the
degree distribution of the synthetic network is of the exponential form.
Note although the mean-field estimation also yields an exponential
degree distribution p = e−k+1 (shown as the green curve), it shows
a significant deviation from the synthetic result. This is because the
degree k has a significantly narrower domain as compared with the
network generated with the Barabási-Albert model.

The scale-free property of the degree distribution is a macroscopic
phenomenon, because the degree distribution is a property of the
entire network. The scale-free property is, however, a result of the
rich-get-richer effect which is a microscopic phenomenon: As we have
seen, the absence of the preferential attachment mechanism results
in networks with no scale-free property, which is in line with the
theoretical estimation.

This is an important example where phenomena at two levels, mi-
croscopic and macroscopic, are directly related. Mathematically, the
key variable that connects the two levels is the partition function Z,
because it is the sum of all different microscopic “states”2, yet itself 2 The German word

of the partition
function is

“Zustandssumme”.

is a property of the entire system. Thus, the study of the partition
function Z plays a central role in preferential attachment models. In
the following sections, we will show how to evaluate the partition
functions in different generalisations of the Barabási-Albert models.

3.1.3 Bianconi-Barabási model

The Barabási-Albert model successfully explains the scale-free prop-
erty of networks. It predicts that the degrees of all nodes grow with
a power function with a fixed exponent 1/2, therefore old nodes are
expected to remain more popular than late comers. However, in real
networks, degrees of nodes grow with different rates, and often we
see new nodes get more popular than old ones.

The Bianconi-Barabási model [10] is a natural extension of the Barabási-
Albert model: The preferential attachment selection probability Πi of
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an existing node vi becomes proportional to the product of its degree
ki, and its fitness ηi, i.e.,

Πi =
kiηi

Z
, (3.10)

where the normalisation factor Z can be expressed as the sum over all
products of degrees and fitness, i.e.,

Z = ∑
j

k jηj. (3.11)

Fitness [15] is an intrinsic property of a node that quantifies its ability
to acquire new links in the network. Nodes with higher fitness are
more likely to attract links, thus their degrees tend to grow faster.
When a node joins the network, it is assigned a fitness value η which
does not change over time. Node fitness is typically drawn from
some probabilistic distribution ρ(η) which is often assumed to be
consistent over time. The shape of ρ(η) is an important constituent
of the network model. At the micro level, ρ(η) allows nodes of the
same age to grow at different rates. At the macro level, ρ(η) affects
the broadness of the resulting degree distribution [10]. Studies have
been done to determine node fitness values that best correspond to
the observed data [49, 75].

Following a derivation similar to Equation (3.5), one can obtain the
degree growth function of a node in the Bianconi-Barabási model:

ki(s, si, ηi) ∼
(

s
si

)β(ηi)

, (3.12)

where ηi is the fitness of the node. One can realise that the degree
growth function is still a power function, but with the exponent β(ηi)

that is proportional to the fitness of the node, i.e.,

β(η) =
η

C
, (3.13)

where
C =

∫
dη ρ(η)

η

1− β(η)
(3.14)

is a constant for a particular fitness distribution ρ(η).

With Equation (3.12), the normalisation factor of the Bianconi-Barabási
model can be rewritten as a function of s:

Z(s) = ∑
j

k jηj '
∫

dη ρ(η)η

s∫

1

(
s
sj

)β(η)

dsj. (3.15)
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Figure 3.3: The expected degree growth curves of four nodes with different
fitness and birth time in the Bianconi-Barabási model. The slopes
of the growth curves depend solely on the fitness values, allowing
the degrees of nodes with later birth time to surpass earlier ones.
However, the strong first-mover-advantage is still present, because
the degrees of nodes with the same fitness values still strongly
depend on their birth time. Note this plot uses the log-log scale.

And in the limit s→ +∞, we have

lim
s→+∞

Z(s) = s
∫

dη ρ(η)
η

1− β(η)
= sC, (3.16)

i.e., the normalisation factor Z is asymptotically proportional to the
network size s.

Applying the mean-field estimation as in Section 3.1.2, one can obtain
the degree distribution of the Bianconi-Barabási model:

p(k) =
∫

dη ρ(η)
C
η

k−
(

C
η +1

)
. (3.17)

As one can realise, the degree distribution p(k) is a weighted sum of
multiple power functions, k−(C/η+1), and is determined by the fitness
distribution ρ(η). For most fitness distributions, the resulting degree
distribution p(k) still reflects the scale-free property of real world
networks, although in general it is not a perfect power function.
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3.1.4 Bose-Einstein condensation in networks

The constant C in the Bianconi-Barabási model is the solution to
Equation (3.14). However, whether such a solution exists depends on
the actual fitness distribution ρ(η): When ρ(η) is extremely skewed,
Equation (3.14) lacks a solution.

To study exactly which kind of fitness distributions can result in the
lack of a solution of Equation (3.14), Bianconi et al. [9] have proposed
to borrow the ideas from quantum physics which has been used to
study the Bose-Einstein condensation phenomenon by physicists.

3.1.4.1 Bose-Einstein statistics

In quantum statistics, Bose–Einstein statistics are used to describeNamed after
Satyendra Nath Bose
and Albert Einstein,

two main
contributors of the

theory.

the distribution of a collection of non-interacting and indistinguish-
able bosons in different quantum states at thermodynamic equilib-
rium [34].

A boson is a particle with integer spin. Examples of bosons are some
elementary particles such as photons, and some composite particles
such as mesons and helium-4. The other kind of particles in quantum
mechanics is fermions which have half-integer spin. Examples of
fermions are some elementary particles such as electrons, and some
composite particles such as neutrons.

Unlike fermions which obey the Pauli exclusion principle, i.e., two
or more identical fermions cannot occupy the same quantum state at
the same time, there is no restriction on the number of bosons that
can occupy the same quantum state for bosons. This is an important
property of bosons which allows the Bose-Einstein condensation to
happen, and allows us to map a network to a Bose gas later.

In a quantum system, an energy level is one or more quantum states that
are associated with the same energy value. The number of quantum
states with the same energy is called the degeneracy of the correspond-
ing energy level. Particles can occupy an energy level with a certain
probability. In Bose-Einstein statistics, the expected distribution of
bosons in different energy levels can be given as:

n̄i =
gi

e(εi−µ)/kBT − 1
, (3.18)

where n̄i is the number of bosons in energy level i over the total
number of bosons in all energy levels, gi is the degeneracy of energy
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Figure 3.4: Illustration of the energy diagrams corresponding to a Bose gas
(a) under high temperature; (b) in the Bose-Einstein condensation
phase. Each energy level is associated with an energy ε. In (a) the
bosons are distributed over a wide range of energy levels. In (b)
almost all bosons land in the lowest energy level, while only few
bosons populate the higher energy levels sparsely.

level i, µ is the chemical potential of the system, εi > µ is the energy
of energy level i, kB is the Boltzmann constant, and T is the absolute
temperature which is non-negative.

Since n̄i is a monotonically decreasing function of the energy εi, lower
energy means higher chance to be occupied. Moreover, the tempera-
ture T can also influence the distribution. High temperature increases
the chance of higher energy levels to be occupied, and bosons are
distributed in a wider range of energy levels (Figure 3.4a). On the
contrary, under low temperature, bosons tend to occupy lower energy
levels. Einstein [24] further predicted that when the temperature falls
down under a critical temperature T < TC, nearly all bosons “con-
dense” into the lowest energy level (Figure 3.4b). This is called the
Bose-Einstein condensation [34]. The actual Bose-Einstein conden-
sate was first experimentally produced in 1976 [66]. Matters in the
Bose-Einstein condensation phase can have special properties such as
superfluidity and superconductivity [46].

3.1.4.2 Mapping a network to a Bose gas

To use Bose-Einstein statistics to study the Bianconi-Barabási model, it
is necessary to map a network of the Bianconi-Barabási model to a Bose
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gas, that is, to map each element in the network to its corresponding
analogue in a Bose gas.

First, each node with fitness η is associated with an energy level with
the energy ε such that

ε = −T log η, (3.19)

where T is the temperature. Nodes with larger fitness have lower
energy. This is analogous to particles preferring to land on low en-
ergy levels. For a certain energy distribution, the temperature T is a
parameter to tune the fitness distribution ρ(η): When T is lower, the
fitness distribution ρ(η) is more skewed. The Boltzmann constant kB

is omitted here.

The arrival of a new node vi to the network corresponds to the addition
of a new energy level εi and two bosons to the system. Of the two
bosons which correspond to the two endpoints of the newly created
edge, one lands on the energy level of the new node itself, εi; while
the other one randomly lands on one of the existing energy levels, εr,
with the probability

Πr =
e−εr/Tkr

Z(s)
=

e−εr/Tkr

∑
j

e−εj/Tk j
, (3.20)

which is equivalent to Equation (3.10) in the Bianconi-Barabási model.
Deposited bosons are not allowed to jump to other energy levels. In
the limit s→ +∞, the normalisation factor is proportional to s, i.e.,

lim
s→+∞

Z(s) = s
∫

dε $(ε)
e−ε/T

1− f (ε)
= sC, (3.21)

where $(ε) is the energy distribution.

The degree growth function of a node with energy εi can be solved
as

ki(εi, s, si) =

(
s
si

) f (εi)

(3.22)

with
f (ε) = e−(ε−µ)/T, (3.23)

where µ is the chemical potential of the system that satisfies

e−µ/T = lim
s→+∞

Z(s)
s

= C. (3.24)
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Combining Equation (3.21) and (3.24) one can get
∫

dε $(ε)n(ε) = 1 (3.25)

with
n(ε) =

1
e(ε−µ)/T − 1

. (3.26)

Equation (3.25) corresponds to an ideal Bose gas of volume 1, where
n(ε) is the occupation number of the energy level with energy ε, and
n(ε) follows Bose statistics in the limit s→ +∞.

3.1.4.3 Bose-Einstein phase transition

From Equation (3.25) one can realise that, for a certain energy distribu-
tion $(ε), the chemical potential µ is determined by the temperature
T, and their relation can be written as some monotonically decreasing
function T(µ).

However, to guarantee that n(ε) is non-negative for all energy levels,
the chemical potential µ cannot be larger than the minimum energy, i.e.,
µmax = εmin. Therefore T has the minimum value of T(εmin) such that
Equation (3.25) has a solution for µ. When the temperature decreased
lower than T(εmin) however, Equation (3.25) lacks a solution.

The lack of a solution of Equation (3.25) corresponds to the Bose-
Einstein condensation in quantum statistics. A Bose gas undergoes
the Bose-Einstein phase transition under a critical temperature TBE,
and all bosons in the gas land on the lowest energy level as a result.
In the Bianconi-Barabási network model, this means there is one node
in the network that attracts almost all newly arriving nodes [9].

An example of the energy distribution that results in the Bose-Einstein
condensation is the power-law distribution, e.g.,

$(ε) =
θ + 1
εθ+1

max
εθ , (3.27)

where the exponent θ is a free parameter and the energy ε takes values
in (0, εmax). The lower bound of the critical temperature TBE can then
be found as [9]:

TBE > εmax[ζ(θ + 1)Γ(θ + 2)]−1/(θ+1). (3.28)
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However, if a certain energy distribution $(ε) is given, the temperature
T is merely a parameter that tunes the fitness distribution ρ(η). Thus,
the network can as well undergo a Bose-Einstein phase transition
without having the analogue of a Bose gas, for instance for the fitness
distribution

ρ(η) = (λ + 1)(1− η)λ (3.29)

with λ > λBE = 1.

3.1.4.4 Similar condensation

A similar condensation phenomenon is seen in the superlinear prefer-
ential attachment model [40] as well:

Πi =
kγ

i
Z(s)

=
kγ

i

∑
j

kγ
j

, γ > 1, (3.30)

which is very similar to the Barabási-Albert model with linear pref-
erential attachment, but with an exponent γ > 1 which enhances the
rich-get-richer effect.

The superlinear preferential attachment model does not have an
asymptotic degree distribution as in the linear preferential attach-
ment case, because the normalisation factor Z(s) does not converge
to a value that is proportional to the network size s, as in the linear
preferential attachment in Equation (3.1). As a result, eventually a
single node connects to nearly all other nodes [40], becoming the
absolute hub in the network. However when the exponent γ is close
to 1 and the network size is small, the condensation phenomenon may
not be extreme, and the network may still exhibit a near scale-free
nature before the network size reaches the thermodynamic limit.

Figure 3.5 shows the degree distribution of an instance of a synthetic
graph generated from the superlinear preferential attachment model
Π ∼ k1.2 with 5× 104 nodes. Compared with the green line which
indicates the theoretical degree distribution of the Barabási-Albert
model with linear preferential attachment, the superlinear preferential
attachment model results in a more skewed degree distribution, and
an absolute hub node is present, with a degree of the same magnitude
as the network size, 104.
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Figure 3.5: The degree distribution of an instance of a synthetic graph gener-
ated from the superlinear preferential attachment model Π ∼ k1.2

with 5× 104 nodes. The green line indicates the curve of the
theoretical degree distribution of the Barabási-Albert model with
linear preferential attachment.

The winner-takes-all effect

As we have seen in the Bose-Einstein phase transition in the Bianconi-
Barabási model and the superlinear preferential attachment model,
as the network grows larger, eventually there is a dominant node
which occupies a large fraction of all degrees. This is the so called
winner-takes-all effect, which is an extreme case of the rich-get-richer
effect.

In the Bianconi-Barabási model, the rich-get richer effect is amplified
by the node fitness. Nodes with higher fitness attract links more
efficiently, and the fitness distributions determines whether the winner-
takes-all effect occurs. In the superlinear preferential attachment
model, the exponent γ > 1 makes the rich-get richer effect more
dominant. Later, we will reveal the deep connection between the
Bose-Einstein condensation and the similar condensation effect as in
the superlinear preferential attachment model, in order to explain why
they both cause the winner-takes-all effect.
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3.1.5 Relevance decay model

When considering the attractiveness of a node in reality, one typically
does not only consider its current degree and its intrinsic quality.
Often there is an additional ageing factor that decays over time. For
example, when a scientific paper is published, its citation number,
which can be modelled as its indegree, is at its minimum. However,
its novelty might be at its peak and decays as other new papers are
published. When a technology is released, the number of adopters,
which can be modelled as its indegree, is at its minimum, while the
advancement of the technology might be the highest. However, due
to the rapid change of technologies, such advancement might quickly
lose relevance.

However, this temporal decaying effect is not considered in the Barabási-
Albert model and the Bianconi-Barabási model: The degree of a node
never decreases, and the fitness of a node is a constant.

Medo et al. have proposed the use of relevance to model this decaying
effect [50], where the temporal decay of node attractiveness is modelled
by a monotonically decreasing function R(τ), where τ is the age of a
node, defined as τi := s− si.The preferential attachment probability
is proportional to the product of the node degree k, fitness η and the
ageing factor R(τ):

Πi =
kiηiR(τi)

∑
j

k jηjR(τj)
. (3.31)

The authors used the notion “relevance” as a single term in his original
work, but later they preferred to split relevance into fixed fitness and
an ageing term. We stick with the latter choice: The product of fitness
and the ageing factor is referred to as “relevance”.

As in the Bianconi-Barabási model, the fitness distribution ρ(eta)

is consistent over time. The ageing factor R(τ) is a monotonically
decreasing function of the node age τ that has the initial value R(0) =

1, and is the same for all nodes.

In the original work of Medo et al., to ensure the self consistency of
the model, the ageing function R(τ) must decay sufficiently fast (i.e.,
faster than τ−1), and diminishes to 0 at τ → +∞. A typical ageing
function is the exponential decay function R(τ) = exp(−βτ).

The above-mentioned requirements of the decay function make the
partition function of the model Z = ∑

j
k jηjR(τj) stabilise to a constant
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Ω∗ when the network is large enough. Moreover, the node degree k
must grow sublinearly with the network size, and the actual expected
degree growth function is determined by Ω∗ and the relevance decay
function R:

ki = exp
(

ηi

Ω∗

∫ +∞

0
R(τ)dτ

)
. (3.32)

Medo et al. have reported that the relevance decay model can result
in realistic degree distributions, such as exponential, log-normal and
power-law distributions, depending on the input parameters [50]. They
have validated with maximum likelihood methods that the relevance
decay model proposed in [50] is the preferential attachment model
that best explains the linking patterns in real systems [49].

