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Abstract

This thesis is divided into three parts. In the first part we
introduce a framework that allows us to investigate learning
scenarios with restricted access to the data. We use this
framework to model high-dimensional learning scenarios as
an infinite-dimensional one in which the learning algorithm
has only access to some finite-dimensional projections of the
data. Finally, we provide a prototypical example of such an
infinite-dimensional classification problem in which histograms
can achieve polynomial learning rates.
In the second part we present some individual results that
might by useful for the investigation of kernel-based learning
methods using Gaussian kernels in high- or infinite-dimensional
learning problems. To be more precise, we present log-covering
number bounds for Gaussian reproducing kernel Hilbert spaces
on general bounded subsets of the Euclidean space. Unlike
previous results in this direction we focus on small explicit
constants and their dependence on crucial parameters such
as the kernel width as well as the size and dimension of the
underlying space. Afterwards, we generalize these bounds
to Gaussian kernels defined on special infinite-dimensional
compact subsets of the sequence space ℓ2. More precisely, the
considered domains are given by the image of the unit ℓ∞-ball
under some diagonal operator.
In the third part we contribute some new insights to the
compactness properties of diagonal operators from ℓp to ℓq

for p ̸= q.
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Preface
Many modern real-world applications of machine learning algorithms can
be modeled as high-dimensional statistical learning problems, such as im-
age classification or medical diagnostics based on gene expressions have
thousands of dimensions. It is well-known that such learning problems are
challenging both practically as well as theoretically. The practical chal-
lenges include the memory and time consumption of the learning algorithms,
however, we focus on the theoretical challenges. To this end, let us briefly
sketch some well-known theoretical results for least-squares (LS) regression
and their problems in high-dimensional scenarios. In [79] it is shown that
the optimal decay rate of the L2-generalization error for an increasing
sample size n, the so-called learning rate, is

n− α
2α+d , (0.1)

where d ≥ 1 denotes the dimension of the input values and α > 0 the
smoothness of the regression function. Since then it was shown by many
authors that this optimal rate (up to a logarithmic term) is achieved by var-
ious learning algorithms, see e.g. [79, 50, 78, 27, 34] and references therein.
Learning rates with a similar dependence on the input dimension were ob-
tained for other learning scenarios, see e.g. [3, 76] for binary classification. If
an algorithm achieves a learning rate of this form then the common interpre-
tation is as follows: Since the generalization error decreases polynomially in
n, the learning problem is feasible and the algorithm solves it data efficient.
But the polynomial order of the learning rate vanishes for increasing d and
hence the algorithm suffers from the curse of dimensionality. However, this
heuristic interpretation has its weaknesses:

(i) In (0.1) only the asymptotic behavior with respect to the sample size
n is specified, but in most cases the error bound is actually of the
form

Cα,d · n− α
2α+d , (0.2)

with some constant Cα,d independent of n, but depending on the
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dimension d and the smoothness α. Unfortunately, most contributions
providing learning rates do not investigate the dependence of Cα,d

on d and α. If we, for example, assume the highly unlikely case that
Cα,d = exp(−d) then the error bound in (0.2) would have a very
pleasing behavior for an increasing dimension d.

(ii) At first sight the regularity assumption expressed by α seems to
be independent of d but this is not completely true. For d = 1 a
smoothness of α ∈ N implies the existence of α derivatives. For d = 2
the same smoothness already implies (α + 2)(α + 1)/2 − 1 different
(partial) derivatives. Moreover, for general d, α ∈ N the number of
derivatives is expressed by the binomial coefficient

(
α+d

d

)
−1 and hence

grows like dα for d → ∞. This shows that the smoothness assumption
depends on the dimension. Moreover, if α expresses (only) the Sobolev
smoothness of the regression function, as in [38, 27], the situation is
even more obscure. To be more precise, in low-dimensional spaces
d < 2α the Sobolev embedding theorem, see e.g. [1, Theorem 4.12],
guaranties the continuity of the regression function whereas in high-
dimensional spaces d > 2α the regression functions can be even
discontinuous.

Both issues indicate that the learning rate alone is insufficient to decide
whether a problem suffers from the curse of dimensionality or not. For
these reasons, we use a different approach to model high-dimensional learn-
ing problems which is motivated by the following idea: Many practical
applications are not only high-dimensional learning problems they are even
intrinsically infinite-dimensional. For example, if we have gray scale images
as input values x, it is natural to model them as infinite-dimensional objects,
namely functions x : [0, W ] × [0, H] → [0, 1] over a rectangle, where x(s, t)
represents the brightness of the image at the position (s, t) ∈ [0, W ] × [0, H].
For the simple reason that we cannot store infinite-dimensional objects on
a computer the original infinite-dimensional learning problem is practically
not feasible. However, in the moment when we load the infinite-dimensional
data on a computer each data point gets discretized to a high-dimensional
but finite-dimensional object. In the case of images they get discretized, e.g.
via camera or scanner, to raster images consisting of finitely many pixels
and hence become finite-dimensional objects.

Inspired by this interpretation, we model a high-dimensional learning
problem as an infinite-dimensional one in which our algorithm has only
access to a projection of the data into a d-dimensional space. This allows
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us to apply assumptions on the infinite-dimensional learning problem and
consider projections into a d-dimensional space for all d ≥ 1. As a result,
this approach fixes Issue (ii). In a way, this means that the dimension d is a
hyper parameter of the learning algorithm. Lower values for d corresponds
to less information demand per data point and hence lower values of d are
preferable. In order to solve Issue (i), there is no way around tracking the
dependence on the dimension d precisely in all bounds.

The goal of this thesis is to identify infinite-dimensional learning problems
and corresponding projections onto Rd in which standard algorithms can
learn with a polynomial rate in n even if d = dn increases with n. In doing
so, we present a class of infinite-dimensional classification problems in which
histograms can learn with a polynomial rate.

Abstract
In Part I, after a brief introduction to statistical learning theory in Chap-
ter 1, we introduce in Chapter 2 a framework that allows us to investigate
learning scenarios with restricted access to the data. In Chapter 3 we
use this framework to model high-dimensional learning scenarios as an
infinite-dimensional one in which the learning algorithm has only access to
some finite-dimensional projections. Afterwards, in Chapter 4 we provide a
prototypical example of such an infinite-dimensional classification problem.
Furthermore, we investigate learning rates of histograms in this scenario.
In Chapter 5 we generalize the prototypical example from the previous
chapter to various particular classes of infinite-dimensional classification
problems. These generalizations illustrate some peculiarities of high-dimen-
sional learning problems. We close this part with Chapter 6, in which we
sketch further research directions and briefly discuss other approaches in
the existing literature.

In Part II we present some individual results that might by useful for
the investigation of kernel-based learning methods in high- or infinite-
dimensional learning scenarios. To be more precise, after a brief introduction
to Gaussian kernels in Section 7 we present log-covering number bounds for
Gaussian reproducing kernel Hilbert spaces (RKHSs) on general bounded
subsets of the Euclidean space Rd in Section 8. These bounds explicitly
provide the dependence on crucial parameters such as the dimension d and
improve already known bounds. In Section 9 we generalize the log-covering
number bounds from the previous section to Gaussian kernels defined on
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special infinite-dimensional compact subsets of the sequence space ℓ2. More
precisely, the considered domains are given by the image of the unit ℓ∞-ball
under some diagonal operator.

The investigations of the compactness properties of diagonal operators
from ℓp to ℓq in Part III were initially thought as a preparation for Section 9.
However, it turned out that we do not need them for Section 9, but we
include these results anyway as they contribute to the still incomplete
picture of the compactness properties of diagonal operators.

In the appendix, we provide proofs and introductions to topics, which
are not directly related to learning with high-dimensional data, but may
support the understanding of this thesis.

Zusammenfassung
Den Teil I dieser Arbeit beginnen wir in Kapitel 1 mit einer kurzen Ein-
führung zur statistischen Lerntheorie. In Kapitel 2 stellen wir dann ein
Framework vor, das es uns ermöglicht, Lernszenarien mit eingeschränktem
Zugang zu den Daten zu betrachten. Dieses Framework verwenden wir in
Kapitel 3, um hochdimensionale Lernszenarien als unendlich dimensionale
Szenarien zu modellieren, bei denen der Lernalgorithmus nur Zugang zu end-
lich dimensionalen Projektionen hat. Anschließend stellen wir in Kapitel 4
ein Modellbeispiel für ein solches unendlich dimensionales Klassifikationspro-
blem vor. Ferner untersuchen wir das Histogrammverfahren auf Lernraten
in diesem Szenario. In Kapitel 5 verallgemeinern wir das Modellbeispiel aus
dem vorigen Kapitel auf mehrere spezielle Klassen unendlich dimensionaler
Klassifikationsprobleme. Diese Verallgemeinerungen veranschaulichen einige
Eigenheiten von hochdimensionalen Lernproblemen. Zum Abschluss des
ersten Teils skizzieren wir in Kapitel 6 weiterführende Forschungsrichtungen
und diskutieren alternative Ansätze aus der Literatur.

In Teil II stellen wir Ergebnisse vor, die zur Untersuchung von kernba-
sierten Lernmethoden in hoch- oder unendlich dimensionalen Lernszena-
rien nützlich sein könnten. Genauer präsentieren wir, nach einer kurzen
Einführung in Kapitel 7 zu Gaußkernen, in Kapitel 8 Schranken an die
log-Überdeckungszahlen für Gauß’sche reproduzierende Kern-Hilberträu-
me (RKHS) auf allgemeinen beschränkten Teilmengen des euklidischen
Raums Rd. Dabei geben wir die Abhängigkeit von wichtigen Parametern,
wie der Dimension d, explizit an. Ferner verbessern diese Schranken bereits
bekannte Resultate aus der Literatur. In Kapitel 9 verallgemeinern wir
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diese Schranken auf Gaußkerne, die auf speziellen unendlich dimensionalen
kompakten Teilmengen des Folgenraums ℓ2 definiert sind. Genauer gesagt,
betrachten wir Gebiete, die als das Bild der ℓ∞-Einheitskugel unter einem
Diagonaloperator gegeben sind.

Die Untersuchungen der Kompaktheitseigenschaften von Diagonalope-
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List of Notation
In the following we summarize the notation used throughout this thesis.
We start with some general notation sorted by the mathematical field and
end with some specific notation sorted by the part where it gets used.

Sets and Functions. For sets M and N we use the standard symbols: ∈
member, ⊆ subset, ∪ union, ∩ intersection, \ difference, and ∅ empty set.
Moreover, we use the notation:

M c := N\M complement of M (in N) if M ⊆ N .
M ⊎ N union of M and N , where M and N are disjoint, i.e.

M ∩ N = ∅.
M△N := M\N ∪ N\M symmetric difference of M and N .

N, N0, R set of positive integers, non-negative integers, and real
numbers.

[a, b], (a, b) ⊆ R closed and open interval for −∞ ≤ a ≤ b ≤ ∞.
[d] := {1, 2, . . . , d} set of the first d positive integers.

F(M) := {N ⊆ M : |N | < ∞} set of all finite subsets.
id, idM : M → M identity function.

sgn : R → {±1} sign function with sgn(0) = 1.
1M indicator function of a subset M .
t+ := max{0, t} for t ∈ R.
log natural logarithm.(

t
k

)
(generalized) binomial coefficient for t > 0 and k ∈ N.

Γ(t) :=
∫ ∞

0 xt−1e−x dx Gamma function for t > 0.
W−1, W0 Lambert’s W -functions.

Asymptotic Equivalence. For real-valued functions f, g, which are de-
fined in some neighborhood of a point a, we use the following asymptotic
expressions for x → a:

f ≼ g i.e. there is a constant c > 0 and a neighborhood U of a
with f(x) ≤ cg(x) for all x ∈ U .

f ≍ g (weak) asymptotic equivalence, i.e. f ≼ g and f ≽ g.

x
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f ∼ g strong asymptotic equivalence, i.e. f · g > 0 is positive in
some neighborhood of a and f(x)/g(x) → 1 for x → a.

o(g) small o Landau symbol, i.e. o(g) denotes a function f with
f(x)/g(x) → 0 for x → a.

We use the same notation for sequences and a = ∞.

σ-Algebras and Measures. For measurable spaces (X, B), (X̄, B̄) and
some measures ν and µ on B we use the notation:

B|A trace σ-algebra on A ⊆ X.
B(X, τ) Borel σ-algebra of X if (X, τ) is a topological space. If

there is no risk of confusion, we write B(X).
σ(f) initial σ-algebra on X of a function f : X → X̄.

B ⊗ B̄ product σ-algebra on X × X̄.
ν ⊗ ν̄ product measure on B ⊗ B̄ if ν̄ is a measure on B̄.

ν ◦ f−1 push-forward measure of ν with a measurable function
f : X → X̄.

|ν| total variation of ν if ν is a signed measure.
supp ν support of ν if X is a Hausdorff space and ν is a Radon

measure.
ν ⊥ µ ν and µ are singular.
ν ≪ µ ν is absolute continuous with respect to µ.
dν/dµ µ-density of ν if ν ≪ µ.
λd, λ d-dimensional and one-dimensional Lebesgue measure.

δx Dirac measure at the point x ∈ X.
unif(M) uniform distribution over a set M .
N (µ, Σ) normal distribution with mean µ ∈ Rd and covariance

Σ ∈ Rd×d.
For a probability measure ν we additionally use the notation:

Z ∼ ν Z is a X-valued random variable with distribution ν.
Eν(f) = Ex∼νf(x) expectation of a function f : X → R.

Eν(f |A) conditional expectation of a ν-integrable function f : X →
R and a sub-σ-algebra A ⊆ B.
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Metric Spaces. For a subset M ⊆ X of a pseudo-metric or quasi-metric
space (X, d) we use the following notation:

κX ≥ 1 quasi-triangle constant.
M , M̊ closure and interior of M .

BX(x, r) closed ball with center x ∈ X and radius r ≥ 0.
B̊X(x, r) open ball with center x ∈ X and radius r ≥ 0.

dist(x, M) := infx′∈M d(x, x′) distance between x ∈ X and M .
diam(M) := supx,x′∈M d(x, x′) diameter of M .
N (M, r) covering number of M for r > 0.
P(M, r) packing number of M for r > 0.

εn(M) entropy number of M for n ≥ 1.
H(M, r) := log N (M, r) log-covering number of M for r > 0.

en(M) := ε2n−1(M) (dyadic) entropy number of M for n ≥ 1.
For a bounded linear operator R : U → V between (quasi-)Banach spaces
the quantities N (R, r), P(R, r), εn(R), H(R, r), and en(R) are analogously
defined with M = RBU .

Vector Spaces and Linear Operators. For a linear operator R : U → V
between two real vector spaces U and V we use the following notation:

Id, IdU identity operator on some vector space and on U .
span M := {

∑n
i=1 cixi : n ∈ N, ci ∈ R, xi ∈ M} linear span of a

subset M ⊆ U .
ran R := RU range of R.

rank R rank of R, i.e. dimension of ran R.
∥ · ∥, ∥ · ∥U (quasi-)norm on some vector space and on U .

BU , B̊U closed and open unit ball if U is a (quasi-)normed vector
space.

H1 ⊗̂hs H2 tensor product of Hilbert spaces, i.e. Hilbert-Schmidt
operators H1 → H2.
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Function and Sequence Spaces. For a (X, B, ν) measure space and a
measurable function f : X → R we denote the corresponding ν-equivalence
class by [f ]ν . Moreover, let (Y, τ) be a topological space. Then we define
the following function spaces:

L0(X, B) set of measurable functions f : X → R. If there is no risk
of confusion, we write L0(X).

Lp(ν) set of functions f ∈ L0(X, B) with finite (quasi-)norm

∥f∥Lp(ν) :=
{(∫

X
|f |p dν

)1/p
, 0 < p < ∞

inf
{

a > 0 : ν(|f | > a) = 0
}

, p = ∞

Lp(ν) :=
{

[f ]ν : f ∈ Lp(ν)
}

set of ν-equivalence classes of
function equipped with the (quasi-)norm ∥[f ]ν∥Lp(ν) :=
∥f∥Lp(ν).

ℓp(I) Lp space on a set I equipped with the counting measure.
ℓp := ℓp(N) sequence space of p-summable sequences.
ℓd

p := ℓp([d]) d-dimensional space equipped with the p-(quasi-)
norm.

Cb(Y ) set of bounded continuous functions f : Y → R equipped
with the uniform norm ∥f∥Cb(Y ) := supy∈Y |f(y)|.

Cc(Y ) ⊆ Cb(Y ) set of continuous functions with compact sup-
port.

Part I: Learning Scenario. In Part I we deal with learning scenarios which
we usually describe as follows:

(X, B) measurable space used as input space.
Y ⊆ R closed subset used as output space.

πX , πY projections from X × Y onto X and Y .
P probability measure on X × Y .
ν := P ◦ π−1

X marginal distribution of P on X.
D ∈ (X ×Y )n data set as well as the corresponding empirical

measure.
δ := D ◦ π−1

X marginal distribution of D on X.
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L : Y × R → [0, ∞) (supervised) loss function.
RL,P (f) := E(x,y)∼P L(y, f(x)) L-risk of a function f .
R∗

L,P,H := inff∈H RL,P (f) minimal L-risk over a hypothesis class
H ⊆ L0(X).

R∗
L,P := R∗

L,P,L0(X) Bayes L-risk.

f∗
L,P ∈ argminf∈L0(X) RL,P (f) Bayes decision function.

For a (binary) classification problem Y = {±1} we additionally use the
following notation:

p+, p− probability for observing a positive and negative label.
ν+, ν− marginal distributions of the positive and negative labeled

data points.
η(x) := p+dν+/dν(x) probability for observing a positive label

at x ∈ X.
If there is a pseudo-metric d on X then we use the following notation:

∆d distance to the decision boundary w.r.t. P and d.
Md, MN d margin and margin-noise function w.r.t. P and ∆d.

For a (measurable and countable) partition A = (Ak)k∈K of X we consider
histograms and therefore we use the following notation:

diam(A) := supk∈K diam(Ak) diameter of the partition.
hP,A, hD,A population and empirical histogram.

H(A, Y ) :=
{∑

k∈K ck1Ak
: ck ∈ Y

}
set of Y -valued functions

which are constant on cells of A.
Aν :=

{
k ∈ K : ν(Ak) > 0

}
indexes of relevant cells.

AM :=
{

k ∈ K : M ∩ Ak ̸= ∅
}

indexes of relevant cells for a
subset M ⊆ X.

If X =
∏

i≥1 Xi is a sequence space, i.e. (Xi, di) are Polish spaces, and
A = (Ai)i≥1 a partition of (Xi)i≥1 then we use the following notation, for
I ∈ F(N):

XI :=
∏

i∈I Xi.
dI := maxi∈I di

πI : X → XI projection onto the features in I.

xiv



List of Notation

PI := P ◦(πI , idY )−1 transformed distribution of P on XI ×Y .
νI := ν ◦ π−1

I marginal distribution of PI on XI .
AI product partition of XI .

AI,ν := (AI)νI
indexes of the relevant cells of the product

partition.
∆I distance to the decision boundary on X w.r.t. P and the

pull-back pseudo-metric of dI .
MI , MN I margin and margin-noise function w.r.t. P and ∆I .

hP,A,I , hD,A,I population and empirical histogram using the features
specified in I.

hP,r,I , hD,r,I population and empirical histogram using the features
specified in I and a predefined cubic partition A with
radius r if Xi = Rpi for all i ≥ 1.

Part II: Gaussian Kernels. For an index set I we use in Part II the
following notation:

kσ, kσ isotropic Gaussian kernel with width σ > 0 and anisotropic
Gaussian kernel with width vector σ ∈ ℓ∞(I).

Hσ(X) Gaussian RKHS on X ⊆ ℓ2(I).
Iσ, Iσ[X] : Hσ(X) → ℓ∞(X) ℓ∞-embedding of the Gaussian RKHS

on X ⊆ ℓ2(I) and Iσ := Iσ[Bℓd
2
].

P (U) : Hσ(X) → Hσ(X) orthogonal projection onto a subspace
U ⊆ Hσ(X).

H1 ⊗ H2 tensor product of RKHSs H1 and H2.

Part III: Diagonal Operators. For 0 < p, q ≤ ∞, k ≥ 1 and a sequence
σ = (σn)n≥1 we use in Part III the following notation:

Dσ : ℓp → ℓq, (xn)n≥1 7→ (σnxn)n≥1 diagonal operator.
Dk

p,q : ℓk
p → ℓk

q , (xn)k
n=1 7→ (σ1x1, . . . , σkxk) k-dimensional

part of Dσ.
Idk

p,q : ℓk
p → ℓk

q identity operator.
P k

p : ℓp → ℓk
p, (xn)n≥1 7→ (x1, . . . , xk) projection onto the

first k coordinates.
Ik

p : ℓk
p → ℓp, (xn)k

n=1 7→ (x1, . . . , xk, 0, 0, . . .) embedding.

xv





Part I

Learning with
High-Dimensional Data

This is the main part of the thesis. In this part we develop a framework
which allows us to model a high-dimensional learning problem as a subset
or projection of an infinite-dimensional learning problem. Finally, we use
this framework to prove polynomial learning rates for histograms on various
particular classes of infinite-dimensional (binary) classification problems.





Chapter 1

Introduction to Learning Theory

In this chapter we give a brief introduction to statistical learning theory
and introduce the basic notation. Most of the introductory material and
the notation is taken from [76], see also [25, 43] for additional information
on learning theory.

1.1 Definitions and Basic Properties
Our learning scenario or learning problem of interest is described by the
measurable space (X, B) used as input space, the closed subset Y ⊆ R used
as output space, and the unknown probability distribution P on X × Y .
Moreover,

D =
(
(x1, y1), . . . , (xn, yn)

)
∼ P n

denotes a data set of length n ≥ 1 independently sampled according to
P . For the marginal distribution of P on X we write ν := P ◦ π−1

X , where
πX : X × Y → X is the projection onto X. If there is no risk of confusion,
we write D := 1

n

∑n
i=1 δ(xi,yi) for the empirical measure corresponding to

the data set D, where δ(xi,yi) denotes the Dirac measure at (xi, yi). The
goal is to find a (measurable) function f : X → R such that f(x) is a good
prediction of y for an unseen pair (x, y) ∼ P . In this context f : X → R is
called decision function.

In order to measure the quality of a decision function we use loss functions
and risks. A loss (function) is a measurable function L : X ×Y ×R → [0, ∞)

3



Chapter 1 Introduction to Learning Theory

and the corresponding (L-)risk is given by

RL,P (f) :=
∫

X×Y

L
(
x, y, f(x)

)
dP (x, y)

for all measurable functions f : X → R. The minimal L-risk over the set
L0(X) of measurable functions f : X → R is called Bayes (L-)risk and
denoted by

R∗
L,P := inf

f∈L0(X)
RL,P (f) .

In this sense, the Bayes risk is a lower bound on the quality of any decision
function. The minimal L-risk on a subset H ⊆ L0(X) is denoted by
R∗

L,P,H := inff∈H RL,P (f). In this context H is called hypothesis class.
The discrepancy between the risk of a decision function f : X → R and the
Bayes risk

RL,P (f) − R∗
L,P

is called excess (L-)risk. Furthermore, all decision functions that achieve
the Bayes L-risk

f∗
L,P ∈ argmin

f∈L0(X)
RL,P (f)

are called (L) Bayes functions.
We call a loss function L supervised if it does not depend on x ∈ X, i.e.

L : Y × R → [0, ∞). In this thesis we are mainly interested in the following
supervised loss functions:

(i) the LS loss L(y, t) := (y − t)2 used for regression problems and

(ii) the classification loss L(y, t) := 1(−∞,0]
(
y sgn(t)

)
used for classifica-

tion problems. Here sgn denotes the sign function with the convention
sgn(0) := 1.

In the case of the LS loss we write RLS,P (f), R∗
LS,P , and f∗

LS,P for the LS-
risk, the Bayes LS-risk, and a LS Bayes function, respectively. Analogously,
we adapt the notation for the classification loss. For further popular loss
functions see e.g. [76, Chapter 2].

A learning method L = (Ln)n≥1 on X × Y is a sequence of mappings

4



1.1 Definitions and Basic Properties

Ln : (X × Y )n → L0(X) such that the map

(X × Y )n × X → R

(D, x) 7→ fD(x) := Ln(D)(x)
(1.1)

is measurable with respect to the product σ-algebra. Note that in the
literature the measurability is sometimes defined with respect to the uni-
versal completion of product σ-algebra, see e.g. [76, Definition 6.2]. Since
we do not need such a generality, we stick to the simpler definition for
convenience. If there is no risk of confusion, we just write D 7→ fD for a
learning method. In other words, a learning method produces for any data
set D a decision function fD : X → R. As a result, the risk D 7→ RL,P (fD),
describing the quality of the learning method, is no longer a real number,
but a real-valued random variable on (X ×Y )n. Note that the measurability
of that random variable is ensured by the measurability of (1.1) together
with the non-negativity of the loss and Tonelli’s theorem.

Since the comparison of random variables is not straightforward, one
typically focuses on their asymptotic behavior for an increasing data set size.
A learning method L = (Ln)n≥1 with D 7→ fD is called L-risk consistent
for P if RL,P (fD) → R∗

L,P in probability for n → ∞, i.e.

lim
n→∞

P n
(

D ∈ (X × Y )n : RL,P (fD) − R∗
L,P ≤ ε

)
= 1 (1.2)

is satisfied for all ε > 0. In other words, the learning method achieves the
Bayes risk in the limit n → ∞.

If a learning method L(p) = (L(p)
n )n≥1 depends on a hyper parameter p,

then we have, for every hyper parameter sequence (pn)n≥1, a new learning
method (L(pn)

n )n≥1, whose consistency properties can be investigated. If
(L(pn)

n )n≥1 is L-risk consistent for P , then we say that L(p) is L-risk consis-
tent for P using the hyper parameter sequence (pn)n≥1. Furthermore, we
call L(p) potentially L-risk consistent for P if there is a hyper parameter
sequence (pn)n≥1 such that the learning method (L(pn)

n )n≥1 is L-risk con-
sistent for P . Note that this notion is essentially weaker than consistency
since the sequence (pn)n≥1 does not need to be specified.

5



Chapter 1 Introduction to Learning Theory

Both notions are qualitative descriptions of the asymptotic performance.
Consequently, we introduce next the quantitative counterpart, namely
learning rates. For a set of probability measures P on X × Y and a positive
sequence (εn)n≥1 with ε → 0 for n → ∞ a learning method D 7→ fD is said
to learn with rate (εn)n≥1 on P if for every τ ≥ 1 there is some constant
Cτ > 0 and nτ ≥ 1 with

P n
(

D ∈ (X × Y )n : RL,P (fD) − R∗
L,P ≤ Cτ εn

)
≥ 1 − e−τ

for all τ ≥ 1, n ≥ nτ , and P ∈ P. Note that in the following the set of
considered probability measures P is only implicitly defined.

As final part of this section we recall some basic properties of the LS
loss function from [76, Example 2.6]. To this end, let πX and πY be the
projection onto X and Y , respectively, and define the average p-th moment

|P |p := ∥πY ∥Lp(P ) =
(∫

X×Y

|y|p dP (x, y)
)1/p

(1.3)

of P for p > 0. In the following we assume |P |2 < ∞. Then a function
f : X → R is a LS Bayes function if and only if

f ◦ πX = EP (πY |πX) (1.4)

is P -almost surely satisfied. This ensures, under consideration of the
factorization lemma, see e.g. [48, Corollary 1.97], that there is a LS Bayes
function f∗

LS,P and that all LS Bayes functions coincide ν-almost everywhere.
Moreover, Jensen’s inequality yields

∥f∗
LS,P ∥L2(ν) =

∥∥EP (πY |πX)
∥∥

L2(P ) ≤ ∥πY ∥L2(P ) = |P |2 < ∞

and hence f∗
LS,P is in the space L2(ν) of square ν-integrable functions. In

addition, the excess LS-risk is given by

RLS,P (f) − R∗
LS,P = ∥f − f∗

LS,P ∥2
L2(ν) . (1.5)
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1.2 Classification

Finally, note that the Bayes risk is given by the average conditional variance

R∗
LS,P =

∫
X×Y

EP (π2
Y |πX) −

(
EP (πY |πX)

)2 dP .

For later use the following lemma provides a basic property of the LS Bayes
function.

1.1.1 Lemma For A ∈ B the following identity is satisfied∫
A

f∗
LS,P (x) dν(x) =

∫
π−1

X
(A)

y dP (x, y) .

Proof. Using the change-of-variables formula for ν = P ◦ π−1
X and the

representation f∗
LS,P ◦ πX = EP (πY |πX) from (1.4) we find∫

A

f∗
LS,P (x) dν(x) =

∫
π−1

X
(A)

f∗
LS,P ◦ πX dP =

∫
π−1

X
(A)

EP (πY |πX) dP .

Since the set π−1
X (A) ∈ σ(πX) is σ(πX)-measurable, the assertion follows

by the properties of the conditional expectation.

1.2 Classification
For (binary) classification problems P on X × Y we assume that the labels
are +1 and −1, i.e. Y = {±1}, and define

p± := P
(
X × {±1}

)
as the probability for observing a positive and a negative label, respectively.
Without loss of generality we assume 0 < p± < 1 since in the cases p± ∈
{0, 1} only one class can be observed with positive probability. Moreover,
we denote the marginal distribution of the positive and negative labeled
data points by

ν±(A) :=
P

(
A × {±1}

)
p±

, (1.6)
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Chapter 1 Introduction to Learning Theory

for A ∈ B. With this notation the marginal ν = P ◦ π−1
X is given by the

convex combination
ν = p+ν+ + p−ν− . (1.7)

Note that the probability distribution P , which describes our learning
problem, is uniquely defined by the two probability measures ν± and by
p± ∈ (0, 1) with p+ + p− = 1.

Using ν± and p± ∈ (0, 1) with p+ + p− = 1 the sampling of a data point
(x, y) ∼ P can be described as two-stage sampling as follows: As a first
step draw y ∈ {±1} such that y = +1 with probability p+ and y = −1 with
probability p−. Then, as a second step, draw x ∼ ν+ if y = +1 and draw
x ∼ ν− if y = −1. This procedure gives a data point (x, y) ∼ P following
the distribution P .

Since ν+ ≪ ν holds true, we can define another important quantity

η(x) := p+
dν+

dν
(x) ∈ [0, 1]

for x ∈ X. Note that η equals η(x) = P
(
{πY = 1}|πX = x

)
and hence is

the probability for observing a positive label for the input value x ∈ X. To
see this, we determine the following integrals for a measurable set A ∈ B∫

π−1
X

(A)
1{πY =1} dP =

∫
X×Y

1A×{1} dP = P
(
A × {1}

)
and∫

π−1
X

(A)
η ◦ πX dP =

∫
A

η dν = p+

∫
A

dν+

dν
dν = p+ν+(A) .

According to the definition of ν+ both integrals coincide and hence

η(x) = EP

(
1{πY =1}|πX = x

)
= P

(
{πY = 1}|πX = x

)
is proven. However, η is not uniquely defined by P . To be more precise,
different versions coincide only ν-almost surely and hence we fix some
specific version of η in the following. Using this version we define the sets

X+ :=
{

η > 1/2
}

and X− :=
{

η < 1/2
}

. (1.8)
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1.2 Classification

Note that it is more likely to observe a positive label than a negative one
for x ∈ X+ and vice verse for x ∈ X−. Consequently, on the set X+ the
label +1 should be predicted and on the set X− the label −1.

The following lemma establishes a connection to the LS Bayes function.

1.2.1 Lemma The following equalities are ν-almost surely satisfied

2η − 1 = p+
dν+

dν
− p−

dν−

dν
= f∗

LS,P .

Proof. Using (1.7) and the definition of η we receive the first identity,
namely

2η − 1 = 2η − d(p+ν+ + p−ν−)
dν

= p+
dν+

dν
− p−

dν−

dν
.

The second identity is well-known, see e.g. [25, p. 11], where in this textbook
the labels are Y = {0, 1} and hence they have to be transformed to Y =
{±1}.

Next, we recall some basic properties of the classification loss. With the
help of the function η the Bayes classification-risk is given by

R∗
Class,P =

∫
X

min
{

η, 1 − η
}

dν (1.9)

and a measurable function f : X → R is a classification Bayes function if
and only if

(2η − 1) sgn(f) ≥ 0

is satisfied ν-almost surely. Since 2η − 1 = f∗
LS,P holds true according to

Lemma 1.2.1, the functions f∗
LS,P and f∗

Class,P := sgn(2η −1) are Bayes func-
tions for the classification loss, see [76, Example 2.4] for details. According
to [9, Lemma A.1] the excess classification-risk is given by

RClass,P (f) − R∗
Class,P =

∫
X+△{f≥0}

|2η − 1| dν , (1.10)

where △ denotes the symmetric difference. Note that the right hand side
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Chapter 1 Introduction to Learning Theory

does not depend on the specific version of η even if X+, which depends on
the version of η, appears.

In the next lemma we need the supports supp ν± ⊆ X of the probability
measures ν±. To this end, let X be a topological space equipped with the
Borel σ-algebra B(X) =: B. Then we define the support of a measure ν as

supp ν :=
( ⋃

O⊆X open:
ν(O)=0

O

)c

. (1.11)

To ensure that the support is actually a set of full measure ν
(
(supp ν)c

)
= 0

we need some additional regularity assumptions on ν or X. In the following
if we need the support of a measure, we always assume that X is a Polish
space, i.e. it is a complete separable metric space, equipped with the Borel
σ-algebra B(X) to ensure that the support is a set of full measure. To be
more precise, according to [31, Satz VIII.1.16] every locally finite measure
ν on a Polish space is an (inner and outer) regular measure. Especially ν is
a Radon measure, i.e. inner regular and locally finite, and according to [31,
Lemma VIII.2.15] the support of a Radon measure is a set of full measure.
Since we are only interested in probability measures ν, the support is always
a set of full measure on Polish spaces. Note that there are more general
spaces X which ensure that the support is a set of full measure, but we stick
to Polish spaces X (equipped with the Borel σ-algebra) for convenience. In
Appendix B we summarize some basic properties of the support.

In Chapter 4 classification problems without (label) noise are of particular
interest, i.e. η ∈ {0, 1} ν-almost surely. The following lemma provides some
characterizations of that property.

1.2.2 Lemma (No Noise) For a probability measure P on X × {±1} the
following statements are equivalent:

(i) There is no noise, i.e. η ∈ {0, 1} ν-almost surely.

(ii) R∗
Class,P = 0.

(iii) ν+ ⊥ ν− are singular measures, i.e. there is a decomposition X =
A+ ⊎ A− with A± ∈ B and ν+(A−) = ν−(A+) = 0.
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1.2 Classification

(iv) ν+(X+) = ν−(X−) = 1.

Moreover, if X is a Polish space (equipped with the Borel σ-algebra) and
supp ν+ ∩ supp ν− is a ν+- or ν−-zero set then there is no noise.

To see that the condition ν−(supp ν+ ∩ supp ν−) = 0 or ν+(supp ν+ ∩
supp ν−) = 0 is stronger than the conditions in (i)–(iv) consider the distri-
butions ν± given as convex combinations of a uniform distribution and a
Dirac distribution

ν+ :=
unif

(
[0, 1]

)
+ δ−1

2 and ν− :=
unif

(
[−1, 0]

)
+ δ+1

2

on X = [−1, 1]. In this case we have supp ν+ ∩supp ν− = {−1, 0, 1} which is
neither a ν+-zero set nor a ν−-zero set. However ({−1} ∪ (0, 1)) ⊎ ((−1, 0] ∪
{1}) is a suitable decomposition that implies ν+ ⊥ ν−.

Proof. (i)⇔(ii) This is a direct consequence of the representation of the
Bayes risk in (1.9).

(i)⇒(iii) We show that X = {η = 1}⊎{η ̸= 1} is a suitable decomposition.
Using the definition of η we find

p−ν−(η = 1) =
∫

{η=1}
p−

dν−

dν
dν =

∫
{η=1}

1 − η dν = 0

and hence ν−(η = 1) = 0. Analogously, we can show ν+(η = 0) = 0. Since
η ∈ {0, 1} holds true ν-almost surely, we get ν+(η ̸= 1) = ν+(η = 0) = 0.
This proves ν+ ⊥ ν−.

(iii)⇒(iv) According to our assumption there is a decomposition X =
A+ ⊎ A− with ν+(A−) = ν−(A+) = 0. Since∫

A+

1 − η dν = p−

∫
A+

dν−

dν
dν = p−ν−(A+) = 0

and 0 ≤ η ≤ 1 are satisfied, we find ν({η ̸= 1} ∩ A+) = 0. Together with
the definition of X+ and ν+(A+) = 1 we get

ν+(Xc
+) = ν+(η ≤ 1/2) ≤ ν+(η ̸= 1) = ν+

(
{η ̸= 1} ∩ A+

)
= 0 .

11
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This proves ν+(X+) = 1. The identity ν−(X−) = 1 follows analogously.
(iv)⇒(i) We define the function η′ := 1X+ and show that η′ = p+dν+/dν

ν-almost surely. Note that X+ and hence η′ depends on some version of η,
which we do not specify. For A ∈ B we have∫

A

η′ dν = ν(A ∩ X+) = p+ν+(A ∩ X+) + p−ν−(A ∩ X+) = p+ν+(A) ,

where we used in the last step ν+(X+) = 1 and ν−(A ∩ X+) ≤ ν−(Xc
−) = 0.

This proves η′ = p+dν+/dν ν-almost surely. Since η′ ∈ {0, 1} holds true,
every version of η satisfies η ∈ {0, 1} ν-almost surely.

Finally, we assume that ν−(supp ν+ ∩ supp ν−) = 0 and show Point (iii).
To this end, we consider the decomposition X = supp ν+ ⊎ (supp ν+)c.
Then ν+((supp ν+)c) = 0 is a consequence of the fact that the support is
a set of full measure. Using again this property of the support and our
assumption gives ν−(supp ν+) = ν−(supp ν+ ∩ supp ν−) = 0. As a result,
this is a suitable decomposition which shows Point (iii).

In Lemma 1.2.2 we characterized learning problems without noise. Some-
times it is useful to have a more precise quantification of the amount of noise
in a classification problem. To this end, we introduce the noise function
N : [0, ∞) → [0, 1] given by N(t) := ν(|2η − 1| < 2t). Moreover, we say that
the distribution P has noise exponent 0 ≤ q ≤ ∞ if there is some constant
cN > 0 such that, for t ≥ 0,

N(t) ≤ (cN t)q (1.12)

holds true, c.f. [76, Definition 8.22] and [61, Equation (4)]. This condition
is also known as Tsybakov’s noise condition in the literature. Note that if
there is no noise then we have N(t) = 1(1/2,∞)(t). Consequently, we have
the noise exponent q = ∞ with cN = 2.

If we have a pseudo-metric space (X, d), i.e. d(x, x′) = 0 does not imply
x = x′, as input space, we can additionally introduce the following quantities,
cf. [76, Defintion 8.6 and Defintion 8.15]: The distance to the decision
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boundary is given by

∆d(x) :=


dist(x, X+), x ∈ X−

dist(x, X−), x ∈ X+

0, else,

(1.13)

with dist(x, A) := infa∈A d(x, a), for A ⊆ X. Note that the mapping x 7→
dist(x, A), for fixed A ⊆ X, is Lipschitz continuous and hence ∆d : X → R
is measurable if the σ-algebra B on X contains the Borel σ-algebra B(X, d),
that is

B ⊇ B(X, d) . (1.14)

In this case we can further define the margin function Md : [0, ∞) → [0, 1]
and the margin-noise function MN d : [0, ∞) → [0, 1] with respect to ∆d by

Md(r) := ν(∆d ≤ 2r) and

MN d(r) :=
∫

{∆d≤2r}
|2η − 1| dν

, (1.15)

respectively. Using Lemma 1.2.1 the margin-noise function equals

MN d(r) =
∣∣p+ν+ − p−ν−

∣∣(∆d ≤ 2r)

where |p+ν+ − p−ν−| denotes the total variation of the signed measure
p+ν+ − p−ν−. Note that the quantities ∆d, Md, and MN d additionally
depend on the specific version of η. In contrast to the notation in [76] we
use the metric d in the subscript of ∆d in instead of η since we will later
use different metric but a fixed version of η.

1.3 Histograms
A histogram is a learning method that is based on a given partition A =
(Ak)k∈K of the input space X, where K is some index set. We call Ak a cell
of A and say that the partition A is measurable if every cell is measurable,
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i.e. Ak ∈ B for all k ∈ K. Moreover, we say that the partition A is countable
if K is countable. If (X, d) is a pseudo-metric space, we define the diameter
of A by diam(A) := supk∈K diam(Ak), where diam(A) := supx,x′∈A d(x, x′)
for A ⊆ X. For a measurable partition A = (Ak)k∈K we denote the indexes
of relevant cells by

Aν :=
{

k ∈ K : ν(Ak) > 0
}

. (1.16)

For a distribution P on X × Y with |P |2 < ∞ and a measurable and
countable partition A = (Ak)k∈K the corresponding (population or infinite-
sample) histogram hP,A : X → R is given by

hP,A :=
∑

k∈Aν

1Ak
· 1

P (Ak × Y )

∫
Ak×Y

y dP (x, y) . (1.17)

Using Lemma 1.1.1 the histogram can be written as

hP,A =
∑

k∈Aν

1Ak
· 1

ν(Ak)

∫
Ak

f∗
LS,P dν = Eν

(
f∗

LS,P |σ(A)
)

, (1.18)

where we used a well-known representation of the conditional expectation
with respect to a σ-algebra generated by a measurable and countable
partition, see [4, Equation (15.3)]. Consequently, histograms are constant
on each cell and take there the average value of f∗

LS,P . For a data set
D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n the corresponding (empirical)
histogram is given by

hD,A(x) =
∑

k∈Aδ

1Ak
(x) ·

∑n
i=1 yi1Ak

(xi)∑n
i=1 1Ak

(xi)
,

where δ := D ◦ π−1
X denotes the marginal distribution of the empirical

distribution D. As a result, D 7→ hD,A defines a learning method in the
sense of (1.1) in which the predefined partition A is a hyper parameter.

In the case X = Rp for some p ≥ 1 the partition A = (Ak)k∈K of Rp

is called cubic with radius r > 0 (or width 2r) if for every k ∈ K, there
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is some zk ∈ Rp with Ak = zk + (−r, r]p. Note that cubic partitions are
automatically Borel measurable and satisfy diam(A) = 2r with respect to
the ℓd

∞-norm. Moreover, cubic partitions are automatically countable, see
the discussion after Lemma 1.3.7 below.

Next, we introduce two oracle inequalities for the histogram learning
method. The proofs are deferred to Appendix A.

1.3.1 Lemma (LS-Risk Oracle Inequality) Let P be a distribution on X × Y

with Y = [−M, M ] for some M > 0 and marginal distribution ν. Further-
more, let A = (Ak)k∈K be a measurable and countable partition of X. Then
the following bound is satisfied, for all 0 < ε ≤ M , τ ≥ 1, and n ≥ 1,

RLS,P (hD,A) − R∗
LS,P < 4

∥∥hP,A − f∗
LS,P

∥∥2
L2(ν)

+ 20Mε

+ 1536M2 log(3M/ε) · τ |Aν |
n

with probability P n not less than 1 − e−τ .

1.3.2 Lemma (Classification-Risk Oracle Inequality) Let (X, d) be a pseudo-
metric space equipped with a σ-algebra B ⊇ B(X, d) containing the Borel
σ-algebra and P be a distribution on X × {±1} with marginal distribution
ν and noise exponent 0 ≤ q ≤ ∞ (and constant cN > 0) defined in (1.12).
Furthermore, let r > 0 and A = (Ak)k∈K be a measurable and countable
partition of X with diam(A) ≤ 2r. Then there is a constant C > 0,
depending only on q and cN , such that the following bound is satisfied, for
all τ ≥ 1 and n ≥ 1,

RClass,P (hD,A) − R∗
Class,P < 6MN d(r) + C

(
τ |Aν |

n

) q+1
q+2

with probability P n not less than 1 − e−τ .

For both oracle inequalities, the number of relevant cells |Aν | is a key
quantity. Therefore, we provide basic properties of Aν in the following.
The indexes in Aν specify the relevant cells with respect to the measure ν,

15



Chapter 1 Introduction to Learning Theory

however, often it is easier to investigate the relevant cells AM with respect
to some subset M ⊆ X, namely

AM :=
{

k ∈ K : Ak ∩ M ̸= ∅
}

. (1.19)

Both notions of relevant cells are closely related as we will see in the
following. But we start with some basic properties.

1.3.3 Lemma (Basic Properties) Let A = (Ak)k∈K be a partition of X.
Then the following statements are true:

(i) AN ⊆ AM for subsets N ⊆ M ⊆ X.

(ii) AM = AM+ ∪ AM− for subsets M± ⊆ X with M := M+ ∪ M−.

If A is measurable then the following statements are true:

(iii) Aµ ⊆ Aν for absolute continuous measures µ ≪ ν on X.

(iv) Aν = Aν+ ∪ Aν− for measures ν± on X with ν := ν+ + ν−.

Proof. (i) and (iii) follow directly from the definitions in (1.19) and (1.16),
respectively.

(ii) For k ∈ K we have k ∈ AM if and only if Ak ∩M+ ≠ ∅ or Ak ∩M− ≠ ∅.
The latter is equivalent to k ∈ AM+ ∪ AM− .

(iv) For k ∈ K we have k ∈ Aν if and only if ν+(Ak) > 0 or ν−(Ak) > 0.
The latter is equivalent to k ∈ Aν+ ∪ Aν− .

The next lemma establishes a relation between Aν and AM .

1.3.4 Lemma (Aν vs. AM ) Let A = (Ak)k∈K be a measurable partition of
X, ν be a measure on X, and M ⊆ X be a measurable subset. If M is a
set of full measure, i.e. ν(M c) = 0, then Aν ⊆ AM is satisfied.

If ν is a Radon measure on a Polish space X, this lemma directly gives us
Aν ⊆ Asupp ν .

Proof. Let k ∈ Aν be fixed. Since M is a set of full measure, we have
ν(Ak ∩ M) = ν(Ak) > 0 and this implies Ak ∩ M ̸= ∅. As a result, we find
k ∈ AM .

16
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For the next result we need covering numbers. For r > 0, the covering
number N (M, r) of a subset M ⊆ X of a metric space is defined as the
minimum number of closed balls of radius r needed to cover the set M . For
basic properties of covering numbers see e.g. Appendix C.

1.3.5 Lemma (Lower Bound for AM in Metric Spaces) Let X be a metric
space, A = (Ak)k∈K be a partition of X and M ⊆ X be a subset. If there
are bk ∈ X and a r > 0 such that Ak is a subset of the closed ball with
center bk and radius r, i.e.

Ak ⊆ BX(bk, r) , (1.20)

for all k ∈ AM then |AM | ≥ N (M, r) is satisfied.

Proof. The assumption (1.20) implies

M ⊆
⋃

k∈AM

Ak ⊆
⋃

k∈AM

BX(bk, r)

and hence the points bk form an r-net of M . Since N (M, r) is the cardinality
of a minimal r-net, we get the desired lower bound.

The next corollary transfers this lower bound for Asupp ν to Aν .

1.3.6 Corollary (Lower Bound for Aν in Metric Spaces) Let X be a Polish
space, ν be a probability measure on X, and A = (Ak)k∈K be a measurable
and countable partition of X satisfying the condition in (1.20) for some
r > 0. Then the following bound is satisfied

|Aν | ≥ N (supp ν, r) .

Proof. We define the set M :=
⋃

k∈Aν
Ak. Since A is countable, the set

M c =
⋃

k ̸∈Aν
Ak is as countable union of ν-zero sets a ν-zero set. In other

words, M is a set of full measure that additionally satisfies AM = Aν . Now,
Lemma 1.3.5 gives us

|Aν | = |AM | ≥ N (M, r) = N (M, r) ,

17



Chapter 1 Introduction to Learning Theory

where we used Point (iv) of Lemma C.4 in the last step. Since M is a closed
set of full measure, we have supp ν ⊆ M and the assertion is proven.

1.3.7 Lemma (Upper Bound for AM in RRRd) Let X = Rd be equipped with
some norm ∥ · ∥ and BX the closed unit ball with respect to that norm,
A = (Ak)k∈K be a measurable partition of X, and M ⊆ X be a subset. If
there are ak ∈ Rd and 0 < r0 ≤ r with

Ak ⊇ ak + r0B̊X and diam(Ak) ≤ 2r (1.21)

for all k ∈ AM then the following bound is satisfied, for ε > 0,

|AM | ≤
(
ε/r0 + 2r/r0

)d · N (M, ε) .

Since N ([−b, b]d, r) < ∞ is finite for every b > 0 and Rd =
⋃

b∈N[−b, b]d

holds true, this lemma proves that every measurable partition satisfying
(1.21) is countable.

Note that for a cubic partition with radius r > 0 and ∥ · ∥ = ∥ · ∥ℓd
∞

we
can choose r0 = r and hence |AM | ≤ 3d · N (M, r).

Proof. We use a volume argument to prove this lemma. To this end, we
denote the Lebesgue measure on Rd by λd. Let ε > 0 be fixed. Since
there is nothing to prove in the case N (M, ε) = ∞, we can assume that
n := N (M, ε) < ∞ is finite. Moreover, let L ⊆ AM be a finite subset. Since
ak + r0B̊r0 ⊆ Ak for k ∈ AM and the cells Ak are disjoint for k ∈ K, we
find

|L| · rd
0 · λd

(
B̊X

)
=

∑
k∈L

λd(ak + r0B̊r0)

≤
∑
k∈L

λd(Ak)

= λd

( ⋃
k∈L

Ak

)
.

(1.22)

For every k ∈ AM there is some yk ∈ M ∩ Ak and hence diam(Ak) ≤ 2r

ensures that Ak ⊆ yk + 2rBX holds true. This shows that Ak is a subsets
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1.3 Histograms

of M + 2rBX for all k ∈ AM , i.e.⋃
k∈L

Ak ⊆ M + 2rBX .

Now, let x1, . . . , xn ∈ X be a minimal ε-net of M , i.e. M ⊆
⋃n

i=1 xi + εBX .
This gives

⋃
k∈L

Ak ⊆
n⋃

i=1

(
xi + εBX + 2rBX

)
=

n⋃
i=1

(
xi + (ε + 2r)BX

)
,

where we used the convexity of BX in the last step. Finally, if we plug this
into the right hand side of (1.22) we find

|L| · rd
0 · λd(B̊X) ≤ n · (ε + 2r)d · λd(BX) .

Note that we do not apply the Lebesgue measure to the set M . For that
reason, we do not need the measurability of M . Since BX is a convex set,
[31, Satz II.7.7] gives us λd(B̊X) = λd(BX). Consequently, we find the
upper bound |L| ≤ (ε/r0 + 2r/r0)d · n. Since this bound is satisfied by every
finite subset L ⊆ AM , the set AM itself is finite and satisfies the claimed
inequality.

Finally, the following corollary summarizes our findings for X = Rd.

1.3.8 Corollary (Relevant Cells in RRRd) Let X = Rd be equipped with some
norm ∥ · ∥, A = (Ak)k∈K be a measurable partition of X satisfying the
conditions in (1.20) and (1.21) for some 0 < r0 ≤ r, and ν be a probability
measure on X. Then the following bounds are satisfied, for ε > 0,

N (supp ν, r) ≤ |Aν | ≤ |Asupp ν | ≤
(
ε/r0 + 2r/r0

)d · N (supp ν, ε) .

Note that the condition in (1.20) already yields diam(Ak) ≤ 2r which is
the second part of the condition in (1.21).

Proof. The remark after Lemma 1.3.7 implies that the partition A is
countable. As a result, the first inequality is a consequence of Corollary 1.3.6.
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Chapter 1 Introduction to Learning Theory

Since supp ν is a set of full measure, Lemma 1.3.4 gives us the second
inequality Aν ⊆ Asupp ν . Together with Lemma 1.3.7 for M = supp ν we
find the third inequality.
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Chapter 2

Transformed Learning Scenarios

In this chapter we provide a framework that allows us to model a learning
scenario with restricted access to the data set. Based on this framework
we describe high-dimensional learning scenarios as a subset or a projection
of an infinite-dimensional learning scenario in Chapter 3 below. Since this
framework is possibly of interest in its own right, we devote this chapter
to it. For the special case of classification, some of the following ideas can
already be found in [25, Chapter 32], see also the references therein.

2.1 Definitions and Basic Properties
In real world applications we often do not have access to the original data
set D =

(
(x1, y1), . . . , (xn, yn)

)
∼ P n. Instead our algorithm learns from

the data set
s(D) :=

(
(x̄1, y1), . . . , (x̄n, yn)

)
,

where x̄i := s(xi), for i = 1, . . . , n, with some measurable function

s : X → X̄

which maps (X, B) into a further measurable space (X̄, B̄). In other words,
for all the input values xi, the learning method can only access the infor-
mation preserved by the mapping s. Since the data set s(D) ∼ P̄ n follows

21



Chapter 2 Transformed Learning Scenarios

the probability distribution

P̄ := P ◦ (s, idY )−1 (2.1)

on X̄ × Y , this defines a new learning scenario which we call transformed
learning scenario of P under s. In the transformed scenario we denote all
quantities with a bar, e.g. we write D̄ := s(D), ν̄, etc. In this context we
call the learning scenario given by P original learning scenario. Note that,
for X̄ = X and s = idX , the transformed learning scenario coincides with
the original scenario.

In contrast to the original scenario, which is given by the application at
hand, the measurable space X̄ and the transformation s : X → X̄ can be
chosen—at least in some applications—by the user. For example, in some
image classification tasks the camera and its resolution can be selected by
the user. In this case each camera and resolution corresponds to a different
transformation s.

In order to measure the quality of a decision function f̄ : X̄ → R in the
transformed scenario we pull back the decision function f̄ ◦ s : X → R and
measure its quality using risks in the original scenario, that is

RL,P (f̄ ◦ s) − R∗
L,P . (2.2)

Analogously, for a learning method L̄ = (L̄n)n≥1 on X̄ × Y , in the sense
of (1.1), we define the pull-back learning method L = (Ln)n≥1 on X × Y

given by
Ln(D) := L̄n

(
s(D)

)
◦ s .

In other words, we transform the data set D ∈ (X×Y )n to s(D) ∈ (X̄×Y )n,
apply the learning method L̄ on X̄ × Y using s(D), and pull back the
produced decision function on X. We say that the learning method L̄ is
(potentially) L-risk consistent for P and s if the corresponding pull-back
learning method L is (potentially) L-risk consistent for P in the sense of
(1.2). Analogously, we define the notion of learning rates for L̄.

The next lemma provides basic properties and relations between the
original and the transformed learning scenario.
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2.1.1 Lemma (Basic Properties) Let P be a probability distribution on
X × Y , s : X → X̄ be a measurable function, and P̄ = P ◦ (s, idY )−1 be
the distribution of the transformed learning scenario. Then the following
statements are true:

(i) The marginal distributions ν = P ◦ π−1
X and ν̄ = P̄ ◦ π−1

X̄
of P on X

and P̄ on X̄, respectively, satisfy ν̄ = ν ◦ s−1.

(ii) For a data set D ∈ (X × Y )n and D̄ := s(D) ∈ (X̄ × Y )n the
corresponding empirical measures satisfy D̄ = D ◦ (s, idY )−1.

(iii) For 0 < p < ∞ the average p-th moments, defined in (1.3), coincide
|P |p = |P̄ |p.

(iv) For a supervised loss function L : Y × R → [0, ∞) and a measurable
function f̄ : X̄ → R the L-risk is given by

RL,P̄ (f̄) = RL,P (f̄ ◦ s) .

(v) For another measurable function s̄ : X̄ → X ′ into another measurable
space (X ′, B′) the transformed learning scenario P ′ = P̄ ◦ (s̄, idY )−1

of P̄ under s̄ equals the transformed learning scenario of P under
s̄ ◦ s.

Note that Point (iv) only considers supervised loss functions. For general
loss functions, the loss must be transformed as well. Since we are mainly
interested in the LS loss and the classification loss, which are supervised,
we stick to supervised loss functions for convenience.

Point (v) states that building transformed learning scenarios is transitive.

Proof. (i) The definitions of ν̄ and P̄ ensure

ν̄ = P̄ ◦ π−1
X̄

= P ◦ (s, idY )−1 ◦ π−1
X̄

= P ◦
(
πX̄ ◦ (s, idY )

)−1
.

Using the identity πX̄ ◦ (s, idY ) = s◦πX we find ν̄ = P ◦π−1
X ◦s−1 = ν ◦s−1.

(ii) For a data point (x, y) ∈ X × Y and a measurable set A ⊆ B̄ × Y the
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Chapter 2 Transformed Learning Scenarios

corresponding Dirac measures satisfy

δ(s(x),y)(A) = 1A ◦ (s, idY )(x, y)
= 1(s,idY )−1(A)(x, y)
= δ(x,y) ◦ (s, idY )−1(A) .

This proves the desired identity δ(s(x),y) = δ(x,y) ◦ (s, idY )−1 for a single
data point. Using

D̄ = 1
n

n∑
i=1

δ(s(xi),yi) = 1
n

n∑
i=1

δ(xi,yi) ◦ (s, idY )−1 = D ◦ (s, idY )−1 ,

we get the assertion for general data sets.
(iii) Using the change-of-variables formula for P̄ = P ◦ (s, idY )−1 we get

the assertion

|P̄ |pp =
∫

X̄×Y

|y|p dP̄ (x̄, y) =
∫

X×Y

|y|p dP (x, y) = |P |pp .

(iv) Using the change-of-variables formula for P̄ = P ◦ (s, idY )−1 we get
the assertion

RL,P̄ (f̄) =
∫

X̄×Y

L
(
y, f̄(x̄)

)
dP̄ (x̄, y)

=
∫

X×Y

L
(
y, f̄(s(x))

)
dP (x, y)

= RL,P (f̄ ◦ s) .

(v) This is a direct consequence of (s̄ ◦ s)−1 = s−1 ◦ s̄−1. To be more
precise,

P ◦ (s̄ ◦ s)−1 = P ◦ s−1 ◦ s̄−1 = P̄ ◦ s̄−1 = P ′

proves the assertion.

The next lemma compares the Bayes risks of the original and the trans-
formed scenario.
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2.1.2 Lemma (Bayes Risk) Let P be a probability distribution on X ×
Y , s : X → X̄ be a measurable function, and P̄ = P ◦ (s, idY )−1 be the
distribution of the transformed learning scenario. Furthermore, let L : Y ×
R → [0, ∞) be a supervised loss function. Then the following statements
are true:

(i) The Bayes risks satisfy R∗
L,P̄

= R∗
L,P,L0(X,σ(s)) ≥ R∗

L,P .

