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Kurzfassung

Lernraten nicht-parametrischer Lernmethoden weisen in der Regel eine unvorteil-

hafte Abhängigkeit von der Dimension des Eingaberaums auf, ein Phänomen, das

in der statistischen Lerntheorie allgemein als Fluch der Dimensionalität bekannt

ist. In der Praxis geht man jedoch davon aus, dass hochdimensionale Daten in

der Regel eine niedrigdimensionale intrinsische Struktur aufweisen. Daher ist es

eine interessante Frage, ob Lernmethoden eine solche niedrigdimensionale Struk-

tur in dem Sinne ausnutzen können, dass sie Lernraten erzielen, bei denen die

Abhängigkeit von der Dimension des umgebenden Raums durch die intrinsische

Dimension der Daten ersetzt wird. Die verbreitetste Methode um die intrinsische

Dimension der Daten zu beschreiben beruht auf der Annahme, dass die datenerzeu-

gende Verteilung auf einer niedrigdimensionalen glatten Mannigfaltigkeit getragen

ist. Wir schwächen diese Annahme erheblich ab, indem wir die fraktale Dimension

des Trägers der datenerzeugenden Verteilung betrachten.

Genauer leiten wir in Kapitel 2 für Support Vector Machines (SVMs), die einen

Gauß-Kern verwenden, für die Kleinste-Quadrate-Regression und die binäre Klas-

sifikation unter Verwendung der Hinge-Verlustfunktion Lernraten her, in denen die

Abhängigkeit von der Dimension des umgebenden Raums durch die Box-Counting-

Dimension des Trägers der datenerzeugenden Verteilung ersetzt wird. Die sich da-

raus ergebenden Lernraten für die Regression sind bis auf logarithmischen Faktoren

minimax-optimal und die Lernraten für die Klassifikation sind bis auf logarithmis-

chen Faktoren in einem bestimmten Bereich unserer Annahme minimax-optimal

und haben ansonsten die Form der besten bekannten Raten. Wir zeigen außerdem,

dass diese Raten adaptiv durch einen Trainingsvalidierungsansatz für die Auswahl

der Hyperparameter erreicht werden können. Genauer gesagt zeigen wir, dass es

zum Erreichen optimaler Raten auf adaptive Weise ausreicht, wenn die Anzahl der

Kandidatenwerte für die Hyperparameter logarithmisch mit dem Stichprobenum-

fang wächst, während existierende vergleichbare Resultate erfordern, dass die An-

zahl der Kandidatenwerte mindestens linear mit dem Stichprobenumfang wächst.



In Kapitel 3 beweisen wir ähnliche Ergebnisse für eine räumlich lokalisierte Vari-

ante von Gaußschen-SVMs, die eine verbreitete Methode zur Minderung des Rechen-

aufwands gewöhnlicher SVMs sind, welche quadratisch im Platz- und mindestens

quadratisch Zeitbedarf sind. Bei diesem lokalisierten SVM-Ansatz wird eine Par-

tition des Eingaberaums berechnet, und dann für jede Zelle dieser Partition eine

SVM-Entscheidungsfunktion berechnet, wobei nur die in der jeweiligen Zelle en-

thaltenen Stichproben verwendet werden. Während existierende Ergebnisse zu

Verfahren, die mit unserem vergleichbar sind, eine a-priori festgelegte Partition

des Eingaberaums betrachten, die einige technische Annahmen erfüllt, betrachten

wir eine vollständig datenabhängige Partition, die auf dem Farthest-First-Traversal-

Algorithmus basiert. In diesem Kapitel hängt unser Begriff der intrinsischen Di-

mension von der Assouad-Dimension des Trägers der datenerzeugenden Verteilung

ab. Wir beweisen erneut die gleichen minimax-optimalen Raten unter diesem

etwas stärkeren Begriff der intrinsischen Dimensionalität. Wir beweisen eben-

falls erneut, dass diese Raten adaptiv durch ein Trainingsvalidierungsverfahren

mit logarithmisch wachsenden Kandidatenmengen erreicht werden können. Die

Ergebnisse dieses Kapitels sind die ersten, die die Adaptivität an die intrinsische

Dimensionalität der Daten für eine Beschleunigungsstrategie für Kern-Methoden

berücksichtigen.

In Kapitel 4 ergänzen wir schließlich unsere theoretischen Erkenntnisse aus Kapi-

tel 2 und 3 durch experimentelle Untersuchungen. Dazu betten wir gegebene

Datensätze mittels einer nicht-trivialen randomisierten Einbettung in einen höher-

dimensionalen Raum ein und vergleichen, wie sich der Testfehler in Abhängigkeit

von der Anzahl der künstlich hinzugefügten Dimensionen verhält. Wir führen dieses

Verfahren für eine Reihe von Regressions- und Klassifikationsdatensätzen für die

in Kapitel 2 und 3 betrachteten Lernmethoden durch. Die Ergebnisse unserer Ex-

perimente deuten darauf hin, dass die intrinsische Dimension der Daten tatsächlich

die entscheidende Größe ist, die die Generalisierungsleistung bestimmt, anstatt der

Dimension des umgebenden Raums.



Summary

Learning rates for non-parametric learning methods usually exhibit a poor depen-

dency on the dimension of the input space, a phenomenon commonly known as

the curse of dimensionality in statistical learning theory. In practice however, high

dimensional data usually is hypothesized to have some low dimensional intrinsic

structure and therefore it is an interesting question whether learning methods can

exploit such a low dimensional structure in the sense that they achieve learning rates

where the dependence of the dimension of the ambient space is replaced with the

intrinsic dimension of the data. The most common notion of intrinsic dimension of

data relies on the assumption that the data generating distribution is supported on

a low-dimensional smooth manifold. We substantially weaken this assumption by

considering the fractal dimension of the support of the data generating distribution.

More precisely, in Chapter 2 we derive learning rates for support vector machines

(SVMs) using a Gaussian kernel for least-squares regression and binary classifica-

tion using the hinge loss, where the dependence of the dimension of the ambient

space is replaced with the box-counting dimension of the support of the data gener-

ating distribution. The resulting learning rates for regression are minimax optimal

up to logarithmic factors and the learning rates for classification are minimax opti-

mal up to logarithmic factors in a certain range of our assumption and otherwise of

the form of the best known rates. We further show that these rates can be achieved

adaptively by a training validation approach for hyperparameter selection. More

specifically, we show that in order to achieve optimal rates adaptively it is suffi-

cient for the size of the candidate sets of values for the hyperparameters to grow

logarithmically in the sample size, whereas existing similar results require the size

of candidate sets to grow at least linearly in the sample size.

In Chapter 3 we prove similar results for a spatially localized version of Gaussian

SVMs, which is a popular method for circumventing the computational costs of

ordinary SVMs, which are quadratic in space and at least quadratic in time. In

this localized SVM approach a partition of the input space is computed and then



for each cell of that partition an SVM decision function is computed using only

the samples contained in that respective cell. Whereas existing results similar to

ours consider an a-priori fixed partition of the input space satisfying some technical

assumptions, we consider a fully data dependent partitioning based on the farthest

first traversal algorithm. In this chapter our notion of intrinsic dimension depends

on the Assouad dimension of the support of the data generating distribution. We

again prove the same minimax optimal rates under this slightly stronger notion

of intrinsic dimensionality. We also again prove that these rates can be achieved

adaptively using a training validation procedure using logarithmically growing can-

didate sets. The results of this chapter are the first to consider adaptivity to the

intrinsic dimension of the data for a speed-up strategy for kernel methods.

Finally, in Chapter 4 we complement our theoretical findings of Chapter 2 and 3

by experimental investigation. To this end, we embed a given dataset into a higher

dimensional space via a non-trivial randomized embedding and compare how the

test error changes depending on the number of artificially added dimensions. We

perform this procedure for a number of regression and classification datasets using

the learning methods considered in Chapter 2 and 3. The results of our experiments

suggest that, in fact, the intrinsic dimension of the data is the critical quantity

determining the generalization performance, as opposed to the dimension of the

ambient space.
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Notation

• We denote the set of natural numbers {1, 2, 3, . . .} by N and N0 := {0} ∪ N.

R denotes the set of real numbers.

• For p ∈ [1,∞] let ‖ · ‖p be the usual p-norm which for x ∈ R
d is defined by

‖x‖p :=
(

d∑

i=1

|xi|p
)1/p

for p <∞

and ‖x‖∞ := maxi=1,...,d |xi|. Further, we denote the space R
d equipped with

the norm ‖ · ‖p by ℓdp.

• ‖x‖ for x ∈ R
d (without subscript) denotes the Euclidean norm, i.e. ‖x‖ :=

‖x‖2. For x ∈ R
d and r > 0 let Br(x) := {y ∈ R

d : ‖x−y‖ ≤ r} be the closed
ball (w.r.t. Euclidean distance) with center x and radius r.

• Given a normed space E, we denote the closed unit ball centered at the origin

by BE.

• For a non-empty set X let ℓ∞(X) be the space of bounded functions f : X →
R equipped with the norm ‖f‖ℓ∞(X) := supx∈X |f(x)|. If the domain X is

known from the context we may also use the shorthand ‖f‖∞.

• Given a measure space (X,F , µ) and p ∈ [1,∞] let Lp(µ) denote the Lebesgue

space of p-integrable functions with the norm

‖f‖Lp(µ) :=
Å∫

X
|f |p dµ

ã1/p

for p <∞ and the usual modification for p =∞. We use the notation Lp(R
d)

when µ is the Lebesgue measure on R
d. As in this work there is no ambiguity

to expect, we do not distinguish between equivalence classes of functions and

actual functions.



List of Tables

• For a random variable X let EX denote the expectation of X. Also, for

Y ⊂ R
d equipped with some probability distribution P, we will sometimes

also write EY although Y is technically not a random variable. We prefer

this over the cumbersome notation E idY . In this case we may also write

Ey∼Pf(y) for a function f to stress the distribution with respect to which the

expectation is taken.

• For real-valued functions f, g defined on some topological space (we usually

consider N or an interval in R) us the notation f(x) . g(x) as x→ a if there

exists a neighborhood U of a and a constant C > 0 such that f(x) ≤ Cg(x)

for all x ∈ U . Furthermore, we denote f(x) ≍ g(x) as x → a if f(x) . g(x)

as well as g(x) . f(x) as x→ a. The usual Landau symbol O(g) denotes the
class of all functions f such that f(x) . g(x).



Publications

The contents of Chapters 2 and 5 and parts of Section 1.3 were published in

[24] T. Hamm and I. Steinwart. Adaptive learning rates for support vector ma-

chines working on data with low intrinsic dimension. Ann. Statist., 49:3153–

3180, 2021

The contents of Chapters 3 and 4 will be published in

[25] T. Hamm and I. Steinwart. Intrinsic dimension adaptive partitioning for

kernel methods. SIAM J. Math. Data Sci., 2022 (accepted)





Contents

1 Introduction and Preliminaries 1

1.1 Elements of Statistical Learning Theory and the Curse of Dimen-

sionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Reproducing Kernel Hilbert Spaces and Support Vector Machines . 6

1.3 Tools for the Statistical Analysis . . . . . . . . . . . . . . . . . . . . 11

2 Learning Rates for SVMs 21

2.1 Intrinsic Dimension Assumption . . . . . . . . . . . . . . . . . . . . 21

2.2 A General Oracle Inequality . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Learning Rates for Local SVMs 43

3.1 Intrinsic Dimension Assumption . . . . . . . . . . . . . . . . . . . . 44

3.2 Localized Kernels and Construction of Partition . . . . . . . . . . . 45

3.3 A General Oracle Inequality . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Experimental Results 65

5 Final Remarks 75

5.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Review of Existing Results . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 81





1 Introduction and Preliminaries

In the first section of this introductory chapter we give a brief overview, including

some examples, of the main concepts of statistical learning theory, such as loss func-

tions, the risk functional, Bayes risk and Bayes decision function, and the notion

of learning rates. Associated to the latter, we illustrate the curse of dimension-

ality and its consequences. Subsequently in Section 1.2, we give an introduction

to reproducing kernel Hilbert spaces and support vector machines as the central

learning method of this thesis. Finally, in Section 1.3 we introduce our main tools

for the statistical analysis of the subsequent chapters, such as variance bounds and

entropy numbers, as well as some preliminary results on the latter that are used in

the following chapters.

1.1 Elements of Statistical Learning Theory and the

Curse of Dimensionality

The central goal in supervised learning is to learn a relationship between an input

and an output variable based on a number of training examples. Formally, given

an input space X ⊂ R
d and an output space Y ⊂ R as well as a training set

D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n sampled from Pn, where P is an unknown

probability distribution on X×Y , we want to find a decision function fD : X → R,

such that fD(x) is a good prediction for y ∈ Y with respect to the conditional

distribution of P on Y given x. The quality of a prediction is measured by a loss

function, which is a measurable function L : Y ×R→ [0,∞). Prominent examples

for loss functions are the least-squares loss LLS(y, t) := (y − t)2 for regression

tasks when Y ⊂ R is some interval and the binary classification loss Lclass(y, t) :=

1(−∞,0](y sgn t) when the output space consists of two classes Y = {−1, 1}, where
sgn denotes the sign function with the convention sgn 0 := 1. The risk of a decision

1



1 Introduction and Preliminaries

function f : X → R is defined as its expected loss, that is

RL,P(f) :=
∫

X×Y
L(y, f(x)) dP(x, y).

Obviously, we want to find decision functions such that its risk is as small as

possible. To this end, we refer to the smallest possible risk, denoted by R∗
L,P :=

inff :X→RRL,P(f), as the Bayes risk and any function f ∗
L,P with RL,P(f

∗
L,P) = R∗

L,P

as a Bayes decision function with respect to L and P.

Example 1.1.1. Let L = LLS be the least-squares loss and assume that E(Y 2) <∞.

Let m(x) := E(Y |X = x) be the conditional mean function, see [30, Section 8.2] for

an introduction to conditional expectations. Some elementary calculations, see [23,

Section 1.1], then show that for any f ∈ L2(PX), where PX denotes the marginal

distribution of P on X, we have

RL,P(f) =
∫

X×Y
(y − f(x))2 dP(x, y)

=
∫

X×Y
(y −m(x))2 dP(x, y) +

∫

X
(m(x)− f(x))2 dPX(x). (1.1)

Now, the first summand in (1.1) is independent of f and both are non-negative.

From this we can conclude that

R∗
L,P =

∫

X×Y
(y −m(x))2 dP(x, y)

and f is a Bayes decision function if and only if f(x) = m(x) for PX-almost all

x ∈ X.

Example 1.1.2. Let L = Lclass be the classification loss and let η(x) := P(y =

1|X = x) be a version of the regular conditional distribution of Y given x ∈ X, see

for example [30, Section 8.3] for an introduction to regular conditional distributions.

The risk of a function f : X → R can be expressed by

RL,P(f) = P
Ä
(x, y) ∈ X × Y : sgn f(x) 6= y

ä

and the Bayes risk is given by

R∗
L,P =

∫

X
min{η(x), 1− η(x)} dPX(x),

see [55, Example 2.4], where again PX denotes the marginal distribution of P on

2



1.1 Elements of Statistical Learning Theory and the Curse of Dimensionality

X. Finally, f is a Bayes decision function if and only if (2η(x)− 1)sgn f(x) ≥ 0 for

PX-almost all x ∈ X.

Because of the non-convexity of the classification loss, we will also consider the

hinge loss Lhinge : Y × R → [0,∞) defined by Lhinge(y, t) := max{0, 1 − yt} as a

surrogate. Note that we call a loss function L : Y × R → [0,∞) convex, if for all

y ∈ Y the function L(y, ·) is convex. The use of the hinge loss as a surrogate for

the classification loss is justified by Zhang’s inequality [55, Theorem 2.31], which

states that

RLclass,P(f)−RLclass,P ≤ RLhinge,P(f)−RLhinge,P (1.2)

for all measurable f : X → [−1, 1] and any distribution P on X × Y .

Particularly interesting in the statistical analysis of learning methods is the be-

havior of the excess risk RL,P(fD) − R∗
L,P as the number of samples n goes to

infinity. Specifically, from a good learning method we would expect that the excess

risk converges to zero. To this end, a learning method is called strongly universal

consistent if RL,P(fD)−R∗
L,P → 0 almost surely as n→∞ for any distribution P.

Note that the excess risk is a random variable through its dependence on the dataset

D. Therefore, different notions of universal consistency exist, for example where

convergence in probability or expectation is considered instead. A series of learning

methods are known to be universally consistent, see e.g. [14] for a number of exam-

ples of consistent classifying methods and [23] for consistent regression methods.

However, consistency does not specify the speed of convergence of the excess risk.

In fact, by the no-free-lunch theorem, a fundamental result in statistical learning

theory, there exists no learning method D 7→ fD such that the excess risk converges

to zero with an a-priori specified speed for any distribution P. The no-free-lunch

theorem was first proved by Devroye [13] for the binary classification problem but

can be generalized to a broad class of learning tasks under mild assumptions on

the loss function, see for example [55, Corollary 6.8]. As a consequence, rates of

convergence of the excess risk can only be proved for specified classes of distribu-

tions, defined by so-called regularity assumptions. As already noted, the excess

risk is a random variable and thus there exist multiple notions of convergence. The

most common type of convergence considered in the literature is convergence in

expectation, that is bounds of the type

ED∼PnRL,P(fD)−R∗
L,P ≤ Cn−r (1.3)

3



1 Introduction and Preliminaries

for some constant C > 0 independent of n and some r ∈ (0, 1] holding for all P out

of an often implicitly defined class of distributions. In this context, n−r is referred

to as a learning rate. In this thesis however, we will consider slightly stronger high

probability bounds on RL,P(fD) − R∗
L,P, which state that there exists a constant

C > 0 such that the set of all samples D ∈ (X × Y )n with

RL,P(fD)−R∗
L,P ≤ Cτn−r

has a probability of at least 1 − e−τ with respect to Pn for all τ ≥ 1. Generally

throughout this thesis, we will call the order of the rate of convergence of the excess

risk a learning rate, regardless of their exact type of convergence. The reader should

keep this minor impreciseness in terminology in mind, especially when we refer to

results on learning rates in the literature.

A common observation on learning rates for non-parametric estimators is, that

learning rates are significantly deteriorated when the dimension of the input space

increases. We want to illustrate this in the case of regression using the least squares-

loss L = LLS, where regularity assumptions on P are usually expressed by smooth-

ness properties of the Bayes decision function f ∗
L,P(x) = E(Y |X = x). To this end,

let P be the class of distributions P on X × Y with X = [0, 1]d such that the

marginal distribution PX has a Lebesgue density bounded away from zero and in-

finity and such that f ∗
L,P is k-times continuously differentiable and all derivatives of

order k are bounded by some constantM > 0. Then, a variety of learning methods

were shown to achieve a learning rate of n−2k/(2k+d). Moreover, the classical result

of Stone [60] states that this learning rate is minimax optimal, i.e. there exists

no learning method D 7→ fD that achieves a learning rate faster than n−2k/(2k+d)

uniformly over the class P . As a consequence, to halve the error of a regression

estimator in this setting, one usually has to increase the sample size by a factor of

2(2k+d)/(2k), which is exponential in d. This poor dependence of the generalization

error on the dimension of the input space is usually termed the curse of dimen-

sionality and is also present in binary classification, see for example the results of

Audibert and Tsybakov [2].

As a consequence of the discussion above, learning from very high dimensional

data should infeasible from a theoretical point of view. However, note that a central

assumption in the result of Stone mentioned in the previous paragraph is that the

marginal distribution PX has a Lebesgue density bounded away from zero and

4



1.1 Elements of Statistical Learning Theory and the Curse of Dimensionality

infinity, which means that the data points x1, . . . , xn are roughly uniformly spread

out over the whole input space. In practice however, especially in high dimensions,

real world datasets tend to be concentrated on a significantly smaller portion of the

input space. Levina and Bickel [37] even went as far as saying that

”There is a consensus in the high-dimensional data analysis community

that the only reason any methods work in very high dimensions is that,

in fact, the data are not truly high-dimensional.”

To illustrate this reasoning consider the standard introductory textbook example for

supervised learning that consists of estimating the price of a house based on certain

characteristics. Now, it should be obvious that some of these characteristics, like

living space and number of rooms are highly correlated in the sense that a large

amount of living space implies a big number of rooms and vice versa. In other

words, our dataset,in this case the characteristics of the set of houses we know

the prices of, can not contain any arbitrary combination of characteristics but only

very specific ones. Therefore, it seems plausible that generally, the more features we

collect in a supervised learning scenario, the more likely they are to contain some

highly correlated features, which in turn implies that the data is concentrated on

a small portion of the input space.