The ageing effect

The ageing effect reflects the natural preference for newness. Ageing
limits the growth of old nodes, thus limiting the rich-get-richer effect,
causing the degree growth of a node to slow down as compared
with the situation where ageing is absent. In most real systems, it is
interesting to study how growth and ageing coexist and interact. For
instance in an online platform, if ageing is weak, new users will be
discouraged from contributing. On the contrary, if ageing becomes
dominant, all contributions get quickly forgotten.

Ageing is a microscopic phenomenon that happens at the node level,
although it can also affect the macroscopic behaviour of the system,
for example the degree distribution. Later we will show that ageing
can prevent the winner-takes-all effect under mild conditions in our
model settings.

3.2 empirical observations

To begin our study, we perform empirical studies of the growth pat-
terns in real data in this section.

We first briefly introduce the two scientific citation datasets that we
use in this study. We then explore the data by making empirical
observations. There are two focuses that we bare in mind when
exploring the data. At the micro level, we observe the indegree growth
patterns in each dataset, i.e., the growth patterns of citation numbers
that the scientific papers receive. We also observe how the average
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Figure 3.6: The average number of citations as a function of paper age for
papers published in different time periods in (a) the APS data
and (b) the DBLP data. Papers are grouped by their publication
year. Note that the plots use the log-log scale.
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outdegree has changed over time in each dataset, i.e., the change of
the average citation number that each scientific paper makes. At the
macro level, we observe the growth patterns of the network sizes, as
well as the degree distributions of the networks.

3.2.1 Datasets

Two citation networks are used in the empirical study, in particular,
the American Physical Society (APS) citation network and the DBLP
citation network.

In the network representation, a citation between two papers corre-
sponds to a directed link between two nodes in the network. The
node outdegree is determined at the moment when the paper together
with its list of references is published. By contrast, the node indegree
gradually grows from the initial zero value. In terms of growth, we
thus focus on the node indegree here.

APS citation network

The APS citation network1, comprises 564,517 papers that were pub-
lished from 1893 to 2015 in the APS journals, including Physical Re-
view Letters, Physical Review, and Reviews of Modern Physics. There
exist 6,715,562 citations among the papers. The paper publication
dates are available with the time resolution of one day.

DBLP citation network

The DBLP Computer Science Bibliography [44] website indexes sci-
entific papers that are published in computer science journals and
conferences. In this study, we use the citation network2 extracted by
Tang et al. in the ArnetMiner project [73].

The DBLP citation network comprises 3,272,991 computer science pa-
pers published from 1936 to 2016 and 8,466,859 citations among them.
The paper publication dates are available with the time resolution of
one year. Note since the original DBLP index is incomplete, there exist
missing links in DBLP. The dataset is thus only a sample of the whole
citation network.

1 Available from https://journals.aps.org/datasets.
2 Available from https://aminer.org/citation.



52 phenomena in growing networks

1900 1920 1940 1960 1980 2000 2020
Year

103

104

105

106

Ne
tw

or
k 

Si
ze 0.0562

(a) APS

1960 1970 1980 1990 2000 2010
Year

104

105

106

Ne
tw

or
k 

Si
ze

0.133

(b) DBLP

Figure 3.7: The network growth curve of (a) the APS data and (b) the DBLP
data. Each plot shows how the total number of papers grows
with time in each dataset. Note that the plots use the linear-log
scale.
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3.2.2 Time-invariant degree growth

In Figure 3.7, we group the nodes by their publication date and plot
the average indegree as a function of the node age separately for nodes
originating from different periods. The average paper outdegree is
now much higher than it was 50 or more years ago. To limit the impact
of this effect, we focus on the time period 1965–1995 during which the
average outdegree of papers changed little (see Section 3.2.3). Albeit
the individual curves correspond to papers whose publication dates
differ by up to 30 years, their shape is strikingly similar. For the APS,
we see various curves collapsing onto each other. This indicates that
the manner in which the papers’ average number of citations grow
with paper age is time-invariant. While the curves’ shapes are more
complex for the DBLP data, they are still time-invariant for paper
age less than approximately 20 years. In particular, old nodes do not
have an advantage over the new ones, compared with Figure 3.11 in
which the early-mover advantage is forceful and, in turn, the growth
of node degree is strongly determined by the time in which a node
appears. These results show that the indegree growth function k
is time-invariant: It can be written as a function of the node age τ

regardless of the node’s appearance time.

3.2.3 Varying average outdegree over time

The growth of the average outdegree of papers with time (see Fig-
ure 3.8 for the results in the two studied datasets) can be included
in the model but it would come at the cost of increasing the model
complexity. Instead, we first limit the impact of the varying average
outdegree on the empirical observations presented in Figure 3.7 by
focusing on the period 1965–1995 during which the average outdegree
changes relatively little. One possible way to further limit such impact
is to measure the indegree growth using rescaled indegree which
divides the number of new citations in year y by the average outde-
gree in this year and sums the contributions from individual years.
Figure 3.9 shows that rescaled indegree yields similar time-invariant
growth patterns as measured using simple indegree. In particular, the
average rescaled indegree k̃ in 10 years after publication are 1.04, 1.06
and 1.11 (APS), and 1.99, 1.97 and 2.04 (DBLP), respectively, for the
three time periods shown in the figure. In comparison with Figure 3.7,
the growth curves have power-law shapes over a broader range of
paper age τ.
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Figure 3.8: The average outdegree of papers published in different years in
(A) the APS data and (B) the DBLP data.
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Figure 3.9: The average number of citations as a function of the paper age,
rescaled by the average outdegree in the years when the citations were
received. Papers are divided in three groups by their publication
year.
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3.2.4 Exponential network growth

Figure 3.7 shows the evolution of the overall network sizes (measured
by the number of nodes) of the two datasets. The near straight lines in
the linear-log plots both point at an approximately exponential growth
of the network sizes s with time t, i.e.,

s = eαt. (3.33)

In the original forms of the preferential attachment models that we
reviewed in Section 3.1, all times of events are measured in terms of
the network size s: from the derivative of the degree growth dk/ds,
to the age of the node s− si. This is, however, not the same as the
actual “time” as measured in minutes, hours, days, years, etc., that we
observe daily in the physical world, which we define as the physical
time, denoted t. The network size s, on the other hand, can be seen as
the system time, which is driven by events in the system, for instance
the arrival of new nodes.

The exact relationship between s and t is however not considered in
the original preferential attachment models. Thus, there is a natural
gap between the physical time, which we directly observe in the real
world, and the system time, which the models use to try to “explain
the reality”. If the mapping s = f (t) is linear, the models can reflect
the reality. Unfortunately as shown in Figure 3.7, this mapping is
rather non-linear in the real data. Thus, in this dissertation, as a
fundamental step towards a more precise network model, we fill the
gap and make a clear distinction between the two kinds of times.

3.2.5 Indegree distribution

Figure 3.10 shows the indegree distribution of the two networks.
Several observations can be made from the plots. The majority of
papers have low citation numbers, while a small but non-negligible
fraction of papers have significantly high citation numbers. The two
distributions display power-law like behaviour, although not in the
range of small degrees in APS. Additionally, both curves have well-
defined long tails.

We use the method by Clauset et al. [18] to estimate the power-law
exponents of the two distributions and have found that they have
comparable values (1.906 for APS and 1.947 for DBLP).
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Figure 3.10: The indegree distributions of (a) the APS data and (b) the DBLP
data. Estimated power-law exponents (for k > 5) are: 1.906 for
APS and 1.947 for DBLP.
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Figure 3.11: The expected degree growth curves of three nodes which join
the network at different times (with the same fitness value) in
the Bianconi-Barabási model.

3.3 general preferential attachment network model

In Section 3.1 we reviewed different existing preferential attachment
network models that try to explain various phenomena in the real
world. While they each successfully explains some phenomena, in this
section we argue that none of them can explain all observations in
Section 3.2.

We now propose a general preferential attachment network model
that tries to explain all observations in Section 3.2. Note while the
described real datasets are represented with directed networks, we
focus here on undirected network models which attract more general
interest than directed ones. The behaviour of these two classes of
models is often similar.

3.3.1 Problems in existing models

We start with looking at the exponential network size growth s = eαt,
where t is the physical time, and s is the system time. The advancing
of the system time is driven by any event in the system. Since new
edges can only be formed when new nodes arrive in the preferential
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attachment models that we discuss, the network size is thus the same
as the system time s.

However, the existing preferential attachment models that we reviewed
in Section 3.1 do not distinguish the system time and the physical
time. Thus, there is a natural gap between the observation and the
models.

Before proceeding to more general considerations, we now use specifi-
cally the Bianconi-Barabási model [10] as an example, and show that See Section 3.1.3 for

details about the
Bianconi-Barabási
model.

the exponential network growth makes a significant difference to the
node degree growth function. This can be generalised to other models
similarly.

Recall that the degree growth function in the Bianconi-Barabási model
has been shown [10] to follow a power function

ki(s, si, ηi) ∼
(

s
si

)β(ηi)

, (3.12)

where si is the system time (network size) when node i has appeared,
s is the current system time, and the exponent β is a function of
node fitness (for the basic model version, β(ηi) ∼ ηi). As shown in
Figure 3.11, such degree growth is clearly not invariant under the shift
of the system time s.

However, if motivated by the exponential network growth size demon-
strated in Figure 3.7, we assume that s = eαt, Equation (3.12) is then
converted to

ki(t, ti, ηi) ∼ eαβ(ηi)(t−ti), (3.34)

where ti is the physical time when node i has appeared, and t is the
physical observation time. Note this form is indeed time-invariant as
it depends on the node age τi := t− ti with no additional dependence
on the node appearance time ti.

We thus see that in the Bianconi-Barabási model, different network
size growth functions lead to different node degree growth functions:
When the number of nodes grows linearly with physical time as in the
original model, it produces power-law degree growth function which
is not time-invariant; when the number of nodes grows exponentially
with physical time as in our empirical observation, it produces a
time-invariant degree growth function which is of the exponential
form.

There is, however, still an important difference between the growth
produced by Equation (3.34) and the real data observations in Fig-
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ure 3.6. While the former is of an exponential kind, the nearly linear
curves in Figure 3.6 (log-log scale) suggest a power-law growth, much
slower than the exponential growth. To resolve this disagreement,
we proceed to more general preferential attachment models with fit-
ness, ageing and exponential network growth, where the ageing effect
causes a slowdown of the degree growth.

3.3.2 General preferential attachment with fitness, ageing and exponential
network growth

The general model that we aim to study has three main contributing
factors:

• node degree as a classical amplifier that can be introduced by
various mechanisms such as the reference-copying process [38];

• node fitness as a reflection of intrinsic differences between the
nodes;

• ageing as a mechanism that reflects the natural preference for
new and, at the same time, limits the strong bias towards old
nodes.

The probability that node i attracts a new link is usually assumed in
the formNote the product of

fitness and ageing
has also been referred

to as “relevance” in
past literature [50].

Πi ∼ kiηiR(τi), (3.35)

where τi is the age of node i in physical time, and R(τi) is typically a
decreasing function which represents the gradual loss of the node’s
“relevance” and contributes to an eventual saturation of the degree
growth. It is convenient to set R(0) = 1 so that ageing begins to
influence the degree growth only later during each node’s lifetime.
Node fitness values are drawn from the distribution ρ(η) which does
not change with time. The number of nodes is assumed to grow
exponentially with time, i.e., s = exp(αt).

The continuum approximation for the degree evolution [22] replaces
the stochastic evolution of each node’s degree with the average rate of
its increase, dki/ds = mΠi(s) where m is the average number of new
links created by a new node. Assuming that each new node creates
one link to an already existing node, we obtain the differential equation
of the degree growth:

dki

ds
=

ki(s)ηiR(τi)

Z(s)
(3.36)
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where the normalisation term Z as a function of the network size s is
Z(s) := ∑j k j(s)ηjR(τj). It is convenient here to switch to the physical
time t, where the differential equation of the degree growth has the
form

dki

dt
= αeαt × kiηiR(τi)

Z(t)
(3.37)

When t is large, the discrete sum in Z(t) can be approximated with
the double integral of the product kiηiR(τi) for all nodes, first over all
possible node ages τ, then over all possible fitness values η,

Z(t) ≈
∫

dη ρ(η)η
∫ t

0
dτ k(τ, η)R(τ)× αeα(t−τ). (3.38)

Since the network size grows exponentially, there are more nodes with
smaller ages in the network, thus the density term αeα(t−τ) is used
when integrating over node ages τ. Denoting

lim
t→∞

∫
dη ρ(η)η

∫ t

0
dτ k(τ, η)R(τ)e−ατ = θ, (3.39)

we can write the partition function as Z(t) = αeαtθ, i.e., the partition
function is proportional to the network size eαt, which then “happens”
to cancel with the term in ds/dt = αeαt. Equation (3.37) can thus be
simplified to the form

dki

dτi
=

ki(τi)ηiR(τi)

θ
, (3.40)

where we also use τi = t− ti and replaced the derivative with respect
to t by the derivative with respect to τ.

It is now convenient to define an auxiliary function r(τ) as the integral
of the ageing function R:

r(τ) :=
∫ τ

0
R(t) dt. (3.41)

The solution of the differential equation, Equation (3.40), thus has the
form

ki(τi, ηi) = exp
[
ηir(τi)/θ

]
(3.42)

As we can see, different ageing functions now lead to different forms
of the degree growth k. In particular, the ageing function R(τ) =

(τ + 1)−1 leads to a power-law degree growth k(τ, η) = τη/θ that can
approximate the average degree growth in empirical data. In any case,
Equation (3.42) shows that this model together with the assumption
of an exponentially growing network size produces time-invariant
degree growth.
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After the term αeαt introduced in Equation (3.37) by the accelerating
network growth being cancelled with the same term in Z(t), the
implied differential equation of the degree growth, Equation (3.40), is
the same as when the uniform network growth (s = t) is assumed [50].
In contrast to [50] where the normalisation term ∑j k jηjR(τ) converges
only if R(τ) decays sufficiently fast (faster than 1/τ), we do not have
a similar constraint here, as the exponential growth introduces the
term e−ατ in θ; this ensures convergence even when R(τ) decays no
faster than 1/τ, for instance as in [71].

3.3.3 Ageing functions

In this subsection, we examine necessary properties of the ageing func-
tion R(τ), and discuss some functional forms of ageing functions.

Based on Equation (3.41) and (3.42), we can already spot some prop-
erties of the ageing function R(τ) and the corresponding auxiliary
function r(τ). First, since the degree k cannot decrease in our model,
r(τ) is a monotonically increasing function as opposite to R(τ). Sec-
ond, given the initial value of node degree ki(0, ηi) = 1, we have

r(0) = 0. (3.43)

This helps to determine the exact form of r(τ) when R(τ) is given.
Recalling R(τ) being a monotonic function that diminishes to 0 when
τ → +∞, and R(0) = 1, we indeed have a wide range of pairs of
candidate functionals for R(τ) and r(τ).

In the following, we pick two pairs of R(τ) and r(τ) that lead to
interesting results: One can recover the power-law degree growth
curve as reported in the Barabási-Albert model and the Bianconi-
Barabási model, and the other leads to the emergence of a sigmoid-
curved degree growth function.

3.3.3.1 Ageing as power functions

We examine the situation when R(τ) is a power function, i.e.,

R(τ) = (τ + 1)−γ, γ > 0 (3.44)

The term +1 guarantees R(0) = 1. To ensure that R(τ) is monotoni-
cally decreasing, γ must be greater than 0. This is different from [50]
where γ must be greater than 1. We will explain why it is the case in
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Section 3.4.2.3. As the first example, we will explain the situation of
γ = 1 in most detail.

• The situation of γ = 1 which leads to R(τ) = (τ + 1)−1 and
r(τ) = ln(τ + 1) has been intensively studied in [71].

