Load Shedding in Window-Based

Complex Event Processing

Von der Fakultat Informatik, Elektrotechnik und
Informationstechnik der Universitat Stuttgart
zur Erlangung der Wiirde eines Doktors der Naturwissenschaften
(Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Ahmad Slo

aus Aleppo/Syrien

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr. Matthias Weidlich
Tag der miindlichen Priifung: 31.01.2022

Institut fiir Parallele und Verteilte Systeme (IPVS)
der Universitat Stuttgart
2022

Acknowledgments

First and foremost, I would like to praise and thank God (Allah), the almighty, for
granting me the opportunity to successfully complete my PhD research, and for the

other countless blessings in my life.

I would like to express my deep gratitude to my supervisor, Prof. Dr. Kurt Rothermel,
for giving me the opportunity to work in his research group and to write my PhD thesis.
His valuable comments and feedback were important factors in improving the quality of
my PhD thesis. I would also like to thank my post-doc, Dr. Sukanya Bhowmik, for her

support and for giving me valuable feedback, especially on my paper write-ups.

Furthermore, I would like to sincerely thank Prof. Dr. Matthias Weidlich for being a

part of my PhD committee and reviewing my thesis.

During my doctoral studies, I have had the chance to work and interact with many
wonderful colleagues. Especially, I thank my friend and colleague, Dr. Mohamed
Abdelaal, for his fruitful discussions and support. Moreover, I wish to thank all my
colleagues, especially, Jonathan Falk, Saravana Murthy, Henriette Roger, Zohaib Riaz,
Ben Carabelli, Christoph Dibak, Otto Bibartiu, and Johannes Késsinger. I am also
grateful to Eva Striahle and Manfred Rasch for their support with paperwork.

Last but not least, I would like to thank my family and friends for their support
during my PhD. Especial thanks go to my friends Dr. Houssem Ben Lahmar and Dr.
Mohammad Hamad. I express my sincere gratitude and immense respect for my parent,
Hasan Slo (may Allah bless his soul) and Khadija Al-Mousa, and my siblings for their
extraordinary role in my life. I greatly thank my wife, Fadwa, for her continuous support
and encouragement throughout my doctoral journey. I am grateful to my small lovely
daughter, Leen, who was the main source to relieve the stress during home office and

Corona times.

Contents

Abstract 15
Deutsche Zusammenfassung 17
1 Introduction 19
1.1 Complex Event Processing 20
1.2 Motivation and Research Gaps 22
1.3 Contributions 26
1.4 Structure e 28

2 Foundations and Problem Statement 29
2.1 System Model 29
2.2 Quality of Results 37
2.3 Problem Statement 39

3 pSPICE: Partial Match Shedding 41
3.1 System Model 42
3.2 pSPICE 42
3.2.1 The pSPICE Architecture 43

3.2.2 Utility of Partial Matches 43

3.2.3 Utility Prediction o 45

3.2.3.1 Completion probability Prediction 45

3.2.3.2 Processing Time Prediction 47

3.2.3.3 Utility calculation 48

3.24 Model Retraining oo 49

3.2.5 Detecting and Determining Overload 49

3.2.6 Load Shedding 52

3.2.7 Supporting CEP Computational Models 52

3.3 Performance Evaluations 54
3.3.1 Experimental Setup 54

Contents

3.3.2 Experimental Results 99
3.3.2.1 Impact on QoR and the given latency bound. 56

3.3.2.2 Impact of processing time (7,) of a PM on utility calculation 60

3.3.2.3 pSPICE overhead 61

34 Conclusion 63
4 eSPICE: Probabilistic Load Shedding from Input Event Streams 65
4.1 System Model 66
4.2 Probabilistic Load Shedding 67
4.2.1 The eSPICE Architecture 68
4.2.2 Utility Model and Its Application 68
4.2.2.1 Utility Prediction Function 69

4.2.2.2 Utility Threshold and Occurrences 69

4.2.2.3 Applying Utility Models in Load Shedding 70

423 Model Building oo o 70
4.2.3.1 Building the Utility Prediction Function 71

4.2.3.2 Building Utility Threshold and Occurrences 71

4.2.4 Overload Detection L. 74
4.2.4.1 Dropping Interval L. 75

4.2.4.2 Dropping Amount 76

4.2.4.3 Appropriate f Value 76

4.2.5 Load Shedding 76
4.2.6 Extensions e 7
4.2.6.1 Handling Variable Window Size 78

4.2.6.2 Using Bins for a Large Window Size 79

4.2.6.3 Model Retraining 80

4.2.6.4 Supporting Negation Operator 81

4.3 Performance Evaluations 81
4.3.1 Experimental Setup oL 81
4.3.2 Experimental Results 83
4.3.2.1 Impact of event rate on QoR 84

4.3.2.2 Impact of variable window size on QoR 88

4.3.2.3 Impact of binsize on QoR 90

4.3.2.4 Run-time overhead of the LS 91

4.3.2.5 Maintaining the given latency bound 92

4.3.2.6 Results Discussion 93

4.4 Conclusion. 93
5 hSPICE: State-Aware Load Shedding from Input Event Streams 95
5.1 System Model 96

52 hSPICE
5.2.1 Partial Match Granularity
5.2.1.1 Event Utility

5.2.1.2 Predicting Event Utility

5.2.1.3 Drop Amount,

5.2.1.4 Load Shedding

5.2.2 Window Granularity
5.2.2.1 Event Utility

5.2.2.2 Utility Threshold

5.2.2.3 Load Shedding

5.3 Performance Evaluations
5.3.1 Experimental Setup
5.3.2 Experimental Results
5.3.2.1 Impact of Event Rate on QoR

5.3.2.2 Impact of Window Size on QoR

5.3.2.3 Maintaining Latency Bound

5.3.2.4 Discussion

54 Conclusion.

gSPICE: Generic Feature-Based Event Shedding

6.1 System Modelo
6.1.1 Predecessor Pane

6.2 gSPICE
6.2.1 Event Utility
6.2.2 Predicting Event Utility
6.2.2.1 Gathering Statistics

6.2.2.2 Utility Prediction

6.2.23 gSPICE-SH

6.2.24 gSPICE-SM

6.2.3 Utility Threshold
6.2.4 Load Shedding
6.2.5 Window Granularity,

6.3 Performance Evaluations
6.3.1 Experimental Setup
6.3.2 Experimental Results
6.3.2.1 Results on Synthetic Data.

6.3.2.2 Stock Results

6.3.2.3 Soccer Results

6.3.2.4 Impact of Predecessor Pane Length on QoR

6.3.2.5 Impact of Event Distribution on QoR
6.3.2.6 Maintaining Latency Bound

Contents

Contents

6.3.2.7 Discussion o 149

6.4 Conclusion. 150

7 Related Work 151
7.1 Complex Event Processing 151
7.2 Load Shedding 152
7.3 Approximate Event Processing L. 154
7.4 Uncertainty in Event Processing 155

8 Summary and Future Work 157
8.1 Summary 157
8.2 Future Work 159

List of Figures

1.1 Classification of load shedding approaches in CEP. 25
2.1 An example of a CEP operator graph. 30
2.2 An example of a CEP operator with the merger-splitter component. . . 33
2.3 Example 1. e 34
3.1 The pSPICE Architecture. 44
3.2 State machine example. oL 46
3.3 Transition matrix 77, for the state machine in Figure 3.2. 47
3.4 Impact of match probability. 000 57
3.5 Impact of event rate. 60
3.6 eventlatency le.. 61
3.7 processing time 7. 61
3.8 overhead of pSPICE. 62
4.1 The eSPICE Architecture. 69
4.2 CDT computed from Table 4.1 (UT') and the predicted position shares
inawidnow. 72
4.3 Simple running example. 72
4.4 Partition Size. 76
4.5 False negatives for ()1 with different input event rates. 84
4.6 False negatives for Qo with different input event rates. 85
4.7 False negatives for Q3 with different input event rates. 86
4.8 False negatives for 4 with different input event rates. 87
4.9 False negatives for 5 with different input event rates. 87
4.10 False negatives for Q¢ with different input event rates. 88
4.11 False positives for @)1 and Q)2 with different input event rates. 89
4.12 False positives for Q)5 and Qg with different input event rates. 89
4.13 Impact of variable window size on QoR. 91
4.14 Impact of bin size on QoR. 91

List of Figures

10

4.15 @s5: Overhead of the LS. 92
4.16 Impact of bin size on the quality. 93
5.1 The hSPICE Architecture. 98
5.2 Observations gathered from six PMs. 101
5.3 Computing event utility U, for a partial match. 101
5.4 Impact of event rate on false negatives for @1, Q2, and Q3. 112
5.5 Impact of event rate on false negatives for Q4 and Qg. 113
5.6 Impact of event rate on drop ratio. L 114
5.7 Impact of event rate on false positives. 116
5.8 Impact of window size on false negatives. 117
5.9 Impact of window size on false positives. 118
5.10 Maintaining latency bound. 0oL 120
6.1 Predecessor pane. 126
6.2 Importance of the predecessor pane. 129
6.3 Statistic gathering and utility calculation. 130
6.4 Synthetic: Impact of event rate on false negatives. 139
6.5 Synthetic: Impact of event rate on drop ratio. 140
6.6 Synthetic: Impact of event rate on false positives. 141
6.7 Stock: Impact of event rate on false negatives. 142
6.8 Stock: Impact of event rate on false positives. 144
6.9 Soccer: Impact of event rate on QoR. oL 145
6.10 Impact of the predecessor pane length on QoR. 147
6.11 Impact of event distribution on QoR. 149
6.12 Impact of event distribution on drop ratio. 149
6.13 Maintaining latency bound. oo 150
8.1 Dependencies between operators in the operator graph. 162

List of Tables

3.1

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4

Queries. 56
UT generated from the collected statistical data. 72
Queries. 83
Event distribution within windows. 101
Contribution ob, and completion ob, observations. 101
Observations Se. 130
Aggregated Observations S, and the predicted utilities. 130
Synthetic Datasets. 137
Queries. 138

11

List of Algorithms

Detecting and Determining Overload. 50
2 Load Shedding. 53
3 Building CDT table. 74
4 Load shedder. 78
5 Load shedder (PM granularity). 107

Load shedder (window granularity).. 109
7 Load shedder. 135

13

Abstract

Complex event processing (CEP) is a powerful paradigm to detect patterns in continuous
input event streams. The application area of CEP is very broad, e.g., transportation,
stock market, network monitoring, game analytics, retail management, etc. A CEP
operator performs pattern matching by correlating input events to detect important
situations (called complex events). The criticality of detected complex events depends
on the application. For example, in fraud detection systems in banks, detected complex
events might indicate that a fraudster tries to withdraw money from a victim’s account.
Naturally, the complex events in this application are critical. On the other hand, in
applications like network monitoring, soccer analysis, and transportation, the detected
complex events might be less critical. As a result, these applications might tolerate

imprecise detection or loss of some complex events.

In many applications, the rate of input events is high and exceeds the processing
capacity of CEP operators. Moreover, for many applications, it is important to detect
complex events within a certain latency bound, where the late detected complex events
might become useless. For CEP applications that tolerate imprecise detection of complex
events and have limited processing resources, one way to keep the given latency bound
is by using load shedding. Load shedding reduces the overload on a CEP operator
by either dropping events from the operator’s input event stream or dropping partial
matches (short PM) from the operator’s internal state. That results in decreasing the
number of queued events and in increasing the operator processing rate, hence enabling
the operator to maintain the given latency bound. Of course, dropping might adversely
impact the quality of results (QoR). Therefore, it is crucial to shed load in a way that
has a low impact on QoR.

There exists only limited work on load shedding in the CEP domain. Therefore, in
this thesis, we aim to realize a load shedding library that contains several load shedding
approaches for CEP systems. Our shedding approaches drop events and PMs,; shed events
on different granularity levels, and use several features to predict the importance/utility

of events and PMs. More specifically, our contributions are as follows.

At first, we precisely define the quality of results (QoR) using real-world examples

15

Abstract

and different pattern matching semantics defined in the CEP domain. Secondly, we
propose a load shedding approach (called pSPICE) that drops PMs to maintain a given
latency bound. pSPICE uses the Markov chain and Markov reward process to predict
the utility of PMs. Moreover, pSPICE adaptively calculates the number of PMs that
must be dropped to maintain the given latency bound.

In our third and fourth contributions, we develop two load shedding approaches that
are called eSPICE and hSPICE. eSPICE drops events from windows to maintain the
given latency bound. While hSPICE drops events from windows and PMs to maintain
the given latency bound. Both approaches use a probabilistic model to predict the
event utilities. Moreover, in both approaches, we provide algorithms that predict utility
thresholds to drop the needed number of events. Additionally, in eSPICE, we develop
an algorithm that adaptively calculates the number of events that must be dropped to
maintain the given latency bound.

Finally, we propose a load shedding approach (called gSPICE) that drops events from
the input event stream and from windows to maintain the given latency bound. gSPICE
also predicts the event utilities using a probabilistic model. Moreover, to efficiently store
the event utilities, we develop a data structure that depends on the Zobrist hashing.
Furthermore, gSPICE uses well-known machine learning approaches, e.g., decision trees
or random forests, to estimate event utilities.

We extensively evaluate our proposed load shedding approaches on several real-world

and synthetic datasets using a wide range of CEP queries.

16

Deutsche Zusammenfassung

Complex Event Processing (CEP) oder komplexe Ereignisverarbeitung ist ein leis-
tungsfihiges Paradigma zur Erkennung von Ereignismustern in kontinuierlichen Ein-
gangsereignisstromen. CEP ist breit anwendbar, z.B. in den Bereichen Verkehr, Borsen-
handel, Netzwerkiiberwachung, Spielanalyse, Einzelhandelsmanagement, usw. Ein CEP-
Operator fithrt einen Mustervergleich durch, indem er Eingangsereignisse korreliert, um
wichtige Situationen (komplexe Ereignisse genannt, engl. complex events) zu erkennen.
Die Kritikalitdt der erkannten komplexen Ereignisse hédngt von der Anwendung ab.
In Betrugserkennungssystemen in Banken kénnen die erkannten komplexen Ereignisse
darauf hinweisen, dass ein Betriiger versucht, Geld vom Konto des Opfers abzuheben.
Natiirlich sind die komplexen Ereignisse in dieser Anwendung kritisch. Auf der anderen
Seite sind in Anwendungen wie Netzwerkiiberwachung, Fuftballanalyse und Verkehr die
erkannten komplexen Ereignisse weniger kritisch. Folglich kénnen diese Anwendungen

ungenaue Erkennung oder den Verlust einiger komplexer Ereignisse tolerieren.

In vielen Anwendungen ist die Rate der Eingangsereignisse hoch und iibersteigt die
Verarbeitungskapazitiat der CEP-Operatoren. Auferdem ist es fiir viele Anwendungen
wichtig, komplexe Ereignisse innerhalb einer bestimmter Latenzschranke zu erkennen,
wobei verspétet erkannten komplexen Ereignisse unbrauchbar werden kénnten. Fiir CEP-
Anwendungen, die eine ungenaue Erkennung von komplexen Ereignissen tolerieren und
iiber begrenzte Verarbeitungsressourcen verfiigen, bietet die Verwendung von Lastabwurf
(engl. load shedding) eine Moglichkeit zum Einhalten der vorgegebenen Latenzschranke.
Lastabwurf reduziert die Uberlastung eines CEP-Operators indem entweder Ereignisse
aus dem Eingangsereignisstrom des Operators verworfen werden oder partielle Uberein-
stimmungen (engl. partial matches, Abk. PM) aus dem internen Zustand des Operators
entfernt werden. Das fiihrt zu einer Verringerung der Anzahl von Ereignissen in der
Warteschlange und erhoht die Verarbeitungsrate des Operators, wodurch der Operator
in die Lage versetzt wird, die vorgegebene Latenzschranke einzuhalten. Natiirlich kann
das Verwerfen von Ereignissen die Qualitédt der Ergebnisse (engl. quality of results, Abk.
QoR) negativ beeintriachtigen. Daher ist es entscheidend, die Last so abzuwerfen, dass

sich eine geringe Auswirkung auf die QoR ergibt

17

Deutsche Zusammenfassung

Es gibt nur wenige Arbeiten zum Lastabwurf im CEP-Bereich. Daher wird in dieser
Arbeit eine Lastabwurf-Bibliothek realisiert, die verschiedene Lastabwurf-Ansétze fiir
CEP-Systeme enthélt. Unsere Ansétze konnen Ereignisse und PMs verwerfen, wobei
wir verschiedene Merkmale zur Vorhersage der Wichtigkeit /Niitzlichkeit von Ereignissen
und PMs verwenden. Auferdem, werden Ereignisse auf verschiedenen Ebenen verworfen.
Im Einzelnen sind unsere Beitrage wie folgt.

Erstens definieren wir die Ergebnisqualitidt (QoR) anhand von Beispielen aus der realen
Welt und verschiedenen Ereignismustersemantiken, die in der CEP-Doméne definiert sind.
Zweitens schlagen wir einen Lastabwurf-Ansatz (genannt pSPICE) vor, der PMs auslésst,
um eine gegebene Latenzschranke einzuhalten. pSPICE verwendet die Markov-Kette
und den Markov-Reward-Prozess, um den Nutzen von PMs vorherzusagen. Auferdem
berechnet pSPICE adaptiv die Anzahl der PMs, die verworfen werden miissen, um die
vorgegebene Latenzschranke einzuhalten.

In unserem dritten und vierten Beitrag entwickeln wir zwei Ansétze zum Lastabwurf,
die eSPICE und hSPICE genannt werden. eSPICE verwirft Ereignisse aus Fenstern,
um die gegebene Latenzschranke einzuhalten, wihrend hSPICE Ereignisse von Fenstern
und PMs auslisst, um die vorgegebene Latenzschranke einzuhalten. Beide Ansétze
verwenden ein probabilistisches Modell zur Vorhersage der Nutzung der Ereignisse.
Dariiber hinaus stellen wir in beiden Ansétzen Algorithmen zur Verfiigung, die einen
Nutzschwellwert vorhersagen, anhand dessen die erforderliche Ereignisanzahl verworfen
wird. Zusétzlich entwickeln wir in eSPICE einen Algorithmus, der adaptiv die Anzahl der
Ereignisse berechnet, die verworfen werden miissen, um die die gegebene Latenzschranke
einzuhalten.

Schliefslich schlagen wir einen Lastabwurf-Ansatz (genannt gSPICE) vor, der Ereignisse
aus dem Eingangsereignisstrom und aus Fenstern entfernt, um die vorgegebene Laten-
zschranke einzuhalten. gSPICE prognostiziert auch die Nutzung der Ereignisse unter
Verwendung eines probabilistischen Modells. Zur effizienten Speicherung des Nutzens
der Ereignisse entwickeln wir eine Datenstruktur, die auf dem Zobrist-Hashing basiert.
Dariiber hinaus verwendet gSPICE bekannte Ansétze des maschinellen Lernens, z.B.
Decision Trees oder Random Forests, um Ereignisnutzwerte zu schétzen.

Wir evaluieren unsere vorgeschlagenen Lastabwurf-Ansétze ausgiebig auf mehreren

realen und synthetischen Datensétzen mit einer breiten Palette von CEP-Abfragen.

18

Chapter

Introduction

Generally, most applications rely on high-level data streams, referred to as events. An
event is the basic data element of many contemporary important applications, e.g.,
finance, transportation, fraud detection, stock analysis, smart home, smarts cities, heath-
care, environmental monitoring, and network monitoring applications. For example, an
event might represent the change in the temperature of equipment or the stock quote
of a company. Events emanate from sensors, social media, and various other sources,
forming an event stream. For an application, the occurrence of events might indicate
the occurrence of application-interesting situations, where this occurrence requires the
application to take suitable actions.

In this context, complex event processing (CEP) is an established paradigm used to
detect the occurrence of important situations by processing the input event streams
[Luc01; DGP07; WDR06; GJS92; CM94|. CEP systems extract high-level information
from the low level data elements (i.e., events), where a CEP system correlates events
in the input event streams to detect important situations (a.k.a. complex events).
CEP acquires a considerable market share, where it is expected to reach USD 10.79
billion by 2023 [Upd18]. The powerful features of CEP open the door for several
applications in different domains, e.g., transportation, stock market, network monitoring,
game analytics, retail management, and fraud detection |Zac+15; May-+17; Bal+13;
OJW03; MZJ13; WDRO06; Art+17|. The criticality of detected complex events mainly
depends on the application. For example in fraud detection systems in banks, detected
complex events might indicate that a fraudster tries to withdraw money from a victim’s
account. Naturally, the complex events in this application are critical [Art+17]. On the
other hand, in applications like network monitoring, soccer analysis, and transportation
[OJW03; SBR19; Slo+19], the detected complex events are less critical. As a result,
these applications might tolerate imprecise detection or loss of some complex events.
Moreover, in many applications, complex events must be detected within a given latency
bound to enable the application to take suitable actions at the right time. However, if

the rate of input events exceeds the processing capacity of the CEP system, the input

19

1 Introduction

events queue up, and the detection latency of complex events increases, possibly resulting
in violation of the given latency bound.

The main objective of this thesis is to empower CEP systems to prevent the violation
of the given latency bound during overload situations. To this end, this thesis introduces
several load shedding strategies for CEP systems. In the rest of this chapter, we first
present an overview of CEP systems. Then, we motivate our work by explaining the
overload and latency challenges. Afterward, we define the research gaps and highlight
our main contributions in this thesis. Finally, we conclude this chapter with a brief

outline of the thesis.

1.1 Complex Event Processing

In general, a CEP system consists of a set of operators that are interconnected in the
form of a directed acyclic graph (DAG), constituting the CEP operator graph [Che+03;
McC+13; Neu+10; Kol+12; SMMP09]. Each CEP operator correlates events in the input
event streams to detect complex events. The event correlation (a.k.a. pattern matching)
is typically performed in accordance with predefined CEP patterns. There exist several
event query languages, e.g., Snoop [CM94|, SASE [WDRO06|, and TESLA [CM10], that
are used to define queries in CEP, where a query corresponds to a pattern. The event
query languages contain several predefined event operators (e.g., sequence, negation,
any operators) that help in defining CEP patterns. In CEP applications, an event in
the input event stream represents the basic data element. For example, an event might
contain information on the stock quote of a company in a stock analysis application or
the position of a bus in a transportation application. While complex events, for example,
might provide high-level information on stock companies that influence each other or
the occurrence of abnormal traffic in the above two applications, respectively.

In CEP systems, the input event stream is continuous and infinite. Therefore, it is
common in CEP to correlate together only events that occur within a certain interval
(we refer to this interval as a window). The window represents a temporal constraint in
CEP systems. This CEP model is known as window-based CEP, where the input event
stream is partitioned into windows of events [AC04; May18; PS06; Bal+13; Lim+18].
The events within a certain window are matched by a CEP operator to detect complex
events, where windows might overlap. Therefore, an event in the input event stream
might belong to multiple windows at the same time. While correlating events within
a window, a part of a pattern might be matched. This matched part of the pattern is
called a partial match (short PM). Within a window, at a certain point in time, there
might exist many open PMs, where every incoming event in the window is matched with
these open PMs. In CEP systems, PMs represent an important part of the internal state
of a CEP operator. A partial match may complete and become a complex event if the

full pattern is matched. As a result, in the window-based CEP, the matching of events

20

1.1 Complex Event Processing

is performed on three granularity levels: stream, window, and PM granularities. The

stream represents the coarsest granularity, while the PM represents the finest granularity.

The following example shows how a pattern is defined and detected in CEP. In a
traffic monitoring system |Zac-+15], if more than one bus gets delayed at the same bus
stop, it might indicate an abnormal traffic situation, e.g., an accident. To detect the
abnormal behavior, a traffic analyst formulates the following query ¢ using SASE-like

event query language [WDROG6|:

pattern seq (A4;B)
where A.delay > = minutes and B.delay > = minutes
and A.stop = B.stop

within 5 minutes

The query g detects abnormal traffic, i.e., a complex event, if a bus A gets delayed on a
specific bus stop and the following bus B within 5 minutes (window length/size) from

bus A also gets delayed at the same bus stop.

Assume that a window w contains the following three events: Aj, Ay, and Bs, where
X; represents the event of bus X at position ¢ in window w. We refer to A and B as
event types. If the bus event A; indicates that bus A gets delayed, a new PM ~; is
opened with event A;. We refer to event A; as the event that contributes to PM ~;.
Similarly, in window w, a new PM -, is opened with event As if the bus event As also
indicates that the bus A gets delayed. If the bus event Bs indicates that the subsequent
bus B is also delayed at the same stop as A; and As, this might result in detecting
two complex events. The first complex event cplzy = (A1, Bs) is detected as a result
of matching event Bz with event A; (i.e., with PM 1), and the second complex event
cplxes = (Asg, Bs) is detected as a result of matching event Bs with event Ay (i.e., with
PM ~2). We refer to events Aj, Ao, and Bs in complex events cplz and cplzy as the

events that contribute to the complex events cplx; and cplas.

However, in this example, it is unclear whether event B3 should match with only event
Ajq, only event Ao, or with both events A; and As. Moreover, in the above example,
event B3 contributes to two complex events, i.e., cplz; and cplze. Hence, it is unclear
whether an event is allowed to be used in detecting multiple complex events, i.e., to
contribute to multiple complex events. Therefore, CEP researchers have introduced
selection policies that define which events must be matched together and consumption
policies that define whether an event may contribute to more than one complex event. In
CEP systems, there exist mainly four selection policies (first, last, each, and cumulative)
and two consumption policies (zero and consumed) [CM94; ZU99; CM10|. In Chapter 2,
we discuss in more detail windows, PMs, how pattern matching is performed in CEP

systems, and the selection and consumption policies.

21

1 Introduction

1.2 Motivation and Research Gaps

As mentioned above, the focus of this thesis is on handling overloaded CEP systems to
maintain a given latency bound. Latency is a crucial factor in plenty of paramount CEP
applications. A high complex event detection latency might result in losing lives or money.
For example, in the case of a vehicle accident, the percentage of lives saved increases
by 6% if the accident detection latency decreases by one minute [Eva96]. Moreover, in
[ABO20], the authors show that exceeding latency bound in trading on global stock
markets costs the investors approximately USD 5 billion per year.

In many CEP applications, e.g., network monitoring, traffic monitoring, stock market
[OJWO03; Zac+15; Bal+13], the volume of the input event stream is typically high where
it is not feasible to process the incoming events on a single machine. Moreover, the
detection latency of complex events is significantly important, where the detected complex
events might become useless if they are not detected within a certain latency bound
[Quo+17; CF+13; RBR19]. To process such huge input event streams and maintain a
given latency bound, a well-known solution in the CEP domain is to use distribution
and parallelization, where CEP operators are distributed on multiple compute nodes.
Moreover, each CEP operator runs on one or more compute nodes [CF+13; Neu+10;
May+17; Bal+13; ZR10; Zac+15; MKR15; ZR10]. However, in many applications, the
volume of the input event stream is not stable and fluctuates over time [KLC18; RBQ16].
Therefore, it is not trivial to know the number of necessary compute nodes in advance.
Hence, either the number of compute nodes should be over-provisioned, which introduces
additional cost, or the number of compute nodes can be adapted elastically as proposed
by many researchers |[CF+13; Neu+10; Zac+15; MKR15; ZR10]. However, adapting the
parallelization degree in the case of short input spikes introduces a high performance
overhead |[KLC18|. Moreover, resources might be limited for several reasons including:
1) limited monetary budget, and 2) limited compute resources if operators run in private

clouds due to security or response time reasons.

Load Shedding in CEP. Another solution to process large input event streams
while maintaining a given latency bound is to reduce the processing latency of events in
CEP operators, which in turn increases the operator processing rate, hence enabling to
maintain the given latency bound. In a CEP operator, the processing latency of an event
e represents the time an operator needs to process (i.e., match) the event e with open PMs
within all windows. Hence, the event processing latency mainly depends on the number
of open PMs within the operator [RLR16; Bal+413]. Therefore, to reduce the processing
latency of an event e, we need to reduce the number of PMs with which the event e is
matched within an operator. This can be done either by dropping events or PMs (a.k.a.
load shedding). As expected, load shedding may negatively impact the quality of results
(short QoR) as it might falsely drop complex events (denoted by false negatives) or/and

falsely detect complex events (denoted by false positives). Therefore, it is crucial to

22

1.2 Motivation and Research Gaps

shed load with minimum adverse impact on QoR. As a result, for CEP applications that
tolerate imprecise detection of complex events and have limited processing resources,
one effective way to keep the given latency bound is through intelligently shedding the

excessive load.