(ii) There is a σ(s)-measurable Bayes function f∗
L,P : X → R if and only

if there is a Bayes function f∗
L,P̄

: X̄ → R and R∗
L,P̄

= R∗
L,P holds

true.

The inequality R∗
L,P̄

≥ R∗
L,P from Point (i) states that the transformed

learning scenario provides at most as much relevant information as the
original one. Here relevance is specified by the loss function L. If the
Bayes risks coincide R∗

L,P̄
= R∗

L,P , we interpret this in such a way that no
relevant information gets lost when considering the transformed learning
scenario instead of the original one. Moreover, the representation of R∗

L,P̄

shows that σ(s) = B is a sufficient condition to ensures R∗
L,P̄

= R∗
L,P for

all distributions P on X × Y and for all supervised loss functions L.
Point (ii) shows that if a Bayes functions f∗

L,P̄
exists then R∗

L,P̄
= R∗

L,P

is equivalent to the existence of a Bayes function f∗
L,P satisfying a certain

symmetry condition. Moreover, Point (ii) can be found in [25, Theorem 32.5]
for the special case of binary classification.

Proof. (i) Note that according to [48, Corollary 1.97] the set of σ(s)-mea-
surable functions is given by L0(X, σ(s)) =

{
f̄ ◦ s : f̄ ∈ L0(X̄, B̄)

}
.

Consequently, Point (iv) of Lemma 2.1.1 gives us the claimed equality,
namely

R∗
L,P̄

= inf
f̄∈L0(X̄,B̄)

RL,P̄ (f̄)

= inf
f̄∈L0(X̄,B̄)

RL,P (f̄ ◦ s)

= inf
f̄∈L0(X,σ(s))

RL,P (f) .
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The claimed inequality is a direct consequence of σ(s) ⊆ B which is ensured
by the measurability of s.

(ii) First we assume that there is a σ(s)-measurable Bayes function
f∗

L,P : X → R. Then [48, Corollary 1.97] gives us a measurable function
f̄ : X̄ → R with f∗

L,P = f̄ ◦ s. Together with Point (i) we find

R∗
L,P̄

≥ R∗
L,P = RL,P (f∗

L,P ) = RL,P (f̄ ◦ s) = RL,P̄ (f̄) ≥ R∗
L,P̄

.

This shows that f∗
L,P̄

:= f̄ is a Bayes function and R∗
L,P̄

= R∗
L,P . For the

converse implication we use

R∗
L,P = R∗

L,P̄
= RL,P̄ (f∗

L,P̄
) = RL,P (f∗

L,P̄
◦ s) .

This shows that f∗
L,P := f∗

L,P̄
◦ s is a σ(s)-measurable Bayes function.

The following lemma investigates sufficient and necessary conditions that
ensure σ(s) = B. To this end, we recall the definition of the trace σ-algebra:
For a subset A ⊆ X the trace σ-algebra B|A is given by

B|A :=
{

A ∩ B : B ∈ B
}

.

Note that A does not need to be measurable as subset of X.

2.1.3 Lemma (No Loss of Information) Let s : X → X̄ be a measurable
function and consider the following statements:

(i) σ(s) = B.

(ii) s(A) ∈ B̄|s(X) for all A ∈ B.

(iii) s is injective.

(iv) {x} ∈ B for all x ∈ X.

Then the implications (i)⇒(ii), (ii)+(iii)⇒(i), and (i)+(iv)⇒(iii) hold true.

Note that for injective s : X → X̄ the condition in (ii) equals the measur-
ability of the mapping s−1 : s(X) → X, where s(X) is equipped with the
trace σ-algebra B̄s(X).
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Let us mention some special cases in which this lemma provides σ(s) = B:
If s : X → X̄ is bijective with measurable inverse s−1 : X̄ → X then
Point (ii) and (iii) are satisfied and hence this lemma yields σ(s) = B.

Next, if the measurable space X satisfies Point (iv) then σ(s) = B is
equivalent to Point (ii) and (iii). Note that Point (iv) is satisfied for every
metric space equipped with the Borel σ-algebra. But there are more spaces
satisfying Point (iv) e.g. if (X, B) is countably separated, i.e. there is a
countable subfamily B0 ⊆ B separating points, see e.g. [11, Theorem 6.5.7]
for details. A class of countably separated spaces are Souslin spaces, see
e.g. [11, Corollary 6.7.5] or [22, Lemma 8.6.12] for details.

Note that for particular distributions P and loss functions L the condition
σ(s) = B is not necessary to ensure R∗

L,P̄
= R∗

L,P , see e.g. Example 2.1.5
and Example 2.1.7 below.

Proof. (i)⇒(ii) Let A ∈ B be fixed. Since we assume B = σ(s), there is a
subset Ā ∈ B̄ with A = s−1(Ā). Consequently, we have s(A) = s

(
s−1(Ā)

)
=

Ā ∩ s(X) ∈ B̄|s(X), where the transformation in the second step is true for
all functions and subsets.

(ii)+(iii)⇒(i) Since s : X → X̄ is measurable, we have σ(s) ⊆ B. For
the converse inclusion, let A ∈ B be fixed. The injectivity of s ensures
A = s−1 ◦ s(A) and the assumption s(A) ∈ B̄|s(X) gives us a subset Ā ∈ B̄
with s(A) = Ā ∩ s(X). Together, we get

A = s−1 ◦ s(A) = s−1(
Ā ∩ s(X)

)
= s−1(Ā) ∩ s−1(

s(X)
)

= s−1(Ā) ∈ σ(s) .

This proves σ(s) = B.
(i)+(iv)⇒(iii) Let x, x′ ∈ B with s(x) = s(x′). Since we have {x} ∈ B =

σ(s), there is some Ā ∈ B̄ with {x} = s−1(Ā). This gives us s(x′) = s(x) ∈
Ā and hence x′ ∈ s−1(Ā) = {x} holds true. As a result, we find x′ = x and
s is injective.

Next, we provide some direct yet useful consequences for the transformed
learning scenario using the LS loss.
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2.1.4 Lemma (LS Regression) Let P be a probability distribution on X ×
Y , s : X → X̄ be a measurable function, and P̄ = P ◦ (s, idY )−1 be the
distribution of the transformed learning scenario. If |P |2 < ∞ holds true
then the LS Bayes functions satisfy ν-almost surely

f∗
LS,P̄

◦ s = Eν(f∗
LS,P |s) .

As a direct consequence, for distributions P with |P |2 < ∞ and s : X → X̄,
we can quantify the discrepancy of the LS Bayes risks R∗

LS,P̄
and R∗

LS,P ,
namely from (1.5) and Point (iv) of Lemma 2.1.1 we get

R∗
LS,P̄

− R∗
LS,P = RLS,P̄ (f∗

LS,P̄
) − R∗

LS,P

= RLS,P (f∗
LS,P̄

◦ s) − R∗
LS,P

=
∥∥Eν(f∗

LS,P |s) − f∗
LS,P

∥∥2
L2(ν) .

(2.3)

Proof. Recall that πX : X × Y → X and πX̄ : X̄ × Y → X̄ denote the
projections onto X and X̄, respectively. Moreover, if there is no risk
of confusion πY denotes the projection πY : X × Y → Y and πY : X̄ ×
Y → Y . Using Point (iii) of Lemma 2.1.1 we find |P̄ |2 = |P |2 < ∞ and
hence according to (1.4) the LS Bayes functions are given by f∗

LS,P (x) =
EP (πY |πX = x) and f∗

LS,P̄
(x̄) = EP̄ (πY |πX̄ = x̄), respectively.

Since f∗
LS,P̄

◦ s is measurable with respect to the initial σ-algebra σ(s)
generated by s, it remains to prove, for Ā ∈ B̄,∫

s−1(Ā)
f∗

LS,P̄
◦ s dν =

∫
s−1(Ā)

f∗
LS,P dν . (2.4)

Using ν̄ = ν ◦ s−1 from Point (i) of Lemma 2.1.1, the change-of-variables
formula, and Lemma 1.1.1 (for the transformed learning scenario) we find∫

s−1(Ā)
f∗

LS,P̄
◦ s dν =

∫
Ā

fLS,P̄ dν̄ =
∫

π−1
X̄

(Ā)
y dP̄ (x̄, y) .

Continuing this identity with the help of the change-of-variables formula
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for P̄ = P ◦ (s, idY )−1 and πX̄ ◦ (s, idY ) = s ◦ πX we get∫
s−1(Ā)

f∗
LS,P̄

◦ s dν =
∫

(s,idY )−1◦π−1
X̄

(Ā)
y dP (x, y)

=
∫

π−1
X

(s−1(Ā))
y dP (x, y) .

Finally, an application of Lemma 1.1.1 with A = s−1(Ā) gives (2.4) and
hence the assertion is proven.

Before we continue, let us consider the following LS regression example.

2.1.5 Example (LS Regression) Let the original regression problem P on
[−π, π] × R be given by the marginal distribution ν = unif

(
[−π, π]

)
and

the conditional distribution P ( · |x) = unif
(
[cos(x) − 1/2, cos(x) + 1/2]

)
.

Furthermore, let s : [−π, π] → [0, π] be given by s(x) := |x|. Note that
all the measurable spaces are with respect to the Borel σ-algebra. Then
f∗

LS,P (x) = cos(x) is a LS Bayes function. Since f∗
LS,P = f∗

LS,P ◦ s holds
true, the Bayes function f∗

LS,P is even σ(s)-measurable. Using Point (ii) of
Lemma 2.1.2 we find R∗

LS,P̄
= R∗

LS,P .

For the visualization of a data set D ∼ P n and the corresponding
transformed data set s(D) see Figure 2.1. This example shows that if
we know some symmetry properties, specified by the transformation s, of
the Bayes function in advance then we do not lose any information, in
terms of Bayes risk, if we use the transformed data set s(D). In addition,
Figure 2.1 shows that in this case—roughly speaking—s(D) is twice as
dense in X̄ = [0, π] as D in X = [−π, π]. Consequently, using s(D) instead
of D can possibly even improve the performance of a learning algorithm.

Next, we transfer the results for the LS loss to the classification loss.

2.1.6 Lemma (Classification) Let P be a probability distribution on X × Y

with Y = {±1}, s : X → X̄ be a measurable function, and P̄ = P ◦(s, idY )−1

be the distribution of the transformed learning scenario. Then the following
statements are satisfied:

(i) p̄± = p±,
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x

y

s cos(x)

Figure 2.1: Illustration of the LS regression problem in Example 2.1.5. The
data points of a data set D ∼ P n are in orange, the data points
of s(D) ∼ P̄ n, which are effected by s, are in blue, and the
Bayes function is f∗

LS,P (x) = cos(x).

(ii) ν̄± = ν± ◦ s−1, and

(iii) η̄ ◦ s = Eν(η|s) ν-almost surely.

Point (iii) shows that the original learning scenario is less noisy than the
transformed learning scenario.

Proof. (i) Since P̄ = P ◦ (s, idY )−1 is given, we find p̄± = P̄ (X̄ × {±1}) =
P (X × {±1}) = p±.

(ii) From Point (i) and P̄ = P ◦ (s, idY )−1 we get, for Ā ∈ B̄,

ν̄±(Ā) =
P̄

(
Ā × {±1}

)
p̄±

=
P

(
s−1(Ā) × {±1}

)
p±

= ν± ◦ s−1(Ā) .

(iii) Due to Lemma 1.2.1 and Lemma 2.1.4 we get

η̄ ◦ s =
f∗

LS,P̄
◦ s + 1
2 =

Eν(f∗
LS,P |s) + 1

2 = Eν(η|s)

and hence the assertion is proven.

Finally, we give an example of a transformed classification problem.

2.1.7 Example (Classification) Let the original classification problem P

on R2 × {±1} be given by the uniform distributions ν+ = unif
(
[0, 1] ×

[−1/2, 1/2]
)
, ν− = unif

(
[−1, 0] × [−1/2, 1/2]

)
, and p+ = p− = 1/2. Note
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that all measurable spaces in this example are with respect to the Borel σ-
algebra. Since the measures ν+ and ν− are singular ν+ ⊥ ν−, the Bayes risk
equals the minimal possible value, namely R∗

Class,P = 0, see Lemma 1.2.2
for details. Now, we define two different transformed learning scenarios:

(i) Let s := π1 : R2 → R be the projection onto the first coordinate.
The corresponding transformed learning scenario P̄ is given by ν̄+ =
unif

(
[0, 1]

)
and ν̄− = unif

(
[−1, 0]

)
(as well as p̄+ = p̄− = 1/2).

Again, the measures ν̄+ and ν̄− are singular ν̄+ ⊥ ν̄− and hence the
Bayes risk vanishes. Especially, R∗

Class,P̄
= R∗

Class,P = 0 is satisfied.
Moreover, σ(s) = σ(π1) = {A × R : A ∈ B(R)} is a proper subset of
B(R2).

(ii) Let s := π2 : R2 → R be the projection onto the second coordinate.
The corresponding transformed learning scenario P̄ is given by ν̄+ =
ν̄− = unif

(
[−1/2, 1/2]

)
(as well as p̄+ = p̄− = 1/2). Consequently, we

have η̄ = 1/2 and hence the Bayes risk equals the maximal possible
value, namely R∗

Class,P̄
= 1/2. Especially, we have the strict inequality

R∗
Class,P̄

> R∗
Class,P and σ(s) = σ(π2) = {R × A : A ∈ B(R)} is

again a proper subset of B(R2).

Point (i) of this example shows, that there are distributions P and trans-
formations s such that the transformed scenario P̄ satisfies R∗

L,P̄
= R∗

L,P

even if the generated σ-algebra is a proper subset σ(s) ⊊ B. Point (ii)
shows, that there are distributions P and non-trivial transformations s such
that no information is preserved in the transformed scenario P̄ . This means
that in the transformed scenario, no learning method can do better than
guessing. For the visualization of a data set D ∼ P n and the corresponding
transformed data sets π1(D) and π2(D) see Figure 2.2. Further interest-
ing examples of transformed classification problems can be found in [25,
Chapter 32].

2.2 Sequence of Transformed Scenarios
In this section we consider a whole sequence (sd)d≥1 of measurable functions
sd : X → Xd with measurable spaces (Xd, Bd) for d ≥ 1. As a result, we
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x1

x2

0

x2

1/2

−1/2

x1

10−1

π2

π1

Figure 2.2: Illustration of the classification problem in Example 2.1.7. In the
middle a data set D ∼ P n is plotted, where positive and negative
labeled data points are in orange and in blue, respectively.
Below, the data set π1(D), where π1 is the projection on the
first coordinate, is plotted. On the right, the data set π2(D),
where π2 is the projection on the second coordinate, is plotted.
This plot shows that using π1(D) it is an easy task to classify
the data points correctly, but using π2(D) there is no method
classifying the data points better than guessing.

have a sequence of transformed learning scenarios Pd = P ◦ (sd, idY )−1

on Xd × Y . To prevent misunderstandings we use the index d for every
quantity in the d-th transformed scenario instead of the bar-notation.

In this context a learning method L̄ on (Xd × Y )d≥1 is a sequence

L̄ = (Ld,n)d,n≥1 (2.5)

with two indexes such that (Ld,n)n≥1 is, for every fixed d ≥ 1, a learning
method on Xd × Y in the sense of (1.1). Then we define the pull-back
learning method L(d) = (L(d)

n )n≥1 on X × Y by

L(d)
n (D) := Ld,n

(
sd(D)

)
◦ sd (2.6)

with the hyper parameter d ≥ 1. The quality of L̄ is measured using risks
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of the pull-back learning method L(d) in the original scenario, namely

RL,P

(
L(d)

n (D)
)

− R∗
L,P .

We call the learning method L̄ (potentially) L-risk consistent for P and
(sd)d≥1 if the corresponding pull-back learning method, with hyper param-
eter d ≥ 1, is (potentially) L-risk consistent for P in the sense of (1.2).
Analogously, we define the notion of learning rates for L̄. The following
lemma provides sufficient conditions that ensure potential L-risk consistency.

2.2.1 Lemma (Potential Consistency) Let P be a distribution on X × Y , L

be a supervised loss function, (sd)d≥1 be a sequence of measurable functions
sd : X → Xd, and Pd be the corresponding transformed distribution on
Xd × Y for d ≥ 1. Furthermore, let L̄ = (Ld,n)d,n≥1 be a learning method
on (Xd × Y )d≥1. If the following statements are true:

(i) For fixed d ≥ 1, the learning method (Ld,n)n≥1 on Xd × Y is L-risk
consistent for Pd.

(ii) infd≥1 R∗
L,Pd

= R∗
L,P .

Then L̄ is potentially L-risk consistent for P and (sd)d≥1.

In order to prove consistency we need more information on the learning
method (Ld,n)d,n≥1, see e.g. Lemma 3.2.4 below for consistency results of
histograms.

Proof. Using the abbreviations

E1(d, D) := RL,P

(
L(d)

n (D)
)

− R∗
L,Pd

and
E2(d) := R∗

L,Pd
− R∗

L,P

we split the excess risk into two parts

RL,P

(
L(d)

n (D)
)

− R∗
L,P = E1(d, D) + E2(d) .

According to Point (iv) of Lemma 2.1.1 and the definition of L(d)
n the first

part E1(d, D) equals the excess risk of the learning method (Ld,n)n≥1 on
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Xd × Y using the data set sd(D), namely

E1(d, D) = RL,Pd

(
Ld,n(sd(D))

)
− R∗

L,Pd
.

Consequently, E1(d, D) is a random variable, but E2(d) depends on d only
and describes how well the d-th scenario approximates the original one.

According to our Assumption (ii), for every ε > 0, there is a d(ε) ≥ 1
with E2(d(ε)) < ε/2. Next, we define the functions

G(ε, d, n) := P n
(
D ∈ (X × Y )n : E1(d, D) + E2(d) > ε

)
and

F (ε, n) := P n
(
D ∈ (X × Y )n : E1(d(ε), D) > ε/2

)
,

for n, d ≥ 1, and ε > 0. Note that F (ε, n) depends on our choice d(ε) ≥ 1.
Using these functions we have to show that there is a sequence (dn)n≥1 in
N such that for every ε > 0 we have G(ε, dn, n) → 0 for n → ∞. For a data
set D ∈ (X × Y )n with E1(d(ε), D) + E2(d(ε)) > ε our choice of d(ε) yields

ε < E1
(
d(ε), D

)
+ E2

(
d(ε)

)
≤ E1

(
d(ε), D

)
+ ε/2 .

and hence E1(d(ε), D) > ε/2. This proves, for all n ≥ 1 and ε > 0,

G(ε, d(ε), n) ≤ F (ε, n) .

Since (Ld,n)n≥1 is, for every fixed d ≥ 1, an L-risk consistent learning
method for Pd and

F (ε, n) = P n
d

(
D̄ ∈ (Xd × Y )n : RL,Pd

(Ld,n(D̄)) − R∗
L,Pd

> ε/2
)

,

we have limn→∞ F (ε, n) = 0 for all ε > 0. Consequently, we can apply
[76, Lemma A.1.4] that gives us a sequence (εn)n≥1 with εn ↘ 0 and
F (εn, n) → 0 for n → ∞.

Finally, we show that the sequence dn := d(εn) satisfies our requirements.
To this end, let ε, δ > 0 be fixed and choose n0 ≥ 1 such that F (εn, n) < δ
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and εn < ε for all n ≥ n0. Since G(ε, d, n) is non-increasing in ε, we find

G(ε, dn, n) ≤ G
(
εn, d(εn), n

)
≤ F (εn, n) < δ

for all n ≥ n0 and hence the assertion is proven.

The following lemma provides a condition that ensures Assumption (ii)
of Lemma 2.2.1 in the case of the LS loss.

2.2.2 Lemma (LS Regression) Let P be a distribution on X × Y with
|P |2 < ∞, (sd)d≥1 be a sequence of measurable functions sd : X → Xd, and
Pd be the corresponding transformed distribution on Xd × Y for d ≥ 1. If

(i) σ(sd) ⊆ σ(sd+1) for all d ≥ 1 and

(ii) there is a σ(sd : d ≥ 1)-measurable Bayes function f∗
LS,P

then the LS Bayes risks converge R∗
LS,Pd

↘ R∗
LS,P for d → ∞.

The interpretation of Assumption (i) is as follows: For increasing d the
amount of information preserved by the transformation sd is non-decreasing.
Moreover, the Assumption (ii) is satisfied if e.g. B = σ(sd : d ≥ 1) holds.

Proof. The monotonicity is a direct consequence of Point (i) and the repre-
sentation R∗

LS,Pd
= R∗

LS,P,L0(X,σ(sd)) from Lemma 2.1.2. Consequently, the
limit for d → ∞ exists and it remains to prove that the limit equals R∗

LS,P .
Since we assume |P |2 < ∞, Lemma 2.1.4 yields

f∗
LS,Pd

◦ sd = Eν

(
f∗

LS,P |σ(sd)
)

for all d ≥ 1. Point (i) and f∗
LS,P ∈ L2(ν) ensures that (f∗

LS,Pd
◦ sd)d≥1 is a

martingale and hence a version of the martingale convergence theorem, see
e.g. [11, Theorem 10.2.1], yields

f∗
LS,Pd

◦ sd → Eν

(
f∗

LS,P |σ(sd : d ≥ 1)
)

in L2(ν) for d → ∞. Moreover, Assumption (ii) ensures that the limit
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equals f∗
LS,P ν-almost surely. Finally, together with (2.3) we get

R∗
LS,Pd

− R∗
LS,P =

∥∥f∗
LS,Pd

◦ sd − f∗
LS,P

∥∥2
L2(ν) → 0

for d → ∞ and this finishes the proof.

2.2.3 Corollary (Classification) Under the assumptions of Lemma 2.2.2 the
same statements hold true for Y = {±1} and the classification loss, i.e.
R∗

Class,Pd
↘ R∗

Class,P for d → ∞.

Note that the assumption |P |2 < ∞ of Lemma 2.2.2 is automatically satisfied
for classification problems since Y = {±1} is bounded. In [25, Theorem 32.3]
another sufficient condition for the convergence RClass,Pd

→ R∗
Class,P can

be found.

Proof. This can be proved analogously to Lemma 2.2.2 using the calibration
inequality

RClass,P (f) − R∗
Class,P ≤

(
RLS,P (f) − R∗

LS,P

)1/2
,

which holds true for every measurable function f : X → R, see e.g. [76,
Example 3.23] for details.

Finally, we present a situation in which the assumptions of Lemma 2.2.2
and hence also of Corollary 2.2.3 are satisfied. To this end, we define for
a topological space T the set Cb(T ) of continuous and bounded functions
x : T → R. Moreover, we equip Cb(T ) with the uniform norm ∥ · ∥Cb(T ) and
the corresponding Borel σ-algebra B(Cb(T )).

2.2.4 Lemma (Point Evaluations) Let T be a compact metric space and
X = Cb(T ) with B = B(X). Furthermore, let (ti)i≥1 ⊆ T be a countable
dense subset of T and sd : X → Rd be given by

sd(x) :=
(
x(t1), . . . , x(td)

)
.

Then σ(sd) ⊆ σ(sd+1) for d ≥ 1 and B = σ(sd : d ≥ 1) hold true.
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This lemma implies that Point (i) and (ii) of Lemma 2.2.2 are satisfied.
Since T is assumed to be a compact metric space, it is especially separable.

As a result, a countable dense subset (ti)i≥1 always exists.
The assumption that T is a compact metric space seems very strict. But

note that this assumption is equivalent to the separability of Cb(T ) for
sufficient rich spaces Cb(T ). To be more precise, this equivalence is satisfied
for completely regular topological spaces T , see e.g. [23, Theorem V.6.6] for
details. Since the separability of Cb(T ) is a main ingredient of our proof, it
is natural to assume that T is a compact metric space.

Proof. The monotonicity of (σ(sd))d≥1 is a direct consequence of the defi-
nition of sd.

“⊇” Since the function sd is continuous, we have σ(sd) ⊆ B(X) for every
d ≥ 1 and hence the inclusion “⊇” follows.

“⊆” First, we show that the closed ball BX(x, r) ⊆ X with center x ∈ X

and radius r > 0 can be represented by

BX(x, r) =
⋂
i≥1

π−1
i

(
[x(ti) − r, x(ti) + r]

)
=: A , (2.7)

where πi : X → R denotes the point evaluation at ti. For x′ ∈ BX(x, r)
we have |x′(ti) − x(ti)| ≤ ∥x′ − x∥Cb(T ) ≤ r and hence x′ ∈ A. Now, let
us fix some x′ ∈ A and t ∈ T . Using the denseness of (ti)i≥1 there is a
sequence (ij)j≥1 in N with tij

→ t for j → ∞. Since x and x′ are continuous
functions, we find

|x′(t) − x(t)| = lim
j→∞

∣∣x′(tij
) − x(tij

)
∣∣ ≤ r

and hence ∥x′ − x∥Cb(T ) ≤ r. This shows x′ ∈ BX(x, r) and (2.7) is proven.
Since the representation in (2.7) is a countable intersection of σ(πi)-

measurable sets, we find BX(x, r) ∈ σ(πi : i ≥ 1) = σ(sd : d ≥ 1).
According to [23, Theorem V.6.6] the space X = Cb(T ) is separable and
hence every open set O ⊆ X is the countable union of closed balls. This
shows O ∈ σ(πi : i ≥ 1) for every open set O ⊆ X and hence the inclusion
B(X) ⊆ σ(πi : i ≥ 1) is proven.
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Finally, we present a corollary which summarizes Lemma 2.2.1–2.2.4.

2.2.5 Corollary (Potential Consistency of Point Evaluations) Let T be a
compact metric space, X = Cb(T ) with B = B(X), P be a distribution on
X × Y with |P |2 < ∞, L be the LS loss or the classification loss (with
Y = {±1}). Furthermore, let (ti)i≥1 ⊆ T be a countable dense subset of T ,
sd : X → Rd be given by

sd(x) :=
(
x(t1), . . . , x(td)

)
,

and L̄ = (Ld,n)d,n≥1 be a learning method on (Rd × Y )d≥1. If, for all
d ≥ 1, the learning method (Ld,n)n≥1 on Rd × Y is L-risk consistent
for Pd := P ◦ (sd, idY )−1 then the learning method L̄ on (Xd × Y )d≥1 is
potentially L-risk consistent for P and (sd)d≥1.

Proof. According to Lemma 2.2.4 we know that σ(sd) ⊆ σ(sd+1) for all
d ≥ 1 and B = σ(sd : d ≥ 1) is satisfied. Since L is the LS loss or the
classification loss, Lemma 2.2.2 and Corollary 2.2.3, respectively, gives us
infd≥1 R∗

L,Pd
= R∗

L,P . Together with the assumption that (Ld,n)n≥1 is
L-risk consistent for Pd and every fixed d ≥ 1, Lemma 2.2.1 yields the
assertion.

In Chapter 3 below we present another learning scenario satisfying the
assumptions of Lemma 2.2.2 in detail.

2.3 Histograms
In this section we investigate histograms in the transformed learning scenario.
To this end, let s : X → X̄ be a function. Then for a partition Ā = (Āk)k∈K

of X̄ we define the pull-back partition s−1(Ā) := (Ak)k∈K of X by

Ak := s−1(Āk) . (2.8)

If Ā and s are measurable then the pull-back partition s−1(Ā) is measurable.
The next lemma relates the number of relevant cells of a partition and

the corresponding pull-back partition.
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2.3.1 Lemma (Relevant Cells) Let Ā be a partition of X̄, s : X → X̄, and
A := s−1(Ā) be the corresponding pull-back partition of X defined in (2.8).
Then the following statements are true:

(i) Let Ā and s be measurable, ν be a distribution on X and ν̄ := ν ◦ s−1

be the push-forward measure on X̄. Then Aν = Āν̄ is satisfied.

(ii) If M̄ ⊆ X̄ and M := s−1(M̄) ⊆ X then AM ⊆ ĀM̄ is satisfied.
Moreover, if M̄ is a subset M̄ ⊆ s(X) of the image of s then even
the equality holds true.

(iii) If M ⊆ X then AM = As−1(s(M)) = Ās(M).

(iv) Let X and X̄ be Polish spaces equipped with their Borel σ-algebras,
s be continuous, ν be a distribution on X, and ν̄ := ν ◦ s−1 be the
push-forward measure on X̄. Then Asupp ν ⊆ Āsupp ν̄ is satisfied. If,
in addition, s(supp ν) ⊆ X̄ is closed then even the equality holds true.

In Point (iv) the set s(supp ν) is closed if e.g. supp ν ⊆ X is compact.

Proof. We denote the cells of the considered partitions by Ā = (Āk)k∈K

and A = (Ak)k∈K with Ak = s−1(Āk) for k ∈ K.
(i) The definitions of the push-forward measure and the pull-back partition

give us the assertion, namely ν̄(Āk) = ν
(
s−1(Āk)

)
= ν(Ak) implies k ∈ Āν̄

if and only if k ∈ Aν .
(ii) Note that we have

Ak ∩ M = s−1(Āk) ∩ s−1(M̄) = s−1(Āk ∩ M̄) (2.9)

for all k ∈ K. Let k ∈ AM be fixed. Then we have Ak ∩ M ̸= ∅ and hence
(2.9) implies Āk ∩ M̄ ̸= 0. This shows k ∈ ĀM̄ and hence the inclusion “⊆”
is proven. For the converse inclusion we assume M̄ ⊆ s(X) additionally.
Let k ∈ ĀM̄ be fixed. Then we have Āk ∩ M̄ ̸= ∅. Since Āk ∩ M̄ ⊆ s(X) is
a subset of the image of s, (2.9) implies ∅ ̸= s−1(Āk ∩ M̄) = Ak ∩ M . This
shows k ∈ AM and hence the inclusion “⊇” is proven.

(iii) The second equality is a consequence of Point (ii) with M̄ = s(M) ⊆
s(X) and it remains to prove the first equality. The inclusion “⊆” is a
direct consequence of M ⊆ s−1(s(M)). For the converse inclusion “⊇”
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we have to use the special structure of the pull-back partition A. Let
k ∈ As−1(s(M)) and x ∈ s−1(s(M)) ∩ Ak. Then we have s(x) ∈ Āk and
s(x) ∈ s(M). Especially, there is some y ∈ M with s(y) = s(x) ∈ Āk. This
proves y ∈ M ∩ Ak and hence k ∈ AM .

(iv) Using Point (iii) for M = supp ν gives us Asupp ν = Ās(supp ν). Since
s(supp ν) ⊆ s(supp ν) = supp ν̄ is satisfied according to Lemma B.2, the
inclusion is proven. If, in addition, s(supp ν) is closed then we even have
s(supp ν) = supp ν̄ and hence the equality is proven.

The following lemma relates the histogram on X and on X̄.

2.3.2 Lemma (Histograms) Let P be a distribution on X ×Y , s : X → X̄ be
a measurable function, and P̄ be the corresponding transformed distribution
on X̄ × Y . Furthermore, let Ā be a measurable and countable partition of X̄

and A := s−1(Ā) be the corresponding pull-back partition defined in (2.8).
Then the histograms hP,A and hP̄ ,Ā on X and X̄, respectively, satisfy

hP̄ ,Ā ◦ s = hP,A .

According to Point (ii) of Lemma 2.1.1 the statement remains true for
empirical histograms. To be more precise, for D ∈ (X × Y )n and D̄ :=
s(D) ∈ (X̄ × Y )n we have hD̄,Ā ◦ s = hD,A.

If X̄ = X and s : X → X̄ is a bijective transformation with measurable
inverse then Lemma 2.3.2 shows that transforming the data set D with s is
equivalent to a transformation of the partition used by the histogram.

This lemma implies that the error in (2.2) for the histogram using the par-
tition Ā in the transformed scenario equals the excess risk of the histogram
using the pull-back partition A in the original scenario, that is

RL,P (hD̄,Ā ◦ s) − R∗
L,P = RL,P (hD,A) − R∗

L,P .

As a result, we can bound the error in (2.2) using oracle inequalities in the
original scenario. We use this approach in Chapter 3 to prove consistency
results and in Chapter 4 to prove learning rates for histograms.
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Proof. We denote the cells of the considered partitions by Ā = (Āk)k∈K and
A = (Ak)k∈K with Ak = s−1(Āk) for k ∈ K. This gives 1Āk

◦ s = 1Ak
and

ν̄(Āk) = ν(Ak) for all k ∈ K. Moreover, the change-of-variables formula
for ν̄ = ν ◦ s−1 together with Lemma 2.1.4 yields∫

Āk

f∗
LS,P̄

dν̄ =
∫

s−1(Āk)
f∗

LS,P̄
◦ s dν

=
∫

s−1(Āk)
Eν(f∗

LS,P |s) dν

=
∫

Ak

f∗
LS,P dν .

Since Āν̄ = Aν is satisfied according to Lemma 2.3.1, we get

hP̄ ,Ā ◦ s =
∑

k∈Āν̄

1Āk
◦ s

1
ν̄(Āk)

∫
Āk

f∗
LS,P̄

dν̄

=
∑

k∈Aν

1Ak

1
ν(Ak)

∫
Ak

f∗
LS,P dν

= hP,A

and hence the assertion is proven.

As final part of this section we consider classification problems in the
transformed learning scenario. For classification problems we can addition-
ally investigate the margin-noise function. To this end, let us assume that
(X̄, d̄) is a pseudo-metric space and s : X → X̄ is a measurable function.
Then we define the pull-back pseudo-metric on X by

d(x, x′) := d̄
(
s(x), s(x′)

)
. (2.10)

Note that d is in general only a pseudo-metric even if d̄ is a metric. Moreover,
if X is already a topological space the pull-back pseudo-metric d on X

defines in general a different topology on X. If s : X → (X̄, d̄) is continuous
then id : X → (X, d) is continuous, i.e. the original topology on X is finer
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Chapter 2 Transformed Learning Scenarios

than the topology given by the pull-back pseudo-metric d. The next lemma
provides bounds on the diameter of the pull-back partition as well as a
representation of the distance to the decision boundary both with respect
to the pull-back pseudo-metric.

2.3.3 Lemma (Pull-Back Pseudo-Metric) Let (X̄, d̄) be a pseudo-metric
space, s : X → X̄ be a (not necessarily measurable) function, and X be
equipped with the corresponding pull-back pseudo-metric d defined in (2.10).
Then the following statements are true:

(i) For a partition Ā of X̄ and the corresponding pull-back partition
A := s−1(Ā) of X defined in (2.8) the diameters satisfy diam(A) ≤
diam(Ā). Moreover, if s is surjective then equality holds true.

(ii) For a distribution P on X×{±1} the distance to the decision boundary
defined in (1.13) with respect to d is given by

∆d(x) =


dist

(
s(x), s(X+)

)
, x ∈ X−

dist
(
s(x), s(X−)

)
, x ∈ X+

0, else.

(2.11)

If the σ-algebra B̄ of X̄ contains the Borel σ-algebra B(X̄, d̄), that is B̄ ⊇
B(X̄, d̄), and s : X → X̄ is measurable then (2.11) gives the measurability
of ∆d : X → R. This condition is slightly stronger than the condition
B ⊇ B(X, d) provided in (1.14) to ensure the measurability of ∆d. To show
this, we first prove

s−1(
B(X̄, d̄)

)
= B(X, d) .

The inclusion “⊆” is a consequence of the continuity of s : (X, d) → (X̄, d̄).
The converse inclusion “⊇” follows from the fact that the pull-back pseudo-
metric d induces the initial topology on X under s : X → (X̄, d̄). Using this
identity together with the measurability of s and B̄ ⊇ B(X̄, d̄) we recover
the condition in (1.14), namely

B ⊇ s−1(B̄) ⊇ s−1(
B(X̄, d̄)

)
= B(X, d) .
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Proof. (i) We denote the cells of the considered partitions by Ā = (Āk)k∈K

and A = (Ak)k∈K with Ak = s−1(Āk) for k ∈ K. Let k ∈ K be fixed.
Then for all x, x′ ∈ Ak we have s(x), s(x′) ∈ Āk and hence the definition of
the pull-back pseudo-metric d gives us

diam(Ak) = sup
x,x′∈Ak

d̄
(
s(x), s(x′)

)
≤ sup

x̄,x̄′∈Āk

d̄(x̄, x̄′) = diam(Āk) .

This proves diam(A) ≤ diam(Ā). Moreover, if s is surjective for all points
x̄, x̄′ ∈ Āk there are points x, x′ ∈ Ak with s(x) = x̄ and s(x′) = x̄′ and
hence in the above inequality we even get equality. This proves the second
assertion.

(ii) In order to prevent misunderstandings we add the considered pseudo-
metric as a subscript to the dist-function in the following proof. The
definition of dist and the definition of d yield

distd(x, A) = inf
x′∈A

d̄
(
s(x), s(x′)

)
= distd̄

(
s(x), s(A)

)
for all subsets A ⊆ X. Together with the definition of ∆d the assertion
follows.

The next lemma is a main ingredient for our learning rates proven in
Chapter 4 below.

2.3.4 Lemma (Margin-Noise Function) Let X and X̄ be Polish spaces
equipped with their Borel σ-algebras, s : X → X̄ be a continuous function,
P be a probability distribution on X × {±1}, and P̄ = P ◦ (s, idY )−1 be the
distribution of the transformed learning scenario. Furthermore, let d̄ be a
metric on X̄, which induces the topology on X̄, and d be the corresponding
pull-back pseudo-metric on X given by (2.10), which does not necessarily
induce the topology on X. Then the following statements are true:

(i) If there is no noise in the original classification problem P then,
for every version of η, the margin-noise function with respect to the
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Chapter 2 Transformed Learning Scenarios

pull-back pseudo-metric d satisfies, for r ≥ 0,

MN d(r) = Md(r) ≥ p+ν̄+
(
dist( · , supp ν̄−) ≤ 2r

)
+ p−ν̄−

(
dist( · , supp ν̄+) ≤ 2r

)
.

(ii) If supp ν+ ∩ supp ν− is a ν+- or ν−-zero set then there is a version
of η such that the equality holds true in (i).

Note that the dist-function on the right hand side is with respect to the
metric d̄ on X̄. Moreover, this result is especially applicable for X̄ = X

and s = idX .
Since supp ν̄+ ∩ supp ν̄− is a subset of {dist( · , supp ν̄±) ≤ 2r} for all

r ≥ 0, we get

MN d(r) = Md(r) ≥ ν̄(supp ν̄+ ∩ supp ν̄−) .

In addition, using supp ν± ⊆ s−1(supp ν̄±) from (B.1) we find s−1(supp ν̄+∩
supp ν̄−) = s−1(supp ν̄+) ∩ s−1(supp ν̄−) ⊇ supp ν+ ∩ supp ν− and hence
we get the lower bound

MN d(r) = Md(r) ≥ ν(supp ν+ ∩ supp ν−)

for all r ≥ 0. Note that the right hand side depends only on the original
learning problem.

Proof. First note that in this case the distance to the decision boundary
∆d : X → R is a measurable function according to Lemma 2.3.3 and the
remark after that lemma. The first equality MN d(r) = Md(r), for r ≥ 0, is a
direct consequence of our assumption that there is no noise. In the following
let r ≥ 0 be fixed. Moreover, since Md(r) = p+ν+(∆d ≤ 2r) + p−ν−(∆d ≤
2r) it is enough to consider ν+(∆d ≤ 2r) for symmetry reasons.

(i) According to Lemma 1.2.2 the sets X± are sets of full measure with
respect to ν±, respectively. Together with the representation in (2.11) and
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ν̄+ = ν+ ◦ s−1 we get

ν+(∆d ≤ 2r) = ν+
(
X+ ∩ {∆d ≤ 2r}

)
= ν+

(
dist(s( · ), s(X−)) ≤ 2r

)
= ν̄+

(
dist( · , s(X−)) ≤ 2r

)
.

Since we have ν−(X−) = 1, the support of ν− is contained in the closure
supp ν− ⊆ X−. Moreover, the continuity of s implies s

(
X−

)
⊆ s(X−),

see e.g. [32, Propositoin 1.4.1], and hence s(X−) = s(X−). Together with
Lemma B.2 we get

supp ν̄− = s(supp ν−) ⊆ s(X−) = s(X−) .

As a result, for all x̄ ∈ X̄ the distance can be bounded by

dist
(
x̄, s(X−)

)
= dist

(
x̄, s(X−)

)
≤ dist

(
x̄, supp ν̄−

)
.

Together, we get ν+(∆d ≤ 2r) ≥ ν̄+
(
dist( · , supp ν̄−) ≤ 2r

)
which proves

the assertion.
(ii) According to Lemma 1.2.2 our assumption implies that there is no

noise and hence Point (i) applies. Moreover, in Point (i) the inequality comes
from the inclusion supp ν± ⊆ X± which we used in the proof. Consequently,
we only need to find a version of η such that the equality supp ν± = X± is
satisfied. To this end, we assume without loss of generality ν−(supp ν+ ∩
supp ν−) = 0 and define

η(x) :=


1, x ∈ supp ν+

0, x ∈ supp ν−\(supp ν+ ∩ supp ν−)
1/2, else

for x ∈ X. As a result, we have X+ = supp ν+ and

X− = supp ν−\(supp ν+ ∩ supp ν−) ⊆ supp ν− .
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Consequently, we find supp ν± = X± and it remains to prove η = p+dν+/dν

ν-almost surely. For A ∈ B we get∫
A

η dν = ν(A ∩ supp ν+)
= p+ν+(A ∩ supp ν+) + p−ν−

(
A ∩ supp ν+ ∩ supp ν−

)
= p+ν+(A) ,

where we used ν−(supp ν+ ∩ supp ν−) = 0 in the last step. This shows
η = p+dν+/dν ν-almost surely and hence the assertion is proven.
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Learning in Sequence Spaces

In this chapter we consider learning problems using a sequence space as
input space. For such a sequence space we can consider various projections
onto finitely many coordinates (also called features). This defines a family
of transformed learning scenarios, which describe the circumstance that
we can only access finite-dimensional projections of an underlying infinite-
dimensional learning problem.

3.1 Definitions and Basic Properties
In this chapter we consider learning scenarios on a sequence space

X :=
∏
i≥1

Xi , (3.1)

where (Xi)i≥1 is a sequence of Polish spaces, i.e. complete separable metric
spaces. For i ≥ 1, we denote a corresponding complete metric on Xi by di.
Moreover, we equip X with the product topology, i.e. convergence in X is
equivalent to pointwise convergence.

Note that the separability of Xi ensures that it has a second-countable
topology and hence the product σ-algebra and the Borel σ-algebra of the
product topology on X coincide

B :=
⊗
i≥1

B(Xi) = B(X)
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see e.g. [11, Lemma 6.4.2] for details. Moreover, as a countable product of
Polish spaces the space X itself is a Polish space, see e.g. [22, Proposition
8.1.4]. Recall from the discussion around (1.11) that for every probability
measure ν on X the support supp ν is a set of full measure.

For an index set I ⊆ N we denote the projection onto XI :=
∏

i∈I Xi by
πI : X → XI where πI((xi)i≥1) := (xi)i∈I . Moreover, we define F(N) as
the set of all finite subsets of N and [d] := {1, 2, . . . , d} as the set of the first
d ≥ 1 positive integers.

For every index set I ∈ F(N) we have a corresponding transformed
learning scenario on XI × Y as defined in (2.1) with s = πI . To indicate
on which coordinates we are projecting we use the index set I as subscript
instead of the bar-notation, i.e. the distribution on XI × Y is denoted by
PI = P ◦ (πI , idY )−1, its marginal distribution on XI by νI = ν ◦ π−1

I , and
the data set by DI = πI(D) ∈ (XI × Y )n.

We interpret each coordinate xi of a data point x = (xi)i≥1 ∈ X as a
feature of x. In practice each feature is usually a measurement point. In
this sense I specifies the features of x that are available in the transformed
learning scenario PI and hence I is called feature set. Consequently, the
transformed learning scenario with a finite I ⊆ N, i.e. I ∈ F(N), exactly
describes the circumstance that we only have access to finitely many features
of an infinite-dimensional data point.

In this context a learning method L̄ on (XI × Y )I∈F(N) is a family

L̄ = (LI,n)I∈F(N),n≥1

with two indexes such that (LI,n)n≥1 is, for every fixed I ∈ F(N), a learning
method on XI × Y in the sense of (1.1). Then we define the pull-back
learning method L(I) = (L(I)

n )n≥1 on X × Y by

L(I)
n (D) := LI,n

(
πI(D)

)
◦ πI (3.2)

with the hyper parameter I ∈ F(N). In contrast to the pull-back learning
method introduced in (2.6) the hyper parameter space is F(N) instead of
N. The quality of such a learning method is measured using risks of the
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pull-back learning method in the original scenario, namely

RL,P

(
L(I)

n (D)
)

− R∗
L,P .

We call the learning method L̄ (potentially) L-risk consistent for P

and (πI)I∈F(N) if the corresponding pull-back learning method, with hyper
parameter I ∈ F(N), is (potentially) L-risk consistent for P in the sense
of (1.2). Analogously, we define the notion of learning rates for L̄. Recall,
potentially consistency means that there is some feature set sequence (In)n≥1

such that the learning method L(I) using (In)n≥1 is consistent for P , i.e.
(L(In)

n )n≥1 is consistent. In contrast, for consistency and learning rates we
have to specify the used feature set sequence (In)n≥1 exactly.

We interpret the sequence (In)n≥1 as the amount of information, or in
practice measurements, per data point that we need to guarantee consistency
or learning rates, respectively. Here it is important to mention that if we
have more information available, we can omit some features to reduce the
amount of information. Consequently, the sequence (In)n≥1 only describes
a lower bound on the needed amount of information. To be more precise,
if our application at hand provides us the features in I ′

n ∈ F(N) with
I ′

n ⊇ In for n ≥ 1 then we—as a user—can decide to use only the features
in In for learning. Formally, if we have some performance guaranties for
L̄ = (LI,n)I∈F(N),n≥1 using the feature set sequence (In)n≥1 then we can
consider the learning method M̄ = (MI,n)I∈F(N),n≥1 on (XI × Y )I∈F(N)
given by

MI,n(D) := LI∩In,n

(
πI∩In(D)

)
◦ πI∩In (3.3)

with the projection πI∩In
: XI → XI∩In

. In this case πI∩In
acts as a data

independent feature selection method and M̄ is nothing more than the
learning method L̄ combined with this specific feature selection method.
Moreover, the corresponding pull-back learning method M(I) = (M(I)

n )n≥1

satisfies
M(I)

n = L(I∩In)
n

for all n ≥ 1. Since I ′
n ⊇ In this means that the learning method M̄ using

(I ′
n)n≥1 equals L̄ using (In)n≥1. As a result, every performance guaranty for

49



Chapter 3 Learning in Sequence Spaces

a learning method L̄ using (In)n≥1 also applies for any feature set sequence
(I ′

n)n≥1 satisfying the lower bound I ′
n ⊇ In for all n ≥ 1 if we allow the

selection of a suitable subset of features for the actual learning. This is an
advantage of our infinite-dimensional modeling of high-dimensional learning
problems.

Being convinced that every condition on the feature set sequence is
actually only a lower bound we briefly consider the important special case
where Xi = R for all i ≥ 1. In this case the size dn := |In| of the feature
set In ∈ F(N) equals the dimension of the input space XIn

= Rdn in the
corresponding transformed learning scenario and hence we can investigate
the curse of dimensionality. This expression was coined by Bellman [6]
in the field of dynamic programming. Nowadays, the term is popular in
many fields, e.g. combinatorics, numerics, machine learning, etc., and—
roughly speaking—refers to the general phenomena when the number of
required data points depend exponentially on the dimension of the problem
to ensure non-trivial performance guaranties. In our situation the curse
of dimensionality can be specified as follows: A performance guaranty,
e.g. a consistency result or a learning rate, for the learning method L̄ =
(LI,n)I∈F(N),n≥1 using feature sets sequences (In)n≥1 suffers from the curse
of dimensionality if there are some constants c, α > 0 with

n ≥ c exp
(
α|In|

)
(3.4)

for all n ≥ 1. Note that (3.4) is an upper growth bound on the sequence
(|In|)n≥1.

Assume for a moment, that we have a performance guaranty for L̄
using (In)n≥1 that suffers from the curse of dimensionality. As in (3.3),
we can combine L̄ with a feature selection method such that the same
performance guaranty is satisfied using any feature set sequence (I ′

n)n≥1

with I ′
n ⊇ In. This means, that (|I ′

n|)n≥1 only has to satisfy a lower growth
bound. Especially, there is a feature set sequence (I ′

n)n≥1 that does not
satisfy the upper growth bound in (3.4), but for which our performance
guaranty applies. Consequently, in our setting the curse of dimensionality
is not present if we allow the usage of a feature selection method. However,
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we do not claim that selecting the right features in practice is an easy task.
Since the study of feature selection methods is its own research field, we
focus on conditions for (In)n≥1 that allows for consistency or learning rates
and keep in mind that these performance guaranties do not suffer from the
curse of dimensionality if we combine our learning method with a suitable
feature selection method. We continue this discussion in Section 4.3 below
in which we present polynomial learning rates.

Furthermore, note that from a practical point of view the usage of
less information, i.e. smaller feature sets In, are also beneficial in terms
of memory and time consumption. Before we go to the next section, the
following lemma translates the potential consistency results from Section 2.2
into the situation of this chapter.

3.1.1 Corollary (Potential Consistency) Let X =
∏

i≥1 Xi be given by (3.1),
P be a distribution on X × Y with |P |2 < ∞, L be the LS loss or the
classification loss (with Y = {±1}), and L̄ = (LI,n)I∈F(N),n≥1 be a learning
method on (XI ×Y )I∈F(N). If, for every fixed I ∈ F(N), the learning method
(LI,n)n≥1 on XI × Y is L-risk consistent for PI then the learning method
L̄ on (XI × Y )I∈F(N) is potentially L-risk consistent for P and (πI)I∈F(N).

Proof. Let (Id)d≥1 be an arbitrary sequence with Id ⊆ N, Id ⊆ Id+1, and⋃
d≥1 Id = N, e.g. we can choose Id = [d]. As a result, M̄ := (Md,n)d,n≥1

given by Md,n := LId,n defines a learning method in the sense of (2.5)
on (XId

× Y )d≥1 with the transformations sd := πId
: X → XId

. Since we
assume Id ⊆ Id+1 for d ≥ 1, the σ-algebras satisfy σ(sd) ⊆ σ(sd+1) as well.
Moreover, the product σ-algebra is per definition the initial σ-algebra with
respect to the projections πi : X → Xi and hence

B =
⊗
i≥1

B(Xi) = σ(πi : i ≥ 1) = σ(sd : d ≥ 1) .

As a consequence, M̄ satisfies the assumptions of Lemma 2.2.2 and Corol-
lary 2.2.3, respectively. This ensures that the assumptions of Lemma 2.2.1
are satisfied which gives us a sequence (dn)n≥1 such that the pull-back
learning method (M(dn))n≥1 = (L(Idn ))n≥1 is an L-risk consistent learning
method for P .
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3.2 Histograms
Let X =

∏
i≥1 Xi be a sequence space as defined in (3.1). In order to apply

histograms to a learning problem on (XI × Y )I∈F(N) we need a partition of
XI for every I ∈ F(N). To this end, we introduce product partitions. We
call a sequence A = (Ai)i≥1 a partition of (Xi)i≥1 if Ai = (Ai,k)k∈Ki is a
partition of Xi for all i ≥ 1. Then for every index set I ∈ F(N) the product
partition AI = (Ak)k∈KI

of XI is given by KI :=
∏

i∈I Ki and

Ak :=
∏
i∈I

Ai,ki
⊆ XI (3.5)

for k = (ki)i∈I ∈ KI . It is easy to see that AI is actually a partition of XI .
We say a partition A = (Ai)i≥1 of (Xi)i≥1 is measurable or countable

if Ai is a measurable or countable partition of Xi for all i ≥ 1. Since
I ∈ F(N) is finite, the product partition AI is countable if A is countable.
Analogously, since X is equipped with the product σ-algebra, the product
partition AI is measurable if A is measurable. Since Xi is a metric space
for every i ≥ 1, the diameter diam(Ai) of Ai is defined in Section 1.3 and
hence we define the diameter of A as diam(A) := supi≥1 diam(Ai). But
note that there can be multiple metrics on Xi inducing the topology of Xi

and hence we have to specify a metric on Xi explicitly, for all i ≥ 1, if we
talk about the diameter diam(A). Moreover, for a distribution ν on X and
I ∈ F(N) we use the abbreviation

AI,ν := (AI)νI

for the indexes of the relevant cells of the product partition AI with respect
to the measure νI = ν ◦ π−1

I .

3.2.1 Lemma (Relevant Cells) Let X =
∏

i≥1 Xi be a sequence space as
defined in (3.1), A = (Ai)i≥1 be a measurable partition of (Xi)i≥1, and ν

be a distribution on X. Then, for I ∈ F(N), the relevant cells satisfy the
inclusion

AI,ν ⊆
∏
i∈I

(Ai)νi
,
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where νi := ν ◦ π−1
i is the marginal distribution of ν on Xi for i ≥ 1.

Proof. Let I ∈ F(N) and k = (ki)i∈I ∈ AI,ν . With the notation from (3.5)
this means

0 < νI

(∏
i∈I

Ai,ki

)
≤ νI

(
Aj,kj ×

∏
i ̸=j

Xi

)
= νj(Aj,kj )

for all j ∈ I. Consequently, kj ∈ (Aj)νj for all j ∈ I or equivalently
k ∈

∏
i∈I(Ai)νi

.

For a measurable and countable partition A of (Xi)i≥1 we consider the
histogram learning method L̄(A) = (L(A)

I,n )I∈F(N),n≥1 given by L(A)
I,n (DI) :=

hDI ,AI
for DI ∈ (XI × Y )n. Recall that the histogram hDI ,AI

: XI → R is
defined in (1.17) and AI denotes the product partition from (3.5). As an
abbreviation of the corresponding pull-back learning method, defined in
(3.2), we introduce the notation

hD,A,I := hDI ,AI
◦ πI : X → R .

Note that this pull-back learning method depends on two hyper parameters,
the feature set I and the partition A of (Xi)i≥1. Moreover, we use the same
notation for the infinite-sample version hP,A,I := hPI ,AI

◦ πI .
Next, we present some properties of the approximation error. To this

end, we need the following preparatory lemma.

3.2.2 Lemma (Lipschitz Continuous Functions) Let X be a metric space, ν

be a regular measure on the Borel σ-algebra B(X), and f ∈ L2(ν). Then,
for every ε > 0, there is some Lipschitz continuous and bounded function
h : X → R with ν(h ̸= 0) < ∞ and

∥f − h∥L2(ν) ≤ ε .

Note that for locally compact spaces X the set Cc(X) of compactly sup-
ported continuous functions is dense in Lp(ν), see e.g. [5, Theorem 29.14]
or [22, Proposition 7.4.3] for details. This well-known approximation prop-
erty of Cc(X) is in many cases sufficient to investigate the approximation
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error. However, the assumption that X is locally compact excludes many
non-compact infinite-dimensional spaces X and hence Lemma 3.2.2 is more
suited for our purpose.

Proof. First, we approximate an indicator function 1M for some M ∈ B(X)
with ν(M) < ∞. To this end, let ε > 0 be fixed. Since ν is regular, there is
a compact set K ⊆ M and an open set M ⊆ U with ν(U\K) < ε2. Since K

and U c are disjoint and closed sets, we have dist(K, U c) > 0. Consequently,
we can define

φ(x) := min
{

dist(x, U c)
dist(K, U c) , 1

}
for x ∈ X. The Lipschitz continuity of x 7→ dist(x, U c) implies the Lipschitz
continuity of φ. Moreover, we directly get 0 ≤ φ ≤ 1, φ = 1 on K, and
φ = 0 on U c. This implies ν(φ ̸= 0) ≤ ν(U) ≤ ν(M) + ν(U\K) < ∞ and

∥1M − φ∥2
L2(ν) =

∫
U

|1M − φ|2 dν ≤ ν(U\K) < ε2 .

As a result, the assertion is proven for indicator functions.
Now, let f ∈ L2(ν) and ε > 0 be fixed. According to [22, Proposition 3.4.2]

there is a function g =
∑n

i=1 ai1Mi with ai ∈ R, Mi ∈ B(X), and ν(Mi) <

∞ for all i ≥ 1 such that ∥f − g∥L2(ν) < ε/2. Using the assertion for each
function 1Mi

gives us a Lipschitz continuous and bounded function φi with
ν(φi ̸= 0) < ∞ and ∥1Mi − φi∥L2(ν) < ε/(2a), where a := |a1| + . . . + |an|.
Then the function h :=

∑n
i=1 aiφi is Lipschitz continuous, bounded, and

satisfies ν(h ̸= 0) < ∞. Moreover, we have

∥g − h∥L2(ν) ≤
n∑

i=1
|ai| · ∥1Mi − φi∥L2(ν) < ε/2 .

All together we find ∥f − h∥L2(ν) ≤ ∥f − g∥L2(ν) + ∥g − h∥L2(ν) < ε and
hence h has the desired properties.

Now, we can prove a basic property of the LS approximation error.
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3.2.3 Lemma (LS Approximation Error) Let X =
∏

i≥1 Xi be a sequence
space as defined in (3.1) and P be a probability distribution on X × Y

with |P |2 < ∞. Then, for every ε > 0, there is some r0 > 0 and d0 > 0
such that for all partitions A of (Xi)i≥1 with diam(A) ≤ 2r0 and d ≥ d0

the histogram hP,A,I using the feature set I = [d] satisfies the following
inequality

RLS,P (hP,A,I) − R∗
LS,P =

∥∥hP,A,I − f∗
LS,P

∥∥2
L2(ν) ≤ ε

The following proof is an adaption of [66, Lemma E.4] to the infinite-
dimensional setting.

Proof. Let ε > 0 be fixed, I ∈ F(N), r > 0, and A be a partition of (Xi)i≥1

with diam(A) ≤ 2r. Since the product partition AI is a partition of XI , we
can consider the corresponding pull-back partition A := π−1

I (AI) of X given
by (2.8). Together with Lemma 2.3.2 we find hP,A,I = hPI ,AI

◦ πI = hP,A.
According to (1.5) we have

RLS,P (hP,A,I) − R∗
LS,P =

∥∥hP,A − f∗
LS,P

∥∥2
L2(ν) . (3.6)

Note that X is a Polish space and hence the marginal distribution ν is
regular, see e.g. [31, Satz VIII.1.16]. As a result, Lemma 3.2.2 is applicable
and gives us a Lipschitz continuous and bounded function f : X → R with
ν(f ̸= 0) < ∞ and ∥∥f − f∗

LS,P

∥∥
L2(ν) ≤

√
ε/3 .

