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Deutsche Zusammenfassung

Der metallische Leiter, welcher in Form eines Gitters auf der Oberfläche einer So-
larzelle angebracht ist, heißt Grid. Die Funktion dieses Grids ist es, den in der
Absorberschicht einer Solarzelle erzeugten Strom, ohne große Verluste, an der Ober-
fläche zum externen Abgreifpunkt zu leiten.

Durch die sehr gute Leitfähigkeit des Grids wird ein verlustarmer Ladungstrans-
port ermöglicht. Allerdings bewirkt das für Lichtstrahlen undurchdringbare Grid
eine Abschattung der Absoberschicht und verhindert, dass an dieser Stelle Strom
erzeugt werden kann. Wenn kein Grid angebracht ist, fließt die Ladung durch die
oberste Schicht einer Solarzelle. Diese besteht aus transparenten leitfähigen Oxiden
(engl. transparent conducting oxides (TCO)). Das TCO lässt Lichtstrahlen durch
und dadurch kann Strom erzeugt werden. Obwohl die Schicht den Strom leiten
kann, besitzt sie denoch einen sehr hohen elektrischen Widerstand. Das bedeutet,
eine geeignete Wahl des Gridmusters verschattet möglichst wenig Fläche der So-
larzelle und bietet trotzdem einen flächendeckenden, verlustarmen Ladungsabtrans-
port. Ein Gridmuster, welches beide Anforderungen bestens erfüllt, soll in dieser
Bachelorarbeit mithilfe von Topologie-Optimierung gefunden werden.

Topologie-Optimierung ist eine mathematische Optimierungsmethode, mit der, in-
nerhalb eines Gebietes, eine optimale Materialverteilung gefunden werden kann, um
eine hohe, strukturbedingte Leistung zu erzielen. Im Zuge dieser Arbeit ist dieses
Gebiet die Oberfläche einer Solarzelle und das Material, welches auf der Oberfläche
verteilt werden soll, ist das Metall, welches das Gridmuster bildet. Die Leistung
einer Solarzelle wird mit dem Wirkungsgrad angegeben. Der Wirkungsgrad ist die
Effizienz, mit der die Solarenergie in elektrische Energie umgewandelt werden kann.

Zur Berechnung des Wirkungsgrades wird das Gebiet mit einem Voronoi-Diagramm
in Simplizes unterteilt. Basierend auf der Poisson-Gleichung für elektrische Leit-
fähigkeit, kann die Ladung, die durch ein Simplex fließt, mit einer Finite-Elemente-
Methode berechnet werden. Aus den einzelnen generierten Strömen lässt sich ein
Gesamtstrom berechnen, mit welchem die erzeugte, elektrische Energie berechnet
werden kann.

Der einzige Parameter, welcher zur Berechnung der Effizienz einer Solarzelle benötigt
und in dieser Arbeit variiert wird, ist das Gridmuster. Die Komponenten des
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Dichtevektors geben dabei die Metalldichte eines jeden Simplexes an. Zur Opti-
mierung dieses Dichtevektors werden in dieser Arbeit Optimierungsverfahren ver-
glichen, die in Richtung des steilsten Abstiegs optimieren. Mit einem dieser Ver-
fahren werden weitere Modifizierungen des Dichtevektors getestet.

Eine der Modifizierungen betrifft dabei die Umgebung des externen Abgreifpunk-
tes. Die aufgebrachte Gridfläche muss an dieser Stelle groß genug sein, damit ein
externer Kontakt ohne Probleme angebracht werden kann.
Die nächste Modifizierung, die verwendet wird, ist eine Methode zur lokalen Opti-
mierung. Dabei werden die durch die Diskretisierung entstandenen Simplizes zufäl-
lig in mehrere lokale Teilgebiete eingeteilt und der Reihe nach optimiert.
Besitzt eine Komponente des Dichtevektors einen Wert von 0 steht dies für kein
Grid, während ein Wert von 1 für das vorhanden sein von Grid steht. Die Kompo-
nenten des Dichtevektors repräsentieren dabei jeweils ein Simplex und damit eine
Teilfläche der Solarzelle. Eine Modifizierung ermöglicht außer den Werten 0 (kein
Grid, schlecht leitend, Strom wird erzeugt) und 1 (Grid, gut leitend, kein Strom
wird erzeugt) Zwischenwerte. Mit diesen Zwischenwerten kann eine kontinuierliche
Optimierung durchgeführt werden. Die Leitfähigkeit bzw. die Möglichkeit Strom
zu generieren, wird dabei für Zwischenwerte interpoliert. Je nach Wahl der In-
terpolationsfunktion, kann der Wert der Leitfähigkeit für Zwischenwerte gut oder
schlecht sein. Ebenso für die Menge an generiertem Strom. Sowohl niedrige als
auch hohe Werte kommen mit Vorteilen, weshalb eine geschickte Kombination zu
einem verbesserten Optimierungsverhalten führen kann.
Die letzte Modifizierung, die eine Rolle spielt, ist das Gridmuster, von welchem aus-
gehend optimiert wird. Dabei wird, unter anderem, das im Labor vom Zentrum für
Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) verwendete
Gridmuster optimiert.

Das Ziel dieser Arbeit ist es, mit den kombinierten Methoden und den Ergebnissen
der damit durchgeführten Optimierungen ein neues Gridmuster zu konstruieren,
welches dem bisher verwendeten Gridmuster überlegen ist.
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Abstract

The metallic conductor, which is attached on the surface of a solar cell, is called
grid. The function of this grid is to conduct the current generated in the absorber
layer of a solar cell to the external front contact at the surface without large losses.

The very good conductivity of the grid enables low-loss charge transport. However,
the grid, which is impenetrable to light rays, causes shading on the absorber layer
and thus prevents current from being generated. When no grid is in place, charge
flows through the top layer of a solar cell. The top layer consists of transparent
conducting oxides (TCO). The TCO allows light rays to pass through and current
can be generated. Although the layer can conduct electricity, the layer has a very
high electrical resistance. Meaning that an appropriate choice of grid pattern will
shade as little area of the solar cell as possible while still providing area-wide, low-
loss charge dissipation. A grid pattern, which fulfills both requirements in the best
possible way, is to be found in this bachelor thesis. For this purpose, topology op-
timization is used.

Topology optimization is a mathematical optimization method, to find an opti-
mal distribution of material within a specific domain in order to achieve a high,
structure-dependent performance. Within the framework of this thesis, the domain
is the surface of a solar cell and the material to be distributed on the surface is
the metal that forms the grid pattern. The performance of a solar cell is given by
efficiency. The Power Conversion Efficiency (PCE) is the efficiency with which solar
energy can be converted into electrical energy.

To calculate the efficiency, the domain is divided into simplices using a Voronoi
diagram. Based on the Poisson equation for electrical conductivity, the charge flow-
ing through a simplex can be calculated using a finite element method. With the
individual currents generated, a total current can be calculated, which can be used
to calculate the electrical power generated.

Within this thesis, the only changeable parameter that is required for the calcula-
tion of the solar cell efficiency is the grid pattern. The components of the density
vector indicate the metal density of each simplex. To optimize this density vector,
optimization methods are compared, which optimize in the direction of the steepest
descent. With one of these methods further modifications of the density vector are
tested.
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One of the modifications concerns the surroundings of the external front contact.
The applied grid area must be large enough at this point to apply an external con-
tact without occuring problems.
The next modification used is a method for local optimization. With this method,
the simplices created by the discretization are randomly divided into several local
subareas and optimized one by one.
If the components of the density vector has a value of 0 it stands for no grid, while
a value of 1 stands for the presence of grid. The components of the density vector
each represent a simplex and thus a subarea of the solar cell. A modification allows
intermediate values besides 0 (no grid, poorly conducting, current is generated) and
1 (grid, well conducting, no current is generated). With these intermediate values,
continuous optimization can be performed. The conductivity or the possibility to
generate current is interpolated for intermediate values. Depending on the choice
of the interpolation function, the value of the conductivity for intermediate values
can be good or bad. Likewise for the amount of generated current. Both good and
bad values come with advantages, so a clever combination can lead to improved
optimization behavior.
The last modification that plays a role is the grid pattern to start the optimization
from. Among others, the grid pattern used by the Center for Solar Energy and
Hydrogen Research Baden-Württemberg (ZSW) is optimized.

The aim of this work is to construct a new grid pattern with the combined methods
and the results of the optimizations carried out with it, which is superior to the
previously used grid pattern.
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1 Introduction

The first signs of global warming were already noted around the middle of the 20th
century. It has not been excluded that human civilization is responsible for it. For
this reason, the Intergovernmental Panel on Climate Change (IPCC) was founded in
1988. The mission of the institution is to investigate the dangers of climate change
and to prepare appropriate responses. The results of the investigations form the
basis for science-based political decisions, while the IPCC does not provide concrete
proposals for solutions or recommendations for action. Only options for action and
their implications are identified [1].

Photovoltaics is one of the fields that the IPCC is investigating. A model was de-
veloped to predict how much energy can be generated annually by photovoltaics.
According to this model, photovoltaics will provide 12.5 · 1012 kilowatt hours per
year worldwide in 2050. The ICPP estimates that the share of solar energy in 2050
will be 5 to 17 percent. A study by the German Mercator Research Institute on
Global Commons and Climate Change (MCC) found that the IPCC significantly
underestimated the growth of photovoltaics. The authors of the study calculated a
share of 30 to 50 percent [2].

At the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW),
research is carried out to improve the efficiency of photovoltaics. In order to reduce
resource consumption and costs of laboratory experiments, a simulation of the effi-
ciency of a solar cell was created in collaboration of Mario Zinßer at ZSW [3]. With
the simulation it is possible to consider the optical and electrical properties of a
solar cell reliably. According to [4], the calculations are accurate and so individual
components of a solar cell can be optimized independently with little time required
to obtain more efficient solar cell designs.

One of the components that make up a solar cell is the metallic conductor on the
top of a solar cell. This conductor is the metalized grid and the whole structure
is called a grid pattern. Thus, the problem that is addressed in this thesis can be
formulated as follows:

How can an optimal metalization grid pattern of a thin film solar cell
be found that maximizes the power conversion efficiency for a given set

of external parameters?

To make the mathematical part of the thesis more accessible, the rough structure of
a solar cell is described at the beginning, as well as its functionality. Based on this,
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the model for calculating the power conversion efficiency η is established within the
framework of a topology optimization. The model for calculating the efficiency is
based on the results of Mario Zinßer [4] and were extended together.

Subsequently, an optimizer is determined which is able to adjust the grid pattern
to maximize the power conversion efficiency η. For the selection of the optimizer,
any grid pattern may be created without restriction to a practicable result. Only
in later optimizations, the resulting grid pattern must meet certain requirements.
To achieve this, filters are used in addition to a contact pad to reduce inaccuracies
within the grid pattern. The contact pad is an area of the solar cell which is coated
with metal in order to allow the connection of an external contact. Since adding
the contact pad results in limitations of the optimization behavior, a filter method
is presented to overcome these limitations.
Through an interpolation it is possible that the question whether an area on the
solar cell should get grid can not only be answered with ’yes’ or ’no’. The effects
that such an interpolation has on the optimization behavior are investigated and
then used to obtain the best possible optimization result.
Each optimization starts at a given design and improves it. In the beginning,
therefore, a simple grid pattern is sought, which already provides a good starting
position for the optimization.

Finally, at the end of the thesis, the individual methods studied are to be combined.
The optimization that takes place ends up, in the best case, in a grid pattern that
leads to a higher power conversion efficiency η than the grid pattern, Labgrid,
currently in use.
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1.1 Structure of a Solar Cell

In the past decades, many different solar cells have been developed. They can be
classified based on the semiconductor material and the cell technology used to con-
struct the solar cells.
Generally, solar cells can be categorized into two cell technologies. The first genera-
tion cells, called wafer-based solar cells, are made of crystalline silicon. The second
generation cells are thin-film solar cells. In this thesis, the latter are discussed.
Solar cells are often named after the absorbing semiconductor material used in
the solar cell. Some typical semiconductors of thin film solar cells are CdTe,
CuIn1−xGaxSe2 (CIGS) and metal halide perovskite (PSC).

A solar cell comprises several layers with different properties. As an example, the
structure of a CIGS solar cell is shown in Figure 1.1 and CIGS is the semiconductor
used in this thesis.

Figure 1.1: Layer model of solar cell, inspired by [5].

The upper layers are very thin and therefore, they require mechanical support. To
provide the necessary support the bottom of a solar cell is often made of glass. Al-
ternatively, flexible metal or polymer foil can be used. A back contact is placed on
top of the glass pane. The back contact is a metal layer which has to meet certain
material requirements and is connected to the positive pole of an electric circuit.
For CIGS, molybdenum as a back contact leads to the best results [5].

Using vacuum-based processes like sputtering or thermal evaporation or using liquid-
based processes such as a chemical bath or an ink-like coating procedure, different
layer stacks are coated on the substrate [5]. One of these layers is a semiconductor,
also called absorber, which absorbs the incoming photons, whose energy is higher
than the band gap, see Section 1.2. The thickness of the layer is typically less than
3µm [5]. The absorber releases electrons and thus, generates current.

Between the top layer and the semiconductor is a buffer layer. The role of the thin
buffer layer is still under discussion, but the high efficiencies that can be achieved
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with it are undeniable. However, the buffer layer is not necessary for high efficien-
cies [6]. If a buffer layer is present, it creates a uniform coverage and protects the
absorber from damage in the manufacturing process.

On top of the solar cell is the external front contact which is connected to the
negative pole of the electric circuit. This completes the electric circuit through the
solar cell. That implies that the top layer has to conduct the current but also has
to be transparent, so the sunlight can reach the absorber. This is why transparent
conducting oxides (TCOs) are used.

To allow more sunlight to pass through the TCO, the thickness of the TCO can be
reduced. As a result, the sheet resistance of the TCO increases [7]. To minimize the
ohmic power loss [8], a metallized grid is added. After adding a grid, the generated
current is lower because the sunlight is blocked in a few places. The problem that is
addressed in this thesis is how to optimize the trade-off between generating current
and ohmic power loss, i.e., improve the efficiency of a solar cell with the placement
of such a grid without changing the structure of the whole cell. Figure 1.2 shows
an example of the overall structure of a solar cell.

Figure 1.2: Front grid and external front contact, adapted from Mario Zinßer [4].

1.2 Mechanism of a Solar Cell

A solar cell generates current itotal when sunlight shines on it. The operating voltage
Vop of the solar cell is determined by the generated current and the connected load
resistance. The fraction of incident power of the sunlight converted into electricity
defines the power conversion efficiency (PCE) η [9]. This is the overall efficiency
of a solar cell, which depends on the optical and electrical properties of the cell.
The greater the power conversion efficiency η, the better the solar energy can be
converted into electric power. The quality of a solar cell is measured by this effi-
ciency. Moreover, in the context of this thesis, the power conversion efficiency η is
considered to evaluate the grid patterns.
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The optical properties determine how much of the sunlight reaching the surface of
the solar cell hits the absorber. The sunlight falling on the TCO layer is refracted
at the surface. This leads to a loss of solar energy. Unfortunately, the sunlight is
refracted each time it reaches a new layer. In the simulation used for this thesis,
the optical properties are modeled by a transfer-matrix method [4, 10].

After the sunlight has passed through the upper layers, the photons of the sunlight
strike the absorber layer. Now three things can happen:

1. the photon is reflected at the surface of the absorber

2. the photon passes the absorber material (the photon has low energy)

3. the photon is absorbed (the photon has a sufficiently high energy)

While the first scenario depends on the angle at which the photon hits the surface,
the other two scenarios can be explained with the band gap value of the semicon-
ducting material. Within the band gap, no electric states exist. In the second case,
the photon energy is too low to excite an electron and the photon just passes the
absorber. The last case is the most interesting one. The photon has enough energy
to excite an electron, i.e., the electron gets shifted from the valence band to the
conduction band and an electron-hole pair is generated [11].