It is therefore an interesting question if common learning methods are able to

exploit a, yet to be formalized, assumption on the intrinsic dimensionality of the

data. This question has received considerable attention in the literature, see for

example [5, 11, 31, 32, 33, 35, 40, 53, 64, 65, 66]. The by far widest spread notion

to express this low intrinsic dimensionality of data is to assume that the data gen-

erating distribution PX is supported on a low-dimensional, smooth manifold. The

obvious goal under this assumption then is to prove learning rates that coincide with

the well known-ones, but where the dependence on the dimension of the ambient

space is replaced with the dimension of the manifold on which PX is supported, or

at least, prove learning rates that only depend on the dimension of this manifold.

However, there is a considerable gap between the commonly accepted hypothesis

that the data is not uniformly spread over the input space and the assumption,

derived from this hypothesis, that the data lies on a smooth manifold. In this

thesis we prove learning rates, coinciding with some well-known minimax optimal

rates, for regression and classification using Gaussian SVMs that depend on the

fractal dimension of the support of PX , allowing also non-integer dimensions and

considerably weakening the prevailing manifold assumption. More precisely we will

5



1 Introduction and Preliminaries

show in Chapter 2 that Gaussian SVMs achieve some well-known minimax optimal

learning rates for regression and classification, where the dependence of the ambi-

ent space is replaced with the box-counting dimension of the support of the data

generating distribution. Similarly, in Chapter 3 we will show that analogous results

hold for Gaussian SVMs working on a data dependent partition of the input space,

where the notion of intrinsic dimensionality is based on the Assouad dimension of

the support of the data generating distribution, a slightly stronger notion of fractal

dimension than the box-counting dimension. An interesting finding of this thesis

therefore is that the differentiable structure of the data, which is actively exploited

in the proofs of existing publications which work under a manifold assumption,

such as [64, 65, 66], is apparently not necessary for results as described above to

hold true.

1.2 Reproducing Kernel Hilbert Spaces and Support

Vector Machines

In this section we introduce the central learning method this thesis is concerned

with, namely support vector machines. To this end, we first need to start with a

recap on reproducing kernel Hilbert spaces (RKHSs), which serve as the hypothesis

space of support vector machines. We start with the definition of a kernel.

Definition 1.2.1 (Kernel). Let X be a non-empty set. A function k : X ×X → R

is called a kernel if there exists a (real) Hilbert space H0 and a map Φ : X → H0

such that k(x, y) = 〈Φ(x),Φ(y)〉H0 for all x, y ∈ X. The map Φ is called a feature

map and H0 a feature space of k.

By [55, Theorem 4.16], a symmetric function k : X ×X → R is a kernel if and

only if it is positive definite, that is if for all n ∈ N and all choices x1, . . . , xn ∈ X
and α1, . . . , αn ∈ R we have

n∑

i=1

n∑

j=1

αiαjk(xj, xi) ≥ 0.

Definition 1.2.2 (Reproducing Kernel/Reproducing Property). LetX be a non-empty

set and H a Hilbert space consisting of functions f : X → R. A function k :

6
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X ×X → R is a reproducing kernel if k(x, ·) ∈ H for all x ∈ X and

f(x) = 〈f, k(x, ·)〉 for all f ∈ H, x ∈ X. (1.4)

Property (1.4) is called the reproducing property.

Definition 1.2.3 (RKHS). Let X be a non-empty set and H a Hilbert space con-

sisting of functions f : X → R. Then H is called a reproducing kernel Hilbert space

(RKHS) if the evaluation functional H → R defined by f 7→ f(x) is continuous for

every x ∈ X.

Definitions 1.2.1, 1.2.2, and 1.2.3 are connected in the following way: Every re-

producing kernel in the sense of Definition 1.2.2 is a kernel in the sense of Definition

1.2.1 via the canonical feature map Φ(x) := k(x, ·), see [55, Lemma 4.19]. Addi-

tionally, every RKHS H over a non-empty set X has a unique reproducing kernel

[55, Theorem 4.20] given by k(x, y) = 〈δx, δy〉H′ for x, y ∈ X where δx, δy : H → R

denote the evaluation functionals at x, respectively y and H ′ denotes the dual

space of H. Conversely, every kernel k has a unique RKHS H, for which it is the

reproducing kernel, consisting of the functions x 7→ 〈Φ(x), w〉H0 , w ∈ H0, where

Φ : X → H0 is a feature map of k and the norm in H is given by

‖f‖H = inf {‖w‖H0 : w ∈ H0 with f = 〈Φ(·), w〉} , (1.5)

see [55, Theorem 4.21].

Example 1.2.4. The basic idea behind the usage of kernels in machine learning is to

extend linear algorithms to non-linear algorithms without much effort. To illustrate

this, letX = R
2 and define the feature map Φ : R2 → R

3 by Φ(x) := (x1, x2, x
2
1+x

2
2).

Now, in the left graphic of Figure 1.1 the red and blue points can not be separated

by a linear decision function. However, if we map the points into the feature space

H0 via Φ they are linearly separable in H0. This extension of the expressivity

of linear algorithms by the introduction of a kernel is known as the kernel trick.

For more details on the kernel trick and examples of ”kernelizable” algorithms we

refer to [52, Chapters 13-16]. To continue our example, the kernel k associated to

the feature map Φ is then given by k(x, y) = 〈x, y〉 + ‖x‖2‖y‖2 for x, y ∈ R
2. The

RKHS H of k consists of all functions of the form fw(x) = w1x1+w2x2+w3(x
2
1+x

2
2)

with w ∈ R
3. One can easily check that the representation of fw via w is unique.

Equation (1.5) therefore gives us ‖fw‖H = ‖w‖.

7
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Figure 1.1: The red and blue points are not linearly separable in the original space (left),
but after they are mapped into the feature space R

3 via Φ they are linearly
separable.

A support vector machine (SVM) is a regularized empirical risk minimizer over

a reproducing kernel Hilbert space. Formally, given D = ((x1, y1), . . . , (xn, yn)) ∈
(X×Y )n as dataset and an RKHS H with kernel k on X, a support vector machine

computes the minimizer of the regularized empirical risk

fD,λ := argmin
f∈H

λ‖f‖2H +
1

n

n∑

i=1

L(yi, f(xi)), (1.6)

where λ > 0 is a regularization parameter and L : Y × R → [0,∞) is a loss func-

tion. For some remarks on the history of SVMs and their originally geometrical

interpretation as hard margin or soft margin classifiers using the classification loss

or hinge loss, respectively, and their extension using the kernel trick we refer to [55,

Chapter 1]. Note that, due to this geometrically motivated origin of SVMs, nomen-

clature for the learning method defined by (1.6) is not consistent in the literature.

While some authors generally denote this generic learning method support vector

machine, as we do, others use this term exclusively for the classification method

(1.6) using the hinge loss L = Lhinge. Method (1.6) using the least-squares loss

L = LLS is also commonly called kernel ridge regression.

By the representer theorem [55, Theorem 5.5] fD,λ exists and is unique for convex

loss functions L and has an expansion

fD,λ(x) =
n∑

i=1

αik(x, xi) (1.7)
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with coefficients α1, . . . , αn ∈ R, which makes the optimization problem (1.6) over

a generally infinite dimensional space H computable in practice. We will also

consider a modification of the learning method (1.6) intended for alleviating com-

putational constraints of this learning method, which are quadratic in space and

at least quadratic in time, and denote this method a local SVM (LSVM). In this

modification a spatial partition of the input space X is computed as a first step and

then on each cell of this partition a decision function (1.6) is computed using only

the samples contained in that cell. In this thesis we consider a fully data depen-

dent partitioning procedure based on the farthest first traversal algorithm, whereas

existing results on similar partitioning based estimators consider an a-priori fixed

partition satisfying some technical assumptions. We will describe the construction

of our considered partition as well as how to conveniently describe this learning

method mathematically by only defining a modified kernel in detail in Section 3.2.

Remark 1.2.5. To deal with questions regarding measurability of SVMs, or general

learning methods, one usually considers the so-called universal completion of the

Borel σ-algebra on (X×Y )n, see for example the introduction of Section 6.1 in [55].

To this end, recall that the completion of a measurable space (Ω,F) with respect

to a measure µ on F is defined as the smallest σ-algebra that contains F and all

subsets of every µ-zero set. The universal completion of F is then defined as the

intersection of all µ-completions, where µ runs through all probability measures

on F . Using this universal completion and a separable RKHS H, all problems

concerning measurability of SVMs are then answered by [55, Lemma 6.23]. In

other words, we can ignore measurability conditions by implicitly assuming that

we are given the universal completion of the Borel σ-algebra on (X×Y )n and using

a separable RKHS H, which we will do for the rest of this thesis.

The probably most popular kernel used for SVMs is the Gaussian kernel, which

is also the kernel we will focus on in this thesis.

Definition 1.2.6. Given some non-empty set X ⊂ R
d and some γ > 0, the Gaussian

RKHS, denoted by Hγ(X), is the RKHS associated to the Gaussian kernel

kγ(x, y) := exp(−γ−2‖x− y‖2), x, y ∈ X.

The parameter γ is called bandwidth.

The Gaussian kernel has been shown to yield superior performance in practical

applications, making it the default kernel in the majority of SVM implementations.

9
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Also, from a theoretical point of view the Gaussian kernel has its merits as it

is well-studied in the literature. For example, in [59] an explicit description of

the functions contained in the Gaussian RKHS as well as a countable orthonormal

basis are derived, showing the separability of Hγ(X). Other useful properties of the

Gaussian RKHS, which will be important later, are summarized Section 2.3. The

Gaussian kernel not only plays an outstanding role in machine learning applications

but also in mathematical physics, for example in the derivation of the fundamental

solution of the heat equation, see [17, Section 2.3].

As an SVM using a Gaussian kernel has an additional hyperparameter γ, we

denote the decision function of the learning method (1.6) with H = Hγ(X) by

fD,λ,γ, that is

fD,λ,γ = argmin
f∈Hγ(X)

λ‖f‖2Hγ(X) +
1

n

n∑

i=1

L(yi, f(xi)). (1.8)

To deal with some technical issues connected to unbounded loss functions in

the subsequent statistical analysis of Gaussian SVMs, we also need to introduce

the clipping operation, see [55, Definition 2.22]. To this end, we say that a loss

function L : Y × R → [0,∞) can be clipped at M > 0, if L(y, Ût) ≤ L(y, t) for all

y ∈ Y and t ∈ R, where

Ût :=





−M for t < −M,

t for t ∈ [−M,M ],

M for t > M.

is the clipped value of t at M . Then, for a Gaussian SVM using a loss that can be

clipped at M , we will apply the clipping operation point wise to fD,λ,γ and denote

the resulting decision function by ÛfD,λ,γ.

Example 1.2.7. Let L = LLS be the least-squares loss and assume that the output

space Y ⊂ [−M,M ] is bounded by some M > 0. Then the least-squares loss can

be clipped at M , since we obviously have (y− Ût)2 ≤ (y− t)2 for all |y| ≤M , where

Û· denotes the clipped value at M .

Example 1.2.8. Let Y = {−1, 1}. The hinge loss L = Lhinge can be clipped at

M = 1, since we have max{0, 1− yÛt} ≤ max{0, 1− yt} for all y ∈ Y, t ∈ R.

As usual, the optimal choice for the hyperparameters λ and γ depends on char-
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acteristics of the unknown distribution P. Therefore, we will also consider a train-

ing validation procedure for data dependent hyperparameter selection. To this

end, we split our dataset D = ((x1, y1), . . . , (xn, yn)) into a training set D1 :=

((x1, y1), . . . , (xl, yl)) and a validation set D2 := ((xl+1, yl+1), . . . , (xn, yn)), where

l := ⌊n/2⌋+ 1. Further, we fix finite sets Λn and Γn of candidate values for λ and

γ. Then, we compute the SVM decision functions ÛfD1,λ,γ for all (λ, γ) ∈ Λn × Γn

using the training set D1 and for the final estimator we pick the parameters

λD2 ∈ Λn, γD2 ∈ Γn which have the best empirical error on the validation set

D2, that is

n∑

i=l+1

L
(
yi, ÛfD1,λD2

,γD2
(xi)

)
= min

(λ,γ)∈Λn×Γn

n∑

i=l+1

L
(
yi, ÛfD1,λ,γ(xi)

)
.

We call the resulting learning method a training validation support vector machine

(TV-SVM). In the subsequent chapters we will show that it is sufficient for the

candidate sets Λn and Γn to grow logarithmically with the sample size n in order

to achieve optimal rates adaptively, which is a significant improvement compared

to previous results, which required the size of the candidate sets to grow at least

linearly in n, see for example [55, Theorem 7.24].

1.3 Tools for the Statistical Analysis

A main ingredient for our statistical analysis is a so-called variance bound, which

intuitively guarantees a small variance of the excess risk whenever our estimator is

close to the optimum, see for example [8, Section 5.2] for a more detailed discussion

of the effects of a variance bound on the statistical properties of the excess risk.

In the following definition, for a loss function L : Y × R → [0,∞) and a function

f : X → R, we use the symbol L ◦ f to denote the function (x, y) 7→ L(y, f(x)).

Definition 1.3.1. Let L be a loss that can be clipped at M > 0 and let F be

some function class of measurable functions f : X → R. Assume there exists

a Bayes decision function f ∗
L,P : X → [−M,M ]. We say, that the supremum

bound is satisfied, if there exists a constant B > 0, such that L(y, t) ≤ B for all

(y, t) ∈ Y × [−M,M ]. We further say, that the variance bound is satisfied, if there

exist ϑ ∈ [0, 1] and V ≥ B2−ϑ, such that

E(L ◦ Ûf − L ◦ f ∗
L,P)

2 ≤ V ·
(
EL ◦ Ûf − L ◦ f ∗

L,P

)ϑ
for all f ∈ F .

11
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Example 1.3.2. Let L = LLS be the least-squares loss and assume that the output

space is bounded Y ⊂ [−M,M ] by some M > 0. Then the variance bound is

satisfied for the best possible exponent ϑ = 1 and V = 16M2. The supremum

bound is satisfied for B = 4M2. For details on the derivation we refer to [55,

Example 7.3].

As the example above shows, a significant advantage of the least-squares loss is

that the variance bound is satisfied for the best exponent for all distributions with

bounded output space. For the hinge loss, this problem is quite more intricate.

Non-trivial variance bounds can only be established under some assumptions on

the distribution P, which we will summarize in the following. To this end, recall

the definition of the conditional class probability η : X → [0, 1] in Example 1.1.2.

Assumption 1.3.3. There exist constants C∗ > 0 and q ∈ [0,∞] such that

PX

Ä
{x ∈ X : |2η(x)− 1| < t}

ä
≤ (C∗t)

q

for all t ≥ 0, where we use the convention t∞ = 0 for t ∈ (0, 1).

Assumption 1.3.3 is in the literature widely known as Tsybakov noise condition.

It was first introduced in [38] and since then has become a standard regularity

assumption in non-parametric binary classification. Intuitively, Assumption 1.3.3

restricts the mass of points x ∈ X such that η(x) is close to 1/2 and evidently it

is hard to predict the label of x ∈ X with high probability whenever η(x) ≈ 1/2.

Assumption 1.3.3 can be used to establish a non-trivial variance bound, which we

record in the following example.

Example 1.3.4. Assume P satisfies Assumption 1.3.3 for the constant C∗ > 0

and exponent q ∈ [0,∞]. Then, the hinge loss satisfies the variance bound for

ϑ = q/(q + 1) and V = 6C
q/(q+1)
∗ , see [55, Theorem 8.24]. The supremum bound is

obviously satisfied for B = 2.

Finally, we have to introduce one last regularity condition we need to impose on

our loss functions.

Definition 1.3.5. A loss function L : Y ×R→ [0,∞) is called locally Lipschitz con-

tinuous if for every a > 0 the functions L(y, ·)|[−a,a], y ∈ Y are uniformly Lipschitz

12
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continuous, that is

|L|a,1 := sup
s,t∈[−a,a],s 6=t

y∈Y

|L(y, t)− L(y, s)|
|t− s| <∞.

Example 1.3.6. Let L = LLS be the least-squares loss and assume that the output

space is bounded Y ⊂ [−M,M ] by some M > 0. A simple application of the mean

value theorem shows that

|L|M,1 ≤ sup
s,t∈[−M,M ],s 6=t

y∈Y

d

dt
(t− y)2 = sup

s,t∈[−M,M ],s 6=t
y∈Y

2(t− y) ≤ 4M,

and we conclude that the least-squares loss is locally Lipschitz continuous.

Example 1.3.7. The hinge loss is locally Lipschitz continuous with |Lhinge|1,1 = 1.

For the analysis of the statistical error of our considered learning methods we

need to introduce a number of covering quantities which, roughly speaking, quantify

how well a set can be approximated by a finite number of points.

Definition 1.3.8. Given a normed space E and a subset A ⊂ E we say that the

points x1, . . . , xm ∈ E are an ε-net of A, if

A ⊂
m⋃

j=1

(xj + εBE).

Given an ε > 0 the covering number NE (A, ε) of A is defined as the minimum

cardinality of an ε-net of A.We may also write N (A, ε) := NE(A, ε), if the ambient

space E is known from the context. Finally, given a second normed space F and

a bounded, linear operator T : E → F , the covering numbers of T are defined by

N (T, ε) := NF (TBE, ε).

Note that a set A is precompact if and only if N (A, ε) <∞ for all ε > 0. Instead

of fixing an ε > 0 and minimizing the number of ε-balls necessary to cover a set,

we can also fix the number of balls and minimize the (common) radius of the balls.

This is the principle of the related concept of (dyadic) entropy numbers, which we

will only introduce for operators.

13
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Definition 1.3.9. Given normed spaces E,F and a bounded, linear operator T :

E → F , for i ∈ N the i-th dyadic entropy number of T is defined as

ei(T ) := inf



ε > 0 : ∃x1, . . . , x2i−1 ∈ F such that TBE ⊂

2i−1⋃

j=1

(xj + εBF )



 .

One can easily check that a bounded, liner operator T is compact if and only

if ei(T ) converges to 0 as i → ∞. In this regard, entropy numbers provide a

quantitative notion of compactness in the sense that an operator T : E → F is more

compact than an operator S : E → F if ei(T ) converges to 0 faster than ei(S). Also,

the entropy numbers of an operator T are related to approximation properties of T

by finite rank operators. Note that in the definition of ei(T ) ε-nets of cardinality

2i−1 are considered. The reason for this is that for non-trivial compact operators

between infinite dimensional spaces E and F , which are commonly considered,

the non-dyadic entropy numbers usually converge to 0 slower than any polynomial

and there is no loss of information in switching to dyadic entropy numbers, see [9,

Section 1.3]. A basic, yet useful property of entropy numbers, which we will use

throughout this thesis, is that entropy numbers are dominated by decompositions,

that is, if we can decompose T : E → F into T = RS with bounded, linear

operators S : E → F̃ , R : F̃ → F , and an intermediate normed space F̃ , then we

have ei(T ) ≤ ‖R‖ei(S) as well as ei(T ) ≤ ei(R)‖S‖ for all i ∈ N, where ‖R‖, ‖S‖
denotes the operator norm, see [9, p. 21]. As one would expect, there is a close

connection between entropy and covering numbers.

Lemma 1.3.10. Let E,F be normed spaces and let T : E → F be a bounded, linear

operator.

(i) If there exist constants a > 0 and q > 0 such that ei(T ) ≤ a i−1/q for all

i ∈ N, then we have

logN (T, ε) ≤ log 4
Åa
ε

ãq

for all ε > 0.

(ii) If there exist constants a > 0 and q > 0 such that logN (T, ε) ≤ (a/ε)q for all

ε > 0, then we have

ei(T ) ≤ 3
1
q a i−

1
q

for all i ∈ N.
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The first assertion is the statement of [55, Lemma 6.21], the second assertion is

the content of [55, Exercise 6.8].

In the statistical analysis of Chapters 2 and 3 we have to bound the expectation

of the entropy numbers of the embedding id : H → L2(D), where H is an RKHS

on X and D := 1
n

∑n
i=1 δxi is the empirical distribution associated to a sample

D = (x1, . . . , xn) drawn from Pn
X . More specifically, we will be interested in bounds

of the form

ED∼P
n
X
ei(id : H → L2(D)) ≤ a i−

1
2p for all i ∈ N (1.9)

for some constants a > 0 and p ∈ (0, 1). Such bounds in turn can be used to bound

Rademacher averages of H using a standard symmetrization procedure and Dud-

ley’s chaining, see [55, Section 7.3]. In the following, we collect some preliminary

results on RKHSs and their covering numbers that will help us to derive appropri-

ate bounds of the form (1.9) in Chapter 2 and 3. The subsequent results appeared

in [24].

Lemma 1.3.11. Let k be a kernel on X with RKHS H and let ψ : Y → X be a map.

Then kψ(·, ·) := k(ψ(·), ψ(·)) is a kernel on Y with RKHS Hψ = {f ◦ ψ : f ∈ H}
and the map V : H → Hψ defined by f 7→ f ◦ ψ is a metric surjection. The norm

in Hψ can be computed by

‖g‖Hψ = inf{‖f‖H : f with g = f ◦ ψ}.