However, the notion of Lipschitz continuity depends on the metric and there
are multiple (possibly non-equivalent) metrics on X inducing the product
topology. We use Lemma 3.2.2 with the metric

d(x, x′) :=
∑
i≥1

2−i di(xi, x′
i)

1 + di(xi, x′
i)

(3.7)

for x = (xi)i≥1, x′ = (x′
i)i≥1 ∈ X which is well-known to induce the product

topology on X. Now, we define a probability measure Q on X×Y by defining
the marginal distribution Q ◦ π−1

X := ν and the conditional distribution
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Q( · |x) := δf(x) for x ∈ X. For Q the LS Bayes function equals f∗
LS,Q = f .

Using hP,A = Eν(f∗
LS,P |σ(A)) from (1.18), Q ◦ π−1

X = P ◦ π−1
X = ν, and the

projection property of conditional expectations we find∥∥hQ,A − hP,A

∥∥
L2(ν) =

∥∥Eν(f∗
LS,Q − f∗

LS,P |σ(A))
∥∥

L2(ν) ≤
∥∥f − f∗

LS,P

∥∥
L2(ν) .

This results in∥∥hP,A − f∗
LS,P

∥∥
L2(ν) ≤

∥∥hP,A − hQ,A

∥∥
L2(ν)

+
∥∥hQ,A − f

∥∥
L2(ν)

+
∥∥f − f∗

LS,P

∥∥
L2(ν)

≤ 2
√

ε/3 +
∥∥hQ,A − f

∥∥
L2(ν)

(3.8)

and hence it remains to bound ∥hQ,A − f∥L2(ν). To this end, let A be a cell
of A with ν(A) > 0 and x ∈ A. Using (1.18) and the Lipschitz continuity
of f we find

∣∣hQ,A(x) − f(x)
∣∣ ≤ 1

ν(A)

∫
A

|f(x′) − f(x)| dν(x′) ≤ L · diam(A) ,

where L denotes the Lipschitz constant and diam(A) the diameter with
respect to the metric d in (3.7). Since the cells A of A with ν(A) = 0 are
ignored by the L∞(ν)-norm, we find∥∥hQ,A − f

∥∥2
L2(ν) ≤

∥∥hQ,A − f
∥∥2

L∞(ν) ≤ L · diam(A) (3.9)

and we need to bound the diameter of the pull-back partition A. Note that
the diameter of A with respect to the pull-back metric, defined in (2.10), is
already given by Lemma 2.3.3 but this metric does not induce the product
topology on X and hence this result cannot be used for this proof. Again,
let A be a cell of A and x = (xi)i≥1, x′ = (x′

i)i≥1 ∈ A. Since diam(A) ≤ 2r

and A = π−1
I (AI) hold true, we have di(xi, x′

i) ≤ 2r for i ∈ I. Together
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with I = [d] we find

d(x, x′) ≤ 2r

1 + 2r

d∑
i=1

2−i +
∑
i>d

2−i ≤ 2r

1 + 2r
+ 2−d ≤ 2r + 2−d .

As a result, the diameter with respect to d is bounded by diam(A) ≤ 2r+2−d.
Together with (3.9) we get ∥hQ,A − f∥L2(ν) ≤ L(2r + 2−d).

Finally, we choose r0 :=
√

ε/(12L) and d0 := ⌈log(6L/
√

ε)/ log(2)⌉. Then
for 0 < r ≤ r0 and d ≥ d0 we have L(2r + 2−d) ≤

√
ε/3 and together with

(3.6) and (3.8) we get the assertion.

For us, the most important case is Xi = (Rpi , ∥ · ∥ℓ
pi
∞

) with pi ≥ 1, where

∥x∥ℓ
pi
∞

:= sup
j=1,...,pi

|xj |

for x = (xj)pi

j=1 ∈ Rpi . In this case we call a partition A = (Ai)i≥1 of
(Xi)i≥1 cubic with radius r > 0 if Ai is a cubic partition, as defined in
Section 1.3, with radius r for all i ≥ 1. For I ∈ F(N), the product partition
AI of a cubic partition is again a cubic partition of XI

∼= Rp with the same
radius and p =

∑
i∈I pi. Moreover, we introduce the abbreviation

hD,r,I := hD,A,I ,

where A is some predefined cubic partition of (Xi)i≥1 with radius r > 0
and I ∈ F(N). In addition, we use an analogous notation for the population
version hP,r,I := hP,A,I .

The following lemma establishes consistency for histograms using cubic
partitions and finitely many features.

3.2.4 Lemma (LS-Risk Consistency) Let X = RN be a sequence space as
defined in (3.1) with Xi = R for all i ≥ 1 and P be a probability distribution
on X × Y with Y = [−M, M ] for some M > 0 and P

(
[−b, b]N × Y

)
= 1 for

some b > 0. Furthermore, let (rn)n≥1 and (dn)n≥1 be sequences in (0, b]
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and N, respectively, with rn → 0, dn → ∞, and

(3b)dn

nrdn
n

→ 0 (3.10)

for n → ∞. Then the histogram learning method D 7→ hD,rn,In using the
feature set In := [dn] is LS-risk consistent for P .

This is a generalization of the well-known consistency of cubic histograms
from finite- to infinite-dimensional spaces, cf. [43, Theorem 4.2].

Note that scaling the data influences the condition in (3.10). To be more
precise, if we scale the data by a factor of a > 0, the data is concentrated
on [−ab, ab]N × Y and we need to scale the sequence (rn)n≥1 by the same
factor to ensure that (3.10) is still satisfied.

Since rn ≤ b holds true, the condition in (3.10) implies n ≥ c · 3dn for all
n ≥ 1 with some constant c > 0. At first sight, it seems that this consistency
result suffers from the curse of dimensionality defined in (3.4). However,
recall from the discussion around (3.4) that if we allow the combination
with a feature selection method the curse of dimensionality is no longer
present.

Proof. Let n ≥ 1 and A be the predefined cubic partition of (Xi)i≥1 with
radius rn. Moreover, we define the sequence

an := (3b)dn

nrdn
n

which converges to zero according to our assumption. Since AI is a partition
of RI , we can consider the corresponding pull-back partition A := π−1

I (AI)
of X = RN given by (2.8). Using Lemma 2.3.2 the excess LS-risk equals

RLS,P (hD,rn,In
) − R∗

LS,P = RLS,P (hD,A) − R∗
LS,P .

If we apply Lemma 1.3.1 to the right hand side for τ = τn := a
−1/3
n and
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3.2 Histograms

ε = εn := 3M exp(−a
−1/3
n ), we get

RLS,P (hD,rn,In) − R∗
LS,P ≤ 4

∥∥hP,A − f∗
LS,P

∥∥2
L2(ν)

+ 20Mεn

+ 1536M2 log(3M/εn) · τn|Aν |
n

with probability P n not less than 1−e−τn . Note that our choice τn = a
−1/3
n

ensures that 1 − e−τn → 1 for n → ∞. Consequently, it remains to prove
that all the terms on the right hand side vanish for n → ∞.

The assumption an → 0 for n → ∞ implies 40Mεn → 0 for n → ∞.
Since rn → 0 and dn → ∞ for n → ∞, Lemma 3.2.3 yields, for n → ∞,∥∥hP,A − f∗

LS,P

∥∥2
L2(ν) =

∥∥hP,rn,In − f∗
LS,P

∥∥2
L2(ν) → 0 .

Finally, we consider the number of relevant cells. Using Point (i) of
Lemma 2.3.1, Lemma 3.2.1, and Lemma 1.3.4 with M = [−b, b] we find

|Aν | =
∣∣(AI)νI

∣∣ ≤
∏
i∈I

∣∣(Ai)νi

∣∣ ≤
∏
i∈I

∣∣(Ai)[−b,b]
∣∣ .

Consequently, it remains to bound |(Ai)[−b,b]|. To this end, let Ak be the
cell that contains the left corner of the interval [−b, b]. Since all cells are
aligned, the remaining interval [−b, b]\Ak of length L ≤ 2b is covered by
⌈L/(2r)⌉ cells. Together with rn ≤ b this yields∣∣(Ai)[−b,b]

∣∣ ≤ 1 + ⌈b/rn⌉ ≤ 2 + b/rn ≤ 3b/rn .

Putting both together and using log(3M/εn) = a
−1/3
n we get

1536M2 log(3M/ε) · τ |Aν |
n

≼ a−1/3
n

τn(3b/rn)dn

n
= a1/3

n → 0

for n → ∞. As a result, the consistency of D 7→ hD,rn,In
is proven.

The next corollary transfers the LS-risk consistency of the previous lemma
to classification-risk consistency.
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3.2.5 Corollary (Classification-Risk Consistency) Let the assumptions of
Lemma 3.2.4 with Y = {±1} be satisfied. Then the histogram learning
method D 7→ hD,rn,In

is classification-risk consistent for P .

This is a generalization of the well-known consistency for cubic histograms
from finite- to infinite-dimensional spaces, cf. [25, Theorem 6.2].

Proof. This is a direct consequence of Lemma 3.2.4 and the calibration
inequality

RClass,P (f) − R∗
Class,P ≤

(
RLS,P (f) − R∗

LS,P

)1/2
,

which holds true for every measurable function f : X → R, see e.g. [76,
Example 3.23] for details.

As final part of this section we consider a classification problem P on
X × {±1}, where X =

∏
i≥1 Xi is a sequence space. Since (Xi, di) is a

metric space for all i ≥ 1, we can turn XI , for I ∈ F(N), into a metric
space using the metric

dI

(
(xi)i∈I , (x′

i)i∈I

)
:= sup

i∈I
di(xi, x′

i) . (3.11)

For a partition A = (Ai)i≥1 of (Xi)i≥1, the diameter of the product partition
AI with respect of dI satisfies diam(AI) = supi∈I diam(Ai) ≤ diam(A).
Moreover, for the corresponding pull-back pseudo-metric

d(x, x′) := dI

(
πI(x), πI(x′)

)
(3.12)

on X, introduced in (2.10), we denote the distance to the decision bound-
ary by ∆I := ∆d, see (1.13) for the definition of ∆d. In this case the
representation in (2.11) reads

∆I(x) =


dist

(
πI(x), πI(X+)

)
, x ∈ X−

dist
(
πI(x), πI(X−)

)
, x ∈ X+

0, else,

(3.13)
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where X± are defined in (1.8). Moreover, we write MN I for the margin-
noise function and MI for the margin function with respect to ∆I , see (1.15)
for their definitions. The following lemma provides some monotonicity
properties of ∆I , MN I , and MI in I.

3.2.6 Lemma (Monotonicity) Let X =
∏

i≥1 Xi be a sequence space as
defined in (3.1) and P be a distribution on X × {±1}. Then the following
statements are true, for finite I ⊆ J ⊆ N:

(i) ∆I(x) ≤ ∆J(x) for all x ∈ X,

(ii) MI(r) ≥ MJ(r) for all r ≥ 0, and

(iii) MN I(r) ≥ MN J(r) for all r ≥ 0.

Since the margin-noise function bounds the approximation error, see (A.4)
in the proof of Lemma 1.3.2, Point (iii) underpins our intuition: The larger
the index set I, the more information of the original scenario is preserved
in the I-th transformed scenario, and the smaller the approximation error
bound.

Proof. Point (ii) and (iii) are direct consequences of Point (i). To prove
Point (i) we fix some x = (xi)i≥1 ∈ X. If x ∈ X+ then for an arbitrary
x− = (xi,−)i≥1 ∈ X− we have

∆I(x) ≤ dI

(
πI(x), πI(x−)

)
= sup

i∈I
di(xi, xi,−) ≤ dJ

(
πJ(x), πJ(x−)

)
.

Taking the infimum over x− ∈ X− yields ∆I(x) ≤ ∆J(x). For x ∈ X− an
analogous argument yields ∆I(x) ≤ ∆J(x). Finally, we have ∆I(x) = 0 =
∆J(x) in all remaining cases.

Finally, we apply the oracle inequality of Lemma 1.3.2 in the case of
a sequence space X. Since this is the basis of all the investigations of
Chapter 4, we formulate it as a corollary.

3.2.7 Corollary (Oracle Inequality for Histograms on Sequence Spaces)
Let X =

∏
i≥1 Xi be a sequence space as defined in (3.1), P be a distribution

on X × {±1} with noise exponent 0 ≤ q ≤ ∞ in the sense of (1.12), r > 0,
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and A be a measurable partition of (Xi)i≥1 with diam(A) ≤ 2r. Then the
histogram using A and the feature set I ∈ F(N) satisfies, for τ ≥ 1 and
n ≥ 1,

RClass,P (hD,A,I) − R∗
Class,P ≤ 6MN I(r) + C

(
τ |AI,ν |

n

) q+1
q+2

with probability P n not less than 1 − e−τ .

Proof. Let I ∈ F(N), n ≥ 1, τ ≥ 1, and D ∈ (X×Y )n. Moreover, we denote
the product partition defined in (3.5) by AI and the corresponding pull-back
partition of X defined in (2.8) by A := π−1

I (AI). From Lemma 2.3.2 we get

RClass,P (hD,A,I) = RClass,P

(
hDI ,AI

◦ πI

)
= RClass,P (hD,A)

According to Point (i) of Lemma 2.3.3 the diameter with respect to the pull-
back pseudo-metric, given in (3.12), is bounded by diam(A) = diam(AI) ≤
diam(A) ≤ 2r. Consequently, using Lemma 1.3.2 for A and the pull-back
pseudo-metric gives us

RClass,P (hD,A,I) − R∗
Class,P < 6MN I(r) + C

(
τ |Aν |

n

) q+1
q+2

with probability P n not less than 1 − e−τ . Using Lemma 2.3.1 we get
|Aν | = |(AI)νI

| = |AI,ν | and hence the assertion is proven.

3.3 Product Distributions
In this section we consider the margin-noise function and the number of
relevant cells for the following type of classification problems on sequence
spaces.

3.3.1 Assumption Let X =
∏

i≥1 Xi be a sequence space as defined in (3.1)
and P be a distribution on X × {±1}, where the marginals ν±, defined in
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(1.6), are of the form

ν+ =
⊗
i≥1

ν+,i and ν− =
⊗
i≥1

ν−,i

with probability measures ν+,i and ν−,i on Xi for i ≥ 1.

Recall from (1.7) that ν = p+ν++p−ν− holds true and hence the marginal
distribution ν on X is generally not a product measure. The assumption
that ν+ and ν− are product measures allows us to transfer properties
of the corresponding one-dimensional distributions ν±,i to ν±. The first
lemma specifies the representation of the margin-noise in Lemma 2.3.4
under Assumption 3.3.1.

3.3.2 Lemma (Margin-Noise Function) Let Assumption 3.3.1 be satisfied.
If supp ν+ ∩ supp ν− is a ν+- or a ν−-zero set then there is a version of η

such that the following equality is satisfied, for all I ∈ F(N) and r ≥ 0,

MN I(r) = MI(r) = p+
∏
i∈I

ν+,i

(
dist( · , supp ν−,i) ≤ 2r

)
+ p−

∏
i∈I

ν−,i

(
dist( · , supp ν+,i) ≤ 2r

)
.

Moreover, for any other version of η we have the inequality “≥”.

To prove this we need the following auxiliary result.

3.3.3 Lemma (Auxiliary Result) Let X =
∏

i≥1 Xi be a sequence space as
defined in (3.1), I ∈ F(N), and MI =

∏
i∈I Mi ⊆ XI be a cylinder in XI .

Then the following equality is satisfied, for x = (xi)i∈I ∈ XI ,

dist(x, MI) = max
i∈I

dist(xi, Mi) ,

where XI is equipped with the metric dI defined in (3.11).

As the proof shows it is essential that the set I is finite.
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Proof. The definitions of dist and dI give us

dist(x, MI) = inf
(yi)i∈I ∈MI

max
i∈I

di(xi, yi) .

For (yi)i∈I ∈ MI the fact that MI is a cylinder implies yi ∈ Mi and hence
di(xi, yi) ≥ dist(xi, Mi) holds for all i ∈ I. This proves the inequality “≥”.
Conversely, for every i ∈ I there is a sequence

(
y

(k)
i

)
k≥1 in Mi with

lim
k→∞

dist
(
xi, y

(k)
i

)
= dist(xi, Mi) .

Since MI is a cylinder, we have y(k) :=
(
y

(k)
i

)
i∈I

∈ MI and hence

dist(x, MI) ≤ dI(x, y(k)) = max
i∈I

di

(
xi, y

(k)
i

)
.

Taking the limit k → ∞ gives the desired inequality “≤” since the limit
interchanges with the maximum over the finite set I. As a result, the
assertion is proven.

Now, we are ready to prove Lemma 3.3.2.

Proof of Lemma 3.3.2. Let I ∈ F(N) and r ≥ 0 be fixed. After an applica-
tion of Lemma 2.3.4 for s = πI it remains to prove

ν±,I

(
dist( · , supp ν∓,I) ≤ 2r

)
=

∏
i∈I

ν±,i

(
dist( · , supp ν∓,i) ≤ 2r

)
.

For symmetry reasons, it enough to consider ν+,I . Using Lemma B.2 and
Lemma B.3 we get

supp ν−,I = πI(supp ν−) =
∏
i∈I

supp ν−,i =
∏
i∈I

supp ν−,i ,

where we used that products of closed sets are closed, see e.g. [32, Corol-
lary 2.3.4], in the last step. This shows that supp ν−,I ⊆ XI is a cylinder in
XI . Using Lemma 3.3.3 with MI =

∏
i∈I supp ν−,i and ν+,I =

⊗
i∈I ν+,i
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we find

ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
= ν+,I

(
(xi)i∈I ∈ XI : max

i∈I
dist(xi, supp ν−,i) ≤ 2r

)
=

∏
i∈I

ν+,i

(
dist( · , supp ν−,i) ≤ 2r

)
and hence the assertion is proven.

The final lemma of this section provides some bounds on the number of
relevant cells of a product partition under Assumption 3.3.1.

3.3.4 Lemma (Relevant Cells) Let Assumption 3.3.1 be satisfied and A =
(Ai)i≥1 be a measurable partition of (Xi)i≥1. Then, for every I ∈ F(N),
the number of relevant cells satisfies

max
{∏

i∈I

∣∣Ai,ν+,i

∣∣, ∏
i∈I

∣∣Ai,ν−,i

∣∣} ≤ |AI,ν | ≤
∏
i∈I

∣∣Ai,ν+,i

∣∣ +
∏
i∈I

∣∣Ai,ν−,i

∣∣ .

Note that the upper bound is already contained in Lemma 3.2.1 even for
general distributions ν. Consequently, this lemma states that Lemma 3.2.1
is almost optimal under Assumption 3.3.1. In other words, for fixed one-
dimensional distributions ν±,i on Xi, the number of relevant cells has the
worst possible behavior if Assumption 3.3.1 is satisfied.

Proof. Since we have νI = p+ν+,I + p−ν−,I from (1.7) with some p± > 0,
Lemma 1.3.3 gives us AI,ν = AI,ν+ ∪ AI,ν− . Consequently, it is enough
to determine AI,ν± . To this end, let Ai = (Ai,ki

)ki∈Ki
for i ≥ 1 and

k = (ki)i∈I ∈ KI . Then k ∈ AI,ν± if and only if

ν±,I(Ak) =
∏
i∈I

ν±,i(Ai,ki
) > 0

where Ak =
∏

i∈I Ai,ki
. For a finite product of non-negative numbers, being

positive is equivalent to the positivity of every factor, i.e. ν±,i(Ai,ki
) > 0

for all i ∈ I. The latter is equivalent to ki ∈ Ai,ν±,i for all i ∈ I or in other
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words k ∈
∏

i∈I Ai,ν±,i
. All together this shows

∣∣AI,ν±,I

∣∣ =
∣∣∣∏
i∈I

Ai,ν±,i

∣∣∣ =
∏
i∈I

∣∣Ai,ν±,i

∣∣
and hence the assertion is proven.
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A Prototypical Example

In this chapter we investigate a prototypical infinite-dimensional classi-
fication problem. We can explicitly calculate the margin-noise function
and give sharp bounds on the number of relevant cells for this learning
problem. Depending on some parameters there are situations in which we
get polynomial learning rates from Corollary 3.2.7 and other situations
in which we can show that Corollary 3.2.7 does not provide polynomial
learning rates. To get an over overview of the obtained learning rates see
Table 4.3 in Section 4.3 below. Note that this classification problem is the
basis for various generalizations presented in Chapter 5.

4.1 Definition and Basic Properties
For easy referencing we formulate our classification problem of interest as
an assumption.

4.1.1 Assumption (Prototypical Example) Let (σi)i≥1, (κi)i≥1, (qi)i≥1 be
sequences with σi > 0, 0 ≤ κi ≤ 1/2, and qi > 0 for all i ≥ 1, and define
the function

fi(t) := qit
qi−11[0,1](t)

for t ∈ R and i ≥ 1. Furthermore, let Assumption 3.3.1 be satisfied with
Xi = R, ν±,i ≪ λ, where λ is the Lebesgue measure, and

dν±,i

dλ
(t) = fi(κi ± t/σi)

σi
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for λ-almost all t ∈ R and all i ≥ 1.

First, we want to give some intuition for the influence of the parameters
σi, κi, and qi on the distributions ν±,i. To this end, assume that xi is a
random variable with xi ∼ fi dλ then the transformed random variables
x±,i := ±(xi − κi)σi satisfy x±,i ∼ ν±,i. In other words, the parameter κi

shifts and the parameter σi scales the random variables x±,i. Moreover,
since x+,i = −x−,i the distribution ν−,i equals ν+,i reflected at 0. As a
result, the supports equal

supp ν+,i =
[
−κiσi, (1 − κi)σi

]
and

supp ν−,i =
[
−(1 − κi)σi, κiσi

]
,

(4.1)

respectively. The effects of σi, κi, and qi are visualized in Figure 4.1.
Now, we discuss the effect of κi in more detail. For κi < 0 there is a

gap between the supports supp ν+,i and supp ν−,i. Since this is an easy
classification problem, this case is excluded by Assumption 4.1.1. For κi = 0
the supports touch but do not overlap. For 0 < κi < 1/2 the supports
overlap but there are still regions where only one class can be observed. For
κi = 1/2 the supports supp ν±,i = [−σi/2, σi/2] are the same.

The parameter qi describes where the probability masses of ν+,i and
ν−,i are located within their support. The larger qi, the less probability
mass is in the overlapping region and vice versa. Moreover, for qi = 1, the
distributions ν+,i and ν−,i are uniform distributions.

The first lemma provides basic properties of the one-dimensional distri-
butions ν±,i.

4.1.2 Lemma (One-Dimensional Distributions) Let Assumption 4.1.1 be
satisfied. Then the following statements are true, for i ≥ 1:

(i) ν±,i

(
dist( · , supp ν∓,i) ≤ 2r

)
= min

{
(2κi + 2r/σi)qi , 1

}
for r ≥ 0.

(ii) For any cubic partition Ai of R with radius r > 0 the number of
relevant cells is bounded by⌈

σi/(2r)
⌉

≤ |Ai,ν± | ≤ 1 +
⌈
σi/(2r)

⌉
.
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−(1 − κi)σi (1 − κi)σi−κiσi κiσi

Ei

qi = 7
qi = 6
qi = 5
qi = 4
qi = 3
qi = 2

−(1 − κi)σi (1 − κi)σi−κiσi κiσi

Ei

qi = 1/7
qi = 1/6
qi = 1/5
qi = 1/4
qi = 1/3
qi = 1/2

Figure 4.1: Plots of the (Lebesgue) density dν+,i/dλ in orange and the
density dν−,i/dλ in blue for different values of qi and fixed
κi = 1/5, σi = 1. The left plot shows that for increasing qi ↗ ∞
the probability mass moves away from the overlapping region
Ei := [−κiσi, κiσi]. The right plot shows that for decreasing
qi ↘ 0 the probability mass is more and more concentrated in
the overlapping region Ei.

Proof. We prove both statements for ν+,i and note that for symmetry
reasons the same is true for ν−,i.

(i) Since supp ν−,i = [−(1 − κi)σi, κiσi] holds true, we find{
dist( · , supp ν−,i) ≤ 2r

}
=

[
−(1 − κi)σi − 2r, κiσi + 2r

]
and together with supp ν+,i = [−κiσi, (1 − κi)σi] we get

supp ν+,i ∩
{

dist( · , supp ν−,i) ≤ 2r
}

=
{

[−κiσi, κiσi + 2r], 2κi + 2r/σi ≤ 1
supp ν+,i, 2κi + 2r/σi > 1 .

In the case 2κi +2r/σi > 1 we directly get ν+,i

(
dist( · , supp ν−,i) ≤ 2r

)
= 1.

In the case 2κi +2r/σi ≤ 1 the definition of ν+,i together with some integral
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transformations yields

ν+,i

(
dist( · , supp ν−,i) ≤ 2r

)
=

∫ κiσi+2r

−κiσi

fi(κi + t/σi)
σi

dt

=
∫ 2κi+2r/σi

0
fi(t) dt

= (2κi + 2r/σi)qi ≤ 1 .

(ii) Since every cell of the cubic partition Ai is contained in a closed ball
of radius r, Corollary 1.3.6 gives

|Ai,ν+ | ≥ N
(
[−κiσi, (1 − κi)σi], r

)
=

⌈ σi

2r

⌉
,

where we used in the last step that supp ν+,i = [−κiσi, (1 − κi)σi] is
an interval of length σi. For the upper bound, Lemma 1.3.4 gives us
|Ai,ν+ | ≤ |(Ai)supp ν+,i |. Now, let Ak be the cell that contains the left
corner of the interval supp ν+,i, i.e. −κiσi ∈ Ak. Since all cells are aligned,
the remaining interval supp ν+,i\Ak of length L ≤ σi is covered by ⌈L/(2r)⌉
cells. Together this yields

|Ai,ν+ | ≤
∣∣(Ai)supp ν+,i

∣∣ ≤ 1 +
⌈
L/(2r)

⌉
≤ 1 +

⌈
σi/(2r)

⌉
and hence the assertion is proven.

Before we go to the multi-dimensional case let us have a look at Figure 4.2
that visualizes the effect of κi on the placement of the supports of ν+ and
ν− in the two-dimensional case.

The next result combines Lemma 4.1.2 with the results of Section 3.3.

4.1.3 Corollary (Finite-Dimensional Distributions) Let Assumption 4.1.1 be
satisfied. Then the following statements are true:

(i) If supp ν+ ∩ supp ν− is a ν+- or a ν−-zero set then there is no noise
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−κ1κ1

supp ν+

supp ν−

κ1 = 0

supp ν+

supp ν−

−κ1 κ1

supp ν+

supp ν−

E

Figure 4.2: Plots of the supports of ν+ := ν+,1 ⊗ ν+,2 in orange and ν− :=
ν−,1 ⊗ ν−,2 in blue for different values of κi and σ1 = σ2 = 1.
For all three plots we have κ2 = 1/4. The left plot (κ1 = −1/4)
shows that there is a gap between the supports if one κi is
negative. Since this is an easy classification problem, this case
is excluded by Assumption 4.1.1. The middle plot (κ1 = 0)
shows that the supports touch each other if one κi (here κ1) is
zero. In this case they touch at a line, e.g. a one-dimensional
set, because there is one other positive κj (here κ2). Imagine
if κ2 would be zero too then the supports would only touch at
a single point. The right plot (κ1 = 1/4) shows that there is a
overlapping region E := supp ν+ ∩ supp ν− if all κi are positive.
This overlapping region E increases with increasing κi.

and there is a version of η with

MN I(r) =
∏
i∈I

min
{

(2κi + 2r/σi)qi , 1
}

for every I ∈ F(N) and r ≥ 0. Moreover, for any other version of η

we have the inequality “≥”.

(ii) For I ∈ F(N) and a cubic partition A = (Ai)i≥1 of radius r > 0 the
number of relevant cells satisfies∏

i∈I

⌈σi/(2r)⌉ ≤ |AI,ν | ≤ 2 ·
∏
i∈I

(
1 + ⌈σi/(2r)⌉

)
.

Note that the bound on the number of relevant cells is independent of
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(κi)i≥1 and (qi)i≥1. In contrast, the margin-noise function is non-decreasing
in κi and non-increasing in qi for every individual i ≥ 1. As a result, the
smaller κi and the larger qi, the better our bound on the excess risk given
by Corollary 3.2.7. In this sense, the sequences (κi)i≥1 and (qi)i≥1 have
the most favorable behavior if κi → 0 and qi → ∞ for i → ∞, respectively.
Conversely, they have the least favorable behavior if κi → 1/2 and qi → 0
for i → ∞, respectively.

In a finite-dimensional setting, decreasing the radius r is typically the
only way to decrease the margin-noise function. In contrast, in our infinite-
dimensional setting if we add a feature i ≥ 1 with 2κi + 2r/σi < 1 to our
feature set I then the margin-noise function decreases, too.

Recall from the discussion after Lemma 3.3.4 that the number of relevant
cells |AI,ν | behaves unfavorably for an increasing feature set I. In order
to get polynomial learning rates we have to compensate this bad behavior
by ensuring that the margin-noise function MN I(r) decreases fast enough
for increasing I. In other words, we have to ensure that we gain enough
information for each feature that we use for learning. In Section 4.3 below
we provide conditions on the sequences (κi)i≥1 and (qi)i≥1 that allow feature
selections such that MN I(r) behaves benignly in I.

Proof. Point (i) is a direct consequence of Lemma 3.3.2 and Point (i)
of Lemma 4.1.2. Analogously, Point (ii) follows from Lemma 3.3.4 and
Point (ii) of Lemma 4.1.2.

An essential assumption of Lemma 4.1.2 it that supp ν+ ∩ supp ν− is a
ν+- or a ν−-zero set. To check this it is useful to note that Lemma B.3 and
(4.1) imply

supp ν+ ∩ supp ν− =
∏
i≥1

(
supp ν+,i ∩ supp ν−,i

)
=

∏
i≥1

[−κiσi, κiσi] .

Plugging in the definitions of ν+ and ν−, respectively, yields

ν±(supp ν+ ∩ supp ν−) =
∏
i≥1

(2κi)qi . (4.2)
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As a result, supp ν+ ∩ supp ν− is a ν+-zero set if and only if it is a ν−-
zero. Moreover, the scale sequence (σi)i≥1 has no influence on ν(supp ν+ ∩
supp ν−). The final lemma of this section provides conditions on (κi)i≥1

and (qi)i≥1 that ensure ν(supp ν+ ∩ supp ν−) = 0.

4.1.4 Lemma (No Noise) Let Assumption 4.1.1 be satisfied. Then suppν+ ∩
supp ν− is a ν-zero set for all the following situations:

(i) There is some i0 ≥ 1 with κi0 = 0.

(ii) There are q > 0 and κ < 1/2 with qi ≥ q and κi ≤ κ for all i ≥ 1.

(iii) There is some κ < 1/2 with κi ≤ κ for all i ≥ 1 and qi → 0 with∑
i≥1

qi = ∞ .

(iv) There is some q > 0 with qi ≥ q for all i ≥ 1 and κi → 1/2 with∑
i≥1

(1 − 2κi) = ∞ .

It is important to mention that, according to Lemma 1.2.2, all the conditions
in Point (i)–(iv) imply that there is no noise and hence R∗

Class,P = 0 is
satisfied. The condition in Point (i) additionally implies R∗

Class,PI
= 0 for

all I ∈ F(N) with i0 ∈ I. However, the conditions in Point (ii)–(iv) can
also be satisfied if κi > 0 for all i ≥ 1. In this case we have R∗

Class,PI
> 0

for all I ∈ F(N) and hence no (pull-back) learning method using a fixed
feature set I ∈ F(N) for all n ≥ 1 can be (potentially) consistent.

Proof. Due to (4.2) it is enough to show
∏

i≥1(2κi)qi = 0 in all cases. (i)
Since there is a zero factor, the product is zero. (ii) Since (2κ)q < 1 is
satisfied, we find ∏

i≥1
(2κi)qi ≤

∏
i≥1

(2κ)q = 0 .
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(iii) Since log(2κ) < 0 and
∑

i≥1 qi = ∞ are satisfied, we find

∏
i≥1

(2κi)qi ≤
∏
i≥1

(2κ)qi = exp
(

log(2κ)
∑
i≥1

qi

)
= 0 .

(iv) Using log(x) ≤ x − 1 for x = 2κi we find∏
i≥1

(2κi)qi ≤
∏
i≥1

(2κi)q = exp
(

q
∑
i≥1

log(2κi)
)

≤ exp
(

−q
∑
i≥1

(1 − 2κi)
)

.

Together with our assumption
∑

i≥1(1 − 2κi) = ∞ we get the assertion.

4.2 Auxiliary Results: Polynomial Learning Rates
In order to establish learning rates for a learning algorithm which depends
on a hyper parameter, say m, one typically has to balance an expression
like

am +
(

τbm

n

)v

(4.3)

with am, bm > 0 and v > 0 for all data set sizes n ≥ 1. Since in our
case m ≥ 1 is often integer-valued, we cannot use derivatives to explicitly
minimize (4.3) for m ≥ 1.

In this section we present conditions that allow a hyper parameter se-
lection m∗(n) giving a polynomial decay of (4.3) for n → ∞ as well as
conditions on a parameter selection m∗(n) that prevent a polynomial decay
of (4.3) with m = m∗(n). To this end, we introduce the following notation.
For a function f : [x0, ∞) → [0, ∞) with x0 > 0 we say that f increases
sub-polynomially for x → ∞ if

lim
x→∞

f(x)x−ε = 0

for every ε > 0.
First, we present the positive result which ensures a polynomial hyper

parameter selection.
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4.2.1 Lemma (Polynomial Parameter Selection) Let v > 0, (am)m≥1 and
(bm)m≥1 be sequences with am, bm > 0 for m ≥ 1 and am → 0 for m → ∞.
Furthermore, define

ρm := sup
k≥m

log(bk)
− log(ak−1)

for m ≥ 2 and let

ρ := lim
m→∞

ρm = lim sup
m→∞

log(bm)
− log(am−1) < ∞

be finite. Then the following statements are true:

(i) There is a constant x0 ≥ 1 such that for every x ≥ x0 there is a
m ≥ 2 with

am ≤ x− v
1+vρ < am−1 . (4.4)

The minimal integer m with this property is denoted by m∗(x). This
function satisfies m∗(x) → ∞ for x → ∞.

(ii) The function f : [x0, ∞) → (0, ∞) given by

f(x) := 1 + exp
(

v2

1 + vρ
· log(x) · (ρm∗(x) − ρ)

)
increases sub-polynomially and is even bounded if log(x) · (ρm∗(x) − ρ)
is bounded.

(iii) For the choice m = m∗(n/τ) the following bound is satisfied

am +
(

τbm

n

)v

≤ f(n/τ) ·
( τ

n

) v
1+vρ

.

Let us briefly demonstrate the typical usage of that lemma. For m ≥ 1 and
some Im ⊆ F(N) and Rm ⊆ (0, ∞), we prove bounds on the margin-noise
function MN I(r) ≤ c · am and the number of relevant cells |AI,ν | ≤ c · bm

for all I ∈ Im, r ∈ Rm, and all cubic partitions A of radius r ∈ Rm. If the
sequences (am)m≥1 and (bm)m≥1 satisfy the assumptions of Lemma 4.2.1
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then Corollary 3.2.7 and Lemma 4.2.1 for v = q+1
q+2 yield

RClass,P (hD,A,I) − R∗
Class,P ≤ 6MN I(r) + C

(
τ |AI,ν |

n

) q+1
q+2

≤ max{6c, Cc} · f(n/τ) ·
( τ

n

) q+1
(q+2)+(q+1)ρ

for all τ ≥ 1, n ≥ x0τ , I ∈ Im∗(n/τ), r ∈ Rm∗(n/τ) with high probability.
This proves polynomial learning rates for the histogram.

Proof. (i) Let x0 > 0 be a number with x
− v

1+vρ

0 < supm≥1 am. Since
am → 0 for m → ∞, for every x ≥ x0 there is an integer m satisfying (4.4)
. Moreover, since am > 0 for all m ≥ 1 and x− v

1+vρ → 0 for x → ∞ the
function m∗(x) converges to ∞ for x → ∞.

(ii) Since m∗(x) → ∞ for x → ∞, we have ρm∗(x) − ρ → 0 for x → ∞.
Consequently, for every ε > 0, the following function converges to 0 for
x → ∞

f(x)x−ε = x−ε + exp
(

log(x) ·
(

v2

1 + vρ
· (ρm∗(x) − ρ) − ε

))
.

The statement about the boundedness of f follows immediately by the
definition of f .

(iii) The definition of ρm ensures

bm ≤
(

1
am−1

)ρm

for m ≥ 2 and the choice m = m∗(n/τ) gives (τ/n)
v

1+vρ < am−1. Together
we find (

τbm

n

)v

≤
(

τ

n
· (n/τ)

vρm
1+vρ

)v

=
( τ

n

)(1− vρm
1+vρ )v

Since the exponent equals
(
1− vρm

1+vρ

)
v = v

1+vρ + v2

1+vρ (ρm −ρ) a combination
with am ≤ (τ/n)

v
1+vρ gives the assertion.

Finally, we present the negative result.
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4.2.2 Lemma (No Polynomial Parameter Selection) Let v > 0, (an)n≥1

and (bn)n≥1 be sequences with an, bn > 0 for n ≥ 1 and an → 0 for n → ∞.
If

lim sup
n→∞

log(bn)
− log(an) = ∞ (4.5)

then for all γ > 0

lim sup
n→∞

(
an +

(bn

n

)v
)

nγ = ∞ .

Let us briefly demonstrate the typical usage of that lemma. We take
arbitrary sequences (rn)n≥1 and (In)n≥1 in (0, ∞) and F(N), respectively.
Then we prove lower bounds on the margin-noise function MN In

(rn) ≥ c·an

and the number of relevant cells |AIn,ν | ≥ c · bn for all cubic partitions A
of radius rn with some c > 0. If the sequences (an)n≥1 and (bn)n≥1 satisfy
the assumption of Lemma 4.2.2 then the bound of Corollary 3.2.7 satisfies,
for every γ > 0,

lim sup
n→∞

(
6MN In

(rn) + C

(
τ |AIn,ν |

n

) q+1
q+2

)
nγ

≥ min{6c, Cc} · lim sup
n→∞

(
an +

(bn

n

)v
)

nγ = ∞ .

Since we considered arbitrary sequences (rn)n≥1 and (In)n≥1, Corollary 3.2.7
does not provide polynomial learning rates in this situation.

Proof. We assume that there are C, γ > 0 with

an +
(bn

n

)v

≤ Cn−γ

and show that this assumption leads to a contradiction. Since an → 0 for
n → ∞, the assumption in (4.5) implies bn → ∞ for n → ∞. Our assumed
inequality implies two further inequalities, namely

an ≤ Cn−γ and bn ≤ (Cnv−γ)1/v .
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Since bn → ∞ for n → ∞, this implies v > γ. Moreover, we get

log(bn)
− log(an) ≤ 1

v
· log(C) + (v − γ) log(n)

log(1/C) + γ log(n) → v − γ

vγ
< ∞

for n → ∞. This is a contradiction to our assumption in (4.5) and hence
the assertion is proven.

4.3 Polynomial Learning Rates
In this section we provide learning rates for histograms applied to the
prototypical classification problem from Assumption 4.1.1. For this purpose,
we combine the results of Section 4.1 and Section 4.2 with the oracle
inequality for histograms in Corollary 3.2.7. For some cases this establishes
polynomial learning rates. For other cases this shows that Corollary 3.2.7
does not provide polynomial learning rates. Note that the learning rates of
this section are the basis for various generalizations presented in Chapter 5.
To get an overview of the obtained learning rates see Table 4.3.

Before we start with the learning rates let us comment on the scaling
sequence (σi)i≥1. For the histogram, as for most learning algorithms, the
scaling σi of a feature relative to the other features determines its influence
on the decision function. Larger values of σi correspond to a higher influence.
Since we do not have any additional information about the relevance of
a feature, we assume a fixed scale factor σi := σ for all features i ≥ 1
in this section. Also in practice, scaling all features approximately to
the same order of magnitude is typically the starting point of every data
analysis. However, there are situations in which all features share a common
measurement unit, see e.g. Section 5.2 and Section 5.3 below for situations
in which the scaling naturally decreases and increases, respectively, for
i → ∞.

This section is organized as follows: We start with a result which provides
polynomial learning rates for the histogram under Assumption 4.1.1 and
some additional assumptions on the sequences (κi)i≥1 and (qi)i≥1. After-
wards, we show that if we slightly strengthen these assumptions, we can
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learning problem hyper parameters learning
Lem. (κi)i≥1 (qi)i≥1 radius rn feature set In rate n−ρ

4.3.1 κi ≪ 1/2 qi ≫ 0 rn = r |In| ≍ log(n) qα
qα+β

4.3.2 0 ≪ κi ≪ 1/2 0 ≪ qi ≪ ∞ rn → 0 x x

4.3.3 κi ≪ 1/2 qi ↗ ∞ rn = r
|In| → ∞ or

In = {in} with
in → ∞

1

4.3.4 κi ↘ 0 qi ≫ 0 rn → 0 q
q+1

4.3.5 0 ≪ κi ≪ 1/2 qi ↘ 0 x x x
4.3.6 κi ↗ 1/2 0 ≪ qi ≪ ∞ x x x

Table 4.3: Simplified versions of the learning rates presented in Section 4.3
for the prototypical example from Assumption 4.1.1. In all
situations we use a constant scale sequence σi = σ > 0 for
i ≥ 1 and ignore sub-polynomial terms in the learning rate. The
symbols “≪” and “≫” mean bounded away from by κ and q,
respectively. Recall that the margin-noise function is small if κi

is close to 0 or if qi is close to ∞ and vice versa it is large if κi

is close to 1/2 or if qi is close to 0. In this sense, the color and
fond-weight indicate that the respective parameter sequence has
the least favorable behavior , both, the most and least favorable
behavior is excluded, only the least favorable behavior is excluded,
and has the most favorable behavior for i → ∞. The symbol
“x” means that there is no restriction or that Corollary 3.2.7 does
not provide polynomial learning rates.

improve the polynomial order of the learning rate under weaker restrictions
on the feature set. In some cases we even get the optimal learning rate
n−1. Finally, we show that if we slightly weaken these assumptions, Corol-
lary 3.2.7 does not provide polynomial learning rates. In this sense, the next
theorem, which is the main result of this chapter, is on a thin line between
the optimal (polynomial) rate n−1 and no polynomial learning rate.

4.3.1 Theorem (κi ≤ κ and qi ≥ q) Let Assumption 4.1.1 be satisfied for
σi = σ, κi ≤ κ, and qi ≥ q for all i ≥ 1 with some σ, q > 0, and 0 ≤ κ < 1/2.
Furthermore, let 0 < r < (1/2 − κ)σ be fixed and α := − log(2κ + 2r/σ),
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β := log
(
1 + ⌈σ/(2r)⌉

)
. Then there are constants x0, C ≥ 1 with the

following property:
For τ ≥ 1, n ≥ x0τ , and every feature set In ∈ F(N) with

|In| =
⌈

log(n/τ)
qα + β

⌉
− 1

the histogram using a cubic partition with radius r and the feature set In

satisfies

RClass,P (hD,r,In
) − R∗

Class,P < C ·
( τ

n

) qα
qα+β (4.6)

with probability P n not less than 1 − e−τ .

This lemma provides polynomial learning rates for every fixed radius 0 <

r < (1/2 − κ)σ if κi is bounded away from 1/2 and qi is bounded away from
0. In other words, we get polynomial learning rates if the least favorable
behavior of (κi)i≥1 and (qi)i≥1 for i → ∞ is excluded. Moreover, the
polynomial order of the learning rate depends on the fixed radius r. In
Section 4.4 below we present good choices for the radius r.

Note that there is only a restriction on the number of features |I| and
hence it does not matter which features are exactly used for learning. Here
the easy feature selection method which chooses the indicated number of
features randomly does the job. More precisely, if the application at hand
provides us the features I ′

n = [d′
n] = {1, 2, . . . , d′

n} with

d′
n ≥

⌈
log(n/τ)
qα + β

⌉
− 1 ,

then histograms combined with this easy feature selection strategy learn
with the rate in (4.6). Note that for stronger restrictions on (κi)i≥1 or
(qi)i≥1, i.e. for a smaller upper bound κ or a larger lower bound q, the
learning rate in (4.6) is faster and the restriction on d′

n is weaker, i.e. we
need less information per data point.

Proof. The proof is an application of Corollary 3.2.7 and Lemma 4.2.1.
To this end, let us fix some feature set I ∈ F(N) with |I| =: m and some
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cubic partition A with radius r. According to Point (ii) of Lemma 4.1.4 the
assumption of Corollary 4.1.3 is satisfied and hence we find

MN I(r) ≤
∏
i∈I

(2κ + 2r/σ)q = e−qαm = eqαam and

|AI,ν | ≤ 2 ·
∏
i∈I

(
1 + ⌈σ/(2r)⌉

)
= 2eβm = 2bm

with am := exp(−qα(m + 1)) and bm := exp(βm). It remains to investigate
the properties of the sequences (am)m≥1 and (bm)m≥1. Note that the
restriction 0 < r < (1/2−κ)σ ensures α > 0 and hence am → 0 for m → ∞.
Moreover, we find that

log(bm)
− log(am−1) = mβ

qαm
= β

qα
=: ρ < ∞

is constant. As a result, Lemma 4.2.1 gives x0 ≥ 1, m∗ : [x0, ∞) → N, and
f : [x0, ∞) → (0, ∞) such that Corollary 3.2.7 yields

RClass,P (hD,A,I) − R∗
Class,P ≤ f(n/τ) ·

( τ

n

) qα
qα+β

for τ ≥ 1, n ≥ x0τ , |I| = m∗(n/τ) with high probability. Since the above
fraction is even constant, the function f is bounded. Consequently, it
remains to determine the function m∗(x). To this end, fix x ≥ x0 and

am = exp(−qα(m + 1)) ≤ x− 1
1+ρ ⇐⇒ x

1
1+ρ ≤ exp(qα(m + 1))

⇐⇒ log(x)
qα(1 + ρ) ≤ m + 1 .

Using ρ = β/(qα) and an analogous equivalence for x− 1
1+ρ < am−1 we get

am ≤ x− 1
1+ρ < am−1 ⇐⇒ m <

log(x)
qα + β

≤ m + 1 .

This proves the claimed representation of m∗(x) and hence the assertion is
proven.
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The choice of a fixed radius r in the previous lemma is unexpected since
for finite-dimensional learning problems one typically has to assume that
the radius rn → 0 vanishes for n → ∞ to ensure consistency or learning
rates of the histogram learning method, see e.g. [10, Example 2.14] and
[66, Proposition E.5]. For this reason, we consider the situation rn → 0 for
n → ∞ in the next lemma.

4.3.2 Lemma (κ′ ≤ κi ≤ κ and q ≤ qi ≤ q′ with rn → 0) Let the
assumptions of Theorem 4.3.1 be satisfied and additionally κi ≥ κ′ and
qi ≤ q′ for all i ≥ 1 with some 0 < κ′ < 1/2 and 0 < q′ < ∞. Furthermore,
let (rn)n≥1 be a sequence with rn > 0 for i ≥ 1 and rn → 0 for n → ∞.
Then Corollary 3.2.7 does not provide polynomial learning rates for the
histogram hD,rn,In

with any feature set sequence (In)n≥1.

Roughly speaking, the restrictions on κi and qi ensure that the most
and the least favorable behavior of the parameter sequences (κi)i≥1 and
(qi)i≥1 for i → ∞ are excluded. Note that the additional requirements
cannot be removed without replacement. To be more precise, if κi ↘ 0 then
Lemma 4.3.4 below shows that the polynomial learning rate of Theorem 4.3.1
can even be improved when rn → 0.

The negative result in Lemma 4.3.2 seems to be contradicting to the
consistency result in Corollary 3.2.5 in which we assumed rn → 0 for n → ∞.
But even if Corollary 3.2.7 does not provide polynomial learning rates the
histogram can still be consistent.

Proof. The proof is an application of Lemma 4.2.2. Let (In)n≥1 be an
arbitrary sequence of feature sets In ∈ F(N) and A be a cubic partition of
RN with radius rn. According to Point (ii) of Lemma 4.1.4 the assumption
of Corollary 4.1.3 is satisfied and hence gives us

MN In
(rn) ≥

∏
i∈In

min
{

(2κ′ + 2rn/σ)qi , 1
}

≥ (2κ′)|In|q′
=: an and

|AIn,ν | ≥
⌈
σ/(2rn)

⌉|In| ≥
(
σ/(2rn)

)|In| =: bn .
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Since rn → 0 for n → ∞, we find

log(bn)
− log(an) =

log
(
σ/(2rn)

)
q′ log

(
1/(2κ′)

) → ∞

for n → ∞ and hence Lemma 4.2.2 gives the assertion.

Now, we present two further results that show if one of the parameter
sequences (κi)i≥1 or (qi)i≥1 has the most favorable behavior, i.e. qi ↗ ∞
or κi ↘ 0 for i → ∞, then we even can improve the polynomial learning
rates of Theorem 4.3.1.

4.3.3 Lemma (κi ≤ κ and qi ↗ ∞) Let Assumption 4.1.1 be satisfied for
σi = σ, κi ≤ κ, and qi > 0 for all i ≥ 1 with some σ > 0, 0 ≤ κ < 1/2 as
well as qi ↗ ∞ for i → ∞. Furthermore, let 0 < r < (1/2 − κ)σ be fixed.
Then the following statements are true:

(i) There is a constant x1 ≥ 1, a function m∗
1 : [x0, ∞) → N, and a

function f1 : [x1, ∞) → (0, ∞) increasing sub-polynomially with the
following property:
For τ ≥ 1, n ≥ x1τ , and every feature set In ∈ F(N) with |In| =
m∗

1(n/τ) the histogram using a cubic partition with radius r and the
feature set In satisfies

RClass,P (hD,r,In
) − R∗

Class,P < f1(n/τ) · τ

n

with probability P n not less than 1 − e−τ .

(ii) There is a constant x2 ≥ 1, a function m∗
2 : [x0, ∞) → N, and a

constant C2 ≥ 1 with the following property:
For τ ≥ 1, n ≥ x0τ , and every feature set In = {in} with in ≥
m∗

2(n/τ) the histogram using a cubic partition with radius r and the
feature set In satisfies

RClass,P (hD,r,In
) − R∗

Class,P < C2 · τ

n

with probability P n not less than 1 − e−τ .
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This lemma provides the optimal learning rate n−1, up to a sub-polynomial
term, for every fixed radius 0 < r < (1/2 − κ)σ in two extreme feature
selection regimes. In Point (i) there is only a restriction on the number of
features |I| used for learning. Roughly speaking, we do not have to worry
about how useful the features are as long as we choose the right number
of features. Point (ii) shows that using a single good feature for learning
is enough to learn with rate n−1. Therefore, at first sight, this learning
problem seems to be actually a finite-dimensional one. However, the good
feature depends on n and since m∗

2(x) → ∞ for x → ∞ all together we still
need infinitely many different features for the whole learning process. Since
(qi)i≥1 is non-decreasing, in this situation it is easy to find the good feature,
namely the feature with the largest index available. But in practice it is
typically a challenging problem to find useful features.

If the application at hand provides us the features I ′
n = [d′

n] then the
feature selection strategies of Point (i) and (ii) can be applied if

d′
n ≥ m∗

1(n/τ) and d′
n ≥ m∗

2(n/τ)

is satisfied, respectively. Moreover, if the behavior of (qi)i≥1 becomes more
favorable for i → ∞, i.e. (qi)i≥1 increases faster, then a closer look at
the proof shows that the functions m∗

i (x), i = 1, 2, increase slower for
x → ∞. This means that the restriction on d′

n gets weaker, i.e. we need
less information per data point.

Although for every fixed 0 < r < (1/2 − κ)σ the function f1 increases
sub-polynomially, these functions do not have the same asymptotic behavior
for different values of r. Analogously, the constant C2 depends on the radius
r as well.

Proof. The proof is an application of Corollary 3.2.7 and Lemma 4.2.1.
To this end, we use the notation α := − log(2κ + 2r/σ) and β := log

(
1 +

⌈σ/(2r)⌉
)

from Theorem 4.3.1. Recall that the restriction 0 < r < (1/2−κ)σ
ensures α > 0. Furthermore, we fix some cubic partition A of RN with
radius r and a feature set I ∈ F(N). According to Point (ii) of Lemma 4.1.4
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the assumption of Corollary 4.1.3 is satisfied and hence we find

MN I(r) ≤
∏
i∈I

(2κ + 2r/σ)qi and

|AI,ν | ≤ 2 ·
∏
i∈I

(
1 + ⌈σ/(2r)⌉

)
= 2eβ|I| .

Now, we consider Point (i) and (ii) separately.
(i) Let I be a feature set of cardinality m := |I| ≥ 1. Then the mono-

tonicity of (qi)i≥1 ensures

MN I(r) ≤
m∏

i=1
(2κ + 2r/σ)qi = exp

(
−α

m∑
i=1

qi

)
=: am

and |AI,ν | ≤ 2bm with bm := eβm. Since the sequence of the arithmetic
means

( 1
m−1

∑m−1
i=1 qi

)
m≥2 has the same limit as the sequence (qi)i≥1 itself,

we get

log(bm)
− log(am−1) = mβ

α
∑m−1

i=1 qi

= m

m − 1 · β
1

m−1
∑m−1

i=1 qi

→ 0 =: ρ < ∞

for m → ∞. As a result, Lemma 4.2.1 gives x1 ≥ 1, m∗
1 : [x1, ∞) → N, and

a function f1 : [x1, ∞) → (0, ∞) increasing sub-polynomially such that in
combination with Corollary 3.2.7 we get the desired bound for feature sets
I ∈ F(N) with |I| = m∗

1(n/τ) and cubic partitions with radius r.
(ii) Let I = {i} be a singleton with i ≥ m ≥ 1. Then the monotonicity of

(qi)i≥1 ensures

MN I(r) ≤ (2κ + 2r/σ)qi ≤ exp(−αqm) =: am

and |AI,ν | ≤ 2eβbm with bm := 1. Since

log(bm)
− log(am−1) = log(1)

αqm−1
= 0 =: ρ < ∞

holds true for all m ≥ 1, Lemma 4.2.1 gives x2 ≥ 1, m∗
2 : [x2, ∞) → N, and
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a constant C2 ≥ 1 such that in combination with Corollary 3.2.7 we get
the desired bound for feature sets I = {i} with i ≥ m∗

2(n/τ) and cubic
partitions with radius r.

Next, we consider a further improvement of Theorem 4.3.1 in the case
κi ↘ 0 for i → ∞.

4.3.4 Lemma (κi ↘ 0 and qi ≥ q) Let Assumption 4.1.1 be satisfied for
σi = σ, κi > 0, and qi ≥ q for all i ≥ 1 with some σ, q > 0 as well as
κi ↘ 0 for i → ∞. Furthermore, define

κ̄m := 1
m

m∑
i=1

κi

for m ≥ 1. Then the following statements are true:

(i) There is a constant x1 ≥ 1, a function m∗
1 : [x1, ∞) → N, and a

function f1 : [x0, ∞) → (0, ∞) increasing sub-polynomially with the
following property:
For τ ≥ 1, n ≥ x1τ , and every feature set In ∈ F(N) with |In| =
m∗

1(n/τ) the histogram using a cubic partition with radius rn :=
κ̄m∗

1(n/τ) and the feature set In satisfies

RClass,P (hD,rn,In
) − R∗

Class,P < f1(n/τ) ·
( τ

n

) q
q+1

with probability P n not less than 1 − e−τ .

(ii) There is a constant x2 ≥ 1, a function m∗
2 : [x2, ∞) → N, and a

constant C2 ≥ 1 with the following property:
For τ ≥ 1, n ≥ x2τ , and every feature set In = {in} with in ≥
m∗

2(n/τ) the histogram using a cubic partition with radius rn :=
(τ/n)1/(q+1) and the feature set In satisfies

RClass,P (hD,rn,In
) − R∗

Class,P < C2 ·
( τ

n

) q
q+1

with probability P n not less than 1 − e−τ .
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In contrast to Theorem 4.3.1 and Lemma 4.3.3, where a fixed radius r is
used, here we use a vanishing radius rn ↘ 0 for n → ∞.

If κ1 < 1/2 is additionally satisfied then also Theorem 4.3.1 applies in this
situation with κ = κ1. However, in (4.10) below we see that the polynomial
rate of order q

q+1 is always faster than the polynomial rate of order qα
qα+β

provided by Theorem 4.3.1.
Analogously to Lemma 4.3.3, we consider two extreme feature selection

regimes. In Point (i) only the cardinality of the feature set In matters and in
Point (ii) only one good feature is used. However, this good feature depends
on n such that infinitely many features are used in total. In contrast, if
κi0 = 0 holds true for some i0 ≥ 1 then we can even prove the same learning
rate if we consider the fixed feature set I = {i0} for all n ≥ 1. This case is
excluded since it is not really an infinite-dimensional problem.

Again, analogously to Theorem 4.3.1 and Lemma 4.3.3, if the application
at hand provides us the features I ′

n = [d′
n] then the results of Point (i) and

(ii) can be applied if

d′
n ≥ m∗

1(n/τ) and d′
n ≥ m∗

2(n/τ)

is satisfied, respectively. Moreover, if the behavior of (κi)i≥1 becomes more
favorable, i.e. (κi)i≥1 decreases faster, then the functions m∗

i (x), i = 1, 2,
increase slower for x → ∞, i.e. we need less information per data point to
obtain the desired learning rate.

Proof. Let us fix a cubic partition A of RN with radius r > 0 and a feature
set I ∈ F(N). According to Point (ii) of Lemma 4.1.4 the assumption of
Corollary 4.1.3 is satisfied and hence we find

MN I(r) ≤
∏
i∈I

(2κi + 2r/σ)q and |AI,ν | ≤ 2 ·
(
1 + ⌈σ/(2r)⌉

)|I|
.

Now, we consider Point (i) and (ii) separately.
(i) Let I be a feature set of cardinality m := |I| ≥ 1. Then the mono-

87



Chapter 4 A Prototypical Example

tonicity of (κi)i≥1 ensures

MN I(κ̄m) ≤
∏
i∈I

(2κi + 2κ̄m/σ)q

≤
m∏

i=1
(2κi + 2κ̄m/σ)q

= (2κ̄m)qm
m∏

i=1
(1/σ + κi/κ̄m)q .

Since the geometric mean is bounded by the arithmetic mean, we find

m∏
i=1

(1/σ + κi/κ̄m)1/m ≤ 1
m

m∑
i=1

(
1/σ + κi

κ̄m

)
= 1/σ + κ̄m

κ̄m
= 1/σ + 1 .