To begin with, we first recall and evaluate the denominator
Z(t) in Equation (3.37). When the age of the network t is large
enough, we can apply the continuum approximation and get:

Z(t) = ∑
j

k jηjR(τj) '
∫

dηρ(η)η

t∫

0

dτ k(τ, η)R(τ) αeα(t−τ)

(3.45)

Again, the term eα(t−τ) indicates there are more nodes with
smaller ages in the system, since the network size grows exponen-
tially. Now let us plug in the ageing function R(τ) = (τ + 1)−1,
from which we can get the degree growth function according to
Equation (3.42):

ki(τi, ηi) = (τi + 1)β(ηi). (3.46)

Here we recall Z(t) = αeαtθ and denote the exponent as a func-
tion of η:

β(ηi) =
ηi

θ
= αeαt ηi

Z(t)
. (3.47)

The term Z(t) is a double integral, first over the age of nodes,
then over all fitness values. We first look at the inner integral
which is over node ages for a certain fitness η:

t∫

0

dτ k(τ, η)R(τ) · αeα(t−τ) = αeαt
t∫

0

dτ
(τ + 1)β(η)−1

eατ
(3.48)

= αeα(t+1) · E1−β(ηi)(α), (3.49)

where E1−β(ηi)(α) is the generalised exponential integral func-
tion [57]. Thus, the term Z(t) is proportional to the network size
s = eαt when t→ +∞:

Z(t) ' αeαtθ, (3.50)

with the constant

θ = eα ·
∫

dηρ(η)η · E1−β(ηi)(α). (3.51)
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Plugging it in Equation (3.40), the analytically solution recovers
the degree growth curve as a power function:

ki(τi, ηi) = (τi + 1)β(ηi) (3.52)

given β(ηi) ∼ ηi (as in the Bianconi-Barabási model):

β(ηi) =
ηi

θ
, (3.53)

Thus we see that the model is self consistent.

• When γ 6= 1, we have

r(τ) =
(τ + 1)1−γ

1− γ
+ ς (3.54)

Considering Equation (3.43), we can solve the constant of inte-
gration ς = (γ− 1)−1. When γ > 1, we have lim sup

τ→+∞
r(τ) = ς,

i.e., r(τ) is upper bounded, so is k(τ, η). When 0 < γ < 1, both
r(τ) and k(τ, η) do not converge when τ → +∞.

To summarise, under power function ageing, the way for a node to
achieve “immortality” (i.e., its degree does not stop growing forever)
is to have γ ≤ 1 so that lim

τ→+∞
k(τ, η) does not converge.

3.3.3.2 Ageing as exponential functions

We now examine the situation when R(τ) is an exponential function,
i.e.,

R(τ) = e−γτ, γ > 0 (3.55)

To ensure that R(τ) is monotonically decreasing, γ must be greater
than 0. Considering Equations (3.41) and (3.43), we have

r(τ) = −e−γτ − 1
γ

, (3.56)

which leads to:

ki(τi, ηi) = exp
(
−ηi(e−γτi − 1)

γθexp

)
(3.57)

with the constant θexp satisfying

θexp =
∫

dηρ(η)η ·
+∞∫

0

exp
(
−η(e−γτ − 1)

γθexp
− (γ + α)τ

)
dτ (3.58)
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Figure 3.12: The theoretical degree growth curves under the exponential
ageing R(τ) = e−γτ with γ = 0.5 and θexp = 0.33 as in Equa-
tion (3.57). The dashed lines show the corresponding theoretical
asymptotes as in Equation (3.59). Note the X axis is extended
to the negative domain in order to better illustrate the sigmoid
shapes.

Equation (3.57) is a Gompertz function that has a sigmoid curve (as
illustrated in Figure 3.12), and we have a converging degree growth
function:

lim
τi→+∞

k(τi, ηi) = exp
(

ηi

γθexp

)
. (3.59)

3.4 a novel formalism of preferential attachment
models

In Section 3.1 we have shown that the model introduced by Medo et
al. in [50] produces time-invariant degree growth when the network
size grows uniformly. In the last section, we have explained that the
general preferential attachment models with fitness and ageing also
produces time-invariant degree growth, when the network size grows
exponentially.

One may naturally be curious now, about whether there exist other
forms of the network size growth that are consistent with the time-
invariant degree growth, and about the existence of a deeper relation-
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ship between the time-invariant degree growth and the form of the
network size growth.

We now proceed by showing that the uniform and exponential net-
work growths are in fact the only two cases that are consistent with
the time-invariant degree growth. To this end, we introduce a novel
mathematical formalism for growing networks with the time-invariant
degree growth as a fundamental assumption, but without an assump-
tion on the network growth form in the first place.

To achieve a time-invariant degree growth for node attractiveness
Πi ∼ kiηiR(τi), the differential equation of the degree growth function
must take the form

dki

dτi
= ckiηiR(τi) (3.60)

where c > 0 is a positive constant. The resulting degree growth
function is

ki(τi, ηi) = ecηir(τi) (3.61)

where r(τ) :=
∫ τ

0 R(t) dt. By recognizing c = 1/θ, we recover Equa-
tion (3.42) as in the old formalism, hence the new formalism is consis-
tent with the old one.

To avoid confusion, we use degree growth function or degree growth to
refer to the function of k, and degree increase to refer to the first order
derivative of k with respect to the physical time t.

Now, for a given fitness distribution ρ(η), we introduce function h(τ)

as the average degree increase of a node at age τ,

h(τ) = c
∫

dη ρ(η)× ηk(τ, η)R(τ). (3.62)

We further introduce function g(t) as the derivative of the network
size s with respect to the physical time t, g(t) = ds/dt. Hence g(t) is
the rate at which new nodes arrive in the system. Since each node is
assumed to create one link, g(t) is also the total degree increase of all
existing nodes at time t in physical time. Considering the asymptotic
behaviour (t→ ∞) of the network growth, we can now write g as the
convolution of h and g itself,

g(t) =
∫ t

0
h(τ)g(t− τ)dτ. (3.63)

Here we have the number of new links on the left side, and the same
quantity, expressed through degree increase of all existing nodes, on
the right side. Note so far we have not assumed any functional form
of g.
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Equation (3.63) is the core of our new formalism. It describes a linear
time-invariant (LTI) system H [33] whose impulse response function
is h. Its input function happens to be the same as its output function,

See Section 2.1.5 for
more details about
LTI systems.

g = Hg. (3.64)

In other words, g is the eigenfunction of the LTI operator H and thus
it is of the exponential form g(t) ∼ eσt where σ ∈ R, because g is a
real function by definition. The eigenvalues of H can be given by the
Laplace transform of the impulse response h,

ĥ(σ) = L{h(τ)} =
∫ +∞

0
h(τ)e−στ dτ. (3.65)

In Equation (3.64), the corresponding eigenvalue of g is exactly 1. We
can thus get the parameter σ by solving

ĥ(σ) = 1. (3.66)

The solution of σ determines the actual network growth.

• When σ > 0, we recover the exponential growth of network size
s(t) = eσt which was imposed by hand in the previous sections.

• When σ = 0, we have g(t) = 1 which implies the linear network
growth s(t) = t as in past literature [50].

• When σ < 0, the model is still in principle valid but outside the
scope of this study, since it means that as time progresses, fewer
and fewer nodes join the network.

We will explain the details of the impulse response function h and its
Laplace transform, ĥ, for difference cases of preferential attachment in
Section 3.4.2.

3.4.1 Estimation of the degree distribution

We now discuss how to estimate the degree distribution of the gener-
ated networks. The estimation result will then be used in the following
sections to analyse the properties of our new formalism of the prefer-
ential attachment models, such as the relation to existing models, and
to compare with numerical simulations.
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Let P(K ≥ k, t) denote the probability that a node has degree at least
k at time t. Since the fitness distribution does not change with time,
P(K ≥ k, t) can be written as

P(K ≥ k, t) =
∑η n(K ≥ k, t, η)

s
(3.67)

where n(K ≥ k, t, η) represents the number of nodes with fitness η

that have degree at least k at time t, and s is the network size which
we assume to have the exponential form s = eαt.

Since for a given fitness valueη, the relation between k and τ is
monotonous and independent of t, we can write τ as a functionRecalling Equa-

tion (3.61). of k:

τ(k, η) = r−1
(

log k
cη

)
, (3.68)

where r−1 is the inverse function of r.

Equation (3.67) can be then rewritten using the “mean-field” approxi-See Section 3.1.2 for
more details about

the mean-field
approximation.

mation [6, 12] as

P(K ≥ k, t) =

∫
dη ρ(η) eα

[
t−r−1

(
log k

cη

)]

eαt , (3.69)

when the network is large enough, in particular in the limit t → ∞.
The only time-dependent term eαt cancels out and we obtain

P(K ≥ k) =
∫

dη ρ(η) e−αr−1
(

log k
cη

)
. (3.70)

A stationary degree distribution P(k) thus exists, i.e.,

P(k) ≈ P(K ≥ k)− P(K ≥ k + 1). (3.71)

3.4.2 Relation to existing preferential attachment models

We have explained our new formalism of preferential attachment
network models, and its consistency with the exponential network
growth. One might naturally ask, what is the relation between our
new formalism and existing preferential attachment models? Are
they compatible with each other, or is there an inherent difference?
In this subsection, we show case by case, that starting from the new
formalism, one can easily recover the existing models introduced in
Section 3.1.
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3.4.2.1 Relation to Barabási-Albert model

We now recall the Barabási-Albert model, in which the preferential
attachment selection probability is proportional to the node degree:

Πi ∼ ki. (3.72)

degree growth Equation (3.72) means at any time, for any two
existing nodes vi and vj in the network, the ratio of their degree
increase must fulfil

dki

dk j
=

ki

k j
. (3.73)

Moreover, in order to achieve a time-invariant degree growth for all
nodes, the degree increase must be autonomous: It must involve only
explicitly, the node age τi = t− ti as measured in the physical time,
but not directly ti. Combining the two constraints, the only non-trivial
degree increase must follow

dki

dτi
= cki, (3.74)

where c is a positive constant that controls the rate of the degree
increase. The resulting expected degree growth ki as a function of τi,
given the initial degree value ki(0) = 1, is then

ki(τi) = ecτi . (3.75)

Equation (3.75) is a simple exponential function, that seems different
from Equation (3.5) that we had in the original Barabási-Albert model,
which is a power function:

ki(s, si) =

(
s
si

)1/2

. (3.5)

network growth This seeming difference is due to the fact that,
the two equations use different time: Equation (3.75), in our new
formalism, uses the physical time t, while Equation (3.5), in the old
formalism, uses the system time s. Yet, we have not established a
relationship between the two kinds of time. For this, we will use the
core equation of the new formalism:

g(t) =
∫ t

0
h(τ)g(t− τ)dτ, (3.63)
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where g(t) is the derivative of the network growth function:

g(t) =
ds
dt

, (3.76)

and h(τ) is the average degree increase function. Since all nodes have
the same degree growth function as in Equation (3.75), we have:

h(τ) =
dk
dτ

= ck = cecτ. (3.77)

Plugging in g and h into Equation (3.63) we get

g(t) = c
∫ t

0
ecτg(t− τ)dτ, (3.78)

and as usual, t has to be large enough in order for the continuum
approximation to make sense. Solving Equation (3.78) we can see
that

ds
dt

= g(t) ∼ e2ct (3.79)

when t→ +∞. This means, if the network starts with s(0) = 1 node,
the network size growth function should be

s(t) = e2ct. (3.80)

Here what is particularly interesting is that, the network growth
s = e2ct can be considered as the sum of all nodes’ degree growth
k = ect which join the network at different time, and they are both
exponential functions. The exponent of the former (2ct) is twice as
the one of the latter (ct). This actually explains the exponent 1/2 in
Equation (3.5).

By realizing α = 2c, we naturally recover the exponential growth of the
network size s = eαt that we previously enforced in the model. This
bridges the physical time t and the system time s with an exponential
function. And if we plug it back, it is more clear that the two degree
growth functions we discussed, Equations (3.75) and (3.5), are indeed
equivalent.

degree distribution For the stationary degree distribution, we
can use the estimation in our formalism:

P(K ≥ k) =
∫

dη ρ(η) e−αr−1
(

log k
cη

)
. (3.70)
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Specifically, there is no ageing effect in the Barabási-Albert model, so
that the function r is the identity, i.e., r(x) = x. The fitness distribution
ρ(η) can be seen as η = 1 for all nodes. Hence, we get the estimation
of the complementary cumulative distribution function (CCDF) of the
stationary degree distribution:

P(K ≥ k) = k−2, (3.81)

which results in the probability density function:

p(k) = 2k−3. (3.82)

As we can see, the stationary degree distribution estimated with
our formalism agrees with the existing result as in Equation (3.9) in
Section 3.1.

summary We started with linear preferential attachment Πi ∼ ki
without heterogeneous fitness and ageing as in the Barabási-Albert
model, but from the perspective of our new formalism. Both for-
malisms reach the same conclusions of the degree growth and the
stationary degree distribution of the Barabási-Albert model. How-
ever with our formalism, one can easily distinguish the system time
s and the physical time t, and, starting from the time-invariant de-
gree growth, one can recover the exponential network size growth
s(t) = e2ct that is observed in the data.

One should notice that, in the case of the Barabási-Albert model, the
parameter c can be seen as a scaler of the physical time, i.e., t′ = ct.
Thus, c plays no role in the structure of the network. As we can see,
the parameter c disappears in all network structure related results,
such as the stationary degree distribution.

3.4.2.2 Relation to Bianconi-Barabási model

We now look at a more complicated case, the Bianconi-Barabási model,
which we have discussed in Section 3.1.3. Compared with the Barabási-
Albert model, the heterogeneous fitness is involved in the Bianconi-
Barabási model. The preferential attachment selection probability Πi
of a node vi is proportional to product of the node degree ki and the
node fitness ηi:

Πi ∼ kiηi. (3.83)

The fitness distribution ρ(η) is for all nodes that join the network at
all time, and is assumed to be consistent over time.
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degree growth This means, at any time, for any two existing
nodes vi and vj in the network, the ratio of their degree increase must
fulfil

dki

dk j
=

kiηi

k jηj
(3.84)

Similar to the Barabási-Albert model case as we discussed in the
previous subsection, in order to achieve a time-invariant degree growth
for all nodes, the differential equation of the degree growth must be
autonomous, i.e., it depends only explicitly on the node age τi but
not directly on ti. Combining the two constraints, the only non-trivial
degree increase must follow

dki

dτi
= ckiηi, (3.85)

where c is a positive constant that controls the rate of the degree
increase. We have explained in the previous subsection that the
parameter c can be seen as a scaler of the physical time, and does not
play a role in the structure of the generated network. The situation is
the same here for the Bianconi-Bianconi model. Thus, for simplicity
we use c = 1 in this subsection.

The resulting expected degree growth ki as a function of τi, given the
initial degree value ki(0) = 1, is then

ki(τi) = eηiτi . (3.86)

network growth Similar to the previous subsection, to bridge
the exponential degree growth function as in Equation (3.86) to the
seemingly different degree growth function as in Equation (3.12) that
we had in the original Bianconi-Barabási model, which is a power
function:

ki(s, si, ηi) ∼
(

s
si

)β(ηi)

, (3.12)

with β(η) = η
C , we have to first bridge the system time s and the

physical time t.

For this, we will use again the core equation of the new formalism:

g(t) =
∫ t

0
h(τ)g(t− τ)dτ, (3.63)

where g(t) = ds/dt is the derivative of the network growth function,
and the impulse response function h(τ) is the average degree increase
function. However, at this point, since not all nodes have the same
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degree increase function as in the Barabási-Albert model, we have to
integrate over all possible η values to get h(τ):

h(τ) =
∫

dηρ(η)ηeητ. (3.87)

Plugging in g and h into Equation (3.63) we get

g(t) =
∫ t

0

∫
dηρ(η)ηeητg(t− τ)dτ, (3.88)

and as usual, t has to be large enough in order for the continuum
approximation to make sense.

