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Abstract

New concepts in condensed matter physics have often been evidenced by macroscopic
experiments such as transport and magnetic susceptibility measurements. On the other
hand, microscopic spectroscopic experiments have provided energy- and momentum-
resolved information related to atomic-scale correlation functions, which directly put
constraints to theories describing macroscopic properties from a microscopic Hamiltonian.
Therefore the correspondence between macroscopic and microscopic experiments under
identical experimental conditions has provided foundations to develop many-body theories.

Since the discovery of high-temperature superconductivity in cuprates, an enormous
amount of theoretical and experimental work was carried out to reveal its microscopic
origin. While fundamental properties of the superconductivity have been well characterized,
a number of aspects in the normal states are still unsolved or only poorly understood to
this date. As a consequence of significant electron correlations in this material, various
competing orders including superconductivity emerge when physical parameters are pro-
gressively tuned. Charge ordering, a leading competitor of superconductivity in cuprates,
is significantly modified by uniaxial stress, which simultaneously enables an experimentalist
to tune the lattice structure, and thereby the electronic structure, in a continuous fashion
and to break point-group symmetries.

In this thesis, I will present charge transport and x-ray scattering experiments on
the high-temperature superconductor YBa2Cu3O6+x under uniaxial stress to provide
the correspondence between macroscopic charge transport and atomic-scale correlation
functions and to extend the phase diagram by means of uniaxial stress. This thesis starts
with an introduction to cuprates in chapter 1 and a thorough discussion of YBa2Cu3O6+x,
a model system that possesses minimal chemical disorder among the cuprate families in
chapter 2, and of the basic principles of the experimental methods I used in chapter 3.
The following chapters describe core experimental results.

First, chapter 4 describes charge transport studies under uniaxial stress. The resistivity
of YBa2Cu3O6+x does not show any anomalies at the charge-density-wave (CDW) onset
unlike conventional CDW materials. However, measurements of the normal state resistivity
of YBa2Cu3O6.67 (doping level ∼0.12 holes per Cu ion) under uniaxial compression
have shown a remarkable correspondence between the differential stress responses of the
transport coefficients and charge ordering, which parallels the phenomenology of classical
CDW compounds. The sign of the Hall coefficient, the transport probe most sensitive
to the Fermi surface of metals, is reversed at T = T0 upon cooling. This phenomenon
is often interpreted in terms of a Fermi surface reconstruction induced by the symmetry
breaking introduced by the static CDW order. Measurements of the Hall coefficient under
uniaxial stress have shown an enhancement of T0, which is qualitatively in line with this
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Fermi surface reconstruction scenario yet quantitatively too small in comparison with the
diffraction pattern of the CDW. Therefore we propose that slow fluctuations, rather than
the static CDW order, are mostly responsible for the sign reversal of the Hall coefficient. In
this way, we reconcile the quantitative discrepancy in the stress effect on Hall coefficient.

Chapter 5 describes resonant soft x-ray scattering studies under uniaxial stress. The
three dimensionally correlated (3D) CDW induced by uniaxial stress has been observed
only at one particular doping level YBa2Cu3O6.67 where the quasi-two dimensional (2D)
CDW is the strongest. Taking advantage of resonant energy-integrated x-ray scattering
experiments, we have expanded the doping range for the investigation of uniaxial stress
effects on the CDW. A 3D-CDW similar to the one previously observed in YBa2Cu3O6.67
was observed at lower doping levels, but not confirmed at higher doping levels up to optimal
doping. These doping dependent studies yield insight into the conditions required for
stabilizing the 3D-CDW in YBa2Cu3O6+x. Resonant inelastic x-ray scattering experiments
upon cooling in the presence of uniaxial stress have shown different effects on the 2D-CDW
from those previously observed when straining only at low temperature. In addition,
reciprocal space characters of charge orders and fluctuations and possible effects of uniaxial
stress on magnetic excitations were also carefully investigated and discussed.



Zusammenfassung

Neue Konzepte in der Physik der kondensierten Materie wurden häufig durch makroskopis-
che Experimente wie Transport- und magnetische Suszeptibilitätsmessungen nachgewiesen.
Andererseits haben spektroskopische Experimente energie- und impulsaufgelöste Informa-
tionen über Korrelationsfunktionen auf atomarer Ebene geliefert, und damit Theorien
getestet, welche die makroskopischen Eigenschaften mit Hilfe eines mikroskopischen Hamil-
tonians beschreiben. Die Korrespondenz zwischen makroskopischen und mikroskopischen
Experimenten unter identischen Versuchsbedingungen schafft daher die Grundlage für die
Entwicklung von Vielteilchentheorien.

Seit der Entdeckung der Hochtemperatur-Supraleitung in Kupraten wurde eine enorme
Menge an theoretischen und experimentellen Arbeiten durchgeführt, um ihren mikroskopis-
chen Ursprung aufzudecken. Während die grundlegenden Eigenschaften der Supraleitung
gut charakterisiert wurden, sind eine Reihe von Aspekten in den Normalzuständen bis
heute ungelöst oder nur unzureichend verstanden. Als Folge signifikanter Elektronenkorre-
lationen in diesem Material treten verschiedene konkurrierende Ordnungen einschließlich
der Supraleitung auf, wenn die physikalischen Parameter progressiv eingestellt werden.
Die Ladungsordnung, einer der Hauptkonkurrenten der Supraleitung in Kupraten, wird
durch uniaxiale Spannung erheblich verändert, was es dem Experimentator gleichzeitig
ermöglicht, die Gitterstruktur und damit die elektronische Struktur kontinuierlich zu
verändern und Punktgruppensymmetrien zu brechen.

In dieser Arbeit werde ich Experimente zum Ladungstransport und zur Röntgenstreu-
ung am Hochtemperatursupraleiter YBa2Cu3O6+x unter uniaxialer Spannung vorstellen,
um die Korrespondenz zwischen makroskopischem Ladungstransport und Korrelationsfunk-
tionen auf atomarer Skala herzustellen und das Phasendiagramm mit Hilfe von uniaxialer
Spannung zu erweitern. Diese Arbeit beginnt mit einer Einführung in die Kuprate in
Kapitel 1 und einer ausführlichen Diskussion von YBa2Cu3O6+x, einem Modellsystem, das
unter den Kupratfamilien die geringste chemische Unordnung aufweist, in Kapitel 2. Die
Grundprinzipien der von mir verwendeten experimentellen Methoden werden in Kapitel
3 zusammengefasst. In den folgenden Kapiteln werden die wichtigsten experimentellen
Ergebnisse beschrieben.

Zunächst werden in Kapitel 4 Studien zum Ladungstransport unter einachsiger Belas-
tung beschrieben. Der spezifische Widerstand von YBa2Cu3O6+x zeigt im Gegensatz zu
konventionellen CDW-Materialien keine Anomalien beim Einsetzen der Ladungsdichtewelle
(charge-density-wave, CDW). Messungen des spezifischen Widerstands von YBa2Cu3O6,67
(Dotierungsgrad ∼0,12 Löcher pro Cu-Ion) unter uniaxialer Kompression haben jedoch
eine bemerkenswerte Übereinstimmung zwischen den differentiellen Änderungen der Trans-
portkoeffizienten und der Ladungsordnung gezeigt, die der Phänomenologie klassischer
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CDW-Verbindungen entspricht. Das Vorzeichen des Hall-Koeffizienten, des Transportkoef-
fizienten, der am empfindlichsten auf die Fermi-Fläche von Metallen reagiert, kehrt sich
beim Abkühlen bei T = T0 um. Dieses Phänomen wird häufig als eine Rekonstruktion der
Fermi-Fläche interpretiert, durch die Symmetriebrechung der statischen CDW-Ordnung.
Messungen des Hall-Koeffizienten unter uniaxialer Spannung haben eine Erhöhung von
T0 ergeben, die qualitativ mit diesem Szenario der Fermiflächen-Rekonstruktion überein-
stimmt, quantitativ jedoch zu klein ist im Vergleich zum Ordnungsparameter der Ladungs-
dichtewelle, der mit Hilfe von Röntgenstreuung bestimmt wurde. Daher schlagen wir
vor, dass langsame Fluktuationen und nicht die statische CDW-Ordnung für die Vorze-
ichenumkehr des Hall-Koeffizienten verantwortlich sind. Auf diese Weise können wir die
quantitative Diskrepanz in der Spannungswirkung auf den Hall-Koeffizienten erklären.

Kapitel 5 beschreibt Studien zur resonanten weichen Röntgenstreuung unter uniaxialer
Belastung. Die durch uniaxiale Spannung induzierte dreidimensional korrelierte (3D) CDW
wurde bisher nur bei einem bestimmten Dotierungsniveau YBa2Cu3O6,67 beobachtet, wo
die quasi-zwei-dimensionale (2D) CDW am stärksten ist. Unter Ausnutzung der Vorteile
von Experimenten mit resonanter energieintegrierter Röntgenstreuung haben wir den
Dotierungsbereich für die Untersuchung der Auswirkungen uniaxialer Spannungen auf
die CDW erweitert. Eine 3D-CDW, die der zuvor in YBa2Cu3O6,67 beobachteten ähnelt,
wurde bei niedrigeren Dotierungen beobachtet, konnte aber bei höheren Dotierungen
bis hin zur optimalen Dotierung nicht bestätigt werden. Diese dotierungsabhängigen
Studien geben Aufschluss über die Bedingungen, die für die Stabilisierung der 3D-CDW in
YBa2Cu3O6+x erforderlich sind. Experimente mit resonanter inelastischer Röntgenstreuung
bei Abkühlung in Gegenwart von uniaxialer Spannung haben andere Auswirkungen auf
die 2D-CDW gezeigt als diejenigen, die zuvor bei Dehnung nur bei niedriger Temperatur
beobachtet wurden. Darüber hinaus wurden die Signatur der Ladungsordnungen und
-fluktuationen im reziproken Raum sowie mögliche Auswirkungen der einachsigen Spannung
auf magnetische Anregungen sorgfältig untersucht und diskutiert.
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1
C h a p t e r

Introduction

Reductionism has revealed that everything in the world is made of elementary particles
and their motions can be described with fundamental interactions. The law of nature is
written in mathematics, yet the system treated in condensed matter physics has usually
as many as 1024 atoms1 and thus we have almost no hope to solve the equations of motion
of such an enormous number of particles. On the contrary, we are not interested in exact
motions of every particle. What we care about is their macroscopic collective properties
emerging from microscopic interactions among particles. Therefore one has to properly
simplify problems and cleverly extract some statistical aspects from the systems.

The advantages of studying solids as one of many-body problems in physics are that
we already know the basic properties of the building blocks, electrons and nuclei, and
interactions among them, and that hypotheses can be relatively easily tested by experiments.
As a consequence, the study of condensed matter is one of the largest branches in physics
of many-body systems and has influenced other fields such as particle physics each other.
For instance it is famous that the concept of the gauge symmetry breaking in the BCS
theory, the established theory of superconductivity, was transferred to particle physics to
describe the Higgs mechanism, which explains the origin of mass [1]. On the other hand,
researches on materials are intimately related to potential future applications such as
semiconductor technologies which have changed our lives in the last century. Nevertheless,
in this thesis, I will confine discussions only to fundamental physic of high temperature
superconducting cuprates, a prototypical example of many-body system where several
particles act in concert to give rise to a plethora of emerging collective phenomena.

In this thesis, in particular, I will present charge transport and x-ray scattering
experiments on the copper oxide material YBa2Cu3O6+x, known for its high temperature
superconductivity. As a consequence of significant electron-electron correlations in this
material, various competing orders including superconductivity emerge progressively when
tuning various physical parameters. In this respect, I have applied uniaxial stress to this
material as external parameter in order to obtain the correspondence between macroscopic
charge transport and atomic scale correlation functions and to extend the phase diagram
[2, 3]. In this chapter, before moving on to the results of those experiments, I will
start with some basic notions about how we describe collective phenomena in solids and

1Assuming the size of an atom is 1 Å, the number of atoms in a cubic 1 cm3 material where the atoms
are closely packed is 1cm3/(1Å)3 = 1024.
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2 Chapter 1. Introduction

charge-density-wave phenomena, which will be key concepts to understand the following
chapters.

1.1 Electrons in solids
The simplest theoretical treatment of electrons in solids is to assume that they are free
electrons in vacuum [4]. Such a treatment is called the free Fermi gas because electrons
are fermions. The wave function ϕk of the free electron whose momentum is k is given by
ϕk = exp(ik · r)/

√
Ω, where Ω = L3 is the volume of a cubic structure whose side is L

where N (= 1022 ∼ 1023) electrons exist. Assuming the periodic boundary condition, the
energy of the electron whose wave number is k is given as εk = h̄2k2/2m = h̄2(2πn/L)2/2m
where n = (nx, ny, nz) is a vector of any integers. One state can be occupied by only
one single electron due to the Pauli exclusion principle derived from the antisymmetric
character of a many-body wave function of indistinguishable fermions. Therefore the
lowest energy state, ground state, at zero temperature is the state that each electron
occupies from the lowest eigenstate one by one. The highest energy of one electron in the
ground state εF is called the Fermi energy and the Fermi wave vector kF is defined as
εF = h̄2kF

2/2m. In realistic metals, the Fermi energy is a few eV or the Fermi temperature
TF = εF/kB is 104 K, which is much higher than room temperature ∼ 102 K (kB is the
Boltzmann constant). Therefore at such a ”low” temperature, a marjory of electrons do not
contribute to kinetic energies and only electrons near the Fermi energy within ∼ kBT can
be thermally excited. This is why the electronic specific heat experimentally observed in
metals is T -linearly dependent and much lower than the constant value 3NkB/2 expected
based on the law of equipartition for the N -electron system. The energy split between
different energy levels near the Fermi energy is ∆ε = εF/N = 10−22 eV. Therefore the
excitation energy of electron-hole pair excitations near the Fermi level is infinitely small
for most of experimental resolutions and an infinite number of such electron-hole pair
excitations exist near the Fermi level.

While the Coulomb interaction between electrons are completely ignored in the Fermi
gas model, in reality the interactions between electrons always exist. To treat the normal
state of the interacting fermion systems without long range orders, the new concept called
a Fermi liquid was introduced by Landau. The fundamental idea of the Fermi liquid is
introducing the interactions between electrons into the non-interacting Fermi gas and
adiabatically connecting it to the Fermi liquid state. There is one-to-one correspondence
between the states before and after introducing the interaction and the new state can be
described by quantum numbers of the old state. The state described by the momentum k
in the Fermi liquid theory is called a (Landau) quasiparticle. The quasiparticle with the
momentum k on the ground state of the Fermi gas model |0〉 can be written as follows,

Qk
† |0〉

= √
zk

Ck
† +

∑
k1,k2,k3

Γ1Ck1
†Ck2

†Ck3 +
∑

k1,k2,...,k5

Γ2Ck1
†Ck2

†Ck3
†Ck4Ck5 + ...

 |0〉 ,

(1.1)

where Qk
† (Ck

†) is a creation operator of the quasiparticle (bare electron) and Ck is an
annihilation operator of the bare electron. zk is called the wave-function renormalization
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factor. The first term in the right side denotes the single electron state while the higher
order terms denote the many-body states, which represent the particle-hole excitations.
In the presence of the interactions, zk (0 ≤ zk < 1) represents the probability that the
single-electron state dominates in the many-body states, i.e, Qk

† |0〉 corresponds with the
non-interacting Fermi gas state when zk = 1 and Γ1,Γ2, ... = 0. By renormalizing complex
excitations of bare electrons and holes to the (almost) non-interacting quasiparticles,
physical quantities in the Fermi liquid theory can be expressed by those in the Fermi gas
model with a few factors of proportionality: renormalized mass and Landau parameters.
Remarkably, the Fermi surface volume is identical between the two models (Luttinger’s
theorem [5]), therefore one can discuss the Fermi surface in the interacting system by
means of the physical quantities related to the Fermi surface volume defined in the non-
interacting system, e.g., the Hall number. This fact allowed us to discuss the Fermi surface
reconstruction by means of the Hall effect in chapter 4.