Moreover, we have

κ̄m

κ̄m+1
= m + 1

m
·

∑m
i=1 κi

κm+1 +
∑m

i=1 κi
≤ m + 1

m
≤ 2 .

Combining all three bounds we get

MN I(κ̄m) ≤ (2κ̄m)qm(1/σ + 1)qm ≤ (4κ̄m+1)qm(1/σ + 1)qm =: am .

Next, we consider the number of relevant cells. Since (κi)i≥1 is non-
increasing, we have 2κ̄m ≤ 2κ1 < 1 and hence, for r = κ̄m, we find

|AI,ν | ≤ 2 ·
(
1 + ⌈σ/(2κ̄m)⌉

)m ≤ 2 ·
(σ + 2

2κ̄m

)m

=: 2 · bm .

It remains to investigate the properties of the sequences (am)m≥1 and
(bm)m≥1. Since κi → 0 for i → ∞, the arithmetic mean κ̄m → 0 vanishes
for m → ∞ as well. As a result, we find am → 0 for m → ∞. Again, using
κ̄m → 0 for m → ∞ we get

log(bm)
− log(am−1) → 1/q =: ρ < ∞
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for m → ∞. As a result, Lemma 4.2.1 gives x1 ≥ 1, m∗
1 : [x1, ∞) → N, and

a function f1 : [x1, ∞) → (0, ∞) increasing sub-polynomially such that in
combination with Corollary 3.2.7 we get the desired bound for feature sets
I ∈ F(N) with |I| = m∗

1(n/τ) and cubic partitions with radius r = κ̄m∗
1(n/τ).

(ii) In this case we do not use Lemma 4.2.1. We define m∗
2(x) as the

minimal integer m ≥ 1 with

κm ≤ x− 1
q+1

for x ≥ x2 := 1. Now, let I = {i} be a singleton with i ≥ m := m∗
2(n/τ) and

r = (τ/n)
1

q+1 . As a direct consequence we have κi ≤ κm ≤ (τ/n)
1

q+1 = r.
Then we find

MN I(r) ≤ (2κi + 2r/σ)q ≤ 2q(1 + 1/σ)q · rq and
|AI,ν | ≤ (4 + σ) · r−1 ,

where we used r ≤ 1. Together with Corollary 3.2.7 we get

RClass,P (hD,r,I) − R∗
Class,P ≤ 6 · 2q(1 + 1/σ)q · rq + C(4 + σ) τ

nr

= C2 ·
( τ

n

) q
q+1

with probability P n not less than 1−e−τ for C2 := 6·2q(1+1/σ)q +C(4+σ).
As a result, the assertion is proven.

Before we continue with the negative results let us briefly summarize the
results so far. In Theorem 4.3.1 we have seen that if (κi)i≥1 is bounded
away from 1/2 and (qi)i≥1 is bounded away from 0 then we get polynomial
learning rates. To this end, we only have to use an appropriate number of
features |In|, depending on the data set size n, for training. Moreover, in
Lemma 4.3.3 we have seen that if qi ↗ ∞ is additionally satisfied, we even
reach the optimal rate n−1. Finally, in Lemma 4.3.4 we have seen that if
κi ↘ 0 is additionally satisfied, we reach the improved rate n− q

q+1 . In all
these situations, the more favorable the parameter sequences behave, the
less information per data point is needed to obtain the desired rate.

89



Chapter 4 A Prototypical Example

Now, we continue with the negative results. Note that these results
are always of the form: Under some conditions Corollary 3.2.7 does not
provide polynomial learning rates for the histogram. Consequently, we
prove—in some sense—lower bounds on Corollary 3.2.7 and not on the
learning problems themselves. However, these results are already not a
good omen for polynomial learning rates.

4.3.5 Lemma (κ′ ≤ κi ≤ κ and qi ↘ 0) Let Assumption 4.1.1 be satisfied
for σi = σ, κ′ ≤ κi ≤ κ for all i ≥ 1 with some σ > 0 and 0 < κ′ ≤ κ < 1/2
as well as qi ↘ 0 for i → ∞ with∑

i≥1
qi = ∞ .

Then Corollary 3.2.7 does not give polynomial learning rates for any choice
of cubic partition and feature set sequence.

Note that
∑

i≥1 qi = ∞ is a condition which prevents the sequence (qi)i≥1

from decreasing too fast. This condition is essential since it ensures that
supp ν+ ∩supp ν− is a ν-zero set and hence the representation of the margin-
noise function of Corollary 4.1.3 applies. If (qi)i≥1 decreases too fast, i.e.∑

i≥1 qi < ∞, our intuition says that the situation is even worse and hence
we would not expect polynomial learning rates from Corollary 3.2.7.

Proof. The proof is an application of Lemma 4.2.2. Let (rn)n≥1 and (In)n≥1

be sequences with rn > 0 and In ∈ F(N) for all n ≥ 1 and MN In
(rn) → 0

for n → ∞. Moreover, let A be a cubic partition with radius rn. According
to Point (iii) of Lemma 4.1.4 the assumption of Corollary 4.1.3 is satisfied
and hence we find

MN In
(rn) ≥ min

{
2κ′ + 2rn/σ, 1

}∑ℓn

i=1
qi and

|AIn,ν | ≥ (σ/(2rn))ℓn =: bn ,

where we additionally used the monotonicity of (qi)i≥1 and the notation
ℓn := |In|. Since MN In

(rn) → 0 for n → ∞, there are infinitely many
n ≥ 1 with 2κ′ + 2rn/σ ≤ 1. By transitioning to a subsequence we can
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assume that 2κ′ + 2rn/σ ≤ 1 holds for all n ≥ 1. The lower bound on the
margin-noise function implies two further lower bounds. First, we find

(2κ′)
∑ℓn

i=1
qi ≤ MN In(rn) → 0 ,

which yields ℓn → ∞ for n → ∞. Second, we have

MN In
(rn) ≥ (2rn/σ)

∑ℓn

i=1
qi =: an ,

which implies

log(bn)
− log(an) =

ℓn · log
(
σ/(2rn)

)
log

(
σ/(2rn)

) ∑ℓn

i=1 qi

= 1
1

ℓn

∑ℓn

i=1 qi

.

Since ℓn → ∞ for n → ∞ and the arithmetic mean 1
ℓn

∑ℓn

i=1 qi has the same
limit as the sequence (qi)i≥1 itself, the right hand side converges to ∞ for
n → ∞. Consequently, we found a subsequence for which the left hand side
converges to ∞ and hence the limes superior of the left hand is infinite.
Together with Lemma 4.2.2 we get the assertion.

Finally, we present a second negative result.

4.3.6 Lemma (κi ↗ 1/2 and q ≤ qi ≤ q′) Let Assumption 4.1.1 be
satisfied for σi = σ, κi > 0, q ≤ qi ≤ q′ for all i ≥ 1 with some σ > 0 and
0 < q′ ≤ q < ∞ as well as κi ↗ 1/2 for i → ∞ with∑

i≥1
1 − 2κi = ∞ .

Then Corollary 3.2.7 does not give polynomial learning rates for any choice
of cubic partition and feature set sequence.

The condition
∑

i≥1 1 − 2κi = ∞ prevents the sequence (κi)i≥1 from
increasing too fast. If (κi)i≥1 increases too fast, i.e.

∑
i≥1 1 − 2κi < ∞,

analogously to Lemma 4.3.5, our intuition says that the situation is even
worse and hence we would not expect polynomial learning rates from
Corollary 3.2.7.
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Proof. The proof is an application of Lemma 4.2.2. Let (rn)n≥1 and (In)n≥1

be sequences with rn > 0 and In ∈ F(N) for all n ≥ 1 and MN In(rn) → 0
for n → ∞. Moreover, let A be a cubic partition with radius rn. According
to Point (iv) of Lemma 4.1.4 the assumption of Corollary 4.1.3 is satisfied
and hence we find

MN In
(rn) ≥

|In|∏
i=1

min
{

2κi + 2rn/σ, 1
}q′

and

|AIn,ν | ≥
⌈
σ/(2rn)

⌉|In|
,

where we additionally used the monotonicity of (κi)i≥1 and qi ≤ q′. Let
1 ≤ ℓn ≤ |In| be the maximal integer with 2κℓn

+ 2rn/σ < 1. If there is no
such integer, we set ℓn := 0. With this notation we find

MN In
(rn) ≥

ℓn∏
i=1

(2κi + 2rn/σ)q′
and |AIn,ν | ≥

(
σ/(2rn)

)ℓn
.

The lower bound on the margin-noise function implies

MN In
(rn) ≥

ℓn∏
i=1

(2κi)q′
=: an .

Since 0 < κ1 ≤ κi holds true, this implies (2κ1)q′ℓn ≤ MN In(rn) → 0
and hence ℓn → ∞ for n → ∞. Consequently, we can assume ℓn ≥ 1
without loss of generality. As a result, we have 2κℓn

+ 2rn/σ ≤ 1 and hence
2rn/σ ≤ 1 − 2κ1 for all n ≥ 1. This implies

|AIn,ν | ≥ (1 − 2κ1)−ℓn =: bn .

All together we find

log(bn)
− log(an) =

log
(
1/(1 − 2κ1)

)
q′ · 1

1
ℓn

∑ℓn

i=1 log
(
1/(2κi)

) .

92



4.4 Choosing the Radius r

Since ℓn → ∞ for n → ∞ and the arithmetic mean 1
ℓn

∑ℓn

i=1 log
(
1/(2κi)

)
has the same limit as the sequence itself, the right hand side converges to
infinity for n → ∞. Together with Lemma 4.2.2 we get the assertion.

4.4 Choosing the Radius r

In this section we investigate choices for the (fixed) radius r in Theo-
rem 4.3.1 that approximately maximize the polynomial order of the learning
rate presented in that theorem. To this end, we choose the fixed scaling
σ = 1 throughout this section and recall that Theorem 4.3.1 provides the
polynomial learning rate of order

qα

qα + β
= q

q + fκ(r)

with
fκ(r) := β

α
=

log
(
1 + ⌈1/(2r)⌉

)
log

(
1/(2κ + 2r)

) , (4.7)

which depends on κ, q, and r. In contrast to the parameters κ and q, which
are given by the learning scenario, the radius 0 < r < 1/2 − κ can be chosen
by the user. Since the smaller fκ(r) the faster our learning rate, an optimal
choice for r minimizes fκ(r) over 0 < r < 1/2 − κ. Note that an optimal
choice for r depends only on κ and is independent of q. For the function
mapping κ to the optimal value we write F : [0, 1/2) → (0, ∞) and set

F (κ) := inf
0<r<1/2−κ

fκ(r) . (4.8)

In this section we use Lambert’s W -function W−1, which is defined as
the inverse of t 7→ tet for t ≤ −1. For a brief introduction to Lambert’s
W -function see e.g. Section 7.2 of Part II.
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The goal of this section is to prove that the choices

r1(κ) := − bκ/2
W−1(−bκ/e) and

r2(κ) := − bκ/2
(1 + 2bκ)W−1

(
− bκ/e

1+2bκ

)
+ 2bκ

(4.9)

for the radius r with bκ := 2κ log
(
1/(2κ)

)
are optimal in some sense. To be

more precise, we show the strong asymptotic equivalence fκ(ri(κ)) ∼ F (κ)
for κ → 0+ as well as κ → (1/2)−, i.e. fκ(ri(κ))/F (κ) → 1 in both cases.
Moreover, for a visualization of these radii and functions see Figure 4.4.
However, let us start with some basic properties of the functions fκ and F .

4.4.1 Lemma (Basic Properties) The functions fκ : (0, 1/2 − κ) → (0, ∞)
for 0 ≤ κ < 1/2 and F : [0, 1/2) → (0, ∞) defined in (4.7) and (4.8),
respectively, have the following properties:

(i) The function F : [0, 1/2) → (0, ∞) is non-decreasing and equals

F (κ) = inf
m∈N:

1/(2m)<1/2−κ

fκ

(
1/(2m)

)
.

(ii) For 0 < κ < 1/2 there is a minimizer 0 < r∗(κ) < 1/2 − κ with
F (κ) = fκ

(
r∗(κ)

)
.

(iii) For κ = 0 there is no minimizer, i.e. F (0) < f0(r) for all 0 < r < 1/2,
and F (0) = 1.

Since F is non-decreasing, the order of the polynomial learning rate of
Theorem 4.3.1 (for an optimal choice of the radius r = r∗(κ)) becomes
better for decreasing κ. If we combine Point (i) and (iii), we get the first
lower bound, namely for all 0 < κ < 1/2 we have

F (κ) ≥ F (0) = 1 . (4.10)

Proof. (i) Let 0 ≤ κ < κ′ < 1/2 be fixed. Since 1/2 − κ′ < 1/2 − κ holds
true, for every r < 1/2 − κ′ where fκ′(r) is defined fκ(r) is defined as well.

94



4.4 Choosing the Radius r

Moreover, for fixed r < 1/2 − κ′ we have fκ′(r) ≥ fκ(r). All together this
proves the monotonicity of F , namely

F (κ′) = inf
r<1/2−κ′

fκ′(r) ≥ inf
r<1/2−κ′

fκ(r) ≥ inf
r<1/2−κ

fκ(r) = F (κ) .

Next, let us fix some 0 ≤ κ < 1/2 and m ∈ N with 1/(2m) < 1/2 − κ. Then,
for 1/(2m) ≤ r < 1/(2(m − 1)), the numerator in the definition of fκ(r)
depends only on m and not on r

fκ(r) = log(1 + m)
log

(
1/(2κ + 2r)

) .

Consequently, if we minimize fκ(r) over 1/(2m) ≤ r < 1/(2(m − 1)) we find

min
1/(2m)≤r<1/(2(m−1))

fκ(r) = fκ

(
1/(2m)

)
.

As a result, it is enough to take the infimum over all integers m ∈ N with
1/(2m) < 1/2 − κ.

(ii) Let us fix some 0 < κ < 1/2. We directly see that the denominator in
the definition of fκ converges log

(
1/(2κ + 2r)

)
→ log

(
1/(2κ)

)
∈ (0, ∞) for

r → 0 and hence fκ(r) → ∞ for r → 0. Consequently, for M := 2F (κ) ≥ 2
there is some r0 < 1/2−κ with fκ(r) > M for all r ≤ r0 and we can further
restrict the infimum in the representation of F (κ) in Point (i)

F (κ) = inf
m∈N:

r0<1/(2m)<1/2−κ

fκ

(
1/(2m)

)
.

Since there are only finitely many integers m ∈ N with r0 ≤ 1/(2m) <

1/2 − κ, the infimum is actually a minimum and the assertion is proven.
(iii) For κ = 0, we find, for r → 0,

f0(r) =
log

(
1 + ⌈1/(2r)⌉

)
log

(
1/(2r)

) → 1 .

Since f0(r) > 1 for r < 1/2, there is no minimizer and we have F (0) = 1.
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The following auxiliary result is the basis for all our bounds.

4.4.2 Lemma (Auxiliary Result) Let the function ga,b :
(
max{1/b, 1}, ∞

)
→

(0, ∞) be defined by

ga,b(x) := (x + a) log(x + a)
xb − 1 ,

for a ≥ 0 and b > 0. Then the following statements are true:

(i) ga,b(x) → ∞ for x → ∞.

(ii) If b > 1 + ab then ga,b is increasing.

(iii) If b ≤ 1 + ab then

x∗(a, b) := exp
(

−W−1

(
− b/e

1 + ab

)
− 1

)
− a

= −1 + ab

b
W−1

(
− b/e

1 + ab

)
− a

is well-defined and x∗(a, b) ≥ max{1/b, 1}. Moreover, ga,b is decreas-
ing for x < x∗(a, b), increasing for x > x∗(a, b), and has a global
minimum at x = x∗(a, b) with

ga,b(x∗(a, b)) = x∗(a, b) + a

1 + ab
= −1

b
· W−1

(
− b/e

1 + ab

)
.

Proof. First note that x > 1/b ensures that the denominator in the definition
of ga,b(x) is positive. Moreover, x ≥ 1 and a ≥ 0 ensure that the numerator
is positive as well.

(i) The first assertion is a consequence of the fact, that ga,b(x) is the
product of a rational function, which converges to 1/b for x → ∞, and a
logarithm, which converges to ∞ for x → ∞.

Before we continue with the proof of Point (ii) and (iii), we calculate the
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derivative of ga,b

g′
a,b(x) =

(
log(x + a) + 1

)
(xb − 1) − (x + a) log(x + a)b

(xb − 1)2

= −(1 + ab) log(x + a) + (x + a)b − (1 + ab)
(xb − 1)2 . (4.11)

Since the denominator is positive for all x > 1/b, we only have to consider
the numerator in order to determine the monotonicity properties of ga,b.
Elementary transformations show

g′
a,b(x) > 0 ⇐⇒ (1 + ab) log

(
e(x + a)

)
< (x + a)b

⇐⇒ 1
e(x + a) log

(
1

e(x + a)

)
> − b

e(1 + ab) . (4.12)

(ii) Now, we consider the case b > 1 + ab. In this case we have

− b

e(1 + ab) < −1
e

.

The left hand side of (4.12) is the concatenation of the functions x 7→
log

(
1/(e(x + a))

)
and t 7→ tet, and the latter is always greater or equal to

−1/e, see Figure 7.1 of Part II for a plot of the function t 7→ tet. As a
result, the condition in (4.12) is satisfied for all x > 1 = max{1/b, 1} and
hence g′

a,b > 0 holds true. This proves the assertion.
(iii) Now, we consider the case b ≤ 1 + ab. Since we assume x ≥ 1, we

have log
(
1/(e(x+a))

)
≤ −1. This ensures that we can apply the decreasing

branch W−1 of Lambert’s W -function to the inequality in (4.12). Together
with some basic transformations we find

g′
a,b(x) > 0 ⇐⇒ log

(
1

e(x + a)

)
< W−1

(
− b

e(1 + ab)

)
⇐⇒ x > x∗(a, b) .

Analogously, we obtain g′
a,b(x) < 0 if and only if x < x∗(a, b) as well

as g′
a,b(x∗(a, b)) = 0. This proves the stated monotonicity properties
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of ga,b and that ga,b has a global minimum at x = x∗(a, b). Next, the
second representation of x∗(a, b) is a direct consequence of exp ◦W−1(−t) =
−t/W−1(−t) for all 0 < t ≤ 1/e, see e.g. Lemma 7.2.4 of Part II. Finally,
we calculate the minimum. Using g′

a,b(x∗(a, b)) = 0 in (4.11) yields

x∗(a, b)b − 1 = (1 + ab) log
(
x∗(a, b) + a

)
Plugging this into the denominator of ga,b gives the claimed value of the
minimum.

The next lemma provides upper bounds for the functions fκ(ri(κ)) with
i = 1, 2.

4.4.3 Lemma (Upper Bounds) For 0 < κ < 1/2, fκ defined in (4.7), and F

defined in (4.8) the following statements are satisfied:

(i) For the radius r1(κ) defined in (4.9) the following upper bound is
satisfied

fκ(r1(κ)) ≤ − 1
log

(
1/(2κ)

)W−1(−bκ/e) ·
log

(
1 + ⌈1/(2r1(κ))⌉

)
log

(
1/(2r1(κ))

) .

(ii) For the radius r2(κ) defined in (4.9) the following upper bound is
satisfied

fκ(r2(κ)) ≤ − 1
log

(
1/(2κ)

)W−1

(
− bκ/e

1 + 2bκ

)
.

Note that the case κ = 0 is excluded in this lemma and that each statement
provide a bound on F via F (κ) ≤ fκ(ri(κ)) for i = 1, 2.

Since there are explicit bounds for the function W−1 in the literature, see
e.g. [20], these bounds can be made more concrete if necessary. Moreover,
for a visualization of these bounds see Figure 4.4.

Proof. Our strategy is to linearize the logarithm in the denominator of fκ

at 1/(2κ) and then determine the minimum explicitly using Lemma 4.4.2.
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This approach shows that the choice ri given by (4.9) essentially coincides
with the minimizer given by Lemma 4.4.2.

Since the logarithm is a concave function, we can estimate the denominator
of fκ(r) by

log
(

1
2κ + 2r

)
= − log(2κ + 2r)

≥ −
((

(2κ + 2r) − 2κ
)

log′(2κ) + log(2κ)
)

= log
(
1/(2κ)

)
− 2r/(2κ) .

The right hand side is positive if and only if r < bκ/2 is satisfied, where
bκ = 2κ log

(
1/(2κ)

)
. Using log(1 + t) ≤ t we find

bκ = 2κ log
( 1

2κ

)
≤ 2κ

( 1
2κ

− 1
)

= 1 − 2κ

and hence bκ/2 ≤ 1/2 − κ. Since fκ(r) is defined for r < 1/2 − κ, we can
apply the above bound for r < bκ/2. This gives

fκ(r) ≤ 2κ ·
log

(
1 + ⌈1/(2r)⌉

)
2rbκ − 1 (4.13)

for all r < bκ/2. Now, we continue this estimate differently for r1 and r2.
(i) For r1 we rewrite the right hand side of (4.13) using the function g0,bκ

defined in Lemma 4.4.2 for a = 0 and b = bκ

fκ(r) ≤ 2κ ·
1/(2r) · log

(
1 + ⌈1/(2r)⌉

)
bκ/(2r) − 1

= 2κ · g0,bκ

(
1/(2r)

)
·

log
(
1 + ⌈1/(2r)⌉

)
log

(
1/(2r)

) .

Note that using derivatives we find 0 < bκ ≤ 1/e for all 0 < κ < 1/2 and
hence the monotonicity properties of g0,bκ

are described in Point (iii) of
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Lemma 4.4.2. According to Lemma 4.4.2

x∗(0, bκ) = −W−1(−bκ/e)
bκ

= 1
2r1(κ)

is a minimizer of g0,bκ
. Plugging in the minimum provided by Lemma 4.4.2

gives the desired upper bound on fκ(r1(κ)).
(ii) For this statement we continue the estimate in (4.13) differently than

for Point (i). Since

fκ(r) ≤ 2κ ·
(1/(2r) + 2) log

(
1/(2r) + 2

)
bκ/(2r) − 1 = 2κ · g2,bκ

(
1/(2r)

)
holds true, again Point (iii) of Lemma 4.4.2 describes the monotonicity
properties of the right hand side. According to Lemma 4.4.2

x∗(2, bκ) = −1 + 2bκ

bκ
· W−1

(
− bκ/e

1 + 2bκ

)
− 2 = 1

2r2(κ)

is a minimizer of g2,bκ
. Plugging in the minimum provided by Lemma 4.4.2

gives the desired upper bound on fκ(r2(κ)).

In order to prove the optimality of our choices ri(κ) for κ → (1/2)− we
use a lower bound on F which is provided by the following lemma.

4.4.4 Lemma (Lower Bound) For 1/(2e) < κ < 1/2, F defined in (4.8),
and bκ defined after (4.9) the following lower bound is satisfied

F (κ) ≥ − 1
log

(
1/(2κ)

)W−1

(
− bκ/e

1 − log
(
1/(2κ)

)
+ bκ

)
.

For κ → (1/(2e))+, we have bκ = 2κ · log
(
1/(2κ)

)
→ 1/e and hence this

lower bound implies

F (κ) ≥ − 1
log

(
1/(2κ)

) · W−1

(
− bκ/e

1 − log
(
1/(2κ)

)
+ bκ

)
→ −W−1

(
− 1/e2

1 − 1 + 1/e

)
= 1 .
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κ
0 1/4 1/2

0
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κ

r

0 1/4 1/2
0
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optimal value F (κ) optimal radius r∗(κ)
upper bound on fκ(r1(κ)) radius r1(κ)
upper bound on fκ(r2(κ)) radius r2(κ)

lower bound on F (κ)

Figure 4.4: The left plot shows the (numerically calculated) optimal value
F (κ) together with the bounds from (4.10), Lemma 4.4.3, and
Lemma 4.4.4. The right plot shows an (numerically calculated)
optimal radius r∗(κ) together with the radii defined in (4.9).
Note that κ 7→ r∗(κ) is a step function because 1/(2r∗(κ)) ∈ N
according to Point (i) of Lemma 4.4.1.

Consequently, at κ = 1/(2e) this lower bound coincides with the lower
bound in (4.10). For a visualization of both bounds see Figure 4.4.

Proof. Analogously to the proof of the upper bounds in Lemma 4.4.3, we
use the concavity of the logarithm to get a bound for the denominator of
fκ(r) by its linearization, namely

log
(

1
2κ + 2r

)
≤

(
1

2κ + 2r
− 1

2κ

)
log′(1/(2κ)

)
+ log

( 1
2κ

)
= log

( 1
2κ

)
− 2r

2κ + 2r
.
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Together with
⌈
1/(2r)

⌉
≥ 1/(2r), 2κ ≤ 1, and bκ = 2κ log

(
1/(2κ)

)
we get

fκ(r) ≥
(2κ + 2r) log

(
1 + ⌈1/(2r)⌉

)
(2κ + 2r) log

(
1/(2κ)

)
− 2r

≥ 2κ ·
(1 + 2r) log

(
1 + 1/(2r)

)
bκ − 2r

(
1 − log(1/(2κ))

) .

Using the function g1,cκ
defined in Lemma 4.4.2 with

cκ := bκ

1 − log
(
1/(2κ)

) =
2κ log

(
1/(2κ)

)
1 − log

(
1/(2κ)

)
this reads

fκ(r) ≥ 2κ

1 − log
(
1/(2κ)

) · g1,cκ

(
1/(2r)

)
for r < 1/2 − κ. Since we want to apply Lemma 4.4.2, we need to assume
cκ > 0 which is equivalent to κ > 1/(2e). Moreover, since a = 1 Point (iii) of
Lemma 4.4.2 applies and plugging in the minimum provided by Lemma 4.4.2
proves the desired lower bound.

The final lemma combines the lower bounds in Lemma 4.4.4 and (4.10)
with the upper bounds in Lemma 4.4.3 to establish the optimality of our
choices ri in (4.9) for κ → 0+ and κ → (1/2)−.

4.4.5 Lemma (Asymptotic Behavior) For F defined in (4.8) and ri defined
in (4.9) the following strong asymptotic equivalences are satisfied for i = 1, 2:
F (κ) ∼ fκ(ri(κ)) → 1 for κ → 0+ and

F (κ) ∼ fκ(ri(κ)) ∼ 1
1 − 2κ

log
( 1

1 − 2κ

)
→ ∞

for κ → (1/2)−.

Proof. Let us recall some basic facts about the asymptotic behavior of
Lambert’s W -function and the logarithm, which we will use several times
in this proof,

−W−1(−t) ∼ log(1/t) for t → 0+ and log(1 + t) ∼ t for t → 0 ,
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see e.g. Lemma 7.2.4 of Part II for details about Lambert’s W -function.
Moreover, note that the quantity bκ = 2κ · log

(
1/(2κ)

)
→ 0 vanishes for

κ → 0+ as well as for κ → (1/2)−.
First, we consider the radius r1. Since bκ → 0 holds true, we find

r1(κ) = − bκ/2
W−1(−bκ/e) ∼ bκ/2

log(e/bκ) → 0

for κ → 0+ as well as for κ → (1/2)−. As a result, the upper bound in
Lemma 4.4.3 for r1 gives

F (κ) ≤ fκ(r1(κ)) ≤ −W−1(−bκ/e)
log

(
1/(2κ)

) ·
log

(
1 + ⌈1/(2r1(κ))⌉

)
log

(
1/(2r1(κ))

)
∼ log(e/bκ)

log
(
1/(2κ)

) (4.14)

for κ → 0+ as well as for κ → (1/2)−. Next, we investigate the right hand
side of (4.14). To this end, we write

log(e/bκ)
log

(
1/(2κ)

) = 1
log

(
1/(2κ)

) + 1 −
log

(
log(1/(2κ))

)
log

(
1/(2κ)

) . (4.15)

For κ → 0+, we have log
(
1/(2κ)

)
→ ∞ and hence

log(e/bκ)
log

(
1/(2κ)

) → 1 . (4.16)

For κ → (1/2)−, we have log
(
1/(2κ)

)
∼ 1/(2κ) − 1 ∼ 1 − 2κ → 0 and hence

the third term in (4.15) is dominating. This gives, for κ → (1/2)−,

log(e/bκ)
log

(
1/(2κ)

) ∼ 1
log

(
1/(2κ)

) log
(

1
log

(
1/(2κ)

))
∼ 1

1 − 2κ
log

(
1

1 − 2κ

)
.

(4.17)

Second, we analyze the radius r2 analogously. Since bκ → 0 holds true,
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we find

r2(κ) = − bκ/2
(1 + 2bκ)W−1

(
− bκ/e

1+2bκ

)
+ 2bκ

∼ bκ/2
W−1(−bκ/e) → 0

for κ → 0+ as well as for κ → (1/2)−. As a result, the upper bound in
Lemma 4.4.3 for r2 gives

F (κ) ≤ fκ(r2(κ)) ≤ − 1
log

(
1/(2κ)

)W−1

(
− bκ/e

1 + 2bκ

)
∼ log(e/bκ)

log
(
1/(2κ)

) + log(1 + 2bκ)
log

(
1/(2κ)

)
for κ → 0+ as well as for κ → (1/2)−. The first term coincides with (4.14)
and was already investigated. Since the second term behaves like

log(1 + 2bκ)
log

(
1/(2κ)

) ∼ 2bκ

log
(
1/(2κ)

) = 4κ

in both cases, κ → 0+ and κ → (1/2)−, the second term does not influence
the asymptotic behavior. As a result, the upper bound for fκ(r2(κ)) behaves
asymptotically as the upper bound for fκ(r1(κ)) in both regimes, κ → 0+

and κ → (1/2)−.
Until now, we have only investigated the asymptotic behavior of the

upper bounds on fκ(ri(κ)) with i = 1, 2. Consequently, it remains to
establish the optimality by proving the same behavior for a lower bound.
The lower bound in (4.10) gives F (κ) ≥ 1 and hence, together with (4.16),
the optimality of F (κ) ∼ fκ(ri(κ)) → 1 for κ → 0+ is proven.

For κ → (1/2)− we use the lower bound from Lemma 4.4.4. In this case
we have

F (κ) ≥ − 1
log

(
1/(2κ)

) · W−1

(
− bκ/e

1 − log
(
1/(2κ)

)
+ bκ

)
∼ log(e/bκ)

log
(
1/(2κ)

) +
log

(
1 − log

(
1/(2κ)

)
+ bκ

)
log

(
1/(2κ)

)
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and again the behavior of the first term was already investigated. The
second term behaves like

log
(
1 − log

(
1/(2κ)

)
+ bκ

)
log

(
1/(2κ)

) ∼
bκ − log

(
1/(2κ)

)
log

(
1/(2κ)

) = −(1 − 2κ) → 0

for κ → (1/2)−. Consequently, the second term does not influence the
asymptotic behavior and hence, together with (4.17), the optimality F (κ) ∼
fκ(ri(κ)) and the claimed asymptotic behavior for κ → (1/2)− are proven.
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Generalizations

In this chapter we present various generalizations of the prototypical example
that still allow to prove polynomial learning rates. To this end, we typically
denote the prototypical example by P̃ and the classification problem of
interest by P which will be in some sense a generalization of P̃ . Although,
in most cases all the upper rates of Section 4.3 for P̃ can be transferred to
P , for convenience, we focus on the situation considered in Theorem 4.3.1,
i.e. P̃ satisfies Assumption 4.1.1 for σi = σ, κi ≤ κ and qi ≥ q for i ≥ 1
with some 0 < κ < 1/2 and σ, q > 0. Moreover, in many cases it is also
possible to combine multiple generalizations but, again for convenience, we
always take the assumptions of Theorem 4.3.1 as starting point for P̃ .

5.1 Absolute Continuous Finite-Dimensional
Distributions

In this section we consider two classification problems P and P̃ on X ×{±1},
with a sequence space X =

∏
i≥1 Xi as defined in (3.1), which satisfy the

following relation: There is a constant C0 ≥ 1 such that ν±,I ≪ ν̃±,I and∣∣∣∣dν±,I

dν̃±,I

∣∣∣∣ ≤ C
|I|
0 (5.1)

ν̃±,I -almost surely for all I ∈ F(N). Here and in the following we denote all
quantities related to P̃ with a tilde and all quantities related to P without
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a tilde. For convenience, we assume p± = p̃± throughout this section. The
goal is to transfer learning rates for P̃ to P using (5.1). But let us start
with an important class of distributions satisfying (5.1).

To this end, we assume that X = RN, P satisfies Assumption 3.3.1, and
ν±,i ≪ λ with

dν±,i

dλ
(t) ≤ C0 · fi(κi ± t/σi)

σi
, (5.2)

for λ-almost all t ∈ R and all i ≥ 1, where κi, qi, σi, and fi are defined as
in Assumption 4.1.1. Now, if P̃ satisfies Assumption 4.1.1 with the same
parameters κi, qi, and σi then (5.2) reads

dν±,i

dλ
(t) ≤ C0 · dν̃±,i

dλ
(t)

for λ-almost all t ∈ R. Consequently, (5.2) is equivalent to

dν±,i

dν̃±,i
≤ C0

ν̃±,i-almost surely for all i ≥ 1. Since we assume that ν± and ν̃± are product
measures, via Assumption 3.3.1, we find∣∣∣∣dν±,I

dν̃±,I

∣∣∣∣ =
∣∣∣∣d(

⊗
i∈I ν±,i)

d(
⊗

i∈I ν̃±,i)

∣∣∣∣ =
∣∣∣∣⊗

i∈I

dν±,i

dν̃±,i

∣∣∣∣ ≤ C
|I|
0

ν̃±,I -almost surely for all I ∈ F(N). This proves (5.1) and hence the
following section especially generalizes the prototypical example from As-
sumption 4.1.1 to the class of distributions which satisfy only the inequality
in (5.2) with C0 ≥ 1 instead of the equality with C0 = 1 as required by
Assumption 4.1.1.

The first lemma provides some basic implications of (5.1).

5.1.1 Lemma (Basic Properties) Let X be a sequence space as defined in
(3.1) and P , P̃ be probability distributions on X × {±1} satisfying (5.1).
Then the following statements are true, for I ∈ F(N):

(i) ν±,I(A) ≤ C
|I|
0 ν̃±,I(A) for all measurable A ⊆ XI .

108



5.1 Absolute Continuous Finite-Dimensional Distributions

(ii) supp ν±,I ⊆ supp ν̃±,I .

Proof. This is a direct consequence of (5.1) and ν±,I ≪ ν̃±,I .

The next lemma relates the margin-noise function and the number or
relevant cells of the two classification problems P and P̃ .

5.1.2 Lemma (Upper Bounds) Let X =
∏

i≥1 Xi be a sequence space as
defined in (3.1) and P , P̃ be probability distributions on X ×{±1} satisfying
(5.1). Then the following statements are true, for I ∈ F(N):

(i) If supp ν+ ∩ supp ν− is a ν−- or ν+-zero set and there is no noise in
P̃ then there is a version of η such that the margin-noise functions
satisfy, for every version of η̃ and r ≥ 0,

MN I(r) ≤ C
|I|
0

˜MN I(r) .

(ii) For a measurable partition A of (Xi)i≥1 the relevant cells satisfy the
inclusion

AI,ν ⊆ AI,ν̃ .

Proof. (i) Let I ∈ F(N) and r ≥ 0 be fixed. Since supp ν+ ∩ supp ν− is a
ν+- or a ν−-zero set, Point (ii) of Lemma 2.3.4 is applicable. As a result,
there is a version of η such that

MN I(r) = p+ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
+ p−ν−,I

(
dist( · , supp ν+,I) ≤ 2r

)
.

From Point (ii) of Lemma 5.1.1 we get{
dist( · , supp ν−,I) ≤ 2r

}
⊆

{
dist( · , supp ν̃−,I) ≤ 2r

}
and together with Point (i) of Lemma 5.1.1 we find

ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
≤ C

|I|
0 ν̃+,I

(
dist( · , supp ν̃−,I) ≤ 2r

)
.
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For symmetry reasons, this bound remains true if we interchange “+” and
“−”. Since there is no noise in P̃ , Point (i) of Lemma 2.3.4 yields the
assertion.

(ii) This statement is a direct consequence of ν±,I ≪ ν̃I,± and Point (iii)
of Lemma 1.3.3.

In the remaining part of this section we assume that P̃ satisfies Assump-
tion 4.1.1 and transfer the bounds and learning rates presented in Section 4.1
and Section 4.3, respectively, from P̃ to P .

5.1.3 Lemma (No Noise) Let X = RN be a sequence space as defined in (3.1)
with Xi = R for i ≥ 1 and P , P̃ be probability distributions on X × {±1}
satisfying (5.1). Furthermore, let P̃ satisfy Assumption 4.1.1 with σi = σ,
qi ≥ q, and κi ≤ κ for all i ≥ 1 for some σ, q > 0, and κ < C

−1/q
0 /2. Then

the following identity is satisfied

ν(supp ν+ ∩ supp ν−) = ν̃(supp ν̃+ ∩ supp ν̃−) = 0 .

Proof. Since P̃ satisfies Assumption 4.1.1, ν̃(supp ν̃+ ∩ supp ν̃−) = 0 is
already stated in Point (ii) of Lemma 4.1.4. Now, let us fix some I ∈ F(N).
For symmetry reasons it is enough to show ν+(supp ν+ ∩ supp ν−) = 0.
Using A ⊆ π−1

I ◦ πI(A) and πI(A ∩ B) ⊆ πI(A) ∩ πI(B), which hold for all
A, B ⊆ X, we get

supp ν+ ∩ supp ν− ⊆ π−1
I ◦ πI(supp ν+ ∩ supp ν−)

⊆ π−1
I

(
πI(supp ν+) ∩ πI(supp ν−)

)
⊆ π−1

I (supp ν+,I ∩ supp ν−,I) ,

where we used supp ν±,I = πI(supp ν±) from Lemma B.2 in the last step.
Since the set on the right hand side is measurable, we can plug this into ν+

to find

ν+(supp ν+ ∩ supp ν−) ≤ ν+,I(supp ν+,I ∩ supp ν−,I) .
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Together with Point (i) and (ii) of Lemma 5.1.1 we get

ν+(supp ν+ ∩ supp ν−) ≤ C
|I|
0 ν̃+,I(supp ν̃+,I ∩ supp ν̃−,I) .

Finally, using the explicit form of ν̃+ together with Point (i) of Lemma 4.1.2,
for r = 0, gives us

ν+(supp ν+ ∩ supp ν−) ≤
∏
i∈I

C0(2κi)qi ≤
∏
i∈I

C0(2κ)q .

Since this holds for all I ∈ F(N) and we assume C0(2κ)q < 1, taking the
limit |I| → ∞ yields the assertion.

The final lemma transfers the learning rates of Theorem 4.3.1 from P̃ to P .

5.1.4 Lemma (Polynomial Learning Rates) Let X = RN be a sequence
space as defined in (3.1) with Xi = R for i ≥ 1 and P , P̃ be probability
distributions on X × {±1} satisfying (5.1). Furthermore, let P̃ satisfy
the assumptions of Theorem 4.3.1, where additionally κ < C

−1/q
0 /2 and

0 < r < (C−1/q
0 /2 − κ)σ holds true. Moreover, define α := − log(2κ + 2r/σ)

and β := log
(
1 + ⌈σ/(2r)⌉

)
as in Theorem 4.3.1. Then there are constants

x0, C ≥ 1 with the following property:
For τ ≥ 1, n ≥ x0τ , and every feature set In ∈ I with

|In| =
⌈

log(n/τ)
qα − log(C0) + β

⌉
− 1

the histogram using a cubic partition with radius r and the feature set In

satisfies

RClass,P (hD,r,I) − R∗
Class,P < C ·

( τ

n

) qα−log(C0)
qα−log(C0)+β

with probability P n not less than 1 − e−τ .

Compared to Theorem 4.3.1, here the restriction on κ is stronger. Since
we have C0 ≥ 1, the learning rate for P is worse than for P̃ . Nevertheless,
we get polynomial rates for both classification problems. If P̃ even satisfies
the assumptions of Lemma 4.3.3 or Lemma 4.3.4, the polynomial learning
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rates of Lemma 4.3.3 and Lemma 4.3.4, respectively, can be transferred to
P as well.

Proof. Let I ∈ F(N) be fixed. According to Lemma 4.1.4 and Lemma 5.1.3
we have

ν(supp ν+ ∩ supp ν−) = ν̃(supp ν̃+ ∩ supp ν̃−) = 0 .

As a result, Lemma 5.1.2 is applicable. Together with Corollary 4.1.3 for P̃

we receive

MN I(r) ≤ C
|I|
0

˜MN I(r) ≤
∏
i∈I

C0(2κ + 2r/σ)q = exp
(
−(qα − log(C0))|I|

)
|AI,ν | ≤ |AI,ν̃ | ≤ 2 ·

∏
i∈I

(
1 + ⌈σ/(2r)⌉

)
= 2eβ|I| .

Our restriction on r ensures qα − log(C0) > 0. Consequently, proceeding
analogously to the proof of Theorem 4.3.1 we get the assertion.

5.2 Fourier Coefficients
In this section we consider the prototypical example of Assumption 4.1.1
for a decreasing sequence of scaling factors σi ↘ 0 for i → ∞. But we start
with an application that motivates the investigation of this scenario.

To this end, we consider a classification problem P̃ given by some prob-
ability measures ν̃+ and ν̃− on an L2 space, i.e. we have two stochastic
processes with square-integrable sample paths. However, we assume that
we cannot observe point evaluations, but we have some information about
the Fourier coefficients of the sample paths. This is a typical assumption in
tractability studies, see e.g. [67] where even so-called linear information is
available to the algorithm. To be more precise, we assume that ν̃+ and ν̃−

are given by the following construction:
Let (T, T , µ) be some measure space and (ei)i≥1 be a sequence of functions
ei : T → R such that their µ-equivalence classes [ei]µ form an orthonormal
system (ONS) in L2(µ). Moreover, we assume that the functions (ei)i≥1
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are pointwise uniformly bounded, i.e. supi≥1 |ei(t)| < ∞ for all t ∈ T . Note
that these assumptions are especially satisfied for the following standard
Fourier basis.

5.2.1 Example (Standard Fourier Basis) Let T = [−π, π] be equipped
with the Borel σ-algebra T = B(T ) and µ = 1/(2π) · λ be the normalized
Lebesgue measure. Then for the sequence (ei)i≥1 of functions given by

ei(t) :=
{√

2 · sin
(
i/2 · t

)
, i ∈ 2N

√
2 · cos

(
(i + 1)/2 · t

)
, i ∈ 2N − 1,

for t ∈ T , the equivalence classes ([ei]µ)i≥1 define an ONS in L2(µ). Since
the constant function t 7→ 1 is omitted, this is not an orthonormal basis
(ONB), see e.g. [72, p. 187] for details (note that in [72] the Lebesgue
measure is not normalized).

Now, we define the measures ν̃± as the push-forward measures

ν̃± := ν± ◦ F −1

of some measures ν+ and ν− on the Borel σ-algebra B(ℓ1) under the (linear)
mapping F : ℓ1(N) → L2(µ) given by

F
(
(xi)i≥1

)
:=

∑
i≥1

xiei . (5.3)

In other words, the classification problem P̃ on L2(µ) is the transformed
scenario of a classification problem P on ℓ1, given by ν±, under the trans-
formation F . Since we assume that (ei)i≥1 is pointwise uniformly bounded,
the series in (5.3) converges pointwise. The pointwise convergence allows us
to simulate some paths of ν̃±, see Figure 5.1. Moreover, using the ONS prop-
erty of ([ei]µ)i≥1 and ∥ · ∥ℓ2 ≤ ∥ · ∥ℓ1 we find ∥F (x)∥L2(µ) = ∥x∥ℓ2 ≤ ∥x∥ℓ1

and hence F is a continuous mapping. As a result, F is measurable with
respect to the Borel σ-algebras and the push-forward measures ν̃± are
well-defined. This motivates the investigation of classification problems
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on ℓ1. To this end, the following lemma recalls some basic measurability
properties of ℓ1.

5.2.2 Lemma The set ℓ1 ⊆ RN is measurable and the Borel σ-algebra on ℓ1

satisfies

B(ℓ1) = B
(
RN)∣∣

ℓ1(N) =
(⊗

i≥1
B(R)

)∣∣∣∣
ℓ1(N)

= σ
(
πi : ℓ1 → R : i ≥ 1

)
,

where πi : ℓ1 → R are the projections onto the i-th coordinate.

Proof. First we show that every closed ℓ1-ball x + rBℓ1 ⊆ RN, with center
x ∈ ℓ1 and radius r > 0, is a measurable subset of RN. Since the ball
π[d](x) + rBℓd

1
in Rd and the projection π[d] : RN → Rd are measurable, this

is a direct consequence of the representation

x + rBℓ1 =
⋂
d≥1

π−1
[d] (π[d](x) + rBℓd

1
) .

Using the measurability of the closed ℓ1-balls in RN together with ℓ1 =⋃
m≥1 mBℓ1 we get the measurability of ℓ1 ⊆ RN. Now, we consider the

claimed identities of the σ-algebra.
The second equality is a consequence of B

(
RN)

=
⊗

i≥1 B(R), which
holds even for general sequence spaces, see e.g. the discussion after (3.1).

For the third equality, note that the product σ-algebra is defined as
the initial σ-algebra

⊗
i≥1 B(R) = σ(πi : i ≥ 1) with the projections

πi : RN → R and that the trace σ-algebra is the initial σ-algebra σ(ι) with
the embedding ι : ℓ1 → RN. Using the transitivity of building the initial
σ-algebra, we get that

(⊗
i≥1 B(R)

)∣∣
ℓ1(N) is the initial σ-algebra of the

projections πi ◦ ι : ℓ1 → R, see e.g. [31, Korollar III.5.4] for details. This is
the third equality.

For the first equality, we use the already proven ones and show both
inclusions separately.

“⊆” Since ℓ1 is a separable metric space, every open set in ℓ1 is a countable
union of closed ℓ1-balls, which are B

(
RN)∣∣

ℓ1
-measurable by our preliminary

remark. This proves the inclusion “⊆”.
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“⊇” Since the projections π : ℓ1 → R, which are defined on ℓ1, are
continuous with respect to the ℓ1-norm, we find σ(πi : i ≥ 1) ⊆ B(ℓ1) and
hence this inclusion is proven.

Next, we show that the Bayes risks of P on ℓ1 and P̃ on L2(µ) coincide.
Using the ONS property of (ei)i≥1, we see that F is injective with inverse
G : F (ℓ1) → ℓ1 on the image F (ℓ1) ⊆ L2(µ) given by

G(f) :=
(
⟨f, ei⟩L2(µ)

)
i≥1 .

Now, we show that G is measurable. According to Lemma 5.2.2 we have
B(ℓ1) = σ(πi : i ≥ 1) and hence G is measurable if and only if πi ◦ G :
F (ℓ1) → R is measurable for all i ≥ 1. Moreover, the σ-algebra on
F (ℓ1), which is the trace σ-algebra, equals the Borel σ-algebra of the
pseudo-metric space F (ℓ1) ⊆ L2(µ), that is B(L2(µ))|F (ℓ1) = B(F (ℓ1)),
see e.g. [31, Korollar I.4.6] for details. Since πi ◦ G : F (ℓ1) → R given by
πi ◦ G(f) = ⟨f, ei⟩L2(µ) is continuous, we get the measurability of πi ◦ G for
all i ≥ 1. This proves the measurability of G : F (ℓ1) → ℓ1. As a result, the
transformation F satisfies Point (ii) and (iii) of Lemma 2.1.3 and hence we
find σ(F ) = B(ℓ1). Thus, Lemma 2.1.2 yields that the problems P̃ on L2(µ)
and P on ℓ1 are equal in terms of Bayes risks, i.e. R∗

Class,P = R∗
Class,P̃

.
As another consequence of Lemma 5.2.2, every probability measure ν on

ℓ1 can be extended to RN with ν(ℓ1) = 1 and vice verse. Consequently, we
can consider the measures ν± as measures on RN with ν±(ℓ1) = 1. Now,
if we want to use Assumption 4.1.1 for ν±, the condition ν±(ℓ1) = 1 is
satisfied if and only if the scale sequence (σi)i≥1 ∈ ℓ1 is summable. This
motivates the investigation of Assumption 4.1.1 with σi ↘ 0 for i → ∞.

Note that Assumption 4.1.1 implies that ν± are product measures and this
corresponds to the independence of the Fourier coefficients of the stochastic
processes ν̃±, which is a reasonable assumption in this context.

Recall that the larger the scaling σi of a feature, the higher its influence on
the learning algorithm. Since we want to use the most influential features
and (σi)i≥1 is non-increasing, we use the first features for learning, i.e.
we consider feature sets of the form I = [m] = {1, . . . , m} with some
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m ≥ 1. The following lemma presents polynomial learning rates under some
regularity condition on the scale sequence (σi)i≥1.

5.2.3 Lemma (Polynomial Learning Rates) Let Assumption 4.1.1 be satisfied
for κi ≤ κ and qi ≥ q for all i ≥ 1 with some q > 0 and 0 ≤ κ < 1/2.
Furthermore, let c ≥ 1 and (σi)i≥1 satisfy, for all i ≥ 1,(

σ1 · σ2 · . . . · σi

)1/i ≤ c · σi . (5.4)

In addition, let 0 < s < 1/2 − κ be fixed and α := − log(2κ + 2s), β′ :=
log

(
2 + 1/(2s)

)
. Then there are constants x0, C ≥ 1 with the following

property:
For τ ≥ 1, n ≥ x0τ , and every feature set In = [mn] with

mn =
⌈

log(n/τ)
qα + log(c) + β′

⌉
− 1

the histogram using a cubic partition with radius rn = s ·σmn and the feature
set In satisfies

RClass,P (hD,rn,In
) − R∗

Class,P < C ·
( τ

n

) qα

qα+log(c)+β′

with probability P n not less than 1 − e−τ .

The condition in (5.4) does not ensure that ν is concentrated on ℓ1(N),
e.g. (5.4) is satisfied for the constant sequence σi = σ. This means that
the application of Lemma 5.2.3 is not limited to our introductory Fourier
example. However, the condition in (5.4) remains valid for decreasing
sequences if they do not decrease too fast. To be more precise, (5.4) is
satisfied for an arbitrary c ≥ 1 if and only if the doubling condition σ2i ≍ σi

is satisfied, see Lemma 10.2.2 of Part III. Based on this characterization
it is easy to see that polynomially decreasing sequences σi ≍ i−a, with
some a > 0, satisfy (5.4). In Example 5.2.4 below, we provide an explicit
value of the constant c in (5.4) for such a polynomial decreasing sequence.
Moreover, using Lemma 10.2.2 again, we find that the condition in (5.4)
implies σi ≽ i−a for some a > 0.
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Compared to Theorem 4.3.1, the definition of α coincide if we replace s

by r/σ, hence we denote both quantities by α. However, β′ is slightly larger
than β, hence we added a prime. Moreover, note that the constant c ≥ 1
of (5.4) appears in the learning rate. All these changes, lead to a slightly
worse polynomial order, compared to the situation σi = σ considered in
Theorem 4.3.1, but we get polynomial rates in both cases. Finally, in
contrast to Theorem 4.3.1, here we choose a varying radius rn = s · σmn

depending on the scale sequence (σi)i≥1.

Proof. The proof is an application of Corollary 3.2.7 and Lemma 4.2.1. To
this end, let us fix some feature set I = [m] with m ≥ 1 and some cubic
partition A with radius r := sσm. According to Point (ii) of Lemma 4.1.4
the assumption of Corollary 4.1.3 is satisfied and hence we find

MN I(r) ≤
∏
i∈I

(2κ + 2r/σi)q and

|AI,ν | ≤ 2 ·
∏
i∈I

(
1 + ⌈σi/(2r)⌉

)
.

Using the monotonicity of (σi)i≥1 and r = sσm we get

MN I(r) ≤ (2κ + 2r/σm)qm ≤ (2κ + 2s)qm = e−qαm =: eqα · am

with am := exp
(
−qα(m + 1)

)
. Now, we turn to the number of relevant cells.

Using ⌈x⌉ ≤ x + 1, r = sσm, and the monotonicity of (σi)i≥1 we find

∣∣AI,ν

∣∣ ≤ 2 ·
m∏

i=1

(
2 + σi/(2sσm)

)
≤ 2 ·

(
2 + 1/(2s)

)m ·
m∏

i=1
(σi/σm) .

The condition in (5.4) gives us
∏m

i=1(σi/σm) ≤ cm and hence we get

|AI,ν | ≤ 2 · cm
(
2 + 1/(2s)

)m = 2 exp
(
(log(c) + β′)m

)
=: 2bm .

Finally, proceeding analogously to the proof of Theorem 4.3.1 we get the
assertion.
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In the case of a polynomial decreasing scale sequence, the following
example presents an explicit constant c ≥ 1 for the condition in (5.4).

5.2.4 Example (Polynomial Scaling) For a > 0, the sequence (σi)i≥1 given
by σi := ⌈i/2⌉−a satisfies (5.4) with c = ea. In order to prove this we write(

(σ1 · . . . · σℓ)1/ℓ

σℓ

)1/a

= ⌈ℓ/2⌉(
1 · 1 · 2 · 2 · . . . · ⌈ℓ/2⌉

)1/ℓ
(5.5)

and consider the case ℓ = 2m + 1 with some m ≥ 0 first. For m = 0, (5.5)
equals 1 and hence it is bounded by e. For m ≥ 1, (5.5) equals

m + 1(
(m!)2 · (m + 1)

)1/ℓ
.

Using Stirling’s formula m! ≥
√

2πm · (m/e)m and 2πm ≥ e we find

m + 1(
(m!)2 · (m + 1)

)1/ℓ
≤

(
(m + 1)ℓ−1

e · (m/e)2m

)1/ℓ

=
(

(1 + 1/m)2m · e2m−1
)1/ℓ

.

Finally, since 1 + 1/m ≤ exp(1/m) we find

(σ1 · . . . · σℓ)1/ℓ

σℓ
≤ ea .

For ℓ = 2m with m ≥ 1, an analogous argument gives the same bound.
Consequently, Lemma 5.2.3 is applicable for σi := ⌈i/2⌉−a with a > 0 and
gives us a polynomial learning rate of order

qα

qα + a + β′ .

We used σi := ⌈i/2⌉−a in Example 5.2.4, instead of the simpler sequence
σi := i−a, to ensure that in combination with the standard Fourier basis of
Example 5.2.1 the sine and cosine basis functions with the same frequency
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have the same scaling.
For learning problems on finite-dimensional spaces the scaling of the data

typically only influences the constants but not the learning rate itself. In
contrast Example 5.2.4 shows that there are infinite-dimensional learning
problems where the scaling of the input values influences the learning
rate. Moreover, the learning rate provided by Lemma 5.2.3 gets worse
for increasing a. At first sight, this seems to be counter intuitive since in
combination with the standard Fourier basis faster decreasing sequences
(σi)i≥1 correspond to smoother sample paths. But there is the following
heuristic argument for this effect: The faster (σi)i≥1 decreases, the more
the learning algorithm is dominated by the first features. Consequently, the
information provided by the last features is nearly invisible for the learning
algorithm and hence with decreasing σi the algorithm gets less information.

For a visualization of some sample paths of ν̃± = ν± ◦ F −1, where F is
given by (5.3) with the standard Fourier basis described in Example 5.2.1
and P satisfies Assumption 4.1.1 with σi = ⌈i/2⌉−a from Example 5.2.4,
see Figure 5.1.

The final lemma of this section shows that the condition in (5.4) is—in
some sense—almost sharp.

5.2.5 Lemma (No Polynomial Learning Rates) Let Assumption 4.1.1 be
satisfied for 0 < κ′ ≤ κi ≤ κ and q ≤ qi ≤ q′ for all i ≥ 1 with some
0 < κ′ ≤ κ < 1/2 and 0 < q′ ≤ q < ∞. Furthermore, assume that

lim
i→∞

(σ1 · σ2 · . . . · σi)1/i

σi
= ∞ (5.6)

is satisfied. Then Corollary 3.2.7 does not give polynomial learning rates
for any choice of cubic partition sequence and feature set sequence (In)i≥1

of the form In = [mn] with mn ≥ 1.

Since the condition in (5.4) for c ≥ 1 is equivalent to σ−1
i (σ1 · σ2 · . . . ·

σi)1/i ≤ c, there are no sequences (σi)i≥1 satisfying both, (5.4) and (5.6).
The condition (5.6) is typically satisfied for fast decreasing sequences, e.g.
σi ≍ exp(−aiλ) with a, λ > 0 satisfies (5.6).
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Figure 5.1: Four Plots with 5 paths ∼ ν̃+ in orange and 5 paths ∼ ν̃− in
blue each. The distributions are ν̃± = ν± ◦ F −1 where F is
given by (5.3) with the first ℓ = 1000 elements of the standard
Fourier basis described in Example 5.2.1 and ν± satisfies As-
sumption 4.1.1 with κi = 2/5, qi = 2/3, and σi = ⌈i/2⌉−a from
Example 5.2.4 for all i ≥ 1. Below each plot there is the used
a > 1 and a (numerically calculated) optimal value for s > 0
maximizing the exponent in the learning rate n−ρ provided by
Lemma 5.2.3.

Proof. The proof is an application of Lemma 4.2.2. Let (rn)n≥1 and
(In)n≥1 be sequences with rn > 0 and In = [mn] ∈ F(N) for all n ≥ 1
and MN In

(rn) → 0 for n → ∞. Moreover, let A be a cubic partition
with radius rn. According to Point (ii) of Lemma 4.1.4 the assumption of
Corollary 4.1.3 is satisfied and hence we find

MN In
(rn) ≥

mn∏
i=1

min
{

2κ′ + 2rn/σi, 1
}q′

and |AIn,ν | ≥
mn∏
i=1

⌈
σi/(2rn)

⌉
,

where we additionally used κi ≥ κ′ and qi ≤ q′. Let 1 ≤ ℓn ≤ mn be the
maximal integer with 2κ′ + 2rn/σℓn

< 1. If there is no such integer, we set
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ℓn := 0. With this notation we find

MN In
(rn) ≥

ℓn∏
i=1

(2κ′ + 2rn/σi)q′
and |AIn,ν | ≥

ℓn∏
i=1

(
σi/(2rn)

)
.

The lower bound on the margin-noise function implies

MN In(rn) ≥ (2κ′)q′ℓn =: an .

Since MN In
(rn) → 0 for n → ∞, this implies ℓn → ∞ for n → ∞.

Consequently, we can assume ℓn ≥ 1 without loss of generality. As a result,
we have 2κ′ + 2rn/σℓn ≤ 1 and hence 2rn/σℓn ≤ 1 for all n ≥ 1. This
implies

|AIn,ν | ≥ σ−ℓn

ℓn

ℓn∏
i=1

σi =: bn .