Equation (3.88) does not have an obvious solution as it is the case
for Equation (3.78) in the Barabási-Albert model. To solve it, it is
necessary to get back to the core, Equation (3.63). We have explained See Section 2.1.5 for

details about LTI
systems.

in the beginning of this section that, Equation (3.63) describes a linear
time-invariant (LTI) system H [33] whose impulse response function
is h:

g = Hg, (3.64)

where the function g is the eigenfunction of the LTI operator H. By
using the LTI system, we can quickly jump into the conclusion that
the real function g is the eigenfunction of the LTI operator H. Thus, g
is a real exponential function:

g(t) = Aeσt (3.89)

where A, σ ∈ R. It is now straightforward to get the network growth
function

s(t) = eσt. (3.90)

Till now, we have also recovered the exponential growth of the network
size s = eαt that we previously enforced in the Bianconi-Barabási
model, if we realise α = σ. Next, we discuss how to solve σ.

As we are now using the eigenvalue problem induced in the LTI
system, and the eigenvalue λ in our problem is exactly 1 as shown in
Equation (3.64), it is now natural to use the equation λ = ĥ(σ) = 1
in order to solve σ. For the Bianconi-Barabási model, the specific
equation of the eigenvalue problem is

ĥ(σ) =
∫ +∞

0

∫
dηρ(η)ηe(η−σ)τdτ (3.91)

=
∫

dηρ(η)
∫ +∞

0
ηe(η−σ)τdτ = 1, (3.92)
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We see that in order for ĥ(σ) to converge, η − σ must be negative
for any fitness value η. This makes sense in the scenario we want to
model, because the degree growth of any node eητ must not surpass
the growth of the entire network eσt. Thus we get

∫
dηρ(η)

η

σ− η
= 1 (3.93)

for the general form of the Bianconi-Barabási model. The left handThe situation where
Equation (3.93) lacks

a solution will be
discussed in
Section 3.5.

side of Equation (3.93) is monotonic for σ, thus the equation should
uniquely determine σ if such a solution exists.

Moreover, we can conclude that the exponent σ is positive from the
negativity of η − σ, since all fitness η must be non-negative. This is
significant, because it ensures that the network size eσ grows with
time.

As a special case, the Barabási-Albert model is equivalent to the case
in the Bianconi-Barabási model when the fitness values of all nodes
are the same. Again, for simplicity we assume all nodes have fitness 1.This assumption does

not lose generosity. Equation (3.93) thus simplifies to

1
σBA − 1

= 1, (3.94)

which has the solution of σBA = 2. This is the same as we got in
Equation (3.79).

This bridges the physical time t and the system time s with an expo-
nential function s = eσt. And if we plug it back, it is more clear that
the two degree growth functions we discussed, Equation (3.86) and
(3.12), are indeed equivalent.

degree distribution For the stationary degree distribution, we
can as well use the estimation in our formalism:

P(K ≥ k) =
∫

dη ρ(η) e−αr−1
(

log k
cη

)
. (3.70)

Similar to the Barabási-Albert model, there is no ageing effect, so we
get r(x) = x as well here. Hence, we get the estimation of the com-
plementary cumulative distribution function (CCDF) of the stationary
degree distribution:

P(K ≥ k) =
∫

dη ρ(η) k−
σ
η . (3.95)
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which results in the probability density function:

p(k) =
∫

dη ρ(η)
σ

η
k−
(

σ
η +1

)
. (3.96)

As we can see, the stationary degree distribution estimated with our
formalism is a superposition of different power-law distributions . This
agrees with the existing result as in Equation (3.17) in Section 3.1.3.

summary In this subsection, we analysed the Bianconi-Barabási
model, i.e., preferential attachment Πi ∼ ηiki with heterogeneous fit-
ness distribution ρ(η) without ageing, from the perspective of our new
formalism. Using our formalism, we recovered the same conclusions
of the degree growth and the stationary degree distribution of the
Bianconi-Barabási model. That is to say, our formalism is compati-
ble with the Bianconi-Barabási model, but with exponential network
growth.

3.4.2.3 Relation to the relevance decay model

Now we look into the relevance decay model as described in Sec-
tion 3.1.5 but from the perspective of our new formalism. Compared
with the Bianconi-Barabási model, an ageing function is involved to
model the decaying attractiveness of nodes. It is thus a more general
form of the preferential attachment network model compared with
the Barabási-Albert model and Bianconi-Barabási model.

The preferential attachment selection probability Πi of a node vi is
proportional to product of the node degree ki, the node fitness ηi, and
the ageing factor R(τi):

Πi ∼ kiηiR(τi). (3.97)

The fitness distribution ρ(η) is for all nodes that join the network at
all time, and is assumed to be consistent over time. The ageing factor
R(τ) is a decreasing function of the node age τ.

degree growth At any time, for any two existing nodes vi and
vj in the network, the ratio of their degree increase must fulfil

dki

dk j
=

kiηiR(τi)

k jηjR(τj)
(3.98)
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Similar to the Barabási-Albert model case as we discussed in the
previous subsection, in order to achieve a time-invariant degree growth
for all nodes, the degree increase must be autonomous, i.e., it depends
only explicitly on the node age τi but not directly on ti. Combining
the two constraints, the only non-trivial degree increase must follow
Equation (3.60):

dki

dτi
= ckiηiR(τi), (3.60)

where c is a positive constant that controls the rate of the degree
increase.

network growth In the previous two subsections, we argued
that the constant c merely acts as a scaler of the physical time, and
does not play a role in the structure of the generated network in
the Barabási-Albert model and Bianconi-Bianconi model. However,
the situation is different in the relevance decay model, because the
ageing function R(τ) is a function of the node age in physical time.
Thus, different c can result in different ageing curves, thus resulting
in different degree growth functions and network structures.

To be more clear, we examine the time-invariant degree growth func-
tion. Solving Equation (3.60) we get

ki(τi, ηi) = ecηir(τi), (3.61)

where the auxiliary function r(τ) is the integral of R(τ). In the
exponent of the exponential function, the constant c is multiplied
with r(τ) instead of the plain τ. Thus c is no longer a simple scaler
of the physical time, unless r(τ) ≡ τ as in the Barabási-Albert model
and Bianconi-Barabási model.

In the original relevance decay model of Medo et al. [50] where the
linear network growth s = t is assumed, the degree growth function
of a node resembles our Equation (3.61):

ki = exp
(

ηi

Ω∗

∫ +∞

0
R(τ)dτ

)
, (3.32)

where Ω∗ is a constant when the network is large enough. It seems
that here we do not need to use the exponential network growth
to bridge the degree growth functions in our formalism and in the
existing work, as we did in the previous two subsections with the
Barabási-Albert model and Bianconi-Barabási model.
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Before we try solving the paradox, we first into the network growth
function in our formalism that is consistent with the time-invariant
growth as in Equation (3.61).

For this, we will use again the core equation of the new formalism:

g(t) =
∫ t

0
h(τ)g(t− τ)dτ, (3.63)

where g(t) = ds/dt is the derivative of the network growth function,
and the impulse response function h(τ) is the average degree increase
function.

We now write the average degree increase function as the impulse
response function h(τ):

h(τ) = c
∫

dη ρ(η)ηk(τ, η)R(τ) (3.62)

= c
∫

dη ρ(η)ηecηir(τi)R(τ). (3.99)

It is now important to solve ĥ(σ) = 1 to get the eigenvalue solution
to the eigenproblem which describes the LTI system H [33] whose
impulse response function is h:

g = Hg. (3.64)

Recalling the Barabási-Albert model and the Bianconi-Barabási model,
where h is an exponential function (hBA) or the superposition of multi-
ple exponential functions (hfitness):

hBA(τ) = cecτ. (3.77)

hfitness(τ) =
∫

dηρ(η)ηeητ. (3.87)

If we examine their Laplace transforms ĥBA = L{hBA} and ĥfitness =

L{hfitness}:
ĥBA(τ) = c

∫ +∞

0
ecτe−στdτ. (3.100)

ĥfitness(τ) =
∫ +∞

0

∫
dηρ(η)ηeητe−στdτ. (3.101)



78 phenomena in growing networks

We can notice that the integrals hBA and hfitness over all positive values
themselves diverge, thus the term e−στ must be a decreasing functionSee Section 2.1.4 for

details about the
Laplace transform

and its region of
convergence.

as a compensation, in order for the Laplace transform L{h} = ĥ(σ)

to converge. We therefore see that σ has to be at least positive for the
Barabási-Albert model and Bianconi-Barabási model.

However, this is not the case for the relevance decay model. The
existence of the ageing function R(τ) slows down the degree growth,
so that the latter grows slower than exponential. It is then possible
that the integral of h over R still converges without relying on the
exponential compensation term e−σ with σ > 0, depending on how
fast R(τ) decays.

• If R(τ) decays slow,
∫ +∞

0

∫
dη ρ(η)ηecηir(τi)dτ does not converge,

then σ must be positive. An example of the ageing function for
which σ must be positive is R(τ) = (τ + 1)−γ with γ ≤ 1.

• If R(τ) decays fast,
∫ +∞

0

∫
dη ρ(η)ηecηir(τi)dτ converges, then σ

can be positive, zero or negative, depending on the parameters
c, γ and the fitness distribution ρ(η). An example of the ageing
function for which σ can be positive, zero or negative is R(τ) =

(τ + 1)−γ with γ > 1.

The fact that σ can be non-positive is significant to determine the
network growth and solve the paradox that we do not need to use the
exponential network growth to bridge the degree growth functions inRecall Equations

(3.61) and (3.32). our formalism and in the original work of Medo et al.

Plugging in g and h into Equation (3.63) we get

g(t) = c
∫ t

0

∫
dηρ(η)ηecηr(τ)R(τ)g(t− τ)dτ, (3.102)

where the function g is the eigenfunction of the LTI operator H. By
using the LTI system, we still get conclusion that the real function g is
the eigenfunction of the LTI operator H, and has the form:

g(t) = Aeσt (3.89)

where A, σ ∈ R.

However, unlike in the Barabási-Albert model and Bianconi-Barabási
model, we now do not have the constraint σ > 0. Hence, there can
be the cases where ĥ(σ) = 1 results in σ ≤ 0. Depending on σ, the
network growth function s(t) can be of different forms.
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• If σ > 0, g(t) is an exponentially growing function, so s(t) is
also an exponentially growing function:

s(t) = eσt. (3.90)

This is similar as in the Barabási-Albert model and Bianconi-
Barabási model with exponential network growth.

• If σ = 0, g(t) = A is a constant, therefore s(t) is a linear function,
which resembles the original preferential attachment models
where the linear network growth s ∼ t is assumed, and there is
no need to distinguish the system time and the physical time.

• If σ < 0, g(t) is an exponentially decaying function. A decaying
g(t) can model a dying community in which fewer and fewer
nodes join the network as time passes.

summary To summarise, we have explained that in our new formal-
ism of the preferential attachment models, as long as the ageing func-
tion R(τ) decays sufficiently fast such that

∫ +∞
0

∫
dη ρ(η)ηecηir(τi)dτ

converges, the network growth can be linear as well. Hence, in this Recall Equations
(3.61) and (3.32).case there is no need to plug in an exponential network growth func-

tion to bridge the degree growth functions in our formalism and in
the original work of Medo et al.

This also explains that, in the original work of Medo et al., the ageing
must be faster than (τ + 1)−1 in order for their model to be self
consistent: Because this is exactly the special case of our formalism
where σ = 0,

∫ +∞
0

∫
dη ρ(η)ηecηir(τi)dτ has to converge.

3.5 breaking of time-invariance

In Section 3.1.4 we have discussed the condensation phenomenon that
arises in preferential attachment network models and the so called
winner-takes-all effect. In this section, we aim at explaining different
condensation phenomenon using our new formalism of preferential
attachment network models. We show that the condensation phe-
nomenon corresponds to the breaking of the time-invariance in our
new formalism, and, the time-invariance of the system as a whole is
broken when ĥ(σ) = 1 does not have a solution.
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3.5.1 Breaking of time-invariance in Bianconi-Barabási model

To explain this, we start with the new formalism of the Bianconi-
Barabási model [10] where Πi ∼ ηiki and no ageing is present. The
time-invariant degree growth function is thus a special case of Equa-
tion (3.61) where r(τ) ≡ τ, i.e.,

ki(τi, ηi) = ecηiτi . (3.103)

One can realise that the constant c is merely a time scaler and is free
of choice here, so for simplicity we let c = 1. The impulse response
can be written as

h(τ) =
∫

dη ρ(η)η eητ. (3.104)

Solving

ĥ(σ) = L{h(τ)} =
∫

dη ρ(η)
η

σ− η
= 1 (3.105)

gives us the exponential growth rate of the network σ. Since the
degree growth rate of every node must not surpass the growth rate of
the entire network, we have an additional constraint σ ≥ ηmax where
ηmax is the maximum fitness.

Since ĥ(σ) is a decreasing function of σ, the maximum value of ĥ(σ)

is achieved at σ = ηmax. However, for some fitness distributions,
ĥ(ηmax) is still smaller than 1 which is required by Equation (3.66),
and consequently, ĥ(σ) = 1 does not have a solution. When such
fitness distributions are taken, the node with the leading fitness will
eventually attract almost all edges (a “winner-takes-all” effect). The
network growth is thus asymptotically approached by the maximum
degree growth, i.e., g ∼ kmax and, in the case of the Bianconi-Barabási
model, g(t) ∼ eηmaxt. This situation has been intensively studied in [9],
where the authors have approached the problem using the formalism
used to study the Bose-Einstein condensation.

An example of the fitness distribution that can lead to the Bose-Einstein
condensation is

ρ(η) = (λ + 1)(1− η)λ (3.106)

where η ∈ [0, 1] and λ is a parameter that controls how skewed the
distribution is. Note ρ(η) is a probability density function, thus

1∫

0

ρ(η) dη = 1. (3.107)
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When λ ≤ 1, we can find a solution of σ that is larger than the largest
possible η, i.e., ηmax = 1. The critical parameter λBE = 1 that leads
to the condensation can be obtained. When λ > 1, we fail to find a
solution of σ that is larger than ηmax = 1. In fact, by mapping fitness
η to energy ε at temperature T with η = e−ε/T, one can realise that
our Equation (3.105) is equivalent to Equation (10) in [9].

Figure 3.13 shows how λ affects the skewness of ρ(η) and σ. As we
can see from Figure 3.13a, the distribution of η becomes more skewed
when λ is larger. In Figure 3.13 we can see that when λ ≤ λBE = 1,
the exponential growth rate σ of the network is a decreasing function
of λ. However, the numerical solver cannot find a satisfying σ when
λ > λBE = 1. This is aligned with our analytical analysis.

3.5.2 Breaking of time-invariance in superlinear preferential attachment

With our new formalism, we can also address other cases in which a
similar condensation phenomenon arises, for instance the superlinear
preferential attachment Πi ∼ kγ

i with γ > 1, where eventually a single
node connects to nearly all other nodes [40]. This can be seen from
the fact that the time-invariant degree growth function

k(τ) =
[
(1− γ)cτ + 1

]1/(1−γ), (3.108)

resulting from the differential equation dk/dτ = ckγ with γ > 1 and
k(0) = 1, displays a finite-time divergence at τ = [c(γ− 1)]−1. As a
result, the Laplace transform of the average degree growth function
h(τ),

ĥ(σ) =
∫ ∞

0
k(τ)e−στdτ, (3.109)

does not converge for any real value σ, because the exponential term
e−στ cannot counterbalance the growth of k which is not exponentially
bounded. Thus we see that ĥ(σ) = 1 lacks a solution in R.

3.5.3 No condensation in the presence of ageing

In this subsection, we examine the situation when the ageing function
R(τ) is present. We see that similar breaking of the time-invariance
does not occur under a mild condition, that is if we assume the ageing
function diminishes to 0 when we take the time limit τ → ∞, i.e.,

lim
τ→∞

R(τ) = 0. (3.110)
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Figure 3.13: Subfigure (a) shows the fitness distribution ρ(η) = (λ + 1)(1−
η)λ with different three parameters λ. When λ is larger, the
fitness distribution is more skewed. Subfigure (b) shows the
corresponding σ as a function of λ solved using a numerical
solver, which fails to find solutions when λ > 1.
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This is valid for all ageing functions that have been discussed in Sec-
tion 3.3.3, for instance power functions and exponential functions.