However, if the energy of the photon is much higher than the band gap value, the
energy difference is converted into heat. This effect is called thermal relaxation.
When optimizing the efficiency of a solar cell by modifying the band gap of the
absorber material, it is important to allow as many electrons as possible to jump
into the conduction band. At the same time, not too much energy should be wasted
converting into heat. There are several approaches, e.g., a tandem solar cell [12],
which are not dealt with in this thesis.

Assuming no external circuit is connected to the solar cell, the generated electron-
hole pair recombines after its specific lifespan. If the anode of an external electric
circuit is connected to the external back contact and the cathode to the external
front contact, a current can flow between them. The electron flow starting at the
absorber layer and going to the TCO layer of the solar cell is called photocurrent
iph. The current of the solar cell that can be measured is called total generated
current itotal.

The voltage is the difference of the front and the back potential. Due to the metal-
lic back contact, a constant potential can be assumed on the back side. The front
potential gets larger the further the current is generated from the external front
contact as shown in Figure 1.3 (left). This can be explained by Ohm’s law and
thus, the proportionality between resistance and voltage. Therefore, the voltage at
the external front contact is just the operating voltage Vop. Adding a metalization
grid minimizes the resistances and consequently the voltage drop and as a result
the ohmic power loss is reduced, see Figure 1.3 (right).
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Figure 1.3: Voltage without (left) and with grid (right). The external front contact
is located at (0,0.5).

If a subarea of the solar cell has a grid, electrons flow not only through the TCO
but also across the grid. A parallel connection can be observed. In summary, the
generated current depends on the photocurrent and the operating voltage, that is
applied to the solar cell.
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2 Topology Optimization

In this thesis, the grid pattern of a solar cell is to be optimized to maximize the
resulting power conversion efficency η. In other words, the distribution of well-
conducting metal on the surface of the solar cell is sought, with which it is possible
to generate a large amount of current, but also to dissipate it efficiently. An opti-
mization in which the distribution of material on a domain is optimized is called
topology optimization [13, Chap. 1]. In the context of this thesis, the domain is the
solar cell and the material is metal.

First, in Section 2.1, the basic terminology of topology optimization is explained
in general and then applied specifically to the problem of the thesis. The basis for
such a topology optimization is an objective function, which calculates the quality
of the distribution. In the case of this thesis, the objective function is the power
conversion efficiency η.

How to calculate the power conversion efficiency η is explained in Section 2.2. In
order to be able to consider the entire area of the solar cell in the numerical calcula-
tion, the domain of the solar cell is divided into simplices with a Voronoi diagram.
In the next step, the differential equation describing the current flow within the
solar cell is solved using a finite element method. In the last step of the calcula-
tion, the calculated currents generated in the area of a simplex must be added and
multiplied by the applied operating voltage to calculate the power of the solar cell.
The efficiency of a solar cell is the ratio of the sun light power that is supplied into
the solar cell to the electrical power that is subsequently received back [9].

Now that it is known how to evaluate a grid pattern, the distribution of metal is
to be varied while keeping the solar cell structure the same otherwise, in order to
iteratively optimize the grid. To ensure that the variation is not random but re-
sults in better power conversion efficiencies η, it is best to leave the variation to an
optimizer. The last Section 2.3 of this chapter focuses on finding a suitable opti-
mizer. A small experiment with the Nelder-Mead optimizer shows that the use of
a gradient-free optimizer, which requires many function evaluations, is unsuitable
for a complex and time-consuming function as in the case of the objective function
at hand. Gradient-based optimizers are investigated for this purpose. Likewise, at
the latest after Section 2.3.1 where the gradient is calculated, it becomes clear that
it will not be efficient to use second order optimizers.
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2.1 General Topology Optimization Approach

Topology optimization is a mathematical method to find, in the context of this
thesis, the optimal material distribution within a prescribed design domain in order
to achieve high structure-dependent performance. This could be, e.g., the task of
minimizing the material use and strain energy of structures while maintaining their
mechanical strength [13, Chap. 1] or in this thesis, to find a grid that optimizes the
power conversion efficiency η of a solar cell. In general, the optimization problem
can be written as:

min
ρ

F (ω, ρ(ω), ψ(ω, ρ(ω))) =

∫
Ω

f(ω, ρ(ω), ψ(ω, ρ(ω))) dω (2.1)

subject to constrains on


ρ(ω)

ψ(ω, ρ(ω))
else

The problem of topology optimization is thus defined by the six terms:

• Design domain Ω ⊂ Rd

• Design function
ρ : Ω→ {0, 1}, ω 7→ ρ(ω)

• State function
ψ : Ω× {0, 1} → R, (ω, ρ(ω)) 7→ ψ(ω, ρ(ω))

• Local objective function
f : Ω× {0, 1} × R→ R, (ω, ρ(ω), ψ(ω, ρ(ω))) 7→ f(ω, ρ(ω), ψ(ω, ρ(ω)))

• Objective function
F : Ω× {0, 1} × R→ R, (ω, ρ(ω), ψ(ω, ρ(ω))) 7→ F (ω, ρ(ω), ψ(ω, ρ(ω)))

• Constraints

Thereby, the design domain Ω defines the geometry in which the material distribu-
tion is to be optimized. The vector ω is a specific position within the design domain.
The design function ρ is a discontinous function and represents the material distri-
bution. An evaluation of the function at the position ω describes whether material
is currently used at this position.

Based on the position and material properties at this location, several states can be
created. For example, if a water channel is considered and an obstacle (material) is
placed in the flow of water, a change of state can be achieved. Where the obstacle is
placed, water no longer flows. The states at different positions ω within the design
domain Ω, depending on the material property there, are represented by the state
function ψ. Often, the state function satisfies a linear or nonlinear equation of state
and the evaluation of the state function is mostly done by solving a differential
equation.
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A change of state at a position has the consequence that the problem, which is
optimized, is either better or worse solved at this position. The local objective
function f evaluates exactly that and has the same unit as the objective function.
The objective function F is an indicator of how good the structure-dependent per-
formance is. This is composed of the total return of the performance achieved at
each position. Accordingly, the integral is formed over the individual evaluations f
at each position ω of the design domain, as shown in Equation (2.1).

In the case of the example task mentioned at the beginning, to minimize the strain
energy of structures while maintaining their mechanical strength, the objective func-
tion F would reflect the strain energy of the entire geometry, just as the local objec-
tive function f would reflect the strain energy for individual positions. The strain
energy is based on the state function ψ. The state function ψ represents the dis-
placements depending on the element thicknesses given by the design function ρ
[13, Chap. 1]. In this task, other requirements must also be satisfied at the same
time, such as maintaining their mechanical strength. These requirements can be
subordinated to the concept of constraints.

The constraints on the topology optimization model are chosen so that the model
reflects reality as accurately as possible. Constraints, for instance, ensure that the
material distribution in some parts of the domain cannot change at all or can only
change in a certain way. Several constraints are possible while performing topol-
ogy optimization. The constraints can directly affect the design function ρ, the
state function ψ or other parts of the model. In the case of the design function ρ,
there can be a limit how much material can be used within the design domain and
constraints affecting the state vector ψ, e.g., can be boundary conditions for the
differential equation.

Discretization

In order to transform the continuous problem into a numerically solvable problem,
the design domain Ω is discretized into several subdomains. For this purpose, the
geometry is divided into equidistant mesh points ωd. This way the design domain is
represented by mesh points. Around the mesh points, new simplices Ωi are created,
e.g., by a Voronoi diagram [14, 15], to perform a finite element method. For each
mesh point there is exactly one simplex.
Due to the discretization, the design function ρ is only evaluated at the mesh points.
This leads to a vector, whose components represent the evaluation of the design
function ρ at the corresponding mesh point. The vector is called density vector ρd.

As mentioned before, evaluating the state function ψ includes a differential equation.
To obtain the solution of the differential equation after discretization, it can be
approximated using a finite element method (FEM), on the mesh described above.
In general, a FEM gives the following system of equations with the stiffness matrix
K which is a matrix valued function and the right-hand side f :

K(ρd)ψd(ρd) = f (2.2)
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The stiffness matrix K is composed of the properties of the materials used and thus
depends directly on the density vector ρd. The assembly of K and the definition of
ψd in the context of this thesis will be discussed in detail later.

Due to the discretization, the integral in Equation (2.1) can be approximated by a
sum,

F (ω, ρ, ψ) =

∫
Ω

f(ω, ρ, ψ) dω ≈
n∑
i=1

∫
Ωi

fi(ρdi , ψdi), (2.3)

where n is the number of different simplices and the functions fi describe how good
the performance of the associated subdomain is.

Topology Optimization

Based on [16] an algorithm of the topology optimization can be created. The steps
are listed in Algorithm 1.

Algorithm 1 Topology optimization algorithm

1. Initialize simplices Ωi on design domain Ω

2. Set initial guess of density vector ρd

3. Start optimization loop until convergence

a) Calculate objective function F(ωd, ρd, ψd) for given density vector ρd
b) Update density vector ρd with an optimizer

c) Modify density vector ρd in order to get better results

Once the model for the topological optimization is completed, the search for a
suitable optimization method starts.

Due to the binary distributed density vector it seems obvious to solve the task with
an optimization approach which is suitable for optimizing binary vectors. However,
solving the problem, as long as it involves a binary vector, becomes extremely
difficult. So far only very small problems have been solved to global optimality [17].
Since this does not really work, a different approach is used. Instead of a binary
density vector ρd ∈ {0, 1}n, a continuous vector ρ̃d ∈ Rn is used. This allows the
use of a continuous optimizer to find global optimality. Then, using a projection,
the vector ρ̃d is mapped back to a binary density vector ρd. But even this approach
does not guarantee that it will find a converged solution. The problem is that these
approaches are often sensitive to parameter fluctuations and therefore end up in
oscillating and non-converging solutions [18].
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Topology Optimization Model for Solar Cell

On the basis of the general procedure, topology optimization is performed on a
solar cell within this thesis. For this purpose, the geometry of the solar cell, which
serves as the desgin domain, is discretized into simplices from the beginning and
only considered in this form. This will remain for the rest of the thesis. The
optimization problem can be formulated as finding the density vector ρd representing
the metalization grid pattern that improves the power conversion efficiency η of a
thin-film solar cell.

The terms of topology optimization are defined as shown in Table 2.1:

General Thesis Description
Design domain Ω Ω The geometry of a solar cell

[-3.2,3.2]×[0,7.95] ⊂ R2 used in
[3]

Density vector ρd x Describes the material distribu-
tion whether a simplex Ωi gets
metalization grid or not

State vector ψd u Represents the electric potential
of each simplex Ωi

Stiffness matrix K G Represents the electrical conduc-
tivities between two simplices Ωi

Right-hand side f igen Represents the generated currents
in each simplex Ωi

Local objective function fi igen
i The indicator for the quality of a

simplex Ωi is the generated cur-
rent

Objective function F η The indicator for the quality of a
design is the power conversion ef-
ficiency

Constraints uj = Vop

xj = 1
Where j is the index of the sub-
domain, where the external front
contact is applied

Table 2.1: Terminologies for the topology optimization of a solar cell.
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2.2 Calculation of Power Conversion Efficiency

The power conversion efficiency η of a solar cell depends on several factors and is
the objective function in the framework of topology optimization of the metalization
coating of a solar cell. In order to obtain a proper approximation of the efficiency,
a discretization of the solar cell is performed as explained in Section 2.1. For this
purpose, the domain of the solar cell gets divided in multiple subdomains to per-
form a FEM simulation. The center of a subdomain is the mesh point and they
are arranged within an equidistant mesh. To obtain a plain rectangular boundary,
additional pairs of mesh points are added so that the connecting line of a pair of
mesh points would be orthogonal to the boundary and the boundary is between
those two points. By placing these pairs close enough to each other, the desired
boundary is obtained by a Voronoi diagram [4]. Due to this procedure, the edge
subdomains have a non-equidistant form, as can be seen in Figure 2.2.

From now on, an element of the solar cell is an object whose shape and position
on the solar cell is defined by the subdomain. In addition, an element contains
information about the voltage and the generated current in the specific part of the
solar cell and this part can also have a metalization coating. In short, the elements
have the same properties as a mini solar cell.

Introduction of the Density Vector representing the Metalization Grid

As explained in Section 1.1, the generated current of an element depends on the
photocurrent generated in the element and the conductivity to the neighboring el-
ements. So that sunlight reaches the absorber and photocurrent is generated, the
absorbing material has a TCO layer on top. To achieve a better conductivity some
elements of the solar cell get a metalization grid. Furthermore a better conductivity
implies a lower electrical resistance. Unfortunately, the elements with grid generate
no current, so most elements do not have a grid. This trade-off will be optimized
in this thesis.

Normally, the components of the density vector x (see Table 2.1) have a value of
zero if the corresponding element should have no grid or a value of one to cover the
element by grid. For the optimization of grid patterns, a continuous function is used
to allow values between zero and one, as explained in the last section. These func-
tions are based on the SIMP (Solid Isotropic Material with Penalization) approach
and are called density functions [19, 20, 21]. Basically, the density function can have
any shape [22]. However, the focus in this thesis is on exponential functions. First,
a cubic interpolation was used according to Gupta [23]. Because of the flexibility
and the easy way to calculate the gradient of an exponential function, the expo-
nential function is used for interpolation instead. At the end of the optimization,
all values of x should be zero or one and this is given by a suitable choice of the
function. The first optimizations are performed with the functions SIMPcon for the
conductivity and SIMPgen for the amount of generated current in Figure 2.1, and
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for later use their gradients are provided, too. Different exponential functions are
discussed in Section 3.3. The remaining intermediate values of x are set at the end
of the optimization either to 0 or to 1 depending on a threshold value.

Red:
SIMPgen(xi) = 0.1 · eln(11)·(1−xi) − 0.1.

dSIMPgen(xi)

dxi
= −0.1 · ln(11) · eln(11)·(1−xi)

Blue:
SIMPcon(xi) = 0.1 · eln(11)·xi − 0.1

dSIMPcon(xi)
dxi

= 0.1 · ln(11) · eln(11)·xi

Figure 2.1: Initial SIMP functions used in the optimization.

Calculation of the Power Conversion Efficiency

The power conversion efficiency η is the proportion of the incident illumination
power plight that is converted into electrical power pcell within the solar cell:

ηcell
total = − pcell

plight
(2.4)

The minus before the fraction is needed because incoming power is positive while
outgoing power is negative. The electrical power pcell is calculated with the gener-
ated current I in the domain Ω by the expression

pcell = Vop · I(U, Iph), (2.5)

where Vop is the applied operating voltage at the external front contact. A closer
look at Equation (2.5) gives two different parts. The first part, Vop, is constant in the
whole calculation. The second part is the generated current of a solar cell depending
on the photocurrent Iph and the voltage U . The relationship between these terms
can be derived from Maxwell’s equations [24, 25]. The relevant Maxwell’s equations
are given by

∇ ·D = ρ̃, (2.6)

∇×H =
∂D

∂t
+ j, (2.7)
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where

electric displacement field D

enclosed charge density ρ̃

current density j =
1

ρsr · E (2.8)

material dependent specific resistance ρsr (2.9)
electric field in Ω E = −∇U. (2.10)

Due to the divergence-free nature of the total current density (2.11), the following
applies

0 = ∇ · (∇×H) (2.11)

= ∇ ·
(
∂D

∂t
+ j

)
= ∇ · ∂D

∂t
+∇ · j

=
∂(∇ ·D)

∂t
+∇ · j

=
∂ρ̃

∂t
+∇ · j Continuity equation (2.12)

Poisson’s Equation of Charge Conservation during Electrical Conductiv-
ity

Based on the formulation (2.12) and use of Equations (2.8) and (2.10) the problem
to calculate the voltage can be set up:

0 =
∂ρ̃

∂t
+∇ · j

(2.8)
=

∂ρ̃

∂t
+∇ ·

(
1

ρsr · E
)

(2.10)
=

∂ρ̃

∂t
+∇ ·

(
1

ρsr · (−∇U)

)
=
∂ρ̃

∂t
− 1

ρsr ·∆U

From this the problem to be considered is derived. The problem is based on Poisson’s
equation (2.13) of charge conservation during electrical conductivity with Ω̃ ⊂ Ω,

1

ρsr(x, y)
·∆U(x, y) =

∂ρ̃

∂t
∀(x, y) ∈ Ω \ Ω̃ (2.13)

U(x, y) = Vop, ∀(x, y) ∈ Ω̃

with mixed Dirichlet and Neumann boundary conditions,

U(x, y) = Vop ∀(x, y) ∈ ∂Ω̃ (2.14)

n ·
(

1

ρsr(x, y)
· ∇U(x, y)

)
= 0, ∀(x, y) ∈ ∂Ω (2.15)

14



where Ω̃ is the to the external front contact connected area of the solar cell and ρsr

is a piecewise constant (p.c.) function of the specific sheet resistance at the position
(x, y) ∈ Ω. Assuming that no Neumann condition is placed on ∂Ω̃, the solution
space and the test space with test functions ϕ are chosen according to [26]:

U ∈ H1
DVop

:=
{
U ∈ H1(Ω) | U = Vop on ∂Ω̃

}
(2.16)

ϕ ∈ H1
D0

:=
{
ϕ ∈ H1(Ω) | ϕ = 0 on ∂Ω̃

}
(2.17)

The difference between the two spaces is that the Dirichlet condition (2.14) is built
into the definition of the solution space H1

DVop
(2.16), while the functions ϕ are zero

in the test space H1
D0

(2.17) on the Dirichlet portion of the boundary. Furthermore,

H1
Vop
⊆ H1

DVop
⊆ H1 and H1

0 ⊆ H1
D0
⊆ H1.