Up until here the Landau quasiparticles are introduced to treat correlated electrons in
solids. Such a methodology to simplify correlated many-body problems is one of foundations
in condensed matter physics. The low energy excited states in the many-body system
are interpreted as (almost) non-interacting elementary excitations. It has been known
that a variety of elementary excitations emerge in solids and macroscopic properties of
solids are explained by means of the statistical characters of those elementary excitations2

[7]. In some sense, the research of condensed matter physics could be defined as the
study of such elementary excitations at energy scales below 100 meV [8]. While no long
range order is considered in the Fermi liquid theory, gapless excitations known as Nambu-
Goldstone modes emerge when the system undergoes the long range order associated with
the spontaneous symmetry breaking. Examples are phonons in crystals (translational
symmetry breaking), magnons in magnetic materials (spin rotational symmetry breaking),
and so forth.

One of the solid-state systems for which one needs such a sophisticated methodology is
a transition metal oxide such as the cuprates studied in this thesis. The energy eigenstate
near the Fermi level arises from the d-electrons in the transition metal oxides. The orbital
radius of the d-electrons is smaller than that of the p- and s-orbitals. Therefore, the
interatomic overlap of the d-electrons is small and, hence, the d-electrons tend to be
localized at atomic sites, in particular for the 3d series. In such a case, the description of
screening effects by the Fermi gas model, which is appropriate for ordinary metals, is no
longer a good approximation and the electron correlation between d-electrons becomes
significant. Such a system is called the strongly correlated electron system, and the
many-body ground states are often nearly degenerate. As a consequence, a variety of
collective orders emerge by slightly tuning physical parameters in those compounds, as
is evident in rich phase diagrams (Fig. 1.1) [9]. Such a tuning can be made not only by
temperature and chemical substitutions but also by external fields.

The collective phenomenon specifically studied in this thesis is called a charge-density
wave (CDW). The correspondence between macroscopic transport behaviors and atomic

2The usage of terminologies, quasiparticles, collective excitations, and elementary excitations, is
extremely diverse depending on contexts. In this thesis, the original individual particle plus a cloud of
disturbed neighbors is termed the quasiparticle (e.g., Landau quasiparticles), while the wavelike motion of
all the particles in the system which does not center around individual particles is termed the collective
excitation (e.g., magnons), following Ref. [6]. Elementary excitations comprise the universal set of
quasiparticles and collective excitations.
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Figure 1.1: Phase diagrams of the
strongly correlated electron sys-
tems. (a) Manganites. (b) Cuprates,
studied in this thesis. (c) Ruthenates.
(d) Cobaltates. Figures from Ref. [9].

scale correlation functions in classical CDW materials has been well established. The
CDW was discovered in the cuprates as a leading competitor of superconductivity, yet a
number of the basic properties of the CDW in the cuprates cannot be understood in the
conventional theoretical framework.

1.2 Charge-density waves

Let us consider the one-dimensional (1D) metal depicted in Fig. 1.2 to first understand the
essence of the CDW as initially proposed by Peierls in the 1930’s [10, 11]. In a metal, the
valence electron density is uniform and atoms are periodically configured in the real space
at high temperature (T ≥ TP). In the reciprocal space, the energy dispersion εk = h̄2k2/2m
crosses the Fermi energy εF. In this system, the charge susceptibility χ, i.e., the response
function which indicates the electron density change by a static electric potential, has an
instability at q = 2kF in the reciprocal space. In particular, χ is expressed by the Lindhard
function χ0 in the non-interacting system at zero temperature and χ0 diverges at q = 2kF.
The divergence of the susceptibility implies the infinite response under the infinitesimal
external field, thus can be interpreted as a phase transition. As a consequence, the electron
density undergoes a transition from the uniform distribution to the modulation with a
finite periodicity π/kF at low temperature (T ≤ TP). This modulation of the electron
density is termed a charge-density wave. The translational symmetry breaking due to
the CDW opens a gap in the electronic band dispersion at εF since k = ±kF becomes a
boundary of the reconstructed Brillouin zone. As a consequence, the macroscopic charge
transport properties transit to an insulator from a metal by the CDW transition. Through
the electron-phonon coupling, the phonon dispersion at q = 2kF is renormalized, which
is known as Kohn anomaly. If the renormalized phonon energy reaches zero, the static
atomic configurations are also modulated in the real space as seen in Fig. 1.2. To verify
this picture experimentally, the electron density modulations can be measured in x-ray
diffraction experiments and the metal-to-insulator transition (MIT) can be observed in
charge transport measurements.

For higher dimensional materials, some features of the CDW differ from the ones of the
1D case even in Peierls’ theory. For instance, only small humps are often observed in the
resistivity of the two-dimensional (2D) materials reflecting the partial gap opening on the
2D Fermi surface unlike the complete MIT and full gap opening on the 1D Fermi surface
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Figure 1.2: Generic features of CDW. (Top left) Schematic figure of one dimensional
atomic chain (black dots). The electron density as a function of space (ρ(x)) is uniform
above the Peierls transition temperature TP. The band dispersion of free electrons cross
the Fermi energy. (Bottom left) T ≤ TP. The atomic position is modulated and ρ(x)
becomes periodic (the CDW state). The band dispersion near the Fermi level is gapped
out. (Right) Kohn anomaly in the phonon dispersion for different dimensions. Figures
from Ref. [10].

in the 1D case. On top of that, electrons correlate in real materials, thus the Lindhard
function χ0 is no longer a good approximation to describe the charge susceptibility χ
of the strongly correlated systems. Therefore the theoretical treatment of the charge
susceptibility χ may need to be more realistic to reconcile the difference between the
experimental results and simple theories when they do no agree.

In the case of quasi-2D cuprates, the CDW was first discovered in 1995 in the form of
stripes observed in the La2−xBaxCuO4 (214) family via neutron diffraction measurements
as a leading competitor of superconductivity [12]. The associated transport anomaly in
resistivity [13], lattice structural change, and intertwined spin ordering were concomitant
in those systems. For a long time the CDW had been evident only in this peculiar
La2−xBaxCuO4 family, yet in 2012 the CDW was discovered in YBa2Cu3O6+x using
resonant x-ray scattering [14] and later in all other cuprate families [15]. A number of
associated properties in cuprates are, however, different from the conventional Peierls
picture. For example, the anomaly in resistivity which indicates the CDW transition is
not evident to date, the phonon dispersion is renormalized below the superconducting
transition temperature rather than at the CDW onset [16], etc... As is evident from the
Kohn anomaly, the CDW is intimately linked with its underlying lattice structure through
the electron-phonon coupling. Experiments under isotropic hydrostatic pressure have
provided fresh perspectives in this direction, namely the suppression of the charge ordering
[17]. In contrast to the hydrostatic pressure, the uniaxial stress enhances the CDW in
YBa2Cu3O6.67 [18]. As in the case of the first discovery of the CDW in YBa2Cu3O6+x, the
uniaxial stress effect on the CDW was studied in microscopic x-ray scattering measurements.
Due to technical challenges associated with performing transport measurements at cryogenic
temperature under the uniaxial stress in a controlled manner, little was known about
complementary macroscopic charge transport coefficients under the same conditions.

In order to fill this void, I will present charge transport and x-ray scattering experiments
on YBa2Cu3O6+x under the uniaxial stress. These experimental results will be presented
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in chapter 4 and chapter 5, respectively. Before moving on to describe the core results,
this thesis will continue with the background physics for YBa2Cu3O6+x in chapter 2, and
explanations about the experimental techniques we have used in chapter 3.



2
C h a p t e r

Background physics for
YBa2Cu3O6+x

2.1 Introduction

Materials with significant electron correlations, known as strongly correlated electron
systems, are of particular interest in modern condensed matter physics. Conventional
theories often fail to describe the properties of such systems. A representative example is
a Mott insulator which is expected to be metallic according to conventional band theory
yet is insulating due to electron correlations despite the half-filled electronic configuration.
As a consequence of electron correlations, various unconventional orders emerge in such
systems when tuning physical parameters, since different many-body ground states are
nearly degenerate. A prototypical strongly correlated system is found in the cuprates
where high temperature superconductivity emerges in a doped Mott insulator (Fig. 2.1),
as was first discovered in La2−xBaxCuO4 by Bednorz and Müller in 1986 [19].

Fundamental properties of superconductivity in cuprates, such as the symmetry of
the superconducting order parameter, have been relatively well understood within the
standard framework of the BCS theory. Also the antiferromagnetic Mott insulating state
of parent compounds is well described by the Heisenberg model. What remains under
debate in the physics of cuprates are unconventional collective behaviors (e.g., pseudogap,
spin orders, charge orders, and various theoretically proposed orders etc..) observed in the
intermediate doping regime between undoped and optimal doping, as well as the strange
metal phase beyond optimal doping. To get insights into the nature of those collective
phenomena, external fields have been utilized on top of temperature and doping to extend
the cuprates phase diagram beyond those two parameters.

Applying external fields is a cleaner way to continuously change electronic proper-
ties of cuprates than tuning carrier dopings, which inevitablely induces disorders in
non-stoichiometric materials. A magnetic field is often used as a tool to suppress supercon-
ductivity and is expected to uncover the metallic ground state masked by high temperature
superconductivity. Remarkably, high field studies on particularly clean cuprate single crys-
tals have discovered a Fermi surface reconstruction by observing quantum oscillations [20].
Moreover, it was observed in x-ray scattering experiments that the magnetic field stabilizes
the CDW introduced in chapter 1 [21, 22]. The quantum mechanical degrees of freedom of
electrons (charge and spin) can couple with the lattice, therefore pressure studies have also
provided fresh perspectives. To this end, isotropic hydrostatic pressure, which suppresses

7
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Figure 2.1: Phase diagram of hole- and electron-doped cuprates. Superconductiv-
ity emerges in a doped antiferromagnetic Mott insulator whose original band filling in the
3dx2−y2 orbital is 1/2 (one electron / hole). The dopant can be holes and electrons. Figure
from Ref. [24].

charge order and enhances superconductivity, has been often used [17, 23]. The uniaxial
stress, on the other hand, stabilizes charge order and suppresses superconductivity, which is
qualitatively opposite to the hydrostatic pressure effects [18]. Lattice vibrations, phonons,
are also affected by both hydrostatic and uniaxial pressures, which directly deform the
underlying crystal structures. Extending the phase diagram using uniaxial stress as a
new axis and providing a correspondence between macroscopic transport coefficients and
atomic scale correlation functions under uniaxial stress are among the core motivations of
this thesis.

Impacts on theories by cuprates should be also mentioned as a closing topic of the
introduction. Broadly speaking, there are two theoretical approaches in condensed matter
physics given the impossibility to exactly solve equations of motion of all components of
a solid and given that only electrons near the Fermi level contribute to the macroscopic
properties as we stressed in chapter 1.1. One approach is to (exactly) solve a simple
model Hamiltonian. Those models are believed to contain the essence of the many-body
effects although one always has to bear in mind whether the model properly captures all
aspects of the real material. The Hubbard model is a representative example. The absence
of analytic solutions in the two-dimensional Hubbard model, often used as a model of
cuprates, has stimulated numerous computational efforts to obtain the ground and excited
states. The other approach is to solve the first-principle Hamiltonian with reasonable
approximations, such as density functional theory (DFT). While DFT does not predict
Mott insulating states in the cuprate parent compounds, the phonon spectra obtained by
DFT and the description of metallic states are reasonably consistent with experimental
observations. In the following we discuss several theoretical descriptions which help to
understand experimental findings.
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Figure 2.2: Crystal structure of cuprates. (a) Unit cells of different cuprate compounds.
(b) CuO2 planes. The hybridization of 3dx2−y2 orbital on the copper site and 2px and 2py

orbitals on the oxygen sites is illustrated. Figures from Ref. [25].

This chapter will present, describe, and classify the most typical features of cuprates
with particular focus on the YBa2Cu3O6+x system studied in this thesis. As it is always the
case for any material, the information about the crystal structure and electronic structure
near the Fermi level is the starting point to understand the origin of the macroscopic
properties. For instance, the orbital degrees of freedom in 3d orbitals of the cuprates
are essentially frozen and, thus, the starting point can be simplified considering this
aspect before tackling complex problems. In the following sections, the crystal structure,
electronic configuration, Fermi surface, and the phase diagram are discussed and explained
in detail in order to understand the physics at the base of YBa2Cu3O6+x.

2.2 Crystal structure

The common feature among all cuprate compounds is a CuO2 plane in their layered
perovskite structure sandwiched by charge reservoir layers1 (Fig. 2.2). The CuO2 plane
consists of CuO4 square-shaped plaquettes whose oxygen corners are shared with adjacent
squares. The CuO4 plaquette is classified into three types depending on the number of
apical oxygens out of the CuO2 plane. CuO2 planes with zero, one, or two apical oxygens
give raise to square, pyramid, or octahedral structure, respectively. In the La2−xBaxCuO4
(214) compounds, those classifications correspond to T, T∗, and T’ structures. The
number of CuO2 planes in a unit cell depends on the compounds. It can be one (La-
based 214 compounds, HgBa2CuO4+δ), two (Bi2Sr2CaCu2O8+δ, YBa2Cu3O6+x), three
(HgBa2Ca2Cu3O8+δ, Bi2Sr2Ca2Cu3O10), and more. The highest Tc at ambient pressure is

1Charge reservoir layers are also known as block layers as proposed by Tokura and Arima [26]. Following
their classification method, electron doped cuprates were discovered by themselves [27].



10 Chapter 2. Background physics for YBa2Cu3O6+x

found in the three-layer compound, HgBa2Ca2Cu3O8+δ. The role of the other elements in
the charge reservoir layers is to supply charges into the the CuO2 planes. From an ionic
viewpoint, one CuO2 plane consists of Cu2+ and O2− therefore the CuO2 plane is charged
-2. In parent compounds, the charge of the charge reservoir layers is +2 to maintain the
charge neutrality of the whole crystal. For example in La2CuO4, the charge reservoir layer,
La2O2, is charged +2 as the valence number of the La ion is +3. By substituting La3+

with Ba2+, the charge of the charge reservoir layers is reduced by x in La2−xBaxCuO4,
and the excess charge of +x enters the CuO2 plane. In this case the effective hole doping
charge in the CuO2 plane equals +x. In a similar fashion, it is possible to dope electrons
into the CuO2 plane, e.g., in Nd2−xCexCuO4 by substituting Nd3+ with Ce4+. Those two
types cuprates are termed hole-doped and electron-doped cuprates, respectively, depending
on the dopant type. The comparison between hole-doped and electron-doped cuprates
is an important issue in the study of cuprates. Nevertheless, in this thesis we focus on
hole-doped samples.