To prove this, we first examine the convergence of ĥ(σ),

ĥ(σ) = L{h(τ)} = L
{

c
∫

dη ρ(η)η k(τ, η)R(τ)
}

. (3.111)

We now use the linearity of the Laplace transform L, and rewrite the See Section 2.1.4 for
details about the
linearity of the
Laplace transform.

equation above as

ĥ(σ) = c
∫

dη ρ(η)η L{k(τ, η)R(τ)}. (3.112)

Hence, ĥ(σ) converges if L{k(τ, η)R(τ)} converges for all η.

Since

• k(τ, ηmax) ≥ k(τ, η) for all η, where ηmax is the maximum fitness,
i.e., the degree growth of the node with the maximum fitness is
faster than other nodes;

• the ageing function R(τ) is a monotonically decreasing function,

it is natural now to see that, ĥ(σ) converges if L{k(τ, η)} converges
for ηmax, with ηmax being the maximum fitness.

Recalling Equation (3.61), we have

L{k(τ, ηmax)} =
∫ ∞

0
ecηmaxr(τ) e−στ dτ. (3.113)

We thus examine the ratio

ecηmaxr(τ+1)−σ(τ+1)

ecηmaxr(τ)−στ
= ecηmax(r(τ+1)−r(τ)) · e−σ. (3.114)

When taking the limit τ → ∞, since r′(τ) = R(τ) and limτ→∞ R(τ) =

0, we see that ecηmax(r(τ+1)−r(τ)) approaches 1. Therefore the examined
ratio is less than 1 when σ > 0, which guarantees the convergence of
L{k(τ, ηmax)} and, consequently, of ĥ(σ). Since ĥ(σ) is a continuous
monotonic function, there is always one solution of σ that makes
ĥ(σ) = 1.
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3.6 evaluation

In order to systematically validate our analysis and the new formalism
proposed in the previous sections, in this section, we simulate the
generation process of our model to grow synthetic networks, and
compare the result with the analytical prediction.

3.6.1 Methodology

We now explain the spirit and details of the methodology we use in
the simulations.

In order to evaluate the new formalism of preferential attachment
models we proposed, we do not directly control the network size
growth. Instead, we enforce the time-invariant degree growth of the
nodes according to our model. The growth curve of the network is left
to be observed and compared with the model’s analytical prediction.

Synthetic networks have initially a small number N0 of nodes with
degree one each. In our experiments we have found that different
values for N0 does not influence the results significantly.

In the simulation process, time runs in short time steps of size ∆t.
Since our model assumes continuous time, having a large ∆t may
distort the actual model behaviour, because then a large number of
links can be formed in a single time step, and the network evolves
visibly stepwise. Thus, to limit the effects of time discretisation, ∆t
has to be small enough. However, a too small ∆t leads to a lot of
computational overhead, and the simulations take too long to finish.
In our experiments we have found that ∆t = 0.02 withe = lim

n→+∞
(1 + 1

n )n

(1 + ∆t)1/∆t = 2.70 ' e (3.115)

is a good balance between the precision of the simulation and the
computational overhead.

The degree increase of nodes in our model is characterised by the
differential equation as in Equation (3.60):

dki

dτi
= ckiηiR(τi) (3.60)
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However, if at each discrete time step we take

∆ki = ckiηiR(τi)∆t (3.116)

as the degree increase of a node, the node degrees will then not be
guaranteed to have realistic integer values, and the network evolution
will be deterministic which contradicts the reality.

In our experiments instead, at each discrete time step, for each existing
node vi in the network, we drawn from the Poisson distribution with
the mean value ∆ki = ckiηiR(τi)∆t as the increase of the node degree.
This makes the simulation of the node degree increase equivalent to
the Poisson process where the expected increase is ∆ki in the time
interval ∆t. In this way, node degrees will always have realistic integer
values rather than floating point values which represent the expected
degrees, such as in Figure 3.1 and Figure 3.3.

A new node with degree one is added to the network whenever
the degree of an existing node is increased by one. In this way, we
effectively imply the time-invariance of the degree growth, and have
the possibility to observe the emergent network growth.

3.6.2 Evaluation focusses

We evaluate our new formalism with different parameters, and focus
on the following four major aspects in the evaluation.

1. Network growth.

We predict with our new formalism that, when there is no
network condensation, the time-invariant degree growth is con-
sistent with the exponential network growth with the exponent
σ as the solution of Equation (3.66):

ĥ(σ) = 1, (3.66)

where ĥ is the Laplace transform of the average degree increase
of all nodes.

Moreover, the asymptotic network growth will be approached by
the maximum degree growth in the network when the network
condensation happens.

2. Degree distribution.



86 phenomena in growing networks

We plot the degree distributions of the synthetic networks pro-
duced by the model, and compare with the analytical prediction
given by the mean-field estimation as in Section 3.4.1. In the
simulation, the estimation of the cumulative degree distribution
can be given numerically with Equation (3.70):

P(K ≥ k) =
∫

dη ρ(η) e−αr−1
(

log k
cη

)
, (3.70)

given parameters c, ρ(η) and r(τ). The stationary degree distri-
bution function P(k) can also be given numerically:

P(k) ≈ P(K ≥ k)− P(K ≥ k + 1). (3.71)

Note the mean-field estimation behaves less accurate on high
degrees when the distribution shows an exponential cut-off (see
Section 3.1.2).

3. Degree growth.

Our new formalism is built on the time-invariance of the degree
growth. Although the time-invariance of the degree growth is
implied in the simulation process, we still want to observe if it
is actually the case.

Moreover, the analytical degree growth function as given in our
new formalism is

ki(τi, ηi) = ecηir(τi). (3.61)

To compare the actual degree growth curves, we also record the
degrees of certain nodes in the synthetic network at different
times. Since the degree growth of individual nodes can be largely
influenced by the randomness of the above-mentioned Poisson
process, we group the nodes and observe the average growth of
their degrees. The details of how we pick and group nodes can
be found in the corresponding experiments below.

4. Network condensation.

We predict with our new formalism that the condensation in
networks (the winner-takes-all effect) takes place when Equa-
tion (3.66) lacks a solution. For example, this happens in the
superlinear preferential attachment, and in the Bianconi-Barabási
model when the fitness distribution is skewed. Moreover, the
ageing effect can prevent the winner-takes-all effect when the
preferential attachment is linear, despite having a skewed fit-
ness distribution. Network condensation can be observed from
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the degree distribution and the asymptotic maximum degree
growth.

3.6.3 Results

In this subsection, we illustrate the evaluation results of our framework
concerning the four major aspects mentioned above, with different
settings of the time-invariant degree growths. We provide more sup-
plementary results in Appendix A.

3.6.3.1 Results for Barabási-Albert model

We now show the experimental results of the synthetic networks
generated from the linear preferential attachment model without
heterogeneous fitness and ageing (as in the Barabási-Albert model)
using our framework:

dki

dτi
∼ ki. (3.117)

Figure 3.14 shows the network growth curves. Figure 3.15 shows the
degree distributions. Figure 3.16 shows the average degree growth
curves of nodes.
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Figure 3.14: The network growth curve (red) of a synthetic network generated
from the linear preferential attachment (dk/dτ ∼ k as in the
Barabási-Albert model) using our framework. The slope of the
green dashed line indicates the theoretical estimation of the
asymptotic network growth. The blue dashed curve shows the
growth of the maximum degree in the network. Note that the
plot uses the linear-log scale to illustrate the exponential curves.
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Figure 3.15: The degree distribution of a synthetic network generated from
the linear preferential attachment (dk/dτ ∼ k as in the Barabási-
Albert model) using our framework. The green curves indicate
the theoretical estimation of the degree distributions. Note
that the plot uses the log-log scale to illustrate the scale-free
distributions.
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Figure 3.16: The average degree growth curves of nodes with different ages
in a synthetic network generated from the linear preferential
attachment (dk/dτ ∼ k as in the Barabási-Albert model) using
our framework. The slope of the red dashed line indicates the
theoretical estimation of the degree growth. Note that the plot
uses the linear-log scale to illustrate the exponential curves.
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3.6.3.2 Results for Bianconi-Barabási model

We now show the experimental results of the synthetic networks
generated from the preferential attachment model with heterogeneous
fitness, without ageing (as in the Bianconi-Barabási model) using our
framework:

dki

dτi
∼ kiηi, (3.118)

with the fitness distribution

ρ(η) ∼ (1− η)λ, (3.119)

where λ is the parameter to be varied.

Figure 3.17 shows the network growth curves for λ = 0.5 and λ = 1.5.
Figure 3.18 shows the degree distributions for λ = 0.5 and λ = 1.5.
Figure 3.19 shows the average degree growth curves of nodes.
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(a) λ = 0.5
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Figure 3.17: The network growth curves (red) of synthetic networks gener-
ated using our framework with preferential attachment with het-
erogeneous fitness (Π ∼ kη as in the Bianconi-Barabási model).
The green dashed lines indicate the asymptotic slopes of the
theoretical estimation of the network growth. The blue dashed
curves show the growth of the maximum degree in the networks.
Note that the plots use the linear-log scale.
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(a) λ = 0.5
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(b) λ = 1.5

Figure 3.18: The degree distributions of the synthetic networks generated
using our framework with preferential attachment with hetero-
geneous fitness (Π ∼ kη as in the Bianconi-Barabási model). The
green lines show the theoretical estimation. Note that the plots
use the log-log scale.
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Figure 3.19: The average degree growth curves of four groups of nodes with
different time when joining the network and different fitness
values. The synthetic network is generated using our framework
with preferential attachment with heterogeneous fitness (Π ∼ kη
as in the Bianconi-Barabási model). The dashed lines show the
theoretical estimation. Note that the plot uses the linear-log
scale.
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3.6.3.3 Results with ageing effect

We now show the experimental results of the synthetic networks
generated from the preferential attachment model with heterogeneous
fitness and ageing effect (as in the relevance decay model) using our
framework:

dki

dτi
∼ kiηiR(τ), (3.120)

with the fitness distribution

ρ(η) ∼ (1− η)λ, (3.121)

with λ = 1.5 and the ageing function R(τ). We evaluate the power
and exponential ageing as discussed in Section 3.3.3.
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(a) R(τ) = (τ + 1)−1
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(b) R(τ) = e−0.5τ

Figure 3.20: The network growth curves (red) of synthetic networks gener-
ated using our framework with preferential attachment with
heterogeneous fitness and (a) ageing as power function; (b) age-
ing as exponential function. (Π ∼ kηR(τ) as in the relevance
decay model). The green dashed lines indicate the asymptotic
slopes of the theoretical estimation of the network growth. The
blue dashed curves show the growth of the maximum degree in
the networks. Note that the plots use the linear-log scale.
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(a) R(τ) = (τ + 1)−1
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(b) R(τ) = e−0.5τ

Figure 3.21: The degree distributions of the synthetic networks generated
using our framework with preferential attachment with hetero-
geneous fitness and (a) ageing as power function; (b) ageing as
exponential function. (Π ∼ kηR(τ) as in the relevance decay
model). The green lines show the theoretical estimation. Note
that the plots use the log-log scale.
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Figure 3.22: The average degree growth curves of groups of nodes with
approximately the same age and different fitness values. The
synthetic network is generated using our framework with pref-
erential attachment with heterogeneous fitness and (a) ageing as
power function; (b) ageing as exponential function. (Π ∼ kηR(τ)
as in the relevance decay model). The dashed lines show the
theoretical estimation. Note that (a) uses the log-log scale, while
(b) uses the linear-linear scale.
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3.6.3.4 Results with superlinear preferential attachment

We now show the experimental results of the synthetic networks
generated from the superlinear preferential attachment model without
heterogeneous fitness and ageing using our framework:

dki

dτi
∼ kγ

i . (3.122)

In our experiment we take γ = 1.2.

Figure 3.23 shows the network growth curves. Figure 3.24 shows the
degree distributions. Figure 3.25 shows the average degree growth
curves of nodes.
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Figure 3.23: The network growth curve (red) of a synthetic network gener-
ated from the superlinear preferential attachment (dk/dτ ∼ k1.2)
using our framework. The green dashed line indicates the theo-
retical estimation of the asymptotic network growth, where the
network size should go to infinity at t = 5 (indicated with the
vertical grey dashed line). The blue dashed curve shows the
growth of the maximum degree in the network. Note that the
plot uses the linear-log scale.
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Figure 3.24: The degree distribution of a synthetic network generated from
the superlinear preferential attachment (dk/dτ ∼ k1.2) using our
framework. Note that the plot uses the log-log scale.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Node age 

100

101

102

103

Av
er

ag
e 

de
gr

ee

t = 1
Theoretical

Figure 3.25: The average degree growth curve of a group of 10 nodes which
joined the network at approximately the same time t = 1. The
synthetic network is generated from the superlinear preferential
attachment (dk/dτ ∼ k1.2) using our framework. The red dashed
line indicates the theoretical estimation of the degree growth.
Note that the plot uses the linear-log scale.
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3.6.4 Result analysis

We now analyse the findings in our experimental results.

3.6.4.1 Evaluation of the network growth

Simulation results shown in the last subsection demonstrate that
the emerging network growth in all cases eventually matches the
theoretical prediction.

When Equation (3.66) has a solution σ, the network size exhibits an
exponential growth with the exponent σ (Figure 3.14, 3.17a, 3.20a,
3.20b).

In the case of the Bose-Einstein condensation, the network size grows
with the exponent ηmax (Figure 3.17b). Figure 3.25 shows the superlin-
ear preferential attachment which results in a network growth that is
not exponentially bounded and can be approximated by the theoretical
maximum degree growth curve k = (5/(5− t))5 which follows from
Equation (3.108) for γ = 1.2. As a result, the network size approaches
infinity when t = 5 (indicated with the vertical dashed line).

3.6.4.2 Evaluation of the degree distributions

For the degree distributions, our theoretical results based on Equa-
tion (3.70) match the synthetic results well, especially in the low degree
domain.

Depending on the parameters, some networks have power-law shaped,
well-defined long tail degree distributions (Figure 3.15, 3.18a, 3.21a),
while some exhibits an exponential cut-off (Figure 3.21b), where the
simulation result deviates from the theoretical estimation in high
degree domain (similar to Figure 3.2b).

For the superlinear preferential attachment (Figure 3.24), since the
network growth is not exponential, Equation (3.70) does not apply
and no stationary degree distribution is shown. This is in line with the
known conclusion that superlinear preferential attachment networks
lack an asymptotic stationary degree distribution [40].

In the case of the Bose-Einstein condensation (Figure 3.18b), there are
some clear “winners” with large degree values, yet the slope of the
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estimated degree distribution still matches the simulation result for
low degrees.

3.6.4.3 Evaluation of the degree growth

Our experiment code is programmed with the implication that the
degree growth should be time-invariant, which is the assumption of
our new formalism.

To verify if the simulation achieves the time-invariance, we plot Fig-
ure 3.16 and 3.19. The overlapping curves of the average degree growth
of nodes with the same time joining the network show that the degree
growth in the simulation is indeed time-invariant as intended.

Moreover, further plots show our theoretical estimation of the degree
growth function matches with the simulation results. Figure 3.16 and
3.19 exhibit exponential degree growth as expected, for the linear
preferential attachment with or without heterogeneous fitness, but
without ageing. Figure 3.22a verifies the degree growth when we
have the ageing function R(τ) = (τ + 1)−1 has the form of the power
function, which exhibits as straight lines in the log-log plot.

Figure 3.22b verifies the degree growth when we have exponential
ageing function is part of the sigmoid curve in the linear-linear plot.
In Figure 3.25 the degree growth for the superlinear preferential
attachment is not exponentially bounded, as we have expected.

3.6.4.4 Evaluation of the network condensation

Apart from the extreme values shown in the degree distribution,
another important signature of the winner-takes-all effect is that the
maximum degree eventually dominates the network growth, taking a
fixed fraction of the network size.

In our new formalism, this happens when Equation (3.66) lacks a solu-
tion, in the case of the superlinear preferential attachment (Figure 3.23)
as well as in the Bianconi-Barabási model when the Bose-Einstein
condensation occurs [9], i.e., λ ≥ λBE = 1 (Figure 3.17b).

As we have proven, in the presence of a diminishing ageing function,
there can be no winner-takes-all effect although λ > λBE. This can
be verified in Figure 3.20a for the power ageing, and Figure 3.20b for
the exponential ageing, where the maximum degree takes a smaller
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and smaller fraction of the network size, albeit the network having a
skewed fitness distribution.