In CEP systems, to maintain a given latency bound and minimize the adverse impact
of shedding on QoR, a load shedding approach should perform the following three
main tasks [Slo+19; SBR19; Tat+03]: 1) Deciding on when to drop events or PMs, 2)
Calculating the number of events or PMs that are needed to be dropped, and 3) Deciding
on which events or PMs to drop. The third task (i.e., deciding on which events or PMs
to drop) is the most crucial task since it directly influences QoR. One way to tackle this
task is by assigning utilities to events/PMs where the utilities reflect the importance of
events/PMs, w.r.t. QoR. The higher is the importance of an event/PM for QoR, the
higher is its utility. As a result, if there is a need to shed load, events/PMs with the
lowest utilities are dropped, hence reducing the negative impact of dropping on QoR.
The utility of an event depends mainly on the detected complex events to which the
event contributes. Similarly, the utility of a PM depends on the complex events that are
detected when the PM completes. Hence, the detected complex events might be used
as a feature to assign utilities to events/PMs. The higher is the number of detected
complex events to which an event contributes or a PM becomes, the higher is the utility

of the event/PM.

In CEP systems, complex events can be only identified after processing (i.e., matching)
events in the input event stream with PMs within CEP operators. However, the CEP
systems need to assign utilities to events and PMs prior to processing events with
PMs, hence being able to drop events/PMs with the lowest utilities in overload cases,
maintaining the given latency bound, and reducing the drop impact on QoR. That
means that to assign utilities to events/PMs, we must depend on features other than
the detected complex events. An efficient load shedding approach must use appropriate
features that help in precisely predicting the event/PM utilities. In CEP systems, there
exist many features that may be used to predict the events/PM utilities. These features
may originate from events/PMs themselves or from the context in which the events/PMs
exist. The event type and the PM state (i.e., the progress of the PM) are examples
of features that originate from events and PMs themselves, respectively. While the
event positions within a window and the recently occurred events in a window represent

examples of features that originate from the context.

Besides precisely predicting event/PM utilities, another crucial factor influencing the
effectiveness of a load shedding approach is its overhead in performing the load shedding.
A high load shedding overhead implies that a high percentage of the available processing
power is used to make the shedding decisions. Such overhead results in reducing the
available processing power to perform pattern matching, thus adversely impacting QoR.

There exists a trade-off between precisely predicting the event/PM utilities and the load

23

1 Introduction

shedding overhead. As we showed above, an event in the input event stream is processed
(i.e., matched) on three different granularity levels: the stream, the window, and the
PM levels. Accordingly, event dropping might also be performed on these three different
granularity levels. 1) Dropping an event from the event stream is equivalent to drop
the event from all windows and PMs within an operator. 2) Dropping an event from a
window is equivalent to dropping the event from all PMs within the window, which in
turn represents a subset of all PMs within an operator. 3) Dropping an event from a

PM means that the event is dropped from an individual PM within an operator.

Dropping events on the stream level (i.e., the coarsest granularity) requires taking
the shedding decision once for each event in the event stream. While dropping events
from windows and PMs might demand to take the shedding decision multiple times
for each event in the input event stream. Hence, dropping events on the stream level
might impose lower load shedding overhead compared to dropping events on window
and PM granularities. However, event utilities on the stream level might not be precisely
predicted compared to predicting the event utilities on window and PM granularities.
Dropping a PM means that the PM is removed from the operator’s internal state, hence
no events in the window will be matched with this dropped PM. Therefore, dropping
PMs also represents dropping on a coarser granularity compared to dropping events
from PMs. Besides the drop granularity, the chosen features to predict the utility of
events/PMs might also influence the overhead of a load shedding approach. Therefore,
we must select those features that can predict the utility of events/PMs with considerable

accuracy and a tolerable overhead.

As a result, we classify the load shedding approaches according to the following
three characteristics: 1) Depending on whether the internal state of a CEP operator
is revealed (i.e., a white-box or black-box CEP operator). 2) Depending on whether
events or PMs are dropped, i.e., shedding is performed on events or PM granularities. 3)
Depending on whether events are dropped from the stream, window, or PMs (in the case
of dropping events). Figure 1.1 depicts a classification of load shedding approaches in
CEP. In the figure, a load shedding approach might be either a black-box or a white-box
approach. Moreover, the shedding may be performed on two granularities: event and
PM granularities. In a black-box approach, only events might be dropped since PMs are
not revealed by CEP operators, i.e., PMs are not accessible. Moreover, dropping events
in a black-box approach might be performed only on stream and window granularities.
As PMs are not revealed, dropping events on PM granularity is not possible. In a white
box load shedding approach, we may shed PMs since the operator’s internal state is
exposed. Additionally, we may drop events on all granularity levels, i.e., stream, window,
and PM levels.

State-of-the-art. Load shedding has been extensively studied in the stream process-
ing domain [Tat-+03; TZ06; RBQ16; OJW03; TBL08; SW04; JMRO05]. The queries in

this domain are mostly aggregations, min, max, and simple binary equi-joins. There-

24

1.2 Motivation and Research Gaps

Load shedding approach

White-box

Black-box

Events Events

I Stream I I Windows I I PMs I

Figure 1.1: Classification of load shedding approaches in CEP.

Windows

fore, researchers in the stream processing domain propose load shedding approaches
that mainly assign utilities to tuples individually without taking into consideration the
dependency between tuples. However, patterns in the CEP domain are different and
more complex than the used queries in the stream processing domain. In CEP systems,
a pattern can be viewed as multi-relational non-equi-joins with temporal constraints
[HBN14]. Moreover, there exists a dependency between events in a pattern. Additionally,
CEP has many selection and consumption policies (i.e., match semantics) [CM94; ZU99;
CM10]. Using different selection and consumption policies in a pattern might result in
detecting a different set of complex events with the same input event stream. These
settings considerably increase the complexity of CEP patterns and complicate assigning
utilities to events and PMs. Therefore, the load shedding approaches proposed in the

stream processing domain are not suitable for the CEP domain.

So far, there exists only a little work on load shedding in CEP [HBN14; ZVHW20].
In [HBN14|, the authors propose a black-box load shedding approach for CEP systems
where their approach drops events from the input event stream of a CEP operator.
The approach assigns utilities to events depending on the dependency between events
in patterns and the distribution of events in the input event stream and accordingly
shed events. However, they do not consider the order of events in patterns, which is
important in CEP as in sequence and negation operators [Liu+09; CGB11; AC06]. In
[ZVHW20], the authors propose a white-box load shedding approach that drops both
events and PMs where events and PMs with the lowest utilities are dropped. The events
are dropped on the stream granularity. A PM is assigned a utility depending on its
progress and the number of remaining events in the window. The utility of events in
[ZVHW20| depends on the PMs which these events contribute to. Events that contribute

to PMs with low utilities are considered to have also low utilities. However, low utility

25

1 Introduction

PMs might also contain highly important events. Hence, dropping these events might
adversely impact QoR. Moreover, this approach is limited to skip-till-any-match pattern
semantic [Agr+08]- which is equivalent to each selection policy and zero consumption
policy [CM94; WDRO06|- and it does not support the negation event operator.

As a result, the available works on load shedding in CEP are very narrow and have
many limitations. Therefore, there is a need to develop new shedding approaches for
CEP systems covering large classes of load shedding approaches (cf. Figure 1.1). The
proposed approaches should perform load shedding on different granularity levels and
work with black-box or white-box CEP operators. Moreover, they should be generic,
w.r.t. supporting CEP operators and pattern matching semantics (i.e., selection and
consumption policies). Furthermore, since the load shedding overhead has a considerable
impact on the effectiveness of load shedding approaches, the developed load shedding

approaches are envisioned to have low overhead.

1.3 Contributions

The goal of this thesis is to develop concepts and algorithms that enable load shedding
in CEP systems and empower a CEP operator, in overload cases, to maintain a given
latency bound when resources are limited. To this end, we developed a load shedding
library for CEP systems. The library contains four main load shedding approaches
that cover all load shedding classes shown in Figure 1.1, except shedding events on the
stream level while using a white-box operator. Our proposed load shedding approaches
enable CEP operators to maintain the given latency bound while minimizing the drop
impact on QoR. Our shedding approaches implicitly consider the dependency between
the events in patterns and in the input event stream. Moreover, they are not restricted to
specific CEP event operators or selection and consumption policies, where they support
all common CEP event operators and the selection and consumption policies.

In the following, we list the contributions of this PhD thesis in more detail. These
contributions are based mainly on work performed and published as part of the PhD
thesis [Slo-+19; SBR19; SBR20a; SBR20b]|, where the scientific work contributed by the
author of this thesis was about 70%, 70%, 80%, and 85%, respectively.

1. We provide two ways to define the quality of results (QoR), namely strict and re-
laxed QoR [SBR20b|. Moreover, we support our definitions by example applications

from the real-world.

2. A white-box lightweight load shedding approach (called pSPICE) that drops PMs
in overload cases to maintain a given latency bound [Slo+19]. pSPICE uses the
Markov chain and Markov reward process to predict the utility of PMs where the
utility depends on the PM state (i.e., the PM progress) and the remaining events

in the window. Moreover, we develop an algorithm that decides when to drop PMs

26

1.3 Contributions

and estimates how many PMs to drop from a CEP operator to maintain the given

latency bound.

. eSPICE, a black-box lightweight load shedding approach that, in overload cases,
drops events from windows to maintain a given latency bound [SBR19]. eSPICE
uses a probabilistic model to predict the event utilities where the utility of an
event depends on two features: event type and the relative position of the event in
the window. eSPICE is also a lightweight load shedding approach. Moreover, we
develop an algorithm to estimate the number of events to drop in order to maintain
the given latency bound. Furthermore, we provide an algorithm to predict a utility
threshold that enables eSPICE to perform shedding in a lightweight way.

. An efficient load shedding approach (called hSPICE) that drops events either
from PMs or from windows in overload cases to maintain a given latency bound
[SBR20a; SBR20b|. hSPICE is a white-box approach that performs event shedding
on two granularity levels: window and PM levels. hSPICE uses a probabilistic
model to predict the event utilities for PMs within windows where the utility of
an event for a PM depends on the following features: the type and position of
the event within the window and the state of the PM. Moreover, we provide an

algorithm to estimate the number of events to drop to maintain the given latency
bound.

. A black-box shedding approach (called gSPICE) that drops events either from
windows or from the input event stream in overload cases to maintain a given
latency bound. Hence, gSPICE drops events on two granularity levels: the window
and the stream levels. gSPICE uses a probabilistic model to predict the event
utilities, where the utility of an event depends on the following features: the type
and the relative position of the event within the window, the frequency of event
types in the predecessor pane of the event, and the event content (i.e., the event
actual data). The predecessor pane of event e represents the sequence of events
that occur before event e in the input event stream. gSPICE uses the Zobrist
hashing [Zob90] to efficiently store the predicted event utilities. Moreover, gSPICE
uses well-known machine learning approaches, e.g., decision trees or random forests,
to estimate event utilities. The author of this thesis contributed around 85% of

the scientific content of this approach.

We have implemented all of these load shedding approaches by extending a prototype

CEP framework that is implemented using Java. Moreover, we have extensively studied

their performance with a representative set of CEP queries and several real-world and

synthetic datasets.

The above listed contributions and the associated publications are the results of the

research work conducted at the University of Stuttgart under the project "Parallel

27

1 Introduction

complex event processing to meet probabilistic latency bounds IT (Precept II)". Precept
IT is funded by the German Research Foundation "Deutsche Forschungsgemeinschaft
(DFG)" with grant numbers BH 154/1-2 and RO 1086/19-2.

1.4 Structure

The rest of this thesis is structured as follows. Chapter 2 introduces the basic foundations
in this thesis, describing the system model and assumptions. Moreover, it precisely
defines the quality of results (QoR) and the problem statement. Chapter 3 presents
pSPICE, discussing how the utility of PMs, how the number of required PMs to drop
are calculated, and how PM shedding is performed. In Chapter 4, eSPICE is presented,
where we explain how eSPICE predicts the event utilities, computes the number of events
to drop, and estimates a utility threshold. Chapter 5 details hSPICE and compares its
performance with the performance of pSPICE and eSPICE. Chapter 6 presents gSPICE
and shows the impact of using several features on the utility prediction and the load
shedding overhead. Moreover, it compares the performance of all proposed load shedding
approaches. Finally, in Chapter 7, we discuss the related work, and in Chapter 8, we
conclude the thesis with a summary of our contributions and a discussion on the possible

future work.

28

Chapter

Foundations and Problem

Statement

In this chapter, we first present the system model used in this thesis. Then, we provide
a detailed definition of the quality of results. Finally, we precisely state the problem

that is solved in this work.

2.1 System Model

Operator Graph. A CEP system is modeled as a directed acyclic graph (DAG) where
the vertices represent a set of event producers, event consumers, and operators. The edges
represent the flow of event streams. Event producers generate primitive events, while
event consumers consume the detected complex events. Operators correlate incoming
input events using defined patterns to detect complex events. Figure 2.1 depicts an
exemplary CEP operator graph that consists of three event producers, three operators,
and two event consumers. In the figure, operator op; receives input events from event
producers pri and pre, while operator ops receives input events from event producer
prs. Operators op; and ops correlate incoming input events and forward the correlation
results to operator ops. Operator ops, in turn, correlates events in its incoming input
event streams and forwards the detected complex events (if any) to event consumers crq
and cry.

In the following, we explain in detail the basic elements and components of the CEP

operator graph.

Primitive Event. A primitive event is the basic data element in CEP systems that
represents the occurrence of an application-related situation. A primitive event (or
simply, event) is atomic (i.e., happens completely or not at all) and happens at a certain
point in time [GJS92; ZU99; CM94|. Examples of primitive events are the following:

an RFID tag in retail management applications, the occurrence of an operation (e.g.,

29

2 Foundations and Problem Statement

cry cry

pri pro prs

Figure 2.1: An example of a CEP operator graph.

insert, update, delete, etc.) in database applications, information on a player in soccer
applications, a change in a bus location in transportation applications, or a change
in the stock quote of a company in stock market applications. An event consists of
meta-data and a set of attribute-value pairs. The meta-data contains event type and
timestamp, while the attribute-value pairs represent the actual event data (i.e., event
content). The set of all event types is denoted by T. For example, the type (denoted by
T. € T) of an event e might represent a company name in a stock application, a player
ID in a soccer application, or a bus ID in a transportation application. Event timestamp
represents the point in time when the event occurred where each event e is assigned a
timestamp. Moreover, the set of all event attributes of an event e is denoted by E.. An
attribute (denoted by E. € E) of an event e might represent a stock quote, a player
position, or a bus location in the above applications. An instance of an event represents
the occurrence of a specific event type at a certain point in time. For example, in a stock
market application, the stock quote of the IBM company might continuously change
over time, where an event instance of type IBM is generated for each change of the IBM

stock quote.

Complex Event. A complex event is defined similarly to a primitive event where it
consists of meta-data and attribute-value pairs. However, a complex event is constituted
by correlating two or more events (primitive or complex events) by a CEP operator.
Moreover, the attribute-value pairs in a complex event might contain information on
the events from which the complex event is detected. For example, in a stock market
application, assume that a complex event is detected if the stock quote of company A
and the stock quote of company B changes by more than 5%. A detected complex event
might contain the amount of change in the stock quote of both companies, or it even
might include the stock event of both companies themselves. The attribute-value pairs

might also contain any additional information needed by the application. For instance,

30

2.1 System Model

in the above example, it might be necessary that the detected complex events must also

include the sum of the stock quotes of both companies.

Event Producer. An event producer emits primitive events. Examples of event pro-
ducers are the following: sensors, RFID readers, social networks, stock exchanges,

applications, etc.

Event Consumer. An event consumer receives the detected complex events. Event

consumers might be applications, machines, humans, etc.

Event Stream. An event stream is an infinite sequence of events. In the CEP operator
graph, the flow of events (primitive or complex) between any two vertices represents
an event stream. As an operator might have more than one input event stream, events
in the incoming input event streams of an operator merge into a single event stream.
Events must be merged in a deterministic order since events order is crucial in CEP, e.g.,
in the sequence and negation event operators [Liu+09; CGB11; AC06|. Events emitted
by an event producer are ordered using event timestamps. We assume that any two
events from the same event producer have different timestamps. Moreover, several event
streams merge into a single event stream where events in the merged event stream have
a total order using the event timestamps and a tie-breaker.

Events in event streams might suffer from different delays due to several types of delay,
e.g., transmission and processing delay, which might bring events into a wrong order.
This problem is called out-of-order events arrival, a well-known problem in CEP and
stream processing domains. In the literature, there exists extensive work on handling the
arrival of the out-of-order events, for example, by using heartbeats or slack time |[Li+08;
MP13; Bri+08; CGM10; Riv+18|. We assume that events in an event stream have a
correct order. Additionally, we assume that several input event streams are merged into

a single event stream while correctly preserving the total order of events.

Pattern. A CEP pattern defines a set of rules that specify how a certain set of events
are correlated. It defines causal dependencies between events, temporal constraints, and
conditions on event attributes [Luc01; Liu+09; CM94|. In CEP, events are correlated to
check whether they match a defined pattern— we refer to this process as pattern matching.
As we mentioned in Chapter 1, to define patterns, an event query language might be
used, where a query corresponds to a pattern. Examples of such event languages are
Tesla [CM10]|, Snoop [CM94], and SASE [WDRO06|. These languages contain several

event operators: sequence, negation, any, Kleene closure, conjunction, disjunction, etc.
Operator. A CEP operator correlates events in its input event streams to detect

complex events, following rules defined by patterns, where an operator might match

one or more patterns. A CEP operator receives input event streams from its upstream

31

2 Foundations and Problem Statement

vertices in the operator graph. As we mentioned above, input event streams of an
operator are first merged into a single event stream where the total order is preserved
using the event timestamps and a tie-breaker. Then, the operator performs the pattern
matching on the merged event streams. Finally, the detected complex events by the
operator are forwarded to the downstream vertices in the operator graph that might be

other operators or event consumers.

Window. The input event stream of a CEP operator is continuous and infinite.
However, in CEP systems, it is common to partition the input event stream into windows
of events. This CEP model is also known as window-based CEP [AC04; MKR15; PS06;
Bal+13; CM10; MM16; Gro+16; AC04]. The window slides over the input event stream,
where the new incoming events are continuously added to the window while old events
are removed from the window. Windows are opened and closed depending on predicates.
The predicates to open and close windows may depend on time (called a time-based
predicate), on the number of events (called a count-based predicate), on logical predicates
(called a pattern-based predicate), or on a combination of them [MKR15; Gro-+16; AC04;
Li-+05; Bab+02|. The window length may be defined by time (called time-based sliding
window), by the number of events (called count-based sliding window), or by logical
conditions (called pattern-based sliding window). For example, a window of length 10
seconds or a window of length 1000 events. We refer to the number of events within a
window as window size (denoted by ws). Each event within a window w has a position
where the position P, of event e represents the number of events that precedes event e
in window w. Windows might overlap, which means that there may exist more than
one open window at the same time. Hence, event e might belong to multiple windows,

where it has different positions P, within different windows.

We assume that there exists a component called merger-splitter as a predecessor in
front of each operator in the operator graph. This component merges the input event
streams of an operator into a single event stream while preserving the total event order.
Moreover, the merger-splitter partitions the merged input event streams into windows
of events using defined predicates. Please note that, for simplicity, this component is

not shown in Figure 2.1.

Operator Functionality. To better understand the operator functionally, Figure 2.2
depicts an example of a CEP operator with the merger-splitter component. The figure
shows that input event streams (S ... S,,, where m >= 1) are first merged into a
single input event stream and partitioned into windows of events by the merger-splitter.
Windows of events are then pushed to the input queue of the operator. The operator
continuously gets windows of events from its input queue and processes them by the
process function, which performs the actual pattern matching. The output of the pattern
matching represents complex events. Hence, the operator functionality is represented
by the following function: f:w — (c1,¢,...), where w represents a window of events

and (cq, 2, ...) represents an ordered set of complex events. As we mentioned above, an

32

2.1 System Model

operator

complex
events

input queue

[L

process

Y

windows

merger-splitter

Figure 2.2: An example of a CEP operator with the merger-splitter component.

event might belong to multiple overlapped windows. However, the event is processed
independently in each window.

A CEP operator matches one or more patterns (i.e., multi-query). We define the set
of patterns that the operator matches as Q = {g; : 1 <1 < n}, where n is the number of
patterns. Since patterns might have different importances, each pattern has a weight
reflecting its importance. The patterns’ weights are determined by a domain expert and

they are defined as follows: Wg = {wg, : 1 <@ < n}, where wy, is the weight of pattern
;-

To clarify the system model, let us introduce the following example.

Example 1. In a stock application, an operator matches pattern ¢, which correlates
stock events from three companies. Pattern ¢ is defined as follows: within a window
of 8 events (i.e., a count-based sliding window), generate a complex event if a change
in the stock quote of company A results in a change in the stock quote of company B,
followed by a change in the stock quote of company C— the stock quote of each company
should change by at least £%. We may write this pattern as a sequence operator using
Snoop event language as follows [CM94|: ¢ = seq(A; B; C'). Moreover, we may write the
pattern ¢ more precisely in SASE-like event language [WDROG6] as follows:

pattern seq (A; B;C)
where A.quote, B.quote, and C.quote change by > x%

within 8 events

In this example, the operator matches only pattern q. Therefore, the set of patterns
that the operator matches is Q = {q}. Moreover, in this example, the event type T
represents the company name, i.e.;, A, B, or C. Therefore, the set of all event types
T = {A, B,C}. Furthermore, there exists only one event attribute E, that is the stock
quote. Hence, the set of all event attributes is as follows: E. = {quote}. Assume
that a count-based predicate is used to open windows where a window is opened every
two events, i.e., the window slide size is two. Figure 2.3 depicts this example. Figure
2.3(a) shows an ordered input event stream (S;,,) where events in S;, are given sequence

numbers reflecting their orders. In this example, to simplify the presentation assume

33

2 Foundations and Problem Statement

t t — S o1 \ng 02 \ng 0-3 \@
star 0 r_l/ ,_2/ 723

o1 = A and A.quote.change > x%
oy = B and B.quote.change > x%
o3 = C and C.quote.change > x%

State machine of pattern ¢ = seq (A; B; C).

recent event
input event

stre:am (Sin) .. Cy Ay Bs By A A
tim\e
wi | . Oy Ay By By A Ay |
W | 03 AQ Bl BQ |
ws | .. C1 A |

V4

cplay @ Ao >@ B >@ Cs >@
2 G (D))
73 @ A >@

7 .

(b)

Figure 2.3: Example 1.

34

2.1 System Model

that the change in the stock quote of any event in S;, is higher than or equal to %.
Events in S;, are instances of the event types A, B, and C. For example, events Ay,
By, and C5 in S, are event instances of the event types A, B, and C, respectively.
Moreover, the figure shows that the input event stream S;, is partitioned into windows
where there are three overlapped open windows. As an example to show how the same
event may have different positions within different windows, we see that event A4 from
the input event stream belongs to all three windows, where it has the positions 4, 2, and
0 within windows w1, ws, and ws, respectively. The operator processes an event within
all windows to which the event belongs before proceeding to process the next event
in the input queue. For example, in Figure 2.3(a), the operator first processes event
Ay of the input event stream (S;,) in all open windows, i.e., wi, wy, and ws. Then, it
proceeds to process the next event of the input event stream (S;,), which is event Cj in

this example.

Finite State Machine (FSM). There exist several methods (a.k.a. computational
models) to detect a pattern in CEP, e.g., finite state machine-based methods [May+17;
Agr+08; CM10; RLR16; WDRO06]|, tree-based methods [CM94; Cha-+94; MMO09|, string-
based methods [Sad+04|, and Petri Nets-based methods [GD94|. To simplify the
presentation and since finite state machine is the most commonly used computational
model in CEP, in this work, we assume that a pattern in CEP is modeled as a FSM (cf.
Figure 2.3(a)). Please note that our proposed load shedding approaches are agnostic to
the used computational model. We will later show how our approaches support other
computational models. The set of all possible states S,, of pattern ¢; € Q is defined
as follows: Sy, = {s0, 51, ..., Sm}. In Example 1, pattern ¢ has four states (i.e., m = 3)
where S = {s0, 51, 52, s3} as shown in Figure 2.3(a). In the figure, s represents the

initial state of pattern ¢ and s3 represents its final state.

Partial Match. Whenever an operator starts to process events within a window, it
starts an instance of the FSM of every pattern ¢; € Q at the initial state. During event
processing within a window, an event is matched with the FSM instances of pattern
gi € Q. The event might cause the FSM instance(s) of pattern ¢; to transit between
different states of Sy,. Please recall that we have already defined a partial match. Now,
let us define it more formally. An instance of the FSM of pattern ¢; is called a PM,
where the PM completes and becomes a complex event if the FSM instance transits to
the final state. Hence, processing an event within a window implies that the event is
matched with PMs within the window. We define a partial match v of pattern ¢; as
v C ¢;- Moreover, we refer to matching event e with PM ~ C ¢; as processing event e
with PM ~, denoted by e ® .

In Example 1, assume that the operator matches the events in windows chronologi-
cally [CM94] (i.e., using the first selection policy and consumed consumption policy for
all event types— later in this section, we discuss the selection and consumption policies)

and the operator has already processed all available events in all open windows, i.e.,

35

2 Foundations and Problem Statement

the operator has processed the last event of type C (C5 in the input event stream S;;,)
within all windows. Figure 2.3(b) shows the result of pattern matching in all windows.
In window wj, the operator has detected one complex event (cplezy = (A, B2, Cs)) while
there are still three open PMs in window wy: 72, 73, and -4 . Similarly, there are two
PMs in windows wo and ws each: 7, and 9. We refer to events Ay, Bs, Cs5 in the
complex event cplxy as events that contribute to complex event c¢plzi. If processing
event e with PM ~ C ¢; at state s (i.e., e ® 7y5) causes 7 to progress (i.e., e matches g;
and causes the state machine instance to transit), we refer to this as event e contributes
to PM ~ at state s, denoted by e € v,. In Example 1, event By in window wy has been
processed with v, at state sg (i.e., By ® 71s,), but it did not cause ; to progress. While
in the same window wa, event Ay has been processed with ~y; at state sg (i.e., Ag ®7150),
and it caused 1 to progress to state s;. Hence, event As contributes to PM 1 at state
8o, i.e., As € 71,,- Please note that in the negation event operator [RLR16; WDRO6], if
the negated event €’ contributes to PM v (i.e., ¢’ € v), PM ~ is abandoned. For ease of

presentation, hereafter, we also refer to these abandoned PMs as completed PMs.

Selection Policy. In window wq, there exist three instances of the event type A (i.e.,
Ao, A1, Ay), two instances of event type B (i.e., By, Bs3), and one instance of event type
C (i.e., C5). Therefore, it is unclear which instances of the event types A, B, and C
should be matched with each other within window w;. The generated complex events
could be any combinations of these event instances. To precisely define which event
instances should participate in detecting complex events, in CEP, the selection policy
has been introduced [CM94; ZU99; CM10|. There are four main selection policies: first,
last, each, cumulative. In the first selection policy, the earliest event instances are chosen
for pattern matching. In the above example, within window w;, a detected complex
event using the first selection policy for all event types might be epla = (A, B2, C5). In
the last selection policy, the latest event instances are chosen for pattern matching. In
the above example, a detected complex event using the last selection policy for all event
types might be cpla = (A1, Bs, C5). Please note that we assume that a complex event is
emitted whenever it is detected, i.e., the operator does not wait until the window closes
to process events and emit complex events [CM94]. Waiting until the window closes to

emit complex events might add a high latency to the detection of complex events.