If ψ is bijective, then V is an isometric isomorphism.

Proof. Let Φ : X → H, x 7→ k(x, ·) be the canonical feature map of k and define Φψ :

Y → H, y 7→ Φ(ψ(y)). Then by construction we have 〈Φψ(y),Φψ(y
′)〉H = kψ(y, y

′)

for all y, y′ ∈ Y , that is, Φψ is a feature map of kψ. The first two assertions now

follow from (1.5). For the third assertion additionally apply this result on ψ−1.

Corollary 1.3.12. Let k be a kernel on X ⊂ R
d, H its RKHS, and Y ⊂ X. Then

H|Y := {f |Y : f ∈ H} is the RKHS of k|Y×Y and the restriction H → H|Y is a

metric surjection.

Proof. This follows from Lemma 1.3.11 with ψ : Y → X being the inclusion.

A kernel k : Rd×R
d → R is called radial if there exists a function κ : [0,∞)→ R

such that k(x, y) = κ(‖x − y‖) for all x, y ∈ R
d. Radial kernels are a special case

of translation invariant kernels, which by Bochner’s theorem [47, Theorem IX.9]
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are characterized as the inverse Fourier transform of a finite Borel measure on R
d.

Similarly, by Schoenberg’s theorem [51] κ : [0,∞) → R defines a radial kernel on

R
d via k(·, ·) = κ(‖ · − · ‖) for every d ∈ N, if and only if there exists a finite Borel

measure µ on [0,∞) such that

κ(t) =
∫ ∞

0
e−xt

2

dµ(x)

for all t ∈ [0,∞), i.e. radial kernels are mixtures of Gaussians. The following

corollary shows, that RKHSs of radial kernels are in some sense translational and

rotational invariant.

Corollary 1.3.13. Let k be a radial kernel on R
d and for X ⊂ R

d denote the re-

striction of k onto X ×X by kX and its RKHS by H(X). Fix an a ∈ R
d and an

orthogonal matrix U ∈ R
d×d. Then the operator T : H(X) → H(a + UX) defined

by Tf(x) = f(U−1(x− a)) is well-defined and an isometric isomorphism.

Proof. This follows from Lemma 1.3.11 with the map ψ : a+ UX → X defined by

x 7→ U−1(x− a), since kX(ψ(·), ψ(·)) = ka+UX(·, ·).
Lemma 1.3.14. Let k be a kernel on X, H be its RKHS, and X1, . . . , XN ⊂ X

pairwise disjoint subsets with X1 ∪ . . . ∪XN = X. Then for all ε > 0 we have

Nℓ∞(X)(BH , ε) ≤
N∏

k=1

Nℓ∞(Xk)(BH|Xk
, ε).

Proof. As the general statement easily follows inductively, we will only prove the

caseN = 2. To this end, let f1, . . . , fn ∈ ℓ∞(X1) be a minimal ε-net of BH|X1
and let

g1, . . . , gm ∈ ℓ∞(X2) be a minimal ε-net of BH|X2
. Let f ∈ BH . Then by Corollary

1.3.12 we have f |Xl ∈ H|Xl with ‖f |Xl‖H|Xl
≤ ‖f‖H ≤ 1 for l = 1, 2. Hence, there

exist i, j with ‖f |X1−fi‖ℓ∞(X1) ≤ ε and ‖f |X2−gj‖ℓ∞(X2) ≤ ε. If we denote the zero-

extensions of fi, gj to X by f̂i, ĝj, we see that {f̂i + ĝj : i = 1, . . . , n, j = 1, . . . ,m}
is an ε-net of BH with cardinality n ·m.

Corollary 1.3.15. Let X ⊂ R
d. For all γ > 0 and ε > 0 we have

logN (id : Hγ(X)→ ℓ∞(X), ε)

≤N (X, γ) · logN (id : H1(B)→ ℓ∞(B), ε) ,

where N (X, γ) denotes the covering numbers with respect to an arbitrary norm on

R
d and B denotes the closed unit ball in R

d with respect to that norm.
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Proof. Let x1, . . . , xn ∈ R
d be a minimal γ-net of X with respect to a given norm.

We partition X into X1, . . . , Xn, where Xj consists of the points x ∈ X that are

closest to xj with respect to the given norm. Here we break ties, for example, in

favor of a smaller index j. Combining Lemma 1.3.14, Corollary 1.3.12 and Corollary

1.3.13 we get

logNℓ∞(X)

Ä
BHγ(X), ε

ä
≤

n∑

j=1

logNℓ∞(Xj)

Ä
BHγ(Xj), ε

ä

≤
n∑

j=1

logNℓ∞(xj+γB)

Ä
BHγ(xj+γB), ε

ä

= n logNℓ∞(γB)

Ä
BHγ(γB), ε

ä
,

where B denotes the closed unit ball in R
d with respect to the given norm. The

result now follows from [55, Proposition 4.37], which states that the scaling operator

τγ : Hγ(γB)→ H1(B) defined by τγf(x) = f(γx) is an isometric isomorphism.

In essence, Corollary 1.3.15 reduces the problem of bounding the ℓ∞-covering

numbers of Hγ(X) to bounding the ℓ∞-covering numbers of H1(B). The latter are

well understood, [34, Theorem 3] showed that1

logN (id : H1(B)→ ℓ∞(B), ε) ≍
Ä
log 1

ε

äd+1

Ä
log log 1

ε

äd as ε→ 0. (1.10)

for any bounded B ⊂ R
d with non-empty interior. However, we will rely on the

slightly suboptimal bound

logN (id : H1(B)→ ℓ∞(B), ε) . logd+1 1

ε
as ε→ 0, (1.11)

since it is very hard to make use of the extra double logarithmic factor in (1.10).

Theorem 1.3.16. There exists a universal constant Kd only depending on d, such

that

ei(id : Hγ(X)→ ℓ∞(X)) ≤ K
1
2p

d p−
d+1
2p N (X, γ)

1
2p i−

1
2p

holds for all i ∈ N, p ∈ (0, 1) and γ > 0.

1The result is actually only stated for B = [0, 1]d, but the generalization is straightforward.
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1 Introduction and Preliminaries

Proof. For f ∈ BH1(B) by [55, Lemma 4.23] we have ‖f‖∞ ≤ 1 and consequently

we find Nℓ∞(B)(BH1(B), ε) = 1 for all ε ≥ 1. Furthermore, by [34, Theorem 3] there

exists a constant K ≥ 1 such that

logNℓ∞(B)

Ä
BH1(B), ε

ä
≤ K logd+1 2

ε

for all ε ∈ (0, 1]. Some elementary calculations show that

sup
ε∈(0,2)

εq logd+1 2

ε
= 2q

Ç
d+ 1

eq

åd+1

,

which combined with Corollary 1.3.15 and the estimate above gives us

logN (id : Hγ(X)→ ℓ∞(X), ε) ≤ KN (X, γ) logd+1 2

ε

≤ 4KN (X, γ)

Ç
d+ 1

eq

åd+1

ε−q
(1.12)

for ε > 0 and q ∈ (0, 2). As a final step we convert the latter bound on the covering

numbers of id : Hγ(X) → ℓ∞(X) into a bound on the entropy numbers. To this

end, we fix an i ≥ 2 and define ε > 0 by exp(a/εq) = 2i−1, where

a := 4KN (X, γ)

Ç
d+ 1

eq

åd+1

.

By (1.12) this implies

ei(id : Hγ(X)→ ℓ∞(X)) ≤
Ç
(i− 1) log 2

a

å− 1
q

≤
Ç

2a

log 2

å 1
q

i−
1
q

for all i ≥ 2. Since e1(id : Hγ(X)→ ℓ∞(X)) ≤ 1 we get

ei(id : Hγ(X)→ ℓ∞(X)) ≤
(
N (X, γ)8K

log 2

Ç
d+ 1

eq

åd+1
) 1
q

i−
1
q

for all i ∈ N. Now substitute 2p = q and absorb all irrelevant constants into a

constant Kd.

The following theorem, which is the content of [55, Theorem 7.23], states an

oracle inequality for SVMs using a kernel satisfying (1.9) for the given distribution

P.
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1.3 Tools for the Statistical Analysis

Theorem 1.3.17. Let L : Y × R → [0,∞) be a locally Lipschitz continuous loss

that can be clipped at M > 0 and satisfies the supremum bound for a B > 0.

Moreover, let H be a separable RKHS over X and P be a distribution over X × Y
such that a variance bound is satisfied for constants ϑ ∈ [0, 1], V ≥ B2−ϑ, and all

f ∈ H. Assume that for fixed n ≥ 1 there exist constants p ∈ (0, 1) and a ≥ B

such that (1.9) is satisfied. Finally, fix an f0 ∈ H and a constant B0 ≥ B such that

‖L ◦ f0‖∞ ≤ B0. Then, for all τ ≥ 0 and λ > 0, the SVM using H and L satisfies

λ‖fD,λ‖2H +RL,P( ÛfD,λ)−R∗
L,P ≤9(λ‖f0‖2H +RL,P(f0)−R∗

L,P)

K

Ç
a2p

λpn

å 1
2−p−ϑ+ϑp

+ 3

Ç
72V τ

n

å 1
2−ϑ

+
15B0τ

n

with probability not less than 1 − 3e−τ , where K ≥ 1 is a constant only depending

on p,M,B, ϑ, and V .

For our later applications of this theorem we need to take a closer look at the

constant K and especially how it depends on the given parameters. First of all,

the constant K is given by (see [55, proof of Theorem 7.23])

K =max
¶
2B, 3

(
30 · 2pC1(p)|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, 90 · 120pC1+p
2 (p)|L|pM,1B

1−p
©

≤max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´

·max
{
2, 3 (30 · 2pC1(p))

2
2−p−ϑ+ϑp , 90 · 120pC1+p

2 (p)
}
.

The constants C1(p) and C2(p) are given by

C1(p) :=
2
√
log 256Cp

p

(
√
2− 1)(1− p)2 p2 , C2(p) =

(
8
√
log 16Cp

p

(
√
2− 1)(1− p)4p

) 2
1+p

,

where

Cp =

√
2− 1

√
2− 2

2p−1
2p

· 1− p
p

,

which can be tracked in [55, proof of Theorem 7.16]. It was shown in [20, Proof

of Theorem 7] that C1(p) and C
1+p
2 (p) are uniformly bounded in p ∈ (0, 1

2
]. More
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1 Introduction and Preliminaries

precisely, we have

sup
p∈(0, 1

2
]

C1(p) ≤ 46e and sup
p∈(0, 1

2
]

C1+p
2 (p) ≤ 1035e2,

which implies for all p ∈ (0, 1/2] and ϑ ∈ [0, 1] that

K ≤ K̃max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´
(1.13)

with a constant K̃ independent of p and ϑ.

20



2 Learning Rates for SVMs

In this chapter we present our results on learning rates for SVMs using a (global)

Gaussian kernel. Our notion of intrinsic dimensionality is based on the box-counting

dimension, which we introduce in Section 2.1 including some illustrative examples.

Afterwards, in Section 2.2, we present an oracle inequality for Gaussian SVMs for

general loss functions under the assumptions introduced in the previous section.

Finally, Sections 2.3 and 2.4 contain our results on least-squares regression and

binary classification, respectively. The contents of this chapter were published in

[24].

2.1 Intrinsic Dimension Assumption

The main concept in this chapter to describe the intrinsic dimension of the data is

based on the upper box-counting dimension of the support of the data generating

distribution PX . To this end, recall that the support of a Borel measure µ, denoted

by suppµ, is defined as the complement of the largest open µ-zero set. Also, recall

the definition of covering numbers in Definition 1.3.8.

Assumption 2.1.1. There exist constants Cbox > 0 and ̺ > 0 such that for all

ε ∈ (0, 1) we have

Nℓd
∞

(suppPX , ε) ≤ Cboxε
−̺.

The infimum over all ̺, such that Assumption 2.1.1 is fulfilled for ̺ and some

finite constant Cbox coincides with the so-called upper box-counting dimension of

suppPX , which is defined as

lim sup
ε→0

logNℓd
∞

(suppPX , ε)

log 1
ε

, (2.1)

cf. [18, Section 3.1]. Analogously, the lower box-counting dimension is defined

by substituting lim sup with lim inf in (2.1) and in case those values coincide, this
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2 Learning Rates for SVMs

common limit is the box-counting dimension of suppPX . Also note, that we can

consider in Assumption 2.1.1 the covering numbers with respect to the ℓdp-norm for

any p ∈ [1,∞), as a change of the norm will only influence the constant Cbox, but

not ̺. The following examples give some intuition on Assumption 2.1.1 and, in

ascending order, demonstrate the generality of this assumption.

Example 2.1.2. Let X = [−1, 1]d. By a simple argument we see, that for ε = 1/m,

where m ∈ N, we have Nℓd
∞

(X, ε) = ε−d. Moreover, by [9, Proposition 1.3.1] there

exist constants c, C > 0, such that

cε−d ≤ Nℓd
∞

(X, ε) ≤ Cε−d

for all ε ∈ (0, 1). That is, Assumption 2.1.1 is fulfilled exactly for ̺ = d. More gen-

erally we have for any bounded X ⊂ R
d with non-empty interior that Assumption

2.1.1 is fulfilled exactly for ̺ = d.

Example 2.1.3. Let X ⊂ R
d be a bounded d′-dimensional differentiable manifold.

Then 2.1.1 is fulfilled for ̺ = d′. This follows from Example 2.1.2 and the fact, that

the box-counting dimension is invariant under bi-Lipschitzian maps, cf. [18, Section

3.2]. Our assumption 2.1.1 therefore includes the manifold assumption commonly

used in the literature.

Example 2.1.4. The attractor of a dynamical system is, loosely speaking, a set in

the phase space of the dynamical system to which it tends to converge to, based on

the initial conditions [42]. It is not unusual for such attractors of dynamical systems

describing physical systems to exhibit a fractal structure, whose complexity is,

amongst others, measured by their box-counting dimension [19]. A famous example

is given by the Lorenz attractor associated to the dynamical system

x′ =− σx+ σy

y′ =− xy + rx− y
z′ =xy − bz

for real parameters σ, r, b, and was originally used to describe atmospherical con-

vection, see [50] as well as for other examples. The Lorenz attractor is estimated to

have a box-counting dimension of approximately 1.98 for certain values of σ, r, b, see

[39]. This shows, that our assumptions allowing for non-integer dimensions is not
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2.2 A General Oracle Inequality

only a mathematical quirk, but is also relevant for real-world datasets. Suppose,

for example, the feature vectors xi of the dataset D are generated by observing the

state of such a dynamical systems at independent, random time steps. To give a

concrete example, following the discussion above, it is reasonable to assume that a

dataset containing meteorological data has some low-dimensional intrinsic fractal

structure, as in [12] where the authors propose an approach for estimating air pol-

lution based on meteorological and pollution data from distant sensor stations. For

further examples of fractal structures in mathematical models in physics, chemistry,

and finance we refer to [18, Chapter 18].

2.2 A General Oracle Inequality

The following proposition relates Assumption 2.1.1 to the averaged entropy numbers

(1.9) and is the central result for bounding the statistical error of Gaussian SVMs

under Assumption 2.1.1.

Proposition 2.2.1. Let P satisfy Assumption 2.1.1. Then there exists a constant

Kd only depending on d, such that the bound

ED∼P
n
X
ei(id : Hγ(X)→ L2(D)) ≤ (CboxKd)

1
2pp−

d+1
2p γ−

̺

2p i−
1
2p

holds for all i ∈ N, p ∈ (0, 1) and γ ∈ (0, 1).

Proof. Consider the decomposition of id : Hγ(X) → L2(D) for a sample D ∈
(suppPX)

n described by the commutative diagram

Hγ(X) L2(D)

Hγ(suppPX) ℓ∞(suppPX)

id

res

id

id

where res : Hγ(X)→ Hγ(suppPX) is the restriction operator. We have

‖res : Hγ(X)→ Hγ(supp,PX)‖ ≤ 1
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2 Learning Rates for SVMs

by Corollary 1.3.12 and trivially also ‖id : ℓ∞(suppPX) → L2(D)‖ ≤ 1. Theorem

1.3.16 then implies

ei(id : Hγ(X)→ L2(D)) ≤ K
1
2p

d p−
d+1
2p Nℓd

∞

(suppPX , γ)
1
2p i−

1
2p

for all i ∈ N, γ > 0 and p ∈ (0, 1) for Pn
X-almost all D ∈ Xn. Now combine the

above bound with Assumption 2.1.1 and take the expectation w.r.t. D ∼ Pn
X .

The following theorem states an oracle inequality for Gaussian SVMs using gen-

eral loss functions under Assumption 2.1.1 which is the basis for our results in

Sections 2.3 and 2.4.

Theorem 2.2.2. Assume L is a locally Lipschitz continuous loss that can be clipped

at M > 0 and that the supremum and variance bounds are satisfied for constants

B > 0, ϑ ∈ [0, 1], and V ≥ B2−ϑ. Furthermore, assume PX satisfies Assumption

2.1.1 for Cbox > 0 and ̺ > 0 and fix an f0 ∈ Hγ(X) and a B0 ≥ B with ‖L◦f0‖∞ ≤
B0. Then there exists a constant K such that for all n ∈ N, γ ∈ (0, 1), λ > 0, p ∈
(0, 1/2] and τ > 0 we have

RL,P( ÛfD,λ,γ)−R∗
L,P ≤ 9(λ‖f0‖2Hγ(X) +RL,P(f0)−R∗

L,P)

+ CPK

(
p−d−1γ−̺

λpn

) 1
2−p−ϑ+ϑp

+ 3

Ç
72V τ

n

å 1
2−ϑ

+
15B0τ

n

(2.2)

with probability Pn not less than 1− 3e−τ , where K is independent of P and

CP = max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´
·max

¶
Cbox, B

2p
© 1

2−p−ϑ+ϑp .

Proof. By Theorem 1.3.17 in combination with the entropy estimate from Propo-

sition 2.2.1 we have

RL,P( ÛfD,λ,γ)−R∗
L,P ≤ 9(λ‖f0‖2Hγ(X) +RL,P(f0)−R∗

L,P)

+K

Ç
a2p

λpn

å 1
2−p−ϑ+ϑp

+ 3

Ç
72V τ

n

å 1
2−ϑ

+
15B0τ

n

with probability not less than 1− 3e−τ , where

a = max
ß
(CboxKd)

1
2pp−

d+1
2p γ−

̺

2p , B
™
≤ p−

d+1
2p γ−

̺

2p max
{
(Cbox)

1
2p , B

}
K

1
2p

d
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2.3 Least-Squares Regression

with the constantKd from Proposition 2.2.1 andK is given by (see Equation (1.13))

K = K̃max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´

with a constant K̃ independent of p and ϑ. The proof is now completed by com-

bining all constants depending on p or ϑ into the constant CP.

2.3 Least-Squares Regression

In this section we derive learning rates for SVMs using the least-squares loss func-

tion L = LLS under suitable smoothness assumptions on f ∗
L,P. First of all, recall

that for the least-squares loss, the Bayes decision function is given by the condi-

tional mean function f ∗
L,P(x) = E(Y |X = x), see Example 1.1.1. We begin by

introducing some tools for our notion of smoothness.

For a function f : Rd → R and h ∈ R
d the difference operator ∆h is defined by

∆hf(x) := f(x+h)−f(x). The s-fold application of ∆h has the explicit expansion

∆s
hf(x) =

s∑

j=0

(
s

j

)
(−1)s−jf(x+ jh). (2.3)

Given a measure µ on X ⊂ R
d we further define the s-th modulus of smoothness

by

ωs,L2(µ)(f, t) := sup
‖h‖≤t

‖∆s
hf‖L2(µ). (2.4)

Finally, given an α > 0 we set s := ⌊α⌋+ 1 and define the semi-norm

|f |Bα2,∞(µ) := sup
t>0

t−αωs,L2(µ)(f, t). (2.5)

Remark 2.3.1. The so-called Besov spaces Bα
2,∞(Rd), commonly used in approxi-

mation theory, can be defined by means of real interpolation of Sobolev spaces, see

for example [3, Chapter 3] for an introduction to the real interpolation method.

More precisely for k0 ∈ N0 and k1 ∈ N0 with k0 6= k1 and θ ∈ (0, 1) such that

α = k0(1− θ) + k1θ

Bα
2,∞(Rd) :=

Ä
W k0,2(Rd),W k1,2(Rd)

ä
θ,∞

,
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2 Learning Rates for SVMs

cf. [61, Section 1.6.4]. Here, W k,p(Rd) denotes the Sobolev space of functions on R
d

that have p-integrable weak derivatives up to order k with p ∈ [1,∞] and k ∈ N0.

