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Abstract

Complex event processing (CEP) is a powerful paradigm to detect patterns in continuous
input event streams. The application area of CEP is very broad, e.g., transportation,
stock market, network monitoring, game analytics, retail management, etc. A CEP
operator performs pattern matching by correlating input events to detect important
situations (called complex events). The criticality of detected complex events depends
on the application. For example, in fraud detection systems in banks, detected complex
events might indicate that a fraudster tries to withdraw money from a victim’s account.
Naturally, the complex events in this application are critical. On the other hand, in
applications like network monitoring, soccer analysis, and transportation, the detected
complex events might be less critical. As a result, these applications might tolerate
imprecise detection or loss of some complex events.

In many applications, the rate of input events is high and exceeds the processing
capacity of CEP operators. Moreover, for many applications, it is important to detect
complex events within a certain latency bound, where the late detected complex events
might become useless. For CEP applications that tolerate imprecise detection of complex
events and have limited processing resources, one way to keep the given latency bound
is by using load shedding. Load shedding reduces the overload on a CEP operator
by either dropping events from the operator’s input event stream or dropping partial
matches (short PM) from the operator’s internal state. That results in decreasing the
number of queued events and in increasing the operator processing rate, hence enabling
the operator to maintain the given latency bound. Of course, dropping might adversely
impact the quality of results (QoR). Therefore, it is crucial to shed load in a way that
has a low impact on QoR.

There exists only limited work on load shedding in the CEP domain. Therefore, in
this thesis, we aim to realize a load shedding library that contains several load shedding
approaches for CEP systems. Our shedding approaches drop events and PMs, shed events
on different granularity levels, and use several features to predict the importance/utility
of events and PMs. More specifically, our contributions are as follows.

At first, we precisely define the quality of results (QoR) using real-world examples
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Abstract

and different pattern matching semantics defined in the CEP domain. Secondly, we
propose a load shedding approach (called pSPICE) that drops PMs to maintain a given
latency bound. pSPICE uses the Markov chain and Markov reward process to predict
the utility of PMs. Moreover, pSPICE adaptively calculates the number of PMs that
must be dropped to maintain the given latency bound.

In our third and fourth contributions, we develop two load shedding approaches that
are called eSPICE and hSPICE. eSPICE drops events from windows to maintain the
given latency bound. While hSPICE drops events from windows and PMs to maintain
the given latency bound. Both approaches use a probabilistic model to predict the
event utilities. Moreover, in both approaches, we provide algorithms that predict utility
thresholds to drop the needed number of events. Additionally, in eSPICE, we develop
an algorithm that adaptively calculates the number of events that must be dropped to
maintain the given latency bound.

Finally, we propose a load shedding approach (called gSPICE) that drops events from
the input event stream and from windows to maintain the given latency bound. gSPICE
also predicts the event utilities using a probabilistic model. Moreover, to efficiently store
the event utilities, we develop a data structure that depends on the Zobrist hashing.
Furthermore, gSPICE uses well-known machine learning approaches, e.g., decision trees
or random forests, to estimate event utilities.

We extensively evaluate our proposed load shedding approaches on several real-world
and synthetic datasets using a wide range of CEP queries.
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Deutsche Zusammenfassung

Complex Event Processing (CEP) oder komplexe Ereignisverarbeitung ist ein leis-
tungsfähiges Paradigma zur Erkennung von Ereignismustern in kontinuierlichen Ein-
gangsereignisströmen. CEP ist breit anwendbar, z.B. in den Bereichen Verkehr, Börsen-
handel, Netzwerküberwachung, Spielanalyse, Einzelhandelsmanagement, usw. Ein CEP-
Operator führt einen Mustervergleich durch, indem er Eingangsereignisse korreliert, um
wichtige Situationen (komplexe Ereignisse genannt, engl. complex events) zu erkennen.
Die Kritikalität der erkannten komplexen Ereignisse hängt von der Anwendung ab.
In Betrugserkennungssystemen in Banken können die erkannten komplexen Ereignisse
darauf hinweisen, dass ein Betrüger versucht, Geld vom Konto des Opfers abzuheben.
Natürlich sind die komplexen Ereignisse in dieser Anwendung kritisch. Auf der anderen
Seite sind in Anwendungen wie Netzwerküberwachung, Fußballanalyse und Verkehr die
erkannten komplexen Ereignisse weniger kritisch. Folglich können diese Anwendungen
ungenaue Erkennung oder den Verlust einiger komplexer Ereignisse tolerieren.

In vielen Anwendungen ist die Rate der Eingangsereignisse hoch und übersteigt die
Verarbeitungskapazität der CEP-Operatoren. Außerdem ist es für viele Anwendungen
wichtig, komplexe Ereignisse innerhalb einer bestimmter Latenzschranke zu erkennen,
wobei verspätet erkannten komplexen Ereignisse unbrauchbar werden könnten. Für CEP-
Anwendungen, die eine ungenaue Erkennung von komplexen Ereignissen tolerieren und
über begrenzte Verarbeitungsressourcen verfügen, bietet die Verwendung von Lastabwurf
(engl. load shedding) eine Möglichkeit zum Einhalten der vorgegebenen Latenzschranke.
Lastabwurf reduziert die Überlastung eines CEP-Operators indem entweder Ereignisse
aus dem Eingangsereignisstrom des Operators verworfen werden oder partielle Überein-
stimmungen (engl. partial matches, Abk. PM) aus dem internen Zustand des Operators
entfernt werden. Das führt zu einer Verringerung der Anzahl von Ereignissen in der
Warteschlange und erhöht die Verarbeitungsrate des Operators, wodurch der Operator
in die Lage versetzt wird, die vorgegebene Latenzschranke einzuhalten. Natürlich kann
das Verwerfen von Ereignissen die Qualität der Ergebnisse (engl. quality of results, Abk.
QoR) negativ beeinträchtigen. Daher ist es entscheidend, die Last so abzuwerfen, dass
sich eine geringe Auswirkung auf die QoR ergibt
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Deutsche Zusammenfassung

Es gibt nur wenige Arbeiten zum Lastabwurf im CEP-Bereich. Daher wird in dieser
Arbeit eine Lastabwurf-Bibliothek realisiert, die verschiedene Lastabwurf-Ansätze für
CEP-Systeme enthält. Unsere Ansätze können Ereignisse und PMs verwerfen, wobei
wir verschiedene Merkmale zur Vorhersage der Wichtigkeit/Nützlichkeit von Ereignissen
und PMs verwenden. Außerdem, werden Ereignisse auf verschiedenen Ebenen verworfen.
Im Einzelnen sind unsere Beiträge wie folgt.

Erstens definieren wir die Ergebnisqualität (QoR) anhand von Beispielen aus der realen
Welt und verschiedenen Ereignismustersemantiken, die in der CEP-Domäne definiert sind.
Zweitens schlagen wir einen Lastabwurf-Ansatz (genannt pSPICE) vor, der PMs auslässt,
um eine gegebene Latenzschranke einzuhalten. pSPICE verwendet die Markov-Kette
und den Markov-Reward-Prozess, um den Nutzen von PMs vorherzusagen. Außerdem
berechnet pSPICE adaptiv die Anzahl der PMs, die verworfen werden müssen, um die
vorgegebene Latenzschranke einzuhalten.

In unserem dritten und vierten Beitrag entwickeln wir zwei Ansätze zum Lastabwurf,
die eSPICE und hSPICE genannt werden. eSPICE verwirft Ereignisse aus Fenstern,
um die gegebene Latenzschranke einzuhalten, während hSPICE Ereignisse von Fenstern
und PMs auslässt, um die vorgegebene Latenzschranke einzuhalten. Beide Ansätze
verwenden ein probabilistisches Modell zur Vorhersage der Nutzung der Ereignisse.
Darüber hinaus stellen wir in beiden Ansätzen Algorithmen zur Verfügung, die einen
Nutzschwellwert vorhersagen, anhand dessen die erforderliche Ereignisanzahl verworfen
wird. Zusätzlich entwickeln wir in eSPICE einen Algorithmus, der adaptiv die Anzahl der
Ereignisse berechnet, die verworfen werden müssen, um die die gegebene Latenzschranke
einzuhalten.

Schließlich schlagen wir einen Lastabwurf-Ansatz (genannt gSPICE) vor, der Ereignisse
aus dem Eingangsereignisstrom und aus Fenstern entfernt, um die vorgegebene Laten-
zschranke einzuhalten. gSPICE prognostiziert auch die Nutzung der Ereignisse unter
Verwendung eines probabilistischen Modells. Zur effizienten Speicherung des Nutzens
der Ereignisse entwickeln wir eine Datenstruktur, die auf dem Zobrist-Hashing basiert.
Darüber hinaus verwendet gSPICE bekannte Ansätze des maschinellen Lernens, z.B.
Decision Trees oder Random Forests, um Ereignisnutzwerte zu schätzen.
Wir evaluieren unsere vorgeschlagenen Lastabwurf-Ansätze ausgiebig auf mehreren

realen und synthetischen Datensätzen mit einer breiten Palette von CEP-Abfragen.
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Chapter 1
Introduction

Generally, most applications rely on high-level data streams, referred to as events. An
event is the basic data element of many contemporary important applications, e.g.,
finance, transportation, fraud detection, stock analysis, smart home, smarts cities, heath-
care, environmental monitoring, and network monitoring applications. For example, an
event might represent the change in the temperature of equipment or the stock quote
of a company. Events emanate from sensors, social media, and various other sources,
forming an event stream. For an application, the occurrence of events might indicate
the occurrence of application-interesting situations, where this occurrence requires the
application to take suitable actions.

In this context, complex event processing (CEP) is an established paradigm used to
detect the occurrence of important situations by processing the input event streams
[Luc01; DGP07; WDR06; GJS92; CM94]. CEP systems extract high-level information
from the low level data elements (i.e., events), where a CEP system correlates events
in the input event streams to detect important situations (a.k.a. complex events).
CEP acquires a considerable market share, where it is expected to reach USD 10.79
billion by 2023 [Upd18]. The powerful features of CEP open the door for several
applications in different domains, e.g., transportation, stock market, network monitoring,
game analytics, retail management, and fraud detection [Zac+15; May+17; Bal+13;
OJW03; MZJ13; WDR06; Art+17]. The criticality of detected complex events mainly
depends on the application. For example in fraud detection systems in banks, detected
complex events might indicate that a fraudster tries to withdraw money from a victim’s
account. Naturally, the complex events in this application are critical [Art+17]. On the
other hand, in applications like network monitoring, soccer analysis, and transportation
[OJW03; SBR19; Slo+19], the detected complex events are less critical. As a result,
these applications might tolerate imprecise detection or loss of some complex events.
Moreover, in many applications, complex events must be detected within a given latency
bound to enable the application to take suitable actions at the right time. However, if
the rate of input events exceeds the processing capacity of the CEP system, the input
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1 Introduction

events queue up, and the detection latency of complex events increases, possibly resulting
in violation of the given latency bound.

The main objective of this thesis is to empower CEP systems to prevent the violation
of the given latency bound during overload situations. To this end, this thesis introduces
several load shedding strategies for CEP systems. In the rest of this chapter, we first
present an overview of CEP systems. Then, we motivate our work by explaining the
overload and latency challenges. Afterward, we define the research gaps and highlight
our main contributions in this thesis. Finally, we conclude this chapter with a brief
outline of the thesis.

1.1 Complex Event Processing

In general, a CEP system consists of a set of operators that are interconnected in the
form of a directed acyclic graph (DAG), constituting the CEP operator graph [Che+03;
McC+13; Neu+10; Kol+12; SMMP09]. Each CEP operator correlates events in the input
event streams to detect complex events. The event correlation (a.k.a. pattern matching)
is typically performed in accordance with predefined CEP patterns. There exist several
event query languages, e.g., Snoop [CM94], SASE [WDR06], and TESLA [CM10], that
are used to define queries in CEP, where a query corresponds to a pattern. The event
query languages contain several predefined event operators (e.g., sequence, negation,
any operators) that help in defining CEP patterns. In CEP applications, an event in
the input event stream represents the basic data element. For example, an event might
contain information on the stock quote of a company in a stock analysis application or
the position of a bus in a transportation application. While complex events, for example,
might provide high-level information on stock companies that influence each other or
the occurrence of abnormal traffic in the above two applications, respectively.

In CEP systems, the input event stream is continuous and infinite. Therefore, it is
common in CEP to correlate together only events that occur within a certain interval
(we refer to this interval as a window). The window represents a temporal constraint in
CEP systems. This CEP model is known as window-based CEP, where the input event
stream is partitioned into windows of events [AC04; May18; PS06; Bal+13; Lim+18].
The events within a certain window are matched by a CEP operator to detect complex
events, where windows might overlap. Therefore, an event in the input event stream
might belong to multiple windows at the same time. While correlating events within
a window, a part of a pattern might be matched. This matched part of the pattern is
called a partial match (short PM). Within a window, at a certain point in time, there
might exist many open PMs, where every incoming event in the window is matched with
these open PMs. In CEP systems, PMs represent an important part of the internal state
of a CEP operator. A partial match may complete and become a complex event if the
full pattern is matched. As a result, in the window-based CEP, the matching of events
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1.1 Complex Event Processing

is performed on three granularity levels: stream, window, and PM granularities. The
stream represents the coarsest granularity, while the PM represents the finest granularity.

The following example shows how a pattern is defined and detected in CEP. In a
traffic monitoring system [Zac+15], if more than one bus gets delayed at the same bus
stop, it might indicate an abnormal traffic situation, e.g., an accident. To detect the
abnormal behavior, a traffic analyst formulates the following query q using SASE-like
event query language [WDR06]:

pattern seq (A;B)

where A.delay > x minutes and B.delay > x minutes

and A.stop = B.stop

within 5 minutes

The query q detects abnormal traffic, i.e., a complex event, if a bus A gets delayed on a
specific bus stop and the following bus B within 5 minutes (window length/size) from
bus A also gets delayed at the same bus stop.

Assume that a window w contains the following three events: A1, A2, and B3, where
Xi represents the event of bus X at position i in window w. We refer to A and B as
event types. If the bus event A1 indicates that bus A gets delayed, a new PM γ1 is
opened with event A1. We refer to event A1 as the event that contributes to PM γ1.
Similarly, in window w, a new PM γ2 is opened with event A2 if the bus event A2 also
indicates that the bus A gets delayed. If the bus event B3 indicates that the subsequent
bus B is also delayed at the same stop as A1 and A2, this might result in detecting
two complex events. The first complex event cplx1 = (A1, B3) is detected as a result
of matching event B3 with event A1 (i.e., with PM γ1), and the second complex event
cplx2 = (A2, B3) is detected as a result of matching event B3 with event A2 (i.e., with
PM γ2). We refer to events A1, A2, and B3 in complex events cplx1 and cplx2 as the
events that contribute to the complex events cplx1 and cplx2.

However, in this example, it is unclear whether event B3 should match with only event
A1, only event A2, or with both events A1 and A2. Moreover, in the above example,
event B3 contributes to two complex events, i.e., cplx1 and cplx2. Hence, it is unclear
whether an event is allowed to be used in detecting multiple complex events, i.e., to
contribute to multiple complex events. Therefore, CEP researchers have introduced
selection policies that define which events must be matched together and consumption
policies that define whether an event may contribute to more than one complex event. In
CEP systems, there exist mainly four selection policies (first, last, each, and cumulative)
and two consumption policies (zero and consumed) [CM94; ZU99; CM10]. In Chapter 2,
we discuss in more detail windows, PMs, how pattern matching is performed in CEP
systems, and the selection and consumption policies.
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1.2 Motivation and Research Gaps

As mentioned above, the focus of this thesis is on handling overloaded CEP systems to
maintain a given latency bound. Latency is a crucial factor in plenty of paramount CEP
applications. A high complex event detection latency might result in losing lives or money.
For example, in the case of a vehicle accident, the percentage of lives saved increases
by 6% if the accident detection latency decreases by one minute [Eva96]. Moreover, in
[ABO20], the authors show that exceeding latency bound in trading on global stock
markets costs the investors approximately USD 5 billion per year.

In many CEP applications, e.g., network monitoring, traffic monitoring, stock market
[OJW03; Zac+15; Bal+13], the volume of the input event stream is typically high where
it is not feasible to process the incoming events on a single machine. Moreover, the
detection latency of complex events is significantly important, where the detected complex
events might become useless if they are not detected within a certain latency bound
[Quo+17; CF+13; RBR19]. To process such huge input event streams and maintain a
given latency bound, a well-known solution in the CEP domain is to use distribution
and parallelization, where CEP operators are distributed on multiple compute nodes.
Moreover, each CEP operator runs on one or more compute nodes [CF+13; Neu+10;
May+17; Bal+13; ZR10; Zac+15; MKR15; ZR10]. However, in many applications, the
volume of the input event stream is not stable and fluctuates over time [KLC18; RBQ16].
Therefore, it is not trivial to know the number of necessary compute nodes in advance.
Hence, either the number of compute nodes should be over-provisioned, which introduces
additional cost, or the number of compute nodes can be adapted elastically as proposed
by many researchers [CF+13; Neu+10; Zac+15; MKR15; ZR10]. However, adapting the
parallelization degree in the case of short input spikes introduces a high performance
overhead [KLC18]. Moreover, resources might be limited for several reasons including:
1) limited monetary budget, and 2) limited compute resources if operators run in private
clouds due to security or response time reasons.

Load Shedding in CEP. Another solution to process large input event streams
while maintaining a given latency bound is to reduce the processing latency of events in
CEP operators, which in turn increases the operator processing rate, hence enabling to
maintain the given latency bound. In a CEP operator, the processing latency of an event
e represents the time an operator needs to process (i.e., match) the event e with open PMs
within all windows. Hence, the event processing latency mainly depends on the number
of open PMs within the operator [RLR16; Bal+13]. Therefore, to reduce the processing
latency of an event e, we need to reduce the number of PMs with which the event e is
matched within an operator. This can be done either by dropping events or PMs (a.k.a.
load shedding). As expected, load shedding may negatively impact the quality of results
(short QoR) as it might falsely drop complex events (denoted by false negatives) or/and
falsely detect complex events (denoted by false positives). Therefore, it is crucial to
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1.2 Motivation and Research Gaps

shed load with minimum adverse impact on QoR. As a result, for CEP applications that
tolerate imprecise detection of complex events and have limited processing resources,
one effective way to keep the given latency bound is through intelligently shedding the
excessive load.

In CEP systems, to maintain a given latency bound and minimize the adverse impact
of shedding on QoR, a load shedding approach should perform the following three
main tasks [Slo+19; SBR19; Tat+03]: 1) Deciding on when to drop events or PMs, 2)
Calculating the number of events or PMs that are needed to be dropped, and 3) Deciding
on which events or PMs to drop. The third task (i.e., deciding on which events or PMs
to drop) is the most crucial task since it directly influences QoR. One way to tackle this
task is by assigning utilities to events/PMs where the utilities reflect the importance of
events/PMs, w.r.t. QoR. The higher is the importance of an event/PM for QoR, the
higher is its utility. As a result, if there is a need to shed load, events/PMs with the
lowest utilities are dropped, hence reducing the negative impact of dropping on QoR.
The utility of an event depends mainly on the detected complex events to which the
event contributes. Similarly, the utility of a PM depends on the complex events that are
detected when the PM completes. Hence, the detected complex events might be used
as a feature to assign utilities to events/PMs. The higher is the number of detected
complex events to which an event contributes or a PM becomes, the higher is the utility
of the event/PM.

In CEP systems, complex events can be only identified after processing (i.e., matching)
events in the input event stream with PMs within CEP operators. However, the CEP
systems need to assign utilities to events and PMs prior to processing events with
PMs, hence being able to drop events/PMs with the lowest utilities in overload cases,
maintaining the given latency bound, and reducing the drop impact on QoR. That
means that to assign utilities to events/PMs, we must depend on features other than
the detected complex events. An efficient load shedding approach must use appropriate
features that help in precisely predicting the event/PM utilities. In CEP systems, there
exist many features that may be used to predict the events/PM utilities. These features
may originate from events/PMs themselves or from the context in which the events/PMs
exist. The event type and the PM state (i.e., the progress of the PM) are examples
of features that originate from events and PMs themselves, respectively. While the
event positions within a window and the recently occurred events in a window represent
examples of features that originate from the context.

Besides precisely predicting event/PM utilities, another crucial factor influencing the
effectiveness of a load shedding approach is its overhead in performing the load shedding.
A high load shedding overhead implies that a high percentage of the available processing
power is used to make the shedding decisions. Such overhead results in reducing the
available processing power to perform pattern matching, thus adversely impacting QoR.
There exists a trade-off between precisely predicting the event/PM utilities and the load
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shedding overhead. As we showed above, an event in the input event stream is processed
(i.e., matched) on three different granularity levels: the stream, the window, and the
PM levels. Accordingly, event dropping might also be performed on these three different
granularity levels. 1) Dropping an event from the event stream is equivalent to drop
the event from all windows and PMs within an operator. 2) Dropping an event from a
window is equivalent to dropping the event from all PMs within the window, which in
turn represents a subset of all PMs within an operator. 3) Dropping an event from a
PM means that the event is dropped from an individual PM within an operator.

Dropping events on the stream level (i.e., the coarsest granularity) requires taking
the shedding decision once for each event in the event stream. While dropping events
from windows and PMs might demand to take the shedding decision multiple times
for each event in the input event stream. Hence, dropping events on the stream level
might impose lower load shedding overhead compared to dropping events on window
and PM granularities. However, event utilities on the stream level might not be precisely
predicted compared to predicting the event utilities on window and PM granularities.
Dropping a PM means that the PM is removed from the operator’s internal state, hence
no events in the window will be matched with this dropped PM. Therefore, dropping
PMs also represents dropping on a coarser granularity compared to dropping events
from PMs. Besides the drop granularity, the chosen features to predict the utility of
events/PMs might also influence the overhead of a load shedding approach. Therefore,
we must select those features that can predict the utility of events/PMs with considerable
accuracy and a tolerable overhead.

As a result, we classify the load shedding approaches according to the following
three characteristics: 1) Depending on whether the internal state of a CEP operator
is revealed (i.e., a white-box or black-box CEP operator). 2) Depending on whether
events or PMs are dropped, i.e., shedding is performed on events or PM granularities. 3)
Depending on whether events are dropped from the stream, window, or PMs (in the case
of dropping events). Figure 1.1 depicts a classification of load shedding approaches in
CEP. In the figure, a load shedding approach might be either a black-box or a white-box
approach. Moreover, the shedding may be performed on two granularities: event and
PM granularities. In a black-box approach, only events might be dropped since PMs are
not revealed by CEP operators, i.e., PMs are not accessible. Moreover, dropping events
in a black-box approach might be performed only on stream and window granularities.
As PMs are not revealed, dropping events on PM granularity is not possible. In a white
box load shedding approach, we may shed PMs since the operator’s internal state is
exposed. Additionally, we may drop events on all granularity levels, i.e., stream, window,
and PM levels.

State-of-the-art. Load shedding has been extensively studied in the stream process-
ing domain [Tat+03; TZ06; RBQ16; OJW03; TBL08; SW04; JMR05]. The queries in
this domain are mostly aggregations, min, max, and simple binary equi-joins. There-
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Load shedding approach

White-box Black-box

Events PMs Events

Stream Windows PMs Stream Windows

Figure 1.1: Classification of load shedding approaches in CEP.

fore, researchers in the stream processing domain propose load shedding approaches
that mainly assign utilities to tuples individually without taking into consideration the
dependency between tuples. However, patterns in the CEP domain are different and
more complex than the used queries in the stream processing domain. In CEP systems,
a pattern can be viewed as multi-relational non-equi-joins with temporal constraints
[HBN14]. Moreover, there exists a dependency between events in a pattern. Additionally,
CEP has many selection and consumption policies (i.e., match semantics) [CM94; ZU99;
CM10]. Using different selection and consumption policies in a pattern might result in
detecting a different set of complex events with the same input event stream. These
settings considerably increase the complexity of CEP patterns and complicate assigning
utilities to events and PMs. Therefore, the load shedding approaches proposed in the
stream processing domain are not suitable for the CEP domain.

So far, there exists only a little work on load shedding in CEP [HBN14; ZVHW20].
In [HBN14], the authors propose a black-box load shedding approach for CEP systems
where their approach drops events from the input event stream of a CEP operator.
The approach assigns utilities to events depending on the dependency between events
in patterns and the distribution of events in the input event stream and accordingly
shed events. However, they do not consider the order of events in patterns, which is
important in CEP as in sequence and negation operators [Liu+09; CGB11; AC06]. In
[ZVHW20], the authors propose a white-box load shedding approach that drops both
events and PMs where events and PMs with the lowest utilities are dropped. The events
are dropped on the stream granularity. A PM is assigned a utility depending on its
progress and the number of remaining events in the window. The utility of events in
[ZVHW20] depends on the PMs which these events contribute to. Events that contribute
to PMs with low utilities are considered to have also low utilities. However, low utility
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PMs might also contain highly important events. Hence, dropping these events might
adversely impact QoR. Moreover, this approach is limited to skip-till-any-match pattern
semantic [Agr+08]– which is equivalent to each selection policy and zero consumption
policy [CM94; WDR06]– and it does not support the negation event operator.
As a result, the available works on load shedding in CEP are very narrow and have

many limitations. Therefore, there is a need to develop new shedding approaches for
CEP systems covering large classes of load shedding approaches (cf. Figure 1.1). The
proposed approaches should perform load shedding on different granularity levels and
work with black-box or white-box CEP operators. Moreover, they should be generic,
w.r.t. supporting CEP operators and pattern matching semantics (i.e., selection and
consumption policies). Furthermore, since the load shedding overhead has a considerable
impact on the effectiveness of load shedding approaches, the developed load shedding
approaches are envisioned to have low overhead.

1.3 Contributions

The goal of this thesis is to develop concepts and algorithms that enable load shedding
in CEP systems and empower a CEP operator, in overload cases, to maintain a given
latency bound when resources are limited. To this end, we developed a load shedding
library for CEP systems. The library contains four main load shedding approaches
that cover all load shedding classes shown in Figure 1.1, except shedding events on the
stream level while using a white-box operator. Our proposed load shedding approaches
enable CEP operators to maintain the given latency bound while minimizing the drop
impact on QoR. Our shedding approaches implicitly consider the dependency between
the events in patterns and in the input event stream. Moreover, they are not restricted to
specific CEP event operators or selection and consumption policies, where they support
all common CEP event operators and the selection and consumption policies.
In the following, we list the contributions of this PhD thesis in more detail. These

contributions are based mainly on work performed and published as part of the PhD
thesis [Slo+19; SBR19; SBR20a; SBR20b], where the scientific work contributed by the
author of this thesis was about 70%, 70%, 80%, and 85%, respectively.

1. We provide two ways to define the quality of results (QoR), namely strict and re-
laxed QoR [SBR20b]. Moreover, we support our definitions by example applications
from the real-world.

2. A white-box lightweight load shedding approach (called pSPICE) that drops PMs
in overload cases to maintain a given latency bound [Slo+19]. pSPICE uses the
Markov chain and Markov reward process to predict the utility of PMs where the
utility depends on the PM state (i.e., the PM progress) and the remaining events
in the window. Moreover, we develop an algorithm that decides when to drop PMs
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and estimates how many PMs to drop from a CEP operator to maintain the given
latency bound.

3. eSPICE, a black-box lightweight load shedding approach that, in overload cases,
drops events from windows to maintain a given latency bound [SBR19]. eSPICE
uses a probabilistic model to predict the event utilities where the utility of an
event depends on two features: event type and the relative position of the event in
the window. eSPICE is also a lightweight load shedding approach. Moreover, we
develop an algorithm to estimate the number of events to drop in order to maintain
the given latency bound. Furthermore, we provide an algorithm to predict a utility
threshold that enables eSPICE to perform shedding in a lightweight way.

4. An efficient load shedding approach (called hSPICE) that drops events either
from PMs or from windows in overload cases to maintain a given latency bound
[SBR20a; SBR20b]. hSPICE is a white-box approach that performs event shedding
on two granularity levels: window and PM levels. hSPICE uses a probabilistic
model to predict the event utilities for PMs within windows where the utility of
an event for a PM depends on the following features: the type and position of
the event within the window and the state of the PM. Moreover, we provide an
algorithm to estimate the number of events to drop to maintain the given latency
bound.

5. A black-box shedding approach (called gSPICE) that drops events either from
windows or from the input event stream in overload cases to maintain a given
latency bound. Hence, gSPICE drops events on two granularity levels: the window
and the stream levels. gSPICE uses a probabilistic model to predict the event
utilities, where the utility of an event depends on the following features: the type
and the relative position of the event within the window, the frequency of event
types in the predecessor pane of the event, and the event content (i.e., the event
actual data). The predecessor pane of event e represents the sequence of events
that occur before event e in the input event stream. gSPICE uses the Zobrist
hashing [Zob90] to efficiently store the predicted event utilities. Moreover, gSPICE
uses well-known machine learning approaches, e.g., decision trees or random forests,
to estimate event utilities. The author of this thesis contributed around 85% of
the scientific content of this approach.

We have implemented all of these load shedding approaches by extending a prototype
CEP framework that is implemented using Java. Moreover, we have extensively studied
their performance with a representative set of CEP queries and several real-world and
synthetic datasets.
The above listed contributions and the associated publications are the results of the

research work conducted at the University of Stuttgart under the project "Parallel
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complex event processing to meet probabilistic latency bounds II (Precept II)". Precept
II is funded by the German Research Foundation "Deutsche Forschungsgemeinschaft
(DFG)" with grant numbers BH 154/1-2 and RO 1086/19-2.

1.4 Structure

The rest of this thesis is structured as follows. Chapter 2 introduces the basic foundations
in this thesis, describing the system model and assumptions. Moreover, it precisely
defines the quality of results (QoR) and the problem statement. Chapter 3 presents
pSPICE, discussing how the utility of PMs, how the number of required PMs to drop
are calculated, and how PM shedding is performed. In Chapter 4, eSPICE is presented,
where we explain how eSPICE predicts the event utilities, computes the number of events
to drop, and estimates a utility threshold. Chapter 5 details hSPICE and compares its
performance with the performance of pSPICE and eSPICE. Chapter 6 presents gSPICE
and shows the impact of using several features on the utility prediction and the load
shedding overhead. Moreover, it compares the performance of all proposed load shedding
approaches. Finally, in Chapter 7, we discuss the related work, and in Chapter 8, we
conclude the thesis with a summary of our contributions and a discussion on the possible
future work.
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Chapter 2
Foundations and Problem
Statement

In this chapter, we first present the system model used in this thesis. Then, we provide
a detailed definition of the quality of results. Finally, we precisely state the problem
that is solved in this work.

2.1 System Model

Operator Graph. A CEP system is modeled as a directed acyclic graph (DAG) where
the vertices represent a set of event producers, event consumers, and operators. The edges
represent the flow of event streams. Event producers generate primitive events, while
event consumers consume the detected complex events. Operators correlate incoming
input events using defined patterns to detect complex events. Figure 2.1 depicts an
exemplary CEP operator graph that consists of three event producers, three operators,
and two event consumers. In the figure, operator op1 receives input events from event
producers pr1 and pr2, while operator op2 receives input events from event producer
pr3. Operators op1 and op2 correlate incoming input events and forward the correlation
results to operator op3. Operator op3, in turn, correlates events in its incoming input
event streams and forwards the detected complex events (if any) to event consumers cr1
and cr2.

In the following, we explain in detail the basic elements and components of the CEP
operator graph.

Primitive Event. A primitive event is the basic data element in CEP systems that
represents the occurrence of an application-related situation. A primitive event (or
simply, event) is atomic (i.e., happens completely or not at all) and happens at a certain
point in time [GJS92; ZU99; CM94]. Examples of primitive events are the following:
an RFID tag in retail management applications, the occurrence of an operation (e.g.,
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pr1 pr2 pr3

op1 op2

op3

cr1 cr2

Figure 2.1: An example of a CEP operator graph.

insert, update, delete, etc.) in database applications, information on a player in soccer
applications, a change in a bus location in transportation applications, or a change
in the stock quote of a company in stock market applications. An event consists of
meta-data and a set of attribute-value pairs. The meta-data contains event type and
timestamp, while the attribute-value pairs represent the actual event data (i.e., event
content). The set of all event types is denoted by T. For example, the type (denoted by
Te ∈ T) of an event e might represent a company name in a stock application, a player
ID in a soccer application, or a bus ID in a transportation application. Event timestamp
represents the point in time when the event occurred where each event e is assigned a
timestamp. Moreover, the set of all event attributes of an event e is denoted by Ee. An
attribute (denoted by Ee ∈ E) of an event e might represent a stock quote, a player
position, or a bus location in the above applications. An instance of an event represents
the occurrence of a specific event type at a certain point in time. For example, in a stock
market application, the stock quote of the IBM company might continuously change
over time, where an event instance of type IBM is generated for each change of the IBM
stock quote.

Complex Event. A complex event is defined similarly to a primitive event where it
consists of meta-data and attribute-value pairs. However, a complex event is constituted
by correlating two or more events (primitive or complex events) by a CEP operator.
Moreover, the attribute-value pairs in a complex event might contain information on
the events from which the complex event is detected. For example, in a stock market
application, assume that a complex event is detected if the stock quote of company A
and the stock quote of company B changes by more than 5%. A detected complex event
might contain the amount of change in the stock quote of both companies, or it even
might include the stock event of both companies themselves. The attribute-value pairs
might also contain any additional information needed by the application. For instance,
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in the above example, it might be necessary that the detected complex events must also
include the sum of the stock quotes of both companies.

Event Producer. An event producer emits primitive events. Examples of event pro-
ducers are the following: sensors, RFID readers, social networks, stock exchanges,
applications, etc.

Event Consumer. An event consumer receives the detected complex events. Event
consumers might be applications, machines, humans, etc.

Event Stream. An event stream is an infinite sequence of events. In the CEP operator
graph, the flow of events (primitive or complex) between any two vertices represents
an event stream. As an operator might have more than one input event stream, events
in the incoming input event streams of an operator merge into a single event stream.
Events must be merged in a deterministic order since events order is crucial in CEP, e.g.,
in the sequence and negation event operators [Liu+09; CGB11; AC06]. Events emitted
by an event producer are ordered using event timestamps. We assume that any two
events from the same event producer have different timestamps. Moreover, several event
streams merge into a single event stream where events in the merged event stream have
a total order using the event timestamps and a tie-breaker.

Events in event streams might suffer from different delays due to several types of delay,
e.g., transmission and processing delay, which might bring events into a wrong order.
This problem is called out-of-order events arrival, a well-known problem in CEP and
stream processing domains. In the literature, there exists extensive work on handling the
arrival of the out-of-order events, for example, by using heartbeats or slack time [Li+08;
MP13; Bri+08; CGM10; Riv+18]. We assume that events in an event stream have a
correct order. Additionally, we assume that several input event streams are merged into
a single event stream while correctly preserving the total order of events.

Pattern. A CEP pattern defines a set of rules that specify how a certain set of events
are correlated. It defines causal dependencies between events, temporal constraints, and
conditions on event attributes [Luc01; Liu+09; CM94]. In CEP, events are correlated to
check whether they match a defined pattern– we refer to this process as pattern matching.
As we mentioned in Chapter 1, to define patterns, an event query language might be
used, where a query corresponds to a pattern. Examples of such event languages are
Tesla [CM10], Snoop [CM94], and SASE [WDR06]. These languages contain several
event operators: sequence, negation, any, Kleene closure, conjunction, disjunction, etc.

Operator. A CEP operator correlates events in its input event streams to detect
complex events, following rules defined by patterns, where an operator might match
one or more patterns. A CEP operator receives input event streams from its upstream
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vertices in the operator graph. As we mentioned above, input event streams of an
operator are first merged into a single event stream where the total order is preserved
using the event timestamps and a tie-breaker. Then, the operator performs the pattern
matching on the merged event streams. Finally, the detected complex events by the
operator are forwarded to the downstream vertices in the operator graph that might be
other operators or event consumers.

Window. The input event stream of a CEP operator is continuous and infinite.
However, in CEP systems, it is common to partition the input event stream into windows
of events. This CEP model is also known as window-based CEP [AC04; MKR15; PS06;
Bal+13; CM10; MM16; Gro+16; AC04]. The window slides over the input event stream,
where the new incoming events are continuously added to the window while old events
are removed from the window. Windows are opened and closed depending on predicates.
The predicates to open and close windows may depend on time (called a time-based
predicate), on the number of events (called a count-based predicate), on logical predicates
(called a pattern-based predicate), or on a combination of them [MKR15; Gro+16; AC04;
Li+05; Bab+02]. The window length may be defined by time (called time-based sliding
window), by the number of events (called count-based sliding window), or by logical
conditions (called pattern-based sliding window). For example, a window of length 10
seconds or a window of length 1000 events. We refer to the number of events within a
window as window size (denoted by ws). Each event within a window w has a position
where the position Pe of event e represents the number of events that precedes event e
in window w. Windows might overlap, which means that there may exist more than
one open window at the same time. Hence, event e might belong to multiple windows,
where it has different positions Pe within different windows.

We assume that there exists a component called merger-splitter as a predecessor in
front of each operator in the operator graph. This component merges the input event
streams of an operator into a single event stream while preserving the total event order.
Moreover, the merger-splitter partitions the merged input event streams into windows
of events using defined predicates. Please note that, for simplicity, this component is
not shown in Figure 2.1.

Operator Functionality. To better understand the operator functionally, Figure 2.2
depicts an example of a CEP operator with the merger-splitter component. The figure
shows that input event streams (S1 ... Sm, where m >= 1) are first merged into a
single input event stream and partitioned into windows of events by the merger-splitter.
Windows of events are then pushed to the input queue of the operator. The operator
continuously gets windows of events from its input queue and processes them by the
process function, which performs the actual pattern matching. The output of the pattern
matching represents complex events. Hence, the operator functionality is represented
by the following function: f : w → (c1, c2, ...), where w represents a window of events
and (c1, c2, ...) represents an ordered set of complex events. As we mentioned above, an
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Figure 2.2: An example of a CEP operator with the merger-splitter component.

event might belong to multiple overlapped windows. However, the event is processed
independently in each window.

