
Enhancing Fluid Animation with Fine
Detail

Von der Fakultät für Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Dieter Hubertus Valentin Morgenroth

aus Scheßlitz

Hauptberichter: Prof. Dr. Daniel Weiskopf
Mitberichter: Prof. Dr. Bernhard Eberhardt

Tag der mündlichen Prüfung: ..

Visualisierungsinstitut
der Universität Stuttgart

Contents

List of Figures vi

List of Tables viii

List of Abbreviations and Acronyms ix

List of Symbols xi

Acknowledgments xiii

Abstract xv

German Abstract xvii

 Introduction
. Research Challenges .
. Outline and Contributions .
. Reused and Copyrighted Material

 Background
. Visual Effects Workflow for Physically Based Fluid Animation
. Small-scale Effects .

.. Meniscus Effect .
.. Iridescence Effect .

. Length Scales in Fluid Mechanics
. Navier-Stokes Equations .
. Smoothed Particle Hydrodynamics – A Lagrangian Method . .

.. Spatial Discretization .
.. Discretization of Differential Operators
.. Time Integration .
.. PCISPH .
.. Acceleration Structures

iii

iv contents

. Projection Method – An Eulerian Method
.. Incompressibility .
.. Conjugate Gradient Solver

 Distributed VFX Architecture for SPH Simulation
. Brute Force Approach .
. System Architecture .
. Simulation .

.. Neighbor Search .
.. Collision Detection .
.. Blind Particles .
.. Implementation Details

. Rendering .
. Results .

.. Performance Results .
.. User Study .

. Summary .

 Direct Raytracing of a Closed Form Meniscus
. Introduction .
. Previous Work .
. Theoretical Background .
. Implicit Meniscus Model .
. Menisci in the SPH Setting .
. Implementation and Results .

 Efficient D Simulation on Evolving D Surfaces
. Related Work .
. Model .

.. Overview .
.. Evolution of the Surface
.. Coupling .
.. Modeling the Dynamics on the Surface
.. Examples .

. Method .
.. Data Input .
.. Convert to Signed Distance Field
.. Create Narrow-Band Grid
.. Surface Evolution .
.. Coupling of Dynamics
.. Solve PDE and Advect
.. Implementation .

. Results .

contents v

.. Versatility and Simulation Quality
.. Performance .

 Conclusion
. Summary .
. Discussion .
. Future Research Directions .

A System Survey Results
A. System Usability Scale .

A.. Additional Questions .
A.. Background .

B Samples

Co-Authored References

References

List of Figures

. Meniscus in glass .
. Rainbow effect on thin film .

. Typical building blocks for VFX production processes.
. Concave and convex meniscus .
. Water molecule .
. Hydrogen bonds between water molecules
. Adhesion forces between water and glass
. Illustration of contact angles .
. Sodium chlorid molecule .
. Path of a light ray that is reflected by a thin film
. Different length scales of fluid phenomena
. Different Knudsen numbers require different governing equations
. Lagrangian view and Eulerian view shown side-by-side
. Three SPH particles with a graphical representation of the kernel

function .
. Typical kernel functions that are used in SPH.
. Neighborhood of a particle .
. Particles sorted according to space-filling Morton code curve. . . .

. Architecture overview: outsourcing simulation tasks to remote hosts.
. SPH simulation coupled with an IK skeleton.
. Remote procedure call architecture.
. Surface generation without and with blind particles
. SPH particles color-coded by particle type
. BVH for a motion-blurred isosurface
. Rendering of a particle cube .
. Different time steps of the dambreak simulation.
. Different render element channels
. Particle count of active particles .
. Rendering times for the blind particle and conventional methods .

vi

list of figures vii

. Meniscus at vertical wall.
. Meniscus shape as a function of the arc-length
. Flat-wall meniscus for different contact angles
. Contact angle α, tilt angle of wall β, and the correction length d. .
. Meniscus at different wall inclinations.
. The analytic meniscus combined with the Zhu-Bridson algorithm
. Ingredients needed at render time in the ray intersection step. . .
. Ghost particles in a collision object
. Comparison of different correction scenarios
. Drop on surface with varying material properties
. Comparison of meniscus rendering with real picture
. Rendering of a meniscus at a slanted border
. Comparison between rendering and real picture for the “shadow

sausage effect” .
. Frame from an animation of filling a glass
. Renderings of three test scenes .

. Water polluted with oil is poured into a cup
. The seven steps of the presented method as a flow chart
. Illustration of the map O that relates p ∈ M and p′ ∈ M′
. The map O transforms velocity vector v
. Rotating sphere with a fluid surface
. Thermal convection on a hemisphere
. Different surface simulations on the same input data
. Distance field in narrow-band around the surface
. The CPM extension step .
. Simulated density over time on a growing and shrinking sphere .
. Fluid flow simulation on top of a river bed simulation
. The mean error for different grid sizes
. Pouring polluted water into a bowl
. The calculation costs of a simulation step

B. Blind particles in animation of fluid poured into a glass
B. Dam break simulation with M particles
B. Vector length conservation .
B. Mass conservation .
B. Dam break .
B. Reaction-diffusion .
B. Thermal convection sequence .

List of Tables

. Simulation time for frames.
. Rendering times (min:sec).

. Different computing times for the performance test scenes

B. Comparison of fluid meniscus renderings
B. Image sequence for pouring polluted water

viii

List of Abbreviations and

Acronyms

Abbreviations

D two-dimensional

D three-dimensional

AI artificial intelligence

AWS Amazon Web Services

BVH bounding volume hierarchy

CFL Courant–Friedrichs–Lewy

CG computer generated

CGI computer generated images

CPU central processing unit

CPM closest point method

GPU graphics processing unit

IoR index of refraction

IK inverse kinematics

ML machine learning

ODE ordinary differential equation

OpenCL Open Computing Language

OpenMP Open Multi-Processing

ix

x list of abbreviations and acronyms

PCISPH predictive-corrective incompressible Smoothed Particle
Hydrodynamics

PDE partial differential equation

RPC remote procedure call

SDK software development kit

SOP surface operator

SPH Smoothed Particle Hydrodynamics

VFX visual effects

Units

MB Megabyte

List of Symbols

Operators

Symbol Explanation

∇· divergence: ∇· =
(

∂
∂x1

+ ... + ∂
∂xn

)
∇ gradient: ∇ =

(
∂

∂x1
, ..., ∂

∂xn

)T

∇2 Laplacian: ∇2 =∇ · ∇ =

(
∂2

∂x2
1
+ ... + ∂2

∂x2
n

)
D
Dt material derivative: D

Dt =
∂
∂t + v · ∇

||.|| Euclidean norm

ẋ first time derivative ẋ = ∂x
∂t

⊗ tensor product of two vector spaces

Greek Symbols

Symbol Units Explanation

αY deg contact angle
β deg tilt angle of the wall
η - coefficient for thermal expansion
γ Nm−1 interface tension
κ m2 s−2 (pressure) stiffness constant
µ kgm−1 s−1 dynamic viscosity
µd m2 s−1 diffusion coefficient
ν m2 s−1 kinematic viscosity
ψ deg angle to horizontal plane
ρ kgm−3 mass density
σ Nm−1 interfacial tension

xi

xii list of symbols

Symbol Units Explanation

σ kgm−3 s−1 substance generation coefficient
T K temperature

Latin Symbols a-z, A-Z

Convention throughout this work is to write scalar values with normal charac-
ters and vector values with bold characters.

Symbol Units Explanation

a ms−2 acceleration
dv - volume integration variable
d m correction length
f N external force acting on fluid
g ms−2 gravitational acceleration
h m kernel smoothing length
l m capillary length
m kg mass
n m normal on surface
p Nm−2 pressure
p m point on surface
r m distance to particle
t s time
u ms−1 velocity with u = (u,v,w)T

v * arbitrary vector value
x m position in world coordinates
y m distance above horizontal level
H m−1 mean curvature
M - evolving surface space
O - map that relates elements between time

steps
TpM m−3 tangent space at point p
W(r, h) - kernel function with distance r and support

radius h

Acknowledgments

To begin with, I would like to express my gratitude to Daniel Weiskopf and
Bernd Eberhardt for letting me start this adventure despite my advancing age,
long break from academics, and limited time budget. I am grateful for your
support throughout this process. Thank you for allowing me to be your Ph.D.
student as an external part time student. I always felt welcome and enjoyed
every Tuesday when I was joining the weekly meetings. Thank you for your
patience on this long journey. Your guidance and example improved both my
academic work and my personality.

I want to thank the Kooperatives Promotionskolleg Digital Media for accepting
me as an external student. I enjoyed being part of it, and I profited a lot from
the excellent atmosphere of the team: Jan Fröhlich, Lena Gieseke, Sebastian
Herholz, Markus Huber, David Koerner, Tim Krake, Stefan Reinhardt, and
Benjamin Wollet.

I also want to thank my co-authors and collaborators who helped with my
work: Stefan Reinhardt and Mariusz Wesirski.

I am thankful for the hospitality I received from the colleagues at the HdM
Media University: Jochen Bomm, Johannes Schaugg, Andreas Schmid, Ingmar
Rieger, and Robin Schulte.

Thank you, Markus Huber, for providing the LATEX template for this thesis.

I am deeply thankful for all the family members and friends who supported
me during this time.

–Dieter Morgenroth

xiii

Abstract

Water, or liquids in general, are popular ingredients for action scenes in movies.
Therefore, in the field of computer graphics for visual effects (VFX), the sim-
ulation and rendering of liquids is a frequently required task. The liquid
simulations found in movies are mostly large-scale and cover length scales
in the meter to kilometer range. However, there are effects of the physics of
liquids that take place on a small scale, but that can also have a noticeable
optical effect in large-scale scenes. The calculation of these small-scale effects
requires a very high resolution and is therefore often not possible when simu-
lating large scenes for reasons of time and costs. This dissertation discusses
strategies to enhance large-scale fluid simulations with small-scale physical
effects.

The first part of this dissertation describes a VFX production pipeline for
liquid simulations. The new possibilities of cloud computing are used to
increase the resolution thanks to expanded computing power and thus to
achieve more details. Using a client/server architecture and remote procedure
calls, a system was set up that enables interactive work on a simulation scene
in a local application in which the complex calculations of the simulation take
place on an outsourced computer in the cloud. Another contribution within
the framework of this system is the introduction of “blind particles” that make
it possible to delete unnecessary particles from data sets without affecting the
visual result. This can save bandwidth and rendering time.

The second part of the dissertation presents a direct ray tracing method for
implicitly described liquid surfaces that takes into account the capillary effects
at the interfaces to solids. The method uses the analytical solution of the
meniscus shape at the fluid interface to achieve the effect of surface tension
between the water surface and the solid. It generates correct contact angles
at the edges without the need for a computationally intensive simulation. At
render time, it combines the analytical solution for a small-scale effect with
the numerical solution for a large-scale simulation. The process guarantees
the correct contact angle and, in certain scenarios, delivers the correct solution

xv

xvi abstract

across the entire interface; even in general scenarios, it delivers plausible
results.

In the last part, a method is presented to simulate fluid flows on developing
surfaces, e.g., an oil film on a water surface. In the case of an animated surface
(e.g., extracted from a particle-based fluid simulation) in three-dimensional
space, a second simulation is added to the input surface. In general, a partial
differential equation is solved on a level set surface. Coupling strategies
between input properties and simulation are introduced, and the conservation
of mass and momentum is added to existing methods. In this way, high-
resolution two-dimensional simulations on coarse input surfaces are efficiently
calculated.

German Abstract

—Zusammenfassung—

Wasser oder allgemein Flüssigkeiten sind beliebte Bestandteile für Actionsze-
nen in Filmen. Deshalb ist im Bereich der Computergrafik für visuelle Effekte
(VFX) die Simulation und das Rendern von Flüssigkeiten eine häufig benötigte
Fähigkeit. Die Flüssigkeitssimulationen sind dabei meist groß angelegt und
decken Längenskalen im Meter- bis Kilometerbereich ab. Es gibt aber physika-
lische Effekte von Flüssigkeiten, die sich im kleinen Maßstab abspielen, aber
eine auffällige optische Wirkung auch im Großen haben können. Die Berech-
nung dieser kleinskaligen Effekte benötigt eine sehr hohe Auflösung und ist
deshalb bei der Simulation großer Szenen aus Zeit- und Kostengründen oft
nicht möglich. Diese Dissertation diskutiert Strategien, um Fluidsimulationen
mit kleinskaligen physikalischen Effekten zu ergänzen.

Der erste Teil dieser Dissertation beschreibt eine VFX-Produktionspipeline für
Flüssigkeitssimulationen, die die neuen Möglichkeiten von Cloud-Computing-
Angeboten ausnutzt, um die Auflösung dank erweiterter Rechenleistung zu
erhöhen und so mehr Details zu erreichen. Dabei wurde mittels einer Cli-
ent/Serverarchitektur und Remote-Procedure-Calls ein System aufgebaut, das
interaktives Arbeiten an einer Simulationsszene in einer lokalen Applikation
ermöglicht, in dem die aufwendigen Berechnungen der Simulation auf einem
ausgelagerten Rechner in der Cloud stattfinden. Dabei wurde auch auf spezi-
elle GPU-Hardware zurückgegriffen. Ein weiterer Beitrag im Rahmen dieses
Systems ist die Einführung von “Blind Particles”, bei deren Verwendung es
möglich wird, unnötige Partikel aus Datensätzen zu löschen, ohne das visuelle
Ergebnis zu beeinflussen. Dadurch kann Bandbreite und Renderzeit gespart
werden.

Der zweite Teil der Dissertation stellt eine direkte Raytracing-Methode für
implizit beschriebene Flüssigkeitsoberflächen vor, die die Kappilareffekte an
den Grenzflächen zu Festkörpern berücksichtigt. Das Verfahren verwendet
die analytische Lösung der Meniskusform an der Fluidgrenzfläche, um den
Effekt der Oberflächenspannung zwischen Wasseroberfläche und Festkörper
zu erzielen. Das Verfahren erzeugt korrekte Kontaktwinkel an den Rändern,

xvii

xviii abstract

ohne dass eine rechenintensive Simulation erforderlich ist. Zur Renderzeit
kombiniert es die analytische Lösung für einen kleinskaligen Effekt mit der
numerischen Lösung einer großskaligen Simulation. Das Verfahren garantiert
den richtigen Kontaktwinkel und liefert in bestimmten Szenarien die richtige
Lösung über die gesamte Grenzfläche; selbst in allgemeinen Szenarien liefert
es plausible Ergebnisse.

Im letzten Teil wird ein Verfahren vorgestellt, um Fluidströmungen auf sich
entwickelnden Oberflächen zu simulieren, z.B. einen Ölfilm auf einer Was-
seroberfläche. Bei einer animierten Oberfläche (z.B. extrahiert aus einer parti-
kelbasierten Fluidsimulation) im dreidimensionalen Raum wird eine zweite
Simulation auf der Eingabeoberfläche hinzugefügt. Im Allgemeinen wird eine
partielle Differentialgleichung auf einer Level-Set-Oberfläche gelöst. Es wer-
den Kopplungsstrategien zwischen Eingabeeigenschaften und der Simulation
eingeführt, und Masse- und Impulserhaltung wird zu bestehenden Methoden
hinzugefügt. Auf diese Weise werden hochauflösende D-Simulationen auf
groben Eingabeflächen effizient berechnet.

chapter 1

Introduction

In the last three decades, fluid simulation for visual effects has seen significant
advances in the domain of free surface motion. Movies like Waterworld ()
and Titanic () were the first prominent movies that used computer gener-
ated (CG) water effects to show large-scale ocean surfaces. In those two movies,
the CG water was relatively calm. The actual sinking ship was still shot with
miniatures. However, the technology advanced, and the fluid simulations
became more and more convincing. Already nine years after the Titanic movie,
for the movie , sinking ships were fully simulated.

However, in the VFX domain, most researchers worked in the area of large-
to mid-scale simulations where the small-scale effects on the surface and at
the interface to solid boundaries are not dominant features. When computing
large-scale simulations, the forces of surface tension are negligible. Putting
computational work into their calculation is therefore not reasonable.

To simulate small-scale effects on the fluid surface, e.g., a soap film on a
water surface on large-scale simulations seems to be computational overkill.
However, it is these small details that can make all the difference in making a
scene appear photorealistic. One example of such a small detail can be seen
when looking at a glass of orange juice as photographed in Fig. .. Notice the
little highlight on the edge where the fluid surface is touching the glass surface.
This highlight is created by the fact that the surface is slightly curved due to
the meniscus effect and reflects light sources from a wide angle. Another small
detail that could add a lot of realism to a scene is the rainbow colors caused by
an oil spill on the surface of the water.

 chapter . introduction

Highlight

Figure .: The small-scale meniscus effect creates a highlight on the water
surface and is a dominant feature in mid-scale fluid scenes.

Figure .: The light interference thin film effect is caused by differences in
the oil film thickness in the micrometer scale. However, the rainbow effect this
causes is well visible in the mid-scale scene.

 . . research challenges

As shown in the glass of orange juice in Fig. . and the oil spill in Fig. .,
these small effects can have a big impact on the image and the achieved level
of photorealism. The glass of orange juice would look wrong if the highlight
at the curved meniscus was missing. In Fig. ., the water surface with the
shimmering rainbow colors creates a completely different image of the surface,
although the oil film is only a few micrometers thick, which is negligible
compared to the overall fluid body.

 . research challenges

When using fluid simulation for visual effects, the main goal is to create con-
vincing animations within budget. It does not matter whether the animation is
physically correct. Adding small-scale effects to fluid simulation could add ad-
ditional realism to the images. When there are small-scale physical effects that
are worth adding to achieve greater realism, first, an adequate physical model
has to be found and then an efficient numerical method has to be chosen. This
work explores different approaches to add small-scale effects in a computer
generated images (CGI) production in a cost-effective way.

Overall Goal

What are effective strategies to augment fluid animations with small-
scale physical effects?

The traditional approach for generating small-scale effects is to simply increase
the resolution of the simulation so it can capture the small details better. No
matter which numerical approach is used, following the Nyquist–Shannon
sampling theorem, the frequency of the effect that is simulated dictates the
needed resolution of the simulation. Increasing resolution often dramatically
increases computation time, so this naive solution seems not practical when
simulations have to be delivered under time and budget restrictions. But
with the new possibilities of GPU computing and cloud computing, the naive
approach has its right to exist. Chapter explores this approach with Research
Question .

RQ

What are strategies to improve existing methods to such an extent that
the resolution can be increased enough to achieve small-scale effects?

Analytical methods can describe small-scale effects in a way that is independent
of simulation resolution. For complex fluid simulations, it is not possible to
solve the physical model analytically. However, there is a way to combine

 chapter . introduction

analytical solutions for small-scale effects with large-scale simulations. When
combining the analytical solutions and the results of simulations, special
attention needs to be paid to when and at which stage and with which data
this happens. The small-scale effects will still need a higher sampling rate
and therefore consume a lot more memory. So even if a method can save
computation time, the storage and rendering of the effect may still prove
difficult. Chapter discusses this for Research Question .

RQ

How can we combine analytical solutions and simulation results in an
applicable way?

The last chapter explores the idea of reducing dimensionality for the computa-
tion of the surface effects. When looking at the small-scale effects for a water
surface, one idea is to solve the effect in the surface space and thus save one
dimension. This idea has some obstacles. An efficient way to parametrize the
surface space has to be found and a way to connect this parametrization be-
tween time steps. Especially when the topology of the surface changes during
the simulation time, it gets challenging. Chapter investigates this approach
for Research Question .

RQ

How to model fine-scaled effects in D surface space of a D fluid ani-
mation?

 . outline and contributions

This section presents a summary of each chapter and the author’s contributions
to the associated publications.

Chapter - Background. This chapter summarizes basic principles and com-
putational concepts of physically-based fluid simulation for CGI. It is based
on previous work, and therefore not part of the technical contribution of this
thesis. The chapter merely refreshes the necessary background for the reader.

Chapters , , and are all based on publications where I was the first author.
All topics were supervised and co-authored with both of the author’s advisors,
Bernhard Eberhardt and Daniel Weiskopf. Chapter was co-authored with
Stefan Reinhardt.

Chapter - Distributed VFX Architecture for SPH Simulation. This chapter
addresses Research Question by proposing an approach to simulating and

 . . outline and contributions

rendering physically-based fluid effects in a VFX production environment.
The approach uses a client/server architecture that is practical for distributed
simulation resources and that can be seamlessly integrated into commercial
three-dimensional (D) animation packages. The fluid simulation implements
Smoothed Particle Hydrodynamics (SPH). The concept of surface particles is
extended by introducing “blind particles” that facilitate direct raytracing of
isosurfaces. The performance of the approach is evaluated with local simula-
tion on central processing units (CPUs) and graphics processing units (GPUs)
and distributed GPU simulation. The integration into the animation package
ds Max and the VRay raytracer is demonstrated. The usability of the VFX
production pipeline is assessed by a user study with VFX professionals and
animation experts.

The contributions of this chapter were presented at the World Society for
Computer Graphics conference and published in the Journal of WSCG [].

Chapter - Direct Raytracing of a Closed Form Meniscus. This chapter
investigates Research Question . It presents a direct raytracing method
for implicitly described fluid surfaces that takes into account the effects of
capillary solid coupling at the boundaries. The method is independent of
the underlying fluid simulation method and solely based on distance fields.
The method uses the closed-form solution of the meniscus shape at the fluid
interface to achieve the effect of surface tension exerted by the solid object.
The shape of the liquid at these boundaries is influenced by various physical
properties such as the force of gravity and the affinity between the liquid and
the solid material. The method generates contact angles at the boundaries
without the need for computationally intensive small-scale simulation. At
render time, it combines the closed-form solution for a small-scale effect with
the numerical solution of a large-scale simulation. The method is applicable
for any implicit representation of the fluid surface and does not require an
explicit extraction of the surface geometry. Therefore, it is especially useful
for particle-based simulations. Furthermore, the solution is guaranteed to
yield the correct contact angle and, for certain scenarios, it delivers the correct
solution throughout the interface; even in general scenarios, it yields plausible
results. As an example, the proposed method is implemented and tested in the
setting of an SPH fluid simulation.

The contributions of this chapter were presented at the Computer Graphics
International conference and published in The Visual Computer [].

Chapter - Efficient D Simulation on Moving D Surfaces. A method is
presented to simulate fluid flow on evolving surfaces, e.g., an oil film on a water
surface. Given an animated surface (e.g., extracted from a particle-based fluid
simulation) in D space, a second simulation is added on the input surface. In
general, a partial differential equation (PDE) is solved on a level set surface

 chapter . introduction

obtained from the animated input surface. The properties of the input surface
are transferred to a sparse volume data structure that is then used for the
simulation. Strategies are introduced to couple between input properties and
the simulation, and conservation of mass and momentum is added to existing
methods that solve a PDE in a narrow-band using the closest point method
(CPM). In this way, high-resolution D simulations are efficiently computed
on coarse input surfaces. The approach helps visual effects creators easily
integrate a workflow to simulate material flow on moving surfaces into their
existing production pipeline.

The author provided the initial idea and was responsible for the realization us-
ing the closest point method, the actual implementation, and the evaluation of
the method. This publication was co-authored with Stefan Reinhardt, who was
responsible for the mathematical model used in the simulation and its analysis.
I developed all necessary software prototypes and produced all presented ex-
amples except for the examples for Fig. . and Fig. ., which were produced
by Stefan Reinhardt. The contributions of this chapter were presented at the
Symposium on Computer Animation and published in Computer Graphics
Forum [].

 . reused and copyrighted

material

In this thesis, material from the following copyrighted paper is partly reused
with kind permission from the journal publisher.

n [] ©. D. Morgenroth, D. Weiskopf, and B. Eberhardt, “Distributed
VFX architecture for SPH simulation”, Journal of WSCG, vol. , no. ,
pp. -, .

Moreover, material from a copyrighted paper is partly reused with the kind
permission of Springer Nature and reused with kind permission of Springer
Nature under the agreement for reuse in this dissertation (License Number
).

n [] ©. D. Morgenroth, D. Weiskopf, and B. Eberhardt, “Direct
raytracing of a closed-form fluid meniscus”, The Visual Computer, vol.
, no. -, pp. -, .

In addition, material from a copyrighted paper is partly reused with the
kind permission of John Wiley and Sons following the license agreement for
Dissertation/Thesis use (License Number):

n [] ©. D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt,
“Efficient D simulation on moving D surfaces”, Computer Graphics
Forum, vol. , no. , pp. -,

chapter 2

Background

The following chapter gives some background information about VFX work-
flows and introduces two small-scale effects. Then the necessary basics for
fluid simulation are explained.