The unit cell of YBa2Cu3O6+x is shown in Fig. 2.3. As in other cuprates, the unit
cell is a layered structure comprising two CuO2 planes. There are two different positions
for Cu atoms and four different positions for O atoms in the unit cell. The Cu(1) atom
and the O(1) atom bond together and they form CuO chain layers. The O(1) site is
fully occupied in fully-oxygenated YBa2Cu3O6+x (x = 1) while the O(1) site is completely
empty in the parent compound (x = 0). In the intermediate range (0 < x < 1), the O(1)
sites are partially filled and various oxygen superstructures are formed in the CuO chain
layers. The planar Cu(2), O(2), and O(3) atoms and the apical O(4) form the pyramid
structure. However the distance between the Cu(2) atom and adjacent oxygen atoms
differ quite a bit between in-plane and out-of-plane. The bond length of Cu(2)-O(4) is
2.3 Å while it is 1.9 Å between Cu(2) and O(2)/O(3), which realizes the two-dimensional
nature of the CuO2 plane. The in-plane Cu-O-Cu bond is not flat and characterized by
a buckling which makes the Cu-O-Cu bond angle 165◦ [28, 29, 30]. Bond valence sums
studies show that the valences of Y and Ba atoms are nearly unchanged from valence
numbers expected from their ionic bonds in the entire hole doping range [29]. It indicates
that the Y layer between two CuO2 plane layers and the BaO layer between the CuO2
plane and CuO chain layer merely stabilize the crystal structure.

The crystal structure of the parent compound of YBa2Cu3O6+x is tetragonal. It
undergoes a structural transition to orthorhombic as the oxygen content increases. The
in-plane lattice parameter slightly increases upon doping up to x = 0.35. Beyond this
value, two distinct in-plane lattice parameters are observed and the orthorhombicity
monotonically increases upon doping until the chains are fully oxygenated (Fig. 2.4). In
the orthorhombic phase, oxygen superstructures are present in the CuO chain layers. The
oxygen superstructure orders are characterized by the periodicity of distinct patterns of
chains filled with oxygen running along the b-axis (Fig. 2.5 (a)). The periodicity of those
oxygen orders along the a-axis depends on the oxygen content x: the roman number in the
order name indicates the periodicity, e.g., Ortho-I order has a period of one lattice constant,
Ortho-II order has a period of two lattice constants, and so forth. The superstructure
stability and correlation length also depend on temperature (Fig. 2.5 (b)). The long-range
oxygen order in the CuO chain layers plays an important role for the electron transfer from
the CuO2 planes as one can see from the fact that the Tc of YBa2Cu3O6.50 is different in
the case of Ortho-I and Ortho-II orders [34] (Fig. 2.6 (a)). The electron transfer from the
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Figure 2.3: Unit cell of YBa2Cu3O7. The unit cell of YBa2Cu3O6+x (x 6= 1) is larger
than this unit cell shown here because O(1) atoms in the CuO chains are removed when
x 6= 1. This figure was generated by VESTA [31].

(a) (b)

Figure 2.4: Lattice parameters of YBa2Cu3O7−δ as a function of δ. (a) In-plane
lattcie parameters. (b) Out-of-plane lattice parameter. Figures from Ref. [30]
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(a) (b)

Figure 2.5: Oxygen orders of YBa2Cu3O6+x. (a) Schematic picture of oxygen orders
in the CuO chain layer. Small filled circles represent Cu(1) sites and large filled (unfilled)
circles represent occupied (unoccupied) O(1) sites. T implies the tetragonal disordered
state, and OI, OII, OV, OVIII, and OIII refer Ortho-I, Ortho-II, Ortho-V, Ortho-VIII, and
Ortho-III oxygen orders, respectively. x in parenthesis is the optimal oxygen stoichiometry
for each oxygen order. Figure from Ref. [32]. (b) Structural phase diagram of oxygen
orders obtained in x-ray diffraction measurements. Figure from Ref. [33].

(a)
(b)

Figure 2.6: Role of oxygen orders. (a) Temperature dependence of magnetization
for YBa2Cu3O6.50. Filled (unfilled) points are the data for Ortho-I (Ortho-II) samples.
Figures from Ref. [34]. (b) Schematic figure to explain the role of CuO chains for the
charge transfer to CuO2 layers. Figures from Ref. [35].
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Figure 2.7: Band structure of YBa2Cu3O7 based on DFT. The reciprocal space is
along the high symmetry directions in the kz = 0 (left) and π/c (right) planes of the
orthorhomnic Brillouin zone. Nearly identical band structure at kz = 0 and π/c planes
reflects the two-dimensional nature of the electronic structure. Figures from Ref. [38].

CuO2 plane to CuO chain layer is also qualitatively explained in Fig. 2.6 (b). The valence
of the Cu(1) ions in a vacant chain is +1. As the oxygen is inserted between two Cu(1)
sites, the valence of Cu(1) becomes +2 to keep the charge. At this stage there is no charge
transfer between the CuO chain layer and the CuO2 layers. Therefore x in YBa2Cu3O6+x

is not equal to the hole doping p (the number of holes per Cu ion in the CuO2 plane)
unlike La2−xBaxCuO4 families where holes are doped by heterovalent substitutions. When
a chain segment with at least two oxygen atoms is formed around x > 0.35, the electron
transfers from the CuO2 planes to the chain layers.

2.3 Electronic configuration and Fermi surface

Density-functional theory (DFT) calculations have shown that a strongly hybridized Cu
3d-O 2p anti-bonding band lies across the Fermi level in lanthanum-based cuprates [36, 37]
and YBa2Cu3O6+x [38]. As shown in Fig. 2.3, the broad band stemming from Cu 3d-O 2p
hybridization is dominant (the band width is ∼ 9 eV), whereas the Y 4p, O 2s, and Ba 5p
bands are narrower and located at -21.3 eV, -16.7 eV, and -10.3 eV below EF, respectively.
Therefore those bands other than Cu 3d and O 2p orbitals do not contribute to the low
energy physics. The valence number of Cu can be +1 (d10), +2 (d9), or +3 (d8). In fact,
photoemission [39, 40] and x-ray absorption [41] studies have shown that the valence of
Cu is +2 (d9). Note that the photoemission studies indicated the existence d10L states (L
is a ligand hole) through the Cu 3d-O 2p covalency [39].

The unit cell has certain symmetries and it is invariant under symmetry operators such
as rotation, inversion, and mirror reflection. It is known that those symmetry operators
belong to a certain point group and the number of total point groups is 32. For example,
the cubic (octahedron type) group is one of them. If the Hamiltonian of the system is



14 Chapter 2. Background physics for YBa2Cu3O6+x

invariant under the group operators, properties of the energy levels of each orbital can
be classified by means of the symmetry and, thus, the problems can be simplified. Let
us consider that one Hamiltonian H, its energy eigenvalue is E, and the wavefunctions
that belong to H are φn (n = 1, 2, ..., d), where d is the degeneracy of the eigenstates
(Hφn = Eφn) and those are orthonormal basis functions. When H is invariant under an
operator R which belongs to one group G, H and R are commutative, namely [H, R] = 0.
In this case,

H(Rφn) = RHφn = REφn = E(Rφn). (2.1)

Therefore Rφn is also an eigenfunction of H. Since the set of φn (n = 1, 2, ..., d) forms the
orthonormal basis, Rφn is equal to the linear combinations of φn (n = 1, 2, ..., d). If one
defines coefficients of the linear combination as (φm, Rφn) = Dmn(R), then one obtains,

Rφn =
d∑

m=1
φmDmn(R). (2.2)

Initially φn are defined as eigenfunctions of H in terms of quantum mechanics, Eq. (2.2)
mathematically indicates that the matrix D(R) is a representation of the group G and φn are
bases of this representation because one can easily prove that D(R) is a homomorphism2.
In the representation theory, irreducible representations for all the point groups are
algebraically known and one can obtain the number of irreducible representations (i) in a
certain representation, such as D(R) in Eq. (2.2), n(i) using the following formula:

n(i) = 1
h

∑
R∈G

χ
(i)
R χR, (2.3)

where h is the order of G. χ(i)
R and χR are the characters of the irreducible representa-

tions (i) and the representation D(R), respectively. The character of a representation
is defined as the trace of the representation, e.g., Tr[D(R)]. Applying this general the-
ory to the 3d orbitals whose wave function ϕnlm(r) is given as a product of the radial
function Pnl(r) and the spherical harmonics Ylm(θ, φ) (ϕnlm(r) = Pnl(r)Ylm(θ, φ) (n =
2, l = 2, m = 0,±1,±2)) under the cubic (octahedron) group (G = Oh), one obtains
(n(a1g), n(a2g), n(eg), n(t1g), n(t2g)) = (0, 0, 1, 0, 1). Therefore the five-fold degenerate 3d or-
bitals are split into two-fold degenerate eg orbitals and three-fold degenerate t2g orbitals
(Fig. 2.8). This is called the crystal field splitting. Note that the wave functions of eg and
t2g orbitals are elongated along the main axes (x, y, z) and the diagonal axes (xy, yz, zx)
of the cubic crystal system, respectively. Therefore in the octahedron case, the t2g orbitals
are the ground states because those are away from the ligands (Fig. 2.8). For the same
reason, the eg orbitals are the ground states in the case of tetrahedron type. Note also that
when multiple electrons dn (n = 2, 3, ..., 8) exist in the 3d orbitals, the ground state is not
obvious because of Hund’s rule originated by the electron-electron Coulomb interaction.
The treatment of the multiple electrons3 is beyond the scope of this thesis, because the
valence of Cu is +2 (d9) in cuprates, thus, hereafter we focus on the single hole case.

2For Ri, Rj , Rk ∈ G which satisfy RiRj = Rk, D(R) is called a homomorphism if D(Ri)D(Rj) = D(Rk)
is satisfied.

3Multiple electrons (or holes) are usually described by multiplet structures. The details of the multiplet
structures can be seen anywhere, e.g., in Ref. [42].



2.3. Electronic configuration and Fermi surface 15

Figure 2.8: Energy diagram of 3d orbitals under the crystal field. The symmetries
of the crystal fields are free atom, cubic, tetragonal, and orthorhombic from the left side.
The numbers on each level are the degeneracy including spins. Note that the energy level
is opposite if the cubic symmetry is the tetrahedron type. Figure from Ref. [43].

Up until now we have seen that the lowered symmetry by a crystal lattice leads to
degeneracy splitting and the energy of the lowest energy state becomes lower. Conversely,
the crystal lattice can be spontaneously distorted by degeneracy splitting. Although the
lattice distortion requires an elastic energy gain, the total energy of the electron and
lattice systems can be further lowered depending on the balance of the two effects. This
phenomenon is known as the Jahn-Teller effect. In fact the eg hole in Cu2+ is a well known
Jahn-Teller ion, which leads to a further tetragonal distortion with the Cu-O bond of
out-of-plane which is longer than that of in-plane. This distortion results in a splitting of
the partially occupied eg orbital into occupied d3z2−r2 states and half-filled dx2−y2 states
(Fig. 2.8).

We have seen that the Cu 3d orbitals split due to the crystal field and the highest
energy state is the 3dx2−y2 state in the atomic picture. In an octahedral crystal field, the
six-fold degenerate O 2p levels split into two-fold degenerate σ and four-fold degenerate π
orbitals, which are parallel and perpendicular to the planar Cu-O direction, respectively
(Fig. 2.9). The strong covalency between the 3dx2−y2 orbital and O 2pσ orbital results
in the strong hybridization between those two orbitals. This hybridization consists of
the anti-bonding and bonding bands depending on the relationship of the phase between
the two orbitals. This anti-bonding band can be seen as a remarkably simple dispersive
feature near the Fermi energy in the band structure calculation shown in Fig. 2.3. The
bottom dispersive bands in Fig. 2.3 are the bonding bands. While this hybridization gives
the wide band width, the hybridization between the other Cu 3d and O 2pπ orbitals is
weak due to the small overlap of the wave functions.

In non-interacting or weakly interacting electron systems, the simple classification
between metals and insulators is made based on the filling of the electronic bands. The
system whose highest energy band is partially filled is metallic, whereas it is insulating if it
is fully filled. In other words, the Fermi level of insulators lies in a band gap, while the one
of metals lies in a band. In this description, the half-filled 3dx2−y2 orbital which we consider
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Figure 2.9: Energy diagram of Cu 3d orbitals, O 2p orbitals, and their hybridiza-
tion under the crystal field. The crystal field splitting in Cu 3d orbitals (same as Fig.
2.8) and O 2p orbitals are shown. The planar Cu 3dx2−y2 orbital and O 2pσ orbitals are
hybridized due to their covalency. Figures from Ref. [44].

here is always expected to be a metallic state as one can see the band crossing at the Fermi
energy (Fig. 2.3). However, the parent compound of cuprates shows insulating behaviors
in transport experiments. The key to understand this discrepancy between the expectation
from conventional theories and the reality of experiments is the intra-atomic Coulomb
repulsion on the Cu 3dx2−y2 orbital. To treat such a correlation effect, the two-dimensional
Hubbard model has been extensively studied as a minimal theoretical model of cuprates.

H = −t
∑

<ij>σ

(
c†

iσcjσ + ciσc
†
jσ

)
+ U

∑
i

ni↑ni↓, (2.4)

where c†
iσ (ciσ) is a creation (annihilation) operator of an electron on the site i and

niσ = c†
iσciσ. In this model, the Coulomb-U represents the intra-atomic Coulomb repulsion

in the localized Cu 3d orbitals. Intuitively, first and second terms in the Hubbard model
represent the itinerant and localized nature of correlated metals, respectively. In the limit
of t � U , the correlation effect is ignored and this model is reduced to the single-band
tight-binding model. This model describes metallic states (Fig. 2.10 (a)) and, therefore,
is often used to phenomenologically describe quasiparticle dispersions near the Fermi
level of doped metallic cuprates. When the Coulomb-U is finite, however, the double
occupancy on one atomic site costs the Coulomb-U , which prevents inter-atomic motions
of electrons. In the presence of the Coulomb-U , the charge transfer process between two
atomic sites dndn → dn−1dn+1 can lower the total energy of the system by opening the
single-particle gap U , which splits the 3d orbitals into the lower Hubbard band (LHB)
and upper Hubbard band (UHB) as depicted in Fig. 2.10 (b-d). By this gap opening,
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Figure 2.10: Schematic density of states of half-filled correlated metals. (a) A
band metal without electron correlations. (b) A Mott-Hubbard insulator (U < ∆). (c)
A charge-transfer insulator (U > ∆). (d) A charge-transfer insulator with a Zhang-Rice
singlet state. It is the case of the cuprates. Abbreviations, B: bonding bands, AB: anti-
bonding bands, NB: non-bonding bands, UHB: upper Hubbard band, LHB: lower Hubbard
band, ZRS: Zhang-Rice singlet, T: triplets due to the hybridization between the Cu 3d
and O 2p orbitals. Figures from Ref. [47].

the density of states becomes zero around the Fermi level, which is consistent with the
insulating behavior in charge transport experiments.

However, this atomic picture where only the Cu 3d orbitals are considered is oversim-
plified to model cuprates because those orbitals are hybridized with the O 2p orbitals.
Therefore the model should include at least the cluster of Cu and O atoms in the CuO2
plane. In this case, one needs to consider the charge transfer from the ligand oxygen to
the Cu dn → dn+1L and the total energy is lowered by the charge transfer energy ∆. The
single particle gap of the cluster is given by either U or ∆, whichever is lower [45]. When
U < ∆, the system is called a Mott-Hubbard insulator and the low energy physics can be
described by the single-band Hubbard model without the O 2p orbitals (Fig. 2.10 (b)).
On the other hand the system is called a charge-transfer insulator if U > ∆ (Fig. 2.10
(c)). Such a classification was made by Zaanen, Sawatzky, and Allen4 [45]. Based on the
photoemission studies, U and ∆ of the various cuprates were estimated to be 6 - 8 eV
and 0.3 - 2 eV, respectively [46, 39] and, thus, the parent compounds of the cuprates are
categorized as charge-transfer insulators (U > ∆).