A CEP operator matches one or more patterns (i.e., multi-query). We define the set
of patterns that the operator matches as Q = {qi : 1 ≤ i ≤ n}, where n is the number of
patterns. Since patterns might have different importances, each pattern has a weight
reflecting its importance. The patterns’ weights are determined by a domain expert and
they are defined as follows: WQ = {wqi : 1 ≤ i ≤ n}, where wqi is the weight of pattern
qi.

To clarify the system model, let us introduce the following example.
Example 1. In a stock application, an operator matches pattern q, which correlates
stock events from three companies. Pattern q is defined as follows: within a window
of 8 events (i.e., a count-based sliding window), generate a complex event if a change
in the stock quote of company A results in a change in the stock quote of company B,
followed by a change in the stock quote of company C– the stock quote of each company
should change by at least x%. We may write this pattern as a sequence operator using
Snoop event language as follows [CM94]: q = seq(A;B;C). Moreover, we may write the
pattern q more precisely in SASE-like event language [WDR06] as follows:

pattern seq (A;B;C)

where A.quote,B.quote, and C.quote change by ≥ x%

within 8 events

In this example, the operator matches only pattern q. Therefore, the set of patterns
that the operator matches is Q = {q}. Moreover, in this example, the event type Te
represents the company name, i.e., A, B, or C. Therefore, the set of all event types
T = {A,B,C}. Furthermore, there exists only one event attribute Ee that is the stock
quote. Hence, the set of all event attributes is as follows: Ee = {quote}. Assume
that a count-based predicate is used to open windows where a window is opened every
two events, i.e., the window slide size is two. Figure 2.3 depicts this example. Figure
2.3(a) shows an ordered input event stream (Sin) where events in Sin are given sequence
numbers reflecting their orders. In this example, to simplify the presentation assume
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Figure 2.3: Example 1.
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that the change in the stock quote of any event in Sin is higher than or equal to x%.
Events in Sin are instances of the event types A, B, and C. For example, events A0,
B2, and C5 in Sin are event instances of the event types A, B, and C, respectively.
Moreover, the figure shows that the input event stream Sin is partitioned into windows
where there are three overlapped open windows. As an example to show how the same
event may have different positions within different windows, we see that event A4 from
the input event stream belongs to all three windows, where it has the positions 4, 2, and
0 within windows w1, w2, and w3, respectively. The operator processes an event within
all windows to which the event belongs before proceeding to process the next event
in the input queue. For example, in Figure 2.3(a), the operator first processes event
A4 of the input event stream (Sin) in all open windows, i.e., w1, w2, and w3. Then, it
proceeds to process the next event of the input event stream (Sin), which is event C5 in
this example.

Finite State Machine (FSM). There exist several methods (a.k.a. computational
models) to detect a pattern in CEP, e.g., finite state machine-based methods [May+17;
Agr+08; CM10; RLR16; WDR06], tree-based methods [CM94; Cha+94; MM09], string-
based methods [Sad+04], and Petri Nets-based methods [GD94]. To simplify the
presentation and since finite state machine is the most commonly used computational
model in CEP, in this work, we assume that a pattern in CEP is modeled as a FSM (cf.
Figure 2.3(a)). Please note that our proposed load shedding approaches are agnostic to
the used computational model. We will later show how our approaches support other
computational models. The set of all possible states Sqi of pattern qi ∈ Q is defined
as follows: Sqi = {s0, s1, ..., sm}. In Example 1, pattern q has four states (i.e., m = 3)
where Sq = {s0, s1, s2, s3} as shown in Figure 2.3(a). In the figure, s0 represents the
initial state of pattern q and s3 represents its final state.

Partial Match. Whenever an operator starts to process events within a window, it
starts an instance of the FSM of every pattern qi ∈ Q at the initial state. During event
processing within a window, an event is matched with the FSM instances of pattern
qi ∈ Q. The event might cause the FSM instance(s) of pattern qi to transit between
different states of Sqi . Please recall that we have already defined a partial match. Now,
let us define it more formally. An instance of the FSM of pattern qi is called a PM,
where the PM completes and becomes a complex event if the FSM instance transits to
the final state. Hence, processing an event within a window implies that the event is
matched with PMs within the window. We define a partial match γ of pattern qi as
γ ⊂ qi. Moreover, we refer to matching event e with PM γ ⊂ qi as processing event e
with PM γ, denoted by e⊗ γ.

In Example 1, assume that the operator matches the events in windows chronologi-
cally [CM94] (i.e., using the first selection policy and consumed consumption policy for
all event types– later in this section, we discuss the selection and consumption policies)
and the operator has already processed all available events in all open windows, i.e.,
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the operator has processed the last event of type C (C5 in the input event stream Sin)
within all windows. Figure 2.3(b) shows the result of pattern matching in all windows.
In window w1, the operator has detected one complex event (cplx1 = (A0, B2, C5)) while
there are still three open PMs in window w1: γ2, γ3, and γ4 . Similarly, there are two
PMs in windows w2 and w3 each: γ1 and γ2. We refer to events A0, B2, C5 in the
complex event cplx1 as events that contribute to complex event cplx1. If processing
event e with PM γ ⊂ qi at state s (i.e., e⊗ γs) causes γ to progress (i.e., e matches qi
and causes the state machine instance to transit), we refer to this as event e contributes
to PM γ at state s, denoted by e ∈ γs. In Example 1, event B0 in window w2 has been
processed with γ1 at state s0 (i.e., B0⊗ γ1s0), but it did not cause γ1 to progress. While
in the same window w2, event A2 has been processed with γ1 at state s0 (i.e., A2⊗ γ1s0 ),
and it caused γ1 to progress to state s1. Hence, event A2 contributes to PM γ1 at state
s0, i.e., A2 ∈ γ1s0 . Please note that in the negation event operator [RLR16; WDR06], if
the negated event e′ contributes to PM γ (i.e., e′ ∈ γ), PM γ is abandoned. For ease of
presentation, hereafter, we also refer to these abandoned PMs as completed PMs.

Selection Policy. In window w1, there exist three instances of the event type A (i.e.,
A0, A1, A4), two instances of event type B (i.e., B2, B3), and one instance of event type
C (i.e., C5). Therefore, it is unclear which instances of the event types A, B, and C
should be matched with each other within window w1. The generated complex events
could be any combinations of these event instances. To precisely define which event
instances should participate in detecting complex events, in CEP, the selection policy
has been introduced [CM94; ZU99; CM10]. There are four main selection policies: first,
last, each, cumulative. In the first selection policy, the earliest event instances are chosen
for pattern matching. In the above example, within window w1, a detected complex
event using the first selection policy for all event types might be cplx = (A0, B2, C5). In
the last selection policy, the latest event instances are chosen for pattern matching. In
the above example, a detected complex event using the last selection policy for all event
types might be cplx = (A1, B3, C5). Please note that we assume that a complex event is
emitted whenever it is detected, i.e., the operator does not wait until the window closes
to process events and emit complex events [CM94]. Waiting until the window closes to
emit complex events might add a high latency to the detection of complex events.

Consumption Policy. In the above example, it is also unclear whether it is allowed to
reuse the event instances while performing pattern matching or the event instances should
be considered as consumed events (i.e., it is not allowed to reuse them again) whenever
they have contributed to a complex event. The consumption policy [CM94; ZU99; CM10]
defines whether the same event instance might be used in detecting multiple complex
events. There are mainly two consumption policies: consumed and zero. In the consumed
policy, it is not allowed to reuse the event instances in detecting other complex events.
While in the zero policy, an event instance is allowed to contribute to multiple complex
events. In the above example, let us assume that the selection policy is first for all event
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types. Using the consumed consumption policy for all event types results in detecting
only one complex event cplx = (A0, B2, C5). While using the consumed consumption
policy for event types A and B and zero consumption policy for event type C results
in detecting two complex events cplx = (A0, B2, C5) and cplx

′
= (A1, B3, C5), where

the event C5 is reused in cplx′ . For more information on the selection and consumption
policies, see [CM94; ZU99; CM10].

Please note that we do not assume a specific computational model or selection and
consumption policy. Our proposed load shedding approaches support all aforementioned
CEP computation models and selection and consumption policies. Moreover, as we
mentioned above, there exist several event operators in CEP. However, we do not assume
a specific event operator. In general, our load shedding approaches support all commonly
used event operators.

2.2 Quality of Results

In this work, we represent the quality of results (QoR) by the number of false positives
and false negatives. A false positive is a situation (a complex event) that did not occur
but has been falsely detected. While a false negative is a situation (a complex event)
that has occurred but has not been detected.

As mentioned above, an operator might detect multiple patterns Q and each pattern
has its weight (i.e., WQ). For pattern qi ∈ Q, we define the number of false positives as
FPqi and the number of false negatives as FNqi . In an operator, the total number of
false positives (denoted by FPQ) for all patterns is defined as the sum of the number of
false positives for each pattern multiplied by the pattern’s weight (cf. Equation 2.1).
Similarly, the total number of false negatives (denoted by FNQ) for all patterns is defined
as the sum of the number of false negatives for each pattern multiplied by the pattern’s
weight (cf. Equation 2.2).

FPQ =
∑
qi∈Q

wqi ∗ FPqi (2.1)

FNQ =
∑
qi∈Q

wqi ∗ FNqi (2.2)

As a result, for an operator, QoR is measured by the sum of the total number of false
positives (FPQ) and the total number of false negatives (FNQ).

Recall that there might exist several instances of each event type within a window,
where the selection and consumption policies are used to exactly define which instance(s)
of an event type must be used to detect complex events in the window. However, for
many applications, it is sufficient to detect complex events regardless of the exact event
instances that contribute to detect these complex events. Moreover, in many cases, the
consecutive event instances of an event type represent only slight updates for the same
event. Therefore, false positives and negatives can be defined in different ways depending
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on whether the application needs to match the exact event instances or not. In the
following, we introduce two ways to define false positives and negatives, i.e., to define
QoR.

Strict Quality of Results. In the strict quality of results, false positives and
negatives are defined depending on the exact event instances. This type of QoR is
important for applications in which the order of event instances or the causal relations
between event instances are important. For example, in a security application, an
employee opens a door with his/her ID card and there is a camera installed on the door.
Hence, there are two event types: 1) event type ID indicates that the ID card opened
the door, and 2) event type F represents a video frame. A CEP operator detects if
the ID card that is used to open the door belongs to the same person (employee) who
opened the door. Several persons might open the same door successively in a short time
interval which means that there exist several instances of the ID event type ( Te = ID)
and the frame event type (Te = F ). Dropping event instances of any of these two types
or dropping PMs might result in matching a wrong ID event with a wrong frame event.
This might result in detecting that a different person opens the door (false positive) or
detecting that a certain person has not opened the door (false negative). In another
application, social networks, for example, an analyst might be interested to detect which
person has started a discussion on a certain topic. Let us assume that person A has
commented on a post. Then, person B wrote a comment as a reaction to the comment
of person A. After that, person A commented back. In this example, dropping event
instances of the event types A and/or B or dropping PMs might change the correct
order of the comments. Hence, it might lead to incorrectly determine which person has
started the discussion.

To define the strict QoR more precisely, in Example 1 (cf. Section 2.1, Figure 2.3), let
us consider window w1 contains the following events: B7, B6, C5, A4, B3 B2, A1, A0.
Each event type has one or more event instances in the window. For instance, event type
A has three event instances (i.e., A0, A1, and A4) in window w1. By processing window
w1, the operator detects a complex event cplxo from the events A0, B2, and C5, i.e.,
cplxo = (A0, B2, C5)– recall that in Example 1, we are matching events chronologically
[CM94] (i.e., using the first selection policy and consumed consumption policy for all
event types). Next, we first discuss the impact of event shedding on QoR. Then, we
discuss the impact of PM shedding on QoR. Let us assume that due to event shedding,
event B2 is dropped from the window. In this case, the operator detects a new complex
event cplxel from the events A0, B3, and C5, i.e., cplxel = (A0, B3, C5). Since the new
complex event cplxel is not detected from the same event instances as the complex event
cplxo, in the strict QoR, complex event cplxel is considered as a false positive. Moreover,
as complex event cplxo is not detected in window w1 due to load shedding, we count
this case as a false negative. Hence, dropping event B2 from window w1 results in one
false positive and one false negative. Similarly, let us assume that the operator has
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already processed events A0, A1, B2, and B3 in window w1. Hence, the current open
PMs in window w1 after processing event B3 are γ1 = (A0, B2) and γ2 = (A1, B3). Let
us assume that due to PM shedding, PM γ1 is dropped. In this case, after processing all
events in the window w1, the operator detects a new complex event cplxPMl using PM
γ2 where it uses the events A1, B3, and C5, i.e., cplxPMl = (A1, B3, C5). Since the new
complex event cplxPMl is not detected from the same event instances as the complex
event cplxo, in the strict QoR, complex event cplxPMl is again considered as a false
positive. Moreover, as complex event cplxo is not detected in window w1 due to load
shedding, we count this case as a false negative. Hence, dropping PM γ1 results in one
false positive and one false negative.

Relaxed Quality of Results. In the relaxed quality of results, false positives and
negatives are defined irrespective of the exact event instances, i.e., it is not important
which instances of an event type contributed to detect a complex event. This type of
QoR is beneficial for many applications, e.g., stock market, soccer, transportation, etc.
For example, in a stock market application, stock events might come at a high frequency
(e.g., every 1 minute). Hence, two consecutive stock events e and e′ of a certain company
(i.e., Te = T ′e) might have a slight or even no difference in the stock quote (a slight or no
change in price). Therefore, to detect that a stock company A has influenced a stock
company B in a certain time interval (window), it is enough to find a correlation between
any event instance of stock company A and any event instance of stock company B in
that time interval.

To clearly define relaxed QoR, in the above example, the newly detected complex
events cplxel and cplx

PM
l are considered equivalent to the complex event cplxo. Hence,

dropping event B2 or PM γ1 from window w1 does not result in any false positive or
negative in the case of relaxed QoR.

Please note that dropping events or PMs might result in false positives and negatives
in the case of strict QoR. Moreover, it might result in false negatives when using relaxed
QoR. However, when using relaxed QoR, dropping events might result in false positives
only if the negation event operator is used. While dropping PMs does not result in false
positives when using relaxed QoR, irrespective of the used event operator.

2.3 Problem Statement

In this section, we precisely define the problem solved in this thesis. Operators in a
CEP operator graph are assigned latency bounds. A CEP operator might have limited
resources where, in overload cases, it must perform load shedding to avoid violating the
given latency bound (LB). Load shedding is performed by either dropping input events
or partial matches. However, shedding load might degrade QoR, i.e., resulting in false
positives and false negatives. Therefore, the load shedding must be performed in a way
that has a minimum adverse impact on QoR.
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As mentioned in Section 2.2, for an operator, QoR is measured by the the sum of the
total number of false positives (FPQ) and the total number of false negatives (FNQ).
For each operator in the CEP operator graph, the objective is to minimize the adverse
impact on QoR, i.e., minimize (FPQ + FNQ), while dropping events and PMs such that
the given latency bound LB is met. More formally, for each operator, the objective is
defined as follows.

minimize (FPQ + FNQ)

s.t. le ≤ LB ∀ e ∈ Sin
(2.3)

where le is the latency of event e that represents the sum of the queuing latency of event
e and the time needed to process event e within all windows to which event e belongs.
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Chapter 3
pSPICE: Partial Match Shedding

In this chapter, we present our first load shedding approach that is called pSPICE.
pSPICE is a white-box load shedding approach that drops partial matches.
More specifically, pSPICE is an efficient and lightweight load shedding approach for

CEP systems. In overload cases, pSPICE drops PMs to maintain a given latency bound,
i.e., it sheds load on the PM granularity. As we mentioned in Chapter 1, Section 1.2,
the event processing latency increases proportionally with the number of PMs in a CEP
operator. Therefore, dropping PMs from the internal state of the operator reduces the
event processing latency and increases the operator throughput. Hence, it enables the
operator to maintain a given latency bound in case of input event overload. Of course,
shedding PMs might influence QoR. Therefore, it is crucial to drop PMs that have a
low adverse impact on QoR. To reduce the negative shedding impact on QoR, pSPICE
drops PMs that have the lowest importance. Please recall that dropping PMs has an
advantage over dropping events where if the relaxed QoR is used, dropping PMs does not
result in false positives. That might be important for applications that cannot tolerate
false positives.

There are three main challenges to drop partial matches in CEP: 1) determining when
and how many PMs to drop for an incoming input event rate, 2) determining which
PMs to drop, and 3) performing the load shedding in a lightweight manner so as not
to burden an already overloaded operator. To drop PMs, we associate each PM with
a utility value that indicates the importance of the PM where a higher utility value
means higher importance. We derive the utility of a PM from its probability to complete
and become a complex event (called partial match completion probability) and from its
estimated remaining processing time.
Our main contributions in this chapter are as follows:

• We propose a white-box load shedding strategy, called pSPICE, that uses the
Markov chain and Markov reward process to predict the utility of PMs in windows.
The utility of a PM depends on the completion probability of the PM and on its
remaining processing time.
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• We develop an approach that enables pSPICE to perform the load shedding in an
efficient and lightweight manner.

• We provide an algorithm that decides when and estimates how many PMs to drop
from an operator to maintain the given latency bound.

• We provide extensive evaluations on three real-world datasets and several represen-
tative queries to show that pSPICE reduces the adverse impact of load shedding
on QoR considerably more than state-of-the-art solutions.

The rest of the chapter is structured as follows. Section 3.1 presents the used system
model. In Section 3.2, we explain in detail how different components of pSPICE interact,
how the utility of PMs are defined and predicted in pSPICE, and how load shedding is
performed. Section 3.3 presents the obtained evaluation results. Finally, we conclude
this chapter in Section 3.4.

3.1 System Model

We rely on a similar system model as in Chapter 2, Section 2.1. We assume a window-
based CEP system that consists of a one or more operators where an operator might detect
one or more patterns Q (i.e., multi-query). Patterns might have different importances
where each pattern has a corresponding weight wqi ∈WQ (given by the domain expert)
reflecting the pattern’s importance. A pattern qi ∈ Q is modeled as a finite state machine.
For a pattern qi ∈ Q, we define a set of states Sqi = {s0, s1, ..., sm} as the set of all
possible states that the pattern qi may have, including the initial state (s0). Assuming
that the state sm represents the final state of pattern qi, a PM γ of pattern qi (i.e.,
γ ⊂ qi) completes and becomes a complex event if an instance of the state machine of
pattern qi transits to the state sm.
In this chapter, we assume a white-box CEP operator where the operator reveals

information about PMs and their progress (i.e., states) when processing primitive events
within windows. As we mentioned in Chapter 2, Section 2.1, in CEP systems, there exist
several computational models other than the finite state machine that are used to detect
patterns. Please note that pSPICE is not restricted to a specific computational model.
Later in this chapter, we show how pSPICE supports other computational models.

3.2 pSPICE

In this section, we first present the architecture of pSPICE, our load shedding strategy.
Next, we introduce the notion of utility of PMs followed by a description of our approach
to determine these utilities using the Markov chain and Markov reward process [How12;
How13]. Then, we discuss how to detect overload and compute the amount of overflowing
PMs that must be dropped by the load shedder. After that, we present the load shedding
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algorithm that efficiently drops PMs with the lowest utility values. Finally, we discuss
how pSPICE supports other computational models. Please note that in Section 2.2, we
mentioned two types of QoR, namely, strict and relaxed QoR. Our shedding approaches
in this thesis are designed depending on the strict QoR. However, we show evaluation
results with both strict QoR and relaxed QoR.

3.2.1 The pSPICE Architecture

The architecture of pSPICE is depicted in Figure 3.1. The figure shows an operator
which is modified by adding the following components to enable load shedding: overload
detector, load shedder (LS), and model builder.
The incoming windows of events forwarded by the merger-splitter component (cf.

Chapter 2, Section 2.1) are queued in the input queue of the operator. To prevent
violating the defined latency bound (LB), the overload detector checks the estimated
latency for each input event. In the scenario where LB might be violated, the overload
detector calls the LS to drop a certain number of PMs, denoted by ρ.

The model builder receives observations from the operator about the progress of PMs.
After receiving a certain number of observations, the model builder builds the model,
where it predicts the utility of PMs using the Markov chain and Markov reward process.
The model builder might be heavy-weight. However, it is not a time-critical task and it
does not need to run frequently.

LS drops ρ PMs every time it is called by the overload detector, where ρ is determined
by the overload detector. The LS depends on utility values predicted by the model builder
to select those PMs for dropping. Both the LS and overload detector are time-critical
tasks, which directly affect the CEP system performance and hence must be lightweight
and efficient. As we will see later, both of these components have very low overhead in
pSPICE.

3.2.2 Utility of Partial Matches

pSPICE drops partial matches with the lowest utility. The question is– what defines the
utility of a PM? The utility of a PM is defined by its impact on QoR, i.e., the number
of false negatives and positives. A PM that has a low adverse impact on QoR has a low
utility value, while a PM that has a high adverse impact on QoR has a high utility value.
Hence, to minimize the dropping impact on QoR, we must find a way to assign low
utility values to those PMs that are less important than other PMs. We assign utilities
to PMs depending on three factors: 1) the probability of a PM to complete and become
a complex event (i.e., the completion probability), 2) the estimated processing time that
a PM still needs, and 3) the weight of the pattern.

The completion probability of a PM represents the probability of the PM to become a
complex event. The existence of a complex event depends on whether its underlying PM
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Figure 3.1: The pSPICE Architecture.

will complete or not. If a PM completes, a complex event is detected. On the other hand,
if a PM does not complete, a complex event is not detected. Hence, the completion
probability of a PM is an important indicator of the utility of the PM as dropping
PMs that anyway will not complete might imply no degradation in QoR. Pγ represents
the completion probability of the PM γ. The higher is the completion probability Pγ
of the PM γ, the higher should be its utility. This means that the utility of a PM is
proportional to its completion probability.

The utility of a partial match γ is also influenced by its remaining processing time
(denoted by τγ). A PM that still has a high remaining processing time (we will use
only processing time hereafter) should have lower utility than a PM that has a lower
processing time. The reason for this is that a PM with low processing time consumes
less processing time from the operator, i.e., giving the operator more time to process
other PMs. Hence, it decreases the need to drop PMs from the operator’s internal state,
which in turn decreases the number of false negatives and positives. This means that
the utility of a PM is inversely proportional to its processing time (τγ).

For example, let us assume that an operator has two partial matches γ1 and γ2 in two
windows w1 and w2, respectively. Suppose that Pγ1 = Pγ2 but τγ1 < τγ2 . In this case,
the importance of γ1 should be higher than the importance of γ2 since γ1 has the same
completion probability as γ2 but it imposes lower processing time on the operator. In
another case where Pγ1 < Pγ2 but τγ1 < τγ2 , we need to assign a higher utility to the
PM that results in lesser degradation in QoR. Therefore, we use the proportion of the

completion probability Pγ to the processing time τγ , i.e.,
Pγ
τγ

, as a utility value for the

partial match.

Finally, as we mentioned above, in an operator with multiple patterns (i.e., multi-query
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operator), each pattern might have different weight wqi ∈WQ, i.e., different importance.
Therefore, when assigning utilities to PMs, we must also take the patterns’ weights into
consideration. To consider the pattern’s weights, we increase the utility value of a PM
γ ⊂ qi proportionally to its pattern’s weight wqi .
For a PM γ ⊂ qi, to incorporate the completion probability Pγ of the PM γ, its

processing time τγ , and its pattern’s weight wqi in deriving the utility (denoted by Uγ)
of the PM γ, we represent the utility of PM γ as follows:

Uγ = wqi .
Pγ
τγ

(3.1)

3.2.3 Utility Prediction

Since the utility of a PM depends on its completion probability and processing time, in
this section, we explain the manner in which we predict them using the Markov chain
and Markov reward process [How12; How13].

3.2.3.1 Completion probability Prediction

In a certain position in a window w, the completion probability Pγ of a PM γ ⊂ qi,
i.e., the probability of γ to complete the pattern qi and to become a complex event,
depends on two factors. 1) on the current state of the PM γ (denoted by Sγ), where
Sγ ∈ Sqi , and 2) on the number of remaining events in the window w (denoted by
Rw). Therefore, we write Pγ as a function of Sγ and Rw as follows:

Pγ = f(Sγ , Rw) (3.2)

Sγ = s0 means that PM γ is at the initial state, while Sγ = sm, where m = (|Sqi | − 1),
means that γ has completed and become a complex event. Rw ∈ [1, ws], where ws
represents the expected window size. If a partial match γ has a state Sγ that is close to
the final state and Rw is high, the probability for γ to complete and become a complex
event might be high. That is because PM γ needs only fewer state transitions to reach
the final state and the window w still has a high number of events that can be used to
match the pattern qi and to complete γ. On the other hand, the completion probability
might be low for a partial match γ that has a state Sγ which is close to the initial state
and Rw is low. That is because PM γ still needs many state transitions to reach the
final state and the window w only has a small number of events that can be used to
match the pattern qi and to complete PM γ.

Since a pattern in CEP systems can be represented as a state machine, as we mentioned
above, in this work, we model the pattern matching process as a Markov chain to predict
the completion probability Pγ of a partial match γ of a pattern. To clarify this, let
us introduce the following simple example. Let us assume that an operator matches a
pattern qi = seq(A;B;C). This pattern can be represented as a state machine as depicted
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Figure 3.2: State machine example.

in Figure 3.2, where it has four states, including the initial state, i.e., Sqi = {s0, s1, s2, s3}.
The state machine transitions from one state to other states depending on the input
symbols (events), while the Markov chain probabilistically transitions from one state to
other states using a transition matrix. In the above example, if we assume that the input
event stream has only three event types (A, B, and C) and instances of these events are
coming randomly with a uniform distribution, then the probability to transition from
any state to the next state is 1/3. While the probability to stay in the same state is 2/3.

Therefore, the transition matrix can be used to predict the probability of the state
machine to transition from any state to other states and hence to predict the probability
of the state machine to transition from a certain state si to the final state sm after
processing Rw input symbols. Since a PM is represented as an instance of the state
machine, the completion probability of a PM (i.e., the probability of the state machine
to reach the final state) at a certain state Sγ , given that Rw events are left in the window
w, i.e., Pγ = f(Sγ , Rw), can be computed using the transition matrix. Since the input
event stream might follow any distribution, not only uniform distribution, we should
learn the transition matrix by gathering statistics about the state transitions of PMs as
we describe next.

Statistic gathering & Transition matrix: For each pattern qi ∈ Q, the model
builder builds a transition matrix Tqi from the statistics gathered during run-time by
monitoring the internal state of the operator. The statistics contain information about
the progress of PMs of pattern qi when processing the input events within windows.
For each partial match γ ⊂ qi, the operator reports, when processing an input event e
within a window, whether PM γ progressed or not, i.e., the state of γ changed or not by
processing the event e with PM γ. The operator forms an Observation〈qi, s, s′〉, where
s represents the current state of PM γ and s′ the new state of PM γ after processing
one event in the window.

After gathering statistics from η observations for pattern qi, the model builder transfers
these statistics to the transition matrix Tqi . Tqi describes the transition probability
between the states of the Markov chain when processing one event in a window.

Completion probability: As mentioned above, the transition matrix gives the
probability to transition from one state to another state and can be used to predict
the partial match completion probability Pγ . Figure 3.3 shows the transition matrix
for the state machine depicted in Figure 3.2. Since we are only interested to know
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Figure 3.3: Transition matrix Tqi for the state machine in Figure 3.2.

whether a partial match will complete or not, we need only to focus on the last column
in the transition matrix, surrounded by a red box in Figure 3.3. This column gives the
probability to move from any state Sγ ∈ Sqi to the final state, i.e., the probability to
complete the partial match.

The transition matrix contains the transition probability, given that there is only one
event left in a window. Therefore, to get the transition probability given that Rw events
are still left in a window w, we must raise the transition matrix Tqi to the power Rw
[How12]. This way, the completion probability of a partial match γ at a state Sγ , given
that Rw events are left in a window w, is computed as follows:

Pγ = f(Sγ , Rw) = TRwqi (j,m) (3.3)

where Sγ = sj ∈ Sqi and m = (|Sqi | − 1), m = 3 in the above figure. For example,
in Figure 3.3, the completion probability of a partial match γ ⊂ qi at the state s2
given that only one event (Rw = 1) is left in a window w is computed as follows:
Pγ = f(s2, 1) = T 1

qi(2, 3) = p23. To get the completion probability of a partial match
given any number of events are left in a window, we need to compute the transition
matrix TRwqi for all possible values of Rw ∈ [1, ws]. However, the window size ws might
be too large which might impose a high memory cost during the calculation of the
transition matrices. Therefore, we calculate the transition matrix only for every bs (i.e.,
bin size) events, i.e., T bsqi , T

2.bs
qi , ..., Twsqi . To get the completion probability of a PM in

case Rw ∈ [(j − 1).bs, j.bs], where j = 1, 2, ..., wsbs , we use linear interpolation. For ease
of presentation, we assume that bs = 1, if not otherwise stated.

3.2.3.2 Processing Time Prediction

After predicting the completion probability of PMs, now, we describe how to predict the
processing time of PMs using the Markov reward process [How13], where we model the
processing time of a PM as the reward value. Given a partial match γ ⊂ qi at a state
Sγ , we define the time that is needed to match an event in a window w with γ as ts,s′ ,
where s = Sγ and s′ ∈ Sqi . Hence, ts,s′ represents the processing time that is needed for
the state machine of qi to transition from state s to state s′. For example, in Figure 3.2,
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the processing time to transition from s1 to s2 is represented by the value ts1,s2 . We
consider ts,s′ as a reward value to move from state s to state s′ in the state machine of
pattern qi.

Therefore, to calculate the processing time of a PM, we clearly need something more
than using the Markov chain which is used to compute the completion probability of a
PM. As a result, we upgrade our Markov chain to a Markov reward process, where we
additionally define the reward function Rqi(s, s′) as the expected processing time needed
to transition from state s to state s′. Solving the Markov reward process gives us the
expected reward for each state in the state machine, given that there are still Rw events
left in a window w. Since we represent the processing time ts,s′ as a reward, the reward
of a state represents the estimated processing time of a PM τγ , given that there are still
Rw events lefts in window w.

We incorporate the processing time ts,s′ in statistics gathering and extend the above
observation as follows: Observation〈qi, s, s′, ts,s′〉. After gathering statistics from η

observations for pattern qi, the model builder constructs the reward function (i.e.,
Rqi(s, s

′)) which is calculated as the average value for all observed values of the processing
time ts,s′ . After that, the model builder predicts the processing time of PMs by solving
the Markov reward process as we explain next.
Processing time: To predict the processing time of a partial match γ ⊂ qi in a state

Sγ , the model builder must solve the Markov reward process. A well-known algorithm
called value iteration [How13] can be used to solve the Markov reward process. The
algorithm iteratively calculates the expected reward (processing time τγ in this case) at
every state in the state machine using the transition matrix Tqi and the reward function
Rqi . Then, it reuses the calculated reward values in future iterations. Here, an iteration
j represents the number of remaining events (i.e., Rw) in a window w, i.e., j = Rw. The
value iteration algorithm uses the Bellman equation [Bel57] to predict the remaining
processing time τγ of a partial match γ ⊂ qi at state Sγ given that there are still Rw
events left in the window w.

Similar to the completion probability, we run the value iteration algorithm to get the
processing time τγ of a partial match γ for all expected remaining Rw number of events
in a window w. To avoid the memory overhead in the case of too large window size ws,
again, we keep the value iteration results only for every bs events. For the intermediate
values, we use linear interpolation.

3.2.3.3 Utility calculation

After describing how to predict the completion probability and the processing time of a
PM, now, we can derive the utility of PMs for each pattern qi ∈ Q using Equation 3.1.

Since the completion probabilities and processing times of PMs have different units and
scales, using Equation 3.1 directly on these values, may result in unexpected behavior,
where a high processing time may overcome the completion probability and eliminate
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its importance in calculating the utility of PMs. Therefore, before using Equation 3.1,
we bring the completion probabilities and processing times to the same scale and then
apply Equation 3.1 to get utilities of PMs.

To efficiently retrieve the utilities by the LS, we store the utility of PMs at any given
state and for any number of remaining events in a window in a table called UTqi , where
each pattern qi has its corresponding utility table. UTqi has (m X ws

bs ) dimensions,
where m = (|Sqi | − 1) and each cell UTqi(j, k) represents the utility of a PM at state sj
given that there are still k events left in the window, assuming bs = 1. So the utility of
a PM γ ⊂ qi is calculated as follows: Uγ = f(Sγ , Rw) = UTqi(j, k), where sj = Sγ and
k = Rw. Getting the utility of a PM from UT has only O(1) time complexity which is a
great factor in minimizing the overhead of the LS.

3.2.4 Model Retraining

The event distribution in the input event stream and/or the content of input events may
change over time and hence our model might become inaccurate and adversely impact
QoR. To avoid this, we must retrain the model to capture those changes. The question
is– how do we know that those changes happened and the model must be retrained? We
depend on the transition matrix to answer this question.
The transition matrix, as we know, contains the probabilities to transition from any

state to other states in the state machine, where the transition matrix is constructed
depending on the distribution of the input event stream and on the content of events. If
there is a change in the distribution of the input event stream and/or in the content
of events, the probability values in the transition matrix will change. Therefore, the
transition matrix can be used as an indicator of those changes and to trigger model
retraining. Hence, we propose to periodically build a new transition matrix from the
gathered statistics from the operator and compare the new transition matrix with the
transition matrix that is used in the model by using an error measurement, e.g, mean
squared error. If the deviation between the two matrices is higher than a threshold,
the model builder must rebuild the model. Please note that building a new transition
matrix is lightweight since we just need to transfer the gathered statistics about the state
transitions to probability values. Moreover, we don’t need to calculate new transition
matrices for all expected remaining number of events in a window to check for the need
to retrain the model.

3.2.5 Detecting and Determining Overload

The goal of pSPICE is to avoid violating a defined latency bound (LB). A high queuing
latency of the incoming input events in the operator input queue indicates an overload
on the operator and hence some partial matches must be dropped from the operator’s
internal state to avoid violating LB. Algorithm 1 specifies the functionality of the
overload detector.
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Algorithm 1 Detecting and Determining Overload.

1: detectOverload (event e) begin
2: lq = currentTime()− e.arrivalTime()
3: lp = f(nγ), ls = g(nγ) // nγ: Current number of PMs.
4: le = lq + lp

5: if le + ls > LB then // LB might be violated => drop PMs.
6: l′p = LB − lq − ls
7: n′γ = f−1(l′p)

8: ρ = nγ − n′γ
9: LS.dropPMs(ρ) // Call LS to drop ρ PMs.

10: end function

Detecting overload: The overload detector continuously gets the primitive events
from the input queue of the operator, where for each event, it checks whether LB might
be violated. In the case where LB might be violated, the overload detector calls the
load shedder to drop a certain number of PMs to reduce the overhead on the operator
and maintain LB. The violation of LB depends on the estimated event latency (le)
and load shedding latency (denoted by ls), where LB would be violated if the following
inequality holds:

le + ls > LB (3.4)

Recall that the estimated event latency le represents the time between the insertion of
the event e in the operator’s input queue and the time when the event e is processed
by the operator in all currently opened windows, since an event may belong to several
windows in case windows overlap. The load shedding latency ls represents the time
needed by the LS to drop the required number of partial matches.

The estimated event latency le of an event e is the sum of the event queuing latency
(denoted by lq) and the estimated event processing latency (denoted by lp): le = lq + lp.
The event queuing latency lq is the time between the insertion of the event e in the
operator’s input queue and the time when the operator gets the event e from its input
queue to process it (cf. Algorithm 1, line 2). While the estimated event processing
latency lp represents the time an event e needs to be processed by the operator in
all currently opened windows. lp depends on the current number of partial matches
(denoted by nγ) in the operator since the event e needs to be matched with all current
partial matches in the operator. The higher is the value of nγ , the higher is lp. Therefore,
we represent lp as a function, called event processing latency function, of the current
number of partial matches nγ in the operator: lp = f(nγ), i.e., f : nγ → lp.
Therefore, for each event e, the overload detector calls the event processing latency
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function f(nγ) that gives the estimated event processing latency lp depending on the
current number of partial matches in the operator (cf. Algorithm 1, line 3). Using lp and
lq, the overload detector can now compute the estimated event latency le (cf. Algorithm
1, line 4). To build the function f(nγ), during run-time, we gather statistics from the
operator on the event processing latency lp for different numbers of partial matches nγ .
Then, we apply several regression models on these statistics to get the function f(nγ),
where we use a regression model that results in a lower error.