This differential equation can be reformulated into a weak formulation of the general
elliptic problem. To do this, a test function ϕ ∈ H1

D0
is multiplied on both sides

and then integrated over the domain Ω \ Ω̃∫
Ω\Ω̃

(
1

ρsr ·∆U
)
· ϕ d(x, y) =

∫
Ω\Ω̃

∂ρ̃

∂t
· ϕ d(x, y). (2.18)

By partial integration of the left-hand side of Equation (2.18), the following terms
are obtained:∫

∂(Ω\Ω̃)
∇U · n ·

(
1

ρsr · ϕ
)

d(x, y)︸ ︷︷ ︸
L

−
∫

Ω\Ω̃
∇U · ∇

(
1

ρsr · ϕ
)

d(x, y)︸ ︷︷ ︸
K

For the sake of simplicity, the integrals are discussed separately:

K =

∫
Ω\Ω̃
∇U · 1

ρsr · ∇ϕ d(x, y) +

∫
Ω\Ω̃
∇U · ∇ 1

ρsr︸ ︷︷ ︸
= 0, ρsr p.c.

·ϕ d(x, y) (2.19)

L =

∫
∂Ω

∇U · n · 1

ρsr︸ ︷︷ ︸
= 0, see (2.15)

·ϕ d(x, y) +

∫
∂Ω̃

∇U · n · 1

ρsr · ϕ︸︷︷︸
= 0, see (2.17)

d(x, y) (2.20)

Combined, this results in the weak formulation:

−
∫

Ω\Ω̃

1

ρsr · ∇U · ∇ϕ d(x, y)︸ ︷︷ ︸
a(u,ϕ)

=

∫
Ω\Ω̃

∂ρ̃

∂t
· ϕ d(x, y)︸ ︷︷ ︸
l(ϕ)

(2.21)

With the relation

∂ρ̃

∂t
= jph (2.22)
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the weak formulation can be transformed to∫
Ω\Ω̃

1

ρsr · ∇U · ∇ϕ d(x, y)︸ ︷︷ ︸
a(u,ϕ)

= −
∫

Ω\Ω̃
jph · ϕ d(x, y)︸ ︷︷ ︸

l(ϕ)

. (2.23)

A unique solution to the weak formulation of the problem exists [27]. An approxi-
mated solution itself can be found in a finite dimensional subspace of Ω with basis
{ϕj}nj=1 by a finite element method. The approximate solution Ũ for the basis is
given by

Ũ =
n∑
j=1

ujϕj, (2.24)

where u is the solution vector of the system of equations

G · u = −igen(iph,u), (2.25)

where G is the stiffness matrix, representing the conductivities between elements,
u the voltage vector and igen the generated current vector.
Thereby, the entries gij of the stiffness matrix G can be determined as

gij = a(ϕj, ϕi)

and the entries igen
j of the generated current vector igen as

igen
j = l(ϕj).

The solution U(x, y) of the differential equation (2.13) is defined in the domain Ω
as

U(x, y) =

Ũ =
n∑
j=1

ujϕj (x, y) ∈ Ω \ Ω̃

Vop (x, y) ∈ Ω̃

(2.26)

and thus, the total generated current I of the solar cell can be calculated with

I =
U

ρsr =


−

n∑
j=1

igen
j ϕj (x, y) ∈ Ω \ Ω̃

Vop

Rcontact
(x, y) ∈ Ω̃.

(2.27)

Deduction of System of Equations

In the previous section, a possibility to assemble a stiffness matrix has been shown
using the weak theory to a mixed Dirichlet-Neumann boundary value problem.
Furthermore, this approach makes it possible to prove that the problem is well-
posed. Independently of the weak formulation, the system of equations in Equation
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(2.25) can also be set up in another way. Thereby, a more intuitive approach is used
to solve the problem, avoiding having to make a concrete choice of test functions
ϕ ∈ H1

D0
. The basic idea behind the calculation is Ohm’s law, which describes

the relation between the voltage U , the resistance R and the current I. With the
relation in Equation (2.12) and Equation (2.22) follows

−jph = ∇ · j. (2.28)

By integrating on both sides over the domain Ω the following transformations are
obtained:

−
∫

Ω

jph d(x, y) =

∫
Ω

∇ · j d(x, y) (2.29)

On the left side, the generated current I at position (x, y) within the solar cell is
achieved. On the right side, Gauss’s theorem can be used. Thus,

I(x, y) = −
∫
∂Ω

j d(x, y). (2.30)

With the simplices Ωi created according to Section 2.1 the domain Ω can be decom-
posed and thus also the integral:

I(x, y) =

∫
Ω

jph d(x, y) =
n∑
i=1

∫
Ωi

jph d(x, y) (2.31)

Analogous to Equation (2.29) and Equation (2.30), the same can be done for a
simplex Ωi. This leads to

I(x, y) =
n∑
i=1

∫
Ωi

jph d(x, y) =
n∑
i=1

Ii(x, y) = −
n∑
i=1

∫
∂Ωi

j d(x, y), (2.32)

where Ii(x, y) = igen
i . The boundary of a simplex, by construction, consists of linear

sections connected to each other. The integral over the boundary of a simplex ∂Ωi

is thus the sum over the integrals of the individual linear segments ∂Ωik :

igen
i = −

∫
∂Ωi

j d(x, y) = −
∑
k∈Ni

∫
∂Ωik

j d(x, y) (2.33)

Thereby, Ni is the index set of neighbor elements of the ith element. Furthermore
with Ohm’s law ∫

∂Ωik

j d(x, y) =
uk − ui
Rik

, (2.34)

where ui and uk are the voltages in the corresponding simplex.
Thus, for each element, according to Equation (2.33) and Equation (2.34), the
following correlation can be created:

0 = igen
i (iph,u) +

∑
k∈Ni

uk − ui
Rik

= igen
i (iph,u) +

∑
k∈Ni

uk
Rik

− ui ·
∑
k∈Ni

1

Rik

 (2.35)
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From the relationship between conductivity σik and resistance Rik, it follows with

σik =
1

Rik

, that

0 = igen
i (iph,u) +

σi1, ...,−∑
k∈Ni

σik, ..., σin

 · (u1, ...,ui, ...,un)T , (2.36)

where σik = 0, if k /∈ Ni. The conductivity σik from the ith to the kth element is 0,
since there is no direct connection between these two elements and therefore there is
no current between them. Thus, for all elements Equation (2.36) can be interpreted
as a matrix vector multiplication and is equivalent to Equation (2.25):

0 = igen(iph,u) + G · u (2.37)

The total generated current I in a solar cell is calculated according to Equation
(2.32).

Assembly of the Stiffness Matrix

Regarding the deduction in Equation (2.35) and (2.36), the entries gij ∈ G look as
follows:

gij =


σij j ∈ Ni

−
∑
j 6=i

σij j = i

0 else

(2.38)

The conductivity σij between two adjacent elements can be calculated by the rela-
tion to the resistance Rij mentioned above. Rij is the resistor between the ith and
the jth element. Thus, the resistance Rij is composed of the resistance RtoEdge

ij of
the ith element and the resistance RtoEdge

ji of the jth element [4]:

Rij = RtoEdge
ij + RtoEdge

ji = Rji (2.39)

The resistance RtoEdge
ij depends mainly on the material used in the element ith

element. If the element has a grid coating in addition to the transparent conducting
oxide, electrons can flow through both materials. In this case, the resistance is
calculated using the formula for parallel resistance. Otherwise, the resistor is simply
the resistance of the TCO:

RtoEdge
ij =


RTCO,toEdge
ij xi = 0

Rgrid,toEdge
ij ·RTCO,toEdge

ij

Rgrid,toEdge
ij + RTCO,toEdge

ij

xi 6= 0

(2.40)
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In general, the resistance of the grid coating Rgrid,toEdge
ij or the one of the TCO layer

RTCO,toEdge
ij depends on the specific resistance ρ of the material used in the element,

the Euclidean distance of the mesh points, the length of the common edge ∂Ωi∩∂Ωj

of the ith and the jth simplex and the thickness d of the material layer. Due to its
construction, the electrons flow exactly half the distance between the mesh points
in the material of the ith element and half the distance in the jth element [4]. The
thickness and the common edge define the area in which electrons can flow from
element to element. While the thickness of the TCO layer is uniform across the
solar cell, the thickness of the grid layer varies in each element. The resistance of
the grid layer also depends on the entry of the density vector x. For intermediate
values of the density vector x, the SIMP function for the conductivity SIMPcon

presented in Figure 2.1 is used:

Rgrid,toEdge
ij =

ρgrid,toEdge ·
∥∥xposi − xposj

∥∥
2

2
dgrid,toEdge · |∂Ωi ∩ ∂Ωj|

· SIMPcon(xi) (2.41)

RTCO,toEdge
ij =

ρTCO,toEdge ·
∥∥xposi − xposj

∥∥
2

2
dTCO,toEdge · |∂Ωi ∩ ∂Ωj|

The constructed stiffness matrix G is sparse, i.e., apart from the diagonal entry, the
ith row has one entry for each neighbor of the ith element. Within the simulation
software twinPV [3], this property is used to store the entries efficiently and thus,
calculations are faster, because zero entries are ignored. All matrix entries are stored
in the Compressed Row Storage (CRS) format.

Before Equation (2.25) can be solved, the constraint, set in Table 2.1, has to be
added. If an external front contact is applied to the ith element, the voltage ui,
at this element, is equal to the operating voltage Vop. Hence, the ith row of the
stiffness matrix G is a unit line. The corresponding entry of the right-hand side is
the operating voltage Vop. Thus, the desired result of ui = Vop follows from the
matrix-vector multiplication.
Hence, the system of equations (2.25) has this specific form in the ith row:

g11 · · · g1i−1 g1i g1i+1 · · · g1n
...

...
...

gi−11 · · · gi−1i−1 gi−1i gi−1i+1 · · · gi−1n

0 · · · 0 1 0 · · · 0
gi+11 · · · gi+1i−1 gi+1i gi+1i+1 · · · gi+1n
...

...
...

gn1 · · · gni−1 gni gni+1 · · · gnn


·



u1
...

ui−1

ui
ui+1
...
un


=



−igen
1
...

−igen
i−1

Vop

−igen
i+1
...
−igen

n


(2.42)
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Solving the nonlinear System of Equations

So far, only the stiffness matrix G is known. To be able to solve the system of
equations (2.25), the right side must also be known. The right side of the equation
system is the generated current igen that depends on the voltage u and the pho-
tocurrent iph.

To calculate the photocurrent in the ith element Equation (2.43) is used:

iph
i = jph · Ai · SIMPgen(xi)

current density j

element area Ai
(2.43)

If the voltage u and the photocurrent iph is known, the generated current can be
calculated with the equation for the single diode model [28]. The problem is that
the equation is an implicit equation. Also, to calculate the generated current igen of
an element, the voltage u of that element is needed. But that is the solution vector
of the system of equations. For this reason, there is no way to solve it directly.

To solve this problem, Equation (2.37) is used. A function f can be defined whose
root is the solution vector u.

f (z) = igen(iph, z) + G · z (2.44)

The problem to solve is a root-finding problem. In principle, any root-finding al-
gorithm can be used to solve this problem. In the case of the thesis, the Newton-
Raphson method is used. The linear system of equations within a Newton iteration
is preconditioned with incomplete LU factorization and then solved with the bi-
conjugated gradient method. The methods implemented in the Extreme Numerics
library are used for this purpose [29]. With this, the roots of (2.44) can be deter-
mined. Now all inputs of igen(iph, u) are defined and the calculation of the electrical
power pcell as in Equation (2.5) is possible. The illumination power plight is the
power of the incoming light spectrum.

Perturbance of the equidistant Mesh

At the beginning of this chapter, an equidistant mesh has been created and the
subdomains of the solar cell have a square shape. This square shape of the elements
leads to problems, which are explained below.

A characteristic of electricity is that the current mainly takes the path of least resis-
tance. Hence, the current paths are a line to the center of the adjacent subdomains.
Therefore, the current path between two diagonal neighbors runs exactly through
the common corner of the subdomains.

In the calculation, this behavior is expressed by a divisor of the length of the com-
mon edge of two subdomains ∂Ωi ∩ ∂Ωj, as shown in Equation (2.41). When the
current flows through the corner, the length of the common edge is zero. To avoid
the zero division error, the mesh points are randomly perturbed. This leads to
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different subdomain shapes and to current paths which only go through edges and
not through corners. A checkerboard pattern is created when the current flows only
through diagonal elements. Changing the shape of the subdomains also avoids a
checkerboard pattern of the grid.

Figure 2.2: Comparison of equidistant and perturbed mesh.

Before creating the irregular subareas with a Voronoi diagram, the positions (xi, yi)
of each mesh point are randomly shifted with a maximum change of half of the
average distance of two mesh points. Figure 2.2 visualizes both meshes and the
advantage of the subdomains based on the perturbed approach becomes visible.

Configuration of Solar Cell

For the calculation of the power conversion efficiency η some data of the configu-
ration of a solar cell are needed. These would be, on the one hand, the materials
used for the layers, the resulting material-dependent sheet resistances and the pa-
rameters needed for the equation of the single diode model. On the other hand, a
light spectrum which shines on the solar cell is also required. Except for the grid
pattern, these data remain constant throughout the thesis. The values used for the
configuration of the solar cell can be found in Table 2.2.
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Layer Material Thickness d Sheet Resistance ρ
Back contact Mo 500·10−9 m 53.4·10−9 Ωm

Front contact TCO Al:ZnO 250·10−9 m 1.3·10−5 Ωm
Front grid Ni/Al/Ni 2500·10−9 m 27·10−9 Ωm

Parameters for Single Diode Model
Saturation current I0 2.9991·10−6 A
Photocurrent Iph 411.7050A

Thermal voltage VT 0.0259V
Serial resistance Rs 1.1254·10−11 Ω
Shunt resistance Rsh 0.06667Ω

Ideality factor of the diode a 1.5093
Number of series-connected cells n 1

Light spectrum AM 1.5G

Table 2.2: Configuration of the solar cell as in the simulation platform twinPV [3].

2.3 Optimization with Gradient

A topology optimization always includes an optimization, as the name implies. It
has been already indicated in Section 2.1 that the choice of a capable optimizer is not
easy. For this reason, different optimizers are tested in this section and in the end
it is decided which one can best solve the grid optimization problem. Furthermore,
the approach presented in Section 2.1 allows a continuous density vector x and thus
continuous optimizers.

As explained in the last paragraph of Section 2.1, the objective function to be
optimized in this thesis is the power conversion efficiency η, see Equation (2.4), of
a solar cell depending on the given grid pattern as input parameter x. This means
the grid pattern that leads to the highest efficiency is the desired return vector.