To deal with the hybridization between the Cu 3dx2−y2 and O 2px (2py) orbitals in the
CuO2 planes, the Emery model (also known as p-d or three band model) was introduced
[48].

H =
∑
i,j,σ

εija
†
iσajσ + 1

2
∑

i,j,σ,σ′
Uija

†
iσaiσa

†
jσ′ajσ′ , (2.5)

4In a solid, electrons form bands at each energy level with the finite band width (e.g., Wd, Wp for the d,
p-bands, respectively). Therefore the band gap of a Mott insulator is smaller than the single-particle gap
and given by U − Wd for a Mott-Hubbard insulator or ∆ − (Wd + Wp)/2 for a charge-transfer insulator.
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where i is the lattice site on the CuO2 planes. a†
iσ(aiσ) is a creation (annihilation) operator

of a hole with the spin σ in the 3d, O 2px and 2py states at the site i. The site-diagonal
terms (εii, Uii) are the band levels and on-site Coulomb repulsion, i.e., (εd, Ud) and (εp, Up)
for the 3d, O 2p states. Finite off-diagonal terms are hopping integrals εij = ±t and an
interaction Uij = V between neighboring sites (Cu and O). The Emery model is the multi-
band Hamiltonian yet can be effectively simplified to the single band Hamiltonian called
t− J model because of the hybridization between correlated Cu and the non-correlated O
orbitals as shown by Zhang and Rice [49]. It suggested that the hybridization between the
Cu 3d spin and O 2p hole forms the singlet (so-called Zhang-Rice singlet), and the band
of the Zhang-Rice singlet is the highest energy state below the Fermi energy (Fig. 2.10
(d)). The t− J model is also the effective Hamiltonian of the single-band Hubbard model
in the limit of U � t. In this effective single band Hamiltonian, the Zhang-Rice singlet
band effectively plays the role of the LHB in the Mott-Hubbard insulator. Below the hole
doping level where the system transits to a metal from an insulator, it is considered that
the localized Zhang-Rice singlets are spatially randomly distributed.

So far the electronic configurations of the parent or lightly doped compounds have
been described in the localized picture to explain the Mott insulating behaviors due to
electron correlations. To explain metallic properties of the doped cuprates in the itinerant
picture, the Fermi surface will be discussed in the rest of this section. As shown in Fig.
2.11, the spectral weight of the single-particle spectral function obtained in angle-resolved
photoemission spectroscopy (ARPES) measurements appears at the Fermi level upon hole
doping while the density of states is completely gapped out in the parent and lightly doped
compounds (Fig. 2.10). In the low doping regime, the spectral weight appears only around
k ∼ (π/2, π/2). This is known as the Fermi arc whose topology is disconnected in the first
Brillouin zone. The absence of spectral weight around k ∼ (π, 0), (0, π) is interpreted as
the pseudogap formation. Upon further doping, the Fermi arcs become longer and finally
they bridge to form the connected Fermi surface [50]. The Fermi surface observed by
ARPES on a sample whose hole doping is p is a hole-like Fermi surface whose area is 1+p
centered at k ∼ (π, π) in the intermediate doping regime and an electron-like Fermi surface
whose area is 1-p centered at k ∼ (0, 0) in the overdoped regime. In comparison with the
Hall number nH based on the high field Hall effect experiments (Fig. 2.11), the carrier
density is consistent with ARPES only for p > p∗ = 0.19 (p∗ is the critical doping of the
pseudogap) although it is not obvious how the carrier density based on the disconnected
Fermi arc is estimated.

Quantum oscillations are another powerful technique to obtain information about
the Fermi surfaces of metals. For p > 0.19, a large hole-like Fermi surface was observed
with quantum oscillations and it is in line with the ARPES and Hall measurements [20].
On the other hand, in the lower doping regime where the magnetic order prevails (p <
0.08), the presence of small Hall like Fermi pockets was indicated by quantum oscillations
experiments. This could be understood as a small hole Fermi surface reconstructed by
the antiferromagnetic order or fluctuation whose propagation vector is QAF =(π, π)5 (Fig.

5Conventionally, 2π/a is often used as the unit of scattering vectors Q in scattering experiments while
1/a is often used as the unit of momentum k in photoemission experiments, where a is the lattice constant.
For instance, QAF = (1/2, 1/2) in the former unit and (π, π) in the latter unit. In this thesis, we basically
follow this convention but 1/a is used as a common unit in discussing scattering vectors in relation with
the Fermi surface.
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Figure 2.11: Doping dependence of the Fermi surface and Hall number. (Left)
(a-e) The spectral weight of the single-particle spectral function at the Fermi level in the
first quadrant of the first Brillouin zone measured in ARPES on La2−xSrxCuO4 (x = 0.03,
0.07, 0.15, 0.22, and 0.30). Note x is equal to the hole doping p in these compounds. (f)
The peak positions of the momentum-distribution functions in panels (a-e). Figures from
Ref. [50]. (Right) The Hall number nH as a function of the hole doping p measured in the
high field Hall effect measurements. The red line indicates nH = p; the blue line indicates
nH = 1 + p, which is naively expected based on the single hole Fermi surface shown in
the left panels. Data are from La2−xSrxCuO4 (gray circles), YBa2Cu3O6+x (gray and red
squares), and Tl2Ba2CuO6+δ (white diamond). Schematic Fermi surfaces are shown above
the graph: Reconstructed small hole pockets below p = 0.08, where the magnetism prevails
(red), reconstructed small electron pockets between p = 0.08 and 0.16, where the CDW
prevails (green), and a single large hole Fermi surface centered at (π, π) above p = 0.19
(blue). Figures from Ref. [52].

2.11). For a long time, the corresponding Fermi surface was not detected in ARPES yet
such a reconstruction was reported in very recent ARPES measurements in multi layered
cuprates [51]. Another complication exists at the intermediate doping range where charge
orders were observed (0.08 < p < 0.16). In this regime, the carriers could be electrons
rather than holes based on the negative Hall number at low temperature. Moreover, the
quantum oscillation measurements also suggested the presence of the small electron pocket.
This is attributed to the Fermi surface reconstruction induced by the static CDW order.
Due to the absence of clear ARPES data of YBa2Cu3O6+x in this doping regime, with the
strongest charge order among cuprates families, some important information about the
Fermi surface, e.g., its shape and location in reciprocal space, is still missing.

Overall, the metallic behavior of the doped cuprates can be relatively well understood
in the Fermi liquid theory for p > 0.19. On the other hand, unconventional non-Fermi
liquid like states for p < 0.19 have prevented researchers from understanding the metallic
properties in terms of conventional Fermi liquid theory and at the same time provided
further complications in relation to charge and spin orders, pseudogap, and Mott insulating
states. Nevertheless, we have presented an overview of the basic building blocks of cuprates,
i.e., the crystal structure and electronic configurations. In the following section, the various
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Figure 2.12: Generic phase diagram of hole-doped cuprates. Figure from Ref. [53].

collective orders in the cuprate phase diagram are phenomenologically described with a
particular focus on the charge ordering.

2.4 Phase diagram and phenomenology
The phase diagram of the hole-doped cuprates is depicted in Fig. 2.12. The undoped parent
compound (p = 0) is an antiferromagnetic Mott insulator. The long range antiferromagnetic
order is rapidly suppressed upon doping holes into the system and completely vanished
at pmin ∼ 0.05. Above pmin, the superconductivity sets in and the superconducting
critical temperature Tc increases as the holes are doped. Tc is maximized at popt ∼ 0.16,
called optimal doping. In the doping region above popt, known as overdoped regime, the
superconductivity is rapidly suppressed and no longer observed above pmax ∼ 0.30. On
the other hand, the doping region between pmin and popt is called underdoped regime and
there diverse ground states reside. A plateau of Tc is observed around p ∼ 0.125 in the
middle of the underdoped regime, which has been known as the 1/8 anomaly named after
this particular doping p ∼ 0.125, which is also that of most samples studied in this thesis.
The normal state above Tc in the underdoped regime is known as the pseudogap state
where gap-like signatures are observed in many physical quantities. The origin of the
pseudogap is still controversial to date. The presence of charge orders and spin orders in a
part of the pseudogap regime also has prevented a full understanding of the pseudogap.
The pseudogap is seen up to the characteristic temperature T ∗ and the strange metallic
behavior is observed above T ∗. The metallic behavior in this regime, namely the T -linear
resistivity, differentiates the strange metal from the ordinary Fermi liquid like metals where
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(b)

Figure 2.13: Magnetic susceptibility of lightly doped cuprates. (a)
(La1−xSrx)2CuO4 for various x. Figure from Ref. [54]. (b) YBa2Cu3O6 and YBa2Cu3O6.3.
Figure from Ref. [55].

Figure 2.14: Zero-field µ+ spin relaxation func-
tions GZ(t) of YBa2Cu3O6.2 in µSR measure-
ments. The oscillation below TN indicates the pres-
ence of a magnetic order. Figure from Ref. [56].

T 2-dependent resistivity is expected. As a consequence, the strange metal phase is the
least understood part of the phase diagram.

In the following sections, those phases in the phase diagram will be discussed on the
basis of several experimental findings.

Antiferromagnetism
Macroscopic magnetic susceptibility measurements indicate the antiferromagnetic order in
the (La1−xSrx)2CuO4 system, up to x ∼ 0.075 [54]. The susceptibility in this system showed
the typical Curie-like temperature dependence, where the Néel temperature TN can be
seen as a local maximum of the magnetic susceptibility (Fig. 2.13). As substituting Sr for
La, TN is lowered and this peak structure finally vanishes, indicative of the suppression of
the antiferromagnetic order. The susceptibility in other cuprates including YBa2Cu3O6+x

showed, however, quite broad temperature dependence, where the only kink like structure
appears around TN [55]. On the other hand, oscillations of asymmetry of muons due
to a long range magnetic order were clearly observed below TN in muon spin rotation
(µSR) measurements (Fig. 2.14). The three-dimensional antiferromagnetic order was also
observed by neutron diffraction measurements on La2CuO4 below the Néel temperature
TN = 220 K [57]. The order is commensurate and collinear antiferromagnetic with the
ordering vector QAF = (1/2, 1/2, 1). The static magnetic order persists upon doping
holes, yet the ordering vector is shifted away from the commensurate one. The doping
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Figure 2.15: Spin waves observed in La2CuO4 by
inelastic neutron scattering. (a) Dispersion rela-
tionship along high symmetry directions in the 2D-
Brillouin zone shown in panel (c) at T = 10 K (open
symbols) and 295 K (filled symbols). Squares, circles,
and triangles were obtained for the incident neutron en-
ergy 250 meV, 600 meV, and 750 meV, respectively. (b)
Spin-wave intensity at 295 K. The solid curves show
the predictions of linear spin-wave theory. Figures
from Ref. [61].

dependence of the incommensurability has been studied by neutron scattering experiments
and it monotonically increases as a function of doping [58]. The spin moment orientation
depends on the system. For instance, it is along the Cu-O bond direction in YBa2Cu3O6
while it is along the diagonal direction (45 degrees away from the Cu-O bond direction) in
La2CuO4.

The orbital degrees of freedom in 3d orbitals of the cuprates are essentially frozen and
the charge degrees of freedom are also frozen in the Mott insulating state. Therefore the
magnetism in undoped cuprates is well described by the Heisenberg model,

H = −2J
∑

<i,j>

Si · Sj, (2.6)

where Si is a total spin moment of electrons localized at i-th ion and J is the exchange
interaction between spin moments of i-th and j-th ions. Σ<i,j> means the summation for
spin moments of neighboring i-th and j-th ions. One obtains the Heisenberg model in
the limit of U � t in the Hubbard model (Eq. 2.4), where J is given by J = −2t2/U .
Antiferromagnetism, the state where spins are aligned anti-parallel, corresponds to the
case of J < 0 whereas ferromagnetism emerges otherwise to minimize the energy. When
the phase transition associated with the spontaneous symmetry breaking takes place, the
collective excitation without energy gap called the Nambu-Goldstone mode appears. It is
a spin wave (or magnon) in the case of the long range magnetic order, which breaks the
spin rotational symmetry. The exchange interaction J in the Heisenberg model can be
determined by measuring spin waves. The determination of J was attempted indirectly
by Raman scattering measurements through the two-magnon process, i.e., the scattering
between two magnons whose momentum magnitude is identical yet opposite in sign,
[59, 60] and directly by inelastic neutron scattering measurements where the dispersive
relationship of the low energy spin waves was observed (Fig. 2.15) [61]. In later years,
the spin wave dispersion was also observed in resonant inelastic x-ray scattering (RIXS)
measurements [62].

The long range antiferromagnetic order is completely suppressed at p ∼ 0.05 yet spin
fluctuations persist up to the optimal doping even in the absence of the static magnetic
ordering [63]. The spin-wave-like dispersions in paramagnetic metals are termed paraman-
gons. In the doping regime where superconductivity emerges, the spin fluctuations can play
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the role of the bosonic glue for Cooper-pairs, i.e. carriers in superconductors. Antiferro-
magnetic spin fluctuations provide a qualitative explanation of the d-wave superconducting
order parameter (see also next section).

Superconductivity
High temperature superconductivity in cuprates is named after its high superconducting
transition temperature Tc compared with conventional superconductors known before
cuprates. The theory of conventional superconductivity is called the BCS theory named
after Bardeen, Cooper, and Schrieffer who first gave microscopic explanations for conven-
tional superconductivity [64]. Thanks to the huge successes of the BCS theory, it has been
widely believed that superconductivity could not survive above 30 K from both theoretical
and experimental perspectives before Bednorz and Müller discovered high-temperature
superconductivity in 1986 [65]. The record of the highest transition temperature has
been beaten again and again after the first discovery. Several different experimental
approaches to realize higher Tc materials beyond cuprates have been attempted in, e.g.,
iron-based superconductors [66] and hydrides under extremely large hydrostatic pressure
[67]. Nevertheless so far the highest Tc at ambient pressure has been reported in one of
cuprate families, i.e., HgBa2Ca2Cu3O8+δ which has Tc ∼130 K [68].

What makes the cuprates different from conventional superconductors? To address
this point, it is useful to review the essence of the BCS theory [69]. When the spin-orbit
interaction between two electrons is sufficiently weak, the wave function of two electrons
Ψ(r1, σ1; r2, σ2) can be decomposed into the orbital part ϕ(r1 −r2) and spin part χ(σ1, σ2),
i.e., Ψ(r1, σ1; r2, σ2) = ϕ(r1 − r2)χ(σ1, σ2). When those two electrons are placed onto the
Fermi surface and the interaction between two electrons V (r1 −r2) are not spin dependent,
the Schrödinger equation to be solved is[

− h̄2

2m(∇2
1 + ∇2

2) + V (r1 − r2)
]
ϕ(r1 − r2) = (E + 2EF)ϕ(r1 − r2), (2.7)

where EF is the Fermi energy and E is the energy of two electrons with respect to EF.
The Fourier transformation of this equation is

(2εk − E)ϕ(k) = −
∑

k′>kF

V (k,k′)ϕ(k′), (2.8)

where εk = h̄2k2/2m − EF is the single particle energy of one electron. If one assumes
that the interaction is attractive, V (k,k′) = −|V0|, in the vicinity of the Fermi energy
(|εk| < Ec), one obtains the binding energy E as follows.