Consumption Policy. In the above example, it is also unclear whether it is allowed to
reuse the event instances while performing pattern matching or the event instances should
be considered as consumed events (i.e., it is not allowed to reuse them again) whenever
they have contributed to a complex event. The consumption policy [CM94; ZU99; CM10]
defines whether the same event instance might be used in detecting multiple complex
events. There are mainly two consumption policies: consumed and zero. In the consumed
policy, it is not allowed to reuse the event instances in detecting other complex events.
While in the zero policy, an event instance is allowed to contribute to multiple complex

events. In the above example, let us assume that the selection policy is first for all event

36

2.2 Quality of Results

types. Using the consumed consumption policy for all event types results in detecting
only one complex event cplz = (Ag, Bz, C5). While using the consumed consumption
policy for event types A and B and zero consumption policy for event type C results
in detecting two complex events cplx = (Ap, B2, C5) and epla’ = (Ai, Bs, C5), where
the event Cj is reused in cpl:z:,. For more information on the selection and consumption
policies, see [CM94; ZU99; CM10].

Please note that we do not assume a specific computational model or selection and
consumption policy. Our proposed load shedding approaches support all aforementioned
CEP computation models and selection and consumption policies. Moreover, as we
mentioned above, there exist several event operators in CEP. However, we do not assume
a specific event operator. In general, our load shedding approaches support all commonly

used event operators.

2.2 Quality of Results

In this work, we represent the quality of results (QoR) by the number of false positives
and false negatives. A false positive is a situation (a complex event) that did not occur
but has been falsely detected. While a false negative is a situation (a complex event)
that has occurred but has not been detected.

As mentioned above, an operator might detect multiple patterns Q and each pattern
has its weight (i.e., Wq). For pattern ¢; € Q, we define the number of false positives as
FP,, and the number of false negatives as F'N,,. In an operator, the total number of
false positives (denoted by F'FPp) for all patterns is defined as the sum of the number of
false positives for each pattern multiplied by the pattern’s weight (cf. Equation 2.1).
Similarly, the total number of false negatives (denoted by F'Ng) for all patterns is defined
as the sum of the number of false negatives for each pattern multiplied by the pattern’s
weight (cf. Equation 2.2).

FPy= Y w, *FP, (2.1)
¢:€Q

FNg=) wg * FN, (2.2)
G€Q

As a result, for an operator, QoR is measured by the sum of the total number of false
positives (F'Pg) and the total number of false negatives (F'Ng).

Recall that there might exist several instances of each event type within a window,
where the selection and consumption policies are used to exactly define which instance(s)
of an event type must be used to detect complex events in the window. However, for
many applications, it is sufficient to detect complex events regardless of the exact event
instances that contribute to detect these complex events. Moreover, in many cases, the
consecutive event instances of an event type represent only slight updates for the same

event. Therefore, false positives and negatives can be defined in different ways depending

37

2 Foundations and Problem Statement

on whether the application needs to match the exact event instances or not. In the

following, we introduce two ways to define false positives and negatives, i.e., to define
QoR.

Strict Quality of Results. In the strict quality of results, false positives and
negatives are defined depending on the exact event instances. This type of QoR is
important for applications in which the order of event instances or the causal relations
between event instances are important. For example, in a security application, an
employee opens a door with his/her ID card and there is a camera installed on the door.
Hence, there are two event types: 1) event type ID indicates that the ID card opened
the door, and 2) event type F' represents a video frame. A CEP operator detects if
the ID card that is used to open the door belongs to the same person (employee) who
opened the door. Several persons might open the same door successively in a short time
interval which means that there exist several instances of the ID event type (T, = ID)
and the frame event type (T, = F'). Dropping event instances of any of these two types
or dropping PMs might result in matching a wrong ID event with a wrong frame event.
This might result in detecting that a different person opens the door (false positive) or
detecting that a certain person has not opened the door (false negative). In another
application, social networks, for example, an analyst might be interested to detect which
person has started a discussion on a certain topic. Let us assume that person A has
commented on a post. Then, person B wrote a comment as a reaction to the comment
of person A. After that, person A commented back. In this example, dropping event
instances of the event types A and/or B or dropping PMs might change the correct
order of the comments. Hence, it might lead to incorrectly determine which person has

started the discussion.

To define the strict QoR more precisely, in Example 1 (cf. Section 2.1, Figure 2.3), let
us consider window w; contains the following events: Bz, Bg, C5, A4, B3 B, A1, Ap.
Each event type has one or more event instances in the window. For instance, event type
A has three event instances (i.e., Ag, A1, and A4) in window w;. By processing window
w1, the operator detects a complex event cplx, from the events Ay, Bs, and Cf, i.e.,
eplxz, = (Ag, Ba, Cs)— recall that in Example 1, we are matching events chronologically
[CM94] (i.e., using the first selection policy and consumed consumption policy for all
event types). Next, we first discuss the impact of event shedding on QoR. Then, we
discuss the impact of PM shedding on QoR. Let us assume that due to event shedding,
event By is dropped from the window. In this case, the operator detects a new complex
event cplxf from the events Ay, Bs, and Cs, i.e., cplef = (Ao, B3, Cs). Since the new
complex event cplx} is not detected from the same event instances as the complex event
cplw,, in the strict QoR, complex event cplzf is considered as a false positive. Moreover,
as complex event cplz, is not detected in window w; due to load shedding, we count
this case as a false negative. Hence, dropping event Bs from window w; results in one

false positive and one false negative. Similarly, let us assume that the operator has

38

2.3 Problem Statement

already processed events Ay, A1, By, and B3 in window w;. Hence, the current open
PMs in window w; after processing event Bs are v; = (Ao, B2) and 2 = (A1, B3). Let
us assume that due to PM shedding, PM ~; is dropped. In this case, after processing all
events in the window w;, the operator detects a new complex event cplazlp M ysing PM
~o where it uses the events Ay, Bs, and Cs, i.e., cpl:anM = (A4, B3, C5). Since the new
complex event cplazlp M is not detected from the same event instances as the complex
event cplz,, in the strict QoR, complex event cplajlp M is again considered as a false
positive. Moreover, as complex event cplz, is not detected in window w; due to load
shedding, we count this case as a false negative. Hence, dropping PM ~; results in one
false positive and one false negative.

Relazed Quality of Results. In the relaxed quality of results, false positives and
negatives are defined irrespective of the exact event instances, i.e., it is not important
which instances of an event type contributed to detect a complex event. This type of
QoR is beneficial for many applications, e.g., stock market, soccer, transportation, etc.
For example, in a stock market application, stock events might come at a high frequency
(e.g., every 1 minute). Hence, two consecutive stock events e and e’ of a certain company
(i.e., T. = T!) might have a slight or even no difference in the stock quote (a slight or no
change in price). Therefore, to detect that a stock company A has influenced a stock
company B in a certain time interval (window), it is enough to find a correlation between
any event instance of stock company A and any event instance of stock company B in
that time interval.

To clearly define relaxed QoR, in the above example, the newly detected complex
events cplx] and cpla:fD M are considered equivalent to the complex event eplz,. Hence,
dropping event Bs or PM ~; from window w; does not result in any false positive or
negative in the case of relaxed QoR.

Please note that dropping events or PMs might result in false positives and negatives
in the case of strict QoR. Moreover, it might result in false negatives when using relaxed
QoR. However, when using relaxed QoR, dropping events might result in false positives
only if the negation event operator is used. While dropping PMs does not result in false

positives when using relaxed QoR, irrespective of the used event operator.

2.3 Problem Statement

In this section, we precisely define the problem solved in this thesis. Operators in a
CEP operator graph are assigned latency bounds. A CEP operator might have limited
resources where, in overload cases, it must perform load shedding to avoid violating the
given latency bound (LB). Load shedding is performed by either dropping input events
or partial matches. However, shedding load might degrade QoR, i.e., resulting in false
positives and false negatives. Therefore, the load shedding must be performed in a way

that has a minimum adverse impact on QoR.

39

2 Foundations and Problem Statement

As mentioned in Section 2.2, for an operator, QoR is measured by the the sum of the
total number of false positives (F'Pg) and the total number of false negatives (F'Ng).
For each operator in the CEP operator graph, the objective is to minimize the adverse
impact on QoR, i.e., minimize (F'Pgy + F Ng), while dropping events and PMs such that
the given latency bound LB is met. More formally, for each operator, the objective is
defined as follows.

minimize (FPg+ FNg)
st. [<LB VYeeS,

(2.3)

where [, is the latency of event e that represents the sum of the queuing latency of event

e and the time needed to process event e within all windows to which event e belongs.

40

Chapter

pSPICE: Partial Match Shedding

In this chapter, we present our first load shedding approach that is called pSPICE.
pSPICE is a white-box load shedding approach that drops partial matches.

More specifically, pSPICE is an efficient and lightweight load shedding approach for
CEP systems. In overload cases, pSPICE drops PMs to maintain a given latency bound,
i.e., it sheds load on the PM granularity. As we mentioned in Chapter 1, Section 1.2,
the event processing latency increases proportionally with the number of PMs in a CEP
operator. Therefore, dropping PMs from the internal state of the operator reduces the
event processing latency and increases the operator throughput. Hence, it enables the
operator to maintain a given latency bound in case of input event overload. Of course,
shedding PMs might influence QoR. Therefore, it is crucial to drop PMs that have a
low adverse impact on QoR. To reduce the negative shedding impact on QoR, pSPICE
drops PMs that have the lowest importance. Please recall that dropping PMs has an
advantage over dropping events where if the relaxed QoR is used, dropping PMs does not
result in false positives. That might be important for applications that cannot tolerate
false positives.

There are three main challenges to drop partial matches in CEP: 1) determining when
and how many PMs to drop for an incoming input event rate, 2) determining which
PMs to drop, and 3) performing the load shedding in a lightweight manner so as not
to burden an already overloaded operator. To drop PMs, we associate each PM with
a utility value that indicates the importance of the PM where a higher utility value
means higher importance. We derive the utility of a PM from its probability to complete
and become a complex event (called partial match completion probability) and from its
estimated remaining processing time.

Our main contributions in this chapter are as follows:

e We propose a white-box load shedding strategy, called pSPICE, that uses the
Markov chain and Markov reward process to predict the utility of PMs in windows.
The utility of a PM depends on the completion probability of the PM and on its

remaining processing time.

41

3 pSPICE

e We develop an approach that enables pSPICE to perform the load shedding in an

efficient and lightweight manner.

e We provide an algorithm that decides when and estimates how many PMs to drop

from an operator to maintain the given latency bound.

o We provide extensive evaluations on three real-world datasets and several represen-
tative queries to show that pSPICE reduces the adverse impact of load shedding

on QoR considerably more than state-of-the-art solutions.

The rest of the chapter is structured as follows. Section 3.1 presents the used system
model. In Section 3.2, we explain in detail how different components of pSPICE interact,
how the utility of PMs are defined and predicted in pSPICE, and how load shedding is
performed. Section 3.3 presents the obtained evaluation results. Finally, we conclude

this chapter in Section 3.4.

3.1 System Model

We rely on a similar system model as in Chapter 2, Section 2.1. We assume a window-
based CEP system that consists of a one or more operators where an operator might detect
one or more patterns Q (i.e., multi-query). Patterns might have different importances
where each pattern has a corresponding weight w,, € Wq (given by the domain expert)
reflecting the pattern’s importance. A pattern ¢; € Q is modeled as a finite state machine.
For a pattern ¢; € Q, we define a set of states S;;, = {s0, 51,..., 5m} as the set of all
possible states that the pattern ¢; may have, including the initial state (sp). Assuming
that the state s, represents the final state of pattern ¢;, a PM ~ of pattern ¢; (i.e.,
v C ¢;) completes and becomes a complex event if an instance of the state machine of
pattern ¢; transits to the state s,,.

In this chapter, we assume a white-box CEP operator where the operator reveals
information about PMs and their progress (i.e., states) when processing primitive events
within windows. As we mentioned in Chapter 2, Section 2.1, in CEP systems, there exist
several computational models other than the finite state machine that are used to detect
patterns. Please note that pSPICE is not restricted to a specific computational model.

Later in this chapter, we show how pSPICE supports other computational models.

3.2 pSPICE

In this section, we first present the architecture of pSPICE, our load shedding strategy.
Next, we introduce the notion of utility of PMs followed by a description of our approach
to determine these utilities using the Markov chain and Markov reward process [How12;
How13|. Then, we discuss how to detect overload and compute the amount of overflowing
PMs that must be dropped by the load shedder. After that, we present the load shedding

42

3.2 pSPICE

algorithm that efficiently drops PMs with the lowest utility values. Finally, we discuss
how pSPICE supports other computational models. Please note that in Section 2.2, we
mentioned two types of QoR, namely, strict and relaxed QoR. Our shedding approaches
in this thesis are designed depending on the strict QoR. However, we show evaluation
results with both strict QoR and relaxed QoR.

3.2.1 The pSPICE Architecture

The architecture of pSPICE is depicted in Figure 3.1. The figure shows an operator
which is modified by adding the following components to enable load shedding: overload
detector, load shedder (LS), and model builder.

The incoming windows of events forwarded by the merger-splitter component (cf.
Chapter 2, Section 2.1) are queued in the input queue of the operator. To prevent
violating the defined latency bound (LB), the overload detector checks the estimated
latency for each input event. In the scenario where LB might be violated, the overload
detector calls the LS to drop a certain number of PMs, denoted by p.

The model builder receives observations from the operator about the progress of PMs.
After receiving a certain number of observations, the model builder builds the model,
where it predicts the utility of PMs using the Markov chain and Markov reward process.
The model builder might be heavy-weight. However, it is not a time-critical task and it
does not need to run frequently.

LS drops p PMs every time it is called by the overload detector, where p is determined
by the overload detector. The LS depends on utility values predicted by the model builder
to select those PMs for dropping. Both the LS and overload detector are time-critical
tasks, which directly affect the CEP system performance and hence must be lightweight
and efficient. As we will see later, both of these components have very low overhead in

pSPICE.

3.2.2 Utility of Partial Matches

pSPICE drops partial matches with the lowest utility. The question is— what defines the
utility of a PM? The utility of a PM is defined by its impact on QoR, i.e., the number
of false negatives and positives. A PM that has a low adverse impact on QoR has a low
utility value, while a PM that has a high adverse impact on QoR has a high utility value.
Hence, to minimize the dropping impact on QoR, we must find a way to assign low
utility values to those PMs that are less important than other PMs. We assign utilities
to PMs depending on three factors: 1) the probability of a PM to complete and become
a complex event (i.e., the completion probability), 2) the estimated processing time that
a PM still needs, and 3) the weight of the pattern.

The completion probability of a PM represents the probability of the PM to become a

complex event. The existence of a complex event depends on whether its underlying PM

43

3 pSPICE

operator
input queue complex
- overload event;
windows detector

model builder

U model

Figure 3.1: The pSPICE Architecture.

will complete or not. If a PM completes, a complex event is detected. On the other hand,
if a PM does not complete, a complex event is not detected. Hence, the completion
probability of a PM is an important indicator of the utility of the PM as dropping
PMs that anyway will not complete might imply no degradation in QoR. P, represents
the completion probability of the PM ~. The higher is the completion probability P,
of the PM ~, the higher should be its utility. This means that the utility of a PM is

proportional to its completion probability.

The utility of a partial match ~ is also influenced by its remaining processing time
(denoted by 7). A PM that still has a high remaining processing time (we will use
only processing time hereafter) should have lower utility than a PM that has a lower
processing time. The reason for this is that a PM with low processing time consumes
less processing time from the operator, i.e., giving the operator more time to process
other PMs. Hence, it decreases the need to drop PMs from the operator’s internal state,
which in turn decreases the number of false negatives and positives. This means that
the utility of a PM is inversely proportional to its processing time (7).

For example, let us assume that an operator has two partial matches v; and 79 in two
windows wi and we, respectively. Suppose that P, = P,, but 7,; < 7,,. In this case,
the importance of ;1 should be higher than the importance of s since v has the same
completion probability as v but it imposes lower processing time on the operator. In
another case where P, < P,, but 7,, < 7,,, we need to assign a higher utility to the
PM that results in lesser degradation in QoR. Therefore, we use the proportion of the

completion probability P, to the processing time 7., i.e., —X as a utility value for the
Ty
partial match.

Finally, as we mentioned above, in an operator with multiple patterns (i.e., multi-query

44

3.2 pSPICE

operator), each pattern might have different weight w,, € W, i.e., different importance.
Therefore, when assigning utilities to PMs, we must also take the patterns’ weights into
consideration. To consider the pattern’s weights, we increase the utility value of a PM
v C g; proportionally to its pattern’s weight wy, .

For a PM « C g¢;, to incorporate the completion probability P, of the PM ~, its
processing time 7., and its pattern’s weight w,, in deriving the utility (denoted by U,)
of the PM ~, we represent the utility of PM ~ as follows:

P,

3.2.3 Utility Prediction

Since the utility of a PM depends on its completion probability and processing time, in
this section, we explain the manner in which we predict them using the Markov chain

and Markov reward process [How12; How13|.

3.2.3.1 Completion probability Prediction

In a certain position in a window w, the completion probability P, of a PM v C ¢;,
i.e., the probability of v to complete the pattern ¢; and to become a complex event,
depends on two factors. 1) on the current state of the PM v (denoted by S,), where
S, €Sy, and 2) on the number of remaining events in the window w (denoted by

R,). Therefore, we write P, as a function of S, and R, as follows:

Py, = f(S% Ry) (3.2)

S, = 5o means that PM ~ is at the initial state, while S, = s,,,, where m = (|S,,| — 1),
means that 7 has completed and become a complex event. R, € [1,ws|, where ws
represents the expected window size. If a partial match + has a state S, that is close to
the final state and R,, is high, the probability for v to complete and become a complex
event might be high. That is because PM ~ needs only fewer state transitions to reach
the final state and the window w still has a high number of events that can be used to
match the pattern ¢; and to complete . On the other hand, the completion probability
might be low for a partial match v that has a state S, which is close to the initial state
and R,, is low. That is because PM ~ still needs many state transitions to reach the
final state and the window w only has a small number of events that can be used to
match the pattern ¢; and to complete PM ~.

Since a pattern in CEP systems can be represented as a state machine, as we mentioned
above, in this work, we model the pattern matching process as a Markov chain to predict
the completion probability P, of a partial match ~ of a pattern. To clarify this, let
us introduce the following simple example. Let us assume that an operator matches a

pattern ¢; = seq(A; B; C'). This pattern can be represented as a state machine as depicted

45

3 pSPICE

tso,so tsl,sl tSQ,SQ

B|C AlC A|B
T Y B ®
start —>(So > S1 >(S2 >(S3
t80751 t81~,82 t82753 Q

Figure 3.2: State machine example.

in Figure 3.2, where it has four states, including the initial state, i.e., S¢, = {s0, s1, s2, 53}
The state machine transitions from one state to other states depending on the input
symbols (events), while the Markov chain probabilistically transitions from one state to
other states using a transition matriz. In the above example, if we assume that the input
event stream has only three event types (A, B, and C) and instances of these events are
coming randomly with a uniform distribution, then the probability to transition from
any state to the next state is 1/3. While the probability to stay in the same state is 2/3.

Therefore, the transition matrix can be used to predict the probability of the state
machine to transition from any state to other states and hence to predict the probability
of the state machine to transition from a certain state s; to the final state s,, after
processing R, input symbols. Since a PM is represented as an instance of the state
machine, the completion probability of a PM (i.e., the probability of the state machine
to reach the final state) at a certain state S, given that R, events are left in the window
w, i.e., Py = f(Sy, Rw), can be computed using the transition matrix. Since the input
event stream might follow any distribution, not only uniform distribution, we should
learn the transition matrix by gathering statistics about the state transitions of PMs as
we describe next.

Statistic gathering & Transition matrix: For each pattern ¢; € Q, the model
builder builds a transition matrix 7j, from the statistics gathered during run-time by
monitoring the internal state of the operator. The statistics contain information about
the progress of PMs of pattern ¢; when processing the input events within windows.
For each partial match v C ¢;, the operator reports, when processing an input event e
within a window, whether PM ~ progressed or not, i.e., the state of v changed or not by
processing the event e with PM ~. The operator forms an Observation{g;, s, s'), where
s represents the current state of PM « and s’ the new state of PM ~ after processing
one event in the window.

After gathering statistics from n observations for pattern ¢;, the model builder transfers
these statistics to the transition matrix 7j,. T, describes the transition probability
between the states of the Markov chain when processing one event in a window.

Completion probability: As mentioned above, the transition matrix gives the
probability to transition from one state to another state and can be used to predict
the partial match completion probability P,. Figure 3.3 shows the transition matrix

for the state machine depicted in Figure 3.2. Since we are only interested to know

46

3.2 pSPICE

next state

S0 S1 52 53

so | Poo Po1 Po2 | Po3
1 bPio P11 P12 P13
s2 | P20 P21 P22 P23
s3 [P30 P31 P32 P33

current state

Figure 3.3: Transition matrix T, for the state machine in Figure 3.2.

whether a partial match will complete or not, we need only to focus on the last column
in the transition matrix, surrounded by a red box in Figure 3.3. This column gives the
probability to move from any state S, € Sy, to the final state, i.e., the probability to
complete the partial match.

The transition matrix contains the transition probability, given that there is only one
event left in a window. Therefore, to get the transition probability given that R,, events
are still left in a window w, we must raise the transition matrix 7, to the power R,
[How12]. This way, the completion probability of a partial match « at a state S, given

that R,, events are left in a window w, is computed as follows:

Py = f(Sy, Ru) = Tq]?w(jy m) (3.3)

where S, = s; € Sy, and m = (|Sy,| — 1), m = 3 in the above figure. For example,
in Figure 3.3, the completion probability of a partial match v C ¢; at the state sa
given that only one event (R, = 1) is left in a window w is computed as follows:
P, = f(sg,1) = qul_ (2,3) = pa3. To get the completion probability of a partial match
given any number of events are left in a window, we need to compute the transition
matrix Tq}}“’ for all possible values of R,, € [1,ws]. However, the window size ws might
be too large which might impose a high memory cost during the calculation of the
transition matrices. Therefore, we calculate the transition matrix only for every bs (i.e.,
bin size) events, i.e., T(ZS, qui'bs, ey 1,8, To get the completion probability of a PM in
case Ry € [(j — 1).bs, j.bs], where j =1,2,..., 7%, we use linear interpolation. For ease

of presentation, we assume that bs = 1, if not otherwise stated.

3.2.3.2 Processing Time Prediction

After predicting the completion probability of PMs, now, we describe how to predict the
processing time of PMs using the Markov reward process [How13|, where we model the
processing time of a PM as the reward value. Given a partial match v C ¢; at a state
S, we define the time that is needed to match an event in a window w with v as t, o,
where s = S, and s’ € Sy,. Hence, ¢ ¢ represents the processing time that is needed for

the state machine of ¢; to transition from state s to state s’. For example, in Figure 3.2,

47

3 pSPICE

the processing time to transition from s; to sy is represented by the value t,, 5,. We
consider ¢, ¢ as a reward value to move from state s to state s’ in the state machine of
pattern g;.

Therefore, to calculate the processing time of a PM, we clearly need something more
than using the Markov chain which is used to compute the completion probability of a
PM. As a result, we upgrade our Markov chain to a Markov reward process, where we
additionally define the reward function Ry, (s, s”) as the expected processing time needed
to transition from state s to state s’. Solving the Markov reward process gives us the
expected reward for each state in the state machine, given that there are still R,, events
left in a window w. Since we represent the processing time t, o as a reward, the reward
of a state represents the estimated processing time of a PM 7., given that there are still
R, events lefts in window w.

We incorporate the processing time ¢, o in statistics gathering and extend the above
observation as follows: Observation(g;,s,s’,tsy). After gathering statistics from 7
observations for pattern ¢;, the model builder constructs the reward function (i.e.,
R, (s, s")) which is calculated as the average value for all observed values of the processing
time ¢, . After that, the model builder predicts the processing time of PMs by solving
the Markov reward process as we explain next.

Processing time: To predict the processing time of a partial match v C ¢; in a state
S, the model builder must solve the Markov reward process. A well-known algorithm
called value iteration [How13| can be used to solve the Markov reward process. The
algorithm iteratively calculates the expected reward (processing time 7, in this case) at
every state in the state machine using the transition matrix 7, and the reward function
Ry,. Then, it reuses the calculated reward values in future iterations. Here, an iteration
Jj represents the number of remaining events (i.e., R,,) in a window w, i.e., j = R,,. The
value iteration algorithm uses the Bellman equation [Bel57| to predict the remaining
processing time 7, of a partial match v C g; at state S, given that there are still Ry,
events left in the window w.

Similar to the completion probability, we run the value iteration algorithm to get the
processing time 7., of a partial match « for all expected remaining R,, number of events
in a window w. To avoid the memory overhead in the case of too large window size ws,
again, we keep the value iteration results only for every bs events. For the intermediate

values, we use linear interpolation.

3.2.3.3 Utility calculation

After describing how to predict the completion probability and the processing time of a
PM, now, we can derive the utility of PMs for each pattern ¢; € Q using Equation 3.1.

Since the completion probabilities and processing times of PMs have different units and
scales, using Equation 3.1 directly on these values, may result in unexpected behavior,

where a high processing time may overcome the completion probability and eliminate

48

3.2 pSPICE

its importance in calculating the utility of PMs. Therefore, before using Equation 3.1,
we bring the completion probabilities and processing times to the same scale and then
apply Equation 3.1 to get utilities of PMs.

To efficiently retrieve the utilities by the LS, we store the utility of PMs at any given
state and for any number of remaining events in a window in a table called UTy,, where
each pattern g; has its corresponding utility table. UTy, has (m X $%) dimensions,
where m = (|Sg,| — 1) and each cell UTy, (4, k) represents the utility of a PM at state s;
given that there are still k events left in the window, assuming bs = 1. So the utility of
a PM v C ¢; is calculated as follows: Uy = f(Sy, Rw) = UTy,(j, k), where s; = S, and
k = R,. Getting the utility of a PM from UT has only O(1) time complexity which is a

great factor in minimizing the overhead of the LS.

3.2.4 Model Retraining

The event distribution in the input event stream and/or the content of input events may
change over time and hence our model might become inaccurate and adversely impact
QoR. To avoid this, we must retrain the model to capture those changes. The question
is— how do we know that those changes happened and the model must be retrained? We
depend on the transition matrix to answer this question.

The transition matrix, as we know, contains the probabilities to transition from any
state to other states in the state machine, where the transition matrix is constructed
depending on the distribution of the input event stream and on the content of events. If
there is a change in the distribution of the input event stream and/or in the content
of events, the probability values in the transition matrix will change. Therefore, the
transition matrix can be used as an indicator of those changes and to trigger model
retraining. Hence, we propose to periodically build a new transition matrix from the
gathered statistics from the operator and compare the new transition matrix with the
transition matrix that is used in the model by using an error measurement, e.g, mean
squared error. If the deviation between the two matrices is higher than a threshold,
the model builder must rebuild the model. Please note that building a new transition
matrix is lightweight since we just need to transfer the gathered statistics about the state
transitions to probability values. Moreover, we don’t need to calculate new transition
matrices for all expected remaining number of events in a window to check for the need

to retrain the model.

3.2.5 Detecting and Determining Overload

The goal of pSPICE is to avoid violating a defined latency bound (LB). A high queuing
latency of the incoming input events in the operator input queue indicates an overload
on the operator and hence some partial matches must be dropped from the operator’s
internal state to avoid violating LB. Algorithm 1 specifies the functionality of the

overload detector.

49

3 pSPICE

Algorithm 1 Detecting and Determining Overload.

1: detectOverload (event e) begin

2: I, = currentTime() — e.arrivalTime()

3 1, = f(ny), ls =g(n,) // n: Current number of PMs.
4: le = lq + lp
5. if [+ 1, > LB then // LB might be violated => drop PMs.

6 U =LB—1l,—I
T onl= Y1)

8: p=n,—n
9: LS.dropPVs(p) // Call LS to drop p PMs.

10: end function

Detecting overload: The overload detector continuously gets the primitive events
from the input queue of the operator, where for each event, it checks whether LB might
be violated. In the case where LB might be violated, the overload detector calls the
load shedder to drop a certain number of PMs to reduce the overhead on the operator
and maintain LB. The violation of LB depends on the estimated event latency (l.)
and load shedding latency (denoted by ls), where LB would be violated if the following
inequality holds:

le+1s> LB (3.4)

Recall that the estimated event latency [, represents the time between the insertion of
the event e in the operator’s input queue and the time when the event e is processed
by the operator in all currently opened windows, since an event may belong to several
windows in case windows overlap. The load shedding latency I; represents the time
needed by the LS to drop the required number of partial matches.

