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ABSTRACT

This thesis investigates human-robot interactions focusing on theoretical
reasoning about a general formalism that is suitable to describe most HRI
systems. We belief that the question whether to ask the human for help or
not is a decision that should be made at the meta level. This work summa-
rizes the milestones in the literature that contribute to HRI, compares dif-
ferent MDP concepts to choose from and proposes a new formalism along
with several analysis’ on its properties.

1. INTRODUCTION

Technological advancements has always been a characteristic during the ongoing pro-
cess of human civilization. One of the main goals thereby is always automation. An
early example from ancient Rome is the aqueduct that transports drinking water from
natural sources directly to the cities. In the recent past of human history, industrializa-
tion had an huge impact on humanity and redefined the way how human live. Today,
we look forward to technical systems that do not only replace most manual labour, but
assist the human with intellectual work as well. Industry 4.0 [8] include cooperative
tasks solving between human and robot, where decision making and learning is a cen-
tral task of the robot. The human takes the role of an expert or teacher and provide the
agent(s) with useful data, which can be used to retrieve the objectives of a task. We as-
sume that the true objectives cannot simply be hard coded because for many task fields
it is impossible to do that in terms of problem complexity. Often, objectives involve hu-
man needs, and this can already be as complex as the human psychology, which itself
is by far not fully understood.

The problem of retrieving the reward function (in Reinforcement Learning terminol-
ogy) is well studied by the name of Inverse Reinforcement Learning. While the Sections
2 and 3 can be skipped by the readers that are familiar with Reinforcement Learning,
Section 4 provide a summary of some milestones in the research on Human-Robot Inter-
action which originates from the research on Inverse Reinforcement Learning. Sections
6 and 7 compare an formalism called RAP that is capable of describing multi-agent real
time systems to others and show that it is most general and suitable for our purposes.
In Section 8 we propose our own formalism which is a two layered meta process that
decides to act or to collect meta data (e.g. from human). The execution layer is a semi
Markov process for which we want to find the unknown components like the reward
function. The meta layer is a special RAP, where the set of decisions are predefined. A
one-step-look-ahead algorithm is presented and analysed. A summary and discussion
finishes this work in Section 9.

2. NOTATIONS

• P, probability distribution.
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• E, expectation over distributions.

• O, O-notation according to [Landau, 1924].

• F,N,Z,R, binary, natural, integer and real numbers. 0 ∈ N.

3. BACKGROUND

This section presents some mathematical concepts used throughout the field of study
of Reinforcement Learning.

3.1. BAYES’ RULE

Let (Ω,F ,P) be a probability space, A ∈ F with P > 0 and (Bi)i∈I ⊂ F a Partition of Ω.
Then for all i ∈ I it holds

P(Bi | A) =
P(A | Bi) · P(Bi)

P(A)
(3.1)

=
P(A | Bi) · P(Bi)

∑

k∈I P(A | Bk) · P(Bk)
(3.2)

We yield the second line using the rule of total probabilities [? ].

3.2. MARKOV DECISION PROCESS

General decision making take into account the full history of observations. The Markov
property assumes that all information that is needed is encoded in the current state, re-
ducing the problem complexity drastically. It turns out that many environments can
be modelled well under this assumption. Note that states can be arbitrarily composed
with Cartesian products of sets, making a Markov state to be able to represent more
than merely a scalar value. Formally, a Markov Decision Process (MDP) [14] can be de-
scribed as a tuple

M = (S,A, T, γ, S0, R) (3.3)

with S = {si}
n
i=1, the set of states, A = {ai}

m
i=1, the set of actions, T : S × A → S, the

state transition function, γ ∈ [0, 1], the discount factor, S0 ⊆ S, the set of initial states,
R : S → R, the reward function. We can easily express stochasticity of the environment
by turning T and/or R into stochastic functions; for that, define distributions P(s′ |
s, a) and P(r | s) respectively. The discount factor γ penalizes reward collected in the
far future during the planning phase. For many infinite horizon problems, it is even
necessary for converging to a fixed plan (e.g. Q-function).
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3.2.1. PARTIAL OBSERVABILITY

In many environments the state is not fully observable for the agent. In order to model
this situation, we can extend the MDP formulation by the notion of partial observability
[14]. After completion of an action, the agent receives an observation signal o instead of
the next state s′ with probability P(o | s′). The agent can use this information to update
its belief b(s′) over states, which is a probability distribution over all states, by

b′(s′) = αP(o | s′)
∑

s′

P(s′ | s, a)b(s) , (3.4)

using its prior b(s). α is a normalization constant to normalize the distribution to 1. For
prediction, we need to sum over all possible weighted observations, i.e.

P(b′ | b, a) =
∑

o P(b
′ | o, a, b)P(o | a, b)

=
∑

o P(b
′ | o, a, b)

∑

s′ P(o | s
′)
∑

s P(s
′ | s, a)b(s) .

(3.5)

Formally, a Partial Observable Markov Decision Process (POMDP) is a tuple

M = (S,A, T,Ω, O, γ, S0, R) (3.6)

where Ω is the set of all possible observations and O : S → Ω the observation function.

3.2.2. DISTRIBUTED MULTI-AGENTS

[Bernstein et al., 2000] formulated a generalization to POMDPs for multi-agent envi-
ronments that do not share information, so that exchanging information is associated
with some cost. This formalism is called Decentralized Partial Observable Markov Decision
Process (Dec-POMDP). Given m agents each with their own observations, the reward
function, the state transition probabilities and the observations are as follows:

R(s, a1, ..., am),
P(s′ | s, a1, ..., am),
O(s) ∼ P(o1, ..., om | s, a1, ..., am) .

(3.7)

They showed that finite horizon Dec-POMDP problems are NEXP-hard, where NEXP =
NTIME(2n

c
). Since P 6= NEXP, there exists no polynomial algorithm to solve Dec-

POMDP, probably not even exponential algorithms as most people believe P 6= NP.

3.2.3. CONTINUOUS TIME

Furthermore we can extend any MDP formalism with continuous time were each action
a performed in a certain state s takes a certain amount of time τ with probability P(τ |
s, a). This is called a semi-Markov decision process (sMDP). Things get more interesting
when sMDPs are used for multi-agent tasks. In this case, it is not clear what a "Markov
step" exactly is and thus needs to be defined in a way that is consistent with the Markov
assumption. One of these models is described in Section 4.8.
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3.3. BELLMAN EQUATION

The optimality principle of Bellman, first presented in [Bellman, 1956], says that solu-
tions from certain optimization problems can be constructed by partial solutions. In the
case of Reinforcement Learning, where we try to maximize the expected return, solu-
tions are sequences of actions. Each sequence {(si, ai, ri)}Mi=0 generated by a policy π

can be constructed by their sub-sequences, showed by

V π(s) = Eπ

[

r0 + γr1 + γ2r2, ... | s0 = s
]

= Eπ [r0 | s0 = s] + γEπ [r1 + γr2+, ... | s0 = s]
= R(s, a) + γ

∑

s′ P(s
′ | π(s), s)Eπ [r1 + γr2+, ... | s1 = s′]

= R(s, a) + γ
∑

s′ P(s
′ | π(s), s)V π(s′).

(3.8)

Note that if π = π∗ is the optimal policy, then V π = V π∗

is optimal as well.

3.4. FIRST-ORDER LOGIC

First-Order Logic (FOL) [15] is a very expressive model to describe problems based on
mathematical logic principles. It extends Propositional Logic (or Boolean Logic) by set-
ting relations between objects and make general statements for all values of some vari-
able xi or stating the existence of some objects to fulfil a statement. It is the best to define
syntax and semantics separately.

3.4.1. SYNTAX OF FOL

A variable has the form xi, where i = 1, 2, 3, ... . A predicate (or relation) is denoted as P k
i

and a function as fki with i = 1, 2, 3, ... as the distinctive index and k = 0, 1, 2, ... as the
adicity. Adicities can be neglected if it follows from the context. First we define a term
in an inductive manner:

1. Every variable is a term.

2. If f is a function symbol with adicity of k and t1, ..., tk are terms, then f(t1, ..., tk)
is a term.

Here we also include functions with adicity of 0. In such a case, the brackets can be
omitted. We call those functions constants.

Now we can define what a (FOL) formula is, also inductive, as follows:

1. If P is a predicate with adicity of k and t1, ..., tk are terms, then P (t1, ..., tk) is a
formula.

2. For each formula F , ¬F is a formula.

3. For all formulas F and G, (F ∧G) and (F ∨G) are formulas.

4. If x is a variable and F is a formula, then ∀xF and ∃xF are formulas.
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Atomic formulas are those that are defined according to 1. If F is a formula and it is part
of another formula G, then F is a sub-formula of G.

For variables used in formulas, we distinguish between bound and free variables. A
Variable x in F is bound if F contains a sub-formula G that has the form ∀xG′ or ∃xG′;
they are called free otherwise. Note that by this definition, one single variable can
have both free and bound occurrences in a formula. A formula without free variables
is called a sentence. The symbols ∀ and ∃ are called universal quantifier and existential
quantifier respectively.

EXAMPLE One example of an FOL formula is a criteria for the Markov property:

For all A ∈ S and all s, t ∈ I with s < t, P(Xt ∈ A | Fs) = P(Xt ∈ A | Xs).

The set of predicates used here is {∈, <,=}, where each of them can be written in our
standard notation as binary predicates {P 2

1 , P
2
2 , P

2
3 }. The same can be done for the two

probability distribution functions, which results in two binary functions {f21 , f
2
2 }. The

full formula written in the standard notation is then:

∀x1∀x2∀x3(((((P
2
1 (x1, x4) ∧ P

2
1 (x2, x5)) ∧ P

2
1 (x2, x5)) ∧ P

2
2 (x2, x3)) ∧ P

2
1 (x6, x1)) ∧

P 2
3 (f

2
1 (x6, x7), f

2
2 (x6, x8))) .

As we can see, the standard notation can be quite lengthy and hard to read (but makes it
machine-parsable). Therefore it makes sense to introduce own symbols to write down
FOL formulas. Typically, for variables we use x, y, z, ..., for predicates P,Q,R, ..., for
functions f, g, h, ... and for constants a, b, c, ... .

Until now, formulas are only some strings of symbols without any meaning. With the
semantics definition, we interpret function symbols as functions and predicate symbols
as predicates based on their underlying sets each. Additionally, some free variables
needs to be interpreted as an element of such sets. The semantics is defined next.

3.4.2. SEMANTICS OF FOL

A structure is a tupleA = (UA, IA), whereUA is an arbitrary but non-empty set, denoted
as the universe of A. IA is a mapping that maps predicate and function symbols and
variables to actual useful mathematical objects. The domain of IA is therefore the set of
all these symbols, i.e. {P k

i , f
K
i , xi | i = 1, 2, 3, ... and k = 0, 1, 2, ...}. More precisely, IA

maps

• each k-ary predicate symbol (that lies in the domain of IA) to a k-ary predicate
over UA,

• each k-ary function symbol (that lies in the domain of IA) to a k-ary function over
UA,

• each variable x (if IA is defined over x) to an element in UA.

Instead of writing IA(P ), IA(f) and IA(x), we abbreviate with PA, fA and xA. Let F be
a formula and A a structure, then A is fit for F if the domain of A covers all predicate
and function symbols and all free variables in F .
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EXAMPLE For a formula F = ∃xP (f(x), y) we choose the following fitting structure
A = (UA, IA) with

UA = N,

PA = {(m,n) | m,n ∈ UA and m > n},
fA = smallest prime factor over UA,

yA = 2.

Under this structure, F evaluates to true (for instance x = 21, then f(21) = 3 and 3 > 2),
but it might not be the case for other structures.

We continue with defining the value of a term. Let F be a formula and A a fitting
structure. Then each term t appearing in F has a value A(t) defined inductively:

1. If t is a variable (say t = x), then A(t) = xA.

2. If t has the form t = f(t1, ..., tk), where t1, ..., tk are terms and f is a k-ary function
symbol, then A(t) = fA(A(t1), ...,A(tk)).

In the same way we define the truth value of a formula F under structure A. We again
use the notation A(F ) to denote the value.