Thus, the optimization problem can be defined as follows:

max ηcell
total(x), (2.45)

subject to 0 ≤ xi ≤ 1, ∀i ∈ I,

where I = 1,..., n is the set of indexes and n is the number of mesh points.

The following problem is to be optimized:

According to Table 2.1, the design domain Ω of the surface of a solar cell is Ω =
[-3.2,3.2]×[0,7.95] ∈ R2. Since, for physical reasons, no charge flows from the left
half to the right half of the solar cell, it is possible to consider only one side of the
solar cell for optimization and then mirror the resulting grid pattern. Thus, the new
design domain Ω is Ω = [0,3.2]×[0,7.95] ∈ R2. The consequence of this is that with
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the same number of mesh points a twice finer discretization of the design domain
Ω is possible. The design domain Ω is divided into n different simplices Ωi with
the Voronoi diagram depending on a given number of mesh points n as described
in Section 2.2. For the optimizations in this chapter and in Chapter 3 20389 mesh
points are used. The external front and the back contact are located at position
(0,0.5) ∈ Ω.

The threshold used for binarization at the end of the optimizations is based on an
empirical observation and therefore, the threshold value is 0.1. The power conver-
sion efficiency η does not change very much, whether an element, which should be
coated with grid, see Figure 2.3 (right), has a density of 0.1 or 1. On the other
hand, if an element gets grid when it should not get grid, see Figure 2.3 (left), the
loss of conversion efficiency η is negligible compared to the other case.
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Figure 2.3: Efficiency depending on the density variation of elements without grid
(left) and with grid (right).

The computer system on which the optimizations are performed is as in Table 2.3.

Operating system Microsoft Windows 10 Pro
Processor AMD Ryzen 7 5800X 8-Core Processor, 3801MHz
RAM 32GB
IDE Microsoft Visual Studio
Code Simulation Platform twinPV [3]

Table 2.3: Hardware and software for gradient-based optimization with parallel
computing.

Since the calculation of the power conversion efficiency η is very complex and many
iterations are required to find a maximum, derivative-free optimizers take a long
time to find the optimal input parameters. This is also demonstrated in the para-
graph below with a small experiment.
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Optimization of Grid Pattern with the Nelder Mead Method

A frequently used optimizer, when the calculation of the derivatives is too costly,
is the algorithm of Nelder-Mead. With the help of the optimizer, a grid pattern is
to be found with which a high power conversion efficiency η can be calculated. For
this optimization, the implementation of the Nelder Mead algorithm from Extreme
Numerics [29] is used.

To perform the optimization, the design domain Ω is discretized with 200 mesh
points. This leads to 200 different simplices and therefore also to 200 elements,
which can have no grid or a grid.

The update scheme of the Nelder Mead method for the density vector x ∈ [0, 1]100 is
described in [30]. Starting from the initial guess, the density vector x is optimized
in each iteration. The initial guess for the optimization is the ith unit vector, with
the external front contact attached to the ith element.

After 1119 function evaluations in 54.2 sec, a maximum power conversion efficiency
η of 16.56% has been found with a tolerance of 0.4. The resulting grid pattern of
this optimization is inefficient, but the main problem is that already for a few mesh
points a huge number of function evaluations are necessary.

Gradient-Based Approach

In order to make the optimization more efficient, the gradient of the objective
function can be additionally employed.

In general, if a function f : Rn → R is differentiable, the gradient of the function f
exists as a vector-valued function ∇f : Rn → Rn. The associated components ∇fi
are partial derivatives of f with respect to the components of the input vector y
∈ Rn. In particular, the gradient determines how the objective function will change,
if y undergoes a small change. A gradient-based optimizer can use this information
to calculate the next iteration point.

This is useful, because:

f(ỹ) = max
y∈Rn

f(y)⇔ df(ỹ)

dy
= 0 ∧ ∃ε>0 ∀y∈Bε(ỹ)∩Rn : f(y) 6= f(ỹ) (2.46)

Thus, if y gets changed marginally to ỹ and f (ỹ) nearly stays the same, there
is no reason to make a bigger change of y in the next iteration to get closer to
the optimum. On the other hand, if y gets changed marginally to ỹ and f (ỹ) is
substantially different from before, the next iteration point is usually further away.
In nearly all cases the negative gradient indicates how to choose the next point, so
the value of the next initial point is higher.

But the gradient alone is often not enough to find the global optimum. One of the
main reasons why optimizers generally fail to find it is that they get stuck in local
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optima. Unwanted local extrema can be skipped if a sufficiently large step size is
involved in an optimization [31, Chap. 3.5].

How different optimization methods implement this and how well they solve the
problem will be presented later on in Section 2.3.2. To perform gradient-based
optimization, the question of how to determine the directional derivatives of the
power conversion efficiency η with respect to the density vector x will be discussed
in the next section.

2.3.1 Gradient Calculation

The objective function is the power conversion efficiency η, calculated in Equation
(2.4), and the gradient with respect to the density vector x of this function is
required. The gradient can be expressed as

dηcell
total

dx
= − 1

plight
· dpcell

dx
, (2.47)

since plight is a constant value. The derivation of the electrical power pcell is given
by:

dpcell

dx
=

d (Vop · I))

dx

Using the product rule and Equation (2.32), the following term is obtained:

dpcell

dx
=

dVop

dx
·
∑
i∈I

igen
i

(
iph,u

)
+ Vop ·

d

∑
i∈I

igen
i

(
iph,u

)
dx

The generated current igen depends on x, because x is used to calculate the pho-
tocurrent iph and the voltage u. Vop is a constant value, so its derivative vanishes.
Thus,

dpcell

dx
= Vop ·

d

∑
i∈I

igen
i

(
iph,u

)
dx

.

The chain rule is used to rewrite the term to

dpcell

dx
= Vop ·

d

∑
i∈I

igen
i

(
iph,u

)
digen︸ ︷︷ ︸

∂pcell

∂digen

·di
gen

dx
=
∂pcell

∂igen ·
digen

dx
.

25



The partial derivative of the power pcell with respect to igen is the operating voltage
Vop in each component. As mentioned earlier, the generated current depends on
the photocurrent iph and the voltage u. Hence, the total derivative can be written
as

digen

dx
=
∂igen

∂iph ·
diph

dx
+
∂igen

∂u
· du
dx
. (2.48)

The partial derivatives of igen with respect to iph
k and uk in Equation (2.48) are

determined in Equation (2.49) with the notation of [28], uk = V and W0(h(uk)) is
the Lambert W-function [32]. Hence,

∂igen

∂iph
k

=
n · a · VT · Rs·Rsh·h(uk)

(Rs+Rsh)·n·a·VT
·W0(h(uk))

Rs · (h(uk) ·W0(h(uk)) + h(uk))
− Rsh

Rs +Rsh

(2.49)

∂igen

∂uk
=

(
1

Rs

− 1

Rs +Rsh

)
·W0(h(uk))

W0(h(uk)) + 1
+

1

Rs +Rsh

where

h(uk) =
I0 ·Rs ·Rsh

(Rs +Rsh) · n · a · VT
· e

Rs · (Rsh · (Iph + I0)− uk)
(Rs +Rsh) · n · a · VT

+
uk

n · a · VT .

The partial derivative of the components of iph, calculated in Equation (2.43), can
be determined as

diph
k

dxi
=

jph · Ai ·
dSIMPgen(xk)

dxi
i = k

0 i 6= k.
(2.50)

Thus, the derivative of iph is given by a diagonal matrix, where the diagonal entries

are the calculated derivatives
diph
i

dxi
in Equation (2.50). Based on the system of

equations (2.25)

G · u = −igen(iph,u),

the total derivative with respect to x leads to

dG
dx
· u + G · du

dx
= −digen

dx
. (2.51)

This expression can be rearranged as

G · du
dx

= −digen

dx
− dG

dx
· u. (2.52)
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If the right side of the Equation (2.52) is known, then a system of linear equations
must be solved to obtain the derivative of the voltage u. One of the missing values
on the right side is the derivative of the generated current igen. This derivative
is calculated in (2.48), but cannot be determined because the derivative of the
voltage u with respect to x is unknown. In order to avoid a recursive problem, a
simplification is made:

digen

dx
≈ ∂igen

∂x
(2.53)

Furthermore, the derivative of the stiffness matrix G is missing. Each entry has to
be differentiated. This leads to

dgij
dxi

=



dσij
dxi

j ∈ Ni

−
∑
j 6=i

dσij
dxi

j = i

0 else,

where

dσij
dxi

= − 1

R2
ij

· dRij

dxi
.

The partial derivative of the resistance Rij with respect to the density vector xi is
given by:

dRij

dxi
=

∂Rij

∂RtoEdge
ij

·
∂RtoEdge

ij

∂Rgrid,toEdge
ij

·
dRgrid,toEdge

ij

dxi

= 1 ·

(
RTCO,toEdge
ij

Rgrid,toEdge
ij + RTCO,toEdge

ij

)2

·
ρgrid,toEdge

∥∥xposi − xposj
∥∥

2

2
dgrid,toEdge|∂Ωi ∩ ∂Ωj|

dSIMPcon(xi)
dxi

Due to the constraint presented in Table 2.1, the partial derivative of the stiffness
matrix G with respect to the element that is the external front contact is zero in
each component. Now the right side of Equation (2.52) is known, but the system
cannot be solved directly, because the right side is a matrix. Therefore, the first
column of the solution matrix du

dx is determined by the solution vector y0 of

G · y0 = b0,

where b0 is the first column of the right side matrix. The remaining columns are
filled analogously. In the end, the derivative of the power pcell is given by

dpcell

dx
=

∂pcell

∂digen ·
(
∂igen

∂iph ·
diph

dx
+
∂igen

∂u
· du
dx

)
, (2.54)

where Equations (2.50) and (2.52) are used. The total derivative of the efficiency η
can be determined by substituting Equation (2.54) into Equation (2.47).

27



Verification of Gradient

Since the simplification of the analytical calculation of the gradient, in the follow-
ing nevertheless called analytical gradient, is complex and requires several matrix
multiplications in addition to solving a system of equations, the question arises why
the more accurate numerical gradient, calculated with the difference quotient, is not
used right away. The difference quotient would require (n+1) function evaluations,
where n is the number of elements. Since the calculation of the power conversion
efficiency η has to be evaluated expensively, this leads to enormous run times. The
runtimes of the two variants can be seen in Figure 2.4.

Figure 2.4: Runtime of the numerical and the analytical gradient.

To check whether the analytical gradient with the simplification made in Equation
(2.53) is applicable at all, the values of the analytical gradient are compared with
those of the numerical gradient. For the validation, the gradient, the subdomains
of the solar cell are colored according to the values of the gradient. If the analytical
and the numerical gradients match, the images should be nearly identical. This is
the case in Figure 2.5. Thus, the analytical and the numerical gradients have almost
everywhere the same sign. However, the values of the gradients are in different or-
ders of magnitude. The maximum value of the analytical gradient is approximately
4.8 · 105 and the minimum value is -0.003143. On the other hand, the numerical
gradient is within [-0.0954,0.0177]. The problem of scaling can be solved in the
optimization by controlling the step size of an optimizer. Therefore, the analytical
gradient with the simplification gives the direction of the steepest descent and can
be used for optimization.
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Figure 2.5: Comparison of the analytical (left) and the numerical (right) gradient.

2.3.2 Optimizers

The optimization in this section is performed with gradient based optimizers. It
is well known that steepest descent methods are inefficient in material distribution
problems, as the topology optimization of a bone remodeling with a steepest descent
method from 2010 shows [33]. Nevertheless, in this thesis it will be shown that these
optimization methods based on steepest descent can also be efficient. The gradient
descent method and its variants, which have been successfully applied to large-scale
optimization problems for machine learning [34, 31, Chap. 3.5], are characterized by
a simple update rule as well as a high convergence rate. On the other hand, often,
only small steps are done and this results in a slower convergence speed. To reduce
the number of iterations required, the optimizer can be improved. While some of
these possible adjustments will be discussed directly following the introduction of
the optimizers, other methods will be considered later in Chapter 3.

Furthermore, the optimizers used to train neural networks are suitable for problems
with a high number of degrees of freedom. Along with this, the optimizers also
perform well on non-convex problems.

This is also true for the problem that is to be optimized. For this reason, gradient
descent and various adaptations such as the adaptive moment estimation (Adam)
algorithm [35] are discussed. In contrast, the Broyden-Fletcher-Goldfarb-Shanno
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(BFGS) algorithm [36, 37, 38, 39] is presented, which is often used in the context
of topology optimization, e.g., see Abert [40].

The individual optimizers are presented below. The first optimizer considered is
the comparatively simple to implement gradient descent method. Subsequently,
this method is further developed by simple adjustments such as normalization or
component-wise normalization of the gradient. This is continued until one ends up
with the Adam method [31, Chap. 3]. In comparison, the BFGS method is tested
as an optimizer using an approximation for the Hessian matrix.

For each optimizer, the algorithm used to obtain a better grid pattern in each it-
eration is presented. Then, using these update rules for the density vector x, an
optimization is performed to maximize the power conversion efficiency η. The re-
sults of the individual optimizers are then compared on the basis of the quality, i.e.,
the power conversion efficiency η, the number of iterations required until conver-
gence and an empirical rating of the design of the resulting grid patterns. It should
be mentioned that there is no convergence criterion. The number of iterations is
set high enough so that convergence occurs in any case. However, if the number
of iterations is too large, this optimizer will not be considered in the further de-
cision, which optimizer should be developed in the next chapter, since its effort is
significantly higher than that of the others. In retrospect, the number of required
iterations until convergence is set to the iteration from which on there are no sig-
nificant changes of the density vector x as well as the power conversion efficiency η.
The initial guess for the optimization is the ith unit vector, with the external front
contact attached to the ith element.

Furthermore, the problem to be optimized is a non-convex problem. This means
that not every local maximum is also a global maximum. This is also accompanied
by the fact that changes to parameters can lead to a different local maximum. And
thus also the optimizers all generate different grid patterns. The color code for each
figure of grid patterns within this thesis is the one defined by the colorbar in Figure
2.6.

Figure 2.6: Colorbar for figures of grid patterns.

At the end of this chapter, the implementation of the optimizer that performed best
in the comparison is presented.
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2.3.2.1 Gradient Descent

One of the simplest gradient-based optimizers is the gradient descent method. Gra-
dient descent is an algorithm that is one of the most popular algorithms to perform
optimization [34, 31, Chap. 3.5].

In general, gradient descent is an iterative optimizer and in each iteration the input
parameter z is updated based on this scheme,

zi+1 = zi − λi · ∇f(zi), (2.55)

where λi is an parameter to adjust the step size, i.e., how big the change of z should
be in each iteration. In using the negative gradient to update the input parameter,
one moves in any case in the direction of the steepest descent, i.e., toward the
nearest minimum [31, Chap. 3].

Since the optimization problem in the context of this thesis to find the best density
vector x for a high power conversion efficiency η is a maximization problem, the
gradient descent algorithm has to be adjusted. Instead of finding a minimum a
maximum is required. To achieve this, the step size λi must be multiplied by -1.
This leads to following update scheme:

zi+1 = zi + λi · ∇f(zi) (2.56)

In general, if a fixed step size λ is chosen too small, the risk of ending up in a local
maximum for a non-convex problem increases. For both convex and non-convex
problems, optimization with a small step size can require many iterations. If the
step size is too large, the global maximum may be skipped each time and results in
oscillation [31, Chap. 3]. These problems are visualized based on the maximization
of an example function in Figure 2.7.

Figure 2.7: Comparison of different fixed step sizes λ used to optimize
f(z) = −z4 − z3 + 3z2 + 1: λ = 0.01: Converges too slow. λ = 0.05: Converges in
local maximum. λ = 0.10: Converges in global maximum. λ = 0.14: Skips global
maximum and converges in local maximum.
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Near stationary points such as a maximum or a saddle point, the values of the
gradient becomes very small. This leads to a slower and slower convergence to
these points. In order to prevent the ever slower convergence rate, the gradient can
be normalized before it is employed. Thus it is achieved that in each iteration the
total change for a fixed step size remains the same. The change is the step size λi
[31, Chap. A] and the update rule is

zi+1 = zi + λi ·
∇f(zi)
‖∇f(zi)‖2

. (2.57)

At the beginning of the optimization, this adaptation stops the optimizer from
moving too fast in one direction as long as a stationary point is still further away.
Towards the end of the optimization, however, the stationary point can be skipped
with this adjustment because of the step length remaining the same. Therefore, an
adaptive step length should be used [31, Chap. A].