The estimated event latency [, of an event e is the sum of the event queuing latency
(denoted by I,) and the estimated event processing latency (denoted by I,): lo = I, + 1.
The event queuing latency [, is the time between the insertion of the event e in the
operator’s input queue and the time when the operator gets the event e from its input
queue to process it (cf. Algorithm 1, line 2). While the estimated event processing
latency [, represents the time an event e needs to be processed by the operator in
all currently opened windows. [, depends on the current number of partial matches
(denoted by n.) in the operator since the event e needs to be matched with all current
partial matches in the operator. The higher is the value of n,, the higher is /. Therefore,
we represent [, as a function, called event processing latency function, of the current
number of partial matches n, in the operator: I, = f(n,), i.e., f:ny = Ip.

Therefore, for each event e, the overload detector calls the event processing latency

50

3.2 pSPICE

function f(n,) that gives the estimated event processing latency I, depending on the
current number of partial matches in the operator (cf. Algorithm 1, line 3). Using [, and
lq, the overload detector can now compute the estimated event latency [, (cf. Algorithm
1, line 4). To build the function f(n.), during run-time, we gather statistics from the
operator on the event processing latency /, for different numbers of partial matches n..
Then, we apply several regression models on these statistics to get the function f(n.),
where we use a regression model that results in a lower error.

We consider the load shedding latency [in the inequality (3.4) since during load
shedding no events are processed and hence the event queuing latency is increased by
the time needed to drop PMs, i.e., by the load shedding latency ls. Similar to the
estimated event processing latency, the load shedding latency [also depends on the
current number of PMs n,. That is because the load shedder must sort all current PMs
in the operator to find those PMs that have the lowest utility values (we will show this
later). Therefore, we also represent [, as a function of n: Iy = g(n,) (cf. Algorithm 1,
line 3). Similarly, to build the function g(n,), during run-time, we gather statistics from
the operator on the load shedding latency I, for different numbers of PMs n.,. Then, we
apply several regression models on these statistics to get the function g(n.), where we
use a regression model that results in a lower error.

Determining overload amount: As we explained above, if the inequality (3.4)
holds, the overload detector calls the LS to drop PMs to avoid violating LB (cf. Algorithm
1, lines 5-9). The question is— how many PMs must the LS drop? To answer this question,
we need to understand which latency values in the inequality (3.4) can be controlled.
We cannot reduce the event queuing latency [, and the load shedding latency [; but
we can reduce the event processing latency [, by dropping some PMs. Therefore, we

represent the new event processing latency as l; such that the following condition holds.

Iy +1q+1s=LB. (3.5)

From the above condition, l; = LB —l; — l;. Therefore, we have to ensure the new
processing latency lI’J by dropping a certain number of PMs (denoted by p).
To compute p, we should find the number of PMs (denoted by nfy) that impose a

/
v

This function is the inverse function f~! of the event processing latency function f(n.),

latency of l; on the operator when processing an event. Hence, n., is a function of l;.
where f~!: l;) — n/7 From the inverse function f~!, we can compute the number of
PMs nfy Keeping only nfy PMs in the operator’s internal state ensures that the operator
needs only l;:, time to process an event and hence it maintains LB. Therefore, the number
of PMs to drop p =n, — n’v For each input event, the overload detector calls the LS to
drop p partial matches whenever the inequality (3.4) holds (cf. Algorithm 1, line 9).
Please note that the inequality (3.4) ensures to keep the event latency [less than or
equal to LB. However, in case of a sudden increase in the input event rate or inaccuracy

in the functions that predict [, and [, there might be a risk of violating LB. Therefore,

51

3 pSPICE

in latency critical applications where LB is a hard bound, we propose to add a safety
buffer (denoted by bs) to the inequality (3.4) as follows:

le+1,+b,> LB (3.6)

3.2.6 Load Shedding

In this section, we discuss the functionality of the LS component that is called by
the overload detector to drop PMs. The LS drops PMs with the lowest utility values,
where the utility of PMs is learned and stored in UT as we explained in Section 3.2.3.
Algorithm 2 specifies the functionality of the LS.

Whenever the LS is called by the overload detector to drop p PMs, it needs to know
the current p PMs in the operator that have the lowest utility values. To get the utility
of PMs, the LS simply uses the utility tables given by the model builder. For a PM
7 C ¢; in a window w, the LS obtains the utility of PM +, i.e., U,, by a simple lookup
in the utility table UT,,. U, = UT,,(j,k), where S, = s; € S;,, and k = Ry, i.e., the
expected number of events left in the window w (cf. Algorithm 2, lines 2-4). Therefore,
the time complexity to get the utility of a PM is O(1), and hence to get the utility for
all current PMs in the operator is O(n,), where n,, represents the number of current
open PMs in the operator. To find the p PMs with the lowest utility values among
all PMs, the LS should sort the PMs using their utility values, where a good sorting
algorithm (e.g., merge sort [Knu98; Ski08|) can achieve O(n, loga(n.)) average time
complexity (cf. Algorithm 2, line 5). After sorting PMs, the LS drops the first p PMs
which have the lowest utilities, where the LS iterates over the sorted PMs and asks the
operator to remove those PMs from its internal state (cf. Algorithm 2, lines 6-10). This
has a time complexity of O(p). Hence, the overall time complexity for the load shedding
is O(ny + ny loga(ny) + p). As we will show in Section 3.3, the overhead of our LS is

extremely low.

3.2.7 Supporting CEP Computational Models

So far, we have focused on using a finite state machine [May+17; Agr+08; CM10; RLR16;
WDRO06| as a computational model to detect patterns. However, as we mentioned in
Chapter 2, Section 2.1, there exist several other computational models such as tree-based
models [CM94; Cha-+94; MMO09|, string-based models [Sad+04], and Petri Nets-based
models [GD94]. In this section, we explain how our load shedding approach supports all
the above computational models.

As we explained above, to assign a utility value U, to a PM ~, pSPICE depends on
two features: 1) the current state S, of the PM ~, and 2) the number of remaining events
R, in the window. The way we can get the current state S, of the PM « depends on the

used computational model, however, the number of remaining events R,, in the window

92

3.2 pSPICE

Algorithm 2 Load Shedding.

1: dropPMs (p) begin
// get utilities of PMs and sort them.
2. for each v in operator.getPMs() do
U, = getUtility(g;, S5, Ry), where v C ¢

pmArray.insert(y)

5. sortByUtility(pmArray)
// drop p partial matches.
6: for index =0 — p do

T: if index >= pmArray.size() then // No more PMs to drop!
8: return

9: v = pmArray(index)

10: operator.removePM(v)

11: end function

is independent of the computational model. Therefore, to show that pSPICE supports
other computational models, we must show that pSPICE is able to get PM states in
these computational models, similar to the finite state machine model. To do that, let
us first recall the definition of a CEP pattern, a PM, and a PM state, irrespective of the

used computational model.

In CEP, a pattern ¢ is formed by using a set of events, event operators, and constraints
[CM94; LucO1]. Pattern ¢ has a set of states S; = {so, s1, ..., Sm}, where we assign a
distinct state to each event type in pattern ¢, and sg represents the initial state of pattern
q. For pattern g, a PM ~ of pattern g represents an incomplete matching instance of
pattern ¢, denoted by v C ¢g. Moreover, PM 7 is assigned a state s; € S, corresponding
to the last event type that has been matched in PM ~. For example, we may assume
the following set of states for pattern ¢ = seq(A; B;C): Sy = {s0, 51, 52, s3}. Here s
represents the initial state. Moreover, we assign state s; to event A, state s, to event
B, and state s3 to event C'. In this example, a PM ~ C ¢ starts at state sg where it
completes and becomes a complex event if it reaches state s3. If an event instance of
event type A matches pattern ¢, the state of PM + is updated to state s;. Similarly,
the state of PM v changes to state sy or ss if an instance of event type B or C' matches
pattern g, respectively. Regardless of the used computational model, it is straightforward
to assign states to PMs and update a PM state whenever an event matches the pattern
and the PM progresses. Hence, pSPICE can support other computational models without

any remarkable additional complexity.

93

3 pSPICE

3.3 Performance Evaluations

In this section, we show the performance of pSPICE by evaluating it with three real
world datasets and several representative queries. We assume that a CEP operator graph
that consists of a single operator and the operator my match one or more queries, as

shown below.

3.3.1 Experimental Setup

Evaluation Platform. We run our evaluation on a machine that is equipped with 8
CPU cores (Intel 1.6 GHz) and the main memory of 24 GB. The OS used is CentOS 6.4.
We run a CEP operator in a single thread on this machine, where this single thread is
used as a resource limitation. Please note that the resource limitation can be any number
of threads/cores, and the behavior of pSPICE does not depend on a specific limitation.
We implemented pSPICE by extending a prototype Java-based CEP framework, which
is implemented at the department of distributed systems at the University of Stuttgart.

Baseline. We also implemented two other load shedding strategies to use as baselines.
1) We implemented a random partial match dropper (denoted by PM-BL) that uses
Bernoulli distribution [Ber| to drop PMs. 2) We also implemented a load shedding
strategy (denoted by E-BL) similar to the one proposed in [HBN14|. In addition, it
captures the notion of weighted sampling techniques in stream processing [Tat+03].
E-BL assigns utility values to the events in a window depending on the repetition of
those events in the pattern and on their frequencies in windows. An event type receives a
higher utility proportional to its repetition in a pattern. Depending on the event utility,
E-BL decides the number of events that should be dropped from each event type in a
window, where it uses uniform sampling to drop those required amounts from each event
type. E-BL, as in [HBN14|, does not consider the order of events in a pattern and in the
input event stream.

Datasets. We use three real-world datasets. 1) A stock quote stream from the New
York Stock Exchange (NYSE), which contains real intra-day quotes of different stocks
from NYSE collected over two months from Google Finance [Goo|. The quotes have
a resolution of 1 quote per minute for each stock symbol. We refer to this dataset as
the NYSE Stock Quotes dataset. 2) A position data stream from a real-time locating
system (denoted by RTLS) in a soccer game [MZJ13|. Players, balls, and referees (called
objects) are equipped with sensors that generate events. Events contain information
about those objects, such as their position, velocity, etc. The sensor data are generated
at a high rate causing high redundancy. Thus, we filter redundant events and keep only
one event per second for each object. We refer to this dataset as the RTLS dataset. 3)
Public bus traffic (denoted by PLBT) from a real transportation system in Dublin city
[Zac+15]. Tt contains events from 911 buses, where each event has information about

those buses, e.g., locations, stops, delays, etc.

o4

3.3 Performance Evaluations

Queries. We apply four queries (Q1, Q2, @3, and (QQ4) that cover an important set
of operators in CEP as shown in Table 3.1: sequence operator, sequence operator with
repetition (which also contains Kleene closure), sequence with any operator, and any
operator [ZDI14; CM94; CM10; WDRO06; MMO09]. Please note that, as mentioned in
Section 2.1, we do not consider a certain selection or consumption policy. However,
evaluating pSPICE with all possible combinations of selection and consumption policies
is time-consuming and might be practically infeasible. Therefore, in this thesis, we will
use the following important selection and consumption policies. We use the first selection
policy for all events in all queries. Additionally, we use the consumed consumption
policy for the first event in all queries and the zero consumption policy for the rest of
the events in all queries. Moreover, the queries use both time-based and count-based
sliding window strategies with different predicates.

In Table 3.1, we use ws to refer to the window size/length. For stock queries (Q
and Q2), C; represents the stock quote of company i. @1 (sequence operator) detects a
complex event when rising or falling stock quotes of 10 certain stock symbols, by a given
percentage, are detected within ws events in a certain sequence. Q2 (sequence operator
with repetition) detects a complex event when 10 rising or 10 falling stock quotes of
certain stock symbols with repetition, by a given percentage, are detected within ws
events in a certain sequence. Q3 (sequence with any operator) uses the RTLS dataset
and it detects a complex event when any n defenders of a team (defined as D;) defend
against a striker (defined as S) from the other team within ws seconds from the ball
possessing event by the striker. The defending action is defined by a certain distance
between the striker and the defenders. For this query, we use two strikers, one from each
team. @4 (any operator) uses the PLBT dataset. It detects a complex event when any

n buses (defined as B;) within a window of size ws events get delayed at the same stop.

3.3.2 Experimental Results

In this section, we evaluate the performance of pSPICE using relaxed QoR. In the next
chapters, we also show the impact of pSPICE when using strict QoR. Please recall that
pSPICE does not result in false positives when using relaxed QoR. Therefore, in this
section, we evaluate the performance of pSPICE only w.r.t. false negatives. We first
compare its performance, w.r.t. number of false negatives, with PM-BL and E-BL. Then,
we show the importance of using the processing time of a PM in calculating its utility.
Finally, we present the overhead of pSPICE.

If not stated otherwise, we use the following settings. For ()1 and)2, we use a count-
based sliding window. For both queries, we use a logical predicate (i.e., pattern-based
predicate) where a new window is opened for each incoming event of the leading stock
symbols. We choose 4 important companies as leading stock companies. (J3 uses a
time-based sliding window. Again, we use a logical predicate for (Q3, where a new window

is opened for each incoming striker event (S). For @, we use a count-based sliding

95

3 pSPICE

Stock queries

pattern seq(C1; Co;..; Chp)

Q1 where all C; rise by 2% or all C; fall by 2%, i =1..10
within ws events

pattern seq(C1; C1; Ca; C3; Co; Cy; Ca; Cs; Cg; Cr; Ca; Cy; Co; Cho)

Q> where all C; rise by 2% or all C; fall by x%, i =1..10

within ws events

Soccer query

pattern seq(S;any(n, D1, Ds, .., Dy,))
where S possesses ball and distance(S, D;) < x meters
, 1 = 1..m and m is the number of players in a team
within ws seconds

Bus query

pattern any(n, By, Ba, .., Bi)
where B;.delay > x seconds and all B; have the same stop
, 1 = 1..m and m is the number of buses
within ws events

Q4

Table 3.1: Queries.

window and a count-based predicate, where a new window is opened every 500 events,
i.e., slide size is 500 events. We stream events to the operator from datasets that are
stored in files where we first stream events at event input rates that are less or equal to
the maximum operator throughput until the model is built. After that, we increase the
input event rate to enforce load shedding as we will mention in the following experiments.
The used latency bound LB = 1 second. We execute several runs for each experiment

and show the mean value and standard deviation.

3.3.2.1 Impact on QoR and the given latency bound.

Now, we show the performance of pSPICE w.r.t. its impact on QoR (i.e., number of
false negatives) and maintaining the given latency bound. Two factors influence the
performance of pSPICE: 1) match probability, and 2) input event rate. Match probability
represents the percentage of PMs that complete and become complex events out of all
PMs. It is computed from the ground-truth by dividing the total number of complex
events by the total number of PMs. We can control the match probability by varying

the pattern size and/or the window size.

Impact of match probability. To evaluate the performance of pSPICE with different
match probabilities, we run experiments with @1, Q2, @3, and (4. For)1 and @2, we

use a variable window size to control the match probability since ()1 and @2 have a

56

3.3 Performance Evaluations

8 100 A pSPICE $ 100 A pSPICE
> e PM-BL 2 e PM-BL
4(_01 m E-BL _Ir_U, ® E-BL
9 o
c 50 Y 50
& 2
& e
£ ol Ix o0
6 21 30 39 48 89 7 19 27 35 81 91
% match probability % match probability
(a) @ (b) Q2
$ 100 A pSPICE $ 100 A pSPICE
> e PM-BL 2 e PM-BL
-I% 75 m E-BL .|r_UJ ® E-BL
g o
Y 50 c 50
))
s s Hepaed
= M o
X | . . . * 1 X 0
1 4 11 27 50 3 6 8 27 42
% match probability % match probability
(c) Qs (d) Qs

Figure 3.4: Impact of match probability.

fixed pattern size. Higher is the window size, higher is the match probability. We use
the following window sizes for Q1: ws = 3.5K, 4.5K, 5K, 5.5K, 6K, 10K events. For ()2,
the used window sizes are: ws = 6K, 7K, 7.5K, 8K, 12K, 14K events. For @3 and (4,
we use a fixed window size but a variable pattern size. For (Y3, we use a window size ws
of 15 seconds and the following pattern sizes (i.e., number of defenders): n= 2, 3, 4, 5,
6. The window size ws for ()4 is 8K events and we use the following pattern sizes (i.e.,
number of buses): n = 3, 4, 7, 8, 10. Moreover, we stream all datasets to the operator
with an event input rate that is higher than the maximum operator throughput by 20%
(i.e., event rate= 120% of the maximum operator throughput).

Figure 3.4 shows results for all queries, where the x-axis represents the match probabil-
ity and the y-axis represents the percentage of false negatives. A low match probability
means that most of the PMs don’t complete, and hence dropping those PMs, that will
not complete, decreases the dropping impact on QoR. On the other hand, a high match
probability means that most of the PMs complete and become complex events, and
hence dropping any PM may result in a false negative. This is observed in Figure 3.4 for
all queries (Q1, Q2, @3, Q4). Figure 3.4a depicts the results for @1, where it shows that

o7

3 pSPICE

the percentage of false negatives produced by pSPICE increases with increasing match
probability. It increases from 16% to 32% when the match probability increases from 6%
to 89%, respectively. We observed similar behavior for PM-BL, where the percentage of
false negatives increases from 26% to 37% when the match probability increases from 6%
to 89%, respectively. As we observe from the figure, a high match probability degrades
the performance of pSPICE since dropping any PM might result in a false negative as
all PMs have a similar completion probability. In this experiment, pSPICE reduces the
percentage of false negatives by up to 70% compared to PM-BL. Please note that a high
rate of PM drop is because the operator load doesn’t come only from processing PMs
but also from managing windows and events and checking whether an event opens a

partial match.

The performance of E-BL is bad when the match probability is low and it becomes
better with a higher match probability as shown in Figure 3.4a. This is because a low
match probability means a small window size where the probability to drop an event that
matches the pattern is high and the probability to find an event as a replacement for
the dropped event to match the pattern is low. On the other hand, with a higher match
probability (i.e., a larger window size), the probability to drop an event that matches
the pattern is low and the probability to find an event as a replacement for the dropped
event to match the pattern is high. Hence, the percentage of false negatives decreases
with a higher match probability. In the figure, the percentage of false negatives, for
E-BL is 65% and 16% when the match probability is 6% and 89%, respectively. pSPICE
reduces the percentage of false negatives by up to 300% compared to E-BL when the
match probability is not too high. For a high match probability (cf. Figure 3.4a, in case
match probability is 89%), E-BL outperforms pSPICE. However, please note, in CEP,
it is unrealistic to have such a high match probability that implies completion of most
PMs.

Figure 3.4b, using ()2, shows similar behavior to the results of Q1. The percentage of
false negatives for pSPICE and PM-BL increases again with increasing match probability.
However, pSPICE results in a lower percentage of false negatives by up to 58% compared
to PM-BL till 81% match probability. After that, PM-BL outperforms pSPICE. This
is because, as we mentioned above, all PMs have a high probability to complete and
become complex events and hence it is hard for pSPICE to decide which PM to drop.
Besides that, pSPICE has a slightly higher overhead than PM-BL which results in
dropping more PMs and hence resulting in more false negatives. The results for E-BL

are similar to the results in Q1.

In Figure 3.4c, using (3, the percentage of false negatives produced by pSPICE and
PM-BL also increases with increasing the match probability. pSPICE results in reducing
the percentage of false negatives by up to 92% compared to PM-BL. As in Q1 and Qo,
E-BL produces fewer false negatives when the match probability increases. A higher

match probability in Q3 means a smaller pattern size (in the figure, the match probability

o8

3.3 Performance Evaluations

50% corresponds to a pattern of size n = 2) which makes it easy to find a replacement
event to match the pattern instead of a dropped event. The results for Q3, compared to
the results for ()1 and @Q2, show that E-BL outperforms pSPICE with a smaller match
probability (after 27%). This is because @3 uses any operator which means any event
can match the pattern. Hence, the probability to find a replacement for a dropped event
is much higher in Q3 compared to ()1 and Q2 which matches a sequence of certain event
types (stock symbol/company). Please note that, in @1 and @2, only the same event
type can replace a dropped event of that type. Figure 3.4d, using ()4, shows similar
results to the results of Q)3 since the query of bus data is similar to the query of soccer

data (i.e., Q3). As a result, we skip explaining it.

Impact of event rate. To evaluate the impact of input event rate on the performance
of pSPICE, we run experiments with @1, @2, @3, and Q4 using the same setting as
in the above section (cf. Section 3.3.2.1). However, to show the impact of different
event rates, we streamed all datasets to the operator with event input rates that are
higher than the maximum operator throughput by 20%, 40%, 60%, 80%, and 100% (i.e.,
event rate= 120%, 140%, 160%, 180%, 200% of the maximum operator throughput).
In addition, we used a fixed match probability for all queries. Figure 3.5 depicts the
impact of input event rates for ()1 and ()3, where the x-axis represents the event rate
and the y-axis represents the percentage of false negatives. We use a match probability
of 30% for Q1 and 4% for Q3. The results for Q2 and Q4 show similar behavior, hence

we don’t show them.

It is clear that using a higher event rate results in dropping more partial matches
and hence increasing the percentage of false negatives. In Figure 3.5a, using @Q1, the
percentage of false negatives for pSPICE increases with increasing the event rate, where
it is 18.5% and 60% when the even rate is 120% and 200%, respectively. The same
behavior is observed for PM-BL and E-BL. The percentage of false negatives for PM-BL
increases from 29% to 86% and for E-BL from 49% to 94%, with the two event rates.
Please note that for the considered match probability pSPICE is consistently better than
PM-BL and E-BL, irrespective of the event rate. Figure 3.5b, using @3, as expected,

shows similar behavior.

Maintaining LB. pSPICE performs load shedding to maintain a given latency bound.
Figure 3.6 shows the result for running @2 with two event rates 120% (defined as R1)
and 140% (defined as R2). In the figure, the x-axis represents time, and the y-axis
represents the event latency l.. We observed similar results for other event rates and
queries and hence we don’t show them. The figure shows that pSPICE always maintains
the given latency bound LB which is 1 second in this experiment, regardless of the event

rate.

99

3 pSPICE

=
o
o
=
o
o

% false negatives
ul

‘ ©

% false negatives
ul
o

A pSPICE
PM-BL
E-BL

~
(92
]

N
(92

A pSPICE
e PM-BL
m E-BL

——————— 0
120 140 160 180 200 120 140 160 180 200
% event rate % event rate

(a) @ (b) @s

Figure 3.5: Impact of event rate.

o

3.3.2.2 Impact of processing time (7,) of a PM on utility calculation

Impact of processing time. As mentioned above, the completion probability P, of a
partial match ~y is a good indicator to know whether v will complete or not. Therefore, we
use it in calculating the utility of PMs (cf. Equation 3.1). However, the processing time
7y of a PM is also an important factor in calculating the utility of a PM. Therefore, we
use it in deriving the utility of PMs as well (cf. Equation 3.1). To support this argument,
we run experiments using pSPICE in two different ways of calculating the utility of PMs
as follows: 1) using Equation 3.1, where we consider both the completion probability
and processing time of PMs in calculating the utility of PMs and 2) considering only
the completion probability in calculating the utility of PMs (i.e., the denominator in
Equation 3.1 is 1). We refer to the load shedding strategy that considers only the
completion probability in calculating the utility of PMs as pSPICE--.

To evaluate the performance of pSPICE and pSPICE--, we run both @1 and ()2 in the
same operator and use a window of size 10K and a pattern weight of one for both queries.
The used event rate is 120%. Since we intend to analyze the impact of processing time
in calculating the utility of PMs on QoR, we force the processing time of Q1 to be higher
than the processing time of Q2 by a factor. We refer to this factor as ¢, /7q,, where we
use the following values: ¢, /7, = 1, 2, 4, 8, 12, 16. Figure 3.7 depicts the percentage
of false negatives for pSPICE and pSPICE--. In the figure, the x-axis represents the
factor 7g, /7q, while the y-axis represents the percentage of false negatives.

In the figure, the performance of pSPICE and pSPICE-- is the same for low factors
7Q,/7Q,- That is because the processing time of PMs in @)1 and @2 has less impact on
the utility. The difference between the percentage of false negatives between pSPICE
and pSPICE-- increases when the factor 7¢, /7, increases. The percentage of false
negatives for pSPICE is 23% when 7, /7g, = 16 while it is 37.5% for pSPICE-- with
the same factor. That shows that pSPICE results in reducing the percentage of false

60

3.3 Performance Evaluations

=
o
o

A PSPICE
e pSPICE-

~
(0

I e

% false negatives
(2]
o

25
0.2 Rl
f — RR2
0.9 °1 2 4 8 12 16
0 10 20 30 40 50
time (s) To1/To2
Figure 3.6: event latency [.. Figure 3.7: processing time 7.

negatives by 62% compared to pSPICE-- for g, /7, = 16. As a result, we support our
claim that considering the processing time of PMs is an important factor in calculating
the utility of PMs.

3.3.2.3 pSPICE overhead

Next, we show the overhead of pSPICE both during load shedding and during model
building.

Load shedding overhead. The load shedder and the overload detector are time-critical
tasks and their overhead directly affects QoR, therefore, they must be lightweight. To
show the overhead of the load shedder and overload detector components in pSPICE,
we run experiments with all queries using the same setting as in Section 3.3.2.1. Figure
3.8a depicts the results for (01, where the x-axis represents the used window size and
the y-axis (log scale) represents the percentage of overhead compared to the total time
that the operator needs to process the input dataset. We observed similar results for
@2, Q3, and 4 and hence we don’t show them.

In the figure, the overhead of pSPICE is 1% in case the window size ws is 3.5K. The
overhead of pSPICE decreases with increasing the window size, where the overhead is
0.7% when the window size is 10K. This is because a higher window size means that
more windows are overlapped. Since events are processed in each window, the higher is
the window overlap, the higher is the processing latency of events, and hence lower is
the operator throughput. A low operator throughput results in having a smaller load
shedding overhead as a percentage value. The overhead of PM-BL is slightly lower than
the overhead of pSPICE which is expected since PM-BL performs random PMs shedding
and doesn’t have any cost for sorting PMs. This shows that pSPICE is a lightweight

load shedding approach where its overhead is very low.

Model overhead. As we mentioned above, building the model is not a time-critical

task. However, since there might be a need to retrain the model in case the distribution

61

3 pSPICE

10!

s pPSPICE A25 A pSPICE
o) e PM-BL w0
5 5 2.0/
5 100 0
~ !\\i\-\.% €15
o S
= ©1.0
10! 5 : : : : :
Q. ¥ S 6 Y 6 Y Yo T, 2
A 4) (o)
S5 T TR 'f— * % *
window size (events) window size (events)
(a) load shedding overhead (b) model overhead

Figure 3.8: overhead of pSPICE.

of input event stream and/or the content of input events change (cf. Section 3.2.4),
we also analyze the overhead of building the model in pSPICE. An important factor
that controls the overhead of building the model is the window size since it represents
the number of iteration in the value iteration algorithm. Higher is the window size,
more iterations are needed to solve the Markov reward process and hence higher is the
overhead.

To evaluate the overhead of building the model, we run experiments with)1 with the
same setting as in Section 3.3.2.1 but we use higher window sizes to show its impact
on the overhead. We use the following window sizes: ws = 6K, 10K, 16K, 24K, 32K
events. Figure 3.8b shows the overhead of model building in pSPICE, where the x-axis
represents the window size and the y-axis represents the time needed in seconds. In the
figure, as expected, the model building overhead increases with increasing the window
size, where it is 1 second when the window size is 6K events and 2.4 seconds when the
window size is 32K events. However, this overhead is still small which means that the
model can be retrained without introducing a high overhead on the system or waiting a

long time for a new model.

Discussion. Through extensive evaluations with several datasets and a set of repre-
sentative queries, pSPICE shows that it has a very good performance w.r.t. QoR,
where it usually outperforms both PM-BL and E-BL, especially with sequence operator
and sequence with repetition operator. Only in the scenario of a relatively high match
probability, E-BL might outperform pSPICE. However, since E-BL drops events, it might
result in false positives, e.g., if the pattern contains the negation event operator (cf.
Chapter 2, Section 2.2). Moreover, we show that pSPICE is a lightweight load shedding
approach where its overhead is very low. The overhead of pSPICE is only slightly higher
than the overhead of PM-BL.