E ' −2Ec exp(−2/N0|V0|) < 0, (2.9)

when N0|V0| is sufficiently small (weak coupling regime). N0 is the density of states around
the Fermi level. Eq. 2.9 tells that a bound state between two electrons always exists
because the energy of two electrons is lowered if the attractive interaction exists. Such
a bound state of two electrons is called a Cooper pair. The superconducting state is
interpreted as the ”Bose-Einstein-condensation-like” phase-coherent state of many Cooper
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pairs in a solid, also known as the BCS state6. Therefore the central task in research
of superconductivity is to reveal what the pairing potential V (k,k′) is from various
experimental results. Early researchers of cuprates wondered whether Cooper pairings are
formed as in conventional superconductors described by the BCS theory. The quantization
of magnetic flux in cuprates was studied and the value of the quantum flux was h/2e,
implying that the carriers in cuprate superconductors are also Cooper pairs [71]. Therefore
one can in principle try to understand the superconductivity of cuprates in the framework
of the (extended) BCS theory.

To discuss the bound state of two electrons (Eq. 2.9), the attractive interaction V (k,k′)
was approximated to be constant in a certain energy range for simplicity, yet V (k,k′)
needs to be clarified by experiments. The attractive interaction is related with the order
parameter of superconductivity ∆(k) defined as

∆(k) =
∑
k′
V (k,k′) 〈c−k′↑ck↓〉 , (2.10)

where ckσ is an annihilation operator of an electron with the momentum k and spin σ
and 〈· · ·〉 implies the mean field operation. The information of the order parameter is
intimately linked with the pairing potential. In the mean field approximation, the order
parameter ∆(k) follows the gap equation

∆(k) = −
∑
k′
V (k,k′)∆(k′)

2Ek′
tanh

(
Ek′

2kBT

)
, (2.11)

where Ek =
√
εk

2 + |∆(k)|2 is the single particle energy of Bogoliubov quasiparticles, which
can be directly observed in ARPES. Obtaining solutions ∆(k) 6= 0 from this self-consistent
equation is a necessary condition of the superconducting transition. If one assumes the
spherical Fermi surfaces in the normal state, the pairing interaction can be expanded by
spherical harmonics Yl,m(k),

V (k,k′) = −4π
∑

l

V l
∑
m

Yl,m(k)Y ∗
l,m(k′). (2.12)

In this case, for each angular momentum l, the superconducting order parameter is also
expressed by means of Yl,m(k) through Eq. 2.11,

∆(k) = ∆(l,m)Yl,m(k). (2.13)

The symmetry of superconductivity can be s-wave (l=0), p-wave (l=1), d-wave (l=2), and
so forth, based on the angular momentum l of the Cooper pairing7. The wave function of a
Cooper pair is antisymmetric, therefore the spin part is antisymmetric (termed spin-singlet
pairing) for l = 0, 2, ... and symmetric (termed spin-triplet pairing) for l = 1, 3, ....

6The attractive interaction in most of solids is not strong enough to actually induce the Bose-Einstein
condensation (BEC), therefore this expression is intuitive but inaccurate for describing the BCS state.
The BEC state was actually observed in the ultracold atomic systems rather than solid-state systems [70].

7In a solid, the assumption of the spherical Fermi surface is no longer valid because of the point group
symmetry of the crystal lattice. Therefore the symmetry of ∆(k) should be classified by irreducible
representations of the point group. Nevertheless we use this classification based on the angular momentum
to intuitively understand the momentum dependence of ∆(k).
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Figure 2.16: Momentum dependence of the su-
perconducting gap. The gap amplitude was esti-
mated by ARPES measurements on Bi2Sr2CaCu2O8+δ.
The gap amplitude is zero at the nodes (k ∼
(π/2, π/2)). Accordingly, the momentum points where
the amplitude is maximized (k ∼ (π, 0), (0, π)) are
termed anti-nodes. Inset shows the Fermi surface.
Figures from Ref. [72].

The assumption in discussing Eq. 2.9 corresponds to the s-wave symmetry because the
pairing interaction was assumed to be spherically symmetric. This simple assumption
actually works for most conventional superconductors. The isotropic pairing is mediated by
phonons and Ec is given by the Debye frequency h̄ωD, the maximum frequency of phonons.
In this framework, the BCS theory explains a number of properties of conventional
superconductivity such as the isotope effect, universal ratio ∆(T = 0)/kBTc = π/eγ ' 1.76,
and so on8 [69]. Electrons at the same site tend to form a Cooper pair in the case of
s-wave superconductors because ∆(r1 − r2) is a delta function in the real space if ∆(k) is
constant in the k-space. However in correlated materials, such a formation is energetically
unfavorable because of the strong onsite Coulomb interaction. To avoid the pair formation
at the same site (∆(r1 − r2) = 0 when r1 = r2), the summation of the superconducting
order parameter over the Fermi surface needs to satisfy the following relationship, also
known as a modern definition of unconventional superconductivity.

∑
k

∆(k) = 0. (2.14)

To meet this criterion, ∆(k) needs to change the sign on the Fermi surface. It is impossible
for the s-wave gap function whose amplitude is constant but possible for the higher order
gap functions such as the p- and d-wave ones. The momentum points where ∆(k) = 0 are
termed nodes, which were observed in a number of experiments.

To model the superconductivity in cuprates, the antiferromagnetic spin fluctuation has
been proposed for a pairing potential as follows [73, 74].

V (k,k′) ∼ 3
2U

2χs(k − k′) (> 0), (2.15)

where χs(k − k′) is the dynamical spin susceptibility. The antiferromagnetic fluctuations
shows a peak feature at Q = (π, π) in the dynamical spin susceptibility, therefore by

8γ is Euler’s constant. γ = limn→∞ (
∑n

k=1 1/k − log n)
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assuming χs to be χs(q) = δ(q − Q), the gap equation (Eq. 2.11) becomes

∆(k) ∼ −
∑
k′

3
2U

2χs(k − k′)∆(k′)
2Ek′

tanh
(
Ek′

2kBT

)

= −3
2U

2 ∆(k + Q)
2Ek+Q

tanh
(
Ek+Q

2kBT

)
. (2.16)

Thus the gap equation (Eq. 2.16) has solutions only if

∆(k)∆(k + Q) < 0 (2.17)

is satisfied. V (k,k′) in Eq. 2.15 is a repulsive interaction between two quasiparticles.
However it can be effectively interpreted as an attractive interaction by changing the
sign of the order parameter between two points connected by Q = (π, π) on the Fermi
surface, i.e., kF and kF + Q (Eq. 2.17). In this model, the symmetry of the order
parameter is given by dx2−y2 (∆(k) ∝ kx

2 − ky
2) and such a momentum dependence of the

gap amplitude was observed in ARPES measurements (Fig. 2.16) [75, 72]. The d-wave
symmetry is also consistent with Josephson junction experiments [76]. In momentum
space, the van Hove singularities where the density of states of quasiparticle is large exist
near k = (±π, 0), (0,±π) and those points are connected by Q = (π, π). Therefore the
effectively strong attraction between two quasiparticles could be ascribed to the spin
fluctuations, which would explain why Tc of cuprates is high. Experimental correspondence
between Tc and the exchange interaction J in the Heisenberg model also favors this scenario
[77].

However the spin fluctuation mechanism concerned here may be too simple to fully
catch the nature of the superconductivity in cuprates [78]. The electron-phonon coupling
was clearly observed in both electron and phonon single particle spectra [79, 80]. Therefore
it is not clear whether the phonon contribution can be completely ruled out in order to
quantitatively explain the high Tc. Also the BCS theory tells that Tc in unconventional
superconductors defined by Eq. 2.14 is very sensitive to (nonmagnetic) disorder as
demonstrated in Sr2RuO4 [81]. Despite the non-stoichiometric nature of cuprates, Tc being
rather insensitive to disorder has been another topic of research on these materials.

Pseudogap
The pseudogap state is characterized by another gap-like feature which appears in several
types of excitation spectra above the superconducting transition temperature Tc. It was
first pointed out in the spin-lattice relaxation rate in nuclear magnetic resonance (NMR)
measurements. A sharp drop in the relaxation rate was observed below 100 K, well above
Tc = 61 K [82]. Subsequently signatures of the pseudogap were found in the Knight
shift in NMR measurements [83] and spin excitations in the inelastic neutron scattering
measurements [84]. The pseudogap was also directly observed as suppression of the density
of states around Fermi level above Tc and below the pseudogap temperature T ∗ in ARPES
measurements [85, 86]. A large energy shift of the energy-distribution curves was observed
in the anti-nodal regions (k ∼ (π, 0)) but not in the nodal regions (k ∼ (π/2, π/2)) [87]. As
a consequence the spectral weight at the Fermi level is observed around the nodal regions as
disconnected Fermi arc in the first Brillouin zone (Fig. 2.17). Upon hole doping, the length
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Figure 2.17: Schematic of the momentum depen-
dence of the superconducting gap and pseudo-
gap. The gap amplitude was estimated by ARPES
measurements on Bi2Sr2CaCu2O8+δ. (a) Underdoped
sample with Tc = 75 K. (b) Underdoped sample with
Tc = 92 K. (c) Overdoped sample with Tc = 86 K.
The Fermi arc (red curves) exists above Tc, reflecting
the pseudogap opening only in the anti-nodal regions.
Below Tc, the Fermi arc is gapped out except for the
nodal point. The superconducting gap amplitude is
well described by the d-wave symmetry. Figures from
Ref. [92].

of the Fermi arcs increases and finally a connected Fermi surface appears. Accordingly,
T ∗ decreases monotonically as a function of the hole doping p and the pseudogap is not
observed anymore in the overdoped regime (p > p∗ = 0.19) (Fig. 2.12).

The qualitative similarity between the momentum dependence of the pseudogap and of
the d-wave superconducting order parameter had led many to believe that the pseudogap
state could be characterized as the precursor of the superconductivity, i.e., preformed
Cooper pairs or superconducting fluctuations, which are phase incoherent states [88].
However signatures of the superconducting fluctuations were observed only just above Tc
and did not persist up to T ∗ in a number of experiments, e.g., microwave measurements
[89]. Also the node of the d-wave superconducting order parameter exists only at one point
on the Fermi surface where it crosses with the high symmetry lines (ky = ±kx) while the
pseudogap is zero on the Fermi arc in ARPES as shown in Fig. 2.17 [90, 91, 92, 93]. Based
on this quantitative discrepancy between the superconductivity and pseudogap states, it
was proposed that the two states could actually be in competition.

In light of this possible phase competition, another proposal that the pseudogap could
be characterized as a distinct thermodynamic phase associated with the spontaneous
symmetry breaking has been put forward. As in Peierls’ theory of charge-density waves, a
finite Q order such as the CDW can potentially open a gap on the Fermi surface. The
nesting by the charge order which connects two ends of the Fermi arc was suggested as the
Fermi surface instability [94]. The signature of gap opening due to density waves distinct
from the superconductivity was also observed in ARPES measurements as a back-bending
feature in the quasiparticle band dispersions in the anti-nodal regions [95]. However the
quantum critical point for the pseudogap is p = 0.19 while it is at p = 0.16 for the charge
order. Also the T ∗ is much higher than the onset of the charge order, TCO ∼150 K at
maximum. On top of that, the pseudogap is ubiquitously observed in all cuprates while
the Fermi surface shape is quite material dependent. Therefore it is hard to explain the
pseudogap which equally occurs in different materials at high temperature T ∗ solely as a
consequence of the Fermi surface instability associated with the density waves.

While onset of charge density wave order does not coincide with T ∗, recently other
types of symmetry broken states were reported at T ∗: rotational symmetry breaking
and time-reversal symmetry breaking. The former is often termed nematicity and was
first pointed out by transport measurements of La2−xSrxCuO4 and YBa2Cu3O6+x [96].
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Subsequently the nematicity was reported in a number of experiments, e.g., scanning
tunneling spectroscopy [97], ARPES [98, 99], and Raman scattering [100]. The in-plane
anisotropic Nernst coefficient and magnetic susceptibility, which behave like an order
parameter of the nematicity, were observed below T ∗ [101, 102, 103]. Furthermore the
nematic susceptibility diverges towards T ∗ [104]. Anisotropic signals in the spin excitations
measured by inelastic neutron scattering were observed although the onset of this nematicity
originated from the spin sector is much lower than T ∗ unlike other measurements [105, 58].
As a possible mechanism behind the nematicity, fluctuations of stripe order [106, 107] and
the Fermi surface instability (so-called Pomeranchuk instability) [108, 109, 110, 111, 112]
have been theoretically proposed, yet the origin of nematicity is still not clear to date. On
the other hand, the time-reversal symmetry breaking was reported in polarized Kerr effect
measurements [113] and polarized neutron diffraction measurements [114, 115], motivated
by the intra-unit cell loop current order theory proposed by Varma et al. [116]. It was
pointed out that the Kerr effect could be interpreted as the result of the chiral charge
ordering [117], thus it is not clear whether the time-reversal symmetry breaking is the only
interpretation of this experiment.

The origin of the pseudogap needs to be elucidated by future studies including former
theoretical proposals whose experimental verifications are not still clear, e.g., the momen-
tum dependent Mott transition suggested by the dynamical mean field theory (DMFT)
[118].

Strange metal

Right after the discovery of superconductivity in the cuprates, the normal-state resistivity
was found to be T -linear over a wide temperature range and not saturated up to 1000 K
[119]. Such metallic behaviors are in stark contrast to the conventional Fermi liquid theory
where the resistivity is expected to be T 2-dependent and saturated at high temperature
due to the Mott-Ioffe-Regel criterion [4, 120]. Such a non-Fermi liquid like metallic state
was called strange metal and interpreted as a marginal Fermi liquid at the early stage [121].
In the underdoped regime, the T -linear resistivity was observed only above the pseudogap
temperature T ∗ and the temperature dependence deviates from the linear below T ∗ [122].
The T -linear resistivity persists down to ∼ Tc at the optimal doping where the Tc is the
highest in the entire hole doping range, thus it was suggested that the pairing mechanism
may be closely linked with the strange metal in relation with the quantum criticality [123].

The normal-state resistivity is, however, masked by superconductivity below Tc. In the
underdoped cuprates (p < p∗), the upturn in the resistivity at low temperature, reminiscent
of an insulator, was observed under high magnetic fields which obliterate superconductivity
[124]. The relatively low Tc in the 214 families have enabled one to perform similar studies
on the optimally doped and overdoped cuprates under a steady field. For p > p∗, the
upturn in the resistivity was not observed but instead the T -linearity persists down to
T → 0, indicative of the quantum critical point of the pseudogap at p = p∗ and T = 0
[125]. Further studies revealed that the T -linear resistivity as T → 0 is a generic feature
of a number of cuprate families for p > p∗ [126, 127]. This universality in the T -linear
dependence in spite of different Fermi surfaces is explained by means of the Planckian
limit, h̄/τ = kBT , i.e., the upper boundary of the decay rate of Landau quasiparticles in
the Fermi liquid theory [4, 128]. Such a doping dependence of the strange metallicity was
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Figure 2.18: Neutron diffraction measurements
on La1.48Nd0.4Sr0.12CuO4. Measurements were per-
formed at 11 K. (a) Reciprocal space map in the
(H,K, 0) plane. White circles indicate Bragg peaks for
the LTT structure black points denote the superstruc-
ture peaks originated by charge and spin orders. (b)
Neutron diffraction scan along (1/2, 1/2+q, 0) indi-
cated in (a). The peaks at q = ±0.125 are originated
from the spin orders. (c) Scan along (0, 2+q, 0) indi-
cated in (a). The peaks at q = ±0.25 are originated
from the charge orders. Figures from Ref. [12].

also obtained in a recent numerical study on the doped Hubbard model [129].