We consider the load shedding latency ls in the inequality (3.4) since during load
shedding no events are processed and hence the event queuing latency is increased by
the time needed to drop PMs, i.e., by the load shedding latency ls. Similar to the
estimated event processing latency, the load shedding latency ls also depends on the
current number of PMs nγ . That is because the load shedder must sort all current PMs
in the operator to find those PMs that have the lowest utility values (we will show this
later). Therefore, we also represent ls as a function of nγ : ls = g(nγ) (cf. Algorithm 1,
line 3). Similarly, to build the function g(nγ), during run-time, we gather statistics from
the operator on the load shedding latency ls for different numbers of PMs nγ . Then, we
apply several regression models on these statistics to get the function g(nγ), where we
use a regression model that results in a lower error.
Determining overload amount: As we explained above, if the inequality (3.4)

holds, the overload detector calls the LS to drop PMs to avoid violating LB (cf. Algorithm
1, lines 5-9). The question is– how many PMs must the LS drop? To answer this question,
we need to understand which latency values in the inequality (3.4) can be controlled.
We cannot reduce the event queuing latency lq and the load shedding latency ls but
we can reduce the event processing latency lp by dropping some PMs. Therefore, we
represent the new event processing latency as l′p such that the following condition holds.

l′p + lq + ls = LB. (3.5)

From the above condition, l′p = LB − lq − ls. Therefore, we have to ensure the new
processing latency l′p by dropping a certain number of PMs (denoted by ρ).
To compute ρ, we should find the number of PMs (denoted by n′γ) that impose a

latency of l′p on the operator when processing an event. Hence, n′γ is a function of l′p.
This function is the inverse function f−1 of the event processing latency function f(nγ),
where f−1 : l′p → n′γ . From the inverse function f−1, we can compute the number of
PMs n′γ . Keeping only n′γ PMs in the operator’s internal state ensures that the operator
needs only l′p time to process an event and hence it maintains LB. Therefore, the number
of PMs to drop ρ = nγ − n′γ . For each input event, the overload detector calls the LS to
drop ρ partial matches whenever the inequality (3.4) holds (cf. Algorithm 1, line 9).

Please note that the inequality (3.4) ensures to keep the event latency le less than or
equal to LB. However, in case of a sudden increase in the input event rate or inaccuracy
in the functions that predict lp and ls, there might be a risk of violating LB. Therefore,
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in latency critical applications where LB is a hard bound, we propose to add a safety
buffer (denoted by bs) to the inequality (3.4) as follows:

le + ls + bs > LB (3.6)

3.2.6 Load Shedding

In this section, we discuss the functionality of the LS component that is called by
the overload detector to drop PMs. The LS drops PMs with the lowest utility values,
where the utility of PMs is learned and stored in UT as we explained in Section 3.2.3.
Algorithm 2 specifies the functionality of the LS.

Whenever the LS is called by the overload detector to drop ρ PMs, it needs to know
the current ρ PMs in the operator that have the lowest utility values. To get the utility
of PMs, the LS simply uses the utility tables given by the model builder. For a PM
γ ⊂ qi in a window w, the LS obtains the utility of PM γ, i.e., Uγ , by a simple lookup
in the utility table UTqi . Uγ = UTqi(j, k), where Sγ = sj ∈ Sqi , and k = Rw, i.e., the
expected number of events left in the window w (cf. Algorithm 2, lines 2-4). Therefore,
the time complexity to get the utility of a PM is O(1), and hence to get the utility for
all current PMs in the operator is O(nγ), where nγ represents the number of current
open PMs in the operator. To find the ρ PMs with the lowest utility values among
all PMs, the LS should sort the PMs using their utility values, where a good sorting
algorithm (e.g., merge sort [Knu98; Ski08]) can achieve O(nγ log2(nγ)) average time
complexity (cf. Algorithm 2, line 5). After sorting PMs, the LS drops the first ρ PMs
which have the lowest utilities, where the LS iterates over the sorted PMs and asks the
operator to remove those PMs from its internal state (cf. Algorithm 2, lines 6-10). This
has a time complexity of O(ρ). Hence, the overall time complexity for the load shedding
is O(nγ + nγ log2(nγ) + ρ). As we will show in Section 3.3, the overhead of our LS is
extremely low.

3.2.7 Supporting CEP Computational Models

So far, we have focused on using a finite state machine [May+17; Agr+08; CM10; RLR16;
WDR06] as a computational model to detect patterns. However, as we mentioned in
Chapter 2, Section 2.1, there exist several other computational models such as tree-based
models [CM94; Cha+94; MM09], string-based models [Sad+04], and Petri Nets-based
models [GD94]. In this section, we explain how our load shedding approach supports all
the above computational models.

As we explained above, to assign a utility value Uγ to a PM γ, pSPICE depends on
two features: 1) the current state Sγ of the PM γ, and 2) the number of remaining events
Rw in the window. The way we can get the current state Sγ of the PM γ depends on the
used computational model, however, the number of remaining events Rw in the window
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Algorithm 2 Load Shedding.

1: dropPMs (ρ) begin
// get utilities of PMs and sort them.

2: for each γ in operator.getPMs() do
3: Uγ = getUtility(qi, Sγ, Rw), where γ ⊂ qi

4: pmArray.insert(γ)

5: sortByUtility(pmArray)

// drop ρ partial matches.
6: for index = 0→ ρ do
7: if index >= pmArray.size() then // No more PMs to drop!
8: return

9: γ = pmArray(index)

10: operator.removePM(γ)

11: end function

is independent of the computational model. Therefore, to show that pSPICE supports
other computational models, we must show that pSPICE is able to get PM states in
these computational models, similar to the finite state machine model. To do that, let
us first recall the definition of a CEP pattern, a PM, and a PM state, irrespective of the
used computational model.

In CEP, a pattern q is formed by using a set of events, event operators, and constraints
[CM94; Luc01]. Pattern q has a set of states Sq = {s0, s1, ..., sm}, where we assign a
distinct state to each event type in pattern q, and s0 represents the initial state of pattern
q. For pattern q, a PM γ of pattern q represents an incomplete matching instance of
pattern q, denoted by γ ⊂ q. Moreover, PM γ is assigned a state si ∈ Sq corresponding
to the last event type that has been matched in PM γ. For example, we may assume
the following set of states for pattern q = seq(A;B;C): Sq = {s0, s1, s2, s3}. Here s0
represents the initial state. Moreover, we assign state s1 to event A, state s2 to event
B, and state s3 to event C. In this example, a PM γ ⊂ q starts at state s0 where it
completes and becomes a complex event if it reaches state s3. If an event instance of
event type A matches pattern q, the state of PM γ is updated to state s1. Similarly,
the state of PM γ changes to state s2 or s3 if an instance of event type B or C matches
pattern q, respectively. Regardless of the used computational model, it is straightforward
to assign states to PMs and update a PM state whenever an event matches the pattern
and the PM progresses. Hence, pSPICE can support other computational models without
any remarkable additional complexity.
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3.3 Performance Evaluations

In this section, we show the performance of pSPICE by evaluating it with three real
world datasets and several representative queries. We assume that a CEP operator graph
that consists of a single operator and the operator my match one or more queries, as
shown below.

3.3.1 Experimental Setup

Evaluation Platform. We run our evaluation on a machine that is equipped with 8
CPU cores (Intel 1.6 GHz) and the main memory of 24 GB. The OS used is CentOS 6.4.
We run a CEP operator in a single thread on this machine, where this single thread is
used as a resource limitation. Please note that the resource limitation can be any number
of threads/cores, and the behavior of pSPICE does not depend on a specific limitation.
We implemented pSPICE by extending a prototype Java-based CEP framework, which
is implemented at the department of distributed systems at the University of Stuttgart.

Baseline. We also implemented two other load shedding strategies to use as baselines.
1) We implemented a random partial match dropper (denoted by PM-BL) that uses
Bernoulli distribution [Ber] to drop PMs. 2) We also implemented a load shedding
strategy (denoted by E-BL) similar to the one proposed in [HBN14]. In addition, it
captures the notion of weighted sampling techniques in stream processing [Tat+03].
E-BL assigns utility values to the events in a window depending on the repetition of
those events in the pattern and on their frequencies in windows. An event type receives a
higher utility proportional to its repetition in a pattern. Depending on the event utility,
E-BL decides the number of events that should be dropped from each event type in a
window, where it uses uniform sampling to drop those required amounts from each event
type. E-BL, as in [HBN14], does not consider the order of events in a pattern and in the
input event stream.

Datasets. We use three real-world datasets. 1) A stock quote stream from the New
York Stock Exchange (NYSE), which contains real intra-day quotes of different stocks
from NYSE collected over two months from Google Finance [Goo]. The quotes have
a resolution of 1 quote per minute for each stock symbol. We refer to this dataset as
the NYSE Stock Quotes dataset. 2) A position data stream from a real-time locating
system (denoted by RTLS) in a soccer game [MZJ13]. Players, balls, and referees (called
objects) are equipped with sensors that generate events. Events contain information
about those objects, such as their position, velocity, etc. The sensor data are generated
at a high rate causing high redundancy. Thus, we filter redundant events and keep only
one event per second for each object. We refer to this dataset as the RTLS dataset. 3)
Public bus traffic (denoted by PLBT ) from a real transportation system in Dublin city
[Zac+15]. It contains events from 911 buses, where each event has information about
those buses, e.g., locations, stops, delays, etc.
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Queries. We apply four queries (Q1, Q2, Q3, and Q4) that cover an important set
of operators in CEP as shown in Table 3.1: sequence operator, sequence operator with
repetition (which also contains Kleene closure), sequence with any operator, and any
operator [ZDI14; CM94; CM10; WDR06; MM09]. Please note that, as mentioned in
Section 2.1, we do not consider a certain selection or consumption policy. However,
evaluating pSPICE with all possible combinations of selection and consumption policies
is time-consuming and might be practically infeasible. Therefore, in this thesis, we will
use the following important selection and consumption policies. We use the first selection
policy for all events in all queries. Additionally, we use the consumed consumption
policy for the first event in all queries and the zero consumption policy for the rest of
the events in all queries. Moreover, the queries use both time-based and count-based
sliding window strategies with different predicates.
In Table 3.1, we use ws to refer to the window size/length. For stock queries (Q1

and Q2), Ci represents the stock quote of company i. Q1 (sequence operator) detects a
complex event when rising or falling stock quotes of 10 certain stock symbols, by a given
percentage, are detected within ws events in a certain sequence. Q2 (sequence operator
with repetition) detects a complex event when 10 rising or 10 falling stock quotes of
certain stock symbols with repetition, by a given percentage, are detected within ws

events in a certain sequence. Q3 (sequence with any operator) uses the RTLS dataset
and it detects a complex event when any n defenders of a team (defined as Di) defend
against a striker (defined as S) from the other team within ws seconds from the ball
possessing event by the striker. The defending action is defined by a certain distance
between the striker and the defenders. For this query, we use two strikers, one from each
team. Q4 (any operator) uses the PLBT dataset. It detects a complex event when any
n buses (defined as Bi) within a window of size ws events get delayed at the same stop.

3.3.2 Experimental Results

In this section, we evaluate the performance of pSPICE using relaxed QoR. In the next
chapters, we also show the impact of pSPICE when using strict QoR. Please recall that
pSPICE does not result in false positives when using relaxed QoR. Therefore, in this
section, we evaluate the performance of pSPICE only w.r.t. false negatives. We first
compare its performance, w.r.t. number of false negatives, with PM-BL and E-BL. Then,
we show the importance of using the processing time of a PM in calculating its utility.
Finally, we present the overhead of pSPICE.

If not stated otherwise, we use the following settings. For Q1 and Q2, we use a count-
based sliding window. For both queries, we use a logical predicate (i.e., pattern-based
predicate) where a new window is opened for each incoming event of the leading stock
symbols. We choose 4 important companies as leading stock companies. Q3 uses a
time-based sliding window. Again, we use a logical predicate for Q3, where a new window
is opened for each incoming striker event (S). For Q4, we use a count-based sliding
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Stock queries

Q1

pattern seq(C1;C2; ..;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws events

Q2

pattern seq(C1;C1;C2;C3;C2;C4;C2; C5;C6;C7;C2;C8;C9;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws events

Soccer query

Q3

pattern seq(S;any(n,D1, D2, .., Dm))
where S possesses ball and distance(S,Di) ≤ x meters

, i = 1..m and m is the number of players in a team
within ws seconds

Bus query

Q4

pattern any(n,B1, B2, .., Bm)
where Bi.delay > x seconds and all Bi have the same stop

, i = 1..m and m is the number of buses
within ws events

Table 3.1: Queries.

window and a count-based predicate, where a new window is opened every 500 events,
i.e., slide size is 500 events. We stream events to the operator from datasets that are
stored in files where we first stream events at event input rates that are less or equal to
the maximum operator throughput until the model is built. After that, we increase the
input event rate to enforce load shedding as we will mention in the following experiments.
The used latency bound LB = 1 second. We execute several runs for each experiment
and show the mean value and standard deviation.

3.3.2.1 Impact on QoR and the given latency bound.

Now, we show the performance of pSPICE w.r.t. its impact on QoR (i.e., number of
false negatives) and maintaining the given latency bound. Two factors influence the
performance of pSPICE: 1) match probability, and 2) input event rate. Match probability
represents the percentage of PMs that complete and become complex events out of all
PMs. It is computed from the ground-truth by dividing the total number of complex
events by the total number of PMs. We can control the match probability by varying
the pattern size and/or the window size.

Impact of match probability. To evaluate the performance of pSPICE with different
match probabilities, we run experiments with Q1, Q2, Q3, and Q4. For Q1 and Q2, we
use a variable window size to control the match probability since Q1 and Q2 have a
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Figure 3.4: Impact of match probability.

fixed pattern size. Higher is the window size, higher is the match probability. We use
the following window sizes for Q1: ws = 3.5K, 4.5K, 5K, 5.5K, 6K, 10K events. For Q2,
the used window sizes are: ws = 6K, 7K, 7.5K, 8K, 12K, 14K events. For Q3 and Q4,
we use a fixed window size but a variable pattern size. For Q3, we use a window size ws
of 15 seconds and the following pattern sizes (i.e., number of defenders): n= 2, 3, 4, 5,
6. The window size ws for Q4 is 8K events and we use the following pattern sizes (i.e.,
number of buses): n = 3, 4, 7, 8, 10. Moreover, we stream all datasets to the operator
with an event input rate that is higher than the maximum operator throughput by 20%
(i.e., event rate= 120% of the maximum operator throughput).

Figure 3.4 shows results for all queries, where the x-axis represents the match probabil-
ity and the y-axis represents the percentage of false negatives. A low match probability
means that most of the PMs don’t complete, and hence dropping those PMs, that will
not complete, decreases the dropping impact on QoR. On the other hand, a high match
probability means that most of the PMs complete and become complex events, and
hence dropping any PM may result in a false negative. This is observed in Figure 3.4 for
all queries (Q1, Q2, Q3, Q4). Figure 3.4a depicts the results for Q1, where it shows that
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the percentage of false negatives produced by pSPICE increases with increasing match
probability. It increases from 16% to 32% when the match probability increases from 6%
to 89%, respectively. We observed similar behavior for PM-BL, where the percentage of
false negatives increases from 26% to 37% when the match probability increases from 6%
to 89%, respectively. As we observe from the figure, a high match probability degrades
the performance of pSPICE since dropping any PM might result in a false negative as
all PMs have a similar completion probability. In this experiment, pSPICE reduces the
percentage of false negatives by up to 70% compared to PM-BL. Please note that a high
rate of PM drop is because the operator load doesn’t come only from processing PMs
but also from managing windows and events and checking whether an event opens a
partial match.

The performance of E-BL is bad when the match probability is low and it becomes
better with a higher match probability as shown in Figure 3.4a. This is because a low
match probability means a small window size where the probability to drop an event that
matches the pattern is high and the probability to find an event as a replacement for
the dropped event to match the pattern is low. On the other hand, with a higher match
probability (i.e., a larger window size), the probability to drop an event that matches
the pattern is low and the probability to find an event as a replacement for the dropped
event to match the pattern is high. Hence, the percentage of false negatives decreases
with a higher match probability. In the figure, the percentage of false negatives, for
E-BL is 65% and 16% when the match probability is 6% and 89%, respectively. pSPICE
reduces the percentage of false negatives by up to 300% compared to E-BL when the
match probability is not too high. For a high match probability (cf. Figure 3.4a, in case
match probability is 89%), E-BL outperforms pSPICE. However, please note, in CEP,
it is unrealistic to have such a high match probability that implies completion of most
PMs.

Figure 3.4b, using Q2, shows similar behavior to the results of Q1. The percentage of
false negatives for pSPICE and PM-BL increases again with increasing match probability.
However, pSPICE results in a lower percentage of false negatives by up to 58% compared
to PM-BL till 81% match probability. After that, PM-BL outperforms pSPICE. This
is because, as we mentioned above, all PMs have a high probability to complete and
become complex events and hence it is hard for pSPICE to decide which PM to drop.
Besides that, pSPICE has a slightly higher overhead than PM-BL which results in
dropping more PMs and hence resulting in more false negatives. The results for E-BL
are similar to the results in Q1.

In Figure 3.4c, using Q3, the percentage of false negatives produced by pSPICE and
PM-BL also increases with increasing the match probability. pSPICE results in reducing
the percentage of false negatives by up to 92% compared to PM-BL. As in Q1 and Q2,
E-BL produces fewer false negatives when the match probability increases. A higher
match probability in Q3 means a smaller pattern size (in the figure, the match probability
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50% corresponds to a pattern of size n = 2) which makes it easy to find a replacement
event to match the pattern instead of a dropped event. The results for Q3, compared to
the results for Q1 and Q2, show that E-BL outperforms pSPICE with a smaller match
probability (after 27%). This is because Q3 uses any operator which means any event
can match the pattern. Hence, the probability to find a replacement for a dropped event
is much higher in Q3 compared to Q1 and Q2 which matches a sequence of certain event
types (stock symbol/company). Please note that, in Q1 and Q2, only the same event
type can replace a dropped event of that type. Figure 3.4d, using Q4, shows similar
results to the results of Q3 since the query of bus data is similar to the query of soccer
data (i.e., Q3). As a result, we skip explaining it.

Impact of event rate. To evaluate the impact of input event rate on the performance
of pSPICE, we run experiments with Q1, Q2, Q3, and Q4 using the same setting as
in the above section (cf. Section 3.3.2.1). However, to show the impact of different
event rates, we streamed all datasets to the operator with event input rates that are
higher than the maximum operator throughput by 20%, 40%, 60%, 80%, and 100% (i.e.,
event rate= 120%, 140%, 160%, 180%, 200% of the maximum operator throughput).
In addition, we used a fixed match probability for all queries. Figure 3.5 depicts the
impact of input event rates for Q1 and Q3, where the x-axis represents the event rate
and the y-axis represents the percentage of false negatives. We use a match probability
of 30% for Q1 and 4% for Q3. The results for Q2 and Q4 show similar behavior, hence
we don’t show them.

It is clear that using a higher event rate results in dropping more partial matches
and hence increasing the percentage of false negatives. In Figure 3.5a, using Q1, the
percentage of false negatives for pSPICE increases with increasing the event rate, where
it is 18.5% and 60% when the even rate is 120% and 200%, respectively. The same
behavior is observed for PM-BL and E-BL. The percentage of false negatives for PM-BL
increases from 29% to 86% and for E-BL from 49% to 94%, with the two event rates.
Please note that for the considered match probability pSPICE is consistently better than
PM-BL and E-BL, irrespective of the event rate. Figure 3.5b, using Q3, as expected,
shows similar behavior.

Maintaining LB. pSPICE performs load shedding to maintain a given latency bound.
Figure 3.6 shows the result for running Q2 with two event rates 120% (defined as R1)
and 140% (defined as R2). In the figure, the x-axis represents time, and the y-axis
represents the event latency le. We observed similar results for other event rates and
queries and hence we don’t show them. The figure shows that pSPICE always maintains
the given latency bound LB which is 1 second in this experiment, regardless of the event
rate.
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Figure 3.5: Impact of event rate.

3.3.2.2 Impact of processing time (τγ) of a PM on utility calculation

Impact of processing time. As mentioned above, the completion probability Pγ of a
partial match γ is a good indicator to know whether γ will complete or not. Therefore, we
use it in calculating the utility of PMs (cf. Equation 3.1). However, the processing time
τγ of a PM is also an important factor in calculating the utility of a PM. Therefore, we
use it in deriving the utility of PMs as well (cf. Equation 3.1). To support this argument,
we run experiments using pSPICE in two different ways of calculating the utility of PMs
as follows: 1) using Equation 3.1, where we consider both the completion probability
and processing time of PMs in calculating the utility of PMs and 2) considering only
the completion probability in calculating the utility of PMs (i.e., the denominator in
Equation 3.1 is 1). We refer to the load shedding strategy that considers only the
completion probability in calculating the utility of PMs as pSPICE- -.

To evaluate the performance of pSPICE and pSPICE- -, we run both Q1 and Q2 in the
same operator and use a window of size 10K and a pattern weight of one for both queries.
The used event rate is 120%. Since we intend to analyze the impact of processing time
in calculating the utility of PMs on QoR, we force the processing time of Q1 to be higher
than the processing time of Q2 by a factor. We refer to this factor as τQ1/τQ2 , where we
use the following values: τQ1/τQ2 = 1, 2, 4, 8, 12, 16. Figure 3.7 depicts the percentage
of false negatives for pSPICE and pSPICE- -. In the figure, the x-axis represents the
factor τQ1/τQ2 while the y-axis represents the percentage of false negatives.

In the figure, the performance of pSPICE and pSPICE- - is the same for low factors
τQ1/τQ2 . That is because the processing time of PMs in Q1 and Q2 has less impact on
the utility. The difference between the percentage of false negatives between pSPICE
and pSPICE- - increases when the factor τQ1/τQ2 increases. The percentage of false
negatives for pSPICE is 23% when τQ1/τQ2 = 16 while it is 37.5% for pSPICE- - with
the same factor. That shows that pSPICE results in reducing the percentage of false
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negatives by 62% compared to pSPICE- - for τQ1/τQ2 = 16. As a result, we support our
claim that considering the processing time of PMs is an important factor in calculating
the utility of PMs.

3.3.2.3 pSPICE overhead

Next, we show the overhead of pSPICE both during load shedding and during model
building.

Load shedding overhead. The load shedder and the overload detector are time-critical
tasks and their overhead directly affects QoR, therefore, they must be lightweight. To
show the overhead of the load shedder and overload detector components in pSPICE,
we run experiments with all queries using the same setting as in Section 3.3.2.1. Figure
3.8a depicts the results for Q1, where the x-axis represents the used window size and
the y-axis (log scale) represents the percentage of overhead compared to the total time
that the operator needs to process the input dataset. We observed similar results for
Q2, Q3, and Q4 and hence we don’t show them.

In the figure, the overhead of pSPICE is 1% in case the window size ws is 3.5K. The
overhead of pSPICE decreases with increasing the window size, where the overhead is
0.7% when the window size is 10K. This is because a higher window size means that
more windows are overlapped. Since events are processed in each window, the higher is
the window overlap, the higher is the processing latency of events, and hence lower is
the operator throughput. A low operator throughput results in having a smaller load
shedding overhead as a percentage value. The overhead of PM-BL is slightly lower than
the overhead of pSPICE which is expected since PM-BL performs random PMs shedding
and doesn’t have any cost for sorting PMs. This shows that pSPICE is a lightweight
load shedding approach where its overhead is very low.

Model overhead. As we mentioned above, building the model is not a time-critical
task. However, since there might be a need to retrain the model in case the distribution
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Figure 3.8: overhead of pSPICE.

of input event stream and/or the content of input events change (cf. Section 3.2.4),
we also analyze the overhead of building the model in pSPICE. An important factor
that controls the overhead of building the model is the window size since it represents
the number of iteration in the value iteration algorithm. Higher is the window size,
more iterations are needed to solve the Markov reward process and hence higher is the
overhead.

To evaluate the overhead of building the model, we run experiments with Q1 with the
same setting as in Section 3.3.2.1 but we use higher window sizes to show its impact
on the overhead. We use the following window sizes: ws = 6K, 10K, 16K, 24K, 32K
events. Figure 3.8b shows the overhead of model building in pSPICE, where the x-axis
represents the window size and the y-axis represents the time needed in seconds. In the
figure, as expected, the model building overhead increases with increasing the window
size, where it is 1 second when the window size is 6K events and 2.4 seconds when the
window size is 32K events. However, this overhead is still small which means that the
model can be retrained without introducing a high overhead on the system or waiting a
long time for a new model.

Discussion. Through extensive evaluations with several datasets and a set of repre-
sentative queries, pSPICE shows that it has a very good performance w.r.t. QoR,
where it usually outperforms both PM-BL and E-BL, especially with sequence operator
and sequence with repetition operator. Only in the scenario of a relatively high match
probability, E-BL might outperform pSPICE. However, since E-BL drops events, it might
result in false positives, e.g., if the pattern contains the negation event operator (cf.
Chapter 2, Section 2.2). Moreover, we show that pSPICE is a lightweight load shedding
approach where its overhead is very low. The overhead of pSPICE is only slightly higher
than the overhead of PM-BL.
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3.4 Conclusion

In this chapter, we proposed an efficient, lightweight load shedding strategy, called
pSPICE. In case of overload, pSPICE drops PMs from a CEP operator’s internal state
to maintain a given latency bound. To minimize the impact of load shedding on QoR,
we proposed to utilize two important features (i.e., current state of a PM and number of
remaining events in a window) that reflect the importance of PMs and used these features
in calculating the utility of PMs, where we model the pattern matching operation as
a Markov reward process. By thoroughly evaluating pSPICE with three real-world
datasets and multiple important queries in CEP, we show that pSPICE considerably
reduces the degradation in QoR compared to state-of-the-art load shedding strategies.
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Chapter 4
eSPICE: Probabilistic Load
Shedding from Input Event Streams

In the previous chapter (cf. Chapter 3), we presented pSPICE, a white-box load shedding
approach that drops PMs, i.e., it sheds load on the PM granularity. As we showed,
dropping PMs might be performed in an efficient and lightweight manner. Moreover,
dropping PMs with low utilities reduces the adverse impact of shedding on QoR while
saving the processing power and enabling a CEP operator to maintain a given latency
bound. However, if the match probability of PMs is high, pSPICE is forced to drop
important PMs that might complete and become complex events, hence adversely
impacting QoR (cf. Section 3.3.2). Therefore, in this chapter, we present a black-box
load shedding approach that drops events from windows in the input queue of a CEP
operator, i.e., it sheds events on the window granularity. As we mentioned in Section
2.1, the input event stream of a CEP operator is partitioned into windows. In a window,
there might exist many events that have no or only little influence on the detected
complex events within the window. Hence, dropping these events might have a low
negative impact on QoR.
Dropping events from windows in the input queue of a CEP operator reduces the

load on the operator, hence enabling the operator to maintain a given latency bound.
However, dropping events might also adversely impact QoR where it might result in
false positives and negatives. Thus, it is crucial to drop those events that have less
impact on QoR, i.e., drop events that have low utilities. In CEP systems, there are
primarily three challenges facing the decision to drop events from windows: 1) Deciding
on which events to drop since the utility of an event depends on multiple factors, e.g.,
other events in the pattern, on the order of events in the pattern, and on the input event
stream. 2) Calculating the number of events to drop in order to maintain a given latency
bound as an event may be dropped from some windows while it is still there in other
windows since windows may overlap. 3) Dropping events in an efficient way to reduce
the overhead of load shedding.
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In this chapter, we propose a black-box load shedding approach, called eSPICE, for
CEP systems. eSPICE is an efficient and lightweight approach that sheds events from
windows, i.e., it sheds events on the window granularity. Moreover, it considers the
dependency between events of the same pattern as well as the order of events in the
pattern and in the input event stream. In addition, it also considers the impact of the
same event residing in overlapping windows on QoR, where the same event may be
in different positions within different windows. To capture the utility of an event in
different windows, we design a probabilistic model that uses the relative position of
events in a window and their types as learning features. The goal of our load shedding
strategy is to maintain a given latency bound while minimizing the adverse impact of
dropping events on the quality of results. More specifically, our main contributions in
this chapter are as follows:

• We propose an efficient lightweight load shedding strategy, called eSPICE, that
uses a probabilistic model to capture the utility of events in a window. The utility
of an event is influenced by its type and its relative position within a window. The
idea behind this approach is that the events, in specific positions within a window,
that contribute to building a complex event in one window are more likely to build
complex events in other windows as well.

• We provide an algorithm to estimate the number of events to drop in order to
maintain the given latency bound. It also estimates the intervals within which the
drop should be performed.

• In order to show the effectiveness of our proposed load shedding strategy under
realistic settings, we implement and thoroughly evaluate eSPICE for a broad
range of CEP operators using real-world datasets. Additionally, we compare the
performance, w.r.t. QoR, of eSPICE with state-of-the-art load shedding strategies.

The rest of the chapter is structured as follows. Section 4.1 presents the used system
model. In Section 4.2, we provide a detailed explanation of how the different components
of eSPICE are used for our probabilistic load shedding strategy. Section 4.3 presents
results obtained from extensively evaluating eSPICE. Finally, we conclude this chapter
in Section 4.4.

4.1 System Model

We use the same system model as presented in Chapter 2, Section 2.1, where we assume a
window-based CEP system that consists of a single operator. The operator matches a set
of patterns Q where each pattern qi ∈ Q has a corresponding weight wqi ∈WQ, reflecting
its importance. Moreover, we assume a black-box operator, where we do not have
knowledge about the operator’s internal state (i.e., PMs) and the used computational
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model. In this work, we assume that the operator reveals detected complex events, which
is a standard assumption in any event processing system. In addition, we assume that
the event types are known where set T = {T1, T2, ..., Tm} represents the set of all event
types in the input event stream.

4.2 Probabilistic Load Shedding

To minimize the degradation in the quality of results, our main idea is to avoid dropping
events that could contribute to producing complex events. The question is– how do we
identify the utility of these events before processing them? In real-world applications,
event streams have properties that can be exploited to derive the aforementioned utility
of an event w.r.t. its probability of contributing to a complex event. An observation is
that there is a correlation between type and relative position within windows of events
that contribute to complex events. For example, in a soccer game, a sports analyst might
be interested in finding a complex event called man-marking, i.e., certain defender(s)
who always defend against a particular striker. In this case, the ball possession by a
striker (possession-event) and the defender (defending-event) are event types. These
two event types have a correlation with each other. Whenever a striker possesses the
ball, a defender(s) defends against him in a certain time interval (i.e., relative position
in the window), thus producing a complex event. Clearly, in this scenario, the position
of the events contributing to the complex events, i.e., the position of defending-events
relative to the possession-event, are correlated. Such correlations also exist in stock
market applications. For example, a stock of type IBM may impact a stock of another
company within a certain time interval (i.e., relative position in the window), thus
resulting in a complex event that detects such an influence. Again, in a different domain,
the sensor data set provided by the Intel Research Berkeley Lab shows a positive
correlation between events of type temperature and events of type humidity [Bho+18].
This implies that within a certain interval an increase/decrease in temperature results
in an increase/decrease in humidity.

Moreover, an important event operator in CEP is the sequence operator [Sad+04;
RLR16; LG15]. In the sequence operator, different event types in a pattern have
different importance in different window positions. For example, let us assume a pattern
q = seq(A;B;C). At the beginning of a window, an event instance of type A has a
higher match probability than an event instance of type C, i.e., a higher probability
to contribute to PMs, hence to contribute to complex events. Therefore, in pattern
q, events of type A have higher importance than events of type C at the beginning of
windows. That shows that in the sequence operator, the probability of an event to be
part of complex events might depend on its type and relative position within windows.
As a result, we exploit this correlation, captured by the type and relative position in
the window of events, to predict the probability of events to contribute to a complex
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event(s). In particular, we derive utilities of events in a window based on the event
types and their relative positions within the window and use this information to
build a probabilistic model that estimates the utility of incoming events within windows.

Our load shedder drops only the incoming events that have low utility values within
each window, thus minimizing the number of false positives and false negatives. Next, we
explain our probabilistic load shedding strategy in detail. First, we show the architecture
of eSPICE. Then, we formally define the utility of events within windows. That is
followed by a detailed explanation of our probabilistic learning strategy, how to detect
the overload on the system, and how to compute the amount of load to be dropped in
order to meet the given latency bound. Finally, we explain the functionality of the load
shedder.

4.2.1 The eSPICE Architecture

To enable load shedding, similar to Chapter 3 (i.e., pSPICE), we extend the architecture
of a CEP operator by adding the following components– overload detector, model, and
load shedder (LS)– as depicted in Figure 4.1. The functionalities of these components
are similar to their functionalities, as explained in pSPICE (cf. Chapter 3). However,
the way these components work in eSPICE is different from how they work in pSPICE,
as in eSPICE, we drop events, not PMs. The overload detector detects if there exists
an overload on the operator. It checks the input event queue size periodically where
the incoming windows of events are queued. In case of an overload, the LS drops events
from windows to prevent the violation of the defined latency bound (LB). The model
contains the utility of events in a window and other information that is needed by the
LS. Later in this chapter, we explain, in detail, how these three components work in
eSPICE.

Now, we explain how these three components are related. Upon detecting an overload,
the overload detector commands the LS to drop events. On receiving this command, the
LS uses the utility of events in a window, available from the model, to decide on which
events to drop. Please note that load shedding is a time-critical task where it directly
affects the CEP system performance, and hence it must be lightweight and efficient. As
we will see later in this chapter, our load shedder has very low overhead. Contrarily,
building the model can afford to be computationally heavy as it is not a time-critical
task.

4.2.2 Utility Model and Its Application

In this section, we explain, in detail, the utility model and the way it can be used to
drop events.
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Figure 4.1: The eSPICE Architecture.

4.2.2.1 Utility Prediction Function

The utility of an event in a window is defined by its impact on QoR. As mentioned
earlier, we represent utility as the probability of the event to contribute to a complex
event(s). Clearly, dropping events that have a high probability to contribute to complex
events degrades QoR. Hence, we avoid dropping these events by assigning high utility
values to them. Please recall that we identified the type Te ∈ T and position Pe of
event e within a window to be an indicator of whether or not this event has a high
probability to contribute to complex events. This implies that the type and position of
an event determine its utility. As a result, to map the type and position of events to a
utility value, we introduce the utility prediction function in Equation 4.1:

Ue = f(Te, Pe) (4.1)

that predicts the utility Ue of event e of type Te ∈ T at position Pe within a window. As
we will see later, this prediction function can be simply implemented based on statistical
data collected from the operator.

4.2.2.2 Utility Threshold and Occurrences

Upon receiving the drop command to drop ρ events from each window, the LS must find
those ρ events that have the lowest utility values in a window. One simple approach
is to sort the utility values using an efficient sort algorithm. For example, heap sort
has a time-complexity of O(ws.log2(ρ)), where ws is the number of events in a window
[Ski08]. However, this approach requires that the entire window is available to the LS
before sorting of the utilities and consequently shedding of events is performed. But
waiting until the arrival of all events of a window might introduce a high latency on
event processing or might even cause violation of LB. Moreover, sorting needs to be
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performed in every window which might add additional overhead on the system that
already suffers from overload.

A reasonable approach to avoid the above induced latency and overhead is to find a
utility threshold (denoted by uth) that can be used on the fly to drop the desired number
of events in a given window. In particular, we need a function that maps the number of
events to drop per window (ρ) to a utility threshold uth, i.e., f : ρ→ uth. To find the
utility threshold uth, we could predict the number of ρ event occurrences in a window,
whose utility is less or equal to the utility threshold uth.

More specifically, in window w, we define the number of event occurrences, whose
utility is less or equal to a certain utility value u as follows: Ou = |{e : Ue ≤ u}|. The
number of event occurrences Ou in window w, as defined above, implicitly represents
the cumulative occurrences of those utilities in w, whose values are less or equal to the
utility value u and hence, as a shorthand, we call Ou as cumulative utility occurrences.
The utility threshold uth can be calculated using the inverse function of the cumulative
utility occurrences Outh , where, given the number of events that should be dropped from
each window, we can get the required utility threshold.

4.2.2.3 Applying Utility Models in Load Shedding

Now, we describe how load shedding is performed in eSPICE. To drop ρ events from
each incoming window, the LS first searches for the cumulative utility occurrences Ou,
which has a value Ou ≥ ρ. Then, the LS uses the utility value u as a utility threshold
uth to drop those ρ events from each window.

To use the utility threshold uth and drop events, first, the LS gets the next event e
from the input event queue of the operator. Then, for each window w to which the event
e belongs, the LS computes the utility value Ue of the event e in w using the utility
prediction function f(Te, Pe) (cf. Equation 4.1). If the event utility Ue in window w is
greater than the utility threshold uth, the LS keeps event e in window w. Otherwise, it
drops event e from widow w. The utility threshold uth enables the LS to drop ρ events
from each window.

4.2.3 Model Building

Having discussed the role of the utility prediction and the threshold prediction functions,
in this section, we discuss, in detail, the manner in which we implement these functions.
For a clear explanation, let us introduce the following simple running example. We use
a pattern matching query that considers a window of 5 events (i.e., window size = 5)
and an input event stream consisting of only two event types A and B, i.e., T = {A,B}
(cf. Figure 4.3).
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4.2.3.1 Building the Utility Prediction Function

As mentioned above (cf. Section 4.2.2), the utility Ue of event e is represented by
the probability of the event to contribute to the detected complex events. To predict
the utility of events in a window, we collect statistics, from the already detected
complex events, on the types Te and relative positions Pe within windows of events that
contributed to those detected complex events. More specifically, we count the number of
occurrences of each event type Te ∈ T at each position Pe in a window that contributed
to the detected complex events. The number of occurrences of events within detected
complex events provides an insight into the importance (or utility) of the event types and
their relative positions within a window. The operator might match multiple patterns
(i.e., multi-patterns operator), where each pattern qi ∈ Q has its corresponding weight
wqi (cf. Section 4.1). Therefore, when counting the number of occurrences of events
from detected complex events, we multiply the number of occurrences of events by the
corresponding pattern weight to which the detected complex event belongs.

As a result, we simply normalize those number of occurrences to generate the utility
Ue (i.e., implement the utility prediction function f(Te, Pe) in Equation 4.1) of event
e of a certain event type Te at a certain window position Pe. These utility values are
stored in a table called utility table (denoted by UT ). The utility table has (MxN)

dimensions, where M represents the number of different event types (i.e., M = |T|) and
N represents the window size ws. Each of its cells UT (Te, P ) represents the utility of a
specific event type Te ∈ T in a certain position Pe in a window, where the utility value Ue
of event e is stored in UT (Te, P ). The values in UT could be too fine-grained. We limit
the number of different utility values by normalizing the values in UT between 0 and
100 and rounding them to integers, i.e., UT (Te, P ) ∈ [0, 100]. Referring to our above
example, Table 4.1 shows a utility table that is generated from the collected statistical
data.