62

3.4 Conclusion

3.4 Conclusion

In this chapter, we proposed an efficient, lightweight load shedding strategy, called
pSPICE. In case of overload, pSPICE drops PMs from a CEP operator’s internal state
to maintain a given latency bound. To minimize the impact of load shedding on QoR,
we proposed to utilize two important features (i.e., current state of a PM and number of
remaining events in a window) that reflect the importance of PMs and used these features
in calculating the utility of PMs, where we model the pattern matching operation as
a Markov reward process. By thoroughly evaluating pSPICE with three real-world
datasets and multiple important queries in CEP, we show that pSPICE considerably

reduces the degradation in QoR compared to state-of-the-art load shedding strategies.

63

Chapter

eSPICE: Probabilistic Load
Shedding from Input Event Streams

In the previous chapter (cf. Chapter 3), we presented pSPICE, a white-box load shedding
approach that drops PMs, i.e., it sheds load on the PM granularity. As we showed,
dropping PMs might be performed in an efficient and lightweight manner. Moreover,
dropping PMs with low utilities reduces the adverse impact of shedding on QoR while
saving the processing power and enabling a CEP operator to maintain a given latency
bound. However, if the match probability of PMs is high, pSPICE is forced to drop
important PMs that might complete and become complex events, hence adversely
impacting QoR (cf. Section 3.3.2). Therefore, in this chapter, we present a black-box
load shedding approach that drops events from windows in the input queue of a CEP
operator, i.e., it sheds events on the window granularity. As we mentioned in Section
2.1, the input event stream of a CEP operator is partitioned into windows. In a window,
there might exist many events that have no or only little influence on the detected
complex events within the window. Hence, dropping these events might have a low
negative impact on QoR.

Dropping events from windows in the input queue of a CEP operator reduces the
load on the operator, hence enabling the operator to maintain a given latency bound.
However, dropping events might also adversely impact QoR where it might result in
false positives and negatives. Thus, it is crucial to drop those events that have less
impact on QoR, i.e., drop events that have low utilities. In CEP systems, there are
primarily three challenges facing the decision to drop events from windows: 1) Deciding
on which events to drop since the utility of an event depends on multiple factors, e.g.,
other events in the pattern, on the order of events in the pattern, and on the input event
stream. 2) Calculating the number of events to drop in order to maintain a given latency
bound as an event may be dropped from some windows while it is still there in other
windows since windows may overlap. 3) Dropping events in an efficient way to reduce
the overhead of load shedding.

65

4 eSPICE

In this chapter, we propose a black-box load shedding approach, called eSPICE, for
CEP systems. eSPICE is an efficient and lightweight approach that sheds events from
windows, i.e., it sheds events on the window granularity. Moreover, it considers the
dependency between events of the same pattern as well as the order of events in the
pattern and in the input event stream. In addition, it also considers the impact of the
same event residing in overlapping windows on QoR, where the same event may be
in different positions within different windows. To capture the utility of an event in
different windows, we design a probabilistic model that uses the relative position of
events in a window and their types as learning features. The goal of our load shedding
strategy is to maintain a given latency bound while minimizing the adverse impact of
dropping events on the quality of results. More specifically, our main contributions in

this chapter are as follows:

e We propose an efficient lightweight load shedding strategy, called eSPICE, that
uses a probabilistic model to capture the utility of events in a window. The utility
of an event is influenced by its type and its relative position within a window. The
idea behind this approach is that the events, in specific positions within a window,
that contribute to building a complex event in one window are more likely to build

complex events in other windows as well.

e We provide an algorithm to estimate the number of events to drop in order to
maintain the given latency bound. It also estimates the intervals within which the

drop should be performed.

e In order to show the effectiveness of our proposed load shedding strategy under
realistic settings, we implement and thoroughly evaluate eSPICE for a broad
range of CEP operators using real-world datasets. Additionally, we compare the

performance, w.r.t. QoR, of eSPICE with state-of-the-art load shedding strategies.

The rest of the chapter is structured as follows. Section 4.1 presents the used system
model. In Section 4.2, we provide a detailed explanation of how the different components
of eSPICE are used for our probabilistic load shedding strategy. Section 4.3 presents
results obtained from extensively evaluating eSPICE. Finally, we conclude this chapter

in Section 4.4.

4.1 System Model

We use the same system model as presented in Chapter 2, Section 2.1, where we assume a
window-based CEP system that consists of a single operator. The operator matches a set
of patterns Q where each pattern ¢; € Q has a corresponding weight w,, € W, reflecting
its importance. Moreover, we assume a black-box operator, where we do not have

knowledge about the operator’s internal state (i.e., PMs) and the used computational

66

4.2 Probabilistic Load Shedding

model. In this work, we assume that the operator reveals detected complex events, which
is a standard assumption in any event processing system. In addition, we assume that
the event types are known where set T = {71, T3, ..., T}, } represents the set of all event

types in the input event stream.

4.2 Probabilistic Load Shedding

To minimize the degradation in the quality of results, our main idea is to avoid dropping
events that could contribute to producing complex events. The question is— how do we
identify the utility of these events before processing them? In real-world applications,
event streams have properties that can be exploited to derive the aforementioned utility
of an event w.r.t. its probability of contributing to a complex event. An observation is
that there is a correlation between type and relative position within windows of events
that contribute to complex events. For example, in a soccer game, a sports analyst might
be interested in finding a complex event called man-marking, i.e., certain defender(s)
who always defend against a particular striker. In this case, the ball possession by a
striker (possession-event) and the defender (defending-event) are event types. These
two event types have a correlation with each other. Whenever a striker possesses the
ball, a defender(s) defends against him in a certain time interval (i.e., relative position
in the window), thus producing a complex event. Clearly, in this scenario, the position
of the events contributing to the complex events, i.e., the position of defending-events
relative to the possession-event, are correlated. Such correlations also exist in stock
market applications. For example, a stock of type IBM may impact a stock of another
company within a certain time interval (i.e., relative position in the window), thus
resulting in a complex event that detects such an influence. Again, in a different domain,
the sensor data set provided by the Intel Research Berkeley Lab shows a positive
correlation between events of type temperature and events of type humidity [Bho-+18].
This implies that within a certain interval an increase/decrease in temperature results
in an increase/decrease in humidity.

Moreover, an important event operator in CEP is the sequence operator [Sad+04;
RLR16; LG15]. In the sequence operator, different event types in a pattern have
different importance in different window positions. For example, let us assume a pattern
q = seq(A; B;C). At the beginning of a window, an event instance of type A has a
higher match probability than an event instance of type C, i.e., a higher probability
to contribute to PMs, hence to contribute to complex events. Therefore, in pattern
q, events of type A have higher importance than events of type C at the beginning of
windows. That shows that in the sequence operator, the probability of an event to be
part of complex events might depend on its type and relative position within windows.
As a result, we exploit this correlation, captured by the type and relative position in

the window of events, to predict the probability of events to contribute to a complex

67

4 eSPICE

event(s). In particular, we derive utilities of events in a window based on the event
types and their relative positions within the window and use this information to

build a probabilistic model that estimates the utility of incoming events within windows.

Our load shedder drops only the incoming events that have low utility values within
each window, thus minimizing the number of false positives and false negatives. Next, we
explain our probabilistic load shedding strategy in detail. First, we show the architecture
of eSPICE. Then, we formally define the utility of events within windows. That is
followed by a detailed explanation of our probabilistic learning strategy, how to detect
the overload on the system, and how to compute the amount of load to be dropped in
order to meet the given latency bound. Finally, we explain the functionality of the load

shedder.

4.2.1 The eSPICE Architecture

To enable load shedding, similar to Chapter 3 (i.e., pSPICE), we extend the architecture
of a CEP operator by adding the following components— overload detector, model, and
load shedder (LS)- as depicted in Figure 4.1. The functionalities of these components
are similar to their functionalities, as explained in pSPICE (cf. Chapter 3). However,
the way these components work in eSPICE is different from how they work in pSPICE,
as in eSPICE, we drop events, not PMs. The overload detector detects if there exists
an overload on the operator. It checks the input event queue size periodically where
the incoming windows of events are queued. In case of an overload, the LS drops events
from windows to prevent the violation of the defined latency bound (LB). The model
contains the utility of events in a window and other information that is needed by the

LS. Later in this chapter, we explain, in detail, how these three components work in
eSPICE.

Now, we explain how these three components are related. Upon detecting an overload,
the overload detector commands the LS to drop events. On receiving this command, the
LS uses the utility of events in a window, available from the model, to decide on which
events to drop. Please note that load shedding is a time-critical task where it directly
affects the CEP system performance, and hence it must be lightweight and efficient. As
we will see later in this chapter, our load shedder has very low overhead. Contrarily,
building the model can afford to be computationally heavy as it is not a time-critical
task.

4.2.2 Utility Model and Its Application

In this section, we explain, in detail, the utility model and the way it can be used to

drop events.

68

4.2 Probabilistic Load Shedding

model

input queue complex
events
% S
: ~
windows
process
overload - operator
~
detector commands

Figure 4.1: The eSPICE Architecture.

4.2.2.1 Utility Prediction Function

The utility of an event in a window is defined by its impact on QoR. As mentioned
earlier, we represent utility as the probability of the event to contribute to a complex
event(s). Clearly, dropping events that have a high probability to contribute to complex
events degrades QoR. Hence, we avoid dropping these events by assigning high utility
values to them. Please recall that we identified the type 1. € T and position P. of
event e within a window to be an indicator of whether or not this event has a high
probability to contribute to complex events. This implies that the type and position of
an event determine its utility. As a result, to map the type and position of events to a

utility value, we introduce the utility prediction function in Equation 4.1:
Ue = f(Te, Pr) (4.1)

that predicts the utility U, of event e of type T, € T at position P, within a window. As
we will see later, this prediction function can be simply implemented based on statistical

data collected from the operator.

4.2.2.2 Utility Threshold and Occurrences

Upon receiving the drop command to drop p events from each window, the LS must find
those p events that have the lowest utility values in a window. One simple approach
is to sort the utility values using an efficient sort algorithm. For example, heap sort
has a time-complexity of O(ws.loga(p)), where ws is the number of events in a window
[Ski08]. However, this approach requires that the entire window is available to the LS
before sorting of the utilities and consequently shedding of events is performed. But
waiting until the arrival of all events of a window might introduce a high latency on

event processing or might even cause violation of LB. Moreover, sorting needs to be

69

4 eSPICE

performed in every window which might add additional overhead on the system that

already suffers from overload.

A reasonable approach to avoid the above induced latency and overhead is to find a
utility threshold (denoted by wuyp,) that can be used on the fly to drop the desired number
of events in a given window. In particular, we need a function that maps the number of
events to drop per window (p) to a utility threshold ws, i.e., f: p — uy,. To find the
utility threshold w;y, we could predict the number of p event occurrences in a window,

whose utility is less or equal to the utility threshold wyy,.

More specifically, in window w, we define the number of event occurrences, whose
utility is less or equal to a certain utility value u as follows: O, = |[{e : U, < u}|. The
number of event occurrences O, in window w, as defined above, implicitly represents
the cumulative occurrences of those utilities in w, whose values are less or equal to the
utility value w and hence, as a shorthand, we call O, as cumulative utility occurrences.
The utility threshold w;, can be calculated using the inverse function of the cumulative

utility occurrences O,,, , where, given the number of events that should be dropped from

Uth

each window, we can get the required utility threshold.

4.2.2.3 Applying Utility Models in Load Shedding

Now, we describe how load shedding is performed in eSPICE. To drop p events from
each incoming window, the LS first searches for the cumulative utility occurrences O,,,
which has a value O, > p. Then, the LS uses the utility value u as a utility threshold

ugp, to drop those p events from each window.

To use the utility threshold wus, and drop events, first, the LS gets the next event e
from the input event queue of the operator. Then, for each window w to which the event
e belongs, the LS computes the utility value U, of the event e in w using the utility
prediction function f (7T, P.) (cf. Equation 4.1). If the event utility U, in window w is
greater than the utility threshold wuy, the LS keeps event e in window w. Otherwise, it
drops event e from widow w. The utility threshold u, enables the LS to drop p events

from each window.

4.2.3 Model Building

Having discussed the role of the utility prediction and the threshold prediction functions,
in this section, we discuss, in detail, the manner in which we implement these functions.
For a clear explanation, let us introduce the following simple running example. We use
a pattern matching query that considers a window of 5 events (i.e., window size = 5)
and an input event stream consisting of only two event types A and B, i.e., T = {A, B}
(cf. Figure 4.3).

70

4.2 Probabilistic Load Shedding

4.2.3.1 Building the Utility Prediction Function

As mentioned above (cf. Section 4.2.2), the utility U, of event e is represented by
the probability of the event to contribute to the detected complex events. To predict
the utility of events in a window, we collect statistics, from the already detected
complex events, on the types T, and relative positions P, within windows of events that
contributed to those detected complex events. More specifically, we count the number of
occurrences of each event type T, € T at each position P, in a window that contributed
to the detected complex events. The number of occurrences of events within detected
complex events provides an insight into the importance (or utility) of the event types and
their relative positions within a window. The operator might match multiple patterns
(i.e., multi-patterns operator), where each pattern ¢; € Q has its corresponding weight
wg, (cf. Section 4.1). Therefore, when counting the number of occurrences of events
from detected complex events, we multiply the number of occurrences of events by the
corresponding pattern weight to which the detected complex event belongs.

As a result, we simply normalize those number of occurrences to generate the utility
U, (i.e., implement the utility prediction function f(7T¢, P.) in Equation 4.1) of event
e of a certain event type T, at a certain window position P.. These utility values are
stored in a table called utility table (denoted by UT'). The utility table has (MxzN)
dimensions, where M represents the number of different event types (i.e., M = |T|) and
N represents the window size ws. Each of its cells UT (T, P) represents the utility of a
specific event type T, € T in a certain position P, in a window, where the utility value U,
of event e is stored in UT' (T, P). The values in UT could be too fine-grained. We limit
the number of different utility values by normalizing the values in UT between 0 and
100 and rounding them to integers, i.e., UT (T, P) € [0,100]. Referring to our above
example, Table 4.1 shows a utility table that is generated from the collected statistical
data.

4.2.3.2 Building Utility Threshold and Occurrences

As we discussed in Section 4.2.2.2, to drop p events from each window, we should find
a utility threshold w;, that results in dropping p events from each window, where the
utility threshold wy, is the inverse function of the cumulative utility occurrences O,,, .
In particular, we should find a utility value w that is greater or equal to the utility value
of p events in a window, i.e., O, > p. Then, we use u as a utility threshold wus, to drop
p events from each window.

To find the utility threshold u, we need to calculate the cumulative utility occurrences
O, in a window. Since the utilities of events of all types and in all positions in a window
are stored in UT', we can determine the cumulative utility occurrences O,, from UT. The
cumulative utility occurrences depend on the distribution of utilities within windows

captured in UT.

71

4 eSPICE

T.JP.| 0| 1]2]3]4
A |70[15/10] 5 |0
B | 0]60[30]10]0

Table 4.1: UT generated from the collected statistical data.

80
5
O-IIIII

1.2 14 28 3.7 42
Cumulatlve utlhty occurrences Ou

D
(e}

[\
(e}

utility threshold uy,
I
o

Figure 4.2: CDT computed from Table 4.1 (UT') and the predicted position shares in
a widnow.

Figure 4.3: Simple running example.

To predict the utility threshold wuy,, let us, for now, assume that there is only one
event type in the input event stream (i.e., M = 1) and hence the dimensions of UT
become (1zN), recall N is the number of positions (i.e., events) in a window. Since the
utility values in UT are between 0 and 100 (recall that UT (T, P) € [0,100]), there will
be a maximum of 101 different utility values, where each utility value in UT" may repeat
several times. To build the cumulative utility occurrences O, for each individual utility
value u € [0,100], we first count the number of occurrences o, of each individual utility
value ©u € UT. Once we have the occurrences of each utility value, we can calculate
the cumulative utility occurrences. To this end, the number of occurrences o, of the
individual utility values u are accumulated together in a cumulative distribution fashion

as follows:
0 ifu=0
Ou=1¢ " (4.2)
0y + O(y—1), otherwise
So far, we have assumed that there exists a single event type in the input event
stream. However, there may be multiple event types in the input event stream. In
this case, for every single position in UT, there exists a utility value for each event type.
For example, in Table 4.1, every single position in UT has two utility values, one utility
value for the event type A and one for the event type B. In the table, UT'(A,0) = 70 and

UT(B,0) = 0. This means that a single position in UT is incrementing the occurrences

72

4.2 Probabilistic Load Shedding

of multiple utilities. As a result, to count the number of utility occurrences o,,, we need
to consider each position in UT as a shared position between all event types. More
specifically, for each event type, we count a utility occurrence o, in a certain position
in UT as a fractional value instead of counting it as a full occurrence. We call these
fractional values as position shares in a window. We could predict the position shares in
a window between different event types from the distribution probability of the events
within the window. The position shares in a window S(T¢, P) of event e of type T,
at position P. in the window equals the probability of this event type T, to come at

position P. in the window.

Now, to compute the cumulative utility occurrences O, in case of many event types,
we count the occurrences o, of the utility value » in UT as a fractional value by its
corresponding values from the position shares in a window. For each utility value
U, =UT(T,, P) for the event type T, at position P, in UT, we increase the number of
occurrences oy, by S(I¢, P). The cumulative utility occurrences O, is then computed
as in the case of a single event type using equation 4.2. We store the cumulative utility
occurrences O, in an array called C'DT', where the utility values u are used as indices and
the cumulative utility occurrences O,, are used as the actual values, i.e., CDT(u) = O,.
CDT is a single dimensional array of size (101), which is the maximum number of
different utility values in UT. An index u in C DT represents a utility value v in UT
and its cell value CDT(u) represents the cumulative utility occurrences O(u) of the

utility value w.

Since the utility threshold wuy, is the inverse function of the cumulative utility occur-
rences O, we extract ug, from C'DT. To find a utility threshold u, that drops p events
from each window, we iterate over C'DT to find a cell value CDT'(u) that is > p, which
means that the number of events with utility values less or equal to u occurs at least p
times in each window. Hence, using u as a utility threshold drops at least p events from
each window. We explain the utility threshold prediction further with the help of our
running example. Figure 4.2 shows the C'DT computed from UT in Table 4.1 and the
predicted position shares in a window. Now, to drop p = 2 events from each window, in
the figure, CDT(10) = 2.3 > p. Thus, to drop p = 2 events from each window, we use
the utility threshold u;, = 10.

Algorithm 3 explains the construction of C'DT from both UT and the predicted
position shares in a window. The algorithm first counts the number of occurrences o,, of
each individual utility value w in UT (cf. lines (2-5)). It iterates over each cell in UT
(cf. lines (2-3)) and gets its value u = UT (T, P), i.e., the utility of the event type T,
at the position P in the window (cf. line 4). Then, in line 5, the algorithm increments
the cell value in a temporary array temp which is at index u by the fractional value
S(Te, P). Since the utility values are used as indices in C' DT, they are already sorted in
ascending order. Finally, the algorithm accumulates the values in CDT starting from
index 0 where CDT'(u) = CDT(u) + CDT(u — 1), u = 1..100 (cf. lines (6-8)).

73

4 eSPICE

Algorithm 3 Building CDT table.

[y

computeCDT () begin

2: forT,eTdo

3: for P=0 to (N—-1)do // N: the window size ws.

" w= UT(T,,P)

5: temp(u) += S(Te, P) // temp(u) = o,
// accumulate utility values in ascending order.

6: CDT(0) = temp(0)

7. foru=1 to 100 do
CDT(u) = temp(u) + CDT (u — 1)

®

9: end function

4.2.4 Overload Detection

Having explained the way utility models are built, we now provide details on when the

LS should drop events and how many and in which interval should events be dropped.

To detect an overload on an operator, the overload detector periodically monitors the
input event queue and calculates the estimated latency for the incoming events (I.). It
compares [, with the defined latency bound LB and decides to drop events if LB might
be violated. Recall that the value of [, depends on event processing latency (denoted
by [,) and event queuing latency (denoted by [,), in fact, lc = [, + [,. Event processing
latency [, represents the time an event needs to be processed by the operator in all
windows. [, is calculated from the throughput of the operator. The operator throughput
u represents the maximum number of events the operator can process per second, i.e.,
the maximum service rate. Event queuing latency [, represents the time an event must
wait before it gets processed by the operator. This time depends on the number of
queued events n before this event e in the input event queue and on [, i.e., l; = n x .
This means that event e at position n in the input event queue has an estimated latency
le=n—-1)xl,+1, =nxlp

From the given latency bound LB and the event processing latency [,, we can
get the maximum allowed queue size (denoted by @pq) before violating LB, where
Gmaz = LB/l,. Waiting until the queue size (denoted by gsize) equals gmqs to start
dropping events might be too late and can cause LB violation. Therefore, we start
dropping events, if the following inequality holds: ¢size > f-Gmaz, Where f € [0,1], see
Figure 4.4. A high f value, on one hand, avoids unnecessarily dropping events— in cases,
the events are only queued for a short time as in short burst situations. But on the
other hand, it might force the LS to drop events with high utility values to avoid LB

violation— in case the queue size gets close t0 ¢pnq.. Later, we explain how to choose an

74

4.2 Probabilistic Load Shedding

appropriate f value.

4.2.4.1 Dropping Interval

So far, we have considered dropping p events per window. However, the window size
might not be the best dropping interval to meet the given latency bound LB. The reason
is that as the LS starts dropping events when ¢gj,e > f.Gmaz, the buffer that we have
before violating the latency bound (LB) is of size (Gmaz — f-@maz) events (cf. Figure
4.4). More specifically, we need to drop p events from at least every (¢maz — f-@mazx)
events (i.e., dropping interval) in order to meet LB. Therefore, please note that the
dropping interval must be less or equal to (¢maz — f-Gmaz)-

As a result, if the window size ws is less or equal to this buffer size (i.e., Gmaz — f-Gmaz),
then the interval of dropping p events is preserved and the utility threshold u, can be
calculated for the entire window. However, if the window size ws is greater than the
buffer size, there is a risk of LB violation, especially if the utility values are not evenly
distributed in windows, e.g., all events with high utilities come together in a certain
region of the window. In this case, the utility threshold w;, will result in dropping p
events from each window but not necessarily from each dropping interval (i.e., the buffer
size) if the size of the high utility region of the windows is greater than the buffer size.
This might result in LB violation.

Therefore, we must partition the window into smaller partitions of size less or equal
to the buffer size, i.e., ¢mazr — f-@maz (as can be seen in Figure 4.4) and drop p events
from each partition. While the partition size cannot be greater than the buffer size (cf.
the above mentioned constraint), of course, it can be less than the buffer size. However,
the larger the partition size is, the greater is the probability to find low utility values to
drop, resulting in better quality. As a result, we try to use a partition size that is as

large as possible (of course, the upper bound being the buffer size). More specifically,

ws
——). As
dmax — f'Qmax)

ws
a result, the partition size ps;.e = —. We use the partition size as a dropping interval

we partition a window in f partitions of equal sizes, where 5 = ceil(

in which p events should be dropped. Therefore, we cannot use the utility threshold
that comes from a full window, but instead, we have to use a utility threshold wuy, for
each partition in order to drop p events in each dropping interval.

We already discussed how to compute CDT, i.e., the cumulative utility occurrences
Oy, for a complete window. However, since a window might be divided into more than
one partition (when 3 > 1), we must compute for each partition its own C'DT. Please
note that UT will be calculated as before. However, the utility threshold u;;, needs to
be calculated based on the partition size pg;,. within which shedding must be performed.
Therefore, we compute C'DT for each partition of size pg;.e within UT. So, now, to drop
p events from each partition of the incoming windows, each partition has its own utility
threshold wyy,.

75

4 eSPICE

Amax f Amazx

input queue

H/_/
Z Psize

Figure 4.4: Partition Size.

4.2.4.2 Dropping Amount

The dropping amount represents the number of events that must be dropped from each
partition of each window. Determining how many events p to drop per partition depends
on the input event rate R and the operator throughput . The overload detector first
computes the overload ratio (denoted by 4) as follows: § =1 — % Then, the number of

events p to drop per partition is computed as follows: p = .psize.

4.2.4.3 Appropriate f Value

As we mentioned above, using a high f value prevents dropping events in short burst
cases, hence decreases the degradation in the quality of results. However, the f value
controls the partition size pg;.., hence using a high f value forces us to use a small
partition size to avoid LB violation. A small partition size might result in dropping
events that have high utility values. That can happen if all events in a partition have
high utility values. Therefore, we should choose a minimum f value that still allows
having a partition size that avoids dropping high utility events.

Fortunately, we already have the distribution of utilities within a window captured in
UT. We can take advantage of this knowledge to determine f value. To find the f value,
we propose to cluster the utilities in UT into several classes of importance. The goal is
to partition the windows depending on the f value into one or more partitions, where,
in each partition, there exist at least p events from the low utility classes. This way, in
each partition, the low utility events can be dropped, hence reducing the degradation
in the quality of results. Therefore, we can choose the f value that ensures the above

partition size.

4.2.5 Load Shedding

Now, we explain, in detail, the functionality of eSPICE’s load shedder (LS) component.
Events are dropped from individual windows without affecting other windows. An
event might be dropped from one window while it is still there in other windows as
the event utility U, may be different in different windows since the event position P, is

different in different windows. The LS checks for each incoming event in a window and

76

4.2 Probabilistic Load Shedding

decides on whether or not to drop it depending on the event utility in UT and on the
utility threshold wy; of the partition to which the event belongs. Hence, the LS must be

lightweight since it is performed for every event in a window.

Upon receiving the drop command from the overload detector, the LS searches for the
utility thresholds corresponding to each partition of an incoming window. Note that
the entire window can also be a single partition, i.e., there is only one partition (5 = 1),
if ws < (Gmaz — f-@maz) (cf. previous section). Having noted the utility thresholds
for every partition of a window, the LS proceeds to drop events from the incoming
windows. So, for each event e in a window, the LS gets its utility U, from UT and also
determines the partition (part) in a window to which event e belongs, both in O(1)
time-complexity. Then, the LS compares the event utility U, with the utility threshold
ugp, of the corresponding partition (part) to decide on whether or not to drop event e
from the window. If the utility U, of event e is less or equal to the utility threshold of

its corresponding partition, the LS drops event e.

Algorithm 4 explains the LS functionality more formally. If qsi.e > f.-Qmaz, the
overload detector requires the LS to activate the shedding. It also sends drop commands
which contain the number of events p to drop per partition to LS. The LS receives drop
commands from the overload detector where it first calculates the utility threshold up,
for each partition depending on the required number of events p to drop per partition (cf.
lines 1-7). To calculate the utility threshold ws,(part) for each partition part, the LS
iterates (cf. lines 2-3) over its corresponding C' DT to search for a value C DT (part,u)
which is > p (cf. line 4). Then, the index u of this value C DT (part,u) is used as the
utility threshold uy, (part) for this partition part (cf. line 5). In case load shedding is
active, for each event e in the incoming windows, the LS checks if it needs to drop the
event e (cf. lines 8-17). First, the LS finds the partition in the window to which the
event e belongs (cf. line 12). Then, the LS checks if the utility value U, of this event e
in UT is less or equal to the utility threshold us, (part) of its calculated partition (cf.
lines 13-16)—just a simple lookup in UT'. It then returns true if the event should be
dropped, otherwise false. This shows that our load shedder is extremely lightweight and

it takes the shedding decision in O(1) time-complexity for each event in a window.

4.2.6 Extensions

In this section, we explain the following extensions to our load shedding approach:
handling a variable window size, using bins for large windows, retraining the model, and
supporting the negation operator [WDR06|. Handling a variable window size enables
our approach to work with windows of different sizes. While the use of bins enables

eSPICE to work with large windows.

7

4 eSPICE

Algorithm 4 Load shedder.

1: getUtilityThresholdForEachPartition (p) begin

2. for part =0 to (f—1)do

3 for u=0 to 100 do

4: if CDT (part,u) > p then

5 wy, (part) = u

6 break // break the inner loop and proceed to the next partition.