All together we find

log(bn)
− log(an) = 1

q′ log
(
1/(2κ′)

) · log
(

σ−1
ℓn

( ℓn∏
i=1

σi

)1/ℓn
)

→ ∞

for n → ∞ according to (5.6). Using Lemma 4.2.2 we get the assertion.

Finally, note that the statement of Lemma 5.2.5 does not hold true in
general if the sequences (κi)i≥1 or (qi)i≥1 have a more favorable behavior,
i.e. κi ↘ 0 or qi ↗ ∞ for i → ∞.

5.3 Autoregressive Models
In this section we consider a specific type of stochastic processes, namely
autoregressive models. Let us formulate the considered type of processes as
an assumption.

5.3.1 Assumption (Autoregressive Model) Let X =
∏

i≥1 Xi be a sequence
space as defined in (3.1) with Xi = X0 := Rp for some p ≥ 1 and all i ≥ 1,
where X0 is equipped with the norm ∥ · ∥ := ∥ · ∥ℓp

∞
. Furthermore, let
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m ≥ 1 and f : Xm
0 → X0 be a Lipschitz continuous function with Lipschitz

constant L > 0, where Xm
0 = X0 × . . . × X0 is equipped with the norm

∥(x1, . . . , xm)∥ℓm
∞(X0) := max

i=1,...,m
∥xi∥ .

Then let F : X → X with F
(
(εi)i≥1

)
:= (xi)i≥1 be defined recursively by

xi :=
{

εi, i ≤ m

εi + f(xi−1, . . . , xi−m), i > m.

Furthermore, for any probability distribution P̃ on X×{±1} the distribution

P := P̃ ◦ (F, id{±1})−1

is called the autoregressive distribution of P̃ and f .

In the following we denote all quantities related to the classification
problem P̃ with a tilde and all quantities related to the corresponding
autoregressive classification problem P without a tilde. Note that P is the
transformed learning scenario of P̃ under the function F . Moreover, to prove
learning rates for P we have to assume that P̃ is the prototypical example
from Assumption 4.1.1, but we can already relate important quantities of
P and P̃ for general P̃ . For this reason, Assumption 5.3.1 does not imply
any restriction on P̃ .

If the norm ∥ · ∥ℓp
∞

on X0 is replaced by another norm, the statements
remain essentially the same, i.e. only the constants and the polynomial
order possibly change.

Let us start with an example illustrating Assumption 5.3.1. To this end,
let m = 1, X0 = R, and f(x) := x. If ε = (εi)i≥1 is a random variable with
ε ∼ ν̃+ then the random variable x = (xi)i≥1 := F (ε) satisfies x ∼ ν+. As
a result, we find

xi = ε1 + ε2 + . . . + εi

for all i ≥ 1 and hence x ∼ ν+ is a random walk on R. If, in addition, ν̃+ is
a product measure, the one-dimensional distributions ν+,i = ν+ ◦ π−1

i of ν+
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Figure 5.2: Four Plots with 5 paths ∼ ν+ in orange and 5 paths ∼ ν− in
blue of length ℓ = 1000 each. The distributions ν± are given by
Assumption 5.3.1 with p = 1, m = 1, f(x) = x and P̃ satisfying
Assumption 4.1.1, i.e. ν± are random walks. The parameter
sequences are κi = κ and qi = q := κ

1−κ , i.e Eεi∼ν̃±,i
εi = 0,

for all i ≥ 1. Below each plot there is the used κ, q, and a
(numerically calculated) optimal value for r > 0 maximizing the
exponent in the learning rate n−ρ provided by Lemma 5.3.6.

are given by the convolution

ν±,i = ν̃±,1 ∗ ν̃±,2 ∗ . . . ∗ ν̃±,i .

As a result, the supports and hence the scaling of the feature xi ∼ νi

increases for i → ∞. This is in contrast to the uniform scaling considered
in Section 4.1. For a visualization of some sample paths of P , in the case
that P̃ additionally satisfies Assumption 4.1.1, see Figure 5.2.

The first lemma provides basic properties of the transformation F .

5.3.2 Lemma (Basic Properties) Let Assumption 5.3.1 be satisfied. Then
the following statements are true:
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(i) The function F is continuous.

(ii) The function G : X → X with G((xi)i≥1) := (εi)i≥1 defined by

εi :=
{

xi, i ≤ m

xi − f(xi−1, . . . , xi−m), i > m

is the inverse of F : X → X. Moreover, G is continuous.

(iii) For every ℓ ≥ 1 there is a finite-dimensional version F[ℓ] : Xℓ
0 → Xℓ

0
of F with

F[ℓ] ◦ π[ℓ] = π[ℓ] ◦ F .

(iv) For every ℓ ≥ 1 there is a finite-dimensional version G[ℓ] : Xℓ
0 → Xℓ

0
of G with

G[ℓ] ◦ π[ℓ] = π[ℓ] ◦ G .

Moreover, G[ℓ] is Lipschitz continuous with constant 1 + L and G[ℓ]
is the inverse of F[ℓ] for all ℓ ≥ 1.

Note that in the definition of F there are components of x and ε on the
right hand side and hence F is defined recursively. But in the definition of
G there are only components of x on the right hand side and hence G is
not defined recursively.

Since the function F is continuous, it is measurable. Consequently, the
autoregressive distribution P = P̃ ◦ (F, id{±1})−1 is well-defined. Moreover,
since F is bijective with measurable (even continuous) inverse G, Point (ii)
and (iii) of Lemma 2.1.3 are satisfied and hence we have σ(F ) = B(X).
Together with Lemma 2.1.2 we get R∗

Class,P = R∗
Class,P̃

and the learning
problems P̃ and P are equal in terms of Bayes risks.

For the later use it is important that the Lipschitz constant of G[ℓ] does
not depend on ℓ.

Proof. (i) Since X = XN
0 is equipped with the product topology, the function

F : X → X is continuous if and only if πi ◦ F : X → X0 is continuous for
all i ≥ 1. We prove the latter by induction. For i = 1, . . . , m we have
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πi ◦ F (ε) = πi(ε) and hence πi ◦ F is continuous. Now, assume that πi ◦ F

is continuous for all i ≤ k − 1 with some k − 1 ≥ m. Then we can write

πk ◦ F (ε) = πk(ε) + f
(
πk−1 ◦ F (ε), . . . , πk−m ◦ F (ε)

)
.

as a combination of continuous functions. Consequently, πk ◦F is continuous
and the assertion is proven by induction.

(ii) To see the continuity of G we write

πi ◦ G =
{

πi, i ≤ m

πi − f(πi−1, . . . , πi−m), i > m

as a combination of continuous functions. Next, we prove the identity
G ◦ F = IdX . To this end, we fix some ε = (εi)i≥1 and set x = (xi)i≥1 :=
F (ε) as well as ε′ = (ε′

i)i≥1 := G(x) = G ◦ F (ε). Then we have to show
εi = ε′

i for all i ≥ 1. For i = 1, . . . , m we have ε′
i = xi = εi. For i > m the

definition of ε′
i and xi gives us

ε′
i = xi − f(xi−1, . . . , xi−m)

= εi + f(xi−1, . . . , xi−m) − f(xi−1, . . . , xi−m) = εi .

(iii) This is a direct consequence of the fact that the k-th component xk

of x = F (ε) depends only on the components εi for i = 1, . . . , k.
(iv) The existence of a finite-dimensional version G[ℓ] follows by an

analogous argument as in Point (iii). Next, we prove the Lipschitz continuity
of G[ℓ]. To this end, let x = (xi)ℓ

i=1 ∈ Xℓ
0 and x′ = (x′

i)ℓ
i=1 ∈ Xℓ

0. Then we
write∥∥G[ℓ](x) − G[ℓ](x′)

∥∥
ℓℓ

∞(X0) = max
i=1,...,ℓ

∥∥πi ◦ G[ℓ](x) − πi ◦ G[ℓ](x′)
∥∥ .

For i = 1, . . . , m we have∥∥πi ◦ G[ℓ](x) − πi ◦ G[ℓ](x′)
∥∥ = ∥xi − x′

i∥ ≤ ∥x − x′∥ℓℓ
∞(X0) .
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For i = m + 1, . . . , ℓ, using the Lipschitz continuity of f we receive∥∥πi ◦ G[ℓ](x) − πi ◦ G[ℓ](x′)
∥∥

=
∥∥(

xi − f((xi−k)m
k=1)

)
−

(
x′

i − f((x′
i−k)m

k=1)
)∥∥

≤ ∥xi − x′
i∥ +

∥∥f
(
(xi−k)m

k=1
)

− f
(
(x′

i−k)m
k=1

)∥∥
≤ ∥xi − x′

i∥ + L max
k=1,...,m

∥xi−k − x′
i−k∥

≤ (1 + L) · ∥x − x′∥ℓℓ
∞(X0) .

All together this proves the Lipschitz continuity of G[ℓ] with Lipschitz
constant 1 + L.

Finally, we prove G[ℓ] ◦ F[ℓ] = IdXℓ
0
. This can be done analogously to

the proof of G ◦ F = IdX in Point (ii). Alternatively, since the projection
π[ℓ] : X → Xℓ

0 is surjective, it is enough to show G[ℓ] ◦ F[ℓ] ◦ π[ℓ] = π[ℓ] which
is a direct consequence of the previously shown properties of F , G, F[ℓ], and
G[ℓ], namely

G[ℓ] ◦ F[ℓ] ◦ π[ℓ] = G[ℓ] ◦ π[ℓ] ◦ F = π[ℓ] ◦ G ◦ F = π[ℓ] .

This concludes the proof.

The next lemma relates the margin-noise functions of P̃ and the corre-
sponding autoregressive distribution P .

5.3.3 Lemma (Margin-Noise Function) Let Assumption 5.3.1 be satisfied.
Then the following statements are true:

(i) η ◦ F = η̃ ν̃-almost surely.

(ii) There is no noise in the autoregressive classification problem P if
and only if there is no noise in the classification problem P̃ .

If we define η := η̃ ◦ G for a fixed version of η̃ then the following statements
are true:

(iii) X̃± = F −1(X±).

(iv) MN [ℓ](r) ≤ ˜MN [ℓ]
(
r(1 + L)

)
for all ℓ ≥ 1 and r ≥ 0.

(v) M[ℓ](r) ≤ M̃[ℓ]
(
r(1 + L)

)
for all ℓ ≥ 1 and r ≥ 0.
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Note that we use the same norm for ∆̃[ℓ] and ∆[ℓ].

Proof. (i) Since F is measurable and bijective with measurable inverse, we
have σ(F ) = B according to Lemma 2.1.3. Together with Lemma 2.1.6 we
find η ◦ F = Eν̃(η̃|σ(F )) = η̃ ν̃-almost surely.

(ii) As shown in Point (i) we have σ(F ) = B and hence Lemma 2.1.2
gives R∗

Class,P = R∗
Class,P̃

. Consequently, Lemma 1.2.2 gives the assertion.
(iii) This is a direct consequence of the definition η := η̃ ◦ G, namely

X̃+ = {η̃ > 1/2} = {η ◦ F > 1/2} = F −1(
{η > 1/2}

)
= F −1(X+) .

The identity X̃− = F −1(X−) can be proven analogously.
(iv)+(v) First, we investigate ∆[ℓ] ◦F . To this end, we fix some ε ∈ X and

assume ε ∈ X̃+. In this case we have F (ε) ∈ X+ according to Point (iii).
Using the representation in (3.13), X− = F (X̃−) from Point (iii), and
π[ℓ] ◦ F = F[ℓ] ◦ π[ℓ] from Lemma 5.3.2 we receive

∆[ℓ] ◦ F (ε) = dist
(
π[ℓ] ◦ F (ε), π[ℓ](X−)

)
= dist

(
π[ℓ] ◦ F (ε), π[ℓ] ◦ F (X̃−)

)
= dist

(
F[ℓ] ◦ π[ℓ](ε), F[ℓ] ◦ π[ℓ](X̃−)

)
.

If we apply the Lipschitz continuity of G[ℓ] and G[ℓ] ◦ F[ℓ] = IdXℓ
0

then we
get

dist
(
F[ℓ] ◦ π[ℓ](ε), F[ℓ] ◦ π[ℓ](X̃−)

)
= inf

ε′∈X̃−

∥∥F[ℓ] ◦ π[ℓ](ε) − F[ℓ] ◦ π[ℓ](ε′)
∥∥

ℓℓ
∞(X0)

≥ 1
1 + L

inf
ε′∈X̃−

∥∥G[ℓ] ◦ F[ℓ] ◦ π[ℓ](ε) − G[ℓ] ◦ F[ℓ] ◦ π[ℓ](ε′)
∥∥

ℓℓ
∞(X0)

= 1
1 + L

inf
ε′∈X̃−

∥∥π[ℓ](ε) − π[ℓ](ε′)
∥∥

ℓℓ
∞(X0)

= 1
1 + L

dist
(
π[ℓ](ε), π[ℓ](X̃−)

)
.
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Since we assume ε ∈ X̃+, the right hand side equals ∆̃[ℓ](ε) and all together
we get

∆[ℓ] ◦ F (ε) ≥ 1
1 + L

· ∆̃[ℓ](ε) (5.7)

for all ε ∈ X̃+. This inequality can be shown analogously for ε ∈ X̃−. For
ε ∈ (X̃+ ∪ X̃−)c we have F (ε) ∈ (X+ ∪ X−)c and hence ∆[ℓ] ◦ F (ε) = 0 =

1
1+L · ∆̃[ℓ](ε). As a result, (5.7) is satisfied for all ε ∈ X.

Now, we are ready to prove Point (iv) which is a direct consequence of
ν = ν̃ ◦ F −1, η ◦ F = η̃, and (5.7), namely

MN [ℓ](r) =
∫

{∆[ℓ]≤2r}
|2η − 1| dν

=
∫

{∆[ℓ]◦F ≤2r}
|2η ◦ F − 1| dν̃

≤
∫

{∆̃[ℓ]≤2r(1+L)}
|2η̃ − 1| dν̃

= ˜MN [ℓ](r(1 + L)) .

Finally, Point (v) can be proven analogously.

The following lemma provides a bound on the number of relevant cells of
a product partition with respect to ν±.

5.3.4 Lemma (Relevant Cells) Let Assumption 5.3.1 be satisfied and A be a
cubic partition of (X0)i≥1 with radius r > 0. Then, for ℓ ≥ m, the number
of relevant cells is bounded by

∣∣A[ℓ],ν±

∣∣ ≤ 3pℓ ·
m∏

i=1
N

(
supp ν̃±,i, r

) ℓ∏
i=m+1

N
(
rLBX0 + supp ν̃±,i, r

)
.

Proof. For symmetry reasons it is enough to consider ν+. Since the product
partition A[ℓ] of Xℓ

0
∼= Rpℓ is a cubic partition, the assumption in (1.21) is

satisfied with r0 = r for the norm ∥ · ∥ℓℓ
∞(X0). Consequently, Lemma 1.3.7
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with ε = r and M = supp ν+,[ℓ] ensures∣∣A[ℓ],ν+

∣∣ ≤ 3pℓN (supp ν+,[ℓ], r) .

Since F[ℓ] is continuous, Lemma B.2 gives us supp ν+,[ℓ] = F[ℓ](supp ν̃+,[ℓ])
and together with Lemma C.4 and Lemma B.3 we find

N (supp ν+,[ℓ], r) = N
(
F[ℓ](supp ν̃+,[ℓ]), r

)
= N

(
F[ℓ](supp ν̃+,[ℓ]), r

)
≤ N

(
F[ℓ]

(∏ℓ
i=1 supp ν̃+,i

)
, r

)
.

Now, it remains to give an upper bound for the right hand side. To this
end, we define ni := N (supp ν̃+,i, r) for i = 1, . . . , m and ni := N (rLBX0 +
supp ν̃+,i, r) for i = m + 1, . . . , ℓ. Moreover, we choose corresponding r-nets
εi,1, . . . , εi,ni ∈ X0, i.e. for i = 1, . . . , m we have

supp ν̃+,i ⊆
ni⋃

j=1
εi,j + rBX0 (5.8)

and for i = m + 1, . . . , ℓ we have

rLBX0 + supp ν̃+,i ⊆
ni⋃

j=1
εi,j + rBX0 . (5.9)

Then, for multi-indexes j = (j1, . . . , jℓ) with 1 ≤ ji ≤ ni for all i = 1, . . . , ℓ,
we define εj := (ε1,j1 , . . . , εℓ,jℓ

) and xj := F[ℓ](εj). This defines at most
n1 · . . . · nℓ elements xj and hence it remains to prove that they form an
r-net of F[ℓ]

(∏ℓ
i=1 supp ν̃+,i

)
.

To this end, let x = (xi)ℓ
i=1 ∈ F[ℓ]

(∏ℓ
i=1 supp ν̃+,i

)
and ε = (εi)ℓ

i=1 ∈∏ℓ
i=1 supp ν̃+,i with F[ℓ](ε) = x. Then, we choose a multi-index j =

(j1, . . . , jℓ) by selecting 1 ≤ ji ≤ ni with ∥xi − xi,ji∥ ≤ r recursively for all
i = 1, . . . , ℓ as follows:
For i = 1, . . . , m, according to (5.8) there is some 1 ≤ ji ≤ ni such that
∥εi − εi,ji∥ ≤ r is satisfied. Since xi = εi and xi,ji = εi,ji are satisfied, we
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have
∥xi − xi,ji∥ ≤ r .

Now, assume that j1, . . . , jk−1 for some k−1 ≥ m have already been defined
such that ∥xi − xi,ji∥ ≤ r for i = 1, . . . , k − 1. Then we have∥∥f

(
(xk−i)m

i=1
)

− f
(
(xk−i,jk−i

)m
i=1

)∥∥ ≤ L max
i=1,...,m

∥xk−i − xk−i,jk−i
∥ ≤ Lr

and the difference on the left hand side is contained in rLBX0 . According
to (5.9) and εk ∈ supp ν̃+,k there is some 1 ≤ jk ≤ nk with∥∥f

(
(xk−i)m

i=1
)

− f
(
(xk−i,jk−i

)m
i=1

)
+ εk − εk,jk

∥∥ ≤ r .

Since we have

xk = εk + f(xk−1, . . . , xk−m) and
xk,jk

= εk,jk
+ f(xk−1,jk−1 , . . . , xk−m,jk−m

) ,

this choice ensures ∥xk − xk,jk
∥ ≤ r. By induction, we get a multi-index

j = (j1, . . . , jℓ) with 1 ≤ ji ≤ ni for i = 1, . . . , ℓ and ∥x − xj∥ ≤ r. This
finishes the proof.

The next lemma combines Lemma 5.3.3 and Lemma 5.3.4 with the assump-
tion that P̃ satisfies Assumption 4.1.1.

5.3.5 Lemma (Upper Bounds) Let Assumption 5.3.1 be satisfied for p = 1
and let P̃ satisfy Assumption 4.1.1. Then the following statements are true,
for ℓ ≥ 1:

(i) If supp ν̃+ ∩ supp ν̃− is a ν̃-zero set then there is no noise in the
autoregressive scenario P and there is a version of η with

MN [ℓ](r) ≤
ℓ∏

i=1

(
2κi + 2(1 + L)r

σi

)
for all r ≥ 0.
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(ii) For r > 0 and a cubic partition A of (Xi)i≥1 with radius r the number
of relevant cells satisfies

|A[ℓ],ν | ≤ 2 · (3⌈L⌉)ℓ ·
ℓ∏

i=1

(
1 +

⌈ σi

2r

⌉)
.

Proof. (i) This is a direct consequence of Lemma 5.3.3 and Lemma 4.1.3.
(ii) First, we consider the covering numbers appearing in Lemma 5.3.4.

Since supp ν̃±,i = ±[−κiσi, (1−κi)σi] is an interval of length σi and rLBX0

is an interval of length 2rL, the sum rLBX0 + supp ν̃±,i is an interval of
length σi + 2rL. Consequently, the covering numbers are bounded by

N
(
rLBX0 + supp ν̃±,i, r

)
=

⌈
L + σi

2r

⌉
≤ ⌈L⌉ +

⌈ σi

2r

⌉
≤ ⌈L⌉

(
1 +

⌈ σi

2r

⌉)
,

where we used ⌈a + b⌉ ≤ ⌈a⌉ + ⌈b⌉ which holds true for all a, b > 0.
Analogously, we get

N (supp ν̃±,i, r) =
⌈ σi

2r

⌉
≤ ⌈L⌉

(
1 +

⌈ σi

2r

⌉)
.

Together with |A[ℓ],ν | ≤ |A[ℓ],ν+ | + |A[ℓ],ν− | from Lemma 1.3.3 and an
application of Lemma 5.3.4 we get the assertion.

The next lemma shows that if P̃ satisfies Assumption 4.1.1, we get poly-
nomial learning rates for the corresponding autoregressive distribution
P .

5.3.6 Lemma (Polynomial Learning Rates) Let Assumption 5.3.1 be satisfied
for p = 1 and let P̃ satisfy Assumption 4.1.1 with σi = σ, qi ≥ q, and
κi ≤ κ for all i ≥ 1 for some σ, q > 0, and κ < 1/2. Furthermore, let
0 < r < (1/2 − κ)σ/(1 + L) be fixed and α′ := − log

(
2κ + 2(1 + L)r/σ

)
,

β := log
(
1 + ⌈σ/(2r)⌉

)
. Then there are constants x0, C ≥ 1 with the

following property:
For τ ≥ 1, n ≥ x0τ , and every feature set In = [ℓn] with

ℓn =
⌈

log(n/τ)
qα′ + log(3⌈L⌉) + β

⌉
− 1
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the histogram using a cubic partition with radius r and the feature set In

satisfies

RClass,P (hD,r,In) − R∗
Class,P < C ·

( τ

n

) qα′
qα′+log(3⌈L⌉)+β

with probability P n not less than 1 − e−τ .

Compared to Theorem 4.3.1, the definitions of β coincide, but the definitions
of α and α′ coincide only if we replace r by (1 + L)r, hence we added a
prime. Moreover, note that the Lipschitz constant L of f appears in the
learning rate. All these changes result in a slightly worse polynomial order
for P , compared to the learning rate for P̃ provided by Theorem 4.3.1, but
we get polynomial rates for both classification problems.

If P̃ even satisfies the assumptions of Lemma 4.3.3 or Lemma 4.3.4,
the polynomial learning rates of these lemmas can be transferred to P as
well. For a visualization of some paths of a random walk, i.e. f(x) = x in
Assumption 5.3.1, see Figure 5.2.

Proof. Let ℓ ≥ 1, I = [ℓ], and r ≥ 0 be fixed. According to our assump-
tions on P̃ Lemma 4.1.4 gives us ν̃(supp ν̃+ ∩ supp ν̃−) = 0. As a result,
Lemma 5.3.5 is applicable and gives us a version of η with

MN I(r) ≤
(
2κ + 2(1 + L)r/σ

)qℓ = e−qα′ℓ

|AI,ν | ≤ 2 · (3⌈L⌉)ℓ ·
ℓ∏

i=1

(
1 +

⌈ σ

2r

⌉)
= 2 exp

(
(log(3⌈L⌉) + β)ℓ

)
.

Finally, proceeding analogously to the proof of Theorem 4.3.1 we get the
assertion.

5.4 α-Mixing
In this section we use the concept of α-mixing conditions to relax the
independence assumption used in Assumption 4.1.1.
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Let us start with a brief introduction to the α-mixing coefficient. To this
end, let X =

∏
i≥1 Xi be a sequence space as defined in (3.1) and P be a

distribution on X × {±1} with marginals ν± of the positive and negative
labeled data points, respectively. For two sub-σ-algebras F1, F2 ⊆ B we
define

α±(F1, F2) := sup
A1∈F1
A2∈F2

∣∣ν±(A1 ∩ A2) − ν±(A1)ν±(A2)
∣∣ .

Note that the sub-σ-algebras F1, F2 ⊆ B are independent with respect to
ν± if and only if the corresponding quantity α±(F1, F2) = 0 is zero. In this
sense α±(F1, F2) measures the dependence of F1 and F2 with respect to
ν±. Moreover, for 1 ≤ i ≤ j ≤ ∞ we define the sub-σ-algebras

F j
i := σ

(
πk : i ≤ k ≤ j

)
generated by the projections πk : X → Xk with i ≤ k ≤ j. Then we define
the α-mixing coefficient with respect to ν± by

α±(k) := sup
i≥1

α±
(
F i

1, F∞
i+k

)
.

for k ≥ 1. Note that we do not assume that (πk)k≥1 is a stationary
sequence of random variables. Consequently, we need the supremum in
the definition of α±. Moreover, we set α(k) := max

{
α+(k), α−(k)

}
. A

direct consequence of these definitions is that (α±(k))k≥1 and (α(k))k≥1

are non-increasing sequences. If α±(k) ↘ 0 even vanishes for k → ∞, we
say that ν± is α-mixing. For examples of α-mixing stochastic processes see
e.g. [45, Section 3.1] and the references therein and for a general overview
of mixing coefficients see e.g. the survey [14].

Furthermore, we denote the one-dimensional marginal distributions of
ν±, for i ≥ 1, by ν±,i := ν± ◦ π−1

i and define the corresponding product
measures

ν̃± :=
⊗
i≥1

ν±,i. (5.10)
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Consequently, ν̃± defines a classification problem P̃ on X × {±1} which we
call the independent classification problem of P . Moreover, all quantities
related to P̃ are denoted with a tilde and all quantities related to P are
denoted without a tilde.

For I ∈ F(N), we denote the inner distance of I by δ(I) := infi,j∈I:i̸=j |i−
j| ≥ 1. Using the convention inf ∅ = ∞ we have δ(I) = ∞ for singletons
I = {i} ⊆ N.

The first lemma provides a basic property of the α-mixing coefficient.

5.4.1 Lemma (Basic Properties) Let X =
∏

i≥1 Xi be a sequence space as
defined in (3.1), ν+ be a probability measure on X, and I = {i1, . . . , im} ⊆ N
be a feature set with i1 < i2 < . . . < im, m ≥ 1, and inner distance
δ(I) ≥ k ≥ 1. Then, for σ(πi)-measurable sets Ai ∈ σ(πi), the following
bound is satisfied

ν+

(⋂
i∈I

Ai

)
≤ α+(k)

m∑
s=1

s−1∏
j=1

ν+(Aij
) +

∏
i∈I

ν+(Ai) .

Proof. The proof is based on the following telescope sum

ν+

(⋂
i∈I

Ai

)
−

m∏
j=1

ν+(Aij )

=
m∑

s=1

[
ν+

( m⋂
j=s

Aij

)
·

s−1∏
j=1

ν+(Aij
) − ν+

( m⋂
j=s+1

Aij

)
·

s∏
j=1

ν+(Aij
)
]

.

For 1 ≤ s ≤ m, the corresponding summand can be bounded by

ν+

( m⋂
j=s

Aij

)
·

s−1∏
j=1

ν+(Aij ) − ν+

( m⋂
j=s+1

Aij

)
·

s∏
j=1

ν+(Aij )

=
[
ν+

(
Ais

∩
m⋂

j=s+1
Aij

)
− ν+

( m⋂
j=s+1

Aij

)
· ν+(Ais

)
]

·
s−1∏
j=1

ν+(Aij
)

≤ α+(is+1 − is)
s−1∏
j=1

ν+(Aij
) ,
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where we used
⋂m

j=s+1 Aij
∈ Fm

is+1
and Ais

∈ F is
1 . Since we assume δ(I) ≥ k,

we have is+1 − is ≥ k and hence α+(is+1 − is) ≤ α+(k) is satisfied. This
gives the assertion.

For the remaining part of this section we consider the case where the corre-
sponding independent classification problem P̃ satisfies Assumption 4.1.1.

5.4.2 Lemma (No Noise) Let X =
∏

i≥1 Xi be a sequence space as defined
in (3.1) and P be a probability distribution on X × {±1} with corresponding
independent distribution P̃ given by (5.10). Furthermore, let P̃ satisfy
Assumption 4.1.1 with σi = σ, qi ≥ q, and κi ≤ κ for all i ≥ 1 with some
σ, q > 0, and κ < 1/2. If the measures ν± are α-mixing then the following
equality is satisfied

ν(supp ν+ ∩ supp ν−) = ν(supp ν̃+ ∩ supp ν̃−) = 0 .

Proof. Since P̃ satisfies Assumption 4.1.1, ν̃(supp ν̃+ ∩ supp ν̃−) = 0 is
already stated in Point (ii) of Lemma 4.1.4. Now, let I := k · [ℓ] =
{k, 2k, 3k, . . . , ℓk} with some fixed ℓ, k ≥ 1 and

Ai :=
(
supp ν+,i ∩ sup ν−,i

)
×

∏
j ̸=i

Xj ∈ σ(πi)

for i ≥ 1. For symmetry reasons it is enough to prove ν+(supp ν+ ∩
supp ν−) = 0. According to Lemma B.3 we have supp ν± ⊆

∏
i≥1 supp ν±,i

and hence

ν+
(
supp ν+ ∩ supp ν−

)
≤ ν+

(∏
i≥1

supp ν+,i ∩ supp ν−,i

)

= ν+

(⋂
i≥1

Ai

)
≤ ν+

(⋂
i∈I

Ai

)
.

Since δ(I) ≥ k is satisfied, Lemma 5.4.1 yields

ν+(supp ν+ ∩ supp ν−) ≤ α+(k)
ℓ∑

s=1

s−1∏
j=1

ν+(Akj) +
ℓ∏

j=1
ν+(Akj) .
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From Point (i) of Lemma 4.1.2 for r = 0 and our assumptions we get

ν+(Ai) ≤ (2κi)qi ≤ (2κ)q =: a < 1 .

Together we find

ν+(supp ν+ ∩ supp ν−) ≤ α+(k)
ℓ∑

s=1
as−1 + aℓ ≤ α+(k)

1 − a
+ aℓ .

Since this bound is satisfied for all k, ℓ ≥ 1 and ν+ is α-mixing, we get the
assertion.

In order to establish bounds on the margin-noise function we need some
restrictions on the (non-empty) feature set I ∈ F(N) used for learning. To
this end, we introduce the following notation: For k ≥ 1, we denote some
arbitrary subset with maximal cardinality and inner distance of at least k

by
Ik ∈ argmax

{
|I ′| : ∅ ≠ I ′ ⊆ I with δ(I ′) ≥ k

}
.

Since δ({i}) = ∞ is infinite for singletons {i} ⊆ N, there is always such a
subset. Note that (|Ik|)k≥1 is a non-increasing sequence with |Ik| ≥ 1 for
all k ≥ 1, Ik = I for k ≤ δ(I), and |Ik| = 1 for k > max I − min I. Using
this notation we define, for 0 < v ≤ 1 and k ≥ 1,

Ik,v :=
{

I ∈ F(N) : |Ik| ≥ v|I|
}

.

Roughly speaking, Ik,v contains the feature sets I that are in some sense
well separated. Larger values of v corresponds to a larger separation.

Let us briefly discuss the consequences for a grid I = k · [ℓ] of distance
k ≥ 1 and length ℓ ≥ 1. Since δ(I) = k is satisfied, we have Ik′ = I for
k′ ≤ k. For k′ > k, a subset I ′ ⊆ I with δ(I ′) ≥ k′ and maximal cardinality
can be chosen as follows: To this end, we denote the elements of I ′ by
I ′ = {i0, i1, . . . , iℓ′−1} with i0 < i1 < . . . iℓ′−1 for some 1 ≤ ℓ′ ≤ ℓ. Since
I ′ ⊆ I = k · [ℓ] is a subset, every ij is of the form

ij = k · mj
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with some 1 ≤ mj ≤ ℓ. Moreover, the distance of two consecutive elements
ij+1 − ij = k(mj+1 − mj) ≥ k′ must be at least k′. Dividing by k and using
mj+1 − mj ∈ N yields

mj+1 − mj ≥ ⌈k′/k⌉ .

Consequently, the subset I ′ ⊆ I satisfies δ(I ′) ≥ k′ and is of maximal
cardinality if we take the first element of I, i.e. i0 = k (with m0 := 1), and
choose mj+1 := mj + ⌈k′/k⌉ for j ≥ 0 recursively. As a result, we get

mj = 1 + j · ⌈k′/k⌉

for j ≥ 0. This procedure can be continued as long as ij = k · mj ≤ kℓ is
satisfied. This condition is equivalent to

j ≤
⌊

ℓ − 1
⌈k′/k⌉

⌋
=: ℓ′ − 1 .

Finally, we set Ik′ := I ′. To sum it up, for ℓ, k ≥ 1 and k′ > k, we
constructed a subset Ik′ ⊆ I = k · [ℓ] with δ(Ik′) ≥ k′ and

|Ik′ | = ℓ′ =
⌊

ℓ − 1
⌈k′/k⌉

⌋
+ 1 . (5.11)

Note that this identity remains valid for 1 ≤ k′ ≤ k. Finally, for ℓ ≥ 2 we
can bound this by

|Ik′ | ≥ 1
2⌈k′/k⌉

|I|

and hence I = k · [ℓ] ∈ Ik′,v with v := 1/(2⌈k′/k⌉) for k, k′ ≥ 1 and ℓ ≥ 2.
Now, we are ready to prove the following lemma which establishes an

oracle inequality for feature sets in Ik,v using the α-mixing coefficient.

5.4.3 Lemma (Oracle Inequality) Let X be a sequence space as defined in
(3.1) and P be a probability distribution on X × {±1} with corresponding
independent distribution P̃ given by (5.10). Furthermore, let P̃ satisfy
Assumption 4.1.1 with σi = σ, qi ≥ q, and κi ≤ κ for all i ≥ 1 with
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some σ, q > 0, κ < 1/2, and ν± be α-mixing. Moreover, let 0 < v ≤ 1,
0 < r < (1/2−κ)σ be fixed and α := − log(2κ+2r/σ), β := log

(
1+⌈σ/(2r)⌉

)
.

Then there are constants x0, C ≥ 1 with the following property:
For τ ≥ 1, n ≥ x0τ , k ≥ 1, and every feature set In ∈ Ik,v with

|In| =
⌈

log(n/τ)
vqα + β

⌉
− 1

the histogram using a cubic partition with radius r and the feature set In

satisfies

RClass,P (hD,r,In
) − R∗

Class,P <
α(k)

1 − e−qα
+ C ·

( τ

n

) vqα
vqα+β

with probability P n not less than 1 − e−τ .

If ν± are α-mixing with α(k) > 0 for all k ≥ 1, we have to choose k = kn →
∞ for n → ∞ to get consistency or learning rates from this bound.

Note that the definitions of α and β coincide with the corresponding
definitions in Theorem 4.3.1.

Proof. Let k, m ≥ 1 and I ∈ Ik,v with |I| = m be fixed. First, we consider
the margin-noise function for some fixed r > 0. According to Lemma 5.4.2
we have ν(supp ν+ ∩ supp ν−) = 0 and hence Lemma 2.3.4 is applicable. As
a result, there is a version of η such that

MN I(r) = p+ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
+ p−ν−,I

(
dist( · , supp ν+,I) ≤ 2r

)
.

For symmetry reasons it is enough to investigate the first summand in the
following. According to Lemma B.3 we have supp ν−,I ⊆

∏
i∈I supp ν−,i

and hence Lemma 3.3.3 gives us

ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
≤ ν+,I

(
dist

(
· ,

∏
i∈I supp ν−,i

)
≤ 2r

)
= ν+,I

(∏
i∈I

{
dist( · , supp ν−,i) ≤ 2r

})
.
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Since we assume I ∈ Ik,v, there is a subset Ik ⊆ I with |Ik| ≥ vm and
δ(Ik) ≥ k. Using the notation Ai := {dist( · , supp ν−,i) ≤ 2r} ×

∏
j ̸=i Xj ⊆

X for i ∈ I we find

ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
≤ ν+

(⋂
i∈I

Ai

)
≤ ν+

( ⋂
i∈Ik

Ai

)
.

Since P̃ satisfies Assumption 4.1.1 and ν+,i = ν̃+,i holds true, Point (i) of
Lemma 4.1.2 gives us

ν+(Ai) = ν+,i

(
dist( · , supp ν−,i) ≤ 2r

)
≤ (2κ + 2r/σ)q = e−qα < 1 .

Combining both bounds with Lemma 5.4.1 yields

ν+,I

(
dist( · , supp ν−,I) ≤ 2r

)
≤ α+(k)

|Ik|∑
s=1

e−(s−1)qα + e−qα|Ik|

≤ α+(k)
1 − e−qα

+ e−vqαm .

Altogether, we get for the margin-noise function

MN I(r) ≤ α(k)
1 − e−qα

+ e−vqα|I| = α(k)
1 − e−qα

+ am

with am := e−vqαm. Now, we consider the number of relevant cells. Since
AI,ν = AI,ν+ ∪ AI,ν− holds true according to Lemma 1.3.3, it is enough to
consider |AI,ν+ |. Using Lemma 3.2.1 and Point (ii) of Lemma 4.1.2 we get

|AI,ν+ | ≤
∏
i∈I

∣∣(Ai)ν+,i

∣∣ ≤
(
1 + ⌈σ/(2r)⌉

)|I| = eβm =: bm .

Consequently, we have |AI,ν | ≤ 2bm. Finally, proceeding analogously to the
proof of Theorem 4.3.1 we get the assertion.

In order get learning rates from Lemma 5.4.3 we need explicit bounds
on the α-mixing coefficient α(k) and the structure of the feature set I. In
the following we consider the case where I = k · [ℓ] is a grid and investigate
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under which conditions on k = kn Lemma 5.4.3 provides the same learning
rate for P as Theorem 4.3.1 does for the independent learning Problem
P̃ , i.e. n− qα

qα+β . Recall from (5.11), that for a grid In = kn · [ℓn] with
ℓn = ⌈log(n/τ)/(qα + β)⌉ − 1 we have In ∈ Ikn,1 and hence Lemma 5.4.3
yields

RClass,P (hD,r,In
) − R∗

Class,P <
α(kn)

1 − e−qα
+ C ·

( τ

n

) qα
qα+β

with probability P n not less than 1 − e−τ .
Now, let us assume that ν± are polynomially α-mixing, i.e. there is a

constant c > 0 and δ > 0 with

α±(k) ≤ ck−δ

for all k ≥ 1. As a result, we recover the learning rate n− qα
qα+β if there is a

constant c > 0 with

kn ≥ c
(n

τ

) qα/δ
qα+β

for all n ≥ 1. Analogously, if we assume that ν± are geometrically α-mixing,
i.e. there is a constant c > 0 and δ, λ > 0 with

α±(k) ≤ c exp(−δkλ)

for all k ≥ 1 then we recover the learning rate n− qα
qα+β if there is a constant

c > 0 with

kn ≥
(

qα/δ

qα + β
· log(n/τ)

)1/λ

for all n ≥ 1. Note that geometrically α-mixing is stronger than polynomially
α-mixing, but also the restriction on kn is much weaker in the geometrical
case than in the polynomial case. Roughly speaking, the faster the decay
of the α-mixing coefficient the weaker the condition on kn.

Finally, note that if the feature set I = [ℓ], for ℓ ≥ 1, is a block, i.e. a
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grid of distance 1, then (5.11) implies

1
2k

≤ |Ik|
|I|

≤
ℓ−1

k + 1
ℓ

≤ 1
k

+ 1
ℓ

for k ≥ 1 and ℓ ≥ 2. Assuming that α(k0) = 0 for some k0 ≥ 1, we can
apply Lemma 5.4.3 for v = 1/(2k0) and k = k0 to get the polynomial
learning rate ( τ

n

) qα
qα+2k0β

.

This learning rate for P is worse than the rate for P̃ from Theorem 4.3.1.
Nevertheless, we get polynomial rates for both classification problems.

However, if ν± are α-mixing with α(k) > 0 for all k ≥ 1, we have to
choose k = kn → ∞ for n → ∞. Consequently, for every fixed 0 < v ≤ 1
there is some n0 ≥ 1 such that In = [ℓn] ̸∈ Ikn,v for all n ≥ n0. As a result,
Lemma 5.4.3 does not provide any consistency result or learning rate for the
simple reason that it only applies for finitely many n. This is in contrast
to the results in Section 5.2 and Section 5.3, where I = [ℓ] is a reasonable
choice for a feature set.
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Chapter 6

Discussion

In the first part of the thesis we provided a mathematical framework to
rigorously treat high-dimensional learning scenarios. Moreover, we used
this framework to investigate histograms on high-dimensional classification
problems. However, these are only small steps towards understanding
learning with high-dimensional data. Hence, we would like to draw attention
to the following research questions.

To achieve the learning rates presented in Section 4.3, we chose the hyper
parameters, i.e. the feature set I and radius r, based on parameters of
the learning scenario at hand. However, these parameters are unknown
in practical applications. So the question is, how to choose the hyper
parameters adaptively, i.e. without knowing the parameters of the learning
scenario. We conjecture that the classical cross-validation method is an
appropriate choice for the radius. However, there is an own research field
called feature selection for the feature set. It would be interesting to pair
a concrete feature selection method with our framework and analyze its
statistical properties.

The histogram method is probably the easiest learning algorithm to
analyze theoretically, but in practice it is rarely used. This raises the
question, how other learning methods, e.g. kernel methods, perform in the
high-dimensional scenarios of Chapter 4 and Chapter 5. For methods based
on Gaussian kernels, our investigations in Part II can possibly be useful.

Our developed framework in Chapter 2 and Chapter 3 indicates that
other learning goals, i.e. different loss functions, can be treated in the same
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way. We already presented some results for LS regression in Lemma 2.1.4,
Lemma 2.2.2, and Lemma 3.2.4. For regression problems in general an
important question is, what are appropriate regularity assumptions for the
Bayes function f∗

LS,P . Since f∗
LS,P is a function on an infinite-dimensional

space, there is no obvious choice. For example, there are various non-equiv-
alent generalizations of Sobolev differentiable functions in the literature,
see e.g. [12] and references therein. Another example is the classical Hölder
continuity, but even for this type of regularity assumption different possibly
non-equivalent metrics on X can be considered. Maybe a look into the
tractability literature, which deals with high- or infinite-dimensional nu-
merical problems, can give some inspiration for defining suitable regularity
assumptions, see e.g. [67] for an introduction to this topic.

In the remaining part of this section we briefly discuss further approaches
tackling high-dimensional learning problems:
One strand of research additionally assumes that the support of the data
generating distribution is concentrated on a low-dimensional set, i.e. the
learning problem is intrinsically low-dimensional. For various algorithms
this approach is able to replace, in the learning rate, the dimension d

of the ambient space X = Rd by the (fractal) dimension of the support
supp ν. For kernel estimators in combination with small ball probabilities
see e.g. [35, Section 13.3.1] and for Gaussian support vector machines
(SVMs) in combination with the (upper) box-counting dimension see e.g.
[44]. Moreover, the oracle inequalities in Lemma 1.3.1 and Lemma 1.3.2 in
combination with Lemma 1.3.8 show that histograms using cubic partitions
are capable to exploit a low intrinsic dimension as well.

Next, we compare our findings with those of the already mentioned book
[35] and the article [36], which belong to the field of functional data analysis
(FDA). To this end, we start with a brief overview of these contributions.
The authors of [35] and [36] consider pseudo-metric (there called semi-
metric) spaces as input space X. In [35], for a fixed input value x ∈ X,
pointwise convergence of various quantities of the conditional distribution
is proven. These results are improved to uniform convergence in [36].
The following common problem occurs in both contributions for infinite-
dimensional learning problems: As stated in [35, Section 13.3.2], most of
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the classical stochastic processes ν on X = Cb([0, 1]), equipped with the
uniform or the Lp-norm, are of exponential-type, see e.g. [35, Definition 13.4]
for the definition, and hence the learning rates decrease only logarithmically,
see e.g. [35, Proposition 13.5]. This fact is unsatisfactory from a statistical
point of view. To overcome this shortcoming, [35] and [36] suggest the
usage of a specially designed pseudo-metric on X of the form

d(x, x′) :=
( d∑

i=1
⟨x − x′, ei⟩2

X

)1/2
, (6.1)

where X is assumed to be a Hilbert space and (ei)i≥1 an ONS in X.
This pseudo-metric is called projections type pseudo-metric and depends
only on finitely many Fourier coefficients, see [35, Lemma 13.6 i)]. Under
some additional assumptions [35, Lemma 13.6 ii)], in combination with
[35, Proposition 13.2], provides polynomial learning rates if X is equipped
with the projections type pseudo-metric. However, in these additional
assumptions the Hölder continuity of f∗

LS,P : X → R is included and since
d(x, x + x′) = 0 for all x ∈ span{e1, . . . , ed} and x′ ⊥ {e1, . . . , ed} this
implies

f∗
LS,P (x + x′) = f∗

LS,P (x) . (6.2)

As a result, the considered Bayes function depends only on finitely many
Fourier coefficients with respect to the ONS (ei)i≥1. To summarize, the con-
siderations of [35, 36] lead to polynomial learning rates if the Bayes function
decision depends only on finitely many features or if the support supp ν has
a low-dimensional structure, as mentioned in the previous paragraph. Now,
we compare these results with ours. The projections type pseudo-metric
in (6.1) is closely related to our pull-back pseudo-metric defined in (2.10).
To be more precise, it is the pull-back pseudo-metric with respect to the
transformation s : X → ℓd

2 given by s(x) := (⟨x, ei⟩X)d
i=1. In contrast to

[35, 36], we consider a whole family of transformations and hence a family
of pull-back pseudo-metrics. More precisely, we treat the pseudo-metric as
a hyper parameter of our learning method. Since we consider a different
learning problem, namely classification instead of regression, and a different

145



Chapter 6 Discussion

algorithm, it is an open question if our approach can weaken the assumption
in (6.2), which is implicitly used in [35, 36] to get polynomial learning rates.

Another strand of research considers functional linear regression, i.e. the
LS Bayes function is of the form

f∗
LS,P (x) = a +

∫ T

0
β(t)x(t) dt = a + ⟨β, x⟩L2(λ) ,

for x ∈ X ⊆ L2(λ) with some function β ∈ L2(λ), see e.g. [16, 52] and refer-
ences therein as well as [86] for a generalization. For example [16] proves, for
a fixed input value x ∈ X, polynomial pointwise convergence of an algorithm,
which has access to the infinite-dimensional data under regularity assump-
tions on β, x, and the covariance kernel K(u, v) := Ex∼νx(u)x(v). Possibly,
our framework can be helpful to overcome the unrealistic assumption of
accessing the original infinite-dimensional data.

In [40], see also the related article [41], the authors consider a sequence
of learning problems (Pd)d≥1 on Rd × Y and the sequence (Hd)d≥1 of
hypothesis classes given by

Hd :=
{

(xi)d
i=1 7→ ρ

( d∑
i=1

xiβi

)
: βi ∈ R and

∣∣{i : βi ̸= 0}
∣∣ = kn

}

with a sequence kn = o
(
n/ log(n)

)
and a (measurable) function ρ : R → R.

Then for an ℓ1-regularized empirical risk minimizer (ERM) over Hn and
the sequence d = dn = nα, with some α > 1, convergences in probability of

RL,Pd
(fD) − R∗

L,Pd,Hd
→ 0

for n → ∞ is proven under some additional technical assumptions, see
[40, Theorem 2]. This type of convergence is called persistence, see [40,
Definition 1] for a definition, and is a weakened type of consistency, since
the Bayes risk R∗

L,P is replaced by the minimal risk R∗
L,Pd,Hd

over Hd.
Next, let us have a look at linear discriminant analysis, see e.g. [15,

Chapter 1] for an introduction to this topic. The most basic setting is a
classification problem Pd on Rd ×{±1}, where Pd is given by p+ = p− = 1/2

146



and two normal distributions νd,+ = N (µd,+, Σd) and νd,− = N (µd,−, Σd)
with a common covariance matrix Σd ∈ Rd×d and different mean vectors
µd,± ∈ Rd. In most contributions, see e.g. [7, 33], the assumption that
the distance between the mean vectors is bounded away from zero, i.e.
d(µd,+, µd,−) ≥ c > 0, plays an important role. Since the mean vectors
coincide (and are identical zero) in our prototypical example from Chapter 4
for qi = κi

1−κi
, i ≥ 1, this approach does not cover our results. Note that

the Mahalanobis distance

dΣd
(µd,+, µd,−) :=

〈
µd,+ − µd,−, Σ−1

d (µd,+ − µd,−)
〉

ℓd
2

and the Euclidean distance are popular distance measures for the discrepancy
of the mean vectors. The starting point of most contributions is Fisher’s
linear discriminant rule, which is the learning method that assigns the label
+1 to an unseen data point x ∈ Rd if

dΣ̂d
(x, µ̂d,+) ≤ dΣ̂d

(x, µ̂d,−) (6.3)

and otherwise the label −1. Here µ̂d,± and Σ̂d denote the sample versions
of the mean vectors and the covariance matrix. For fixed d ≥ 1 it is
well-known that Fisher’s linear discriminant rule is consistent, see e.g. [15,
Equation (3.4) in Chapter 1]. However, in [7, Theorem 1 (a)] it is shown
that in the so-called high-dimension low-sample-size (HDLSS) setting, i.e.
for d = dn with dn/n → ∞ as n → ∞, Fisher’s linear discriminant rule
performs asymptotically not better than guessing. For this reason, there
are various generalizations of Fisher’s linear discriminant rule addressing
this issue in the HDLSS setting. For example, in [7, Theorem 1 (b)] a
modification called independence rule or naive Bayes is investigated. In
this modification the off-diagonal entries of Σ̂d are set to zero in (6.3). In
this theorem it is proven that the independence rule performs better than
guessing if, in addition, the eigenvalues of Σd are bounded away from zero
and infinity and µd,± are contained in a compact subset of ℓ2. However,
this theorem provides consistency only if Σd is a multiple of the identity
matrix. Moreover, in [33] the authors combine the independence rule with
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a feature selection method and investigate the statistical properties of the
combined method. For further generalization see e.g. [2, 46, 47, 49] and
the references therein. Unfortunately, in most contributions there are no
learning rates provided.

Finally, we mention the so-called distribution regression. In this approach
we assume that P is a distribution on M1 × Y , i.e. the marginal ν is a
distribution on the set of probability distributions M1 on a measurable
space Z. However, the algorithm has only access to finitely many samples
z1, . . . , zN ∼ x of each data point x ∈ M1, see e.g. [80, 81, 65] and references
therein. This scenario can be applied to model high-dimensional learning
problems as follows: Let Z = [0, 1] × R be the product of the unit interval
and R. Then every data point x ∈ X itself defines a learning problem on
Z, with input space [0, 1] and output space R, and using the corresponding
LS Bayes function f∗

LS,x : [0, 1] → R the samples are given by zi = (ti, si)
with ti ∼ x ◦ π−1

[0,1] and
si = f∗

LS,x(ti) + εi ,

where εi is some error term for i = 1, . . . , N . In this regard, the samples can
be interpreted as noisy evaluations of the (random) function f∗

LS,x at random
points. This approach is more general than our framework since the mapping
from the infinite-dimensional object f∗

LS,x to the finite-dimensional object
(z1, . . . , zN ) ∈ ([0, 1] × R)N includes another source of randomness. But in
most contributions to this field the assumptions, which allow polynomial
learning rates, are very abstract such that an interpretation or verification
in a concrete example is a difficult task.

To sum it up, our prototypical example from Chapter 4 and its gener-
alizations from Chapter 5 contribute—to the best of our knowledge—new
polynomial learning rates to the field of high-dimensional classification.
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Part II

Gaussian Kernels

In this part we consider the probably most popular kernel used for kernel-
based learning methods, namely Gaussian kernels. For the statistical
analysis of such learning methods the capacity of the corresponding RKHSs
plays an important role. We provide some new bounds on the capacity of the
Gaussian RKHS using so-called log-covering numbers of its ℓ∞-embedding.
In Chapter 7 we set up our notation and provide some preparatory material.
Chapter 8 is based on the article [77], which establishes log-covering number
bounds for Gaussian RKHS over finite-dimensional domains. These bounds
provide the dependence on the kernel width and the dimension of the
underlying space explicitly. In Chapter 9 we generalize these log-covering
number bounds to some particular infinite-dimensional domains.





Chapter 7

Introduction and Preparation

In this chapter we introduce the notation and some preparatory material.

7.1 Definitions and Basic Properties
Since we consider Gaussian kernels on finite-dimensional as well as infinite-
dimensional spaces, we use a unifying notation covering both cases. To this
end, we consider sequences over an index set I ⊆ N and recall the definition
of the sequence space ℓp(I) := {x = (xi)i∈I ∈ RI : ∥x∥ℓ2(I) < ∞} with the
norm

∥x∥ℓ2(I) :=
(∑

i∈I

|xi|2
)1/2

and the closed unit ball Bℓ2(I). Using this notation for I = [d] and I = N we
get the finite-dimensional case ℓd

2 = ℓ2([d]) = Rd and the infinite-dimensional
case ℓ2 = ℓ2(N), respectively.

Next, for bounded sequences σ = (σi)i∈I ∈ ℓ∞(I) with σi > 0 for all
i ∈ I we define the diagonal operator Dσ : ℓ2(I) → ℓ2(I) by

Dσ(xi)i∈I = (σixi)i∈I .

Using this diagonal operator we define the (anisotropic) Gaussian kernel
on ℓ2(I) with width vector σ by

kσ(x, x′) := exp
(
−∥Dσx − Dσx′∥2

ℓ2(I)
)

,
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for x, x′ ∈ ℓ2(I). For a subset X ⊆ ℓ2(I), we denote the Gaussian kernel
restricted to X again by kσ and the corresponding Gaussian RKHS by
Hσ(X). For a general introduction to reproducing kernels and RKHSs see
e.g. [76, Chapter 4].

Since kσ(x, x) = 1 for all x ∈ X the Gaussian kernel is bounded and hence
the Gaussian RKHS Hσ(X) is a subset of the space ℓ∞(X) of bounded
functions on X. To be more precise, according to [76, Lemma 4.23] the
ℓ∞-embedding

Iσ[X] : Hσ(X) → ℓ∞(X), f 7→ f (7.1)

is a bounded operator with operator norm ∥Iσ[X]∥ = 1.
The goal of this part is to give bounds on the capacity of the Gaussian

RKHS Hσ(X) in terms of log-covering number bounds for the ℓ∞-embedding
Iσ[X]. To this end, recall that, for ε > 0, the covering number N (Iσ[X], ε)
is defined as the minimum number of closed ℓ∞(X)-balls of radius ε needed
to cover the closed unit ball BHσ(X) ⊆ ℓ∞(X) of the Gaussian RKHS
Hσ(X). Moreover, we denote log-covering numbers by

H
(
Iσ[X], ε

)
:= log N

(
Iσ[X], ε

)
,

see e.g. Appendix C for basic properties of (log-)covering numbers.
Finally, for a scalar σ > 0 we denote the (isotropic) Gaussian kernel on

ℓ2(I) of width σ by kσ := kσ with σ = (σ, σ, . . .). Analogously, we denote
the corresponding RKHS by Hσ(X) and the ℓ∞-embedding of the isotropic
Gaussian kernel on X ⊆ ℓ2(I) by Iσ[X].

7.2 Special Functions
In this section we introduce functions we use at several places. Especially,
we give a brief introduction to a generalization of the binomial coefficient
and Lambert’s W -function. To this end, recall that for f, g defined in some
neighborhood of a ∈ R∪ {±∞} we write f(t) ∼ g(t) as t → a for the strong
asymptotic equivalence, i.e. if f(t)/g(t) → 1 for t → a.
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For t > 0 and k ∈ N, we define the generalized binomial coefficient by

(
t

k

)
:= 1

k!

k∏
i=1

(t − k + i) .

Note that this definition coincides with the classical definition for t ∈ N. In
the following generalized binomial coefficients mainly appear, for d ∈ N and
t > 0, in the form (

t + d

d

)
= 1

d!

d∏
i=1

(t + i) . (7.2)

For the first lemma, which summarizes important monotonicity properties
of (7.2), we use the Gamma function Γ(t) :=

∫ ∞
0 xt−1e−x dx for t > 0.

7.2.1 Lemma (Binomial Coefficient) For an integer d ≥ 1 and a real number
t > 0 the (generalized) binomial coefficient from (7.2) satisfies(

t + d

d

)
= Γ(t + d + 1)

Γ(t + 1)Γ(d + 1) .

Moreover, the following statements are true:

(i) For a fixed d ≥ 1 the function t 7→
(

t+d
d

)
is increasing and the function

t 7→
(

t+d
d

)
t−d is decreasing with

(
t+d

d

)
t−d → 1/d! for t → ∞.

(ii) For a fixed t > 0 the sequence d 7→
(

t+d
d

)
is increasing and the

sequence d 7→
(

t+d
d

)
d−t is decreasing with

(
t+d

d

)
d−t → 1/Γ(t + 1) for

d → ∞.

Using the notion of strong asymptotic equivalence this lemma states(
t + d

d

)
∼ td

d! for t → ∞ and(
t + d

d

)
∼ dt

Γ(t + 1) for d → ∞ .

(7.3)

Proof. First note that Γ(d + 1) = d! and an d-fold application of Γ(t + 1) =

153



Chapter 7 Introduction and Preparation

t · Γ(t) gives us the first assertion, namely

(
t + d

d

)
= 1

d!

d∏
i=1

(t + i) =
Γ(t + 1)

∏d
i=1(t + i)

Γ(d + 1)Γ(t + 1) = Γ(d + t + 1)
Γ(d + 1)Γ(t + 1) .

(i) From (7.2) we directly see that t 7→
(

t+d
d

)
is increasing and that

t 7→
(

t+d
d

)
t−d is decreasing with limit 1/d! .

(ii) Since t+(d+1)
d+1 > 1 and(

t + (d + 1)
d + 1

)
=

(
t + d

d

)
· t + (d + 1)

d + 1 ,

the sequence d 7→
(

t+d
d

)
is increasing. In the following we use the abbrevi-

ation ad :=
(

t+d
d

)
· d−t for d ≥ 1. A well-known property of the Gamma

function is ad → 1/Γ(t + 1) for d → ∞, see e.g. [72, Equation (95)]. Hence
it remains to show the monotonicity of (ad)d≥1. Since

ad+1 = Γ(d + t + 2)
Γ(d + 2)Γ(t + 1)(d + 1)−t = ad ·

( d

d + 1

)t

· d + t + 1
d + 1 ,

(ad)d≥1 is decreasing if and only if d+t+1
d+1 < ( d+1

d )t is satisfied for all d ≥ 1
and t > 0. In order to prove this we fix some d ≥ 1 and show that

fd(t) :=
(

1 + 1
d

)t

−
(

1 + t

d + 1

)
> 0

is satisfied for all t > 0. To this end, we calculate the derivatives

f ′
d(t) =

(
1 + 1

d

)t

log
(

1 + 1
d

)
− 1

d + 1 and

f ′′
d (t) =

(
1 + 1

d

)t

log2
(

1 + 1
d

)
.