For some objective functions it is useful to enhance the smaller values of the gradi-
ent. If the objective function contains regions that are flat and is steep only with
respect to some components and the gradient is normalized as in Equation (2.57),
some values of the gradient can be nullified [31, Chap. A]. This can lead to a local
maximum, because the optimizer first considers only the steepest descent.

Instead of normalizing each partial derivative by the magnitude of the entire gradi-
ent, each partial derivative can be normalized only with respect to itself:

zi+1 = zi + λi · sgn (∇f(zi)) (2.58)

Then the density vector z is always adjusted as it would currently fit best for each
component [31, Chap. A].

The results of the self implemented gradient descent variations optimizing the power
conversion efficiency η of a solar cell are illustrated in Figure 2.8. The top row shows
the grid patterns into which the optimization methods have converged. The figures
in the bottom row of Figure 2.8 represent the final grid patterns after setting the
values of the density vector x to 0 and 1 depending on the threshold value of 0.1.

The step size for the gradient descent algorithm is λi = 100000. The final result
after 200 iterations can be seen in the upper left. Due to the large step size λ, there
is a very large change in the density vector x in each iteration. The oscillation of
the density vector x is reflected in the grid pattern. The power conversion efficiency
η that is achieved with this grid pattern is 21.95%.

In the center of the upper row, the final result of the normalized gradient descent
optimization can be seen. The number of iteration is 200 and the step size used
here is λi = 4. In contrast to the basic gradient descent method, a clear structure
can already be guessed. However, there are also many gray areas in this image,
which show that even with this method the optimum has not yet been found. The
achieved power conversion efficiency η is 22.03%.
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The stright grid arms achieved with the componentwise normalized gradient de-
scent method stands out compared to the other results. Unfortunately, around 300
iterations were also necessary for it. The resulting grid pattern can be found in
the upper right image. In each iteration, each component changed by λi = 0.005
depending on the gradient’s sign function. It is also noticeable that the grid arms
are shorter than those of the normalized gradient descent. Overall, this structure
has a power conversion efficiency η of 21.79%.

Figure 2.8: Left: Gradient Descent, center: Normalized Gradient Descent,
right: Componentwise Normalized Gradient Descent, top: Optimization results,
bottom: Result after binarization.

2.3.2.2 Adaptive Moment Estimation

The adaptive moment estimation (Adam) algorithm [35] is an algorithm that is
based on the properties and methods of already known optimizers. The Adam
method owes its origin to the AdaGrad method [41] and the RMSProp method [42].
However, the basic idea remains that of the gradient descent method, introduced
in Section 2.3.2.1. Accordingly, the update scheme to maximize a general objective
function f(z) looks similar to

zi+1 = zi + λ · αi, (2.59)
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where λ is the step size and αi is an update parameter which replaces the gradient.
The update parameter αi depends on the exponential moving averages of the gra-
dient and the squared gradient [35].

The moving average m of the gradient, that is used within the update rule, is an
estimate of the first moment. Basically, this is a concept that includes the gradients
from the previous iterations. The estimate of the first moment mi+1 is given by a
convex combination of the previous first moment mi and the current gradient

mi+1 = β1 ·mi + (1− β1) · ∇f(zi), (2.60)

where β1 ∈ [0, 1) is a parameter to control the exponential decay rates of the
moving average of the gradient [35]. As already said, with the convex combination
one achieves that the gradients, which one has calculated in previous iterations, are
also taken into account. In the first iteration the estimate of the first moment is
initialized as zero vector:

m0 = 0
mi+1 = β1 · [β1 ·mi−1 + (1− β1) · ∇f(zi−1)] + (1− β1) · ∇f(zi) i ≥ 1

This modification is made to help traverse flatter areas of the objective function
and not coming to a stop on a short flat section in between due to its moment.
Moreover, the problem of ’zig-zagging’ behavior of the gradient descent method can
be solved with the use of the moment [31, Chap. A].

Due to the initialization of the estimated first moment, the moving average is bi-
ased towards zero [35]. This initialization bias can be counteracted by following
transformation:

m̂i+1 =
mi+1

(1− β1)i+1 (2.61)

As mentioned in the beginning, to calculate the update parameter α, the moving
average s of the squared gradient is also used. This corresponds to the second
moment. The calculation of the second moment si in each iteration is similar to the
calculation of the first moment in Equations (2.60) and (2.61) [35]:

s0 = 0

si+1 = β2 · si + (1− β2) · (∇f(zi))
2 (2.62)

As before for the first moment, the initialization bias of the second moment has to
be counteracted:

ŝi+1 =
si+1

(1− β2)i+1 (2.63)

All together, the update rule of the Adam method is given by Equation (2.59),
where αi is composed of the first (m̂) and second (ŝ) moment:

αi =
m̂i+1√
ŝi+1 + ε

, (2.64)
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where ε is a perturbation so the denominator is non zero.

In the end, the Adam optimization method combines ideas of its precedents and
evolves into a better version.

The result of the optimization with a self implemented algorithm of the Adam
method is shown in Figure 2.9. In total, the optimization was performed with 200
iterations. As with the gradient descent method, the grid pattern of the penultimate
iteration is shown on the left and the binary grid pattern obtained by the threshold
of 0.1 is shown on the right.

The parameters used for this optimization are as follows:

λ = 0.03

β1 = 0.9

β2 = 0.999

ε = 1e-9

The special feature of the grid pattern obtained by the Adammethod is the extensive
coverage of the solar cell with grid. There is barely a spot on the solar cell that has
a further path than 2mm to the next grid arm. This feature pays off with a high
power converison efficiency η of 22.08%.

Figure 2.9: Results of optimization with the Adam method. On the left is shown
the grid pattern before and on the right after binarization.

35



2.3.2.3 Broyden-Fletcher-Goldfarb-Shanno

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [36, 37, 38, 39] is an
optimizer that is using an approximated second derivative of a general objective
function f(z). Thus it belongs to the family of Newton-method optimization algo-
rithms. Since the second derivative is only approximated, BFGS is a Quasi-Newton
method.

In general, a quasi-Newton method for a maximization problem has the update
scheme [39],

zi+1 = zi + λ ·Hi · ∇f(zi), (2.65)

where λ is a scalar to adjust the step size and Hi is the approximation of the inverse
Hessian at zi. The inverse Hessian matrix is replaced with a secant approximation.
The secant method is an iterative algorithm that often has the identity matrix as
initial guess and then applies updates with each iteration [43, Chap. 6]. In the
BFGS algorithm, the Hessian matrix is updated according to the following scheme
[37],

Hk+1
i = Hk

i −
δk+1 · γTk+1 ·H

k
i + Hk

i · γk+1 · δTk+1

δTk+1 · γk+1

(2.66)

+

(
1 +

γTk+1 ·H
k
i · γk+1

δTk+1 · γk+1

)
·
δk+1 · δTk+1

δTk+1 · γk+1

,

where δk+1 = zi+1 − zi
γk+1 = ∇f(zi+1)−∇f(zi).

To calculate the step size λ, for example, backtracking line search or the line search
with Wolfe condition can be used [43, Chap. 4].

In the context of this thesis, to optimize the density vector x to maximize the
power conversion efficiency η, the implemented version of the Extreme Numerics
library [29] is tested. The default parameters of Extreme Numerics are used for
the optimization, where the convergence criterion is defined by a maximum number
of 200 iterations. The optimized grid pattern before binarization can be seen in
Figure 2.10 (left) and after binarization on the right. With this grid pattern, a
power conversion efficiency η of 20.25% is obtained.
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Figure 2.10: Results of optimization with the BFGS method. On the left is shown
the grid pattern before and on the right after binarization.

2.3.3 Comparison of Optimizers

In the further course of this thesis, only one optimizer will be used. The decision
which optimizer to use depends on the quality of the resulting grid patterns (PCE η),
the runtime per iteration (∅ Runtime/It.), the number of iterations needed (No. of
It.), and the potential that lies in an optimizer. The gradient descent method (GD),
the normalized GD method (NGD), the componentwise NGD method (CNGD), the
Adam method and the BFGS method are compared in Table 2.4.

Optimizer PCE η ∅ Runtime/It. No. of It. Total Runtime
GD 21.95% 41.6 sec 195 8112 sec
NGD 22.03% 35.6 sec 159 5660.4 sec
CNGD 21.79% 37.1 sec 300+ it. 11130+ sec
Adam 22.08% 37.1 sec 140 5194 sec
BFGS 20.25% 49.34 sec 114 5624.76 sec

Table 2.4: Comparison of optimizer: Gradient descent (GD), normalized GD, com-
ponentwise NGD, Adam and BFGS, see Table 2.2 for the configuration of the solar
cell and see Table 2.3 for the system used to calculate the results.

Since the BFGS method gives by far the worst result, this method will not be con-
sidered further in the following.

It is remarkable that the average runtime per iteration of the optimizers are almost
the same. The reason for this is that the effort for all calculations that have to be
done in one update step is almost equal to the effort for calculating the gradient.
For each optimizer the gradient must be calculated in each iteration, which is why
the similar runtimes occur. This means that only the number of required iterations
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is decisive for the evaluation of the total time of an optimization. As explained
in Section (2.3.2), the optimization is terminated after a fixed number of iteration,
given by the maximum iteration. Subsequently, the change of the density vector x
as well as the change of the power conversion efficiency x have been taken as an
indicator for the convergence of a method. The iteration from which there is no
relevant change is given as the number of iterations needed until convergence. This
prevents too early termination and thus minimizes the termination error.

Looking at the resulting grid pattern created with the componentwise normalized
gradient descent method in Figure 2.8 before setting the density vector values to 0
and 1, there are hardly any gray areas to be seen. Accordingly, there are no more
elements in the rear part of the solar cell that would perform better with grid. And
also the lengths of the grid arms compared to those received by the Adam method
and the normalized gradient descent method are significantly shorter. It can be
concluded that the shorter grid arms lead to a worse power conversion efficiency η.
Since the componentwise normalized gradient descent method is converged, it can
be assumed that it is stuck in a local maximum. Based on the update rule, it follows
that a larger step size is needed to skip the local maximum. However, increasing
the step size leads to an oscillating density vector x. Thus, a better result is not to
be expected.

Unlike the other optimization methods, the grid pattern achieved with the gradient
descent method has a different basic structure. Hence, it can be concluded that the
gradient descent method finds with a large step size another local maximum, while
the others all land in almost the same local maximum. Unfortunately, this local
maximum is worse in terms of power conversion efficiency η as well as in terms of
the shape of the grid pattern.

This makes the decision between the normalized gradient descent method and the
Adam method. Both can be considered due to the almost similar high power con-
version efficiency η achieved with their grid patterns. But since the Adam method
converges 466.4 sec faster, this optimizer is used for further optimizations.

2.3.4 Implementation of the Adam Method

In the following, the implementation of the Adam method and the framework of
the optimization is given, which is used to optimize the density vector x for which a
maximum power conversion efficiency η is obtained. Extreme Numerics [29] library
has been used for mathematical operations.

The implementation of the Adam method in Listing 2.1 is based on the update rule
introduced in Section 2.3.2.2. Within the implementation, the through optimization
received density vector x is in Rn. So that the density vector x is in [0, 1]n, the
value of components less than 0 are set to 0 and the value of components greater
than 1 are set to 1. In Listing 2.2, the Adam method is included in the framework
of optimization. Within the framework of optimization, important parameters such
as the maximum number of iterations or the number of mesh points are specified.
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Then, the discretization discussed in Section 2.1 is performed. The initial guess
becomes the ith unit vector, where the external front contact is applied to the
ith element. According to the maximum number of iterations, the Adam method
updates the density vector x in each iteration.

Listing 2.1: Adam Method

1 private (Vector <double >, Vector <double >) Optimizer_Adam(
densityVector , gradient , previousGradient , iteration)

2 {
3 var d = 0.9 * previousGradient + 0.1 * gradient;
4 var h = 0.999 * previousGradient.ElementwisePow (2)
5 + 0.001 * gradient.ElementwisePow (2);
6 d /= (1 - Math.Pow(0.9, iteration + 1));
7 h /= (1 - Math.Pow (0.999 , iteration + 1));
8

9 var stepSize = 0.03;
10 densityVector = (densityVector + stepSize
11 * d.ElementwiseDivideInPlace(h.ElementwisePow (0.5)
12 + 1e-9)).MinInPlace (1).MaxInPlace (0);
13

14 return (densityVector , gradient);
15 }

Implementation of the Adam method in C# with Extreme Numerics Library [29].

Listing 2.2: Optimization Loop

1 //set max iteration
2 var maxIteration = 200;
3

4 // initialize mesh points
5 var numberPoints = 20000;
6 var points = EquidistantDistribution(numberPoints);
7

8 // create discretization
9 var mesh = VoronoiDiagram(points);

10

11 //set initial guess (only grid at external front contact)
12 var densityVector = new Vector.Create(numberPoints)

{0,...,0,1,0,...,0};
13

14 // initialize previousGradient
15 var gradient = new Vector <double >( numberPoints)
16

17 // Optimization loop , ends after max iteration
18 for (int iteration = 0; iteration < maxIteration; iteration ++)
19 var efficiency = FunctionValue(densityVector);
20 var gradient = CalculateGradient(densityVector);
21 (densityVector , previousGradient) =
22 Optimizer_Adam(densityVector , gradient ,

previousGradient , iteration)

Implementation of Optimization in C# with source code of simulation platform
twinPV [3].
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3 Modifications

At this point, one could claim to be done with the optimization. It is known how
to calculate the efficiency η, and it is also known how to determine the gradient
in order to optimize the density vector x, on which the grid pattern is based, with
gradient-based optimizers. For further optimization the Adam method is used with
the parameters from Section 2.3.2.2.

The first question that arises when considering the results from Section 2.3.2 is
whether the grid proposed there can really be used. The answer to this question is
most likely no. On the one hand, it must be possible to connect an external front
contact to the solar cell. This is provided by a contact pad discussed in Section
3.1.1. On the other hand, the grid must not have any interruptions, entanglements
or islands, i.e., isolated spots without a connection to the main structure. In the
Sections 3.1.2.1 and 3.1.2.2 a density filter and a method of image processing, the
Gaussian blur, are explained with which one obtains smoother grid patterns. [44]

To enable local optimization, it is common to keep certain elements constant and
to change only a fraction of all elements at once. The elements that are optimized
are located in a so-called batch. The batch size can be adjusted adaptively and the
selection criterion can vary. The performance of the selected optimizer presented
in Section 2.3.2 is compared in Section 3.2 with the same optimizer but this time
using the batch approach.

As mentioned in Chapter 2.2, the Solid Isotropic Material with Penalization (SIMP)
approach is used to interpolate the intermediate values of the density vector x dur-
ing the optimization process. In Section 3.3 different density functions are tested
and the advantages and disadvantages are discussed.

Usually, the initial guess of an optimization algorithm already determines the num-
ber of iteration needed until convergence and also the quality of the optimization.
There are many possibilities to set the density vector x as initial guess. One could
be the added contact pad or the currently used grid pattern. A good initial guess
can also be achievable by a nonlinear localization strategy. The results of setting
the initial guess with and without a local preoptimization are presented in Section
3.4.
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3.1 Technical Restrictions

As is so often the case, many simulation models cannot be completely transferred to
reality. This is because models often only cover a certain part of the problem. For
example, the previous optimizations of the grid pattern have only taken into account
where the external front contact has been located and how the power conversion
efficiency η has been calculated on a specified geometry. Apart from that, there
have been no technical restrictions in the optimizations carried out so far.

First, the model of a solar cell should be completed. To do this, a contact pad is
added. It will be seen that such a restriction is a big intervention in the optimization.
Furthermore, it must be possible to apply the grid to a solar cell in the laboratory.
For this reason, the grid components must meet certain criteria. Since these criteria
are not necessarily met even before adding the contact pad, a solution must be found.
An approach to solve this problem will be presented afterwards.