7. end function

applyLS (e) begin // Event e of type T, at position P, in the window
9. if |LS.isActive then

®

10: return false
11: else
12: part =
Dsize
13: if UT(T., P.) < up(part) then
14: return true
15: else
16: return false

17: end function

4.2.6.1 Handling Variable Window Size

The incoming windows might have a variable window size ws depending on the window
splitting strategies. As mentioned in Section 2.1, in CEP systems, there exist three main
window splitting strategies—count-based, time-based and pattern-based. In count-based,
ws is always fixed while in time-based and pattern-based, ws might change depending
on the input event rate or content of the events [MTR17].

As explained earlier, in order to implement the utility prediction function, we use
table UT which has a fixed number of event positions N, where N = ws. However,
if the window size ws varies and is not fixed, we need a way to find N. Therefore,
to handle variable window size, we profile the operator and choose N as the average
observed window size. Since N might be different from the size of actual windows, in
the following, we explain the required modifications to our approach during both model
building and load shedding to incorporate variable window size.

During Model Building: We need a way to map the event positions in windows to
the event positions in UT that has a fixed number of positions N. To do that, we

normalize the size of incoming windows to N. For each incoming window w, if ws > N,

78

4.2 Probabilistic Load Shedding

we scale down window w where more than one position in window w is mapped to a
single position in UT'. On the other hand, If ws < N, we scale up window w where each
position in window w is mapped to one or more positions in UT. The scaling factor sf
can easily be computed as follows: sf = *. For example, let N = 100 and ws = 200,
then sf = % = 2. This means that every two positions in window w are mapped to a
single position in UT'.

During Load Shedding: The window size may also vary while performing load shedding.
So, in this case, while processing every incoming event e of a window w, the LS must
determine the relative position of the event e within the window w, instead of the exact
position. In this way, the LS can map the learned utility values in UT to the event e.
To map the relative position of the event e in the window w to the exact position in UT,
we again scale down ws if ws > N and scale up ws if ws < N. Since during scaling up
ws, an event e in window w is mapped to more than one cell in UT', the utility of e is
the average value of all these cell values in UT'.

As mentioned above, the cumulative utility occurrences O,,, which are stored in CDT,
are computed from UT that has a fixed number of positions N. In the case of varying
window sizes, the utility threshold wuyy, is calculated from C'DT without any modification.
This is because the utility values in UT' already capture the variation in the window size.
So, the calculated utility threshold uy, from C'DT implicitly scales up/down depending
on the window size.

The problem with variable window size during load shedding is that we process events
on their arrival without waiting until the end of the windows. Thus, in the case of
time-based and pattern-based windows (cf. Section 2.1), the actual window size is
unknown at the time when the LS performs a lookup in UT to get the utility of an
event in a window based on its relative position. However, it is impossible to get a
relative event position if the actual window size is unknown. Yet, the window size
is important for the lookup, and we must predict it. For example, in the case of a
time-based sliding window, the input event rate could be used to predict the window size.
If the distributions of events within windows are known, we may precisely predict the
window size. However, if the event distributions are unknown or continuously changing,
it becomes hard to predict the actual window size, which might negatively impact the
performance, w.r.t. QoR, of eSPICE. Please note that predicting the window size is
already researched in literature [MTR17| and will not be the focus of this work.

4.2.6.2 Using Bins for a Large Window Size

The average observed window size N might be too large. This might result in a huge
size of UT', thus wasting computing resources. Therefore, bins of size bs are used to
map several neighboring positions for each specific event type in a window to one single
position in UT', thus reducing its size. In Section 4.3, we discuss more the impact of the

bin size on the quality of results.

79

4 eSPICE

4.2.6.3 Model Retraining

The distribution of events in the input event stream may change over time which may
influence the accuracy of the constructed model (i.e., the constructed utility table UT
and C'DT table). That may adversely impact QoR. Therefore, in this case, we must
retrain the model to capture these changes in the input event stream. We might either
retrain the model periodically or only when the input event stream changes. Two
factors may indicate that the input event stream has changed: 1) the change in the
distribution of events in the input event stream (i.e., the distribution of event types),
and 2) the change in the distribution of the event content (i.e., the event’s actual data)
in the input event stream. As a result, to maintain the constructed model accurately,
eSPICE must retrain the model if at least one of these two factors has changed, i.e., (the
event distribution or/and the event content distribution). eSPICE periodically gathers
statistics from windows, hence if there is a need to retrain the model, eSPICE uses these
gathered statistics to build a new model.

These two factors are application specific where one or both of these factors may
change over time depending on the application. For example, in applications, where
input event streams are generated in a fixed frequency, the distribution of input events is
fixed, however, the distribution of event contents may change over time. An example is a
transportation application, where bus events from different buses are generated at a fixed
frequency, however, the content of bus events may change over time depending on the
time of day. On the other hand, for some other applications, the event distribution may
change while the event content distribution may stay fixed or only slightly change. For
example, an ID reader in a retail shop generates an ID event whenever an item is scanned.
During peak hours, more items may be scanned which changes the distribution of 1D
events, however, the distribution of the content of ID events might only slightly change—
only when the item’s content changes (e.g., the item price changes). Finally, both event
distribution and event content distribution may change over time. For example, in a
stock application, a stock event of company A may be generated only if the stock quote
of company A has changed which implies that the stock event distribution might change
over time depending on the change in the stock quotes. Additionally, the change in stock
quotes might depend on multiple factors, where a stock quote changes if one or more of
these factors change, i.e., the distribution of stock event content may change over time.

The number of detected complex events within windows gives a good insight into the
event distribution and event content distribution. If the average number of detected
complex events within windows changes, this provides a good indication that the event
distribution or the event content distribution has changed. Therefore, to capture the
distribution changes, we use the following approach. We compute the average number of
complex events per window during model building. Then, we periodically compare this
average number with the average number of complex events within the newly coming

windows that are marked for statistic gathering, i.e., those windows from which the LS

80

4.3 Performance Evaluations

does not drop events. If the deviation between both averages is higher than a threshold,
eSPICE should rebuild the model. This approach is lightweight and efficient, where its

overhead is very low.

4.2.6.4 Supporting Negation Operator

As discussed above (cf. Section 4.2.2), eSPICE learns about the utility of events within
a window depending on the detected complex events within already processed windows.
However, in the case of the negation operator, a complex event is detected only if specific
event type(s) are not present in a window. For example, let us assume that an operator
matches pattern ¢ = seq(A;!B;C). In pattern ¢, we call event type B a negated event
type. In a window, while matching pattern ¢, the operator detects a complex event if an
instance of event type A happens, followed by an instance of event type C. However,
in case, an instance of event type B happens after the occurrence of an instance of
event type A and before the occurrence of event type C, no complex event is detected,
and the already matched part of pattern ¢ is ignored— called abandoned partial match.
Hence, eSPICE cannot learn about the importance of the negated event type(s) (i.e., B
in pattern ¢) since the operator does not produce any complex event with event type
B. That means, in this example, the instances of negated event type B in windows
will be assigned a utility value zero. Hence, if there is overload and the LS must drop
events, it will start to drop events of type B since event B has a utility value of zero.
That might cause many false positives if events of event types A and C are present in
windows, while events of type B are dropped.

To avoid the above problem and to enable eSPICE to learn about the importance
of the negated event types in an operator, we request the operator to forward the
abandoned PMs to eSPICE, where eSPICE gathers statistics from these abandoned
PMs, as well. This way, eSPICE, as for any other event type, can gather statistics on
the importance of the negated event types in different positions within windows using
these abandoned PMs, i.e., learns about the utility of those negated event types. As a
result, eSPICE may avoid dropping instances of the negated event types, hence reducing

the number of false positives.

4.3 Performance Evaluations

Next, we evaluate the performance of eSPICE by analyzing its impact on the quality of
results when the input event rate exceeds the operator throughput pu.
4.3.1 Experimental Setup

Here, we describe the evaluation platform, the baseline implementation, datasets, and
queries used in the evaluations. In this chapter, we use the same evaluation platform

as in Chapter 3, Section 3.3.1. We compare the performance, w.r.t. QoR, of eSPICE

81

4 eSPICE

with the performance of pSPICE and E-BL (cf. Chapter 3, Section 3.3.1) where we
rename E-BL to BL in this chapter. As evaluation results showed that a completely
random event shedder is comprehensively outperformed by eSPICE, we do not show the

evaluation results for a completely random shedder.

Datasets. We use two of the datasets explained in Section 3.3.1. In particular, we
use the stock quotes stream from the New York Stock Exchange (i.e., the NYSE Stock
Quotes dataset) and the position data stream from a real-time locating system in a
soccer game (i.e., the RTLS dataset). We do not show evaluation results on the public
bus transport (i.e., the PLBT dataset) from the previous chapter since the evaluation
results produced by performing event shedding on the PLBT dataset are similar to those

results when performing event shedding on the RTLS dataset (cf. Section 3.3.2).

Queries. We employ six queries (Q1, Q2, Q3, Q4, @5, and Qg) that cover an
important set of operators in CEP as shown in Table 4.2: sequence operator, sequence
operator with repetition (which also contains Kleene closure), disjunction operator,
sequence with negation operator, and sequence with any operator [ZDI14; CM94; CM10;
WDRO06; MMO09|. In Table 4.2, C; represents the stock quota of company 4, and D;
represents the event of player i. We use the same window strategies (i.e., time-based and
count-based windows) and the same selection and consumption policies used in Section
3.3.1. The queries @1, @2, and Qg are the same as queries @1, @2, and @3, respectively,
defined in Section 3.3.1. Moreover, we add three more queries, namely Q3, Q4, and @Qs,
to cover a broader range of CEP queries. Next, we explain all these six queries where

we re-explain queries @1, QQ2, and Qg, here again, to make the presentation smoother.

@1 (sequence operator) detects a complex event when rising or falling stock quotes, by
a given percentage, of 10 certain stock symbols are detected within ws events/minutes
in a certain sequence. Q2 (sequence operator with repetition) detects a complex event
when 10 rising or 10 falling stock quotes, by a given percentage, of certain stock symbols
with repetition are detected within ws events/minutes in a certain sequence. @3 (multi-
pattern operator) detects a complex event if either Q1 or Q2 matches. Q3 represents a
multi-pattern operator. @4 (sequence with negation operator) is similar to Q1 but it
detects a complex event only if the stock quote of a certain company (i.e., C5) does
not change by a given percentage. @5 (sequence with any operator) detects a complex
event when any 20 rising or any 20 falling stock quotes, by a given percentage, of any
stock symbol are detected within ws seconds/minutes from a rising or falling quote of a
leading stock symbol (defined as M LE). The leading stock symbols are composed of
a list of 4 technology blue-chip companies. Q¢ (sequence with any operator) uses the
RTLS dataset. It detects a complex event when any n players of a team defend against
a striker (defined as S) from the other team within ws seconds from the ball possessing
event by the striker. The defending action is defined by a certain distance between the

striker and the defenders. We use two players as strikers, one striker from each team.

82

4.3 Performance Evaluations

Stock queries

pattern seq(C1; Cy;..; Chp)
Q1 where all C; rise by x% or all C; fall by =%, i =1..10
within ws minutes/events

pattern seq(C1; C1; Ca; C3; Co; Cy; Co; Cs; Cg; Cr; Co; Cy; Cg; Cho)

Q- where all C; rise by 2% or all C; fall by 2%, i =1..10
within ws minutes/events
Q3 | Q1V Q2

pattern seq(Cy; Co; C3; Cy; !Cs; Cg; Cr; Cy; Co; Cho)

where all C; rise by x% and C5 does not rise by y%
Q4 or all C; fall by 2% and Cy does not fall by y%

, 1=1.10 and i # 5

within ws minutes/events
pattern seq(M LE;any(20,Cy; Co;..; Cy))

where M LFE rises by x% and all C; rise by %
@5 or MLE falls by 2% and all C; fall by 2%, i = 1..20

within ws seconds/minutes

Soccer query

pattern seq(S;any(n, Dy, Ds, .., Dy,))
where S possesses ball and distance(S, D;) < x meters
, © = 1..m and m is the number of players in a team
within ws seconds

Qs

Table 4.2: Queries.

4.3.2 Experimental Results

In this section, we evaluate the impact of our probabilistic load shedding strategy
(eSPICE) on QoR, particularly the number of false positives and false negatives, and
compare its results with the results of BL and pSPICE. Moreover, we show the impact
of the window size and the bin size on QoR. Additionally, we analyze the overhead of
eSPICE and show its ability to maintain the given latency bound.

If not noted otherwise, we employ the following settings. Q1, @2, Q3, and Q4 use a
count-based sliding window. While we use a time-based sliding window for @5 and Q.
For @1, Q4, @5, and Qg, a logical predicate is used to open new windows. In Q1, Q4,
and)5, a new window is opened for each incoming event of the leading stock symbols
(MLE), while, in g, a new window is opened for each incoming striker event (5). For
Q2 and @3, a count-based predicate is used where a new window is opened every 20
events, i.e., the slide size equals 20 events. The number of defenders in query Qg is 4,
i.e., n = 4. We use a latency bound LB = 1 second and an f value = 0.8. Moreover,
we stream the datasets from stored files to the system with an event input rate that

is less or equal to the operator throughput g until the model is built. After that, we

83

4 eSPICE

n 100 . - n 100

Cl>) g 4:. :iPICE

- 80 - 80 :-: pSPICE

: s

GC) 60 g 60

o 40 o 40

(2] wn

& 20 w @ 20

L: m®m pSPICE q;

>~ 0 >~ 0

120 140 160 180 200 120 140 160 180 200

% event rate % event rate
(a) strict QoR (b) relaxed QoR

Figure 4.5: False negatives for ()1 with different input event rates.

increase the input event rate to enforce load shedding as we will mention in the following
experiments. We execute several runs for each experiment and show the mean value and
standard deviation.

There are several factors that may influence the performance, w.r.t. QoR, of eSPICE
such as the event rate, the window size, and the bin size. Next, we evaluate the
performance of eSPICE with these different factors. Moreover, since we have two
approaches to define QoR, namely the strict QoR and relaxed QoR, we also show the

results when using both QoR approaches.

4.3.2.1 Impact of event rate on QoR

Next, we analyze the impact of eSPICE on QoR (i.e., the number of false negatives and
positives) with different input event rates. To show the impact of event rate on QoR,
we stream the datasets to the operator with input event rates that are higher than the
operator throughput u by 20%, 40%, 60%, 80%, 100% (i.e., event rate= 120%, 140%,
160%, 180%, 200% of the operator throughput i). For Q1, Q2, and Q3, we use a window
of size 1200 events (i.e., ws = 1200). The used window sizes for Q4, @5, and Qg are 600
events, 20 minutes, and 30 seconds, respectively. As we showed in Chapter 3, Section
3.3, the match probability has a considerable impact on the performance (w.r.t. QoR)
of load shedders, where the match probability is computed from the ground-truth by
dividing the total number of complex events by the total number of PMs. The match
probability for Q1, Q2, Q3, Q4, @5, and Qg are 32%, 22%, 27%, 66%, 14%, and 6%,

respectively.

Number of false negatives. Figures 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 depict the impact
of event rates on QoR. The figures show the percentage of false negatives for all queries

(Q1, Q2, Q3, Qq, Q5, and Q). In the figures, the x-axis represents the input event rate

84

4.3 Performance Evaluations

v 100 s s - »n 100

: g R

- 80 - 80 .-: pSPICE

s g

8 60 8 60

o 40 o 40

(2] wn

& 20 we] @ 20

q:, mSm pSPICE q;

x 0 >~ 0

120 140 160 180 200 120 140 160 180 200

% event rate % event rate
(a) strict QoR (b) relaxed QoR

Figure 4.6: False negatives for Qo with different input event rates.

and the y-axis represents the percentage of false negatives.

The percentage of false negatives increases if the input event rate increases since
more events/partial matches must be dropped. Figure 4.5a shows the percentage of
false negatives for 1 using strict QoR. In the figure, the percentage of false negatives
caused by eSPICE increases from 16% to 82% when increasing the event rate from 120%
to 200%, respectively. Whereas, the percentage of false negatives caused by BL and
pSPICE increases from 67% to 98% and from 35% to 84% when increasing the event
rate from 120% to 200%, respectively. The results in Figure 4.5a show that eSPICE
outperforms, w.r.t. QoR, both BL and pSPICE. The results for all load shedders in the
case of relaxed QoR (as depicted in Figure 4.5b) show similar behavior to the results
when using strict QoR. However, in the case of relaxed QoR, eSPICE and BL result in
a lower percentage of false negatives compared to the case of strict QoR. The reason
behind this is that in the strict QoR, only certain event instances are allowed to match
the pattern and produce complex events, otherwise, the produced complex events are
considered as false negatives/positives. As depicted in the figure, the impact of pSPICE
using relaxed QoR is similar to its impact when using strict QoR. Here again, eSPICE
outperforms the other load shedders when using relaxed QoR.

Figures 4.6a and 4.6b depict the percentage of false negatives for Q)2 when using strict
and relaxed QoR, respectively. In Figure 4.6a, the percentage of false negatives caused
by all load shedders increases when the input event rate increases. However, eSPICE
performs better than the other load shedders irrespective of the input event rate where
eSPICE outperforms BL and pSPICE by up to 21 and 10 times, respectively. The results
in Figure 4.6b show a similar behavior where again eSPICE outperforms the other load
shedders. We conclude from the results shown in Figures 4.5 and 4.6 that when using the
sequence operator (i.e., @1 and Q2), eSPICE always performs, w.r.t. QoR, better than
BL and pSPICE regardless of the used input event rate and the way QoR is calculated.

The results depicted in Figure 4.7 show the performance of the load shedders when

85

4 eSPICE

n 100 n 100
CI>) A:A eSPICE g 4:. :iPICE
- 80 :l: S;PICE — 80 :l: PSPICE
s g
GC) 60 8 60
o 40 o 40
(2] wn
T 20 T 20 /
Y Yo
X 0 X 0
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) strict QoR (b) relaxed QoR

Figure 4.7: False negatives for Q3 with different input event rates.

using a multi-pattern operator (i.e., @3). Figures 4.7a and 4.7b show the results when
using strict and relaxed QoR, respectively. The percentage of false negatives again
increases when the input event rate increases. The percentage of false negatives caused
by eSPICE, BL, and pSPICE increases from 5% to 51%, from 51% to 99%, and 25% to
58% when increasing the input event rate from 120% to 200%, respectively. This shows
that eSPICE outperforms both BL and pSPICE up to 10 and 5 times, respectively. The
same behavior is observed in Figure 4.7b where eSPICE performs better than the other
load shedders. This shows that eSPICE supports the multi-pattern operator with a
considerably low adverse impact on QoR.

To evaluate the performance of eSPICE with the negation event operator, we run
experiments with Q4. In @4, we limit the number of complex events to only one event per
window. The window is closed if a complex event is detected. We do that to determine
the impact of the negation operator on the matching output. The results with both
strict and relaxed QoR are depicted in Figures 4.8a and 4.8b, respectively. Again, with
the negation operator, eSPICE outperforms both BL and pSPICE using strict or relaxed
QoR. The performance of eSPICE is better than the performance of BL and pSPICE
by up to 13 and 6 times when using strict QoR and by up to 10 and 6 times when
using relaxed QoR. That shows that eSPICE supports the negation operator with a
considerably low negative impact on QoR.

Finally, we evaluate the performance of eSPICE with the any event operator where the
results are depicted in Figures 4.9 and 4.10 which show results for Q)5 and Qg, respectively.
Figure 4.9a shows results for Q)5 using strict QoR. In the figure, the percentage of false
negatives caused by all load shedders increases when the input event rate increases.
The figure shows that eSPICE performs better than BL. However, the performance of
eSPICE is worse than the performance of pSPICE for the majority of input event rates.
The reason behind this is that the even utilities in)5 are spread and less accurately

predicted since (5 represents an any operator where (J5 matches an event of any type

86

4.3 Performance Evaluations

=
o
o
=
o
o

AAA eSPICE
00 BL
mEm pSPICE

AAA eSPICE
e0%¢ BL
mSm pSPICE

00
o
0o
o

% false negatives
N B O
o O O

% false negatives
N B O
o O O

#—”*/’/:”’i”’*

0 0
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) strict QoR (b) relaxed QoR

Figure 4.8: False negatives for (04 with different input event rates.

§ 100 § 100 ada cSPICE

2 80 //—A 2 80 o

(@) (@)

8 60 8 60

w 40 w 40

s 20 s B 20

o\o 0 mSg pSPICE o\o O |

120 140 160 180 200 120 140 160 180 200

% event rate % event rate
(a) strict QoR (b) relaxed QoR

Figure 4.9: False negatives for (5 with different input event rates.

(any stock company). Hence, in the case of @5, the majority of events in a window have
similar utility values. Using relaxed QoR, eSPICE outperforms pSPICE as shown in
Figure 4.9b. Figures 4.10a and 4.10b depict results for Qg when using strict and relaxed
QoR, respectively. Both Figures 4.10a and 4.10b show that increasing the input event
rate results in increasing the percentage of false negatives for all load shedders. The
performance of eSPICE is better than the performance of BLL when the input event rate
is between 140% and 200%, however, it is worse than the performance of pSPICE in
that range where the performance of pSPICE is considerably better in Q.

Number of false positives. Next, we show the impact of eSPICE on the number of
false positives. Please note that in the case of relaxed QoR, performing load shedding
might result in false positives only in the case of the negation operator where dropping
negated events might result in false positives. For the sequence and the any operator

dropping events cannot result in false positives in the case of relaxed QoR. Figures 4.11

87

4 eSPICE

n 100 n 100
(I>) A:A eSPICE g A:A giPICE
- 80 :l: E;PICE] 80 :l: pSPICE
: s
GC) 60 8 60
q) 40 CIJ 40
(2] wn
© 20 © 20
Y Yo
X 0 X 0
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) strict QoR (b) relaxed QoR

Figure 4.10: False negatives for Qg with different input event rates.

and 4.12 depict the impact of input event rates on the number of false positives for
queries Q1, Q2, Q5, and Qg, respectively. We observed similar results for Q3 and @4,
hence we do not show them. In the figures, the x-axis represents the input event rate
and the y-axis represents the percentage of false positives.

Figures 4.11a and 4.11b show results for ()1 and @2, respectively. The percentage of
false positives shown in Figure 4.11a caused by eSPICE increases when the input event
rate increases. While the percentage of false positives caused by BL decreases when
the input event rate increases. The reason for that is, when the event rate increases,
more events are dropped from windows, hence it becomes hard to detect complex events.
That results in fewer percentage of false positives. BL even results in less false positives
than eSPICE when the input event rate is equal to or higher than 160%. Figure 4.11a
shows that pSPICE results almost in no false positives. The results for Q2 show similar
behavior as depicted in Figure 4.11b. As a result, dropping PMs (i.e., using pSPICE)
has a negligible impact on the false positives.

Figures 4.12a and 4.12b show results for Q5 and Qg, respectively. In Figure 4.12a, the
percentage of false positives caused by eSPICE again increases when the input event
rate increases. While the percentage of false positives caused by BL decreases when the
input event rate increases. Here again, pSPICE has a negligible impact on the number
of false positives. Figure 4.12b shows similar results for eSPICE and pSPICE. However,
in the figure, the impact of BL on the percentage of false positives increases when the

event rate increases.

4.3.2.2 Impact of variable window size on QoR

Now, we show the impact of variable window size on the performance, w.r.t. QoR, of
eSPICE. Using a time-based or pattern-based sliding window may result in splitting the

incoming event stream into windows of different sizes. However, UT has a fixed number

88

4.3 Performance Evaluations

a 100 AAA eSPICE $ 100 AAA eSPICE
E 80 ::: FBJ;PICE E 80 ::: E;PICE
3 60 3 60
o o
8 40 g 40
SO 20 S 20
o\o O_-l - - - u o\o 0 i i a
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) strict QoR (b) strict QoR

Figure 4.11: False positives for @)1 and Q)2 with different input event rates.

$ 100 ‘AAA eSP‘ICE $ 100 VAAA eSP'ICE
2 80 ame ssce|| = 80 ama osPice
3 60 '8 60
o (o}
v 40 _/\,\ | o 40
O 20 & 20
X OK:——:—_T | X OM
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) strict QoR (b) strict QoR

Figure 4.12: False positives for Q5 and Q)¢ with different input event rates.

of positions/events N, where N represents the average window size, given bs = 1. Hence,
we must map the incoming windows of different sizes to IV as we showed above in Section
4.2.6.1. The ideal window size should be N, however, in case the incoming windows are
larger or smaller than N, the quality of results might degrade because of the variations
in relative positions of events in windows. To evaluate that, we run experiments with
@5 and Qg where we use several window sizes during model building to enforce having a

different number of events per window.

For @5, we use a time-based sliding window of the following sizes: ws= 180, 200, 240,
260, and 300 seconds. The average observed window size is ~ 2000 events, and hence we
use N = 2000 to build UT. Here, the window size ws = 240 seconds contains around
2000 events (=~ N). Therefore, we use it as a reference window size in our results and
refer to it as a window of size 100%. We represent the window sizes as a percentage

value compared to the reference window size (i.e., ws = 240 seconds), and hence the

89

4 eSPICE

used windows are of the following sizes: 75%, 83%, 100%, 108%, and 125%. For Qg, we
again use a time-based sliding window of the following sizes: ws= 12, 14, 16, 18, and 20
seconds. The average observed window size is ~ 800 events. Hence, we use N = 800
to build UT. As the window size ws = 16 seconds contains around 800 events (=~ N),
we use it as a reference window size in our results and refer to it as a window of size
100%. We represent the window sizes as percentage values compared to the reference
window size (i.e., ws = 16 seconds), and hence the used windows are of the following
sizes: 75%, 87%, 100%, 112%, and 125%. For both queries, during the model building,
we change the window size between the above given window sizes randomly to ensure
that our model has learned from several window sizes and not only from one window
size. During load shedding, we use one of the window sizes of the above given window
sizes to check the impact of this window size on the quality of results.

Figure 4.13 depicts the percentage of false negatives caused by eSPICE for both Q5
and Qg using strict QoR. The x-axis represents the percentage of window size compared
to the reference window size, and the y-axis represents the percentage of false negatives.
Figure 4.13a shows results for Q5 with two input event rates 120% (denoted by R1) and
140% (denoted by R2) while Figure 4.13b shows results for Qg with the two rates. Figure
4.13a shows that the percentage of false negatives increases when the difference between
N and the window size increases regardless of the input event rate. While Figure 4.13b
shows that the percentage of false negatives for Qg is only slightly influenced by the
used window size with both input event rates R1 and R2. Hence, more than one event
in a window can be mapped to a single position in UT in case ws > N, or one event in
a window can be mapped to several positions in UT when ws < N without having a
considerable impact on the number of false negatives. The reason why the impact of
eSPICE on the percentage of false negatives for ()5 is higher than its impact for Qg is
that @5 has a longer pattern size (i.e., 1 stock leading company + 20 stock companies)
than Qg (i.e., 1 striker + 4 players) which makes it more sensitive to the relative event
positions in windows. Moreover, the number of event types (i.e., MLE) that start a new
match in ()5 is higher than the number of event types that start a new match in Qg

(only two strikers).

4.3.2.3 Impact of bin size on QoR

A big bin size might degrade QoR since it reduces the accuracy in UT of the important
positions in the incoming windows. To analyze the impact of bin size on the performance,
w.r.t. QoR, of eSPICE, we, again, run experiments with Q)5 and Q. We use a window
of size ws = 240 seconds and ws = 15 seconds for Q5 and Qg, respectively. In addition,
we use the following bin sizes for both queries: bs = 1, 2, 4, 8, 16.

Figure 4.14 depicts the percentage of false negatives for both queries with the strict
QoR. The x-axis represents the bin size, and the y-axis represents the percentage of

false negatives. Figure 4.14a depicts results for Q5 with the input event rates R1 (120%)

90

4.3 Performance Evaluations

o

wn 40 n 4
g — | &
4g30 —e— R2 4@30 —— =
020 20
Q Q T
210 210 —— Rl
q(E \’__‘/._Q ‘-I(E —e— R2
:\~ e "
X 0 X

o

75 8> 0y 27542
window size %
(b) Qs

75 83 40,y 40g 125
window size %
(a) Qs

Figure 4.13: Impact of variable window size on QoR.

$80 $80
2 ol 2 e
4(—660 4;660
O o
c 40 c 40
20 2o
© e T
RO g 16 291 3 1 8 16
bin size bin size
(a) Qs (b) Qo

Figure 4.14: Impact of bin size on QoR.

and R2 (140%) where it shows that the percentage of false negatives increases with the
used bin size. Figure 4.14b depicts results for ()¢ with the input event rates R1 and R2,
where it shows that the percentage of false negatives is slightly influenced by the used
bin size for both input event rates R1 and R2. The reason here is again similar to the

reason in the variable window size experiment.