4.2.3.2 Building Utility Threshold and Occurrences

As we discussed in Section 4.2.2.2, to drop ρ events from each window, we should find
a utility threshold uth that results in dropping ρ events from each window, where the
utility threshold uth is the inverse function of the cumulative utility occurrences Outh .
In particular, we should find a utility value u that is greater or equal to the utility value
of ρ events in a window, i.e., Ou ≥ ρ. Then, we use u as a utility threshold uth to drop
ρ events from each window.

To find the utility threshold uth, we need to calculate the cumulative utility occurrences
Ou in a window. Since the utilities of events of all types and in all positions in a window
are stored in UT , we can determine the cumulative utility occurrences Ou from UT . The
cumulative utility occurrences depend on the distribution of utilities within windows
captured in UT .
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Te/Pe 0 1 2 3 4

A 70 15 10 5 0

B 0 60 30 10 0

Table 4.1: UT generated from the collected statistical data.
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Figure 4.2: CDT computed from Table 4.1 (UT ) and the predicted position shares in
a widnow.

Figure 4.3: Simple running example.

To predict the utility threshold uth, let us, for now, assume that there is only one
event type in the input event stream (i.e., M = 1) and hence the dimensions of UT
become (1xN), recall N is the number of positions (i.e., events) in a window. Since the
utility values in UT are between 0 and 100 (recall that UT (Te, P ) ∈ [0, 100]), there will
be a maximum of 101 different utility values, where each utility value in UT may repeat
several times. To build the cumulative utility occurrences Ou for each individual utility
value u ∈ [0, 100], we first count the number of occurrences ou of each individual utility
value u ∈ UT . Once we have the occurrences of each utility value, we can calculate
the cumulative utility occurrences. To this end, the number of occurrences ou of the
individual utility values u are accumulated together in a cumulative distribution fashion
as follows:

Ou =

ou, if u = 0

ou +O(u−1), otherwise
(4.2)

So far, we have assumed that there exists a single event type in the input event
stream. However, there may be multiple event types in the input event stream. In
this case, for every single position in UT , there exists a utility value for each event type.
For example, in Table 4.1, every single position in UT has two utility values, one utility
value for the event type A and one for the event type B. In the table, UT (A, 0) = 70 and
UT (B, 0) = 0. This means that a single position in UT is incrementing the occurrences
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of multiple utilities. As a result, to count the number of utility occurrences ou, we need
to consider each position in UT as a shared position between all event types. More
specifically, for each event type, we count a utility occurrence ou in a certain position
in UT as a fractional value instead of counting it as a full occurrence. We call these
fractional values as position shares in a window. We could predict the position shares in
a window between different event types from the distribution probability of the events
within the window. The position shares in a window S(Te, P ) of event e of type Te
at position Pe in the window equals the probability of this event type Te to come at
position Pe in the window.

Now, to compute the cumulative utility occurrences Ou in case of many event types,
we count the occurrences ou of the utility value u in UT as a fractional value by its
corresponding values from the position shares in a window. For each utility value
Ue = UT (Te, P ) for the event type Te at position Pe in UT , we increase the number of
occurrences oue by S(Te, P ). The cumulative utility occurrences Ou is then computed
as in the case of a single event type using equation 4.2. We store the cumulative utility
occurrences Ou in an array called CDT , where the utility values u are used as indices and
the cumulative utility occurrences Ou are used as the actual values, i.e., CDT (u) = Ou.
CDT is a single dimensional array of size (101), which is the maximum number of
different utility values in UT . An index u in CDT represents a utility value u in UT
and its cell value CDT (u) represents the cumulative utility occurrences O(u) of the
utility value u.

Since the utility threshold uth is the inverse function of the cumulative utility occur-
rences Ou, we extract uth from CDT . To find a utility threshold uth that drops ρ events
from each window, we iterate over CDT to find a cell value CDT (u) that is ≥ ρ, which
means that the number of events with utility values less or equal to u occurs at least ρ
times in each window. Hence, using u as a utility threshold drops at least ρ events from
each window. We explain the utility threshold prediction further with the help of our
running example. Figure 4.2 shows the CDT computed from UT in Table 4.1 and the
predicted position shares in a window. Now, to drop ρ = 2 events from each window, in
the figure, CDT (10) = 2.3 > ρ. Thus, to drop ρ = 2 events from each window, we use
the utility threshold uth = 10.

Algorithm 3 explains the construction of CDT from both UT and the predicted
position shares in a window. The algorithm first counts the number of occurrences ou of
each individual utility value u in UT (cf. lines (2-5)). It iterates over each cell in UT
(cf. lines (2-3)) and gets its value u = UT (Te, P ), i.e., the utility of the event type Te
at the position P in the window (cf. line 4). Then, in line 5, the algorithm increments
the cell value in a temporary array temp which is at index u by the fractional value
S(Te, P ). Since the utility values are used as indices in CDT , they are already sorted in
ascending order. Finally, the algorithm accumulates the values in CDT starting from
index 0 where CDT (u) = CDT (u) + CDT (u− 1), u = 1..100 (cf. lines (6-8)).
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Algorithm 3 Building CDT table.

1: computeCDT () begin
2: for Te ∈ T do
3: for P = 0 to (N − 1) do // N : the window size ws.
4: u = UT (Te ,P)

5: temp(u) += S(Te, P ) // temp(u) = ou

// accumulate utility values in ascending order.
6: CDT (0) = temp(0)

7: for u = 1 to 100 do
8: CDT (u) = temp(u) + CDT (u− 1)

9: end function

4.2.4 Overload Detection

Having explained the way utility models are built, we now provide details on when the
LS should drop events and how many and in which interval should events be dropped.

To detect an overload on an operator, the overload detector periodically monitors the
input event queue and calculates the estimated latency for the incoming events (le). It
compares le with the defined latency bound LB and decides to drop events if LB might
be violated. Recall that the value of le depends on event processing latency (denoted
by lp) and event queuing latency (denoted by lq), in fact, le = lq + lp. Event processing
latency lp represents the time an event needs to be processed by the operator in all
windows. lp is calculated from the throughput of the operator. The operator throughput
µ represents the maximum number of events the operator can process per second, i.e.,
the maximum service rate. Event queuing latency lq represents the time an event must
wait before it gets processed by the operator. This time depends on the number of
queued events n before this event e in the input event queue and on lp, i.e., lq = n ∗ lp.
This means that event e at position n in the input event queue has an estimated latency
le = (n− 1) ∗ lp + lp = n ∗ lp.

From the given latency bound LB and the event processing latency lp, we can
get the maximum allowed queue size (denoted by qmax) before violating LB, where
qmax = LB/lp. Waiting until the queue size (denoted by qsize) equals qmax to start
dropping events might be too late and can cause LB violation. Therefore, we start
dropping events, if the following inequality holds: qsize > f.qmax, where f ∈ [0, 1], see
Figure 4.4. A high f value, on one hand, avoids unnecessarily dropping events– in cases,
the events are only queued for a short time as in short burst situations. But on the
other hand, it might force the LS to drop events with high utility values to avoid LB
violation– in case the queue size gets close to qmax. Later, we explain how to choose an
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appropriate f value.

4.2.4.1 Dropping Interval

So far, we have considered dropping ρ events per window. However, the window size
might not be the best dropping interval to meet the given latency bound LB. The reason
is that as the LS starts dropping events when qsize > f.qmax, the buffer that we have
before violating the latency bound (LB) is of size (qmax − f.qmax) events (cf. Figure
4.4). More specifically, we need to drop ρ events from at least every (qmax − f.qmax)
events (i.e., dropping interval) in order to meet LB. Therefore, please note that the
dropping interval must be less or equal to (qmax − f.qmax).

As a result, if the window size ws is less or equal to this buffer size (i.e., qmax−f.qmax),
then the interval of dropping ρ events is preserved and the utility threshold uth can be
calculated for the entire window. However, if the window size ws is greater than the
buffer size, there is a risk of LB violation, especially if the utility values are not evenly
distributed in windows, e.g., all events with high utilities come together in a certain
region of the window. In this case, the utility threshold uth will result in dropping ρ
events from each window but not necessarily from each dropping interval (i.e., the buffer
size) if the size of the high utility region of the windows is greater than the buffer size.
This might result in LB violation.

Therefore, we must partition the window into smaller partitions of size less or equal
to the buffer size, i.e., qmax − f.qmax (as can be seen in Figure 4.4) and drop ρ events
from each partition. While the partition size cannot be greater than the buffer size (cf.
the above mentioned constraint), of course, it can be less than the buffer size. However,
the larger the partition size is, the greater is the probability to find low utility values to
drop, resulting in better quality. As a result, we try to use a partition size that is as
large as possible (of course, the upper bound being the buffer size). More specifically,
we partition a window in β partitions of equal sizes, where β = ceil(

ws

qmax − f.qmax
). As

a result, the partition size psize =
ws

β
. We use the partition size as a dropping interval

in which ρ events should be dropped. Therefore, we cannot use the utility threshold uth
that comes from a full window, but instead, we have to use a utility threshold uth for
each partition in order to drop ρ events in each dropping interval.

We already discussed how to compute CDT, i.e., the cumulative utility occurrences
Ou, for a complete window. However, since a window might be divided into more than
one partition (when β > 1), we must compute for each partition its own CDT . Please
note that UT will be calculated as before. However, the utility threshold uth needs to
be calculated based on the partition size psize within which shedding must be performed.
Therefore, we compute CDT for each partition of size psize within UT . So, now, to drop
ρ events from each partition of the incoming windows, each partition has its own utility
threshold uth.
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Figure 4.4: Partition Size.

4.2.4.2 Dropping Amount

The dropping amount represents the number of events that must be dropped from each
partition of each window. Determining how many events ρ to drop per partition depends
on the input event rate R and the operator throughput µ. The overload detector first
computes the overload ratio (denoted by δ) as follows: δ = 1− µ

R
. Then, the number of

events ρ to drop per partition is computed as follows: ρ = δ.psize.

4.2.4.3 Appropriate f Value

As we mentioned above, using a high f value prevents dropping events in short burst
cases, hence decreases the degradation in the quality of results. However, the f value
controls the partition size psize, hence using a high f value forces us to use a small
partition size to avoid LB violation. A small partition size might result in dropping
events that have high utility values. That can happen if all events in a partition have
high utility values. Therefore, we should choose a minimum f value that still allows
having a partition size that avoids dropping high utility events.

Fortunately, we already have the distribution of utilities within a window captured in
UT . We can take advantage of this knowledge to determine f value. To find the f value,
we propose to cluster the utilities in UT into several classes of importance. The goal is
to partition the windows depending on the f value into one or more partitions, where,
in each partition, there exist at least ρ events from the low utility classes. This way, in
each partition, the low utility events can be dropped, hence reducing the degradation
in the quality of results. Therefore, we can choose the f value that ensures the above
partition size.

4.2.5 Load Shedding

Now, we explain, in detail, the functionality of eSPICE’s load shedder (LS) component.
Events are dropped from individual windows without affecting other windows. An
event might be dropped from one window while it is still there in other windows as
the event utility Ue may be different in different windows since the event position Pe is
different in different windows. The LS checks for each incoming event in a window and
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decides on whether or not to drop it depending on the event utility in UT and on the
utility threshold uth of the partition to which the event belongs. Hence, the LS must be
lightweight since it is performed for every event in a window.

Upon receiving the drop command from the overload detector, the LS searches for the
utility thresholds corresponding to each partition of an incoming window. Note that
the entire window can also be a single partition, i.e., there is only one partition (β = 1),
if ws ≤ (qmax − f.qmax) (cf. previous section). Having noted the utility thresholds
for every partition of a window, the LS proceeds to drop events from the incoming
windows. So, for each event e in a window, the LS gets its utility Ue from UT and also
determines the partition (part) in a window to which event e belongs, both in O(1)

time-complexity. Then, the LS compares the event utility Ue with the utility threshold
uth of the corresponding partition (part) to decide on whether or not to drop event e
from the window. If the utility Ue of event e is less or equal to the utility threshold of
its corresponding partition, the LS drops event e.

Algorithm 4 explains the LS functionality more formally. If qsize > f.qmax, the
overload detector requires the LS to activate the shedding. It also sends drop commands
which contain the number of events ρ to drop per partition to LS. The LS receives drop
commands from the overload detector where it first calculates the utility threshold uth
for each partition depending on the required number of events ρ to drop per partition (cf.
lines 1-7). To calculate the utility threshold uth(part) for each partition part, the LS
iterates (cf. lines 2-3) over its corresponding CDT to search for a value CDT (part, u)
which is ≥ ρ (cf. line 4). Then, the index u of this value CDT (part, u) is used as the
utility threshold uth(part) for this partition part (cf. line 5). In case load shedding is
active, for each event e in the incoming windows, the LS checks if it needs to drop the
event e (cf. lines 8-17). First, the LS finds the partition in the window to which the
event e belongs (cf. line 12). Then, the LS checks if the utility value Ue of this event e
in UT is less or equal to the utility threshold uth(part) of its calculated partition (cf.
lines 13-16)—just a simple lookup in UT . It then returns true if the event should be
dropped, otherwise false. This shows that our load shedder is extremely lightweight and
it takes the shedding decision in O(1) time-complexity for each event in a window.

4.2.6 Extensions

In this section, we explain the following extensions to our load shedding approach:
handling a variable window size, using bins for large windows, retraining the model, and
supporting the negation operator [WDR06]. Handling a variable window size enables
our approach to work with windows of different sizes. While the use of bins enables
eSPICE to work with large windows.
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Algorithm 4 Load shedder.

1: getUtilityThresholdForEachPartition (ρ) begin
2: for part = 0 to (β − 1) do
3: for u = 0 to 100 do
4: if CDT (part , u) ≥ ρ then
5: uth(part) = u

6: break // break the inner loop and proceed to the next partition.

7: end function

8: applyLS (e) begin // Event e of type Te at position Pe in the window
9: if !LS .isActive then

10: return false

11: else

12: part =
Pe
psize

13: if UT (Te ,Pe) ≤ uth(part) then
14: return true

15: else
16: return false

17: end function

4.2.6.1 Handling Variable Window Size

The incoming windows might have a variable window size ws depending on the window
splitting strategies. As mentioned in Section 2.1, in CEP systems, there exist three main
window splitting strategies—count-based, time-based and pattern-based. In count-based,
ws is always fixed while in time-based and pattern-based, ws might change depending
on the input event rate or content of the events [MTR17].

As explained earlier, in order to implement the utility prediction function, we use
table UT which has a fixed number of event positions N , where N = ws. However,
if the window size ws varies and is not fixed, we need a way to find N . Therefore,
to handle variable window size, we profile the operator and choose N as the average
observed window size. Since N might be different from the size of actual windows, in
the following, we explain the required modifications to our approach during both model
building and load shedding to incorporate variable window size.

During Model Building: We need a way to map the event positions in windows to
the event positions in UT that has a fixed number of positions N . To do that, we
normalize the size of incoming windows to N . For each incoming window w, if ws > N ,
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we scale down window w where more than one position in window w is mapped to a
single position in UT . On the other hand, If ws < N , we scale up window w where each
position in window w is mapped to one or more positions in UT . The scaling factor sf
can easily be computed as follows: sf = ws

N . For example, let N = 100 and ws = 200,
then sf = 200

100 = 2. This means that every two positions in window w are mapped to a
single position in UT .

During Load Shedding: The window size may also vary while performing load shedding.
So, in this case, while processing every incoming event e of a window w, the LS must
determine the relative position of the event e within the window w, instead of the exact
position. In this way, the LS can map the learned utility values in UT to the event e.
To map the relative position of the event e in the window w to the exact position in UT ,
we again scale down ws if ws > N and scale up ws if ws < N . Since during scaling up
ws, an event e in window w is mapped to more than one cell in UT , the utility of e is
the average value of all these cell values in UT .

As mentioned above, the cumulative utility occurrences Ou, which are stored in CDT ,
are computed from UT that has a fixed number of positions N . In the case of varying
window sizes, the utility threshold uth is calculated from CDT without any modification.
This is because the utility values in UT already capture the variation in the window size.
So, the calculated utility threshold uth from CDT implicitly scales up/down depending
on the window size.

The problem with variable window size during load shedding is that we process events
on their arrival without waiting until the end of the windows. Thus, in the case of
time-based and pattern-based windows (cf. Section 2.1), the actual window size is
unknown at the time when the LS performs a lookup in UT to get the utility of an
event in a window based on its relative position. However, it is impossible to get a
relative event position if the actual window size is unknown. Yet, the window size
is important for the lookup, and we must predict it. For example, in the case of a
time-based sliding window, the input event rate could be used to predict the window size.
If the distributions of events within windows are known, we may precisely predict the
window size. However, if the event distributions are unknown or continuously changing,
it becomes hard to predict the actual window size, which might negatively impact the
performance, w.r.t. QoR, of eSPICE. Please note that predicting the window size is
already researched in literature [MTR17] and will not be the focus of this work.

4.2.6.2 Using Bins for a Large Window Size

The average observed window size N might be too large. This might result in a huge
size of UT , thus wasting computing resources. Therefore, bins of size bs are used to
map several neighboring positions for each specific event type in a window to one single
position in UT , thus reducing its size. In Section 4.3, we discuss more the impact of the
bin size on the quality of results.
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4.2.6.3 Model Retraining

The distribution of events in the input event stream may change over time which may
influence the accuracy of the constructed model (i.e., the constructed utility table UT
and CDT table). That may adversely impact QoR. Therefore, in this case, we must
retrain the model to capture these changes in the input event stream. We might either
retrain the model periodically or only when the input event stream changes. Two
factors may indicate that the input event stream has changed: 1) the change in the
distribution of events in the input event stream (i.e., the distribution of event types),
and 2) the change in the distribution of the event content (i.e., the event’s actual data)
in the input event stream. As a result, to maintain the constructed model accurately,
eSPICE must retrain the model if at least one of these two factors has changed, i.e., (the
event distribution or/and the event content distribution). eSPICE periodically gathers
statistics from windows, hence if there is a need to retrain the model, eSPICE uses these
gathered statistics to build a new model.

These two factors are application specific where one or both of these factors may
change over time depending on the application. For example, in applications, where
input event streams are generated in a fixed frequency, the distribution of input events is
fixed, however, the distribution of event contents may change over time. An example is a
transportation application, where bus events from different buses are generated at a fixed
frequency, however, the content of bus events may change over time depending on the
time of day. On the other hand, for some other applications, the event distribution may
change while the event content distribution may stay fixed or only slightly change. For
example, an ID reader in a retail shop generates an ID event whenever an item is scanned.
During peak hours, more items may be scanned which changes the distribution of ID
events, however, the distribution of the content of ID events might only slightly change–
only when the item’s content changes (e.g., the item price changes). Finally, both event
distribution and event content distribution may change over time. For example, in a
stock application, a stock event of company A may be generated only if the stock quote
of company A has changed which implies that the stock event distribution might change
over time depending on the change in the stock quotes. Additionally, the change in stock
quotes might depend on multiple factors, where a stock quote changes if one or more of
these factors change, i.e., the distribution of stock event content may change over time.

The number of detected complex events within windows gives a good insight into the
event distribution and event content distribution. If the average number of detected
complex events within windows changes, this provides a good indication that the event
distribution or the event content distribution has changed. Therefore, to capture the
distribution changes, we use the following approach. We compute the average number of
complex events per window during model building. Then, we periodically compare this
average number with the average number of complex events within the newly coming
windows that are marked for statistic gathering, i.e., those windows from which the LS
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does not drop events. If the deviation between both averages is higher than a threshold,
eSPICE should rebuild the model. This approach is lightweight and efficient, where its
overhead is very low.

4.2.6.4 Supporting Negation Operator

As discussed above (cf. Section 4.2.2), eSPICE learns about the utility of events within
a window depending on the detected complex events within already processed windows.
However, in the case of the negation operator, a complex event is detected only if specific
event type(s) are not present in a window. For example, let us assume that an operator
matches pattern q = seq(A; !B;C). In pattern q, we call event type B a negated event
type. In a window, while matching pattern q, the operator detects a complex event if an
instance of event type A happens, followed by an instance of event type C. However,
in case, an instance of event type B happens after the occurrence of an instance of
event type A and before the occurrence of event type C, no complex event is detected,
and the already matched part of pattern q is ignored– called abandoned partial match.
Hence, eSPICE cannot learn about the importance of the negated event type(s) (i.e., B
in pattern q) since the operator does not produce any complex event with event type
B. That means, in this example, the instances of negated event type B in windows
will be assigned a utility value zero. Hence, if there is overload and the LS must drop
events, it will start to drop events of type B since event B has a utility value of zero.
That might cause many false positives if events of event types A and C are present in
windows, while events of type B are dropped.

To avoid the above problem and to enable eSPICE to learn about the importance
of the negated event types in an operator, we request the operator to forward the
abandoned PMs to eSPICE, where eSPICE gathers statistics from these abandoned
PMs, as well. This way, eSPICE, as for any other event type, can gather statistics on
the importance of the negated event types in different positions within windows using
these abandoned PMs, i.e., learns about the utility of those negated event types. As a
result, eSPICE may avoid dropping instances of the negated event types, hence reducing
the number of false positives.

4.3 Performance Evaluations

Next, we evaluate the performance of eSPICE by analyzing its impact on the quality of
results when the input event rate exceeds the operator throughput µ.

4.3.1 Experimental Setup

Here, we describe the evaluation platform, the baseline implementation, datasets, and
queries used in the evaluations. In this chapter, we use the same evaluation platform
as in Chapter 3, Section 3.3.1. We compare the performance, w.r.t. QoR, of eSPICE
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with the performance of pSPICE and E-BL (cf. Chapter 3, Section 3.3.1) where we
rename E-BL to BL in this chapter. As evaluation results showed that a completely
random event shedder is comprehensively outperformed by eSPICE, we do not show the
evaluation results for a completely random shedder.

Datasets. We use two of the datasets explained in Section 3.3.1. In particular, we
use the stock quotes stream from the New York Stock Exchange (i.e., the NYSE Stock
Quotes dataset) and the position data stream from a real-time locating system in a
soccer game (i.e., the RTLS dataset). We do not show evaluation results on the public
bus transport (i.e., the PLBT dataset) from the previous chapter since the evaluation
results produced by performing event shedding on the PLBT dataset are similar to those
results when performing event shedding on the RTLS dataset (cf. Section 3.3.2).

Queries. We employ six queries (Q1, Q2, Q3, Q4, Q5, and Q6) that cover an
important set of operators in CEP as shown in Table 4.2: sequence operator, sequence
operator with repetition (which also contains Kleene closure), disjunction operator,
sequence with negation operator, and sequence with any operator [ZDI14; CM94; CM10;
WDR06; MM09]. In Table 4.2, Ci represents the stock quota of company i, and Di

represents the event of player i. We use the same window strategies (i.e., time-based and
count-based windows) and the same selection and consumption policies used in Section
3.3.1. The queries Q1, Q2, and Q6 are the same as queries Q1, Q2, and Q3, respectively,
defined in Section 3.3.1. Moreover, we add three more queries, namely Q3, Q4, and Q5,
to cover a broader range of CEP queries. Next, we explain all these six queries where
we re-explain queries Q1, Q2, and Q6, here again, to make the presentation smoother.

Q1 (sequence operator) detects a complex event when rising or falling stock quotes, by
a given percentage, of 10 certain stock symbols are detected within ws events/minutes
in a certain sequence. Q2 (sequence operator with repetition) detects a complex event
when 10 rising or 10 falling stock quotes, by a given percentage, of certain stock symbols
with repetition are detected within ws events/minutes in a certain sequence. Q3 (multi-
pattern operator) detects a complex event if either Q1 or Q2 matches. Q3 represents a
multi-pattern operator. Q4 (sequence with negation operator) is similar to Q1 but it
detects a complex event only if the stock quote of a certain company (i.e., C5 ) does
not change by a given percentage. Q5 (sequence with any operator) detects a complex
event when any 20 rising or any 20 falling stock quotes, by a given percentage, of any
stock symbol are detected within ws seconds/minutes from a rising or falling quote of a
leading stock symbol (defined as MLE). The leading stock symbols are composed of
a list of 4 technology blue-chip companies. Q6 (sequence with any operator) uses the
RTLS dataset. It detects a complex event when any n players of a team defend against
a striker (defined as S) from the other team within ws seconds from the ball possessing
event by the striker. The defending action is defined by a certain distance between the
striker and the defenders. We use two players as strikers, one striker from each team.
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Stock queries

Q1

pattern seq(C1;C2; ..;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws minutes/events

Q2

pattern seq(C1;C1;C2;C3;C2;C4;C2; C5;C6;C7;C2;C8;C9;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws minutes/events

Q3 Q1 ∨Q2

Q4

pattern seq(C1;C2;C3;C4; !C5;C6;C7;C8;C9;C10)
where all Ci rise by x% and C5 does not rise by y%
or all Ci fall by x% and C5 does not fall by y%
, i = 1..10 and i 6= 5

within ws minutes/events

Q5

pattern seq(MLE;any(20, C1;C2; ..;C20))
where MLE rises by x% and all Ci rise by x%
or MLE falls by x% and all Ci fall by x%, i = 1..20
within ws seconds/minutes

Soccer query

Q6

pattern seq(S;any(n,D1, D2, .., Dm))
where S possesses ball and distance(S,Di) ≤ x meters

, i = 1..m and m is the number of players in a team
within ws seconds

Table 4.2: Queries.

4.3.2 Experimental Results

In this section, we evaluate the impact of our probabilistic load shedding strategy
(eSPICE) on QoR, particularly the number of false positives and false negatives, and
compare its results with the results of BL and pSPICE. Moreover, we show the impact
of the window size and the bin size on QoR. Additionally, we analyze the overhead of
eSPICE and show its ability to maintain the given latency bound.
If not noted otherwise, we employ the following settings. Q1, Q2, Q3, and Q4 use a

count-based sliding window. While we use a time-based sliding window for Q5 and Q6.
For Q1, Q4, Q5, and Q6, a logical predicate is used to open new windows. In Q1, Q4,
and Q5, a new window is opened for each incoming event of the leading stock symbols
(MLE), while, in Q6, a new window is opened for each incoming striker event (S). For
Q2 and Q3, a count-based predicate is used where a new window is opened every 20
events, i.e., the slide size equals 20 events. The number of defenders in query Q6 is 4,
i.e., n = 4. We use a latency bound LB = 1 second and an f value = 0.8. Moreover,
we stream the datasets from stored files to the system with an event input rate that
is less or equal to the operator throughput µ until the model is built. After that, we
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Figure 4.5: False negatives for Q1 with different input event rates.

increase the input event rate to enforce load shedding as we will mention in the following
experiments. We execute several runs for each experiment and show the mean value and
standard deviation.

There are several factors that may influence the performance, w.r.t. QoR, of eSPICE
such as the event rate, the window size, and the bin size. Next, we evaluate the
performance of eSPICE with these different factors. Moreover, since we have two
approaches to define QoR, namely the strict QoR and relaxed QoR, we also show the
results when using both QoR approaches.

4.3.2.1 Impact of event rate on QoR

Next, we analyze the impact of eSPICE on QoR (i.e., the number of false negatives and
positives) with different input event rates. To show the impact of event rate on QoR,
we stream the datasets to the operator with input event rates that are higher than the
operator throughput µ by 20%, 40%, 60%, 80%, 100% (i.e., event rate= 120%, 140%,
160%, 180%, 200% of the operator throughput µ). For Q1, Q2, and Q3, we use a window
of size 1200 events (i.e., ws = 1200). The used window sizes for Q4, Q5, and Q6 are 600
events, 20 minutes, and 30 seconds, respectively. As we showed in Chapter 3, Section
3.3, the match probability has a considerable impact on the performance (w.r.t. QoR)
of load shedders, where the match probability is computed from the ground-truth by
dividing the total number of complex events by the total number of PMs. The match
probability for Q1, Q2, Q3, Q4, Q5, and Q6 are 32%, 22%, 27%, 66%, 14%, and 6%,
respectively.

Number of false negatives. Figures 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 depict the impact
of event rates on QoR. The figures show the percentage of false negatives for all queries
(Q1, Q2, Q3, Q4, Q5, and Q6). In the figures, the x-axis represents the input event rate
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Figure 4.6: False negatives for Q2 with different input event rates.

and the y-axis represents the percentage of false negatives.
The percentage of false negatives increases if the input event rate increases since

more events/partial matches must be dropped. Figure 4.5a shows the percentage of
false negatives for Q1 using strict QoR. In the figure, the percentage of false negatives
caused by eSPICE increases from 16% to 82% when increasing the event rate from 120%
to 200%, respectively. Whereas, the percentage of false negatives caused by BL and
pSPICE increases from 67% to 98% and from 35% to 84% when increasing the event
rate from 120% to 200%, respectively. The results in Figure 4.5a show that eSPICE
outperforms, w.r.t. QoR, both BL and pSPICE. The results for all load shedders in the
case of relaxed QoR (as depicted in Figure 4.5b) show similar behavior to the results
when using strict QoR. However, in the case of relaxed QoR, eSPICE and BL result in
a lower percentage of false negatives compared to the case of strict QoR. The reason
behind this is that in the strict QoR, only certain event instances are allowed to match
the pattern and produce complex events, otherwise, the produced complex events are
considered as false negatives/positives. As depicted in the figure, the impact of pSPICE
using relaxed QoR is similar to its impact when using strict QoR. Here again, eSPICE
outperforms the other load shedders when using relaxed QoR.

Figures 4.6a and 4.6b depict the percentage of false negatives for Q2 when using strict
and relaxed QoR, respectively. In Figure 4.6a, the percentage of false negatives caused
by all load shedders increases when the input event rate increases. However, eSPICE
performs better than the other load shedders irrespective of the input event rate where
eSPICE outperforms BL and pSPICE by up to 21 and 10 times, respectively. The results
in Figure 4.6b show a similar behavior where again eSPICE outperforms the other load
shedders. We conclude from the results shown in Figures 4.5 and 4.6 that when using the
sequence operator (i.e., Q1 and Q2), eSPICE always performs, w.r.t. QoR, better than
BL and pSPICE regardless of the used input event rate and the way QoR is calculated.
The results depicted in Figure 4.7 show the performance of the load shedders when
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Figure 4.7: False negatives for Q3 with different input event rates.

using a multi-pattern operator (i.e., Q3). Figures 4.7a and 4.7b show the results when
using strict and relaxed QoR, respectively. The percentage of false negatives again
increases when the input event rate increases. The percentage of false negatives caused
by eSPICE, BL, and pSPICE increases from 5% to 51%, from 51% to 99%, and 25% to
58% when increasing the input event rate from 120% to 200%, respectively. This shows
that eSPICE outperforms both BL and pSPICE up to 10 and 5 times, respectively. The
same behavior is observed in Figure 4.7b where eSPICE performs better than the other
load shedders. This shows that eSPICE supports the multi-pattern operator with a
considerably low adverse impact on QoR.
To evaluate the performance of eSPICE with the negation event operator, we run

experiments with Q4. In Q4, we limit the number of complex events to only one event per
window. The window is closed if a complex event is detected. We do that to determine
the impact of the negation operator on the matching output. The results with both
strict and relaxed QoR are depicted in Figures 4.8a and 4.8b, respectively. Again, with
the negation operator, eSPICE outperforms both BL and pSPICE using strict or relaxed
QoR. The performance of eSPICE is better than the performance of BL and pSPICE
by up to 13 and 6 times when using strict QoR and by up to 10 and 6 times when
using relaxed QoR. That shows that eSPICE supports the negation operator with a
considerably low negative impact on QoR.

Finally, we evaluate the performance of eSPICE with the any event operator where the
results are depicted in Figures 4.9 and 4.10 which show results for Q5 and Q6, respectively.
Figure 4.9a shows results for Q5 using strict QoR. In the figure, the percentage of false
negatives caused by all load shedders increases when the input event rate increases.
The figure shows that eSPICE performs better than BL. However, the performance of
eSPICE is worse than the performance of pSPICE for the majority of input event rates.
The reason behind this is that the even utilities in Q5 are spread and less accurately
predicted since Q5 represents an any operator where Q5 matches an event of any type
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Figure 4.8: False negatives for Q4 with different input event rates.
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Figure 4.9: False negatives for Q5 with different input event rates.

(any stock company). Hence, in the case of Q5, the majority of events in a window have
similar utility values. Using relaxed QoR, eSPICE outperforms pSPICE as shown in
Figure 4.9b. Figures 4.10a and 4.10b depict results for Q6 when using strict and relaxed
QoR, respectively. Both Figures 4.10a and 4.10b show that increasing the input event
rate results in increasing the percentage of false negatives for all load shedders. The
performance of eSPICE is better than the performance of BL when the input event rate
is between 140% and 200%, however, it is worse than the performance of pSPICE in
that range where the performance of pSPICE is considerably better in Q6.

Number of false positives. Next, we show the impact of eSPICE on the number of
false positives. Please note that in the case of relaxed QoR, performing load shedding
might result in false positives only in the case of the negation operator where dropping
negated events might result in false positives. For the sequence and the any operator
dropping events cannot result in false positives in the case of relaxed QoR. Figures 4.11
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Figure 4.10: False negatives for Q6 with different input event rates.

and 4.12 depict the impact of input event rates on the number of false positives for
queries Q1, Q2, Q5, and Q6, respectively. We observed similar results for Q3 and Q4,
hence we do not show them. In the figures, the x-axis represents the input event rate
and the y-axis represents the percentage of false positives.

Figures 4.11a and 4.11b show results for Q1 and Q2, respectively. The percentage of
false positives shown in Figure 4.11a caused by eSPICE increases when the input event
rate increases. While the percentage of false positives caused by BL decreases when
the input event rate increases. The reason for that is, when the event rate increases,
more events are dropped from windows, hence it becomes hard to detect complex events.
That results in fewer percentage of false positives. BL even results in less false positives
than eSPICE when the input event rate is equal to or higher than 160%. Figure 4.11a
shows that pSPICE results almost in no false positives. The results for Q2 show similar
behavior as depicted in Figure 4.11b. As a result, dropping PMs (i.e., using pSPICE)
has a negligible impact on the false positives.

Figures 4.12a and 4.12b show results for Q5 and Q6, respectively. In Figure 4.12a, the
percentage of false positives caused by eSPICE again increases when the input event
rate increases. While the percentage of false positives caused by BL decreases when the
input event rate increases. Here again, pSPICE has a negligible impact on the number
of false positives. Figure 4.12b shows similar results for eSPICE and pSPICE. However,
in the figure, the impact of BL on the percentage of false positives increases when the
event rate increases.

4.3.2.2 Impact of variable window size on QoR

Now, we show the impact of variable window size on the performance, w.r.t. QoR, of
eSPICE. Using a time-based or pattern-based sliding window may result in splitting the
incoming event stream into windows of different sizes. However, UT has a fixed number
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Figure 4.11: False positives for Q1 and Q2 with different input event rates.
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Figure 4.12: False positives for Q5 and Q6 with different input event rates.

of positions/events N , where N represents the average window size, given bs = 1. Hence,
we must map the incoming windows of different sizes to N as we showed above in Section
4.2.6.1. The ideal window size should be N , however, in case the incoming windows are
larger or smaller than N , the quality of results might degrade because of the variations
in relative positions of events in windows. To evaluate that, we run experiments with
Q5 and Q6 where we use several window sizes during model building to enforce having a
different number of events per window.

For Q5, we use a time-based sliding window of the following sizes: ws= 180, 200, 240,
260, and 300 seconds. The average observed window size is ≈ 2000 events, and hence we
use N = 2000 to build UT . Here, the window size ws = 240 seconds contains around
2000 events (≈ N). Therefore, we use it as a reference window size in our results and
refer to it as a window of size 100%. We represent the window sizes as a percentage
value compared to the reference window size (i.e., ws = 240 seconds), and hence the
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used windows are of the following sizes: 75%, 83%, 100%, 108%, and 125%. For Q6, we
again use a time-based sliding window of the following sizes: ws= 12, 14, 16, 18, and 20
seconds. The average observed window size is ≈ 800 events. Hence, we use N = 800

to build UT . As the window size ws = 16 seconds contains around 800 events (≈ N),
we use it as a reference window size in our results and refer to it as a window of size
100%. We represent the window sizes as percentage values compared to the reference
window size (i.e., ws = 16 seconds), and hence the used windows are of the following
sizes: 75%, 87%, 100%, 112%, and 125%. For both queries, during the model building,
we change the window size between the above given window sizes randomly to ensure
that our model has learned from several window sizes and not only from one window
size. During load shedding, we use one of the window sizes of the above given window
sizes to check the impact of this window size on the quality of results.
Figure 4.13 depicts the percentage of false negatives caused by eSPICE for both Q5

and Q6 using strict QoR. The x-axis represents the percentage of window size compared
to the reference window size, and the y-axis represents the percentage of false negatives.
Figure 4.13a shows results for Q5 with two input event rates 120% (denoted by R1) and
140% (denoted by R2) while Figure 4.13b shows results for Q6 with the two rates. Figure
4.13a shows that the percentage of false negatives increases when the difference between
N and the window size increases regardless of the input event rate. While Figure 4.13b
shows that the percentage of false negatives for Q6 is only slightly influenced by the
used window size with both input event rates R1 and R2. Hence, more than one event
in a window can be mapped to a single position in UT in case ws > N , or one event in
a window can be mapped to several positions in UT when ws < N without having a
considerable impact on the number of false negatives. The reason why the impact of
eSPICE on the percentage of false negatives for Q5 is higher than its impact for Q6 is
that Q5 has a longer pattern size (i.e., 1 stock leading company + 20 stock companies)
than Q6 (i.e., 1 striker + 4 players) which makes it more sensitive to the relative event
positions in windows. Moreover, the number of event types (i.e., MLE) that start a new
match in Q5 is higher than the number of event types that start a new match in Q6

(only two strikers).