Charge order
Right after the discovery of superconductivity in cuprates, Zaanen and Gunnarsson made
theoretical predictions about a charge ordering tendency based on the doped Hubbard
model [130]. Subsequently the charge order was first experimentally observed in the
214 compounds by Tranquada et al. in neutron diffraction measurements [12]. Below
the structural transition temperature from the low temperature orthorhombic (LTO)
phase to the low temperature tetragonal (LTT) phase (70 K), a superstructure peak
appears at Q = (0, 2 − δcharge, 0) where δcharge = 0.25, which indicates the formation of
a charge order whose periodicity in the real space is four times the structural unit cell.
Upon further cooling, another superstructure peak appears at Q = (1/2, 1/2 + δspin, 0)
where δspin = 0.125, which indicates the spin order. The real space periodicity of the
spin order is eight times of the unit cell and two times that of the charge sector. These
intertwined charge and spin orders form the so-called stripe order9 (Fig. 2.18). Note
that neutron scattering measurements cannot detect the charge correlation because of
the charge neutrality of neutrons, therefore the associated lattice distortion was detected
indirectly from the electron density modulation. In later years, a direct observation of
the density wave modulation in the charge sector was demonstrated by Abbamonte et al.
with resonant soft x-ray scattering measurements [131].

Anomalies in both in-plane and out-of-plane resistivities at the stripe order onset were
noticed even before the discovery of the stripe order [132]. The Hall coefficient is reversed
upon cooling [133]. It indicates a Fermi surface reconstruction induced by the stripe
order, but the clear effect on the Fermi surface below and above the stripe order onset
was not confirmed in ARPES measurements [134, 135]. Recent Hall effect experiments
suggested that the sign of the Hall coefficient is reversed for x < 0.11 but it does not cross
zero for x = 0.12 where the stripe order is the most stabilized [136]. It implies that the
balance between the original Fermi surface area and the reconstruction may matter in

9The term ”stripe” is sometimes differently used to emphasize the uniaxial nature of charge and
spin orders which are not necessarily intertwined. The biaxial counterpart is often called ”checkerboard”
accordingly.
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Figure 2.19: Phase diagram of La2-xBaxCuO4 in
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interpreting the Hall coefficient [137]. Further information regarding the stripe order in
the 214 compounds is summarized in the latest review by Tranquada, Dean, and Li [138].

The stripe order is particularly strong at x ' 0.125, where Tc is hugely suppressed < 5
K in the 214 system (Fig. 2.19). It suggests a clearly competitive relationship between the
stripe order and superconductivity. The suppressed Tc dome was called the 1/8 anomaly
named after its doping value x = 0.125 = 1/8. The reminiscent plateau like behavior in
Tc around the 1/8 doping regime was also observed in YBa2Cu3O6+x (Fig. 2.12), yet no
indication of static orders was known for a long time.

Although the charge orders were considered to be peculiar to the 214 families for a
long time, the charge-density waves in YBa2Cu3O6+x were first discovered with RIXS by
Ghiringhelli et al. in 2012 [14]. The periodic structure of the valence electron density
modulation is evident as a quasielastic peak in the energy- and momentum-resolved RIXS
spectra shown in Fig. 2.20. The peak in the reciprocal space is located at Q ∼ 0.31
along the Cu-O bond direction, which is close but not identical to the commensurate
wave vector Q = 1/3 ' 0.33 · · · . This incommensurate peak corresponds to the valence
electron density modulation with the periodicity of ∼ 3.2 in-plane lattice constants, which
breaks the translational symmetry of the underlying crystal lattice. It is confirmed that
the charge modulation develops in the CuO2 planes based on its energy dependence,
where the quasielastic peak was observed only with the absorption edge of the Cu(2) site
and not with that of the Cu(1) site. Although the same compound was investigated in
previous resonant energy-integrated x-ray scattering (REXS) measurements [140], the
CDW quasielastic peak was not clearly observed at that point. Moreover, based on the
polarization dependence of the RIXS cross section, the quasielastic peak was found to be
from the charge scattering rather than the spin scattering. The quasielastic peaks are
observed along two Cu-O bond directions, namely a- and b-axis in YBa2Cu3O6+x, at the
wave vector Q = (δa, 0), (0, δb) in the two-dimensional Brillouin zone. δa and δb are the
incommensurate values. This immediately implies two candidates for the spatial characters
of the charge order: a uniaxial CDW with domains where the stripe-like modulation
runs along the two different in-plane directions or the checkerboard (biaxial) order. The
former picture has been put forward and supported by a number of recent experiments
[141, 142]. The out-of-plane correlation length of those CDW domains is much shorter
than the in-plane correlation lengths, indicative of their two-dimensional nature. The very
broad quasielastic peak along the out-of-plane direction is located at half-integer values in
the reciprocal space [22]. It indicates an inter-layer anti-correlation, which is explained
by the long-range Coulomb interaction between holes in the adjacent layers [143]. The
CDWs discussed so far are called the 2D-CDWs in this thesis to distinguish them from the
three-dimensionally correlated CDW introduced below.

At the 1/8 doping, the CDW is observed below 150 K. The intensity and correlation



2.4. Phase diagram and phenomenology 31

Figure 2.20: RIXS spectra of Nd1.2Ba1.8Cu3O7
for various wave vectors. The elastic peak cor-
responds to the 2D-CDW. Figure from Ref. [14].
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length monotonically increase upon cooling, are maximized at the superconducting tran-
sition temperature Tc, and monotonically decrease upon further cooling below Tc (Fig.
2.21). This temperature dependence clearly demonstrates the suppression of the CDW
by superconductivity. On top of that, the CDW below Tc is enhanced in presence of a
magnetic field which weakens superconductivity while the CDW above Tc is barely affected.
Once the superconducting long-range order is completely obliterated by a sufficiently high
magnetic field, the enhancement of the CDW is saturated and the temperature dependence
resembles that of an order parameter. The competition between those two phases is clearly
evident based on such temperature and magnetic field dependences.

The CDW in YBa2Cu3O6+x has been comprehensively studied thanks to the minimal
chemical disorders with defects mainly confined in the CuO chain layers and clean CuO2
planes, which were also demonstrated by the quantum oscillation measurements which
require high-quality samples whose mean-free path needs to be greater than the cyclotron
radius [20]. Soon after the discovery, the doping dependence of the 2D-CDW was investi-
gated by Achkar et al. [144], Blackburn et al. [145], and Blanco-Canosa et al. [146]. The
CDW in YBa2Cu3O6+x is observed in the doping range of p = 0.08 - 0.16 on top of the 1/8
plateau of the superconducting dome (Fig. 2.22). The competitive relationship between
the CDWs and superconductivity also explains the reason why the 1/8 plateau is present.
The onset temperature of the CDW depends on the hole doping and ranges between
100 and 150 K, that is the intermediate range between the superconducting transition
temperature Tc and the pseudogap temperature T ∗. The highest onset temperature is
observed at the 1/8 doping, analogous to the stripe order in the 214 compounds. The
doping dependence of the incommensurability (δa and δb) in YBa2Cu3O6+x is, however,
quite different from the one deduced from the charge sector of the stripe order in the
214 compounds. The incommensurability in YBa2Cu3O6+x linearly decreases upon hole
doping, while the one in the 214 compounds increases and is saturated above the 1/8
doping (Fig. 2.23). Also, unlike the stripe order, no static magnetic order intertwined with
the CDW was observed in YBa2Cu3O6+x. The static magnetic order is observed as the
spin-density waves only at the low doping levels (p ≤ 0.085), which barely overlap with the
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doping levels where the CDW is observed [105, 147, 58]. We remark that CDWs were also
observed in Bi-based cuprates [94, 148] and Hg-based cuprates [149]. The characters of
the CDW are quantitatively material-dependent yet qualitatively similar in all compounds.
Another charge order was also observed in the overdoped regime of the Bi-based cuprates
[150].

In the presence of the electron-phonon coupling (EPC), the CDW affects the phonons
in ordinary CDW materials [10, 11]. The anomaly is observed as the softening of the
phonon dispersions at the CDW wave vector, known as the Kohn anomaly. The structural
phase transition takes place if the energy of the phonon mode approaches zero by this
softening as experimentally observed in quasi one-dimensional (1D) systems. Details
and mechanisms of the CDW strongly depends on the dimensionality of the electron
system in each material and those of non-1D materials are typically complex. In the case
of YBa2Cu3O6.6, the strong phonon softening was observed in non-resonant hard x-ray
scattering (IXS) experiments (Fig. 2.24) [16]. This anomaly is, however, the strongest not
at the onset temperature of the CDW but at Tc unlike the typical Kohn anomaly. This
aspect also implies the complex and competing nature of the CDW and superconductivity.
The phonon dispersions are typically measured by non-resonant IXS measurements whose
energy resolution is significantly better than that of the RIXS. Recent advancement of
the energy resolution in RIXS enabled the observation of the phonon contributions in the
RIXS spectra and the estimation of the EPC strength was attempted taking advantage of
the leading phonon term in the RIXS cross section which is different from the one of the
non-resonant IXS [152, 153].

A three-dimensional (3D) CDW in YBa2Cu3O6.67 in x-ray scattering measurements
under the high magnetic field was reported [21, 154, 155]. Above the magnetic field
exceeding 15 T, a new sharp peak feature in the quasielastic intensity appears at the integer
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value along the L direction in the reciprocal space, indicating the in-phase correlations
between adjacent CuO2 layers in contrast to the anti-correlation observed as the broad
peak at half-integer L arising from the 2D-CDW. The in-plane incommensurability of
the 3D-CDW is the same as the one of the 2D-CDW. The correlation lengths of the
3D-CDW at 30 T (ξb

3D ∼ 180 Å, ξc
3D ∼ 50 Å) are much greater than those of the

2D-CDW (ξb
2D ∼ 40 Å, ξc

2D ∼ 7 Å), implying the long-range nature as can be intuitively
understood from the much sharper peak in the reciprocal space (Fig. 2.25 (a)). While the
2D-CDW appears along both Cu-O bond directions, the 3D-CDW is observed only along
the b-axis. So far the magnetic field induced 3D-CDW was observed below the 1/8 doping
with the x-ray scattering measurements [156]. The ultrasound experiments indicated the
thermodynamic phase transition into the 3D-CDW in the similar doping range where the
2D-CDW is observed [157]. The magnetic field induced 3D-CDW was also observed in
NMR measurements [158, 159]. In any cases the onset temperature of the field-induced
3D-CDW is always below zero-field Tc unlike the one of the 2D-CDW (Fig. 2.26). A
similar but different 3D charge order was observed also in YBa2Cu3O6+x thin films even in
the absence of magnetic field [160]. This 3D charge order persists up to room temperature
and arises also from the CuO chain layers unlike the CDWs in bulk materials.

More recently, the 3D-CDW in YBa2Cu3O6.67 (p = 0.12) was induced by the uniaxial
stress above and below Tc unlike the magnetic field induced one observed only below Tc
[18]. The 3D-CDW was observed only along the b-axis when 1% compressive strain was
applied along the a-axis but no 3D-CDW correlation was induced by the strain along b-axis.
The correlation lengths of the strain-induced 3D-CDW at 1% (ξb

3D ∼ 310 Å, ξc
3D ∼ 94 Å)

are larger than the values reported under magnetic field. The complete softening of the
phonon mode at the wave vector of the 3D-CDW is associated with this CDW transition,
in analogy with soft-mode-driven CDW in classical CDW materials such as NbSe2. The
uniaxial stress also selectively enhances the 2D-CDW perpendicular to the stress direction
[142]. This result suggests that the spatial nature of the 2D-CDW is stripe rather than
checkerboard because CDWs along both directions should be simultaneously modified if
the spatial character is checkerboard-type. This strain effect on the 2D-CDWs is observed
for both a- and b-axis compressions while the 3D-CDW is induced by the compression only
along the a-axis. So far the strain-induced 3D-CDW was observed only at this peculiar
doping level (p = 0.12), therefore the investigation of different doping levels is one of main
subjects in this thesis as shown in chapter 5.

The origin and driving force behind charge ordering phenomena are one of the central
issues. In fact, the 2D-CDW has been considered to be nucleated around spatially
random defects based on the ’central peak’ in the IXS measurements [16]. The non-
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Figure 2.26: Phase diagram around the 1/8
doping under magnetic field. Green triangles
indicate the onset temperature of the 2D-CDW
deduced from the x-ray scattering measurements.
The red circles and blue squares indicate the on-
set of the 3D-CDW deduced from the ultrasound
measurements and NMR, respectively. The black
diamonds are the temperature where the sign of
the Hall coefficient is reversed. Figure from Ref.
[157].

stoichiometric CuO chain layers are natural defect sites and thus naively explain the
maximum in the 2D-CDW diffraction at the half-integer points along the out-of-plane
direction (Fig. 2.25). This picture is also consistent with the lack of thermodynamic
signatures at the onset and considerable intensity in the zero-temperature limit, despite
the competition with superconductivity. On the other hand, the 3D-CDW are considered
to be a genuine electronic phase based on its long range nature and strong competition
with superconductivity [142].

Overall it is now well established that the charge ordering is a ubiquitous tendency
in all underdoped cuprates. The correspondence with the charge transport properties is,
however, not clear and quite different from classical CDW materials, e.g., the absence of
any noticeable features in the normal-state resistivity. A number of anomalous transport
properties, such as the sign reversal of the Hall coefficient and the presence of the small
electron Fermi surface suggested by quantum oscillation measurements, were reported even
before the discovery of the CDW in RIXS and have later been attributed to charge ordering
[161, 162]. Detailed explanations of the anomalous transport coefficients in relation with
the charge ordering will be further provided in the introduction of chapter 4. To provide
further information on this issue, we present normal-state transport measurements under
uniaxial stress in chapter 4. Extending the phase diagram of the charge orders by uniaxial
stress is presented in chapter 5.
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C h a p t e r

Experimental methods

3.1 Introduction
Many experiments in condensed matter physics can be categorized as observations of
the response of materials when they are stimulated by external fields. Examples are the
electrical current under the electric field (charge transport experiments), the magnetization
under the magnetic field (magnetic susceptibility experiments), and so forth. Such states
stimulated by the external fields are in general non-equilibrium states, and the complete
theoretical treatment of such states is still one of the most difficult problems in physics
to date. Nevertheless, as far as the response is linearly proportional to the external field,
the linear response theory through the Kubo formula which calculates various physical
quantities from the microscopic Hamiltonian has been well established to deal with the
non-equilibrium states [163]. In this framework, the central work for theorists is to derive
macroscopic properties by calculating response functions, which can be experimentally
constrained by microscopic measurements. In general, assumptions in the linear response
theory are not always valid, yet complementary macroscopic and microscopic experimental
insights under the same experimental conditions are considered to be valuable to develop
solid-state theories.

This chapter continues with elaborations of experimental methods that we have used
for the measurements presented in the next two chapters from their principles to practical
aspects. First, we explain the uniaxial stress technique used as an external field in
all measurements. Subsequently the sample preparation for the strain experiments is
illustrated in detail since it is a key step to perform successful strain experiments. In
the later two sections, basic principles of the transport experiments and resonant x-ray
scattering experiments are described. In particular, the complementarity of those two
experiments to elucidate the properties of quantum materials is stressed.