3.1.1 Contact Pad

It has been assumed that the external front contact can be represented by an element
obtained through the discretization. However, the discretization can be chosen
arbitrarily fine to get closer to reality. But the possibility to get the current from
outside exactly at this point becomes more improbable. In order to have enough
space to place the contact without damaging the solar cell, according to [45] a grid
area of approximately 800x500µm2 is placed at the location of the external front
contact, see Section 2.3 for geometry. Figures 3.1 and 3.2 show that an optimization
where the contact pad is added from the beginning and cannot be changed during
the optimization leads to a large intervention of the optimization behavior. In
Figure 3.1, the grid structures in the surroundings of the external front contact are
compared. On the left side the optimized surroundings of the external front contact
from Section 2.3.2 is shown and on the right side the contact pad as initial guess.

Figure 3.1: Comparison of optimized external front contact and contact pad.

Since the contact pad requires significantly more grid in this area, it is not surprising
that the optimization with the contact pad is different. To ensure that the contact
pad is not changed during optimization, the components of the density vector x
representing the contact pad are set constant to 1. Thus also the partial derivatives
with respect to these components are 0. Apart from the contact pad, the framework
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of optimization from Section 2.3.2 remains the same.

The result of this optimization can be seen in Figure 3.2. The obtained grid structure
unexpectedly looks similar to the one before adding the contact pad. Both patterns
have more or less three main grid arms from which further grid arms branch off. This
also means that the property of covering the solar cell with grid over a large area
and thus efficiently conducting the current from every corner has been preserved.

Figure 3.2: Result of the Adam method with contact pad before binarization on the
left and after binarization on the right.

Apart from the fact that the grid arms are much closer together in comparison
to the grid patterns in Section 2.3.2, another problem has arisen. The grid arms,
which should bring the current from the more distant parts of the solar cell to
the external front contact, do not have a direct connection. The contact pad is
completely isolated.

The power conversion efficiency η achieved with this grid pattern is 19.09%. And
so, after adding the contact pad, the efficiency is approximately 3 percentage points
worse than before.

The next step in the optimization would be to solve the problem with the isolated
contact pad. Fortunately, there are filters for this that can close the gaps.

43



3.1.2 Filtering

So far another problem of the optimized grid patterns is the way a solar cell gets its
grid coating. To apply the grid structure on a solar cell, masks are created through
which the material is coated. The manufacturing of these masks has its own limita-
tions. One of these limitations is that it is not possible to put on the mask in several
parts. This means that the mask must be available as a complete component. As a
result, no areas enclosed by grid are allowed. Likewise, it is not practical to apply
grid to areas that have no connection to the external front contact. In addition,
mask production is only feasible with great effort, which also results in high costs.
For this reason, grid structures are kept simple. However, the structures obtained
by optimization are anything but trivial.

By filtering, the grid structure can be smoothed. This can be done in two ways. On
the one hand, the filter can be included in the optimization, i.e., in each iteration,
and on the other hand, the density vector x can be manipulated between iterations.
In the first case, the derivative of the filter operation is included in the gradient cal-
culation. In the second case, the filtering is applied and the modified grid structure
is used as a new initial guess in the next iteration. Both filter methods are used
during optimization. This allows post optimization of the filtered grid pattern.

Hereafter, two filters are presented. One has been developed in the framework of
topology optimization, while the other comes from the field of image processing.

3.1.2.1 Density Filter

In the framework of topology optimization, density filtering was introduced by Bruns
and Tortorelli [46]. The basic idea of filtering is that the density of each element is
redefined as a weighted average of the densities in a neighborhood of the element
[44]. In the case of this thesis, it means that if one element on the solar cell has
grid, then the neighboring elements will be affected by it and their value in the
density vector x will increase. On the one hand, this is to prevent elements with
a grid from being enclosed by elements without a grid. In short, grid should only
be added where there is already grid in the surrounding area. On the other hand,
sometimes it can be enough to develop only one branch in an area of the solar cell.
An example are the dense main branches from Figure 3.2. In principle, it would
have been even better if there had been one main branch, which might be thicker,
but would develop more reasonable side branches. Depending on how the grid has
evolved in an area of the solar cell, a grid branch may be very thin if many inde-
pendent branches have evolved or more developed if there are few branches within
the area. Another reason to use filters is the possibility to create patterns without
squiggles.

44



The filter is applied before the density vector x is used for the calculation in each
iteration. When filtering, each component of the density vector x is reweighted
according to the following scheme [23],

x̃i =
1∑

e∈Ni

wie
·
∑
e∈Ni

(wie · xe) ,

where wie is a weighting function using the Euclidean distance of the ith element to
its eth neighbor. The effect of filtering depends on a given filterRadius. The density
of the ith element is affected by the density of a neighboring element mainly if the
distance between these elements is smaller than the filterRadius. In this thesis two
weighting functions are tested:

Linearly decaying function [46] wie = filterRadius− ‖xpose − xposi‖2

Gaussian distribution function [47] wie = exp

[
−1

2

(
‖xpose − xposi‖

2
2

σ2

)]

In the case of the Gaussian function σ2 is the variance. According to [48], the full
width at half maximum FWHM for a Gaussian function is calculated by

FWHM = 2 ·
√

2 · ln(2) · σ. (3.1)

The FWHM is invariant under translations and so it does not depend on the ex-
pected value xposi . The elements within the FWHM have a larger influence on the
distribution. Thus, the filterRadius can be defined as

filterRadius =
FWHM

2
.

After reformulation of equation (3.1), the variance σ2 can be written as follows:

σ2 =
filterRadius2

32 · ln(2)

Since the filter is used in every iteration, it is a fixed part of the calculation and
should therefore also be included in the gradient. The filter operation is performed
before the calculation and thus the previous gradient discussed in Section 2.3 is the
derivative of the power conversion efficiency η with respect to the filtered density
vector. Hence, the gradient with respect to the density vector can be written as,

dη
dx

=
dη
dx̃
· ∂x̃
∂x
,

where the components are calculated according to [23]:

dη
dxi

=
∑
j∈Ni

1∑
k∈Nj

wjk
wij

dη
dx̃j
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In the context of this thesis, the Gaussian distribution function is used as weighting
function and the filterRadius is equal to the average distance from mesh point to
mesh point and thus only the direct neighbors are included in the filtering. In
the case of 20389 elements the average distance from mesh point to mesh point is
approximately

d(pointi, pointj) ≈ 0.04mm.

For the optimization the Adam method from Section 2.3.2.2 and the contact pad
introduced in Section 3.1.1 are used. The resulting efficiency after optimization is
21.53% and the grid pattern can be seen in Figure 3.3.

Figure 3.3: Optimization with density filter and Gaussian weighting function.

Compared to Figure 3.2, it is noticeable that the gap at the contact pad could be
closed. The effect of filtering is, on the one hand, that no element can have a grid in
its neighborhood alone, and on the other hand that the width of a grid arm is equal
to the length of at least three elements. One on each side of the middle element.
Therefore, the grid arms have a minimum width of 0.12mm and are much thicker
than before. In order to reduce the width of the grid arms during optimization with
the density filter, the number of elements must be increased to reduce the length
of an element. Since this is associated with a more costly calculation, another filter
method is tested.
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3.1.2.2 Gaussian Blur

The way Gaussian blur from image processing is applied is quite different from the
filters developed in topology optimization, see Section 3.1.2.1. Unlike the presented
filter, here all elements are used for filtering the density of an element. Within this
thesis, the filter is not used in every iteration, but only after selected iterations. The
advantage is that if the optimizer gets stuck, it can be reset and find another grid.
By not including the filter in the calculation of the gradient, it is an interference with
the monotonically increasing evolution of the power conversion efficiency η during
the optimization. As a result, in the next iteration, many gray areas appears in the
surroundings of the grid pattern created up to that iteration as illustrated in Figure
3.4. This has the effect that, for example, two neighboring branches are pushed
together by the blur.

Figure 3.4: Iteration before and after Gaussian blur. The color code is reversed for
better visibility.

If the filter is applied, the components of the density vector are reweighted according
to this formula,

x̂i =
n∑
j=1

xj · exp

[
−1

2

(∥∥xposj − xposi
∥∥2

2

σ2

)]
,

where the variance σ2 is calculated as before:

σ2 =
filterRadius2

32 · ln(2)

To normalize the values, the filtered values of the density vector x̂ are divided by
the maximum of it:

x̃i =
x̂i

max(x̂)

With the parameters for the Adam algorithm from Section 2.3.2, the contact pad
added in Section 3.1.1 and applied Gaussian blur in iterations 18 and 50 with a
filterRadius of 0.08mm the resulting grid pattern is shown in Figure 3.5. The power
conversion efficiency η achieved with this grid pattern is similar to the efficiency
obtained with the Adam method in Section 2.3.2.2. In Section 3.1.1 it has been
shown that the addition of the invariant contact pad leads to a much worse power
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conversion efficiency η. With the help of Gaussian blur in iterations 18 and 50 a
similar power conversion efficiency η as before can be obtained, although the contact
pad has been added as initial guess. This indicates that this method is an effective
tool for optimization and should be used within further optimizations. The obtained
power conversion efficiency η is 22.08%.

Figure 3.5: Grid patter achieved from optimization with applied Gaussian blur in
iteration 18 and in iteration 50 before binarization on the left and after binarization
on the right.

3.2 Batch Optimization

Looking at the first iterations of the optimization with the framework presented at
the end of Section 3.1.2.2 in Figure 3.6, the question arises whether more clever
optimization can be done at the beginning.

Iteration 1 Iteration 2 Iteration 3
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Iteration 8 Iteration 15

Figure 3.6: First iterations of the optimization presented in Section 3.1.2.2. The
figures have been edited for better recognition. The coloring does not correspond to
the colorbar in Figure 2.6 and the different figures do not share the same coloring.

In the first iteration, the density of all elements except the density of the elements
in the surroundings of the contact area is increased because the entire solar cell
lacks grid. The change is not enough in the first iteration, so more grid is added in
the second. In the third iteration, more grid is added near the contact pad, while
grid is removed further away from the contact pad. The trend visible in the first 3
iterations continues, as can be seen in iteration 8, before grid arms slowly begin to
develop from iteration 15 onwards.

One way to prevent many elements from changing in the same direction in an
iteration is to not consider all elements at once. To do this, the elements are
divided into different batches Bi. A batch is a subset of the set of all elements
E. It is determined how many batches there should be, and then the elements
are randomly assigned to the batches until every element is assigned to a batch as
shown below.

The number of elements per batch m can be determined from the number of elements
n ∈ N and the number of batches b ∈ N:

m =
⌈n
b

⌉
Let Bi ⊂ E and Bi ∩Bj = ∅ for i 6= j, then

|Bi| =

{
m for i = 1, ..., b− 1

n− (b− 1)m for i = b.

The optimization is done in several steps, depending on how many batches {Bi}
there are. First the elements of B1 are optimized, then from B2 and so on, until
each batch has been optimized once, i.e., every element has been optimized. Only
then an iteration is over.
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Although an iteration becomes much more expensive, since the power conversion
efficiency η and the gradient have to be recalculated after each batch, the more
individual adjustments save some iterations in the end. A look at Figure 3.7 shows
that for the Adam method with 4 batches (AdamBatch), i.e, b = 4, grid arms
have already formed after iteration 3. The subtractive random number generator
algorithm is a pseudo-random number generator and is used to shuffle all elements
before assigning them to batches [49, Chap. 3.5].

Iteration 1 Iteration 2 Iteration 3

Figure 3.7: First iterations of the AdamBatch method.

The fact that this grid pattern has strong distortions plays only a small role, since
these can be smoothed with the help of a filter.

To perform an optimization with batches, the number of batches must be defined.
To keep the computational effort as low as possible, not too many batches should
be chosen, but on the other hand the batches should also have an influence on the
optimization. For this reason, four batches (b = 4) are used, each with a quarter
of the elements. To calculate the gradient for the batches, all elements that are not
in the current batch are set constant, so that their partial derivative is equal to 0
and they are not changed within the batch optimization. Since a large part of the
Jacobian matrix consists of zero elements, the matrix operations can be performed
much more cost-effectively than with a full batch.

The framework of optimization remains the same as before in Section 3.1.2.2. With-
out batches, the Gaussian Blur is applied in iteration 18 and 50, with batches in
iteration 6 and 16. The filter radius is 0.08mm both times. The grid pattern ob-
tained in this way can be seen in Figure 3.8. Remarkably, one grid arm goes directly
from the external front contact straight up and the other first goes to the side, but
then also goes straight up again. In addition, there are the little arms that tap the
current from the lower corners. The special thing about this grid pattern is that
this structure is similar to the currently used grid pattern, called "Labgrid". The
Labgrid has a horizontal grid arm, called bus bar, starting from the contact pad.
At the outer ends of this horizontal grid arm, one arm goes vertically upwards. At
each of the upper corners of the contact pad, one arm also extends upwards. Thus,
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the Labgrid has four grid arms. The Labgrid can be seen in Figure 4.1 (left).

Since the objective of this thesis is to produce a better grid than is currently being
used, it is promising that optimization will produce similar structures. On the one
hand, this means that the result of the optimization is known and therefore could
more easily get the approval to test the grid pattern in the lab. And on the other
hand, the optimized grid pattern differs from the Labgrid after all, which does not
make the optimization effort unnecessary.

Figure 3.8: Optimized grid pattern before binarization (left) and after binarization
(right) with the AdamBatch method.

Again the question arises which optimization method is the better one. Table 3.1
shows some details about the Adam method and the AdamBatch method. This
should help in deciding whether the batches are a useful extension.

Optimizer PCE η ∅ Runtime/It. No. of It. Total Runtime
Adam 22.08% 39.5 sec 193 7623.5 sec
AdamBatch 22.09% 146.3 sec 49 7168.7 sec
Labgrid 22.40%

Table 3.1: Comparison of the Adam method and the AdamBatch method with
Gaussian blur.

The AdamBatch method is used for the following optimizations. Not only the
slightly better result in shorter time speaks for this, but especially the achieved grid
structure. It is true that even with the Adam method, the entire solar cell is well
tapped. But with the AdamBatch method, the shortest paths are taken to reach
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the individual areas of the solar cell. This advantage leads to a further increase of
the power conversion efficiency η.

3.3 Solid Isotropic Material with Penalization

Looking at the grid patterns created so far, it is noticeable that the grid pattern
without the binarization has many gray areas. Although a threshold is used to
remove these gray areas, it does not give the best result. In the best case, the
optimization method converges in density vector x values of 0 and 1. This can not
be done through the optimizer. To achieve the goal of a binary density vector x
the calculation must be modified. More precisely the SIMP functions introduced in
Section 2.2 must be adapted.

These functions are intended to interpolate the objective function at x ∈ [0,1]n. To
ensure that at the end of the optimization the density of nearly all elements is in
{0,1}, the intermediate values should be penalized. This can be achieved by the
fact that elements with a density between 0 and 1 neither generate much current
nor conduct the current well.

The derivation of how to get the functions from Section 2.2 is performed using the
SIMP function for conductivity. The density function of the generated current is
basically only a vertical reflection. In principle, the interpolating function must
meet only two conditions:

SIMPcon(0) = 0

SIMPcon(1) = 1

This leads to a monotonically increasing function SIMPcon. If an exponential func-
tion is to be taken as the basis for interpolation, the following equations result:

SIMPcon(0) = a · eb·0+c + d = a · ec + d = 0

SIMPcon(1) = a · eb·1+c + d = a · eb+c + d = 1

A displacement along the x-axis is not desired, therefore c = 0 and this leads to:

SIMPcon(0) = a · 1 + d = 0⇒ a = −d
SIMPcon(1) = a · eb + d = 1

With a = −d follows:

a · eb − a = 1⇔ eb =
1 + a

a
⇔ b = ln

(
1 + a

a

)
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Hence, for interpolation these general formulas and their derivatives with respect
to the components of the density vector xi are used:

SIMPcon(xi) = q · eln( q+1
q

)·xi − q (3.2)
dSIMPcon

dxi
= q · ln(

q + 1

q
) · eln( q+1

q
)·xi

SIMPgen(xi) = p · eln( p+1
p

)·(1−xi) − p (3.3)
dSIMPgen

dxi
= −p · ln(

p+ 1

p
) · eln( p+1

p
)·(1−xi)

With the exponential function it is possible to interpolate an almost linear function,
but also a function with strong curvature through the boundary conditions. Figure
3.9 shows several possibilities of the parameters p and q. The center figure repre-
sents the SIMP functions used so far, compare Figure 2.1. In the leftmost image,
the penalty for intermediate values is very high. This can be seen from the fact that
in the ith element with density xi= 0.5 not much current is generated but also the
conductivity in this element is not very good. In contrast, on the right image, the
penalty for intermediate values is low. For the intermediate values one does obtain
good results.

p = q = 0.01 p = q = 0.1 p = q = 1

Figure 3.9: Influence of SIMP parameters p and q.