4.3.2.3 Impact of bin size on QoR

A big bin size might degrade QoR since it reduces the accuracy in UT of the important
positions in the incoming windows. To analyze the impact of bin size on the performance,
w.r.t. QoR, of eSPICE, we, again, run experiments with Q5 and Q6. We use a window
of size ws = 240 seconds and ws = 15 seconds for Q5 and Q6, respectively. In addition,
we use the following bin sizes for both queries: bs = 1, 2, 4, 8, 16.

Figure 4.14 depicts the percentage of false negatives for both queries with the strict
QoR. The x-axis represents the bin size, and the y-axis represents the percentage of
false negatives. Figure 4.14a depicts results for Q5 with the input event rates R1 (120%)
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Figure 4.13: Impact of variable window size on QoR.
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Figure 4.14: Impact of bin size on QoR.

and R2 (140%) where it shows that the percentage of false negatives increases with the
used bin size. Figure 4.14b depicts results for Q6 with the input event rates R1 and R2,
where it shows that the percentage of false negatives is slightly influenced by the used
bin size for both input event rates R1 and R2. The reason here is again similar to the
reason in the variable window size experiment.

4.3.2.4 Run-time overhead of the LS

Load shedding is used in systems that already face overload and hence the LS overhead
must be considerably small compared to the event processing overhead. Our LS performs
only a single lookup in the utility table UT to decide whether or not to drop an event
from a window and hence its time-complexity is O(1). Thus, it is a lightweight load
shedding strategy. An important parameter that impacts the LS overhead is the window
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Figure 4.15: Q5: Overhead of the LS.

size. A large window may not fit in the system caches and cost higher lookup time and
hence higher overhead. To show the overhead of the LS, we run experiments for Q5

with two input event rate R1 (120%) and R2 (140%) and use a window of the following
sizes: ws = 240, 360, 480, 960, 1920 seconds, where the approximate window sizes
in events are 2000, 3000, 4000, 8000 and 16000 events, respectively. We used these
approximate window sizes in events as a dimension for UT , i.e., N = ws. We observed
similar behavior for other queries and hence we do not show them.

Figure 4.15 depicts the overhead of the LS for Q5. The x-axis represents the used
window size, and the y-axis represents the percentage time the LS needs, compared to
the actual event processing time. As expected, the overhead of our LS increases with
the used window size. In the figure, the overhead increases from less than 1% with
the window of size 240 seconds (≈ 2000 events) to ≈ 5% with the window of size 1960
seconds (≈ 16000 events). However, the overhead is still low compared to the actual
event processing time. Hence, our load shedding strategy can maintain the given latency
bound with low overhead. Moreover, the overhead of the window size can be reduced
by increasing the bin size (bs). Additionally, improving the utility table locality in the
memory can further reduce the overhead of LS.

4.3.2.5 Maintaining the given latency bound

The main goal of eSPICE is to maintain the given latency bound. Hence, here, we
discuss the ability of eSPICE in keeping the given latency bound. Figure 4.16 shows the
incurred event latency (le) when running Q1 and Q5 with different input event rates.
The results of other queries show similar behavior, and hence they are not shown. The
figure shows that eSPICE never violated the given latency bound (LB = 1 second)
and it always keeps the event latency around (f ∗ LB) that is 800 milliseconds in this
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Figure 4.16: Impact of bin size on the quality.

experiment.

4.3.2.6 Results Discussion

eSPICE performs much better than BL and pSPICE for the majority of queries. However,
the performance of eSPICE varies for different classes of operators. QoR of eSPICE
is exceptionally good for the sequence operators. The sequence operator ensures that
every time only the same event types would match the pattern. that results in higher
utility values for those event types. On the other hand, the any operator matches any
event regardless of its type. Hence, the event utilities are more sparse that adversely
impacts the performance of eSPICE. Further, eSPICE shows its robustness against
variable window size and bin size. The quality of results is only slightly influenced by a
window size that is different from N or by a larger bin size. Moreover, the overhead of
the LS component in eSPICE is very low compared to the actual processing overhead
that makes eSPICE suitable for real-time complex event processing.

4.4 Conclusion

In this chapter, we proposed a lightweight load shedding approach, called eSPICE, for
window-based CEP systems that maintains a given latency bound by dropping events
while reducing its adverse impact on the quality of results. eSPICE uses the type and
relative position within windows of events to predict their utility values and efficiently
drops events from incoming windows. Through extensive evaluations on two real-world
datasets and a range of popular CEP operators, we show that, for the majority of queries,
eSPICE outperforms state-of-the-art load shedders for CEP/stream processing systems.
eSPICE successfully maintains the given latency bound while keeping the degradation
in the quality of results very low at minimum overhead.
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Chapter 5
hSPICE: State-Aware Load
Shedding from Input Event Streams

In the previous two chapters (Chapter 3 and 4), we presented our two proposed load
shedding approaches pSPICE and eSPICE. pSPICE drops PMs from a window without
considering the current events within the window, while eSPICE drops events from a
window without considering the current open PMs within the window. As a result,
pSPICE might drop PMs, that have relatively high utilities even if there exist events
that may be dropped without impacting QoR. That might adversely impact QoR. On
the other hand, eSPICE neither considers the importance nor the state of PMs. An
event might have different utilities for individual PMs, depending on the importance
and the state of these PMs. Therefore, combining these two load shedding approaches
might overcome these drawbacks and result in a more powerful load shedder.

As a result, in this chapter, we propose a new white-box load shedding approach called
hSPICE that combines the best of both pSPICE and eSPICE. In particular, hSPICE is a
white-box load shedding approach that drops events either from windows or from PMs– it
sheds events on window and PM granularities– while considering the operator’s internal
state. In hSPICE, events have different utilities for different PMs. hSPICE predicts the
utility of the events using a probabilistic model. The model uses the event type, the
event position within a window, and the state of partial matches in a window to learn
about the utility of events within windows. As we mentioned in Chapter 1, Section 1.2,
an important factor that influences the effectiveness of a load shedding approach is its
overhead in performing the load shedding. A high load shedding overhead implies that
a high percentage of the available processing power will be used to take the shedding
decision. That results in reducing the available processing power to perform pattern
matching, thus adversely impacting QoR. As we will show, hSPICE is a lightweight,
efficient load shedding approach.

More specifically, our contributions in this chapter are as follows:
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• We propose a white-box load shedding approach for complex event processing called
hSPICE. hSPICE performs load shedding at two granularity levels by dropping
events either from windows or from PMs. hSPICE uses a probabilistic model to
learn the utility of an event for each PM within a window. This event utility is then
used to perform fine-grained event shedding from individual PMs. Additionally,
hSPICE can perform event shedding at a coarser granularity, i.e., from windows,
by using the utility of an event for all PMs within a window to learn the utility of
the event within the window. As learning features, we use the type and position
of the event within the window and the state of the PM.

• We provide an algorithm to estimate the number of events to drop to maintain the
given latency bound. Additionally, we propose an approach that enables hSPICE
to perform load shedding in a lightweight manner.

• We provide extensive evaluations on two real-world datasets and a representative set
of CEP queries to prove the effectiveness of hSPICE and to show its performance,
w.r.t. its adverse impact on QoR, in comparison to state-of-the-art load shedding
approaches.

The rest of the chapter is structured as follows. Section 5.1 presents the used system
model. In Section 5.2, we explain in detail different components of hSPICE, the way
the event utility is defined, how the event utility is predicted, and how load shedding is
performed. Section 5.3 presents the obtained evaluation results. Finally, we conclude
this chapter in Section 5.4.

5.1 System Model

In this chapter, we rely on a system model similar to the system model presented in
Section 2.1, where we assume a window-based CEP system that consists of a one or more
operators. An operator detects multiple patterns Q (i.e., multi-query). Each pattern
qi ∈ Q has a weight wqi , reflecting its importance. A pattern qi ∈ Q is modeled as a
finite state machine. In this chapter, we assume that the set of all possible states Sqi
of pattern qi ∈ Q is defined as: Sqi = {sk : j ≤ k < j +mi}, where mi represents the
number of all possible states of pattern qi and j represents the sum of the number of
all possible states of all patterns ql ∈ Q where l < i, i.e., j =

∑i−1
l=1ml. For example, in

Chapter 2, Example 1, pattern q = seq(A;B;C) has four states (i.e., mi = 4) where
Sq = {s0, s1, s2, s3} as shown in Figure 2.3(a). The state s0 represents the initial state
of pattern q, and the state s3 represents its final state. We define the set of all possible
states for all patterns as follows: SQ =

⋃n
i=1 Sqi . In Chapter 2, Example 1, since there is

only one pattern (i.e., Q = {q}), SQ = Sq = {s0, s1, s2, s3}.
A partial match γ ⊂ qi might be at any state of pattern qi except the final state,

where PM γ at the final state has already been completed and become a complex event.
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Therefore, in this chapter, the set of all possible states (Sγ) of PM γ is defined as
follows: Sγ = Sqi \ {final states}. Hence, the set of all possible states SL of all PMs of
all patterns is defined as follows: SL =

⋃n
i=1 Sγi : γi ⊂ qi. In Chapter 2, Example 1,

for PM γ ⊂ q, Sγ = {s0, s1, s2} and SL = Sγ = {s0, s1, s2}, as there is only one pattern
in this example. In window w, at a certain window position P , there might exist one
or more PMs belonging to the same or different patterns qi ∈ Q. We denote the set
of PMs that are currently active at window position P by

LP
w . Also, we denote the

total number of PMs that are opened until the end of window w by
LT
w. In Chapter 2,

Example 1, Figure 2.3(b), the sets of current PMs in windows w1, w2, and w3, are as
follows:

L6
w1

= {γ2, γ3, γ4},
L4
w2

= {γ1, γ2}, and
L2
w3

= {γ1, γ2}.
In this chapter, we assume a white-box CEP operator. The operator reveals information

about PMs and their progress (i.e., states) when processing primitive events within
windows. Moreover, we assume that the set of event types (T) in the input event
stream is known. Additionally, we assume that the finite state machine is used as
a computational model to detect patterns. However, hSPICE supports other CEP
computational models. The discussion on supporting different computational models
is similar to the discussion presented in Section 3.2.7. Therefore, we will not discuss
supporting different computational models in this chapter.

5.2 hSPICE

The architecture of hSPICE is similar to the architecture of eSPICE, where we add three
components to a CEP operator to enable load shedding: overload detector, load shedder
(LS), and model (cf. Figure 5.1). However, the operator in hSPICE is a white-box
operator, where the load shedder has access to the PMs.

Upon overload, to prevent violating LB, the overload detector requests the load shedder
to drop a certain amount of input events. As a drop interval (λ), we might use the
window size ws or a part of it as proposed in Chapter 4, Section 4.2.2.2. Our approach
works with any drop interval. However, in this work, to simplify the presentation,
we consider that the drop interval equals the window size, i.e., λ = ws. The number
of events that must be dropped in every window to maintain LB can be computed
depending on the input event rate R and the operator throughput µ, where the overload
detector computes the drop amount ρ per window (i.e., per drop interval) as follows:
ρ = (1− µ

R
) ∗ ws. After that, the overload detector sends a command containing the

drop interval λ and the number of events ρ to drop per λ to the load shedder. The load
shedder drops ρ events per drop interval λ to maintain LB.

During overload, to maintain the given latency bound (LB), hSPICE drops input
events that have the lowest adverse impact on QoR. To do that, hSPICE assigns utility
values to the events where an event that has a high impact on QoR has a high utility
and vice versa. hSPICE drops events either from windows (referred to as window
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Figure 5.1: The hSPICE Architecture.

granularity) or from PMs within windows (referred to as partial match granularity).
Dropping an event e from a PM γ means that event e is not processed (i.e., matched)
with PM γ. Determining the utility of events on the PM granularity can be achieved
more accurately since PM granularity is more fine-grained than window granularity. Of
course, accurately predicting the event utilities might significantly reduce the adverse
impact of load shedding on QoR. Recall that another factor that influences the load
shedding impact on QoR is the overhead of performing load shedding. A high load
shedding overhead implies that more processing power is used by the load shedder,
hence more events must be dropped which adversely impacts QoR. Performing load
shedding on the window granularity imposes a lower overhead compared to performing
load shedding on the PM granularity since the load shedding is performed on a coarser
granularity. Therefore, there is a trade-off between accurately determining the event
utilities and the load shedding overhead. In the next sections, for both window and PM
granularities, we study how to predict the event utilities and analyze the imposed load
shedding overhead on the operator.

On a high abstraction level, hSPICE works as follows. 1) As mentioned in Section
2.1, an event in a window is processed (i.e., matched) with PMs within the window.
Therefore, in a window, when using PM granularity, hSPICE assigns utility values to an
event for each PM within the window individually, i.e., the event gets a certain utility
value for each PM within the window. For the window granularity, on the other hand,
hSPICE assigns only a single utility value to each event within the window, depending
on the event utilities for PMs within the window. 2) hSPICE performs load shedding
by dropping events either from windows (window granularity) or from partial matches
within windows (PM granularity). Dropping an event from a window w means that
hSPICE prevents processing the event with all current PMs (

LP
w) within the window.

While dropping an event from PM γ within a window means that hSPICE prevents
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processing the event with γ within the window.

hSPICE, primarily, performs two tasks: 1) model building and 2) load shedding.
In the model building task, hSPICE predicts the event utilities and summarizes the
event utilities to reduce the degradation in QoR in overload situations. In the load
shedding task, hSPICE drops events to avoid violating the given latency bound. The
model building task is not time-critical and can afford to be heavyweight. On the other
hand, the load shedding task is time-critical and hence must be lightweight. In the next
sections, for both window and PM granularities, we describe the above tasks in detail.
First, we describe how the utility of an event is defined. Then, we explain the way
hSPICE predicts the event utility using a probabilistic model. After that, we describe
how hSPICE computes the number of events to drop to maintain the given latency
bound. To perform load shedding efficiently, we explain how to predict a utility value
that can be used as a threshold utility to drop the required number of events. Finally,
we describe the functionality of the load shedder in hSPICE.

5.2.1 Partial Match Granularity

5.2.1.1 Event Utility

In a window, only some PMs might complete and become complex events. Hence, PMs
in a window might have different importances, w.r.t. QoR. If a PM completes, it is an
important PM for QoR. Otherwise, it has no impact on QoR. Moreover, as mentioned
above, an event might be processed with one or more PMs within a window, where the
event might contribute only to some of these PMs. An event that contributes to a PM
might be an important event for the PM since dropping the event from the PM might
hinder the PM completion and hence adversely impact QoR. On the other hand, an
event that does not contribute to a PM is not important for the PM since dropping the
event from the PM does not influence its completion. Therefore, for different PMs in a
window, an event might have different importance. As a result, in a window, for event e
and PM γ within the window, hSPICE assigns a utility value to event e (denoted by the
utility of event e for PM γ) depending on the importance of PM γ in the window and on
the importance of event e for γ. The higher is the importance of γ in the window and
the higher is the importance of event e for γ, the higher is the utility of event e for γ.

The utility of event e for PM γ of pattern qi ∈ Q within a window (denoted by Ue,γ)
depends on three factors: 1) contribution probability—the probability that event e
contributes to PM γ, i.e., e ∈ γ, 2) completion probability—the probability that PM γ

completes, and 3) pattern weight wqi (given by a domain expert). Clearly, if event e
has a high probability to contribute to PM γ, event e is an important event for PM γ.
We consider the completion probability of a PM in computing the event utility as well
since the PM is only useful if it completes. Therefore, if event e has a high probability
to contribute to PM γ and γ has a high probability to complete, event e is an important
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event and should be assigned a high utility value. That is because dropping event e may
hinder PM γ to complete and hence it may adversely impact QoR.

As a result, the utility Ue,γ of event e for PM γ ⊂ qi within a window depends on
the pattern weight wqi and the following probability: P (e ∈ γ ∩ γ completes), i.e., the
probability that PM γ completes and event e contributes to PM γ. In window w, to
predict P (e ∈ γ ∩ γ completes) and hence Ue,γ , hSPICE uses three features: 1) current
state Sγ of PM γ, 2) event type Te ∈ T, and 3) position Pe of event e in window w.
Therefore, the utility Ue,γ of event e for PM γ of pattern qi (i.e., γ ⊂ qi) is defined as a
function (called utility function) of these three features as shown in Equation 5.1:

Ue,γ = f(Te, Pe, Sγ) = wqi ∗ P (e ∈ γ ∩ γ completes) (5.1)

The current state Sγ of PM γ determines which event type(s) enables PM γ to progress,
i.e., to transit to a new state(s). Therefore, those two features, i.e., current state Sγ of
the PM and event type Te are important features for computing Ue,γ . For instance, in
Example 1 (Section 2.1), PM γ at state s0 (i.e., γs0), might transit to state s1 only if
event e of type Te = A is processed with PM γ (i.e., e⊗ γs0).
The position Pe of event e in window w is an important feature to compute Ue,γ as

well since it determines the number of remaining events in the window. If there are
still many events remaining in a window, the probability of a PM to complete might
be higher than the case where there are only a few remaining events in the window.
That is because, in the case of many remaining events in a window, a PM has a chance
to be processed with more events than in the case of only a few remaining events in
the window and hence the PM has a higher chance to progress. Moreover, the event
position Pe represents the temporal distance between events within the same window.
It determines which event instance(s) of the same event type has a higher probability
to contribute to a PM in the window as shown in Chapter 4. That is because there
exists a correlation between events of certain types at certain positions within a window.
A change in an event of a certain type influences the change of events of other types
within a certain time interval, i.e., a certain position(s) within the window. In Example
1 (Section 2.1), in a window w, a change in the stock quote of company A, i.e., Te = A,
at a certain point of time t1 (i.e., at a certain position in the window), might cause a
change in the stock quote of company B, i.e., Te = B, within a certain time interval
]t1, t2], i.e., within certain position(s) in the window.

5.2.1.2 Predicting Event Utility

Having defined the utility Ue,γ of event e for PM γ, now, we describe how hSPICE
predicts the utility Ue,γ within a window, i.e., P (e ∈ γ ∩ γ completes), hence predicting
the value of utility function f(Te, Pe, Sγ) in Equation 5.1. For ease of presentation, we
introduce a simple running example which is depicted in Figures 5.2 and 5.3.
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s0start s1 s2
A

B

B

A

State machine for pattern q = seq (A;B).

Te/Pe 0 1 2 3 4

A x x x x

B x x x

Table 5.1: Event distribution within win-
dows.

A0 obe〈1− 2, s0, s1, A0〉 : 2
6

A2 obe〈3− 4, s0, s1, A2〉 : 2
4

A3 obe〈5− 6, s0, s1, A3〉 : 2
2

B3 obe〈1, s1, s2, B3〉 : 1
4

B4 obe〈2− 3, s1, s2, B4〉 : 2
5

obγ〈1− 3, completed〉
obγ〈4− 6, not completed〉

Table 5.2: Contribution obe and completion obγ observations.

Figure 5.2: Observations gathered from six PMs.

s0

Te/Pe 0 1 2 3 4

A 33 0 25 0 0

B 0 0 0 0 0

s1

Te/Pe 0 1 2 3 4

A 0 0 0 0 0

B 0 0 0 25 40

Figure 5.3: Computing event utility Ue,γ for a partial match.
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Example. Let us assume that an operator matches a pattern q = seq (A;B), where
Sq = {s0, s1, s2} and Sγ = {s0, s1}, γ ⊂ q. The used window size is 5 events (i.e.,
ws = 5) and there are only two event types in the input event stream: A and B, i.e.,
T = {A,B}.

To predict the utility Ue,γ of event e for PM γ of pattern qi in window w, we first
need to predict the completion probability of PM γ, i.e., find the probability that PM
γ at state Sγ and at position Pe in window w will complete. Additionally, we need to
predict the contribution probability of event e to PM γ, i.e., the probability that event e
of type Te at position Pe in window w contributes to PM γ (e ∈ γ). If the contribution
and completion probabilities are high, then the event utility Ue,γ is high. On the other
hand, if the contribution and/or completion probabilities are low, then the event utility
Ue,γ is low. hSPICE uses statistics gathered over already processed windows to predict
the completion and contribution probabilities, thus predicting the event utility for PMs.
Next, we first show which statistics hSPICE gathers. Then, we explain the way the
event utility Ue,γ for PMs is predicted depending on those gathered statistics.

Statistic Gathering. To predict the contribution and completion probabilities,
hSPICE gathers statistics on the progress of PMs within windows during event processing
in an operator. To do that, hSPICE uses two types of observations: 1) contribution
observation, denoted by obe, and 2) completion observation, denoted by obγ . In window
w, for each event e within w, whenever event e is processed with PM γ at state s = Sγ

(i.e, e ⊗ γs), the operator builds an observation of type contribution obe〈id, s, s′, e〉,
where id is the id of PM γ. s′ represents the state of PM γ after processing event e.
If s 6= s′, event e has contributed to PM γ at state s, i.e., e ∈ γs. Additionally, in
window w, if PM γ completes, the operator builds an observation of type completion
obγ〈id, completed〉, where again id is the id of PM γ. When window w closes ( i.e., all
its events are processed), all still open PMs in window w, i.e.,

LP
w , (here P is the last

position in w) are considered as not completed PMs.

Figure 5.2 shows an example of gathered observations on six PMs. Table 5.1 shows
the distribution of event types in different positions within a window where a cell with
x sign in the table means that the corresponding event type might be present at the
corresponding position within a window. Please note that event types might not be
present in all positions within a window. In the table, for example, the event type A
never comes at position 4 in any window and event type B does not come at positions 0
and 1 in any window. Table 5.2 shows observations on event e of type Te at position Pe
in a window and PM γ at state s only if e contributes to γ (i.e., e ∈ γs). For example,
in the table, event B3 of type Te = B at position Pe = 3 within windows has never
contributed to PM γ at state s0. Therefore, there are no observations shown in the
table on event B3 with a PM at state s0. Clearly, if event e is not present at a certain
position within windows, event e can not contribute to any PM at this window position.
For example, as shown in Table 5.1, the event of type B never comes at position 1
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within windows. Therefore, there are no observations on the event type B at position 1

within windows with a PM at any state. In Table 5.2, next to each observation of type
contribution obe, we show the number of PMs at state s to which an event contributed
divided by the total number of PMs at state s with which an event is processed, i.e.,
|{e : e ∈ γs}|
|{e : e⊗ γs}|

. For example, in the table, obe〈3− 4, s0, s1, A2〉 :
2

4
means that the event

of type Te = A at position 2 within windows has been processed with four PMs at state
s0. However, it has contributed only to two PMs, in particular, it has contributed to
PMs 3 and 4. The table also shows which PMs have completed. For example, in the
table, PMs γ1, γ2, and γ3 have completed while PMs γ4, γ5, and γ6 have not completed.

After gathering statistics from η observations, hSPICE uses these observations to
predict the utility Ue,γ of event e for PM γ within window w, i.e., to predict the utility
function f (cf. Equation 5.1).

Utility Prediction. hSPICE uses the gathered observations of both types (contri-
bution obe and completion obγ) to predict the probability value P (e ∈ γ ∩ γ completes),
hence predicting Ue,γ . First, from both these observation types, hSPICE computes the
utility of event e for the set of all possible states of PM γ (i.e., Sγ) as follows:

Ue,s =
|{e : e ∈ γs & γ completed}|

|{e : e⊗ γs}|
(5.2)

where Ue,s = P (e ∈ γs ∩ γ completes). For event e of certain type Te at certain position
Pe within window w and for PM γ at certain state s, Ue,s is computed as a ratio between
the number of times PM γ completes and event e contributes to PM γ at state s (i.e.,
e ∈ γs) and the total number of times event e is processed with PM γ at state s (i.e.,
e⊗ γs).
Figure 5.3 shows the computed utility values Ue,s from the observations shown in

Table 5.2. The values are shown as percentage values. The table shows the utility value
of event e of type Te at position Pe within a window for PMs at states s0 and s1. For
example, in the table, event e = A2 of type Te = A at position Pe = 2 within a window
is processed with four PMs at state s0 (PMs 3, 4, 5, and 6). However, it has contributed
only to two PMs ( 3 and 4). Moreover, since only PM 3 completed, we account for the
contribution of event e = A2 only to PM 3. Therefore, in the table, the utility of event
type Te = A at position Pe = 2 within a window for a PM at state s0 equals 25%, i.e.,
Ue,s0 = 1

4 = 25%. The event type Te = A has never contributed to a PM at state s1
since only the event type Te = B may contribute to a PM at state s1. Therefore, the
utility of an event of type Te = A at any position within a window for a PM at state s1
is always zero as shown in the table. Similarly, the event type Te = B never contributes
to a PM at state s0. Hence, the utility of an event of type Te = B at any position within
a window for a PM at state s0 is always zero.

The utility values for all states of PM γ of pattern qi ∈ Q together multiplied by the
pattern weight wqi represent the predicted utility Ue,γ of event e for PM γ ⊂ qi, where
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Ue,γs = f(Te, Pe, s) = wqi ∗ Ue,s. Now, we need to store these predicted utility values
Ue,γ for all patterns (i.e., for Q) so that, during load shedding, hSPICE can retrieve
them. To reduce the storage overhead, in case of large window size, we use bins to group
event utilities. Within window w, the utility values of event e of type Te at several
consecutive window positions (i.e., bin size bs) for PM γs at state s are grouped together
by taking the average utility value of this event type Te over all these positions for PM
γs. For ease of presentation, we will use the bin of size bs = 1 if not otherwise stated.
To efficiently retrieve the utility values during load shedding, we store the utilities in a
table (called utility table UT ) of three dimensions (M ×N ×K), where M represents
the number of different event types (i.e., M = |T|), N = ws

bs , and K is the number of
all possible states of all PMs of all patterns (i.e., K = |SL|). Therefore, the storage
overhead of the utility table UT is O(M.N.K). Each cell UT (Te, Pe, Sγ) in the utility
table stores the utility value Ue,γ of event e of type Te at position Pe within a window for
PM γ at state Sγ , i.e., Ue,γ = f(Te, Pe, Sγ) = UT (Te, Pe, Sγ). Hence, to get the utility
Ue,γ of event e for PM γ, hSPICE needs to perform only a single lookup in the utility
table UT . This means that the time complexity to get Ue,γ is O(1) which considerably
reduces the overhead of load shedding.
The input event stream might change over time. Hence, the predicted utilities of

events for PMs might become inaccurate. One way to capture the changes in the input
event stream and keep the event utility accurate is by periodically gathering statistics
and recomputing the utility value Ue,γ . Another way is to monitor the distribution
of events in the input event stream and rebuild the utility table whenever the event
distribution changes by a certain threshold (cf. Chapter 4, Section 4.2.6.3).

5.2.1.3 Drop Amount

As we mentioned above, to maintain the given latency bound (LB) in an overload
situation, we must drop ρ events from every window. However, hSPICE drops events
from PMs, not from windows, where an event might be dropped from a PM while it is
processed with another PM within the same window. Therefore, we must find a mapping
between the number of events to drop per window (ρ) and the number of events to drop
per PM within the window. To do that, let us first define the virtual window.
Virtual Window. The virtual window (vw) of window w is a set which contains

triplets (e, s,O) consisting of event e of type Te at position Pe within w, state s ∈ SL,
and the number of occurrences O > 0 which represents the number of times event e has
been processed with a PM at state s within window w. More formally: vw = {(e, s,O) :

∀ e ∈ w, ∀ γ ∈
LT
w, O = |{γ : e ⊗ γs}| > 0}. The virtual window vw of window w

contains information on the number of times event e within window w is processed with
each distinct state s of a PM in window w. The virtual window depends on the states
of PMs in a window. Therefore, it is only possible to know the exact virtual window of
window w when all events in window w are processed, i.e., when the set of all PMs

LT
w
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and their states in window w are known. However, we need to know the virtual window
of window w before processing all events in window w since we use the virtual window
to decide how many and which events must be dropped from PMs within window w.

Therefore, hSPICE predicts virtual window vw of window w by gathering statis-
tics from the operator on already processed windows, denoted by Wstat. As men-
tioned above, in different windows, event distribution might be different (cf. Ta-
ble 5.1). Additionally, the occurrences of PM states at certain window positions
might also be different in different windows. Hence, different windows might have
different corresponding virtual windows. Therefore, to predict virtual window vw

of window w, hSPICE first computes virtual window vwj for each window wj in
the gathered statistics Wstat, where j = 1, .., |Wstat|. Then, hSPICE combines all
triplets (e, s,O) from these virtual windows vwj to construct the virtual window vw

by taking the average value for the number of occurrence O of each triplet, i.e.,
vw = {(e, s,O) : e = ej , s = sj , O = O +

Oj
|Wstat| , ∀ (ej , sj , Oj) ∈ vwj}. The size

of virtual window vw (denoted by wsv) is computed as the total number of occurrences
of each triplet in vw as follows: wsv =

∑
(e,s,O)∈vw O. The virtual window size rep-

resents the number of times events are processed with PMs in a window. Therefore,
the average number of times (avgO) an event is processed with a PM in window w is
computed as follows: avgO = wsv

ws . For example, if every event is processed with two
PMs within window w, then the virtual window size wsv is twice the window size ws
(i.e., wsv = 2 ∗ ws) and avgO = 2.

Dropping an event from window w implies that the event is dropped from the set
of all current PMs

LP
w within window w. Therefore, if ρ events must be dropped from

window w, it implies that, in total, ρv ≈ ρ ∗ avgO ≈ ρ ∗ wsvws events must be dropped
from all PMs

LT
w in window w (from virtual window vw of window w, as a shorthand).

Hence, dropping ρ events from a window is similar to dropping ρv events from its virtual
window. One approach to drop ρv events from a virtual window (i.e., ρv events in total
from all PMs in a window) is to drop events equally (for example, equal percentage)
from every PM in the window. However, not all PMs in a window have the same
importance/same completion probability. Therefore, the drop amount per PM should
take into consideration the importance of PMs in the window which in turn minimizes
the adverse impact of dropping on QoR. Please note that it is not possible to get the
utility of all events for all PMs in a window and then sort them. After that, drop those
ρv events from PMs that have the lowest utilities. The reason for this is that the event
utilities for PMs in a window are only known after processing all events in the window.
That is because the event utilities depend on the current state of PMs (

LP
w) in the

window which is only known after processing the events in the window. Next, we explain
how to drop the required number of events (ρv) from the virtual window of each window
while considering the importance of PMs in the window.

Utility Threshold. The approach is to find a utility value (called utility threshold
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uth) that is used as a threshold value to drop the needed amount of events from virtual
window vw of window w. For each triplet (e, s,O) in virtual window vw, we get the
utility value u = Ue,γs = f(Te, Pe, s) from the utility table UT . As the number of
occurrences O in the triplet represents the number of times state s might occur at
window position Pe, the number of occurrences O implies that the utility value u = Ue,γs

might occur O times in virtual window vw, denoted by the utility occurrences Ou for
utility u, i.e, Ou = O. We accumulate the number of utility occurrences Ou for all utility
values in vw in ascending order, denoted by the accumulative utility occurrences OCu
for the utility u, as follows: OCu =

∑
u′≤uO

′
u. The accumulative utility occurrences

OCu for utility u means that there exist OCu events in virtual window vw which have a
utility value less or equal to the utility value u.

Therefore, using u as a threshold utility uth enables hSPICE to drop OCu events from
PMs in a window. Hence, to drop ρv events from the virtual window, we must find a
utility value u = uth, where OCu = ρv. To efficiently retrieve the utility threshold, we
store the accumulative utility occurrences in an array (denoted by utility threshold array
(UTth)) of the same size as the virtual window size wsv as follows: UTth(i) = u, where
i = 1, .., wsv and OCu ≥ i and OCu < OCu′ ∀ u < u′. Therefore, to drop ρv events
from the virtual window, uth = UTth(ρv). Hence, the time complexity to get uth is O(1).
Please note that predicting the virtual window and building the utility threshold array
are done during the model building task. While during the load shedding, hSPICE
performs the following two tasks that have a time complexity of O(1): 1) computing
how many events to drop (i.e., ρv) per virtual window, and 2) determining what utility
threshold (i.e., uth) to use.

5.2.1.4 Load Shedding

In the above sections, we showed how to compute the utility of events for PMs within
a window and how to predict the utility threshold. Now, we describe how hSPICE
performs the load shedding, i.e., deciding whether an event should be dropped from a
PM or not. Algorithm 5 clarifies how load shedding is performed.
For each event e within window w, before processing e with PM γ in window w, the

operator asks the load shedder (LS) whether to drop event e from PM γ. If the LS
returns True, the operator drops event e from PM γ, otherwise, it processes event e
with PM γ. If there is no overload on the operator, there is no need to drop events
and hence LS returns False which means that the operator can process event e with
PM γ (cf. Algorithm 5, lines 2-3). On the other hand, if there is an overload on the
operator, LS checks whether the utility Ue,γ of event e for PM γ is higher than the
utility threshold uth. Therefore, the LS first gets the utility Ue,γ of event e for PM
γ from the utility table UT , where Ue,γ = f(Te, Pe, Sγ) = UT (Te, Pe, Sγ). After that,
hSPICE compares the utility value with the utility threshold uth, where it returns True
if Ue,γ ≤ uth, otherwise hSPICE returns False (cf. Algorithm 5, lines 4-7). This shows
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that hSPICE is lightweight in performing load shedding where the time complexity to
decide whether or not to drop an event from a PM is O(1).

Algorithm 5 Load shedder (PM granularity).

1: drop (Te, Pe, Sγ) begin
2: if !isOverloaded then // there is no overload hence no need to drop events
3: return False

4: else if UT (Te, Pe, Sγ) ≤ uth then
5: return True

6: else
7: return False

8: end function

Having explained how to define the event utility, predict the event utility, find the
utility threshold, and perform load shedding on the PM granularity, next, we describe
how load shedding is performed on the window granularity.

5.2.2 Window Granularity

In the partial match granularity, as we showed above, for event e in window w, hSPICE
must perform a check (lookup in UT ) for every PM γ in w (i.e., for each γ ∈

LP
w) to

decide whether or not to drop event e from PM γ. That implies that the time complexity
to perform load shedding is (|

LP
w |.O(1)) for every event within a window, where hSPICE

must perform |
LP
w | lookups in UT . Although this shows that the overhead of performing

load shedding in the PM granularity is low, in this section, we propose to perform
load shedding on the window granularity which reduces the overhead of load shedding
even further. Recall that reducing the load shedding overhead increases the operator
throughput µ, which in turn reduces the number of events that must be dropped to
maintain LB, hence reducing the adverse impact of event shedding on QoR.

Performing load shedding on the window granularity implies that events are dropped
from windows, i.e., in a window, an event is either dropped from all PMs or from
none. This way, the load shedding is performed only once for every event in a window,
regardless of the number of current PMs

LP
w in the window which might considerably

reduce the load shedding overhead. Of course, the event utility in the window granularity
is less precise than the event utility in the PM granularity, which might adversely impact
QoR. To drop events from a window, next, we introduce the event utility in a window,
where, in overload cases, events with the lowest utilities are dropped from windows.
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5.2.2.1 Event Utility

As mentioned above, an event in a window is processed with all current PMs
LP
w in the

window. Therefore, the utility of event e in window w (denoted by Ue,w) depends on
the utility of event e for all current PMs

LP
w in window w. We represent the utility Ue,w

of event e of type Te at position Pe within window w as the sum of the utility of event e
for all current PMs in window w, i.e.,

LP
w , as shown in Equation 5.3.

Ue,w =
∑
γ∈
LP
w

f(Te, Pe, Sγ) (5.3)

Computing Ue,w as shown in this equation means that for each PM in a window, hSPICE
must perform a lookup in the utility table UT , i.e., |

LP
w | lookups. However, this will result

in the same overhead (|
LP
w |.O(1)) as performing load shedding on the PM granularity.

To minimize this overhead, we must reduce the number of lookups in the utility table
UT . To do that, we keep a summary on the distinct PM states and the number of
occurrences of each distinct state in the window. In window w, at position P , multiple
PMs might be at the same state. We define PM summary (denoted by SMP

w ) in window w

at position P as a multiset that contains all distinct states of current PMs
LP
w at position

P in window w and the number of occurrence of these PM states. Each element in PM
summary is defined as a pair (sk, O), where sk represents a PM state and O represents
the number of occurrences of state sk in

LP
w , i.e., SMP

w (sk) = |{γ : γ ∈
LP
w , sk = Sγ}|.

We use the PM summary SMP
w to compute the utility Ue,w of event e in window w

as follows:
Ue,w =

∑
Sγ∈SMP

w

f(Te, Pe, Sγ) ∗ SMP
w (Sγ) (5.4)

For each distinct state of the current PMs (
LP
w) in window w, hSPICE performs the

lookup only once in the utility table UT to get the utility Ue,γ = f(Te, Pe, Sγ) of event
e for PM γ. Then, hSPICE multiplies the utility Ue,γ with the number of occurrences
of state Sγ in w (i.e., SMP

w (Sγ)). The event utility Ue,w represents the sum of all
multiplication results. Using Equation 5.4 to compute the event utility Ue,w in the
window might considerably reduce the overhead of the utility computation. This is
because multiple PMs in a window might have the same state which means that the
PM summary size might be much smaller than the number of PMs in a window, hence
much less lookups in the utility table UT . This is more likely to happen if the number
of states of all patterns is lower than the number of current PMs in a window, i.e.,
|SL| < |

LP
w | where multiple PMs must be at the same state. The operator maintains

the PM summary SMP
w for each window w, where the PM summary is changed only

if the state of PM γ ∈
LP
w in window w changes, which does not happen frequently.

Hence, maintaining the PM summaries for windows imposes only a small overhead on
the operator.
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5.2.2.2 Utility Threshold

As we mentioned above, to maintain the given latency bound (LB), the LS must drop ρ
events from every window. To drop those ρ events from a window, similar to the PM
granularity, we need to find a utility threshold uth in a window that enables the LS to
drop those ρ events from a window. As in the PM granularity, we gather statistics on
event distribution and on the distribution of PM summaries in the window. Then, we
use these gathered statistics to compute the utility threshold uth.