Using log(1 + x) ≥ x
1+x , which holds for all x > −1, for x = 1/d we get

f ′
d(0) = log

(
1 + 1

d

)
− 1

d + 1 ≥ 1/d

1 + 1/d
− 1

d + 1 = 0 .
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Together with f ′′
d (t) > 0 we get f ′

d(t) > 0 for all t > 0. Finally, fd(0) = 0
and f ′

d(t) > 0 gives fd(t) > 0 for all t > 0 and hence the assertion is
proven.

The next lemma demonstrates our general approach to establish explicit
bounds for the binomial coefficient.

7.2.2 Lemma (Bound for the Binomial Coefficient) Let f, h : I → (0, ∞)
be functions defined on some interval I ⊆ R with f(ε) ≥ t0 and h(ε) ≤ f(ε)
for all ε ∈ I then the binomial coefficient satisfies, for ε ∈ I,(

h(ε) + d

d

)
≤

(
t0 + d

d

)
·
(

f(ε)
t0

)d

.

Proof. In order to prove this statement we use the auxiliary function
ad(t) : (0, ∞) → (0, ∞) defined by

ad(t) :=
(

t + d

d

)
· t−d = 1

d!

d∏
i=1

(1 + i/t) .

Since t 7→
(

t+d
d

)
is increasing and t 7→ ad(t) is decreasing we get(

h(ε) + d

d

)
≤

(
f(ε) + d

d

)
= ad(f(ε)) · fd(ε) ≤ ad(t0) · fd(ε)

for all ε ∈ I, which gives the assertion.

Now, we give a brief introduction to Lambert’s W -function, which is defined
as the inverse of the function f(t) := tet. To be more precise, the function f

is not bijective on R but, it is bijective as function f0 := f |[−1,∞) : [−1, ∞) →
[−1/e, ∞) as well as function f−1 := f |(−∞,−1] : (−∞, −1] → [−1/e, 0).
Consequently, Lambert’s W -function consists of two branches, namely

W0 := f−1
0 : [−1/e, ∞) → [−1, ∞) and

W−1 := f−1
−1 : [−1/e, 0) → (−∞, −1]
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−1

1 W0

W−1

Figure 7.1: Plot of f0 and f−1 on the left as well as plot of W0 and W−1
on the right.

Note that for complex arguments there are even more branches, but we are
only interested in real arguments. See Figure 7.1 for a plot of Lambert’s
W -function. The following lemma summarizes basic properties of W0.

7.2.3 Lemma (Lambert’s W0-Function) Lambert’s W0-function is differen-
tiable on the interval (−1/e, ∞) with derivative

W ′
0(x) =

exp
(
−W0(x)

)
1 + W0(x)

x̸=0= W0(x)
x

(
1 + W0(x)

) .

Moreover, the following statements are true:

(i) W0 is increasing.

(ii) W0(yey) = y for y ≥ −1.

(iii) W0(x)eW0(x) = x for x ≥ −1/e.

(iv) W0(0) = 0 and W (x) > 0 for x > 0.

(v) W0(x) ∼ log(x) for x → ∞.

Proof. First note, that f0 is differentiable on [−1, ∞) with derivative f ′
0(y) =

ey(1 + y). Consequently, f0 is increasing on [−1, ∞) and hence the inverse
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f−1
0 exists on f0([−1, ∞)) = [−1/e, ∞). In other words, W0 is well-defined.

Moreover, the monotonicity of f0 already implies Point (i). Point (ii) and (iii)
are explicit descriptions of the fact that W0 is the inverse of f0. Moreover,
f ′

0 > 0 on (−1, ∞) implies that W0 is differentiable with derivative

W ′
0(x) = 1

f ′
0
(
W0(x)

) =
exp

(
−W0(x)

)
1 + W0(x)

for all x > −1/e. For x ̸= 0 an application of Point (iii) yields the second
representation of the derivative. Point (iv) follows from f0(0) = 0 and
f0(y) > 0 for y > 0. Finally, an application of L’Hôpital’s rule

lim
x→∞

W0(x)
log(x) = lim

x→∞

W ′
0(x)

log′(x)
= lim

x→∞

W0(x)
1 + W0(x) = 1

gives Point (v).

Analogously to the previous lemma, the next lemma summarizes basic
properties of W−1.

7.2.4 Lemma (Lambert’s W−1-Function) Lambert’s W−1-function is dif-
ferentiable on the interval (−1/e, 0) with derivative

W ′
−1(x) =

exp
(
−W−1(x)

)
1 + W−1(x) = W−1(x)

x
(
1 + W−1(x)

) .

Moreover, the following statements are true:

(i) W−1 is decreasing.

(ii) W−1(yey) = y for y ≤ −1.

(iii) W−1(x)eW−1(x) = x for −1/e ≤ x < 0.

(iv) W−1(−x) ∼ log(x) for x → 0+.

Proof. This can be proven analogously to Lemma 7.2.3.

The next lemma presents an explicit bound comparing W0 with a scaled
version of the logarithm.
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7.2.5 Lemma (Lambert’s W0-function vs. Logarithm) For σ > 0 let t∗ :=
σ−2 exp(σ−2) and qσ : (0, ∞) → R be given by

qσ(t) := log(t · eσ2)
W0(t) .

Then qσ is increasing on (0, t∗] and decreasing on [t∗, ∞). Moreover, qσ

has a unique global maximum at t∗ with qσ(t∗) = 1 + σ2 and we have
limt→∞ qσ(t) = 1.

Proof. A simple but tedious calculation shows

q′
σ(t) = W0(t) − log(tσ2)

t · W0(t) ·
(
1 + W0(t)

) .

Since the denominator is positive for all t > 0 we can focus on the numerator
in order to investigate the monotonicity properties of qσ. Consequently, qσ

is decreasing, if and only if W0(t) < log(tσ2) and this is equivalent to

t = W0(t)eW0(t) < log(tσ2) · exp ◦ log(tσ2) = tσ2 log(tσ2) .

Rearranging this inequality for t shows that qσ is decreasing on [t∗, ∞).
Analogously, we get that qσ is increasing on (0, t∗] and that qσ has a unique
global maximum at t∗. Since W0(t∗) = σ−2 and log(t∗) = − log(σ2) + σ−2

we find qσ(t∗) = 1 + σ2. Finally, limt→∞ qσ(t) = 1 directly follows from
W0(t) ∼ log(t) for t → ∞, see Point (v) of Lemma 7.2.3.

In the following lemma we use Lambert’s W -function to introduce important
functions that appear in our log-covering number bounds.

7.2.6 Lemma (Auxiliary Functions) For σ > 0, x > 0, y ≥ −σ2,

pσ(x) := 2
(

2eσ2

x

)x/2
, and hσ(y) := 2eσ2 exp

(
W0

( y

eσ2

))
the following statements are true:
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(i) The function pσ : (0, ∞) → (0, ∞) is decreasing on (2σ2, ∞) and
pσ(x) → 0 for x → ∞.

(ii) The function hσ : [−σ2, ∞) → [2σ2, ∞) is increasing and satisfies

hσ(y) = 2y

W0
(

y
eσ2

) . (7.4)

(iii) The function pσ :
[
2σ2, ∞

)
→

(
0, 2 exp(σ2)

]
is bijective with inverse

p−1
σ given by

p−1
σ (ε) = hσ ◦ log(2/ε) .

Proof. (i) Some tedious calculations show that the derivative of pσ, for
x > 0, is given by

p′
σ(x) = pσ(x)

2 log
(

2σ2

x

)
.

From this identity for the derivative of pσ the first assertion immediately
follows. The second assertion is obvious.

(ii) The monotonicity of hσ is a consequence of the monotonicity of W0

and the definition of the function hσ. Moreover, (7.4) follows from the
identity W0(x) exp(W0(x)) = x.

(iii) By Point (i) we already know that pσ :
[
2σ2, ∞

)
→

(
0, 2 exp(σ2)

]
is

bijective. To verify the formula for p−1
σ , we fix some 0 < ε ≤ 2 exp(σ2) and

write y := log(2/ε). This immediately gives y ≥ −σ2 and by the definition
of hσ we find

pσ ◦hσ(y) = 2
(

2eσ2

hσ(y)

)hσ(y)/2
= 2 exp

(
−W0

( y

eσ2

)
· hσ(y)

2

)
= 2e−y = ε ,

i.e. we have shown the assertion.

Finally, the function considered in the next lemma appears at several places
of Section 8.2.
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7.2.7 Lemma Let t∗ := e and the function β : (1, ∞) → (0, ∞) be defined by

β(t) := t

log(t) .

Then β is decreasing on (1, t∗] and increasing on [t∗, ∞). Moreover, β has
a unique global minimum at t∗ with β(t∗) = e

Proof. Since the derivative of β equals

β′(t) = log(t) − 1
log2(t)

,

the assertion directly follows.
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Chapter 8

Gaussian Kernels on
Finite-Dimensional Spaces

In this chapter we consider Gaussian RKHSs Hσ(X) on bounded subsets
X ⊆ Rd of the finite-dimensional space Rd. To be more precise, we provide
bounds on the log-covering number for the ℓ∞-embedding Iσ[X] of the
Gaussian RKHS Hσ(X) defined in (7.1). Unlike previous results in this
direction we focus on small explicit constants as well as their dependence
on crucial parameters such as the kernel width and the size and dimension
of the underlying space. The content of this chapter is mainly taken from
the article:

I. Steinwart and S. Fischer. A closer look at covering number bounds
for Gaussian kernels. J. Complexity, 62:101513, 2021.

8.1 A closer Look at Kühn’s Proof
In this section we essentially repeat the key arguments of [59, Theorem 3]
on the input space X = Bℓd

2
instead of X = [0, 1]d. Moreover, in contrast

to [59, Theorem 3] we precisely keep track of the appearing constants.
Throughout this section the domain X := Bℓd

2
⊆ Rd is fixed, and hence

we simply write Iσ for the embedding Iσ[Bℓd
2
] : Hσ(Bℓd

2
) → ℓ∞(Bℓd

2
). Our

first result provides a general estimate for the log-covering numbers of Iσ.
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8.1.1 Lemma (Kühn’s Bound) For σ, ε > 0 and integers N ≥ 1 the following
bound is satisfied

H
(

Iσ, ε +
√

(2σ2)N

N !

)
≤

(
N − 1 + d

d

)
· log(1 + 2/ε) .

Proof. For fixed σ > 0, ε > 0, and N ≥ 1 we define

ε0 :=
√

(2σ2)N

N ! .

In order to repeat the argument of [59, Theorem 3], we begin by recalling
some notation: For every multi-index k = (k1, . . . , kd) ∈ Nd

0 we define the
function ek : Bℓd

2
→ R by

ek(x) :=
√

(2σ2)|k|

k! xk exp
(
−σ2∥x∥2

ℓd
2

)
where we use |k| := k1 + . . . + kd, k! := k1! · . . . · kd!, and xk := xk1

1 · . . . · xkd

d

for x = (x1, . . . , xd) ∈ Bℓd
2
. Since Bℓd

2
has a non-empty interior, the

family of functions (ek)k∈Nd
0

forms an ONB of Hσ(Bℓd
2
) according to [76,

Theorem 4.42]. Using this ONB we now consider, for N ≥ 1, the orthogonal
projections PN , QN : Hσ(Bℓd

2
) → Hσ(Bℓd

2
) onto span

{
ek : |k| < N

}
and

span
{

ek : |k| ≥ N
}

, respectively. From the first equation on page 494 of
[59] we know

∥Iσ ◦ QN ∥ ≤ sup
x∈Bℓd

2

√(
2σ2∥x∥2

ℓd
2

)N

N ! =
√

(2σ2)N

N ! = ε0 . (8.1)

Using (C.3), Point (vi) of Lemma C.9, and ∥Iσ ◦ PN ∥ = 1 we find

H
(
Iσ, ε + ε0

)
= H

(
Iσ ◦ PN + Iσ ◦ QN , ε + ε0

)
≤ H

(
Iσ ◦ PN , ε

)
≤ rank(PN ) log(1 + 2/ε) .
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Together with the formula

rank(PN ) =
(

N − 1 + d

d

)
,

which was derived in [59, Remark 4], we thus obtain the assertion.

Our next goal is to find suitable values of N ≥ 1 for the bound established
in Lemma 8.1.1. To this end, we use the functions pσ and hσ introduced in
Lemma 7.2.6.

8.1.2 Lemma (Log-Covering Number Bound) For σ > 0 and 0 < ε ≤ 1,
the following bound is satisfied

H(Iσ, ε) ≤
(

(hσ ◦ log)(4/ε) + d

d

)
· log(4/ε) .

This lemma is the basis for all log-covering number bounds presented in
Chapter 8 as well as Chapter 9 below.

Proof. For a fixed 0 < ε ≤ 1 we write y := log(4/ε) and x := hσ(y). Since
y > 1 holds true, we have x > 2σ2 > 0, and hence there is a unique integer
N ≥ 1 with N − 1 < x ≤ N . Using Lemma 8.1.1 with 2ε/3 instead of ε,
the monotonicity of t 7→

(
t+d

d

)
, and 1 ≤ 1/ε we find

H
(

Iσ,
2ε

3 +
√

(2σ2)N

N !

)
≤

(
N − 1 + d

d

)
· log(1 + 3/ε)

≤
(

x + d

d

)
· log(4/ε) .

Consequently, it remains to show that
√

(2σ2)N /N ! ≤ ε/3 holds true. To
this end, we use Stirling’s formula N ! ≥

√
2πN (N/e)N to get√

(2σ2)N

N ! ≤ 1
(2πN)1/4 ·

(
2eσ2

N

)N/2
≤ pσ(N)

2(2π)1/4 .

Moreover, the already observed x > 2σ2 together with Point (i) and (iii) of
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Lemma 7.2.6 yields

pσ(N) ≤ pσ(x) = pσ

(
hσ(y)

)
= pσ

(
hσ ◦ log(4/ε)

)
= ε/2 .

Combining both estimates and (2π)−1/4 ≤ 4/3 we get the assertion.

Note that by an easy adaption of the above proof we can replace the
4 in y = log(4/ε) by γ = 7/2 if we choose 4ε/5 instead of 2ε/3 and use
the bound (2π)−1/4 ≈ 0.6316 ≤ 7/10. Moreover, some tedious calculations
show that the argument still works for

γ := 3(2π)1/4 + 1 +
√

9(2π)1/2 + 2(2π)1/4 + 1
2(2π)1/4 ≈ 3.4485 .

Since these improvements have little impact we stick to γ = 4 for conve-
nience.

8.2 Isotropic Gaussian Kernels on Bℓd
2

In this section we exploit the log-covering number bound from Lemma 8.1.2
to derive further bounds which are (probably) easier to interpret. Recall that
Lemma 8.1.2 is valid for the domain X = Bℓd

2
and isotropic Gaussian kernels

with width σ > 0. Moreover, we use again the abbreviation Iσ := Iσ[Bℓd
2
]

in the proofs.

8.2.1 Theorem For d ≥ 1, σ > 0, 0 < ε ≤ 1, and

Kd,σ :=
(

2e(1 + σ2) + d

d

)
· e−d

the following log-covering number bound is satisfied

H
(
Iσ[Bℓd

2
], ε

)
≤ Kd,σ · logd+1(4/ε)

log logd(4/ε)
.

Note that this result recovers the asymptotic behavior of ε 7→ H
(
Iσ[Bℓd

2
], ε

)
found by Kühn in [59], which in turn improves the upper bound of [87,
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2

Proposition 1]. Moreover, by presenting a corresponding lower bound on the
log-covering numbers, [59] further shows that this behavior in ε is optimal
and hence improves the lower bound of [88, Proposition 1]. Unlike the
upper bound in [59], however, Theorem 8.2.1 provides an upper bound for
the behavior in σ and d that is expressed by the constant Kd,σ.

Proof. Let us define ε0 := 1 and y0 := log(4/ε0). For 0 < ε ≤ ε0 we
further write y := log(4/ε) ≥ y0 > 1. Moreover, recall the representation of
hσ(y) = 2y/W0

(
y

eσ2

)
in Lemma 7.2.6. An application of Lemma 7.2.5 then

yields

(hσ ◦ log)(4/ε) = 2y

W0
(

y
eσ2

)
= 2y

log(y) ·
log

(
y

eσ2 · eσ2)
W0

(
y

eσ2

)
≤ 2 (1 + σ2) · y

log(y) =: f(ε)

for all 0 < ε ≤ ε0. According to Lemma 7.2.7 we have y/ log(y) ≥ e and
hence we get f(ε) ≥ 2e(1 + σ2) =: t0. Finally, combining Lemma 8.1.2 and
Lemma 7.2.2 for h = (hσ ◦ log)(4/ · ) gives the assertion.

To better understand the behavior of the constant Kd,σ defined in The-
orem 8.2.1 we fix some σ > 0 and consider its asymptotic behavior for
d → ∞. From (7.3) we get

Kd,σ =
(

2e(1 + σ2) + d

d

)
· e−d ∼ d2e(1+σ2)

Γ(2e(1 + σ2) + 1) · e−d

for d → ∞. Moreover, the monotonicity properties of the binomial coefficient
presented in Lemma 7.2.1 gives the upper bound

Kd,σ ≤ Cd0,σ · d2e(1+σ2)e−d with

Cd0,σ :=
(

2e(1 + σ2) + d0

d0

)
· d

−2e(1+σ2)
0 (8.2)
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for all d ≥ d0 ≥ 1. Note that the smaller the range of d, i.e. the larger d0, the
smaller the constant Cd0,σ. In the case σ = 1, which is of special interest in
Section 8.4 below, we have C1,1 = 4e+1 ≈ 11.8731 and C2,1 ≈ 0.0407 ≤ 0.05,
i.e. for d ≥ 2 we have

Kd,1 ≤ C2,1 · d4ee−d ≤ 0.05 · d4ee−d .

For a plot of d 7→ Kd,1 see Figure 8.1.
Now, let us consider the behavior of Kd,σ in σ for some fixed d ≥ 1. To

this end, we first observe that (7.3) gives

Kd,σ =
(

2e(1 + σ2) + d

d

)
· e−d ∼

(
2e(1 + σ2)

)d

d! · e−d ∼ 2d

d! · σ2d

for σ → ∞. Consequently the constant Kd,σ grows like σ2d for σ → ∞.
This improves the bound in [87, Proposition 1], which provides an σ2d+2-
behavior. However, in Section 8.4 below we will see that we can find
another constant for the estimate of Theorem 8.2.1 that only grows like
σd for σ → ∞. Moreover, Kd,σ is increasing in σ and the representation
of the binomial coefficient in (7.2) directly gives, for all σ > 0 satisfying
2e(1 + σ2) ≥ d, the bounds

2d

d!
(
1 + σ2)d ≤ Kd,σ ≤ 4d

d!
(
1 + σ2)d

. (8.3)

Our next goal is to show that the constant in Theorem 8.2.1 is significantly
influenced by the considered range of ε. More precisely, Theorem 8.2.1
considers the maximal range 0 < ε ≤ 1, since we have ∥Iσ[Bℓd

2
]∥ = 1, and

thus Point (ii) of Lemma C.9 gives

H
(
Iσ[Bℓd

2
], ε

)
= 0

for all ε ≥ 1. Our next theorem shows that by considering a smaller range
for ε, we can substantially decrease the constant appearing in the estimate
of Theorem 8.2.1.
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Figure 8.1: Plot of Kd,1 from Theorem 8.2.1 and Kd,1,ε0 from Theorem 8.2.2
for different values of ε0 as well as in the limit case ε0 → 0+

from (8.4).

8.2.2 Theorem (Small ε-Range) For d ≥ 1, σ > 0, and 0 < ε0 ≤ 4 ·
exp

(
−e1+σ−2)

consider y0 := log(4/ε0), x0 := 2y0/W0
(

y0
eσ2

)
, and

Kd,σ,ε0 :=
(

x0 + d

d

)
·
(

log(y0)
y0

)d

.

Then the following log-covering number bound is satisfied, for 0 < ε ≤ ε0,

H
(
Iσ[Bℓd

2
], ε

)
≤ Kd,σ,ε0 · logd+1(4/ε)

log logd(4/ε)
.

Proof. For 0 < ε ≤ ε0 we write y := log(4/ε) ≥ y0. Note that the restriction
on ε0 ensures y0 ≥ exp

(
1 + σ−2)

and hence y0
eσ2 ≥ σ−2 exp

(
σ−2)

. As a
consequence, the function y 7→ log(y)/W0

(
y

eσ2

)
is decreasing on [y0, ∞)

according to Lemma 7.2.5 and we get

(hσ ◦ log)(4/ε) = 2 log(y)
W0

(
y

eσ2

) · y

log(y) ≤ 2 log(y0)
W0

(
y0

eσ2

) · y

log(y) =: f(ε) .

Now, from Lemma 7.2.7 we know that the function β(t) = t/ log(t) is
increasing on [e, ∞) and the already observed y0 ≥ exp

(
1 + σ−2)

> e gives
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us
f(ε) ≥ 2 log(y0)

W0
(

y0
eσ2

) · y0

log(y0) = 2y0

W0
(

y0
eσ2

) = x0

for all 0 < ε ≤ ε0. Finally, combining Lemma 8.1.2 and Lemma 7.2.2 for
h = (hσ ◦ log)(4/ · ) and t0 = x0 gives the assertion.

To appreciate Theorem 8.2.2 we note that for ε0 → 0+ we have y0 → ∞
and x0 → ∞. Since

(
t+d

d

)
∼ td/d! and W0(t) ∼ log(t) for t → ∞, see

Lemma 7.2.1 and Lemma 7.2.3, respectively, we find

lim
ε0→0+

Kd,σ,ε0 = lim
ε0→0+

(
x0 + d

d

)
· x−d

0 ·
(

2 log(y0)
W0

(
y0

eσ2

))d

= 2d

d! . (8.4)

This sharpens the result of [59, Remark 4] by a factor of approximately√
2πd. For fixed σ > 0 and 0 < ε0 ≤ 4 exp

(
− e1+σ−2)

the quantity Kd,σ,ε0

behaves like

Kd,σ,ε0 ∼ dx0

Γ(x0 + 1) ·
(

log(y0)
y0

)d

for d → ∞. Since log(y0)/y0 < e−1 is satisfied according to Lemma 7.2.7,
the quantity Kd,σ,ε0 vanishes faster than the quantity Kd,σ of Theorem 8.2.1
for d → ∞. Finally, note that, for σ = 1 and ε0 := 4 exp(−e2) ≈ 0.0025, we
have y0 = e2 and x0 = 2e2. Using the monotonicity of d 7→

(
x0+d

d

)
d−x0 we

find, for d ≥ 1,

Kd,1,ε0 ≤ (1 + 2e2) · d2e2
· (2/e2)d ≤ 16 · d2e2

· (2/e2)d .

For a plot of d 7→ Kd,1,ε0 for different values of ε0 see Figure 8.1.
For some applications, see e.g. [84, 34], it is sufficient and more convenient

to work with a weaker bound in ε, namely a polynomial bound in ε. For
this reason, the following theorem establishes a polynomial upper bound
with an explicit constant.
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8.2.3 Theorem (Polynomial Bound) For d ≥ 1, σ > 0, and p > 0 consider

Kd,σ,p :=
(

t0 + d

d

)
· d + 1

ep
· 4

p
d+1 with

t0 := 2(d + 1) · 4
p

d+1

ep · W0
(

d+1
pσ2

) exp
(

1
W0

(
d+1
pσ2

))
.

Then the following log-covering number bound is satisfied, for 0 < ε ≤ 1,

H
(
Iσ[Bℓd

2
], ε

)
≤ Kd,σ,p · ε−p .

Proof. For 0 < ε ≤ 1 we again write y := log(4/ε) ≥ log(4). In order to give
a polynomial upper bound for H(Iσ, ε) we use Lemma 8.1.2 and estimate
the two factors,

(
hσ(y)+d

d

)
and y = log(4/ε), appearing in Lemma 8.1.2,

separately by a polynomial bound. To bound the first factor we fix q1 > 0
and define the function

g1(t) := 2 te−q1t

W0
(

t
eσ2

)
for t > 0. Using e−q1y = (4/ε)−q1 we then get

(hσ ◦ log)(4/ε) = 2y

W0
(

y
eσ2

)(4
ε

)−q1
·
(4

ε

)q1
≤

(4
ε

)q1
sup
t>0

g1(t) =: f(ε)

and f(ε) ≥ 4q1 · supt>0 g1(t) =: t1. A simple but tedious calculation shows

g′
1(t) = g1(t)

1 + W0
(

t
eσ2

)(
σ−2 exp

(
−

(
1+W0

( t

eσ2

)))
−q1

(
1+W0

( t

eσ2

)))
.

Another tedious calculation shows that g1 has a unique global maximum at

t∗ := 1
q1

(
1 − 1

W0
( 1

q1σ2

))
.
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Using t/W0(t) = exp
(
W0(t)

)
for t = 1

q1σ2 we find

t∗ =
(

W0

( 1
q1σ2

)
− 1

)
· 1/q1

W0
( 1

q1σ2

)
= σ2 ·

(
W0

( 1
q1σ2

)
− 1

)
· exp ◦W0

( 1
q1σ2

)
.

This representation together with W0(xex) = x for x = W0
( 1

q1σ2

)
−1 implies

t∗

W0
(

t∗

eσ2

) = t∗

W0
( 1

q1σ2

)
− 1

= 1
q1 · W0

( 1
q1σ2

) .

Using this identity we directly get

t1 = 4q1g1(t∗) = 2 · 4q1 · e−q1t∗

q1 · W0
( 1

q1σ2

)
= 2 · 4q1

eq1 · W0
( 1

q1σ2

) exp
(

1/W0

( 1
q1σ2

))
and Lemma 7.2.2 for h = (hσ ◦ log)(4/ · ) and t0 = t1 gives us(

(hσ ◦ log)(4/ε) + d

d

)
≤

(
t1 + d

d

)
·
(

f(ε)
t1

)d

=
(

t1 + d

d

)
· 4−q1d · (4/ε)q1d .

(8.5)

Now, we estimate the second factor y = log(4/ε) by a polynomial bound
of order q2 > 0. To this end, we define the function g2(t) := te−q2t, for
t > 0, and estimate

y = (4/ε)q2 · y · (4/ε)−q2 ≤ (4/ε)q2 · sup
t>0

g2(t) .

An easy calculation shows that the derivative of g2 is given by g′
2(t) =

g2(t) · (1/t − q2) and consequently g2 has a global maximum at t∗ := 1/q2
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with g2(t∗) = 1
eq2

. Therefore, we get

y ≤ (4/ε)q2

eq2
. (8.6)

Finally, combining Lemma 8.1.2 with (8.5) and (8.6) yields

H(Iσ, ε) ≤
(

t1 + d

d

)
· 1

eq2 · 4q1d
· (4/ε)q1d+q2 ,

and for q1 = q2 = p
d+1 we find t1 = t0 as well as the claimed bound.

Since we do not directly see the behavior of Kd,σ,p in d, the next lemma
shows that Kd,σ,p grows more slowly than any exponential function in d,
i.e. for all a > 0 we have Kd,σ,p · e−ad → 0 for d → ∞.

8.2.4 Lemma For σ, p > 0 there are constants cσ,p, Cσ,p > 0 such that
Kd,σ,p defined in Theorem 8.2.3 satisfies, for d ≥ 1,

Kd,σ,p ≤ Cσ,p ·
√

d log(d) · exp
(

cσ,p · d · log log(d)
log(d)

)
.

Proof. Using W0(t) ∼ log(t) from Lemma 7.2.3 we get, for d → ∞,

t0 = 2(d + 1) · 4
p

d+1

ep · W0
(

d+1
pσ2

) exp
(

1
W0

(
d+1
pσ2

))
≍ d

W0
(

d+1
pσ2

) ≍ d

log( d+1
pσ2 )

≍ d

log(d) .

Since t0 → ∞ for d → ∞, Lemma 7.2.1 together with Stirling’s formula
Γ(t + 1) ∼

√
2πt (t/e)t yields(

t0 + d

d

)
= Γ(t0 + d + 1)

Γ(t0 + 1)Γ(d + 1) ≍
( 1

t0
+ 1

d

)1/2(
1 + t0

d

)d(
1 + d

t0

)t0

for d → ∞. Using the inequality 1 + t ≤ et, which holds for all t ∈ R, for
t = t0/d we get (

t0 + d

d

)
≼

√
log(d)

d
· et0 · (1 + d/t0)t0
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for d → ∞. Consequently, we find a constant Cσ,p > 0 with

Kd,σ,p =
(

t0 + d

d

)
· d + 1

ep
·4

p
d+1 ≤ Cσ,p ·

√
d log(d) ·exp

(
t0 · log

(
e+e

d

t0

))
.

Since the exponent behaves like

t0 · log
(

e + e
d

t0

)
≍ d

log(d) · log
(

e + e log(d)
)

≍ d · log log(d)
log(d)

for d → ∞, there is a constant cσ,p > 0 independent of d with the desired
property.

The next lemma establishes a bound on Kd,σ,p in d and p for fixed σ = 1.

8.2.5 Lemma For 0 < p0 ≤ 1/e and σ = 1 the quantity Kd,σ,p defined in
Theorem 8.2.3 satisfies, for 0 < p ≤ p0 and d ≥ 1,

Kd,1,p ≤ 1/2 · Cd
p0 ·

√
d · (1/p)d+1

logd(1/p)
,

where Cp0 is given by

Cp0 := ep0 · log(1/p0) + (2 + 1/e)21+p0 exp
(

1
W0(2/p0)

)
.

For fixed p, this bound is weaker in d than the bound in Lemma 8.2.4.
However, this bound provides the dependence on p explicitly. In particular,
Cp0 only depends on p0, and for p0 := 1/e we find Cp0 ≈ 13.6481. In
addition, Cp0 converges to 4 + 2/e ≈ 4.7358 for p0 → 0+.

Moreover, this lemma shows that Theorem 8.2.3 with p = 1/ log(4/ε)
recovers the optimal behavior of ε 7→ H(I1[Bℓd

2
], ε) for ε → 0+ from Theo-

rem 8.2.1 and Theorem 8.2.2 in the case σ = 1.

Proof. As a first step we bound t0 defined in Theorem 8.2.3. To this end,
we write

g(p0) := 21+p0 · exp
(

1
W0(2/p0)

)
· (2 + 1/e) ≥ 4
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and bound W0 by log with the help of Lemma 7.2.5, that is

log(1/p)
W0

(
d+1

p

) =
log

(
d+1

p · e 1
(d+1)e

)
W0

(
d+1

p

) ≤ 1 + 1
(d + 1)e ≤ d · 2 + 1/e

d + 1 ,

where we used d + 1 ≤ 2d in the last step. Since p ≤ p0 and d ≥ 1 hold
true, we have 4

p
d+1 ≤ 2p0 and together we find

t0 = 2(d + 1) · 4
p

d+1

ep · W0
(

d+1
p

) exp
(

1
W0

(
d+1

p

))
≤ g(p0)

e
· d · 1/p

log(1/p) =: f(p) .

Since β(t) = t/ log(t) is increasing on [e, ∞) according to Lemma 7.2.7 and
1/p ≥ 1/p0 ≥ e holds true, we get f(p) ≥ f(p0) = g(p0)/e · d · z0, where

z0 := 1/p0

log(1/p0) .

Then Lemma 7.2.2 for h = t0 and t0 = f(p0) = g(p0)/e · d · z0 together with
the already observed bounds, d + 1 ≤ 2d and 4

p
d+1 ≤ 2p0 , yields

Kd,1,p =
(

t0 + d

d

)
· d + 1

ep
· 4

p
d+1

≤
(

f(p0) + d

d

)
·
(

f(p)
f(p0)

)d

· d · 21+p0

e
· 1/p

=
(

f(p0) + d

d

)
· z−d

0 · d · 21+p0

e
· (1/p)d+1

logd(1/p)
.

Consequently, we have extracted the dependence on p from the binomial
coefficient and it remains to consider the dependence on d. To this end,
we use the representation from Lemma 7.2.1 for the binomial coefficient
together with Stirling’s formula, for x > 0,

√
2πx ·

(x

e

)x

≤ Γ(x + 1) ≤ exp
( 1

12x

)
·
√

2πx ·
(x

e

)x

,
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f(p0) ≥ 4, d ≥ 1, and 1 + t ≤ et for t = d/f(p0)(
f(p0) + d

d

)
· z−d

0 · d

≤ e1/60
√

2π
·
(

1
d

+ 1
f(p0)

)1/2(
1 + f(p0)

d

)d(
1 + d

f(p0)

)f(p0)
· z−d

0 · d

≤ e1/60
√

2π
·
(

1 + e

g(p0) · z0

)1/2
·
(

1 + g(p0)/e · z0

z0

)d

· ed · d1/2 .

Since Cp0 = e/z0 + g(p0) holds true and the arising quantities that are
independent of p and d satisfy

e1/60
√

2π
·
(

1 + e

g(p0) · z0

)1/2
· 21+p0

e

≤ e1/60
√

2π
·
(

1 + 1
2(2 + 1/e)

)1/2
· 21+1/e

e

≈ 0.4239 ≤ 1/2 ,

the assertion is proven.

Finally, we note that the constant appearing in Theorem 8.2.3 can again
be substantially improved if we restrict our consideration to a smaller range
0 < ε ≤ ε0.

8.3 Translation Invariant Kernels
In this section we exploit the translation invariance of the Gaussian kernel
to reduce the problem of bounding the log-covering numbers H

(
Iσ[X], ε

)
of

the ℓ∞-embedding Iσ[X] with a bounded subset X ⊆ Rd to the estimation
of H

(
Iσ[Bℓd

2
], ε

)
. In other words, this section enables us to generalize the

log-covering number bounds presented in Section 8.2 to anisotropic Gaussian
kernels on general bounded subsets X. Since this reduction is possible for
general bounded and translation invariant kernels on a Banach space, we
formulate this section in its natural generality.
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Let us start with some notation. For a fixed bounded kernel k defined
on a set X we often consider its restriction to different subsets Y ⊆ X.
Consequently, we highlight the considered domain by writing H(Y ) for the
corresponding RKHS and

I[Y ] : H(Y ) → ℓ∞(Y ), f 7→ f (8.7)

for the corresponding ℓ∞-embedding. Recall that I[Y ] is well-defined
according to [76, Lemma 4.23]. The first lemma considers the behavior of
the covering numbers of I[X] under transformations of the kernel.

8.3.1 Lemma (Transformed Kernels) Let T : Y → X be a mapping between
two non-empty sets and k be a bounded kernel on X with RKHS H(X).
Then

kT (y, y′) := k
(
T (y), T (y′)

)
(8.8)

for y, y′ ∈ Y defines a bounded kernel on Y with RKHS HT (Y ) =
{

f ◦ T :
f ∈ H(X)

}
and the corresponding RKHS-norm satisfies

∥f ◦ T∥HT (Y ) ≤ ∥f∥H(X)

for f ∈ H(X). Moreover, the covering numbers satisfy, for ε > 0,

N
(
Id : HT (Y ) → ℓ∞(Y ), ε

)
≤ N

(
Id : H(X) → ℓ∞(X), ε

)
. (8.9)

If, in addition, T is bijective then equality holds in (8.9).

An easy, but important, application of this lemma is the case Y ⊆ X

with the embedding T = id: Y → X. In this case we have kT = k|Y ×Y ,
HT (Y ) = H(Y ), and, for ε > 0,

N
(
I[Y ], ε

)
≤ N

(
I[X], ε

)
. (8.10)

Proof. Let Φ: X → H(X) be the canonical feature map of k, that is
Φ(x) := k(x, ·) for x ∈ X. Then it is easy to see that ΦT := Φ ◦ T is a
feature map for kT . Consequently, kT is a kernel on Y , and according to
[76, Theorem 4.21] the RKHS of kT has the claimed form, the claimed norm
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inequality is satisfied, and SH : H(X) → HT (Y ) defined by f 7→ f ◦ T is
a metric surjection, i.e. SHB̊H(X) = B̊HT (Y ). Consequently, it remains to
prove the covering number bound. To this end, we define the mapping
S∞ : ℓ∞(X) → ℓ∞(Y ) by f 7→ f ◦ T and recall that I[X] and IT [Y ] denote
the ℓ∞-embeddings of H(X) and HT (Y ), respectively. These mappings
satisfy the commutative diagram

H(X) HT (Y )

ℓ∞(X) ℓ∞(Y ) ,

SH

I[X] IT [Y ]

S∞

i.e. IT [Y ] ◦ SH = S∞ ◦ I[X]. Together with Point (i) of Lemma C.9 and
the metric surjectivity of SH we get, for ε > 0,

N
(
IT [Y ], ε

)
= N

(
IT [Y ] ◦ SH , ε

)
= N

(
S∞ ◦ I[X], ε

)
.

Since ∥S∞f∥ℓ∞(Y ) = supy∈Y |f(T (y))| ≤ ∥f∥ℓ∞(X) is satisfied for all f ∈
ℓ∞(X), we have ∥S∞∥ ≤ 1 and together with (C.3) this yields the assertion.
If T is bijective, we can exchange the role of X and Y and hence we get
the claimed equality.

The next lemma investigates the behavior of the covering numbers under
a partition of the domain.

8.3.2 Lemma (Partition of the Domain) Let X = X1 ⊎ X2 be the disjoint
union of non-empty sets X1, X2 and k be a bounded kernel on X with
RKHS H(X) and ℓ∞-embedding I[X]. Then the covering numbers satisfy,
for ε > 0,

N
(
I[X1 ⊎ X2], ε

)
≤ N

(
I[X1], ε

)
· N

(
I[X2], ε

)
.

Proof. Let m := N
(
I[X1], ε

)
and n := N

(
I[X2], ε

)
. Moreover, choose

corresponding ε-nets f1, . . . , fm ∈ ℓ∞(X1) and g1, . . . , gn ∈ ℓ∞(X2). Then
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for each i ∈ {1, . . . , m} and each j ∈ {1, . . . , n} we define

hi,j(x) :=
{

fi(x), x ∈ X1

gj(x), x ∈ X2 ,

for x ∈ X. This defines at most m · n different elements of ℓ∞(X) and it
remains to show that hi,j for i = 1, . . . , m and j = 1, . . . , n defines an ε-net
of BH(X).

For h ∈ H(X) with ∥h∥H(X) ≤ 1 Lemma 8.3.1 gives us h|Xℓ
∈ H(Xℓ)

with ∥h|Xℓ
∥H(Xℓ) ≤ 1 for ℓ = 1, 2. Consequently, there is an i ∈ {1, . . . , m}

and a j ∈ {1, . . . , n} with ∥h|X1 − fi∥ℓ∞(X1) ≤ ε and ∥h|X2 − gj∥ℓ∞(X2) ≤ ε,
respectively. For this choice of i and j we have

∥h − hi,j∥ℓ∞(X) = max
{

∥h|X1 − fi∥ℓ∞(X1), ∥h|X2 − gj∥ℓ∞(X2)
}

≤ ε

and hence the assertion is proven.

So far, we considered bounded kernels on general sets. In the following we
investigate bounded kernels k : V × V → R on a vector space V . The kernel
k is called translation invariant along a vector a ∈ V if

k(v + a, v′ + a) = k(v, v′)

is satisfied for all v, v′ ∈ V . In this case the transformation T (x) := x + a

does not change the kernel. With the notation from (8.8) this means
kT = k. Since T is bijective as a mapping X → a + X, Lemma 8.3.1 gives
the following identity for the covering numbers of the ℓ∞-embeddings

N
(
I[X], ε

)
= N

(
I[X + a], ε

)
(8.11)

for all ε > 0. If k is translation invariant along all a ∈ U ⊆ V for some
subspace U ⊆ V then we call k translation invariant along U . The following
lemma bounds the covering number of the ℓ∞-embedding of a translation
invariant kernel and is the main result of this section.
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8.3.3 Lemma (Translation Invariant Kernels) Let (V, ∥ · ∥) be a Banach
space with complemented subspaces V1, V2 ⊆ V , i.e. V = V1 + V2 and
V1 ∩ V2 = {0}. Moreover, let Xi ⊆ Vi be non-empty subsets, for i = 1, 2,
and k be a bounded kernel on V with ℓ∞-embeddings I[ · ] of its restrictions
defined in (8.7). If k is translation invariant along V1 and X1 is precompact
then the log-covering numbers satisfy, for δ > 0 and ε > 0,

H
(
I[X1 + X2], ε

)
≤ N (X1, δ) · H

(
I[δBV1 + X2], ε

)
.

Proof. Let us fix some ε, δ > 0 and set n := N (X1, δ). For a minimal δ-net
of X1 denoted by x1,1, . . . , x1,n ∈ V1 we choose a partition X1,1, . . . , X1,n

of X1 with X1,i ⊆ x1,i + δBV1 for all i = 1, . . . , n. Since we chose a minimal
δ-net, X1,i ̸= ∅ is non-empty for all i = 1, . . . , n. Because Xi ⊆ Vi, for
i = 1, 2, and V1, V2 are complemented subspaces the sets X1,i + X2, for
i = 1, . . . , n, form a partition of X1 +X2 with X1,i +X2 ⊆ x1,i + δBV1 +X2.
A repeated application of Lemma 8.3.2 and (8.10) yield

H
(
I[X], ε

)
≤

n∑
i=1

H
(

I
[
X1,i + X2

]
, ε

)
≤

n∑
i=1

H
(

I
[
x1,i + (δBV1) + X2], ε

)
.

Since k is translation invariant along V1, (8.11) gives the assertion.

8.4 Anisotropic Gaussian Kernels on General
Domains

The goal of this section is to analyze how the constants in the log-covering
number bounds depend on the kernel width σ and the size of the input
space X. To this end, we use Lemma 8.3.3 to reduces the problem of
bounding the log-covering numbers of an anisotropic Gaussian RKHSs to
the estimation of the log-covering numbers of the isotropic Gaussian RKHS
on the closed unit ball Bℓd

2
with width σ = 1.

However, let us start with an easy observation: With the notation
introduced in (8.8) the anisotropic Gaussian kernel reads kσ = kDσ if k and
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8.4 Anisotropic Gaussian Kernels on General Domains

Dσ denote the isotropic Gaussian kernel of width σ = 1 and the diagonal
operator, respectively. Since Dσ : X → DσX is bijective, Lemma 8.3.1
yields, for ε > 0,

H
(
Iσ[X], ε

)
= H

(
I1[DσX], ε

)
. (8.12)

Note that we did not use that X is a subset of a finite-dimensional space
and hence (8.12) holds true for Gaussian kernels on infinite-dimensional
spaces.

The following theorem is a direct consequence of (8.12) and Lemma 8.3.3.

8.4.1 Theorem For a bounded subset X ⊆ Rd, σ = (σ1, . . . , σd) ∈ (0, ∞)d,
and 0 < ε ≤ 1 the following log-covering number bound is satisfied

H
(
Iσ[X], ε

)
≤ N (DσX, 1) · H

(
I1[Bℓd

2
], ε

)
,

where the covering numbers N (DσX, 1) of DσX ⊆ Rd are with respect to
the Euclidean norm.

Proof. Using (8.12) and Lemma 8.3.3 for δ = 1, V1 = Rd (equipped with
the Euclidean norm), V2 = {0}, and X1 = DσX, X2 = {0} we get the
assertion.

The proof suggests that this bound can be improved if we optimize over δ

instead of using a fixed value for δ. But this is not an easy task and the
possible suboptimal choice δ = 1 has the advantage that the dependence of
the bound on σ and ε is in some sense factorized.

Now, to illustrate the impact of Theorem 8.4.1 we note that X is assumed
to be bounded, and hence there is an a ∈ Rd and an R > 0 with X ⊆
a + RBℓd

2
. In the case mini σi ≥ 1/R Point (iii) of Lemma C.7 gives us

N
(
DσX, 1

)
≤ N

(
DσBℓd

2
, 1/R

)
≤

λd
(
DσBℓd

2

)
λd

(
Bℓd

2

) ·
(

1
mini σi

+ 2R

)d

≤ σ1 · . . . · σd · (3R)d .

(8.13)
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For the sake of completeness, we further mention that in the case maxi σi ≤
1/R we have N (DσX, 1) = 1. Now, we can combine Theorem 8.4.1 and
(8.13) with one of the theorems presented in Section 8.2.

For example, together with Theorem 8.2.1 we obtain

H
(
Iσ[X], ε

)
≤ σ1 · . . . · σd · (3R)d · H

(
I1[Bℓd

2
], ε

)
≤ K̃d,σ,R · logd+1(4/ε)

log logd(4/ε)

(8.14)

for 0 < ε ≤ 1, R > 0, and σ = (σ1, . . . , σd) ∈
[
1/R, ∞

)d with

K̃d,σ,R := Kd,1 · σ1 · . . . · σd · (3R)d

=
(

4e + d

d

)
· (3R/e)d · σ1 · . . . · σd

≤ C1,1 · d4e · (3R/e)d · σ1 · . . . · σd .

Recall that C1,1 is defined in (8.2) with C1,1 = 4e + 1 ≈ 11.8731. We
mention that in the case R ≥ 1 and an isotropic Gaussian kernel with
width σ ≥ 1 the constant K̃d,σ,R grows like σd for σ → ∞. In contrast,
recall from (8.3) that the constant Kd,σ obtained in Theorem 8.2.1 grows
like σ2d. Consequently, (8.14) improves Theorem 8.2.1 in the dependence
on σ by a factor of 2 in the exponent. In this respect, note that [84,
Lemma 4.5] obtained the same behavior in σ but for a bound that does not
include the double logarithmic factor log logd(4/ε) of (8.14). Moreover, [76,
Theorem 6.27] achieves the same behavior in σ for a polynomial bound. Of
course, the latter two results can be recovered from (8.14), and in addition,
the results in [76, 84] do not take care of the explicit form of the constants
and their dependence on d.

Next, a combination of Theorem 8.4.1 with Theorem 8.2.3 yields

H
(
Iσ[X], ε

)
≤ Kd,1,p · N (DσX, 1) · ε−p (8.15)

for d ≥ 1, σ = (σ1, . . . , σd) ∈ (0, ∞)d, p > 0, and 0 < ε ≤ 1 with the
constant Kd,1,p defined in Theorem 8.2.3.
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8.4 Anisotropic Gaussian Kernels on General Domains

Finally, we compare our result with [87, Proposition 1] since this is one of
the few results that provides explicit constants for the log-covering number
bound. As preparation, note that [87] considers the Gaussian kernel on
the set X = [0, 1]d. To apply our result, we use [0, 1]d ⊆ 1/2 +

√
d/2 · Bℓd

2
.

Then (8.14) gives us

H
(
Iσ

[
[0, 1]d

]
, ε

)
≤ C1,1 · d4e · (2e/3)−d · dd/2 · σd · logd+1(4/ε)

log logd(4/ε)

for 0 < ε ≤ 1, σ > 0, and d ≥ 1 with σ ≥ 2/
√

d. As a result, we
approximately get an dd/2-behavior of the constant for d → ∞. Since the
bound in [87] behaves like dd+1 for d → ∞, our result improves this by
roughly a factor of 2 in the exponent.

The result in [87] establishes an improved bound for smaller ranges
0 < ε ≤ ε0 as well. To be more precise, they proved, for σ > 0 and d ≥ 1,

H
(
Iσ

[
[0, 1]d

]
, ε

)
≤ 4d(6d + 2) · logd+1(1/ε)

for all 0 < ε ≤ exp(−90d2σ2 − 11d − 3). In order to compare our results
with [87] we need the following lemma.

8.4.2 Lemma For C > 0, d ≥ 2Ce2, and ε0 := 4 exp
(
− d

2C log
(

d
2eC

))
the

condition ε0 ≤ 4 exp
(
−e1+σ−2)

in Theorem 8.2.2 is satisfied for σ = 1 and
the quantity Kd,1,ε0 defined in Theorem 8.2.2 satisfies

Kd,1,ε0 ≤ (2π)−1/2 · (4e)d(1 + C)d · d−(d+1/2) .

Moreover, for 1
2e2 ≥ C ≥ 1√

360e
we have

exp
(
−90d2 − 11d − 3

)
≤ ε0 .

Combining Theorem 8.4.1 with Theorem 8.2.2 and this lemma for C =
1/

√
360e ≈ 0.0320 we obtain, for d ≥ 1 and σ ≥ 2/

√
d,

H
(
Iσ

[
[0, 1]d

]
, ε

)
≤ (2π)−1/2 · (6e(1 + C))d · d−(d+1)/2 · σd · logd+1(4/ε)

log logd(4/ε)
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for all 0 < ε ≤ 4 exp
(
− d

2C log
(

d
2eC

))
where 6e(1 + C) ≈ 16.8311. This

improves the result from [87] in both, the ε range and the behavior for
d → ∞

Proof. Let us recall the definitions of y0 := log(4/ε0) and x0 := 2y0
W0(y0/e) =

h1(y0) from Theorem 8.2.2 as well as the definitions of h1 and p1 from
Lemma 7.2.6. Using the function p1 we can write

ε0 = 4
(2eC

d

) d
2C = 2 · p1(d/C) .

Since d/C ≥ 2e2 ≥ 2 holds true, Point (iii) of Lemma 7.2.6, which states
p−1

1 = h1 ◦ log(2/·), is applicable and hence

x0 = h1 ◦ log(4/ε0) = h1 ◦ log
(

2
p1(d/C)

)
= d/C

is satisfied. Next, we prove the inequality ε0 ≤ u := 4 exp(−e2). To this
end, note that we have h1 ◦ log(4/u) = h1(e2) = 2e exp

(
W0(e)

)
= 2e2 since

W0(e) = 1. Our assumption d ≥ 2Ce2 implies

h1 ◦ log(4/ε0) = d/C ≥ 2e2 = h1 ◦ log(4/u)

and since h1 is increasing according to Point (ii) of Lemma 7.2.6 we get
ε0 ≤ u = 4 exp(−e2). Now, we prove the bound on Kd,1,ε0 . To this end,
we rewrite Kd,1,ε0 using the representation of the binomial coefficient from
(7.2)

Kd,1,ε0 =
(

x0 + d

d

)
x−d

0 ·
(

x0 log(y0)
y0

)d

= 1
d!

d∏
i=1

(1 + i/x0) ·
(

2 log(y0)
W0(y0/e)

)d

.

If we bound the first factor by using i/x0 ≤ d/x0 = C and if we bound the
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second factor by using log(y0) ≤ 2W0(y0/e) from Lemma 7.2.5 then we get

Kd,1,ε0 ≤ 4d(1 + C)d

d! .

Together with Stirling’s formula d! ≥
√

2πd (d/e)d this gives the desired
bound. Finally, note that log(t) ≤ t and C ≥ 1/

√
360e yields

ε0 ≥ exp
(

− d2

4eC2

)
≥ exp(−90d2) ,

which proves the lower bound on ε0.

8.5 Conversion to Dyadic Entropy Number
Bounds

Since in some situations it is more convenient to work with dyadic entropy
number bounds instead of log-covering number bounds we show in this
section how to convert some bounds of the previous sections into dyadic
entropy number bounds. Recall, that the dyadic entropy number en(Iσ[X])
is defined as the infimum over all r > 0 that allows to cover the closed unit
ball BHσ(X) with 2n−1 translates of rBℓ∞(X).

This conversion is easiest for polynomial bounds. To this end, we start
with the polynomial bound in (8.15).

8.5.1 Theorem (Polynomial Entropy Number Bound) For a bounded subset
X ⊆ Rd, σ = (σ1, . . . , σd) ∈ (0, ∞)d, and p > 0 the following dyadic
entropy number bound is satisfied, for n ≥ 1,

en

(
Iσ[X]

)
≤

(
3 · Kd,1,p · N (DσX, 1)

)1/p · n−1/p ,

where Kd,1,p denotes the constant from Theorem 8.2.3 and the covering
numbers N (DσX, 1) are with respect to the Euclidean norm.

Proof. According to (8.15) we have H
(
Iσ[X], ε

)
≤ C · ε−p =: F −1(ε) for all

0 < ε ≤ 1, where we used the abbreviation C := Kd,1,p · N (DσX, 1) and
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defined the function F −1 : (0, 1] → [C, ∞). Since F −1 is decreasing and
bijective with F (t) = (C/t)1/p, Point (ii) of Lemma C.8 gives us

en

(
Iσ[X]

)
≤ F

(
log(2) · (n − 1)

)
=

(
C/ log(2)

)1/p · (n − 1)−1/p

for all n ≥ C/ log(2)+1. This bound remains true for 2 ≤ n < C/ log(2)+1
since in this case the right hand side is larger than 1 and we have the
trivial bound en(Iσ[X]) ≤ e1(Iσ[X]) = ∥Iσ[X]∥ = 1. Using (n − 1)−1/p ≤
21/p · n−1/p for n ≥ 2 and 2/ log(2) ≈ 2.8854 ≤ 3 we get the assertion for
n ≥ 2.

To treat the case n = 1 we use the following observation. According
to Point (iii) of Lemma C.9 we have log(2) ≤ H(Iσ[X], ε) ≤ C · ε−p

for ε < ∥Iσ[X]∥ = 1. Letting ε ↗ 1 we find C ≥ log(2) and hence
e1(Iσ[X]) = 1 ≤ (C/ log(2))1/p proves the desired bound for n = 1.

In order to provide a dyadic entropy number bound decreasing faster
than any polynomial we need the following auxiliary lemma.

8.5.2 Lemma For d ≥ 1 the function f : [0, ∞) → [0, ∞) given by

f(t) := t · exp
(
d · W0(t)

)
is increasing, bijective, satisfies

f(t) = td+1

W d
0 (t)

for t > 0, and its inverse is given by

f−1(t) =
W0

(
(d + 1)t

)
d + 1 · exp

(
W0

(
(d + 1)t

)
d + 1

)
= t

1
d+1 ·

(
W0

(
(d + 1)t

)
d + 1

) d
d+1

.

Proof. Since Lambert’s W -function W0 is increasing and bijective from
[0, ∞) to [0, ∞), f is increasing and bijective, too. The second representa-
tions of f and f−1 are direct consequences of the identity exp(W0(x)) =
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x/W0(x) for x > 0. Consequently, it remains to check that the given f−1

is actually the inverse of f . To this end, we calculate f ◦ f−1(t) for t > 0.
Using the second representation for f and plugging the first representation
of f−1 into the denominator and the second one into the enumerator we
directly get f ◦ f−1(t) = t, i.e. the assertion is proven for t > 0. For t = 0
the identity f ◦ f−1(t) = t is obvious.

The following theorem provides a dyadic entropy number bound which
decreases faster than every polynomial.

8.5.3 Theorem (Entropy Number Bound on Bℓd
2
) For d ≥ 1, σ > 0, and

0 < ε0 ≤ 1 consider y0 := log(4/ε0), x0 := 2y0/W0
(

y0
eσ2

)
,

Cd,σ,ε0 :=
(

x0 + d

d

)
· (2/x0)d · 1

log(2) , and

n0 :=
(

x0 + d

d

)
· y0/ log(2) + 1 .

Then the following dyadic entropy number bound is satisfied, for n ≥ n0,

en

(
Iσ[Bℓd

2
]
)

≤ 4 exp
(

−
(

n − 1
Cd,σ,ε0(d + 1)d

) 1
d+1

W
d

d+1
0

(
(n − 1)(d + 1)
Cd,σ,ε0(eσ2)d+1

))
.

For ε0 ↘ 0 we have y0 ↗ ∞ and x0 ↗ ∞. Together with Lemma 7.2.1 we
have Cd,σ,ε0 ↘ 2d/d! · 1/ log(2) for ε0 ↘ 0. This means that the constant
Cd,σ,ε0 and hence the bound improves for decreasing ε0 but also the range
in which this bound applies decreases, i.e. n0 ↗ ∞.

For convenience, the consideration of Theorem 8.5.3 is restricted to the
isotropic Gaussian RKHS on Bℓd

2
. However, this bound can be easily

generalized to the anisotropic Gaussian RKHS on general bounded sets
X ⊆ Rd.

Moreover, for ε0 = 1 this bound remains valid for the whole range n ≥ 1.
This can be proven by proceeding analogously to the proof of Theorem 8.5.1.
To be more precise, for n ≤ n0 = F −1(ε0)/ log(2) + 1, the right hand side is
larger than ε0 = 1 and hence the trivial bound en(Iσ[X]) ≤ e1(Iσ[X]) = 1
gives the desired estimate for n ≥ n0.
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Proof. The proof is an application of Lemma C.8 and hence we need a
bound on the log-covering numbers which is decreasing and bijective as
a function on ε. Unfortunately, the function ε 7→ logd+1(4/ε)

log logd(4/ε) is neither
bijective nor decreasing on (0, 1]. To this end, we first slightly modify the
log-covering number bound from Theorem 8.2.1 using Lemma 8.1.2 such
that the resulting bound satisfies our needs.

For 0 < ε ≤ ε0 we write y := log(4/ε) ≥ y0 > 1 and recall the definition
hσ(y) = 2y/W0

(
y

eσ2

)
from Lemma 7.2.6. Since hσ is increasing, we have

hσ(y) ≥ hσ(y0) = x0. Combining Lemma 8.1.2 and Lemma 7.2.2 for
h = f = (hσ ◦ log)(4/ · ) and t0 = x0 gives us

H
(
Iσ[Bℓd

2
], ε

)
≤

(
hσ(y) + d

d

)
· y ≤

(
x0 + d

d

)
· (2/x0)d · yd+1

W d
0

(
y

eσ2

) .

Using the auxiliary function f : [0, ∞) → [0, ∞) from Lemma 8.5.2 this
bound reads

H
(
Iσ[Bℓd

2
], ε

)
≤ log(2) · Cd,σ,ε0 · (eσ2)d+1 · f

( y

eσ2

)
=: F −1(ε)

for all 0 < ε ≤ ε0. Since the function F −1 : (0, ε0] → [F −1(ε0), ∞) satisfies

F (t) = 4 · exp
(

−eσ2 · f−1
( t

log(2) · Cd,σ,ε0 · (eσ2)d+1

))
,

a combination of Lemma 8.5.2 and Point (ii) of Lemma C.8 gives the desired
dyadic entropy number bound for n ≥ F −1(ε0)/ log(2) + 1 = n0.
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Chapter 9

Gaussian Kernels on
Infinite-Dimensional Spaces

In this chapter we transfer some of the log-covering number bounds for
Gaussian kernels on finite-dimensional domains presented in Chapter 8 to
Gaussian kernels on infinite-dimensional domains X ⊆ ℓ2. To be more
precise, (8.15) states that on a bounded (precompact) set X ⊆ Rd the
log-covering numbers H(Iσ[X], ε) increase slower than any polynomial for
ε → 0+. The goal of this chapter is the generalization of this statement to
some specific precompact but infinite-dimensional sets X ⊆ ℓ2.