Interpolation theory allows one to fill the gaps of the discrete range of smoothness

of Sobolev spaces, just like the Hölder spaces fill the gaps between the spaces of

k-times differentiable functions. In this sense, one can think of Besov spaces as

Sobolev spaces with a continuous range of smoothness. For α > d/2 we can define

an equivalent norm on Bα
2,∞(Rd) by

‖ · ‖L2(Rd) + | · |Bα2,∞(Rd),

where | · |Bα2,∞(Rd) is defined with respect to the Lebesgue measure on R
d in (2.4)

and (2.5), cf. [61, Section 2.6.1], explaining our notation. Furthermore, we see that

|f |Bα2,∞(PX) <∞, whenever f ∈ Bα
2,∞(Rd) and PX has a bounded Lebesgue-density.

The next proposition gives a sufficient condition for f to have a finite Bα
2,∞(µ)-

norm also for singular measures µ, which PX necessarily is in our main focus where

Assumption 2.1.1 is satisfied for ̺ < d. To formulate it, we first introduce some

additional definitions and recall multi-index notation.

If f is k-times continuously differentiable we denote for a multi-index ν =

(ν1, . . . , νd) ∈ N
d
0 with |ν| := ν1 + . . . + νd = k the higher-order partial deriva-

tive by

∂νf(x) =
∂|ν|f

∂xν11 . . . ∂xνdd
(x).

Further, for a multi-index ν ∈ N
d
0 and an x ∈ R

d we write xν := xν11 · . . . · xνdd as

well as ν! := ν1! · . . . · νd!

Definition 2.3.2. For k ∈ N0 and β ∈ [0, 1] let Ck,β(Rd) be the set of k-times

continuously differentiable functions f : Rd → R with

|f |Ck,β(Rd) := max
|ν|=k

sup
x,y∈Rd

x 6=y

|∂νf(x)− ∂νf(y)|
‖x− y‖β <∞.

As in our setting the Bayes decision function f ∗
L,P is in general essentially only

defined on a set with empty interior, we briefly want to discuss the issue of imposing

differentiability properties on such a function. To this end, assume that for a

function f : S → R there exists a collection of functions fν : S → R, ν ∈ N
d
0, |ν| ≤ k,

26



2.3 Least-Squares Regression

where f0 = f such that

fν(x) =
∑

|ν+ι|≤k

fν+ι(y)

ι!
(x− y)ι +Rν(x, y) (2.6)

with |fν(x)| ≤ C and the residuals Rν satisfy

Rν(x, y) ≤ C‖x− y‖k+β−|ν| (2.7)

for some 0 < β ≤ 1 and all x, y ∈ S and |ν| ≤ k. The obvious motivation for

conditions (2.6) and (2.7) is that if f ∈ Ck,β(Rd) and S has non-empty interior,

then (2.6) and (2.7) are satisfied for the partial derivatives fν = ∂νf . By Whitney’s

extension theorem [54, Chapter VI, Theorem 4], for a closed set S with empty inte-

rior any function f : S → R satisfying (2.6) and (2.7) has an extension to a function

f0 ∈ Ck,β(Rd). As a consequence, we can consider f ∗
L,P as a globally extended func-

tion without imposing any further restrictions. Moreover, this extension can always

be chosen compactly supported. In the subsequent results, besides f ∗
L,P ∈ Ck,β(Rd),

for some technical reasons we will also require that f ∗
L,P ∈ L2(R

d)∩L∞(Rd), which

therefore also poses no further constraint.

Proposition 2.3.3. Let µ be a finite measure on R
d and for some k ∈ N0 and

β ∈ [0, 1) let f ∈ Ck,β(Rd) and set α := k + β. Then we have |f |Bα2,∞(µ) ≤
dk/2
»
µ(Rd)|f |Ck,β(Rd).

The proof of Proposition 2.3.3 requires an auxiliary lemma on a mean value

theorem for higher order differences.

Lemma 2.3.4. Let f : (a, b) → R be s-times continuously differentiable. Further-

more, fix x ∈ (a, b), h > 0, and k ∈ {1, . . . , s} with (x, x+ sh) ⊂ (a, b). Then there

exists a ξ ∈ (x, x + kh) such that h−s∆s
hf(x) = hk−s∆s−k

h f (k)(ξ), where ∆s
h is the

difference operator defined by (2.3).

Proof. Because of ∆s
h = ∆h∆

s−1
h we can apply the mean value theorem to the

function h−1∆s−1
h f , which gives us h−s∆s

hf(x) = h1−s∆s−1
h f ′(ξ) for some ξ ∈ (x, x+

h). Note that in the last step we used d
dx
∆hf(x) = ∆hf

′(x). That is, we have proven

the assertion for k = 1. Now we can iterate this argument by applying the mean

value theorem to h−1∆s−2
h f ′ and so on.

Proof of Proposition 2.3.3. Fix an x ∈ X and an h ∈ R
d\{0} and define the uni-

variate function F (t) := f(x + th). For s := ⌊α⌋ + 1 we then have ∆s
hf(x) =
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2 Learning Rates for SVMs

∆s
1F (0) = ∆1F

(k)(ξ) by Lemma 2.3.4 for some ξ ∈ (0, k). The k-th derivative of F

is given by

dk

dtk
F (t) =

∑

|ν|=k

k!

ν!
hν ∂νf(x+ th).

This leads us to the estimate

|∆1F
(k)(ξ)| = |F (k)(ξ + 1)− F (k)(ξ)|

=

∣∣∣∣∣∣
∑

|ν|=k

k!

ν!
hν
Ä
∂νf(x+ (ξ + 1)h)− ∂νf(x+ ξh)

ä
∣∣∣∣∣∣

≤ |f |Ck,β(Rd)‖h‖β
∣∣∣∣∣∣
∑

|ν|=s−1

(s− 1)!

ν!

d∏

j=1

|hj|νj
∣∣∣∣∣∣

= |f |Ck,β(Rd)‖h‖β‖h‖kℓd1
≤ d

k
2 |f |Ck,β(Rd)‖h‖α

using the Definition 2.3.2 of the Hölder semi-norm in the first inequality, the multi-

nomial theorem in the next step, and β+k = α in the last step, which immediately

implies the result.

For an application of Theorem 2.2.2 we need a suitable function f0 ∈ Hγ(X)

bounding the approximation error. To this end, we first collect some facts on

Gaussian RKHSs, which are a summary of [55, Theorem 4.21, Lemma 4.45, and

Proposition 4.46]. By introducing the function Kγ : R
d → R defined by

Kγ(x) :=

Ç
2

γ
√
π

å d
2

exp(−2γ−2‖x‖2), x ∈ R
d,

the Gaussian RKHS Hγ(X) can be characterized as the image of the convolution

operator L2(R
d) → Hγ(X) defined by g 7→ Kγ ∗ g. The Hγ(X)-norm can be

computed by ‖f‖Hγ(X) = inf{‖g‖L2(Rd) : f = Kγ ∗ g}. Furthermore, for 0 < γ1 <

γ2 <∞ the space Hγ2(X) is continuously embedded into Hγ1(X) with

‖id : Hγ2(X)→ Hγ1(X)‖ ≤
Ç
γ2
γ1

å d
2

. (2.8)

We will further make use of integration in spherical coordinates, see for example
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2.3 Least-Squares Regression

[21, Theorem 2.49]. Namely, for f ∈ L1(R
d) or f ≥ 0 we have

∫

Rd
f(x) dx =

∫ ∞

0

∫

Sd−1
f(rω)rd−1 dσ(ω) dr, (2.9)

where S
d−1 = {x ∈ R

d : ‖x‖ = 1} and σ is the surface measure on S
d−1. For radial

functions f , that is f(x) = g(‖x‖), Equation (2.9) simplifies to

∫

Rd
f(x) dx =

2π
d
2

Γ
Ä
d
2

ä
∫ ∞

0
g(r)rd−1 dr, (2.10)

since σ(Sd−1) = 2πd/2/Γ(d/2), see e.g. [21, Proposition 2.54]. Using (2.10) one can

easily check, that

∫

Rd
(γ
√
π)−

d
2Kγ(x) dx =

∫

Rd
γ−d

Ç
2

π

å d
2

exp
Ä
−2γ−2‖x‖2

ä
dx = 1, (2.11)

which we will rely on later. Finally, we define

G :=
s∑

j=1

(
s

j

)
(−1)1−j(jγ√π)− d

2Kjγ, (2.12)

where s will be chosen suitably later. Finally, note that by Example 1.1.1 we have

RL,P(f)−R∗
L,P = ‖f − f ∗

L,P‖2L2(PX)

for all f ∈ L2(PX). The following lemma now bounds the approximation error of

a Gaussian SVM using the least-squares loss.

Lemma 2.3.5. For f ∈ L2(R
d) with |f |Bα2,∞(PX) <∞ we have

‖G ∗ f − f‖2L2(PX) ≤ |f |2Bα2,∞(PX)2
−α

Ñ
Γ
Ä
α+d
2

ä

Γ
Ä
d
2

ä

é2

γ2α.

A similar bound as in the lemma above can be found in [16, Theorem 2.2].

Compared to [16], we provide a simpler proof leading to improved constants. The

result in [16] is stated slightly more generally for the Lp(PX)-norm of G∗f −f and

a (suitably modified) Bα
q,∞(PX)-semi-norm, however, our proof can be generalized

easily to that case.
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2 Learning Rates for SVMs

Proof. We set s = ⌊α⌋+ 1 and compute

G ∗ f(x) =
∫

Rd

s∑

j=1

(
s

j

)
(−1)1−j(jγ)−d

Ç
2

π

å d
2

exp
Ä
−2(jγ)−2‖y‖2

ä
f(x+ y) dy

=
∫

Rd

s∑

j=1

(
s

j

)
(−1)1−jγ−d

Ç
2

π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
f(x+ jh) dh.

Using Equation (2.11) this implies

G ∗ f(x)− f(x) =G ∗ f(x)−
∫

Rd
γ−d

Ç
2

π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
f(x) dh

=
∫

Rd

s∑

j=1

(
s

j

)
(−1)1−jγ−d

Ç
2

π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
f(x+ jh) dh

−
∫

Rd
γ−d

Ç
2

π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
f(x) dh

=
∫

Rd
(−1)1−s

Ç
2

γ2π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
∆s
hf(x) dh.

With this identity we can bound our desired L2(PX)-norm by

‖G ∗ f − f‖2L2(PX)

=
∫

Rd

Ñ∫

Rd

Ç
2

γ2π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
∆s
hf(x) dh

é2

dPX(x)

≤
Ñ∫

Rd

(∫

Rd

Ç
2

γ2π

åd Ä
exp
Ä
−2γ−2‖h‖2

ä
∆s
hf(x)

ä2
dPX(x)

) 1
2

dh

é2

=

Ñ∫

Rd

Ç
2

γ2π

å d
2

exp
Ä
−2γ−2‖h‖2

ä
‖∆s

hf‖L2(PX) dh

é2

using Minkowski’s integral inequality. With our assumptions on f we can further

bound this by

‖G ∗ f − f‖2L2(PX) ≤
Ñ∫

Rd

Ç
2

γ2π

å d
2

exp
Ä
−γ−2‖h‖2

ä
ωs,L2(PX)(f, ‖h‖) dh

é2

≤ |f |2Bα2,∞(PX)

Ç
2

γ2π

åd Å∫

Rd
exp
Ä
−2γ−2‖h‖2

ä
‖h‖α dh

ã2
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2.3 Least-Squares Regression

which leaves us with computing the integral in the last step. This is done using

spherical coordinates, which gives us

∫

Rd
exp
Ä
−2γ−2‖h‖2

ä
‖h‖α dh =

2π
d
2

Γ
Ä
d
2

ä
∫ ∞

0
exp
Ä
−2γ−2r2

ä
rα+d−1 dr

=
2π

d
2

Γ
Ä
d
2

ä
∫ ∞

0

1

2

Ç
γ√
2

åα+d
e−u u

α+d
2

−1 du

=
π
d
2

Γ
Ä
d
2

ä
Ç
γ√
2

åα+d
Γ

Ç
α + d

2

å
.

Combining these considerations we get

‖G ∗ f − f‖2L2(PX) ≤ |f |2Bα2,∞(PX)2
−α

Ñ
Γ
Ä
α+d
2

ä

Γ
Ä
d
2

ä

é2

γ2α.

The following lemma bounds the regularization term.

Lemma 2.3.6. For f ∈ L2(R
d) we have ‖G ∗ f‖Hγ(X) ≤ (γ

√
π)−

d
2 2s‖f‖L2(Rd).

Proof. Because of the embedding property (2.8) we have

‖G ∗ f‖Hγ(X) ≤
s∑

j=1

(
s

j

)
(jγ
√
π)−

d
2‖Kjγ ∗ f‖Hγ(X)

≤
s∑

j=1

(
s

j

)
(γ
√
π)−

d
2‖Kjγ ∗ f‖Hjγ(X)

≤ (γ
√
π)−

d
2‖f‖L2(Rd)

s∑

j=1

(
s

j

)

≤ (γ
√
π)−

d
2 2s‖f‖L2(Rd).

With all these preparations completed we can now state our first main result of

this section, which is the basis for the subsequent results.

Theorem 2.3.7. Assume P satisfies Assumption 2.1.1 with parameters Cbox, ̺ and

that Y ⊂ [−M,M ]. Further assume that f ∗
L,P ∈ L2(R

d) ∩ L∞(Rd) as well as
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2 Learning Rates for SVMs

|f ∗
L,P|Bα2,∞(PX) <∞. Then for all τ > 0, n > 1, λ ∈ (0, 1) and γ ∈ (0, 1) we have

RL,P( ÛfD,λ,γ)−R∗
L,P ≤c1‖f ∗

L,P‖2L2(Rd)
λγ−d + c2|f ∗

L,P|2Bα2,∞(PX)γ
2α

+ c3Kλ
−1/ lognγ−̺n−1 logd+1 n+ c4

τ

n

(2.13)

with probability Pn not less than 1− 3e−τ , where c1 = 9π−d/24s,

c2 = 9

Ñ
Γ
Ä
α+d
2

ä

Γ
Ä
d
2

ä

é2

2−α, c3 = max
¶
16M2, 1

©
max

¶
Cbox, 4M

2
©
,

c4 = 3456M2 + 15max{(2s‖f ∗
L,P‖L∞(Rd) +M)2, 4M2}

with s = ⌊α⌋+ 1 and K is a constant independent of P, n, λ and γ.

Proof. For Y = [−M,M ] the least-squares loss satisfies the supremum/variance

bound for the constants B = 4M2, V = 16M2 and ϑ = 1 by Example 1.3.2.

Theorem 2.2.2 therefore gives us for λ > 0, γ ∈ (0, 1), and p ∈ (0, 1/2]

RL,P( ÛfD,λ,γ)−R∗
L,P ≤ 9(λ‖f0‖2Hγ(X) +RL,P(f0)−R∗

L,P)

+ CPKp
−d−1γ−̺λ−pn−1 +

(3456M2 + 15B0)τ

n

with probability Pn not less than 1− 3e−τ . To bound the approximation error we

set f0 := G ∗ f ∗
L,P, where G is defined by (2.12) for s = ⌊α⌋+1. First we determine

B0, i.e. a bound on sup(x,y)∈X×Y |y− f0(x)|2. By Young’s convolution inequality we

have

‖f0‖L∞(Rd) = ‖G ∗ f ∗
L,P‖L∞(Rd) ≤ ‖f ∗

L,P‖L∞(Rd) · ‖G‖L1(Rd)

and by using Equation (2.11) we get

‖G‖L1(Rd) ≤
s∑

j=1

(
s

j

)
(jγ
√
π)−

d
2‖Kjγ‖L1(Rd) =

s∑

j=1

(
s

j

)
≤ 2s.

Consequently, we get

sup
(x,y)∈X×Y

|f0(x)− y|2 ≤
Ä
2s‖f ∗

L,P‖L∞(Rd) +M
ä2
,
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2.3 Least-Squares Regression

i.e. we can set

B0 := max
{Ä
2s‖f ∗

L,P‖L∞(Rd) +M
ä2
, 4M2

}
.

Using Lemma 2.3.5 and Lemma 2.3.6 with s = ⌊α⌋+ 1 we can bound the regular-

ization term and the approximation error as stated in the theorem. To determine

a bound on CP first note that |LLS|M,1 ≤ 4M by Example 1.3.6. Some calculations

then show CP ≤ max{16M2, 1}max{Cbox, 4M
2}. Finally, the desired inequality

follows by setting

p =
log 2

2 log n
≤ 1/2.

Using the theorem above we can easily derive learning rates by choosing specific

values for the regularization parameter λ and the bandwidth γ.

Corollary 2.3.8. Let the assumptions of Theorem 2.3.7 be satisfied with the bounds

‖f ∗
L,P‖L2(Rd) ≤ C1, ‖f ∗

L,P‖L∞(Rd) ≤ C2 and |f ∗
L,P|Bα2,∞(PX) ≤ C3. Choosing γn =

n−1/(2α+̺) and λn = n−b for some b ≥ (2α+d)/(2α+̺) there then exists a constant

C > 0 only depending on Cbox, C1, C2, C3, and M such that for all n > 1 and τ ≥ 1

we have

RL,P( ÛfD,λn,γn)−R∗
L,P ≤ Cτ n− 2α

2α+̺ logd+1 n

with probability Pn not less than 1− e−τ .

Proof. Theorem 2.3.7 gives us

RL,P( ÛfD,λ,γ)−R∗
L,P ≤ C

Å
λγ−d + γ2α + λ−1/ lognγ−̺n−1 logd+1 n+

τ

n

ã

with probability Pn not less than 1 − 3e−τ for all n ∈ N and a constant C only

depending on Cbox, C1,2,3 and M . With the choices of λn and γn as stated in the

corollary we get

RL,P( ÛfD,λ,γ)−R∗
L,P ≤ C

Å
n−bn

d
2α+̺ + n− 2α

2α+̺ + ebn− 2α
2α+̺ logd+1 n+

τ

n

ã

≤ C
Å
2n− 2α

2α+̺ + ebn− 2α
2α+̺ logd+1 n+

τ

n

ã

with probability Pn not less than 1− 3e−τ for all n ∈ N. A substitution of τ then

easily proves the assertion.
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Remark 2.3.9. It is also possible to formulate Theorem 2.3.7 and Corollary 2.3.8

under alternative regularity assumptions. To briefly elaborate this, recall that in

[66] the authors consider the case where X is a compact, connected and smooth

submanifold of R
d without boundary and consider a convolution-type operator

Sγ : L2(µ) → Hγ(X), where µ is the measure on X defined by the Riemannian

volume form and derive the bounds

‖Sγf‖2Hγ(X) ≤ C1‖f‖2L2(µ)
γ−d (2.14)

‖Sγf − f‖2L2(µ)
≤ C2‖f‖2W 2,2(X)γ

4 (2.15)

‖Sγf‖ℓ∞(X) ≤ C3‖f‖ℓ∞(X) (2.16)

[66, Lemma 4, Theorem 2, and Lemma 2], where W 2,2(X) denotes the Sobolev

space on X. Using these results one can easily derive a modification of Theorem

2.3.7 and Corollary 2.3.8 under the assumption that f ∗
L,P ∈ W 2,2(X) is bounded and

PX has a bounded density with respect to µ and prove learning rates of the form

n− 4
4+̺ logd+1 n. This is done by simply using (2.15) instead of Lemma 2.3.5, (2.14)

instead of Lemma 2.3.6 and the supremum bound (2.16) instead of an analogous

bound we derive in the proof of Theorem 2.3.7. Unfortunately, the authors also

point out, that the order of approximation cannot be improved if we assume f ∈
Wm,2(X) for some m > 2 using the operator Sγ.

The learning rates in Corollary 2.3.8 can only be achieved, if we know the intrinsic

dimension ̺ of the data, as well as the regularity α of the Bayes decision function.

However, this is highly unrealistic in practice. The following theorem therefore

shows, that a TV-SVM with appropriately chosen candidate sets Λn and Γn achieves

the same rate without knowledge on ̺ and α.

Theorem 2.3.10. Let An be a minimal 1/ log n-net of (0, 1] with 1 ∈ An and let

Bn be a minimal 1/ log n-net of [1, d] with d ∈ Bn. Set Γn := {n−a : a ∈ An}
and Λn := {n−b : b ∈ Bn}. Let the assumptions of Theorem 2.3.7 be satisfied with

‖f ∗
L,P‖L2(Rd) ≤ C1, ‖f ∗

L,P‖L∞(Rd) ≤ C2 and |f ∗
L,P|Bα2,∞(PX) ≤ C3 and assume ̺ ≥ 1.