1. If F has the form F = P (t1, ..., tk), with the terms t1, ..., tk and the k-ary predicate
P , then

A(F ) =

{

1, if (A(t1), ...,A(tk)) ∈ PA

0, else
(3.9)

2. If F has the form F = ¬G, then

A(F ) =

{

1, if A(G) = 0

0, else
(3.10)

3. If F has the form F = G ∧H , then

A(F ) =

{

1, if A(G) = 1 and A(H) = 1

0, else
(3.11)

4. If F has the form F = G ∨H , then

A(F ) =

{

1, if A(G) = 1 or A(H) = 1

0, else
(3.12)

5. If F has the form F = ∀xG, then

A(F ) =

{

1, if for all d ∈ UA it holds: A[x/d](G) = 1

0, else
(3.13)

6



6. If F has the form F = ∃xG, then

A(F ) =

{

1, if there exists at least one d ∈ UA such that: A[x/d](G) = 1

0, else
(3.14)

The notation A[x/d] is defined as a new structure A′ that is everywhere identical with
A, except for the definition of xA

′

, which is defined as xA
′

= d, where d ∈ UA′ = UA. It
does not matter whether the original interpretation IA is defined over x or not.

3.4.3. FOL COMPLEXITY

More expressive models (like Second-Order Logic) are not needed because many prob-
lems, even the Satisfiability problem, are undecidable in FOL already. In fact, subclasses
of FOL are used more often in practical computer science, for example logic program-
ming in PROLOG.

3.5. RELATIONAL MDP DOMAINS

The easiest way to describe components of a MDP is using propositional objects, where
everything is attribute-valued. The consequence is that any solution based on Q-
learning needs to build a huge lookup table storing values for the entire state-action
pair space. Additionally, if altering the problem instance slightly, the whole table must
be relearned. [Džeroski et al., 2001] combines Inductive Logic Programming and Rein-
forcement Learning to achieve a more flexible and general representation, where MDP
components are described in FOL. Typically, a restricted form of FOL is used because
the satisfiability problem for FOL is already semi-decidable. (For comparison: It is NP-
complete for propositional logic.) Now the Q-values can be encoded sparsely in Deci-
sion Trees, that has furthermore the property of abstracting from concrete objects and
using variables to encode knowledge about classes of objects, which is more general
and reusable.

Since the state consists of all constants and truth values of predicates, it can be for-
mally defined as the structure A (Section 3.4). A state transition in our reinforcement
learning setting means to change the structure, transforming it into another structure
A′, where in fact only the mapping IA changes; the universe UA is typically fix, e.g.
Nn for discrete domains and Rn for continuous domains. The only mappings that ac-
tually change are those for variables xi. For example one of the variables could be the
position of the robot’s endeffector. Functions (like calculating Euclidean distances) do
typically not change. Predicates also do not change, as the uncertainty of its truth value
is already encoded in the uncertainty of variable values. For example, a predicate that
tells, whether an object is above another object should be designed correctly from begin
with. The uncertainty of its truth value comes from the uncertainty of the exact position
of the objects.

In order to test FOL for reinforcement learning, two kinds of experiments were done
in [Džeroski et al., 2001]. In the first experiment, a decision tree was learned from one

7



problem instance and used for different problem instances. In the second experiment,
a decision tree was learned while the problem size increased multiple times during the
learning phase. A near optimal policy could always be learned which shows the gener-
ality of using relational domains. But there are differences compared to propositional
domains. One advantage is that problem instances of large size can be learning more
efficiently given a solution for smaller problems. The disadvantage, however, is that
the knowledge base needs to be tuned well when the task to be solved is very complex,
otherwise the results are not guaranteed to converge to the desired outcome regardless
of how much computation time is used. I personally expect that relational domains will
be used for all reinforcement learning problems as soon as "predicate crafting" is well
studied.

4. LITERATURE REVIEW

This section gives an overview of the development and milestones of Inverse Reinforce-
ment Learning (IRL) methods. A novel class of problem was then formulated by com-
bining IRL with cooperative learning and task solving. Cooperation was also studied
in the field of Reinforcement Learning (RL) in terms multi-agents that perform actions in
a concurrent manner. For each of these methods I summarize the problem formulation,
the solutions and the results respectively. Although the basic idea about the problem of
IRL are all the same, the assumptions made about the system might differ.

4.1. INVERSE REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a large class of problems where the tasks is to find an
optimal behaviour of an agent acting in an environment by maximizing the return,
or, if stochasticity is involved, the expected return. Subclasses of RL typically involve
modifications of the system components, for example adding stochasticity or partial ob-
servability of state transitions. The common assumption thereby is that the reward can
always be observed. This information is crucial since there is no other way to decide
which behaviour is better or worse. The problem around this situation is that the re-
ward function is not naturally given but hard coded by the system designer. In practice it
can be difficult to craft the reward function that is precise and robust enough to suit our
needs. In fact the agent can even behave noxiously if the reward function is wrongly
specified. Imagine we want to turn off a robot because it starts to cause some damage.
But the robot prevents us from doing so because it learned that turning it off prevents
it from collecting additional reward. Value Alignment is the keyword nowadays to refer
to this issue.

Therefore [Russell, 1998] first formulated a problem where the goal is to recover the
reward function of the system of interest after observing the behaviour of an expert. Un-
der the assumption of optimization it is well defined and can be written as the dual
problem of unsupervised Reinforcement Learning, thus naming it Inverse Reinforce-
ment Learning. In the following I present the first algorithms proposed by [Ng et al.,
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2000] to solve IRL.

4.1.1. PROBLEM FORMULATION

Given:

• a MDP with unknown reward function R(s).

• {(si, π
∗(si), si+1)

d
i=1 | d ∈ D, D ⊂ N, D finite}, a set of demonstrations where π∗

denotes the experts behaviour.

• optionally: {(m(si))
d
i=1 | d ∈ D, D ⊂ N, D finite}, any measurements from some

sensors.

• if available: P(s′ | s, a), the model of the environment.

Determine:

• R(s), the reward function being optimized.

There will be many degenerate solutions found. Use heuristics to find an unique solu-
tion.

4.1.2. SOLUTIONS

SIMPLE CASE The first algorithm solves the problem where the transition model
P(s, a, s′) and the experts policy π∗(s) is fully known. Also, the state space is finite.
The following optimality criteria is used to find a solution space, where all solutions
within that space is consistent with the given behaviour.

Theorem 4.1. Let |S| < ∞, A = {a1, ..., ak}, P a probability transition matrices and γ ∈
(0, 1) a discount factor. Then

(P π(s) − P a)(I − γP π(s))
−1R � 0 (4.1)

In order to find a solution that is not degenerated, they prefer solutions for which the
best action differentiates the most from the second best action, thus adding the objective
term:

∑

s∈S

(

Qπ(s, π(s)) − max
a∈A\π(s)

Qπ(s, a)
)

(4.2)

They also prefer smaller simpler rewards, thus adding the following penalty:

− λ‖R‖1 (4.3)

While λ can be hand-tuned, one can also compute a certain λ0 as large as possible such
that it is just small enough to prevent R(s) = 0, ∀s ∈ S.

The resulting ILP problems is then as follows:

max
∑N

i=1mina∈A\π(s){(P π(s)(i)− P a(i))(I − γP π(s))
−1R} − λ||R||1

s.t. (P π(s)(i)− P a(i))(I − γP π(s))
−1R � 0 ∀a ∈ A \ π(s)

|Ri| ≤ Rmax, i = 1, ..., N

(4.4)
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INFINITE STATE SPACE Now they model the state space as S = Rn for sake of cor-
rectness. In order to optimize efficiently, they use linear function approximations to
describe the reward function:

R(s) = α1φ1(s) + ...+ αdφd(s) (4.5)

Linear programming can be used here since linear parameters are optimized. Also,
because each φ1(s) induces a value function V π

i (s) and because of the linearity of ex-
pectations, the resulting value function is:

V π(s) = α1V
π
1 (s) + ...+ αdV

π
d (s) (4.6)

The new optimality criteria is now:

Es′∼P (s′|s,π(s))[V
π(s′)] ≥ Es′∼P (s′|s,a)[V

π(s′)], ∀a ∈ A \ π(s) (4.7)

This results in an infinite amount of constraints to check, but in practice only a finite
subset S0 ⊂ S is chosen for optimization. A second problem arises as they use linear
function approximation. The true reward function can in general not be expressed.
They solve this by relaxing the constraints and add a penalty if a constraint is not met.
The resulting linear program is:

max
∑

s∈S0
mina∈A\π(s) p(Es′∼P (s′|s,π(s))[V

π(s′)]− Es′∼P (s′|s,a)[V
π(s′)])

s.t. |αi| ≤ 1, i = 1, ..., d
(4.8)

where p(x) = x if x ≥ 0 and p(x) = 2x if x ≤ 0 is the penalty mechanism with a weight
of 2. This value is heuristic as experiments have shown that the result does not change
notably by increasing the penalty.

UNKNOWN REWARD FUNCTION In this more realistic assumption, only trajectories
from the policy can be observed while the policy itself is not given. There is no need
to explicitly model the MDP. The solution does not find an optimal policy for a given
reward function, only an approximation. Let S0 be the set of initial states. The goal is to
find R such that the policy maximizes Es0∼S0 [V

π(s0)]. W.l.o.g. they assume that s0 ∈ S
is the only start state. As in the previous algorithm, R and V are described by a linear
function approximation. They use Monte Carlo simulations to estimate V as follows.
For each trajectory with state sequence (s0, s1, ...), a single component is estimated by

V̂ π
i (s0) = φi(s0) + γφi(s1) + γ2φi(s2) + ... (4.9)

and then averaged over all trajectories. And the resulting value functions is

V̂ π(s) = α1V̂
π
1 (s) + ...+ αdV̂

π
d (s). (4.10)

The algorithm is an iterative algorithm that finds a new reward function Ri along with
a new policy πi optimizing Ri. It starts with computing value estimates as described
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above for the experts policy π∗ and for a random policy π1. In each iteration, given a
set of policies {π1, ..., πk} they optimize over the following criteria

V̂ π∗

(s) ≥ V̂ πi(s), i = 1, ..., k, (4.11)

using the fact that the observed behaviour is optimal, with the following linear program

max
∑k

i=1 p
(

V̂ π∗

(s)− V̂ πi(s)
)

s.t. |αi| ≤ 1, i = 1, ..., d
(4.12)

and obtain a new reward function R = α1φ1 + ... + αdφd and a new policy πk+1 that
maximizes V π(s0) under R. Finally, add πk+1 to the set of policies to finish the current
iteration.

At each iteration a better policy can be found. Iterate until the solution satisfies your
needs.

4.1.3. RESULTS

The methods were successfully applied on small discrete and continuous problems. For
the iterative algorithm, it could be shown that it converges to the true reward function.

4.2. LINEAR FUNCTION APPROXIMATION

Like in the previous solutions, [Abbeel and Ng, 2004] model the reward function by a
linear function approximation, reducing the problem complexity. The authors provide
novel algorithms to improve convergence speed. Although this approach can only lead
to local optima in general, the results show that the RL agent trained with the resulting
reward function performs sufficiently well.

4.2.1. SOLUTION SCHEMA

Approach:

• Given MDP\R = (S,A, T, γ, S0), a MDP without the reward function which is
hidden and only known by the expert πE , which need not to be optimal.

• Rewrite value of a given policy: Es0∼S0 [V
π(s0)] = w · µ(π), where

µ(π) = E[
∑∞

t=0 γ
tφ(st) | π] ∈ Rk.

• Use Monte Carlo simulation to obtain m trajectories {s(i)0 , s
(i)
1 , . . . }mi=1.

• Estimate policy of the expert by µ̂E = 1
m

∑m
i=1

∑∞
t=0 γ

tφ(s
(i)
t )

Determine:

• R(s) = w · φ(s), the linear function approximation of reward functions with
weights w ∈ Rk to be learn and features φ : S → [0, 1]k given.
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• π̃ such that ‖µ(π̃)− µE‖2 ≤ ǫ.

• Then, for any normalizedw with ‖w‖1 ≤ 1 it holds that V π̃(s)−V πE (s) ≤ ǫ, ∀s ∈ S

Thus, they try to find reward functions for which the optimized policy behaves as sim-
ilar as possible to the expert’s policy. This has the advantage that it is not necessary to
specify the true reward function in order to measure performance.

4.2.2. ALGORITHM

Initialize by sampling from a random policy and calculate its value over the trajectory.
At each iteration i find a new weight w(i) that maximizes the margin t(i) between the
experts value µE and the values of all policies generated so far (µ(π0), . . . , µ(π(i−1))) by
solving it as a quadratic programming problem (QP). If t(i) ≤ ǫ terminate, otherwise
compute µ(πi) as a RL problem with w(i) and add it to the policy set, then iterate again.

Selecting the best policy out of the returned set can be done manually by the human
agent designer or computationally by yet another QP which minimizes the distance
between µE and the µ(π(i))’s.

Instead of maximizing the margin to find the next weight, the authors provide a pro-
jection method as an alternative that avoids solving an QP. Both methods were tested
against each other.