3.7 summary

In this chapter, we provide a comprehensive analysis of various exist-
ing preferential attachment models, and various social effects in the
resulting networks. We have found that the accelerated growth of the
network, albeit common in real systems, is typically neglected when
analysing network growth models. We find that instead of being an
unnecessary nuisance, the form of the network growth is an important
component which together with preferential attachment, fitness, and
ageing shapes the network.

Building on the observation that the average node degree growth in
two different citation networks is time-invariant, we formulate a new
analytical formalism which allows us to take the time-invariance of the
degree growth as the first principle and study the emerging network
properties. The time-invariance of the degree growth is a natural
property in networks that eventually reach “stationary” growth: Their
old and new nodes are alike in the way how their degree grows and
saturates.

We use the new formalism to show that only two forms of network
growth are compatible with the time-invariant degree growth: A
uniform growth that is assumed by most network models, and an
exponential growth that is often found in real data. The simulta-
neous presence of time-invariant degree growth and an exponential
network growth can be thus seen as empirical confirmation of these
two patterns being self-consistent in growing networks with prefer-
ential attachment. The new formalism naturally connects various
network condensation phenomena that have been previously studied
separately: The Bose-Einstein condensation in the Bianconi-Barabási
model with skewed fitness distributions, and the condensation in the
superlinear preferential attachment model. We also prove that ageing
is necessary to reproduce realistic degree growth curves, and can
prevent the network condensation with mild conditions.





4
L E A R N I N G A C R O S S N E T W O R K S

In this chapter, we describe our work on the topic of learning across
networks. We specifically address the problem of predicting user labels
in online social networks with transfer learning, based on known user
labels in other online social networks.

In Section 4.1, we introduce related works on transfer learning, transfer
learning for network analysis and user study.

In Section 4.2, we demonstrates our transfer learning–based label
prediction approach TraNet in detail. TraNet is a three-level approach,
based on

• the extraction of structural features of nodes,

• the transformation of the extracted features to a common feature
space,

• the classification of nodes based on the transformed structural
features.

To help understanding TraNet, we also use the role transfer task on the
Wikipedia user interaction network data as an run-through example.

In Section 4.3, we show the experimental evaluation of the role trans-
fer task in the Wikipedia user interaction networks. We also show
another use case of TraNet, which is identifying trusted users in
ARIS Community1, the online platform for customers of Software AG,
the second-largest German software vendor. We also compare the
performance of TraNet with other approaches.

In Section 4.4, we summarise the chapter.

1 https://www.ariscommunity.com
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4.1 related work

In this section, we introduce the concept of transfer learning, as well
as existing transfer learning algorithms for network analysis and user
study in networks.

4.1.1 Transfer learning

Traditionally, if we perform machine learning tasks such as classifi-
cation, regression and clustering [80], one assumption is made: The
training data from which we learn, and the test data to which we want
to apply the knowledge we learnt are sampled from the same domain,
i.e., they are assumed to have the same feature distribution [61]. How-
ever, this assumption might not stand true in many real scenarios,
especially when we have completely new domains to work on, or
completely new tasks to accomplish. In this case, transferring knowl-
edge learnt from an existing domain is necessary. This concept of
knowledge transfer is called transfer learning. In this dissertation, we
adopt the definition of transfer learning given by Pan and Yang [61]:

“Given a source domain DS and learning task TS, a target
domain DT and learning task TT, transfer learning aims to
help improve the learning of the target predictive function
fT( · ) in DT using the knowledge in DS and TS, where
DS 6= DT or TS 6= TT.”

We use the term source dataset to refer to a dataset that belongs to the
source domain DS, that we learn knowledge from; and target dataset to
refer to a dataset that belongs to the target domain DT, to which we
want to transfer the knowledge which we have learnt from the source
dataset.

In our study, both source and target datasets contain different user
interaction networks, where each node represents a user, and each
edge represents a user interaction or relation. We assume the ground
truth about user labels in present in the source dataset, but not in the
target dataset.
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4.1.2 Transductive transfer learning

In [61], the term transductive transfer learning is defined as a special
case of transfer learning, where, in contrast to inductive learning,
transductive emphasises that the learning targets TT and TS are the
same:

“Given a source domain DS and a corresponding learn-
ing task TS, a target domain DT and a corresponding learn-
ing task TT, transductive transfer learning aims to improve
the learning of the target predictive function fT( · ) in DT

using the knowledge in DS and TS, where DS 6= DT and
TS = TT. In addition, some unlabelled target-domain data
must be available at training time.”

Note that the terms transductive learning and transfer learning are or-
thogonal, i.e., a transductive learning problem can be either a trans-
fer learning problem or a non-transfer learning problem, and vice
versa [4].

In our study, we do not want to limit our method to the cases where
the target dataset is present during training. In other words, the target
dataset can be completely unseen during the training part (see Sec-
tion 4.2), therefore no target-domain data (labelled or unlabelled) are
available at training time. This makes the task more challenging [4].

To summarise, the domains DS and DT are two different social net-
works. The learning tasks TS and TT are the same: both to determine
user labels in the networks. The predictive function fT( · ) gets the
structural features of a node as input, and returns the labels of this
node. Therefore, the task we focus on can be categorised as transduc-
tive transfer learning, if we relax the condition that “some unlabelled
target-domain data must be available at training time.”

4.1.3 Transfer learning algorithms for network analysis

Henderson et al. have proposed ReFeX (Recursive Feature eXtrac-
tion) [32], an algorithm to extract nodes’ structural features in a
network. The idea of ReFeX is that an actor in a network is not
only characterised by who the actor is, but also who its neighbours
are, and where it is located in the network. Thus, ReFeX recursively
combines nodes’ local features and neighbourhood features. Evalu-
ation has shown that ReFeX is scalable and suitable for a variety of
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transfer learning network analysis tasks, e.g., node classification and
de-anonymisation.

In [31], Henderson et al. describe an algorithm called RolX to extract
node roles in networks automatically. RolX first performs an unsu-
pervised soft clustering for all nodes in the network using matrix
decomposition (e.g., non-negative matrix factorisation [42]) on the
structural features extracted by ReFeX or other algorithms. The result
of the matrix decomposition, a soft clustering of nodes, is regarded as
a probability-based role membership assignment of the nodes.

RolX also supports transfer learning (across-network role classifica-
tion), if ground truth of user roles is present in one network (the
source dataset). The probability-based role memberships of the nodes
in the source dataset can serve as features to train a classifier (e.g., a
logistic regression model), which can then be used to classify user
roles in another network, based on the role membership features in
the target dataset obtained in the same way.

4.2 proposed method

In this section, we illustrate the detailed procedure of our transfer
learning–based approach for cross-network user study. To better
explain our approach, we use the user role transfer task on the Wiki-
talk datasets as a running example.

example The Wiki-talk dataset is a set of user interaction networks
in different languages of Wikipedia, where each directed edgeSee Appendix C for a

more detailed
description of the
Wiki-talk dataset. (User ID A, User ID B, timestamp)

represents a user interaction: User A wrote a message on User B’s talk
page at a certain time.

Each Wikipedia user has an access level [79], which we interpret as
the following roles:

• Administrator. Administrators refer to the accounts that have
high level of access to contents and maintenance tools in Wikipedia.

• Bot. Bots are used in Wikipedia for automatically or semi-
automatically improving contents.
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• Normal user. Other users that are not categorised as administra-
tors or bots.

The proportions of both bots and administrators vary highly among
all sub-datasets, from 0.0027% to 5.97% and from 0% to 0.72% respec-
tively.

The user role transfer task assumes the complete knowledge of user
roles in the source network, and tries to predict the unknown user
roles in the target network.
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4.2.1 Overview

Figure 4.1 shows the overview of the transfer learning procedure of
TraNet, which can be divided into two parts: training (top row) and
application (bottom row).

4.2.1.1 Feature matrix

In both training and application parts, we generate structural features
of nodes from the corresponding network (the source network GS for
the training part, and the target network GT for the application part).
The feature generation processes for both parts can be done separately,
because we do not assume the availability of the target dataset during
the training part. In each part, with a social network G as input, we
extract the feature matrix Xn×dim, where n is the number of nodes in
G, and dim is the dimension of the structural features.

Inside Xn×dim, each node (user) has dim structural features xj with
j ∈ {1, 2, . . . , dim}, which are expected to be non-domain-specific. We
have the following three steps to get the feature matrix X:

• base feature extraction;

• feature transformation;

• feature aggregation.

They will be explained respectively in the following subsections.

4.2.1.2 User labels

In the source dataset, we also have the ground truth of user labels
in the network during training, which is denoted as a vector yS of
length nS, where nS is the size (i.e., number of nodes) of the source
network. Each value yi ∈ {1, 2, . . . , l} with i ∈ {1, 2, . . . , nS}) in yS
denotes the label of the ith user, where l is the total number of possible
user labels.

With yS and the feature matrices XS, XT of both source and target
networks, the user label prediction problem reduces to a classification
problem in machine learning.
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example In the Wiki-talk dataset we use, we have the following
three roles: “Administrator”, “Bot” and “Normal user”, thus y can
be set to have three values: y ∈ {1, 2, 3}, with each representing a
role respectively. However, if we wish to build binary classifiers for
“Administrator” and “Bot”, then we can as well set y to be binary
for each classifier. For instance for the Administrator classifier y can
take the value in {1, 2}, and 1 represents an Administrator, 2 a non-
Administrator. In our implementation we choose the latter approach,
in order to analyse the performance of the classifier for each role.

4.2.2 Base feature extraction

In social networks, users behave in different ways. A user’s behaviour
is reflected in her surrounding network structure, and thus we can
examine the structural features of a node to study the user. For
instance, users with similar social behaviour can be classified into the
same role. Thus, we can examine the common neighbourhood patterns
of nodes with the same role to build a structural profile of this role,
and use it to identify the roles of other users with their extracted
structural features. [31].

Structural features of nodes can be extracted by looking at only the
structure (e.g., the adjacency matrix) of the network, without requiring
information on additional attributes of nodes or links (e.g., users’
geolocation as node attributes, or message contents as link attributes
in a user interaction network) [32]. In traditional machine learning, it
is often helpful to take this additional information into consideration.
However, these node and link attributes are usually domain-specific,
and may not be applicable in other domains. In transfer learning,
blindly transferring knowledge may not be successful, or even make
the performance of learning worse [61]. On the contrary, structural
features are usually common across networks. Therefore, in this study
we only consider structural features.

Given the adjacency matrix A of a network, we compute the following
five structural features for each node as its base features:See Section 2.5 for

structural properties
of nodes.

• k: The degree of a node;

• kin: The indegree of a node;

• kout: The outdegree of a node;

• ccore: The coreness of a node;
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• Clocal: The local clustering coefficient of a node [77]. We ignore
edge directions when we compute the local clustering coefficient
for each node;

• pr: The PageRank of a node [59].

example In Figure B.5 we show the base feature distributions of
nodes in the Wiki-talk-en network. The feature distributions of the
other Wiki-talk networks are shown in Appendix B.
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Figure 4.2: The base feature distribution of the Wiki-talk-en network.
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4.2.3 Feature transformation

The main challenge in transfer learning is that the distributions of
features differ between the source and target datasets. Thus, features
that are extracted from different networks are often not directly com-
parable. Therefore, after all base features are extracted, we transform
them via different methods in order to make them comparable across
networks. The transformation of features to a dataset-independent
space of values is performed separately for each dataset.

Feature transformation is especially difficult since the target dataset
might not be seen during the training phase [4, 39]. In our approach,
the general idea of feature transformation is to define a common fea-
ture distribution for each kind of base feature, which is more likely to
be comparable across networks. Therefore, the feature transformation
procedure is network-independent and order-free, i.e., we do not need
to access the target network when we perform feature transformation
for the source network, and vice versa.

In the following, we discuss the different transformation methods we
use in TraNet.

4.2.3.1 Quantile transformation

The quantile transformation transforms any given feature value into
its quantile value [65], which is always within the range [0, 1). The
quantile of a feature value is defined as the probability that any value
in this domain is less than this value:

x′ = quantile(x) = P(xj < x), j ∈ {1, 2, . . . , |x|}, (4.1)

where x′ serves as the transformed feature value. For example, if the
original feature values are:

x = [1, 0, 1, 5, 2] (4.2)

then the transformed feature values x′ (quantiles) will be:

x′ = [0.2, 0, 0.2, 0.8, 0.6] (4.3)

Considering the definition of quantile, the transformed features always
have a value within [0, 1), and thus they are comparable across feature
domains. In our implementation, we use the quantile transformation
for the base feature local clustering coefficient.



118 learning across networks

However, using the quantile transformation will lose information of
the original feature’s distribution. Here we consider a simple example:
A different set of original feature values [1, 0, 1, 5, 4] will also lead
to the same quantiles [0.2, 0, 0.2, 0.8, 0.6] as in the previous example.
More generally, x′ will be uniformly distributed within [0, 1), if there
are no equal values in the original feature values x, regardless of the
distribution in x.

4.2.3.2 Power-law transformation

Many real world networks exhibit power-law alike degree distribu-
tions [18, 52], whose analytical form can be approximated by theSee Section 2.4.2 for

details about
power-law degree

distributions.

following equation:
p(x) = c · x−α. (4.4)

In Chapter 3 we have intensively studied the generative mechanics
where power-law alike degree distributions can emerge, including
preferential attachment, heterogeneous fitness, and ageing.

For some other base features such as the coreness, our empirical
observations also show that they follow power-law distribution ap-
proximately in real social networks (Figure B.5d).

Now, assume a base feature x follows power-law approximately, using
this prior knowledge, we can plug in the idea of quantile transforma-
tion as in Equation (4.5), and transform x into one common power-law
distribution: ∫ x

xmin

p(x)dx =
∫ x′

x′min

p′(x′)dx′ (4.5)

We choose the power-law distribution:

p′(x′) = x′−2 (x′ ∈ [1, +∞)) (4.6)

as the target distribution of transformation for the ease of calculation.
Combining Equations (4.4), (4.5) and (4.6), we get:

x′ =

(
x

xmin

)α−1

, (4.7)

where xmin is the minimum value of x, and x′ is the transformed
feature value.
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Figure 4.3: Degree distributions of networks Wiki-talk-de and Wiki-talk-fr, be-
fore and after the power-law transformation. Each dot in the plot
represents the probability (Y axis) of a degree value (X axis) in the
network. Two separated curves overlap after the transformation.
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Considering our scenario, degree k or coreness ccore starts from 1
in most cases, the formula can thus be further simplified to, for
instance,

x′ = kα−1, k ≥ 1. (4.8)

In our implementation, we use the power-law transformation for
the base features degree, indegree, outdegree, and coreness. We
use the method by Clauset et al. [18] to fit a power-law distribution
and estimate the exponent α. For features that do not start from 1
such as the indegree and the outdegree, we only perform fitting and
transformation on the values that fulfil power-law distribution well.

example Figure 4.3 shows the degree distributions of two networks
before and after our transformation. The original curves of degree
distributions are clearly separated (as in Figure 4.3a), while being
overlapping after the transformation (as in Figure 4.3b). This indicates
that our transformation method can transform degree distributions
from different networks into a common power-law distribution.

4.2.3.3 PageRank transformation

The standard PageRank of nodes in a network is defined as the station-
ary probability distribution in a converged random surfing process,
i.e., the probability that a surfer is located at a certain node [59]. InSee Section 2.5.4 for

details about
PageRank.

a directed graph G(V, E), the PageRank pr(v) of a node v is defined
as:

prv = (1− α) ∑
(u,v)∈E

pru
kout

u
+

α

|V| , (4.9)

where α is the random teleportation parameter, and kout
u is the outde-

gree of u.