Then there exists a constant C > 0 only depending on Cbox, C1, C2, C3, and M such

that for all n > 1 and τ ≥ 1 the TV-SVM using Λn and Γn satisfies

RL,P( ÛfD1,λD2
,γD2

)−R∗
L,P ≤ Cτ n− 2α

2α+̺ logd+1 n

with probability Pn not less than 1− e−τ .
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2.3 Least-Squares Regression

Proof. We define γn := n−1/(2α+̺) and λn := n−(2α+d)/(2α+̺). By [55, Theorem

7.2], which states an oracle inequality for empirical risk minimization over finite

hypothesis sets, we have

RL,P( ÛfD1,λD2
,γD2

)−R∗
L,P ≤ 6 min

(λ,γ)∈Λn×Γn

(
RL,P( ÛfD1,λ,γ)−R∗

L,P

)

+
512M2(τ + log(1 + |Λn × Γn|))

n−m
≤ 6

(
RL,P( ÛfD1,λ0,γ0)−R∗

L,P

)

+
2048M2(τ + log(1 + |Λn × Γn|))

n

with probability Pn−m not less than 1− e−τ , where m = ⌊n/2⌋+ 1 and in the last

step we picked γ0 := n−a ∈ Γn and λ0 := n−b ∈ Λn for values a and b, which we

will specify in a moment. An application of Theorem 2.3.7 combined with n ≤ 2m

gives us

RL,P( ÛfD1,λ0,γ0)−R∗
L,P ≤ C

Å
λ0γ

−d
0 + γ2α0 + bd+1γ−̺0 m−1 logd+1 n+

τ

m

ã

≤ C

Ç
λ0γ

−d
0 + γ2α0 + 2bd+1γ−̺0 n−1 logd+1 n+

2τ

n

å

with probability Pm not less than 1 − 3e−τ . Now let λ0 = n−d and let a ∈ An

satisfy 1/(2α + ̺) ≤ a ≤ 1/(2α + ̺) + 1/ log n, which implies

RL,P( ÛfD1,λ0,γ0)−R∗
L,P ≤C

Ç
edλnγ

−d
n + γ2αn + 2dd+1e̺γ−̺n n−1 logd+1 n+

2τ

n

å

=C

Ç
edn− 2α

2α+̺ + n− 2α
2α+̺ + 2dd+1e̺n− 2α

2α+̺ logd+1 n+
2τ

n

å

with probability Pm not less than 1−3e−τ . Combining these inequalities and using

that |Λn × Γn| ∈ O(log2 n) we get

RL,P( ÛfD1,λD2
,γD2

)−R∗
L,P ≤ c1

Å
n− 2α

2α+̺ logd+1 n+
τ

n

ã
+ c2

Ç
τ

n
+

log n

n

å

with probability Pn not less than (1− e−τ )(1− 3e−τ ) ≥ 1− 4e−τ for all n > 2.

Remark 2.3.11. The proof of Theorem 2.3.10 shows that the statement also holds

if we pick as candidate set for λ the singleton Λn = {n−d}. We decided to formulate

the theorem as it is, because this choice is closer to the practical usage of the training
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2 Learning Rates for SVMs

validation approach. To see why a singleton Λn is sufficient recall that to achieve

optimal rates the regularization parameter λn only needs to satisfy λn = n−b for

some b ≥ (2α + d)/(2α + ̺). If we assume ̺ ≥ 1 this bound on b is satisfied for

b = d. This also shows that with no lower bound on ̺ the regularization parameter

λn possibly needs to decay arbitrarily fast as (2α + d)/(2α + ̺) is unbounded for

α, ̺ > 0. On the one hand this shows why we need the additional constraint ̺ ≥ 1

in Theorem 2.3.10, on the other hand we want to mention that the case ̺ < 1 is of

little practical interest anyway. Nevertheless, the statement of Theorem 2.3.10 still

holds with the rate n−2α/(2α+1) logd+1 n in the case ̺ < 1.

2.4 Binary Classification

In Section 1.3 we already introduced Assumption 1.3.3, a regularity assumption

for binary classification for bounding the statistical error by providing a variance

bound. In order to prove the results of this section, we also need to introduce a

second regularity assumption for bounding the approximation error for Gaussian

SVMs using the hinge loss. To this end, first note that in binary classification it is

intuitively hard to make a correct prediction for the label of x ∈ X whenever η(x) ≈
1/2, where η : X → [0, 1] is the conditional class probability function, see Example

1.1.2. Consequently, Assumption 1.3.3 captures this intuition by restricting the

mass of points x ∈ X where η(x) is close to 1/2. Additionally, classifying x ∈ X
may also be hard if x is close to the decision boundary, which is incorporated by

our second regularity assumption. Therefore, we need the following definition:

Definition 2.4.1. Let X−1 := {x ∈ X : η(x) < 1/2} and X1 := {x ∈ X : η(x) >

1/2} and define

∆(x) :=





dist(x,X1) if x ∈ X−1,

dist(x,X−1) if x ∈ X1,

0 else,

where dist(x,A) := infy∈A ‖x− y‖.

Our second central regularity assumption, which restricts the mass and location

of points x ∈ X with η(x) ≈ 1/2, then reads as follows:
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2.4 Binary Classification

Assumption 2.4.2. There exist constants C∗∗ > 0 and β > 0 such that

∫

{x∈X:∆(x)<t}
|2η(x)− 1| dPX(x) ≤ C∗∗t

β

for all t ≥ 0.

The condition in Assumption 2.4.2 was introduced (in a slightly different version)

in [57] to prove fast classification rates for Gaussian SVMs. The authors used the

term geometric noise condition to describe this assumption. Assumption 2.4.2 was

further adopted in [6] for the analysis of a histogram based classifier. Also, in [62]

the authors point out that their probabilistic Lipschitzness condition in Definition 1

is closely related to Assumption 2.4.2. Intuitively, Assumption 2.4.2 is satisfied for

a large exponent β if PX has only a low concentration in the vicinity of the decision

boundary, or if P is particularly noisy in this region. For example, in the extreme

case, in which X−1 and X1 have positive distance, we may choose arbitrarily large

β. To give a better intuition on Assumptions 1.3.3 and 2.4.2, as well as on their

interplay, we provide some explicit examples below.

Example 2.4.3. In the following let X = [−1, 1]2.

(i) Assume PX restricted to A := [−1/2, 1/2]× [−1, 1] is proportional to a mea-

sure with Lebesgue-density |x1|σdλ(x1, x2) for some σ > 0 and on X\A is

proportional to the uniform distribution. Further assume η is the sawtooth

function

η(x1, x2) =





2(1− x1) for x1 ∈ (1/2, 1],

2x1 for x1 ∈ [−1/2, 1/2],
2(−1− x1) for x1 ∈ [−1,−1/2).

Then by the behavior of PX and η near x1 = ±1 the optimal exponent in

Assumption 1.3.3 is given by q = 1. By the low concentration of PX near the

decision boundary Assumption 2.4.2 is fulfilled for the exponent β = σ + 2.

(ii) Assume that PX is uniform on {x ∈ [−1, 1]2 : |x2| ≤ |x1|ζ} for some ζ > 0

and that 2η(x)− 1 = x1, i.e. the classes X1, X−1 only meet at the point (0, 0)

and not along a one-dimensional curve. Then Assumption 1.3.3 is fulfilled for

q = ζ + 1 and Assumption 2.4.2 for β = ζ + 2.
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The first example shows that Assumption 1.3.3 describes the global amount of mass

close to the critical level η = 1/2, while Assumption 2.4.2 can additionally ben-

efit from low concentration of PX in the vicinity of the decision boundary. The

second example shows that Assumption 2.4.2 can also benefit from geometrical

assumptions on the decision boundary, respectively the decision classes, and es-

pecially that the exponents in Assumption 1.3.3 and 2.4.2 can be simultaneously

large. Also note that the exponent from Assumption 1.3.3 can be deteriorated by

the behavior of PX or η far away from the decision boundary, as seen in the first

example, while Assumption 2.4.2 is robust to such perturbations. Further note that

also a combination of the effects demonstrated by the examples above is possible.

Another common regularity condition in binary classification is to impose smooth-

ness assumption on η. This type of regularity assumption is particularly popular

for the analysis of plug-in classifiers, which implicitly treat the binary classification

problem as a regression problem by first computing an estimate η̂ of the conditional

class probability function η and then predicting labels using the function sgn(2η̂−1).
The next proposition, which is the content of [55, Lemma 8.23], helps us to compare

our results to results in the literature that use a smoothness assumption on η in

some cases.

Proposition 2.4.4. Assume there exist constants c, α > 0 such that |2η(x) − 1| ≤
c∆α(x) for PX-almost all x ∈ X and that Assumption 1.3.3 is satisfied for constants

C∗ and q. Then Assumption 2.4.2 is satisfied for β = α(q + 1) and some constant

C∗∗ only depending on c and C∗.

For α ≤ 1 the assumption in the proposition above can be seen as a substantially

weaker form of α-Hölder regularity for η, since for some x0 ∈ {x : η(x) = 1/2}
attaining minimum distance to x ∈ X this condition can be rewritten as |η(x) −
η(x0)| ≤ c|x − x0|α/2. That is, the Hölder condition does not need to be satisfied

for arbitrary x, x0 ∈ X but only where one of the points considered is in {x : η(x) =

1/2}.

Theorem 2.4.5. Assume P satisfies Assumption 2.1.1 with parameters Cbox, ̺ as

well as Assumptions 1.3.3 and 2.4.2 with parameters C∗, q and C∗∗, β respectively.

Then for the SVM using the hinge loss L = Lhinge we have for all τ > 0, n > 1, λ ∈
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(0, 1) and n−1/̺ ≤ γ ≤ 1

RL,P( ÛfD,λ,γ)−R∗
L,P ≤c1λγ−d + c2C∗∗γ

β + c3Kλ
−1/ logn

Ç
γ−̺

n

å q+1
q+2

logd+1 n

+ 3C
q

q+2
∗

Ç
432τ

n

å q+1
q+2

+ 30
τ

n

(2.17)

with probability Pn not less than 1− 3e−τ , where c1 = 3d+2/Γ(d/2 + 1),

c2 = 9
21−β/2Γ

Ä
β+d
2

ä

Γ(d/2)
, c3 = max

¶
Cq/(q+1)

∗ , 4
©
max {Cbox, 2}

and K is a constant independent of P, n, λ and γ.

Proof. The distribution P satisfies the supremum bound for B = 2 and the variance

bound is satisfied for V = 6C
q/(q+1)
∗ and ϑ = q/(q + 1), see Example 1.3.4, where

C∗ is the constant from Assumption 1.3.3. Given this value for ϑ, the exponent in

Theorem 2.2.2 then reads

1

2− p− ϑ+ ϑp
=

1

2− p− q
q+1

(1− p) =
q + 1

(2− p)(q + 1)− q(1− p)

=
q + 1

2q + 2− pq − p− q + pq
=

q + 1

q + 2− p.

and Theorem 2.2.2 then gives us for λ > 0, γ ∈ (0, 1), and p ∈ (0, 1/2] that

RL,P( ÛfD,λ,γ)−R∗
L,P ≤ 9

Ä
λ‖f0‖2Hγ(X) +RL,P(f0)−R∗

L,P

ä

+ CPK

(
p−d−1λ−pγ−̺

n

) q+1
q+2−p

+ 3

Ñ
432C

q

q+1
∗ τ

n

é q+1
q+2

+
15B0τ

n

with probability not less than 1−3e−τ . In [55, Theorem 8.18] a function f0 ∈ Hγ(X)

with ‖f0‖∞ ≤ 1 and

λ‖f0‖2Hγ(X) +RL,P(f0)−R∗
L,P ≤ c1λγ

−d + c2C∗∗γ
β,

is constructed, where c1 = 3d/Γ(d/2 + 1), c2 = 21−β/2Γ((β + d)/2)/Γ(d/2) and

C∗∗ is the constant from Assumption 2.4.2. Further, we have |Lhinge|1,1 = 1 by

Example 1.3.7 and since ‖f‖∞ ≤ 1 we can choose B0 = 2. Simple calculations yield

CP ≤ max{4, Cq/(q+1)
∗ }max{2, Cbox}. Finally, choosing p = log 2/(2 log n) ≤ 1/2
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2 Learning Rates for SVMs

and some simple estimates prove the result.

Corollary 2.4.6. Let the assumptions of Theorem 2.3.7 be satisfied and set γn = n−a

and λn = n−b with

a =
q + 1

β(q + 2) + ̺(q + 1)
and b ≥ (d+ β)(q + 1)

β(q + 2) + ̺(q + 1)
.

Then there exists a constant C > 0 only depending on Cbox, C∗ and C∗∗ such that

for all n > 1 and τ ≥ 1 we have

RL,P( ÛfD,λn,γn)−R∗
L,P ≤ Cτ n−

β(q+1)
β(q+2)+̺(q+1) logd+1 n

with probability Pn not less than 1− e−τ .

If η satisfies the condition in Proposition 2.4.4 for some α > 0 the exponent in

the rate in the corollary above is given by α(q + 1)/(α(q + 2) + ̺). For α ≤ 1 we

see, using the short remark after Proposition 2.4.4, that by [2, Theorem 4.1] the

rate we get from the corollary above is optimal up to a logarithmic factor and that

we achieve this optimal rate for a substantially larger class of distributions than

the class, for which the exact optimal rate was established in [2]. As the proof of

Corollary 2.4.6 merely consists of plugging in the specified values, we will skip it at

this point.

Theorem 2.4.7. Let An be a minimal 1/ log n-net of (0, 1] with 1 ∈ An and let

Bn be a minimal 1/ log n-net of (0, d] with d ∈ Bn. Set Γn := {n−a : a ∈ An}
and Λn := {n−b : b ∈ Bn}. Let the assumptions of Theorem 2.4.5 be satisfied and

assume ̺ ≥ 1. Then there exists a constant C > 0 only depending on Cbox, C∗ and

C∗∗ such that the TV-SVM using Λn and Γn satisfies for all n > 1 and τ ≥ 1,

RL,P( ÛfD1,λD2
,γD2

)−R∗
L,P ≤ Cτ n−

β(q+1)
β(q+2)+̺(q+1) logd+1 n

with probability Pn not less than 1− e−τ .

Proof. Recall that our optimal choice for γn and λn was given by γn = n−a and

λn = n−b with

a =
q + 1

β(q + 2) + ̺(q + 1)
and b ≥ (d+ β)(q + 1)

β(q + 2) + ̺(q + 1)
.
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Now note that for ̺ ≥ 1 we have a ≤ 1 and the choice b = d is admissible. That

is, by construction Γn and Λn cover a possible choice of γn and λn, which achieve

optimal rates. The statement can now be proven exactly as in the proof of Theorem

2.3.10 by using Theorem 2.4.5.
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3 Learning Rates for Local SVMs

A major drawback of SVMs are their computational costs, which are quadratic

in space and at least quadratic in time, which makes this method infeasible for

large scale datasets. A popular approach to circumvent this issue is the so-called

localization technique, which consists of constructing a partition of the input space

into m disjoint cells and computing a local SVM decision function on each cell

using only the samples contained in that cell. Prediction for a new point x ∈ X is

then performed by only considering the local decision function of the cell in which

x is contained. So far, existing results on partitioning methods, such as [7, 41, 43],

consider an a-priori fixed partition of the input space satisfying some technical

assumptions, whereas we consider a fully data dependent partition based on the

farthest first traversal algorithm. In this chapter we show that localized Gaussian

SVMs using this partitioning scheme achieve the same learning rates as in Chapter

2 under a slightly stronger notion of fractal dimension and a mild assumption on

the distribution PX . Additionally, we will again show that an analogous training

validation scheme for hyperparameter selection achieves the same learning rates,

as long as the number of the cells in the partition does not grow too fast with

the sample size. A similar approach for speeding up kernel methods is random

chunking, see for example [67], where the dataset is randomly split into m subsets

that are used for computing m separate decision functions and are then averaged to

define the final decision function, which gives this method a higher computational

cost for inference compared to ours. Other popular approaches for speeding up

kernel methods are Nyström subsampling [63], where a low rank approximation

of the kernel matrix is used or random Fourier features [46] where for translation

invariant kernels a low dimensional, randomized approximation of the feature map

is computed by utilizing Bochner’s theorem [47, Theorem IX.9]. The results of this

chapter will be published in [25].
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3 Learning Rates for Local SVMs

3.1 Intrinsic Dimension Assumption

For the formulation of our assumptions of this chapter, we need to introduce yet

another covering quantity.

Definition 3.1.1. Given A ⊂ R
d, for m ∈ N the m-th inner entropy number is

defined as

εm(A) := inf{ε > 0 : there exists an ε-net N ⊂ A of A with |N | = m}.

Note that for some technical reasons that will become obvious later, in the def-

inition of εm(A) the ε-net is required to be contained inside of the set A. Our

notion of intrinsic dimension in this chapter is based on the Assouad dimension of

S := suppPX , which is defined as the infimum over all ̺ > 0 such that there exists

a finite constant CS such that

sup
x∈S
Nℓd2
Ä
Br(x) ∩ S, ε

ä
≤ CS

Åε
r

ã−̺
,

see [22, Section 2.1]. The definition of Assouad dimension generalizes straightfor-

ward to general metric spaces and is used to characterize metric spaces that can be

bi-Lipschitz embedded in a Euclidean space, see [36]. Again, the exponent ̺ in As-

sumption 3.1.2 is consistent with classical notions of dimensions, e.g. the dimension

of Euclidean spaces and manifolds, which is a consequence of the basic properties

of the Assouad dimension summarized in [22, Section 2.4]. Note that by choosing

r > 0 sufficiently large, Assumption 3.1.2 especially implies that N (S, ε) ∈ O(ε−̺)
as ε→ 0 and by some basic properties of covering and entropy numbers the latter

is equivalent to εm(S) ∈ O(m−1/̺) as m→∞. As we often have to switch between

bounds on entropy numbers and covering numbers, we also want to assume for

convenience that the the previously stated bound on the asymptotic of εm(S) is

satisfied for the same constant CS and that this bound on εm(S) is sharp.

Assumption 3.1.2. The set S is bounded and there exist constants CS ≥ 1 and

̺ > 0 such that

sup
x∈S
Nℓd2
Ä
Br(x) ∩ S, ε

ä
≤ CS

Åε
r

ã−̺
(3.1)

for all 0 < ε ≤ r as well as

C−1
S m− 1

̺ ≤ εm(S) ≤ CSm
− 1
̺ (3.2)

44



3.2 Localized Kernels and Construction of Partition

for all m ∈ N.

We further have to make an assumption on the small ball probabilities of µ :=

PX .

Assumption 3.1.3. There exist constants Cµ ≥ 1 and δ > 0 such that

inf
x∈S

µ(Br(x)) ≥ C−1
µ rδ

for all 0 < r ≤ diamS.

To give a quick example on typical values of the constant δ in Assumption 3.1.3,

assume that X = [−1, 1]d and that µ has a density with respect to the uniform

distribution on X bounded away from 0. Then Assumption 3.1.3 is satisfied for δ =

d. Note that for this example not only the density assumption on µ is crucial, but

also the geometry of the support of µ. For example, if µ is the uniform distribution

on a domain X with cusps, then in general Assumption 3.1.3 is not fulfilled, at

least not for δ = d. Assumptions similar to Assumptions 3.1.3 are common in

level set estimation, see for example [10] for a survey or [1, Remark 1] for an

explicit construction of probability measures on sets S ⊂ R
d, that are the image

of a compact set K ⊂ R
d′ , d′ ≤ d under a Lipschitz map satisfying Assumption

3.1.3 for δ = d′. More generally, connections between properties of metric spaces

described by their covering numbers (such as Assumption 3.1.2) and properties of

measures on that space (especially how they act on balls) is a well-studied field in

fractal geometry, see for example [28, Chapter 1]. Particularly interesting for us is

that, as a consequence of [28, Theorem 13.5], if Assumption 3.1.2 is satisfied for

some ̺, then for every δ > ̺ there exists a measure µ on S satisfying Assumption

3.1.3 for this respective δ. That is, also in the general case where Assumption 3.1.2

is fulfilled for some non-integer ̺, there exist distributions satisfying Assumption

3.1.3.

3.2 Localized Kernels and Construction of Partition

The approach of dividing the input space into disjoint cells and solving the initial

learning problem independently on each cell with the data points contained in

the respective cell is especially convenient for kernel methods from a mathematical

perspective, since this procedure can be described by simply using a modified kernel,
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3 Learning Rates for Local SVMs

which we will explain in the following. Although this construction easily generalizes

to arbitrary kernels, we will only state it for Gaussian kernels so we can immediately

incorporate the additional bandwidth parameter into our notation.

Given a partition A = (Aj)j=1,...,m of the input space X and λ = (λ1, . . . , λm),

γ = (γ1, . . . , γm) ∈ (0,∞)m let Hγ,λ(A) be the space of functions f : X → R such

that f |Aj ∈ Hγj(Aj) for all j = 1, . . . ,m equipped with the norm

‖f‖2Hγ,λ(A) :=
m∑

j=1

λj‖f |Aj‖2Hγj (Aj).

Then Hγ,λ(A) is a Hilbert space where the inner product is given by

〈f, g〉Hγ,λ(A) =
m∑

j=1

λj〈f |Aj , g|Aj〉Hγj (Aj), f, g ∈ Hγ,λ(A).