 . visual effects workflow for

physically based fluid

animation

Although the laws of physics are clear, there are many different simplified
models and ways to implement them. To explore different techniques for
adding small-scale effects to physically based fluid simulation in a targeted
manner, it is necessary to introduce requirements and constraints to find a
solution that fits the concrete use case. This work puts the simulation in the
context of a CGI production workflow. The solution should be applicable in
the visual effects field for creating simulations that can be used to produce
realistic renderings of fluids. A production pipeline for visual effects has
requirements for each step to provide a defined output for the next processing
stage. For example, the D rendering will have to provide the compositing
department with a defined set of extra render elements like normal passes,
velocity passes, or specular passes. New algorithms have to be implemented in
a way that supports these elements. Production pipelines also place additional
constraints on the system like maximum memory usage, maximum render time,

 chapter . background

scene setup animation simulation
lighting
and shading rendering compositing

Figure .: Typical building blocks for VFX production processes.

or simulation time. Design decisions must be made to meet those requirements
and constraints. This section discusses a typical workflow of a CGI production.

Fig. . shows common steps for the production of a CGI shot. In the first
step, “Scene Setup”, all D models are placed in the scene and the camera is
set up. This step also includes the work to create all needed D models for the
scene, e.g., with the help of D modeling or scanning and the work to prepare
the models for animation. For the fluid simulation part, this step includes
the definition of the simulation space and setting up the initial state of the
fluid body. The artists can define which objects should be considered in the
simulation and the simulation parameters of the objects. Here an interesting
parameter for small-scale effects could be whether a collision object for the
water surface is hydrophobic like a lotus plant leaf or hydrophilic like porcelain.
Another parameter could be whether the water surface is polluted with oil,
and to what degree.

The next step is “Animation”, where non-physically based animations are
created. CG characters are often animated using a mix of motion capture
techniques and traditional hand animation. Sometimes procedural animations
can be used to completely replace physically based simulation for certain
effects. For example, Tessendorf et al. [] showed how to create an ocean
surface with procedural wave patterns.

The “Simulation” step is the main point of interest in this work. It involves the
definition of the physical model to be used and the execution of the numerical
simulation. The next chapter will go into detail about both topics. It would
appear that this is the only area of research relevant for improving fluid
simulation with small-scale effects, but as shown later this is not the case.

The “Lighting and Shading” step consists of defining the materials and textures
of the objects and the light. This work will show that small-scale effects can
be added in this late stage by applying special textures to the water surface or
applying shading effects like bump mapping to the surface.

This step is tightly connected to the “Rendering” step, where the images are
computed. Even here, small-scale effects can be added, as will be shown in
Chapter .

The last step is “Compositing”, where the image layers are combined to the
final image. Even here, small-scale effects can be added. For example, Akinci
et al. [] added screen space foam on top of an already rendered simulation.

 . . small-scale effects

convex
meniscus

concave
meniscus

water water mercury

Figure .: Water in a glass cylinder is not flat, it is curved at the edge. This
curve is called a meniscus. Water and glass form a concave meniscus, mercury
and glass form a convex meniscus.

 . small-scale effects

This section describes the small-scale effects that will be added to fluid simula-
tions in the following chapters. The first kind of effect is the meniscus effect
when a fluid touches a solid object.

.. Meniscus Effect

What is a meniscus? When filling water in a glass cylinder, one would expect
it to be completely flat. The gravity is the same everywhere, and the pressure is
the same throughout the whole fluid body. However, in reality, almost always
there is a small curve at the edge where the fluid touches the glass, as shown
in Fig. .. Water in glass forms a curve at the edge that is higher at the point
of contact and that declines the further away it gets. This is called a concave
meniscus. There are other element combinations like mercury and glass that
form a convex meniscus, as shown on the right of Fig. ..

Why does a meniscus occur? To understand why a meniscus occurs, the
molecular level of fluids should be examined []. Fig. . depictures the
molecules for water that consists of two hydrogen atoms and one oxygen
atom. The water molecule is a dipole molecule, that means although its net
electronic charge is zero, it has a slightly positive charge on the hydrogen
side and a slightly negative charge on the oxygen side. Oxygen is extremely
electro-negative, making it more likely that a shared electron is on the oxygen
side than on the hydrogen side. This polarity is why water molecules attract
each other. This attraction between the molecules is called hydrogen bonds.
Fig. . visualizes these attraction forces between the water molecules. These
forces are also called cohesive forces.

 chapter . background

oxygen

hydrogen

H2O

Figure .: A water molecule consists of one oxygen atom and two hydrogen
atoms.

Figure .: Water molecules are polar and have an end with more negative
charge and one end with a more positive charge. This causes the hydrogen
bonds, an attraction force (green) between the molecules.

Water molecules are not only attracted to each other. They are attracted to
other polar molecules, too. Fig. . shows water in a glass. The attraction
forces to other materials are called adhesive forces. Glass is made of silica sand.
It consists of a silica oxygen lattice (SiO). For every silicon atom, there are two
oxygen atoms. The electronegativity difference between oxygen and silicon
is greater than the one between hydrogen and oxygen. The adhesive force
between the water molecules and the silica molecules is greater than the water
molecules’ cohesive forces. As a consequence, the water molecules are attracted
more to the glass container than to each other. When kinematic energy in the
water pushes a water molecule slightly higher at the boundary, it will stick to
the surface due to the adhesive forces and pull other water molecules with the
cohesive forces. This phenomenon causes the curved meniscus at the edge [].
When there is a cylinder of glass with a small diameter, these adhesive forces
have a relatively more dominant surface and the water will slowly rise up the
cylinder. This effect is called the capillary effect.

 . . small-scale effects

Figure .: For materials as glass with silicate molecules, the adhesion forces
between the water molecules and the glass are greater than the cohesive forces
between the water molecules.

Figure .: Illustration of contact angles formed by sessile liquid drops on
smooth homogeneous solid surfaces of varying material (left to right: high
wettability to low wettability). Image inspired by Yuan and Lee [].

The contact angle between fluid and solid is an important property of
drops on surfaces and largely affects their visual appearance. According to
Young [], the contact angle is described by the mechanical equilibrium of
the fluid drop under the influence of three interface tensions:

γlv cosαY = γsv − γsl , (.)

where γlv,γsv, and γsl are the liquid–vapor, solid–vapor, and solid–liquid
interface tensions. The contact angle is denoted αY. Eq. . is referred to as
Young’s equation [].

The effect of the contact angle is well visible when one considers droplets on
various flat surfaces having different properties. Hydrophilic materials (high
wettability) form small contact angles (< degrees), whereas hydrophobic
materials (low wettability) lead to large contact angles, as illustrated in Fig. ..

.. Iridescence Effect

The second kind of small-scale effect used later is the shimmering rainbow
color effect that occurs on oil films on water. The pearly colors change when

 chapter . background

Na+ Cl-

Figure .: Charged chemical compounds like sodium chlorid (NaCl) dissolve
well in water as the positively and negatively charged ions are surrounded by
the polar water molecules.

the angle of view or the angle of light changes. This color effect is called
iridescence effect and is caused by interference effects when light rays are
reflected in very thin optical films, where the thickness is in the magnitudes of
the light’s wavelengths. This small thickness is why this effect is considered a
small-scale effect in the context of this work.

Why does oil and water not mix up well? Because of the polar nature of water
molecules, water is a good solvent for most chemical compounds. Salt, for
example, is a chemical compound of sodium (Na) and chloride (Cl) with posi-
tive and negative charges. Positive and negative ends of the water molecules
easily attach to those positive and negative ions of salt as shown in Fig. ..
Generally, all charged chemical compounds solve well in water. They are called
hydrophilic. In contrast, oil is a hydrocarbon which does not consist of charged
compounds. There are no positive and negative ions where the ends of the
water molecules could attach. These materials are hydrophobic materials and
do not dissolve in water. If one drops oil in water it will not mix or dissolve.
Since oil has a lower density than water, it will float on top of the water.

How is the color effect created on the oil film? Oil and water have different
optical properties. They both are transparent and light can cross the material,
but the index of refraction (IoR) of the two materials is different. Because
of the different IoRs, light is partially reflected when it crosses the boundary
between those two materials.

When light hits an oil film, it is partly reflected and partly refracted. The
refracted ray is reflected at the backside of the oil film and refracted back.
There can also be rays that are reflected at both interfaces of the layer multiple
times before they leave the thin film.

 . . small-scale effects

I
R1 R2

Toil
air

Figure .: A light ray I comes from the upper left and hits a transparent thin
film layer where it is then both refracted into ray T and reflected into ray R1.
The first reflection R1 and the second reflection R2 from the inner backside
have an offset that is the difference between the green and blue path. This
wave phase offset then causes the interference effects when the two waves are
added.

When one sees white light there are many rays with overlapping wavelengths.
The receptors in our eyes add them up and perceive them as one color. Fig. .
visualizes a ray which is partly refracted and reflected, there are phase dif-
ferences in the waves between the first reflection and the inner reflection.
When such two waves are added up, this causes interference. Depending on
the light’s wavelength, the traveled distance causes a phase difference and,
consequently, two rays could either add up or cancel each other. As a result,
some colors are stronger than others. This eventually produces the different
colors that one sees on thin oil films.

Wu et al.[] derive a full-spectrum multilayer film interference method
to render the interference effect based on the interference theory of multilayer
films [].

 chapter . background

 . length scales in fluid mechan-

ics

Depending on which length scale is considered, many different phenomena in
the field of fluid mechanics can be found. Fig. . assigns some phenomena to
the length scales. The use-case and the length scale determine which physical
model and numerical methods best simulate the behavior.

For generic fluid mechanics, the Knudsen number gives insight into which
approach best describes a phenomenon. The Knudsen number measures the
ratio of the mean free path of the molecules to a geometric reference length
of the effect that is described, e.g., the radius of a swirl that is computed.
Small Knudsen numbers relate to large scales. Depending on the Knudsen
number’s magnitude, different governing equations should be used []. As a
consequence, to model phenomena with different Knudsen numbers, there are
different equations for the different phenomena.

In the case of micro-scale with Knudsen numbers larger than 10, the molecules’
motion and forces are often directly calculated with the Newtonian equation
of motion. Flow is caused by the movement of a large number of molecules.
The undirected Brownian molecular movement is superimposed on the actual
flow movement. With increasing density, in addition to the free movement of
molecules, collisions play a role.

In larger scales with Knudsen numbers between 101 and 10−1, mesoscopic
methods are typically used that exploit particle-based simulations of chunks of
fluid atoms to capture adhesion and capillary forces adequately. The governing
equations in this scale are typically the Burnett equations. A good introduction
to the Burnett equations can be found in the work from Agarwal et al. [].

In the larger macroscopic length scale, continuum mechanics can be used
by solving the Navier-Stokes equations following the fundamental physical
laws of conservation of mass, conservation of momentum, and conservation of
energy. For Knudsen numbers between 10−1 and 10−3, Navier-Stokes equations
with slip conditions should be used []. If the Knudsen number is smaller
than 10−5, viscosity and thermal conductivity are negligible and therefore the
Euler equations can be used.

From the phenomena that are discussed in this work, the one with the highest
Knudsen number is the interference pattern of an oil film on a water surface.
The difference of thickness that causes the pattern is in the nanometer scale
[]. As water molecules (in liquid state) are in direct contact with to other
water molecules [], the mean free path of the molecules for liquid water can
be set to be the average distance of two oxygen molecules, which is 2,85A and
as such in the magnitude of 10−10m []. This still leads to a Knudsen number

 . . navier-stokes equations

10-9m 10-6m 10-3m 100m 103m
(nm) (µm) (mm) (m) (km)

Figure .: Different length scales of fluid phenomena. In the nanometer
length scale on the left, there are the soap film light interference effects. In the
mid-scale are effects like the meniscus effect when glass touches a boundary
object. In the larger scales, there is the fluid motion.

102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 10-7

Burnett Navier-Stokes Euler

Slip No-Slip

Knudsen number

Figure .: Different Knudsen numbers require different governing equations
[].

of 10−1. Consequently, to enhance large-scale simulations with small-scale
effects, the correct governing equations are the same as those for the mid-scale
to large-scale, i.e., the Navier-Stokes equations.

 . navier-stokes equations

The governing equations of fluid phenomenons with Knudsen numbers be-
tween 10−1 and 10−3 are the Navier-Stokes equations with slip conditions
where the fluid body is treated as a continuum. An introduction to these
equations can be found in the work from Batchelor et al. []. These equations
describe how the fluid velocity u, pressure p, and density ρ of a moving fluid
are related.

This work mainly uses the version of the Navier-Stokes equations for incom-
pressible fluids. They can be written as:

∂u
∂t

= −(u · ∇)u +∇ · (ν∇u)− 1
ρ
∇p + f, (.)

 chapter . background

Figure .: On the left, the Lagrangian view of a fluid is visualized where the
individual chunks of fluid are tracked. On the right, you see the Eulerian view
where the properties are tracked in static volumes in space.

∇ · u = 0. (.)

The Navier-Stokes equations describe the velocity change over time (on the left)
through the following four physical processes / forces: advection, diffusion,
pressure, and external body forces.

The advection term is mathematically given by −(u · ∇)u. It describes the
force exerted on a particle of fluid by other particles surrounding it. The term
∇· (ν∇u) is the velocity diffusion. It describes how fluid motion is damped due
to kinematic viscosity ν. Highly viscous fluids like honey stick together, where
as low-viscosity fluids like air flow freely. 1

ρ∇p is the pressure term. Fluid
flows in the direction of the largest change in pressure. The external forces f
are e.g., gravity or forces that are exerted by collision objects. The continuity
equation ∇ · u = 0 for constant density flow ensures the conservation of mass
by requiring a divergence free velocity field.

To adequately simulate the behavior of fluids, these partial differential equa-
tions (PDEs) have to be solved. The different numerical approaches can be
divided in two categories: Lagrangian or Eulerian. Fig. . depicts the two
approaches. In the Lagrangian description of liquid flow, discrete points carry
field quantities and move with the fluid. In the Eulerian description, a control
volume tracks the properties like pressure, and acceleration describes them as
dynamic fields that change over time.

Using the Navier-Stokes equations and a Lagrangian or Eulerian numerical
method, fluid effects for fluid phenomenons with a Knudsen number between
10−1 and 10−5 can be described. In this work both approaches are used. While
in Chapter a Lagrangian system is described, Chapter applies an Eulerian
approach. Both approaches are briefly explained in the following two sections.

 . . smoothed particle hydrodynamics – a lagrangian method

Figure .: Three SPH particles near each other with a graphical representa-
tion of the kernel function. To spatially calculate the value of a property the
kernel functions of each particle are used.

 . smoothed particle hydrodynam-

ics – a lagrangian method

The SPH method was first introduced by Gingold and Monaghan [] in .
An in-depth overview of the state-of-the-art can be found in Koschier et al. [].

.. Spatial Discretization

Particle-based methods like SPH are more intuitive than grid-based methods
because every particle represents a certain amount of the fluid body mass. The
problem with a point-based approach for fluids is that the space between the
particles is not defined. The particles as shown in Fig. . represent sample
points that carry quantities like mass, temperature, density, or velocity. Thus,
the particles are helpers to sample the continuous fluid and keep track of
various quantities. The resolution is much coarser than the actual molecules
of the fluid and is typically defined beforehand. So, inside the fluid between
the particles is empty space. To estimate a quantity like temperature or pres-
sure in this space between the particles, the fundamental idea of SPH is to
take the average value of all neighboring particles in this area in a way that
each particle’s value is weighted with a kernel function that decreases with
distance. Thus, nearby particles contribute more, distant particles contribute
less. Fig. . depicts the weighting functions around the particles.

To simplify the notation for the next section, the position x is defined as the
position of evaluation. In the case that a quantity is calculated for a certain
particle i, the position is denoted as xi. All neighbor particles j in the region
of influence that is controlled with the smoothing length h contribute to a
quantity. The position xj is defined as the position of a neighboring particle j.
Further, r is defined as the distance between x and xj.

r = ‖x− xj‖. (.)

 chapter . background

The main building blocks of the SPH method are the kernel functions W. Exam-
ples of these functions are shown in Fig. .. They are weight functions that
account for the distance r and a smoothing length h that is defined beforehand.

To further simplify the equations, the following notation is used:

W(‖xi − xj‖, h) = W(r, h) = Wij. (.)

In SPH, a quantity A is evaluated at a position x by summing up the weighted
contributions of its neighboring particles j:

A(x) = ∑
j

mj
Aj

ρj
Wij, (.)

where mj is the mass of particle j, ρj its density, and Wij the smoothing kernel
with smoothing length h.

One important property is the density of the fluid. For every particle i, it can
be computed by

ρi = ∑
j

mjWij. (.)

The smoothing kernels used in SPH are zero outside the smoothing length h,
that means they have compact support Ω(x, h):

Wij = 0 if ‖xi − xj‖ > h. (.)

This property implies that for the computation of quantities only the neigh-
boring particles need to be considered, i.e., all particles that are within the
smoothing length h. All particles that are further away than h do not contribute.
The kernel functions are non-negative and they are normalized such that the
integral inside the compact support sums up to :∫

Ω(xi,h)
W(‖xi − x‖, h)dv(x) = 1, (.)

where dv denotes the volume integration variable corresponding to xj.

Fig. . shows typical kernel functions for SPH from Mueller et al. []. These
functions were also used for the implementation in this work.

The poly kernel as shown in Fig. .a is mainly used for the calculation of
the density and other scalar quantities. It is calculated with:

Wpoly(r, h) =
315

64πh9

{
(h2 − r2)3 0≤ r ≤ h
0 otherwise.

(.)

 . . smoothed particle hydrodynamics – a lagrangian method

0.0 0.2 0.4 0.6 0.8 1.0
radius

3

2

1

0

1

2
w

poly6
poly6 gradient

(a) The poly kernel function

0.0 0.2 0.4 0.6 0.8 1.0
radius

15

10

5

0

5

w

spiky kernel
spiky kernel gradient

(b) The spiky kernel function

0.0 0.2 0.4 0.6 0.8 1.0
radius

0

2

4

6

8

10

12

14

16

w

viscosity kernel laplacian

(c) The Laplacian of the viscosity kernel function

Figure .: Typical kernel functions that are used in SPH.

The spiky kernel (Fig. .b) is used for the pressure computations and is
written as:

Wspiky(r, h) =
15

πh6

{
(h− r)3 0≤ r ≤ h
0 otherwise.

(.)

For the viscosity computation, the Laplace of the viscosity kernel (Fig. .c)
is used.

Wviscosity(r, h) =
15

2πh3

{
− r3

2h3 +
r2

h2 +
h
2r − 1 0≤ r ≤ h

0 otherwise.
(.)

The fluid properties needed to solve the Navier-Stokes equations are either
scalar fields or vector fields. Those quantities A are functions in space and
time. The rate of change of such a quantity is the material derivative D

Dt . When
the fluid moves, those quantities are then moved along with the particles. In

 chapter . background

the Lagrangian setting, this simplifies the material derivative to

DA
Dt

(x(t), t) =
∂A
∂t

(x(t), t). (.)

.. Discretization of Differential Operators

To solve the Navier-Stokes equations, the derivatives of velocity and pressure
are necessary. For the derivative of an arbitrary quantity, the formula in
Eq. . can be used. Derivatives are calculated similar to the values of a field
quantity, but for derivative values the derivative of the kernel function is used.

∇A(r) ≈∑
j

mj
Aj

ρj
∇Wij. (.)

This can be extended to vector-valued quantities and other typical differential
operators:

∇A(x) ≈∑
j

mj

ρj
Aj ⊗∇Wij, (.)

∇ ·A(x) ≈∑
j

mj

ρj
Aj · ∇Wij, (.)

∇×A(x) ≈ −∑
j

mj

ρj
Aj ×∇Wij. (.)

For the Laplace operator, the second derivative is used:

∇2A(r) ≈∑
j

mj Aj

ρj
∇2Wij. (.)

These formulas for derivatives of quantities can now be used for the Navier-
Stokes equations from Eq. ..

The force fν from viscosity can be calculated with:

fν = µ∑
j

mj(uj − ui)

ρj
∇2Wij, (.)

where µ is the dynamic viscosity that is considered constant. The gravity force
fg is:

fg = mig. (.)

Having viscosity and gravity equations, the missing part now is the pressure.
Koschier et al. [] give an overview of possible pressure solvers for SPH.

 . . smoothed particle hydrodynamics – a lagrangian method

.. Time Integration

The Navier-Stokes equations (see Eq. .) are a set of coupled nonlinear PDEs.
The spatial discretization with the SPH approach as well as the simplifications
by constant temperature and incompressibility reduce the PDEs to a system of
ordinary differential equations (ODEs). These ODEs can be solved by discretiz-
ing time. Given an initial configuration of particles described by positions
xj(t0) and velocities uj(t0), the temporal changes of positions and velocities
are generally given by

du
dt

(t) = a(t), (.)

dx
dt

(t) = u(t). (.)

The acceleration a is defined by the forces for pressure, viscosity, and external
forces divided by the particle mass.

This typical system of ODEs can be solved with time integration. Using a fixed
time step ∆t, the new position and velocity can be calculated with a first-order
Euler scheme:

uj(t + ∆t) = uj(t) + ∆taj(t), (.)
xj(t + ∆t) = xj(t) + ∆tuj(t). (.)

.. PCISPH

One widely used approach for the pressure solver is the Predictive–Corrective
Incompressible SPH (PCISPH) approach from Solenthaler et al. []. The
main idea is to predict the resulting density ρ∗i using the current position and
velocity as if there was no pressure force. Then, from the predicted density, the
density error ρ0 − ρi is derived, where ρ0 is the rest density of the fluid. This
predicted density error can then be transformed to a predicted pressure pi that
is needed to eliminate the error, using a stiffness constant:

pi = kPCI(ρ0 − ρ∗i). (.)

This is a state equation where the stiffness constant kPCI is not defined by the
user but precomputed from a template particle surrounded by an optimally
sampled neighborhood and derived from the fact that the pressure must induce
an acceleration so that the particles reach their rest density at the next time
step t + ∆t. The derivation of the stiffness constant and its comparison with
stiffness values in other SPH approaches are discussed in the report by Koschier
et al. []. The stiffness constant is given by:

kPCI =
−ρ2

0
2∆t2m2(−∑

j
∇Wij ·∑

j
∇Wij −∑

j
·∇Wij)

. (.)

 chapter . background

The predicted pressure is then iteratively refined by using it to predict better
velocities and positions that again result in predicted density errors and pres-
sures. This loop of predicting the pressure and refining it is stopped as soon
as the maximum density error reaches a certain error threshold ε. The force
created by the pressure is then calculated with:

fp = −m2 2ρ∗i
ρ2

0
∑

j
∇Wij. (.)

With the formulas for the integration, all needed parts to simulate a fluid with
SPH are now in place. The basic algorithm is the following.

Algorithm : PCISPH Algorithm

calculate kPCI

define ρ0
while in simulation loop do

for every particle i do
compute forces for viscosity (Eq. .) (Eq. .), gravity
(Eq. .), and external forces

initialize pressure p and pressure force fp with 0
end
do

for every particle i do
predict position x∗i at (t + ∆t) (Eq. .)
predict velocity u∗i at (t + ∆t) (Eq. .)

end
for every particle i do

predict density ρ∗i (Eq. .)
predict density error (ρ0 − ρ∗i)
update pressure pi+ = kPCI(ρ0 − ρ∗i)

end
for every particle i do

compute pressure force fp (Eq. .)
end

while (ρ0 − ρ∗i) > ε;
for every particle i do

compute position xi at (t + ∆t) (Eq. .)
compute velocity ui at (t + ∆t) (Eq. .)

end
end

If a too large time step is chosen, the simulation gets unstable, if the time step
is too small, the simulation takes too long. The sweet spot can be determined
using a heuristic based on the Courant–Friedrichs–Lewy (CFL) condition. The

 . . smoothed particle hydrodynamics – a lagrangian method

CFL condition describes an upper limit of the time step for the convergence of
numerical solvers for differential equations. The condition states:

∆t ≤ λ
h

||umax|| , (.)

where λ is an arbitrary scaling parameter, h is the particle size, and umax the
velocity of the fastest particle. The CFL condition brings the particle size in
relation to the largest possible time step. In the topic of small-scale effects, this
has direct consequences when the particle size needs to be reduced to capture
smaller effects. The computation time increases not only because of the larger
amount of particles needed to fill the same volume but also because smaller
time steps are necessary.

This leads to one crucial topic – the computation time with increasing particle
amounts and smaller time steps. The problematic area of the SPH approach is
that for every quantity of a particle that has to be calculated, the corresponding
quantities of all neighboring particles have to be queried.