5.2.2.3 Load Shedding

Now, we describe the way hSPICE drops events from windows. Algorithm 6 clarifies how
the load shedding is performed. Similar to dropping events from PMs, for each event e
within window w, before processing event e with any PM in window w, the operator
asks the LS whether or not to drop event e from window w. If LS returns True, the
operator drops event e from window w. Otherwise, it processes event e with all current
PMs

LP
w in window w.

If there is no overload on the operator, there is no need to drop events and hence
LS returns false which means that the operator can process event e in window w (cf.
Algorithm 6, lines 2-3). On the other hand, if there is an overload on the operator, the
LS checks whether the utility Ue,w of event e in window w is higher than the utility
threshold uth, where the event must be dropped if Ue,w ≤ uth. To do that, the LS uses
Equation 5.4 to compute the utility Ue,w. After that, LS compares the utility value Ue,w
with the utility threshold uth, where it returns True if Ue,w ≤ uth, otherwise LS returns
False (cf. Algorithm 6, lines 4-9). That shows that hSPICE performs load shedding for
window granularity in the worst case in a time-complexity of (|

LP
w |.O(1)).

Algorithm 6 Load shedder (window granularity).

1: applyLS (Te, Pe, SMP
w ) begin

2: if !isOverload then // there is no overload hence no need to drop events
3: return False

4: else
5: compute Ue,w using Equation 5.4

6: if Ue,w ≤ uth then
7: return True

8: else
9: return False

10: end function
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5.3 Performance Evaluations

In this section, we evaluate the performance of hSPICE, for both PM and window
granularities, by using two real-world datasets and several representative queries.

5.3.1 Experimental Setup

In this chapter, we use the same evaluation platform as in Section 3.3.1. We compare
the performance, w.r.t. QoR, of hSPICE with the performance of eSPICE, pSPICE,
and E-BL (cf. Section 3.3.1), where we rename E-BL to BL in this chapter. Moreover,
we use the same datasets that are used in Section 4.3.1: 1) The NYSE Stock Quotes
dataset that represents a stock quotes stream from the New York Stock Exchange. 2)
The RTLS dataset that represents the position data stream from a real-time locating
system in a soccer game. Additionally, we use the queries Q1, Q2, Q3, Q4, and Q6 that
are presented in Section 4.3.1. Moreover, we use the time-based sliding window strategy
and the same selection and consumption policies used in Section 3.3.1.

5.3.2 Experimental Results

In this section, we evaluate the performance of hSPICE in comparison with other load
shedding strategies. First, we show its impact on QoR, i.e., the number of false negatives
and the number of false positives, using both strict and relaxed QoR. Then, we show
how good hSPICE is in maintaining the given latency bound (LB). We refer to hSPICE
when dropping events on window granularity as hSPICEW. While we refer to hSPICE
when dropping events on PM granularity as hSPICEPM.

If not stated otherwise, we use the following settings. For all queries Q1, Q2, Q3, Q4,
and Q6, we use a time-based sliding window and a time-based predicate. The number of
defenders in Q6 is 3 (i.e., n = 3). We stream events to the operator from the datasets
that are stored in files. We first stream events at input event rates which are less or equal
to the operator throughput µ (maximum service rate) until the model is built. After
that, we increase the input event rate to enforce load shedding as we will mention in the
following experiments. The used latency bound LB = 1 second. We configure all load
shedding strategies (i.e., hSPICE, eSPICE, BL, and pSPICE) to have a safety bound,
where they start dropping events/PMs when the event queuing latency is greater than
or equal to 80 % of LB, i.e., the safety bound equals to 200 milliseconds. We execute
several runs for each experiment and show the mean value and standard deviation.

An important factor that might influence QoR is the input event rate. The higher is
the input event rate, the higher is the amount of events that must be dropped and hence
higher is the impact of load shedding on QoR. Additionally, other factors that might
impact QoR are the query properties, e.g., the used window size. Therefore, next, we
show the impact of these factors on QoR, i.e., on false negatives and positives. Please
note that in the case of using strict QoR, applying load shedding might result in false
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positives and false negatives for all queries (i.e., Q1, Q2, Q3, Q4, and Q6). Additionally,
when using relaxed QoR, applying load shedding might result in false negatives for all
queries as well. However, it might result in false positives only in the case of Q4 since
Q4 has a negation operator. If the negated event is dropped by the load shedder, it
might result in a false positive.

5.3.2.1 Impact of Event Rate on QoR

To evaluate the performance of hSPICE, we run experiments with queries Q1, Q2, Q3,
Q4, and Q6. To show the impact of input event rate, we stream both datasets to the
operator with input event rates that are higher than the operator throughput µ by 20%,
40%, 60%, 80%, and 100% (i.e., event rate= 120%, 140%, 160%, 180%, and 200% of
the operator throughput µ). Moreover, for Q1, Q2, Q3 and Q4, we use the following
window sizes, respectively: 18, 35, 35, and 20 minutes. For Q6, the used window size is
30 seconds. A new window is opened for Q1, Q2, Q3, and Q4 every 1 minute, i.e., the
slide size is 1 minute. For Q6, a new window is opened every 1 second. The average
measured operator throughput µ (without load shedding) for queries Q1, Q2, Q3, Q4,
and Q6 are as follows: 23K, 14K, 8K, 36K, 27K events/second, respectively.
Impact on False Negatives. Figures 5.4 and 5.5 depict the impact of event rates

on false negatives for all queries. Figure 5.6 shows the ratio of dropped events or PMs
(for pSPICE) with different event rates for Q1 and Q6. We observed similar results for
Q2, Q3, and Q4, hence we do not show them. In these figures, the x-axis represents the
event rate. The y-axis in Figures 5.4 and 5.5 represents the percentage of false negatives
while, in Figure 5.6, it represents the ratio of dropped events/PMs. Please note that
measuring the load shedding overhead in hSPICEPM is very costly since the shedding is
performed on the finest granularity. Therefore, in this Section, unlike Sections 3.3 and
4.3, instead of measuring the load shedding overhead directly, we measure the drop ratio
that gives an indication of the load shedding overhead and can be measured with low
overhead.

The percentage of false negatives might increase if the input event rate increases since
more events/PMs must be dropped. Figure 5.4a and Figure 5.6a show the percentage of
false negatives using strict QoR and the percentage of drop ratio for Q1, respectively.
As shown in Figure 5.4a, hSPICEPM has almost no impact on false negatives when
the event rate is less or equal to 160% although hSPICEPM drops up to 80% of events
when the event rate is 160% as depicted in Figure 5.6a. Increasing the event rate by
more than 160% forces hSPICEPM to produce false negatives where the percentage of
false negatives is 17% and 23% using event rates of 180% and 200%, respectively. The
drop ratio starts to decrease when using a high event rate as shown in Figure 5.6a when
using the event rate of 200%. The reason behind this is that when more events should
be dropped, events with high utilities might be dropped. Dropping events with high
utilities might hinder opening new PMs which in turn reduces the number of events that
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(a) Q1: strict QoR
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(b) Q1: relaxed QoR
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(d) Q3: relaxed QoR

Figure 5.4: Impact of event rate on false negatives for Q1, Q2, and Q3.

must be dropped. Since hSPICEPM drops more events compared to other load shedding
strategies, i.e., eSPICE and BL, the impact of shedding in hSPICEPM on opening new
PMs is higher which results in decreasing its drop ratio when the event rate is 200%.
However, not opening those PMs might increase the number of false negatives.

The percentage of false negatives caused by other load shedding strategies also increases
when the event rate increases. As depicted in Figure 5.4a, when the event rate increases
from 120% to 200%, the percentage of false negatives for hSPICEW, eSPICE, BL, and
pSPICE increases from 8% to 45%, from 4% to 38%, from 48% to 84%, and from 16%
to 70%, respectively. Moreover, the drop ratio increases with the event rate as shown in
Figure 5.6a. hSPICEW performs, w.r.t. the percentage of false negatives, worse than
hSPICEPM since hSPICEPM predicts the event utilities more accurately. Additionally,
the used window size has a considerable impact on the performance of hSPICEPM.
Please note that the used window sizes, in these experiments, are reasonable window sizes
for the used datasets. However, if the window size is much higher, which might be used
in some applications, hSPICEW may perform better than hSPICEPM as we will show
in Section 5.3.2.2. The performance of hSPICEW is also worse than the performance of
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(c) Q6: strict QoR
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Figure 5.5: Impact of event rate on false negatives for Q4 and Q6.

eSPICE as shown in Figure 5.4a. This is because hSPICEW drops more events than
eSPICE as depicted in Figure 5.6a as the overhead of hSPICEW is higher than the
overhead of eSPICE. The result shows that hSPICEPM significantly outperforms, w.r.t.
the percentage of false negatives, all other load shedding strategies for Q1 (sequence
operator). Similar behavior is observed when using relaxed QoR as shown in Figure
5.4b.

Figures 5.4c shows results for Q2 when using relaxed QoR. We observed similar
behavior when using strict QoR, hence we do not show it. The figure shows that
the performance, w.r.t. the percentage of false negatives, of all load shedders except
eSPICE over Q2 (sequence with repetition operator) is similar to their performance
with Q1 (sequence operator). The performance of eSPICE over Q2 is worse than its
performance over Q1. The figure shows that the performance of hSPICEW is better
than the performance of eSPICE over Q2. However, the performance of hSPICEPM is,
again, better than the performance of hSPICEW. The results show that hSPICEPM
outperforms, w.r.t. the percentage of false negatives, all other load shedding strategies.
The results for Q3 (multi-pattern operator) are similar to the results for Q2 as depicted
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Figure 5.6: Impact of event rate on drop ratio.

in Figure 5.4d. The performance of hSPICEPM over Q3 is, again, better than the
performance of all other load shedding strategies. We observed similar results for Q3

when using strict QoR.

Figure 5.5a and 5.5b depict the percentage of false negatives for Q4 (sequence with
negation operator) using strict and relaxed QoR, respectively. In Q4, we limit the
number of complex events to only one event per window, where the window is closed if a
complex event is detected. We do that to determine the impact of the negation operator
on the matching output. The performance of hSPICEPM, w.r.t. the percentage of false
negatives, over Q4 is considerably better than the performance of hSPICEPM over Q1,
Q2, and Q3. The reason behind this is that, in Q4, there is at most one complex event
per window in comparison to Q1, Q2, and Q3 that detect all possible complex events
in a window. Hence, in the case of Q4, there exist many events in the window that
have low utilities where dropping those events do not influence the percentage of false
negatives. Figures 5.5a and 5.5b show that using hSPICEPM with different event rates
introduces almost zero false negatives. The percentage of false negatives caused by using
other load shedding strategies increases with increasing event rate. This shows that for
Q4, hSPICEPM drastically reduces the percentage of false negatives compared to the
other load shedding strategies.

Figures 5.5c and 5.5d show the percentage of false negatives for Q6 (sequence with
any operator) using strict and relaxed QoR, respectively. While Figure 5.6b shows the
ratio of dropped events/PMs for Q6. The drop ratio in Figure 5.6b increases when the
event rate increases. However, the drop ratio of hSPICEPM and hSPICEW for Q6 is
lower than their drop ratio for Q1. This is because the cost of processing events in Q6

is higher than the cost of processing events in Q1. Therefore, in Q6, the overhead of
performing load shedding in comparison to the event processing cost is lower which
results in a low drop ratio. In Figures 5.5c and 5.5d, the percentage of false negatives
caused by all load shedders increases when the input event rate increases.
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Figure 5.5c shows that the performance of hSPICEPM is better than the performance
of hSPICEW, eSPICE, and BL. However, pSPICE outperforms hSPICEPM. However,
Figure 5.5d (i.e., using relaxed QoR) shows that hSPICEPM and hSPICEW perform
almost worse than all other load shedding strategies. The reason behind this is that the
impact of eSPICE and BL on the percentage of false negatives is reduced if there is no
need to match the exact event instances (i.e. if the relaxed QoR is used). Moreover, the
overhead of hSPICEPM and hSPICEW is high in comparison to other load shedding
strategies. For every event in a window, hSPICEPM checks whether to drop the event
or not from every individual PM within the window which increases the overhead of
performing load shedding in hSPICEPM. Similarly, the overhead of hSPICEW is pro-
portional to the number of PMs, as we discussed in Section 5.2.2. While eSPICE and
BL, for example, check whether to drop the event or not from the window regardless of
the number of PMs within the window which reduces the overhead of performing load
shedding in these approaches. The overhead of hSPICEPM and hSPICEW is high in all
queries, however, the overhead impact is worse in Q6. This is because in Q6 the utility
values are spread and less accurately predicted since Q6 represents an any operator in
comparison to other queries that use a sequence operator. Q6 matches an event of any
type (any player) with a PM at any state, unlike the sequence operator that matches
only an event of a certain type with a PM at a certain state. Hence, in the case of Q6,
the majority of events in a window have similar utilities for all PM states.

Impact on False Positives. As we mentioned above, for all queries, dropping events
might result in false positives when using strict QoR. However, for only Q4 (sequence
with negation operator), dropping events might result in false positives in the case of
using relaxed QoR. Please recall that Q4 detects at most one complex event per window.
Figure 5.7 depicts the percentage of false positives with different event rates for queries
Q1, Q4, and Q6. We observed similar results for Q2 and Q3, hence we do not show
them. In the figure, the x-axis represents the event rate, and the y-axis represents
the percentage of false positives. Figure 5.7 shows that hSPICEPM and hSPICEW
perform very well with all queries where the percentage of false positives caused by both
hSPICEPM and hSPICEW is almost zero for different event rates.

The percentage of false positives caused by eSPICE in the case of Q1 is negligible
as depicted in Figure 5.7a. While the percentage of false positives caused by eSPICE
increases with increasing the event rate for Q4 and Q6. Figure 5.7 shows that, for the
majority of queries, the percentage of false positives produced when using BL decreases
when increasing the event rate. The reason behind this is that, for low event rates, BL
needs to drop fewer events, and hence more redundant events might exist in windows
that might match the pattern. On the other hand, with a high event rate, BL must
drop more events which makes it hard to have redundant events that might match the
pattern. Higher is the probability to match the pattern, the higher is the probability
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Figure 5.7: Impact of event rate on false positives.

to get false positives. The percentage of false positives caused by pSPICE in the case
of Q1, Q4 (using relaxed QoR), and Q6, is negligible as depicted in Figures 5.7a and
5.7d. While the percentage of false positives caused by pSPICE slightly decreases with
increasing the event rate for Q4, using strict QoR.

5.3.2.2 Impact of Window Size on QoR

In this section, we analyze the impact of window size on QoR. A very large window might
result in a large utility table (UT ) that does not fit into the cache memory, and hence the
lookup time in UT might increase. This results in increasing the load shedding overhead
of hSPICEPM, hence dropping more events (i.e., adversely impact QoR). Moreover,
using a very large window might increase the number of concurrent PMs

LP
w in the

window, hence, also, increasing the load shedding overhead of hSPICEPM. A large utility
table UT and a high number of concurrent PMs

LP
w might increase the load shedding

overhead of hSPICEW as well. However, a high number of concurrent PMs
LP
w implies

that there exist many PMs at the same state, hence hSPICEW needs to perform only a
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(d) Q2: relaxed QoR

Figure 5.8: Impact of window size on false negatives.

few lookups in UT compared to hSPICEPM since hSPICEW performs a lookup in UT
only once for each distinct PM state (cf. Section 5.2.2). That implies that the overhead
of hSPICEW for large windows might be much lower than the overhead of hSPICEPM,
hence the impact of hSPICEW on QoR using large windows might be much lower than
the impact of hSPICEPM on QoR. Please note that we may reduce the size of UT by
using bins as we discussed in Section 5.2. However, there still exist situations where the
utility table UT might be large since bins can help only in the case of very large window
sizes. For example, if the number of event types is high, the size of UT might also be
large.

To show the impact of window size on QoR, we run experiments with queries Q1 and
Q2 where we use a fixed event rate of 180%, i.e., the input event rate is higher than
the operator throughput µ by 80%. To show the impact of window sizes, we vary the
window size for both Q1 and Q2. The used window sizes for Q1 and Q2 are as follows:
100, 200, 300, 400, and 500 minutes. A new window is opened for Q1 and Q2 every 5
minutes, i.e., the slide size is 5 minutes. Figure 5.8 and Figure 5.9 depict the results for
both queries. In both figures, the x-axis represents the event rate. The y-axis in Figure
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Figure 5.9: Impact of window size on false positives.

5.8 represents the percentage of false negatives while the y-axis in Figure 5.9 represents
the percentage of positives. We observed similar results for Q3, Q4, and Q6, hence we
do not show them.

Figure 5.8a depicts the percentage of false negatives for Q1 using strict QoR. The
figure shows that for the window sizes 100 and 200 minutes, the performance, w.r.t. the
percentage of false negatives, of hSPICEPM is similar to the performance of hSPICEW.
However, hSPICEPM still performs better than other load shedding strategies (i.e.,
eSPICE, BL, and pSPICE). For very large window sizes, the performance of hSPICEPM
might become worse due to the following reasons. Increasing the window size might
result in increasing the completion probability of PMs within the window. That implies
that more events in the window might acquire a high utility value. Therefore, in this case,
the load shedding impact on QoR might increase. Moreover, increasing the window size
might increase the number of concurrent PMs within the window where more PMs might
open. That implies that the overhead of load shedding of hSPICEPM might increase
with increasing the window size since its overhead is proportional to the number of PMs
in windows. This might result in dropping more events, hence increasing the impact on
QoR. That is observed in Figure 5.8a, where the percentage of false negatives caused by
hSPICEPM increases when the window size increases. The figure shows that for large
window sizes (i.e., 400 and 500 minutes), the performance, w.r.t. the percentage of false
negatives, of hSPICEPM is similar to the performance of eSPICE and pSPICE. However,
hSPICEW considerably outperforms hSPICEPM when the window size is larger than
200 minutes as depicted in the figure. The percentage of false negatives caused by
hSPICEW slightly increases when the input event rate increases. The percentage of false
negatives caused by eSPICE, also, increases with increasing the window size as shown in
the figure. The results for pSPICE are also similar. The results for BL show that the
percentage of false negatives is only slightly increased when increasing the window size
to 200 minutes after that it starts to decrease. This shows that hSPICEW performs,
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w.r.t. the percentage of false negatives, very well with relatively large window sizes and
it outperforms eSPICE, BL, and pSPICE regardless of the used window size.

In the case of using relaxed QoR for Q1, hSPICEPM, hSPICEW, and pSPICE produce
similar results to the results when using strict QoR as depicted in Figure 5.8b. However,
the percentage of false negatives caused by eSPICE and BL decreases compared to the
case when using strict QoR. The figure shows that for a window size longer than 300
minutes, eSPICE outperforms hSPICEPM. The performance of hSPICEW is, again,
better than the performance of hSPICEPM, eSPICE, BL, and pSPICE regardless of the
used window size as depicted in the figure. The results for Q2 show similar behavior
as depicted in Figures 5.8c and 5.8d where hSPICEW performs very well regardless of
the used window size. Figures 5.9a and 5.9b depict the percentage of false positives for
Q1 and Q2, respectively. The figures show that the percentage of false positives caused
by hSPICEPM is only slightly increasing when the window size increases, while the
percentage of false positives caused by hSPICEW is almost same with different window
sizes. On the other hand, the percentage of false positives caused by eSPICE and BL
increases with increasing the window size. pSPICE results in almost zero false positives
for both Q1 and Q2.

5.3.2.3 Maintaining Latency Bound

The main objective of hSPICE is to minimize the degradation in QoR while maintaining
a given latency bound (LB). As mentioned above, LB is 1 second, and hSPICE drops
events when the event queuing latency is greater than or equal to 80% of LB (i.e., 800
milliseconds). The event rate is an important factor that influences the ability of hSPICE
to maintain LB. Therefore, in this section, we show the ability of hSPICE to maintain
the given latency bound (LB) with different event rates. Figure 5.10 shows the event
latency for Q1, Q2, and Q6 where the event latency is the sum of the event queuing
latency and the event processing latency. The event latency depicted in Figure 5.10
is measured when evaluating those three queries using the same settings as in Section
5.3.2.1. In the figure, the x-axis represents the elapsed time and the y-axis represents the
induced event latency. We observed similar results for Q3 and Q4 and all other queries
when using different settings (e.g., using different window sizes), hence we do not show
them.

Figures 5.10a, 5.10b, and 5.10c depict results for Q1, Q2, and Q6, respectively. The
figures show that hSPICE always maintains the given latency bound irrespective of the
event rate. In the figure, the induced event latency stays around 800 milliseconds (i.e.,
80% of LB which is used to have a safety bound). As can be seen, the objective of
maintaining the latency bound is successfully achieved by hSPICE.
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Figure 5.10: Maintaining latency bound.

5.3.2.4 Discussion

hSPICE shows its ability to maintain the given latency bound while reducing the
degradation in QoR. Through extensive evaluations, we show that hSPICE outperforms,
w.r.t. QoR, eSPICE, BL, and pSPICE for the majority of queries– especially for
sequence operators. The performance of hSPICE for the any operator is worse than the
performance of other load shedding strategies when using relaxed QoR. We also show
that significantly increasing the window size might increase the impact of hSPICEPM
on QoR. In short, we show that hSPICEPM has a considerably good performance,
w.r.t. QoR, in the case of reasonable window sizes. Whereas hSPICEW is only slightly
influenced by the increased size of the windows. Hence, depending on the window
size requirement of the application, either hSPICEPM or hSPICEW might be used to
minimize the load shedding impact on QoR.
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5.4 Conclusion

In this chapter, we proposed an efficient, lightweight load shedding strategy called
hSPICE that combines the advantages of both eSPICE and pSPICE. hSPICE consists of
two load shedding approaches hSPICEPM and hSPICEW. hSPICEPM drops events from
PMs within windows, while hSPICEW drops events from windows. In overload cases,
hSPICE drops events from partial matches (i.e., using hSPICEPM) or from windows
(i.e., using hSPICEW) to maintain a given latency bound. To assign a utility value
to an event for a partial match, hSPICE uses three features: 1) event type, 2) event
position in the window, and 3) the current state of the partial match. By using a
probabilistic model, hSPICE uses these features to predict the event utility. Through
extensive evaluations on two real-world datasets and several representative queries, we
show that, for the majority of queries, hSPICE outperforms, w.r.t. QoR, state-of-the-art
load shedding strategies. Moreover, we show that hSPICE always maintains the given
latency bound regardless of the incoming input event rate.

121





Chapter 6
gSPICE: Generic Feature-Based
Event Shedding

In the previous chapters, we proposed two white-box (i.e., pSPICE and hSPICE) and
one black-box (i.e., eSPICE) load shedding approaches. In the white-box approach,
the load shedder has access to the operator’s internal state, i.e., PMs. While in the
black-box approach, the operator’s internal state is not visible. A clear advantage of a
black-box shedding approach is that the shedding functionality can be easily added to
CEP operators with minimal overhead on a domain expert. In fact, there is no need to
modify the operator implementation. As a result, such a load shedder, that performs
shedding agnostic to the operator implementation, has a universal appeal. Therefore, in
this chapter, we focus on a black-box shedding approach that performs load shedding by
dropping events. Using a black-box shedding approach, only dropping events is possible
since the operator’s internal state is not revealed, i.e., the load shedder does not have
access to PMs.

So far, to predict the utility of events, we have used a limited set of features, such as
the event type and the event position within the window. However, other important
features may exist that help in accurately predicting the utility of an event. As a result,
in this chapter, we propose to explore a new set of features that not only considers
features such as event type but also the following two features: predecessor pane and
event content. We define the predecessor pane of event e as the sequence of events that
occur before event e in the input event stream. We consider the predecessor pane an
important feature since it indicates the current progress of PMs within the operator. We
also consider the event content an important feature since, in CEP, events in patterns
are correlated while fulfilling certain predicates on the event content (i.e., the event
attributes).

As a result, in this chapter, we propose a novel black-box load shedding approach for
CEP systems, called gSPICE. In overload cases, to maintain a given latency bound,
gSPICE drops events either from windows or from the input event stream of a CEP oper-
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ator, i.e., it sheds events on two granularities: the window and the stream granularities.
To minimize the shedding impact on QoR, gSPICE drops events with the lowest utilities,
where it uses a probabilistic model to predict event utilities. The probabilistic model
in gSPICE depends on the following features to predict event utilities: the predecessor
pane, event content, event type, and event position within the window (when dropping
events on the window granularity).

Using complex features such as the predecessor pane and event content to predict the
event utility, on the one hand, might improve the prediction accuracy. But on the other
hand, it might result in a heavyweight model that consumes high computational time to
predict event utilities. gSPICE predicts event utilities with good accuracy while keeping
the shedding overhead considerably low.
In particular, our contributions in this chapter are as follows:

• We propose gSPICE, a black-box load shedding approach for CEP systems, that,
in overload cases, drops events either from windows or from the input event stream
of a CEP operator (i.e., it sheds events on the window and the stream granularities)
to maintain a given latency bound. gSPICE uses a probabilistic model to predict
event utilities depending on the following features: 1) event type, 2) predecessor
pane, 3) event content, and 4) event position within the window (when shedding
events on the window granularity).

• We develop a data structure that depends on the Zobrist hashing [Zob90] to
efficiently store the event utilities. This data structure enables gSPICE to perform
load shedding in a lightweight manner.

• We also propose to use well-known machine learning approaches, e.g., decision
trees or random forests, to estimate event utilities.

• We perform extensive evaluations on several real-world and synthetic datasets and
a representative set of CEP queries to show the performance of gSPICE, w.r.t.
its impact on QoR, and compare its performance with state-of-the-art shedding
approaches.

The rest of this chapter is structured as follows. Section 6.1 presents the used system
model. In Section 6.2, we explain in detail how gSPICE predicts the event utilities and
performs load shedding. Section 6.3 presents the obtained evaluation results. Finally,
we conclude this chapter in Section 6.4.

6.1 System Model

In this chapter, we rely on a system model similar to the system model presented in
Section 2.1. We assume a window-based CEP system consisting of one or more operators.
An operator detects multiple patterns Q (i.e., multi-query). Each pattern qi ∈ Q
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has a weight wqi , reflecting its importance. In gSPICE, we extend the system model
presented in Section 2.1 by introducing the predecessor pane and the type frequency in
the predecessor pane. To clarify the system model, let us first introduce the following
example.

Example 1. In a retail management application, every item is equipped with an
RFID tag where there are three primitive events that may be generated for each item
by RFID readers [WDR06]: 1) a shelf reading event (R) if an item is removed from a
shelf, 2) a counter reading event (C) if the item is checked out on the counter, 3) an exit
reading event (X) if the item is carried outside the retail store. To detect shoplifting, a
CEP operator matches a pattern q which correlates events generated by RFID readers.
Pattern q is defined as follows: generate a complex event if there exists a shelf reading
event R and an exit reading event X for an item M but there is no counter reading
event X for the item M within a certain time, e.g., two hours (i.e., the window length
equals two hours). We may write this pattern as a sequence event operator with the
negation event operator [CM94; WDR06]:

pattern seq (R; !C;X)

where R.ID = C.ID and R.ID = X.ID

within 2 hours

In this example, the set of patterns Q = {q} and the event types represent the shelf
reading R, counter reading C, and exit reading X, hence T = {R,C,X}. Moreover, in
this example, there is only one event attribute which is the item ID, hence the set of
event attributes Ee = {ID}. Let us assume an event input stream Sin with the following
events, as depicted in Figure 6.1: X4 R3 X2 C1 R0, where event Ei is of type E at
position i in the input event stream, i.e., i defines the event order in the input event
stream Sin. Assume that a window w contains the events X4 R3 X2 C1 R0. Processing
events in window w to detect pattern q is performed as follows: Processing event R0

opens a PM γ1, which is abandoned when processing event C1 in the window w since the
event type C is a negated event in pattern q, assuming that R0.ID = C1.ID. Events
R0 and C1 contribute to PM γ1 (i.e., R0, C1 ∈ γ1 ), as events R0 and C1 update the
progress (i.e., the state) of PM γ1. Processing event X2 in window w does not result in
any match since there exists no open PMs, hence event X2 does not contribute to any
PM. The event R3 opens a new PM γ2 which completes and becomes a complex event
when processing event X4 in window w, assuming that R3.ID = X4.ID. This means
that processing window w results in detecting only one complex event cplx34 = (R3, X4)

from events R3 and X4. We refer to R3 and X4 as the events that contribute to the
complex event cplx34. Moreover, we refer to cplx34 as the complex event of pattern q,
denoted by cplx34 ⊂ q.
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Figure 6.1: Predecessor pane.

6.1.1 Predecessor Pane

We now define the predecessor pane. The predecessor pane (denoted by ωe) of an event
e represents a set of a certain number of events that occur before event e in the input
event stream Sin. The number of events in the predecessor pane is determined by the
length of the predecessor pane (denoted by Lω). The length of the predecessor pane
might be either time-based or count-based. For example, a pane of length 5 seconds
(Lω = 5 seconds), i.e., the predecessor pane ωe of an event e contains all events within
the last 5 seconds from event e. A pane of length 100 events (Lω = 100 events),
i.e., the predecessor pane ωe of an event e contains the last 100 events that occurred
before event e in the input event stream Sin. Without loss of generality, to simplify the
presentation, next, we will assume that the predecessor pane length Lω is count-based if
not otherwise stated. The predecessor pane ωej of event ej is formally defined as follows:
ωej = {ei : ei ∈ Sin & j − Lω ≤ i < j}, where i and j represent the event order in the
input event stream Sin.

Figure 6.1 depicts an example of input event stream Sin and the predecessor pane of
event X4. The pane is of length four, i.e., Lω = 4 events. In the figure, the predecessor
pane ωX4 contains events R0, C1, X2, and R3, i.e., ωX4 = {R0, C1, X2, R3}.
Type Frequency in Predecessor Pane. Next, we define the type frequency in

the predecessor pane. Type Frequency (denoted by Fe) in the predecessor pane ωe of an
event e is a sequence representing the number of occurrences of each event type in the
predecessor pane ωe. Hence, Fe = (FT1 , FT2 , ..., FTm), where FTi represents the number
of occurrences (i.e., frequency) of event type Ti ∈ T in the predecessor pane ωe. More
formally, for an event e, the type frequency Fe in the predecessor pane ωe is defined as
follows:

Fe = (FTi : ∀ Ti ∈ T, FTi = |{e′ : e′ ∈ ωe ∧ Ti = Te′}|).

We may get the value FTi in type frequency Fe as follows: FTi = Fe(Ti). In Figure 6.1,
in the predecessor pane ωX4 , there are two events of event type R, one event of type C,
and one event of type X. Therefore, the type frequency in the predecessor pane ωX4

is defined as follows: FX4 = (FR, FC , FX) = (2, 1, 1), where FR = FX4(R) = 2, FC =
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FX4(C) = 1, FX = FX4(X) = 1.
gSPICE is a black-box load shedding approach, where the CEP operator only reveals

the detected complex events. Additionally, gSPICE has access to events in the input
event streams Sin, where set T = {T1, T2, ..., Tm} represents the set of all event types in
the input event stream.

6.2 gSPICE

In this section, we present in detail our proposed load shedding approach that is called
gSPICE. gSPICE has a similar architecture to eSPICE (cf. Section 4.2). Similarly to
eSPICE, upon overload, in gSPICE, the overload detector computes the drop amount
(denoted by ρ) and the drop interval. Then, it sends a drop command to the load shedder
(LS) to drop ρ% from each drop interval to prevent the violation of the given latency
bound (LB). LS drops events with the lowest utilities, where it gets the utilities from the
model. In gSPICE, the computation of the drop amount ρ and drop interval is realized
similarly to how they are realized in eSPICE (cf. Chapter 4). Therefore, in this chapter,
we focus on predicting the event utilities and performing efficient event shedding.

gSPICE drops events either from windows or from the input event stream Sin of a CEP
operator, i.e., it drops events on the window and stream granularities. Dropping events
on the stream granularity implies that an event e is dropped from all windows to which
the event e belongs. On the other hand, dropping events on the window granularity
implies that events are dropped from windows individually, where an event might be
dropped from a window, while it is processed in other windows. To minimize the negative
impact of dropping events on QoR, gSPICE must drop those events that have the lowest
utilities. Next, we first determine the features that are important to predict event utility
in gSPICE. Then, we explain the way gSPICE predicts the event utilities. Finally, we
show how load shedding in gSPICE is performed. As mentioned above, gSPICE drops
events on two granularities, namely, the stream and window granularities, where we first
focus on the stream granularity. Later, we discuss the needed modifications to perform
shedding in gSPICE on the window granularity.

6.2.1 Event Utility

gSPICE depends on three features to predict utility (denoted by Ue) of an event e in the
input event stream Sin: 1) event type Te ∈ T, 2) type frequency Fe in the predecessor
pane ωe, and 3) event attributes Ee (i.e., the event content). Event attributes are
important features for predicting the event utility since a CEP pattern usually correlates
events that contain attributes that fulfill specific conditions. In Section 6.1, Example 1,
the pattern q matches events with the same ID (i.e., ID is an event attribute). Therefore,
event attributes might have a considerable influence on the event utility. We consider
only attributes with numerical values since more complex attributes (e.g., text or images)
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might considerably increase the load shedding overhead, thus adversely impacting QoR.
Event type Te and type frequency Fe together represent important features to predict the
event utility Ue as well. Type frequency Fe determines the importance of event e of type
Te since the type frequency (derived from the predecessor pane) contains information
on events that happen before event e in the input event stream Sin. Thus, it gives an
indication of the number of open PMs and the current progress of these PMs (i.e., states
of these PMs). That, in turn, indicates the number of PMs to which event e of type Te
may contribute, hence the number of complex events to which event e might contribute.

For example, using the shoplifting query in Example 1 (cf. Section 6.1), Figure 6.2
depicts examples of two different predecessor panes of length Lω = 4 events for the event
X4. In this example, let us assume that there are at most four events before the event X4

in windows that contain event X4, i.e., event X4 might contribute only to PMs that are
opened by the latest four events before event X4. In Figure 6.2(a), the predecessor pane
of event X4 contains four events of type R (i.e., R0, R1, R2, R3) where each event of
type R opens a new PM. Since there are no events of type C before event X4, event X4

has a high probability to contribute to an open PM and results in detecting a complex
event. Therefore, event X4 should have a high utility. In Figure 6.2(b), there are three
events of type R (i.e., R0, R1, R2) and one event of type C (i.e., C3) in the predecessor
pane of event X4. In this figure, event C3 might abandon an already open PM. As a
result, if events C3 and X4 are generated for the same item M (i.e., C3.ID = X4.ID),
event X4 will not contribute to any PM since the PM that event X4 might contribute
to is abandoned by event C3. Hence, in this case, event X4 is not important, and its
utility should be low. However, if events C3 and X4 are generated for different items
(i.e., C3.ID 6= X4.ID), event X4 will contribute to an open PM and results in detecting
a complex event. Hence, X4 should be assigned a high utility value. As a result, in
the above example, if the number of events of type C increases, the utility of event X4

might decrease.

Another reason for considering type frequency Fe to predict the event utility is the
following. For an event e, the value of event attributes Ee might be influenced by the
occurrence of other events before event e in the input event stream Sin, i.e., in the
predecessor pane ωe of event e. For example, in a stock market application, a change in
the stock quote of company A may influence the stock quote of company B within a
certain time, i.e., the occurrence of an event of type A within the predecessor pane ωe
of an even e of type B (i.e., Te = B) might influence the attribute values of event e of
type B. As event attributes have an important impact on determining the event utility
that implies that the predecessor pane also has an important impact on determining the
event utility.

As a result, we write the utility Ue of event e as a function (called utility function) of
these three features (i.e., event type Te ∈ T, type frequency Fe in the predecessor pane
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X4 R3 R2 R1 R0

ωX4(a)

X4 C3 R2 R1 R0

ωX4(b)

Lω = 4 events

Figure 6.2: Importance of the predecessor pane.

ωe, and event attributes Ee) as shown in Equation 6.1:

Ue = f(Te, Fe,Ee) (6.1)

6.2.2 Predicting Event Utility

Now, we explain how to predict the event utility Ue, i.e., build the utility function shown
in Equation 6.1. gSPICE predicts the event utility depending on gathered statistics.
Therefore, next, we first show how gSPICE gathers statistics and uses them to predict
event utilities. Then, we explain the way gSPICE handles the predicted utilities. Let us
first introduce the following simple examples.

Example 2. A CEP operator matches the pattern q = seq(A;B). Assume that the
input event stream contains only two event types A and B, and events have only a single
attribute Ee, i.e., Ee = {Ee}. Moreover, assume that a predecessor pane of length 3
events (i.e., Lω = 3) is used.

6.2.2.1 Gathering Statistics

To predict the value of the utility function f , gSPICE gathers statistics from the already
processed events in the input event stream Sp. For each event e ∈ Sp, gSPICE builds an
observation on the set of complex events (denoted by Me) to which event e contributes.
The observation (denoted by obe) is of the following form: obe〈Te, Fe,Ee,Me〉 where Te
is the type of event e, Fe represents the type frequency in the predecessor pane ωe, and
Ee is the set of attributes of event e. The observations obe are stored in a set called the
observation set Se, i.e., obe ∈ Se. In Figure 6.3, Table 6.1 shows observations gathered for
pattern q in Example 2. To simplify the presentation, the table shows observations only
for event type A. In the table, FA and FB represent the frequency of event types A and
B in the type frequency Fe in the predecessor pane ωe, respectively, i.e., FA = Fe(A)

and FB = Fe(B).
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Te FA FB Ee Me

A 1 2 5 {cplx1}
A 1 2 5 {}
A 1 2 5 {cplx2}
A 2 1 7 {}
A 2 1 7 {cplx3}
A 2 1 8 {}
A 2 1 8 {}
A 2 1 8 {cplx4}

Table 6.1: Observations Se.