PageRank is usually used to measure the centrality of nodes in directed
networks. However, PageRank is not applicable to compare nodes
from different networks, because it is not independent of the network
size. Berberich et al. have pointed out that, as a network gets larger, the
PageRank values of nodes tend to get smaller. In order to overcome
this problem, they have proposed normalised PageRank [8], which is
defined by:

p̂rv =
prv

prlow
, (4.10)
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where prlow is the theoretical lower bound of the PageRank considering
the random teleportation at each step of the random walk and at
dangling nodes (i.e., nodes with outdegree zero):

prlow =
1
|V|

(
α + (1− α) ∑

w∈D
prw

)
, (4.11)

where D ⊆ V denotes the set of dangling nodes in the network. The
normalised PageRank has been proved to be independent of network
size and comparable across networks [8]. Hence, we use it as a
transformation for our base feature PageRank.

4.2.4 Feature aggregation

It is important to notice that, inside a network, one can characterise a
node not only by who it is, but also who are its neighbours, and where
it is located. In terms of machine learning, we do not only consider a
node’s local features, but also look into its neighbourhood’s features
and the network structure around it. Inspired by the idea of recursive
features proposed in [32], for each node in the network, we generate
its neighbourhood features by aggregating its neighbours’ features step
by step. For more details, in the first round, for each node and each
local feature, we compute the average feature value of its neighbours,
and store it as a new feature. In the following rounds, we aggregate
the features that we get in the last round in the same way.

Obviously, this repetitive progress can be done infinitely without the
limitation of a round number. And if we continue this repetitive
progress, the resulting feature will converge to a certain vector which
is the right eigenvector of the P matrix [51], thus will provide less and See Section 2.1.3 for

details about
eigenvectors. See
Section 2.5.3 about
the P matrix.

less information and will increase the computational overhead. Hence,
we introduce a parameter r to limit the number of rounds that we
perform feature aggregation.

We now explain the vectorised version of the feature aggregation
algorithm. With the adjacency matrix A of the network, and the base
feature matrix X0 where X0(u,j) is the jth base feature value of node u
after feature transformation, we have a vectorised way to perform the
feature aggregation using matrix multiplication.



122 learning across networks

2 4 6 8 10
Number of rounds r

0.0

0.2

0.4

0.6

0.8

1.0
M

ax
im

um
 a

bs
ol

ut
e 

va
lu

e 
of

 

Wiki-talk-en
Wiki-talk-de
Wiki-talk-fr

(a) Degree

2 4 6 8 10
Number of rounds r

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 a
bs

ol
ut

e 
va

lu
e 

of
 

Wiki-talk-en
Wiki-talk-de
Wiki-talk-fr

(b) Local clustering coefficient
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(d) Coreness

Figure 4.4: Convergence procedure of aggregating neighbourhood features
for (a) degree, (b) local clustering coefficient, (c) PageRank and
(d) coreness in different datasets (each curve represents a dataset).
The X axis shows the round number of feature aggregation, while
the Y axis shows the maximum absolute value of the Pearson
correlation coefficient ρ between the newly generated neighbour-
hood features of the current round and the previous round. New
features with bigger ρ provide less information [29]. In most
cases, ρ gets larger than 0.9 (indicated by the dashed horizontal
lines) within 5 rounds. We omit other datasets and features here,
since they show similar patterns.



124 learning across networks

Algorithm 1 shows the pseudocode for the feature aggregation progress,
with A, X0 and r as input. The matrix Xi (i ∈ {1, 2, . . . , r}) is the neigh-
bourhood feature matrix generated in round i. Finally, concatenating
X0, X1, . . . , Xr horizontally, we get the output which is the structural
feature matrix X for the given network.

Algorithm 1 Aggregating neighbourhood features

Input: A, X0, r
Output: X . Aggregated feature matrix

1: procedure FeatureAggregation(A, X0, r)
2: A← sgn(A + A′) . Make the graph undirected

and simple
3: D← diag(A · 1n·1)
4: P← D−1 ·A
5: for i← 1, r do
6: Xi ← P · Xi−1
7: end for
8: X← concatenate(X0, X1, . . . , Xr)
9: end procedure

4.2.4.1 Optimum of parameter r

The parameter r was introduced to limit the number of rounds that
we perform feature aggregation. Clearly, new features that are highly
correlated with old features can provide less information [29].

In order to determine an optimum r for general cases, we now use
different networks in the Wiki-talk dataset, and compute the aggre-
gational features for different base features. In each round of the
aggregation, we compute the maximum absolute value of Pearson
Correlation ρ between the newly generated aggregational feature and
all features that are generated in previous rounds (including the base
feature). The result is shown in Figure 4.4.

From the result we can see, in most cases, after 6 rounds, the aggrega-
tional feature that is newly generated gets highly correlated (ρ > 0.9)
to the ones that are generated in previous rounds. Hence, we recom-
mend to set the default value of r to 5, in order to achieve a good
balance between classification performance and computational power
consumption.
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4.2.5 Reduction to classification problem

In the training part of our transfer learning procedure, once we get
the feature matrix XS for the source dataset, with the labelled user
roles yS, the problem of user role prediction reduces to a classification
problem. Hence, we are able to train a classifier that classifies nodes
(users) into their correct classes (labels).

In the training part, we optimise a predictive function ypredict = f (x)

that maps the input data (i.e., a node’s features x) into a user label
ypredict ∈ {1, 2, . . . , l} with a certain probability, such that ypredict best
matches yS [11, 30].

Such a predictive function f can be regarded as a user label classifier
which classifies nodes into different labels in other networks, since the
features in XS are expected to be non-domain-specific, and are already
transformed in a way that they can match across networks. In the
application part, we use f to compute ypredict for all nodes in GT in
order to predict user labels in the target network.

The actual classification and optimisation algorithm is however not
the main focus of the dissertation. In our implementation, we use a
random forest classifier [45]. The parameters of the random forest
classifier are set according to the method used by Oshiro and col-
leagues [58]. Once the classifier is trained, it is able to return the
probability that each node (user) belongs to each class (label), given
the structural features of the node as input. And it can be saved to
classify user labels in multiple target datasets.

In the application part, once we obtain the feature matrix XT for the
target dataset, we can use the pre-trained classifier to predict the user
labels yT in the target network.

4.3 evaluation

In this section, we show the experimental evaluation of the role transfer
task in the Wikipedia user interaction networks. We also show the
task of identifying trusted users in ARIS Community as another use
case of TraNet. We compare the performance of TraNet with other
approaches in terms of the ROC-AUC scores.
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4.3.1 Evaluation metric

In the experiments, we use the ROC-AUC score to measure the perfor-
mance of the classifiers. ROC stands for “receiver operating charac-
teristic curve”. Classification results typically come with the form of
probabilities which allows us to choose different thresholds of proba-
bility for the classification, and adjust the true positive rate and the
false positive rate accordingly. The ROC displays a graph of the true
positive rate against the false positive rate of the classifier [26]. The
ROC-AUC score measures the area under the ROC, thus it considers
both the true positive rate and the false positive rate, under differ-
ent probability thresholds. Higher ROC-AUC score indicates better
performance of the classifier.

4.3.2 Baselines

We choose the following baselines to compare the performance of our
approach, TraNet. We have also tried approaches such as the transfer
component analysis (TCA) [60], but have found that they do not scale
to suit our applications.

• None: training a model from the source network and directly
applying it to the target network. This serves as a lower-bound
baseline, since no feature transformation is done.

• Trad.: traditional machine learning (i.e., training a model from
partial data in a network and apply it to the rest data in the
same network). This serves as an upper-bound baseline, since
training and test data are sampled from the same domain, and
no transformation is necessary.

• SVD: performing feature transformation based on the singular
value decomposition (SVD) proposed by Agirre and De La-
calle [2].

• TrAdaBoost: performing transfer learning with TrAdaBoost pro-
posed by Dai et al. [19]. TrAdaBoost has a different setting from
ours: It requires partially labelled data from the target network.
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4.3.3 Evaluation of role transfer in Wiki-talk networks

In this subsection, we use Wiki-talk to evaluate the performance of our
transfer learning approach, and try to identify administrators among
bots and normal users.

4.3.3.1 Administrator classifier

We use all 14 sub-datasets in Wiki-talk with sufficiently many (≥ 25)
users labelled as “Administrators”, and build 14 binary classifiers for
administrators respectively. Each of the classifier is then applied to
predict the administrators in the other 13 sub-datasets. Therefore,
we evaluate the classification performance of 182 pairs of source and
target datasets.

As shown in Figure 4.5a, we can achieve high ROC-AUC when we use
traditional machine learning, which means identifying administrators
in the network is achievable given the network structure using our
approach. Transfer learning with SVD and TrAdaBoost is ineffective
with decreased performance (0.894 and 0.590 on average, respectively),
compared with the transfer learning without feature transformation
(0.971 on average). Our transfer learning approach can achieve the
best performance with an average ROC-AUC of 0.982, improving by
more than 1% compared with the transfer learning without feature
transformation (0.971 on average).

4.3.3.2 Bot classifier

Similarly, we train 20 bot classifiers respectively from the Wiki-talk
networks with sufficiently many (≥ 50) users labelled as “Bots”. Each See Table 2 in

Appendix C for meta
information of the
Wiki-talk networks.

of the classifier is then applied to predict the bots in the other 19
networks. Therefore, we evaluate the classification performance of 380
pairs of source and target datasets.

The result is shown in Figure 4.5b. The ROC-AUC is only 0.713 for tra-
ditional machine learning. This means identifying bots is a relatively
more challenging task compared with identifying administrators. Be-
sides, similar to the situation in the administrator classifier, transfer
learning with SVD and TrAdaBoost shows decreased performance
(0.658 and 0.538 on average, respectively), compared with the trans-
fer learning without feature transformation (0.666 on average). Our
transfer learning approach TraNet can achieve an average ROC-AUC
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of 0.683, with an improvement of 2.5% compared with the transfer
learning without feature transformation (0.666 on average).

4.3.4 Evaluation of trust transfer in signed networks

In the previous subsection, we showed how our approach, TraNet, can
be applied to role analysis tasks in the Wiki-talk datasets. In order to
show that our approach can be generalised and applied to other types
of transfer learning tasks and heterogeneous types of data, in this
subsection, as one more concrete application, we try to apply TraNet
to predict trusted users on Web platforms.

4.3.4.1 Datasets

We now explain the three datasets we use in this experiment. The
detailed feature distribution of nodes in these networks can be found
in Appendix B.

• ARIS. This dataset contains a user interaction network in Soft-
ware AG’s ARIS Community. The ARIS Community is the
Business Process Management (BPM) system used by the Soft-
ware AG company, to enable better collaboration, engagement
and sharing. At the time we extracted it, it had 9,566 threads and
20,538 comments by 4,216 users, and the total user number was
394,716. Each directed edge (User ID A, User ID B, timestamp)

represents a user’s comment to another user’s post or comment.

• Slashdot-Zoo: This dataset is a signed network extracted from
Slashdot, consisting of 79,120 users and 515,397 directed rela-
tions [41]. In this network, each directed signed edge represents
a “friend” (positive) or “foe” (negative) relation from one user to
another on the technology news site Slashdot, where each user
can explicitly mark other users as their friends or foes in order to
increase or decrease the chance to see their posts. 23.91% edges
are negative.

• Epinion-Trust: This dataset is a signed network of Epinions,
an online product rating site [48]. It consists of 131,828 users
and 841,372 directed, signed edges, each representing a trust
(positive) or distrust (negative) relation from one user to any
user (possibly herself). 14.70% edges are negative.
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Figure 4.5: ROC-AUC performance of the classifiers using different settings
(see Section 4.3.2). In each box plot, one data point corresponds
to the ROC-AUC score of a classifier that transfers user roles from
one Wiki-talk network to another. The orange bar shows the me-
dian value, while the green triangle shows the mean value of the
ROC-AUC in each experiment. Our approach TraNet achieves the
best average ROC-AUC among all transfer learning approaches
in both classification tasks. Note TrAdaBoost is omitted here due
to its poor performance.
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Table 1: Predicting trusted users in the target network ARIS with the knowl-
edge transferred from the two source networks Slashdot-Zoo and
Epinion-Trust respectively. The values in the table show the ROC-
AUC performance of the classifier in different settings (see Section
4.3.2). We can achieve the best performance with transfer learning
using our approach TraNet.

Source dataset
Slashdot-Zoo Epinion-Trust

None 0.7317 0.7662
SVD 0.6294 0.7203

TrAdaBoost 0.6896 0.7035
TraNet 0.8172 0.7953
Trad. 0.8556

4.3.4.2 Results

We compute the trusted users in Slashdot-Zoo and Epinion-Trust using
the EigenTrust algorithm [36], and use each of them as the source
dataset to learn a model respectively, and predict the trusted users
in ARIS. The result is shown in Table 1. It shows that performing
no feature transformation does not work well. Our approach TraNet
outperforms other transfer learning approaches, and can even achieve
the performance close to traditional within-network learning when
using Slashdot-Zoo as the source dataset.

4.4 summary

In this chapter, we propose TraNet, a transfer learning approach for
predicting user labels in unlabelled networks.

TraNet relies on the measurement of users’ social behaviour as node
structural features, the transfer of node structural features using fea-
ture transformation, the feature aggregation, and the classification
of nodes. TraNet provides a novel method to better analyse users
and their behaviour on, especially new, online platforms. We conduct
experiments on real network datasets with the tasks of user role and
trust transfer, and the results show the effectiveness of TraNet.



5
C O N C L U S I O N

This dissertation has studied two topics in network science: Phenom-
ena in growing networks, and learning across networks.

5.1 conclusion and outlook : phenomena in grow-
ing networks

We have systematically reviewed various existing preferential attach-
ment network models, and analysed how they each explains various
phenomena in real complex networks. We have reported the empirical
findings of the exponential network growth, and the time-invariance
of the degree growth in two real citation networks. We have then
proposed a novel analytical framework for preferential attachment
network models based on the empirical findings. With the new frame-
work we have achieved the following results analytically:

• We have shown that the linear and exponential network growths
are the only two cases that are consistent with the time transla-
tion symmetric degree growth.

• We have unified different condensation (winner-takes-all) phe-
nomena in complex networks.

• We have proved that ageing can prevent condensation (winner-
takes-all) with mild condition.

Our analytical results have been verified with extensive simulations.

For future research, the exponential growth of the network size cannot
sustain forever due to the limited number of potential nodes [67], so
it has to eventually slow down. Such a slowdown can be realised by
relaxing the model assumptions by, for instance, changing the fitness
distribution with time whilst still maintaining the time-invariant de-
gree growth. Another possibility is to relax the time-invariance of the
degree growth by allowing the parameters in our formalism to vary.

131



132 conclusion

The analytic form of the resulting network growth and its relation to
the degree distribution are also interesting to study.

We have based our observations on citation networks. The studied
model thus limits itself to no edge removal and edge creation only
at node arrival. Besides, its preferential attachment process only con-
siders local information of nodes, such as degree, fitness and ageing.
Lifting one or more of these limitations would enable extensions of
the model to work with more general networks.

5.2 conclusion and outlook : learning across net-
works

We have systematically studied the problem of predicting user labels
in unlabelled social networks, and proposed to use transfer learning
to transfer knowledge of user labels from known networks.

The proposed approach TraNet relies on the measurement of users’
social behaviour as node structural features, the transfer of node
structural features using feature transformation, the feature aggrega-
tion, and the classification of nodes. We have proposed a method of
transformation for power-law distributions. This method can be used
effectively in transfer learning tasks in network analysis on features
such as node degrees and coreness. We have applied TraNet on the
tasks of transferring user roles across the Wikipedia user interaction
networks of different languages, and identifying trusted users in the
ARIS Community, and the results have shown the effectiveness of
TraNet.

Future work in this topic may include extending TraNet and study
other problems in network analysis with transfer learning, such as
link prediction and friend recommendation. Moreover, we have been
focusing on the study of users in this dissertation. TraNet can also be
applied to study other entities on the Web, such as groups or products,
since they can also be represented as nodes in the network.
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A P P E N D I X : S U P P L E M E N TA RY R E S U LT F O R
C H A P T E R 3

In this appendix we provide the supplementary experimental results
for Chapter 3.

a.1 network growth curves of synthetic networks

a.1.1 Synthetic networks with heterogeneous fitness

Figure A.1 shows the network size growth curves of the synthetic
networks generated from the preferential attachment model with
heterogeneous fitness, without ageing (as in the Bianconi-Barabási
model) using our framework:

dki

dτi
∼ kiηi, (A.1)

with the fitness distribution

ρ(η) ∼ (1− η)λ, (A.2)

where λ is the parameter to be varied. The results for λ = 0.5 and
λ = 1.5 are already shown in Section 3.6.3.