.. Acceleration Structures

Each particle obtains its properties based on the properties and distances to its
neighbors. Naive distance calculation for each particle against all other parti-
cles would lead to complexity of O(n2). Only neighbors that are closer than
the smoothing length h contribute to the properties of the particle. Therefore,
an algorithm that returns only the neighbors within the smoothing length h
greatly improves the complexity. Finding the neighbors and looping over all
of them is the most time-consuming step. Therefore, it is necessary to imple-
ment some acceleration structures for the neighborhood search. To accelerate
neighbor queries, the most common solution is to subdivide the space into
regions. This approach is called spatial subdivision. In many SPH simulation
frameworks, the smoothing length h is constant for all particles. The query
only accounts for neighboring particles within the smoothing length. This
makes a regular grid with side length h the natural choice as an acceleration
structure as depicted in Fig. .. For every particle, the particles that are in
the same cell and those of the neighboring cells have to be considered.

To find all particles of a cell, different implementations can be used. One
solution is to put variable-length arrays for each cell into a hash map that is
indexed by the cell coordinates. Then each particle is added to the correspond-
ing array depending on its cell location. This ideal solution is hard to achieve
with current GPU frameworks since neither hash maps nor variable-length
arrays are available. Ihmsen et al. [] compared different neighbor search
data structures for multi-core architectures with shared memory and found
that using a regular grid for neighborhood search with zCurve sorting to be the

 chapter . background

Figure .: Neighborhood of particle .

fastest solution for parallel implementations. This work follows the approach
used by Goswami et al. [] using a space-filling curve from Morton [].
Morton curves map three-dimensional space to one dimension with a curve
that travels through space in a “Z” shape. Therefore, Morton curves are also
called z-curves. The Morton z-value of a point in multiple dimensions is com-
puted by nesting the binary representations of its coordinate values as shown
in Fig. .. By this approach, every cell of a regular grid gets one Morton
coordinate instead of x,y, and z coordinates. Points in D space which are
close to each other in the N-dimensional space have Morton numbers that are
close to each other, too. This creates beneficial cache properties when used in
computations that query cells that are close to each other in space. Particle
attributes can now be stored in one-dimensional arrays as shown in Fig. .d.
The arrays are sorted based on their Morton z-value. To speed up the query
for all particles that belong to a cell, a helper array is constructed that has an
entry for each non-empty cell with the index of the first particle in the sorted
particle array with that corresponding z-value and the number of particles in
the cell. To query all particles that are close to a point in space, the algorithm
calculates the z-values for the corresponding grid cell and the neighbor cells.
The particles of a cell are found with a binary search on the z-values of the
helper array. Then with the index of the starting particle and the number of
particles that belong to the cell, all particles of that cell can be queried.

 . . smoothed particle hydrodynamics – a lagrangian method

(a) The binary form of the coordinates of
the grid cells are interleaved

(b) the resulting decimal number is the new
z coordinate of the cell

(c) the connected coordinates form a
space-filling curve

(d) particles are given their z coordinate and
sorted accordingly

Figure .: Particles sorted according to space-filling Morton code curve.

 chapter . background

 . projection method – an eulerian

method

In contrast to the Lagrangian SPH approach, where fluid elements are tracked
with particles that flow with the fluid, the Eulerian approaches keep track
of properties at fixed locations in space as a function of time. The main
difference is that the advection or transport of quantities of fluid does not
happen implicitly when the fluid particles travel and bring their assigned
quantity with them. Instead, an extra step is needed where the quantities at
the fixed locations are moved. In fact, scalar quantities A(x, t) are functions of
space and time and a velocity field u(x, t) of the fluid. This results in a simple
advection equation with the material derivative:

D
Dt

A =
∂A
∂t

+ u · ∇A. (.)

When setting the equation equal to zero, all the changes of the property happen
because the quantity is traveling along with the velocity of the fluid and is
not changing in respect to the Lagrangian view of one fluid particle. By this
advection step, the velocity itself is also transported. Transporting the velocity
field with itself may feel confusing, but in the end, it is also simply a property
that is transported along with the fluid as density, pressure, or any other
quantity.

.. Incompressibility

Ensuring incompressibility is another topic where the Lagrangian point of
view is more intuitive. With a particle representation of the fluid it is obvious
when the density of the fluid changes, as when there are particles with equal
mass, the particles in this area will clutter together in areas with higher density
and be wider apart in areas with lower density. Ensuring incompressibility
then means: “make sure the particles are the same distance apart in all areas
in the next time step.” In an Eulerian system, it is not that easy to describe the
problem. Here, the divergence operator can be used:

∇ · u =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

. (.)

The divergence operator for a vector field measures how the vectors are di-
verging or converging. More intuitively, if the divergence of a cell is positive,
more material is flowing out of that cell and if the divergence is negative,
more material is flowing into the cell. With this in mind, the incompressibility
condition of the Navier-Stokes equation (Eq. .) becomes more intuitive:

∇ · u = 0. (. revisited)

 . . projection method – an eulerian method

This means, in each cell, the amount of fluid that goes into the cell is the same
amount that goes out of the cell and the amounts sum up to zero. The task
for a fluid solver here is to make sure that in the next time step, the velocity
field is again divergence-free. If there is a negative divergence for a cell, this
essentially means that there is more fluid flowing into the cell than out, which
then increases the pressure. Using this pressure, now a pressure force can be
calculated that is pointing in the direction of the pressure gradient that will
create the needed velocity change for the next time step t + ∆t to transform a
diverging velocity field w into a divergence-free velocity field u. Algorithms
that solve the Navier-Stokes equation (Eq. .) with an Eulerian approach often
split the advection, external forces, and the pressure part into subtasks that
are then solved sequentially.

First, using advection, viscosity, and body forces, a velocity field w is con-
structed that does not satisfy continuity, but then is corrected using a pressure
gradient. The Navier-Stokes equations in discretized form can then be split
into a part with acceleration aAVE due to advection, viscosity, and external
forces, that leads to an intermediate velocity w(t + ∆t), and a part due to the
pressure part.

w(t + ∆t) = u(t) + ∆t · aAVE (.)

u(t + ∆t) = w(t + ∆t)− ∆t
1
ρ
∇p. (.)

.. Conjugate Gradient Solver

In this last step, the divergence-producing part of the velocity is “projected
out”. Therefore, this step is called the pressure projection step. A method
that solves the Navier-Stokes equations using this pressure projection was
adapted to fluids for computer graphics by Stam []. This method can also be
enhanced to work in parallel on multi-GPU systems []. Stam shows how to
modify the Navier-Stokes equation using a projection operator P. The starting
point is the Helmholtz-Hodge decomposition, which states that a vector field
w can be composed into a divergence free vector field u and the gradient of a
scalar field q:

w = u +∇q, (.)

where ∇ · u = 0. The operator P projects the velocity field w to a divergence
free velocity field u:

u = P(w) = w−∇q. (.)

 chapter . background

The operator is defined when multiplying Eq. . with ∇, leading to the
Poisson equation:

∇ ·w =∇2q. (.)

Stam applies this operator to the Navier-Stokes equations, Eq. . and Eq. .,
on both sides with using the fact that Pu = u and P∆p = 0. This creates
modified Navier-Stokes equations in one single equation:

∂u
∂t

= P(−(u · ∇)u + ν∇2u + f). (.)

To find the required pressure, time is discretized in time steps ∆t and space
with a regular grid with spacing ∆x. Eq. . can be rewritten as:

∇p =
ρ

∆t
w(t + ∆t)− ρ

∆t
u(t + ∆t). (.)

With this substitution and applying the “∇” operator on both sides, and
exploiting ∇ · u = 0, Eq. . can be rewritten as:

∇2p =
ρ

∆t
(∇ ·w) := b. (.)

Please note that when setting q = ∆t
ρ , this resembles Eq. .. On a regular

grid, finite differences can be used to solve the derivatives. The Laplacian is
approximated with central differences:

∇2p ≈
6p− px−1 − px+1 − py−1 − py+1 − pz−1 − pz+1

∆x2 . (.)

This can be written as a large system of linear equations

Ax = b, (.)

where the vector x represents all unknown pressure values of the grid cells, the
vector b holds the scaled negative divergences of each fluid cell, and a large
coefficient matrix A holds the coefficients for the Laplacian operator.

There are many solvers for equations of that form. One widely used solver
is the preconditioned conjugate gradient solver with a Jacobi preconditioner
which is part of the software development kit of the Houdini software package.
A thorough introduction to the conjugate gradient method was written by
Jonathan Shewchuk []. The basic idea of using a gradient descent method
for the equation Ax = b is that this is equivalent to find a minimum of the
quadratic function

f (x) =
1
2

xT Ax− bTx + c. (.)

 . . projection method – an eulerian method

If A is a symmetric positive definite matrix, this function has its minimum
when the derivative is zero. The above function is designed that its derivative is
the Poisson equation Ax = b. Gradient descent methods find the minimum of
the equation by starting at an arbitrary point and then iteratively descending
a step in the direction of the gradient closer to the solution. The conjugate
gradient method is a variant of the gradient descent method that improves the
number of needed steps by choosing the search directions in a way that they
are orthogonal to each other. This means for each search direction you find the
optimal step that needs no correction in that direction in subsequent steps. As
a result, the method is guaranteed to find the exact solution after n steps for
an n× n matrix. If fewer than n steps are taken, then the rate of convergence
is related to the condition number κ of A, which is defined as the ratio of the
largest and smallest eigenvalue of A. The rate of convergence is defined as:

||e(i)||A ≤ 2
(√κ − 1√

κ + 1

)−1

||e(0)||A. (.)

In other words, if the condition number of matrix A is low, then the method
converges faster. For an ill-conditioned matrix, the method converges slowly.
Therefore, sometimes it is worth changing the matrix in a way so it is better
conditioned. This can be done by multiplying the equation on both sides:

M−1Ax = M−1b. (.)

Now if M−1A has a better condition number than A, it will converge faster,
and one can still solve for A once the solution for M−1A is found. A typical
variant is the Jacobi preconditioner matrix, which is a diagonal matrix where
the diagonal entries are those of matrix A.

The basic algorithm for an Eulerian fluid solver reads:

Algorithm : Eulerian fluid solver algorithm

while in simulation loop do
at time n
wA = advect(un,∆t,un)
wB = wA + ∆tg //adding external forces
un+1 = project(∆t,wB)

end

Fluid animation covers a wide range of topics and only a few aspects can be
sampled in this work. The predictive-corrective incompressible Smoothed Par-
ticle Hydrodynamics (PCISPH) method and the conjugate gradient algorithm
explained here are examples of the two main approaches for fluid simulation.
There are hybrids of these main approaches, like the Fluid-Implicit-Particle
(FLIP) concept [], where the fluid quantities are tracked and advected with

 chapter . background

Lagrangian particles but the pressure projection step is performed on an auxil-
iary Eulerian grid. In the context of this work, the exact type of SPH solver or
Euler method is not relevant for the upcoming chapters. This chapter aimed
to provide the tools for a basic understanding of the challenging problem of
adding small-scale effects to fluid animation.

chapter 3

Distributed VFX

Architecture for SPH

Simulation

 . brute force approach

Section . shows that the Navier-Stokes equations can also be used to model
the small-scale effects like the meniscus effect. No matter if using an Eulerian
or Lagrangian method for simulation, the naive approach to add small-scale
effects is then to simply reduce the cell or particle size to be small enough
to capture the needed detail. But due to the CFL condition, this not only
increases the number of needed cells or particles, but also the time steps need
to be smaller. This leads to a very high demand for the computation power
for the naive approach. This chapter explores the possibilities that moving
VFX production to cloud-based infrastructure could offer so that the naive
approach still makes sense. The basic idea is to outsource the computation
from the artist’s workstation to special GPU hardware and thus bring enough
computational power to an interactive session so the high resolution needed
for small-scale effects is possible.

For many years, leading VFX production houses like ILM or CA Scanline used
in-house solutions for physical simulation. A few specialized software vendors
such as Next Limit Technologies offer solutions like Realflow [] that couple
to established animation packages. Software packages that started as in-house

 chapter . distributed vfx architecture for sph simulation

solutions have been emerging on the market, such as the fluid simulation
software Naiad from Autodesk.

All current solutions, including the above, are either directly integrated into
the animation package as extensions like Phoenix [] from Chaosgroup Soft-
ware for Autodesk’s ds Max, where the simulation can be run directly in
the base package or the simulation is run in an external application like Re-
alflow and the results are then imported into the animation package as baked
simulation data. A good example of a typical pipeline integration in a VFX
environment is described by Lagergren [], whose fluid simulation with a
GPU implementation targets the production renderer in the SideFx Houdini
system.

Here, a client/server architecture for distributed VFX simulation is proposed
that can be seamlessly used within an existing VFX pipeline. Similar to system
papers like the one by Parker et al. [], this chapter describes the design
choices that have to be made for the integration of recent research advances
into a production pipeline.

The proposed design pattern of this chapter is applicable to many areas in the
field of simulation. But fluid simulation is a good use-case because of its high
relevance for special effects and since it also affects the rendering aspect of
the production pipeline, thus demonstrating how to integrate needed software
components in all relevant stages of the pipeline.

A client/server fluid simulation system was designed that allows artists to
interactively set up simulations and change parameters inside their familiar
animation package while the system executes the numerical calculation for the
simulation on a remote system with specialized hardware.

This concept has a variety of advantages. Like in solutions that are directly
integrated into the animation packages, the artist does not have to learn new
software concepts and only has to explore the feature set of the new client
plugin. The artists can stay in their accustomed package. The simulation can
run on specialized hardware that can be shared among many artists.

A particle-based method for fluid simulation was chosen because all major D
packages have built-in particle systems that can handle simulated point data.
The coupling to existing particle systems has the advantage that a variety of
tools are already available to further use the simulation data, for example, for
triggering the creation of splash particles.

An additional contribution is an enhanced direct raytracing technique for
isosurfaces that extends the concept of surface particles by introducing blind
particles. This reduces the number of particles to be evaluated for rendering
and the network bandwidth required for data exchange, which is the main

 . . system architecture

bottleneck in client/server systems. As a side effect, this also speeds up direct
raytracing methods since the rays can skip empty space inside the fluid.

As a case study, the approach was implemented into the D package ds Max
and used external computing capacity based on NVidia GPUs for the server-
side. With a user study with VFX professionals, the workflow was evaluated in
a production environment.

This chapter uses the PCISPH [] method for fluid simulation with the kernel
functions for density, viscosity, and pressure from Mueller et al. [] as de-
scribed in Chapter . It employs constant particle size, but adaptive methods
could be included as well [], [].

For tension forces, the approach by Becker and Teschner [] is applied using
cohesion forces. Integration of the dynamics of the particle system employs
explicit first-order Euler integration because it delivers sufficient numerical
quality at high computational speed. However, higher-order schemes could be
easily used instead, if necessary.

 . system architecture

The main focus of this work is the practicability of efficient fluid simulation in
a VFX environment. To overcome the computational bottleneck of simulating
a huge amount of particles on the workstation itself, the computing power is
outsourced to an external GPU server. Still, the results of the simulation steps
should be visible as soon as possible, and steering the simulation parameters
should reside in the D scene in the main package.

To achieve this level of interactivity, a client/server architecture is used; see
Fig. .. The client resides in the commercial D package and sends simulation
parameters to the server while requesting simulation results for specific frames.
Decoupling of simulation computation and scene management has the benefit
that several users can share specialized hardware. GPU blades like the Tesla
workstations became affordable for smaller studios. Outsourcing simulation
work to these specialized servers is a logical consequence.

The server runs on external hardware and identifies the user and scene. The
user can change parameters for the scene in the D package and then start a
simulation for a specific frame range. The server will run the simulation in
a background thread and store the results in a local disk cache. In the host
application, the simulation is an operator in the particle simulation framework.
The operator holds the simulation parameters and the current state of the
particles as input parameters for the simulation and receives the particles over
the network. The SPH-related forces are computed in the simulation server
and allow the host application to add forces from the integrated particle system

 chapter . distributed vfx architecture for sph simulation

Figure .: Architecture overview: outsourcing simulation tasks to remote
hosts.

Figure .: SPH simulation coupled with an IK skeleton. Background image
with friendly permission for this usage from Andreas Nilsson []. A video
sequence of the animation can be found in the video appendix [].

and then do one integration step for all forces. This opens the way for a variety
of effects. With this seamless integration, for example, the interaction of the
SPH simulation with forces coming from an inverse kinematics (IK) skeleton
that is driven with motion capture data is possible as shown in Fig. ..

In the implementation, the client is integrated into ds Max. However, other
host systems such as Autodesk Maya or SideFx Houdini would work equally
well. For maximum flexibility, the client is integrated into the Particle Flow
particle system as an operator using the Particle Flow software development
kit (SDK).

The communication between the client and the server is implemented via
remote procedure calls (RPCs). The main problem in implementing a remote
SPH fluid simulation is the huge amount of data to be transferred. A typical
SPH-VFX shot uses several million SPH particles. The simulation data has to
be stored at least for every frame. If the host system needs subframe precision
to calculate secondary effects like, e.g., additional spray particles, the data has
to be saved even more frequently. This computed data has to be stored and
streamed over the network. Hence, hard disk space and bandwidth rapidly
become critical factors and need careful decision-making regarding file format
and message protocol.

 . . s imulation

Figure .: Remote procedure call architecture.

As network message protocol, the msgpack [] protocol is a good choice, which
is a bandwidth-efficient protocol for binary data for which implementations
in C++ and Python exist. In addition, it allows compressed communication
with little overhead. The integration with ds Max was done using its event-
driven particle system Particle Flow. Particle Flow can display all particle
emitters and operators in a node-based editor visualizing a graph of nodes.
Several data channels can flow through this graph. With the Particle Flow SDK
, new channels and operators can be added to the system using C++. Fig. .
illustrates the remote procedure call architecture.

For this implementation, a new operator is added that holds the msgpack-rpc
C++ client. This operator then sends remote procedure calls to the server. The
client can request the particle count for a specific time. The system exchanges
position, velocity, and color for each particle. The color value will be written
to the color channel in ds Max. It is used to send the particle type and
particle density. Float values are used for each array element. This leads to
memory requirements of (9× 4) = 36 bytes per particle, which comes to about
.Megabyte (MB) per k particles. This can be compressed to about
percent using zip compression. The operator unpacks the data and then sets
both the particle count of the current Particle Flow graph and the positions
and information about the particle type.

All performance-critical modules of the simulation were written as parallel
code in Open Computing Language (OpenCL) to run on both multi-CPU and
GPU setups.

 . simulation

The SPH simulation is embedded in the existing particle system of the host
application ds Max called Particle Flow. The Particle Flow framework em-

 chapter . distributed vfx architecture for sph simulation

ploys an event-driven model, based on the concept of events and operators.
Operators describe and modify particle properties such as speed and direction
over a period of time. Individual operators can be combined into groups called
events. Each operator provides a set of parameters that define particle behav-
iors during the event. Particle Flow continuously evaluates each operator and
updates the particle system accordingly. Particles can be sent from event to
event using tests. Tests let you connect events in series. A test can check for
certain properties of the particles. Particles that pass the test move on to the
next event, while those that do not meet the test criteria remain in the current
event []. The simulation code is implemented as an operator of Particle Flow.
This decouples the SPH simulation from the computation of other forces that
may act upon the particles.

Particle Flow has its own integration routine. To avoid ‘double’ integration
a Particle Flow node can overwrite the default integrator with a custom im-
plementation. This enables the integration of the particles in the operator
and makes sure that boundary conditions and collisions are handled properly.
By reading out the acceleration channel, the Particle Flow forces can affect
the simulation. The acceleration due to the Particle Flow forces changes the
velocity on the client side while the SPH acceleration is added on the server.
The mass is defined as constant for all particles; therefore, the accelerations
can simply be added:

atotal = aSPH + aParticleFlow. (.)

The PCISPH technique [] as described in Chapter was adopted with
strategies for GPU implementation according to Goswami et al. []. PCISPH
offers a good time/visual quality ratio, high robustness, and easy implementa-
tion. However, the choice of simulation algorithm should not affect the system
architecture. One of the benefits of this approach is that maintaining and
changing the simulation implementation is decoupled and transparent: it can
be done without changes to the local software setup of the client workstations
as long as the parameter set stays the same.

.. Neighbor Search

SPH simulation is well suited for a parallel implementation since the particles
can easily be distributed to the computing units. Efficient neighbor search
for each particle is the challenging part for parallel implementations. The
decision for an acceleration structure was based on the requirement that a
memory-efficient structure that can run on the GPU is necessary. Also, a
concept that can be extended to a multi-GPU scenario is preferable, similar to
the multi-GPU work by Valdez-Balderas et al. []. The system presented here

 . . s imulation

is based on the approach from Goswami et al. [] using a space-filling curve
as described in Chapter .

.. Collision Detection

Collision geometry is sent to the server with an RPC call by sending the polygon
positions and a global transform matrix of the object for each frame. A hash
value is generated for the polygons of each object based on the vertex positions.
The polygons are cached on the simulation server and are only updated if
the hash value changes. To handle collisions, the particle trajectories are
intersected with the triangles in both the PCISPH prediction step and the
final integration step. If a collision is found, the position of the particle is
corrected to the intersection point and its velocity is set to zero. The additional
pressure correction iterations of the PCISPH method propagate the pressure
back into the fluid and lead to visually satisfying results, as experience showed.
Therefore, more sophisticated boundary handling methods were not needed
for the use cases described in this chapter.

.. Blind Particles

To reduce the amount of data required for rendering, the author introduces the
use of blind particles. Only particles near the surface contribute to the surface
generation and the rendering process. The particles inside the volume are not
of any interest for visualization. This observation was used before to accelerate
raytracing. We also exploit this fact for optimized disk caching and reduction
of bandwidth requirements. Recent works [], [], [] identify the surface
particles from the simulation and only use those for surface generation. Akinci
et al. [] use surface particles for surface generation in a tesselation process
based on Marching Cubes, but not for directly raytracing the surface. They
store the surface information on the grid that they use for their Marching
Cubes algorithm while the method described here tags the underlying particles
with the particle type property directly.

However, identifying only surface particles is not sufficient when used with
a production renderer. Fig. . (a) illustrates this problem. In this example,
the inner red surface only emerges because the inner particles were deleted.
This problem arises for commercial raytracers because the core components of
the raytracing algorithm cannot be changed by plugins. Therefore, one cannot
decide if the surface is valid or not by the algorithm, especially if camera
rays that start inside the fluid should be possible. A ray that enters a fluid
and passes the surface particles will generate a surface on the inside of the
boundary particle hull. For the ray, it could also be a small splash particle or a
thin fluid stream.

 chapter . distributed vfx architecture for sph simulation

Figure .: Surface generation without and with blind particles. The green line
depicts the outer surface, the red line the inner surface. Rays are shot from
different positions towards the scene. On the left, the raytracing algorithm
will create the inner surface as if the drop was hollow. On the right, the blind
particles will prevent surface generation and the drop renders as if it was
completely filled with water.

To solve this problem, I introduced blind particles. This method does not
only identify the surface particles but also a thin layer of particles tagged as
‘blind’ around them; see Fig. . (b). Blind particles prevent the generation of
the inner surface. The rest of the particles is only relevant during simulation.
Omitting particles would normally create new surfaces inside the fluid where
they are missing. The blind particles will tell the surface generation algorithm
to not generate a surface where their field value would normally create an
isosurface. For identifying the surface particles, the method described by
Goswami et al. [] is adopted. A blind particle is tagged as blind if at least one
neighbor in a threshold distance was tagged as a boundary particle. Fig. .
shows a typical scenario with blind particles, surface particles, and particles
that are to be omitted.

.. Implementation Details

Similar to Goswami et al. [], the zCurve approach is used for parallel im-
plementation on the GPU. The method temporarily stores the neighborhood
of each particle in memory for each timestep to reuse the information in the
prediction/correction loop.

 . . rendering

Figure .: SPH particles color-coded by particle type. Black: particles to
be omitted, white: blind particles, colored: surface particles color-coded by
pressure.

For the simulation code, OpenCL over CUDA was chosen because of the ability
to run it efficiently on CPUs as well. For the host code, the Python OpenCL
integration [] was chosen. Experience showed that kernels run at the same
speed independent of whether host code is written in C++ or Python. For array
operations that have to be executed on the host, the NumPy library is used that
offers highly efficient algorithms.

The advantage of a Python/OpenCL-based framework is good portability. The
code ran on all combinations of Windows/Linux and GPU/CPU with only
little modifications. However, some optimizations that would be possible for
GPU-only code were sacrificed for CPU compatibility. For example, the use of
shared local memory was avoided in the kernel code.

 . rendering

My contribution to the rendering of fluid surfaces is the integration of current
fluid rendering algorithms in a VFX pipeline. Often, rendering is a step
separate from animation and simulation. To adapt to this separation, the
rendering routines were designed as a geometry plugin for ds Max from
Autodesk and the raytracer VRay from Chaosgroup. This renderer is available
for all major D packages and is widely used in VFX companies in Europe.

 chapter . distributed vfx architecture for sph simulation

In general, two ways are used to render fluid surfaces. One approach is to
generate a triangle mesh that is then rendered with the standard triangle
pipeline. Akinci et al. [] proposed an efficient parallel implementation for the
surface reconstruction. The other approach is direct raytracing of the surface
where the intersection with the surface is found for every ray []. Fraedrich et
al. [] accelerated direct rendering of fluid surfaces on the GPU by sampling
the particle values to a perspective grid. A surface reconstruction algorithm
and a direct raytracing routine were implemented and both solutions were
compared.