Te FA FB Ee M O Ue

A 1 2 5 2 3 0.67

A 2 1 7 1 2 0.50

A 2 1 8 3 1 0.33

Table 6.2: Aggregated Observations Sg and
the predicted utilities.

Figure 6.3: Statistic gathering and utility calculation.

gSPICE aggregates observations that have the same values for event types Te, type
frequency Fe in the predecessor pane, and event attributes Ee into a set of aggre-
gated observations (denoted by Sg). An observation obg ∈ Sg is of the following form:
obg〈Te, Fe,Ee,M,O〉 ∈ Sg. M corresponds to the occurrences of complex events in
the set Me in observations obe〈Te, Fe,Ee, ∗〉 ∈ Se, where M represents the sum of the
occurrences of the complex events in Me multiplied by their weights, as complex events
have weights reflecting their importance. O represents the number of occurrences of
these observations obe〈Te, Fe,Ee, ∗〉 ∈ Se. The sign ∗ is used as a wildcard for the set
of complex events Me in the observations obe ∈ Se. The following equation formally
formulates how gSPICE builds the aggregated observations.

obg〈Te, Fe,Ee,M,O〉 ∈ Sg :

M =
∑

obe〈Te,Fe,Ee,Me〉∈Se

∑
cplx∈Me & cplx⊂qi

wqi

O = |{obe〈Te, Fe,Ee,Me〉 : obe〈Te, Fe,Ee,Me〉 ∈ Se}|

(6.2)

In Figure 6.3, Table 6.2 shows the aggregated observations as a result of aggregating
observations in Table 6.1. For example, in Table 6.1, an event e of type Te = A with a
type frequency Fe = (FA, FB) = (1, 2) and event attribute Ee = 5 occurs three times
and contributes two times to a single complex event (i.e., cplx1 and cplx2). Hence, O = 3

and M = 2, where cplx1 ⊂ q and cplx2 ⊂ q, assuming that the pattern’s weight wq = 1.
That results in the following aggregated observation in Table 6.2: obg〈A, (1, 2), {5}, 2, 3〉.

Please note that, as we mentioned above, if a query contains the negation event
operator, a PM is abandoned when the negated event matches the pattern. Hence, in
this case, no complex events are detected. Therefore, to capture the importance of the
negated events, we assume that the CEP operator forwards the abandoned PMs to
gSPICE to learn about the utility of these negated events.
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6.2.2.2 Utility Prediction

After gathering statistics from η observations, gSPICE uses these observations to predict
the utility function f , hence the event utility Ue. Equation 6.3 shows the way gSPICE
computes the event utility Ue from the aggregated observations:

Ue = f(Te, Fe,Ee) =
M

O
: obg〈Te, Fe,Ee,M,O〉 ∈ Sg (6.3)

To compute the utility Ue of an event e of type Te, with type frequency Fe, and
event attributes Ee, for an aggregated observation obg〈Te, Fe,Ee,M,O〉 ∈ Sg, gSPICE
divides M in the aggregated observation obg by the number of occurrences O in this
aggregated observation obg. Table 6.2 also shows the computed utilities from the
aggregated observations. For example, in the table, in the aggregated observation
obg〈A, (1, 2), {5}, 2, 3〉, M = 2 and O = 3. Therefore, the utility Ue of an event e of
type Te = A with a type frequency Fe = (FA, FB) = (1, 2) and event attribute Ee = 5

is calculated as follows: Ue =
2

3
= 0.67.

The distribution of events in the input event stream may change over time, where the
predicted event utilities might become inaccurate. To keep the predicted event utilities
accurate, the predicted utilities may be either periodically recompute or only when the
distribution of events in the input event stream changes by a certain threshold.
To use the predicted event utilities Ue during load shedding, gSPICE handles the

predicted utilities in the following two ways. 1) gSPICE stores the utilities in hash
tables. We refer to this approach as gSPICE-SH. 2) gSPICE trains a well-known machine
learning model (e.g., a decision tree or a random forest) with the predicted utilities to
estimate the utility function. We refer to this approach as gSPICE-SM.

6.2.2.3 gSPICE-SH

In gSPICE-SH, we store the event utilities in a utility table (denoted by UT ). The
data structure used to store the utility table UT consists of hash tables. For each
event type Te ∈ T, there is a hash table that stores the event utilities for all observed
combinations of the type frequency Fe in the predecessor pane ωe and event attributes
Ee. Hence, the utility of an event e of type Te is stored in the utility table as follows:
Ue = f(Te, Fe,Ee) = UT [Te][K], where the hash key K is computed from the type
frequency Fe and event attributes Ee. The value of event attributes Ee might occupy a
wide range. Similarly, an event type Ti ∈ T might have a value between zero and Lω in
the type frequency Fe, i.e., 0 ≤ Fe(Ti) ≤ Lω. That might result in a huge number of
combinations of different event attributes Ee and type frequency Fe, especially if the
length Lω of the predecessor pane is large. That might considerably increase the required
memory to store the utilities. To reduce the needed memory to store the utility table
UT , we group the successive values of event attributes and the successive frequencies
in the type frequency using bins of fixed sizes [KKP07]. To simplify the presentation,
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we assume that a bin of size one is used for event attributes and type frequency if not
otherwise stated.

To get the hash key K, hence the utility, we need to implement a hash function that
combines the type frequency and event attributes. One way to implement the hash
function is by using a function that iterates over event types in the type frequency
Fe and over the event attributes Ee to compute the hash key K. The computational
overhead of this approach depends on the number of event types in the type frequency
and on the number of event attributes. The number of event types might be high, hence
the computational overhead to get the key K might be high. To reduce the overhead of
computing the hash key K, we use the Zobrist hashing [Zob90] as a hashing function to
compute the key K.

Zobrist hashing depends on bitwise XOR operations (denoted by ⊕) to compute the
hash key [Zob90]. To use the Zobrist hashing, we do the following. 1) We generate big
unique random numbers for each possible frequency of an event type in the type frequency
Fe. Hence, for each event type Ti ∈ T, we generate the following set RTi of random
numbers: RTi = {RlTi : 0 ≤ l ≤ Lω} where Ti ∈ T and RlTi represents a big unique
random number. Please note that an event type Ti might at most occur Lω times in the
type frequency Fe, i.e., 0 ≤ Fe(Ti) ≤ Lω. 2) We also generate big unique random numbers
for each possible range of each event attribute. Hence, for an event attribute Ee ∈ Ee, we
generate the following set REe of random numbers: REe = {RlEe : 0 ≤ l ≤ max(range)}
where Ee ∈ Ee and RlEe represents a big unique random number and max(range)

represents the maximum range an event attribute might have. 3) We use one hash
key K1 as a hash key for event types in the type frequency Fe. The hash key K1

is computed as follows: K1 =
⊕
R
FTi
Ti

: ∀ Ti ∈ T, FTi = Fe(Ti), R
FTi
Ti
∈ RTi . The

key K1 is computed by performing XOR operations between the random numbers
corresponding to the frequency of each event type in the type frequency. 4) We use a
second hash key K2 as a hash key for event attributes. The hash key K2 is computed as
follows: K2 =

⊕
RlEe : ∀ Ee ∈ Ee, l = rangeE , R

l
Ee
∈ REe , where rangeE represents the

corresponding range for the value of the event attribute Ee. Similar to computing K1,
the key K2 is computed by performing XOR operations between the random numbers
corresponding to the range values of each event attribute. 5) The hash keyK is computed
by performing an XOR operation between the hash keys K1 and K2, i.e., K = K1 ⊕K2.

To reduce the overhead of computing the hash key K, we continuously update the hash
key K1. We first compute the hash key K1 depending on all event types Ti ∈ T in the
type frequency Fe. Then, when the predecessor pane changes, for all changed frequencies
of event types in the type frequency, we remove the old values and add the new values
to the hash key. Since XOR is a self-inverse operation (e.g., X ⊕X = 0), to remove
an old value F ′Ti for the event type Ti in the type frequency F ′e, we need to perform
only a single XOR operation. Additionally, we need a single XOR operation to add the
new value FTi for the event type Ti in the type frequency Fe. Hence, for each changed
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frequency of an event type, we need two XOR operations, i.e., K1 = K1 ⊕R
F ′
Ti
Ti
⊕RFTiTi

,

where F ′Ti = F ′e(Ti), FTi = Fe(Ti) and R
F ′
Ti
Ti
, R

FTi
Ti
∈ RTi . Therefore, if the predecessor

pane changes by only one event (i.e., the predecessor pane shifts by one event), there is
a need for four XOR operations at max to update the hash key K1. That is because an
event type might be removed from the predecessor pane (i.e., needs two XOR operations)
and another event type might be added to the predecessor pane (i.e., needs two XOR
operations). As a result, to compute a new hash key K, there is a need at most to (4
+ |Ee|) XOR operations. That represents a considerable reduction in the overhead of
computing the hash key K, especially, in the case of a high number of event types.

6.2.2.4 gSPICE-SM

Another way to handle a huge number of predicted utilities is to use well-known machine
learning models where we might use a machine learning model to estimate the utility
function. In this case, the aggregated observations Sg are used as input training data to
the machine learning model, and the corresponding computed utility values (cf. Equation
6.3) are used as labels. After training the model, the produced trained model represents
the estimated utility function. Hence, to get the utility of an event e, gSPICE-SM
provides the trained model with the event type Te, type frequency Fe in the predecessor
pane, and event attributes Ee. The model returns the predicted utility value Ue.
Several machine learning models can be used to estimate the utility function, e.g.,

neural networks, decision trees, random forest, etc. However, machine learning models
usually impose considerable computational overhead to predict the event utility that
might not be tolerable for performing load shedding in CEP. Moreover, these models
have many parameters that need to be tuned, which increases the burden on a domain
expert. In gSPICE-SM, we use two machine learning models, namely, decision trees
[Qui93; ASm09] and random forests [Tin95], to estimate the utility function. Please note
that controlling the depth of trees in these models and other parameters, such as when
to split nodes, can control the needed memory size by these two models. In Section 6.3,
we show how good are these models in estimating the utility function and their imposed
computational overhead.

6.2.3 Utility Threshold

As we mentioned above, in overload cases, gSPICE must drop ρ% of events during every
drop interval (e.g., window) to maintain the given latency bound. To do that, gSPICE
uses the predicted event utilities to find a utility threshold uth that can be used to
drop the required percentage of events ρ. That is done in a similar way to predicting
utility threshold in Section 4.2.3. First, gSPICE uses the gathered statistics and the
predicted event utilities to compute the percentage of occurrences (denoted by Ou) of an
event utility u in the already processed event stream Sp in the gathered statistics, i.e.,
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Ou =
|{e : e ∈ Sp, u = Ue}|

|Sp|
. Then, gSPICE accumulates the percentage of occurrences

of event utilities Ou in ascending order to get the cumulative utility occurrences (denoted
by Ocu) as follows: Ocu =

∑
u′≤uOu′ . The cumulative utility occurrences Ocu represents

the percentage of events in the stream of already processed events Sp that have a utility
value u′ which is less than or equal to the utility u, i.e., u ≤ u′. Hence, to drop ρ% of
events from every drop interval, we may find the lowest cumulative utility occurrences
Ocu that is higher than or equal to ρ, and chooses the utility u as the utility threshold
uth, i.e., uth = u: Ocu ≥ ρ ∀ Ocu′ ≥ ρ ∧Ocu ≤ Ocu′ .

6.2.4 Load Shedding

In this section, we explain the way gSPICE uses the predicted event utilities and utility
thresholds to drop events from the input event stream Sin during overload to maintain a
given latency bound. Algorithm 7 formally defines how the load shedding is performed
in gSPICE.
For each event e in the input event stream Sin, before event e is processed by the

operator, gSPICE checks whether there is overload and a need to drop events. If there
is no overload, the event is processed by the operator (cf. Algorithm 7, lines 2-3).
Otherwise, the operator is overloaded and there is a need to drop events. In this case,
gSPICE must drop ρ% of events from the input event stream Sin in every drop interval
to maintain the given latency bound. Therefore, gSPICE first finds a utility threshold
uth that results in dropping ρ% of events using the cumulative utility occurrences as
we explained above. In case the event utilities are stored using the Zobrist hashing,
i.e., gSPICE-SH (cf. Algorithm 7, lines 4-10), gSPICE computes the hash key K by
XORing the hash key K1 for the type frequency Fe and the hash key K2 for the event
attributes Ee (cf. Algorithm 7, lines 5-6). Then, gSPICE gets the event utility Ue from
the utility table UT and compares the utility Ue with the utility threshold uth. If the
event utility Ue is less than or equal to the utility threshold, the event e is dropped
from the input event stream Sin (cf. Algorithm 7, lines 7-8). Otherwise, the event e is
processed normally by the operator. In case a machine learning model is used to estimate
the event utility, i.e., gSPICE-SM (cf. Algorithm 7, lines 11-15), gSPICE provides the
model with the event type, type frequency, and event attributes. The model returns
the predicted event utility Ue. Here again, if the event utility Ue is less than or equal
to the utility threshold uth, the event e is dropped from the input event stream Sin (cf.
Algorithm 7, lines 12-13). Otherwise, event e is processed by the operator.

6.2.5 Window Granularity

So far, we have explained how to predict the event utilities and perform load shedding on
the stream granularity. In this section, we show how to modify our proposed approach
to be able to perform shedding on the window granularity. As mentioned above, an
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Algorithm 7 Load shedder.

1: drop (e) begin
2: if !isOverloaded then // there is no overload hence no need to drop events.
3: return False

4: else if isZobrist then // using gSPICE-SH.
5: K2 =

⊕
Ee // computing K2 by XORing the event attributes Ee.

6: K = K1 ⊕K2 // K1 is continuously updated.
7: if UT [Te][K] ≤ uth then
8: return True

9: else
10: return False

11: else // using gSPICE-SM.
12: if model .getUtility(Te, F,Ee) ≤ uth then
13: return True

14: else
15: return False

16: end function

event in the input event stream might belong to several windows where windows may
overlap. Therefore, dropping on the window granularity implies that events are dropped
from each window individually, where an event might be dropped from a window while
it is still there in other windows. Performing load shedding on the window granularity
has the following advantage. The utility of events might be predicted in each window
individually. Hence, the event utility might be predicted more accurately compared to
predicting event utilities on the stream granularity since the window is more fine-grained
than the stream. However, predicting the event utility in each window might impose a
considerable overhead which might increase the negative impact of shedding on QoR.

As features to predict the utility Uwe of event e in a window w, we use the same features
that are used to predict the event utilities on the stream granularity, i.e., the event type
Te, type frequency Fe in predecessor pane ωe, and event attributes Ee. Additionally,
we use one more feature which is the event position (denoted by Pe) within window w

that represents an important feature since it captures the temporal correlation between
events (cf. Chapter 4). As a result, we represent the event utility Uwe in a window by
the following event utility function:

Uwe = f(Te, F,Ee, Pe) (6.4)

On the window granularity, gSPICE similarly performs all the following tasks as
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discussed on the stream granularity: predicting the event utilities using gathered statistics,
handling predicted utilities using the Zobrist hashing (denoted by gSPICE-WH) or well-
known machine learning models, e.g., decision trees and random forests, (denoted by
gSPICE-WM), predicting the utility threshold, and performing load shedding. Therefore,
we do not again explain them in this section. The window size might be large, hence the
number of positions within the window might be large. This might increase the needed
memory to store the utilities. To reduce the needed memory, here again, we use bins of
fixed size that groups successive window positions.

6.3 Performance Evaluations

In this section, we evaluate the performance of gSPICE by using several datasets and a
set of representative queries.

6.3.1 Experimental Setup

Here, we describe the evaluation platform, the baseline implementation, datasets, and
queries used in the evaluations. In this chapter, we use the same evaluation platform
as in Section 3.3.1. We compare the performance, w.r.t. QoR, of gSPICE with the
performance of hSPICE, eSPICE, pSPICE, and E-BL (cf. Chapter 3, Section 3.3.1),
where we rename E-BL to BL in this chapter. As hSPICE drops events either from
windows, i.e., hSPICEW, or from PMs, i.e., hSPICEPM (cf. Chapter 5), in this section,
we show the evaluation results for hSPICE by selecting the best results achieved by
hSPICEW or hSPICEPM.

Datasets. The distribution of event types might considerably impact the performance
of gSPICE. Therefore, to control the event distribution, we generate eight synthetic
datasets as shown in Table 6.3, where events are generated using an exponential distri-
bution. Datasets DS1, DS2, DS3, and DS4 contain events of three types: A, B, and C.
While datasets DS5, DS6, DS7, and DS8 contain events of six types: A, B, C, D, E,
and F . µX represents the average time (in seconds) between event instances of the event
type X. µX controls the percentage of each event type in these datasets. In Table 6.3,
we also show the average expected percentage (approximate values) of each event type
in the datasets. Moreover, all events in all datasets have an attribute V1 with uniformly
distributed values between 1 and 10. We also use the two real-world datasets presented
in Section 4.3.1. 1) The stock quote stream (NYSE dataset) from the New York Stock
Exchange (NYSE). This dataset contains stock events that have a change in their quote
by at least 0.4%. 2) The position data stream from a real-time locating system (RTLS
dataset) in a soccer game.

Queries. We employ seven queries that cover an important set of operators in CEP
as shown in Table 6.4: sequence, disjunction, sequence with Kleene closure, sequence
with negation, and sequence with any operators [CM94; CM10; WDR06]. In the table,
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µA µB µC µD µE µF A% B% C% D% E% F%

DS1 2.5 15 40 - - - 81.3 13.6 5.1 - - -
DS2 2.8 15 15 - - - 72.8 13.6 13.6 - - -
DS3 4 6 12 - - - 50 33.3 16.7 - - -
DS4 6 6 6 - - - 33.3 33.3 33.3 - - -
DS5 2.5 15 40 2.5 15 40 40.7 6.8 2.5 40.7 6.8 2.5
DS6 2.8 15 15 2.8 15 15 36.4 6.8 6.8 36.4 6.8 6.8
DS7 4 6 12 4 6 12 25 16.7 8.3 25 16.7 8.3
DS8 6 6 6 6 6 6 16.7 16.7 16.7 16.7 16.7 16.7

Table 6.3: Synthetic Datasets.

Ci represents the stock quote of company i, and Di represents the event of player i.
Queries Q1, Q2, and Q3 are executed over the synthetic datasets. While queries Q4, Q5,
and Q6 are executed over the NYSE dataset and they are the same as queries Q1, Q2,
and Q4, respectively, presented in Section 4.3.1. Q7 is executed over the RTLS dataset
and it is the same as Q6 presented in Section 4.3.1. We use the time-based sliding
window strategy and the same selection and consumption policies used in Section 3.3.1.

6.3.2 Experimental Results

Next, we evaluate the impact of gSPICE on QoR, particularly on the number of false
positives and false negatives, and compare its results with the results of hSPICE, eSPICE,
pSPICE, and BL. Moreover, we show the overhead of gSPICE and its ability to maintain
a given latency bound (LB). We first focus on the performance of gSPICE-SH and
gSPICE-WH, i.e., when Zobrist hashing is used to store event utilities. Later, we also
show the evaluation results of gSPICE when using a decision tree or a random forest.
If not noted otherwise, we employ the following settings. For all queries, we use a

time-based sliding window and a time-based predicate. For queries based on synthetic
data (i.e., Q1, Q2, and Q3), we use a window of length 250 seconds. For Q1 and Q3, a
new window is opened every 10 seconds (i.e., the slide size is 10 seconds). While for
Q2, a new window is opened every 20 seconds. For stock queries (i.e., Q4, Q5, and Q6),
we use a window of length 15 minutes and a slide of size 1 minute. Query Q7 (i.e., the
soccer query) uses a window of length 30 seconds and a slide of size 1 second. We stream
events to the operator from the datasets stored in files. We first stream events at input
event rates that are less or equal to the operator throughput µ (maximum service rate)
until the model is built. After that, we increase the input event rate to enforce load
shedding, as we will mention in the following experiments. The used latency bound
LB = 1 second. We configure all load shedding strategies to have a safety bound, where
they start dropping events when the event queuing latency is greater or equal to 80%
of LB, i.e., the safety bound equals 200 milliseconds. We execute several runs for each
experiment and show the mean value and standard deviation.
Several factors influence the performance of gSPICE, such as the event rate, event
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Queries on synthetic data

Q1

pattern seq(A;B;C)
where A.V1 < B.V1 and A.V1 +B.V1 < C.V1
within ws seconds

Q2

pattern seq(A;B;C) ∨ seq(D;E;F )
where (A.V1 < B.V1 and A.V1 +B.V 1 < C.V1)
or (D.V1 < E.V1 and D.V1 + E.V 1 < F.V1)
within ws seconds

Q3

pattern seq(A;B+;C)
where A.V1 +

∑
i<j Bi.V1 < Bj .V1 and A.V1 +

∑
B.V1 < C.V1

within ws seconds
Stock queries

Q4

pattern seq(C1;C2; ..;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws minutes

Q5

pattern seq(C1;C1;C2;C3;C2;C4;C2; C5;C6;C7;C2;C8;C9;C10)
where all Ci rise by x% or all Ci fall by x%, i = 1..10
within ws minutes

Q6

pattern seq(C1;C2;C3;C4; !C5;C6;C7;C8;C9;C10)
where all Ci rise by x% and C5 does not rise by y%
or all Ci fall by x% and C5 does not fall by y%
, i = 1..10 and i 6= 5

within ws minutes
Soccer query

Q7

pattern seq(S;any(3, D1, D2, .., Dm))
where S possesses ball and distance(S,Di) ≤ x meters

, i = 1..m and m is the number of players in a team
within ws seconds

Table 6.4: Queries.
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(c) Q1: relaxed QoR
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(d) Q3: strict QoR

Figure 6.4: Synthetic: Impact of event rate on false negatives.

distribution, and the predecessor pane length Lω. Therefore, next, we analyze the
performance of gSPICE with these different factors.

6.3.2.1 Results on Synthetic Data

To evaluate the performance of gSPICE, we run experiments with queries Q1, Q2, and
Q3 with event rates 120%, 140%, 160%, 180%, and 200% of the operator throughput µ
(i.e., the input event rate is higher than the operator throughput µ by 20%, 40%, 60%,
80%, and 100%). For queries Q1 and Q3, we use the dataset DS1. While for query Q2,
we use the dataset DS5. For all queries, we use a predecessor pane of length 10 events,
i.e., Lω = 10.
Impact on False Negatives. Figure 6.4 shows the shedding impact with different

event rates on the percentage of false negatives for all queries suing strict QoR. Moreover,
in the figure, we show the percentage of false negatives using relaxed QoR for query
Q2. We observe similar results for Q1 and Q3 when using relaxed QoR, hence we do not
show them. While Figure 6.5 depicts the ratio of dropped events or PMs (for pSPICE)
with different event rates for queries Q1 and Q3. The drop ratio indicates the overhead
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Figure 6.5: Synthetic: Impact of event rate on drop ratio.

of a load shedding strategy. We observed similar results, w.r.t. drop ratio, for Q2, hence
we do not show them. In both figures, the x-axis represents the event rate. The y-axis in
Figure 6.4 represents the percentage of false negatives, while, in Figure 6.5, it represents
the ratio of dropped events/PMs.

Increasing the event rate increases the overload on the operator, thus increasing the
need to drop more events. Dropping more events might increase the percentage of false
negatives. Figure 6.4a depicts results for Q1when using strict QoR. In the figure, the
impact of gSPICE-SH on false negatives is almost negligible irrespective of the used
event rate. However, the percentage of false negatives caused by gSPICE-WH increases
from 5% to 13% when increasing the event rate from 120% to 200%. The reason behind
this is that gSPICE-WH has a higher overhead than gSPICE-SH, where, for an event
e in the input event stream, gSPICE-WH must take the shedding decision for event e
individually within each window to which event e belongs. This is also shown in Figure
6.5a where gSPICE-WH drops almost up to 1.75 times more events than gSPICE-SH. In
Figure 6.4a, hSPICE performs, w.r.t. false negatives, very good where it has almost zero
impact on the false negatives. The percentage of false negatives caused by eSPICE, BL,
and pSPICE increases from 19% to 53%, 11% to 45%, and 8% to 32% when increasing
the event rate from 120% to 200%, respectively. That shows that eSPICE suffers from
a relatively high percentage of false negatives. The reason behind this is that eSPICE
assumes that there exists a correlation between event types in the dataset. However,
the event types in the used dataset (i.e., DS1) do not have correlations. The results
show that gSPICE-SH significantly outperforms, w.r.t. false negatives, gSPICE-WH,
eSPICE, BL, and pSPICE for Q1. That is because gSPICE-SH uses complex features,
such as the type frequency and event attributes, that improve the prediction accuracy.
The performance, w.r.t. false negatives, of hSPICE is comparable to the performance
of gSPICE-SH. Although gSPICE-SH uses complex features, Figure 6.5a shows that
gSPICE-SH has a relatively low drop ratio compared to other load shedding approaches,
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(a) Q1: strict QoR
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(b) Q2: strict QoR

Figure 6.6: Synthetic: Impact of event rate on false positives.

where its drop ratio is comparable to the drop ratio of BL. That shows that gSPICE-SH
is a lightweight load shedding approach.

The results for Q2 using strict QoR are depicted in Figure 6.4b. The percentage
of false negatives caused by gSPICE-SH only slightly increases when increasing the
event rate. In the figure, hSPICE has almost no impact on the false negatives. While
the percentage of false negatives caused by gSPICE-WH, eSPICE, BL, and pSPICE
increases when increasing the event rate. Using relaxed QoR, the impact of gSPICE-SH,
gSPICE-WH, and BL on the percentage of false negatives decreases compared to the
case when using strict QoR, as depicted in Figure 6.4c. The performance of eSPICE
only slightly improves when using relaxed QoR. Using relaxed QoR might improve the
performance, w.r.t. QoR, of a load shedding approach since it does not require that
the exact event instances match the defined pattern, as is the case in the strict QoR.
Figure 6.4d shows results for query Q3 when using strict QoR. The figure shows that
gSPICE-SH, again, has a good performance where it results in almost zero false negatives.
Similar to the results of Q1, the results show that gSPICE-SH outperforms, w.r.t. false
negatives, gSPICE-WH, eSPICE, BL, and pSPICE for Q2 and Q3.

Impact on False Positives. Shedding events might result in false positives when
using strict QoR. However, when using relaxed QoR, shedding events might result in false
positives only in the case of using the negation event operator (cf. Chapter 2, Section
2.2). As queries Q1, Q2, and Q3 do not use the negation event operator, shedding events
for these queries does not cause false positives when using relaxed QoR. Therefore, next,
we show the impact of gSPICE on false positives only when using strict QoR. Figure 6.6
shows the shedding impact on the false positives for queries Q1 and Q2. In the figure,
the x-axis represents the event rate, while the y-axis represents the percentage of false
positives. We observe similar results for Q3, hence we do not show them.

Figure 6.6a depicts results for Q1 showing that the percentage of false positives caused
by gSPICE-SH, gSPICE-WH, and BL increases when increasing the event rate. However,
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(a) Q4: strict QoR
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(b) Q5: strict QoR
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(c) Q6: strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 n

eg
at

iv
es gSPICE-SH

gSPICE-WH
hSPICE

eSPICE
BL
pSPICE

(d) Q6: relaxed QoR

Figure 6.7: Stock: Impact of event rate on false negatives.

the impact of hSPICE, eSPICE, and pSPICE on false positives in Q1 is negligible,
as shown in Figure 6.6a. hSPICE and eSPICE outperforms, w.r.t. false positives,
gSPICE-SH since both hSPICE and eSPICE, in contrast to gSPICE-SH, consider the
order of events in windows when predicting the event utilities, which has a considerable
impact on the false positives. Considering event orders enables hSPICE and eSPICE to
assign to event instances of the same event type different utilities depending on their
probability to match the pattern, where event instances that are more likely to match
the pattern are assigned higher utilities. Figure 6.6b shows that the results for Q2 have
similar behavior.

6.3.2.2 Stock Results

Now, we show the results obtained from evaluating gSPICE over the NYSE dataset.
We run experiments with queries Q4, Q5, and Q6, where gSPICE uses a predecessor
pane of length 50 events, i.e., Lω = 50. Moreover, we stream the NYSE dataset to the
operator using the following input event rates: 120%, 140%, 160%, 180%, and 200% of
the operator throughput µ.
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Impact on False Negatives. Figure 6.7 shows the impact of load shedding on false
negatives for queries Q4, Q5, and Q6 when using different event rates. The figure shows
results for all queries when using strict QoR and the results for Q6 when using relaxed
QoR. We observe similar results for Q4 and Q5 when using relaxed QoR, hence we do
not show them. In the figure, the x-axis represents the event rate, while the y-axis
represents the percentage of false negatives.

Figure 6.7a shows results for Q4 when using strict QoR. The percentage of false
negatives caused by the load shedders increases when increasing the event rate. The
percentage of false negatives caused by gSPICE-SH increases from 6% to 24% when the
event rate increases from 120% to 200%. gSPICE-SH performs, w.r.t. the percentage of
false negatives, better than all other load shedders when the event rate is higher than
180%. The percentage of false negatives caused by hSPICE is almost zero when the
event rate is lower than 140%. After that, it increases to reach 32% when the event rate
is 200%. For other load shedders, gSPICE-WH, BL, eSPICE, pSPICE, the percentage
of false negatives increases from 36% to 62%, 43% to 82%, 7% to 49%, and 13% to
82% when the event rate increases from 120% to 200%, respectively. Again, the results
show that using the type frequency and event attributes in gSPICE-SH improves the
accuracy of predicted event utilities. However, the performance, w.r.t. false negatives,
of gSPICE-SH and gSPICE-WH is worse than their performance when using synthetic
data. That is because, in Q4, gSPICE matches stock events that might have an increase
or decrease in their quotes (i.e., attribute values). Hence in Q4, the event attributes
provide less useful information to predict the event utilities compared to event attributes
in queries on synthetic data. The results show that gSPICE-SH performs, w.r.t. false
negatives, better than gSPICE-WH, BL, eSPICE, and pSPICE by up to 6, 7.2, 2, and
3.4 times, respectively. Moreover, for high event rates, gSPICE-SH outperforms hSPICE,
where gSPICE-SH has a better performance than hSPICE by up to 1.3 times.

The results for query Q5 show similar behavior to Q4, as depicted in Figure 6.7b.
However, the figure shows that the performance, w.r.t. false negatives, of gSPICE-SH
for Q5 is worse than its performance for Q4. The reason behind this is that in query
Q5 event types repeat. For two events e1 and e2 of the same type that repeats in Q5

(i.e., Te1 = Te2), even with the same type frequency F and event attributes Ee (i.e.,
Ee1 = Ee2), the match probability of event e1 and e2 might be different depending on
their position in query Q5. However, for gSPICE-SH both events e1 and e2 get the
same utility value since the following features are the same for both events e1 and e2:
Te1 = Te2 , the same type frequency F , and Ee1 = Ee2 . That may impact the ability
of gSPICE-SH to accurately predict the event utilities. Hence, it might influence its
impact on QoR. Figure 6.7b shows that gSPICE-SH outperforms, w.r.t. false negatives,
gSPICE-WH, BL, and pSPICE irrespective of the used event rate. However, gSPICE-SH
outperforms eSPICE only with high input event rates. Moreover, the figure shows
that hSPICE performs very well with the query Q5, where it outperforms gSPICE,
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(a) Q4: strict QoR

120 140 160 180 200
% event rate

0
20
40
60
80

100

%
 fa

lse
 p

os
iti

ve
s gSPICE-SH

gSPICE-WH
hSPICE

eSPICE
BL
pSPICE

(b) Q6: strict QoR

Figure 6.8: Stock: Impact of event rate on false positives.

irrespective of the used event rate.

Figures 6.7c and 6.7d show results for Q6 using strict and relaxed QoR, respectively.
Figure 6.7c shows that the percentage of false negatives for all load shedders, except
hSPICE, increases when increasing the event rate. The performance of gSPICE-SH and
gSPICE-WH with Q6 is worse than their performance with Q4 due to the following.
Since Q4 contains the negation event operator, gSPICE might assign to event types in Q6

that are before the negated event type (i.e., C5) higher utilities than the event types that
are after the negated event type. That might negatively influence the ability of gSPICE
to correctly drop events, thus, increasing its impact on QoR. Figure 6.7c shows that
eSPICE outperforms, w.r.t. false negatives, gSPICE-SH with low input event rates. For
an input event rate that is equal to or higher than 160%, the performance of gSPICE-SH
is comparable to the performance of eSPICE. hSPICE has almost zero impact on the
percentage of false negatives. The results show that gSPICE-SH has considerably better
performance, w.r.t. false negatives, compared to gSPICE-WM, BL, and pSPICE. When
using relaxed QoR, the percentage of false negatives caused by gSPICE-WH, BL, and
pSPICE considerably decreases, as depicted in Figure 6.7d. In this case (i.e., using
relaxed QoR), gSPICE-WH outperforms BL and, for high event rates, it outperforms
pSPICE as well. The percentage of false negatives caused by gSPICE-SH and eSPICE
only slightly decreases compared to the case when using strict QoR.

Impact on False Positives. Figure 6.8 shows the percentage of false positives for
queries Q4 and Q6 using strict QoR. We observed similar results for Q6, hence we do not
show them. In the figure, the x-axis represents the event rate, while the y-axis represents
the percentage of false positives.

The percentage of false positives caused by gSPICE-SH and eSPICE slightly increases
when increasing the event rate, as depicted in Figure 6.8a. The percentage of false
positives caused by gSPICE-WH slightly decreases when increasing the event rate.
Moreover, the figure also shows that the percentage of false positives caused by BL
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(b) Q7: false positives

Figure 6.9: Soccer: Impact of event rate on QoR.

slightly increases when the event rate increases from 120% to 140%. After that, the
percentage of false positives decreases when the event rate increases. That is because
gSPICE-WH and BL result in a high number of false negatives with high event rates. A
high number of false negatives may imply that only a small number of complex events
are detected that may result in a low percentage of false positives. The results for query
Q5 show similar behavior to the results of Q4, as depicted in Figure 6.8b.

6.3.2.3 Soccer Results

Next, we analyze the performance of gSPICE on the RTLS dataset. Please note, since
event types in the RTLS dataset occur periodically (cf. 6.3.1), the predecessor pane ωe
may not help predict the event utilities as all event types will have, on average, the same
frequency in the type frequency F . We run experiments with query Q7 using a pane
of length 200 events, i.e., Lω = 200, and the following event rates: 120%, 140%, 160%,
180%, and 200% of the operator throughput µ. Figures 6.9a and 6.9b show the impact of
load shedding on false negatives and positives for Q7 when using strict QoR, respectively.
We observe similar results for the impact of shedding on false negatives when using
relaxed QoR, hence we do not show them. In both figures, the x-axis represents the
event rate. The y-axis in Figure 6.9a represents the percentage of the false negatives,
while in 6.9b, it represents the percentage of false positives.

The percentage of false negatives caused by the load shedders increases when the
increasing event rate (cf. Figure 6.9a). Q7 contains the any event operator, where any
event type (i.e., any defender from the opposite team) may match the pattern. Hence,
the event utilities are more spread out, and it is hard to accurately predict the utilities
for different event types. However, the figure shows that gSPICE-SH still outperforms,
w.r.t. false negatives, gSPICE-WH, BL, and eSPICE, irrespective of the used event
rate. Moreover, the performance of gSPICE-SH is similar to the performance of hSPICE.
However, the figure shows that pSPICE outperforms, w.r.t. false negatives, gSPICE-SH
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with high input event rates. Figure 6.9b shows that gSPICE-SH, gSPICE-WH, hSPICE,
and pSPICE result in almost zero false positives. The percentage of false positives
caused by eSPICE slightly decreases when the event rate increases, while the percentage
of false positives caused by BL slightly increases when increasing the event rate. The
results show that gSPICE-SH has a relatively good performance, w.r.t. QoR, even when
the predecessor pane ωe is not very useful for predicting the event utilities. That implies
that the other two features (i.e., the event type and event attributes) used to predict
the event utilities in gSPICE-SH are important features.

6.3.2.4 Impact of Predecessor Pane Length on QoR

The pane length may considerably impact the utility prediction. Hence, it may influence
the impact of gSPICE on QoR. For an event e, the pane length defines the number of past
incoming events that might have an impact on the importance of event e. If the length
of the predecessor pane is too small, gSPICE may not be able to capture the events that
influence the utility of the event e. On the other hand, if the length of the predecessor
pane is too large, the predecessor pane ωe might contain many unrelated events (i.e.,
noisy data) that might hinder accurately predicting the event utilities. Moreover, a large
predecessor pane might increase the overhead of gSPICE, thus negatively impacting
QoR. To evaluate the impact of pane length on the performance, w.r.t. QoR, of gSPICE,
we run experiments with Q2 and Q4, where we run Q2 over dataset DS5. For Q2, we
use a pane of the following lengths: 5, 10, 20, 40, 80, 320. While for Q4, we use a pane
of the following lengths: 10, 50, 100, 400, 800, 1600. Moreover, for both queries, we use
a fixed event rate of 180% of the operator throughput µ. Figure 6.10 depicts results
of gSPICE-SH for both queries using strict QoR. The results for gSPICE-WH show
similar behavior, hence we do not show them. In the figure, the x-axis represents the
predecessor pane length, while the y-axis represents the percentage of false negatives
and positives.