4.3.2.4 Run-time overhead of the LS

Load shedding is used in systems that already face overload and hence the LS overhead
must be considerably small compared to the event processing overhead. Our LS performs
only a single lookup in the utility table UT to decide whether or not to drop an event
from a window and hence its time-complexity is O(1). Thus, it is a lightweight load

shedding strategy. An important parameter that impacts the LS overhead is the window

91

4 eSPICE

% overhead
O, N W PH U1 O

240 ‘960 46’0 ‘960]9 > 0
window size (sec.)

Figure 4.15: (J5: Overhead of the LS.

size. A large window may not fit in the system caches and cost higher lookup time and
hence higher overhead. To show the overhead of the LS, we run experiments for (5
with two input event rate R1 (120%) and R2 (140%) and use a window of the following
sizes: ws = 240, 360, 480, 960, 1920 seconds, where the approximate window sizes
in events are 2000, 3000, 4000, 8000 and 16000 events, respectively. We used these
approximate window sizes in events as a dimension for UT, i.e., N = ws. We observed
similar behavior for other queries and hence we do not show them.

Figure 4.15 depicts the overhead of the LS for @)5. The x-axis represents the used
window size, and the y-axis represents the percentage time the LS needs, compared to
the actual event processing time. As expected, the overhead of our LS increases with
the used window size. In the figure, the overhead increases from less than 1% with
the window of size 240 seconds (~ 2000 events) to ~ 5% with the window of size 1960
seconds (= 16000 events). However, the overhead is still low compared to the actual
event processing time. Hence, our load shedding strategy can maintain the given latency
bound with low overhead. Moreover, the overhead of the window size can be reduced
by increasing the bin size (bs). Additionally, improving the utility table locality in the

memory can further reduce the overhead of LS.

4.3.2.5 Maintaining the given latency bound

The main goal of eSPICE is to maintain the given latency bound. Hence, here, we
discuss the ability of eSPICE in keeping the given latency bound. Figure 4.16 shows the
incurred event latency (l.) when running @1 and Q5 with different input event rates.
The results of other queries show similar behavior, and hence they are not shown. The
figure shows that eSPICE never violated the given latency bound (LB = 1 second)
and it always keeps the event latency around (f x LB) that is 800 milliseconds in this

92

4.4 Conclusion

1.0
@]
et O 0.8
wn (V)]
~ ~0.6
> >
g 0. - event rate: 120% 8 0.4 - event rate: 120%
Q - event rate: 140% Q - event rate: 140%
] 0.2 - event rate: 160%) 0.2 - event rate: 160%
- — event rate: 180% o - — event rate: 180%
- — event rate: 200% - — event rate: 200%
. 0.0
0 20 40 60 80 0 10 20 30 40 50 60
time (sec.) time (sec.)
(a) Q1 (b) @s
Figure 4.16: Impact of bin size on the quality.
experiment.

4.3.2.6 Results Discussion

eSPICE performs much better than BL and pSPICE for the majority of queries. However,
the performance of eSPICE varies for different classes of operators. QoR of eSPICE
is exceptionally good for the sequence operators. The sequence operator ensures that
every time only the same event types would match the pattern. that results in higher
utility values for those event types. On the other hand, the any operator matches any
event regardless of its type. Hence, the event utilities are more sparse that adversely
impacts the performance of eSPICE. Further, eSPICE shows its robustness against
variable window size and bin size. The quality of results is only slightly influenced by a
window size that is different from N or by a larger bin size. Moreover, the overhead of
the LS component in eSPICE is very low compared to the actual processing overhead

that makes eSPICE suitable for real-time complex event processing.

4.4 Conclusion

In this chapter, we proposed a lightweight load shedding approach, called eSPICE, for
window-based CEP systems that maintains a given latency bound by dropping events
while reducing its adverse impact on the quality of results. eSPICE uses the type and
relative position within windows of events to predict their utility values and efficiently
drops events from incoming windows. Through extensive evaluations on two real-world
datasets and a range of popular CEP operators, we show that, for the majority of queries,
eSPICE outperforms state-of-the-art load shedders for CEP /stream processing systems.
eSPICE successfully maintains the given latency bound while keeping the degradation

in the quality of results very low at minimum overhead.

93

Chapter

hSPICE: State-Aware Load
Shedding from Input Event Streams

In the previous two chapters (Chapter 3 and 4), we presented our two proposed load
shedding approaches pSPICE and eSPICE. pSPICE drops PMs from a window without
considering the current events within the window, while eSPICE drops events from a
window without considering the current open PMs within the window. As a result,
pSPICE might drop PMs, that have relatively high utilities even if there exist events
that may be dropped without impacting QoR. That might adversely impact QoR. On
the other hand, eSPICE neither considers the importance nor the state of PMs. An
event might have different utilities for individual PMs, depending on the importance
and the state of these PMs. Therefore, combining these two load shedding approaches

might overcome these drawbacks and result in a more powerful load shedder.

As a result, in this chapter, we propose a new white-box load shedding approach called
hSPICE that combines the best of both pSPICE and eSPICE. In particular, hSPICE is a
white-box load shedding approach that drops events either from windows or from PMs— it
sheds events on window and PM granularities— while considering the operator’s internal
state. In hSPICE, events have different utilities for different PMs. hSPICE predicts the
utility of the events using a probabilistic model. The model uses the event type, the
event position within a window, and the state of partial matches in a window to learn
about the utility of events within windows. As we mentioned in Chapter 1, Section 1.2,
an important factor that influences the effectiveness of a load shedding approach is its
overhead in performing the load shedding. A high load shedding overhead implies that
a high percentage of the available processing power will be used to take the shedding
decision. That results in reducing the available processing power to perform pattern
matching, thus adversely impacting QoR. As we will show, hSPICE is a lightweight,
efficient load shedding approach.

More specifically, our contributions in this chapter are as follows:

95

5 hSPICE

e We propose a white-box load shedding approach for complex event processing called
hSPICE. hSPICE performs load shedding at two granularity levels by dropping
events either from windows or from PMs. hSPICE uses a probabilistic model to
learn the utility of an event for each PM within a window. This event utility is then
used to perform fine-grained event shedding from individual PMs. Additionally,
hSPICE can perform event shedding at a coarser granularity, i.e., from windows,
by using the utility of an event for all PMs within a window to learn the utility of
the event within the window. As learning features, we use the type and position
of the event within the window and the state of the PM.

e We provide an algorithm to estimate the number of events to drop to maintain the
given latency bound. Additionally, we propose an approach that enables hSPICE

to perform load shedding in a lightweight manner.

e We provide extensive evaluations on two real-world datasets and a representative set
of CEP queries to prove the effectiveness of hSPICE and to show its performance,
w.r.t. its adverse impact on QoR, in comparison to state-of-the-art load shedding

approaches.

The rest of the chapter is structured as follows. Section 5.1 presents the used system
model. In Section 5.2, we explain in detail different components of hSPICE, the way
the event utility is defined, how the event utility is predicted, and how load shedding is
performed. Section 5.3 presents the obtained evaluation results. Finally, we conclude

this chapter in Section 5.4.

5.1 System Model

In this chapter, we rely on a system model similar to the system model presented in
Section 2.1, where we assume a window-based CEP system that consists of a one or more
operators. An operator detects multiple patterns Q (i.e., multi-query). Each pattern
¢; € Q has a weight wy,, reflecting its importance. A pattern ¢; € Q is modeled as a
finite state machine. In this chapter, we assume that the set of all possible states S,
of pattern ¢; € Q is defined as: Sy, = {sx : j < k < j + m;}, where m; represents the
number of all possible states of pattern ¢; and j represents the sum of the number of
all possible states of all patterns ¢; € Q where [l < ¢, i.e., j = Z;;i my. For example, in
Chapter 2, Example 1, pattern ¢ = seq(A; B; C') has four states (i.e., m; = 4) where
Sq = {50, 51, 52, s3} as shown in Figure 2.3(a). The state so represents the initial state
of pattern ¢, and the state s3 represents its final state. We define the set of all possible
states for all patterns as follows: Sg = (J!_; Sg,. In Chapter 2, Example 1, since there is
only one pattern (i.e., Q = {q}), Sg = Sq = {s0, 51, 52, 53}

A partial match v C ¢; might be at any state of pattern ¢; except the final state,

where PM ~ at the final state has already been completed and become a complex event.

96

5.2 hSPICE

Therefore, in this chapter, the set of all possible states (S,) of PM ~ is defined as
follows: Sy =S, \ {final states}. Hence, the set of all possible states S of all PMs of
all patterns is defined as follows: Sp = Ji_; Sy, : 7 C ¢;. In Chapter 2, Example 1,
for PM v C ¢, Sy = {s0, 51,52} and Sp = S, = {s0, 51, 52}, as there is only one pattern
in this example. In window w, at a certain window position P, there might exist one
or more PMs belonging to the same or different patterns ¢; € Q. We denote the set
of PMs that are currently active at window position P by Fi . Also, we denote the
total number of PMs that are opened until the end of window w by T'L. In Chapter 2,
Example 1, Figure 2.3(b), the sets of current PMs in windows w1, we, and w3, are as
follows:]T?Ul = {v2,73,74}, I[‘fm = {71,72}, and T%Us = {71, 72}

In this chapter, we assume a white-box CEP operator. The operator reveals information
about PMs and their progress (i.e., states) when processing primitive events within
windows. Moreover, we assume that the set of event types (T) in the input event
stream is known. Additionally, we assume that the finite state machine is used as
a computational model to detect patterns. However, hSPICE supports other CEP
computational models. The discussion on supporting different computational models
is similar to the discussion presented in Section 3.2.7. Therefore, we will not discuss

supporting different computational models in this chapter.

5.2 hSPICE

The architecture of hSPICE is similar to the architecture of eSPICE, where we add three
components to a CEP operator to enable load shedding: overload detector, load shedder
(LS), and model (cf. Figure 5.1). However, the operator in hSPICE is a white-box
operator, where the load shedder has access to the PMs.

Upon overload, to prevent violating LB, the overload detector requests the load shedder
to drop a certain amount of input events. As a drop interval (), we might use the
window size ws or a part of it as proposed in Chapter 4, Section 4.2.2.2. Our approach
works with any drop interval. However, in this work, to simplify the presentation,
we consider that the drop interval equals the window size, i.e., A = ws. The number
of events that must be dropped in every window to maintain LB can be computed
depending on the input event rate R and the operator throughput u, where the overload
detector computes the drop amount p per window (i.e., per drop interval) as follows:
p=(1- %) x ws. After that, the overload detector sends a command containing the
drop interval A and the number of events p to drop per A to the load shedder. The load
shedder drops p events per drop interval A to maintain LB.

During overload, to maintain the given latency bound (LB), hSPICE drops input
events that have the lowest adverse impact on QoR. To do that, hSPICE assigns utility
values to the events where an event that has a high impact on QoR has a high utility

and vice versa. hSPICE drops events either from windows (referred to as window

97

5 hSPICE

model

operator

input queue Process complex
* events
windows
Y
overload
detector commands

Figure 5.1: The hSPICE Architecture.

granularity) or from PMs within windows (referred to as partial match granularity).
Dropping an event e from a PM « means that event e is not processed (i.e., matched)
with PM v. Determining the utility of events on the PM granularity can be achieved
more accurately since PM granularity is more fine-grained than window granularity. Of
course, accurately predicting the event utilities might significantly reduce the adverse
impact of load shedding on QoR. Recall that another factor that influences the load
shedding impact on QoR is the overhead of performing load shedding. A high load
shedding overhead implies that more processing power is used by the load shedder,
hence more events must be dropped which adversely impacts QoR. Performing load
shedding on the window granularity imposes a lower overhead compared to performing
load shedding on the PM granularity since the load shedding is performed on a coarser
granularity. Therefore, there is a trade-off between accurately determining the event
utilities and the load shedding overhead. In the next sections, for both window and PM
granularities, we study how to predict the event utilities and analyze the imposed load

shedding overhead on the operator.

On a high abstraction level, hSPICE works as follows. 1) As mentioned in Section
2.1, an event in a window is processed (i.e., matched) with PMs within the window.
Therefore, in a window, when using PM granularity, hSPICE assigns utility values to an
event for each PM within the window individually, i.e., the event gets a certain utility
value for each PM within the window. For the window granularity, on the other hand,
hSPICE assigns only a single utility value to each event within the window, depending
on the event utilities for PMs within the window. 2) hSPICE performs load shedding
by dropping events either from windows (window granularity) or from partial matches
within windows (PM granularity). Dropping an event from a window w means that
hSPICE prevents processing the event with all current PMs (I'Y)) within the window.
While dropping an event from PM ~ within a window means that hSPICE prevents

98

5.2 hSPICE

processing the event with ~ within the window.

hSPICE, primarily, performs two tasks: 1) model building and 2) load shedding.
In the model building task, hSPICE predicts the event utilities and summarizes the
event utilities to reduce the degradation in QoR in overload situations. In the load
shedding task, hSPICE drops events to avoid violating the given latency bound. The
model building task is not time-critical and can afford to be heavyweight. On the other
hand, the load shedding task is time-critical and hence must be lightweight. In the next
sections, for both window and PM granularities, we describe the above tasks in detail.
First, we describe how the utility of an event is defined. Then, we explain the way
hSPICE predicts the event utility using a probabilistic model. After that, we describe
how hSPICE computes the number of events to drop to maintain the given latency
bound. To perform load shedding efficiently, we explain how to predict a utility value
that can be used as a threshold utility to drop the required number of events. Finally,
we describe the functionality of the load shedder in hSPICE.

5.2.1 Partial Match Granularity
5.2.1.1 Event Utility

In a window, only some PMs might complete and become complex events. Hence, PMs
in a window might have different importances, w.r.t. QoR. If a PM completes, it is an
important PM for QoR. Otherwise, it has no impact on QoR. Moreover, as mentioned
above, an event might be processed with one or more PMs within a window, where the
event might contribute only to some of these PMs. An event that contributes to a PM
might be an important event for the PM since dropping the event from the PM might
hinder the PM completion and hence adversely impact QoR. On the other hand, an
event that does not contribute to a PM is not important for the PM since dropping the
event from the PM does not influence its completion. Therefore, for different PMs in a
window, an event might have different importance. As a result, in a window, for event e
and PM ~ within the window, hSPICE assigns a utility value to event e (denoted by the
utility of event e for PM) depending on the importance of PM ~ in the window and on
the importance of event e for . The higher is the importance of v in the window and
the higher is the importance of event e for «, the higher is the utility of event e for .
The utility of event e for PM « of pattern ¢; € Q within a window (denoted by Uk)
depends on three factors: 1) contribution probability—the probability that event e
contributes to PM ~, i.e., e € 7, 2) completion probability—the probability that PM ~
completes, and 3) pattern weight w,, (given by a domain expert). Clearly, if event e
has a high probability to contribute to PM ~, event e is an important event for PM ~.
We consider the completion probability of a PM in computing the event utility as well
since the PM is only useful if it completes. Therefore, if event e has a high probability
to contribute to PM « and ~ has a high probability to complete, event e is an important

99

5 hSPICE

event and should be assigned a high utility value. That is because dropping event e may
hinder PM « to complete and hence it may adversely impact QoR.

As a result, the utility U, of event e for PM v C ¢; within a window depends on
the pattern weight w,, and the following probability: P(e € v N ~ completes), i.e., the
probability that PM v completes and event e contributes to PM ~. In window w, to
predict P(e € v N 7 completes) and hence U, ,, hSPICE uses three features: 1) current
state S, of PM 7, 2) event type T, € T, and 3) position P. of event e in window w.
Therefore, the utility U, of event e for PM « of pattern g; (i.e., v C ¢;) is defined as a

function (called utility function) of these three features as shown in Equation 5.1:
Uery = f(Te, P, Sy) = wy, x P(e € v N v completes) (5.1)

The current state S of PM ~ determines which event type(s) enables PM « to progress,
i.e., to transit to a new state(s). Therefore, those two features, i.e., current state S, of
the PM and event type T¢ are important features for computing U, . For instance, in
Example 1 (Section 2.1), PM v at state so (i.e., vs,), might transit to state s; only if
event e of type T, = A is processed with PM v (i.e., € ® 7s,)-

The position P, of event e in window w is an important feature to compute U, 5 as
well since it determines the number of remaining events in the window. If there are
still many events remaining in a window, the probability of a PM to complete might
be higher than the case where there are only a few remaining events in the window.
That is because, in the case of many remaining events in a window, a PM has a chance
to be processed with more events than in the case of only a few remaining events in
the window and hence the PM has a higher chance to progress. Moreover, the event
position P, represents the temporal distance between events within the same window.
It determines which event instance(s) of the same event type has a higher probability
to contribute to a PM in the window as shown in Chapter 4. That is because there
exists a correlation between events of certain types at certain positions within a window.
A change in an event of a certain type influences the change of events of other types
within a certain time interval, i.e., a certain position(s) within the window. In Example
1 (Section 2.1), in a window w, a change in the stock quote of company A, i.e., T, = A,
at a certain point of time ¢; (i.e., at a certain position in the window), might cause a
change in the stock quote of company B, i.e., T, = B, within a certain time interval

|t1,t2], i.e., within certain position(s) in the window.

5.2.1.2 Predicting Event Utility

Having defined the utility U., of event e for PM «, now, we describe how hSPICE
predicts the utility U, , within a window, i.e., P(e € v N vy completes), hence predicting
the value of utility function f(T,, P, Sy) in Equation 5.1. For ease of presentation, we

introduce a simple running example which is depicted in Figures 5.2 and 5.3.

100

5.2 hSPICE

T.)P. |0 |1|2|3|4

A X | x| x|x
start —)6—)@—)‘ B X|x|x

Table 5.1: Event distribution within win-
dows.

State machine for pattern ¢ = seq (A; B).

‘83 Obe<1781782>B3> : i
By | 0be(2—3,51,52,By) : 2

AO Obe<1 — 2, 50, 51, AO) :
Ay | 0be(3 — 4,50, 51, Ag) :
As | 0be(5 — 6,50, 51, A3) :

DI [DD |

ob (1 — 3, completed)
ob(4 — 6, not completed)

Table 5.2: Contribution ob, and completion ob, observations.

Figure 5.2: Observations gathered from six PMs.

50 S1
T.JP.| 0 |1|2|3]4 T,/JP, |0|1]|2] 3| 4
A [33]0]25]0]0 A |ojolo]|oO
B |0 |0[0]0]o0 B |0|0]|0]|25]40

Figure 5.3: Computing event utility U, , for a partial match.

101

5 hSPICE

Ezxzample. Let us assume that an operator matches a pattern ¢ = seq (A; B), where
Sq¢ = {s0,s1,s2} and Sy = {sp,s1}, v C gq. The used window size is 5 events (i.e.,
ws = 5) and there are only two event types in the input event stream: A and B, i.e.,
T ={A, B}.

To predict the utility U, of event e for PM ~ of pattern ¢; in window w, we first
need to predict the completion probability of PM ~, i.e., find the probability that PM
7 at state S, and at position P, in window w will complete. Additionally, we need to
predict the contribution probability of event e to PM #, i.e., the probability that event e
of type T, at position P, in window w contributes to PM + (e € v). If the contribution
and completion probabilities are high, then the event utility U, is high. On the other
hand, if the contribution and/or completion probabilities are low, then the event utility
Ue, is low. hSPICE uses statistics gathered over already processed windows to predict
the completion and contribution probabilities, thus predicting the event utility for PMs.
Next, we first show which statistics hSPICE gathers. Then, we explain the way the
event utility U, 4 for PMs is predicted depending on those gathered statistics.

Statistic Gathering. To predict the contribution and completion probabilities,
hSPICE gathers statistics on the progress of PMs within windows during event processing
in an operator. To do that, hSPICE uses two types of observations: 1) contribution
observation, denoted by ob., and 2) completion observation, denoted by ob,. In window
w, for each event e within w, whenever event e is processed with PM ~ at state s = .5,
(i.e, e ® 75), the operator builds an observation of type contribution obe(id, s, s',e),
where id is the id of PM v. s’ represents the state of PM v after processing event e.
If s # s, event e has contributed to PM ~ at state s, i.e., e € 7,. Additionally, in
window w, if PM v completes, the operator builds an observation of type completion
ob, (id, completed), where again id is the id of PM . When window w closes (i.e., all
its events are processed), all still open PMs in window w, i.e., T'Y, (here P is the last

position in w) are considered as not completed PMs.

Figure 5.2 shows an example of gathered observations on six PMs. Table 5.1 shows
the distribution of event types in different positions within a window where a cell with
x sign in the table means that the corresponding event type might be present at the
corresponding position within a window. Please note that event types might not be
present in all positions within a window. In the table, for example, the event type A
never comes at position 4 in any window and event type B does not come at positions 0
and 1 in any window. Table 5.2 shows observations on event e of type T, at position P,
in a window and PM ~ at state s only if e contributes to 7 (i.e., e € 7,). For example,
in the table, event Bs of type T, = B at position P. = 3 within windows has never
contributed to PM at state sg. Therefore, there are no observations shown in the
table on event By with a PM at state sg. Clearly, if event e is not present at a certain
position within windows, event e can not contribute to any PM at this window position.

For example, as shown in Table 5.1, the event of type B never comes at position 1

102

5.2 hSPICE

within windows. Therefore, there are no observations on the event type B at position 1
within windows with a PM at any state. In Table 5.2, next to each observation of type
contribution o0b,, we show the number of PMs at state s to which an event contributed

divided by the total number of PMs at state s with which an event is processed, i.e.,
{e: e €l

{e:e® s}l
of type T, = A at position 2 within windows has been processed with four PMs at state

2
For example, in the table, ob.(3 — 4, s¢, 51, A2) : 7 [neans that the event

sg. However, it has contributed only to two PMs, in particular, it has contributed to
PMs 3 and 4. The table also shows which PMs have completed. For example, in the
table, PMs 71, 72, and «3 have completed while PMs ~4, 75, and ¢ have not completed.

After gathering statistics from 7 observations, hSPICE uses these observations to
predict the utility U, of event e for PM « within window w, i.e., to predict the utility
function f (cf. Equation 5.1).

Utility Prediction. hSPICE uses the gathered observations of both types (contri-
bution ob, and completion 0b,) to predict the probability value P(e € v N v completes),
hence predicting U . First, from both these observation types, hSPICE computes the
utility of event e for the set of all possible states of PM v (i.e., S) as follows:

{e: e € s & v completed}|
Ue,s = B
{e:e®s}

(5.2)

where U, s = P(e € s N v completes). For event e of certain type T¢ at certain position
P, within window w and for PM « at certain state s, U, s is computed as a ratio between
the number of times PM « completes and event e contributes to PM ~ at state s (i.e.,
e € vs) and the total number of times event e is processed with PM v at state s (i.e.,
e®7s)-

Figure 5.3 shows the computed utility values U, s from the observations shown in
Table 5.2. The values are shown as percentage values. The table shows the utility value
of event e of type T, at position P. within a window for PMs at states sg and s;. For
example, in the table, event e = Ay of type T, = A at position P, = 2 within a window
is processed with four PMs at state so (PMs 3, 4, 5, and 6). However, it has contributed
only to two PMs (3 and 4). Moreover, since only PM 3 completed, we account for the
contribution of event e = A, only to PM 3. Therefore, in the table, the utility of event
type T, = A at position P, = 2 within a window for a PM at state sg equals 25%, i.e.,
Uesy = i = 25%. The event type T. = A has never contributed to a PM at state s;
since only the event type T, = B may contribute to a PM at state s;. Therefore, the
utility of an event of type T, = A at any position within a window for a PM at state s;
is always zero as shown in the table. Similarly, the event type T, = B never contributes
to a PM at state sg. Hence, the utility of an event of type T, = B at any position within
a window for a PM at state sg is always zero.

The utility values for all states of PM ~ of pattern ¢; € Q together multiplied by the
pattern weight w,, represent the predicted utility U, of event e for PM v C ¢;, where

103

5 hSPICE

Uers = f(Te, Pe,s) = wg, * Ues. Now, we need to store these predicted utility values
Ue~ for all patterns (i.e., for Q) so that, during load shedding, hSPICE can retrieve
them. To reduce the storage overhead, in case of large window size, we use bins to group
event utilities. Within window w, the utility values of event e of type T, at several
consecutive window positions (i.e., bin size bs) for PM ~; at state s are grouped together
by taking the average utility value of this event type T, over all these positions for PM
vs. For ease of presentation, we will use the bin of size bs = 1 if not otherwise stated.
To efficiently retrieve the utility values during load shedding, we store the utilities in a
table (called utility table UT') of three dimensions (M x N x K), where M represents
the number of different event types (i.e., M = [T|), N = ¥, and K is the number of
all possible states of all PMs of all patterns (i.e., K = [Sp|). Therefore, the storage
overhead of the utility table UT is O(M.N.K). Each cell UT (T, P., Sy) in the utility
table stores the utility value U, ,, of event e of type T, at position P, within a window for
PM # at state S,, i.e., Uy = f(Te, Pe, Sy) = UT (T, Pe, Sy). Hence, to get the utility
U, of event e for PM «, hSPICE needs to perform only a single lookup in the utility
table UT. This means that the time complexity to get U, is O(1) which considerably
reduces the overhead of load shedding.

The input event stream might change over time. Hence, the predicted utilities of
events for PMs might become inaccurate. One way to capture the changes in the input
event stream and keep the event utility accurate is by periodically gathering statistics
and recomputing the utility value U .. Another way is to monitor the distribution
of events in the input event stream and rebuild the utility table whenever the event
distribution changes by a certain threshold (cf. Chapter 4, Section 4.2.6.3).

5.2.1.3 Drop Amount

As we mentioned above, to maintain the given latency bound (LB) in an overload
situation, we must drop p events from every window. However, hSPICE drops events
from PMs, not from windows, where an event might be dropped from a PM while it is
processed with another PM within the same window. Therefore, we must find a mapping
between the number of events to drop per window (p) and the number of events to drop
per PM within the window. To do that, let us first define the virtual window.
Virtual Window. The virtual window (vw) of window w is a set which contains
triplets (e, s, O) consisting of event e of type Tt at position P, within w, state s € S,
and the number of occurrences O > 0 which represents the number of times event e has
been processed with a PM at state s within window w. More formally: vw = {(e, s,0) :
Vecw VyeTL O=|{y:e®~} >0} The virtual window vw of window w
contains information on the number of times event e within window w is processed with
each distinct state s of a PM in window w. The virtual window depends on the states
of PMs in a window. Therefore, it is only possible to know the exact virtual window of

window w when all events in window w are processed, i.e., when the set of all PMs]I‘g

104

5.2 hSPICE

and their states in window w are known. However, we need to know the virtual window
of window w before processing all events in window w since we use the virtual window

to decide how many and which events must be dropped from PMs within window w.

Therefore, hSPICE predicts virtual window vw of window w by gathering statis-
tics from the operator on already processed windows, denoted by Wge:. As men-
tioned above, in different windows, event distribution might be different (cf. Ta-
ble 5.1). Additionally, the occurrences of PM states at certain window positions
might also be different in different windows. Hence, different windows might have
different corresponding virtual windows. Therefore, to predict virtual window vw
of window w, hSPICE first computes virtual window vw; for each window w; in
the gathered statistics Wyyqe, where j = 1, .., [Wat|. Then, hSPICE combines all
triplets (e, s,0) from these virtual windows vw; to construct the virtual window vw
by taking the average value for the number of occurrence O of each triplet, i.e.,
vw = {(e,5,0) : e = ¢ej,5 = 55,0 = O + |I/VOsifat" V (ej,s5,0;) € vw;j}. The size
of virtual window vw (denoted by ws,) is computed as the total number of occurrences

of each triplet in vw as follows: ws, = 2(67870) O. The virtual window size rep-

cvw

resents the number of times events are processed with PMs in a window. Therefore,

the average number of times (avgp) an event is processed with a PM in window w is

WSy
ws *

computed as follows: avgo = For example, if every event is processed with two
PMs within window w, then the virtual window size ws,, is twice the window size ws

(i.e., wsy = 2*xws) and avgp = 2.