In the preparation phase, a routine fills the particles into a bounding volume
hierarchy (BVH), taking the radius of each particle into account. The imple-
mentation presented here differs from other implementations [] regarding
that if motion blur is required, this implementation uses both the position at
the beginning of the motion blur interval and the end to define the leaf nodes.
Each particle carries velocity information; the ray request from the raytracing
system has time information. With this information, each sample can calculate
the exact positions of the particles in the intersected BVH leaves that were
generated for the full-frame length. Fig. . shows how the BVH is used for
rendering motion-blurred isosurfaces.

As a first step, a routine finds the intersected leaf nodes and then sorts those
nodes by their intersection point along the ray. Then, it marches along the ray
from the first intersection point into bounding boxes and evaluates a level set
function for the particles in the leaf node. Both the simple Blinn blob and the
surface function according to Zhu and Bridson [] was implemented. If the
sign of the result changes from one evaluation to the next, then the surface
lies between those marching steps. The accurate position is found via binary
search.

The routine omits the intersection if most particles involved in the calculation
of the level set are flagged as blind particles. This robustly handles all sec-
ondary rays like shadow rays, reflection/refraction rays, and rays for indirect
illumination. Also, rays that start inside the fluid are handled correctly. Fig. .
compares rendering with and without blind particles.

Direct raytracing is very fast for opaque materials. For ray marching near
the boundaries, only outer leaf nodes of the BVH have to be considered and
only a few particles add to the level set function. Once the first intersection is
found, the function is finished and may return. The slightly longer raytracing
times compared to the intersection with polygons are compensated with the
much faster preparation times per frame, since no marching cubes [] or
similar meshing phases are needed for explicit isosurface extraction. Especially
in cases where huge water masses are simulated, but the camera captures
just a fraction of them, the direct rendering method can speed up rendering

 . . rendering

Figure .: On the left you see a BVH for a motion-blurred isosurface (blue
line) that is constructed from moving particles. Both the start position and
the end position are taken into account when creating the bounding boxes.
The ray (red arrow) intersects the red boxes and the particles are used for the
calculation. The green box is not intersected and its particles are omitted. On
the right is a rendering of a moving fluid that uses this BVH method for direct
raytracing of an isosurface with motion blur.

substantially. An important advantage of the direct raytracing approach is the
handling of D motion blur. Mesh-based rendering methods have to calculate
multiple meshes per frame to obtain clean motion blur in order to compensate
for changes in the mesh topology. Modern raytracers can render motion blur
based on velocity information per vertex, but this approach cannot consider
topology changes, e.g., merging of fluid drops. For direct raytracing, it does
not matter if the topology changes inside the time frame of the motion blur. In
Fig. ., the isosurface for a single point in time is drawn as seen by a specific
ray sample. For each sample, the algorithm calculates the exact position of the
surfaces at the requested point in time.

However, the advantage of faster rendering times is lost for transparent mate-
rials like water. Here, ray marching has to continue through the material. Also,
reflections inside the fluid added to the rendering times. Here, the caching
strategies VRay provides for polygons outperform direct raytracing. To allow
for polygon-based raytracing, a multi-threaded marching cubes algorithm to
create polygons was implemented.

 chapter . distributed vfx architecture for sph simulation

Figure .: Rendering of a particle cube where inner particles were omitted:
(left) without blind particles and (right) with blind particles.

Table .: Simulation time for frames.

Scene Dambreak k Dambreak k Dambreak .M
Stepsize ∆t .s .s .s

Local Intel i h:m:s h:m:s h:m:s
Local NVidia GTX
M

h:m:s h:m:s h:m:s

Local NVidia GTX

h:m:s h:m:s h:m:s

Server/client GTX

h:m:s h:m:s h:m:s

 . results

To validate the approach, on the one hand the raw performance was tested and
on the other hand a user study conducted to check the practicability of the
system.

.. Performance Results

Performance numbers are provided for the simulation and the rendering com-
ponents of the system. All tests use a dam-break simulation designed by the
author. Fig. . illustrates different time steps of the simulation; also see the
accompanying video in the video appendix []. Different volume quantities

 . . results

Figure .: Different time steps of the dambreak simulation.

were used for the SPH simulation keeping the kernel radius at cm, and time
step at . s (with k, k, or .M particles). The test environment was
a mobile workstation equipped with an NVidia GTX M GPU and Intel
I CPU (.GHz) and a desktop workstation with an NVidia GTX . In
the client/server configuration, the mobile workstation was the client with
ds Max and the desktop workstation was the simulation server. The network
was a GBit Ethernet connection.

Table . documents the simulation times for the different hardware platforms
and SPH quantities. The simulation times include the transfer of the particle
data between client and server for each frame and, therefore, may be slower
than times presented in other SPH real-time papers. However, the difference
between running the server on the same machine (“local” in Table .) and
running over the network was only about percent. The advantage of having
access from the mobile workstation to the computing power of the GTX
card in the desktop workstation, which resulted in about twice the speed, by
far compensated the communication overhead.

Especially, time-critical productions may benefit from the flexible use of exter-
nal compute resources.

 chapter . distributed vfx architecture for sph simulation

Table .: Rendering times (min:sec).

Scene Dambreak Dambreak
k k

Marching Cubes opaque : :
transp. : :

Direct raytracing opaque : :
transp. : :

Direct raytracing opaque : :
blind transp. : :

Table . shows the rendering times on the mobile workstation for the small
and medium-sized dam-break simulations. The rendering times were recorded
for frame of the simulation, where a large number of active particles are
present. As shown in Fig. ., there are other time steps of the simulation that
have much fewer active particles. In those cases, savings from direct raytracing
are even more pronounced than for frame of the animation.

Finally, Fig. . compares rendering times between the blind particle method
and the conventional method. The direct raytracing implementation is espe-
cially helpful in the setup phase for low-resolution test rendering. Especially
for small cropped render tests without antialiasing, direct raytracing outper-
forms methods that need preparation steps with meshing. This allows fast
iterations in the lighting phase.

Longer preparation times for polygon generation pay off in more complex
scenes with multiple ray bounces. For each ray sample, the scalar field of the
isosurface has to be evaluated multiple times for the binary search in order to
find the intersection point. This is a costly operation. For small resolutions
without antialiasing and only single ray bounces, this is still faster than surface
reconstruction. Antialiasing schemes dramatically increase the rendering
time for direct raytracing while only moderately increase the rendering time
for polygons. This can be seen in Table . for frame of our dam-break
simulation. All tests were performed with an image resolution of ×
pixel and fixed-rate antialiasing. The conclusion is that direct raytracing
should be used in the setup phase, when small resolution test renders are
made, or in situations where only portions of the simulation volume are seen
by the camera.

The presented geometry plugin supports all VRay render elements. For the
final rendering, the plugin can produce additional passes that could be used
in a compositing step; see Fig. .. The passes are rendered on the fly with
the beauty rendering at almost no additional rendering time cost and saved
to channels in the OpenExr file. Being able to deliver all requested render

 . . results

Figure .: Different render element channels: beauty, diffuse, z-depth, global
illumination, reflection, refraction, mask, normal, and world coordinates.

element passes is an important factor for successful integration in today’s
production pipelines.

.. User Study

The usability and effectiveness of the system were assessed by conducting a
user study with VFX professionals. The study is mainly of qualitative nature
where the participants were commenting on their usage of the system and
filling in a survey afterward. In addition to gathering information to improve
the usability of the system (as part of a formative process), the goal was to
test two hypotheses: “SPH solver integration into Particle Flow improves the
workflow in ds Max” (Hypothesis) and “Direct raytracing is suitable for VFX
production” (Hypothesis). The detailed results of the study can be found in
Appendix A.

The study was designed to test realistic work environments and tasks. There-
fore, specialists in the field of fluid-related VFX were recruited. Due to the
highly specialized user group, the number of participants was small (three).
Therefore, a qualitative user study design was chosen: The think-aloud method
was used [] in addition to questionnaires to obtain maximum feedback from
each individual. According to Nielsen [], three expert users can be sufficient
for a think-aloud study. A screen and audio recording were later transcribed
into text and selected comments were then categorized into the phases ‘initial

 chapter . distributed vfx architecture for sph simulation

0 20 40 60 80 100
frame

60000

80000

100000

120000

140000

160000

p
ar

ti
cl

e
co

u
n
t

Figure .: Particle count of active particles (boundary and blind particles) of
the k dam-break simulation.

0 20 40 60 80 100
frame

50

100

150

200

250

300

350

400

ti
m

e
in

se
co

n
d

s

using all particles

using boundary and blind particles

Figure .: Rendering times for the blind particle and conventional methods
for the k dam-break simulation.

setup’, ‘tweaking simulation’, ‘tweaking surfacing’, ‘tweaking render settings’,
and placed in a review document. First, the experience level of the users was
identified with a background questionnaire. Then, the experience level was
determined by the amount of time per week the participants work with certain
software packages or areas of the VFX pipeline and the years of experience
they have in their field.

 . . results

All participants had more than years of professional experience with D
software and spent more than hours per day working with ds Max. All
participants were working on fluid-related VFX projects in their jobs at the
time of the user study. Since VFX professionals with a fluid background and
ds Max experience are scattered over the world, the user study was performed
remotely with screen sharing sessions. The participants temporarily installed
the plugin on their workstations. In a remote session, the author guided the
participants through the installation and gave a brief introduction with an
online presentation of the system, and provided sample scenes for ds Max.
After an introductory session of about minutes, they were asked to design a
dam-break-like animation. The task was easily explained and can be solved
in the short amount of time available. As an additional requirement, they
were asked to add forces from ds Max to the simulation like, e.g., a vortex to
explore the coupling with ds Max forces. The participants were instructed to
think aloud while they were working to protocol their first impressions.

After the test, the participants filled in an online survey with questions about
the usability of the system. Included in these were questions about different
areas of the system like “Integrating fluid solver in Particle Flow allows me to
achieve a greater variety of effects than a standalone solver” and the standard
System Usability Scale (SUS) questions []. The duration of the test was
between and minutes.

All participants agreed that the overall workflow is better if the fluid simulation
is integrated into the D content creation software in contrast to standalone
fluid simulation applications. The usability was also rated very good in the
SUS questionnaire. This is attributable to the fact that the solver blended into
the interface for which they were experts. In particular, all users appreciated
the flexibility that the integration into Particle Flow offered.

The participants were also asked about their subjective opinion on the visual
quality of direct raytracing of fluid blobs in contrast to meshing approaches.
All agreed that direct raytracing offers superior image quality; no participant
attributed it as slow. All would consider it for their next project. The detailed
questions and results of the questionnaires can be found in Appendix A.

The participants were also asked for unstructured feedback. Some of the
representative feedback includes: “The integration of an SPH solver into a
particle system is basically interesting. It often happens in daily work that
you have to add small fluid simulations on top of existing particle simulations,
where you don’t want to setup a big system. For example liquid spurts in
battle scenes, where a complete fluid simulation would be too much, but
still small effects are needed.” Or: “This should actually in theory kill the
performance because we are raytracing into an isosurface and that is something
you shouldn’t do. Sure enough it is going slightly slower but testament to the

 chapter . distributed vfx architecture for sph simulation

quality of the mesh it’s intersecting – even at the low settings – it is really not.”
Or: “It is really a dream to be able actually stop a render this quickly and go
back to your settings, and change them, tweak them, press f to re-render and
it is there. . . . Seriously, on a daily basis I have to wait minutes between
stopping a render and releasing all memory possible from the computer it
takes minutes and then I make the one small change like ‘I need two more of
this’ and press f and wait minutes before the fist bucket is on screen.”

In summary, the user study provides a preliminary indication that this ap-
proach provides a useful integration of SPH simulation in the VFX workflow
(Hypothesis) and that direct raytracing can be suitable for certain aspects of
VFX production (Hypothesis).

 . summary

This chapter investigated Research Question about strategies to increase the
efficiency of existing simulation methods, so the resolution can be increased.
The presented approach shows that external and distributed computing re-
sources can be integrated into the established D workflow of VFX production
companies seamlessly using commercial software packages allowing interac-
tive sessions. The user study confirmed the good utility of the approach for
domain experts. The cloud computing paradigm and flexible offers from cloud
computing vendors open the door for smaller animation studios to run com-
plex simulations for D production work on high-end GPU clusters without
having to invest in specialized hardware. The approach reduces the memory
footprint of particle caches without any visual difference. This is especially
important if the data has to be transferred over the network. The idea of
blind particles is independent of the simulation concept used and can be easily
integrated into existing pipelines with savings in both rendering time and
storage requirements. The performance tests confirmed that the distributed
simulation leads to negligible communication overhead.

Although the proposed measures counteract, to some extent, the unfavorable
nature of the cubic increase in render time with increased resolution, the
additionally needed reduction of the time step due to the CFL condition
inevitably brings the naive approach to its limits. The consequence is that
for adding small-scale effects to simulations, simply increasing the resolution
is only possible to a certain degree. Increasing the resolution of a whole
simulation system to capture one particular small effect at the surface wastes
computation time in areas where small-scale effects are not expected. The next
chapter will specialize on the meniscus effect and use the knowledge about its
nature to spend computation time where it is needed to create this particular
effect without simply increasing the resolution of the simulation.

chapter 4

Direct Raytracing of a

Closed Form Meniscus

Chapter investigated the naive approach to simply increase the resolution of
simulations for adding small-scale effects. Although it is possible to increase
the resolution to a certain extent, this brute force approach is always limited
since with increasing resolution not only particle counts rise, but also time
steps need to get smaller. Distributing the work can help here, but the second
research question aims for smarter solutions.

 . introduction

In the last two decades, fluid simulation for visual effects has seen great
advances in the domain of free surface motion. However, most work has
been done for large to mid-scale simulations, where the capillary effects at
the interface to solid boundaries are not a prominent feature. Usually, for
simulation purposes, the surface interfaces to solid objects are treated as
impermeable boundary conditions. In most cases, surface tension between a
liquid and a solid is ignored. In large-scale simulations, the forces of surface
tension are negligible. Putting computational work into their calculation is
therefore not reasonable.

This is quite different for synthesizing small-scale liquid motion, such as for
water droplets on a surface. Surface tension forces become strong compared
to gravitational forces. Here, one wants to avoid the computational overkill

 chapter . direct raytracing of a closed form meniscus

that comes with small-scale simulations. As will be presented, surface ten-
sion effects can be achieved at render time without any extra effort for the
numerical simulations. Previous work requires either heavy computation (for
high-resolution simulation) or high-resolution meshes to model the meniscus.

One visually interesting phenomenon of surface tension forces is the effect of
the fluid meniscus at the contact line between fluid and solid. The meniscus
is a curved shape at the border that ensures that the fluid is approaching the
solid at a certain characteristic contact angle. These small curved areas gather
highlights from many more directions than a flat fluid surface. This creates
an observable visual difference because of the produced highlights even in
larger-scale settings where the geometry of the meniscus itself might be hardly
visible.

This chapter introduces a new approach that uses a closed-form of the menis-
cus shape of the fluid interface in order to add a small-scale curved surface
along the contact line, to mimic a fluid simulation at render time. The method
generates the surface locally at the ray–surface intersection step of the ray-
tracing algorithm without generating triangles. The solution operates on the
isosurface of a fluid simulation and the distance fields of the collision objects
and is therefore applicable to a wide range of simulation methods.

The research showed that the method puts only little computational overhead
to the ray intersection step and still generates accurate contact angles and
plausible meniscus shapes. The decoupling of large-scale simulation and
small-scale meniscus effects improves the overall workflow since the large-
scale simulation can be cached and the meniscus effect can be fine-tuned for
rendering.

 . previous work

Already in Saville simulated a contact angle with a molecular dynamics
simulation []. As early as in , Kaneda et al. [] described a method to
render water droplets on a glass plate considering interface dynamics and the
contact angle between water and solid. They use simple environment mapping
and a fixed spherical shape for the drops. Fournier et al. [] simulate the flow
of droplets on arbitrary meshes with particles. They also use a fixed shape for
the droplets. Kaneda et al. [] improve the simulation of drops running down
a surface with a probabilistic method for merging and pathfinding for the
water-based on affinity and dry conditions. These methods with fixed shapes
are limited to individual, separated drops and cannot merge or split the fluid
surface.

Yu et al. [] propose the use of metaballs for a more flexible model of the drop
shapes. They change the shape of the droplets depending on the gravitational

 . . previous work

field and merge drops within a certain distance. They use position-dependent
surface properties to achieve irregular drop shapes. In contrast to our method,
they do not consider material-dependent contact angles and do not use any
physical simulation.

Zhao et al. [] fully simulate droplet behavior on level set grids. This
approach produces physically correct animations for drops but needs extensive
computations, even for a single drop. The authors do not consider solid
collision surfaces. Wang et al. [] present an algorithm to fully simulate
water drops running on solid surfaces with level set grids. They take into
account contact angles at solid–fluid interfaces. The methods by Zhao et al.
and Wang et al. include the capillary effects in the physical simulation and
perform a regular surfacing step at the end. Since the resolution of the physical
simulation has to be fine enough to capture the capillary effects at the borders,
the approach comes with very high computational costs.

Rendering water drops in real-time applications can be based on height
fields [], [], [] or particles in D texture space [], []. These meth-
ods limit the fluid surface to a narrow band around the collision object and
therefore are restricted to specific use cases.

Recent methods use mean curvature flow operators for triangle meshes to
produce surface tension effects. Zhang et al. [] achieve real-time frame
rates with physically plausible behavior for small drops. Clausen et al. []
use Lagrangian meshes to simulate the behavior of fluid droplets with high
accuracy. They employ the Lagrangian mesh representation of the fluid surface
for a full simulation of the fluid and consider physical effects like viscosity,
incompressibility, and tension forces. Our method does not operate on the sur-
face mesh, it neither uses nor influences the underlying physics simulation and
can therefore not be directly compared with the mean curvature flow methods.
In contrast to the simulation with Lagrangian meshes, our method changes the
shape at render time and operates on the scalar field of the isosurface of the
fluid. Another mesh-based method is the correction applied for fluid–cloth
coupling by Huber et al. []. However, they only avoid penetration but ignore
the contact angle.

The most related work is by Bourque et al. []. They also use a closed-
form meniscus solution to displace the vertices of a mesh to form the correct
meniscus. In their method, the vertices are displaced independently. The
resulting mesh may therefore have self-intersections. This can produce artifacts
in certain situations where the fluid surface has frequencies that are in the
scale of the meniscus length, or when two solids are immersed in a liquid
very close to each other. Their method requires a fine-resolution mesh for the
surface correction. Although the simulation can be coarse, the resulting mesh
must be fine enough to produce the menisci.

 chapter . direct raytracing of a closed form meniscus

Figure .: Meniscus at vertical wall.

The work of this chapter is also related to the domain of displacement mapping
techniques []. To address the problem of the high mesh resolution, the
method integrates the analytic meniscus solution into the implicit description
of the fluid surface. In this way, direct raytracing of the modified, correct
fluid surface is possible. In general, direct raytracing of implicit fluid surfaces
without using a mesh representation has been extensively researched both on
CPU and GPU (e.g., [], [], [], []). But none of the published papers
considers the menisci of collision objects for free boundary creation. Gourmel
et al. [] combine implicit objects by designing new implicit functions using
the gradient functions of the source objects to achieve certain effects at the
interfaces, but they do not target the special use case of fluid surfaces.

 . theoretical background

The contact angle is well visible in the case of a horizontal fluid surface in
contact with a vertical solid plane as explained in Chapter . Here, the fluid
forms a characteristic meniscus at the contact line, as shown in Fig. .. For
this special case, an analytical solution for the shape can be derived. An in-
depth derivation is given by Deserno []. Here, the relevant material for our
approach is briefly stated. At the vertical wall, the fluid interface will rise to
a distance y0 above the horizontal level to achieve the characteristic wetting
angle α, as can be seen in Fig. .. The meniscus starts at the wall with the
given contact angle and approaches the ambient interface level far from the

 . . theoretical background

wall.

According to the Young-Laplace law, the hydrostatic excess pressure ∆p =
(ρliquid − ρair) g y must equal twice the pressure due to the interfacial tension
σ and the mean curvature H:

∆p = 2σ H .

The angle ψ against the horizontal plane can be parametrized as a function
of the arc-length s along the profile. The mean curvature is H = 1

2 dψ/ds, as
shown by Spivak []. This leads to the differential equations:

ψ̇ = − y
l2 ,

ẏ = −sinψ ,

with the capillary length l:

l =

√
σ

g(ρliquid − ρair)
.

The density of water and air are denoted ρliquid and ρair, respectively; g is the
gravitational acceleration. For the water–air interface, this is σ ' 80mN/m,
which results in l ' 2.8mm. According to Deserno, there is:

y(ψ) = 2l sin
ψ

2
.

At the wall with ψ(s = 0) = ψ0 =
π
2 − α, there is the meniscus height:

y0

l
= 2sin

π − 2α

4
. (.)

This finally leads to:

ψ(s) = 4arctan
[

tan
ψ0

4
e−s/l

]
,

x(s)
l

=
s
l cosh s

l + (s
l cos ψ0

2 − (1− cosψ0))sinh s
l

cosh s
l + cos ψ0

2 sinh s
l

,

y(s)
l

=
2sin ψ0

2

cosh s
l + cos ψ0

2 sinh s
l

.

In addition, Deserno proves the translational invariance of the curve in x
direction for the starting angle ψ0. Therefore, one can choose any starting

 chapter . direct raytracing of a closed form meniscus

Figure .: Meniscus shape with angle ψ as a function of the arc-length s along
the profile.

angle and later shift the curve to the right location to calculate the shape for
various contact angles, as can be seen in Fig. ..

According to Yuan and Lee [], there are more properties than the interface
tensions, like geometry and flow rate, that also influence the contact angle. The
contact angle is also changing during droplet impact due to the contact angle
hysteresis where the advancing contact angle and the receding contact angle
differ. Bourque et al. [] show that using different meniscus functions creates
negligible differences in the created caustics. Therefore, it is expected that
differences caused by those additional parameters are visually imperceptible
and these parameters can be ignored for the solution.

 . implicit meniscus model

The above analytical solution of the meniscus height can be used to produce a
physically correct meniscus. First, it can be observed that the D closed-form
solution of the meniscus is solely based on the distance to the collision object.
The fluid surface can also be described by a distance function. If the fluid
approaches the solid at an angle of degrees and is given a point on the
original fluid surface, the fluid’s distance function can be corrected by adding
the result of the meniscus solution. The meniscus solution can be seen as a
height field that displaces the original surface. This way, the meniscus solution
can be used to modify the implicit surface function.

 . . implicit meniscus model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
y

contact angle 0
contact angle 30
contact angle 60
contact angle 90
contact angle 120
contact angle 150
contact angle 180

Figure .: Flat-wall meniscus for all contact angles in steps of degrees.
Close to the wall, the menisci start with the contact angle; far from the wall,
they approach the x-axis exponentially [].

To extend the solution to inclined walls, the method exploits the translational
invariance and simple trigonometric functions (Fig. .). If one tilts the wall
until the correct contact angle is reached, then no correction is needed. If
one tilts the wall further, correction is needed in the opposite direction. The
correction length d in Fig. . is perpendicular to the fluid surface. It is a
function of the difference between the meniscus heights from Eq. . for the
tilt angle of the wall, β, and the desired contact angle α:

d = l
(

2sin
π − 2α

4
− 2sin

π − 2β

4

)
. (.)

To compensate for the tilt the length c0 is:

c0 =
d

sin β
.

The correction vector c that moves the contact line has length c0, is parallel to
the collision surface, and lies in the plane of the collision surface normal and

 chapter . direct raytracing of a closed form meniscus

Figure .: Contact angle α, tilt angle of wall β, and the correction length d.

the fluid normal. To calculate the direction of the correction vector c the two
normal vectors and their scalar product can be used to obtain:

c = c0
nfluid − ncollision(nfluid · ncollision)

||nfluid − ncollision(nfluid · ncollision)||
.

Once the correction vector is calculated with the correct length from the ana-
lytical solution, the ray intersection function that is used for direct raytracing
of the fluid surface can be modified.

The presented method works for any kind of implicit description of fluid
surfaces with distance fields. The direct and efficient support for grid-less,
particle-based simulation methods is its main strength. For such applications,
a modified version of the Zhu-Bridson [] surfacing method is used that
creates a distance field by averaging the positions of the nearby particles taking
the kernel weight into account, as can be seen in Fig. .. The radius of each
particle is also averaged using the kernel weight. The result is a distance field
for the fluid surface. Based on the distance to the collision object the average
radius r̄ can be offset with the meniscus correction length d solution from
Eq. ..