Moreover, Hγ,λ(A) is an RKHS. To see this, we define k : X ×X → R by

k(x, y) :=
m∑

j=1

λ−1
j 1Aj(x)kγj(x, y)1Aj(y).

and verify the reproducing property

〈f, k(x, ·)〉Hγ,λ(A) =
m∑

j=1

1Aj(x)〈f |Aj , kγj(x, ·)|Aj〉Hγj (Aj) = f(x).

For the RKHS Hγ,λ(A) and a convex loss function L : Y × R → [0,∞) we now

consider the regularized empirical risk minimizer

fD,λ,γ := argmin
f∈Hγ,λ(A)

‖f‖2Hγ,λ(A) +
1

n

n∑

i=1

L(yi, f(xi)), (3.3)

where D = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n is a dataset. We will call the resulting

learning method a localized support vector machine (LSVM) Note that compared

to the global objective (1.6), in (3.3) the regularization parameter λ is now a com-

ponent of the RKHS norm and can be chosen individually on each cell. If we define

Ij = {i : xi ∈ Aj} for j = 1, . . . ,m, we can rewrite the learning objective as

fD,λ,γ = argmin
f∈Hγ,λ(A)

m∑

j=1

Ñ

λj‖f |Aj‖2Hγj (Aj) +
1

n

∑

i∈Ij

L
Ä
yi, f |Aj(xi)

ä
é
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3.2 Localized Kernels and Construction of Partition

and we see that the learning objective is minimized for f ∈ Hγ,λ(A) if and only if

f |Aj = argmin
g∈Hγj (Aj)

nλj
nj
‖g‖2Hγj (Aj) +

1

nj

∑

i∈Ij

L(yi, g(xi)), (3.4)

where nj := |Ij| and we assume that nj ≥ 1 for all j = 1, . . . ,m, i.e. every cell

contains at least one data point. Since the minimizing function in (3.4) is unique,

we can conclude that fD,λ,γ |Aj = fDj ,λ′j ,γj , where Dj = ((xi, yi))i∈Ij , λ
′
j = nλj/nj

and

fDj ,λ′j ,γj = argmin
f∈Hγj (Aj)

λ′j‖f‖Hγj (Aj) +
1

nj

∑

i∈Ij

L(yi, f(xi))

is the regularized empirical risk minimizer using the standard Gaussian RKHS and

the dataset Dj.

Regarding the construction of the partition, we will consider a Voronoi par-

tition of the input space X, based on a set of center points C = {c1, . . . , cm},
where the center points are a subset of the feature vectors V = {x1, . . . , xn} of

our dataset ((x1, y1), . . . , (xn, yn)). To this end, recall that in a Voronoi partition

A = (Aj)j=1,...,n with respect to the centers C = {c1, . . . , cm} each cell Aj consists of

all the points x ∈ X that have cj as the closest center, where we break ties in favor

of a smaller index j of the center cj. We consider a set of centers C constructed by

the farthest first traversal (FFT) algorithm, see Algorithm 1. We will denote the

learning method (3.3) using the partition into m cells constructed in this manner

by ÛfD,λ,γ,FFT(m).

Algorithm 1 Farthest First Traversal

Require: V = {v1, . . . , vn} ⊂ R
d, k ≤ n

C ← {v1}
while |C| < k do

C ← C ∪ {c} for c ∈ V \C with maximum distance to C
end while

return C

The farthest first traversal algorithm has a time complexity of O(kn) and gives

an approximate solution to the metric k-center problem [27, Theorem 4.3]. Recall

that the task in the metric k-center problem is to find a set C ⊂ V with |C| = k,

which minimizes

max
v∈V

min
c∈C
‖v − c‖, (3.5)

that is, to find a set of k centers such that the maximum distance from any v ∈ V
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3 Learning Rates for Local SVMs

to its closest center is minimized. Solving the metric k-center exactly is NP-hard,

the solution computed by FFT is within a factor of 2 of the optimal value of (3.5).

Translated to the language of entropy numbers, FFT constructs a covering of the

finite set V , whose radii are bounded by 2εm(V ). A key step in the analysis of the

statistical error of the estimator (3.3), see Corollary 3.3.7, will be to show, that the

center points C, which are by construction a 2εm(V )-net of V , are also a covering of

the order of εm(V ) of the whole support S. More precisely, we will show that under

Assumption 3.1.3 εm(S) is with sufficiently high probability within a constant range

of εm(V ), when V is sampled from µn, see Corollary 3.3.5.

Furthermore, we will again consider a training validation procedure for adap-

tive hyperparameter selection, which we perform for LSVMs independently on

each cell. To this end, recall that we split our dataset into a training set D1 :=

((x1, y1), . . . , (xl, yl)) and a validation set D2 := ((xl+1, yl+1), . . . , (xn, yn)), where

l := ⌊n/2⌋+1 and pick finite sets of candidate values Λn,Γn for λj and γj. We then

compute the decision functions fD1,λ,γ for all λ ∈ Λmn ,γ ∈ Γmn using the training set

D1 and pick the hyperparameters λD2 ,γD2
which perform best on the validation

set D2, that is our final decision function ÛfD1,λD2
,γD2

is defined by

n∑

i=l+1

L
(
yi, ÛfD1,λD2

,γD2
(xi)

)
= min

(λ,γ)∈Λmn ×Γmn

n∑

i=l+1

L
(
yi, ÛfD1,λ,γ(xi)

)
. (3.6)

We call the resulting learning method a TV-LSVM. Note that, since the validation

step is executed independently on each cell, this amounts to a total number of

m|Λn × Γn| training runs that need to be performed, instead of |Λn × Γn|m. In

Sections 3.4 and 3.5 we will show that it is sufficient for the candidate sets Λn,Γn

to grow logarithmically in the sample size n in order to achieve optimal learning

rates. In contrast, [7, 41] consider a similar training validation procedure for kernel

partitioning methods, but they require the candidate sets to grow at least linearly

in n, which makes the validation step computationally infeasible.

Remark 3.2.1. In the results of Sections 3.3, 3.4, and 3.5 the reader will notice,

that the regularization parameters λ1, . . . , λm and the bandwidths γ1, . . . , γm are

chosen identically on each cell, i.e. λ1 = . . . = λm and γ1 = . . . = γm. The reason

for this is, that the asymptotically optimal choices for the parameters λ1, . . . , λm

and γ1, . . . , γm are determined by the global regularity properties of the data gener-

ating distribution P. We illustrate this in the case of least squares regression, where

regularity is measured by the smoothness of the Bayes decision function f ∗
L,P. As-
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3.3 A General Oracle Inequality

sume that f ∗
L,P ∈ Cα(X), but restricted to some subset X ′ ⊂ X the Bayes function

f ∗
L,P|X′ is α′-times differentiable with α′ ≫ α. Then for cells Aj contained in X ′,

this property of f ∗
L,P can be utilized by an individual adjustment of the hyperpa-

rameters on these cells, and in turn improve the overall generalization performance

of the estimator. However, the asymptotic behavior of the excess risk (on which we

focus in our theoretical results) can not be improved by this individual choice and is

bottlenecked by the global degree of smoothness of f ∗
L,P. Additionally, an identical

choice of λ1, . . . , λm and γ1, . . . , γm across all cells greatly simplifies the expressions

in our theoretical analysis. For an example of a set of regularity assumptions in

binary classification, where an individual choice of the hyperparameters on the cells

actually leads to an improved asymptotic behavior of the learning rate, we refer to

[7].

3.3 A General Oracle Inequality

The proof of our general oracle inequality in this section requires some preliminary

results. The following three lemmas collect some basic results of the (inner) entropy

numbers εm(A). Note that by definition of εm(A), where A ⊂ R
d is some non-empty

set, for every ǫ > εm(A) there exists an ǫ-net N ⊂ A of A. The content of the next

lemma is that for compact sets A this also holds for ǫ = εm(A).

Lemma 3.3.1. Let A ⊂ R
d be compact. Then for every m ∈ N there exists an

εm(A)-net N ⊂ A of A with |N | = m.

Proof. For n ∈ N let x1,n, . . . , xm,n ∈ A be an (εm(A)+1/n)-net of A. By compact-

ness of A, each sequence (xj,n)n∈N has an accumulation point xj ∈ A, j = 1, . . . ,m.

These accumulation points are an εm(A)-net, since for all x ∈ A we have

min
j=1,...,m

‖x− xj‖ ≤ min
j=1,...,m

‖x− xj,n‖+ ‖xj,n − xj‖

≤ min
j=1,...,m

εm(A) +
1

n
+ ‖xj,n − xj‖

= εm(A) +
1

n
+ min

j=1,...,m
‖xj,n − xj‖.

Taking the infimum over n ∈ N then yields the assertion.

Obviously, the outer entropy numbers are monotone with respect to inclusion of

subsets. The following lemma shows that for the inner entropy numbers we still
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have a slightly weaker form of this monotonicity.

Lemma 3.3.2. For A ⊂ B ⊂ R
d we have εm(A) ≤ 2εm(B) for all m ∈ N.

Proof. Let x1, . . . , xm ∈ B be an ε-net of B. For each j = 1, . . . ,m pick an yj ∈ A
with ‖xj − yj‖ ≤ ε, if such an yj exists and else let yj ∈ A be an arbitrary point.

Then, by the triangle inequality y1, . . . , ym is a 2ε-net of A.

Lemma 3.3.3. Let A ⊂ R
d be compact. Then we have εm(A) ≤ diamA for all

m ∈ N.

Proof. By monotonicity of εm(A) (with respect to m) it suffices to prove the state-

ment for m = 1. Let x ∈ A with A ⊂ Bε(x) for ε = ε1(A), cf. Lemma 3.3.1. Then

we have

ε = sup
y∈A
‖x− y‖ ≤ sup

y,z∈A
‖z − y‖ = diamA.

The following lemma will help us to show, that a covering of the data points

x1, . . . , xn is with high probability also a covering of the whole support S under

Assumption 3.1.3, which is the statement of the corollary thereafter.

Lemma 3.3.4. Let Assumption 3.1.3 be satisfied for the constants Cµ ≥ 1 and

δ > 0. Then we have

µn
Ç
x1, . . . , xn : sup

x∈S
min

i=1,...,n
‖xi − x‖ > τ

å
≤ m exp

Ä
− C−1

µ (τ − εm(S))δn
ä

for all εm(S) < τ ≤ εm(S) + diamS.

Proof. First note that mini=1,...,n ‖xi − x‖ > τ if and only if ‖xi − x‖ > τ for all

i = 1, . . . , n, which implies

µn
Å
x1, . . . , xn : min

i=1,...,n
‖xi − x‖ > τ

ã
=
Ä
1− µ(Bτ (x))

än
(3.7)

for all x ∈ S and τ > 0. With the help of Lemma 3.3.1 let N ⊂ S be an εm(S)-net

of S with |N | = m. Now, for every x ∈ S there exists an x′ ∈ N such that

min
i=1,...,n

‖xi − x‖ ≤ min
i=1,...,n

‖xi − x′‖+ ‖x′ − x‖ ≤ min
i=1,...,n

‖xi − x′‖+ εm(S),
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which combined with (3.7) implies

µn
Ç
sup
x∈S

min
i=1,...,n

‖xi − x‖ > τ

å
≤ µn

Å
max
x∈N

min
i=1,...,n

‖xi − x‖+ εm(S) > τ
ã

≤
∑

x∈N

Ä
1− µ(Bτ−εm(S)(x))

än

for τ − εm(S) > 0. Using Assumption 3.1.3 we can further bound this by

∑

x∈N

Ä
1− µ(Bτ−εm(S)(x))

än ≤ m
Ä
1− C−1

µ (τ − εm(S))δ
än

≤ m exp
Ä
− C−1

µ (τ − εm(S))δn
ä

for τ − εm(S) ≤ diamS, which proves the assertion.

Corollary 3.3.5. Let Assumption 3.1.3 be satisfied for the constants Cµ ≥ 1 and

δ > 0 and let A = (Aj)j=1,....m be an FFT partition for some m ≤ n with respect

to the centers c1, . . . , cm. Then we have Aj ∩ S ⊂ B6εm(S)(cj) for all j = 1, . . . ,m

simultaneously with probability µn not less than

1−m exp
Ä
− C−1

µ nεm(S)
δ
ä
.

Proof. For x ∈ S let c(x) ∈ C be its respective Voronoi center and let D =

{x1, . . . , xn}. Recall, that since the FFT algorithm produces a 2-approximation of

the metric k-center problem, we have ‖xi − c(xi)‖ ≤ 2εm(D) for all i = 1, . . . , n.

Consequently, we can estimate

‖x− c(x)‖ = min
i=1,...,n

‖x− c(xi)‖ ≤ min
i=1,...,n

‖x− xi‖+ ‖xi − c(xi)‖

≤ min
i=1,...,n

‖x− xi‖+ 2εm(D) ≤ min
i=1,...,n

‖x− xi‖+ 4εm(S),

where in the last step we used Lemma 3.3.2. Applying Lemma 3.3.4 with τ =

2εm(S) subsequently gives us

sup
x∈S
‖x− c(x)‖ ≤ 6εm(S)

with probability not less than

1−m exp
Ä
− C−1

µ nεm(S)
δ
ä
.
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Note that the prerequisite εm(S) < τ ≤ εm(S) + diamS of Lemma 3.3.4 is fulfilled

for τ = 2εm(S) because of Lemma 3.3.3.

The subsequent lemma is a tool for bounding the covering numbers of the com-

posite kernel Hγ,λ(A) based on the covering numbers of the individual Gaussian

RKHSs Hγj(Aj), for which we already developed the necessary bounds.

Lemma 3.3.6. Assume A = (Aj)j=1,...,m is a partition of X such that there exist

constants a1, . . . , am > 0 and q > 0 with

ei(id : Hγj(Aj)→ ℓ∞(Aj ∩ S)) ≤ aj i
− 1
q .

for all i ∈ N and j = 1, . . . ,m. Then we have

ei(id : Hγ,λ(A)→ ℓ∞(S)) ≤ (3 log 4)
1
q

Ñ
m∑

j=1

Ñ
aj»
λj

éqé 1
q

i−
1
q for all i ∈ N.

Proof. By Lemma 1.3.10 we have

logNℓ∞(Aj∩S)

(
BHγj (Aj)

, ε
)
≤ log(4)

Åaj
ε

ãq

for all ε > 0 and hence

logNℓ∞(Aj∩S)

Å
λ
− 1

2
j BHγj (Aj)

, ε
ã
≤ log(4)

Ñ
aj

ε
»
λj

éq

,

which yields

logNℓ∞(S)

Ä
BHγ,λ(A), ε

ä
≤

m∑

j=1

logNℓ∞(Aj∩S)

Å
λ
− 1

2
j BHγj (Aj)

, ε
ã

≤
m∑

j=1

log(4)

Ñ
aj

ε
»
λj

éq

where in the first estimate we used Lemma 1.3.14. Finally, we again turn this into

a bound on the dyadic entropy numbers using Lemma 1.3.10, which completes the

proof.

Corollary 3.3.7. Let Assumptions 3.1.2 and 3.1.3 be satisfied and let A be an FFT

partition of m cells constructed from points x1, . . . , xn sampled from µn. Then there
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exists a constant K > 0 such that

ei(id : Hγ,λ(A)→ ℓ∞(S)) ≤ (3 · 6̺ log(4)KC̺+1
S )

1
2pp−

d+1
2p λ−

1
2γ−

̺

2p i−
1
2p

with probability not less than 1 − exp(−C−1
µ C−δ

S nm−δ/̺) for all γ1 = . . . = γm =:

γ ≤ m−1/̺, λ1 = . . . = λm =: λ, and p ∈ (0, 1).

Proof. We will apply Lemma 3.3.6 for suitable constants aj. To this end, note that

by Theorem 1.3.16 we can choose

aj = K
1
2pp−

d+1
2p N (S ∩ Aj, γ)

1
2p . (3.8)

Further note that by Corollary 3.3.5 we have S ∩ Aj ⊂ S ∩ Br(cj) with proba-

bility not less than 1 − exp(−C−1
µ C−δ

S nm−δ/̺), where r := max{m−1/̺, 6εm(S)}.
Consequently, by Assumption 3.1.2 we have

aj ≤ K
1
2pp−

d+1
2p N (S ∩ Br(cj), γ)

1
2p ≤ K

1
2pp−

d+1
2p

Ç
CS

Åγ
r

ã−̺å 1
2p

≤
Ä
6̺C̺+1

S K
ä 1

2p p−
d+1
2p γ−

̺

2pm− 1
2p

for γ ≤ m−1/̺ ≤ r. Lemma 3.3.6 then finally gives us

ei(id : Hγ,λ(A)→ ℓ∞(S)) ≤ (3 · 6̺ log(4)KC̺+1
S )

1
2pp−

d+1
2p λ−

1
2γ−

̺

2p i−
1
2p

with probability not less than 1− exp(−C−1
µ C−δ

S nm−δ/̺) for γ ≤ m−1/̺.

With all the previous preparations we can now formulate and proof a general

oracle inequality for the estimator (3.3) using a FFT Voronoi partition.

Theorem 3.3.8. Assume L is a locally Lipschitz continuous loss that can be clipped

at M > 0 and that the supremum and variance bounds are satisfied for constants

B > 0, ϑ ∈ [0, 1], and V ≥ B2−ϑ. Furthermore, let P satisfy Assumptions 3.1.2 and

3.1.3 and fix an f0 ∈ Hγ,λ(A) and a B0 ≥ B with ‖L ◦ f0‖∞ ≤ B0, where Hγ,λ(A)
is constructed using an independent sample of size n and m < n cells. Then there

exists a constant K such that for all n ∈ N, γ1 = . . . = γm =: γ ∈ (0,m−1/̺), λ1 =
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. . . = λm =: λ > 0, p ∈ (0, 1/2] and τ > 0 we have

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P

≤ 9(‖f0‖2Hγ,λ(A) +RL,P(f0)−R∗
L,P)

+KCP,m

(
p−d−1γ−̺

λpn

) 1
2−p−ϑ+ϑp

+ 3

Ç
72V τ

n

å 1
2−ϑ

+
15B0τ

n

with probability not less than 1− 3e−τ −m exp(−C−1
µ C−δ

S nm−δ/̺), where

CP,m = max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´
·max

®
C

̺+1
2p

S , B2p

´ 1
2−p−ϑ+ϑp

.

Proof. By Corollary 3.3.7 we have

ED∼Pnei(id : Hγ,λ(A)→ L2(D)) ≤ (3 · 6̺ log(4)KC̺+1
S )

1
2pp−

d+1
2p λ−

1
2γ−

̺

2p i−
1
2p

with probability not less than 1− exp(−C−1
µ C−δ

S nm−δ/̺) for γ ≤ m−1/̺. By Theo-

rem 1.3.17 we then have

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P ≤ 9(‖f0‖2Hγ,λ(A) +RL,P(f0)−R∗

L,P)

+K

Ç
a2p

n

å 1
2−p−ϑ+ϑp

+ 3

Ç
72V τ

n

å 1
2−ϑ

+
15B0τ

n

with probability not less than

(1− 3e−τ )(1−m exp(−C−1
µ C−δ

S nm−δ/̺)) ≥ 1− e−τ −m exp(−C−1
µ C−δ

S nm−δ/̺),

where

a := p−
d+1
2p λ−

1
2γ−

̺

2p max{C̺+1
S , B}K

1
2p

d

and K satisfies

K ≤ K̃max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´

for a universal constant K̃ by the short remark after Theorem 1.3.17 for all p ∈
(0, 1/2].
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3.4 Least-Squares Regression

3.4 Least-Squares Regression

To simplify the presentation of the results of this sections compared to Section

2.3, we will formulate our assumptions for bounding the approximation error only

in terms of classical differentiability of the Bayes function f ∗
L,P instead of a Besov

semi-norm. To this end, recall Definition 2.3.2 of the Hölder spaces Ck,β(Rd).

The following theorem contains our first main result of this section, an oracle

inequality for LSVMs using the least-squares loss.

Theorem 3.4.1. Let P satisfy Assumption 3.1.2 for the constants CS and ̺ and

Assumption 3.1.3 for the constants Cµ and δ. Further assume that Y ⊂ [−M,M ]

as well as f ∗
L,P ∈ Ck,β(Rd) ∩ L2(R

d) ∩ L∞(Rd) for some k ∈ N0 and β ∈ [0, 1)

and set α := k + β. Consider the estimator ÛfD,λ,γ,FFT(m) using the least-squares

loss L = LLS for some m ≤ n and hyperparameters λ1 = . . . = λm =: λ and

γ1 = . . . = γm =: γ. Then for all τ > 0, n > 1, λ ∈ (0, 1), and γ ∈ (0,m−1/̺] we

have

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P ≤c1‖f ∗

L,P‖2L2(Rd)
mλγ−d + c2|f ∗

L,P|2Ck,β(Rd)γ2α

+ c3Kλ
−1/ lognγ−̺n−1 logd+1 n+ c4

τ

n

with probability not less than 1 − 3e−τ − m exp(−C−1
µ C−δ

S nm−δ/̺), where c1 =

9π−d/24k+1,

c2 = 9

Ñ
Γ
Ä
α+d
2

ä

Γ
Ä
d
2

ä

é2

2−αdk, c3 = max
¶
C̺+1
S , 4M2

©
max

¶
16M2, 1

©
,

c4 = 3456M2 + 15max
¶
(2k+1‖f ∗

L,P‖L∞(Rd) +M)2, 4M2
©
,

and K is a constant independent of P, λ, γ, n, and m.