Figure 6.10a depicts the results for Q2, where it shows that increasing the pane length
results in increasing the percentage of false negatives. Moreover, the figure shows that
the impact of gSPICE-SH on the false positives decreases when slightly increasing the
pane length. However, gSPICE-SH results in more false positives with a large pane
length. For Q4, gSPICE-SH has a high impact on the false negatives and positives with
small pane lengths, as depicted in Figure 6.10b. However, increasing the pane length
thereafter barely changes the incurred false negatives and positives. As a result, we may
conclude that using the right pane length may influence the impact of gSPICE on QoR,
where the right pane length depends on the used query and data. Hence, to select the
best pane length that improves the performance, w.r.t. QoR, of gSPICE, we need to
profile the performance of gSPICE with different possible pane lengths.
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Figure 6.10: Impact of the predecessor pane length on QoR.

6.3.2.5 Impact of Event Distribution on QoR

The event distribution may considerably impact the performance, w.r.t. QoR, of gSPICE
due to the following. The predecessor pane ωe, which represents an important feature to
predict the event utility loses its importance when all event types occur with the same
frequency in a dataset. That implies, the type frequency F in the predecessor pane ωe
will almost always be the same. Hence, the type frequency will not help predict the
event utilities. To evaluate this, we run experiments with all queries on the synthetic
data. For all queries, we use a predecessor pane of length 10 events, i.e., Lω = 10, and a
fixed event rate of 140% of the operator throughput µ. As mentioned in Section 6.2.2,
gSPICE may use machine learning models to estimate the event utilities. Therefore, we
also show the performance of gSPICE when using a decision tree or a random forest to
predict the event utilities. We refer to gSPICE when events are dropped on the stream
level as gSPICE-ST and gSPICE-SF when using a decision tree and a random forest,
respectively. Similarly, We refer to gSPICE when events are dropped from windows as
gSPICE-WT and gSPICE-WF when a decision tree and a random forest are used to
predict the event utilities, respectively. In our experiments, the random forest consists of
ten trees. Figure 6.11 depicts the impact of gSPICE on QoR for query Q2, and Figure
6.12 shows the corresponding drop ratio. We observe similar behavior for other queries,
hence we do not show them.

Figures 6.11a and 6.11b depict the shedding impact on false negatives and positives
using strict QoR, respectively. We observe similar behavior for false negatives when
using relaxed QoR, hence we do not show them. In both figures, the x-axis represents
the used datasets. The y-axis in Figure 6.11a represents the percentage of false negatives,
while it represents the percentage of false positives in Figure 6.11b. The x-axis in Figure
6.12 represents the used dataset, while the y-axis represents the drop ratio. The results
show that for all variants of gSPICE, the percentage of false negatives is the lowest
when using the dataset DS5 and the highest when using the dataset DS8 (cf. Figure
6.11a). In dataset DS5, there exists a high difference between the frequency of event
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types. For example, events of type A are expected to form 40.7% of events in DS5, while
events of type C represent only 2.5% (cf. Table 6.3). This large difference between the
amount of each event type enables the predecessor pane ωe (i.e., the type frequency
F ) to contain more useful information that helps predict event utilities. While in DS8,
all event types occur at the same frequency on average. Hence, for dataset DS8, the
predecessor pane ωe is not a useful indicator of the importance of event e. Figure 6.11a
also shows that using datasets DS6 and DS7, the percentage of false negatives caused
by all load shedders, is higher compared to the case when using dataset DS5.
As Figure 6.11a shows, the performance, w.r.t. false negatives, of gSPICE-SF is

better than the performance of gSPICE-ST irrespective of the used dataset. Moreover,
the performance of gSPICE-SF is comparable to the performance of gSPICE-SH with
datasets DS5 and DS6. That means that in the case of limited available memory,
gSPICE-SF might be used as a replacement of gSPICE-SH with only a slight impact
on QoR for these distributions. The performance of gSPICE-SF with DS7 and DS8 is
worse than the performance of gSPICE-SH, especially with DS8. Moreover, gSPICE-SH
outperforms, w.r.t. false negatives, gSPICE-ST, irrespective of the used dataset. That is
because gSPICE-SF and gSPICE-ST result in a high drop ratio compared to gSPICE-SH
(cf. Figure 6.12). A high drop ratio implies that more events are dropped, hence
negatively impacting QoR. In Figure 6.11a, the percentage of false negatives caused by
gSPICE-WT and gSPICE-WF is very higher. That is because the overhead of these two
load shedders is very high, where, as depicted in Figure 6.12, these two shedders result
in a high drop ratio. As a result, using a decision tree or a random forest to drop events
on the window granularity is not recommend due to their very high overhead.

The percentage of false positives may depend on the percentage of false negatives. If
a load shedder results in a very high number of false negatives, this may imply that
only a few complex events are detected. Having a low number of detected complex
events may result in having a low number of false positives. We can observe this in
Figure 6.11b. In the figure, the percentage of false positives caused by gSPICE-WT
and gSPICE-WF first increases when using the dataset DS6 compared to the case when
using the dataset DS5. Then, the percentage of false positives caused by these two
shedders decreases when using the datasets DS7 and DS8 since these two shedders
result in a high percentage of false negatives with the datasets DS7 and DS8 (cf. 6.11a).
Figure 6.11b also shows that the percentage of false positives caused by gSPICE-SH and
gSPICE-WH only slight changes when using different datasets. While the percentage of
false positives caused gSPICE-ST and gSPICE-SF considerably increases when using
the dataset DS8 compared to the case when using the dataset DS5.

6.3.2.6 Maintaining Latency Bound

gSPICE performs load shedding to maintain a given latency bound (LB). Figure 6.13
shows the ability of gSPICE to maintain the given latency bound, where it depicts
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Figure 6.11: Impact of event distribution on QoR.
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Figure 6.12: Impact of event distribution on drop ratio.

results for Q1 and Q4. We observe similar results for other queries, hence we do not show
them. For all queries, we use the same setting as explained in Sections 6.3.2.1, 6.3.2.2,
and 6.3.2.3. The figure shows that gSPICE always maintains the given latency bound,
irrespective of the event rate. The induced event latency stays around 800 milliseconds
(i.e., 80% of LB that represents a safety bound, as we mentioned above). That shows
that gSPICE can successfully maintain a given latency bound.

6.3.2.7 Discussion

Through extensive evaluations with several datasets and a set of representative CEP
queries, gSPICE shows that it has a good performance, w.r.t. QoR. For the majority
of queries and datasets, gSPICE outperforms pSPICE and state-of-the-art black-box
load shedding approaches (i.e., eSPICE and BL). gSPICE performs especially well when
the event types do not follow a uniform distribution and when using the sequence event
operator. However, hSPICE performs better than gSPICE for the majority of cases.
Moreover, with low input event rates, eSPICE may outperform, w.r.t. QoR, gSPICE, e.g.,
when using the negation event operator. Furthermore, pSPICE outperforms gSPICE with
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Figure 6.13: Maintaining latency bound.

high input event rates when using the any event operator. We also show that gSPICE-
SH always outperforms gSPICE-WH since gSPICE-WH imposes a higher overhead.
Moreover, the results show that using the right predecessor pane length may improve the
performance of gSPICE considerably. Further, gSPICE is a lightweight load shedding
approach as the overhead of performing load shedding in gSPICE-SH is low. We also
show that to reduce the required memory, gSPICE may use well-known machine learning
models, e.g., random forests, with a slight adverse impact on QoR, as these models
impose a higher overhead.

6.4 Conclusion

In this chapter, we proposed an efficient black-box load shedding approach (called
gSPICE) that drops events in overload cases to maintain a given latency bound. gSPICE
drops events on the window and stream granularities. gSPICE uses a probabilistic
model to predict the event utilities, where the event utilities are predicted depending
on the following features: 1) event type, 2) event context, 3) event attributes, 4) event
position within the window (when dropping events on the window granularity). To store
event utilities, both gSPICE-SH and gSPICE-WH use the Zobrist hashing. Moreover, if
the utility table is very large, to minimize the needed memory for storing the utilities,
gSPICE may use a machine learning model (e.g., decision trees or random forests) to
estimate the event utilities. Through extensive evaluations on several representative CEP
queries and several synthetic and real-world datasets, we show that, for the majority of
cases, gSPICE outperforms, w.r.t. QoR, pSPICE and state-of-the-art black-box load
shedding strategies. Moreover, the results show that gSPICE-SH has better performance,
w.r.t. QoR, than gSPICE-WH as gSPICE-WH imposes a higher overhead. Additionally,
we show that gSPICE always maintains the given latency bound regardless of the
incoming input event rate.
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Chapter 7
Related Work

In this chapter, we discuss existing related works that are relevant to our research.
First, we present the work performed in the area of complex event processing and the
proposed techniques to handle a high volume of input event streams. Then, we discuss
the available work on load shedding and data sampling in the stream processing and
complex event processing domains. After that, we present work performed in the area of
approximate event processing. Finally, we discuss the past work on handling uncertainty
in the input event streams.

7.1 Complex Event Processing

Complex event processing (CEP) has emerged as a powerful paradigm to process event
streams on the fly [Luc01; DGP07; WDR06; GJS92; CM94; CM12]. To formally define
CEP patterns, researchers proposed several event definition languages [CM94; CM10;
WDR06]. These event languages specify the rules to define CEP patterns, where they
introduce multiple event operators that help to define CEP patterns. Examples of event
operators are sequence, negation, any, Kleene closure, disjunction, and conjunction
operators. In CEP, multiple event instances of the same event type might occur in the
input event stream. To precisely match events in the input event streams, [CM94; CM10;
ZU99] introduce selection and consumption policies. These policies accurately define
event instances that must match a pattern and whether an event instance can be used
in multiple complex events. Moreover, since the input event stream is continuous and
infinite, it is common in CEP to partition the input event stream into windows of events,
where a window represents a temporal constraint [Bal+13; WDR06; CM10; DP18]. This
model is called window-based CEP, where events within a window are correlated together
to detect complex events. The input event stream in CEP has a high volume and usually
needs to be processed in near real-time [Quo+17; CF+13].

To process the incoming input events within a given latency bound, researchers have
proposed several techniques such as parallelism, optimizations, and pattern sharing.
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In [May+17; Bal+13; ZR10; Sha+03; MKR15; Apa; BTÖ13], the authors propose to
distribute the CEP operator graph on multiple compute nodes and to parallelize each
operator on one (scale-up) or more nodes (scale-out). In CEP, a powerful parallelization
technique is data-parallel CEP. Data-parallel CEP is mainly divided into two categories,
namely, window-based parallelization and key-based parallelization [RM19]. In [Bal+13;
May+17; MKR15; Apa], the authors propose to process windows of events in parallel
using multiple threads or compute nodes to increase the event processing throughput. In
key-based parallelization [CF+13; BTÖ13; Apa], the incoming event stream is partitioned
into groups depending on keys, where groups are then processed on multiple threads
or compute nodes. The key-based parallelization is limited to the number of different
keys. To efficiently process patterns, in [WDR06; WTA10; Hir+14; Hir12], the authors
propose several optimizations, e.g., intra- and inter-operator optimizations [WDR06], or
using special hardware (FPGA) to speed up the event processing [WTA10]. Another
way to improve the operator throughput is by sharing the pattern matching between
several patterns as proposed in [RLR16; SMMP09]. The authors propose algorithms to
find the best sharing between different patterns in an operator.

7.2 Load Shedding

The above mentioned techniques (i.e., parallelization, optimizations, and pattern sharing)
used to handle a high incoming input event rate may not always be possible or sufficient.
In that case, load shedding may be used to enable an operator to process a high input
event rate. Load shedding has been researched in various domains such as computer
networking [Jac88; Jai90], multimedia streaming [Wal+99; BBS98], stream processing,
and complex event processing. In this section, we focus on the work performed in the
stream processing and CEP domains.

Load shedding in stream processing. Load shedding has been extensively studied in the
stream processing domain [Car+02; Tat+03; OJW03; AN04; RH05; TZ06; TcZ07; CK09;
WRM10; Mot+03; KLC18]. The idea is to drop tuples in a way that reduces the system
load but still provides the maximum possible quality of results (QoR). Hence, the crucial
question here is which tuples to drop so the quality of results is not impacted drastically.
In [Car+02; Tat+03; TcZ07; KLC18], the authors assumed that the tuples have different
utilities/importance and impact on QoR, where the utility of tuples depends on their
content. In case of overload, tuples with low utility values are dropped. In [Car+02;
Tat+03; TcZ07], the authors assume that the mapping between the utility and tuple’s
content is given, for example, by an application expert, while, in [KLC18], they learn this
mapping online depending on the used query. Similarly, in [OJW03; GWY08; Mot+03],
the authors propose filters that drop low important tuples. The work in [RBQ16] assigns
utilities to tuples depending on their processing times. The higher is the processing
time of a tuple, the lower is its utility. In overload cases, low utility tuples are dropped.

152



7.2 Load Shedding

While in [CK09], the authors propose to assign utilities to tuples depending on the tuple
frequency in the input event stream. The higher is the tuple frequency in the input
event stream, the higher is its utility.

In [Quo+17], the authors assume that all tuples in the input event streams have the
same utilities and processing latency. They fairly select tuples for dropping from different
input streams by combining two techniques, namely, stratified sampling and reservoir
sampling. The works in [Ged+05; Ged+07; SW04; DGR03] propose load shedding
approaches for join operators where the goal is to increase the number of output tuples.
Moreover, the authors in [TBL08] propose to use stratified sampling and reservoir
sampling to perform an approximate join. In all the above works, the utilities of tuples
are either computed using simple dependencies between tuples (e.g., in join operators)
or they are computed for each tuple individually without considering the dependency
between tuples at all. However, in the CEP domain, patterns are more complex than a
simple binary join, where a pattern can be viewed as multi-relational non-equi-joins with
temporal constraints [HBN14]. Moreover, events in a CEP pattern have interdependency
with each other that we must take into consideration when assigning utilities to events.
Additionally, the order of events in patterns and in the input event streams is important
in CEP (e.g., in the sequence and negation event operators) that is not considered in
the above works.

Load shedding in CEP. There exist only a few works on load shedding in the CEP
domain. In [HBN14], the authors propose an event shedding approach for CEP systems.
They formulate the load shedding problem in CEP as a set of different optimization
problems, where they consider a multi-pattern operator. To assign utilities to events,
the approach depends only on the event types, where the authors consider only the
repetition of events in the input event stream and in patterns. However, they do not
consider the order of events in both the input event stream and in patterns that is
important in CEP, e.g., in the sequence and negation event operators. In [ZVHW20],
the authors propose a load shedding approach to drop PMs and events. They assign
utilities to PMs in a similar way to pSPICE (cf. Chapter 3), i.e., depending on the
completion probability of PMs and their estimated processing cost. When load shedding
is triggered, their approach performs the following: 1) it selects a set of PMs (called PM
shedding set) with the lowest utilities and adds all events that belong to PMs in the PM
shedding set to an event shedding set (denoted by ED). 2) It first drops all PMs in the
PM shedding set. Then, it drops incoming events e that belong to the event shedding
set from all PMs, i.e., if e ∈ ED, drop e– it drops events on the stream granularity.
The event dropping stops when the given latency bound is not violated anymore. The
approach assumes that events that are part of low utility PMs have low importance and
can be dropped with a low impact on QoR.

However, this is not necessarily true as a PM with a low utility may also contain highly
important events. That might result in dropping important events. Furthermore, as
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this load shedding approach depends only on PMs to build the event shedding set, this
implies that different events in a pattern have different probabilities to be chosen for the
event shedding set. For example, in pattern q = seq(A;B;C), events of type A may have
higher probabilities to be a part of PMs than events of type B. As a result, events of
type A may have higher probabilities to be part of the event shedding set ED. Moreover,
this load shedding approach uses event attributes to check if an event belongs to the
event shedding set. Using events with their attributes in the event shedding set might
considerably increase the load shedding overhead. The load shedding overhead in our
proposed approaches eSPICE, pSPICE, and hSPICE, on the other hand, is independent
of the event attributes. Moreover, in gSPICE, we limit our scope to numerical event
attributes and use bin sizes to reduce the load shedding overhead. Furthermore, the load
shedding approach in [ZVHW20] seems to only support skip-till-any-match semantic
[Agr+08] that is equivalent to the each selection policy and zero consumption policy.
That represents a small set of the known pattern semantics in CEP [CM94; CM10; ZU99;
WDR06]. Moreover, this approach does not support the negation operator. In contrast,
our proposed load shedding approaches, in this thesis, support all commonly used event
operators and the selection and consumption policies.

7.3 Approximate Event Processing

Approximate event processing and load shedding share some commonality where both
techniques aim to handle a high volume of event streams in the case of limited resources.
To fulfill defined constraints (e.g., latency bound, monetary cost, etc.), both techniques
may result in inaccurate output results. In [Gil+01; MM02; Cor+04; GFS10], the authors
propose approximate processing approaches that can minimize the needed space to store
tuples and increase the throughput by means of summarization while at the same time
reducing the inaccuracy in the query results. To minimize the space and time needed to
detect duplicates in the event stream, the authors in [MAEA05] propose a probabilistic
approach based on the Bloom filter [Blo70]. Similarly, the authors in [DNB13] propose
an approximate approach that uses hashing to efficiently detect duplication in the input
event stream.

The work in [LG15; LG16] presents approximate processing techniques for the CEP
domain. In [LG15], the authors propose an approximation approach that allows matching
events not occurring in the exact order, as defined by patterns. Their focus is on
interleaving patterns where a pattern consists of many parallel branches. The authors
in [LG16] propose an approximation approach (called RC-ACEP) to drop events from
PMs in overload cases. The approach aims to minimize the degradation in QoR. They
assign utilities to PMs depending on completion probabilities of the PMs– higher is
the completion probability, higher is the utility. The idea is to process input events
firstly with PMs that have the highest utilities. For each newly coming input event,
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RC-ACEP stops processing the previous event, recalculates and sorts PM utilities, and
then processes the new events with the sorted PMs. However, recalculating and sorting
PM utilities for every input event imposes a high overhead. Moreover, they do not
consider the importance of input events for PMs where input events might have different
importance for different PMs.

7.4 Uncertainty in Event Processing

The uncertain event processing deals with the problem of missing or imprecise events.
The input event stream might suffer from missing events or events with imprecise data
due to several reasons, e.g., summarizing events to decrease their size, inaccurate event
sources, and the unreliable transmission of events [LM04; Cug+15; AGS16; Man+18;
Mor+19; KKL10; ZDI10; Let+10]. Hence, the uncertain event processing area has close
relevance to the load shedding area. The queries in both areas should process imprecise
input event streams, which might negatively impact the quality of the output results. In
[LM04], the authors propose a solution for the problem of finding a set of events A that
match defined predicates where events might be imprecise. They develop an approach
that maintains a defined quality of results by probabilistically finding events that belong
to the set A. The work in [ZDI10] presents formal semantics of pattern matching under
the temporal uncertainty model to tackle the problem of pattern matching over events
with imprecise occurrence times.

The authors in [Cug+15] present a model called CEP2U to handle uncertainty in
CEP. They assume that the uncertainty might be caused by either missing events or
imprecise events. They assign probabilities to events indicating the confidence degree of
the event occurrences. Moreover, to handle imprecise event attributes, they model the
error in an event attribute using a known probability distribution function. Similarly,
the authors in [Mor+19] develop a library that can be integrated with the currently
available CEP frameworks to handle missing events and imprecise event attributes using
probabilities. Similarly, in [Man+18], the authors design a framework on top of the
Hadoop MapReduce to estimate the uncertainty ranges of the output. The uncertainty
in the output is originated from processing imprecise events or performing approximate
query processing. Instead of providing exact values as output, they produce outputs
with error bounds (with a specific confidence level). This way, they could trade-off the
result precision with the incurred latency, consumed energy, etc.
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Chapter 8
Summary and Future Work

In this chapter, we summarize the main contributions of this thesis and provide an
outlook on the possible feature work in the area of load shedding in CEP.

8.1 Summary

In this work, we proposed four load shedding approaches that enable CEP operators
to maintain a given latency bound in overload cases. Our proposed load shedding
approaches cover a wide range of load shedding classes in the CEP domain. Moreover,
we presented two ways to measure the quality of results in CEP. In the following, we
summarize our contributions.

• We defined two ways to measure the quality of results (QoR), namely the strict
and relaxed quality of results. The strict QoR follows the strict semantics of event
matching in CEP systems using selection and consumption policies. The strict
QoR requires that exact event instances are used in detecting complex events.
The relaxed QoR, on the other hand, focuses only on whether a complex event
is detected or not without considering the exact event instances. Deciding which
QoR measurement to use depends mainly on the application.

• A white-box load shedding approach (called pSPICE) to drop partial matches
(PMs) from the internal state of a CEP operator. To minimize the shedding impact
of pSPICE on QoR, we assign utilities to PMs and drop those PMs that have the
lowest utilities. pSPICE uses the Markov chain and Markov reward process to
predict the PM utilities. The utility of a PM depends on two features: the PM
state and the number of remaining events in a window. pSPICE does not result in
false positives when using relaxed QoR. Moreover, as we showed in our evaluations
(cf. Chapters 4, 5, and 6), pSPICE results in a low percentage of false positives
when using strict QoR. Hence, pSPICE may be a good choice in applications that
cannot tolerate many false positives. Moreover, as our evaluations show when
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using the any operator, the performance, w.r.t. QoR, of pSPICE is very good
compared to other shedders. In the majority of cases, pSPICE outperforms the
other load shedding approaches when using the any operator. We also developed
an algorithm that depends on the current number of PMs in a CEP operator
to decide when and how many PMs to drop from the operator. pSPICE is a
lightweight load shedding approach, where it gets the utility of a PM in Q(1) time
complexity. Moreover, it performs the shedding of PMs with a very low overhead
where, as we showed in Section 3.3, its overhead is comparable to the overhead of
a random PM dropper.

• eSPICE, a black-box load shedding approach that, in overload cases, drops events
from windows in the input queue of a CEP operator. To reduce the drop impact
on QoR, eSPICE assigns utilities to events, where it drops events with the lowest
utilities. In eSPICE, the event utility in a window depends on the following two
features: the event type and the event position within the window. To predict the
utility of events within windows, eSPICE uses a probabilistic model that depends
on those two features. Our evaluations (cf. Section 4.3) show that for the majority
of queries– especially for the sequence operators– eSPICE performs well. However,
eSPICE assumes that there is a correlation between event types. If the evaluation
dataset does not contain a correlation between event types, the performance of
eSPICE might degrade (cf. Section 6.3). Moreover, we developed an approach
that decides when to drop events and how many events to drop to maintain a
given latency bound. Furthermore, eSPICE computes a utility threshold from
the predicted utilities and the distribution of incoming input events. The utility
threshold helps eSPICE to perform load shedding in a lightweight way. eSPICE
gets the utility of events and performs load shedding in Q(1) time complexity.
Hence, its load shedding overhead is very low– this is also shown in Section 4.3.

• A white-box load shedding approach (called hSPICE) that combines the advantages
of both pSPICE and eSPICE. hSPICE drops events either from windows or from
PMs, i.e., it performs shedding on two different granularity levels: the window (i.e.,
hSPICEW) and the PM granularities (i.e., hSPICEPM). In hSPICE, we consider
that an event has different importance for different PMs. Therefore, hSPICE
assigns a utility to an event for each PM in a window. To learn about the utility
of events for a PM, hSPICE uses the following three features: 1) event type, 2)
event position within the window, and 3) the current state of the PM. hSPICE
uses a probabilistic model to predict the event utilities depending on these three
features. Our evaluations (cf. Sections 5.3 and 6.3) show that, for the majority of
queries, hSPICE outperforms, w.r.t. QoR, pSPICE, eSPICE, gSPICE, and the
other state-of-the-art load shedding approaches. pSPICE outperforms hSPICE
only in the case of the any event operator. Although hSPICEPM gets the utility of
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an event for a PM and performs the load shedding in Q(1) time complexity, its load
shedding overhead is high, as shown in Section 5.3, especially in the case of low
event processing time. Moreover, using a very large window size may increase the
overhead of hSPICEPM even further, hence increases its negative impact on QoR.
However, in this case, hSPICEW might be used to reduce the negative impact of
shedding on QoR.

• A black-box load shedding approach (called gSPICE) that drops events either
from windows or from the input event stream of an operator, i.e., it sheds events
on the window and stream granularities. gSPICE uses a probabilistic model that
depends on the following features to predict the utility of an event: 1) event type,
2) type frequency in the predecessor pane, 3) event content/attributes, and 4) event
position within the window (when dropping events on the window granularity).
gSPICE uses complex features such as the type frequency and event content to
improve the utility prediction accuracy. Moreover, gSPICE uses the Zobrist hashing
to efficiently store the event utilities and perform load shedding with low overhead.
Furthermore, if the utility table is very large, to minimize the needed memory for
storing the utilities, gSPICE may use a machine learning model (e.g., decision trees
or random forests) to estimate event utilities. Our evaluations (cf. Section 6.3)
show that gSPICE, for the majority of queries, outperforms, w.r.t. QoR, pSPICE
and state-of-the-art black-box load shedding approaches. The performance of
gSPICE is especially good when events in an evaluation dataset do not follow a
uniform distribution. Additionally, the evaluations show that gSPICE performs
shedding with relatively low overhead (cf. Section 6.3)

To conclude, in this thesis, we proposed four load shedding approaches that cover
a wide range of load shedding classes in CEP, where we proposed two black-box and
two white-box shedding approaches. Our approaches perform shedding by dropping
PMs or events. Moreover, dropping events is performed on three different granularity
levels: the stream, the window, and the PM granularities. Additionally, our developed
shedding approaches use several features to predict the utility of events and PMs. The
performance of our proposed load shedding approaches depends on the following: the
used application, the distribution of events in the input event stream, and the used
queries.

8.2 Future Work

In this section, we shed light on the possible future research directions to extend the
work presented in this thesis.

To minimize the shedding impact on QoR, we may profile our proposed load shedding
approaches and choose the shedding approach that results in the lowest negative impact
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on QoR. However, as the event distribution may influence the performance of our
proposed shedding approaches, there is a need to re-profile the performance of the
proposed shedding approaches when the event distribution changes. Therefore, an
interesting future extension to our work is to develop a mechanism that adaptively
selects the best shedding approach that results in the lowest negative impact on QoR.
The developed mechanism may monitor the event distribution. If the event distribution
changes by a certain threshold, it re-profiles the operator with the proposed load shedders
and chooses the shedding approach that has the lowest adverse impact on QoR.

In our current work, we focused on minimizing the degradation in QoR while maintain-
ing a given latency bound, in the case of limited resources. However, load shedding might
be used to achieve other objectives and to fulfill other constraints. Other interesting
objectives might be to reduce the induced monetary cost, increase the throughput,
reduce the power consumption, etc. While the constraints might be to maintain a certain
QoR, monetary budget, etc. Hence, a possible extension to our work is to study the
load shedding problem with other objectives and constraints.

Finally, in this thesis, we focused on performing load shedding in each operator in
the CEP operator graph without considering the impact between the operators in the
operator graph, i.e., we focused on optimizing the shedding locally in each operator
without considering a globally optimized solution. However, aiming for a globally
optimized load shedding solution requires that we consider the following questions that
directly influence the shedding impact on the quality of results (QoR). 1) Where to shed
load in the operator graph and how much load to shed from each operator? The answer to
this question depends on the criticality of the output of each operator. The higher is the
importance of the output of an operator, the less load should be shed from the operator.
2) How to distribute the available end-to-end latency between different operators in the
operator graph?. This question is directly related to question 1, where the assigned
latency to an operator may depend on the amount of load that should be shed from
the operator. 3) How to achieve an optimal allocation of available resources and where
to place operators in the case of distributed computing resources? This question also
is related to questions 1 and 2, where the allocation and placement of resources may
depend on the available latency bound for each operator. There exists extensive work
in the literature on the allocation of resources and placement of the operator graph
[YBT05; CLN12; EZ+13; KSP14]. That might be of great help to develop an optimal
allocation and placement strategy of the operator graph that minimizes the negative
shedding impact on QoR. 4) How to consider the dependency between operators in
the operator graph to perform an optimal shedding? Performing load shedding in each
operator locally without considering the dependency between operators in the operator
graph might result in a sub-optimal solution. To clarify this, let us introduce an example
of an operator graph that is depicted in Figure 8.1, where the operator graph consists
of two event producers (pr1 and pr2), four operators (op1, op2, op3, and op4), and one
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event consumer (cr1).
In Figure 8.1, operator op3 matches pattern q1 = any(3, A,A,B), where it receives

events of type A and B from the upstream operators op1 and op2, respectively. The
operator op4 matches pattern q2 = any(2, C,D), where it receives events of type C
and D from the upstream operators op1 and op2, respectively. In this example, the
any event operator represents the occurrence of all event types, ignoring the order of
their occurrences [CM94]. Moreover, Q3 and Q4 represent complex events detected
in operators op3 and op4, respectively. Assume that the rate of events produced by
operators op1 and op2 is 100 events per second for each event type (i.e., A, B, C, and
D). Additionally, assume that the strict QoR is used and operators op3 and op4 match
events chronologically, i.e., using the first selection policy and consumed consumption
policy for each event type [CM94]– an event instance of any type might be a part of
only one complex event.
In this example, operators op3 and op4 might detect 50 complex events (Q3) per

second and 100 complex events (Q4) per second, respectively. Therefore, in operator
op3 there exist 50 events of type B per second not used in any complex events, hence
dropping these events has no impact on QoR. Now, assume that there is an overload
on the operator op2, and there is a need to shed load. Shedding load in operator op2
might hinder the detection of events of types B and D. Since operator op3 needs only 50
events of type B per second, operator op2 might first shed load that results in producing
those 50 events of type B per second without negatively influencing QoR. However,
operator op2 locally has no knowledge about the number of B events needed in operator
op3. Hence, it might shed load that hinders the detection of events of type D that will
adversely impact the final QoR. Assigning weights in operator op2 manually by a domain
expert to give more importance to a pattern that generates events of type D is only
possible if the stream is steady, i.e., the distribution of events does not change. However,
in real-world applications, that mostly does not hold, where the event distribution
changes over time. Hence, there is a need to continuously adapt the pattern weights
to control the drop amount of each event type in each operator. That needs a global
solution that monitors the entire operator graph and figures out which events/patterns
are more important and have more impact on QoR.
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Figure 8.1: Dependencies between operators in the operator graph.
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[TcZ07] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. “Staying FIT: Efficient
Load Shedding Techniques for Distributed Stream Processing.” In: Pro-
ceedings of the 33rd International Conference on Very Large Data Bases.
VLDB ’07. Vienna, Austria: VLDB Endowment, 2007, pp. 159–170.

[TZ06] Nesime Tatbul and Stan Zdonik. “Window-aware Load Shedding for Ag-
gregation Queries over Data Streams.” In: Proceedings of the 32Nd Inter-
national Conference on Very Large Data Bases. VLDB ’06. Seoul, Korea:
VLDB Endowment, 2006, pp. 799–810.

172



BIBLIOGRAPHY

[Upd18] 360 Market Updates. Global complex event processing market. Accessed:
2020-08-27. 2018. url: https://www.360marketupdates.com/global-
complex-event-processing-market-12886110.

[Wal+99] Jonathan Walpole, Ling Liu, David Maier, Calton Pu, and Charles Krasic.
“Quality of Service Semantics for Multimedia Database Systems.” In: 1999,
pp. 393–412.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance Complex
Event Processing over Streams.” In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’06. Chicago,
IL, USA: ACM, 2006, pp. 407–418.

[WRM10] Mingzhu Wei, Elke A. Rundensteiner, and Murali Mani. “Achieving High
Output Quality Under Limited Resources Through Structure-based Spilling
in XML Streams.” In: Proc. VLDB Endow. 3.1-2 (2010), pp. 1267–1278.

[WTA10] Louis Woods, Jens Teubner, and Gustavo Alonso. “Complex Event Detection
at Wire Speed with FPGAs.” In: Proc. VLDB Endow. (2010).

[YBT05] Jia Yu, Rajkumar Buyya, and Chen Khong Tham. “Cost-based scheduling
of scientific workflow applications on utility grids.” In: e-Science and Grid
Computing, 2005. First International Conference on. 2005, 8 pp.–147.

[Zac+15] Nikos Zacheilas, Vana Kalogeraki, Nikolas Zygouras, Nikolaos Panagiotou,
and Dimitrios Gunopulos. “Elastic complex event processing exploiting
prediction.” In: IEEE Int. Conf. on Big Data. 2015.

[ZDI10] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “Recognizing Patterns
in Streams with Imprecise Timestamps.” In: Proc. VLDB Endow. 3.1–2
(2010), 244–255.

[ZDI14] Haopeng Zhang, Yanlei Diao, and Neil Immerman. “On Complexity and
Optimization of Expensive Queries in Complex Event Processing.” In:
Proceedings of the 2014 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014, pp. 217–
228.

[Zob90] Albert L. Zobrist. “A New Hashing Method with Application for Game
Playing.” In: ICGA Journal 13 (1990), pp. 69–73.

[ZR10] Erik Zeitler and Tore Risch. “Massive scale-out of expensive continuous
queries.” In: 36th Int. Conf. on Very Large Data Bases : VLDB 2010. 2010.

[ZU99] Detlef Zimmer and Rainer Unland. “On the Semantics of Complex Events
in Active Database Management Systems.” In: Proceedings of the 15th
International Conference on Data Engineering. ICDE ’99. Washington, DC,
USA: IEEE Computer Society, 1999.

173

https://www.360marketupdates.com/global-complex-event-processing-market-12886110
https://www.360marketupdates.com/global-complex-event-processing-market-12886110


BIBLIOGRAPHY

[ZVHW20] Bo Zhao, Nguyen Quoc Viet Hung, and Matthias Weidlich. “Load Shedding
for Complex Event Processing: Input-based and State-based Techniques.”
In: ICDE 2020. 2020.

[Jai90] Raj Jain. “Congestion control in computer networks: issues and trends.” In:
IEEE Network 4.3 (1990), pp. 24–30.

[Let+10] Julie Letchner, Christopher Ré, Magdalena Balazinska, and Matthai Phili-
pose. “Approximation trade-offs in Markovian stream processing: An em-
pirical study.” In: 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE 2010). 2010, pp. 936–939.

[Lim+18] Guilherme F. Lima, Ahmad Slo, Sukanya Bhowmik, Markus Endler, and
Kurt Rothermel. “Skipping Unused Events to Speed Up Rollback-Recovery
in Distributed Data-Parallel CEP.” In: 2018 IEEE/ACM 5th International
Conference on Big Data Computing Applications and Technologies (BD-
CAT). 2018, pp. 31–40.

[Mor+19] Nathalia Moreno, Manuel F. Bertoa, Loli Burgueño, and Antonio Vallecillo.
“Managing Measurement and Occurrence Uncertainty in Complex Event
Processing Systems.” In: IEEE Access 7 (2019), pp. 88026–88048.

[Tin95] Tin Kam Ho. “Random decision forests.” In: Proceedings of 3rd International
Conference on Document Analysis and Recognition. Vol. 1. 1995, 278–282
vol.1.

174



Erklärung

Ich erkläre hiermit, dass ich, abgesehen von den ausdrücklich bezeichneten Hilfsmitteln
und den Ratschlägen von jeweils namentlich aufgeführten Personen, die Dissertation
selbstständig verfasst habe.

(Ahmad Slo)

175


	Abstract
	Deutsche Zusammenfassung
	Introduction
	Complex Event Processing
	Motivation and Research Gaps
	Contributions
	Structure

	Foundations and Problem Statement
	System Model
	Quality of Results
	Problem Statement

	pSPICE: Partial Match Shedding
	System Model
	pSPICE
	The pSPICE Architecture
	Utility of Partial Matches
	Utility Prediction
	Completion probability Prediction
	Processing Time Prediction
	Utility calculation

	Model Retraining
	Detecting and Determining Overload
	Load Shedding
	Supporting CEP Computational Models

	Performance Evaluations
	Experimental Setup
	Experimental Results
	Impact on QoR and the given latency bound.
	Impact of processing time () of a PM on utility calculation
	pSPICE overhead


	Conclusion

	eSPICE: Probabilistic Load Shedding from Input Event Streams
	System Model
	Probabilistic Load Shedding
	The eSPICE Architecture
	Utility Model and Its Application
	Utility Prediction Function
	Utility Threshold and Occurrences
	Applying Utility Models in Load Shedding

	Model Building
	Building the Utility Prediction Function
	Building Utility Threshold and Occurrences

	Overload Detection
	Dropping Interval
	Dropping Amount
	Appropriate f Value

	Load Shedding
	Extensions
	Handling Variable Window Size
	Using Bins for a Large Window Size
	Model Retraining
	Supporting Negation Operator


	Performance Evaluations
	Experimental Setup
	Experimental Results
	Impact of event rate on QoR
	Impact of variable window size on QoR
	Impact of bin size on QoR
	Run-time overhead of the LS
	Maintaining the given latency bound
	Results Discussion


	Conclusion

	hSPICE: State-Aware Load Shedding from Input Event Streams
	System Model
	hSPICE
	Partial Match Granularity
	Event Utility
	Predicting Event Utility
	Drop Amount
	Load Shedding

	Window Granularity
	Event Utility
	Utility Threshold
	Load Shedding


	Performance Evaluations
	Experimental Setup
	Experimental Results
	Impact of Event Rate on QoR
	Impact of Window Size on QoR
	Maintaining Latency Bound
	Discussion


	Conclusion

	gSPICE: Generic Feature-Based Event Shedding
	System Model
	Predecessor Pane

	gSPICE
	Event Utility
	Predicting Event Utility
	Gathering Statistics
	Utility Prediction
	gSPICE-SH
	gSPICE-SM

	Utility Threshold
	Load Shedding
	Window Granularity

	Performance Evaluations
	Experimental Setup
	Experimental Results
	Results on Synthetic Data
	Stock Results
	Soccer Results
	Impact of Predecessor Pane Length on QoR
	Impact of Event Distribution on QoR
	Maintaining Latency Bound
	Discussion


	Conclusion

	Related Work
	Complex Event Processing
	Load Shedding
	Approximate Event Processing
	Uncertainty in Event Processing

	Summary and Future Work
	Summary
	Future Work