 . . menisci in the sph setting

Figure .: Meniscus at different wall inclinations.

In this way, the same curve can be obtained in the case of a horizontal surface
at a vertical wall, i.e., a fully correct solution. In other scenarios, the method
creates a plausible solution because the correct collision angle is guaranteed
at the collision object, and the rest of the interface behaves smoothly before it
finally reaches the original position of the interface from the fluid simulation.
The additive nature of the resulting distance fields automatically smoothens
out problems of self-intersection that mesh-based approaches would have,
when two solids are close to each other.

 . menisci in the sph setting

The method is independent of the simulation method as long as the results
of the simulation yield a fluid representation based on distance fields. A
prominent example of a particle-based fluid simulation is SPH as introduced
in Chapter . This section describes how the generic meniscus-generating
rendering approach can be used in the context of SPH simulation. The method
assumes that the collision object is represented by its boundary surface in
the form of a triangle mesh. Here, methods can be used that create distance
fields from triangle meshes by computing the signed distance transform (e.g.,
Bærentzen and Aanæs []). By setting up distance fields for the collision
surfaces, there are now two distance fields that can be used to create the final
fluid surface.

There is only a minimal preparation step before rendering. In this step, accel-
eration structures for the particles are built. The particles are stored into a
bounding volume hierarchy (BVH) and collision objects are transferred into
distance fields.

All work takes place in the ray intersection step while rendering. The inter-
section is found by raymarching. As a first step of the ray intersection, the

 chapter . direct raytracing of a closed form meniscus

Figure .: The analytic meniscus is added to the average radius r̄ from the
Zhu-Bridson algorithm.

algorithm finds the intersected leaf nodes of the BVH. It then sorts those nodes
by their intersection point along the ray. The routine now marches along
the ray from the first intersection point into bounding boxes and evaluates a
distance function φ(x) for the particles in the leaf node.

As can be seen in Fig. ., the base distance field for a fluid surface can
be created with the Zhu-Bridson algorithm that leads to a signed distance
field around the particles by using a weighted average of the nearby particle
positions xi and the weighted average of their radii ri. The SPH kernel is
denoted Wi, h is the smoothing length, and k is a suitable kernel function that
smoothly drops to zero. The corresponding equations read:

x̄ = ∑
i

Wixi ,

r̄ = ∑
i

Wiri ,

Wi =
k(||x− xi||/h)

∑
j

k(||x− xj||/h)
.

 . . menisci in the sph setting

Figure .: Ingredients needed at render time in the ray intersection step.

The meniscus correction length d from Eq. . is added to the weighted average
of their radii ri to obtain the final distance function φ(x):

φ(x) = ||x− x̄|| − (r̄ + d) .

Given the signed distance fields for the fluid surface and the collision surface,
there is enough information to build the surface at render time, as shown
in Fig. .. Additionally, the fluid’s distance field can be restricted to the
outer side of the distance field of the collision objects. In most cases, the fluid
simulation already took care of this through its collision detection. However,
the resulting surface can be enhanced with the help of the distance fields. The
two fields can be combined with a minimum function.

This distance function is used by the ray marching step to find the intersection.
The same procedure is used for primary rays and secondary rays (shadow rays,
global illumination rays, reflection rays, etc.) The geometric normal vector
of the fluid surface is derived from the distance field. An alternative method
implements normal mapping for the case of the meniscus modification: it
keeps the original Zhu-Bridson surface and only perturbs the surface normals
to fit the meniscus normals from the analytic solution. For comparison, this
was implemented as shown in Fig. .. It can be assumed that in most use
cases a meniscus will hardly change the silhouette of the fluid but the highly
varying normal of the reflective fluid surface causes a big visual difference. This

 chapter . direct raytracing of a closed form meniscus

Figure .: Ghost particles are created to ensure a continuous surface near the
collision object. The dashed line shows the surface without ghost particles.

approach has its limit at grazing angles. Here, the normal mapping approach
cannot sample the highlights sufficiently where a real displaced meniscus
covers more pixels and therefore has enough ray samples for the highlights.

There are other surfacing methods for fluids, including [], [], [], [].
Research showed that all surfacing methods have to deal with mass conser-
vation at the border (for rendering purposes). Most surfacing methods use a
filter kernel that will have a radius that is – times the particle radius. This
leads to a smoothing of the sharp edge at the fluid–solid interface. Although
no meniscus correction is applied, this creates a negative meniscus that would
be the result of a contact angle greater than degrees, which is noticeable in
close-up renderings. For an exact meniscus correction, the presented method
needs a clean -degree contact angle in the case of a vertical wall. To ensure
a straight angle the method creates a thin layer of ghost particles inside the
collision object that will extrapolate the surface far enough, as can be seen in
Fig. .. Even if no meniscus correction is applied, the use of ghost particles
can at least ensure a neutral contact angle of degrees.

 . . implementation and results

Figure .: Top to bottom: (A) Surface with no ghost particles, (B) surface
without meniscus correction, (C) geometric meniscus correction, (D) normal
mapping with modified surface normals alone. Please note that on the image
(D) you obtain the highlight at the border although there is no geometric
difference to the surface without meniscus. A clipping plane is used in all
images; the cutout surface is marked red.

 . implementation and results

This section reports on the computational performance of the presented tech-
nique and the quality of the resulting fluid interface.

The computation time for different scenes was measured. The algorithm
was implemented into the commercial D package ds Max with the
ds Max SDK using C++ and Open Multi-Processing (OpenMP) for multi-
threading. Our measurements were performed on a laptop computer with
an Intel i-QM CPU at .GHz with cores (logical processors). The
scenes were set up with the GPU-based SPH implementation from Chapter .
The implementation of the method allows for fast adjustments (and artistic
variations) since adding the meniscus is only a post-processing step to a cached
fluid simulation.

The implementation uses the OpenVDB framework [] for the distance field
generation. The raytracing method builds upon the same method that was
used in Chapter for direct raytracing of isosurfaces and was integrated into

 chapter . direct raytracing of a closed form meniscus

Figure .: Deformation of spherical drop based on our closed-form solution
for different contact angles caused by varying material properties (left to right:
high wettability to low wettability). Note in particular that a single SPH
particle is used at the same height in each of the three cases.

the commercial raytracing engine V-Ray version ., which shows that the
method lends itself to simple integration in existing rendering systems.

In Table ., render times between the described method and a mesh-based
approach (using Marching Cubes) for rendering are compared. The tested
scenes can be seen in Fig. .. The “cup” and “boat” scenes were rendered
with × pixels. Please note that the corridor scene with the highest
complexity was rendered with a lower resolution of × pixels. All im-
ages were rendered using fixed-rate antialiasing of sample per pixel, simple
lighting, and gray materials, as only the timings of the ray intersection algo-
rithm are relevant. Sophisticated antialiasing schemes create an unpredictable
number of samples and therefore falsify the timings. The time added by the
meniscus correction was % for the simple scene, % for the medium scene,
and negligible for the complex scene. The main reason for the extra time is
the additional preparation step to create the distance field with OpenVDB.
The ratio of time needed for building the collision distance field, to the actual
rendering, is higher for scenes with lower particle counts. It can be seen that
direct raytracing is faster in situations with high particle and polygon counts.
In these cases, the Marching Cubes step of mesh-based approaches adds signif-
icant preparation time. The relatively small meniscus puts high requirements
on the needed mesh resolution. This leads to even longer meshing times.

 . . implementation and results

Table .: Different computing times for the performance test scenes. Columns
show timings in minutes:seconds except for the columns particle count and
vertex count.

Scene Particle
count

Direct
raytrac-

ing

Geometric
meniscus

correc-
tion

Marching
Cubes

Vertex
count

Simple scene (fluid in cup) : : :
Medium complexity (boat in water) : : :
High complexity (corridor) : : :

Direct raytracing is especially helpful for small render tests without antialias-
ing and for complex scenes. Here, it outperforms methods with meshing. This
allows fast iterations in the lighting phase of a computer graphics produc-
tion. The method scales better with increasing complexity of the scene than
increasing the number of ray intersections for more pixels or more secondary
rays. Depending on how many ray intersections per pixel have to be made, the
preparation step of a mesh-based rendering pays off.

The effect of the contact angle for droplets on various flat surfaces having
different properties was rendered with the presented method in Fig. ..
Fig. . already shows the power of our approach: the underlying simulation
works on a very coarse level—it models a drop by a single particle from SPH
[]. The visible differences between the three drops in Fig. . are exclusively
modeled and computed by our technique at render time. Fig. . demonstrates
the difference between a surface without ghost particles (A), a surface with
ghost particles but without meniscus correction (B), and a surface with our
meniscus generated at render time (C). Please note the insets that magnify
the shape of the boundary for each variant. Fig. . compares the meniscus
at the sidewall of a glass with a real photography. The adaptive nature of
the direct raytracing ensures a smooth reflection. The rendering also shows
that our method supports complex shader effects like subsurface scattering.
Fig. . shows the geometric nature of the surface and how the meniscus
reacts to differently inclined walls. Fig. . further illustrates the quality of
our approach. As in Bourque et al. [], the method can simulate the correct
caustics like the “shadow sausage effect” but also capture the highlight at the
straw. Again, our approach is compared to the real photograph of the setting
in Lock et al. []. Fig. . is a frame from an animation. The method has
good temporal coherence, which leads to a smooth, flicker-free movement of
the surface. This can also be seen in the video in the video appendix []. The
comfort of not having to create and store geometry caches before rendering
animations is a big advantage of direct raytracing methods.

The method with a geometric meniscus is also compared to a version where

 chapter . direct raytracing of a closed form meniscus

only the surface normals are changed. Images produced by the two versions
are shown at the bottom of Fig. .. Experience showed that the computational
costs are similar for both variants; for example, the boat scene took min
 s for normal mapping as opposed to min s for the geometric correction
(see Table .). Surprisingly, the normal map approach is not faster. The
explanation is that the overhead in the ray intersections part is computationally
not more expensive than the other operations on calculating the normals.

This chapter showed that by analyzing the meniscus effect in detail and de-
riving a closed-form solution, a method can be found to combine an analytic
solution with data from a fluid simulation. Without storing highly tesselated
meshes, fine detail to coarse simulations can be added at render time.

 . . implementation and results

Figure .: The meniscus at a sidewall, computed with our technique (top)
and, for comparison, in a real picture (bottom).

 chapter . direct raytracing of a closed form meniscus

Figure .: “Just a drink, a Martini, shaken not stirred”: the meniscus at a
slanted border. It is less visible since the contact angle is almost reached with
the wall inclination. The right side is rendered with a clipping plane to show
the shape of the meniscus.

 . . implementation and results

Figure .: Our treatment of the meniscus forming (top) creates correct
caustics such as the “shadow sausage effect”. Here, a straw is dipped into water.
For comparison, the bottom image shows a real photograph reprinted from
Lock et al. [].

 chapter . direct raytracing of a closed form meniscus

Figure .: Frame from an animation. The meniscus is consistent throughout
the animation and works well even in cases where our closed-form solution for
a vertical wall is not completely adequate.

 . . implementation and results

Figure .: Test scenes for performance measurements. Top to bottom: simple
complexity scene of fluid in a cup, medium complexity of a boat in water, high
complexity scene of fluid in a corridor.

chapter 5

Efficient D Simulation on

Evolving D Surfaces

The previous chapter addresses a specific small scale effect with an analytic ap-
proach that is only applicable for this exact effect. The presented method is not
applicable to other kinds of small scale effects. This chapter establishes a more
generic method to achieve secondary effects on moving surfaces. It can be used
to simulate fluid flow on evolving surfaces, e.g., an oil film on a water surface,
but also for other kinds of effects that can be described with a PDE. Given
an animated surface (e.g., extracted from a particle-based fluid simulation)
in D space, a second simulation on the input surface is added. In general,

Input Simulation Scalar Field

Surface Simulation Rendering

Figure .: Water polluted with oil is poured into a cup. The oil film is simu-
lated on top of the existing fluid simulation. The velocity and mass are taken
from the existing animation. On the left is the coarse input simulation. In the
upper half of the middle image is the resulting scalar field. The lower half
shows the result of the method. The high-resolution D simulation adds con-
vincing visual details to the coarse input simulation. The right image displays
the final rendering that needs the fine details from the surface simulation to
generate the high-resolution thin-film interference effects.

 chapter . efficient d simulation on evolving d surfaces

the proposed method solves a PDE on a level set surface obtained from the
animated input surface. The properties of the input surface are transferred into
a sparse volume data structure that is then used for the simulation. Coupling
strategies between input properties and the simulation are introduced, and
conservation of mass and momentum is added to existing methods that solve
a PDE in a narrow-band using the closest point method (CPM) []. In this
way, the method efficiently computes high-resolution D simulations on coarse
input surfaces. This approach helps visual effects creators easily integrate
a workflow to simulate material flow on moving surfaces into their existing
production pipeline.

In typical workflows for generating digital visual effects, a team of VFX artists
iteratively refines a given sequence until they achieve good quality. Going from
rough storyboards over blocked animation to the final shot with many layers
of physical simulations, each shot passes through the VFX pipeline, where
domain specialists add new effects and details. With physical simulations,
often an effect is finished and approved before secondary effects are layered
on top of it. For example, after simulating the fluid flow of a water surface,
secondary effects like splashes and foam [] [] are added on top of this
“basic” water simulation, which will be referred to as “base simulation” in
this work. In this context, a method is proposed to add secondary effects on
top of the base simulation by solving a PDE on the surface. As an example, a
thin-film D fluid simulation is simulated on top of a possibly precomputed,
bulk fluid simulation as shown in Fig. .. The method employs a one-way
coupling to transfer momentum and mass from the D fluid simulation to
the surface simulation. The coupling is based on physical derivations and
plausible parameters are provided for it to control its effects. This coupling
allows iterating on the secondary effects with a consistent high-resolution D
simulation on top of the unchanged coarse D input simulation.

To provide a generic tool for different kinds of small scale effects, the goal is
to solve a PDE on a moving -manifold. The approach can then be used to
address different types of problems that require solving PDEs like fluid flow,
reaction-diffusion texture synthesis, or D wave equations. Fig. . depicts the
steps of the approach. It starts with a moving surface as input geometry. After
converting the input data into a distance field and transferring values into a
narrow-band grid around the surface, the method introduces quantities from
the input D simulation into the surface domain in a coupling step where the
strength of the coupling can be driven by parameters. Then, CPM is used to
embed the -manifold in the D space of the moving surface and solve D
PDEs in a D narrow-band.

Fi
gu

re
.
:

T
he

se
ve

n
st

ep
s

of
th

e
p

re
se

n
te

d
m

et
ho

d
as

a
fl

ow
ch

ar
t.

T
he

st
ep

s
ar

e
p

la
ce

d
in

or
d

er
of

ex
ec

u
ti

on
fr

om
le

ft
to

ri
gh

t.
A

ft
er

th
e

in
p

u
t

of
th

e
ex

te
rn

al
d

at
a

(S
te

p
)

,t
he

d
at

a
is

tr
an

sf
er

re
d

in
to

th
e

n
ar

ro
w

-b
an

d
(S

te
p

an
d
)

.
N

ex
t,

th
e

su
rf

ac
e

is
ev

ol
ve

d
(S

te
p
)

an
d

th
e

ou
te

r
p

ro
ce

ss
is

co
u

p
le

d
w

it
h

th
e

in
ne

r
d

yn
am

ic
s

(S
te

p
)

,b
ef

or
e

so
lv

in
g

th
e

se
t

of
P

D
E

s
on

th
e

su
rf

ac
e

(S
te

p
)

.F
in

al
ly

,t
he

fi
el

d
s

ar
e

ad
ve

ct
ed

(S
te

p
)

.

 chapter . efficient d simulation on evolving d surfaces

With the proposed method, secondary effects can be modeled very efficiently.
The approach is evaluated by simulating a variety of effects such as pouring
an oil film into water, simulating reaction-diffusion on a water surface, or the
surfactants in a heated soap bubble.

The code is available as an open source project on GitHub [] to simplify the
integration into existing production pipelines.

 . related work

Secondary effects can be simulated on top of the base simulation in two dif-
ferent ways. The first way is to directly integrate them into the simulation,
for example, bubbles in foam [], [], []. Here, the secondary effects are
two-way coupled with the main fluid. Modeling the secondary effects in such a
way does not allow for post-processing of existing simulations and animations
without the need to re-simulate. To address this problem, the surface simu-
lation is decoupled from the input simulation. Furthermore, this decoupling
allows one to use a higher resolution on the surface simulation and adds fine
details on top of coarse inputs.

The second way to add additional effects like splashes, bubbles, and foam is to
simulate them with the main fluid but not to exert forces back onto the main
simulation [], [], []. Splashes and bubbles need true D solvers as they
extend into, or out of, the surface. Foam only exists on the surface and can
be rendered by tagging surface particles of the original simulation [] or by
moving texture patches with the surface []. For this work, effects that are
limited to the D surface are of interest, but the goal is to simulate a finer
resolution on the surface than the original D fluid simulation offers.

Solving PDEs on -manifolds has been addressed earlier, e.g., Stam [] simu-
lated fluid flows on static Catmull-Clark surfaces and Shi et al. [] on static
polygon meshes. Using the CPM, this can also be computed in realtime [].
The theory for solving PDEs on evolving surfaces is explained by Xu and
Zhao []. One example is the simulation of soap film on bubbles [] where
the PDE is solved on a polygon mesh or solving the material flow within a
soap bubble on a staggered spherical grid []. On evolving surfaces, Mercier
et al. [] solve a PDE in a D narrow-band grid using the CPM to enhance
the original simulation with additional turbulence. Closest to the presented
approach is the Semi-Lagrangian Closest Point Method []. In comparison to
existing CPM-based methods, equations for conservation of mass are added.
This allows one to correctly adapt scalar values when the overall surface area
changes. The inner velocity is also adjusted based on the surface movement.
Furthermore, a one-way coupling is modeled using mass and momentum trans-

 . . model

fer to create a plausible linkage between the evolution of the input surface and
the behavior of the resulting D simulation.

 . model

This section describes how the physics on the surface is modeled. Furthermore,
some example use-cases are presented with different underlying physical
phenomena.

.. Overview

The starting point is an evolving surface M. This surface typically results
from a simulation, a keyframe animation, or any other kind of time-dependent
process. This process that evolves the surface will be called the outer process.
Next, another process is defined on M (e.g., the simulation of a substance) by a
set of PDEs and is coupled to the outer process that is evolving M. An example
of such a process could be a thin sheet of oil floating on an evolving water
surface as shown in Fig. .. For a better understanding of the approach, the
example of a thin oil sheet on water will guide us through the overall system
in the next subsections. The process can be split into three aspects.

The first aspect is the evolution of the surface M due to the velocity field u.
In the following, the surface evolution characterized by u will be referred to
as the outer process and the process that happens one on the surface will be
called inner dynamics. The surface space on which the dynamic process is
modeled changes with the surface evolution. To account for this change, the
method must define how quantities evolve on the surface. In our example
with the oil, it describes how the oil is transported in space when the water is
moving in normal direction. In Subsection .., an operator O is defined that
will describe how the needed scalar and vector quantities that define the oil
can be transported with the surface.

The second aspect is the coupling that determines how the outer process affects
the one on the surface. In our example, it accounts for the movement of the
water in tangential direction, i.e., the acceleration of the oil due to friction
forces. In Subsection .., equations that describe the coupling for both scalar
and vector quantities are established.

And finally, the third aspect is the modeling of the dynamics on the surface.
This part defines how the secondary dynamic process is modeled on the surface,
i.e., how a set of PDEs is solved on the surface, in our example, the dynamics of
the oil itself (by taking the evolution of the water into account). The approach
and examples of different dynamic processes are presented in Subsection...

 chapter . efficient d simulation on evolving d surfaces

.. Evolution of the Surface

Since the surface M ⊂ R3 evolves by a velocity field u := u(x, t), the surface
is a function of time and can be written as M(t), where t denotes a certain
point in time and ∆t a small time increment. Therefore, M(t0 + ∆t) results
from M(t0). For convenience, M will be written instead of M(t0) and M′ for
M(t0 + ∆t). The spaceM is used to describe the set of points on the surface
together with attached scalar and vector quantities in the tangential space and
is defined by:

M =
⋃

p∈M
{p} ×R× TpM , (.)

where TpM denotes the tangent space specified by the surface normal n(p, t)
at point p. To put this in the context of our oil example, M is the set of
information that describes oil on water.

A basic requirement for modeling a dynamic process on M is an unambiguous
mapping of every surface point p ∈ M between time steps. A map O is
constructed that describes the evolution of points and their attached quantities
due to the outer process. The map O relates points between M and M′ and
the attached scalar quantities, a(p, t) ∈R, as well as vector-valued quantities,
v := v(p, t) ∈ TpM. Typical quantities would be, e.g., mass density and velocity
when modeling fluid flow on the surface. In the following, only one scalar and
one vectorial quantity are exemplarily noted in the equations, but it is possible
to connect an arbitrary number of quantities to p in the same way.

The quantities needed for the inner dynamics can be described as elements
of M. The map O relates elements from M to elements from space M′ =⋃

p′∈M′{p′} ×R× Tp′M′:

O :M→M′,

p
a
v

 7→
p′

a′

v′

 . (.)

An illustration of the map O is given in Fig. ..

The influence of the outer process characterized by u is separated into normal
un and tangential ut components. The adapted velocity ũn is defined as k un,
where k ∈R has to be chosen in such a way that p′ ∈ M′ holds. In other words,
the model ensures that when a point p is moved to its new position p′, it always
sticks to the surface. The tangential component is used to model friction
between the outer and inner dynamics and is discussed in Subsection ...
For the map O, it is assumed that the dynamics are coupled without friction
and, therefore, ut = 0 and the outer process does not affect the inner dynamic,

 . . model

M

M′

O

u p

p′

v

v′

TpM

Tp′M′

Figure .: Illustration of the map O that relates p ∈ M and p′ ∈ M′ and also
maps tangent space TpM to Tp′M′.

i.e., m ∈M is only altered by un. Consequently, points are transported with
the altered normal part of the outer velocity ũn. This already forms the first
part of our map O that defines the relation of points on the surface between
time steps.

Now, that the relation of surface points between time steps is defined, scalar
quantities can be attached to the points. However, some quantities need special
attention. Scalar quantities can be distinguished into two types: intensive and
extensive ones []. An extensive property is a global property (e.g., mass
or volume). Such a property is only advected alongside p and not changed,
i.e., DOa

Dt = 0. In contrast, if a describes an intensive physical property, such
as density, if the surface diverges, the concentration of a decreases and if the
surface converges, the concentration increases.

An example of the change of an intensive scalar property is a growing and
shrinking sphere. If a quantity like density is attached to the sphere’s surface,
the density is expected to decrease as the sphere grows and increase when the
sphere shrinks. This can be determined by looking at the divergence of the
velocity field. The divergence is positive when space is growing and negative
when it is shrinking. Consequently, the divergence of the velocity field in
surface space ∇ · (ũn)Tp M) can be used to describe the second part of the map
O:

DOa
Dt

= −a(∇ · (ũn)Tp M) , (.)

where uTp M = (I − nnT)u is the velocity projected onto the tangential space

 chapter . efficient d simulation on evolving d surfaces

M

M′

np′

np

v

v

v′

Figure .: The map O transforms velocity vector v to vector v′. First, v is
advected to the point p′. Next, it is projected back into Tp′M′ and scaled to
conserve momentum.

TpM at point p. A detailed derivation of the formula can be found in the
appendix of Morgenroth et al. [].

When advecting a vectorial quantity v, as illustrated in Fig. ., the method
ensures that v′ ∈ Tp′M′ holds after applying O, which means that the advected
vector should be part of the tangential space for the next time step. This could
be achieved by moving the vector along the point p and then projecting it onto
the surface. However, this projection possibly changes the length of the vector.
The presented model preserves the length of advected vector quantities.

Metaphorically, this means that v is advected and rotated back onto the surface.
This intuitive image can be expressed as v · ∇ũnv v

‖v‖2 as shown in a detailed
derivation in [].

If a is an intensive property, the combined material derivative D
DtO then reads

as

D
Dt

O =

 ũn
−a(∇ · (ũn)Tp M)
∇ũnv− v · ∇ũnv v

‖v‖2

 . (.)

So far it was assumed that the outer process influences the inner dynamics
only in normal direction. Next, it will be discussed how the tangential part
ut = u− un of the outer process will influence the inner dynamics.