4.2.3. RESULTS

COMPLEXITY ANALYSIS The authors provide the runtime complexity of the algorithm
as

O

(

k

(1− γ)2ǫ2
log

k

(1− γ)ǫ

)

(4.13)

and the sampling complexity for estimating µE to achieve the quality V π̃(s)−V πE (s) ≤
ǫ, ∀s ∈ S for the resulting policy π̃ within the given runtime constraints with a proba-
bility of at least 1− δ as

m ≥
2k

(ǫ(1− γ))2
log

2k

δ
(4.14)

and the error bound
O(‖ǫ‖∞) (4.15)

if R∗(s) = w∗ · φ(s) + ǫ(s) for some residual error term ǫ(s).

FIRST EXPERIMENT Use a 128× 128 gird world with non-overlapping 64 "macrocells"
to show that

• the projection method converges slightly faster than the max-margin method.

• the proposed methods outperform any kind of mimic learning, in a sense that
they need far less amount of trajectories of the expert.
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SECOND EXPERIMENT In a simple car drive simulation, it could be shown that the
algorithms could learn different driving styles given a demonstration of 2 minutes each.
In this experiment, a true reward function was never designed but the recovered reward
function by the algorithm is very intuitive.

It could also be shown that the performance can be increased if only the non-zero
weight features are used.

4.3. BAYESIAN INVERSE REINFORCEMENT LEARNING

The Bayesian approach is motivated by two problems: First, how to avoid over-fitting
the data? Second, how to choose non-degenerate solutions? Explicitly expressing the
uncertainty over observations and estimating the mean of the distribution over possi-
ble rewards can solve these problems directly. [Ramachandran and Amir, 2007] inves-
tigated this matter and give solutions to solve IRL in the Bayesian setting.

4.3.1. PROBLEM FORMULATION

Given:

• MDP = (S,A, T, γ,R), the Markov Decision Problem.

• MDP = (S,A, T, γ), the Markov Decision Process. This definition is meant by
default if mentioning MDP here.

• OX = {O
(i)
X }

m
i=1 = {(s

(i)
1 , a

(i)
1 ), . . . , (s

(i)
k , a

(i)
k )}mi=1 the set of evidences performed by

the expert X .

• Expert X is greedy and stationary.

• PX(OX | R) = PX((s1, a1) | R)...PX((sk, ak) | R), with R being the unknown
true reward function for OX ∈ OX .

• PX((si, ai) | R) = 1
Zi
eαiQ

∗(si,ai,R) to express the confidence αi that X chooses a
good action.

• PX(OX | R) = 1
Z e

αXE(OX ,R) with E(OX ,R) =
∑

iQ
∗(si, ai,R)

Determine:

• Recover R as reward learning.

• Solve MDP given OX as apprenticeship learning.

• Solve PX(R | OX) = PX(OX |R)PR(R)
Pr(OX) = 1

Z e
αXE(OX ,R)PR(R) according to Bayes’

theorem.

Choose prior i.i.d. if no domain knowledge is available. Many problems have only
positive reward at very few states. Therefore a Gaussian, Laplace or Beta prior is ap-
propriated if such an assumption can be made.
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4.3.2. SOLUTIONS

REWARD LEARNING Solve the estimation task with the following loss functions from
which one can choose:

Llinear(R, R̂) = ‖R− R̂‖1 (4.16)

LSE(R, R̂) = ‖R− R̂‖2. (4.17)

Set R̂ to the mean of the posterior for LSE or to the median of the distribution for Llinear.
Both can be acquired by the Policy Walk Sampling Algorithm described below.

APPRENTICESHIP LEARNING Solve with the model shown above by minimizing a
policy loss function from the following class:

L
p
policy(R, π) = ‖V

∗(R)− V π(R)‖p (4.18)

The authors have shown that instead of minimizing the expected policy loss directly
which is a difficult task, one can also find optimal policy for the mean reward func-
tion which produces the same result. This again can be acquired by the Policy Walk
Sampling Algorithm.

POLICY WALK SAMPLING ALGORITHM The algorithm works roughly as follows:

• Initialize by choosing a random reward and apply policy iteration accordingly.

• Iterate by picking a new reward R̃ close to the old reward R. Compute the newQ-
function. If R̃ performs better for at least one state-action pair replace the policy
with a new one, calculated by policy search with R̃ as the new reward; do this

step with a probability of min{1, P (R̃,π)
P (R,π)}, keep the old policy otherwise. Then

replace R by R̃ with the same probability.

Computing theQ-function can be done efficiently if we keep track of the optimal policy
for the current reward while moving along the Markov chain. Then the Q-function can
simply be expressed by the linear function of the reward variables.

The authors showed that the runtime complexity is

O

(

N2 log
1

ǫ

)

(4.19)

with N = |S| and ǫ as the error.

4.3.3. RESULTS

The authors compared there Bayesian IRL algorithm against those proposed by [Ng
et al., 2000] and showed that BIRL outperforms IRL clearly w.r.t. the two critical loss
functions: the reward loss and the policy loss. They also showed how domain knowl-
edge can be encoded as the prior to achieve even better results.
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4.4. MAXIMUM A POSTERIORI ESTIMATE

[Choi and Kim, 2011] have shown that using the posterior mean to estimate the reward
in the Bayesian setting can lead to generalizations that are inconsistent with the ob-
served behaviour; remember that one of the goal for BIRL was to avoid over-fitting.
It would then need a lot of expert demonstrations to eventually be able to converge.
Using Maximum A Posteriori for estimation avoids this problem. They propose an
efficient gradient descent method to solve BIRL using MAP estimate.

4.4.1. PROBLEM FORMULATION

How to model the problem:

• MDP = (S,A, T, γ,R, α), a Markov Decision Process with α as the initial state
distribution.

• R(s, a) =
∑d

i=1wiφi(s, a), the linear function approximation of the reward func-
tion. (Note that R depends also on the action a which is more general. Since all
RL methods using R(s) can be trivially extended to the general case, the simpler
one is typically used. This section uses R(s, a) to comply with the formulation of
the authors in the original work.)

• {(sm1 , a
m
1 ), . . . , (smH , a

m
H)}Mm=1, the set of observations of the experts behaviour.

• V̂ E = 1
M

∑M
m=1

∑H
h=1 γ

h−1R(smh , a
m
h ), the estimated value of the expert based on

the observations using the approximated reward function.

• π̂E(s, a) =

∑M
m=1

∑H
h=1 1(smh =s∧am

h
=a)

∑M
m=1

∑H
h=1 1(smh =s)

, the estimated policy of the expert.

• µ̂E(s) = 1
MH

∑M
m=1

∑H
h=1 1(smh =s), the visitation frequency of state s given the

observation.

• [I − (IA− γT )(I − γT π)−1Eπ]R ≤ 0, the optimality criteria w.r.t. policy π where
E = F|S|×|S||A|, (s, (s′, a′)) = 1 ⇔ s = s′ ∧ π(s′) = a and IA as an stacked
vector with |A| identity matrices I |S|×|S|. The region bounded by this inequality
is denotes as the reward optimal region.

• P(X | R) =
∏M

m=1

∏H
h=1 P (a

m
h | s

m
h ,R) =

∏M
m=1

∏H
h=1

eβQ
∗(sm

h
,am

h
;R)

∑
a∈A e

βQ∗(sm
h

,a;R) , the likeli-

hood expressed as an independent exponential distribution.

Determine:

• P(R | X) ∝ P(X | R)P(R), the MAP problem formulation.

The authors have shown that using the posterior mean to estimate the reward function
can lead to a result that is inconsistent with the data. Therefore they investigate the
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MAP approach as it does not exhibit this behaviour. They propose a general MAP
framework by formulating the posterior as

P(R | X) ∝ eβf(X;R) (4.20)

where β is a scaling constant for the likelihood and f(X;R) is a specific measure of error
between the estimate and the observed data. It can be shown that most non-Bayesian
IRL algorithms are special cases of this model by choosing f(X;R) accordingly and
solving MAP afterwards.

4.4.2. SOLUTIONS

It can be shown that V ∗(R) and Q∗(R) are convex and differentiable almost every-
where. Combing it with the fact that the probability P(X | R) can be expressed as a
differentiable function of V ∗ or Q∗, the optimization problem

RMAP = argmaxRP(R | X) = argmaxR[logP(X | R) + logP(R)] (4.21)

can be solved by a gradient method. To increase performance, they cache old gradients
for reuse, which is possible if the new reward Rnew lies in a reward optimality region of
an already computed reward Rold. It effectively prevents from computing the optimal
policy for the current reward function and a matrix inversion.

If the posterior is not convex, it is not guaranteed to find the global optimum. But
experiments have shown that a local optimum still outperforms the posterior mean ap-
proach as the MAP approach is guaranteed to find solutions inside the reward optimal
region.

4.4.3. RESULTS

On a grid world example the authors have shown that the MAP approach converges
much faster than the posterior mean approach. The difference gets bigger as the di-
mension of the reward function grows. In a second experiment, which is a simple car
race setting, they showed that if the expert is not optimal, MAP robustly converges to
a more correct behaviour, while posterior mean tend to learn the bad behaviour.

4.5. COOPERATIVE INVERSE REINFORCEMENT LEARNING

Classic IRL problem formulations expect expert demonstrations as given to recover
the underlying reward function. An expert knows the reward function and tries to
maximize the expected return. However, [Hadfield-Menell et al., 2016] have shown
that this kind of demonstration is not optimal w.r.t. convergence speed for the learner
to determine the reward function. Therefore the authors give a criteria for an optimal
teaching behaviour so that teacher and learner work together to maximize the expected
return in a cooperative environment. Since this work is motivated by human-robot
collaboration, we refer the teacher as the human H and the learner as the robot R.
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4.5.1. PROBLEM FORMULATION

Given:

• CIRL game M = (S, {AH, AR}, T,Θ, R, P0, γ), a modified MDP with two actors
teacher and learner with common reward. Only the teacher observes reward.

• T : S ×AH ×AR → S, with st+1 ∼ PT (s
′ | st, a

H
t , a

R
t )

• R : S ×AH ×AR ×Θ→ R

• R(s) = φ(s)T θ, assume a linear reward function.

Determine:

• πR = IRL(τH), the robot simply applies a state-of-the-art IRL algorithm given the
demonstration τH commonly assuming that it was performed by an expert πE.

• πH the behaviour of the human that tries to teach the robot the exact reward pa-
rameter θ by demonstrating τH which is not necessarily the expert behaviour πE.

4.5.2. SOLUTIONS

A CIRL problem can be reduced to a POMDP problem with only a single set of actions
A = AH ×AR.

The authors have shown that it is actually not optimal for the human to maximize
the reward during the demonstration, i.e. to execute the expert’s policy πE, even if the
robot assumes πE performing the demonstration. Instead, the human should also try to
minimize the similarity between the expected feature count calculated by the robot and
the actual feature values obtained from the trajectory τH. Therefore, the human should
demonstrate

τH = argmax
τ

φ(τ)Tθ − η‖φθ − φ(s)‖
2, (4.22)

where we add a penalty for feature count deviation with a constant weight of η.

4.5.3. RESULTS

The authors experimentally confirmed that the best-response behaviour of the human
clearly leads to a better performance of the robot than maximizing the reward. But as
the feature dimension rises the performance gap between both gets smaller. This is due
the fact that the collaboration problem is in general more difficult to solve in higher
dimensions, i.e. the curse of dimensionality outweighs the benefits of the improved
teaching behaviour.

By using the Maximum Entropy algorithm for IRL, we can vary the assumption of
the robot about the optimality of the humans behaviour with a parameter λ. λ = 0
means that the robot assumes that the human behaves purely random and with λ =∞
it assumes a pure greedy behaviour. They have shown that the least regret is obtained
by an intermediate value of λ.
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4.6. ACTIVE LEARNING FOR POMDPS

Aside from CIRL, IRL problems typically describe processes that have two phases: a
demonstration phase and a learning phase. Active Learning combines these two phases
into one single phase. This means, the agent starts to act even if it cannot gain knowl-
edge by acting on its own. However, it has always access to an oracle (typically an
human) that can tell what the optimal action for the current state is. Of course such
a policy query has high cost, otherwise the available oracle could simply do the job.
[Doshi-Velez et al., 2012] show how an agent selects actions and updates its belief over
the true model within model-uncertain POMDPs and how it eventually becomes self-
contained.

4.6.1. PROBLEM FORMULATION

How to model the problem:

• (S,A,O, T,Ω, R, γ), a model-uncertain POMDP with uncertainty about T , S, R
(instead only about S in normal POMDPs).