9.1 Product Kernels
In this section we investigate product kernels. For such product kernels
we partly reduce the problem of bounding the log-covering numbers of the
ℓ∞-embedding of their RKHS to the estimation of the same quantity for
one factor only. In Section 9.2 below we use these results for Gaussian
kernels.

Let us start with some notation: X1 and X2 are non-empty sets and
k1 : X1 × X2 → R and k2 : X2 × X2 → R are kernels on X1 and X2 with
RKHSs H1 and H2, respectively. According to [76, Lemma 4.6] the product
kernel k : X × X → R on X := X1 × X2 given by

k
(
(x1, x2), (x′

1, x′
2)

)
:= k1(x1, x′

1) · k2(x2, x′
2) (9.1)
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for x1, x′
1 ∈ X1 and x2, x′

2 ∈ X2 is actually a kernel whose RKHS we denote
by H. Then we define the tensor product of the RKHSs H1 and H2 by

H1 ⊗ H2 := H . (9.2)

Moreover, for bounded kernels k1 and k2 we denote the corresponding
ℓ∞-embeddings by I[X1] : H1 → ℓ∞(X1) and I[X2] : H2 → ℓ∞(X2), re-
spectively. In this section we investigate the log-covering numbers of the
ℓ∞-embedding I[X1 × X2] : H1 ⊗ H2 → ℓ∞(X1 × X2) of the product kernel
k. But, we start with some preparatory results. The first lemma provides
an ONB for the RKHS H1 ⊗ H2.

9.1.1 Lemma (ONB of H1 ⊗ H2) Let X1, X2 be non-empty sets and k1,
k2 be kernels on X1 and X2 with RKHSs H1 and H2, respectively. Then
the following statements are true:

(i) For ONBs (ei)i∈I and (fj)j∈J of H1 and H2, respectively, the func-
tions (ei ⊗ fj)i∈I,j∈J defined by

(ei ⊗ fj)(x1, x2) := ei(x1)fj(x2)

for x1 ∈ X1, x2 ∈ X2 form an ONB of H1 ⊗ H2.

(ii) ∥h1 ⊗ h2∥H1⊗H2 = ∥h1∥H1∥h2∥H2 for all h1 ∈ H1 and h2 ∈ H2.

For closed subspaces U1 ⊆ H1 and U2 ⊆ H2, which are again RKHSs,
Lemma 9.1.1 directly gives U1 ⊗ U2 ⊆ H1 ⊗ H2.

Proof. (i) Let Φ1 : X1 → H1 and Φ2 : X2 → H2 be the canonical feature
maps of k1 and k2, respectively, i.e. Φi(xi) := ki(xi, · ) for xi ∈ Xi and
i = 1, 2. Recall that H1 ⊗̂hs H2 denotes the Hilbert space of Hilbert-Schmidt
operators from H1 to H2. For a definition and basic properties of Hilbert-
Schmidt operators see e.g. [63, Definition on p. 152]. From the proof of [76,
Lemma 4.6] we know, that Φ: X1 × X2 → H1 ⊗̂hs H2 defined by

Φ(x1, x2) := Φ1(x1) ⊗̂hs Φ2(x2) :=
〈
Φ1(x1), ·

〉
H1

Φ2(x2) ,
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for (x1, x2) ∈ X1 × X2, is a feature map of the product kernel k. According
to [76, Theorem 4.21] the mapping V : H1 ⊗̂hs H2 → H defined by

(V w)(x1, x2) =
〈
Φ1(x1) ⊗̂hs Φ2(x2), w

〉
H1 ⊗̂hs H2

is a metric surjection. We show that V is injective and hence an isometric
isomorphism. To this end, let w ∈ H1 ⊗̂hs H2 be fixed with V w = 0.
It is well-known that (ei ⊗̂hs fj)i∈I,j∈J forms an ONB of H1 ⊗̂hs H2 and
consequently there is an (unique) a = (ai,j)i∈I,j∈J ∈ ℓ2(I × J) with w =∑

i∈I,j∈J ai,j(ei ⊗̂hs fj). Plugging this representation of w into the definition
of V yields

0 = (V w)(x1, x2) =
∑

i∈I,j∈J

ai,j

〈
Φ1(x1) ⊗̂hs Φ2(x2), ei ⊗̂hs fj

〉
H1 ⊗̂hs H2

=
∑

i∈I,j∈J

ai,j

〈
Φ1(x1), ei

〉
H1

〈
Φ2(x2), fj

〉
H2

(9.3)

=
∑
i∈I

ei(x1)
∑
j∈J

ai,jfj(x2)

for all x1 ∈ X1,x2 ∈ X2. Since (ai,j)j∈J ∈ ℓ2(J) holds true for every fixed
i ∈ I, we can define the sequence b(x2) = (bi(x2))i∈I by

bi(x2) :=
∑
j∈J

ai,jfj(x2)

for every fixed x2 ∈ X2. Using Minkowski’s inequality (for integrals),
Hölder’s inequality, and the representation from [76, Theorem 4.20] we find(∑

i∈I

b2
i (x2)

)1/2
≤

∑
j∈J

|fj(x2)|
(∑

i∈I

a2
i,j

)1/2

≤
(∑

j∈J

f2
j (x2)

)1/2
∥a∥ℓ2(I×J)

= k
1/2
2 (x2, x2) · ∥a∥ℓ2(I×J) < ∞

(9.4)
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and hence b(x2) ∈ ℓ2(I) for all x2 ∈ X2. Consequently, for all x2 ∈ X2

the series
∑

i∈I bi(x2)ei defines an element in H1, which is identical zero
according to (9.3). Since (ei)i∈I is an ONB of H1, we get bi(x2) = 0 for all
x2 ∈ X2 and all i ∈ I. Thus, for a fixed i ∈ I, bi =

∑
j∈J ai,jfj defines an

element of H2 which is zero. Using the ONB property of (fj)j∈J in H2 we
get ai,j = 0 for all j ∈ J . Because i ∈ I was arbitrary we get w = 0 and
hence V is an isometric isomorphism.

Consequently, the image of the ONB (ei ⊗̂hs fj)i∈I,j∈J of H1 ⊗̂hs H2 under
V is an ONB of H. Since V (ei ⊗̂hs fj) = ei ⊗ fj for all i ∈ I and j ∈ J ,
this gives the first assertion.

(ii) The second assertion is a consequence of an application of the iso-
metric isomorphism V to the well-known equality ∥h1 ⊗̂hs h2∥H1 ⊗̂hs H2

=
∥h1∥H1∥h2∥H2 .

Note that with an analogous calculation as in (9.4) we can show that
for h ∈ H1 ⊗ H2 and x2 ∈ X2 the section hx2(x1) := h(x1, x2) defines an
element of H1 with ∥hx2∥H2 ≤ ∥h∥H · k

1/2
2 (x2, x2).

The next lemma provides an identity for the operator norm of the ℓ∞-
embedding restricted to subspaces, cf. [76, Theorem 4.20 and Lemma 4.23].

9.1.2 Lemma (Operator Norm) Let k : X × X → R be a bounded kernel
on a non-empty set X with RKHS H, (ek)k∈K be an ONS in H, and
I : H → ℓ∞(X) be the ℓ∞-embedding of H. Then, for the orthogonal
projection P : H → H onto span{ek : k ∈ K}, the following identity holds
true

∥I ◦ P∥2 = sup
x∈X

∑
k∈K

e2
k(x) .

Proof. Obviously, U := span{ek : k ∈ K} is a RKHS and the corresponding
kernel kU : X × X → R is given by

kU (x, x′) =
∑
k∈K

ei(x)ei(x′) ,

see [76, Theorem 4.20]. Since PBH = BU holds true, we have ∥I◦P∥ = ∥ Id :
U → ℓ∞(X)∥. Moreover, ∥ Id : U → ℓ∞(X)∥ is given by [76, Lemma 4.23]
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9.1 Product Kernels

and hence
∥I ◦ P∥2 = sup

x∈X
kU (x, x) = sup

x∈X

∑
k∈K

e2
k(x)

proves the assertion.

The following lemma combines Lemma 9.1.2 with Lemma 9.1.1 to get an
identity for the operator norm of a product kernel’s ℓ∞-embedding.

9.1.3 Lemma (Operator Norm for Product Kernels) Let X1, X2 be non-
empty sets and k1, k2 be bounded kernels on X1 and X2 with RKHSs H1 and
H2 as well as ℓ∞-embeddings I[X1] and I[X2], respectively. Furthermore,
let k be the product kernel of k1 and k2 on X1 × X2 defined in (9.1) with
ℓ∞-embedding I[X1 × X2]. If U1 ⊆ H1, U2 ⊆ H2 are closed subspaces,
P (U1), P (U2) the orthogonal projections onto U1 and U2, respectively, and
P (U1 ⊗ U2) the orthogonal projection onto U1 ⊗ U2 ⊆ H1 ⊗ H2 then the
following equation is satisfied∥∥I[X1 × X2] ◦ P (U1 ⊗ U2)

∥∥ =
∥∥I[X1] ◦ P (U1)

∥∥ ·
∥∥I[X2] ◦ P (U2)

∥∥ .

Note that for U1 = H1 and U2 = H2 Lemma 9.1.3 gives ∥I[X1 × X2]∥ =
∥I[X1]∥ · ∥I[X2]∥.

Proof. If we choose ONBs (ei)i∈I and (fj)j∈J of U1 and U2, respectively,
then (ei ⊗ fj)i∈I,j∈J forms an ONB of U1 ⊗ U2 according to Lemma 9.1.1.
Using Lemma 9.1.2 we find∥∥I[X1 × X2] ◦ P (U1 ⊗ U2)

∥∥ = sup
(x1,x2)∈X1×X2

∑
i∈I,j∈J

(ei ⊗ fj)2(x1, x2)

= sup
x1∈X1

∑
i∈I

e2
i (x1) sup

x2∈X2

∑
j∈J

f2
j (x2) .

A two-fold application of Lemma 9.1.2 yields the assertion.

The final lemma provides the already mentioned covering number bound
for product kernels and is the main result of this section.
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9.1.4 Lemma (Log-Covering Number Bound) Let X1, X2 be non-empty
sets and k1, k2 be bounded kernels on X1 and X2 with RKHSs H1 and
H2 as well as ℓ∞-embeddings I[X1] and I[X2], respectively. Furthermore,
let k be the product kernel of k1 and k2 on X1 × X2 defined in (9.1) with
ℓ∞-embedding I[X1 × X2]. If U1 = span{u1} ⊆ H1 with ∥u1∥H1 = 1 is an
one-dimensional subspace and P (U1 ⊗ H2) the orthogonal projection onto
U1 ⊗ H2 ⊆ H1 ⊗ H2 then the following log-covering number bounds are
satisfied, for ε > 0,

H
(
I[X1 × X2] ◦ P (U1 ⊗ H2), ε

)
≥ H

(
I[X2], 2ε/∥u1∥ℓ∞(X1)

)
H

(
I[X1 × X2] ◦ P (U1 ⊗ H2), ε

)
≤ H

(
I[X2], ε/∥u1∥ℓ∞(X1)

)
.

Note that the upper bound can be generalized to general finite-dimensional
subspaces U1 using bounds for the covering numbers of so-called vector-
valued diagonal operators. Since this generalization does not improve our
application in Section 9.2 below, we stick to this version for convenience.

Proof. For the proof we use the commutative diagram

U1 ⊗ H2 ℓ∞(X1 × X2)

H2 ℓ∞(X2) .

I[X1 × X2]

Q

I[X2]

M

To this end, we first introduce and investigate the operators Q and M .
Since u1 is an ONB of U1, we know from Lemma 9.1.1 that for every

h ∈ U1 ⊗ H2 there is a unique h2 ∈ H2 with h = u1 ⊗ h2. Using this
representation we define the operator Q : U1 ⊗H2 → H2 by Q(u1 ⊗h2) := h2.
Conversely, for every h2 ∈ H2 we have u1⊗h2 ∈ U1⊗H2 and Q(u1⊗h2) = h2.
Together we find that Q is bijective. Moreover, ∥u1∥H1 = 1 and Lemma 9.1.1
give us

∥Q(u1 ⊗ h2)∥H2 = ∥h2∥H2 = ∥u1∥H1 · ∥h2∥H2 = ∥u1 ⊗ h2∥H1⊗H2
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9.2 Covering Number Bounds

and hence Q is an isometric isomorphism.
The operator M : ℓ∞(X2) → ℓ∞(X1 × X2) is defined by Mh = u1 ⊗ h

for h ∈ ℓ∞(X2). Consequently, we have

∥Mh∥ℓ∞(X1×X2) = ∥u1∥ℓ∞(X1)∥h∥ℓ∞(X2)

and M is the multiple of an isometric mapping with ∥M∥ = ∥u1∥ℓ∞(X1).
It is easy to check that the above diagram commutes. Since Q is an

isometric isomorphism, we get from Lemma C.9 the claimed upper bound,
namely

H
(
I[X1 × X2] ◦ P (U1 ⊗ H2), ε

)
= H

(
M ◦ I[X2] ◦ Q, ε

)
= H

(
M ◦ I[X2], ε

)
≤ H

(
I[X2], ε/∥M∥

)
.

Since M is the multiple of an isometric mapping, we get from (C.4) the
claimed lower bound and hence the proof is finished.

9.2 Covering Number Bounds
In this section we provide log-covering number bounds for the ℓ∞-embedding
Iσ[X] of the Gaussian RKHS Hσ(X) on the infinite-dimensional domain

X :=
∏
i≥1

[−ri, ri] ⊆ ℓ2

with some positive sequence r = (ri)i≥1. To this end, we use the fact
that the Gaussian kernel on X equals the product kernel of the Gaussian
kernel on the infinite-dimensional set X1 :=

∏
i>d[−ri, ri] and the Gaussian

kernel on the finite-dimensional set X2 :=
∏d

i=1[−ri, ri]. On the infinite-
dimensional set X1 we use a trivial bound and on the finite-dimensional
set X2 we use Lemma 8.1.2. Here we benefit from the explicit constants
provided by Lemma 8.1.2. However, let us start with some preparatory
lemmas for the isotropic Gaussian kernel. To this end, recall the notation
introduced in Section 7.1.
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9.2.1 Lemma (Operator Norm on a Subspace) Let I ⊆ N be non-empty,
X ⊆ ℓ2(I), x0 ∈ X, R(X) := supx∈X ∥x − x0∥ℓ2(I), σ > 0, and U :=
span{kσ(x0, · )} ⊆ Hσ(X). Then, for the orthogonal projection

P (U⊥) : Hσ(X) → Hσ(X)

onto U⊥, the following operator norm bound is satisfied∥∥Iσ[X] ◦ P (U⊥)
∥∥2 = 1 − exp

(
−2σ2R2(X)

)
≤ 2σ2R2(X) .

This result generalizes the bound (8.1) used in the proof of Lemma 8.1.1
from finite index sets I to infinite index sets in the case N = 1.

Proof. Note that kσ(x0, · ) ∈ Hσ(X) has the norm

∥kσ(x0, · )∥2
Hσ(X) = kσ(x0, x0) = 1 .

Consequently, the orthogonal projection P (U) : Hσ(X) → Hσ(X) onto U

is given by
P (U)f =

〈
f, kσ(x0, · )

〉
Hσ(X)kσ(x0, · ) .

Since P (U⊥) = Id −P (U) holds true, we find∥∥Iσ[X] ◦ P (U⊥)
∥∥2 = sup

f∈BHσ(X)

sup
x∈X

∣∣f(x) −
〈
f, kσ(x0, · )

〉
Hσ(X)kσ(x0, x)

∣∣2
.

Interchanging the suprema and using the reproducing property f(x) =
⟨f, kσ(x, · )⟩Hσ(X) yields∥∥Iσ[X] ◦ P (U⊥)

∥∥2

= sup
x∈X

sup
f∈BHσ(X)

∣∣〈f, kσ(x, · ) − kσ(x0, · )kσ(x0, x)
〉

Hσ(X)

∣∣2
Hσ(X)

= sup
x∈X

∥∥kσ(x, · ) − kσ(x0, · )kσ(x0, x)
∥∥2

Hσ(X) .

For every x ∈ X we have ⟨kσ(x0, · ), kσ(x, · )⟩Hσ(X) = kσ(x, x0) and hence
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∥kσ(x, · )∥2
Hσ(X) = kσ(x, x) = 1. As a result, we find

∥∥kσ(x, · ) − kσ(x0, · )kσ(x0, x)
∥∥2

Hσ(X)

= kσ(x, x) − 2k2
σ(x, x0) + kσ(x0, x0)k2

σ(x0, x)
= 1 − k2

σ(x, x0) .

Taking the supremum over x ∈ X gives the claimed equality and an
application of 1 − e−t ≤ t, for t = 2σ2R2(X) yields the claimed inequality.

The next lemma uses the fact that Gaussian kernels are product kernels to
split the estimation of H(Iσ[X1×X2], ε) into two parts, namely H(Iσ[X1], ε),
which is bounded by a trivial bound, and H(Iσ[X2], ε).

9.2.2 Lemma (Splitting) Let I1, I2 ⊆ N be disjoint non-empty index sets,
X1 ⊆ ℓ2(I1), X2 ⊆ ℓ2(I2) be non-empty subsets such that X1 is precompact,
and σ > 0. Then, for I := I1 ⊎ I2, the following log-covering number bound
is satisfied, for ε, δ > 0,

H
(

Iσ[X1 × X2], ε + δ
√

2
)

≤ N (σX1, δ) · H
(
Iσ[X2]I,ε

)
.

Note that Lemma 9.2.2 holds for infinite index sets I1, I2 and that the
covering numbers N (σX1, δ) are with respect to the ℓ2(I1)-norm.

Proof. Let ε, ε0, δ > 0 be fixed. First, we apply (8.12) and Lemma 8.3.3 to
exchange X1 by the closed ball δBℓ2(I1) of radius δ, namely

H
(

Iσ[X1 × X2], ε + ε0

)
= H

(
I1

[
σ(X1 × X2)

]
, ε + ε0

)
≤ N (σX1, δ) · H

(
I1

[
δBℓ2(I1) × σX2

]
, ε + ε0

)
.

In the following we use the abbreviation X̃ := δBℓ2(I1) × σX2. Using this
notation it remains to prove H(I1[X̃], ε + ε0) ≤ H(Iσ[X2], ε).

Since the Gaussian kernel k1 on X̃ is the product kernel of two Gaussian
kernels, namely the Gaussian kernel on δBℓ2(I1) and the Gaussian kernel on
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σX2 ⊆ ℓ2(I2), we have H1(X̃) = H1(δBℓ2(I1)) ⊗ H1(σX2) according to the
definition of the tensor product in (9.2). Now, let U1 := span{k1(0, · )} ⊆
H1(δBℓ2(I1)) be a one-dimensional subspace and

P
(
U1 ⊗ H1(σX2)

)
, P

(
U⊥

1 ⊗ H1(σX2)
)

: H1(X̃) → H1(X̃)

the orthogonal projections onto U1 ⊗ H1(σX2) and U⊥
1 ⊗ H1(σX2), respec-

tively. Using Lemma 9.1.3, ∥I1[σX2]∥ = 1, and Lemma 9.2.1 we get∥∥I1[X̃] ◦ P
(
U⊥

1 ⊗ H1(σX2)
)∥∥ =

∥∥I1[δBℓ2(I1)] ◦ P (U⊥
1 )

∥∥ ·
∥∥I1[σX2]

∥∥
≤ δ

√
2 =: ε0 .

(9.5)

Since the orthogonal complement of U1⊗H1(σX2) in H1(δBℓ2(I1))⊗H1(σX2)
is (

U1 ⊗ H1(σX2)
)⊥ = U⊥

1 ⊗ H1(σX2) ,

we have IdH1(X̃) = P
(
U1⊗H1(σX2)

)
+P

(
U⊥

1 ⊗H1(σX2)
)

and a combination
of (C.3) with (9.5) gives us

H
(
I1[X̃], ε + ε0

)
≤ H

(
I1[X̃] ◦ P

(
U1 ⊗ H1(σX2)

)
, ε

)
.

Since ∥k1(0, · )∥ℓ∞(δBℓ2(I1)) = 1 holds, an application of Lemma 9.1.4 yields

H
(
I1[X̃], ε + ε0

)
≤ H

(
I1[σX2], ε

)
.

Finally, (8.12) gives H(I1[σX2], ε) = H(Iσ[X2], ε) and hence the assertion
is proven.

In the case |I2| < ∞ we can combine Lemma 9.2.2 with Lemma 8.1.2 for
d = |I2|. To this end, we recall the definition of the function

hσ(y) = 2eσ2 exp
(

W0

( y

eσ2

))
for σ > 0 and y ≥ −σ2 from Lemma 7.2.6. This approach leads to the
log-covering number bound in the following lemma.
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9.2.3 Lemma (Log-Covering Number Bound) Let I1, I2 ⊆ N be disjoint
non-empty index sets with |I2| < ∞, X1 ⊆ ℓ2(I1), X2 ⊆ ℓ2(I2) be non-empty
precompact subsets, and σ > 0. Then, for X := X1 × X2 and I := I1 ⊎ I2,
the following log-covering number bound is satisfied, for δ1, δ2 > 0 and
0 < ε ≤ 1,

H
(
Iσ[X], ε + δ1

√
2
)

≤ N (σX1, δ1)N (σX2, δ2)

·
(

(hδ2 ◦ log)(4/ε) + |I2|
|I2|

)
log(4/ε) .

Recall that the covering numbers N (σX1, δ1) and N (σX2, δ2) are with
respect to the ℓ2(I1)- and ℓ2(I2)-norm, respectively.

Proof. After an application of Lemma 9.2.2 with δ = δ1 it remains to bound
H(Iσ[X2], ε). With the help of Lemma 8.3.3, for X1 = X2 and X2 = {0},
we can exchange X2 by δ2Bℓ2(I2), namely

H
(
Iσ[X2], ε

)
≤ N (X2, δ2) · H

(
Iδ2 [Bℓ2(I2)], ε

)
.

Finally, an application of Lemma 8.1.2 on H(Iδ2 [Bℓ2(I2)], ε) gives the asser-
tion.

In the following we consider the index set I = N and domains X of
the form X =

∏
i≥1[−ri, ri] with some positive sequence r = (ri)i≥1 ∈ ℓ2.

Then, for d ≥ 1, we split the index set I = I1 ⊎ I2 into I1 := d + N and
I2 := [d] = {1, . . . , d} and analogously, we split the domain X = X1 × X2

into X1 :=
∏

i>d[−ri, ri] and X2 :=
∏d

i=1[−ri, ri]. This allows us to apply
Lemma 9.2.3. Consequently, we have to choose the parameters d ≥ 1,
δ1, δ2 > 0, and ε > 0, depending on the sequence r, to get a reasonable
log-covering number bound.

To this end, we use the following regularity assumption for the sequence
r = (ri)i≥1: For some β > 0 the supremum

c := sup
k≤n

rnenβ

rkekβ
< ∞ (EXP)
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is finite. Note that this supremum is taken over all tuples (k, n) ∈ N2 with
k ≤ n. Moreover, (EXP) is independent of the scaling of r, i.e. if r satisfies
(EXP) then σr = (σri)i≥1 satisfies (EXP) for the same c ≥ 1 and β > 0.
If the sequence r is non-increasing then some characterizations of (EXP)
can be found in Lemma 10.2.1 of Part III. We call this condition (EXP)
because it implies an exponential decay and the sequence ri = ae−iβ , for
i ≥ 1, is probably the most important example satisfying this condition
with (optimal) constant c = 1. The following lemma provides a covering
number bound for the infinite-dimensional set X1 if r satisfies (EXP).

9.2.4 Lemma Let d ≥ 1, r = (ri)i≥1 ∈ ℓ2 be a sequence with ri > 0 for all
i ≥ 1, and X :=

∏
i≥1[−ri, ri] ⊆ ℓ2. If r satisfies (EXP) with β > 0 and

c ≥ 1 then the covering numbers of X1 :=
∏

i>d[−ri, ri] satisfy, for δ1 > 0,

N (X1, δ1) ≤ N
(
X, δ1edβ/c

)
.

Proof. The condition in (EXP) yields ri+d ≤ crie
−dβ for all i ≥ 1. If we

shift the index then we find

X1 =
∏
i≥1

[−ri+d, ri+d] ⊆ ce−dβ
∏
i≥1

[−ri, ri] = ce−dβX

and hence N (X1, δ1) ≤ N (ce−dβX, δ1). Finally, the scaling property of the
covering numbers, see Lemma C.6, gives the assertion.

Now, we are ready to prove our log-covering number bound for Gaussian
kernels on the infinite-dimensional domain X =

∏
i≥1[−ri, ri].

9.2.5 Lemma (Log-Covering Number Bound for (EXP) Sequences) Let
σ > 0, r = (ri)i≥1 ∈ ℓ2 with ri > 0 for all i ≥ 1, and X :=

∏
i≥1[−ri, ri] ⊆

ℓ2. If r satisfies (EXP) for β > 0 and c ≥ 1 then, for 0 < ε ≤ 1 and
y := log((4 +

√
2)/ε), the following log-covering number bound is satisfied

H
(
Iσ[X], ε

)
≤ N 2(σX, 1) · exp

(2y
(
1 + W0(y/e)

)
W0(y/e)

(
1 + o(1)

))
,

where o(1) denotes a function converging to 0 for ε → 0+.

198



9.2 Covering Number Bounds

Note that the kernel width σ influences only the constant and not the
asymptotic behavior of the upper bound for ε → 0+.

Proof. For d ≥ 1 we define X1 :=
∏∞

i=d+1[−ri, ri] ⊆ ℓ2(d + N) and X2 :=∏d
i=1[−ri, ri] ⊆ ℓd

2. An application of Lemma 9.2.3 with ε = 4ε/(4 +
√

2)
and δ1 = ε/(4 +

√
2) = e−y together with log(4/ε) ≤ y gives us

H
(
Iσ[X], ε

)
≤ N (σX1, e−y)N (σX2, δ2)

(
hδ2(y) + d

d

)
y

for δ2 > 0, d ≥ 1, and 0 < ε ≤ 1. Since r satisfies (EXP), Lemma 9.2.4
yields

N (σX1, e−y) ≤ N
(
σX, e−y+dβ/c

)
.

The choice d :=
⌈(

log(cδ2) + y
)
/β

⌉
implies

e−yedβ

c
≥ e−yelog(cδ2)+y

c
= δ2 .

and hence we find N (σX1, e−y) ≤ N (σX, δ2). Together with N (σX2, δ2) ≤
N (σX, δ2) we get the upper bound

H
(
Iσ[X], ε

)
≤ N 2(σX, δ2)

(
hδ2(y) + d

d

)
y .

Now, we choose δ2 = 1 and use Lemma 7.2.1 as well as Stirling’s formula
to get(

h1(y) + d

d

)
= Γ(h1(y) + d + 1)

Γ(h1(y) + 1)Γ(d + 1)

≤ e1/24
√

2π

(
1/h1(y) + 1/d

)1/2
(

1 + h1(y)
d

)d(
1 + d

h1(y)

)h1(y)
.

It remains to investigate the asymptotic behavior of all the factors depending
on ε (or y). To this end, we give the function in the exponent of our desired
bound the name

f(y) :=
2y log

(
1 + W0(y/e)

)
W0(y/e) .
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Recall from Lemma 7.2.6 that

h1(y) = 2y

W0(y/e) .

First, using W0(y/e) ∼ log(y) from Lemma 7.2.3 we find h1(y) → ∞ and
d ∼ y/β → ∞ for ε → 0+. As a result,

e1/24
√

2π

(
1/h1(y) + 1/d

)1/2

is bounded and hence gets absorbed in exp(f(y) · o(1)). Second, the factor
y satisfies log(y) = o(f(y)) and hence it gets absorbed in exp(f(y) · o(1)),
too. Third, using 1 + t ≤ et, for t = h1(y)/d, yields

log
(

1 + h1(y)
d

)d

≤ log ◦ eh1(y) = h1(y) = o
(
f(y)

)
.

and hence the third factor gets absorbed in exp
(
f(y) · o(1)

)
. Finally, the

logarithm of the last factor behaves like

h1(y) log
(

1 + d

h1(y)

)
∼ 2y

W0(y/e) log
(

1 + W0(y/e)
2β

)
∼ 2y

W0(y/e) log
(
1 + W0(y/e)

)
= f(y) .

As a result, the last factor is of the type exp
(
f(y)

(
1 + o(1)

))
. Combining

all estimates we get the desired bound.

The final theorem presents a simplified, but more convenient, version of
Lemma 9.2.5 for anisotropic Gaussian kernels. Except for a square, this
theorem recovers the log-covering number bound in (8.15) for Gaussian
RKHSs on finite-dimensional domains.

9.2.6 Theorem Let σ = (σi)i≥1, r = (ri)i≥1 be sequences with σi, ri > 0
for i ≥ 1 and X :=

∏
i≥1[−ri, ri] ⊆ ℓ2. If there is a real number β > 0 such

that the sequence σr := (σiri)i≥1 satisfies (EXP) with c ≥ 1 then for every
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p > 0 there is a constant Cβ,c,p > 0 such that the following log-covering
number bound is satisfied, for 0 < ε ≤ 1,

H
(
Iσ[X], ε

)
≤ Cβ,c,p · N 2(DσX, 1) · ε−p .

Proof. Let p > 0 be fixed and y := log((4 +
√

2)/ε) as in Lemma 9.2.5.
Using H(Iσ[X], ε) = H(I1[DσX], ε) from (8.12) and Lemma 9.2.5 it is
enough to show that

εp exp
(2y log

(
1 + W0(y/e)

)
W0(y/e)

(
1 + o(1)

))
is bounded (or even converges to 0) for ε → 0+. However, εp = (4+

√
2)pe−py

and
log

(
1 + W0(y/e)

)
W0(y/e) → 0

for ε → 0+ already proves this claim.

To the best of our knowledge, there is no bound in the literature which
is directly comparable to our bound. In [75, Corollary 3.5] is a bound for
general 1-Hölder continuous operators, which includes the operator Iσ[X].
To be more precise, they use the condition

en(DσX) ≼ n−1/p (9.6)

for some 0 < p < ∞ on the dyadic entropy numbers of DσX to provide the
bound

en

(
Iσ[X]

)
≼

{
n−1/p, 2 < p < ∞
n−1/2 log1/2−1/p(n), 0 < p < 2 .

(9.7)

To compare this with our findings we translate Theorem 9.2.6 into a dyadic
entropy number bound. Using (C.2) Theorem 9.2.6 reads as follows: If the
sequence σr satisfies (EXP) then we have

en

(
Iσ[X]

)
≼ n−1/p
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for all p > 0. First, we compare the assumptions. The condition (EXP)
implies σiri ≼ e−βi and hence analogously to the proof of [58, Proposition 6],
for real sequence spaces, we find

en(DσX) = en

(
DσrBℓ∞

)
≼ n1/4 · exp

(
−

√
2β log(2)n

)
.

As a result, (EXP) is stronger than the condition in (9.6) used by [75,
Corollary 3.5]. But our bound on en(Iσ[X]) is stronger than the bound in
(9.7) provided by [75, Corollary 3.5]. More precisely, the polynomial decay
of the bound in (9.7) saturates at the polynomial order of 1/2, however,
our bound decreases faster than any polynomial.

202



Part III

Diagonal Operators

In many applications discretization techniques are used to reduce the often
difficult problem of estimating entropy numbers in function spaces to easier
estimation problems in sequence spaces. For instance, the problem of
quantifying the compactness of Sobolev embeddings can be reduced to
diagonal operators in sequence spaces via wavelet or Fourier bases, see e.g.
[58, 21] and references therein. In this part we therefore derive new entropy
number bounds for diagonal operators Dσ : ℓp → ℓq, where p ̸= q. In the
case p < q we prove the optimality for fast decaying diagonal sequences,
which include exponentially decreasing sequences. In the case p > q we
show optimality under weaker assumptions than previously used in the
literature. The content of this part is mainly taken from the article:

S. Fischer. Some new bounds on the entropy numbers of diagonal
operators. J. Approx. Theory, 251:105343, 2020.





Chapter 10

Introduction and Preparation

In the first section of this chapter we introduce the notation and provide
some preparatory material. In Section 10.2 we give a brief introduction to
regularity conditions for sequences. Such regularity conditions allow us to
prove the optimality of our entropy number bounds.

10.1 Definitions and Basic Properties
Since we reduce the investigation of diagonal operators on sequence spaces to
the case of diagonal operators on Rk we use a unifying notation. To this end,
we consider sequences over an index set I ⊆ N and recall, for 0 < p ≤ ∞, the
definition of the sequence space ℓp(I) :=

{
x = (xi)i∈I ∈ RI : ∥x∥ℓp(I) < ∞

}
with the (quasi-)norm

∥x∥ℓp(I) :=
{(∑

i∈I |xi|p
)1/p

, 0 < p < ∞
supi∈I |xi|, p = ∞

and the closed unit ball Bℓp(I). With this notation we have ℓp = ℓp(N) and
ℓk

p = ℓp([k]) for k ≥ 1. It is well-known that ℓp(I) is a quasi-Banach space
for all 0 < p ≤ ∞ and that ℓp(I) is a Banach space if and only if 1 ≤ p ≤ ∞.
Moreover, the quasi-triangle constant is κp := κℓp(I) = max

{
21/p−1, 1

}
.

In the following we fix some 0 < p, q ≤ ∞, a sequence σ = (σi)i∈I ∈
RI , and the diagonal operator Dσ : ℓp(I) → ℓq(I) given by Dσ(xi)i∈I :=
(σixi)i∈I . As a consequence of Hölder’s inequality the operator norm of Dσ
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is given by

∥Dσ∥ =
{

∥σ∥ℓr(I), p > q, 1/q = 1/p + 1/r

∥σ∥ℓ∞(I), p ≤ q .
(10.1)

Consequently, Dσ is well-defined and bounded if and only if σ ∈ ℓr(I) in
the case p > q and σ ∈ ℓ∞(I) in the case p ≤ q. Moreover, we define the
auxiliary operators

Dk
p,q : ℓk

p → ℓk
q , (xn)k

n=1 7→ (σ1x1, . . . , σkxk) ,

P k
p : ℓp → ℓk

p, (xn)n≥1 7→ (x1, . . . , xk) ,

Ik
p : ℓk

p → ℓp, (xn)k
n=1 7→ (x1, . . . , xk, 0, 0, . . .) .

(10.2)

Note that these operators satisfy Dk
p,q = P k

q DσIk
p and ∥Ik

p ∥ = ∥P k
p ∥ = 1.

The goal of this part is the investigation of the asymptotic behavior of the
entropy numbers of Dσ. For n ≥ 1, the entropy number εn(Dσ) is defined
as the infimum over all r > 0 that allows to cover DσBℓp with n translates
of rBℓq

. Note that we even need covering and packing numbers for the
proofs. For the definitions and basic properties of these metric entropy
quantities see Appendix C.

In the case p = q the asymptotic behavior of the entropy numbers
εn(Dσ) is well-known for all diagonal sequences σ, see e.g. Gordon et al.
[39, Proposition 1.7] for the Banach space case 1 ≤ p ≤ ∞ but, modulo the
constant, the result remains valid for all 0 < p ≤ ∞. Therefore, we focus
on the case p ̸= q, where—as far as we know—are only partial answers
available, see e.g. [57, 58, 18].

Recall that for real sequences (xn)n≥1 and (yn)n≥1 we write xn ≼ yn

if there is a constant c > 0 with xn ≤ cyn for all n ≥ 1 and the (weak)
asymptotic equivalence xn ≍ yn means xn ≼ yn as well as xn ≽ yn. Using
this notion, we declare an upper bound (xn)n≥1 on the entropy numbers
to be optimal if there is a corresponding lower bound (yn)n≥1, which is
asymptotically equivalent xn ≍ yn. In our bounds the ratio of the volumes
of the unit balls Bℓk

p
and Bℓk

q
play an important role. To this end, recall that

λk denotes the k-dimensional Lebesgue measure and that a combination of
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[70, Equation (1.17)] with Stirling’s formula yields, for k → ∞,(
λk(Bℓk

p
)

λk(Bℓk
q
)

)1/k

≍ k1/q−1/p . (10.3)

Finally, the following lemma establishes a comparison between covering and
entropy numbers.

10.1.1 Lemma Let 0 < p, q ≤ ∞, (ak)k≥1 be a positive sequence and
Dσ : ℓp → ℓq be a diagonal operator with ∥Dσ∥ < ∞. If the covering
number estimate

N (Dσ, ε) ≤ sup
k≥1

ak

(1
ε

)k

(10.4)

holds true for all 0 < ε < ε1(Dσ) then for n ≥ 1 the n-th entropy number
satisfies

εn(Dσ) ≤ sup
k≥1

(ak

n

)1/k

.

Note that Point (ii) and (iii) in Lemma C.9 in the language of entropy
numbers read ∥Dσ∥/κq ≤ ε1(Dσ) ≤ ∥Dσ∥. Consequently, in Lemma 10.1.1
it is sufficient to check (10.4) for all 0 < ε < ∥Dσ∥.

Proof. Let n ≥ 1 be a natural number. If εn(Dσ) = 0 holds true then
Dσ = 0 is the zero operator and there is nothing to prove. In the following
we assume εn(Dσ) > 0 and choose 0 < ε < εn(Dσ). By the contrapositive
of Point (i) in Lemma C.1 we have n < N (Dσ, ε). Moreover, by our
assumption for every δ > 0 there is a kδ ≥ 1 with

n ≤ N (Dσ, ε) ≤ (1 + δ) akδ

(1
ε

)kδ

.

This implies

ε ≤
(

(1 + δ) akδ

n

)1/kδ

≤ (1 + δ)
(akδ

n

)1/kδ

≤ (1 + δ) sup
k≥1

(ak

n

)1/k

.

Letting δ ↘ 0 and ε ↗ εn(Dσ) we get the assertion.
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10.2 Conditions on Sequences
In this section we introduce the regularity conditions on the diagonal
sequence σ = (σk)k≥1 that we need to prove the optimality of our entropy
number bounds. Furthermore, we collect some characterizations of these
conditions that allows us to compare our results with the existing literature.
Most of the following results are consequences of the general theory of
O-regular varying functions/sequences, but for convenience we include the
proofs or give detailed references. Throughout this section, all suprema
supk≤n and infima infk≤n are taken over all tuples (n, k) ∈ N2 with k ≤ n.

Let σ = (σk)k≥1 be a positive and non-increasing sequence with σk ↘ 0
for k → ∞. Then we define the r-tail sequence, for r > 0 and n ≥ 1, by

τn :=
( ∞∑

k=n

σr
k

)1/r

(10.5)

and we define the s-partial sum sequence, for s > 0 and n ≥ 1, by

vn :=
( n∑

k=1
σ−s

k

)1/s

. (10.6)

Note that the r-tail sequence is well-defined if and only if σ ∈ ℓr. Now,
we are ready to formulate our regularity conditions on σ: We say that
σ = (σk)k≥1 satisfies

(EXP) if there is some b > 1 with supk≤n
σnbn

σkbk < ∞.

(ALP) if σ ∈ ℓr and τn ≼ σnn1/r.

(AMP) if σ ∈ ℓr and τn ≽ σnn1/r.

Note that we already used the Condition (EXP) in Section 9.2 of Part II.
Moreover, (EXP) implies an exponential decay σn ≼ b−n. This is the reason
why we call this condition (EXP). The abbreviation (ALP) stands for at
least polynomial decay since this condition implies σn ≼ n−α for some
α > 1/r according to Point (i) of Lemma 10.2.3 below. In Lemma 10.2.3
below we see that (AMP) implies τn ≽ n−α for some α > 0 and hence we
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called this condition at most polynomial decay. Our first lemma provides
characterizations of the Condition (EXP).

10.2.1 Lemma ((EXP) Sequences) Let r, s > 0, σ = (σk)k≥1 with σk > 0
for k ≥ 1 and σk ↘ 0 for k → ∞, τ = (τn)n≥1 be the r-tail sequence given
by (10.5), and v = (vn)n≥1 be the s-partial sum sequence given by (10.6).
Then the following statements are equivalent:

(i) σ satisfies (EXP).

(ii) There is an n0 ≥ 1 and an 0 < a < 1 with σk+n0 ≤ a σk for all k ≥ 1.

(iii) σn ≍ 1/vn.

(iv) σ ∈ ℓr and σn ≍ τn.

Note that Condition (i) and (ii) are independent of r > 0 and s > 0.
Consequently, if σ satisfies Condition (iii) or (iv) for some s > 0 or r > 0
then σ satisfies both conditions for all r, s > 0. Furthermore, from Point (iv)
we get (EXP) ⊆ (ALP) and (EXP) ∩ (AMP) = ∅.

Proof. (i)⇒(iii) For c := supk≤n
σnbn

σkbk < ∞ we get

vs
nσs

n =
n∑

k=1

(σn

σk

)s

≤ cs
n∑

k=1
b−s(n−k) = cs

n−1∑
k=0

b−sk ≤ (bc)s

bs − 1

for all n ≥ 1. Moreover, vnσn ≥ 1 always holds. By considering (τk/σk)r

we can analogously prove (i)⇒(iv).
(iii)⇒(ii) Let c > 0 be a constant with vnσn ≤ c for all n ≥ 1. Because

of the monotonicity of σ we get for k, n0 ≥ 1

cs ≥ vs
k+n0σs

k+n0 =
k+n0∑
i=1

(σk+n0

σi

)s

≥
k+n0∑
i=k

(σk+n0

σi

)s

≥
(σk+n0

σk

)s

(n0+1) .

Choosing n0 := ⌈cs⌉ yields, for k ≥ 1,

σk+n0

σk
≤ c

(n0 + 1)1/s
≤ c

(cs + 1)1/s
< 1 .
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(iv)⇒(ii) Let c > 0 be a constant with τk ≤ cσk for all k ≥ 1. Because of
the monotonicity of σ we get for k, n0 ≥ 1

cr ≥ τ r
k

σr
k

=
∞∑

n=k

(σn

σk

)r

≥
k+n0∑
n=k

(σn

σk

)r

≥
(σk+n0

σk

)r

(n0 + 1) .

Hence Statement (ii) follows along the same line as (iii)⇒(ii).
(ii)⇒(i) For k ≤ n there is a unique m ≥ 0 with k + mn0 ≤ n <

k + (m + 1)n0. Using the monotonicity of σ and Assumption (ii) m-times
we get

σn ≤ σk+mn0 ≤ σkam ≤ σk

a
a

n−k
n0 = σk

a
bk−n

with b = a−1/n0 > 1. Hence the supremum is bounded by a−1.

Another important condition is the doubling condition σ2n ≍ σn. The
following lemma provides equivalent characterizations for this condition.

10.2.2 Lemma (Doubling Condition) Let σ = (σk)k≥1 with σk > 0 for k ≥ 1
and σk ↘ 0 for k → ∞. Then the following statements are equivalent:

(i) σn ≍ σ2n.

(ii) For all λ > 0 the function f(x) := σ⌊x⌋+1 satisfies f(x) ≍ f(λx).

(iii) infk≤n
σnnα

σkkα > 0 for some α > 0.

(iv) σn ≍ (σ1 · . . . · σn)1/n.

Note that the symbol “≍” in Point (ii) means that for all λ > 0 there are
constants c1, c2 > 0, depending on λ > 0, with c1f(x) ≤ f(λx) ≤ c2f(x)
for all x > 0. Moreover, Point (iii) implies σn ≽ n−α and hence σ decreases
at most polynomially. Finally, the Point (iv) has already been used in
Lemma 5.2.3 of Part I as an assumption. Consequently, this lemma provides
equivalent assumptions for Lemma 5.2.3 .

Proof. (i)⇔(iii) This has already been pointed out by Kühn [57, p. 482]
and is a direct consequence of the monotonicity of σ.
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(i)⇔(ii) Statement (ii), for λ = 2 and x = n − 1/2, directly implies (i).
For the converse implication we first show that

⌊nx⌋ + 1 ≤ n
(
⌊x⌋ + 1

)
(10.7)

holds for all n ≥ 1 and all x > 0. To this end, let 0 ≤ r < 1 with x = ⌊x⌋+r.
Since the strict inequality nx = n⌊x⌋ + nr < n⌊x⌋ + n holds true and the
right hand side is an integer, we find ⌊nx⌋ ≤ n⌊x⌋+n−1 which is equivalent
to (10.7). Now, to the implication (i)⇒(ii). Let c > 0 be the doubling
constant of σ, i.e. σ2n ≥ cσn for all n ≥ 1. Using the monotonicity of σ,
the inequality in (10.7), and (i) we find

f(2x) = σ⌊2x⌋+1 ≥ σ2(⌊x⌋+1) ≥ cσ⌊x⌋+1 = cf(x) . (10.8)

Finally, for fixed λ ≥ 1 we choose an m ≥ 1 with 2m ≥ λ. The monotonicity
of f and an m-fold application of (10.8) yields (ii). The case 0 < λ < 1 can
be easily deduced from the case λ > 1.

(iii)⇒(iv) Because of the monotonicity of σ we always have (σ1 · . . . ·
σn)1/n ≥ σn. For c := infk≤n

σnnα

σkkα > 0 we have σk ≤ c−1σnnαk−α for all
k ≤ n. Since Stirling’s formula yields (n!)1/n ≍ n, we get

(σ1 · . . . · σn)1/n ≤ c−1σn
nα

(n!)α/n
≍ σn .

(iv)⇒(i) Let c > 0 with σn ≤ (σ1 · . . . · σn)1/n ≤ cσn for all n ≥ 1. Then

cσ2n ≥ (σ1 · . . . · σ2n) 1
2n = (σ1 · . . . · σn) 1

2n (σn+1 · . . . · σ2n) 1
2n ≥

√
σnσ2n .

is satisfied for all n ≥ 1. Hence we have c2σ2n ≥ σn ≥ σ2n for all n ≥ 1.

The final lemma provides some characterizations for various conditions
on the r-tail sequence.

10.2.3 Lemma (Tail Sequence) Let r > 0, σ = (σk)k≥1 with σk > 0 for
k ≥ 1 and σk ↘ 0 for k → ∞ and τ = (τn)n≥1 be the r-tail sequence given
by (10.5). Then the following statements hold true:
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(i) The following statements are equivalent:

(a) supk≤n
σnnα

σkkα < ∞ for some α > 1/r.

(b) σ satisfies (ALP).

(ii) The following statements are equivalent:

(c) σ ∈ ℓr and τn ≍ τ2n.

(d) σ satisfies (AMP).

(iii) If σ ∈ ℓr and σn ≍ σ2n are satisfied then the r-tail sequence satisfies
τn ≍ τ2n.

(iv) If (a) is satisfied then σn ≍ σ2n is satisfied if and only if τn ≍ τ2n is
satisfied.

If we combine Point (ii) with Lemma 10.2.2, we see that Condition (AMP)
implies τn ≽ n−α for some α > 0.

Proof. (a)⇒(b) For c := supk≤n
σnnα

σkkα < ∞ we get

τ r
k

kσr
k

= 1
k

∞∑
n=k

(σn

σk

)r

≤ crkαr−1
∞∑

n=k

n−αr

for all k ≥ 1. Estimating the remaining sum using integrals we get the
assertion, namely

kαr−1
∞∑

n=k

n−αr ≤ kαr−1
(

k−αr +
∫ ∞

k

t−αr dt

)
≤ αr

αr − 1 .

(b)⇒(a) This is a consequence of Bingham et al. [8, Theorem 2.6.3] to the
positive and measurable function f(x) := xσr

⌊x⌋ for x ≥ 1. To this end, we
recall the definition of almost decreasing functions from [8, Section 2.2.1] and
the Matuszewska index α(f) of f , defined in [8, Section 2.1.2]. Moreover,
we have

α(f) = inf
{

α ∈ R : x−αf(x) is almost decreasing
}
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according to [8, Theorem 2.2.2]. Since x−1f(x) is decreasing, we have
α(f) ≤ 1 < ∞ and hence f is of bounded increase, i.e. f ∈ BI, see [8, p. 71]
for a definition. Consequently, [8, Theorem 2.6.3 (d)] is applicable to the
function f . For f̃(x) :=

∫ ∞
x

f(t)/t dt we have

f(x)
f̃(x)

=
xσr

⌊x⌋

τ r
⌊x⌋ − (x − ⌊x⌋)σr

⌊x⌋
≥

xσr
⌊x⌋

τ r
⌊x⌋

≥
⌊x⌋σr

⌊x⌋

τ r
⌊x⌋

≥ c−r

for all x ≥ 1, where c > 0 is a constant satisfying τn ≤ cσnn1/r for all
n ≥ 1. Therefore, lim infx→∞ f(x)/f̃(x) > 0 and [8, Theorem 2.6.3 (d)]
yields α(f) < 0. Consequently, there is a α0 < 0 such that x−α0f(x) is
almost decreasing. The definition of almost decreasing gives us the assertion
with α = 1−α0

r > 1/r.
(c)⇒(d) This is from [58, first equation on p. 45]. (d)⇒(c) The following

idea is from [13, proof of Theorem 4]. According to our assumption the
sequence

ρn := n

(
1 −

τ r
n+1
τ r

n

)
= n

τ r
n − τ r

n+1
τ r

n

= nσr
n

τ r
n

is positive and bounded. Building a telescope product we get

τ r
n

τ r
1

=
n−1∏
k=1

τ r
k+1
τ r

k

=
n−1∏
k=1

(
1 − ρk

k

)
.

Since 0 < 1 − ρk

k < 1 holds true, this gives τ r
n = exp ◦ log(τ r

n) = exp
(
γn −∑n−1

k=1 ρk/k
)

with

γn := log τ r
1 +

n−1∑
k=1

(
log

(
1 − ρk

k

)
+ ρk

k

)
.

Below we will prove that (γn)n≥1 converges and hence the assertion is a
consequence of this representation of τ r

n according to [26, Theorem 2]. Now,
to the convergence of (γn)n≥1. Since (ρk)k≥1 is bounded, the sequence
ak := ρk/k is square summable. Without loss of generality we assume that
there is a 0 < q < 1 with an < q for all n ≥ 1. Using the Taylor series of
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the logarithm we get

log(1 − ak) + ak = −
∞∑

ℓ=1

aℓ
k

ℓ
+ ak = −

∞∑
ℓ=2

aℓ
k

ℓ
.

Additionally, for ℓ ≥ 2, we have the estimate
∑∞

k=1 aℓ
k ≤ ∥a∥2

ℓ2
qℓ−2. To-

gether we get the absolute convergence of the series

∞∑
k=1

∣∣log(1 − ak) + ak

∣∣ =
∞∑

k=1

∞∑
ℓ=2

aℓ
k

ℓ
=

∞∑
ℓ=2

1
ℓ

∞∑
k=1

aℓ
k ≤

∥a∥2
ℓ2

q2

∞∑
ℓ=2

qℓ

ℓ
< ∞ .

(iii) According to our assumption there is a constant c > 0 with σ2n ≥ cσn

for all n ≥ 1. Then the assertion follows by

τ r
2n ≥

∞∑
k=n

σr
2k ≥ cr

∞∑
k=n

σr
k = crτ r

n .

(iv) It is enough to prove the converse implication of Point (iii). Since
we assume (a), we have (b) and (d), i.e. τn ≍ σnn1/r. Consequently,
σ2n ≍ τ2n(2n)−1/r ≍ τnn−1/r ≍ σn is satisfied.
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Chapter 11

Entropy Number Bounds

In this chapter, besides establishing some new upper bounds on the entropy
numbers, we prove their optimality under some regularity conditions on
the diagonal sequence. Finally, we compare our findings with the existing
literature.

11.1 Upper Bounds
In this section we prove upper bounds on the entropy numbers of diagonal
operators on sequence spaces. All these bounds are based on the following
bound for diagonal operators between finite-dimensional spaces.

11.1.1 Lemma Let 0 < p, q ≤ ∞, k ≥ 1, and σ1, . . . , σk > 0. Then the
diagonal operator Dσ : ℓk

p → ℓk
q satisfies, for ε > 0,

P(Dσ, ε) ≤ (2κp)k
λk(Bℓk

p
)

λk(Bℓk
q
)

(
∥ Idk

q,p ∥ + κq
σ1

ε

)
· . . . ·

(
∥ Idk

q,p ∥ + κq
σk

ε

)
,

where Idk
q,p : ℓk

q → ℓk
p denotes the identity operator and λk the k-dimensional

Lebesgue measure.

In the case p = q this bound originates from Oloff [68, Hilfsatz 2]. Further-
more, note that the proof of Kolmogorov and Tikhomirov [51, Theorem XVI]
contains the case p = q = 2 and σn = n−α.
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Proof. For the first step of the proof we proceed analogously to the proof
of Lemma C.7. To be more precise, for ε > 0 we choose an ε-packing
N ⊆ DσBℓk

p
with n := |N | = P(Dσ, ε). Then we get from (C.1) for

M = DσBℓk
p

and B = Bℓk
q⊎

x∈N

(
x + ε/κq · Bℓk

q

)
⊆ DσBℓk

p
+ ε/κq · Bℓk

q

⊆ DσBℓk
p

+ ε/κq · ∥ Idk
q,p ∥ · Bℓk

p
,

(11.1)

where we used the definition of the operator norm in the last step.
Before we continue to estimate (11.1) we prove the following auxiliary

result: For a second diagonal operator Dω : ℓk
p → ℓk

q with ωi > 0 for all
i = 1, . . . , k we have

DσBℓk
p

+ DωBℓk
p

⊆ 2κpDσ+ωBℓk
p

. (11.2)

Since Dσ+ω is invertible, (11.2) is equivalent to D−1
σ+ω(DσBℓk

p
+ DωBℓk

p
) ⊆

2κpBℓk
p
. Now, to show (11.2) we fix x, y ∈ Bℓk

p
and observe

∥D−1
σ+ω(Dσx + Dωy)∥ℓk

p
≤ κp∥D−1

σ+ωDσx∥ℓk
p

+ κp∥D−1
σ+ωDωy∥ℓk

p

≤ κp∥D−1
σ+ωDσ∥ + κp∥D−1

σ+ωDω∥ .

Since D−1
σ+ωDσ is an operator from ℓk

p to ℓk
p, the operator norm is given by

∥D−1
σ+ωDσ∥ = maxi=1,...,k

σi

σi+ωi
≤ 1. Analogously we have ∥D−1

σ+ωDω∥ =
maxi=1,...,k

ωi

σi+ωi
≤ 1 and therefore (11.2) is proven.

Combining (11.1) with (11.2) and applying the Lebesgue measure gives

n(ε/κq)kλk(Bℓk
q
) = λk

( ⊎
x∈N

(
x + ε/κq Bℓk

q

))
≤ λk

(
2κpDσ+∥ Idk

q,p ∥·ε/κq
Bℓk

p

)
= (2κp)k · λk(Bℓk

p
) ·

k∏
i=1

(
σi + ∥ Idk

q,p ∥ · ε/κq

)
.

Solving this inequality for n yields the assertion.
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In order to transfer the bound of Lemma 11.1.1 from finite- to infinite-
dimensional diagonal operators we split the diagonal operator in to a
finite-dimensional part and a remainder. To this end, we fix 0 < p, q ≤ ∞
and a sequence σ = (σn)n≥1 such that the corresponding diagonal operator
Dσ : ℓp → ℓq is well-defined and bounded. Using the auxiliary operators
defined in (10.2) and properties of the covering numbers from Lemma C.9
we find, for k ≥ 1,

N
(
Dσ, κqε

)
= N

(
Ik

q Dk
p,qP k

p +
(
Dσ − Ik

q Dk
p,qP k

p

)
, κqε

)
≤ N

(
Ik

q Dk
p,qP k

p , ε/2
)

· N
(

Dσ − Ik
q Dk

p,qP k
p , ε/2

)
≤ N

(
Dk

p,q, ε/2
)

· N
(

Dσ − Ik
q Dk

p,qP k
p , ε/2

)
.

In the following we will choose a suitable k ≥ 1 with ∥Dσ −Ik
q Dk

p,qP k
p ∥ ≤ ε/2.

Since in this case we have N
(
Dσ − Ik

q Dk
p,qP k

p , ε/2
)

= 1, the estimate above
reduces to

N (Dσ, κqε) ≤ N
(
Dk

p,q, ε/2
)

. (11.3)

First, we apply (11.3) in the case p < q.

11.1.2 Lemma (Upper Bound for p < q) Let 0 < p < q ≤ ∞ with
1/p = 1/q + 1/s and σ = (σk)k≥1 with σk > 0 for k ≥ 1 and σk ↘ 0 for
k → ∞. Then the diagonal operator Dσ : ℓp → ℓq satisfies, for n ≥ 1,

εn(Dσ) ≤ 4κpκq sup
k≥1

(
λk(Bℓk

p
)

λk(Bℓk
q
) · n−1·(2κqσ1 + k1/sσk) · . . .

. . . · (2κqσk + k1/sσk)
)1/k

.

Proof. For every 0 < ε/2 < ∥Dσ∥ = σ1, there is a k ≥ 1 with σk+1 ≤ ε/2 <

σk. Then (10.1) gives us
∥∥Dσ − Ik

q Dk
p,qP k

p

∥∥ = σk+1 ≤ ε/2. Using (11.3)
with this k, Lemma 11.1.1, and ∥ Idk

q,p ∥ = k1/s we get

N (Dσ, κqε) ≤ (2κp)k
λk(Bℓk

p
)

λk(Bℓk
q
)

(
k1/s + 4κqσ1

ε

)
· . . . ·

(
k1/s + 4κqσk

ε

)
.
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Using k1/s < 2σkk1/s/ε and taking the supremum over k ≥ 1 gives

N (Dσ, κqε) ≤ sup
k≥1

{
λk(Bℓk

p
)

λk(Bℓk
q
)
(
σkk1/s + 2κqσ1

)
· . . .

. . . ·
(
σkk1/s + 2κqσk

)(
4κp

ε

)k}
.

Finally, Lemma 10.1.1 yields the assertion.

Next, we apply (11.3) in the case p > q.

11.1.3 Lemma (Upper Bound for p > q) Let 0 < q < p ≤ ∞ with
1/q = 1/p + 1/r, σ = (σk)k≥1 ∈ ℓr with σk > 0 for k ≥ 1 and σk ↘ 0 for
k → ∞, and τ the r-tail sequence defined by (10.5). Then the diagonal
operator Dσ : ℓp → ℓq satisfies, for n ≥ 1,

εn(Dσ) ≤ 4κpκq sup
k≥1

(
(τk + 2κpk1/rσ1) · . . . · (τk + 2κpk1/rσk)

n

)1/k

.