Dropping an event from window w implies that the event is dropped from the set
of all current PMs]I“ff} within window w. Therefore, if p events must be dropped from
window w, it implies that, in total, p, = p * avgo ~ p * .+ events must be dropped
from all PMs T'L in window w (from virtual window vw of window w, as a shorthand).
Hence, dropping p events from a window is similar to dropping p, events from its virtual
window. One approach to drop p, events from a virtual window (i.e., p, events in total
from all PMs in a window) is to drop events equally (for example, equal percentage)
from every PM in the window. However, not all PMs in a window have the same
importance/same completion probability. Therefore, the drop amount per PM should
take into consideration the importance of PMs in the window which in turn minimizes
the adverse impact of dropping on QoR. Please note that it is not possible to get the
utility of all events for all PMs in a window and then sort them. After that, drop those
pv events from PMs that have the lowest utilities. The reason for this is that the event
utilities for PMs in a window are only known after processing all events in the window.
That is because the event utilities depend on the current state of PMs (T'Y) in the
window which is only known after processing the events in the window. Next, we explain
how to drop the required number of events (p,) from the virtual window of each window

while considering the importance of PMs in the window.

Utility Threshold. The approach is to find a utility value (called utility threshold

105

5 hSPICE

ugp,) that is used as a threshold value to drop the needed amount of events from virtual
window vw of window w. For each triplet (e, s,O) in virtual window vw, we get the
utility value v = Ue,, = f(Te, Pe,s) from the utility table UT. As the number of
occurrences O in the triplet represents the number of times state s might occur at
window position P, the number of occurrences O implies that the utility value u = U, ,,
might occur O times in virtual window vw, denoted by the utility occurrences O,, for
utility u, i.e, O, = O. We accumulate the number of utility occurrences O,, for all utility
values in vw in ascending order, denoted by the accumulative utility occurrences OC,,
for the utility u, as follows: OC,, =", -, O,. The accumulative utility occurrences
OC,, for utility u means that there exist O_Cu events in virtual window vw which have a
utility value less or equal to the utility value .

Therefore, using u as a threshold utility us, enables hSPICE to drop OC,, events from
PMs in a window. Hence, to drop p, events from the virtual window, we must find a
utility value u = up,, where OC,, = p,. To efficiently retrieve the utility threshold, we
store the accumulative utility occurrences in an array (denoted by utility threshold array
(UTyp)) of the same size as the virtual window size ws, as follows: UTy, (i) = u, where
i=1,.,ws, and OC, > i and OC, < OC, ¥V u < u'. Therefore, to drop p, events
from the virtual window, uy, = UTy,(py). Hence, the time complexity to get uyy, is O(1).
Please note that predicting the virtual window and building the utility threshold array
are done during the model building task. While during the load shedding, hSPICE
performs the following two tasks that have a time complexity of O(1): 1) computing
how many events to drop (i.e., p,) per virtual window, and 2) determining what utility

threshold (i.e., us,) to use.

5.2.1.4 Load Shedding

In the above sections, we showed how to compute the utility of events for PMs within
a window and how to predict the utility threshold. Now, we describe how hSPICE
performs the load shedding, i.e., deciding whether an event should be dropped from a
PM or not. Algorithm 5 clarifies how load shedding is performed.

For each event e within window w, before processing e with PM ~ in window w, the
operator asks the load shedder (LS) whether to drop event e from PM ~. If the LS
returns True, the operator drops event e from PM ~, otherwise, it processes event e
with PM . If there is no overload on the operator, there is no need to drop events
and hence LS returns False which means that the operator can process event e with
PM v (cf. Algorithm 5, lines 2-3). On the other hand, if there is an overload on the
operator, LS checks whether the utility U, of event e for PM + is higher than the
utility threshold w,. Therefore, the LS first gets the utility U, of event e for PM
v from the utility table UT', where U, = f(T¢, P, Sy) = UT (T, P., S,). After that,
hSPICE compares the utility value with the utility threshold wu;y, where it returns True
if Ue,y < usp, otherwise hSPICE returns False (cf. Algorithm 5, lines 4-7). This shows

106

5.2 hSPICE

that hSPICE is lightweight in performing load shedding where the time complexity to
decide whether or not to drop an event from a PM is O(1).

Algorithm 5 Load shedder (PM granularity).

1. drop (T, P., S,) begin
if lisOverloaded then // there is no overload hence no need to drop events

2:
3: return Flalse
4. elseif UT(T,, P.,S,) < uy, then

5: return True
6: else
7 return Flalse

8: end function

Having explained how to define the event utility, predict the event utility, find the
utility threshold, and perform load shedding on the PM granularity, next, we describe

how load shedding is performed on the window granularity.

5.2.2 Window Granularity

In the partial match granularity, as we showed above, for event e in window w, hSPICE
must perform a check (lookup in UT) for every PM + in w (i.e., for each v € I'Y) to
decide whether or not to drop event e from PM . That implies that the time complexity
to perform load shedding is (|T'5[.0(1)) for every event within a window, where hSPICE
must perform |I'E| lookups in UT. Although this shows that the overhead of performing
load shedding in the PM granularity is low, in this section, we propose to perform
load shedding on the window granularity which reduces the overhead of load shedding
even further. Recall that reducing the load shedding overhead increases the operator
throughput p, which in turn reduces the number of events that must be dropped to

maintain LB, hence reducing the adverse impact of event shedding on QoR.

Performing load shedding on the window granularity implies that events are dropped
from windows, i.e., in a window, an event is either dropped from all PMs or from
none. This way, the load shedding is performed only once for every event in a window,
regardless of the number of current PMs I" 5 in the window which might considerably
reduce the load shedding overhead. Of course, the event utility in the window granularity
is less precise than the event utility in the PM granularity, which might adversely impact
QoR. To drop events from a window, next, we introduce the event utility in a window,

where, in overload cases, events with the lowest utilities are dropped from windows.

107

5 hSPICE

5.2.2.1 Event Utility

As mentioned above, an event in a window is processed with all current PMs E‘i in the
window. Therefore, the utility of event e in window w (denoted by Ue) depends on
the utility of event e for all current PMs]T‘i in window w. We represent the utility U,
of event e of type T, at position P. within window w as the sum of the utility of event e

for all current PMs in window w, i.e.,]I“i, as shown in Equation 5.3.

Ue,w = Z f(TmPe, S’y) (5'3)

.
vel,

Computing U, ,, as shown in this equation means that for each PM in a window, hSPICE
must perform a lookup in the utility table UT) i.e., |F5 | lookups. However, this will result
in the same overhead (|T'L|.0(1)) as performing load shedding on the PM granularity.

To minimize this overhead, we must reduce the number of lookups in the utility table
UT. To do that, we keep a summary on the distinct PM states and the number of
occurrences of each distinct state in the window. In window w, at position P, multiple
PMs might be at the same state. We define PM summary (denoted by SM[’) in window w
at position P as a multiset that contains all distinct states of current PMs I[‘f) at position
P in window w and the number of occurrence of these PM states. Each element in PM
summary is defined as a pair (si, O), where s represents a PM state and O represents

the number of occurrences of state s; in ', i.e., SML (sg) = [{y:v€TE | 5. = 3,1

We use the PM summary SML to compute the utility Ue,w of event e in window w
as follows:

Uew = Z f(Te, Pe, Sy) * SMf(SW) (5.4)
S,eSME

For each distinct state of the current PMs (T'Y) in window w, hSPICE performs the
lookup only once in the utility table UT to get the utility Ue 5 = f(T, Pe, Sy) of event
e for PM ~. Then, hSPICE multiplies the utility U, with the number of occurrences
of state S, in w (i.e., SMI(S,)). The event utility U.,, represents the sum of all
multiplication results. Using Equation 5.4 to compute the event utility U.,, in the
window might considerably reduce the overhead of the utility computation. This is
because multiple PMs in a window might have the same state which means that the
PM summary size might be much smaller than the number of PMs in a window, hence
much less lookups in the utility table UT'. This is more likely to happen if the number
of states of all patterns is lower than the number of current PMs in a window, i.e.,
ISp| < [TE| where multiple PMs must be at the same state. The operator maintains
the PM summary SM] for each window w, where the PM summary is changed only
if the state of PM ~ € I[‘i in window w changes, which does not happen frequently.
Hence, maintaining the PM summaries for windows imposes only a small overhead on

the operator.

108

5.2 hSPICE

5.2.2.2 Utility Threshold

As we mentioned above, to maintain the given latency bound (LB), the LS must drop p
events from every window. To drop those p events from a window, similar to the PM
granularity, we need to find a utility threshold u;, in a window that enables the LS to
drop those p events from a window. As in the PM granularity, we gather statistics on
event distribution and on the distribution of PM summaries in the window. Then, we

use these gathered statistics to compute the utility threshold uyp,.

5.2.2.3 Load Shedding

Now, we describe the way hSPICE drops events from windows. Algorithm 6 clarifies how
the load shedding is performed. Similar to dropping events from PMs, for each event e
within window w, before processing event e with any PM in window w, the operator
asks the LS whether or not to drop event e from window w. If LS returns True, the
operator drops event e from window w. Otherwise, it processes event e with all current

PMs I'? in window w.

If there is no overload on the operator, there is no need to drop events and hence
LS returns false which means that the operator can process event e in window w (cf.
Algorithm 6, lines 2-3). On the other hand, if there is an overload on the operator, the
LS checks whether the utility U, ,, of event e in window w is higher than the utility
threshold wuj, where the event must be dropped if Ue ., < ug,. To do that, the LS uses
Equation 5.4 to compute the utility Ue . After that, LS compares the utility value U, ,,
with the utility threshold u;,, where it returns True if Ue ,, < uyp,, otherwise LS returns
False (cf. Algorithm 6, lines 4-9). That shows that hSPICE performs load shedding for

window granularity in the worst case in a time-complexity of ([T'L].0(1)).

Algorithm 6 Load shedder (window granularity).

[y

applyLS (T, P., SM?!) begin

2. if lisOverload then // there is no overload hence no need to drop events
3: return Flalse

4: else

5 compute U, ,, using Equation 5.4

6 if U.. < uy, then
7: return True
8 else

9

return Flalse

10: end function

109

5 hSPICE

5.3 Performance Evaluations

In this section, we evaluate the performance of hSPICE, for both PM and window

granularities, by using two real-world datasets and several representative queries.

5.3.1 Experimental Setup

In this chapter, we use the same evaluation platform as in Section 3.3.1. We compare
the performance, w.r.t. QoR, of hSPICE with the performance of eSPICE, pSPICE,
and E-BL (cf. Section 3.3.1), where we rename E-BL to BL in this chapter. Moreover,
we use the same datasets that are used in Section 4.3.1: 1) The NYSE Stock Quotes
dataset that represents a stock quotes stream from the New York Stock Exchange. 2)
The RTLS dataset that represents the position data stream from a real-time locating
system in a soccer game. Additionally, we use the queries Q1, Q2, Q3, Q4, and (g that
are presented in Section 4.3.1. Moreover, we use the time-based sliding window strategy

and the same selection and consumption policies used in Section 3.3.1.

5.3.2 Experimental Results

In this section, we evaluate the performance of hSPICE in comparison with other load
shedding strategies. First, we show its impact on QoR, i.e., the number of false negatives
and the number of false positives, using both strict and relaxed QoR. Then, we show
how good hSPICE is in maintaining the given latency bound (LB). We refer to hSPICE
when dropping events on window granularity as hSPICEW. While we refer to hSPICE
when dropping events on PM granularity as hSPICEPM.

If not stated otherwise, we use the following settings. For all queries Q1, Q2, Q3, Qu4,
and Qg, we use a time-based sliding window and a time-based predicate. The number of
defenders in Qg is 3 (i.e., n = 3). We stream events to the operator from the datasets
that are stored in files. We first stream events at input event rates which are less or equal
to the operator throughput p (maximum service rate) until the model is built. After
that, we increase the input event rate to enforce load shedding as we will mention in the
following experiments. The used latency bound LB = 1 second. We configure all load
shedding strategies (i.e., hSPICE, eSPICE, BL, and pSPICE) to have a safety bound,
where they start dropping events/PMs when the event queuing latency is greater than
or equal to 80 % of LB, i.e., the safety bound equals to 200 milliseconds. We execute
several runs for each experiment and show the mean value and standard deviation.

An important factor that might influence QoR is the input event rate. The higher is
the input event rate, the higher is the amount of events that must be dropped and hence
higher is the impact of load shedding on QoR. Additionally, other factors that might
impact QoR are the query properties, e.g., the used window size. Therefore, next, we
show the impact of these factors on QoR, i.e., on false negatives and positives. Please

note that in the case of using strict QoR, applying load shedding might result in false

110

5.3 Performance Evaluations

positives and false negatives for all queries (i.e., Q1, Q2, @3, Q4, and Qg). Additionally,
when using relaxed QoR, applying load shedding might result in false negatives for all
queries as well. However, it might result in false positives only in the case of ()4 since
(4 has a negation operator. If the negated event is dropped by the load shedder, it

might result in a false positive.

5.3.2.1 Impact of Event Rate on QoR

To evaluate the performance of hSPICE, we run experiments with queries @1, Q2, @3,
@4, and Qg. To show the impact of input event rate, we stream both datasets to the
operator with input event rates that are higher than the operator throughput u by 20%,
40%, 60%, 80%, and 100% (i.e., event rate= 120%, 140%, 160%, 180%, and 200% of
the operator throughput u). Moreover, for @1, Q2, @3 and @4, we use the following
window sizes, respectively: 18, 35, 35, and 20 minutes. For (J¢, the used window size is
30 seconds. A new window is opened for @)1, @2, I3, and Q4 every 1 minute, i.e., the
slide size is 1 minute. For Qg, a new window is opened every 1 second. The average
measured operator throughput p (without load shedding) for queries Q1, Q2, @3, Qu4,
and Qg are as follows: 23K, 14K, 8K, 36K, 27K events/second, respectively.

Impact on False Negatives. Figures 5.4 and 5.5 depict the impact of event rates
on false negatives for all queries. Figure 5.6 shows the ratio of dropped events or PMs
(for pSPICE) with different event rates for Q1 and Qg. We observed similar results for
@2, Q3, and Q4, hence we do not show them. In these figures, the x-axis represents the
event rate. The y-axis in Figures 5.4 and 5.5 represents the percentage of false negatives
while, in Figure 5.6, it represents the ratio of dropped events/PMs. Please note that
measuring the load shedding overhead in hSPICEPM is very costly since the shedding is
performed on the finest granularity. Therefore, in this Section, unlike Sections 3.3 and
4.3, instead of measuring the load shedding overhead directly, we measure the drop ratio
that gives an indication of the load shedding overhead and can be measured with low
overhead.

The percentage of false negatives might increase if the input event rate increases since
more events/PMs must be dropped. Figure 5.4a and Figure 5.6a show the percentage of
false negatives using strict QoR and the percentage of drop ratio for @J1, respectively.
As shown in Figure 5.4a, hSPICEPM has almost no impact on false negatives when
the event rate is less or equal to 160% although hSPICEPM drops up to 80% of events
when the event rate is 160% as depicted in Figure 5.6a. Increasing the event rate by
more than 160% forces hSPICEPM to produce false negatives where the percentage of
false negatives is 17% and 23% using event rates of 180% and 200%, respectively. The
drop ratio starts to decrease when using a high event rate as shown in Figure 5.6a when
using the event rate of 200%. The reason behind this is that when more events should
be dropped, events with high utilities might be dropped. Dropping events with high

utilities might hinder opening new PMs which in turn reduces the number of events that

111

5 hSPICE

=
o
o
=
o
o

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

hSPICEPM
hSPICEW
eSPICE
BL
pSPICE

(0]
o
omen»

% false negatives
N B
o O

(0]
o
omeon»

% false negatives
N B
o O

\
\

(o)}
o
v
(o)}
o
v

0 . 0 4
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) Q: strict QoR (b) Q1: relaxed QoR
8 100 A hSPICEPM $ 100 A hSPICEPM
20 iTE = geiZy
g v g 60 N B; c
60 » pSPICE] » pSPICE
qc) / qc) 1/
u 152
T 20/ % T 20 /__//
Y— Y—
X o 'R0 :
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(c) Qa: : relaxed QoR (d) Qs: relaxed QoR

Figure 5.4: Impact of event rate on false negatives for @1, @2, and Q3.

must be dropped. Since hSPICEPM drops more events compared to other load shedding
strategies, i.e., eSPICE and BL, the impact of shedding in hSPICEPM on opening new
PMs is higher which results in decreasing its drop ratio when the event rate is 200%.
However, not opening those PMs might increase the number of false negatives.

The percentage of false negatives caused by other load shedding strategies also increases
when the event rate increases. As depicted in Figure 5.4a, when the event rate increases
from 120% to 200%, the percentage of false negatives for hSPICEW, eSPICE, BL, and
pSPICE increases from 8% to 45%, from 4% to 38%, from 48% to 84%, and from 16%
to 70%, respectively. Moreover, the drop ratio increases with the event rate as shown in
Figure 5.6a. hSPICEW performs, w.r.t. the percentage of false negatives, worse than
hSPICEPM since hSPICEPM predicts the event utilities more accurately. Additionally,
the used window size has a considerable impact on the performance of hSPICEPM.
Please note that the used window sizes, in these experiments, are reasonable window sizes
for the used datasets. However, if the window size is much higher, which might be used
in some applications, hSPICEW may perform better than hSPICEPM as we will show
in Section 5.3.2.2. The performance of hSPICEW is also worse than the performance of

112

5.3 Performance Evaluations

§ 100 § 100
'_,r_.—U 80 '_.(_.; 80
> 60 s hercew > 60 . temcew
c : :iPICE c : Zimce
o 40 » PSPICE o 40 » DSPICE
u u
© 20 © 20 /
Y Y—
X 0 + * 1 X 0 * o
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(a) Q4: strict QoR (b) Q4: relaxed QoR
8 100 A hSPICEPM $ 100 Ao hSPICEPM
Z 80l o e Z 80l o e
© ¢ BL () ¢ BL
8 60} > pSPIcE 8 60} > PSPICE
C C
o 40 o 40
u u
o 20 o 20
Y— Y—
X 0 X 0 |
120 140 160 180 200 120 140 160 180 200
% event rate % event rate
(c) Qe: strict QoR (d) Qs: relaxed QoR

Figure 5.5: Impact of event rate on false negatives for Q4 and Q.

eSPICE as shown in Figure 5.4a. This is because hSPICEW drops more events than
eSPICE as depicted in Figure 5.6a as the overhead of hSPICEW is higher than the
overhead of eSPICE. The result shows that hSPICEPM significantly outperforms, w.r.t.
the percentage of false negatives, all other load shedding strategies for @)1 (sequence
operator). Similar behavior is observed when using relaxed QoR as shown in Figure
5.4b.

Figures 5.4c¢ shows results for Q2 when using relaxed QoR. We observed similar
behavior when using strict QoR, hence we do not show it. The figure shows that
the performance, w.r.t. the percentage of false negatives, of all load shedders except
eSPICE over Q2 (sequence with repetition operator) is similar to their performance
with @1 (sequence operator). The performance of eSPICE over @), is worse than its
performance over ;. The figure shows that the performance of hSPICEW is better
than the performance of eSPICE over)2. However, the performance of hSPICEPM is,
again, better than the performance of hSPICEW. The results show that hSPICEPM
outperforms, w.r.t. the percentage of false negatives, all other load shedding strategies.

The results for Q3 (multi-pattern operator) are similar to the results for Q2 as depicted

113

5 hSPICE

100 100 A hSPICEPM
2 80 _=—. 1 8 80 S ot
© z © & BL
S 60l = s nemcow < 60 > pSPIcE
8— / ® eSPICE 8.

-E 40 /: z;PICE — -E 40
L 20 .‘//"/‘ o 20
0 J 0 |
120 140 160 180 200 120 140 160 180 200
% event rate % event rate

(a) 1 (b) Qs

Figure 5.6: Impact of event rate on drop ratio.

in Figure 5.4d. The performance of hSPICEPM over @3 is, again, better than the
performance of all other load shedding strategies. We observed similar results for Q3
when using strict QoR.

Figure 5.5a and 5.5b depict the percentage of false negatives for Q4 (sequence with
negation operator) using strict and relaxed QoR, respectively. In @4, we limit the
number of complex events to only one event per window, where the window is closed if a
complex event is detected. We do that to determine the impact of the negation operator
on the matching output. The performance of hSPICEPM, w.r.t. the percentage of false
negatives, over (04 is considerably better than the performance of hNSPICEPM over @1,
2, and (3. The reason behind this is that, in ()4, there is at most one complex event
per window in comparison to ()1, @2, and ()3 that detect all possible complex events
in a window. Hence, in the case of ()4, there exist many events in the window that
have low utilities where dropping those events do not influence the percentage of false
negatives. Figures 5.5a and 5.5b show that using hSPICEPM with different event rates
introduces almost zero false negatives. The percentage of false negatives caused by using
other load shedding strategies increases with increasing event rate. This shows that for
4, hSPICEPM drastically reduces the percentage of false negatives compared to the
other load shedding strategies.

Figures 5.5¢ and 5.5d show the percentage of false negatives for Qg (sequence with
any operator) using strict and relaxed QoR, respectively. While Figure 5.6b shows the
ratio of dropped events/PMs for Q). The drop ratio in Figure 5.6b increases when the
event rate increases. However, the drop ratio of hSPICEPM and hSPICEW for Qg is
lower than their drop ratio for);. This is because the cost of processing events in (g
is higher than the cost of processing events in ()1. Therefore, in g, the overhead of
performing load shedding in comparison to the event processing cost is lower which
results in a low drop ratio. In Figures 5.5¢ and 5.5d, the percentage of false negatives

caused by all load shedders increases when the input event rate increases.

114

5.3 Performance Evaluations

Figure 5.5¢ shows that the performance of hSPICEPM is better than the performance
of hSPICEW, eSPICE, and BL. However, pSPICE outperforms hSPICEPM. However,
Figure 5.5d (i.e., using relaxed QoR) shows that hSPICEPM and hSPICEW perform
almost worse than all other load shedding strategies. The reason behind this is that the
impact of eSPICE and BL on the percentage of false negatives is reduced if there is no
need to match the exact event instances (i.e. if the relaxed QoR is used). Moreover, the
overhead of hSPICEPM and hSPICEW is high in comparison to other load shedding
strategies. For every event in a window, hSPICEPM checks whether to drop the event
or not from every individual PM within the window which increases the overhead of
performing load shedding in hSPICEPM. Similarly, the overhead of hSPICEW is pro-
portional to the number of PMs, as we discussed in Section 5.2.2. While eSPICE and
BL, for example, check whether to drop the event or not from the window regardless of
the number of PMs within the window which reduces the overhead of performing load
shedding in these approaches. The overhead of hSPICEPM and hSPICEW is high in all
queries, however, the overhead impact is worse in (Qg. This is because in g the utility
values are spread and less accurately predicted since Qg represents an any operator in
comparison to other queries that use a sequence operator. Q¢ matches an event of any
type (any player) with a PM at any state, unlike the sequence operator that matches
only an event of a certain type with a PM at a certain state. Hence, in the case of Qg,

the majority of events in a window have similar utilities for all PM states.

Impact on False Positives. As we mentioned above, for all queries, dropping events
might result in false positives when using strict QoR. However, for only @4 (sequence
with negation operator), dropping events might result in false positives in the case of
using relaxed QoR. Please recall that Q4 detects at most one complex event per window.
Figure 5.7 depicts the percentage of false positives with different event rates for queries
Q1, Q4, and Qg. We observed similar results for ()2 and @3, hence we do not show
them. In the figure, the x-axis represents the event rate, and the y-axis represents
the percentage of false positives. Figure 5.7 shows that hSPICEPM and hSPICEW
perform very well with all queries where the percentage of false positives caused by both
hSPICEPM and hSPICEW is almost zero for different event rates.

The percentage of false positives caused by eSPICE in the case of)1 is negligible
as depicted in Figure 5.7a. While the percentage of false positives caused by eSPICE
increases with increasing the event rate for)4 and Qg. Figure 5.7 shows that, for the
majority of queries, the percentage of false positives produced when using BL decreases
when increasing the event rate. The reason behind this is that, for low event rates, BL
needs to drop fewer events, and hence more redundant events might exist in windows
that might match the pattern. On the other hand, with a high event rate, BL must
drop more events which makes it hard to have redundant events that might match the

pattern. Higher is the probability to match the pattern, the higher is the probability

115

5 hSPICE

$ 100 A hSPICEPM $ 100 A hSPICEPM
2 80 s e | = 80 s copce
.(7) ¢ BL -(7') ¢ BL
O 60 » pSPICE O 60 » pSPICE
o o
g 40 8 40
S 20 O 20

*—Q**
o\o L e — | o\o 0 J

120 140 160 180 200 120 140 160 180 200

% event rate % event rate

(a) Q: strict QoR (b) Q4: : strict QoR
» 100 T o] 9100 T
2 80| s e | 2 80 S e
.g 60 : ;E)“S_PICE .g 60 : ;E)“S_PICE
o o
8 40¢ 8 40¢
O 20! *\/—g ; I ® 20! ?174'—/—‘—/“:
NS X wr— ==
o O 1l O O J

120 140 160 180 200 120 140 160 180 200

% event rate % event rate
(c) Q4: relaxed QoR (d) Qg: strict QoR

Figure 5.7: Impact of event rate on false positives.

to get false positives. The percentage of false positives caused by pSPICE in the case
of @1, Q4 (using relaxed QoR), and Qg, is negligible as depicted in Figures 5.7a and
5.7d. While the percentage of false positives caused by pSPICE slightly decreases with

increasing the event rate for QQ4, using strict QoR.

5.3.2.2 Impact of Window Size on QoR

In this section, we analyze the impact of window size on QoR. A very large window might
result in a large utility table (UT') that does not fit into the cache memory, and hence the
lookup time in UT might increase. This results in increasing the load shedding overhead
of hSPICEPM, hence dropping more events (i.e., adversely impact QoR). Moreover,
using a very large window might increase the number of concurrent PMs I[‘f; in the
window, hence, also, increasing the load shedding overhead of hSPICEPM. A large utility
table UT and a high number of concurrent PMs I[‘f, might increase the load shedding
overhead of hSPICEW as well. However, a high number of concurrent PMs Fi implies
that there exist many PMs at the same state, hence hSPICEW needs to perform only a

116

5.3 Performance Evaluations

$ 100 /\‘\I\I $ 100 A hSPICEPM
2 80 2 80 D e
((v) (© ¢ BL
8 60 8 60} =—, > PSPIcE -
C (e
40 hSPICEPM 40
Q A ()
n e hSPICEwW "= w0
T 20 E—F o espice < 20 ’___I’_I/‘*—"
Y— ¢ BL Y
o\o 0 » pSPICE | o\o 0 |
100 200 300 400 500 100 200 300 400 500
window size (min.) window size (min.)
(a) Qq: strict QoR (b) Q1: relaxed QoR
§ 100 M § 100 A hSPICEPM
S 80 S 80 s e
© © BL
? 60 ? 60 :‘j : pSPICE
() 40 A~ hSPICEPM "*&——=x) 40
0 e hSPICEW wn
& 20 %’:: il & 20
o\o O » pSPICE | o\o O |
100 200 300 400 500 100 200 300 400 500
window size (min.) window size (min.)
(c) Qa: strict QoR (d) Q2: relaxed QoR

Figure 5.8: Impact of window size on false negatives.

few lookups in UT compared to hSPICEPM since hSPICEW performs a lookup in UT
only once for each distinct PM state (cf. Section 5.2.2). That implies that the overhead
of hSPICEW for large windows might be much lower than the overhead of hSPICEPM,
hence the impact of hSPICEW on QoR using large windows might be much lower than
the impact of hSPICEPM on QoR. Please note that we may reduce the size of UT by
using bins as we discussed in Section 5.2. However, there still exist situations where the
utility table UT might be large since bins can help only in the case of very large window
sizes. For example, if the number of event types is high, the size of UT might also be
large.

To show the impact of window size on QoR, we run experiments with queries @1 and
Q2 where we use a fixed event rate of 180%, i.e., the input event rate is higher than
the operator throughput u by 80%. To show the impact of window sizes, we vary the
window size for both Q1 and @s. The used window sizes for Q1 and Q)2 are as follows:
100, 200, 300, 400, and 500 minutes. A new window is opened for)1 and Q)2