• M = T × Ω × R, the parameter space for expressing the belief over the model of
the world.

• S′ = S ×M , the joint state space.

• pM (m) ≈
∑

iwiδ(mi,m), we approximate the belief over models using samples.
wi and mi are updated according to weight importance sampling.

• A′ = A ∪ {ψ}, the augmented action space where {ψ} denote the set of oracle
queries. Such a query has a cost of −ξ. Whenever the risk of acting is too high,
i.e. the expected loss is lower than −ξ, then the agent will make a query. This
behaviour reduces the problem complexity as we do not plan generally over A′,
but either over A or over {ψ}.

Determine:

• an action selection strategy.

• a model update mechanism.

4.6.2. SOLUTIONS

ACTION SELECTION Applying the Bellman optimality equation to the uncertainty-
model POMDP, we get

Q∗(pM , {bm}, a) =
∫

M pM (m)R(bm(s), a)
+

∫

M pM (m)γ
∑

o∈O P(o | bm(s), a,m)V ∗(pa,oM , {ba,om }).
(4.23)
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Using the loss function

Lm(a, a∗; bm) = Q∗(bm, a)−Q
∗(bm, a

∗), (4.24)

that is the loss under model m if a is chosen instead of the optimal action a∗, we can
write the expected loss of the value as the Bayes risk

EM [L] = BR(a; {bm})
=

∫

M Lm(a, a∗m; bm)pM (m)
=

∫

M Q∗(bm, a)−Q
∗(bm, a

∗
m)pM (m)

=
∫

M Q∗(bm, a)pM (m)−
∫

M Q∗(bm, a
∗
m)pM (m).

(4.25)

The last equation shows that only the first term depends on a. Therefore we can neglect
the second term when optimizing the value, which results in

VBR = max
a

∫

M
Q(bm, a)pM (m). (4.26)

MODEL UPDATE As mentioned above, the model belief is estimated by pM (m) ≈
∑

iwiδ(mi,m). We update the belief by updating the weights according to importance
weight sampling in the following manner:

w(m) =
pM |h,Ψ

K(m)
. (4.27)

After each time step, the weight for a model m can be updated by

wt+1(m) = wt(m)
pM,t+1(m)

pM,t(m)
. (4.28)

Furthermore, it is important to understand the impact of the constraints caused by pol-
icy queries. Intuitively we want to enforce our model to fit expert behaviour, thus
setting

p(ψ | m) =

{

1 a∗m = a∗m∗

0 otherwise
, (4.29)

where a∗m is the action that would be selected under the estimated model m and a∗m∗ is
the expert demonstration under the true model m∗. This, however, makes the search
space not smooth and thus inhibits gradient ascent. Instead, the authors model the
ratio of the number of consistent responses to the number of inconsistent ones by the
binomial parameter pe, leading to

p(ψ | m) =

{

pe a∗m = a∗m∗

1− pe otherwise
. (4.30)

Now we have two option for updating the model: First, resample new models accord-
ing to equation 4.27, which is computational costly. Second, recompute the weights,
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which might get stuck in bad regions. Therefore it is best to do both. Resample models
on regular basis between larger time intervals. Meanwhile only recompute the weights.
The authors use forward-filtering backward-sampling (FFBS) to sample state sequences
{st}

T
t=1 and derive models {mt}

T
t=1 from those states. To recompute the weights, multi-

ply the old weight with p(ψ | m) defined by equation 4.30.

4.6.3. RESULTS

THEORETICAL RESULTS The authors have shown that using the action selection strat-
egy and model update mechanism above, the number of required samples is

nm =
(Rmax −min(Rmin, ξ))

2

2(1− γ)2(ξ − 2(Rmax−Rmin)δB
(1−γ)2

)2
log

1

δ
(4.31)

to achieve an risk of at most ξ with probability 1 − δ, where δB denotes the density of
the belief points, defined to be the maximum distance between any reachable belief to
the nearest sampled belief point, and γ the discount factor. Now we can assume that
the action chosen by the agent at every step has a risk less than ξ. Then the lower bound
of the expected value is

V ′ > η(V ∗ −
ξ

1− γ
) + (1− η)

Rmin

1− γ
, (4.32)

where

η =
(1− δ)(1− γ)

1− γ(1− δ)
. (4.33)

The number of samples derived from equation 4.31 is very pessimistic as experiments
have shown that much less is actually needed. Furthermore, note that this lower bound
for V ′ assumes the worst case in which the agent gets stuck in an absorbing state where
it receives Rmin forever with probability δ at each step. Such an absorbing state does
often not exist.

The last theoretic result shows that the number of policy queries is bounded in in-
finite learning trials. Even if the reward space is infinite, the process will eventually
come to a point where the model is close enough to the true one such that the expected
risk is always below the threshold ξ. This holds due to the convergence guarantee of
the value iteration for the Bellman equation and the assumption that the oracle behaves
correctly. Based on the sample complexity (equation 4.31), the authors additionally give
a proof for an upper bound pq which is the probability of making a policy query with
some confidence δq after performing k additional Markov steps.

EXPERIMENTS First, the authors solved a domain with only few discrete parameters
with standard POMDP solvers and their Bayes risk method using equation 4.26. Com-
paring both makes clear that the proposed Bayes risk method does not decrease the
total collected reward.

In the second experiment they have shown that this inference approach performs
better than previous ones. This hold for the active as well as for the passive learner.
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4.7. CONCURRENT ACTION MODEL

The Concurrent Action Model (CAM) is a model that combines continuous time for ac-
tion durations and concurrent multi-actions, developed by [Rohanimanesh and Ma-
hadevan, 2003]. This general and yet simple model can describe many real systems and
inspired other researchers to investigate further in this direction, for example [Toussaint
et al., 2016].

4.7.1. MODEL DEFINITION

The notations used here deviates from that in the original work to comply with the rest
of this thesis. I define CAM as a tuple (S,A, T, γ,R), where S and A are the sets of
states and actions respectively and R(s) the reward like in standard MDPs. At each
Markov step, multiple actions in A can be performed, formally A ∈ P(A). Therefore
the transition probabilities is P(s′ | s,A, n), where n ∈ N is the number of micro time
steps needed for this semi-Markov step to terminate. I define τa ∈ N as the number of
micro time steps to finish action a.

Since actions have different execution times in general, we need to define when a
semi-Markov step terminates. The authors describe three termination schemes Tany, Tall
and Tcontinue. The first one terminates as soon as possible such that n = mina∈A τa. All
other actions are interrupted and need to be included in the next multi-action in order
to continue, of course with reduced number of time steps consistent with real physical
time. Tall terminates as late as possible, i.e. n = maxa∈A τa. The Tcontinue scheme is sort
of a combination of the previous ones. It terminates like Tany, but includes actions that
has yet to finish automatically to the next multi-action, which is called the continue set.
This adds some overhead to the MDP, because the continue set changes from step to
step depending on Markov decisions, behaving like a kind of a "state". Therefore the
value function naturally depends on both, the state s ∈ S and the continue set.

4.7.2. THEORETICAL RESULTS

The authors have shown the following relation between optimal policies, when differ-
ent termination schemes are used:

π∗seq ≤ π∗all ≤ πcont ≤ π
∗any , (4.34)

where π∗seq is the policy for a sequential version of the problem. This result shows that
the concurrent model covers the policy space of sequential problems and that the Tany
termination scheme performs the best.

4.7.3. EXPERIMENTS

A grid world navigation task is used compare these different termination schemes. The
agent needs to find keys for locked doors and to open them and navigate to the exit.
Holding keys and navigation are two different types of actions. Only one action of the
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same kind can be include in a single multi-action. All actions suffer from some kind of
noise, which lead to some failures, i.e. moving to the wrong direction or dropping the
key.

The optimality relations from the theoretical results can be confirmed as π∗any pro-
duced the best plan. With increasing episodes, it converged to the fastest policy in
terms of navigation steps. But it needed a higher number of Markov steps to complete
the task. This measure gives the opposite ordering, which can be explained that the
Tany scheme terminates earlier, for example when the key is unintentionally dropped,
and therefore make decisions more often.

4.8. RELATIONAL ACTIVITY PROCESS

RAP is a new formalism for describing relational learning and planning domains with
concurrent actions, proposed by [Toussaint et al., 2016]. The advantage over previous
formalisms is that it elegantly combines simplicity and expressiveness allowing us to
easily define concurrent RL systems of any kind, whether it is single agent with multi-
ple manipulators, multi-agent or human-robot collaboration.

4.8.1. SYSTEM COMPONENTS

ENVIRONMENT The following lists the components of the environment the agent acts
upon.

• (P, C), the relational domain with a set of first order predicates P and a set of
constants C.

• P is used to encode the dynamics of the system.

• C is used to name all entities of interest, from abstract software objects to real
world concrete objects. For example, the boolean fact that an activity is currently
running or the position of the robot’s arm.

• (KB, S) ⊂ (P,P(C)) is a specific environment, with KB being the knowledge base
and S the state space which is a subset of the power set of all possible constants
P(C).

• si ∈ S, the state at semi-Markov step i.

ACTIVITIES AND DECISIONS An action in MDPs denotes an atomic unit of work that
is done during a discrete artificial time unit called a Markov step. The authors use
the term activity to denote units of work that take real time to finish. For activities,
it therefore makes sense to have the option to terminate them early. The following
describes the mechanism of the decision making of an agent when running a RAP and
its related components.

• a ∈ A ⊂ C, an continuous activity from a set of activities which is part of the
constants.
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• oi(a, X̄) : prei(a, X̄) → go(a, X̄) = τa,posti(a, X̄), one or multiple initiation
operators. If the constants for the preconditions are true, add τa to the constants
and set other post conditions to true. Activating this operator means that the
agent wishes to start activity a.

• ot(a, X̄) : pret(a, X̄) → ¬go(a, X̄),postt(a, X̄), one or multiple termination op-
erators. It works analogue to an initiation.

• D(s) ⊂ {oi(a, X̄) | a ∈ A} ∪ {ot(a, X̄) | a ∈ A} ∪ {wait}, the set of decisions. At
each Markov step we can decide to initiate or terminate an activity for (only) one
actor or to wait. Note that decision making is sequential. The concurrency of the
system will be explained next, which is heavily related to the wait decision.

STATE TRANSITION AND REAL TIME Neither an initiation nor a termination decision
progresses real time (in theory), but a wait decision does. Upon initiations or termina-
tions the change to state is typically not big, like inverting a few truth values in the KB.
If the central decision maker decides to wait, the system performs all active activities
until the first activity finishes, i.e. the waiting time is

τmin = min
a
τa.

During this time, no decision can be made. When τmin has elapsed, the duration of all
active activities are reduced by τmin. Now we are in a new semi-Markov step. These
changes to the state s result in an intermediate state ŝ. We get the next state s′ of the
sMDP by forward chaining the facts in ŝ with the rules from KB, thus

s′ = ŝ ∧KB

The duration and the reward are sampled from some distribution

τa ∼ P(τa | s, a, s
′),

r ∼ P(r | s, a, s′, τa).

4.8.2. PLANNING

Even if this formalism describes concurrent actions, the decision making is done in a
sequential manner. Therefore any planner for standard MDP can be applied here. The
authors use UCT for their experiments, which is a Monte-Carlo Tree Search method
that uses the UCB1 measure for the tree policy. For backups, plain MC is used as it is
quite robust and domain independent.

4.8.3. LEARNING FROM DEMONSTRATION

As with planning, existent methods from direct policy learning and IRL can be applied
on apprenticeship learning problems described in RAP. Here, TBRIL for direct policy
leaning and RCSI for IRL are used for the experiments.
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4.8.4. EXPERIMENTAL RESULTS

Two different domains were used to formulate planning and apprenticeship learning
problems. In the first domain, the robot should help the human to build a box consisting
of five single pieces. In particular, it should supply the human with box pieces that
are needed next. The process always starts in a unique state where the human has
no pieces. The second domain is a blocksworld domain where two activities can be
realized at the same time by using two robot endeffectors. The task is to build one
single tower from a set of blocks. The initial state space is randomly distributed over
the number towers and their sizes (number of blocks it consists of). While the first
domain is hard for planning because it takes a lot of steps to receive any reward, the
second domain is hard for learning because of the large state space and initial state
distribution.

In the simulation, the convergence to the optimum can be verified. In the experi-
ments, the tasks were done successfully.