Proof. The least-squares loss satisfies a supremum/variance bound for B = 4M2,

V = 16M2 and ϑ = 1 as well as |L|M,1 = 4M . Theorem 3.3.8 gives us

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P ≤ 9(‖f0‖2Hγ,λ(A) +RL,P(f0)−R∗

L,P)

+KCP,m
p−d−1γ−̺

λpn
+

(3456M2 + 15B0)τ

n
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with probability not less than 1− 3e−τ −m exp(−C−1
µ C−δ

S nm−δ/̺), where

CP,m ≤ max
¶
16M2, 1

©
max

¶
C̺+1
S , (4M2)2p

©
.

Since n ≥ 2 we have p = log 2/(2 log n) ≤ 1/2 and the second factor above can be

bounded by max
¶
C̺+1
S , 4M2

©
.Further we have

p−d−1λ−p ≤ (2/ log 2)d+1 logd+1 nλ−1/ logn

for λ ≤ 1. To complete the proof we need to pick a suitable function f0 ∈ Hγ,λ(A).
To this end, note that for γ = γj, λ = λj, j = 1, . . . ,m we have Hγ(X) ⊂ Hγ,λ(A)
and ‖f‖2Hγ,λ(A) ≤ mλ‖f‖2Hγ(X) for all f ∈ Hγ(X). By combining Lemma 2.3.5 and

Proposition 2.3.3 there exists an f0 ∈ Hγ(X) with

RL,P(f0)−R∗
L,P ≤

Ñ
Γ
Ä
α+d
2

ä

Γ
Ä
d
2

ä

é2

2−αdk|f0|2Ck,β(Rd)γ2α

and ‖f0‖2Hγ(X) ≤ π−d/24k+1‖f0‖L2(Rd)γ
−d Lemma 2.3.6 which completes the proof.

The following corollary shows that an LSVM using the least-squares loss and

an FFT partition achieves the same optimal rates of a global SVM as long as the

number of cells does not grow too fast with the sample size.

Corollary 3.4.2. Let the assumptions of Theorem 3.4.1 be satisfied with the number

of cells specified as m = ⌈nσ⌉ for some σ < 1. Assume that |f ∗
L,P|Ck,β(Rd) ≤ C1,

‖f ∗
L,P‖L2(Rd) ≤ C2, and ‖f ∗

L,P‖L∞(Rd) ≤ C3 for some finite constants C1, C2, C3 and

that the parameters from Theorem 3.4.1 satisfy

σ < min

®
̺

2α + ̺
,
̺

δ

´
.

Setting γ = n−a and λ = n−b with a = 1/(2α + ̺) and b ≥ σ + (2α + d)/(2α + ̺)

there exists a constant C > 0 only depending on C1, C2, C3, Cµ, CS and M such that

for all n > 1 and τ ≥ 1 we have

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P ≤ Cτ n− 2α

2α+̺ logd+1 n,

with probability not less than 1− e−τ − nσ exp(−C−1
µ C−δ

S n1−σδ/̺).
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3.4 Least-Squares Regression

Proof. We apply Theorem 3.4.1 with the specified values for λ and γ. Examining

the summands in the bound given in Theorem 3.4.1, ignoring constants for the

moment, we see that for m = ⌈nσ⌉ and γ = n−a, λ = n−b with a = 1/(2α + ̺), b ≥
σ + (2α + d)/(2α + ̺) we have

mλγ−d ≤ 2nσn−bnad ≤ 2n− 2α
2α+̺ ,

γ2α = n−2αa = n− 2α
2α+̺ ,

λ−1/ lognγ−̺n−1 logd+1 n = nb/ lognna̺n−1 logd+1 n = ebn− 2α
2α+̺ logd+1 n.

That is, every summand is of the order of n−2α/(2α+̺) logd+1 n. Note that the con-

straint γ ≤ m−1/̺ from Theorem 3.4.1 is fulfilled since σ < ̺/(2α + ̺).

Note that since 1 − σδ/̺ > 0 we have nσ exp(−C−1
µ C−δ

S n1−σδ/̺) → 0 in the

probability in Corollary 3.4.2. Also note that the learning rates in Corollary 3.4.2

coincide with the learning rates from Section 2.3. We again show that the same

rates can be achieved by an adaptive hyperparameter selection.

Theorem 3.4.3. Let the assumptions of Theorem 3.4.1 be satisfied with ̺ ≥ 1 and

the number of cells specified as m = ⌈nσ⌉ for some σ < 1. Let An be a minimal

1/ log n-net of (0, 1] with 1 ∈ An and let Bn be a minimal 1/ log n-net of [σ+1, σ+d]

with σ + d ∈ Bn and set Γn := {n−a : a ∈ An} and Λn := {n−b : b ∈ Bn}.
Assume that |f ∗

L,P|Ck,β(Rd) ≤ C1, ‖f ∗
L,P‖L2(Rd) ≤ C2, and ‖f ∗

L,P‖L∞(Rd) ≤ C3 for

some constants C1,2,3 and that the parameters from Theorem 3.4.1 satisfy

σ < min

®
̺

2α + ̺
,
̺

δ

´
.

Then there exists a constant C > 0 only depending on C1, C2, C3, Cµ, CS, and M

such that for all n > exp 2̺
̺−σ

and τ ≥ 1 we have

RL,P( ÛfD1,λD2
,γD2

,FFT(m))−R∗
L,P ≤ Cτ n− 2α

2α+̺ logd+1 n

with probability not less than 1− e−τ − nσ exp(−C−1
µ C−δ

S n1−σδ/̺) where the hyper-

parameters λD2 ,γD2
are selected by the training validation procedure (3.6).

Proof. By [55, Theorem 7.2], an oracle inequality for empirical risk minimization,
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we have

RL,P( ÛfD1,λD2
,γD2

,FFT(m))−R∗
L,P ≤ 6 min

(λ,γ)∈Λmn ×Γmn

(
RL,P( ÛfD1,λ,γ,FFT(m))−R∗

L,P

)

+
512M2(τ + log(1 + |Λmn × Γmn |))

n− l
≤ 6

(
RL,P( ÛfD1,λ

∗,γ∗)−R∗
L,P

)

+
2048M2(τ + log(1 + |Λmn × Γmn |))

n
(3.9)

with probability Pn−l not less than 1− e−τ , where in the last step we picked values

γ∗ ∈ Γmn and λ∗ ∈ Λmn which we will specify in a moment. We again only consider

λ1 = . . . = λm =: λ and γ1 = . . . = γm =: γ. Since σ < ̺/δ, by Theorem 3.4.1

there exists a constant C > 0 independent of λ, γ and n (see also proof of Corollary

3.4.2) such that

RL,P( ÛfD1,λ,γ,FFT(m))−R∗
L,P ≤ C

Å
mλγ−d + γ2α + λ−1/ lognγ−̺l−1 logd+1 n+

τ

l

ã

≤ C

Ç
mλγ−d + γ2α + 2eσ+dγ−̺n−1 logd+1 n+

2τ

n

å

with probability Pn+l not less than 1− 3e−τ −nσ exp(−C−1
µ C−δ

S n1−σδ/̺) for λ ∈ Λn

and γ ∈ Γn∩(0,m−1/̺). Since An is an 1/ log n-net of (0, 1] we have Γn∩(0,m−1/̺) 6=
∅ for 1− σ/̺ > 2/ log n and since σ < ̺/(2α+ ̺) we can choose a∗ ∈ An such that

γ = n−a∗ ∈ (0,m−1/̺) and 1/(2α + ̺) ≤ a∗ ≤ 1/(2α + ̺) + 2/ log n. That is, by

choosing γ = n−a∗ and λ = n−σ−d as γ∗,λ∗ we have

RL,P( ÛfD1,λ
∗,γ∗,FFT(m)) ≤ C

Ç
n− 2α

2α+̺ + ec+d+4αn− 2α
2α+̺ logd+1 n+

2τ

n

å

with probability not less than 1−3e−τ −nσ exp(−C−1
µ C−δ

S n1−σδ/̺). Combining this

with (3.9) we get using |Λmn × Γmn | . log2m n that

RL,P( ÛfD1,λ,γ,FFT(m))−R∗
L,P ≤ c1

Å
n− 2α

2α+̺ logd+1 n+
τ

n

ã
+ c2

Ç
τ

n
+
m log log n

n

å

with probability not less than

(1−e−τ )(1−3e−τ−nσ exp(−C−1
µ C−δ

S n1−σδ/̺)) ≥ (1−4e−τ−nσ exp(−C−1
µ C−δ

S n1−σδ/̺)).
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3.5 Binary Classification

Noting that m/n = 2nσ−1 ≤ 2n−2α/(2α+̺) and some elementary transformations

yield the assertion.

Remark 3.4.4. The constraint on σ in Corollary 3.4.2 and Theorem 3.4.3 can be

interpreted as follows: The user specifies a value for σ depending on some compu-

tational time and space constraints given by the available resources. The condition

on σ then specifies the set of distributions for which we can achieve the optimal

learning rate. The smaller we choose σ, the larger this class of distributions be-

comes but small values of σ in turn diminish the computational speed up. As a

consequence we have a fundamental trade-off between computational benefit and

the fastest achievable learning rate. Indeed, the fastest possible learning rate is

given by nσ−1, which can be seen by the bounds on the statistical error of the val-

idation step in the proof of Theorem 3.4.3. A very similar trade-off was observed

for least-squares kernel regression using random features [48], Nyström subsam-

pling [49], and random chunking [67] as speed up strategies. In all these articles

the authors consider a more abstract setting of general kernels with assumptions

on the decay of the eigenvalues of the corresponding integral operator, however,

they focus on the restrictive case where the Bayes decision function is assumed to

be contained in the considered RKHS. None of these mentioned articles consider

adaptive hyperparameter selection for achieving the same rates without knowledge

on the data generating distribution.

3.5 Binary Classification

For the results of this section recall our regularity assumptions for binary classifi-

cation given by Assumption 1.3.3 and 2.4.2.

Theorem 3.5.1. Let P satisfy Assumption 3.1.2 for the constants CS and ̺ and

Assumption 3.1.3 for the constants Cµ and δ. Further let Assumption 1.3.3 be

satisfied for the constants C∗ and q and Assumption 2.4.2 for the constants C∗∗

and β. Consider the estimator ÛfD,λ,γ,FFT(m) using the hinge loss L = Lhinge for

some m ≤ n and hyperparameters λ1 = . . . = λm =: λ and γ1 = . . . = γm =: γ.
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Then for all τ > 0, n > 1, λ ∈ (0, 1], and γ ∈ [n−1/̺,m−1/̺] we have

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P

≤c1mλγ−d + c2C∗∗γ
β + c3Kλ

−1/ logn

Ç
γ−̺

n

å q+1
q+2

logd+1 n

+ 3C
q

q+2
∗

Ç
432τ

n

å q+1
q+2

+ 30
τ

n

with probability not less than 1− 3e−τ −m exp(−C−1
µ C−δ

S nm−δ/̺), where

c1 = 3d+2/Γ(d/2+1), c2 = 9
21−β/2Γ

Ä
β+d
2

ä

Γ(d/2)
, c3 = max{C̺+1

S , 2}max
¶
Cq/(q+1)

∗ , 1
©
,

and K is a constant independent of P, λ, γ, n, and m.

Proof. The supremum bound is obviously satisfied for B = 2 and by [55, Theorem

8.24] the variance bound is satisfied for V = 6C
q/(q+1)
∗ and ϑ = q/(q + 1). Further-

more, it is not hard to see that |Lhinge|1,1 = 1. Given this value for ϑ, the exponent

in Theorem 3.3.8 then reads

1

2− p− ϑ+ ϑp
=

q + 1

q + 2− p,

see also the proof of Theorem 2.4.5. An application of Theorem 3.3.8 then gives us

for λ > 0, γ ∈ (0,m−1/̺), and p ∈ (0, 1/2]

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P ≤ 9

(
‖f0‖2Hγ,λ(A) +RL,P(f0)−R∗

L,P

)

+ CP,mK

(
p−d−1λ−pγ−̺

n

) q+1
q+2−p

+ 3

Ñ
432C

q

q+1
∗ τ

n

é q+1
q+2

+
15B0τ

n

with probability not less than 1−3e−τ −m exp(−C−1
µ C−δ

S nm−δ/̺). With the speci-

fied values for B, V, ϑ and |Lhinge|1,1 we see that the first factor of the constant CP,m
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can be bounded by

max

®
B,
(
|L|pM,1V

1−p
2

) 2
2−p−ϑ+ϑp

, |L|pM,1B
1−p, 1

´

=max



2,

Å
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q

q+1
∗

ã (1−p)(q+1)
q+2−p

, 21−p



 ≤ max

ß
2, 6C

q

q+1
∗

™
.

Noting that (q+1)/(q+2−p) ≤ 1 we see that the second factor of CP,m in Theorem

3.3.8 is bounded by max
¶
C̺+1
S , 2

©
. Choosing p = log 2/(2 log n) ≤ 1/2 gives us

CP,mK

(
p−d−1λ−pγ−̺

n

) q+1
q+2−p

≤ c3Kλ
−1/ logn

Ç
γ−̺

n

å q+1
q+2

for γ−̺/n ≤ 1 with c3 defined as in the theorem. Finally, to bound the approx-

imation error we need to pick a suitable function f0 ∈ Hγ,λ(A). To this end,

note that for γ = γj, λ = λj, j = 1, . . . ,m we have Hγ(X) ⊂ Hγ,λ(A) with

‖f‖2Hγ,λ(A) ≤ mλ‖f‖2Hγ(X) for all f ∈ Hγ(X). By Equation (8.15) in [55, Proof

of Theorem 8.18] there exists a function f0 ∈ Hγ(X) with ‖f0‖∞ ≤ 1 and

λ‖f0‖2Hγ(X) +RL,P(f0)−R∗
L,P ≤

3d

Γ
Ä
d
2
+ 1
äλγ−d +

21−β/2Γ
Ä
β+d
2

ä

Γ
Ä
d
2

ä C∗∗γ
β.

since ‖f0‖∞ ≤ 1 we have B0 = 2 which completes the proof.

As in the previous section, we can use the general oracle inequality above to

prove the same learning rates as in Section 2.4 by choosing suitable values for the

hyperparameters λ and γ provided the number of cells m does not grow too fast.

Corollary 3.5.2. Let the assumptions of Theorem 3.5.1 be satisfied with the number

of cells specified as m = ⌈nσ⌉ for some σ < 1. Assume the parameters from

Theorem 3.5.1 satisfy

σ < min

®
̺(q + 1)

β(q + 2) + ̺(q + 1)
,
̺

δ

´
.

Setting γn = n−a and λn = n−b with

a =
q + 1

β(q + 2) + ̺(q + 1)
and b ≥ σ +

(d+ β)(q + 1)

β(q + 2) + ̺(q + 1)

there exists a constant C > 0 only depending on C∗, C∗∗, Cµ, and CS such that for
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all n > 1 and τ ≥ 1 we have

RL,P( ÛfD,λ,γ,FFT(m))−R∗
L,P ≤ Cτ n−

β(q+1)
β(q+2)+̺(q+1) logd+1 n

with probability not less than 1− e−τ − nσ exp(−C−1
µ C−δ

S n1−σδ/̺).

Proof. This follows from Theorem 3.5.1 by plugging in the values for λ and γ as

specified, where we only need to check that the specified γ is in the admissible range

required by Theorem 3.5.1. To this end, recall that γ = n−a with

a =
q + 1

β(q + 2) + ̺(q + 1)
.

By assumption we have σ/̺ ≤ a and obviously also a ≤ 1/̺. This implies γ ∈
[n−1/̺,m−1/̺], as required by Theorem 3.5.1.

As usual, we also show that the learning rates from the corollary above can also

be achieved adaptively.

Theorem 3.5.3. Let the assumptions of Theorem 3.5.1 be satisfied for ̺ ≥ 1 and

the number of cells specified as m = ⌈nσ⌉ for some σ < 1. Let An be a minimal

1/ log n-net of (0, 1] and let Bn be a minimal 1/ log n-net of [σ + 1, σ + d] with

σ + d ∈ Bn and set Γn := {n−a : a ∈ An} and Λn := {n−b : b ∈ Bn}. Assume that

the parameters from Theorem 3.5.1 satisfy

σ < min

®
̺(q + 1)

β(q + 2) + ̺(q + 1)
,
̺

δ

´
.

Then there exists a constant C > 0 only depending on C∗,∗∗, Cµ and CS such that

for all n > exp 2̺+log 2
1−σ

and τ ≥ 1 we have

RL,P( ÛfD1,λD2
,γD2

,FFT(m))−R∗
L,P ≤ Cτ n−

β(q+1)
β(q+2)+̺(q+1) logd+1 n

with probability not less than 1− e−τ − nσ exp(−C−1
µ C−δ

S n1−σδ/̺) where the hyper-

parameters λD2 ,γD2
are selected by the training validation procedure (3.6).
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Proof. By [55, Theorem 7.2], an inequality for empirical risk minimization, we have

RL,P( ÛfD1,λD2
,γD2

,FFT(m))−R∗
L,P

≤ 6 min
(λ,γ)∈Λn×Γn

(
RL,P( ÛfD1,λ,γ,FFT(m))−R∗

L,P

)

+ 4

Ñ
48C

q

q+1
∗ (τ + log(1 + |Λmn × Γmn |))

n− l

é q+1
q+2

≤ 6
(
RL,P( ÛfD1,λ

∗,γ∗)−R∗
L,P

)

+ 4

Ñ
192C

q

q+1
∗ (τ + log(1 + |Λmn × Γmn |))

n

é q+1
q+2

(3.10)

with probability not less than 1 − e−τ , where we picked values γ∗ ∈ Γmn and λ∗ ∈
Λmn which we will specify in a moment. We again set λ1 = . . . = λm =: λ and

γ1 = . . . = γm =: γ. By Theorem 3.5.1 there exists a constant C > 0 such that

RL,P( ÛfD1,λ,γ,FFT(m))−R∗
L,P

≤C
Ñ

mλγ−d + γβ + λ−1/ logn

Ç
γ−̺

l

å q+1
q+2

logd+1 n+
Åτ
l

ã q+1
q+2

+
τ

l

é

with probability not less than 1 − 3e−τ − nσ exp(−C−1
µ C−δ

S n1−σδ/̺) for all λ ∈ λn
and γ ∈ Γn ∩ [l−1/̺,m−1/̺]. Note that

î
l−1/̺,m−1/̺

ó
⊃
[Ç

2

n

å1/̺

, n−σ/̺

]
=
î
n−(1−log 2/ logn)/̺, n−σ/̺

ó
.

Since An is an 1/ log n-net of (0, 1] we have for

Ç
1− log 2

log n

å
1

̺
− σ

̺
>

2

log n
,

which is equivalent to n > exp((2̺ + log 2)/(1 − σ)), that Γn ∩ [l−1/̺,m−1/̺] 6= ∅.
That is, we can choose a∗ ∈ An such that γ = n−a∗ is in the admissible range and

q + 1

β(q + 2) + ̺(q + 1)
− 2

log n
≤ a∗ ≤

q + 1

β(q + 2) + ̺(q + 1)
+

2

log n
.

Choosing γ = n−a∗ and λ = n−σ−d, we can finish the proof exactly as the proof of

Theorem 3.4.3 by combining the inequalities above.
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4 Experimental Results

In this chapter, whose contents will be published in [25], we complement our theoret-

ical findings by experimentally verifying that, given some dataset D, global and lo-

cal SVMs achieve the same generalization performance if this dataset is non-trivially

embedded in a much higher dimensional space. To this end, we define an embedding

Φ : Rd → R
d+p as follows: Sample w1, . . . , wp iid from the uniform distribution on

[−π, π]d and define the function ϕ : Rd → R
p by ϕj(x) = sin〈x, wj〉 for j = 1, . . . , p.

Subsequently, sample an orthogonal matrix T ∈ R
(d+p)×(d+p) from the Haar-measure

and set Φ(x) := T (x, ϕ(x)). Now, given a dataset D = ((x1, y1), . . . , (xn, yn)) with

xi ∈ [−1, 1]d for i = 1, . . . , n we define the embedded datasetDp = (Φ(xi), yi)i=1,...,n.

The resulting dataset lies on the rotated graph of the map ϕ : Rd → R
p and there-

fore naturally has a non-trivial d-dimensional structure in a (d + p)-dimensional

Euclidean space, see Figure 4.1.