3.2 Uniaxial stress technique

3.2.1 Introduction
In research on quantum materials, the uniaxial stress technique with piezoelectric stacks
was utilized by Fisher et al. around 2010 [164] while previously it was used mainly in the

35
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field of semiconductors [165]. This technique has been applied in a number of systems to
study unconventional phenomena in quantum materials such as nematicity in iron-based
superconductors [166], hidden orders in URu2Si2 [167], etc... The nematic susceptibility
deduced from transport properties under strain was defined to discuss thermodynamic
phase transitions by means of Landau theory. Although the accessible strain was limited
because samples were directly attached on a piezoelectric stack, the response was large
enough to study the nematicity in these compounds. In 2014, Hicks et al. have made a
newly designed apparatus to apply the uniaxial stress on a sample1 [169]. The combination
of the careful sample preparation into a tiny rectangular shape2 and the new piezoelectric
stack based apparatus has made it possible apply the strain around 1 % routinely. The
discovery that Tc of Sr2RuO4 under strain becomes more than twice [169, 170] has driven
a lot of following studies. Crucially, one of them has provided a fresh perspective on the
nature of superconducting order parameter [171]. This strain technique has been applied
to the research of cuprates as well [18]. Besides the selection of the material, it was a new
attempt in two aspects: i) the piezoelectric stack based apparatus has been integrated in a
synchrotron facility to perform x-ray scattering measurements and ii) the strain effect was
observed by microscopic energy- and momentum-resolved experiments while this strain
technique was previously implemented only in laboratory-based macroscopic measurements.
The success in the x-ray scattering experiment has motivated us to perform further strain
experiments on cuprates at in-house laboratories and different synchrotron facilities.

In this section, terminologies, stress and strain, will be defined and their fundamental
properties are reviewed to better understand our measurements in the next chapters.
Subsequently, the piezoelectric stack based apparatus will be elaborated. In the end, we
illustrate a new technical contributions to strain experiments, a sample carrier that has
made strain measurements more efficient.

3.2.2 Stress and strain

When an elastic material is deformed, one can evaluate this deformation by two kinds of
physical quantities: stress and strain. They are intimately related but not identical (Fig.
3.1). The stress is defined as a measure how the force is distributed in the object per unit
area and its unit is N/m2 in the SI system. On the other hand, the strain is defined as a
measure of the relative displacement compared with the original length of the deformed
object and thus it is a dimensionless quantity by definition.

Generally, the strain εij can be defined as a nine component tensor

εij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (i, j = x, y, z), (3.1)

where u and x are a three component displacement vector and coordinate vector in
a Cartesian coordinate system, respectively. This representation is called the tensor
representation. By definition, εij = εji. Considering this symmetry, the engineering

1Technical developments about the uniaxial stress technique before the apparatus invented by Hicks et
al. are well described in chapter 2.4 of Ref. [168].

2Hereafter, we call this sample shape a needle shape for simplicity.
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representation where the number of strain vector component is six is also used:

ε =



ε1
ε2
ε3
ε4
ε5
ε6


=



εxx

εyy

εzz

2εyz (= 2εzy)
2εzx (= 2εxz)
2εxy (= 2εyx)


. (3.2)

Likewise, the stress vector is also defined in the same dimension as that of the strain
vector. In the engineering representation, εi (σi) are normal strain (stress) for i = 1, 2, 3
and shear strain (stress) for i = 4, 5, 6, respectively as depicted in Fig. 3.1.

One can see the relationship between the stress and strain by a thermodynamic
consideration [172]. The first law of thermodynamics is

dU = dQ− dW, (3.3)

where dU , dQ, and dW are the change in internal energy, the energy gain as heat, and the
work done by the system on its surroundings. In our case the system is an elastic material
and the work dW done by the small strain dεij per unit area is

dW = −σijdεij. (3.4)

Since the Helmholtz free energy F is related to the entropy S and temperature T as
F = U − TS, the total derivative of the Helmholtz free energy dF is given by

dF = dU − SdT − TdS (3.5)
= dQ− dW − SdT − TdS (3.6)
= −SdT + σijdεij. (3.7)

Therefore σij = (∂F/∂εij)T and S = (∂F/∂T )εij
. This means that one can capture a

thermodynamic phase transition by measuring the stress and strain simultaneously in
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a similar manner to entropy measurements that are often experimentally obtained by
measuring the heat capacity as a function of temperature.

In an isothermal process, one can expand the free energy to a power series of strain,

F (T, εij) = K(T ) + bijεij + 1
2Cijklεijεkl + ... . (3.8)

To be σij = 0 when εij = 0, bij = 0 because σij = ∂F/∂εij. Using this formula and
ignoring higher order terms, one obtains the relationship between σij and εij,

σij = Cijklεkl. (3.9)

This is called the generalized Hooke’s law. C is called a stiffness tensor. One can easily see
the analogy to the Hooke’s law for the one dimensional spring: f = kx, where f, k, and x
are the force, spring constant, and displacement. This relationship can be represented in
an inverse way:

εij = Sijklσkl, (3.10)

where S is called the shear modulus. By definition, the stiffness tensor C has 81 components
in the tensor representation (36 components in the engineering representation), however
the number of independent components is reduced to 21 at most due to the symmetries of
the stiffness tensor C. For the application to our studies, materials studied in this thesis
have a point group symmetry, therefore, the number of the independent components in
the stiffness tensor C is further reduced. For instance, the generalized Hooke’s law for
the orthorhombic lattice structure whose point group symmetry is D2h in the engineering
representation is given as follows:

σ1
σ2
σ3
σ4
σ5
σ6


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε1
ε2
ε3
ε4
ε5
ε6


. (3.11)

The Young’s modulus (Ei) is defined as the ratio of the stress to strain along the principal
directions: Ei = σi/εi (i = 1, 2, 3). The magnitude of Ei is direction-dependent. In a similar
manner, the Poisson’s ratio is also defined to described the transverse expansion of an elastic
material induced by the longitudinal force, e.g., ν12 = −ε2/ε1 and ν13 = −ε3/ε1. Therefore
the transverse expansion (changes in ε2 and ε3) is observed on top of the longitudinal
expansion (change in ε1) by uniaxial stress σ1 due to the off-diagonal components of the
stiffness tensor C. This phenomenon is called the Poisson effect. As seen in more details
in chapter 5, this is why one observes shifts of Bragg peak along the out-of-plane direction
by in-plane uniaxial pressure in x-ray scattering measurements.

3.2.3 Uniaxial stress / strain rig
Experiments presented in this thesis were performed with upgraded versions of the
piezoelectric-based strain apparatus developed by Hicks et al. [173]. For the x-ray
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5 mm(a) (b)

Piezoelectric stacks

Sample Sample

Figure 3.2: Photographs of uniaxial pressure cells. (a) Strain rig used for x-ray
scattering measurements. The piezoelectric stacks are exposed and thus indicated by
arrows. Black bar shaped object at the center is a sample. (b) Stress rig usd for transport
experiments. All the piezoelectric stacks are covered by the rig itself thus not visible in
this view.

scattering experiments, we have used the same setup used in previous x-ray scattering
measurements [18, 142]. In the x-ray diffraction experiments, the nominal strain can be
confirmed by Bragg peaks which directly indicate the lattice parameters of crystals. On
the other hand, there is no direct indication of the strain in most of in-house measurements
such as transport or magnetization measurements. In this regard, it is important to know
whether the strain is actually applied or not especially when the physical quantities in
the measurements are observed to be strain-independent. Therefore, the device we have
used for the transport measurements has an additional function: a force sensor, which
allows more accurate measurements. For simplicity, we term the device used for the x-ray
scattering measurements the strain rig and the new device with the force sensor used for
the transport measurements the stress rig hereafter. Both rigs are shown in Fig. 3.2.

The central idea of the strain devices is that the uniaxial pressure is produced by the
piezoelectric stacks present along the long direction of a sample and the applied strain
is monitored by capacitors integrated in the device. Selective application of voltage on
each piezoelectric stack enables one to realize both tensile and compressive stress. For the
voltage application, it requires electrical connections and they can be easily installed in the
cryostat with a sufficient space for the device and feedthrough for vacuum to cool down the
system. It allows one to perform in-situ control of the strain on a single-crystalline sample
at cryogenic temperature. One potential measure of the strain is the voltages applied on
the piezoelectric stacks, however it is well known that the displacement of a piezoelectric
stack shows a huge hysteresis loop when the voltage is applied and then released (Fig. 3.3).
In other words, in general, there is no one-to-one correspondence between the displacement
and voltage, therefore the voltage is not an ideal measure of the strain, particularly in this
device that possesses multiple piezoelectric stacks.

To overcome this difficulty, two parallel-plate-capacitor-based displacement sensors are
integrated in those strain devices. The capacitance value C is related to the dimensions of
the capacitor: C = ε0A/d, where ε0, A, and d are the permittivity of vacuum, the plate
area, and the distance between two plates, respectively. Simultaneous measurements of C
allows one to monitor the displacement of the sample independently of the voltage on the
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Figure 3.3: Hysteresis loop of a piezoelectric
stack. The voltage was applied and released three
times and three hysteresis curves are displayed. Figure
from Ref. [174]

piezoelectric stacks, which has a hysteresis. We measure the capacitance value with the
capacitance bridge AH2550A from Andeen-Hagerling whose precision is ∼ 10−6 pF. For
instance, the typical value of the capacitance that we have used for the REXS experiments
is ∼1.8 pF before applying the strain and ∼2.5 pF after applying high compressive strain
such as -1 %. (Actual values of the capacitance depend on details of the sample preparation
such as the sample shape and dimensions.) This method usually gives a sufficient accuracy
to estimate the displacement of the strained sample. The displacement produced by the
piezoelectric stacks ∆d can be estimated by measuring the capacitance before and after
applying the strain. Since one can check the sample length under strain L ahead of
measurements, the nominal strain is ∆d/L. The typical sample length is set to be L = 800
µm, thus the nominal strain is -1 % if the sample is deformed by ∆d = -8 µm. In x-ray
scattering measurements, the applied strain can be independently verified by measuring
the Bragg peaks.

This is the central idea of the strain rig and used for a number of previous experiments
on cuprates and ruthenates. However there is one assumption in quantitatively analyzing
data obtained by the strain rig. The displacement of the capacitor is assumed to be
equal to that of the sample but, in reality, this is often not the case because the sample
is mounted on titanium sample plates with soft glue, Stycast 2850 FT. Therefore the
displacement of the sample is often overestimated and thus some empirical parameters
have been used to prevent the overestimation. More crucially, it is hard to notice if the
sample slips because of bad gluing only from the capacitance value. To this end, another
parallel-plate-capacitor force sensor is integrated in series with the sample in the stress rig.
The spring constant of this sensor is much greater than that of typical samples, therefore
the displacement of the force sensor is not identical to that of the mounted sample anymore.
However the force applied on the sample is identical to that on the force sensor, therefore
knowing the spring constant of the force sensor, one can estimate the stress, i.e., the force
divided by the cross sectional area of the samples in an accurate way. Since the mounted
sample is the only object that transmits the force to the force sensor, one does not observe
any force by applying the voltage to the piezoelectric stacks if the strain is not applied on
the sample for any reasons such as sample buckling or slipping. Also one can determine
the zero stress / strain state more accurately by carefully mounting the sample as clearly
demonstrated in Fig. 3.4 while this is hard to do with the strain rig.
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Figure 3.4: Force-displacement curve for a tita-
nium sample. Since the sample is separated when
the tensile force is applied, a zero-force state is evident
from the force sensor while the displacement sensor
always measures the displacement generated by piezo-
electric stacks. The inset also shows the data when
the sample is separated which indicates the coupling
between the force sensor and the applied displacement.
Figure from Ref. [174]

(a) (b)

(c) (d)
Upper plates

Sample

Grooves

Screw holes

Screw holes

Figure 3.5: Sample carrier. (a) Schematic of the sample carrier generated with 3D CAD.
(b) Deformed sample carrier in the finite element simulation. The carrier is fixed at the
bottom left three screw holes and the force was applied along red arrows at the top right
three screw holes. The displacement is represented by red color and the green part is not
displaced in this simulation. (c) Picture of a sample carrier made from titanium based on
the design shown in (a). It is seen on the strain rig in Fig. 3.2 (a). Screw holes are to
fix the carrier on the strain rig. Grooves are for placing a needle shaped sample. Green
dashed lines indicates the potential cutting position to determine the zero-stress state with
the stress rig. (d) Same as (c) but after mounting a sample. Upper plates are placed on
the carrier and those are fixed by glue, Stycast 2850FT. Inset shows a zoom around the
sample.
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3.2.4 Sample carriers
In the former design for mounting a sample on stress / strain rigs, a sample has been
mounted directly on the rig. As seen in the following section, it takes a quite long time
to prepare one properly shaped sample, and mounting such a tiny sample on the device
always requires extreme precision and concentration. Also one has to break the sample
when dismounting it from the rig for example due to internal failures of the device such as
bad electrical connections despite a good sample preparation. Therefore, for performing
more efficient measurements and improving practical convenience, I have designed a sample
carrier so that one can easily mount a sample on the rig. The schematic image of the
carrier is shown in Fig. 3.5 (a). The central idea is that one can mount a tiny sample on
this carrier first and then mount this carrier on the rig. Since the size of the carrier is a
few cm scale, one can easily mount and dismount it on the rig just by tightening screws
even without a microscope. Also one does not have to break a sample when dismounting
the carrier from the rig. This new method requires only ten minutes or so to exchange
from one carrier to another, while it takes at least several hours to mount a sample on the
rig directly, including four hours to cure the Stycast 2850 FT. This makes measurements
more efficient in many occasions. For example, it is obviously impossible to mount a
sample on a rig while another sample mounted on the rig is in the cryostat for transport
experiments in the former sample mounting design. However, in the current method, one
can attach electrical wires on the sample mounted on the carrier while another sample
is being measured in the cryostat. This method is also favorable outside of in-house
laboratories in beamtimes at synchrotron facilities. The typical duration of one beamtime
is several consecutive days or sometimes a week, therefore several samples are usually
measured during one beamtime. The number of samples that can be mounted on a rig
before the beamtime was still limited by the number of rigs available (typically only a few),
yet one can mount samples on the carriers as much as possible ahead of each beamtime. It
significantly reduces the preparation time at beamlines when one has to change a sample.
As a consequence, one can focus on experiments at the synchrotron facilities.

The force generated by the piezoelectric stacks is applied not only on the sample but
also on the sample carrier in this design, thus it is important to know the mechanical
properties of the carrier to apply the strain on the sample efficiently. To this aim, we have
simulated the mechanical behavior of the carrier prior to the production. Figure 3.5 (b)
shows the deformed carrier under 5 N of uniaxial force for titanium obtained by a finite
element simulation. In this simulation, the spring constant of the carrier was estimated to
be less than 10 % of the one of typical needle shaped YBa2Cu3O6+x samples. Therefore
the strain produced by the piezoelectric stacks efficiently transfers to the sample.

Also on this carrier there are grooves of width 400 µm and depth 150 µm where the
sample is placed as indicated in Fig. 3.5 (c). In the previous design, the sample was
placed on the flat titanium plates with Stycast 2850 FT. Therefore it was sometimes not
easy to align the sample along the uniaxial pressure direction. On the other hand in the
present case, the sample is naturally aligned by these grooves. After placing the sample
buried in the Stycast 2850 FT, upper plates are put on top of the carrier to ensure the
homogeneous strain as shown in Fig. 3.5 (d). Since the Stycast 2850FT epoxy includes
particles diameters up to 45 µm, the ideal sample thickness is ∼ 100 µm predetermined
by the depth of the grooves for efficient strain transfer. It is usually quite feasible to
obtain needle shaped samples whose thickness is 100 µm since the thickness of the original
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YBa2Cu3O6+x single crystals before cutting and polishing is much greater than 100 µm.
The distance between two grooves is equal to the exposed length L where the strain is
applied and can be set in producing the carriers, therefore carriers with shorter gap length
can be prepared for materials whose original size is not as large as YBa2Cu3O6+x.