5. PROPOSITIONAL FORMULATION OF RAP

Many test and real world environments are not described in relational form. Here I
propose a non-relational version of RAP, that can be used if RAP is a suitable formalism
for a task in an already implemented environment in non-relational form. Many of
these transformations are similar to those when translating from RAP to CAM, since
CAM is propositional and describes concurrent sMDPs as well. If a FOL formula is
expressible in propositional logic, then we typically do a "rollout". That mean instead
of using variables to address a wide range of objects, we list every object explicitly.

The key property of RAP is that it describes concurrent processes despite the under-
lying MDP itself being sequential. This has an interesting effect that the planning tree
grows more into the depth compared to other formalisms like CAM. We can call the
translated model Sequential Initiation Model (SIM).

We start with translating activities to actions. In RAP, a decision can be either an
initiation of an activity, a termination of an activity or a wait. The set of actions in SIM
is

A = AInitiation ∪ATermination ∪ {wait}, (5.1)

where AInitiation contains all actions that correspond to all initiation operators oi’s and
ATermination contains all actions that correspond to termination operators ot’s. In order
to address the corresponding activity given an initiation or termination action, define a
mapping

α : AInitiation ∪ATermination → A (5.2)

that does the desired mapping.
The crucial part of this translation is to simulate the effects of pre- and postconditions.

In RAP, the state consists of all constants in the knowledge base. For SIM, we need to
separate "normal" state information from those that are model specific. The states S in
SIM should be a composite state (SE ,M). SE contain information that are independent
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from the choice of model. M is the set of active activities. The management of activity
initiations can be mapped to a set of mutual exclusion rules

M⊂ P(A), A ∈ RAP . (5.3)

This subset of the power set of the original activities tells, which activities cannot run
in parallel. The set of valid initiation actions in SE can be determined by checking

M ∪ {a} ∈ M, ∀ a ∈ AInitiation . (5.4)

If evaluation for action a results to true, a is not valid. After an action is chosen for the
current step, we modify

M =











M ∪ {a} if a ∈ AInitiation,

M \ {a} if a ∈ ATermination,

M otherwise

. (5.5)

The last thing we need to discuss is continuous time. As in RAP, every activity has a
cost-to-go value τa but initiating this activity does not progress real time. When wait

is chosen, time progresses until the first activity has finished. The cost-to-go value of
all other activities need to be adjusted. In order to do that, we define a tuple c of real
valued elements where each element is the remaining cost-to-go value for an activity.
If an activity is not active, c(a) is zero. If an activity is newly initiated, then c(a) is τa.
After every wait, the values in c reduces as follows

c(a) = c(a)− τmin, ∀ a ∈ A (5.6)

with
τmin = min

a∈M
τa . (5.7)

Putting everything together, SIM is formally the tuple (S,A,A, T, R, γ,M,M, τ, c), where
each component is described above or in Section 4.8.

Note, however, that domain specific predicates can utilize the full potential of FOL
expressiveness such that it is in general not possible to convert any problem described
in RAP to SIM.

6. COMPARISON CIRL AND RAP

In RAP, the human is part of the environment for which the planner cannot apply an
policy to. Concurrency is handled by sequencing the decision making, so that most
planning methods are ready to use. The CIRL formalism describes the human’s policy
as part of the MDP and defines a criteria for optimal teaching behaviour. The problem
with CIRL is that a human at best knows the optimal policy and is able to execute
accordingly but, as I believe, in general cannot solve the optimization problem in his
head to take the next action that is better for teaching. In case the human is merely the
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executor of a = πH(s) and not the decision maker, he or she can be modelled as a noisy
actuator.

Now let us consider the case where the teacher H is a software agent as well. For this
case we can show that CIRL is a subclass of RAP stated as in the following theorem.

Theorem 6.1. For any problem P in CIRL with optimal solution π∗ there exist an equivalent
problem P̃ in RAP with optimal solution π̃∗ such that π∗ = π̃∗.

Proof. Our goal is to derive a special subclass of RAP and show that its value function is
identical to that of CIRL. The proposition would then directly follow because the same
value functions leads to the same Bellman optimality equations with the same optimal
solutions. Applying the Bellman equation for CIRL we have:

V πH ,πR

(s) = R(s, πH(s), πR(s); θ) + γ
∑

s′

P(s′ | s, πH(s), πR(s))V πH ,πR

(s′) . (6.1)

The Bellman equation for a general RAP is:

V π(s) =
∑

s′,τ

P(s′, τ | s, π(s))
[

R(s, π(s), s′, τ) + γτV π(s′)
]

. (6.2)

When reducing the class of RAP problems with two agents to the class of CIRL prob-
lems step by step, we can apply these constraints on the value function in equation 6.2
simultaneously which results in the value function for the new MDP which is denoted
asM . First, we remove s′ as a parameter forR to put it on the same level of generality as
in CIRL. Furthermore, restrict R to be linear in θ just as in the CIRL formulation. Next,
we can reduce a sMDP to a MDP by setting the cost-to-go value to a constant value.
This value should represent the duration of a Markov step such that all activities can be
completed within that period of time, therefore we set τa = maxa∈A τa = τmax, ∀a ∈ A.
As τ is deterministic now, we do not need to take the expectation over τ in the value
function. Note that initiations and terminations still do not progress real time, only a
wait decision does. The intermediate result is:

V π(s) = R(s, π(s); θ) + γτ
∑

s′

P(s′ | s, π(s))V π(s′) . (6.3)

In a single Markov step in RAP we can initiate or terminate an activity or decide to
wait. Since the action pair (aH(s), aR(s)) in CIRL structurally corresponds to the fol-
lowing specific initiation batch (d1(s), d2(s),wait) in RAP, we modify M to a process
over initiation batches instead of single decisions (If you don’t like the idea to change
the process, encode this behaviour by modifying the KB). The policy generating an ini-
tiation batch is denoted as π̃. Because any initiation batch has exactly one wait and
all activities take τmax time, the new discount γ̃ = γτmax < 1 is now static. In order to
enforce π̃ to initiate exactly one activity for H and exactly one for R, we can add some
first-order logic rules to our knowledge base KB and modify the pre- and postcondi-
tions for initiations accordingly. For example, at the beginning of the process, those
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rules tell that only an activity forH can be initiated. Each such initiation has postcondi-
tions that disable initiations for H and enable initiations for R and so on. The resulting
value function with π̃ and γ̃ is:

V π̃(s) = R(s, π̃(s); θ) + γ̃
∑

s′

P(s′ | s, π̃(s))V π̃(s′) . (6.4)

The remaining question is how to simulate the lack of knowledge πR has regarding θ
in M . We can simply define π̃ as a composite policy (π̃H , π̃R) that generates initiation
batches in form of (π̃H(s), π̃R(s),wait) and declare that any planning algorithm gen-
erating π̃R does not have access to θ, effectively only allowing IRL planning methods,
making it equivalent to the definition of πR in CIRL. The final value function for M is:

V π̃H ,π̃R

(s) = R(s, π̃H(s), π̃R(s); θ) + γ̃
∑

s′

P(s′ | s, π̃H(s), π̃R(s))V π̃H ,π̃R

(s′) . (6.5)

We can see that it is indeed equivalent to the value function for CIRL in equation 6.1,
i.e.

RAP )M = CIRL . (6.6)

Given a concrete CIRL problem, we can encode its states, actions, rewards and state
transitions in first-order logic, making it a problem of M . Due to the equivalence of the
value functions, the optimal policies are the same.

7. COMPARISON DEC-POMDP AND RAP

Both formalisms each describe a set of problems where multiple agents perform tasks
concurrently to achieve a common goal, that is maximizing the expected return using a
single shared reward function. It is clear that both models cannot be compared directly,
as RAP does not describe partial observability and Dec-POMDP does not support con-
tinuous time. But if we extend both models with the respectively missing properties,
we can see that both extended versions have the same expressiveness.

7.1. CONTINUOUS TIME FOR DEC-POMDP

The formalism of Dec-POMDP does not consider continuous time. However, we could
extend it using the idea from the concurrent action model developed in [Rohanimanesh
and Mahadevan, 2003] summarized in Section 4.7, where each action takes a certain
number of micro time steps to complete. Use the Tany terminations scheme to define
Markov steps because it performs the best.

The new system component is action duration. For each action a define a duration
distribution where actual durations during runtime are sampled from:

τa ∼ P(τa | a), τa ∈ N . (7.1)

I define durations to be natural numbers, that are interpreted as micro time steps, to
comply with the original definition of CAM. (Note that this is not less general than
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using real number in practice because the resolution of micro time steps can be as high
as the machine float representation.) As in CAM, the state transition needs to depend
on the number of micro time steps n:

s′ ∼ P(s′ | s,a, n) , (7.2)

where n is determined according to the Tany termination scheme and a is a multi-action.
The set of possible multi-actions {a} ( P(A) is restricted by the Dec-POMDP model
itself. It is ordered, so that we know which agent performs what, and has fixed length,
i.e.

a = (a1, ..., am) ∈ Am, ∀i 6= j : ai 6= aj , (7.3)

where m is the number of agents. All other parts of the model are untouched; the
resulting POMDP stays structurally the same. I call the this new model Decentralized
Partial Observable semi-Markov decision process (Dec-POsMDP).

VALUE FUNCTION Based on the Bellman optimality equation, the value function for
Dec-POsMDP is presented next. Let π be a composite policy and b a tuple of beliefs for
a given set of m agents, then

V π(s) = R(s) + γ
∑

s′

P(s′ | s,π(b), n)V π(s′) , (7.4)

where the beliefs b are updated according to Equation 3.4 after each Markov step.

7.2. DISTRIBUTED PARTIAL OBSERVATION FOR RAP

RAP describes a centralized decision maker that has access to the information about
the state to make its decisions, where agents and humans are modelled in the knowl-
edge base. In order to decentralize decision making, we can proceed similar as in the
reduction of RAP to CIRL in Section 6. We adjust the knowledge base by replicating
activities as needed. Let m be the number of agents we want to simulate, then each
activity needs to be replicated at most m − 1 times. We add preconditions to each of
these activities to ensure that only the matching agent is allowed to initiate it. Here as
well, we can modify the MDP over decision to an MDP over initiation batches, where
(π1, ..., πm) are the agents we want to simulate and (π1(b1), ..., πm(bm),wait) the corre-
sponding initiation batch. The set of allowed initiation batches can be derived by pre-
and postcondition predicates of initiation and termination operators. They implicitly
provide mutual exclusion rules.

Notice that the policies should depend on the beliefs derived from observation histo-
ries of each agent, not on states. For that, we need to extend the RAP model with partial
observability, which is straight forward because the state transition and reward func-
tion differs from a standard MDP only by additionally depending on the cost to go τa.
Beliefs and observations are constants in the knowledge base. Pre- and postcondition
predicates can be modified to depending on observations or beliefs instead of the states
directly if needed. Lets call this new model Decentralized Partial Observable Relational
Activity Process (Dec-PORAP).
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VALUE FUNCTION Let π be a composite policy and b a tuple of beliefs for a given set
of m agents, then the value function for Dec-PORAP is

V π(s) =
∑

s′,τ

R(s,π(b), s′, τ) + γτP(s′ | s,π(b), τ)V π(s′) , (7.5)

where the beliefs b are updated according to Equation 3.4 after each Markov step.

7.3. CONCLUSION

Both Dec-POMDP and RAP are very general and have a strong expressiveness for con-
current MDPs. While Dec-POMDP focuses on partial observability, RAP stresses out
continuous time and tires to generalize over actors in the systems by encoding them as
FOL constants. The centralized decision making seems to be a restriction, but in fact,
decentralization is implicitly given by the freedom we have to set up our knowledge
base, in particular the preconditions for initiating activities.

Theorem 7.1. Every decision problem formulated in Dec-POsMDP can be translated into a
problem of Dec-PORAP and vice versa.

Proof. We have extended Dec-POMDP with continuous time and RAP with partial ob-
servability. Both extensions have a common notion of partial observability and decen-
tralization. The only difference is the way how they handle continuous time. Since
we extended Dec-POMDP with the CAM model, it is no surprise that the difference
between these extended model are the same as the difference between CAM and RAP,
if we look at the respective value functions. [Toussaint et al., 2016] showed that these
models are actually equivalent w.r.t. expressiveness. Thus, Dec-POsMDP and Dec-
PORAP are equivalent as well.

8. META DECISION PROCESS

The field of study of Human-Robot-Interaction involve IRL (learning from human ex-
pert), concurrency (human-robot cooperation, multi-agent systems) and active learning
(online planning with human help). In the literature review (Section 4) I have summa-
rized some milestones regarding the research in these fields. This thesis explores the
notion of cooperation in a general way, using state-of-the-art solutions from the litera-
ture to solve certain sub-problems, in particular RL and IRL. The main reference for this
work is [Doshi-Velez et al., 2012], because or formalism involve active queries as well.
Active learning is a very general formalism that fully covers the traditional setting of
IRL, but on top of that the agent can take over work much faster to increase the overall
efficiency of the system.