Proof. For every 0 < ε/2 < ∥Dσ∥ = τ1, there is a k ≥ 1 with τk+1 ≤ ε/2 <

τk. Then (10.1) gives us ∥Dσ −Ik
q Dk

p,qP k
p ∥ = τk+1 ≤ ε/2. Using (11.3) with

this k, the decomposition Dk
p,q = Idk

p,q ◦Dk
p,p, and ∥ Idk

p,q ∥ = k1/r we get

N (Dσ, κqε) ≤ N (Dk
p,p, k−1/rε/2) · N (Idk

p,q, k1/r) = N (Dk
p,p, k−1/rε/2) .

Using Lemma 11.1.1 and 1 < 2τk/ε gives

N (Dσ, κqε) ≤ (2κp)k
(

1 + 4κpk1/rσ1

ε

)
· . . . ·

(
1 + 4κpk1/rσk

ε

)
≤

(
τk + 2κpk1/rσ1

)
· . . . ·

(
τk + 2κpk1/rσk

)(4κp

ε

)k

.

Finally, taking the supremum over k and using Lemma 10.1.1 gives the
assertion.
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11.2 Optimality
In this section we investigate the optimality of the upper bounds of Sec-
tion 11.1. To this end, we use the regularity conditions (EXP), (ALP),
and (AMP) introduced in Section 10.2. First, we recall a well-known lower
bound.

11.2.1 Lemma (Lower Bound) Let 0 < p, q ≤ ∞ and σ = (σk)k≥1 with
σk > 0 for k ≥ 1 and σk ↘ 0 for k → ∞ such that the diagonal operator
Dσ : ℓp → ℓq is bounded. Then for all n ≥ 1 the n-th entropy number
satisfies

εn(Dσ) ≥ sup
k≥1

(
λk(Bℓk

p
)

λk(Bℓk
q
)

σ1 · . . . · σk

n

)1/k

.

Note that this lower bound holds without any additional assumption on σ.

Proof. Let n, k ≥ 1 be fixed and choose ε > εn(Dσ). Using Lemma C.1
we find n ≥ N (Dσ, ε). Next, we use the auxiliary operators defined in
(10.2) and the multiplicativity of the covering numbers from Lemma C.9 to
get N (Dk

p,q, ε) = N (P k
q DσIk

p , ε) ≤ N (Dσ, ε). An application of the lower
bound in Lemma C.7 gives us

n ≥ N (Dσ, ε) ≥ N (Dk
p,q, ε) ≥

λk(Bℓk
p
)

λk(Bℓk
q
) · σ1 · . . . · σk · ε−k .

Rearranging this inequality for ε yields

ε ≥
(

λk(Bℓk
p
)

λk(Bℓk
q
)

σ1 · . . . · σk

n

)1/k

.

Letting ε ↘ εn(Dσ) and taking the supremum over k ≥ 1 we get the
assertion.

Using the lower bound of Lemma 11.2.1 we can prove the optimality of
our upper bounds in Lemma 11.1.2 and Lemma 11.1.3. Let us start with
the optimality of Lemma 11.1.2 if the Condition (EXP) is satisfied.
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11.2.2 Theorem (Optimality for p < q) Let 0 < p < q ≤ ∞ with 1/p =
1/q + 1/s and σ = (σk)k≥1 be a sequence with σk > 0 for k ≥ 1 and σk ↘ 0
for k → ∞. If σ satisfies (EXP) then the upper bound in Lemma 11.1.2
is optimal. In this case the entropy numbers of the diagonal operator
Dσ : ℓp → ℓq satisfy

εn(Dσ) ≍ sup
k≥1

k−1/s

(
σ1 · . . . · σk

n

)1/k

.

Proof. Lemma 11.1.2 together with (10.3) gives us

εn(Dσ) ≼ sup
k≥1

k−1/s

(
(σ1 + k1/sσk) · . . . · (σk + k1/sσk)

n

)1/k

.

Rearranging the term in parentheses gives(
(σ1 + k1/sσk) · . . . · (σk + k1/sσk)

n

)1/k

=
(

σ1 · . . . · σk

n

)1/k

·
((

1 + k1/sσk

σ1

)
. . .

(
1 + k1/sσk

σk

))1/k

.

Applying that the geometric mean is bounded by the arithmetic mean as
well as the triangle inequality in ℓk

s yields

((
1 + k1/sσk

σ1

)
· . . . ·

(
1 + k1/sσk

σk

))1/k

≤
(

1/k

k∑
i=1

(
1 + k1/sσk

σi

)s)1/s

≤ κs + κsσk

( k∑
i=1

σ−s
i

)1/s

.

Since σ satisfies (EXP), according Point (iii) of Lemma 10.2.1 we find
σkvk ≍ 1. As a result, the right hand side is bounded in k and we get “≼”
for the claimed asymptotic equivalence. If we combine Lemma 11.2.1 with
(10.3), we get the corresponding lower bound “≽”.

Next, we consider the optimality of Lemma 11.1.3.
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11.2.3 Theorem (Optimality for p > q) Let 0 < q < p ≤ ∞ with 1/q =
1/p + 1/r and σ = (σk)k≥1 ∈ ℓr be a sequence with σk > 0 for k ≥ 1 and
σk ↘ 0 for k → ∞. If σ satisfies one of the following conditions then the
upper bound in Lemma 11.1.3 is optimal:

(i) Condition (ALP), i.e. τn ≼ σnn1/r. In this case the entropy numbers
of the diagonal operator Dσ : ℓp → ℓq satisfy

εn(Dσ) ≍ sup
k≥1

k1/r
(σ1 · . . . · σk

n

)1/k

.

(ii) Condition (AMP), i.e. τn ≽ σnn1/r. In this case the entropy numbers
of the diagonal operator Dσ : ℓp → ℓq satisfy

εn(Dσ) ≍ τ⌊log2(n)⌋+1 .

Proof. (i) Lemma 11.1.3 gives us

εn(Dσ) ≼ sup
k≥1

(
(τk + k1/rσ1) · . . . · (τk + k1/rσk)

n

)1/k

.

Rearranging the term in parentheses gives(
(τk + k1/rσ1) · . . . · (τk + k1/rσk)

n

)1/k

= sup
k≥1

k1/r

(
σ1 · . . . · σk

n

)1/k(( τk

k1/rσ1
+ 1

)
· . . . ·

( τk

k1/rσk
+ 1

))1/k

.

According to (ALP) the last factor is bounded in k and hence we get “≼”
for the claimed asymptotic equivalence. If we combine Lemma 11.2.1 with
(10.3), we get the corresponding lower bound “≽”.

(ii) Because of Point (ii) of Lemma 10.2.3 we have τn ≍ τ2n. Hence Kühn
[58, Theorem 1] yields εn(Dσ) ≍ τ⌊log2(n)⌋+1 and it is enough to show that
the upper bound in Lemma 11.1.3 is asymptotically bounded by τ⌊log2(n)⌋+1.
According to (AMP) and Point (iii) of Lemma 10.2.2 applied to (τn)n≥1
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there are constants c1, c2, β > 0 with σi ≤ c1τii
−1/r and τi ≤ c2τkkβi−β for

all k ≥ i. Together we get, for α := 1/r + β,

τk + k1/rσi ≤ τk + c1c2τk
k1/r+β

i1/r+β
≤ τk

kα

iα
(1 + c1c2)

and all k ≥ i. Plugging this into the bound of Lemma 11.1.3 we get

εn(Dσ) ≼ sup
k≥1

(
(τk + k1/rσ1) · . . . · (τk + k1/rσk)

n

)1/k

≼ sup
k≥1

τk

n1/k

kα

(k!)α/k
.

From Stirling’s formula we know (k!)1/k ≍ k and hence we have

εn(Dσ) ≼ sup
k≥1

τk

n1/k
(11.4)

and it remains to show, that the right hand side behaves asymptotically
like τ⌊log2(n)⌋+1. To this end, let c > 0 be the doubling constant of τ , i.e.
τ2n ≥ cτn for all n ≥ 1. Without loss of generality we can assume c < 1
and define α := log(2)

2 log(1/c) > 0. For k ≤ α log2(n) we have

n
1

2k − 1
k = n− 1

2k ≤ exp
(

− log(n)
2α log2(n)

)
= c ≤ τ2k

τk

and this implies
τk

n
1
k

≤ τ2k

n
1

2k

. (11.5)

A recursive application of this inequality enables us to restrict our supremum
to k > α log2(n). Moreover, for such k we have

1 ≥ n−1/k = exp
(

− log(n)
k

)
≥ exp

(
− log(n)

α log2(n)

)
= 2−1/α . (11.6)

If we combine (11.4), (11.5), and (11.6) then we get

εn(Dσ) ≼ sup
k≥1

τk

n1/k
= sup

k>α log2(n)

τk

n1/k
≍ sup

k>α log2(n)
τk = τ⌊α log2(n)⌋+1 .

Finally, an application of Point (ii) of Lemma 10.2.2 yields the assertion.
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11.3 Comparison
In this section we compare our results with some bounds previously obtained
in the literature. Since all previously established results on the entropy (or
covering) numbers of diagonal operators, see e.g. [51, 64, 62, 68, 17, 56] and
the references therein, are essentially contained in [57, 58, 18], we restrict
our comparison to the latter three articles.

In the case p < q the most general entropy bounds are derived by Kühn
in [57]. Namely, he obtained optimal bounds under each of the following
set of assumptions:

(i) polynomial decay: supk≤n
σnnα

σkkα < ∞ for some α > 0 and σn ≍ σ2n,

(ii) fast logarithmic decay: supk≤n
σn

σk

( 1+log n
1+log k

)1/s
< ∞ and σn2 ≍ σn,

(iii) slow logarithmic decay: infk≤n
σn

σk

( 1+log n
1+log k

)1/s
> 0.

Note that Scenario (i) and (ii) both exclude sequences that decrease too slow
as well as sequences that decrease too fast. In contrast, (iii) only excludes
sequences that decrease too fast. In comparison, our bound of Lemma 11.1.2
is optimal if the diagonal sequence decays at least exponentially in the sense
of (EXP). Since all of the Scenarios (i)–(iii) imply σn ≍ σ2n, we easily see
that they all exclude (EXP), that is, (EXP) is not covered by [57].

In the case p > q, [57] provides optimal bounds for sequences σ satisfying

sup
k≤n

σnnα

σkkα
< ∞

for some α > 1/r and σn ≍ σ2n. According to Lemma 10.2.3 the combina-
tion of both assumptions is equivalent to the combination of (AMP) and
(ALP), i.e. τn ≍ σnn1/r. In [58], Kühn generalizes the results of [57] by es-
tablishing optimal bounds under the Condition (AMP), only. Consequently,
the upper bound of Lemma 11.1.3 is optimal for sequences considered in
[58] and is additionally optimal for sequences satisfying (ALP) only.

Table 11.1 lists three types of sequences σ that are barely covered by the
literature and our bounds bring new insights. Compared to [57, 58], another
advantage of our results is that they actually provide bounds for all p ̸= q
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σn ≍ τn ≍ (AMP) (ALP) (EXP)

exp
(
−a logλ(n)

)
σn n1/r log(1−λ)/r(n) no yes if λ > 1 no

exp
(
−anλ

)
σn n(1−λ)+/r no yes yes if λ ≥ 1

exp
(
−aeλn

)
σn no yes yes

Table 11.1: Three types of diagonal sequences for which our bounds bring
new insights into the asymptotic behavior the entropy numbers
and which are hardly covered by the existing literature. For
all examples we assume a > 0 and λ > 0. In addition, the
conditions (AMP) and (ALP) are only considered in the case
p > q, whereas (EXP) is actually independent of p and q. Note
some subtleties of the first example: For λ = 1 it reduces to
a plain polynomial decay, which is already well understood.
Moreover, for λ < 1 the operator Dσ is not even bounded in
the case p > q and the asymptotic behavior can be found in [28,
Example 14] in the case p < q.

and all sequences σ. However, in some cases the question of optimality is
not answered yet.

There is another strand of research, see e.g. [17, 18], that describes the
asymptotic behavior of the entropy numbers in terms of (generalized) Lorentz
spaces. The most general result in this direction is [18, Corollary 1.2]:

σ ∈ ℓt,v,φ ⇐⇒ ε2n−1(Dσ) ∈ ℓu,v,φ ,

where ℓu,v,φ is a generalized Lorentz space with slowly varying function φ,
see [18, Section 2] for a definition, and the parameters satisfy 1 ≤ p, q ≤ ∞,
0 < t, v ≤ ∞, 1/t > (1/q − 1/p)+, and 1/u = 1/t − (1/q − 1/p). Note that
the implication “⇐” is contained in Lemma 11.2.1 and “⇒” is contained in
Lemma 11.1.3 in the case p > q and v = ∞.

Finally, many results previously obtained in the literature are based on
the operator ideal theory and a dyadic splitting of the diagonal operator,
see e.g. [69] for an introduction to operator ideals and [17, 56, 18] for their
application to entropy numbers of diagonal operators. This approach reduces
the problem of bounding εn(Dσ) to the estimation of entropy numbers of
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embeddings between finite-dimensional spaces. In order to bound the
entropy numbers of these finite-dimensional embeddings advanced bounds
with a good so-called preasymptotic behavior are needed. Such bounds can
be found e.g. in [74, 30, 42, 55, 29] and are often based on sophisticated
combinatoric arguments and interpolation theory. In contrast, our results
are based on a single splitting of the diagonal operator and a simple bound
for finite-dimensional diagonal operators. The latter bound has no good
preasymptotic behavior but it is based on a plain volume argument.
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Appendix A

Poofs of the Oracle Inequalities

In this chapter we provide proofs of the oracle inequalities in Lemma 1.3.1
and Lemma 1.3.2. To this end, we use the fact that histograms are empirical
risk minimizers (ERMs). To be more precise, for the (convex) output space
Y = [−M, M ] with M > 0 and the hypothesis class

H(A, Y ) :=
{∑

k∈K

1Ak
· ck : ck ∈ Y

}
⊆ L0

(
X, σ(A)

)
we get as direct consequences of (1.5), (1.18), and the projection property
of the conditional expectation that hD,A ∈ H(A, Y ) and

RLS,D(hD,A) = R∗
LS,D,H(A,Y ) = inf

f∈H(A,Y )
RLS,D(f) (A.1)

are satisfied for all data sets D ∈ (X × Y )n. This means the histogram
learning method is an ERM with respect to the LS loss and the hypothesis
class H(A, Y ). Moreover, since we use measurable and countable partitions
A the set

⋃
k∈K\Aν

Ak ⊆ X is a ν-zero set. As a result, the histogram
hD,A is even a LS ERM with respect to the possibly smaller hypothesis
class H(Aν , Y ) for P n-almost all data sets D ∈ (X × Y )n. By abuse of
notation we write H(Aν , Y ) even if we mean H

(
(Ak)k∈Aν

, Y
)
. Note that

(A.1) analogously remains true if we replace the empirical distribution D

by P . Using these facts we are ready to prove the LS-risk oracle inequality.

Proof of Lemma 1.3.1. The proof is an application of a modified version of

229



Appendix A Poofs of the Oracle Inequalities

the general oracle inequality for ERMs in [76, Theorem 7.2], see also [66,
Theorem E.2] for details. Since the histogram is P n-almost surely an LS
ERM over H(Aν , Y ), the assumptions for this theorem are satisfied with
ϑ = 1, B = 4M2, V = 16M2, and |L|M,1 = 4M , see e.g. [76, Example 7.3].
Consequently, we find

RLS,P (hD,A) − R∗
LS,P < 4 ·

(
R∗

LS,P,H(Aν ,Y ) − R∗
LS,P

)
+ 20 · Mε

+ 512 · M2 ·
τ + 1 + log

(
N (H(Aν , Y ), ε)

)
n

with probability P n not less than 1 − e−τ , where N
(
H(Aν , Y ), ε

)
denotes

the covering numbers of H(Aν , Y ) as subset of the set of bounded functions
ℓ∞(X). For a definition of covering numbers and basic properties see
e.g. Appendix C. Using R∗

LS,P,H(Aν ,Y ) = RLS,P (hP,A) from (A.1) (with P

instead of D) and (1.5) we get

R∗
LS,P,H(Aν ,Y ) − R∗

LS,P = RLS,P (hP,A) − R∗
LS,P = ∥hP,A − f∗

LS,P ∥2
L2(ν) .

Next, the hypothesis class H(Aν , Y ) is isometrically isomorphic to the set
MB

ℓ
|Aν |
∞

⊆ ℓ
|Aν |
∞ via

∑
k∈Aν

ck · 1Ak
7→ (ck)k∈Aν and hence Lemma C.7

and Lemma C.3 yield

N
(
H(Aν , Y ), ε

)
= N

(
MB

ℓ
|Aν |
∞

, ε
)

≤
(
1 + 2M/ε

)|Aν | ≤ (3M/ε)|Aν | ,

where we used ε ≤ M in the last step. Using τ ≥ 1, log(3M/ε) ≥ 1, and
|Aν | ≥ 1 we find

τ + 1 + log
(
N (H(Aν , Y ), ε)

)
≤ 3τ log(3M/ε)|Aν | .

Finally, combining all pieces we find the assertion.

For the proof of the classification-risk oracle inequality we use an ERM
property of the histogram again. To be more precise, for the classification
loss it is well-known that the sign of the histogram sgn ◦ hD,A is an ERM
with respect to the hypothesis class H(A, {±1}) and the classification loss.
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Analogously to the LS loss case, sgn ◦ hD,A is a classification loss ERM over
the potentially smaller hypothesis class H(Aν , {±1}) for P n-almost all data
sets D ∈ (X ×Y )n and the population version sgn ◦hP,A minimizes RClass,P

over H(A, {±1}). Finally, note that the definition of the classification loss
yields RClass,P (f) = RClass,P (sgn ◦ f). Using these facts we are ready to
prove the classification-risk oracle inequality.

Proof of Lemma 1.3.2. The proof is an application of the general oracle
inequality for ERMs in [76, Theorem 7.2]. Since (the sign of) the histogram
is P n-almost surely a classification loss ERM over H(Aν , {±1}) and [10,
Theorem 2.41] gives the variance bound

EP

(
L ◦ f − L ◦ f∗

Class,P

)2 ≤ c
(
EP L ◦ f − L ◦ f∗

Class,P

) q
q+1

for all f ∈ L0(X, B) with some constant c > 0 depending on q and cN , the
assumptions of [76, Theorem 7.2] are satisfied with ϑ = q/(q + 1), B = 1,
and V = c. Consequently, we find

RClass,P (hD,A) − R∗
Class,P

≤ 6 ·
(
R∗

Class,P,H(Aν ,{±1}) − R∗
Class,P

)
+ 4 ·

(8V
(
τ + log

(
1 +

∣∣H(Aν , {±1})
∣∣))

n

) q+1
q+2

(A.2)

with probability P n not less than 1 − e−τ .
Next, we consider the approximation error, i.e. the first summand in

(A.2). Since hP,A minimizes the classification loss over H(Aν , {±1}) and
2η − 1 = 0 on (X+ ∪ X−)c, we can rewrite the approximation error using
(1.10)

R∗
Class,P,H(Aν ,{±1}) − R∗

Class,P

=
∫

X+△{hP,A≥0}
|2η − 1| dν

=
∑
k≥1

∫
X

1Ak∩(X+∪X−)∩(X+△{hP,A≥0})|2η − 1| dν .

(A.3)
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In order to proceed we fix k ≥ 1 and distinguish four different cases. First, if
ν
(
Ak ∩(X+ ∪X−)

)
= ν(Ak ∩X+)+ν(Ak ∩X−) = 0 then the corresponding

summand obviously vanishes. Second, assume that ν(Ak ∩ X+) = 0 and
ν(Ak ∩ X−) > 0 hold true. Since ν(Ak ∩ X+) = 0 holds true, the summand
is equal to ∫

X

1Ak∩X−∩(X+△{hP,A≥0})|2η − 1| dν

We know that hP,A = ck is constant on Ak with ck :=
∫

Ak
f∗

LS,P dν/ν(Ak).
Since ν(Ak ∩ X+) = 0, ν(Ak ∩ X−) > 0, and f∗

LS,P = 2η − 1 < 0 on X−

hold true, we find

ck = 1
ν(Ak)

∫
Ak

f∗
LS,P dν = 1

ν(Ak)

∫
Ak∩X−

f∗
LS,P dν < 0 .

As a result, we have Ak ∩ {hP,A ≥ 0} = ∅ and we get

Ak ∩ X− ∩
(
X+△{hP,A ≥ 0}

)
=

(
Ak ∩ X− ∩ X+

)
△

(
Ak ∩ X− ∩ {hP,A ≥ 0}

)
=

(
Ak ∩ ∅

)
△

(
X− ∩ ∅

)
= ∅△∅ = ∅ ,

where we used that the intersection ∩ is distributive over the symmetric
difference △. Consequently, the corresponding summand vanishes. Third,
if ν(Ak ∩ X+) > 0 and ν(Ak ∩ X−) = 0 an analogous argument as in
the second case applies and hence the corresponding summand vanishes.
Forth, if ν(Ak ∩ X+) > 0 and ν(Ak ∩ X−) > 0 the corresponding summand
eventually does not vanish. In this case we show Ak ⊆ {∆d ≤ diam(A)}.
To this end, note that we have Ak ∩ X+ ̸= ∅ and Ak ∩ X− ≠ ∅ and hence
there are x+ ∈ Ak ∩ X+ and x− ∈ Ak ∩ X−. Then, for an arbitrary point
x ∈ Ak with x ∈ X+ we have

∆d(x) = dist(x, X−) ≤ d(x, x−) ≤ diam(Ak) ≤ diam(A) .

In the case x ∈ X− an analogous argument yields ∆d(x) ≤ diam(A).
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Since ∆d(x) = 0 for all remaining points, we find Ak ⊆
{

∆d ≤ diam(A)
}

.
Combining this with (A.3) we find the approximation error bound

R∗
Class,P,H(Aν ,{±1}) − R∗

Class,P ≤
∫

{∆d≤diam(A)}
|2η − 1| dν

≤ MN d(r) .

(A.4)

Here we used the assumption B ⊇ B(X, d) which ensures the measurability
of {∆d ≤ diam(A)}.

Finally, we consider the estimation error, i.e. the second summand in
(A.2). Since |H(Aν , {±1})| = 2|Aν | and τ, |Aν | ≥ 1 hold true, we find

τ + log
(
1 +

∣∣H(Aν , {±1})
∣∣) ≤ τ + (1 + |Aν |) log(2) ≤ τ |Aν | log(4e)

and hence combining this with (A.2) and (A.4) proves the assertion with
C := 4 · (8c)

q+1
q+2 .
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Appendix B

Support of Measures

In this chapter we summarize some basic properties of the support of
a measure. Recall, for a measure ν on the Borel σ-algebra B(X) of a
topological Hausdorff space X the support supp ν of ν is defined in (1.11)
by

supp ν =
( ⋃

O⊆X open
ν(O)=0

O

)c

.

Moreover, for a Radon measure ν (locally finite and inner regular) the
support is a set of full measure, i.e. ν((supp ν)c) = 0. Since most of the
results of this chapter are true for general Radon measures, we do not
assume that ν is a probability measure.

As a direct consequence of the definition of the support, we get supp µ ⊆
supp ν for every absolute continuous Radon measure µ ≪ ν. The first
lemma considers sums of measures.

B.1 Lemma (Sums of Measures) Let X be a topological Hausdorff space
and ν± are Radon measures on the Borel σ-algebra B(X). Then the support
of ν := ν+ + ν− satisfies

supp ν = supp ν+ ∪ supp ν− .

Proof. Taking the complement of the claimed identity we see that this
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identity is equivalent to⋃
O⊆X open

ν(O)=0

O =
⋃

O+⊆X open
ν+(O+)=0

O+ ∩
⋃

O−⊆X open
ν−(O−)=0

O− .

“⊆” Since ν± ≪ ν is absolute continuous, every ν-zero set is a ν+-zero
set and a ν−-zero set. This gives the inclusion “⊆”.

“⊇” Let x ∈ (supp ν+)c ∩ (supp ν−)c be fixed. Then there are O± ⊆ X

open sets with x ∈ O± and ν±(O±) = 0. Consequently, O := O+ ∩ O−

is a open set with x ∈ O and ν(O) ≤ ν+(O+) + ν−(O−) = 0. This gives
x ∈ O ⊆ (supp ν)c and hence the inclusion “⊇” is proven.

The following lemma provides a representation for the support of a push-
forward measure.

B.2 Lemma (Push-Forward Measure) Let X and X̄ be topological Hausdorff
spaces, s : X → X̄ be a continuous function, ν be a Radon measure on B(X),
and ν̄ := ν ◦ s−1 the push-forward measure of ν under s. Then ν̄ is a Radon
measure with support

supp ν̄ = s(supp ν) .

If, in addition, supp ν is compact then supp ν̄ = s(supp ν) holds true.

Proof. That ν̄ is a Radon measure is stated in [31, Aufgabe VIII.1.10], see
also [11, Theorem 9.1.1 (i)] for the case of a finite Radon measure.

“⊆” For this inclusion we prove that s(supp ν)
c

is an (open) ν̄-zero set.
Using s−1(Āc) = (s−1(Ā))c and s−1(s(A)) ⊇ A, which hold for all Ā ⊆ X̄

and A ⊆ X, we find

s−1(
s(supp ν)

c)
⊆ s−1(

s(supp ν)c
)

=
(
s−1 ◦ s(supp ν)

)c ⊆ (supp ν)c .

This inclusion gives

ν̄
(
s(supp ν)

c)
= ν

(
s−1(

s(supp ν)
c))

≤ ν
(
(supp ν)c

)
= 0

and hence the inclusion “⊆” is proven.
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“⊇” We prove this inclusion using the following auxiliary result, which
we will prove below,

s−1(supp ν̄) ⊇ supp ν . (B.1)

Together with Ā ⊇ s
(
s−1(Ā)

)
, which holds for all Ā ⊆ X̄, we find

supp ν̄ ⊇ s
(
s−1(supp ν̄)

)
⊇ s(supp ν) .

Since supp ν̄ is closed we get the inclusion “⊇”.
Finally, it remains to prove (B.1). To this end, we show that the set

(s−1(supp ν̄))c is an open ν-zero set. Since s : X → X̄ is continuous, the
set s−1(supp ν̄) ⊆ X is closed and hence its complement is open. Using
(s−1(Ā))c = s−1(Āc), which holds for all Ā ⊆ X̄, we find

ν
(
(s−1(supp ν̄))c

)
= ν

(
s−1(supp ν̄c)

)
= ν̄(supp ν̄c) = 0

and hence the inclusion in (B.1) is proven.
Finally, if we additionally assume that supp ν is compact then as the

image of a compact set under a continuous function the set s(supp ν) ⊆ X̄ is
compact. Since X̄ is a Hausdorff spaces, the set s(supp ν) is closed, see [32,
Theorem 3.1.12]. As a result, we find supp ν̄ = s(supp ν) = s(supp ν).

The final lemma relates the support of a measure on a product space with
the supports of its one-dimensional push-forward measures.

B.3 Lemma (Infinite Products of Measures) Let X =
∏

i≥1 Xi be the
product of Polish spaces Xi for i ≥ 1, ν be a Radon measure on B(X) with
one-dimensional push-forward measures νi := ν ◦π−1

i on Xi for i ≥ 1. Then
the support of ν satisfies

supp ν ⊆
∏
i≥1

supp νi .

If, in addition, νi are probability measures for i ≥ 1 and ν =
⊗

i≥1 νi then
equality holds.

Proof. Note that X is a Polish space and the Borel σ-algebra coincides
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with the product σ-algebra B(X) =
⊗

i≥1 B(Xi). See Section 3.1 for more
details on such spaces. We start with two preparatory remarks without
proving them. First, for a base B of the product topology the complement
of the support of ν is given by

(supp ν)c =
⋃

O⊆X open
ν(O)=0

O =
⋃

O∈B
ν(O)=0

O . (B.2)

We will use (B.2) for the base B :=
{(∏N

i=1 Oi

)
×

∏
i>N Xi : N ≥ 1, Oi ⊆

Xi open
}

. Second, the complement of the right hand side is given by(∏
i≥1

supp νi

)c

=
⋃
i≥1

(
(supp νi)c ×

∏
j ̸=i

Xj

)
. (B.3)

After this two remarks we start with the actual proof. Since the right hand
side of (B.3) is open, it is measurable and we have

ν

((∏
i≥1

supp νi

)c
)

≤
∑
i≥1

ν
(

(supp νi)c ×
∏
j ̸=i

Xj

)
=

∑
i≥1

νi

(
(supp νi)c

)
= 0 .

As a result, (
∏

i≥1 supp νi)c is an open ν-zero set and consequently we get
(
∏

i≥1 supp νi)c ⊆ (supp ν)c. This proves the claimed inclusion.
For the converse inclusion we additionally assume that ν =

⊗
i≥1 νi is a

product of probability measures νi. Let O ∈ B, i.e. O =
∏N

i=1 Oi ×
∏

i>N

for some N ≥ 1 and some open sets Oi ⊆ Xi for all i = 1, . . . , N with
ν(O) = 0. Since

0 = ν(O) =
N∏

i=1
νi(Oi)

holds true, there is some i ∈ {1, . . . , N} with νi(Oi) = 0 and hence Oi ⊆
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(supp νi)c. Together with (B.3) we find

O ⊆ (supp νi)c ×
∏
j ̸=i

Xj ⊆
(∏

i≥1
supp νi

)c

.

Since this holds true for all O ∈ B with ν(O) = 0, we get (supp ν)c ⊆
(
∏

i≥1 supp νi)c from (B.2). This proves the inclusion “⊇” for product
measures.
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Appendix C

Metric Entropy

In this chapter we give a brief introduction to some metric entropy quantities
such as entropy, covering, and packing numbers. For a more comprehensive
introduction see e.g. [51, 19] and the references therein.

These metric entropy quantities are important tools for quantifying the
compactness of sets and operators with various applications in different fields
of mathematics, e.g. functional analysis (see e.g. [53, 19, 30] for operator
ideals and eigenvalue distribution of compact operators), approximation
theory (see e.g. [82, 30, 83] for embeddings of Sobolev or Besov spaces),
probability theory (see e.g. [54, 60] for small deviations of Gaussian processes
and [85] for empirical process theory), and statistical learning theory (see
e.g. Appendix A and [73, 43, 24, 76] for the capacity of hypothesis spaces).

In the following let M ⊆ X be a (non-empty) subset of a quasi-metric
space (X, d), i.e. we only have the quasi-triangle inequality

d(x, y) ≤ κX

(
d(x, z) + d(z, y)

)
with some constant κX ≥ 1 independent of x, y, z ∈ X. In this case we call
κX the quasi-triangle constant. Unfortunately, we cannot limit ourselves to
metric spaces, as we consider the quasi-Banach spaces ℓp(I) for 0 < p < 1
in Part III.

For ε > 0, we call a subset N ⊆ X (external) ε-net of M if the closed
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balls with centers in N and radius ε cover M , i.e.

M ⊆
⋃

x∈N

BX(x, ε) .

Or equivalently, for every x ∈ M there is some x′ ∈ N with d(x, x′) ≤ ε.
For the sake of completeness, N is called internal ε-net of M if N ⊆ M is
additionally satisfied. However, we only use external ε-nets in the following
and hence we just call them ε-nets. Moreover, for ε > 0, we call a subset
N ⊆ M ε-packing of M if

d(x, x′) > 2ε

is satisfied for all x, x′ ∈ N with x ̸= x′. This means that for two distinct
points x, x′ ∈ N in an ε-packing the closed balls with radius ε/κX and
centers x and x′, respectively, do not intersect. Using ε-nets and ε-packings
we define the entropy numbers of M by

εn(M) := inf
{

0 < ε ≤ ∞ : ∃ ε-net N of M with |N | ≤ n
}

for n ≥ 1, the covering numbers of M by

N (M, ε) := min
{

1 ≤ n ≤ ∞ : ∃ ε-net N of M with |N | ≤ n
}

for ε > 0, and the packing numbers of M by

P(M, ε) := max
{

1 ≤ n ≤ ∞ : ∃ ε-packing N of M with |N | ≥ n
}

for ε > 0. Here we use the convention that every non-empty subset N ⊆ X

is an ∞-net of M and that N = M is an 0-net of M with |N | = |M | ∈ [1, ∞]
and hence the considered sets in the definitions of entropy and covering
numbers are always non-empty. Analogously, every singleton N ⊆ M is an
∞-packing of M and hence the considered set in the definition of packing
numbers is always non-empty.

Attention, the definitions of the metric entropy quantities vary in the
literature and we always have to check the precise definition. In this regard,
we emphasize that we always use closed balls and external ε-nets.
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For the sake of completeness, we mention that in the literature the num-
bers φn(M) := sup

{
0 < ε ≤ ∞ : there is an ε-packing N of M with |N | ≥

n + 1
}

for n ≥ 1 can be found, see e.g. [19, p. 7]. The φn(M)-numbers are
in the same way related to the packing numbers as the entropy numbers
to the covering numbers. Moreover, the only difference in the definition of
the entropy and covering numbers is the following: For entropy numbers
the cardinality of the ε-nets is bounded and we minimize over the radius
ε and for covering numbers the radius ε is fixed an we minimize over the
cardinality n of the ε-nets. The following lemma is a direct consequence of
this observation.

C.1 Lemma (Entropy vs. Covering Numbers) For a subset M ⊆ X of a
quasi-metric space (X, d) the following statements are true:

(i) For ε > 0 the bound εn(M) ≤ ε is satisfied for all n ≥ N (M, ε).

(ii) For n ≥ 1 the bound N (M, ε) ≤ n is satisfied for all ε > εn(M).

This lemma implies N (M, ε) < ∞ for all ε > 0 if and only if εn(M) → 0
for n → ∞.

Proof. This statement is a direct consequence of the definition of entropy
and covering numbers.

Recall, M ⊆ X is called precompact (or totally bounded) if for every
ε > 0 there is a finite ε-net of M . Consequently, Lemma C.1 yields the
equivalence of the following statements:

(i) M is precompact.

(ii) N (M, ε) < ∞ for all ε > 0.

(iii) εn(M) → 0 for n → ∞.

In this sense the metric entropy quantities are quantitative refinements of
the notion of precompact sets.

Another application of Lemma C.1 allows to translate bounds on covering
numbers to bounds on entropy numbers and vice versa.
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C.2 Corollary (Conversion of Bounds) Let M ⊆ X be a subset of a quasi-
metric space (X, d) and f : [a, ∞) → (0, b] be a decreasing bijective function
with a, b > 0. Then the following statements are true:

(i) If εn(M) ≤ f(n) is satisfied for all n ≥ a then

N (M, ε) ≤ f−1(ε) + 1

is satisfied for all 0 < ε ≤ b.

(ii) If N (M, ε) ≤ f−1(ε) is satisfied for all 0 < ε ≤ b then

εn(M) ≤ f(n)

is satisfied for all n ≥ a.

This lemma suggests that entropy and covering numbers are inverse concepts.
Especially, a polynomial bound of order 1/p on the entropy numbers, i.e.
f(t) = Ct−1/p, gives a polynomial bound of order p on the covering numbers,
i.e. f−1(t) = (C/t)p, and vice versa. Note that the constant C of the entropy
number bound does not influence the asymptotic behavior of the covering
number bound. This is in general not true in the non-polynomial regime.

Proof. (i) For 0 < ε ≤ b we choose the minimal integer n ≥ a with f(n) < ε.
Since f is bijective and decreasing there is some 0 < δ ≤ 1 with f(n−δ) = ε.
Consequently, we have n = f−1(ε) + δ ≤ f−1(ε) + 1, εn(M) ≤ f(n) < ε,
and Point (ii) of Lemma C.1 gives the assertion, namely

N (M, ε) ≤ n ≤ f−1(ε) + 1 .

(ii) For n ≥ a and ε := f(n) we have N (M, ε) ≤ f−1(ε) = n. Conse-
quently, Point (i) of Lemma C.1 gives the assertion εn(M) ≤ ε = f(n).

Our general strategy for proving upper and lower bounds is as follows:
If we can construct an ε-net of M ⊆ X with cardinality n ≥ 1 then we
directly get the upper bounds εn(M) ≤ ε and N (M, ε) ≤ n. Conversely, if
we can construct an ε-packing of M with cardinality n ≥ 1 then we get the
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lower bound P(M, ε) ≥ n. The following lemma already uses this strategy
to relate covering and packing numbers.

C.3 Lemma (Covering vs. Packing Numbers) For a subset M ⊆ X of a
quasi-metric space (X, d), with quasi-triangle constant κX ≥ 1, the following
inequalities are satisfied, for ε > 0,

P(M, εκX) ≤ N (M, ε) ≤ P(M, ε/2) .

Proof. In order to prove the first inequality we assume the opposite, i.e. we
assume that m := P(M, κM ε) > N (M, ε) =: n holds true. The definition
of the packing numbers gives us an εκX -packing N of M with cardinality
|N | = m and the definition of the covering numbers gives us an ε-net N ′ of
M with cardinality |N ′| = n. Since |N | = m > n = |N ′| and

N ⊆ M ⊆
⋃

y∈N ′

BX(y, ε)

hold true, there are y ∈ N ′ and x, x′ ∈ N with x ̸= x′ and x, x′ ∈ BX(y, ε).
For these elements we get the contradiction

2κXε < d(x, x′) ≤ κX

(
d(x, y) + d(y, x′)

)
≤ 2κXε .

To prove the second inequality we choose a maximal ε/2-packing N of
M with cardinality m := |N | = P(M, ε) and show that N is an ε-net of
M . To this end, we assume the opposite, i.e. there is some x ∈ M with
d(x, x′) > ε for all x′ ∈ N . This means that N ∪ {x} is an ε/2-packing with
cardinality m + 1. This contradicts the maximality of N and hence N is an
ε-net of M . This proves the desired inequality.

The next lemma provides basic properties of the metric entropy quantities.

C.4 Lemma (Basic Properties) For a quasi-metric space (X, d), with quasi-
triangle constant κX ≥ 1, the following statements are true:

(i) For fixed M ⊆ X the sequence (εn(M))n≥1 and the functions ε 7→
N (M, ε), ε 7→ P(M, ε) on (0, ∞) are non-increasing.
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(ii) For fixed n ≥ 1 and ε > 0 the numbers εn(M), N (M, ε), and P(M, ε)
are non-decreasing in M ⊆ X.

(iii) For fixed M ⊆ X the function ε 7→ P(M, ε) is right-continuous.

(iv) εn(M) = εn(M) and N (M, ε) = N (M, ε) for M ⊆ X, n ≥ 1 and
ε > 0, respectively.

(v) P(M, ε) ≤ P(M, ε) ≤ P
(
M, ε/ min{2κX , κ2

X}
)

for M ⊆ X and
ε > 0.

Point (iii)–(v) heavily depend on the fact that we use closed balls in the
definitions of the metric entropy quantities. Note that in the case that X is
even a metric space, i.e. κX = 1, Point (v) reduces to P(M, ε) = P(M, ε).

Proof. (i) If N ⊆ X is an ε-net of M then every N ′ ⊇ N is an ε-net of M .
This proves the monotonicity of (εn(M))n≥1. If N ⊆ X is an ε-net of M

then N is an ε′-net of M for every ε′ ≥ ε. This proves the monotonicity of
N (M, · ). Finally, if N ⊆ M is an ε-packing of M then N is an ε′-packing
of M for every ε′ ≤ ε. This proves the monotonicity of P(M, · ).

(ii) If N ⊆ X is an ε-net of M then N is an ε-net for every M ′ ⊆ M .
This proves the monotonicity of εn( · ) and N ( · , ε). Finally, if N ⊆ M is
an ε-packing of M then N is an ε-packing for every M ′ ⊇ M . This proves
the monotonicity of P( · , ε).

(iii) Let ε > 0 be fixed and choose an ε-packing N ⊆ M with n := |N | =
P(M, ε). Then, we define

ε0 := min
x,x′∈N :

x ̸=x′

d(x, x′)/2 − ε > 0 .

and show P(M, δ) = n for all ε < δ < ε + ε0. Since δ > ε holds true, we
get P(M, δ) ≤ n from Point (i). The choice of ε0 ensures 2δ < 2(ε + ε0) =
minx,x′∈N : x ̸=x′ d(x, x′) and hence N is a δ-packing of M . This proves
P(M, δ) ≥ n.

(iv) Since we have M ⊆ M , the inequality “≤” follows from Point (ii)
for entropy and covering numbers. In order to prove the inequality “≥” we
choose some finite ε-net N ⊆ X of M . Note that in the case that there
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is no finite ε-net of M the entropy and covering numbers are infinite and
there is nothing to prove. Using the fact that the closure interchanges with
finite unions, see e.g. [32, Theorem 1.1.3], we get

M ⊆
⋃

x∈N

BX(x, ε) =
⋃

x∈N

BX(x, ε) =
⋃

x∈N

BX(x, ε) .

As a result, N is an ε-net of M and hence the inequalities “≥” are proven.
(v) Since we have M ⊆ M , the first inequality follows from Point (ii).

In order to prove the second inequality we consider the case κX ≤ 2 and
κX ≥ 2 separately.

In the case κX ≤ 2 we use Point (iii), i.e. there is some δ > 0 with
n := P(M, ε) = P(M, ε + δ). Consequently, we can choose an (ε + δ)-
packing N ⊆ M with |N | = n. Using the definition of the closure, for every
y ∈ N there is some xy ∈ M with d(x, y) < δ/κ2

X . With this choice we get,
for y, y′ ∈ N with y ̸= y′,

2(ε + δ) < d(y, y′)
≤ κ2

X

(
d(y, xy) + d(xy, xy′) + d(xy′ , y′)

)
≤ 2δ + κ2

Xd(xi, xj) .

As a result, N ′ := {xy : y ∈ N} ⊆ M is an ε/κ2
X -packing of M with

|N ′| = |N | = n and hence the second inequality is proven in the case
κX ≤ 2 .

In the case κX ≤ 2 a two-fold application of Lemma C.3 together with
Point (v) gives us

P
(
M, ε

)
≤ N

(
M, ε/κX

)
= N

(
M, ε/κX

)
≤ P

(
M, ε/(2κX)

)
and hence the assertion is proven.

Next, we consider images of Hölder continuous mappings.

C.5 Lemma (Hölder Continuous Images) Let 0 < α ≤ 1, f : X → X ′ be
an α-Hölder continuous mapping between quasi-metric spaces (X, d) and
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(X ′, d′) with constant L, i.e.

d′(f(x), f(y)
)

≤ L · dα(x, y)

for x, y ∈ X, and M ⊆ X be a subset. Then the following inequality is
satisfied, for ε > 0,

N
(
f(M), Lεα

)
≤ N (M, ε) .

Proof. Let ε > 0 be fixed and choose an ε-net N ⊆ X of M with |N | =
N (M, ε). Then we show that f(N) forms an Lεα-net of f(M). For an
element x′ = f(x) ∈ f(M) with x ∈ M there is some y ∈ N with d(x, y) ≤ ε.
Consequently, we have y′ := f(y) ∈ f(N) and d′(x′, y′) = d′(f(x), f(y)

)
≤

Ldα(x, y) ≤ Lεα. This shows that f(N) is an Lεα-net of f(M) with at
most |N | = N (M, ε) elements and hence the assertion is proven.

If X is additionally a vector space and the quasi-metric is introduced by a
quasi-norm ∥ · ∥, we can consider the multiple s · M = {sx ∈ X : x ∈ M}
of the set M ⊆ X and the Minkowski sum M + M ′ = {x + x′ ∈ X : x ∈
M, x′ ∈ M ′} of two sets M, M ′ ⊆ X. Using this notation we can write
the closed ball as BX(x, r) = x + r · BX , where BX denotes the cosed unit
ball with center 0. The following lemma presents basic bounds for these
constructions.

C.6 Lemma (Covering Numbers on Vector Spaces) Let (X, ∥ · ∥) be a
quasi-normed vector space with quasi-triangle constant κX ≥ 1 and M ⊆ X

be a subset. Then the following statements are true, for ε > 0:

(i) N
(
M +M ′, κX(ε+ε′)

)
≤ N (M, ε)N (M ′, ε′) for M ′ ⊆ X and ε′ > 0.

(ii) N (m′ + M, ε) = N (M, ε) for m′ ∈ X.

(iii) N (s · M, ε) = N (M, ε/|s|) for s ∈ R\{0}.

Proof. (i) Let ε, ε′ > 0 be fixed and choose an ε-net N ⊆ X of M with
n := |N | = N (M, ε) as well as an ε′-net N ′ ⊆ X of M ′ with n′ := |N ′| =
N (M ′, ε′). Then we show that N + N ′ forms a κX(ε + ε′)-net of M + M ′.
For an element y +y′ ∈ M +M ′ there is some x ∈ N and some x′ ∈ N ′ with
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∥x − y∥ ≤ ε and ∥x′ − y′∥ ≤ ε′, respectively. Consequently, x + x′ ∈ N + N ′

and ∥∥(x + x′) − (y + y′)
∥∥ ≤ κX

(
∥x − y∥ + ∥x′ − y′∥

)
≤ κX(ε + ε′) .

This shows that N + N ′ is a κX(ε + ε′)-net of M + M ′ with at most n · n′

elements and hence the statement is proven.
(ii)+(iii) Both statements follow by a two-fold application of Lemma C.5

with the Lipschitz continuous mappings x 7→ m′+x and x 7→ sx, respectively,
and their (Lipschitz continuous) inverses.

For the vector space X = Rd so-called volume arguments are one way
to bound the covering and packing numbers. To this end, we denote the
d-dimensional Lebesgue measure by λd. The following lemma presents some
elementary bounds based on volume arguments.

C.7 Lemma (Volume Arguments) Let X = Rd be equipped with some quasi-
norm ∥ · ∥, κX ≥ 1 be the quasi-triangle constant, and B be the closed unit
ball. Then the following statements are true, for M ⊆ Rd and ε > 0:

(i) If M is measurable then the following lower bound is satisfied

N (M, ε) ≥ λd(M)
λd(B) · (1/ε)d .

(ii) If there is some R > 0 and a ∈ Rd with M ⊆ a + RB then the
following upper bound is satisfied

P(M, ε) ≤ κd
X ·

(
1 + RκX/ε

)d
.

(iii) If M is convex and there is some ε0 > 0 and a ∈ Rd with a+ε0B ⊆ M

then the following upper bound is satisfied

P(M, ε) ≤ λd(M)
λd(B) ·

(
1/ε0 + κX/ε

)d
.
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Point (i) can be easily transferred from covering numbers to entropy numbers.
But if we want to state Point (ii) and (iii) for entropy numbers instead
of packing numbers then the inequalities appearing in the proof have to
be solved for ε instead of n. But this is not an easy task because these
inequalities are of the form p(1/ε) ≥ n with a polynomial p of degree d.
As a workaround one typically further estimate these inequalities until it
is easier to solve them for ε. But the price one has to pay is that this
procedure results in weaker bounds for the entropy numbers than for the
packing numbers. This is the reason why we present the upper bounds for
packing numbers and not for entropy numbers.

For particular sets there are further volume arguments to derive packing
number bounds, see e.g. Lemma 11.1.1 of Part III for generalized ellipses.

Proof. (i) For a fixed ε > 0 we choose an ε-net N ⊆ Rd with n := |N | =
N (M, ε), i.e.

M ⊆
⋃

x∈N

(x + εB) .

Since both sides are measurable, we can apply the Lebesgue measure. Using
the translation invariance of the Lebesgue measure we find

λd(M) ≤
∑
x∈N

λd(x + εB) = nεdλd(B) .

Since B has a non-empty interior, we have λd(B) > 0 and hence we can
solve this inequality for n. This proves the statement.

(ii)+(iii) For both statements we fix some ε > 0 and choose an ε-packing
N ⊆ X of M with n := |N | = P(X, ε). Then the balls x + ε/κX · B for
x ∈ N are disjoint subsets of M + ε/κX · B, i.e.⊎

x∈N

(
x + ε/κX · B

)
⊆ M + ε/κX · B . (C.1)

Under the assumptions of Point (ii) we can continue the inclusion of (C.1)
as follows

M + ε/κX · B ⊆ a + R · B + ε/κX · B ⊆ a + κX · (R + ε/κX) · B .
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Since the right hand side is measurable, we can apply the Lebesgue measure

n · (ε/κX)d · λd(B) = λd
( n⊎

i=1

(
xi + ε/κX · B

))
≤ λd

(
a + κX · (R + ε/κX) · B

)
= κd

X · (R + ε/κX)d · λd(B) .

Solving this inequality for n proves Point (ii).
Under the assumptions of Point (iii) we continue the inclusion of (C.1)

slightly different. From B ⊆ (M − a)/ε0 we get

M + ε/κX · B ⊆ M + ε/κX · M − a

ε0

=
(

1 + ε

κXε0

)
· M − ε

κXε0
· a ,

where we used the identity s1M + s2M = (s1 + s2)M , which holds for all
convex sets M and s1, s2 > 0, in the last step. Using the convexity of M

again gives us the measurability of M , see e.g. [31, Satz II.7.7], and hence
we can apply the Lebesgue measure

n · (ε/κX)d · λd(B) = λd
( n⊎

i=1

(
xi + ε/κX · B

))
≤

(
1 + ε

κXε0

)d

· λd(M) .

Solving this inequality for n proves Point (iii).

For a bounded set M ⊆ Rd with λd(M) > 0 Lemma C.7 gives the polyno-
mial behavior N (M, ε) ≍ P(M, ε) ≍ (1/ε)d for ε → 0+. Consequently, the
polynomial order is related to the dimension of a set. This observation can
be used as the definition of a generalized or fractal dimension, the so-called
box-counting dimension. For infinite-dimensional sets the covering numbers
typically grow faster than polynomially for ε → 0+. In such cases it is more
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convenient to consider the log-covering numbers

H(M, ε) := log N (M, ε)

or the dyadic entropy numbers

en(M) := ε2n−1(M) .

Analogously to entropy and covering numbers, bounds on dyadic entropy
numbers can be converted into log-covering numbers bounds and vice versa.
The following lemma is a direct translation of Corollary C.2 from entropy
to dyadic entropy numbers and from covering to log-covering numbers.

C.8 Lemma (Conversion of Bounds) Let M ⊆ X be a subset of a quasi-
metric space (X, d) and F : [A, ∞) → (0, B] be a decreasing bijective function
with A, B > 0. Then the following statements are true:

(i) If en(M) ≤ F (n) is satisfied for all n ≥ A then

H(M, ε) ≤ log(2) ·
(
F −1(ε) + 1

)
is satisfied for all 0 < ε ≤ B.

(ii) If H(M, ε) ≤ F −1(ε) is satisfied for all 0 < ε ≤ B then

en(M) ≤ F
(
log(2) · (n − 1)

)
is satisfied for all n ≥ A/ log(2) + 1.

In the polynomial regime the conversion is particularly pleasing. To be
more precise, ignoring the constants we get, for p > 0,

H(M, ε) ≼ ε−p ⇐⇒ en(M) ≼ n−1/p , (C.2)

see also [76, Lemma 6.21 and Exercise 6.8].

Proof. (i) For k ≥ 2A there is a (unique) n ≥ A with 2n > k ≥ 2n−1 and
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hence we have

εk(M) ≤ ε2n−1(M) = en(M) ≤ F (n) ≤ F

(
log(k)
log(2)

)
,

where we used n > log(k)/ log(2) and the monotonicity of F in the last step.
Consequently, we can apply Point (i) of Corollary C.2 with f : [2A, ∞) →
(0, B] given by f(t) := F

(
log(t)/ log(2)

)
. Since f−1(t) = exp

(
log(2)F −1(t)

)
we find the assertion, namely, for 0 < ε ≤ B,

N (M, ε) ≤ f−1(ε) + 1 ≤ exp
(
log(2) · (F −1(ε) + 1)

)
.

(ii) Using Point (ii) of Corollary C.2 for f−1 : (0, B] → [eA, ∞) given by
f−1(t) := exp

(
F −1(t)

)
yields

εk(M) ≤ f(k) = F
(
log(k)

)
for all k ≥ eA. Since k = 2n−1 ≥ eA is satisfied for n ≥ A/ log(2) + 1 we
get the assertion.

As final part of this chapter we transfer the metric entropy quantities
from sets to operators. To this end, let U and V be quasi-Banach spaces
with quasi-norms ∥ · ∥U and ∥ · ∥V . Moreover, we denote the closed unit
balls by BU and BV , respectively. Then for a bounded (linear) operator
R : U → V we define

εn(R) := εn(RBU ) and N (R, ε) := N (RBU , ε)

for n ≥ 1 and ε > 0, respectively. Analogously, the notion of packing num-
bers, log-covering numbers, and dyadic entropy numbers transfers from sets
to operators. These metric entropy quantities allow a quantitative descrip-
tion of the compactness of an operator. The following lemma summarizes
some basic properties of the covering numbers for operators.

C.9 Lemma (Covering Numbers for Operators) Let U , V , and W be
quasi-Banach spaces and R, S : U → V , and T : V → W bounded (linear)
operators. Then the following statements are true, for ε, δ > 0:
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(i) N (R, ε) = N (RB̊U , ε).

(ii) N (R, ε) = 1 for all ε ≥ ∥R∥.

(iii) ∥R∥ ≤ κV ε for all ε > 0 with N (R, ε) = 1.

(iv) N
(
R + S, κV (ε + δ)

)
≤ N (R, ε)N (S, δ).

(v) N (TR, εδ) ≤ N (R, ε)N (T, δ).

(vi) N (R, ε) ≤ κd
V ·

(
1 + 2∥R∥κV /ε

)d if d := rank R < ∞.

Note that κV denotes the quasi-triangle constant of the quasi-Banach space
V . As an important consequence of Point (ii), (iv), and (v) we find, for
ε > 0,

N
(
R + S, κV (ε + ∥S∥)

)
≤ N (R, ε) and

N
(
TR, ε∥T∥

)
≤ N (R, ε) ,

(C.3)

respectively.

Proof. (i) Since RB̊U ⊆ RBU holds true, Point (ii) of Lemma C.4 yields
the inequality “≥”. Using Point (iv) of Lemma C.4 we get

N (RB̊U , ε) = N
(
RB̊U , ε

)
and the continuity of R implies

RB̊U ⊇ RB̊U = RBU ,

see e.g. [32, Theorem 1.4.1 (v)]. Together we get the inequality “≤”.
(ii) For ε ≥ ∥R∥ the definition of the operator norm implies RBU ⊆

∥R∥BV . As a result, N = {0} is an ε-net of RBU and hence N (R, ε) = 1.
(iii) For ε > 0 with N (R, ε) = 1 there is some ε-net N = {v} of RBU

consisting of one element. Then for u ∈ BU there are v+, v− ∈ BV with
Ru = v + εv+ and R(−u) = v + εv−. This yields

2∥Ru∥V =
∥∥Ru − R(−u)

∥∥
V

= ε∥v+ − v−∥V ≤ 2κV ε

and hence ∥Ru∥V ≤ κV ε is proven for all u ∈ BU .
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(iv) This is a direct consequence of (R + S)BU ⊆ RBU + SBU and
Point (i) of Lemma C.6.

(v) Let NV ⊆ V be an ε-net of RBU with |NV | = N (R, ε) and NW ⊆ W

be a δ-net of TBV with |NW | = N (T, δ). Since NV is an ε-net, we have

RBU ⊆
⋃

v∈NV

v + εBV .

Applying T and using the δ-net property of NW yields

TRBU ⊆
⋃

v∈NV

Tv + εTBV

⊆
⋃

v∈NV

Tv + ε

( ⋃
w∈NW

w + δBW

)
=

⋃
v∈NV ,
w∈NW

(Tv + εw) + εδBW .

As a result, TNV +εNW ⊆ W is an εδ-net of TRBU with at most |NV |·|NW |
elements. This proves the desired inequality.

(vi) Since ran R ⊆ V is a finite-dimensional space of dimension d, choosing
a basis of ran R we can construct an isomorphism T : ran R → Rd. Using
the quasi-norm ∥x∥ := ∥T −1x∥V for x ∈ Rd on Rd the mapping T becomes
even an isometric isomorphism. Moreover, this definition implies κRd = κV .
From Point (v) we get

N (R, ε) = N
(
T −1TR, ε

)
≤ N (TR, ε) · N

(
T −1, 1

)
.

Since T −1 is also isometric, we find ∥T −1∥ = 1 and hence the second factor
equals N (T −1, 1) = 1 according to Point (ii). For the first factor we have
TRBU ⊆ ∥TR∥BRd and hence Point (ii) of Lemma C.7 implies

N (TR, ε) ≤ P
(
TR, ε/2

)
≤ κd

V ·
(
1 + 2∥TR∥κV /ε

)d
.

Finally, using ∥TR∥ = ∥R∥ and combining both inequalities gives the
assertion.
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Recall that an operator Q : X → U between quasi-Banach spaces is called
metric surjection if it satisfies QB̊X = B̊U . For such an operator we directly
get from Point (i) of Lemma C.9

N (RQ, ε) = N (R, ε)

for all ε > 0. Moreover, for an isometric operator T : V → W between
quasi-Banach spaces, i.e. ∥Tv∥W = ∥v∥V for v ∈ V , the definition of packing
numbers directly gives

P(TR, ε) = P(R, ε)

for all ε > 0. In this case for the covering numbers only a weaker relation
holds true. To be more precise, (C.3) with ∥T∥ = 1 and Lemma C.3 yield

N (R, ε) ≥ N (TR, ε) ≥ P(TR, εκW )
= P(R, εκW ) ≥ N (R, 2εκW ) .

(C.4)

Note that such an operator T is called metric injection in [19, Equa-
tion (1.3.5)].

Finally, recall that more details about metric entropy quantities can be
found, for example, in [51, 19] and the references therein.
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Abstract

This thesis is divided into three parts. In the first part we
introduce a framework that allows us to investigate learning
scenarios with restricted access to the data. We use this
framework to model high-dimensional learning scenarios as
an infinite-dimensional one in which the learning algorithm
has only access to some finite-dimensional projections of the
data. Finally, we provide a prototypical example of such an
infinite-dimensional classification problem in which histograms
can achieve polynomial learning rates.
In the second part we present some individual results that
might by useful for the investigation of kernel-based learning
methods using Gaussian kernels in high- or infinite-dimensional
learning problems. To be more precise, we present log-covering
number bounds for Gaussian reproducing kernel Hilbert spaces
on general bounded subsets of the Euclidean space. Unlike
previous results in this direction we focus on small explicit
constants and their dependence on crucial parameters such
as the kernel width as well as the size and dimension of the
underlying space. Afterwards, we generalize these bounds
to Gaussian kernels defined on special infinite-dimensional
compact subsets of the sequence space ℓ2. More precisely, the
considered domains are given by the image of the unit ℓ∞-ball
under some diagonal operator.
In the third part we contribute some new insights to the
compactness properties of diagonal operators from ℓp to ℓq

for p ̸= q.
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