A value of 0.1 for p and q leads to a grid pattern, which has many gray areas, as
shown in Figure 3.8 (left). To get a mostly binary density vector x at the end of
the optimization some parameters are tested. The optimization that is performed
uses the Adam algorithm with the parameters from Section 2.3.2.2 as the optimizer.
In addition to this, the contact pad is added as initial guess according to Section
3.1.1. For a better optimization, four batches are also used and the Gaussian blur
is applied in iteration 10 and 20 with a filter radius of 0.08mm.

In the case of low parameters p = q = 0.01, the optimizer tends to avoid intermedi-
ate values. Although this is the desired result, since the final values should be 0 and
1, low parameters are not always suitable. At the beginning of the optimization,
much more grid is needed than is given by the contact pad. By avoiding interme-
diate values, the density of the elements quickly goes to 1, where the gradient is
positive. However, there the objective function has local minima because the lower
and the upper limit of the density vector x are more efficient than the intermediate

53



values to either conduct current or generate it. This leads to the fact that the grid is
no longer removed, resulting in thicker grid arms. The result can be seen in Figure
3.10. The power conversion efficiency η is 21.46%.

Figure 3.10: Resulting grid pattern with low parameters p = q = 0.01 before
binarization (left) and after binarization (right).

If the parameters p = q = 1, then for an element which has a density of approx-
imately 0.5 already relatively much current is generated and also the element can
conduct the current well. This leads to the fact that many thin grid arms are formed
and these are mainly gray as shown in Figure 3.11. Many arms are formed because
the loss of generated current is not high, even if there is a great amount of metal
on the solar cell and the grid arms are thin, because not much grid is needed to
conduct the current efficiently.

The problem here is that in the end the values of the density vector x are rarely at
0 or at 1. Thus the opposite of the desired effect is achieved. The binary final grid
pattern is obtained only at great loss of efficiency. Before setting the values to 0
and 1, one has an efficiency of 22.47% and afterwards only of 20.9%. However, it
must be taken into account that the 22.47% can never be achieved after binariza-
tion, since elements cannot generate much current and at the same time conduct it
efficiently. Nevertheless, it is clear that thin grid arms are better than thick ones.

Figure 3.11: Resulting grid pattern with high parameters p = q = 1 before bina-
rization (left) and after binarization (right).
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In summary, lower values for the SIMP parameters p and q lead to a binary grid
pattern that uses too much grid, while higher values cause thin grid arms, which
are non-binary. Based on this result, the following approach will be followed:

Within an optimization, a combination of low and high parameter values shall be
used to exploit the respective strengths.

Moreover, a variation of the SIMP parameter p has shown that it does not have
a very large influence on the efficiency. For this reason, only the parameter q is
further developed and p = 0.1 is fixed. In particular, two scenarios are interesting:

1. Creating many thin grid arms with a low value of q and then use a high value
of q to bring the relevant values of the density vector x to 0 and 1.

2. Using a high value of q first creates thick grid arms, where grid makes sense.
To reduce the amount of grid, then a low value of q is used.

To generate the results, different SIMP parameters are used. For the second ap-
proach, the parameter q for the SIMPcon function is set from low to high after a
certain number of iterations. This sequence does not work very well. In the end,
there are few thin grid arms, but the core problem of obtaining the smallest possible
efficiency difference when binarizing is not solved.

The results of the first approach obtained with different values for parameter q for
the SIMPcon function are listed in Table 3.2. Until the stated iteration, the pa-
rameter q1 is used. From then on the parameter q2. The difference ∆ of the power
conversion efficiency η before binarization and after binarization is given in the last
column.

q1 q1 Iteration q is changed PCE η ∆η last two iterations
1 1 0.01 20 21.51% -0.04%
2 1 0.01 50 21.74% -0.03%
3 1 0.01 70 21.81% -0.01%
4 0.1 0.01 20 21.61% -0.03%
5 0.1 0.01 50 21.97% -0.02%
6 0.1 0.01 70 22.11% -0.01%

Table 3.2: Comparison of SIMP parameter q changes within the optimization.

In each case, runs 1-3 as well as runs 4-6 have the same parameter values q1 and q2.
The only thing that changes within these groupings is after how many iterations
the parameter q is changed. A look at the column ’power conversion efficiency η’
provides that the grid patterns get better the later the parameter q is changed. The
reason for this is that the earlier the low value for q is chosen, the more likely one
ends up with the result of Figure 3.10. That is, the grid pattern consists of a few
thick grid arms. If the parameter q is not changed until iteration 70, the grid pattern
will have converged by then for parameter q1 and there will be minimal changes in
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power conversion efficiency η. By subsequently using the lower parameter q2, the
structure of the grid pattern is preserved and the only thing that actually changes
is the shift of intermediate values to 0 and 1. Since this way the density vector x
converges to a binary vector, a smaller loss of efficiency is also achieved by finally
setting the values to 0 and 1 using a threshold of 0.1.

From the experiment with a high and a low SIMP parameter q it is known that a
high value leads to several thin arms as shown in Figure 3.11. As the results of the
third run in the Table 3.2 show, with an initial high parameter value a less high
efficiency is achieved than with a medium parameter value as in the sixth run. The
reason for this is the number of grid arms formed for q = 1 and q = 0.1. Since the
resulting grid arms have approximately the same width, the low power conversion
efficiency cannot be explained by this.

In summary, with the SIMP parameter q = 0.1, the same number of grid arms as
the Labgrid has, are obtained. Moreover, if the parameter q is set to a low value
like 0.01 after converging for 0.1, the grid pattern is preserved, but the intermediate
values can be pushed to the boundaries 0 and 1. The result of an optimization built
according to this scheme can be seen in Figure 3.12. Except for very few places, the
grid patterns before and after binarization are identical.

Figure 3.12: Resulting grid pattern with a change of the SIMP parameter q as in
the sixth row of Table 3.2 before binarization and after binarization.

3.4 Initial Guess

At the beginning of the optimization, an initial guess of the density vector x is
needed. Basically, this can be any vector whose values lie between 0 and 1. How-
ever, it is often the case that the choice of an initial guess can influence the entire
optimization. Therefore, it makes sense to take a closer look at the initial guess.

So far, the contact pad, which must be part of the solar cell, has been used as
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the initial guess, i.e., the components of the density vector x representing this area
have the value 1. All other components have the value 0. With the contact pad, the
problem is that no contact have been made without a filter, compare Figure 3.2.
This actually already indicates a bad initial guess. An initial guess should lead the
optimization in the right direction to a better power conversion efficiency η. For
this reason, the currently used grid for solar cells in the laboratory, the so-called
Labgrid, will be tested first as initial guess. The idea is to keep the basic structure,
and only optimize what is necessary to get an even better grid.

The other approach considered in the following is a strategy for nonlinear localized
optimization [50]. This involves optimizing only a fraction of all elements and then
using this result as an initial guess for a global optimization. Within this thesis,
the direct surroundings of the external front contact is optimized and will be used
as initial guess.

3.4.1 Labgrid

The Labgrid can be composed of 4 straight pieces if only half of the cell is considered.
The set of positions creating the contour of the Labgrid can be represented as a union
of sets O = O1 ∪ O2 ∪ O4 ∪ O4 for Oi ⊂ Ω. Each subset Oi is the set of positions
(x,y) that form a straight grid arm. In Figure 3.13 (top left), the structure of the
Labgrid can be seen. If the mesh point of an element is within the set, this element
gets grid and thus the corresponding entry in the density vector x is 1. Because the
simplices are not adapted to the shape of the Labgrid and the intervals are partly
smaller than the simplices with the used number of points of 20389, the Labgrid
is not reproduced exactly. Due to this, the calculated power conversion efficiency
η of the Labgrid is only 21.52% which is significantly less than the 22.40% of the
original Labgrid. The original Labgrid has been created using image processing
software and is shown in Figure 4.1 (left).

As mentioned in the previous Section 3.3, if there is already much grid on the solar
cell and the density vector x consists only of 0 and 1, one ends up almost in a local
maximum. To give the optimization a new push, the values are set down to 0.08.
The value 0.08 is nearly the same value which is also used as the threshold at the
end of the optimization, see Figure 2.3. This is the value at which the element
tends to have either grid coating or no grid coating. After the density of an element
increases or decreases through optimization, the preferences of an element rarely
change. Therefore, the value 0.08 is suitable to heuristically obtain any grid pattern
with the optimization, but the value is still high enough that the basic pattern of the
Labgrid can be recovered. This can be seen in the top right grid pattern in Figure
3.13 by the fact that many grid arms are formed after eight iterations and nearly
the original grid arms are restored at the end of the optimization in the bottom grid
patterns. The framework of optimization used to generate the results is the same
as the one at the end of Section 3.3.
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With a filter radius of 0.02mm of the Gaussian Blur the bottom left grid pattern
in Figure 3.13 is created. Here only a rounding of the corners occurs and the grid
arms next to the contact pad become a bit thicker. The resultig power conversion
efficiency η is 22.23%. If, on the other hand, a filter radius of 0.08mm is chosen, a
shift of the outer grid arm occurs as can be seen in the bottom right grid pattern.
The outer grid arm connects with the inner grid arm, while the lower crossbar
remains. This shortens the path for the outer arm and the current passes through
fewer elements. This results in a power conversion efficiency of 22.21%. Another
change are the tips of the grid arms. For both filter radii, squiggles occur. This
indicates that it is not clear how long these arms should basically be.

Figure 3.13: Top left: Labgrid. Top right: Iteration 7 of optimization.
Bottom left: filterRadius = 0.02mm and after binarization. Bottom right: fil-
terRadius = 0.08mm and after binarization.
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3.4.2 Nonlinear Localization Strategy

Unlike with the Labgrid as initial guess, the following method involves more effort.
A local optimization is to be carried out, which is more costly and which already
exhibits the basic structure of the global optimization. This should lead to the fact
that the actual global optimization can be accomplished in few iterations and thus
even the time up to the convergence can be reduced.

As before, only half of the solar cell is optimized and then mirrored. However, before
the optimization is performed, the grid is optimized only on a quarter of the half
solar cell. This would be the rectangle defined by [0,1.6]×[0,4.475]. The domain is
chosen for two reasons. Firstly, the area around the contact pad is indicative for the
whole optimization and secondly, the dimension of the problem can be reduced sig-
nificantly. The reason is that for each selected element the neighboring elements are
needed additionally. However, if one chooses a compact domain, one can disregard
all elements outside this domain. The result of this optimization should serve as an
initial guess for the global optimization. An example of this is the middle grid pat-
tern in Figure 3.14. In order not to lose the global effect in the local optimization,
the power conversion efficiency η of the half solar cell is calculated in each iteration,
so that the gradient can be calculated for the half solar cell. As before for the con-
tact pad or for the batches, the elements not considered in the local optimization
are set constant. Thus, their derivative is zero. In this way one achieves that the
many zero entries and their storage in the CRS format lead to an improvement of
the runtime. This is important, otherwise it would not be worthwhile to perform
two optimizations.

Both local and global optimization are carried out with the latest framework of
optimization from Section 3.3. The local optimization is performed until conver-
gence with subsequent binarization. Therefore, as for the Labgrid, a new impulse
is required that the global optimization does not start in a local maximum. This is
achieved by setting the values of the density vector x to a lower value. In the first
iteration of the global optimization, the density of each element is set to 0.08 if it
was previously 1.

If one looks in Figure 3.14 at the initial guess in the middle and the final result on
the right, it is noticeable that the approaches for the arms are further developed,
but remain in their basic form. This at least achieves that the required iterations
until a basic shape is formed in the global optimization are significantly reduced.
Nevertheless, it has not yet been possible to reduce the runtime using the nonlinear
localization strategy.

Unfortunately, too much grid is applied in the local optimization due to the lack of
grid on the entire cell. This results in a tighter grid pattern design and thus in a
worse power conversion efficiency η of 22.04%.
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Figure 3.14: Initial guess for local (left) and global (center) optimization and
achieved grid pattern.

Comparison Initial Guesses

The initial guess with the nonlinear localization strategy is significantly worse than
the initial guess with the Labgrid according to previous results. To make the non-
linear localization strategy work better, one would probably have to readjust the
timing of the Gaussian blur and also change the SIMP paramter q for conductiv-
ity differently within the local optimization than within the global optimization.
Furthermore, the local area which will be optimized first can be chosen indepen-
dently from the geometry. For example, in a first iteration a loss analysis can be
performed to find out in which elements of the solar cell the most efficiency tends
to be achieved. The local optimization could then be performed on these elements.

In contrast, the Labgrid is simple to implement and provides a very good power
conversion efficiency η immediately. Since there is almost no difference in terms of
efficiency between the two options with different filter radii, the larger filter radius
with 0.08mm is adopted as the default settings in addition to the Labgrid as initial
guess. The reason for this is that there is a greater change of the initial grid pat-
tern with the larger filter radius and these changes can have an additional effect as
the number of mesh points increases. Seen from another perspective, it is already
foreseeable how the Labgrid will change with an increasing number of mesh points
if the filter radius remains small and is therefore not be investigated further.

3.5 Implementation of Topology Optimization

After all methods used for the optimizations have been presented in Chapter 3, the
implementation from Section 2.3.4 will be extended with them. The contact pad,
which is not changed during optimization, has been added. This is initialized in
lines 9-16 in Listing 3.1. Moreover, the Labgrid is used as the initial guess, which
leads to a very high power conversion efficiency η (lines 22-27), see Section 3.4. In
lines 36 and 40-43, the SIMP approach presented in Section 3.3 is implemented.
The Gaussian blur which is used to get out of a local maximum and thus leads to
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straighter grid arms is implemented in line 46. Finally in line 48-57, the approach
presented in Section 3.2 is used, where the Adam method is no longer applied to
the whole density vector x, but only to subsets.

Listing 3.1: Optimization Loop

1 // initialize mesh points
2 var numberPoints = 20000;
3 var points = EquidistantDistribution(numberPoints);
4

5 // create discretization
6 var mesh = VoronoiDiagram(points);
7

8 //set fixed elements (contact pad C)
9 var densityVector = new Vector.Create <double >( numberPoints);

10 var fixedElements = new Vector.Create <bool >( numberPoints);
11 for (var meshPoint.position in mesh)
12 if (meshPoint in C)
13 {
14 densityVector[meshPoint.index] = 1;
15 fixedElements[meshPoint.index] = true;
16 }
17

18 //set initial guess (Labgrid O)
19 for (var meshPoint.position in mesh)
20 if (meshPoint in O)
21 densityVector[meshPoint.index] = 1;
22

23 //set the values of the density vector to 0.08
24 SetNonZeroValuesToLowerValue(densityVector);
25

26 // initialize previousGradient
27 var gradient = new Vector <double >( numberPoints)
28

29 //set max iteration
30 var maxIteration = 100;
31

32 //set SIMP parameter p
33 SIMP_GeneratedCurrent = 0.1;
34

35 // Optimization loop , ends after max iteration
36 for (int iteration = 0; iteration < maxIteration; iteration ++)
37 if (iteration < 70)
38 SIMP_Conductivity = 0.1;
39 else
40 SIMP_Conductivity = 0.01;
41

42 if (iteration == 10 || iteration == 20)
43 densityVector = GaussianBlur(densityVector , filterRadius

= 8e-5)
44

45 var Batches = CreateBatches(densityVector , b = 4);
46 fixedElements_Contactpad = fixedElements.Clone ();
47 for (var batch in Batches)
48 fixedElements[new Range.All] = true;
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49 fixedElements[batch] = false;
50 var efficiency = FunctionValue(densityVector);
51 var gradient = CalculateGradient(densityVector ,

fixedElements);
52 (densityVector , previousGradient) =
53 Optimizer_Adam(densityVector , gradient ,

previousGradient , iteration)
54 fixedElements = fixedElements_Contactpad.Clone();

Implementation of Optimization in C# with source code of simulation platform
twinPV [3].