8.1. MOTIVATION

The supervisor of this thesis had the idea of "learning at the meta level". We think of
learning as to intelligently collect data (and in RL we additionally take the reward into
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account). This directly implies that at the meta level, we need to decide how to col-
lect data, or, which reinforcement-enabling method to choose. Making a good choice
at this needs to be meta learned. One of the real world motivations for this formal-
ism is as follows: Under model uncertainty, exploring often has security issues as the
robot typically has high capabilities to cause damage at different degrees of severity.
This problem is tackled by learning from demonstration. But demonstrating has high
costs and the agent is basically idle. The question is: How much and often do we need
demonstrations? We would like the robot to act on its own if the risk is low, and at
the same time, it is not efficient to wait for long trails of demonstrations every time the
agents feels unsure. Instead, the it can ask the expert for the next optimal action or
whether it should perform action ai or not and act accordingly; this is a good choice
if the expected improvement to the belief is large enough. Furthermore, we want to
generalize the notion of learning from demonstrations, where potential demonstrators
are not limited to the human expert only but could be potentially any actor in the coop-
erative environment. Putting all together, this leads to three classes of meta actions:

Aµ = {execute,query,observe} . (8.1)

Use standard RL to execute which means to chose the next action for the current state
deeming the current meta knowledge as the true model. This has no meta level cost, i.e.
c = 0. Meta action query asks for the optimal action for the current state or whether
it should perform ai or not with some cost c < 0 (Note that yes/no answers are less
costly). And finally the meta action observe means to wait and reason about what is
happening in the world with some cost c < 0; and of course this meta action can include
a demonstration request to the oracle. After observing, use standard IRL to update the
model.

8.2. DEFINITION

For the underlying MDP M we assume it to be a RAP because it is very general as we
have seen in Section 6 and 7. Thereby we explicitly neglect partial observability since
we want to deal with model uncertainty at meta level; For the meta level, use a special
PORAP with tree predefined decisions: execute should take the current knowledge
about the model as input and should greedily maximize reward. Remember, the agent
should only execute if the risk is low. In order to simplify analysis later on, we assume
that the reward function has the following form: All goal states have a common positive
reward and all other states have a common non-positive reward. Real world tasks
mostly have this kind of reward function. For example, while assembling a furniture
it is hard to tell how good an intermediate result is, but at the end, one can decide if
this furniture was correctly assembled or not. The same goes for games like chess: win
or lose. The quality of non-goal states should be learned and represented by the value
function.

In order to uncover the unknown model M , we present the system components
in terms of a POMDP for simplicity, in particular, we define a Meta Decision Process
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(metaDP) as a tuple
Mµ = (Sµ, Aµ, Tµ, Rµ,Ωµ, Oµ, γ) . (8.2)

I have already presented the meta actions since it is the most significant part of this
formulation and our main motivation. Other components are chosen to fit the purpose,
mostly serving as connections between M and Mµ to make sure that the optimality
at the meta level implies optimality for problem M . This can simply be achieved by
applying any profound machine learning method, mapping from data to model. If the
model is correct, any RL planner can derive or approximate the optimal policy. The
system components are listed next.

META STATE As we want to reduce uncertainty, we need to keep track of it and in-
clude it as part of the state, therefore Sµ = S × Θ, where Θ is the space of model
parameters for uncertain components in M ; that could be S, T and/or R. Note that
s ∈ S ∈M is not the true state of the world, the planner for M deems it to be and beliefs
that s is the true state. At the meta level we know that this is generally not the case.

META TRANSITION The transition function Tµ : Sµ × Aµ × A → Sµ does not only
depend on the meta action but also on the concrete action for M . The meta action
tells how confidently the action was chosen, in order to update the model parameter θ,
whereas the concrete action is needed for state transition T ∈M .

META REWARD The reward function Rµ : Sµ × Aµ × A × S
′
µ → im(R) × im(C), with

C : Aµ → R, outputs both the reward received from the environment and the cost for
taking meta action aµ. Note that S ∈ Sµ, therefore the arguments for R can be found in
the arguments for Rµ.

META OBSERVATIONS The set of observations O = S × F consists of the set of states
S ∈M and the set of actions augmented with the empty set F := A∪∅. The observation
function Oµ : Sµ × Aµ × A → S′ × F tells, what the next state is and which optimal
action was chosen. If the meta action was execute, then f = ∅.

Note that the underlying MDP planners and IRL learners are black boxes. They can
be arbitrarily substituted and the properties like optimality or convergence of the Meta
Decision Process would stay the same as long as the algorithms used are guaranteed
to converge to the optimum given their respective problem formulation. Of course the
overall runtime or space consumption would change, but if we analyse time and space
complexity independent from black boxes, then even those properties won’t change.

8.3. VALUE FUNCTION

As an optimality criteria, we want to maximize the expected return analogous to MDPs.
The difference here is that we have additional meta cost that reduces the return. Thus
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we have

V ∗
µ (sµ) = max

πµ

Eπ

[

∞
∑

t=0

γt(ct + rt)

∣

∣

∣

∣

∣

sµ,0 = sµ

]

. (8.3)

Let R′
µ := ‖Rµ‖1 (the sum over all tuple elements). Using the transformations in Equa-

tions 3.8, we get

V
πµ
µ (sµ) =

∑

s′µ,oµ

P(s′µ, oµ | s, πµ(θ), a)
[

R′
µ(sµ, πµ(θ), a, s

′
µ) + γV

πµ
µ (s′µ)

]

. (8.4)

8.4. PORAP FORMULATION FOR METADP

With the standard POMDP formulation we can describe the relation between model
and meta model. For continuous time and concurrency, we need more and choose PO-
RAP (Section 7.2) because it has two advantages: First, it enables concurrency with
sequential decision making such that all available MDP planners are ready to use. Sec-
ond, the relational encoding of objects as plain constants abstracts away from concrete
systems components like actors or end-effectors to describe any kind of human in-
volved multi-agent systems in a simple and natural way (similar to the advantage of
"object oriented programming" in software engineering). For example, we have two
agents a and b. If it is important for a to keep track of b’s actions, we can add a predi-
cate canObserve(x,y) and evaluate at x=a,y=b, whose truth value can change after
each step. This value then can be used for other calculations, like preconditions for
initiations, risk evaluation functions or belief updates.

For the rest of this Section, we will assume the PORAP formulation for metaDPs;
that means Aµ refers to the set of activities and at each Markov step we make decisions
d ∈ D(sµ) where D(sµ) is the set of valid decisions in meta state sµ.

8.5. GENERALITY

Our metaDP heavily inherits idea from active learning as making queries is hard coded
in the model definition. In CIRL, the human is an explicit actor in the MDP, which is not
the case for metaDP. But as we have seen in Section 6, a RAP formulation can simulate
CIRL by applying certain restrictions on the set of actors and its behaviours. If model
parameters are known, the metaDP will always execute, degenerating into a plain
RL planner. If we set the cost to query very high and the cost to observe very low, the
process will exhibit a two phase behaviour: Observing and updating, then planning;
which is a traditional IRL process.

8.6. META POLICY

As explained in the motivation, we want to explicitly state criteria when to choose
which meta action. For the algorithm we propose, our goal is as follows:

• query, if the expected improvement of our model is large enough, counted against
its meta cost; else
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• execute, if the risk is too large compared to the cost for observing; else

• observe.

This fixed selection strategy is a one-step-look-ahead concept. The reason we do not
want to plan in the full MDP at the meta level is that it is computationally too expensive:
It involves a RL planning to convergence for all meta states and a new plan for any
change to the belief.

The quantities that are needed in order to make this decision are estimated in the next
couple sections.

8.6.1. VALUE IMPROVEMENT OF QUERIES

The first quantity we need to determine is the value improvement that is gained if we
make a query. One simple estimation is the Information Gain using the Kullback-Leibler
divergence (KLD)

IGQ =
∑

a∈A

P(a = π∗M (st))KL(bθt‖b̃
θ
t (a)) , (8.5)

where
b̃θt (a) = P(θ | a = π∗M (st)) . (8.6)

Alternatively, use Expected Value Gain (more expensive but better)

VGQ =
∑

a∈A

P(a = π∗M (st))
[

Q∗
b̃
((st, b̃

θ
t ), a

∗
b̃
)−Q∗

b̃
((st, b̃

θ
t ), a

∗
b)
]

. (8.7)

Both are bootstrapping estimates as P(a = π∗M (st)) is calculated from the own belief.
The most expensive operation for KLD computation is the integration over a distribu-
tion (if the distributions for the beliefs bθt and b̃θt are not very fancy). For VGQ however,
we need to calculate the optimal value function given the knowledge θ. That basically
means that we need to do value iteration until convergence!

8.6.2. RISK TO EXECUTE

In order to estimate the risk (or expected loss), we need to know what we are expected
to achieve in case we execute, but also what is approximately the best achievable result.
We choose the latter Q-value as the upper bound of the former Q-value:

Q∗
b((st, b

θ
t ), a

∗
b) ≤ Q∗((st, b

θ
t ), a

∗
b) (8.8)

≤ Q∗((st, b
θ
t ), a

∗
θ) (8.9)

=

∫

θ
Q∗

θ(st, a
∗
θ)b

θ
tdθ =: Qmax (8.10)

and then, we approximate the value to execute Q∗
b((st, b

θ
t ), a

∗
b) with its one-step looka-

head
∫

θ
Q∗

θ(st, â
∗
M )bθtdθ =: Q̂ , (8.11)
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where

â∗M = argmax
a∈A

∫

θ
Q∗

θ(st, a)b
θ
tdθ . (8.12)

Finally, the Bayes Risk for execute is

BRe =

∫

θ
Q∗

θ(st, a
∗
θ)b

θ
tdθ −

∫

θ
Q∗

θ(st, â
∗
M )bθtdθ (8.13)

= Qmax − Q̂ . (8.14)

8.6.3. RESULTING POLICY

Using the information gain IGQ for estimating the value improvement and the Bayes
risk BRQ as described above for risk evaluation, our meta policy can be precisely de-
scribed as

π∗µ(sµ) =











query if IGQ + c(sµ,query) ≥ 0

execute if (IGQ + c(sµ,query) < 0) ∧ (BRe + c(sµ,observe) < 0)

observe otherwise

.

(8.15)
The cost function need to be hand tuned (or via cross validation) to get a reasonable
policy. Of course the meta cost also is a feedback received from the environment in real
world settings, but even then we need to set a constant scaling by hand, otherwise the
meta costs could always overweight or get overweighted by IGQ and/or BRe.

8.7. BELIEF UPDATE USING PARTICLE FILTERS

We approximate the model θ using a set of K particles bθt = {(wi, θi)}
K
i=1 for compu-

tational efficiency. Whenever we receive information, for instance form a query, we
update the weights as follows: Let

p∗d = P(d = π∗M (st)) ≈
K
∑

i=1

wiP(d = π∗θi(st)) = p̂∗d (8.16)

be the probability for d being the optimal decision and p̂∗d its approximation using the
current model knowledge. Then

b̃θt (d) = {(w
′
i(d), θi)}

K
i=1 , (8.17)

with

w′
i(d) = wi

P(d = π∗θi(st))

p̂∗d
. (8.18)

It remains to define P(d = π∗θi(st)). Making hard constraints by setting these probabili-
ties to 1 or 0, i.e. exactly matching the observation, only works out for a certain special
cases, where first, the space of these K particles covers the space of the true model and
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second, the planning is optimal for each model. This would lead to a very fast and
effective model update, however, if this special case does not hold, the parameters de-
generate, especially when there is some noise in the system as well. Since this special
case is not realistic, we suggest a soft update

P(d = π∗θi(st)) ∝ ηδdd∗ + (1− η)(1− δdd∗) , (8.19)

where η ∈ (0, 1) and δdd∗ = [d = d∗] is the Kronecker delta. Using this particle filter, our
estimates for Bayes risk and information gain can now be calculated more simple using
discrete sums:

IGQ =
∑

d

p̂∗dKL({wi}‖{w
′
i(d)}) (8.20)

BRe =

K
∑

i=1

wimax
d
Q̂∗

θi
(st, d)−max

d

K
∑

i=1

wiQ̂
∗
θi
(st, d) . (8.21)

8.8. ALGORITHM

Using the policy and the estimates derived above, we can apply a Monte-Carlo tree
search algorithm to solve metaDP:

Algorithm 1 Meta Decision Process for Concurrent Cooperations

1: procedure METAMCTS(st, bθt )
2: if D(st) involves oracle only then

3: return free-query

4: for i = 1 : K do

5: Q̂∗
θi
(st, ·)← RapMCTS(st, θi)

6: return meta action d∗µ

Here, we also have a little optimization to make free queries with no cost, if the cur-
rent action space is limited to queries (which means that all actors/agents/endeffectors
are busy). Otherwise, in the normal case, it bootstraps form its own current belief to
rollout simulations in order to update the Q-function. Based on the new updated Q-
function, a meta action is returned. K is the number of dimensions that is used to
estimate the true model.