Figure 4.1: 5000 points sampled uniformly on [−1, 1]2 and mapped into R
6 with the pro-

cedure described. The figures show the orthogonal projection of the mapped
datapoints onto randomly sampled two-dimensional planes.

We want to investigate experimentally how the generalization performance be-

haves as a function of artificially added dimensions p. Similar experiments have

been conducted, for example, in [5] where the authors consider the synthetic three-

dimensional dataset, where x1 is sampled from a standard normal distribution
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and x2 = x31 + sin(x1) − 1 and x3 = log(x21 + 1) − x1. The response variable is

y = cos(x1) + x2 − x33 + ε, where ε is sampled from a normal distribution. They

compare the performance of a local polynomial regressor as an estimator based

on the whole feature vector (x1, x2, x3) against an estimator having only access

to the only true feature x1. In [64] the authors consider datapoints lying on the

two-dimensional swiss roll manifold in R
3, which they map into R

100 via a random

100 × 3-matrix and modeled the response variables as a function of the features

plus noise. They only state, that their estimator ”has a relatively fast conver-

gence rate even though the dimension of the ambient space is large”, but do not

compare it to the performance of their estimator using the dataset in the original

three-dimensional space, or a dataset in which the feature vectors contain only the

two necessary parameters to describe the manifold. In [44] the authors conduct

similar experiments using deep neural neetworks with ReLU activation function

and the least-squares loss. They sample points from a uniform distribution on a

d′-dimensional sphere in a d-dimensional space and modeled the response using a

predefined function plus noise and examine the performance of a neural network

for varying values of d′ and d and different sample sizes. The hypothesis of low

intrinsic dimensionality is especially prevalent for image datasets and convolutional

neural network being able to exploit these structures. Although these highly spe-

cific datasets are not readily comparable to our setting, [45] consider a conceptually

similar experimental setup where they keep the intrinsic dimension a dataset fixed

and investigate the generalization performance for varying ambient dimensions.

For our purposes, we collected 32 regression datasets and 32 binary classification

datasets from the UCI Repository [15] summarized in Tables 4.1 and 4.2. For

the respective 16 smallest datasets we used a global kernel (i.e. no partition), for

the remaining datasets we used a partition such that each cell contains at most

4000 samples. For each dataset we performed training runs with the embedding

described above for p = 0, . . . , 50, where 20% of each dataset was left out for

testing and each run was repeated 50 times. For training and testing we used the

command line version of liquidSVM [58], which implements a partitioning method.

For hyperparameter selection we used 5-fold cross validation over a default 10 ×
10-grid chosen by liquidSVM based on some characteristics of the dataset, which

has been empirically verified to yield competitive performance. The results are

summarized in Figures 4.2, 4.3, 4.4, and 4.5 for regression with global kernels,

classification with global kernels, regression with local kernels, and classification
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with local kernels respectively. We can divide the results in roughly three categories:

(i) In accordance with our theoretical findings, the generalization performance is

independent of the number of artificially added dimensions. That is, the test

error for the datasets Dp, p = 1, . . . , 50, is similar as for the original dataset

D. The datasets in this category constitute a clear majority.

(ii) After an initial increase of the test error, it quickly levels out at a mod-

erately higher level, which is still well below the naive error. We still see

this as a partial verification of our theoretical findings since at least after a

certain point, the test error is independent of the further artificially added

dimensions. Examples of datasets in this category are bike sharing casual,

bike sharing total, gas sensor drift class, gas sensor drift conc,

sml2010 dining, sml2010 room, thyroid ann, and travel review ratings.

(iii) On a few rare exceptions, the test error grows significantly, as for chess,

crowd sourced mapping, and electrical grid stability simulated.

67



4 Experimental Results

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8
×10 1

air_quality_co2

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2 ×10 1
air_quality_no2

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0 ×10 1
air_quality_nox

0 10 20 30 40 50
0

1

2

3

4

5
×10 2

facebook_live_sellers_thailand_shares

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0
×10 1

parkinson_motor

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0
×10 1

parkinson_total

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
×10 1

real_estate_value

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2
×100

skill_craft

0 10 20 30 40 50
0

1

2

3

4

5

6 ×10 2
sml2010_dining

0 10 20 30 40 50
0

1

2

3

4

5

6 ×10 2
sml2010_room

0 10 20 30 40 50
0

1

2

3

4
×10 1

travel_review_ratings

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0
×10 1

wall_follow_robot_2

0 10 20 30 40 50
0

1

2

3

4

5

6
×10 1

wall_follow_robot_24

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0
×10 1

wall_follow_robot_4

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8 ×100
wine_quality_all

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8 ×100
wine_quality_white

Figure 4.2: Test root mean-squared errors (y-axis) for global kernels. The x-axis contains
the number of artificially added dimensions. The shaded blue area corre-
sponds to the standard deviation across the different runs. For comparison,
the horizontal black line shows the test error for the original dataset. The
shaded grey area corresponds to the standard deviation across the different
runs for the original dataset.
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Figure 4.3: Test classification errors (y-axis) for global kernels. The x-axis contains the
number of artificially added dimensions. The shaded blue area corresponds
to the standard deviation across the different runs. For comparison, the
horizontal black line shows the test error for the original dataset. The shaded
grey area corresponds to the standard deviation across the different runs for
the original dataset.
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Figure 4.4: Test root mean-squared errors (y-axis) for local kernels. The x-axis contains
the number of artificially added dimensions. The shaded blue area corre-
sponds to the standard deviation across the different runs. For comparison,
the horizontal black line shows the test error for the original dataset. The
shaded grey area corresponds to the standard deviation across the different
runs for the original dataset.
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Figure 4.5: Test classification errors (y-axis) for local kernels. The x-axis contains the
number of artificially added dimensions. The shaded blue area corresponds
to the standard deviation across the different runs. For comparison, the
horizontal black line shows the test error for the original dataset. The shaded
grey area corresponds to the standard deviation across the different runs for
the original dataset.
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Name Samples Dimension Naive Error Base error

air quality bc 8991 10 0.2343 0.0212
air quality co2 7674 10 0.2463 0.0751
air quality no2 7715 10 0.2862 0.0976
air quality nox 7718 10 0.2884 0.0806

bike sharing casual 17379 12 0.2687 0.0801
bike sharing total 17379 12 0.3717 0.1707
carbon nanotubes u 10721 5 0.6304 0.0268
carbon nanotubes v 10721 5 0.6311 0.0270
carbon nanotubes w 10721 5 0.5782 0.0382
cycle power plant 9568 4 0.4521 0.0992

electrical grid stability simulated 10000 12 0.3883 0.0871
facebook live sellers thailand shares 7050 9 0.0769 0.0504

five cities shenyang pm25 19038 14 0.1306 0.0653
gas sensor drift class 13910 128 1.7285 0.1702
gas sensor drift conc 13910 128 0.3432 0.0542
naval propulsion comp 11934 14 0.5888 0.0299
naval propulsion turb 11934 14 0.6000 0.0302

nursery 12960 8 1.2356 0.1923
parkinson motor 5875 19 0.4716 0.2316
parkinson total 5875 19 0.4459 0.2246
radius query 10000 3 0.3755 0.0270

real estate value 414 6 0.2473 0.1521
seoul bike data 8760 14 0.3627 0.1414

skill craft 3338 18 1.4480 0.9727
sml2010 dining 4137 17 0.3769 0.0386
sml2010 room 4137 17 0.3790 0.0393

travel review ratings 5456 23 0.6278 0.3442
wall follow robot 2 5456 2 1.0047 0.1882
wall follow robot 24 5456 24 1.0047 0.4310
wall follow robot 4 5456 4 1.0047 0.2747
wine quality all 6497 12 0.8732 0.6739

wine quality white 4898 11 0.8855 0.6802

Table 4.1: Regression datasets.
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Name Samples Dimension Naive Error Base error

abalone 2870 8 0.4676 0.1868
anuran calls families 6585 22 0.3288 0.0075
anuran calls genus 5743 22 0.2774 0.0028
anuran calls species 4599 22 0.2437 0.0013

chess 3196 36 0.4778 0.0050
chess krvk 8747 22 0.4795 0.1782

crowd sourced mapping 9003 28 0.1659 0.0195
facebook live sellers thailand status 6622 9 0.3525 0.1574

firm teacher clave 8606 16 0.4997 0.0215
first order theorem proving 6118 51 0.4175 0.1904

gas sensor drift class 5935 128 0.4930 0.0009
gesture phase segmentation raw 5719 19 0.4842 0.0040
gesture phase segmentation va3 5691 32 0.4816 0.1560

landsat satimage 3041 36 0.4959 0.0010
mushroom 8124 111 0.4820 0.0000
nursery 8588 8 0.4967 0.0003

page blocks 5242 10 0.0628 0.0155
shill bidding 6321 9 0.1068 0.0069
spambase 4601 57 0.3940 0.0629

thyroid all bp 3621 31 0.0434 0.0352
thyroid ann 7034 21 0.0523 0.0271
thyroid hypo 2700 25 0.0504 0.0220
thyroid sick 3621 31 0.0621 0.0314

wall follow robot 2 4302 2 0.4874 0.0010
wall follow robot 24 4302 24 0.4874 0.0443
wall follow robot 4 4302 4 0.4874 0.0043

waveform 3353 21 0.4942 0.0739
waveform noise 3347 40 0.4945 0.0754

wilt 4839 5 0.0539 0.0150
wine quality all 4974 12 0.4298 0.2481
wine quality type 6497 11 0.2461 0.0048
wine quality white 3655 11 0.3986 0.2311

Table 4.2: Classification datasets.
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5 Final Remarks

In this final chapter we give an outlook on possible future research and general-

izations based on the results of this thesis. We further summarize existing results

in the literature similar to ours for comparison. Contents of this chapter were

published in [24].

5.1 Outlook

Optimality of Rates

We briefly want to discuss the optimality of the rates in Section 2.3 and 3.4. The

classical result of Stone [60] considers the case where PX is the uniform distribution

on [0, 1]d and states that n− 2α
2α+d is the optimal rate of convergence. This statement

can directly be generalized to the case where PX is the uniform d′-dimensional

distribution on the cube in the first d′ axes of Rd, where d′ ∈ {1, . . . , d}. Note that
in this case P satisfies Assumption 2.1.1 and 3.1.2 for all ̺ ≥ d′. From this we

can conclude that in the case ̺ ∈ {1, . . . , d} the rates in the respective sections are

optimal up to the logarithmic factor. In the general non-integer case ̺ ≥ 1 we can

still deduce a lower bound of order 2α/(2α + ⌊̺⌋), however there is no immediate

argument that this is the optimal lower bound. We strongly hypothesize that the

general optimal lower bound is of order 2α/(2α + ̺) but we will leave this as a

conjecture for possible future research.

Other Loss Functions

As our general oracle inequalities in Sections 2.2 and 3.3 already indicate, our

technique is flexible enough to handle additional learning scenarios using other loss

functions than the least-squares loss or the hinge loss. For example, the conditional
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τ -quantile function can be estimated using the pinball loss

Lpin(y, t) :=




(1− τ)(t− y), if y < t,

τ(y − t), if t ≥ y.

Using a variance bound, see Definition 1.3.1, and a calibration inequality for the

pinball loss from [56] and imposing some standard regularity assumptions on f ∗
Lpin,P

we can thus derive learning rates for the pinball loss, as well as bounds on the

Lq(PX) distance from fD,λ,γ to f
∗
Lpin,P

under one of our set of intrinsic dimensionality

assumptions from Chapter 2 or 3. This would generalize some of the results from

[16] in the sense, that we can substitute d with ̺ in their learning rates. The same

is true for the conditional expectile function, which is estimated by the asymmetric

least-squares loss

LALS(y, t) :=




(1− τ)(t− y)2, if y < t,

τ(y − t)2, if t ≥ y,

where τ ∈ (0, 1), since in [20] the necessary variance bound and a calibration

inequality for LALS are derived.

Other Kernels

Another possibility to further generalize our results is to consider a larger class

of kernels. For example Theorem 1.3.16, a main tool for bounding the statisti-

cal error, can be generalized with the same techniques to anisotropic Gaussian

kernels, i.e. Gaussian kernels that have a different bandwidth parameter in each

covariate. Anisotropic Gaussian SVMs are for example considered in [26] where

the authors show that, compared to a regular Gaussian kernel, the anisotropic one

has an improved performance for regression functions that have a varying degree of

smoothness in each covariate. A generalization to other classes of kernels is how-

ever not obvious to us, as we make use of many properties that are exclusive to the

Gaussian RKHS.
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Boundedness Assumption in Regression

The boundedness assumption Y ⊂ [−M,M ] in Sections 2.3 and 3.4 can be relaxed

to an exponential decay of the distribution of the noise variable y− f ∗
L,P(x). Under

this assumption one can show, that by choosing a sequence of logarithmically grow-

ing clipping values M = Mn, the resulting learning algorithms achieve the same

rates as in the Sections 2.3, 2.4, 3.4, and 3.5. This generalization can be proven by

showing that the clipping value Mn is correct with sufficiently high probability. As

the details are a little bit technical and would distract from the actual conclusions

of our results, we refer to [16, Theorem 3.6].

5.2 Review of Existing Results

In this section we summarize existing results on learning rates for various learn-

ing methods under the assumption that the data has a low-dimensional intrinsic

structure. This summary highlights the contribution of the results of this thesis:

(i) The most common assumption to describe the intrinsic dimensionality of the

data is to assume that the data generating distribution is supported on a

smooth manifold. We considerably weaken this assumption by considering

the fractal dimension of the support of the generating distribution instead.

(ii) Adaptivity to the intrinsic dimensionality of the data is rarely considered

or only under additional assumptions. In contrast, our results show that a

simple training validation approach achieves the same learning rates without

knowledge on the intrinsic dimension of the data or the regularity of the target

function.

(iii) So far there exist no results on learning rates that depend on the intrinsic

dimensionality of the data for a speed-up procedure of a common learning

method, such as our results of Chapter 3.

Least-Squares Regression

We first summarize results on least-squares regression.

SVMs. In [65] the authors consider the case, where the input space X ⊂ R
d is a

compact, smooth manifold of dimension ̺ and that the Bayes decision func-

tion is α-Hölder continuous with respect to the geodesic distance on X for
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some α ∈ (0, 1]. They derive learning rates of the form (log2(n)/n)α/(8α+4̺).

Under these assumptions on X, the assumption that the Bayes function is

α-Hölder continuous with respect to the geodesic distance is equivalent to

α-Hölder continuity with respect to the Euclidean distance, which is a conse-

quence of [65, Lemma 1]. That is, Corollary 2.3.8 gives a significant improve-

ment of the result in [65] under much less restrictive assumptions. Addition-

ally, they do not consider adaptive parameter selection, i.e. the dimension ̺

of X and α need to be known.

Bayesian Regression with Gaussian processes. In [64] the authors consider the

case of a compact ̺-dimensional manifold X ⊂ R
d, which is sufficiently reg-

ular and a Cα Bayes function, where α ≤ 2. For Bayesian regression using

Gaussian processes with squared exponential covariance they derive the learn-

ing rate n−2α/(2α+̺) log̺+1 n, which is identical to ours, but under much more

restrictive assumptions on both α and suppPX . Additionally, they present

a training validation scheme for choosing the hyperparameters of the prior

distribution. Under some additional technical assumption, which is hard to

verify, they prove that this method achieves the same rates adaptively. Also

note that Bayesian GP regression is related to Gaussian least-squares SVMs

in the sense that the posterior mean function of the Gaussian process coin-

cides with the SVM solution provided the prior distribution is suitably chosen,

see [29, Proposition 3.6]. The choice of the prior distribution in [64] however

does not lead to the same decision function as the one chosen by a Gaussian

least-squares SVM.

Neural Networks. In [44] the authors consider deep neural networks with ReLU

activation. They show that if the number of layers L, the number of non-

zero weights W , and the sup-norm B of the weights are chosen appropriately,

for an α-Hölder regular target function a neural network achieves a learning

rate of n− 2α
2α+̺+ε (1 + log n)2 where ̺ is the upper box-counting dimension of

suppPX and ε > 0 can be chosen arbitrarily small. However, the choice of

L,W , and B requires knowledge on the unknown parameters α and ̺. A

further drawback in their result is that the estimator they consider is not

computable in practice as they consider an exact minimizer of a non-convex

optimization problem.

Local Polynomial Regression. In [5] the authors consider local linear regression
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in the setting of a differentiable ̺-dimensional manifold X ⊂ R
d and a twice

differentiable Bayes function. They further assume, that PX has a differen-

tiable density w.r.t. local charts and prove the learning rate n−4/(4+̺). They

also state, that the result can be extended if the Bayes function is α-times

differentiable using polynomials of degree α−1 to achieve the rate n−2α/(2α+̺).

They propose a training validation scheme for bandwidth selection, but give

no theoretical guarantees.

Tree-Based Regressor. In [32] the authors consider a tree-based locally constant

regressor. Their notion of intrinsic dimension is based on the doubling di-

mension of the input space. The doubling dimension of a metric space is

the smallest constant c, such that every ball of radius r > 0 in X can be

covered by 2c balls of radius r/2. Based on the doubling dimension c of the

input space they prove that for a Lipschitz continuous target function their

estimator achieves the learning rate n−2/(2+k) for a constant k ∈ O(c log c).
They achieve this rate adaptively using a training validation scheme, as well

as a stopping criterion for building the tree. Although the doubling dimen-

sion has the same favorable properties as Assumption 2.1.1 in the sense that

it does not require any differentiable structure of the input space, it has the

great disadvantage that its value is usually much larger than the exponent ̺

in Assumption 2.1.1. To illustrate this, let X ⊂ R
d be a bounded set with

doubling dimension c. For simplicity, let us assume that X ⊂ Bℓd2
, that is

Nℓ22(X, 1) = 1. By assumption, X can be covered by 2c balls of radius 1/2

which in turn can each be covered by 2c balls of radius 1/4. Inductively this

gives us N (X, 1/2k) ≤ 2ck for all k ∈ N0. A simple argument then gives us

N (X, ε) ≤ 2cε−c for all ε ∈ (0, 1), and hence we have c ≥ ̺, whenever 2.1.1

is fulfilled exactly for ̺. In fact, we often have c > ̺. For example, as a

consequence of [4, Satz 2] the optimal value for the doubling dimension of

the unit disc Bℓ22
is given by log2 7 ≈ 2.81, while its box-counting dimension

is 2. Doubling dimensions of sets, that actually have a standard notion of

dimension, can rarely be computed explicitly. For example, a ̺-dimensional

manifold has doubling dimension O(̺), where the proportionality constant

depends on the curvature of X, see e.g. [11, Theorem 22].
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k-Nearest Neighbor. In [35] the authors show, that under Assumption 2.1.1 and

for an α-Hölder continuous target function, where 0 < α ≤ 1, the k-NN

rule achieves a learning rate of n−2α/(2α+̺). They only achieve this rate with

knowledge on both, ̺ and α.

Binary Classification

Finally, we summarize results on binary classification, although they are much

scarcer than for least-squares regression.

SVMs. In [66] the authors assume that the input space X ⊂ R
d is a compact,

connected, smooth ̺-dimensional manifold without boundary and PX is the

normalized surface measure on X. They further assume, that sgn(2η − 1) is

contained in the interpolation space (L1(X),W 2,1(X))θ,∞ for some θ ∈ (0, 1],

where W 2,1(X) is a Sobolev-space on the manifold X and derive the learning

rate (log2(n)/n)θ/(6θ+̺) for Gaussian SVMs. Of course, such a regularity as-

sumption for a discrete-valued function is very restrictive, especially for small

values of ̺. Exemplarily, for ̺ = 1 and θ ≥ 1/2 their assumptions actu-

ally imply the pathological case sgn(2η − 1) ≡ 1 or sgn(2η − 1) ≡ −1, since
by the embedding theorem in [61, 7.4.2 (iv)] the space (L1(X),W 2,1(X))θ,∞

then consists of continuous functions. In addition, their fastest possible rate

is given by n−1/7, while we derive learning rates up to n−1 in Sections 2.4 and

3.5.

Dyadic Decision Trees. In [53] dyadic decision trees are considered. They assume,

that for a partition Pm of the input space X = [0, 1]d into cubes of sidelength

1/m, where m is a dyadic integer, every A ∈ Pm satisfies PX(A) ≤ c0m
−̺.

Additionally they assume, that the number of cubes in Pm, that intersect the
decision boundary {x ∈ X : η(x) = 1/2} is bounded by c1m

̺−1, that is they

impose an assumption similar to 2.1.1 on the decision boundary. They derive

a learning rate of (log(n)/n)1/̺. Remarkably, the optimal choice of their only

hyperparameter, the depth of the tree, does not depend on ̺.

80



Bibliography

[1] L. Ambrosio, A. Colesanti, and E. Villa. Outer Minkowski content for some

classes of closed sets. Math. Ann., 342:727–748, 2008.

[2] J.-Y. Audibert and A. B. Tsybakov. Fast learning rates for plug-in classifiers.

Ann. Statist., 35:608–633, 2007.
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