.. Coupling

The combined material derivative for the map O ignores the tangential part
ut of u. This is equivalent to a friction-less coupling, i.e., matter slides on

 . . model

the surface and no adhesion is present. To mimic friction between the inner
dynamics and the outer process, adhesive forces are modeled to reduce the
relative velocities vrel = v− ut between the outer process and inner dynamics
as

Dcv
Dt

= −s1vrel , (.)

where s1 is a user-defined coefficient and Dc
Dt denotes the rate of change induced

by coupling effects. The vector v can be considered to be a small linear material
line element exposed to the velocity ut. As derived in Morgenroth et al. [], its

rate of change would then read as
(
∇Tp Mut

)
v. Both views are combined to

model the total rate of change of v caused by coupling effects as
Dcv
Dt

= −s1vrel + s2

(
∇Tp Mut

)
v . (.)

The two coupling coefficients s1 and s2 define how strong the coupling is. The
operator ∇Tp M is defined as ∇Tp M = (I − nnT)∇.

Coupling velocities between the outer process and the inner simulation is
the most common case, but sometimes it would be desirable to transfer also
scalar quantities. The transfer of intensive physical quantities (e.g., density) is
modeled as sinks and sources. Inspired by Fick’s laws of diffusion, the system
as a whole will try to reach a state so that the concentration aout from the outer
process and the concentration a of the inner dynamics align. The speed of the
reduction is determined by the factor s3 and the formula for the change of
concentration of the substance on the surface

Dca
Dt

= −s3arel , (.)

to reduce the concentration difference arel = a− aout. If only sources should
be modeled, the concentration difference is restricted to negative values, i.e.,
arel ≤ 0. Sinks can be modeled, when restricting arel ≥ 0.

.. Modeling the Dynamics on the Surface

The last subsection discussed the surface evolution and coupling, whereas this
subsection describes how dynamics on the surface can be modeled. Many phys-
ical phenomena on the surface can be modeled with a set of PDEs that operate
on the scalar or vector quantities. A general description can be formulated as

Dsv
Dt

= F1 (t,v,∂, ...) and (.)

Dsa
Dt

= F2 (t, a,∂, ...) , (.)

 chapter . efficient d simulation on evolving d surfaces

Figure .: A rotating sphere with a fluid surface where the velocity of the
internal simulation is coupled with the velocity of the sphere. Additional
details are added with artificial vorticity and coupling noise.

where the functions F1 and F2 are placeholders for the set of PDEs for the
respective phenomenon. For example, if fluid flow is modeled, F1 could be the
Navier-Stokes momentum equation and F2 the continuity equation.

Eqs. . and . need special handling as they are not solved in D space but
on the surface, i.e., this approach only allows for tangential deviations. In other
words, the equations are solved locally in the corresponding tangent spaces
TpM. To accomplish this, instead of using the ordinary spatial derivations,
they are projected onto the surface, e.g., the operator ∇ is replaced by ∇Tp M =

(I − nnT)∇.

Combining the surface evolution part from Section .., the coupling part
from Section .., and the dynamics of this section, the complete governing
equations for the presented method are then given by:

D v
Dt

=
DOv
Dt

+
Dcv
Dt

+
Dsv
Dt

, (.)

D a
Dt

=
DOa
Dt

+
Dca
Dt

+
Dsa
Dt

. (.)

While in Eq. . and Eq. . the outer process is ignored, it is included in
Eq. . and Eq. ., i.e., they define the overall dynamics on the surface.

 . . model

Figure .: Thermal convection on a hemisphere. The temperature is color-
coded, where the temperature rises from blue over white to red. Some areas are
heated and others are cooled. Due to these temperature differences, buoyancy-
driven flow arises.

.. Examples

To show the versatility of the model, various physical phenomena on the
surface are modeled with different sets of PDEs.

Fluid Flow. Probably the most common application of the presented model
is the simulation of fluid flow on an evolving surface as shown in Figs. ., .b,
and .. The example that accompanied the last section is the flow of an oil
film on a water surface (Fig. .). When the water surface moves due to the
outer fluid simulation, due to friction forces, the oil fluid on the surface moves
along. To model this kind of viscous fluid flow on the surface the Navier-Stokes
momentum equation is used. It is written as

Dsv
Dt

= −1
ρ
∇Tp M p + ν∇2

Tp Mv +
1
ρ

fb , (.)

where p is the fluid’s pressure, ρ is the density, ν is the viscosity, and fb are
body forces (e.g., gravity).

To describe the change of density, Eq. . is used. As density is an intensive
property, the surface evolution part leads to

DO ρ

Dt
= −ρ(∇ · (ũn)Tp M). (.)

 chapter . efficient d simulation on evolving d surfaces

When modeling sinks and sources where the density in the outer process can
be transferred to the inner simulation, the change due to the coupling part is

Dc ρ

Dt
= −s3ρrel . (.)

Finally, from the general continuity equation the third part for the change of
density can be written as:

Dsρ

Dt
= ρ(∇Tp M · v) , (.)

where v is the fluid’s velocity in the inner process. Putting the three parts
together leads to

D ρ

Dt
= −ρ(∇ · (ũn)Tp M)− s3ρrel + ρ(∇Tp M · v) , (.)

Please note that if incompressible fluid flow for the inner process is modeled,
i.e., this means F2(ρ,v) = 0, there may still be divergence from the outer
process. Therefore it cannot be set to zero, but rather has to be set to

∇Tp M · v =∇ · (ũn)Tp M, (.)

so the density changes come solely from the sinks and sources from Eq. ..

Buoyancy-induced Flow. To demonstrate that the method is suitable to sim-
ulate natural convection on a spherical surface, an outer process was defined
with a static hemisphere as shown in Fig. .. In this example, the outer
velocity was defined as u = 0. This means the surface evolution part of our
derivative, D

DtO is zero.

The coupling part is used for some areas on the surface that are heated and
cooled by outer temperature constraints. Temperature transfer is modeled
according to Eq. . and, therefore, the fluid on the surface changes its temper-
ature.

Due to temperature differences in the fluid, natural convection arises, which
is modeled in the part for Dsv

Dt . To model the buoyancy-driven flow, the
Navier-Stokes equation from above is extended with the Boussinesq approx-
imation []. The temperature differences create density variations: ρ =
ρ0 − ηρ0(T − T0), where η is the coefficient of thermal expansion, T0 the refer-
ence temperature, and ρ0 the reference density. An ideal and incompressible
gas is assumed and, therefore, η = 1

T0
. Furthermore, gravity is the only body-

force in the model, therefore Eq. . becomes

Dsv
Dt

= −1
ρ
∇Tp M p + ν∇2

Tp Mv +

(
1− TT0

)
g , (.)

 . . model

(a) Reaction-diffusion

(b) Fluid flow

Figure .: This approach can model different behaviors on the same input
data. The upper image shows a reaction-diffusion simulation on top of a dam
break SPH simulation. The lower image shows a fluid flow on top of the same
input simulation.

where g denotes the gravitational constant. The changes in the temperature
field are modeled with the convection-diffusion equation:

DsT
Dt

= µd∇2
Tp MT , (.)

where µd is a constant diffusion coefficient.

 chapter . efficient d simulation on evolving d surfaces

Reaction-diffusion. To show PDEs that are outside the realm of Navier-
Stokes, reaction-diffusion equations were modeled on the surface. These
equations are commonly used to model chemical reactions of one or more
substances (e.g., a substance is transformed into another due to chemical re-
actions) and the diffusion of the substance(s) in space. Fig. .a shows such a
process. Most reaction-diffusion terms in literature exist for two-component
reaction-diffusion processes, their common structure is

Ds

Dt
f1 = R1(f1, f2) + µd1∇

2
Tp M f1 , (.)

Ds

Dt
f2 = R2(f1, f2) + µd2∇

2
Tp M f2 . (.)

The concentrations of the two chemicals are given with f1 and f2. The functions
R1 and R2 are the reaction terms that characterize the system, µd1 and µd2 are
the diffusion rates.

A typical set of reaction terms is the one proposed by Gray and Scott [],
which was used to produce the image in Fig. .a:

R1(f1, f2) = − f1 f2
2 + β(1− f1) , (.)

R2(f1, f2) = f1 f2
2 − (β + γ) f2 . (.)

The chosen values for the constants of the feed rate β, the kill rate γ, and the
speed coefficients µd1 and µd2 have a big impact on the course of the chemical
reaction. The parameters to produce Fig..a were set to β = 0.03, γ = 0.06,
µd1 = 0.1, and µd2 = 0.1.

 . method

This section describes how to apply the theory from Section . to create a
simulation system. The method can be divided into seven steps, as illustrated
in Fig. .. The method starts with a coarse input (Fig. ., Step), e.g., a
fluid simulation. Then, it creates a signed distance field out of this simulation
(Fig. ., Step) and writes the simulation properties such as velocity, density,
or color into D fields that are laid out in a narrow-band grid, which is the
generic input format (Fig. ., Step). Quantities from the outer process are
brought into the surface domain in a coupling step and are compensated for
the surface evolution as described in Section .. (Fig. ., Step and). Then,
the method simulates D details to enhance the coarse input by solving a PDE
in the D surface space (Fig. ., Step) that results in a velocity field that
advects all grids in the last step (Fig. ., Step).

 . . method

Figure .: The distance field is stored in a narrow-band around the surface.
In the same way, velocity and scalar fields are stored in a sparse data structure.

To solve a PDE on a surface the CPM is used [] and is calculated in a D
narrow-band. The main idea of the CPM is that if the values of a field are
constant along the normal of the surface, many equations calculated in this
D field are the same as if they were calculated in the tangent spaces of the
surface. Section .. describes the process to convert D fields into fields that
have constant values along the surface normal.

The method is implemented in a way where each part is interchangeable
using a system of modules that change data flowing through the system. The
following describes each step in detail.

.. Data Input

The first step implements data input and can process a variety of data types.
The examples include keyframe animation (Fig. .), SPH particle simulation
(Fig. . and .a), and FLIP simulation (Fig. .). The only requirement to
be usable as an input is that the surface geometry data can be converted into a
signed distance field and that values for the surface velocity can be generated
on the surface.

.. Convert to Signed Distance Field

For converting polygon meshes to signed distance fields, several methods
are available, e.g., [], [] and []. A special case arises when particle
systems are converted to distance fields. Inside of the fluid, there are particles

 chapter . efficient d simulation on evolving d surfaces

everywhere. Here, the distance field obtained by these methods is not usable
since the distance to the surface is needed and not to the nearest particle. For
particle-based simulations, either the simulation can be meshed to a polygon
mesh first or can be converted directly from particles to signed distance fields
by defining an implicit surface from the particles [] and then taking the
distance to this implicit surface.

.. Create Narrow-Band Grid

A narrow-band around the surfaces is created to capture the velocity, density,
and other properties of the flow from the nearest surface point. Based on
the distance field, only cells near the surface are filled. Cells that a farther
away than a certain threshold are left empty, as illustrated in Fig. .. The
algorithm keeps track of two velocity fields, the internal velocity field (denoted
as v in Section .) and an external velocity field (denoted as u). It writes the
velocity of the incoming surface into the external velocity grid. Depending
on the use case, the method either initializes the internal velocity grid with a
snapshot of the external velocity (for example, Fig. .), or it creates a custom
initialization routine to define the initial internal velocity, for example, by
initializing with vanishing velocity (Fig. .). The algorithm also keeps track
of the scalar properties that are used in the simulation, e.g., the concentration
of substances for the reaction-diffusion example.

To use the CPM the inputs must be narrow-band grids where the values are
constant along the normal direction of the surface. Using an integer look-up
grid that stores the cell coordinates of the closest point of the surface in each
grid cell, it is possible to fill in a grid with values from the closest surface point.
This step will be referred to as the CPM extension. Here, the values near the
surface are extended along the normal direction, as can be seen in Fig. .. The
CPM extension is the final step in the narrow-band creation phase.

.. Surface Evolution

Before velocities or scalar values like color or density are used in a PDE, first
the correction steps for density and velocity are executed, as described in
Section ..

For mass conservation, Eq. . has to be solved. As a building block for this
calculation, a module is needed that implements the operator ∇ · (ũn)Tp M.
This operator will calculate a scalar value for the divergence of the velocity
field but with respect to the tangent space of a surface defined by the gradient
of the input distance field. The result is then applied to the scalar fields that
need correction. The interesting part of this divergence calculation is that
the original D velocities are used for the divergence operator. The velocities

 . . method

CPM Extension

Figure .: The CPM extension step extends the values closest to the surface
along the normal direction. The red line indicates the surface. The blue color
is a scalar value in the volume. On the left is the input field. On the right is
the resulting CPM extension.

of adjacent cells need to be taken into account but projected to the surface
normal of the current grid value, not the normals of the respective neighbor
cells. An example to better understand the difference is the one of a growing
sphere. Although the D velocities in surface space are zero at each point,
the divergence is not. To get correct D divergence where a growing sphere
causes sinks, and a shrinking sphere creates sources in the mass conservation
equation, the velocities of neighbor cells have to be projected using the normal
of the current cell.

For the conservation of momentum, the “Project Vector” module alters the ve-
locities based on the surface tangent. Given a source vector grid and a distance
field gradient, this module will project the input vectors onto the surface by
subtracting the normal vector component from the gradient field. There is an
option to maintain the length from the input vector, which resembles rotating
the vector down onto the surface, as shown in Fig. .. To apply Eq. ., a
module is added to calculate the curl of a velocity field and use it to rotate the
velocities of a second velocity field. Both modules are applied to the velocity
field for the internal velocity.

After the values are adapted based on the surface evolution, they are coupled
to the values from the underlying simulation.

.. Coupling of Dynamics

For coupling the velocities, the velocity grids are sent to a module that applies
Eq. . to the inner velocity. The parameters for s1 and s2 are exposed to the

 chapter . efficient d simulation on evolving d surfaces

0 0.8 1.6 2.4 3.2 4
Time

0.5

1.0

1.5

2.0
M

ea
n

D
en

si
ty

Simulation
Analytic

Figure .: Simulated density over time on a growing and shrinking sphere
compared to the analytic solution. The simulation is able to reproduce the
analytical result. The numerical diffusion is neglectable.

user. Functionality to add noise, viscosity, and vorticity to the inner velocity
is implemented. These parameters allow one to improve the coupling with
additional details, as can be seen in Fig. ..

By coupling scalar values from the initial D simulation to the D space using
Eq. ., mass transfer can be modeled. The parameter s3 is exposed to the
user. It drives how strongly the outer process influences the values in the D
simulation. A value of 0 would only initialize the D simulation, and from
then on, the D simulation would be independent.

.. Solve PDE and Advect

As mentioned, the method operates on D grids where values do not change
along the normal direction. The CPM allows solving PDEs in the surface space
using these grids. Different sets of PDEs are implemented that can all be solved
using the new modules. The modules work in D, but they were specifically
designed for the fields that result from the CPM extension. Due to the CPM,
the gradient naturally operates in surface direction, but the divergence, curl,
and Jacobian have to be changed: When applying them, the projected version
is used as described in Section ., i.e., the input vector is projected onto the
surface.

To simulate fluid flow on the surface, Eq. . is solved. Here, the projected
divergence operator ∇ · (ũn)Tp M is used. The “Divergence-Free” module will
remove divergence with respect to the tangent space of a surface and take the di-

 . . method

Figure .: Fluid flow simulation on top of a river bed simulation. The
decoupling of the simulation on the surface from the base simulation allows
for interesting effects.

vergence of the surface evolution into account. For the Buoyancy-induced flow,
the gravity is scaled depending on temperature as described in Eq. . and
a diffusion module for temperature diffusion is added. To simulate reaction-
diffusion for the example shown in Fig. .a a module to implement Eq. .
and Eq. . was written.

As the last step, all fields are advected using Eq. ., i.e., with the resulting
velocities.

.. Implementation

The modular approach can be easily implemented with existing frameworks
like the SideFX™Houdini software package, which is widely used for VFX
creation and offers an integration of the OpenVDB libraries [] as a sparse
volume representation for the calculations. The implementation for Houdini
is available as an open source library, which makes it easy to integrate the
method into typical production workflows. The algorithm is separated into
independent modules which are implemented as separate Houdini operators,
to be used in Houdini’s simulation node graph framework. The Houdini surface
operator (SOP) network level is used to implement the algorithms on top of the
OpenVDB volume data type. The OpenVDB framework offers a data structure,
the OpenVDB grid, to create such narrow-bands. All subsequent calculations

 chapter . efficient d simulation on evolving d surfaces

employ this structure and only spend computation time where needed. The
“CPM Extension” module is the central building block to build CPM solutions
in Houdini. Here, nearest-neighbor interpolation is implemented as suggested
by Kim et al. [], but also box and quadratic interpolation are implemented.
To generate the SPH base simulations, divergence-free SPH [] with consistent
Shepard interpolation [] was used. When simulating fluid flow, vorticity
confinement as presented by Fedkiw et al. [] was used.

 . results

To show the versatility of the method, different physical phenomena were
modeled as described in Section .. and were tested on a variety of scenarios.
Outer processes with different characteristics were chosen, from static (Fig. .)
to hand-animated meshes (Fig. .), from coarse scale SPH-based fluid sim-
ulations, including sudden changes in topology (Fig. .) to high-resolution
multi-phase SPH simulations (Fig. .). In all of the above situations, the
method is able to add a fine-scale secondary simulation on top of these surfaces,
revealing fine-scale details as promised.

.. Versatility and Simulation Quality

The approach is able to add effects onto the surface of the simulation. Simu-
lating a second fluid flow on the surface enables one to add other phenomena
on top of an existing simulation. As shown in the oil film example (Fig. .),
the effect of oil spreading on the surface is achieved by simulating a second,
fine-scale fluid flow on the surface, which is just added to the base-simulation.
As mentioned, the level of detail of the secondary simulation can be chosen
independently, and increasing the simulation resolution of the underlying
SPH simulation would not have the same effect. Instead, there would just
be a scalar field with higher resolution, like the one shown in Fig. .b and
not having simulated the laws of the secondary flow. In addition, due to the
modeled mass transfer, the oil particles that emerge from below the surface
can contribute to the D simulation. This coupling introduces significantly
more details than just a plain simulation on the surface itself. The amount of
detail added is significant even for low-resolution base simulations, and it can
be further improved (Fig. .c to .d) by increasing the resolution. Fig. .a
presents a reaction-diffusion of two chemicals simulated on top of a coarse
dam break simulation. This example illustrates that the method can simulate
not only a second flow equation on the surface but any kind of desired physical
phenomena that can be described by a set of PDEs.

In the buoyancy-induced flow example (Fig. .), thermal convection is sim-
ulated to demonstrate the emergence of isolated vortices on a static surface,

 . . results

0.0
1

0.0
19

0.0
28

0.0
37

0.0
46

0.0
55

0.0
65

0.0
74

0.0
83

Gridsize

0.000

0.025

0.050

0.075

0.100
M

ea
n

A
bs

ol
ut

 E
rr

or

Figure .: The mean error for different grid sizes. The smaller the grid cells,
the closer the values are to the analytic solution.

replicating the physical experimental setup by Seychelles et al. []. The setup
consists of a static hemisphere on a heating plate giving rise to thermal convec-
tion. The method can create small-scale vortex structures using the Boussinesq
approximation. This example shows that the approach can model real-world
alike physical phenomena.

A hand-animated sphere with a periodically oscillating radius was used to
test the approach on mass conservation. The mean density per surfactant
was calculated and plotted as a function over time as a graph (Fig. .).
In this example, it is possible to analytically calculate the density change
that is needed to ensure mass conservation and compare it with the presented
simulated result. As shown in Fig. ., it is possible to reproduce the analytical
solution over time. The small loss in density can be attributed to numerical
diffusion and is neglectable in this case. To test the accuracy depending on
the grid resolution, this scenario was simulated with different grid resolutions.
As can be seen from Fig. ., the mass conservation approach works as
expected and the simulation converges to the analytical solution using finer
grid resolutions.

The author refers the reader to Appendix B for some still images of the anima-
tions and the accompanying video in the video appendix [] to see some of
the examples in motion. Moreover, a precompiled version of the plugin for
Houdini is provided with two sample scenes for testing on Zenodo [].

 chapter . efficient d simulation on evolving d surfaces

(a) Source SPH particles (b) Original scalar field derived from particle
attributes

(c) D simulation with grid resolution of . (d) D simulation with grid resolution of .

Figure .: Pouring polluted water into a bowl. The fine-grained simulation
enhances the underlying SPH simulation. The presented mass transfer even
captures oil particles that emerge from under the surface. Different resolutions
can be generated independent from the input resolution. This allows iterative
refinement of parameters as needed in typical VFX production workflows.

 . . results

Narrow Band

PDE

Coupling

Surface Evolution

Advection

Other

Divergence Free

Jacobian

CPM Extension I

CPM Extension II

CPM Extension III

CPM Extension VI
Distance Field

VDB Operations
Vorticity

Adhesive Forces
VDB Operations
Project Vector I
Project Vector II
Display
Compute Outer Velocity
Initial Mesh Generation

Figure .: The calculation costs of the used nodes for the CPM methods are in
the magnitude of the existing Houdini operators typically used in simulations.

.. Performance

The performance was measured for every operator individually with the ro-
tating sphere example (Fig. .). The grid resolution has the most significant
impact on the computation time, but also the width of the narrow-band pro-
foundly influences the performance. As can be seen in Fig. ., the largest
computation time for a single task is spent in the “Divergence Free” operator.
This node uses OpenVDB’s Poisson solver with a maximum of iterations
to obtain a divergence-free vector field. The second most computation time is
spent to compute the Jacobian for the coupling step. In third place is Houdini’s
advection operator. All other operators have smaller computation costs. This
shows that the computation time for the needed steps is in the magnitude of
Houdini’s advection node.

In contrast to the very special solution for the meniscus effect in Chapter ,
this chapter presented a versatile method to model small-scale effects that can
be expressed with PDEs on an evolving surface.

chapter 6

Conclusion

This thesis presented methods to add fine detail to fluid animation in the
domain of visual effects to help achieve greater realism in CGI.

The overall goal of this work – to answer the question “What are effective
strategies to augment large-scale fluid simulations with small-scale physical
effects?” – was achieved in steps. First, the naive brute-force approach was
explored, then a smart analytical method for a particular effect was discussed,
and finally, a more generic approach that can achieve a variety of effects was
proposed.

 . summary

Chapter derived the motivation and stated the main research questions of this
work. In Chapter , the meniscus effect and iridescence effects as examples of
small-scale effects were described. Then, the Knudsen number of those effects
of interest was determined to find an adequate physical model. With that, the
Navier-Stokes equations were identified as the governing equations and briefly
described. Then, the difference between the Lagrangian and Eulerian views
was introduced and effective numerical methods for both approaches as they
are used in later chapters were presented.

In Chapter , an approach was presented for simulating and rendering physical-
based fluid effects in a VFX production environment using a client/server ar-
chitecture that is practical for distributed simulation resources. The fluid sim-
ulation implemented smoothed particle hydrodynamics (SPH). The proposed

 chapter . conclusion

strategies of using GPUs for computation and the usage of cloud computing
resources were tested and presented in a complete system architecture. The
integration into commercial software packages was demonstrated. This system
was developed to integrate into the particle system of Autodesk ds Max. It
included a simulation component and a raytracing component for isosurface
raytracing. The simulation component allowed outsourcing of the computa-
tional work to an external computing resource while displaying the results
in an interactive session. A test setup was created where the computational
work was executed on a cloud-computing resource from Amazon Web Ser-
vices (AWS) and the interactive session was running on a desktop PC. The
feasibility of the system was validated with a user study with industry experts.

The concept of surface particles was extended by introducing blind particles
that facilitate efficient direct raytracing of isosurfaces. This also reduced the
memory footprint of network transfer to create savings in both rendering time
and storage requirements. The performance of the approach was evaluated
with local and remote simulation on CPUs and GPU. The raytracing component
was developed to satisfy the requirements of a production pipeline for visual
effects. The rendering output included all necessary extra render elements like
normal passes, velocity passes, specular passes as shown in Fig. ..

In Chapter , an analytical closed-form solution for the meniscus shape was
introduced, and then it was shown how to apply this to an SPH-based fluid
simulation. Instead of simulating the meniscus effect with a full fluid simula-
tion, the new approach uses a closed-form of the meniscus shape of the fluid
interface to add a small-scale curved surface along the contact line at render
time. This chapter’s technical contribution is to use the closed-form fluid
meniscus in a direct implicit raytracing approach to remove the limitations
of mesh-based meniscus modeling. The method uses the analytical solution
of fluid menisci to enhance fluid surfaces based on physical simulations. The
author presented a new approach for achieving physically correct contact an-
gles at fluid–solid boundaries in the surface generation stage. The method
blends the correct contact angle inclination into the original surface shape in a
physically plausible way. For the rendering step, a raytracing routine for the
commercial renderer VRay was implemented. Several test scenes were created
to test the usability of the approach.