62



4 Proposal of a New Optimized Grid
Pattern

The main objective of the thesis is not only to build an optimization, but also to
create a new grid pattern proposal with the help of this optimization.

For this purpose, this chapter first presents the Labgrid, which is the grid pattern
to be surpassed. In contrast to the Labgrid as initial guess, compare Section 3.4.1,
where the Labgrid is represented as best as possible on a given mesh, this time the
contour of the Labgrid is created exactly by pairs of mesh points as in Section 2.2
the boundary of the solar cell. This results in an accurate representation of the
Labgrid.

Afterwards, the methods which are to be finally used for the optimization are sum-
marized and applied in the correct order. These methods are then used to ultimately
optimize a grid pattern to be more effective than the Labgrid. Therefore only the
number of mesh points is varied.

4.1 Realistic Labgrid

The currently used Labgrid was created with the help of a spatially resolved simula-
tion and a finite element method [51, 52, 53, 54]. Additionally, various assumptions
were made. For example, no matter where current is generated on the solar cell,
the path to a good conductor should never be more than 1mm away. The decision
to set the length of the path to a maximum of 1mm is based on empirical values,
according to which the efficiency becomes worse if the electrons have to flow more
than 1mm in the poorly conducting TCO. By the geometry of a solar cell, the
number and the length of the individual grid arms were thus determined. Hence,
the distance between the outer grid arms and the edge of the solar cell is half the
distance between the individual grid arms. Furthermore, this is also the distance
to the lower and upper edge. This way, each grid arm has its own area where the
generated current flows onto the arm. After construction, all areas are the same
size. In addition, the grid arms were designed to be very thin so that as much
sunlight as possible reaches the absorber.

Although many assumptions were made, the result of this grid pattern speaks for
itself. The power conversion efficiency η calculated under the same conditions as for
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optimization is 22.40%. In comparison, the maximum power conversion efficiency
η achieved so far with optimization was only 22.21%. The efficiency of the Lab-
grid must be surpassed, and in doing so, the assumptions in particular are to be
optimized.

4.2 Framework of Optimization

In the context of this thesis, several methods have been developed and tested, which
are now summarized to ensure that the best possible optimization can be performed.
The configuration of the solar cell is given in Table 2.2.

The first step of the optimization is to determine the number of mesh points to use
in order to discretize the solar cell with an area of 6.4mm × 7.95mm, see Section
2.3. A higher number is reflected in a better representation of a solar cell. Due
to lack of computer capacity it is not possible to use more and more points. For
this reason, the number of points is to be increased bit by bit in order to be able
to draw a conclusion as to how much potential would theoretically still be there by
increasing the number of mesh points.

After decomposing the solar cell into different simplices based on the mesh points,
compare Section 2.2, the elements on the solar cell that are invariable during the
optimization are set. In the case of this thesis, these are only the elements that
form the contact pad and their corresponding density is 1 as described in Section
3.1.1. The optimizer that can best maximize the power conversion efficiency η
before adding the contact pad is the Adam method, see Section 2.3.3, with the
same parameters as in Section 2.3.2.2 and is therefore used.

Next is the initial guess: The Labgrid, which was developed from experience, is
suitable as a good initial guess. Due to the fact that many assumptions were made
for it, which were certainly not the best, there is still much to optimize here. For
this reason and the already high efficiency, the Labgrid is used as an initial guess.
In order not to start the optimization in a local maximum, the densities, where grid
is present, are set to 0.08 as described in Section 3.4.1.

The framework conditions that determine the procedure of the optimization have
to be defined. To obtain a good grid pattern, there is no convergence criterion,
but a maximum number of iterations is set. The exact number of iterations will
be specified later. Basically, the optimization can be divided into four sections.
Gaussian blurs are applied at the end of the first and second sections, and the SIMP
parameter q for conductivity between the third and fourth sections. By choosing
the maximum number of iterations for each section large enough, one can be sure
that changes are not made until the previous optimization section has converged.

In other words, when the grid pattern does not change in retrospect, the Gaussian
blur with the filter radius 0.08mm is applied. Experience shows that this happens
after 10 iterations. But since there are still some impurities such as squiggles or
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close grid arms left, the Gaussian blur is used for a second time. This time, however,
no attention is paid to convergence. The reason for this is that if the Gaussian blur
is applied too late, some ’bad’ grid arms will have developed, while others will have
regressed. Also, the filter works better when as many elements as possible still have
grid. The Gaussian blur is used the second time in iteration 20. In Section 3.1.2.2
the Gaussian blur has been introduced.

As the series of experiments in the 3.3 section showed, the best result is obtained
by setting the SIMP parameter p for the generated current and, at the beginning,
also the SIMP parameter q for the conductivity to 0.1. This gives some thin grid
arms whose density is an intermediate value between 0 and 1. This is the basis
of the later final grid pattern, which is why there are no modifications until there
are no more significant changes between the iterations. This situation occurs after
70 iterations. Therefore, only then the SIMP parameter q for the conductivity is
set to 0.01. This ensures that the thin grid arms are preserved, but their density
becomes nearly binary in later iterations. The optimization process is allowed to
converge again before the density values are binarized using a threshold of 0.1. For
this purpose 30 iterations are provided. This results in a maximum number of 100
iterations. The termination error can be minimized by increasing the maximum
number of iterations.

The Adam method in combination with batches has turned out to be a more efficient
optimizer than the Adam method in terms of maximizing the power conversion
efficiency η and runtime as shown in Table 3.1. Consequently, this optimization
method is used to find the optimal grid pattern.

4.3 Final Grid Pattern

Based on the framework of optimization presented in the last section, a design
for a new grid pattern will be created. Different numbers of mesh points will be
considered to continue possible trends with an increasing number of mesh points.
This may allow a prediction of how the grid pattern would evolve if it would be
possible to choose an arbitrarily high number of mesh points.

In contrast to the previous optimization results, the grid pattern, which will be the
final result of this thesis, will be modified after optimization manually with a image
processing software. This means, for example, that the grid arms are straightened
where it seems that the distance on the solar cell should be covered as fast as
possible or the grid arms are made thinner where the arms are alternately thinner
and thicker as shown in Figure 3.13. After editing, the important points of the
edited grid pattern are reproduced by added mesh points similar to the boundary
of the design domain in Section 2.2 or the Labgrid in Section 3.4.1. Afterwards, a
mesh with the additionally mesh points is created by Voronoi diagram and is used
to recalculate the power conversion efficiency η.
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The final grid pattern is constructed using the designs of the optimized grid patterns
for 5000, 10000, 15000, 20000, 25000, 30000 and 40000 mesh points. The results for
each number of mesh points can be seen in Table 4.1. As the number of mesh points
increases, so do the system requirements. With the system presented in Table 2.2,
optimization with more than 40000 points is not possible.

Number of points Power Conversion Efficiency η Grid Pattern

10000 21.91%

15000 22.12%

20000 22.21%

25000 22.21%
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Number of points Power Conversion Efficiency η Grid Pattern

30000 22.23%

40000 22.29%

Table 4.1: Optimized grid patterns with different numbers of mesh points.

The basis for the new grid pattern is the result of the optimization with 40000 mesh
points. Starting from the contact pad, the new grid is constructed. A noticeable
feature of the optimization results is that a horizontal grid arm is always located
at almost the same height as the upper edge of the contact pad. This grid arm is
strongly developed in the optimization with 10000, 15000 and 30000 points with
the outer ends upwards. For this reason, such a grid arm is reproduced with the
image processing software, where the outer ends are higher than the contact pad.

In each optimization, it is noticeable that a thicker grid arm is formed, starting on
the inside of the top corner of the contact area. This varies in length until it splits
into two more grid arms. The distance from the contact pad to this bifurcation
is taken from the grid pattern that emerged at 40000 mesh points. One of these
created arms merges directly into the middle grid arm, which is already predefined
by the Labgrid. The other of the created grid arms continues as an extension of
the thicker grid arm starting at the contact pad to the outer grid arm, which is also
already given by the Labgrid. Within the construction the thicker grid arm has a
width of 0.045mm.

Another common feature of the optimized grid patterns is that at the top of the
vertical grid arms, tangles are created. This is most noticeable in the result of the
optimization with 40000 mesh points. At the end of these grid arms is another
bifurcation. One of the grid arms goes to the upper left while the other goes to the
upper right. The same behavior can be seen with the lower lateral grid arms of the
result of the optimization with 30000 points. A bifurcation may also occur there.
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This feature is also included in the construction of a new grid pattern.

The result of this construction can be seen in Figure 4.1 (right). Under the same
conditions as the original Labgrid, this grid pattern achieves a power conversion
efficiency η of 22.40%. The reason why the customized grid pattern design is 0.11
percentage points better than the optimized version with 40000 mesh points is
mainly because the grid arms are uniform in width and the straight grid arms save
metal, minimizing the area of shading on the solar cell. The grid arms have a width
of 0.030mm.

Figure 4.1: Labgrid on the left and the proposal of a new grid pattern on the right.
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5 Summary and Outlook

In Chapter 2, the calculation function has been set up and different optimizers have
been tested to see how they would handle this task. The first step, to calculate the
power conversion efficiency η, has been to divide the geometry of the solar cell, i.e.,
the design domain Ω, into finitely many simplices. To form the simplices around
the mesh points, a Voronoi diagram has been used. In order to perform a FEM, the
stiffness matrix has been assembled. For this, Maxwell’s equations have been used
to obtain an equation to describe the charge flows for each simplex depending on
its neighbors. From this, the nonlinear system of equations has been formed. The
system of equations has been reformulated into a root-finding problem, which has
been solved with the Newton-Raphson method. With the right-hand side of the
system of equations igen dependent on the solution vector u, the resulting power
pcell of the solar cell has been calculated. The ratio of the incident power of the
sunlight to the power from the solar cell is the power conversion efficiency η of a
solar cell. The accuracy of this calculation was investigated and verified by Mario
Zinßer [4]. Thus, the model can be taken for granted.

Based on this calculation, the grid pattern should be optimized so that the power
conversion efficiency η is maximized. In order to do this, an optimizer has been
needed. Since both the gradient-free and the second order optimizers require much
effort, only the gradient has been included in the optimization of the grid pattern.
The gradient of the power conversion efficiency η with respect to the density vector
x has been derived in Section 2.3. For this, however, a simplification has been made
to avoid having to solve a recursive problem. Nevertheless, the gradient could be
used for optimization.

In the next Section 2.3.2, several gradient-based optimizers have been investigated
and tested to see how well they apply to the grid optimization problem. Unfortu-
nately, the Quasi-Newton optimizer BFGS has not been successful. This does not
have to be a general statement, since only a library had been tried and thus it had
been not possible to adapt the optimization method individually to the problem.

Several variations and modifications of the gradient descent method have been tried.
These have converged in almost the same grid pattern with the exception of the
standard method with enormous step size. Since the Adam method has turned out
to be the most efficient optimizer, the optimization has been designed around this
algorithm.
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In the beginning of Chapter 3, constraints have been added to the grid pattern and
thus to the density vector x. This has ensured that the resulting optimized grid
pattern can actually be used in reality. This has included the addition of the contact
pad on the one hand, and on the other hand the removal of impractical deficiencies
of the grid pattern. This has been implemented in Section 3.1, completing the model
of a solar cell. After adding a contact pad, the result of optimization has been a
grid pattern that has led to a power conversion efficiency η of 19.09%. A gap has
been created around the contact pad during optimization, which is why the grid
arms have not been connected to the external front contact. In order to close this
gap and remove impurities such as squiggles, several filtering methods have been
presented. With the Gaussian blur a power conversion efficiency η of 22.08% has
been achieved.

As a result of the fact that there has been a significant change in optimization be-
havior due to the addition of the contact pad, a method for piecewise optimization
of the density vector x within an iteration step has been introduced in Section 3.2.
Instead of optimizing all elements in one step, they have been randomly divided
into batches. This has led to a better optimization behavior, because within one
iteration the density changes of the neighboring elements have been already con-
sidered. This has reduced the runtime until convergence and also has increased the
power conversion efficiency η to 22.09%.

Already in Chapter 2.2 an intermediate of the two options ’an element has a den-
sity of 0 and no grid’ and ’an element has a density of 1 and therefore a grid’ has
been allowed to guarantee a continuous optimization, which has been further ex-
plained in Chapter 3.3. This has been realized using the Solid Isotropic Material
with Penalization approach. Depending on how high the penalty has been chosen
for a density that is not allowed in practice, a different optimization behavior can
be enforced. In conclusion, the best result has been achieved by initially tolerating
an intermediate of no grid and grid and penalizing less, and towards the end trying
to achieve a binarization of the density vector x with a high penalization of the
intermediate values. After implementing this method, a power conversion efficiency
η of 22.11% has been achieved.

In the previous sections, only the adjustment of the density vector x has been dis-
cussed and optimized. The question of where to start with optimization has not yet
been addressed. In principle, three options have been presented. The first possibil-
ity has been to optimize the grid pattern starting from the contact pad, which must
be present in any case. The second possibility has been obvious: the optimization
will take place starting from the currently used Labgrid. The last possibility has
been the most elaborate method and, in contrast to the second method, allows a
grid pattern without specifications. Based on a local optimization with the contact
pad as initial guess, a global optimization has been performed afterwards. This
method is called nonlinear localization strategy. With the Labgrid as the initial
guess, a power conversion efficiency η of 22.21% has been achieved.
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All these presented methods have been combined in the Chapter 4 to create a grid
pattern which exceeds the achieved power conversion efficiency η of the Labgrid.
As a basis for constructing such a grid pattern, optimization has been performed
with different numbers of mesh points. Based on the resulting grid patterns with
increasing mesh points, the grid pattern has been modified using image processing
software and then has been re-imported as a density vector x to calculate the
power conversion efficiency η. This has once again significantly increased the power
conversion efficiency η to 22.40%. This is a similar high efficiency which has been
achieved with the Labgrid.

Considering that any improvement of power conversion efficency η is a success, it
can be said that the methods presented in Chapter 3 have worked and led to a
better result. Finally, with all methods together grid patterns have developed that
are competitive with the grid patterns currently in use.

In order to achieve even better grid patterns in the future, the following approaches
can be taken:

Basically, the batches introduced in Section 3.2 are a kind of nonlinear localization
strategy. Thus, only the two extremes have been used so far. First, optimization
has been performed on a few randomly distributed elements in each iteration, and
later optimization has been performed on a local domain of the solar cell. In the
first case, for example, the batches can be chosen to first optimize the elements
that actually have a large impact on the power conversion efficiency η. The division
could be designed based on the gradient. In the second case, instead of optimizing to
convergence, only the batches that are relevant can be optimized several iterations
at a time. With this approach, optimization can be focused on the maximum change
in power conversion efficiency η.

Often, with a higher resolution of the model, a better result is achieved. In the
case of this thesis, this would mainly correspond to increasing the number of mesh
points. As the number of points increases, the power conversion efficiency η rises,
as can be seen in Table 4.1. This in turn could produce an even more detailed grid
pattern with better efficiency. However, there will be an upper limit, since all the
current can never be dissipated.

Another possibility to get a better grid pattern is to construct a grid pattern based
on the results of the optimization without any special initial guess. This could be,
for example, the optimizations that start only with the contact pad. The problem
here has been that the grid arms cannot be straight to the same extent as when using
the Labgrid as initial guess. However, since this can be modified manually with an
image processing software, as described in Chapter 4, it is possible to improve the
result of these optimizations significantly.

Although it can be assumed that the constructed grid patterns will achieve similar
efficiency in the laboratory, it is still necessary to test these grid patterns in the
laboratory. This will be done in the laboratory of the ZSW in the future.
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