The free query that can happen at any time has the positive effect of making conver-
gence faster. But it is very problem specific whether we will have free queries at all.
Therefore we ignore this property in our theoretical analysis.

CONVERGENCE We are interested in the convergence of the model parameter θ and
assume that Θ covers the space of the true model. If the true model is recovered (or es-
timated well enough), the optimal policy for the underlying MDP M can be computed
or estimated using any arbitrary planning method.
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Looking at the meta actions, we can see that query and observe give data derived
from the true model. Statistics tell us that the true model can be retrieved given enough
data. Particle filters we use here is one method to do that. The question remains: When
do we stop to collect these data? We stop at a point where π∗µ(sµ) = execute, ∀sµ ∈ Sµ
from equation 8.15. This means, we converge to a point where the difference between
the estimated model and the true model ξ = |θ∗ − θ| implies IGQ < −c(sµ,query)
for all states, using the information gain as estimation. In the discrete case, we can
argue that all states will eventually be visited and each query will cancel out some
models. For continuous state spaces, it is not appropriate to assume that important
weight sampling with K samples can cover the true model. We need to explicitly show
that the information gain measure steadily decreases and converge to a point where no
queries are made, which we will see in the following.

The more data we receive (via queries, observations), the closer the models weights
become. And thus, for any ǫ > 0 there exist a point in time t <∞where

‖{wi} − {w
′
i}‖∞ < ǫ (8.22)

for all sampled models. Furthermore, the information gain measure from equation 8.20
is upper bounded by

IGQ ≤ max
d

KL({wi}‖{w
′
i(d)}) ≤ g(ǫ) , (8.23)

where g(ǫ) is the following constraint optimization:

max KL({wi}‖{wj})

s.t. ‖{wi} − {wj}‖∞ < ǫ ∀models mi,mj

(8.24)

Note that the set of constraints consider every possible pair of weights whose max-
component distance is smaller ǫ. There is an infinite amount of these pairs, making it
impossible to analyse each individually. But the existence of a maximum is enough for
us. We only need to make a statement that for the maximum value it holds: g(ǫ) → 0
if ǫ → 0. It would follow directly that eventually (with enough data), the information
gain will be smaller than the query cost for all states. In order to show that, we consider
the following limit:

lim
ǫ→0

KL({wi}‖{wj}) . (8.25)

In the limit, the distributions represented by the weights are the same and thus, the
KLD is zero. We conclude that for any −c(sµ,query) > 0, the number of queries is
finite under an infinite meta execution trail.

Note that the belief can still improve, because if the Bayes risk is still to high, the
agent collects more data by observing. Also, the concrete value of this upper bound
depends on the estimation method used for value improvement as well. For example,
the expected value gain estimate as described above would give better upper bounds
than the information gain estimate.
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TERMINATION Assume that the given task has a goal and is intended to terminate.
Then there exist some goal state(s) that are reachable and each optimal policy eventu-
ally reaches the goal.

The fact that the model parameter θ converges to a point with error ξ has some impli-
cations on termination. If the meta cost to make a query is too high, with the effect that
even the largest information gain is overweighted, the resulting policy is in worst case
no better than a policy that is u.a.r. In infinite horizon problems, such a random policy
would still eventually reach some termination state in theory. The situation gets worse,
if the expert/oracle is noisy and give wrong information and right after that, the meta
cost overweights the information gain, then the agent could get stuck in certain states
and it never terminates.

We conclude that the proposed algorithm for metaDP only terminates if the meta
cost −c(sµ,query) and thus the error ξ is small enough to allow a Q-function to be
computed, such that greedy selections of actions form paths from every state to a ter-
minating state.

8.8.1. ERROR BOUND OF BAYES RISK

Before we analyse the complexity of the algorithm above, we apply the analysis on the
error bound of the Bayes risk according to [Doshi-Velez et al., 2012] described in Section
4.6. We show that the properties of both algorithms that are needed to do this analysis
are the same. First, both algorithms use weight importance sampling to estimate the
model. Therefore we can bound the difference between the estimated risk and true risk
for every state in the same way:

ǫPB =
2(Rmax −Rmin)δB

(1− γ)2
, (8.26)

where δB is the density of the belief points and Rmax and Rmin are the maximum and
minimum receivable rewards respectively.

The second issue is the policy. The Bayes-risk-action-selection method only takes the
estimated Bayes risk into account to make a (actually meta) decision whether to do a
query or not. The meta policy we described uses an estimation on the value gain to
decide whether to query or not; if it decides not to query, the Bayes risk is checked
whether to passively observe or not. In the active learning setting, there is no notion
of passive observation. But as we see later, we can express the cost of observations in
a certain number of queries and use this approximation to make statements only over
the number of queries. The decision making, whether to query or not, is different in
our meta policy, but it does not change the fact that each query has an impact on the
Bayes risk estimation. Therefore, the analysis on how many queries we need in order
to achieve a bounded Bayes risk error ǫ with probability 1− δ is the same: see equation
4.31.

This analysis has several drawbacks. It depends onRmax andRmin, becoming less ex-
pressive, because for most problems there exists an infinite amount of possible reward
functions that all lead to the same optimal behaviour. Intuitively, the number of queries
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needed should be independent of specific reward values. Furthermore, the measure is
overestimating about several factors and it is imprecise, because the fact that model
samples are not independent is simply ignored. The same holds for the lower bound of
the value.

8.8.2. COMPLEXITY

For complexity analysis of this algorithm we first prepare by defining an error measure
of the Q-function. Since many different Q-functions lead to the same policy (e.g. con-
stant scaling or shifting), it is not appropriate to compare function values directly. We
rather propose an error measure that compares the minimum number of Markov steps
that is needed for a greedy agent to reach the goal.

Definition 8.1. Let Q be any Q-function for an MDP M . Then

path(si, Q) = (si, ..., sn) (8.27)

is the greedy path from si to a goal state sn, where for each sj+1 ∈ path(si, Q), j ≥ i:

sj+1 := argmax
s

[

max
a

P(s | sj , a)Q(sj , a)
]

, (8.28)

and dist(s,Q) := |path(s,Q)| is the greedy path distance.

Using this distance measure, we can define an error measure of an estimated Q-
function.

Definition 8.2. Given any arbitrary optimal Q-function Q∗, the Q-error is a function δQ∗ :
Q → N that maps a given Q-function in a function space Q to a natural number. For the
discrete case, it is defined as follows:

δQ∗(Q) :=
∑

s∈S

[dist(s,Q)− dist(s,Q∗)] . (8.29)

For continuous domains, the Q-error can be defined analogously by integrating in-
stead of summing over the state space. For stochastic environments, this definition is
appropriate because the optimality of Q-functions already encodes the stochastic be-
haviour of the system. Observe that dist(s,Q) can be infinite if Q leads the greedy
policy to some dead ends starting from state s. We can now give a precise optimality
criteria for any Q-function:

Theorem 8.1. Let Q∗ be an arbitrary optimal Q-function for an MDP M as defined in Section
8.2, then any Q-function Q is optimal for M as well if and only if δQ∗(Q) = 0.

Proof. In case the greedy paths are the same for the same distances, we have

Q is optimal ⇔ ∀s ∈ S : argmax
a∈A

Q(s, a) = argmax
a∈A

Q∗(s, a)

⇔ ∀s ∈ S : dist(s,Q) = dist(s,Q∗)

⇔ δQ∗(Q) = 0 .
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In case the greedy paths can differ although the distances are the same, we have to
show

∀s ∈ S : dist(s,Q) = dist(s,Q∗)⇒ Q is optimal.

We initially assumed that in our environment only the goal states give reward, where all
other states have a constant non-positive return. Under this assumption, the total return
on both greedy paths are the same. Since this is true for all states, Q is optimal.

Now we want to investigate the complexity of metaDP using the algorithm above in
case Θ covers the true model and the meta costs are small enough to allow a sufficient
precision (e.g. δQ∗(Q) <∞). We want to estimate the number of queries that are needed
as the complexity measure. The reason is that we assume that queries and observations
are the most costly operations in this kind of RL setting. The cost for observations can
be replaced by the cost for queries as follows: If an observation trail takes n Markov
steps, starting from state s, to finish, the cost can be estimated with n such queries
pretending the agent to be in state s initially.

In order to avoid to impose too many assumptions on the process, we analyse a soft
definition of optimality. A soft variant of the Q-error we are interested in is

δ′Q∗(Q) :=
∑

s0∈S0

[dist(s,Q)− dist(s,Q∗)] , (8.30)

summing (or integrating) only over the set of initial states S0. Lets call it the soft Q-
error and denote it by δ′Q∗(Q). Under the assumption that there is no knowledge about
the model given initially, we need to query or observe the optimal paths from all initial
states to its respectively nearest goal states to achieve δ′Q∗(Q) = 0. The states on these
paths are

I = {s ∈ S | s ∈ path(s0, Q
∗), ∀s0 ∈ S0} . (8.31)

And therefore the expected number of queries needed is

E[n] = |I|+ C , (8.32)

where C ≥ 1 is a constant that gets greater the noisier the state transitions and query
answers are. Our goal is now to upper bound exactly this C to yield an upper bound of
the overall complexity to achieve soft optimality.

First, let us have a quick look at the situation if the system is soft optimal. This has an
impact on the Q-values for all other states for which the optimal actions are not known
(after performing RL to convergence). These states now are pulled towards states in I
as illustrated in Figure 8.1. Depending on the actual values of the reward function, the
"direction" can be different. Choosing any arbitrary state s ∈ S \ I , the best case is that s
is pulled towards the nearest goal state. In the worst case, it is pulled towards the state
in I that has the largest distance to a goal state. With pulling towards a state si we mean
that for the resulting Q-function, the greedy selection a = argmaxa∈A P(s | sj , a)Q(s, a)
leads most probably to a state s′ = argmaxs′∈S P(s′ | s, a) that is on the shortest path
from s to si. Note that if state transitions are deterministic, we only need I many queries
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best case
optimal action
under current belief

worst case
optimal action
under current belief

s5

s4s3s2s1s0

Figure 8.1: s0 is an initial state, s4 is a goal state, (s0,...,s4) is a greedy path. Imagine that
the states are placed in an Euclidean space.

and the agent will always behave optimally.
Now we start to upper boundC. Let the failure rate in average be pfail. Failing means,

taking an action a in state s does not lead to the desired state s′ = argmaxs′∈S P(s′ | s, a).
Let s0 be the starting state and d = dist(s0, Q

∗) be the greedy path distance starting from
s0 given optimal Q∗ (see above). We define a random variable n1 that is the number
of queries that is needed for the agent, starting in s0, to reach the nearest goal state s∗

excluding queries made in I , and want to determine the probability for n1 to have a
certain value x given the values above, i.e. P(n1 = x | s0, s

∗, d, pfail).
The last thing we need to consider before diving into the analysis is: What happens

in case the agent actually fails? The question is asking about the failure model. If it
could potentially end up in any arbitrary state in S, then it is hard to make reason-
able statements about the number of queries that is further needed to reach the goal.
Therefore we need to make assumptions here, but they should match most real world
problems. There are three different assumptions we want to present first that apply for
many problems, for which C = 0. After that, two similar generic failure models are
analysed in detail.

SIMPLE FAILURE MODELS The first assumption is restart: Whenever the agent fails,
the next state is a starting state s′ ∈ S0. For example, the agent should stack cubes to
build a tower and at some point the tower falls apart. This leads to an initial state where
the following predicate is true: ∀c1, c2 ∈ cubes : ¬onTop(c1, c2).

The second assumption is replan: Whenever the agent fails, the next state is the pre-
vious state right before the failure. This is very typical in many robotics settings. For
example, during an assembling task, the robot makes a wrong object placement. The
human sees that, reverses the action and tells the robot to do it correctly.