In the plots, the green dashed lines indicate the asymptotic slopes of
the theoretical estimation of the network growth. The blue dashed
curves show the growth of the maximum degree in the networks. Note
that the plots use the linear-log scale.
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Figure A.1: The network growth curves of synthetic networks generated
using our framework with preferential attachment with heteroge-
neous fitness (Π ∼ kη as in the Bianconi-Barabási model). In each
plot the parameter λ of the fitness distribution ρ(η) ∼ (1− η)λ

is set different.
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a.1.2 Synthetic networks with heterogeneous fitness and ageing

We now show the supplementary experimental results of the network
growth curves of synthetic networks generated from the preferential
attachment model with heterogeneous fitness and ageing effect (as in
the relevance decay model) using our framework:

dki

dτi
∼ kiηiR(τ), (A.3)

with the fitness distribution

ρ(η) ∼ (1− η)λ, (A.4)

with different parameters λ and ageing functions R(τ). We evaluate
the power and exponential ageing as discussed in Section 3.3.3.

Figure A.2 shows the network growth curves of synthetic networks
with power function ageing. Figure A.3 shows the network growth
curves of synthetic networks with exponential ageing. In the plots, the
green dashed lines indicate the asymptotic slopes of the theoretical
estimation of the network growth. The blue dashed curves show the
growth of the maximum degree in the networks. Note that the plots
use the linear-log scale.



A.1 network growth curves of synthetic networks 141

0 2 4 6 8 10 12
Physical Time t

100

101

102

103

104

105

106
Network Size
Theo. Asymp.
Max Degree

(a) λ = 2.0, γ = 0.8
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Figure A.2: The network growth curves of the synthetic networks generated
using our framework with preferential attachment with heteroge-
neous fitness and power ageing (Π ∼ kηR(τ)). In each plot, the
parameters λ of the fitness distribution ρ(η) ∼ (1− η)λ, and γ
of the power ageing function R(τ) = (τ + 1)−γ, are set different.
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Figure A.3: The network growth curves of the synthetic networks generated
using our framework with preferential attachment with hetero-
geneous fitness and exponential ageing (Π ∼ kηR(τ)). In each
plot, the parameters λ of the fitness distribution ρ(η) ∼ (1− η)λ,
and γ of the exponential ageing function R(τ) = e−γτ , are set
different.
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a.2 degree distributions of synthetic networks

a.2.1 Synthetic networks with heterogeneous fitness

Figure A.4 shows the degree distributions of the synthetic networks
generated from the preferential attachment model with heterogeneous
fitness, without ageing (as in the Bianconi-Barabási model) using our
framework:

dki

dτi
∼ kiηi, (A.5)

with the fitness distribution

ρ(η) ∼ (1− η)λ, (A.6)

where λ is the parameter to be varied. The results for λ = 0.5 and
λ = 1.5 are already shown in Section 3.6.3.

In the plots, the green curves indicate the theoretical estimation of the
degree distributions. Note that the plots use the log-log scale.
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Figure A.4: The degree distributions of the synthetic networks generated
using our framework with preferential attachment with heteroge-
neous fitness (Π ∼ kη as in the Bianconi-Barabási model). In each
plot the parameter λ of the fitness distribution ρ(η) ∼ (1− η)λ

is set different.
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a.2.2 Synthetic networks with heterogeneous fitness and ageing

We now show the supplementary experimental results of the degree
distributions of synthetic networks generated from the preferential
attachment model with heterogeneous fitness and ageing effect (as in
the relevance decay model) using our framework:

dki

dτi
∼ kiηiR(τ), (A.7)

with the fitness distribution

ρ(η) ∼ (1− η)λ, (A.8)

with different parameters λ and ageing functions R(τ). We evaluate
the power and exponential ageing as discussed in Section 3.3.3.

Figure A.5 shows the degree distributions of synthetic networks with
power function ageing. Figure A.6 shows the degree distributions of
synthetic networks with exponential ageing. In the plots, the green
curves indicate the theoretical estimation of the degree distributions.
Note that the plots use the log-log scale.
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Figure A.5: The degree distributions of the synthetic networks generated
using our framework with preferential attachment with heteroge-
neous fitness and power ageing (Π ∼ kηR(τ)). In each plot, the
parameters λ of the fitness distribution ρ(η) ∼ (1− η)λ, and γ
of the power ageing function R(τ) = (τ + 1)−γ, are set different.
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(a) λ = 1.2, γ = 0.5
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(b) λ = 1.2, γ = 0.6
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(c) λ = 1.2, γ = 0.7
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(d) λ = 1.5, γ = 0.6
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Figure A.6: The degree distributions of the synthetic networks generated
using our framework with preferential attachment with hetero-
geneous fitness and exponential ageing (Π ∼ kηR(τ)). In each
plot, the parameters λ of the fitness distribution ρ(η) ∼ (1− η)λ,
and γ of the exponential ageing function R(τ) = e−γτ , are set
different.



B
A P P E N D I X : S U P P L E M E N TA RY R E S U LT F O R
C H A P T E R 4

In this appendix we provide the supplementary results for Chap-
ter 4.

b.1 base feature distributions of wiki-talk networks

In the following we show the base feature distributions of nodes in
the Wiki-talk networks, apart from the ones of Wiki-talk-en which are
shown in Figure B.5 in Section 4.2.2.
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Figure B.1: The base feature distribution of the Wiki-talk-ar network.
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Figure B.2: The base feature distribution of the Wiki-talk-ca network.
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Figure B.3: The base feature distribution of the Wiki-talk-de network.
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Figure B.4: The base feature distribution of the Wiki-talk-el network.
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Figure B.5: The base feature distribution of the Wiki-talk-en network.
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Figure B.6: The base feature distribution of the Wiki-talk-eo network.
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Figure B.7: The base feature distribution of the Wiki-talk-es network.
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Figure B.8: The base feature distribution of the Wiki-talk-eu network.
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Figure B.9: The base feature distribution of the Wiki-talk-fr network.
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Figure B.10: The base feature distribution of the Wiki-talk-it network.
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Figure B.11: The base feature distribution of the Wiki-talk-ja network.
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Figure B.12: The base feature distribution of the Wiki-talk-lv network.
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Figure B.13: The base feature distribution of the Wiki-talk-nds network.
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Figure B.14: The base feature distribution of the Wiki-talk-nl network.
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Figure B.15: The base feature distribution of the Wiki-talk-oc network.
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Figure B.16: The base feature distribution of the Wiki-talk-pl network.
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Figure B.17: The base feature distribution of the Wiki-talk-pt network.
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Figure B.18: The base feature distribution of the Wiki-talk-ru network.
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Figure B.19: The base feature distribution of the Wiki-talk-sk network.
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Figure B.20: The base feature distribution of the Wiki-talk-sr network.
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Figure B.21: The base feature distribution of the Wiki-talk-sv network.



B.1 base feature distributions of wiki-talk networks 221

100 101 102 103 104

Degree

100

101

102

103

104

105

Nu
m

be
r o

f N
od

es

(a) Degree distribution

100 101 102 103

Indegree

100

101

102

103

104

105

Nu
m

be
r o

f N
od

es

(b) Indegree distribution



222 appendix : supplementary result for chapter 4

100 101 102 103 104

Outdegree

100

101

102

103

Nu
m

be
r o

f N
od

es

(c) Outdegree distribution

100 101 102 103

Coreness

100

101

102

103

104

105

Nu
m

be
r o

f N
od

es

(d) Coreness distribution



B.1 base feature distributions of wiki-talk networks 223

0.0 0.2 0.4 0.6 0.8 1.0
Local Clustering Coefficient C local

10 5

10 4

10 3

10 2

10 1

100
P(

X
C

lo
ca

l )

(e) Local clustering coefficient distribution

10 5 10 4

PageRank pr

10 5

10 4

10 3

10 2

10 1

100

P(
X

pr
)

(f) PageRank distribution

Figure B.22: The base feature distribution of the Wiki-talk-vi network.
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Figure B.23: The base feature distribution of the Wiki-talk-zh network.
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b.2 base feature distributions of aris , slashdot-
zoo and epinion-trust

In Figure B.24 we show the base feature distributions of nodes in the
ARIS network.

In Figure B.25 we show the base feature distributions of nodes in the
Slashdot-Zoo network.

In Figure B.26 we show the base feature distributions of nodes in the
Epinion-Trust network.
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Figure B.24: The base feature distribution of the ARIS network.
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Figure B.25: The base feature distribution of the Slashdot-Zoo network.
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Figure B.26: The base feature distribution of the Epinion-Trust network.



C
A P P E N D I X : W I K I - TA L K D ATA S E T

In this appendix, we describe the Wiki-talk datasets, which consist of
the user interaction networks of all user talk pages in Wikipedia, in 28
languages. Each user is represented by her original Wikipedia user
ID, and is assigned a role, according to her access level in Wikipedia.
We also show how to use the parser provided by us to keep the data
up-to-date and how to customise the datasets.

c.1 description

In Wikipedia, each registered user has a talk page that can be used for
discussion. We extract the user interaction networks of all user talk
pages of Wikipedia in the 28 languages with the highest number of
articles (at the time of dataset creation). The 28 languages are, listed
alphabetically by their ISO 639 code: ar, bn, br, ca, cy, de, el, en, eo, es,
eu, fr, gl, ht, it, ja, lv, nds, nl, oc, pl, pt, ru, sk, sr, sv, vi, zh.

Each language forms an individual directed network, in which each
node is a Wikipedia user represented by her original Wikipedia user ID,
and each directed edge (User ID A, User ID B, timestamp) represents
a user interaction: User A wrote a message on User B’s talk page at a
certain time.

c.1.1 User roles

In the dataset, each user has an access level [79] that is defined by
Wikipedia, which we interpret as the following roles:

• Administrator. Administrators refer to the accounts that have
high level of access to contents and maintenance tools in Wikipedia.
We combine the users that are granted as “sysops” or “bureau-
crat” by the communities at RfA or RfB3, and label them as 3 Requests for

adminship (RfA),
Requests for
bureaucratship (RfB)

administrators.

237



238 appendix : wiki-talk dataset

• Bot. Bots are used in Wikipedia for (semi-)automatically improv-
ing contents. Bot accounts are marked as “bot” by an adminis-
trator, and each has specific tasks that it performs [78].

• Normal user. We categorise other users as normal users, who
are not categorised as administrators or bots.

c.2 insights

Table 2 shows some basic statistics of the datasets. All sub-datasets are
denoted as their language codes, e.g., de stands for the data from the
German Wikipedia. As we can see, all 28 networks have a variety of
sizes, from 504 (ht) to around 3 million (en). The proportions of both
bots and administrators are very small, although they vary highly
among all sub-datasets, from 0.0027% to 5.97% and from 0% to 0.72%
respectively.

c.3 download and parsing

We parsed the Wikipedia dump files (xml) to Wiki-talk networks at
the end of 2015. Users can download the parsed datasets at Zenodo1

which is an open platform for dataset sharing. We have also open
sourced the parsing tool2 which we wrote in Clojure, in case users
want to re-parse the datasets, or customise them, such as adding new
roles.

c.3.1 Parsing with Stu

Using Stu3 to parse the dataset is the most convenient way. The only
file that is needed is main.stu. Simply type in stu or, preferably:

nohup s t u −k − j 3 &

Stu will automatically start downloading this program and the dump
files and parse them.

1 https://dx.doi.org/10.5281/zenodo.49561
2 https://github.com/yfiua/wiki-talk-parser
3 https://github.com/kunegis/stu



C.4 license 239

c.3.2 Parsing without Stu

Parsing the dataset without Stu is also viable. However, multiple steps
need to be taken care of manually.

• Installation

Manually download the latest jar files from the “release” page.
Users need to download the Wikipedia dump files in xml format
from the Wikipedia website4, too.

• Parse

j a v a − j a r p a r s e r . j a r * i n p u t − f i l e * * l a n g * > * o u t p u t − f i l e *

• Shrink

“Shrink” the resulted network, so to make unweighted directed
networks without loops, as in the SNAP datasets [43].

j a v a − j a r s h r i n k e r . j a r * i n p u t − f i l e * > * o u t p u t − f i l e *

• Group users

Group users according to their roles.

j a v a − j a r g r o u p e r . j a r * i n p u t − f i l e * > * o u t p u t − f i l e *

• Compilation (optional)

Compile the parsing tool.

l e i n with − p r o f i l e p a r s e r : s h r i n k e r : g r o u p e r u b e r j a r

c.4 license

The datasets are published under the Creative Commons Attribu-
tion Share-Alike (CC BY-SA) 4.0 License [68]. The parsing tool is
distributed under the Eclipse Public License either version 1.0 or any
later version.

4 https://dumps.wikimedia.org
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Table 2: Meta information of Wiki-talk networks

Lang # Nodes # Edges # Bots # Admins % Bots % Admins

ar 1095799 1913103 30 37 0.0027% 0.0034%
bn 83803 122078 18 16 0.0215% 0.0191%
br 1181 13754 43 8 3.6410% 0.6774%
ca 79736 351610 179 25 0.2245% 0.0314%
cy 2233 10740 39 16 1.7465% 0.7165%
de 519403 6729794 328 246 0.0631% 0.0474%
el 40254 190279 58 20 0.1441% 0.0497%
en 2987535 24981163 278 1313 0.0093% 0.0439%
eo 7586 47070 130 21 1.7137% 0.2768%
es 497446 2702879 34 75 0.0068% 0.0151%
eu 40993 58120 81 10 0.1976% 0.0244%
fr 1420367 4641928 97 163 0.0068% 0.0115%
gl 8097 63809 12 14 0.1482% 0.1729%
ht 536 1530 32 0 5.9701% 0.0000%
it 863846 3067680 137 104 0.0159% 0.0120%
ja 397635 1031378 51 49 0.0128% 0.0123%
lv 41424 73900 57 11 0.1376% 0.0266%

nds 23132 27432 56 5 0.2421% 0.0216%
nl 225749 1554699 237 50 0.1050% 0.0221%
oc 3144 11059 51 4 1.6221% 0.1272%
pl 155820 1358426 55 115 0.0353% 0.0738%
pt 541355 2424962 205 64 0.0379% 0.0118%
ru 457017 2282055 77 90 0.0168% 0.0197%
sk 41452 131884 105 8 0.2533% 0.0193%
sr 103068 312837 132 22 0.1281% 0.0213%
sv 120833 598066 41 72 0.0339% 0.0596%
vi 338714 607087 123 23 0.0363% 0.0068%
zh 1219241 2284546 93 77 0.0076% 0.0063%



N O M E N C L AT U R E

η The fitness of a node

f̂ ,L{ f } The Laplace transform of function f

A The adjacency matrix of a graph

D The degree matrix of a graph

pr The PageRank of a node

Π The preferential attachment selection probability of a node

ρ(η) The fitness distribution

τ The age of a node in physical time

ccore The coreness of a node

Clocal The local Clustering coefficient of a node

E The set of edges (links) in a network

f ? g The convolution of functions f and g

G A graph or a network

g(t) The derivative of the network size with respect to the physical time t

h(τ) The average degree increase of a node as a function of the node age τ

k The degree of a node

kin The indegree of a node

kout The outdegree of a node
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M The volume of a network

N The size of a network

P(k) The degree distribution as probability mass function

p(k) The degree distribution as probability density function

R(τ) The ageing function

s The system time

si The system time at which node vi joins the network

t The physical time

ti The physical time at which node vi joins the network

V The set of vertices (nodes) in a network

Z The normalisation factor, a.k.a. the partition function
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angegebenen Quellen und Hilfsmittel benutzt habe; aus fremden Quellen entnommene
Passagen und Gedanken sind als solche kenntlich gemacht.

Declaration of authorship

I hereby certify that the dissertation entitled “Phenomena in growing networks and
learning across networks” is entirely my own work except where otherwise indicated.
Passages and ideas from other sources have been clearly indicated.

Koblenz, May 9, 2021

Jun Sun