Chapter presented a method to solve PDEs on evolving surfaces. In contrast
to Chapter , where only one particular effect was discussed, this last chapter
presented a method that enables a variety of effects near the surface that
can be described with a PDE. A method to solve PDEs on evolving surfaces
was presented where the external movement was considered as the driving
process. Physically motivated conservation laws were derived and coupling
strategies were presented. Simulations of D and D space were coupled
in a way that allows computing high-resolution D simulations on coarse

 . . discussion

input surfaces efficiently and that exposes physical plausible parameters to
control the strength of the coupling. The examples demonstrated that the
approach can be used for different types of problems that require solving PDEs
on a surface. It was shown how to integrate all necessary steps into a VFX
production environment in a modular way so the building blocks can be reused
and a reference implementation was provided.

 . discussion

This work presented three different strategies on how to augment fluid sim-
ulations with small-scale physical effects to properly address the Overall
Research Goal, “What are effective strategies to augment fluid animations
with small-scale physical effects?” The first strategy was to compute the solu-
tion with a brute-force approach where the resolution is increased as presented
in Chapter . The second strategy was to find an analytical solution to the
problem and combine this with a coarser simulation as described in Chapter .
The third strategy was to limit the computation to a subset of the initial domain
to save effort as presented in Chapter , where the simulation of the small-scale
effect was computed in the D surface space instead of the full D space.

Each of these strategies has its reason to exist. To choose the right one, the
advantages and disadvantages should be known. Research Question , “What
are strategies to improve existing methods to such an extent that the resolu-
tion can be increased enough to achieve small-scale effects?”, explored the
brute-force method. This method seems unattractive at first glance as the
increased resolution creates problems at various places. The obvious points
are the increased amount of simulation data and smaller time steps that both
lead to increased computation time for the simulation. More simulation data
means not only an increased RAM requirement during the simulation but also
a greater need for disk storage for the simulation results. If the simulation is
computed on cloud resources, the results often have to be transferred from
cloud servers to on-premise machines, which leads to higher bandwidth re-
quirements and transfer costs. The high amount of simulation data will often
also increase RAM requirements for the renderings stage and increase render
times. The increased computation time may prolong the iteration cycle of shot
production for the artists.

Despite these disadvantages, the brute-force method should still be considered
as a possible strategy, as there are some advantages to the approach. It is impor-
tant to consider all of the efforts involved in a production. Often computation
time is cheaper than artist and developer time. If existing tools are used, the
artists are already trained to use them and the correctness of their simulation
has been tested in production. But if instead of simply increasing the resolution

 chapter . conclusion

of an existing toolset, a new solution needs to be implemented, that solution
needs to be tested and taught to the artists as well. This additional effort may
not be justified, especially if a certain effect is only needed once. According to
Zia Ullah et al. [], cloud computation costs are halved every three years and
the computation power is rising constantly following Moore’s Law []. With
these advantages, it is always an option to consider the brute-force strategy.

The presented blind particle approach reduced the maximum memory us-
age and transfer costs for a particle cache and helped to reduce render time
for raytracing. In the context of a VFX production pipeline as described in
Chapter , the approach presented in Chapter adds small-scale effects in the
“Simulation” step of the pipeline, although some improvements were added in
the “Rendering” step with the use of direct raytracing.

The second strategy to add small-scale effects was to use analytical methods in
combination with a simulation. The typical curved meniscus shape that water
forms at the borders produces characteristic highlights and caustics that can be
seen from far away. Therefore, adding a curved meniscus shape in large-scale
simulation at contact lines can greatly improve the visual quality. The idea of
Chapter is to add this meniscus shape with the help of an analytical solution
without the need for fine-grained simulation. With this approach, the effect
can be decoupled from the simulation stage. The simple control with one
parameter, and the low computational footprint make this approach especially
applicable to visual effects pipelines that need a fast turnaround time for the
daily work or any kind of real-time visual simulation.

Using the example of the meniscus effect, Chapter answered Research Ques-
tion of how analytical solutions and simulation results can be combined to
achieve small-scale effects effectively.

The presented surfacing method can be applied to existing fluid simulators
without any change to the simulation itself. The solution can be applied
to a wide range of simulation methods as it operates on the distance fields
of the fluid simulation and the collision objects. In the context of a VFX
production pipeline, this method does not operate in the “Simulation” step,
instead, the small-scale meniscus effect is added in the “Rendering” step. The
surface is generated locally at the ray–surface intersection step of the raytracing
algorithm without generating triangles. Therefore, the characteristic highlights
that are created by the typical curved meniscus shape that water forms at
the borders can be captured by raytracing systems even when they are on a
sub-pixel scale. Direct raytracing always creates the needed resolution on a
sub-pixel level and solves the problem that otherwise a very dense polygon
mesh for the surface would be needed to capture the small meniscus curve.
This dense polygon mesh would need a lot of additional storage for saving the
scene and a lot more memory for rendering. Heavy polygon meshes would slow

 . . discussion

down not only the rendering but also overall scene handling for loading/saving
and navigating the D scenes.

The method introduces only little computational overhead to existing surfacing
methods while significantly improving the visual quality even for simulations
with high water volumes from SPH or level set simulations. In certain situa-
tions, such as a meniscus between a horizontal fluid and a straight wall, the
proposed method is independent of the simulation resolution and identical to
the exact solution.

One limitation to this approach is that the physical simulation is not influenced
by the capillary effects. Various effects can therefore not be reproduced like,
e.g., the capillary rise in a cylinder. To produce these effects methods that use
the capillary forces in the simulation itself have to be employed.

Another disadvantage of this method is that other effects that require feedback
for the simulation or scene setup phase cannot be implemented as the meniscus
does not exist in these phases. To compensate for this weakness, a plugin for
the Autodesk ds Max was written that provided a polygon-based preview of
the meniscus effect in an interactive session.

But this specialized solution is applicable only for this one particular effect,
the meniscus effect, not for other types of effects. This leads to the main
disadvantage of the second strategy: It is very hard to find effects that are
suitable for an analytic approach. Most fluid scenarios are too complex and
require PDEs. Sometimes effects can be isolated and repeated at different
positions. For example, the circular wave patterns around raindrops that
fall into a calm water surface can be computed with an analytic solution and
then be added for every raindrop. A slight variation of the idea of analytic
solutions is to use precomputed solutions for an isolated area and apply this
solution at multiple locations. For example, Garg et al. [] built a database for
image-based rain streak rendering by precomputing the variations in streak
appearance with respect to lighting and viewing directions. These small-scale
lighting effects inside of a falling raindrop are then applied to a large rain scene.
If there is no possible analytic approach or if the effect cannot be isolated and
reapplied, the second strategy is not applicable.

This leads to Research Question on how fine-scaled effects near the surface
can be added to fluid simulations more generically. Essentially, the method
presented in Chapter is a trade-off between physical correctness and visual
resolution. The presented method couples simulations of D and D space
to add fine-scaled D simulations on coarse input surfaces. The simulation
operates on a sparse volume data structure that tracks a narrow band near
the surface. With this approach, the additional computation time that is
needed to simulate the desired surface effects is only spent on a small band of
cells around the surface. This is more efficient than simulation on a full D

 chapter . conclusion

grid of the whole fluid body. One could say, the method trades the physical
correctness of a true D simulation with the visual richness of a high-resolution
D simulation on the surface. In many VFX scenarios, high-resolution effects
with not entirely correct but plausible movement can be more believable
than correct simulations that do not have enough resolution. The D surface
simulation can add a big visual difference to scenes.

The weak point of the third strategy is that it is hard to create physically
correct models. The reduction of the simulation space to the two-dimensional
space creates constraints on how material can move. Even for effects that
are supposed to happen mostly on the surface, e.g., an oil film on a water
surface, the correct model is a full D simulation. The D approach is just
an approximation to create visually similar results. Although the method is
physically not correct, physically motivated conservation laws were derived
and coupling strategies were presented, so plausible effects can be achieved.

When deciding on one of the strategies, one factor is the working time that is
required to create the desired number of shots. This includes not only the time
it takes to work on the actual effects but also training time for new tools for the
artists. Therefore, it is essential to integrate new methods as tightly as possible
into existing workflows and tools. In this work, for each approach, it was
shown how to integrate all necessary steps into a VFX production environment.
For Chapter and Chapter , the methods were integrated into the plugin
system of Autodesk ds Max, a content creation software package that is widely
used in the VFX industry. In the later period of this research work, the software
package Houdini became more accessible to researchers with a free personal
learning edition. To seize this opportunity and get a broader picture of the
tools used in the industry, for Chapter a plugin for Houdini was written that
provided functions as modular nodes for the software’s node-graph system.
Several test scenes were created in each of the systems to verify if the approach
can be applied in a VFX production environment. The lesson learned from
implementing for those two different packages is that it is generally better to
break the functionality down into the smallest possible modules. The node-
based approach in Houdini was easier to implement and test. As a user, it is
easier to learn how to use the individual components and you can find creative
ways to use the functionality.

 . future research directions

For the brute-force approach in Chapter , only remote execution of the sim-
ulation on a single GPU was demonstrated. The simulation workload was
outsourced as a whole and not divided into chunks. However, by introduc-
ing a spatial division of the particles as described by Ihmsen et al. [], the

 . . future research directions

implementation could be extended to a multi-GPU system that runs on many
cores in parallel to be employed in scalable hardware environments such as
GPU clusters on the server-side and make small-scale effects possible on larger
simulation domains. Distributing simulations to many cores is not a new topic,
but with the shown approach of invoking this from an interactive session and
using cloud resources, there are some new ideas possible. Additional cloud
GPUs could be added to the simulation on-demand based on heuristics that
take current pricing and GPU availability into account. Most cloud vendors
offer computing instances with variable pricing based on current demand, e.g.,
the spot-instance feature from AWS. With the information on how many GPUs
are available in the cloud for simulation and the current pricing, it is possible
to estimate the time and costs for an effect. This information would then be
relevant for the decision if a brute-force approach for this small-scale effect
makes sense in this case.

If the distributed approach could be combined with adaptively sampled fluid
simulations as described, e.g., by Adams et al. [], the method would become
the ideal solution to add small-scale effects to simulations. This would add
detail only where it is needed and would be similar to the third strategy of
limiting the simulation to the D space of the surface, but without losing
physical correctness. The generic client/server architecture could be extended
to other fields of physically based simulation. Similarly, other commercial D
packages could be integrated with the system.

Another possible field for future work is to combine the results from Chapter
and Chapter . The analytic closed-form solution could be integrated into
the sparse narrow-band data structure of Chapter . Then the results could
easily be fed into other functions or operators, e.g., to also include an oil film
on the surface that has a meniscus shape. This idea would already require
implementing different boundary conditions for obstacles into the method
from Chapter as this assumed a free flow on the surface without obstacles.
Implementing different boundary conditions for obstacles would therefore be
a mandatory next step.

Testing further types of PDEs on moving surfaces is another topic for future
work. This work investigated the iridescence effect of an oil film on water.
There are more small-scale effects with water that are often relevant in VFX
productions. One area is the domain of wetting effects when surfaces change
their appearance once they get in contact with water. Often wet maps are
used to create this effect. Simulating the diffusion of water inside of media
like cloth was shown by Huber et al. []. This is not a water surface effect
in the strict sense, but the idea of solving the water movement in D space
with the approach of Chapter should be applicable. This might also be
true for thin streams and droplets of water on surfaces. This could lead to
efficient simulation and rendering when used in combination with the surface

 chapter . conclusion

rendering of Chapter , where a rendering of a drop of water with a correct
contact angle from a single SPH particle was shown.

This work aimed to establish a research area for the addition of small-scale
effects to fluid animation in CGI to increase the plausibility of an effect. It
presented examples of such effects and contributed practical methods that can
be implemented. The presented methods showed that it is possible to decou-
ple the small-scale effect from the base fluid simulation while still obtaining
convincing visual results. All of the methods investigated in this work employ
standard physically based methods. However, with the methods presented,
physical correctness was sacrificed in favor of computation time. The most
important factor is whether the effect is perceived as credible by the viewer.
This naturally leads to the field of human perception of effects and the ingredi-
ents required to make an effect more convincing. If the visual ingredients for
small-scale effects that improve the plausibility of CGI could be classified, then
this might be a good application for artificial intelligence (AI) with generative
adversarial networks [], where the needed features can be learned with
machine learning (ML) methods and applied to raw renderings. With such
methods, maybe a fluid meniscus could be added to renderings without any
knowledge about the fluid but solely based on the rendered image.

appendix A

System Survey Results

Supplemental material for Subsection ...

Here, the results of the quantitative part of the user study are detailed. The
first part consists of the specific questions related to our implementation, the
second part shows the System Usability Scale (SUS) questions.

As stated in the text, it can be seen that all participants agreed that the overall
workflow is better if the fluid simulation is integrated in the D content creation
software in contrast to standalone fluid simulation applications.

Only one user agreed to the statement “Outsourcing simulation calculation
to a render slave speeds up my workflow”. The reason for this became clear
in a discussion with the participants. While all participants had the latest
GPUs in their workstations, none of the studios had GPU blades in their server
farms yet. The user who agreed to the statement referred to a possible future
situation where GPU servers would be available, while the other users referred
to their current situation where the fastest GPUs were only available in the
workstations.

The usability was also rated very good in the SUS questionnaire. This is
attributable to the fact that the solver blended into the interface they were
experts in.

 appendix a. system survey results

a. system usability scale

. I think that I would like to use this system frequently
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I found the system unnecessarily complex
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I thought the system was easy to use
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I think that I would need the support of a technical person to be able to use this system
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I found the various functions in this system were well integrated
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I thought there was too much inconsistency in this system
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I would imagine that most people would learn to use this system very quickly
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I found the system very cumbersome to use
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I felt very confident using the system
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

. I needed to learn a lot of things before I could get going with this system
AnsweredQuestion

SkippedQuestion
Strongly disagree Strongly agree RatingAverage RatingCount

,% () ,% () ,% () ,% () ,% () ,

a. . system usability scale

A.. Additional Questions

. Outsourcing simulation calculation to a render slave speeds up my workflow
AnsweredQuestion

SkippedQuestion
totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

. The overall workflow is better if the fluid simulation is integrated in the D content creation software in contrast
to standalone fluid simulation applications.

AnsweredQuestion
SkippedQuestion

totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

. In ds Max the overall workflow is better if the fluid simulation is integrated in Particle Flow in contrast to fluid
object plugins.

AnsweredQuestion
SkippedQuestion

totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

. Integrating fluid solver in Particle Flow allows me to achieve a greater variety of effects than a standalone solver.
AnsweredQuestion

SkippedQuestion
totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

. Direct raytracing of fluid blobs results in better visual quality
AnsweredQuestion

SkippedQuestion
totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

. Direct raytracing of fluid blobs is less flexible
AnsweredQuestion

SkippedQuestion
totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

. Direct raytracing is slow
AnsweredQuestion

SkippedQuestion
totally agree totally disagree RatingAverage RatingCount
,% () ,% () ,% () ,% () ,% () ,

 appendix a. system survey results

A.. Background

. Years of professional experience with D Software
AnsweredQuestion

SkippedQuestion
ResponseAverage ResponseTotal ResponseCount

Years ,

. Years of professional experience in VFX.
AnsweredQuestion

SkippedQuestion
ResponseAverage ResponseTotal ResponseCount

Years ,

. Experience with ds Max. Your daily usage in hours.
AnsweredQuestion

SkippedQuestion
ResponseAverage ResponseTotal ResponseCount

hours ,

. Experience with VFX creation
AnsweredQuestion

SkippedQuestion
beginner professional RatingAverage RatingCount
,% () ,% () ,% () ,% () ,

. Experience with fluid effects. What percentage of your work is fluid related?
AnsweredQuestion

SkippedQuestion
ResponseAverage ResponseTotal ResponseCount

% ,

. Experience with V-Ray renderengine. What percentage of your work is rendered with V-Ray?
AnsweredQuestion

SkippedQuestion
ResponseAverage ResponseTotal ResponseCount

% ,

appendix B

Samples

 appendix b. samples

(a) t= (b) t=s

(c) t=s (d) t=s

(e) t=s

Figure B.: Animation of fluid poured into a glass. On the left, SPH particles
color-coded by particle type. Black: particles to be omitted, white: blind
particles, colored: surface particles color-coded by pressure. On the right, the
resulting rendering with raytraced motion blur. Frames in second steps.

(a) t= (b) t=s

(c) t=s (d) t=s

(e) t=s

Figure B.: Dam break simulation with million particles with direct raytrac-
ing of an isosurface with motion blur and global illumination. Frames in
second steps.

 appendix b. samples

t=

t=s

t=s

t=s

t=s

t=s

Table B.: A fluid meniscus in a simulation of a fluid poured into a glass. The
first column shows the underlying particle simulation. The second column
depicts the resulting surface rendering without correction. The third column
shows the corrected version with a fluid meniscus added at render time. Frames
are in second steps.

a b c d

t=s

t=s

t=s

t=s

t=s

Table B.: Image sequence for pouring polluted water into a bowl. The first
column (a) shows the source SPH particles, column (b) the original scalar field
derived from particle attributes. Column (c) shows the resulting D simulation
on the surface and the last column (d) the resulting rendering. Time t is
measured in seconds.

 appendix b. samples

(a) t= (b) t=s

(c) t=s (d) t=s

Figure B.: To demonstrate the effect of the vector length conservation, an ex-
periment was performed with a rotating surface, where the surfactant was
initialized with a tangential velocity, and then the surface was rotated de-
grees. The surface was simulated with and without the length correction and
a static surface as a reference side-by-side. Without length correction, the
surface simulation shows much lower speeds of the imposed simulation and
even stops in the middle of the surface; in the corrected version, the velocity is
preserved during the rotation and matches the static surface.

(a) t= (b) t=s

(c) t=s (d) t=s

Figure B.: A hand-animated sphere with a periodically oscillating radius was
used to test the approach to mass conservation. On the left is the sphere with
mass conservation. When the sphere is shrinking, the density on the sphere is
increasing. When the sphere is growing, the density is decreasing. The sphere
without correction has a constant density that does not react to changes of the
surface area.

 appendix b. samples

(a) t= (b) t=s (c) t=s

(d) t=s (e) t=s (f) t=s

(g) t=s (h) t=s (i) t=s

(j) t=s (k) t=s

Figure B.: Dam break simulation with added fluid simulation on the surface.
Frames in second steps.

(a) t= (b) t=s (c) t=s

(d) t=s (e) t=s (f) t=s

(g) t=s (h) t=s (i) t=s

(j) t=s (k) t=s

Figure B.: Dam break simulation with added reaction-diffusion simulation
on the surface. Frames in second steps.

 appendix b. samples

(a) t= (a) t=s (b) t=s

(c) t=s (d) t=s (e) t=s

(f) t=s (g) t=s (h) t=s

(i) t=s

Figure B.: Sequence of thermal convection on a hemisphere as shown in
Fig. .. The temperature is color-coded, where the temperature rises from
blue over white to red.

Co-Authored References

[] D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt, “Effi-
cient D simulation on moving D surfaces,” Computer Graphics Forum,
vol. , no. , pp. –, . doi: 10.1111/cgf.14098.

[] D. Morgenroth, D. Weiskopf, and B. Eberhardt, “Distributed VFX archi-
tecture for SPH simulation,” Journal of WSCG, vol. , no. , pp. –
, . eprint: http://hdl.handle.net/11025/6986.

[] D. Morgenroth, D. Weiskopf, and B. Eberhardt, “Direct raytracing of
a closed-form fluid meniscus,” The Visual Computer, vol. , no. -,
pp. –, . doi: 10.1007/s00371-016-1258-4.

https://doi.org/10.1111/cgf.14098
http://hdl.handle.net/11025/6986
https://doi.org/10.1007/s00371-016-1258-4

References

[] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, “Adaptively sampled
particle fluids,” ACM Transactions on Graphics, vol. , no. , p. , .
doi: 10.1145/1275808.1276437.

[] A. W. Adamson, A. P. Gast, et al., Physical Chemistry of Surfaces. Inter-
science Publishers New York, , vol. . doi: 10.1149/1.2133374.

[] R. K. Agarwal, K.-Y. Yun, and R. Balakrishnan, “Beyond Navier–Stokes:
Burnett equations for flows in the continuum–transition regime,” Physics
of Fluids, vol. , no. , pp. –, . doi: 10 . 1063 / 1 .
1397256.

[] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner, “Parallel surface
reconstruction for particle-based fluids,” Computer Graphics Forum,
vol. , no. , pp. –, . doi: 10.1111/j.1467-8659.2012.
02096.x.

[] N. Akinci, A. Dippel, G. Akinci, and M. Teschner, “Screen space foam
rendering,” Journal of WSCG, vol. , no. , pp. –, . eprint:
https://otik.uk.zcu.cz/handle/11025/6982.

[] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser, “A parallel pre-
conditioned conjugate gradient solver for the Poisson problem on a
multi-GPU platform,” in th Euromicro Conference on Paral-
lel, Distributed and Network-based Processing, , pp. –. doi:
10.1109/PDP.2010.51.

[] S. Auer, C. B. Macdonald, M. Treib, J. Schneider, and R. Westermann,
“Real-time fluid effects on surfaces using the closest point method,”
Computer Graphics Forum, vol. , no. , pp. –, . doi:
10.1111/j.1467-8659.2012.03071.x.

[] S. Auer and R. Westermann, “A semi-Lagrangian closest point method
for deforming surfaces,” Computer Graphics Forum, vol. , no. , pp. –
, . doi: 10.1111/cgf.12228.

https://doi.org/10.1145/1275808.1276437
https://doi.org/10.1149/1.2133374
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1111/j.1467-8659.2012.02096.x
https://doi.org/10.1111/j.1467-8659.2012.02096.x
https://otik.uk.zcu.cz/handle/11025/6982
https://doi.org/10.1109/PDP.2010.51
https://doi.org/10.1111/j.1467-8659.2012.03071.x
https://doi.org/10.1111/cgf.12228

 references

[] Autodesk, Autodesk ds Max Userguide, http://docs.autodesk.com/
3DSMAX/15/ENU/3ds-Max-Help/index.html Accessed: --.

[] J. A. Bærentzen and H. Aanæs, “Generating signed distance fields from
triangle meshes,” Informatics and Mathematical Modelling, Technical
University of Denmark, Tech. Rep. IMM-TR--, .

[] G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge Univer-
sity Press, . doi: 10.1017/CBO9780511800955.

[] M. Becker and M. Teschner, “Weakly compressible SPH for free surface
flows.,” in Proceedings of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, , , pp. –. eprint: https://dl.acm.
org/doi/10.5555/1272690.1272719.

[] J. Bender and D. Koschier, “Divergence-free smoothed particle hydro-
dynamics,” in Proceedings of the th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, , pp. –. doi: 10.1145/
2786784.2786796.

[] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light. Elsevier, . doi:
10.1017/CBO9781139644181.

[] E. Bourque, J.-F. Dufort, M. Laprade, P. Poulin, and N. Chiba, “Simulat-
ing caustics due to liquid-solid interface menisci.,” in Proceedings of the
Second Eurographics Conference on Natural Phenomena, , pp. –.
eprint: https://dl.acm.org/doi/abs/10.5555/2381370.2381376.

[] J. Boussinesq, Théorie de l’écoulement tourbillonnant et tumultueux des
liquides dans les lits rectilignes a grande section, st ed. Gauthier-Villars,
.

[] J. U. Brackbill and H. M. Ruppel, “Flip: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions,” Journal of
Computational Physics, vol. , no. , pp. –, . doi: 10.1016/
0021-9991(86)90211-1.

[] J. Brooke, “SUS: a quick and dirty usability scale,” in Usability Evalu-
ation in Industry, P. W. Jordan, B. Weerdmeester, A. Thomas, and I. L.
Mclelland, Eds., Taylor and Francis, .

[] Chaos Software, Phoenix product website, https://www.chaosgroup.
com/phoenix-fd/3ds-max Accessed: --.

[] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien, “Simulating
liquids and solid-liquid interactions with Lagrangian meshes,” ACM
Transactions on Graphics, vol. , no. , :–:, . doi: 10.1145/
2451236.2451243.

http://docs.autodesk.com/3DSMAX/15/ENU/3ds-Max-Help/index.html
http://docs.autodesk.com/3DSMAX/15/ENU/3ds-Max-Help/index.html
https://doi.org/10.1017/CBO9780511800955
https://dl.acm.org/doi/10.5555/1272690.1272719
https://dl.acm.org/doi/10.5555/1272690.1272719
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1017/CBO9781139644181
https://dl.acm.org/doi/abs/10.5555/2381370.2381376
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1016/0021-9991(86)90211-1
https://www.chaosgroup.com/phoenix-fd/3ds-max
https://www.chaosgroup.com/phoenix-fd/3ds-max
https://doi.org/10.1145/2451236.2451243
https://doi.org/10.1145/2451236.2451243

references

[] P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo, “Bubbling and
frothing liquids,” ACM Transactions on Graphics, vol. , no. , :–
:, . doi: 10.1145/1276377.1276499.