And the last simple failure model is backtrack: Whenever the agent fails in s, the agent
will undo the failed action to get back to s; it knows how to do that and will eventually
be successful. For example, in a "Pick and Place" problem, the agent picks an object o1
with its endeffector e1 and is therefore in an state where picked(e1, o1) = true and
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onGround(o1) = false. Then, the object somehow slips away form the endeffector
and drops, before the agent could place it correctly. The resulting state has inverted
truth values for these predicates. The agent now tries to pick the object again, in order
to continue where it was before, that is, trying to place o1 correctly.

Under these models the only queries that are needed are those for states in I .

FAILURE MODEL 1 The next assumption we want to investigate is as follows: When-
ever the agent fails at state s, it is put l Markov steps away from s and the oracle guides
the agent towards s again, in case it is queried against. On the way back to s, the agent
can fail again, which puts it an additional l steps away form s. It follows that each time
the agent fails, it produces a need for l queries (in worst case). This assumption might
not be realistic for many applications, but it can be seen as a pessimistic averaging over
a more general assumption. Imagine that after failing, the agent ends up anywhere in
a state space around s. If it was lucky, it gets closer to the goal, if it was unlucky it is
put further away form the goal. The average is that it is put some distance l away from
s. Furthermore, this assumption is pessimistic in two ways. First, it could happen that
the agent visits some states that is already known from previous failures before, but
we assume that it always ends up in unknown regions. Second, in the average case,
the oracle would normally not guide the agent to s again, but to some state in I that is
closer to the goal. Therefore this assumption is not quite the average but assumes that
the agent moves further afar from the goal after a failure, which is more realistic.

In order to measure the expected number of queries needed under this assumption,
we observe that the probability that x queries are made in one episode is the same as
the probability to fail m = x

l times. By failing m times, the total number of Markov
steps that this episode has is d +ml = d + x. Now we can see that this actually is the
following Binomial distribution:

P(n1 = x | s0, s
∗, d, pfail) = B(m | pfail, d+ x) (8.33)

=

(

d+ x

m

)

pfail
m(1− pfail)

d+x−m (8.34)

with expectations

E[m] = (d+ x)pfail , (8.35)

E[n1] =
dpfail

1
l − pfail

(8.36)

for the number of failures and queries respectively. Equation 8.35 is simply the expecta-
tion from the Binomial distribution above. Equation 8.36 is calculated by placing E[m]
into m = x

l and solving it for x.
At first, the result looks strange, as E[n1] can become negative, which is nonsense.

But at a second glance, it totally makes sense. First, we observe that the term in the
numerator is very intuitive: If d or pfail gets larger, we need more queries in average.
Now, in order to understand the controversial denominator, we first investigate the
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case it gets zero, which happens if and only if lpfail = 1. For illustration, we choose
l = 2 and pfail = 0.5. Each time the agent fails, it is put l = 2 Markov steps away
from s, which in fact means that we have to play an additional Binomial experiment
B(k | 0.5, 2). In expectation, we fail in this experiment exactly once (0.5 · 2 = 1), but this
however induces yet another Binomial experiment B(k | 0.5, 2), and so forth. Therefore
E[n1] should indeed be infinity. If l or pfail increases, the situation gets worse, but since
nothing is greater than infinity, a negative value implies an infinite expected amount of
queries as well.

For a specific starting state s0, we now can conclude that the expected number of
queries n′ we need in total to solve metaDP with a flat belief at the beginning and
assuming Failure Model 1 is upper bounded by

E[n′] ≤
∑

s0∈S0

P(s0) (|I|+ E[n1 | s0]) , (8.37)

because we analysed the failure behaviour of the system for all states in I and overesti-
mated the query count by assuming that the agent will always encounter new states if
it is not in I , which leads, in worst case, always to queries. In order to achieve the soft
optimality criteria we need to sum over all initial states:

E[n] ≤ |I|+
∑

s0∈S0

[E[n1 | s0]] , (8.38)

In all future runs, we expect that the number of queries will be reduced drastically.

FAILURE MODEL 2 The fact that Failure Model 1 has an infinite expected query count
very quick is due to the combination of different worst case assumptions and a hard
punishment mechanism, where the agent moves further and further away form the
goal with each failure. This is actually too much; and systems that really behave like
that are probably not deployable, except l or pfail is really small.

With the second failure model, we want to keep the worst case assumptions but re-
duce failure rate drastically. Failure Model 2 is the same as Failure Model 1, except
that the agent now only can fail in states in I . This especially means, that it cannot fail
multiple times in a row (unless l = 0). The parameter l now has a different meaning. It
can be interpreted as a black box expressing the expected number of additional queries
needed, with further failures already considered, to get back to state s. Now, when a
failure happens in state s, we will get back to s without incident. Coming back to s,
however, the agent can still fail without making progress. Therefore, in terms of prob-
ability measures, this failure model is actually a special case of Failure Model 1 with
parameter l = 1. This leads directly to an expected query count of

E[n1] =
dpfail

1− pfail
. (8.39)

At worst, we have pfail = 1 which makes the value infinity, matching our anticipation.
Furthermore, the value cannot become negative, making the result more intuitive.
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8.9. QUERY AND OBSERVATION POLICY

We already mentioned that in case of execute, a plain RL solver can be used. What
about query and observe? In its simplest form, we only have one option each. In
case of a query the agent asks: "What should I do?" In case of an observation, the agent
sends a demonstration request to the oracle and observes for a fixed time ∆t.

For queries, we can add the possibility to asks yes/no questions whether it should
perform a certain action a or not as less costly options; these queries are denoted as
{ai}

n
i=1 = A corresponding to the possible actions each and the query about what to

do as a0. The decision making can be based on the information gain estimates and the
costs. Let the cost for a0 and {ai}ni=1 be−c0 and−c1 respectively. Then, the query policy
is

argmax
a0,a∈A

[

{IGQ + c0} ∪ {KL({wi}‖{w
′
i(a)}) + c1 | a ∈ A}

]

. (8.40)

For observing, we can apply similar measures to options about who to send a demon-
stration request (there might be multiple oracle and/or expert agents in the system that
can demonstrate as well) and how long to observe.

More sophisticated decision making might be a research topic for future work.

8.10. FEEDBACK TO HUMAN ORACLE

As [Hadfield-Menell et al., 2016] (Section 4.5) have shown, optimal behaviour w.r.t. the
task is not the same as behaving optimally to teach. However, the optimal teaching
behaviour cannot be derived by the human, because he or she would need to calculate
an optimization over complex feature spaces in his or her head, which no human can
do. One way to tackle this problem is by using a feedback system that helps the human
to develop a sense of how to teach optimally over a longer period of time (multiple
execution episodes).

Formally, we define a Feedback System (FS) as a mapping

τπµ → {(ti, ai)}
n
i=1 , (8.41)

which works as follows: After an episode τπµ , we use the current belief bθt as the true
reward to derive actions for optimal teaching. For every Markov step t where a query
answer or demonstration move d∗ was provided by the human, we compute the opti-
mal teaching decision dH according to equation 4.22. If the set of decisions is a metric
space with metric M , we calculate ‖d∗ − dH‖2M , and if it exceeds some threshold ǫ, the
tuple (t, dH) is added to the output set. In case the set of decisions is not a metric space,

we check d∗ ?
= dH instead. After we finished processing the whole episode, the output

{(ti, ai)}
n
i=1 is visualized for presentation to the human in order to give the following

feedbacks: At which steps, which decisions would have been better for teaching.
Note that calculating the optimal teaching behaviour does not require the true reward

to work correctly. In the original work, the authors used linear function approximations
from begin with. In order to have less noise, we could restrain to give feedback in the
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first couple of episodes and start giving feedback when the model samples do not vary
too much.

Furthermore, it is up to the human whether he or she is willing to adapt his or her
behaviour to the feedback; and this will strongly depend on whether the human is
able to recognize a pattern behind the difference of optimal task solving and optimal
teaching in the problem domain he or she is working on.

8.11. MODELLING COOPERATION PARTNERS

In decentralized settings, we could use predefined FOL statements that help to model
other actors in the system in order to predict state changes better. Other than in classic
RL settings, cooperation implies that, from a perspective of a single agent a0, the envi-
ronment changes on itself without active manipulation (because other actors will prob-
ably manipulate it). In our FOL setting, the all variables and constants in the knowledge
base represent the state; denote them as C = {ci}

n
i=1. Furthermore we have a set of ac-

tors excluding the agent itselfA = {ai}
m
i=1. This set can be extended dynamically. What

we would like to do is

1. find a mapping f : A → P(C) that tells which objects in the world are relevant
for which agents,

2. find a probability distribution P(A(f(a))′ | s, a,A(f(a))) that give information
about how agent a would probably manipulate its control space f(a),

where A({c1, ..., cl}) are the value assignments for {c1, ..., cl}. Note that f(a) is not
necessarily the real control space of a but include only those objects that a0 can ob-
serve. Our assumption of the model is that if objects in a subset Ci ∈ C are likely to
be changed simultaneously, then we identified a agent with its control space. These
subsets can overlap. In order to solve this task, we can use deep learning techniques,
that often involve unsupervised learning steps, to extract these regions of single actor
manipulation and at the same time yield a predictive model of a very simplified state
transition for other actors.

The information about the number of cooperative actors and its behaviours can help
to solve tasks more efficiently. For example we have a task in the form of a pipelined
architecture. Different actors have different capabilities to work on their respective
stages in the pipeline. The dynamic identification of the number of actors working on
which stage enables to detect congestion and/or overstuffing. Agents that are able to
perform at stages that suffer from congestion will tend to help out at these stages. This
results in an automatized load balancing, which also works when agents are leaving
and joining dynamically.

9. DISCUSSION

The first thing I want to stress out is that relational representation should be the stan-
dard for the field of study around Reinforcement Learning. It enables formulation of
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complex problems where it would be hard or impossible to do in propositional rep-
resentations. That is why I gave a very detailed definition in the background section
for a better understanding. Taking advantage of that, it was fairly easy to show the
generality and expressiveness of RAP, if fact, is swallows CIRL and Dec-POMDP while
at the same time being simple and even sequential in the Markov process, making any
analysis on metaDP very simple.

The final failure model for the one-step-look-ahead algorithm for metaDP, for which
it was argued to be representative for real problems, induces an upper bound of linear
query complexity in the task duration, i.e. O(d). A complexity measure as simple
and explicit as that was never provided in former research on HRI before. However,
this thesis lacks experimental results. Future work will focus on describing many HRI
problems in metaDP and testing it against other formulations.
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Appendices

A. ZUSAMMENFASSUNG

In dieser Arbeit wird die Mensch-Roboter-Interaktion auf Grundlage von Inverse Rein-
forcement Learning und, etwas spezieller, Active Learning untersucht. Dabei werden
ausschließlich theoretische Überlegungen angestellt und mathematische Eigenschaften
hergeleitet; auf Experimente wird vollständig verzichtet.

Zunächst wird Hintergrundwissen über das Themenfeld Reinforcement Learning
knapp dargestellt, mit dem Schwerpunkt, eine detaillierte Definition von Prädikaten-
logik anzugeben. Der Grund ist, dass später argumentiert wird, dass die Problem-
beschreibung mit Hilfe von Prädikatenlogik wesentliche Vorteile mit sich zieht; auch
das ist der Grund, warum RAP als Grundlage für unseren neuen Formalismus ver-
wendet wird. Zudem zeigen wir die Allgemeinheit, die RAP bezüglich der Beschrei-
bung nebenläufiger Multi-Agenten-Systeme hat, obwohl es von den Grundzügen ein-
fach und der eigentliche Prozess sequenziell ist.

Als Vorbereitung werden einige der wichtigsten Meilensteine in diesem Forschungs-
feld zusammengefasst dargestellt. Für jeder dieser Publikationen wird das Problem
genannt, anschließend die Lösungen erklärt und schließlich die Ergebnisse präsentiert.

Als letzter Beitrag dieser Arbeit wird ein neuer Formalismus definiert, das einen
Meta-Prozess beschreibt, bei dem der Agent zunächst die Entscheidung treffen muss,
ob er selber handelt, um Hilfe fragt oder die Umgebung nur beobachtet. Die Allgemein-
heit des Formalismus wird kurz dargestellt, bevor ein Algorithmus präsentiert wird,
der, statt dem vollen Markov-Prozess, nur einen Schritt vorausschaut aufgrund von
Effizienz. Im Zusammenhang des Meta-Lernens, interessieren wir uns für die Unter-
suchung des Algorithmus fast ausschließlich für die Anzahl der Fragen, die ein Agent
stellt, weil das in realen Systemen die Operationen mit den höchsten Kosten sind. Dies-
bezüglich werden Konvergenz und Komplexität gezeigt.
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