[] M. Deserno, The shape of a straight fluid meniscus, http://www.cmu.
edu/biolphys/deserno/pdf/meniscus.pdf Accessed: --,
.

[] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,”
in Proceedings of the th Annual Conference on Computer Graphics and
Interactive Techniques, , pp. –. doi: 10.1145/383259.383260.

[] J.-C. Fernandez-Toledano, T. Blake, P. Lambert, and J. De Coninck, “On
the cohesion of fluids and their adhesion to solids: Young’s equation
at the atomic scale,” Advances in Colloid and Interface Science, vol. ,
pp. –, . doi: 10.1016/j.cis.2017.03.006.

[] P. Fournier, A. Habibi, and P. Poulin, “Simulating the flow of liquid
droplets,” in Proceedings of the Graphics Interface Conference, ,
pp. –.

[] R. Fraedrich, S. Auer, and R. Westermann, “Efficient high-quality vol-
ume rendering of SPH data,” IEEE Transactions on Visualization and
Computer Graphics, vol. , no. , pp. –, . doi: 10.1109/
TVCG.2010.148.

[] F. Franks, Water - A Comprehensive Treatise. Springer Verlag US, .
doi: 10.1007/978-1-4684-2958-9.

[] J. Gagnon, F. Dagenais, and E. Paquette, “Dynamic lapped texture for
fluid simulations,” The Visual Computer, vol. , no. , pp. –,
. doi: 10.1007/s00371-016-1262-8.

[] K. Garg and S. K. Nayar, “Photorealistic rendering of rain streaks,”
ACM Transactions on Graphics, vol. , no. , pp. –, . doi:
10.1145/1141911.1141985.

[] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics:
theory and application to non-spherical stars,” Monthly Notices of the
Royal Astronomical Society, vol. , no. , pp. –, . doi:
10.1093/mnras/181.3.375.

[] P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola, “Interactive
SPH simulation and rendering on the GPU,” in Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, , pp. –
. eprint: https://dl.acm.org/doi/10.5555/1921427.1921437.

[] O. Gourmel, A. Pajot, M. Paulin, L. Barthe, and P. Poulin, “Fitted BVH
for fast raytracing of metaballs,” Computer Graphics Forum, vol. ,
no. , pp. –, . doi: 10.1111/j.1467-8659.2009.01597.x.

https://doi.org/10.1145/1276377.1276499
http://www.cmu.edu/biolphys/deserno/pdf/meniscus.pdf
http://www.cmu.edu/biolphys/deserno/pdf/meniscus.pdf
https://doi.org/10.1145/383259.383260
https://doi.org/10.1016/j.cis.2017.03.006
https://doi.org/10.1109/TVCG.2010.148
https://doi.org/10.1109/TVCG.2010.148
https://doi.org/10.1007/978-1-4684-2958-9
https://doi.org/10.1007/s00371-016-1262-8
https://doi.org/10.1145/1141911.1141985
https://doi.org/10.1093/mnras/181.3.375
https://dl.acm.org/doi/10.5555/1921427.1921437
https://doi.org/10.1111/j.1467-8659.2009.01597.x

 references

[] O. Gourmel, L. Barthe, M.-P. Cani, B. Wyvill, A. Bernhardt, M. Paulin,
and H. Grasberger, “A gradient-based implicit blend,” ACM Trans-
actions on Graphics, vol. , no. , :–:, . doi: 10.1145/
2451236.2451238.

[] P. Gray and S. Scott, “Autocatalytic reactions in the isothermal, contin-
uous stirred tank reactor: Oscillations and instabilities in the system
A + 2B → 3B; B → C,” Chemical Engineering Science, vol. , no. ,
pp. –, . doi: 10.1016/0009-2509(84)87017-7.

[] J. L. Gustafson, “Moore’s law,” in Encyclopedia of Parallel Computing,
D. Padua, Ed. Boston, MA: Springer US, , pp. –. doi:
10.1007/978-0-387-09766-4_81.

[] J. C. Hart, “Ray tracing implicit surfaces,” ACM SIGGRAPH Course
Notes: Design, Visualization and Animation of Implicit Surfaces, pp. –,
.

[] W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and M. B.
Hullin, “Chemomechanical simulation of soap film flow on spherical
bubbles,” ACM Transactions on Graphics, vol. , no. , . doi: 10.
1145/3386569.3392094.

[] M. Huber, B. Eberhardt, and D. Weiskopf, “Boundary handling at cloth–
fluid contact,” Computer Graphics Forum, vol. , no. , pp. –, .
doi: 10.1111/cgf.12455.

[] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner, “A parallel SPH
implementation on multi-core CPUs,” Computer Graphics Forum, vol. ,
no. , pp. –, . doi: 10.1111/j.1467-8659.2010.01832.x.

[] M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner, “Unified spray, foam
and air bubbles for particle-based fluids,” The Visual Computer, vol. ,
no. , pp. –, . doi: 10.1007/s00371-012-0697-9.

[] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner, “A parallel SPH
implementation on multi-core CPUs,” Computer Graphics Forum, vol. ,
no. , pp. –, . doi: 10.1111/j.1467-8659.2010.01832.x.

[] M. Ihmsen, J. Bader, G. Akinci, and M. Teschner, “Animation of air
bubbles with SPH,” in Proceedings of the International Conference on
Computer Graphics Theory and Applications, , pp. –. doi:
10.5220/0003322902250234.

[] S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan, “A model
for soap film dynamics with evolving thickness,” ACM Transactions
on Graphics, vol. , no. , :–:, . doi: 10.1145/3386569.
3392405.

https://doi.org/10.1145/2451236.2451238
https://doi.org/10.1145/2451236.2451238
https://doi.org/10.1016/0009-2509(84)87017-7
https://doi.org/10.1007/978-0-387-09766-4_81
https://doi.org/10.1145/3386569.3392094
https://doi.org/10.1145/3386569.3392094
https://doi.org/10.1111/cgf.12455
https://doi.org/10.1111/j.1467-8659.2010.01832.x
https://doi.org/10.1007/s00371-012-0697-9
https://doi.org/10.1111/j.1467-8659.2010.01832.x
https://doi.org/10.5220/0003322902250234
https://doi.org/10.1145/3386569.3392405
https://doi.org/10.1145/3386569.3392405

references

[] Y. Jung and J. Behr, “GPU-based real-time on-surface droplet flow in
XD,” in Proceedings of the th International Conference on D Web
Technology, ACM, , pp. –. doi: 10.1145/1559764.1559772.

[] K. Kaneda, S. Ikeda, and H. Yamashita, “Animation of water droplets
moving down a surface,” The Journal of Visualization and Computer
Animation, vol. , no. , pp. –, . doi: 10.1002/(SICI)1099-
1778(199901/03)10:1%3C15::AID-VIS192%3E3.0.CO;2-P.

[] K. Kaneda, T. Kagawa, and H. Yamashita, “Animation of water droplets
on a glass plate,” in Proceedings of Computer Animation, , pp. –
. doi: 10.1007/978-4-431-66911-1_17.

[] P.-R. Kim, H.-Y. Lee, J.-H. Kim, and C.-H. Kim, “Controlling shapes of
air bubbles in a multi-phase fluid simulation,” The Visual Computer,
vol. , no. , pp. –, . doi: 10.1007/s00371-012-0696-x.

[] T. Kim, J. Tessendorf, and N. Thuerey, “Closest point turbulence for
liquid surfaces,” ACM Transactions on Graphics, vol. , no. , :–
:, . doi: 10.1145/2451236.2451241.

[] A. Kloeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA: GPU run-time code generation for high-performance com-
puting,” CoRR, vol. abs/., . eprint: http://arxiv.org/
abs/0911.3456.

[] D. Koschier, C. Deul, M. Brand, and J. Bender, “An hp-adaptive dis-
cretization algorithm for signed distance field generation,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. , no. , pp. –
, . doi: 10.1109/TVCG.2017.2730202.

[] D. Koschier, J. Bender, B. Solenthaler, and M. Teschner, “Smoothed
particle hydrodynamics techniques for the physics based simulation of
fluids and solids,” in Eurographics - Tutorials, . doi: 10.2312/
egt.20191035.

[] M. Lagergren, “GPU accelerated SPH simulation of fluids for VFX,”
Dept. Sci. Tech., Linköping University, Report LiU-ITN-TEK-A–/–
SE, .

[] B. Lautrup, “Physics of continuous matter-exotic and everyday phe-
nomena in the macroscopic world,” Applied Rheology, vol. , no. ,
p. , .

[] C. H. Lewis, “Using the ‘Thinking Aloud’ method in cognitive interface
design,” IBM, Tech. Report RC-, .

[] Y. Liu, H. Zhu, X. Liu, and E. Wu, “Real-time simulation of physically
based on-surface flow,” The Visual Computer, vol. , no. -, pp. –
, . doi: 10.1007/s00371-005-0314-2.

https://doi.org/10.1145/1559764.1559772
https://doi.org/10.1002/(SICI)1099-1778(199901/03)10:1%3C15::AID-VIS192%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1099-1778(199901/03)10:1%3C15::AID-VIS192%3E3.0.CO;2-P
https://doi.org/10.1007/978-4-431-66911-1_17
https://doi.org/10.1007/s00371-012-0696-x
https://doi.org/10.1145/2451236.2451241
http://arxiv.org/abs/0911.3456
http://arxiv.org/abs/0911.3456
https://doi.org/10.1109/TVCG.2017.2730202
https://doi.org/10.2312/egt.20191035
https://doi.org/10.2312/egt.20191035
https://doi.org/10.1007/s00371-005-0314-2

 references

[] J. A. Lock, C. L. Adler, D. Ekelman, J. Mulholland, and B. Keating,
“Analysis of the shadow-sausage effect caustic,” Applied Optics, vol. ,
no. , pp. –, . doi: 10.1364/AO.42.000418.

[] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
D surface construction algorithm,” Computer Graphics, vol. , no. ,
pp. –, . doi: 10.1145/280811.281026.

[] O. Mercier, C. Beauchemin, N. Thuerey, T. Kim, and D. Nowrouzezahrai,
“Surface turbulence for particle-based liquid simulations,” ACM Trans-
actions on Graphics, vol. , no. , :–:, . doi: 10.1145/
2816795.2818115.

[] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual Review of
Astronomy and Astrophysics, vol. , pp. –, . doi: 10.1146/
annurev.aa.30.090192.002551.

[] D. Morgenroth, Video appendix for enhancing fluid animation with fine
detail, . doi: 10.5281/zenodo.5517314.

[] D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt, Applica-
tion and sample scenes for efficient D simulation on moving D surfaces,
. doi: 10.5281/zenodo.4009208.

[] D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt, Source
code for efficient D simulation on moving D surfaces, https://github.
com/dimo3d/Cappucino Accessed: --, .

[] G. Morton, “A computer oriented geodetic database; and a new tech-
nique in file sequencing,” IBM Ltd, Ottawa, Technical Report., .

[] M. Mueller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” in Proceedings of ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation, , pp. –. eprint:
http://dl.acm.org/citation.cfm?id=846276.846298.

[] K. Museth, “VDB: high-resolution sparse volumes with dynamic topol-
ogy,” ACM Transactions on Graphics, vol. , no. , :–:, .
doi: 10.1145/2487228.2487235.

[] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden,
P. Cucka, D. Hill, and A. Pearce, “OpenVDB: An open-source data
structure and toolkit for high-resolution volumes,” in ACM SIGGRAPH
 Courses, , :–:. doi: 10.1145/2504435.2504454.

[] N. Nakata, M. Kakimoto, and T. Nishita, “Animation of water droplets
on a hydrophobic windshield,” in WSCG Conference Proceedings, ,
pp. –.

[] Next Limit, Realflow product website, http : / / www . realflow . com
Accessed: --.

https://doi.org/10.1364/AO.42.000418
https://doi.org/10.1145/280811.281026
https://doi.org/10.1145/2816795.2818115
https://doi.org/10.1145/2816795.2818115
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.5281/zenodo.5517314
https://doi.org/10.5281/zenodo.4009208
https://github.com/dimo3d/Cappucino
https://github.com/dimo3d/Cappucino
http://dl.acm.org/citation.cfm?id=846276.846298
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2504435.2504454
http://www.realflow.com

references

[] J. Nielsen, “Estimating the number of subjects needed for a thinking
aloud test,” International Journal of Human-Computer Studies, vol. ,
no. , pp. –, . doi: 10.1006/ijhc.1994.1065.

[] A. Nilsson, Long lost pen pal, https://www.flickr.com/photos/
andreasnilsson1976/530776998/Accessed: --, License: https:
//creativecommons.org/licenses/by-nc-nd/2.0/.

[] E. G. Parker and J. F. O’Brien, “Real-time deformation and fracture in
a game environment,” in Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, , pp. –. doi: 10.1145/
1599470.1599492.

[] O. Redlich, “Intensive and extensive properties,” Journal of Chemical
Education, vol. , no. , pp. –, . doi: 10.1021/ed047p154.
2.

[] S. Reinhardt, T. Krake, B. Eberhardt, and D. Weiskopf, “Consistent
Shepard interpolation for SPH-based fluid animation,” ACM Trans-
action on Graphics, vol. , no. , :–:, . doi: 10.1145/
3355089.3356503.

[] S. J. Ruuth and B. Merriman, “A simple embedding method for solving
partial differential equations on surfaces,” Journal of Computational
Physics, vol. , no. , pp. –, . doi: 10.1016/j.jcp.
2007.10.009.

[] F. S., Msgpack website, http://msgpack.org Accessed: --.

[] G. Saville, “Computer simulation of the liquid–solid–vapour contact
angle,” Journal of the Chemical Society, Faraday Transactions , vol. ,
pp. –, . doi: 10.1039/F29777301122.

[] F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal
convection and emergence of isolated vortices in soap bubbles,” Phys-
ical Review Letters, vol. , no. , p. , . doi: 10.1103/
PhysRevLett.100.144501.

[] J. R. Shewchuk, An introduction to the conjugate gradient method without
the agonizing pain, . eprint: https://dl.acm.org/doi/10.5555/
865018.

[] L. Shi and Y. Yu, “Inviscid and incompressible fluid simulation on
triangle meshes,” Computer Animation and Virtual Worlds, vol. , no. -
, pp. –, . doi: 10.1002/cav.19.

[] E. Shirani and S. Jafari, “Application of lbm in simulation of flow in
simple micro-geometries and micro porous media,” African Physical
Review, vol. , .

https://doi.org/10.1006/ijhc.1994.1065
https://www.flickr.com/photos/andreasnilsson1976/530776998/
https://www.flickr.com/photos/andreasnilsson1976/530776998/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://doi.org/10.1145/1599470.1599492
https://doi.org/10.1145/1599470.1599492
https://doi.org/10.1021/ed047p154.2
https://doi.org/10.1021/ed047p154.2
https://doi.org/10.1145/3355089.3356503
https://doi.org/10.1145/3355089.3356503
https://doi.org/10.1016/j.jcp.2007.10.009
https://doi.org/10.1016/j.jcp.2007.10.009
http://msgpack.org
https://doi.org/10.1039/F29777301122
https://doi.org/10.1103/PhysRevLett.100.144501
https://doi.org/10.1103/PhysRevLett.100.144501
https://dl.acm.org/doi/10.5555/865018
https://dl.acm.org/doi/10.5555/865018
https://doi.org/10.1002/cav.19

 references

[] J. M. Singh and P. Narayanan, “Real-time ray tracing of implicit surfaces
on the GPU,” IEEE Transactions on Visualization and Computer Graphics,
vol. , no. , pp. –, . doi: 10.1109/TVCG.2009.41.

[] B. Solenthaler and R. Pajarola, “Predictive-corrective incompressible
SPH,” ACM Transactions on Graphics, vol. , no. , :–:, .
doi: 10.1145/1531326.1531346.

[] B. Solenthaler, J. Schläfli, and R. Pajarola, “A unified particle model
for fluid–solid interactions,” Computer Animation and Virtual Worlds,
vol. , no. , pp. –, . doi: 10.1002/cav.162.

[] M. Spivak, A Comprehensive Introduction to Differential Geometry. Pub-
lish or Perish, , vol. .

[] J. Stam, “Stable fluids,” in Proceedings of the th Annual Conference on
Computer Graphics and Interactive Techniques, , pp. –. doi:
10.1145/311535.311548.

[] J. Stam, “Flows on surfaces of arbitrary topology,” ACM Transactions
on Graphics, vol. , no. , pp. –, . doi: 10.1145/1201775.
882338.

[] I. Stuppacher and P. Supan, “Rendering of water drops in real-time,”
in Central European Seminar on Computer Graphics for Students, .

[] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive D
distance field computation using linear factorization,” in Proceedings
of the Symposium on Interactive D Graphics and Games, ,
pp. –. doi: 10.1145/1111411.1111432.

[] L. Szirmay-Kalos and T. Umenhoffer, “Displacement mapping on the
GPU – state of the art,” Computer Graphics Forum, vol. , no. , pp. –
, . doi: 10.1111/j.1467-8659.2007.01108.x.

[] T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka, and
H. Ueki, “Realistic animation of fluid with splash and foam,” Computer
Graphics Forum, vol. , no. , pp. –, . doi: 10.1111/1467-
8659.00686.

[] S. Takenaka, Y. Mizukami, and K. Tadamura, “A fast rendering method
for water droplets on glass surfaces,” in The rd International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-
CSCC), , pp. –.

[] J. Tessendorf, “Simulating ocean water,” SIGGRAPH Course Notes, .

https://doi.org/10.1109/TVCG.2009.41
https://doi.org/10.1145/1531326.1531346
https://doi.org/10.1002/cav.162
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1145/1111411.1111432
https://doi.org/10.1111/j.1467-8659.2007.01108.x
https://doi.org/10.1111/1467-8659.00686
https://doi.org/10.1111/1467-8659.00686

references

[] N. Thuerey, F. Sadlo, S. Schirm, M. Müller-Fischer, and M. Gross, “Real-
time simulations of bubbles and foam within a shallow water frame-
work,” in Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, , pp. –. doi: 10.2312/SCA/
SCA07/191-198.

[] I. R. Türkmen, “Homogeneous nucleation rates of ice in supercooled
binary liquid mixtures of water + non-electrolytes: A combined theo-
retical and experimental study,” Ph.D. dissertation, Freie Universität
Berlin, . doi: http://dx.doi.org/10.17169/refubium-6006.

[] D. Valdez-Balderas, J. M. Domínguez, B. D. Rogers, and A. J. C. Crespo,
“Towards accelerating smoothed particle hydrodynamics simulations
for free-surface flows on multi-GPU clusters,” Journal of Parallel and
Distributed Computing, . doi: 10.1016/j.jpdc.2012.07.010.

[] H. Wang, P. J. Mucha, and G. Turk, “Water drops on surfaces,” ACM
Transactions on Graphics, vol. , no. , pp. –, . doi: 10.
1145/1186822.1073284.

[] L. Wang, W. Chen, W. Yang, F. Bi, and F. R. Yu, “A state-of-the-art review
on image synthesis with generative adversarial networks,” IEEE Access,
vol. , pp. – , . doi: 10.1109/ACCESS.2020.2982224.

[] F. Wu and C. Zheng, “Illumination model for two-layer thin film struc-
tures,” in GRAPP, , pp. –. doi: 10.5220/0005261401990206.

[] H. Xu and J. Barbič, “Signed distance fields for polygon soup meshes,”
in Proceedings of Graphics Interface, , pp. –. doi: 10.1201/
9781003059325-5.

[] J.-J. Xu and H.-K. Zhao, “An Eulerian formulation for solving par-
tial differential equations along a moving interface,” Journal of Scien-
tific Computing, vol. , no. , pp. –, . doi: 10.1023/A:
1025336916176.

[] H. Yan, Z. Wang, J. He, X. Chen, C. Wang, and Q. Peng, “Real-time
fluid simulation with adaptive SPH,” Computer Animation and Virtual
Worlds, vol. , pp. –, . doi: 10.1002/cav.v20:2/3.

[] T. Young, “An essay on the cohesion of fluids,” Philosophical Transactions
of the Royal Society of London, vol. , pp. –, .

[] J. Yu and G. Turk, “Reconstructing surfaces of particle-based fluids
using anisotropic kernels,” ACM Transactions on Graphics, vol. , no. ,
:–:, . doi: 10.1145/2421636.2421641.

[] Y.-J. Yu, H.-Y. Jung, and H.-G. Cho, “A new water droplet model using
metaball in the gravitational field,” Computers & Graphics, vol. , no. ,
pp. –, . doi: 10.1016/S0097-8493(99)00031-X.

https://doi.org/10.2312/SCA/SCA07/191-198
https://doi.org/10.2312/SCA/SCA07/191-198
https://doi.org/http://dx.doi.org/10.17169/refubium-6006
https://doi.org/10.1016/j.jpdc.2012.07.010
https://doi.org/10.1145/1186822.1073284
https://doi.org/10.1145/1186822.1073284
https://doi.org/10.1109/ACCESS.2020.2982224
https://doi.org/10.5220/0005261401990206
https://doi.org/10.1201/9781003059325-5
https://doi.org/10.1201/9781003059325-5
https://doi.org/10.1023/A:1025336916176
https://doi.org/10.1023/A:1025336916176
https://doi.org/10.1002/cav.v20:2/3
https://doi.org/10.1145/2421636.2421641
https://doi.org/10.1016/S0097-8493(99)00031-X

 references

[] Y. Yuan and T. R. Lee, “Contact angle and wetting properties,” in Surface
Science Techniques, G. Bracco and B. Holst, Eds., Heidelberg: Springer,
, pp. –. doi: 10.1007/978-3-642-34243-1_1.

[] Y. Zhang, “Adaptive sampling and rendering of fluids on the GPU,” in
Proceedings Symposium on Point-Based Graphics, , pp. –. doi:
https://doi.org/10.5167/uzh-9735.

[] Y. Zhang, H. Wang, S. Wang, Y. Tong, and K. Zhou, “A deformable
surface model for real-time water drop animation,” IEEE Transactions
on Visualization and Computer Graphics, vol. , no. , pp. –,
.

[] H.-K. Zhao, B. Merriman, S. Osher, and L. Wang, “Capturing the be-
havior of bubbles and drops using the variational level set approach,”
Journal of Computational Physics, vol. , no. , pp. –, . doi:
10.1006/jcph.1997.5810.

[] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Transactions
on Graphics, vol. , no. , pp. –, . doi: 10.1145/1073204.
1073298.

[] Q. Zia Ullah, S. Hassan, and G. M. Khan, “Adaptive resource utilization
prediction system for infrastructure as a service cloud,” Computational
Intelligence and Neuroscience, vol. , . doi: 10.1155/2017/
4873459.

https://doi.org/10.1007/978-3-642-34243-1_1
https://doi.org/https://doi.org/10.5167/uzh-9735
https://doi.org/10.1006/jcph.1997.5810
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1155/2017/4873459
https://doi.org/10.1155/2017/4873459

	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Symbols
	Acknowledgments
	Abstract
	German Abstract
	Introduction
	Research Challenges
	Outline and Contributions
	Reused and Copyrighted Material

	Background
	Visual Effects Workflow for Physically Based Fluid Animation
	Small-scale Effects
	Meniscus Effect
	Iridescence Effect

	Length Scales in Fluid Mechanics
	Navier-Stokes Equations
	Smoothed Particle Hydrodynamics – A Lagrangian Method
	Spatial Discretization
	Discretization of Differential Operators
	Time Integration
	PCISPH
	Acceleration Structures

	Projection Method – An Eulerian Method
	Incompressibility
	Conjugate Gradient Solver

	Distributed VFX Architecture for SPH Simulation
	Brute Force Approach
	System Architecture
	Simulation
	Neighbor Search
	Collision Detection
	Blind Particles
	Implementation Details

	Rendering
	Results
	Performance Results
	User Study

	Summary

	Direct Raytracing of a Closed Form Meniscus
	Introduction
	Previous Work
	Theoretical Background
	Implicit Meniscus Model
	Menisci in the SPH Setting
	Implementation and Results

	Efficient 2D Simulation on Evolving 3D Surfaces
	Related Work
	Model
	Overview
	Evolution of the Surface
	Coupling
	Modeling the Dynamics on the Surface
	Examples

	Method
	Data Input
	 Convert to Signed Distance Field
	Create Narrow-Band Grid
	Surface Evolution
	Coupling of Dynamics
	Solve PDE and Advect
	Implementation

	Results
	Versatility and Simulation Quality
	Performance

	Conclusion
	Summary
	Discussion
	Future Research Directions

	System Survey Results
	System Usability Scale
	Additional Questions
	Background

	Samples
	Co-Authored References
	References