To determine the zero stress, one could in principle split the sample by the tensile force
as explained in Fig. 3.4. However it is not feasible to perform transport experiments under
these conditions because the current flow is disrupted. Instead of cutting the sample itself
as in the inset picture of Fig. 3.4, the mechanically identical setup can be achieved by
cutting a part of the carrier as indicated by the green dashed line in Fig. 3.5 (c). The
samples for stress sweep measurements in the transport experiments in the next chapter
were prepared in this fashion and the thus zero stress state was determined.

3.3 Sample preparation

3.3.1 Introduction
Single crystals of YBa2Cu3O6+x studied in this thesis were grown using the self-flux method
[175]. As starting materials, powders of Y2O3, BaCO3, and CuO were mixed in a crucible
which is made of ZrO2 stabilized with Y2O3. The crucible was placed in the furnace
and the flux undergoes a thermal treatment for several days to homogenize the melt and
initiate the growth of the crystals. After this thermal treatment, the crucible was decanted
inside the furnace into a larger porous material which absorbs the remaining flux. After
cooling to room temperature the crystals can be picked from the crucible. The typical
dimensions of crystals obtained in this method are a× b× c = 2 × 2 × 0.5 mm3. However
they can be larger or smaller depending on details of each trial. A schematic of the growth
process is shown in Fig. 3.6.

As-grown samples have unknown and inhomogeneous oxygen contents and the crystal
structure is twinned: multiple domains of orthorhombic structure exist in one crystal
because of random distribution of CuO chains. Therefore further annealing treatments
are necessary to study YBa2Cu3O6+x samples whose oxygen content and crystal structure
are well determined.

3.3.2 Annealing: tuning oxygen contents
The properties of cuprates depend on the hole doping of the CuO2 plane (the number of
holes per Cu atoms), therefore it is crucial to accurately control this quantity and obtain
homogeneously doped samples for advanced measurements. This is often achieved by
heterovalent substitution or tuning the oxygen content. In the case of YBa2Cu3O6+x, the
latter method is routinely used. By annealing crystals under the certain oxygen partial
pressure, the amount of oxygen in the CuO chain layers is controlled. Lindemer et al.
systematically characterized the oxygen stoichiometry x of YBa2Cu3O6+x in different
conditions of temperature and oxygen partial pressure as shown in Fig. 3.7 [178]. For
instance, to obtain YBa2Cu3O6.67 which we mainly studied in this thesis, one can tune
the oxygen content by annealing crystals at 555 ◦C with 5% O2. To obtain homogeneously
tuned oxygen content, the duration of the annealing process is also important. As illustrated
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Figure 3.6: Schematic explanation of YBa2Cu3O6+x single crystal growth using
the self-flux method. (a) Schematic of the sample growth apparatus in a furnace. (b)
Temperature gradient around the growth interface made by the cold finger. (c) Oscillation
of temperature generated by the motion of the cold finger. (d) Schematic of decanting: the
crystals are separated from the residual melt absorbed by a porous material.(e) Typical
single crystals of YBa2Cu3O6+x. Figures from Ref. [176].

in Ref. [179], the oxygen diffusion process can be modeled using the following formula:

c(t) − ce

c0 − ce
= 8
π2 exp(−t/τ), (3.12)

where τ = b2/π2D(T ) is the relaxation time, c(t) is the oxygen concentration as a function
of time, c0 is the initial concentration, ce is the saturation concentration, b is the width
of the sample (or the thinnest side of the sample), D(T ) is the diffusion constant, and
T is temperature. The temperature dependence of the diffusion constant is given by
D(T ) = D0 exp(∆E/kBT ), where kB is the Boltzmann constant, D0 is the diffusion
constant and the activation energy ∆E is estimated to be around 0.8 eV for YBa2Cu3O6+x.
Therefore, the relaxation time τ is essentially determined by the annealing temperature T
and the thinnest sample dimension b. One has to consider those parameters in annealing
samples to estimate τ , yet based on our experiences one week is usually long enough to
obtain a homogeneous doping level. It took around five days to reach the equilibrium
at 460 ◦C (Fig. 3.8)3. Also the initial oxygen concentrations have little effect on the
relaxation time τ as can be seen in Fig. 3.8, thus in practice one can just anneal as-grown
samples to tune the oxygen content. In order to stabilize the oxygen content obtained
by this annealing process, the samples should be quenched by dropping them into liquid
nitrogen right after opening the furnace. The oxygen content becomes inhomogeneous
again if they are gradually cooled down to room temperature.

3To obtain YBa2Cu3O7, i.e., fully oxygenated samples, they should be annealed at 365 ◦C under 100
% O2. It is relatively low temperature and therefore the samples are annealed for one month.
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Figure 3.7: Oxygen content of YBa2Cu3O6+x as a function of annealing tempera-
ture and the oxygen partial pressure. The vertical axis indicates 6 +x. Based on the
target doping level, one can choose the combination of temperature and partial pressure.
The relaxation time τ depends on the temperature and sample dimensions. Figure from
Ref. [177].
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Figure 3.8: Time dependence of the resistivity in YBa2Cu3O6+x annealed at 460
◦C. Each curve shows the resistivity at 460 ◦C of four different samples obtained after
annealing at 500 ◦C, 480 ◦C, 440 ◦C, and 420 ◦C representing different hole doping levels.
The resistivity does not change after the oxygen content reaches the equilibrium value at
460 ◦C. Figure from Ref. [179].

3.3.3 Detwinning
A distinct feature of YBa2Cu3O6+x among cuprate families is the oxygen order in the
CuO chain layer. By annealing crystals as described in the previous section, the amount
of oxygen in the CuO chain layers becomes homogeneous, however the orientation of the
chain is still mixed, i.e., twinned. As described in Ref. [180], to make samples twin-free,
samples were mechanically stressed with ∼50 MPa at 400 ◦C in Ar. The presence of the
twin domains can be observed by means of a polarized microscope (Fig. 3.9). The color
of each domain on the surface viewed through the microscope is different depending on
the relative orientation of the polarization and domain direction. Note that using this
method, one can check the twinning only on the surface because the penetration depth
of the visible light is limited. Nevertheless, this simple method always gives sufficient
accuracy. A more precise check can be made by other techniques too, e.g., phonon spectra
obtained in Raman scattering measurements [181].

3.3.4 Low temperature annealing
To maximize the domain size of the oxygen orders in the CuO chain layers, samples should
be annealed at a temperature which is a little below the structural transition temperature
[32, 182]. This is achieved by annealing the samples in a glass tube sealed with 800 mbar
of Ar for one week. Note that the transition temperature of the ortho-VIII order in
YBa2Cu3O6.67 that we have mainly studied in this thesis is 40 ◦C (Fig. 2.5 (b)), therefore
leaving the samples in this doping regime at room temperature is a good condition to
maximize the domain size of the oxygen order.
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Figure 3.9: Crystal surface of YBa2Cu3O7 through the polarized microscope.
The image was taken under the polarized microscope before detwinning (left) and after
detwinning (right) Figures from Ref. [180].

3.3.5 Characterization and selection of high-quality samples
After the three annealing steps (tuning the oxygen content, detwinning, and maximizing
the oxygen order), it is important to characterize the crystal quality before moving on
to preparing samples for advanced measurements. To this end, we routinely check the
superconducting transition temperature Tc and the c-axis lattice parameter c.

As mentioned in chapter 2.2, x in YBa2Cu3O6+x is not equal to the hole doping p per
Cu ion in the CuO2 planes unlike the 214 cuprate families. Tc usually gives a reasonable
indication of p, yet different Tc’s indicate the same oxygen contents particularly for x < 0.5
depending on the oxygen orders in the CuO chain layers as shown in Fig. 3.10 (a). Also
Tc is easily reduced if samples are contaminated by impurities [183]. Therefore Tc is not
an ideal indicator to estimate p. In addition, Tc is not so susceptible to p around the 1/8
doping region, which is well known as the 1/8 plateau, where we have mainly worked
in this thesis. On the other hand, Tc v.s. c is a more unique relation, thus c has been
commonly used for YBa2Cu3O6+x to estimate p. The empirical relationship between p
and c has been carefully studied in Ref. [182] and is given as follows:

p = 11.491y + 5.17 × 109y6, (3.13)

where y = 1 − c/c0. c is the c-axis lattice parameter and c0 is 1.18447 nm. The c-axis
lattice parameter was determined with x-ray diffraction (XRD) measurements at room
temperature. Since the lattice parameter varies only in very narrow range from c = 11.771
Å (YBa2Cu3O6.40, p = 0.072) to c = 11.6835 Å (YBa2Cu3O6.99, p = 0.189), it is important
to accurately estimate c from XRD data. Therefore, the 2θ − θ scans were measured for
multiple Miller indices of the Bragg plane, (0,0,l) (l = 10, 11, 12, 13, 14) as shown in Fig.
3.11. To obtain c by the Bragg’s law, we used 2θ0 which satisfies the following relationship
as explained in Ref. [184],

lim
θ→θ0

cos2 θ

2

( 1
sin θ + 1

θ

)
= 0. (3.14)

Based on the c-axis lattice parameter c measured in the XRD measurements, the hole
doping p was estimated using Eq. (3.13). In this way, one can see where Tc and p of each
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Figure 3.10: Tc of YBa2Cu3O6+x. The horizontal
axis is the oxygen content (a) and the c-axis lattice pa-
rameter (b). Tc v.s. c shows more unique relationship,
particularly for x < 0.5. Figures from Ref. [182].

sample are located in the Tc-p phase diagram. We have compared those physical quantities
with the Tc-p phase diagram based on the highest quality samples obtained in previous
studies [182, 151]. All the samples studied in this thesis satisfy this highest standard of
YBa2Cu3O6+x.

3.3.6 Preparation for strain experiments
As described in Ref. [169], the strained samples have to have a long bar shape, the so-called
”needle” shape. The typical dimensions of a needle shaped sample are a(b) × b(a) × c =
2 × 0.2 × 0.1 (mm3) for straining along the a-axis (b-axis). The sample length is not an
important parameter, because the sample is partially strained and this length is determined
by the distance between two clamps. L = 600 - 800 µm was used in the present studies.
The sample width ω is, however, important and the strain homogeneity has been studied
by means of finite element analysis [168]. In our sample mounting method, the strain
inhomogeneity is less than 1 % at a distance ω away from the clamp. Therefore L/ω
should be greater than 3 to achieve the homogeneous strain at the center of the sample.
Therefore, ω =200 µm is a reasonable choice for L = 600 - 800 µm. The sample thickness
t is another important parameter because the sample can be easily buckled by strain if the
thickness is too small. The critical ratio between L and t is estimated to be L/t = π/

√
3ε,

where ε is the strain. To achieved 1 % strain, one can see that t = 100 µm is thick enough
by a back-of-the-envelope calculation.

As mentioned above, the typical dimensions of as-grown samples is a×b×c = 2×2×0.5
mm3 and it does not change after the annealing processes. Therefore the sample has to be
cut and polished in a controlled way to obtain needle shaped samples. First, the sample
was cut using a tungsten wire saw (WS-22 from IBS Fertigungs- und Vertriebs-GmbH). To
fix the sample on the sample stage, Technovit R©5071 is used. This glue does not have to
be heated for curing and can be dissolved by acetone at room temperature. It is ideal for
YBa2Cu3O6+x since the oxygen content becomes more inhomogeneous when the sample is
heated in air. Utilizing a thin wire, the sample loss during the cutting process is less than
100 µm. The cut sample is still too thick for the strain experiments, therefore the sample is
polished down to the ”needle” shape with the desired 100 µm thickness. Both ab surfaces
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Figure 3.11: X-ray diffraction measurements. (a) Normalized 2θ − θ scans for the
Miller indices of the Bragg plane, (0,0,l) (l = 10, 11, 12, 13, 14). The horizontal axis is
converted to the lattice parameter from θ using the Bragg’s law. For clarity, the curves are
shown with offsets vertically. (b) c-axis lattice parameter that gives the peak of the 2θ− θ
scans in (a) (red points). Fitting with the linear function (blue line). The extrapolation of
the experimental data is defined such that Eq. (3.14) is satisfied. Here the data of sample
3 (R555c1N4) used in the transport experiments are shown as an example.
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1 mm

Figure 3.12: Photographs of a needle shaped
sample. (a) Top view. (b) Side view. Gold patches
on the surface are electrical contacts for transport
experiments.

were polished for measurements under high strain: any small cracks or indentations on
the surface could cause the strain inhomogeneity which results in buckling of the sample
even with relatively small strain. For transport experiments, one has to bear in mind that
the electrical contacts are placed only on the sides of the sample to observe the in-plane
quantities [185, 23]. Therefore the gold was deposited on the sample surfaces before the
polishing process and the surface was polished also to get rid of the gold on the ab-surface.

3.4 Transport measurements

3.4.1 Introduction
Observations of new transport phenomena in solids are often the first driving forces
for condensed matter physicists to start studying new physics. Great examples are the
discoveries of zero resistivity in superconductors [186] and the quantized Hall coefficient in
the quantum Hall effect systems [187], both of which had significant impact and motivated
physicists to elucidate their microscopic origins and to establish a new direction of physics.
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In short, transport phenomena can be defined as phenomena where (quasi)particles in
solids affected by external fields such as electric or magnetic fields deliver electricity or heat
from one place to another. This implies that transport phenomena are in general associated
with energy dissipation, which requires us to analyze the phenomena as a problem of
non-equilibrium systems. The general theoretical treatment of non-equilibrium states is
still one of the most difficult subjects in thermodynamics and statistical mechanics to
date. However it was rigorously proven that the dissipation of the response of the physical
quantity by the external field in a non-equilibrium state is equal to the its fluctuation
in an equilibrium state as long as the response is linearly proportional to the external
field. This is known as the fluctuation-dissipation theorem [163]. The linear response
theory is a special example, where one can relate the macroscopic transport phenomena
and microscopic response functions in a rigorous fashion. In the framework of this theory,
establishing quantitative correspondences between macroscopic transport coefficients and
atomic scale correlation functions can provide fresh perspectives for solid-state research.

In this section, we explain general theoretical descriptions of electrical transport
properties in solids and the experimental setup of our transport measurements.

3.4.2 Theoretical descriptions of transport experiments
In this section, we describe the formalism of transport properties in several ways from a
phenomenological classical picture to a general quantum mechanical picture. As the theory
develops, it becomes less phenomenological and one can understand the microscopic origin
of the various transport properties in relation with microscopic correlation functions.

Ohm’s law

Ohm’s law was discovered by Henry Cavendish in 1781, but his discovery had not been
known until James Clerk Maxwell published ”Electrical Researches of Henry Cavendish”
in 1879. Since Georg Simon Ohm re-discovered and published this law in 1826, nowadays
it is called Ohm’s law.

Ohm’s law states that a potential difference between two points in an electrical circuit
is proportional to the current that flows between the two points. When the potential
difference is V and the current is I, the following relationship is established.

V = RI. (3.15)

The factor of proportionality R is called resistance. R depends on the dimension, material,
and temperature of the conductor.

For later explanations, let us derive the differential form of Ohm’s law. To this aim, let
us consider the infinitesimal cross section of the conductor whose area is ∆S and normal
vector is n, then the current which flows at the cross section I is expressed as I = j · n∆S,
where j is the current density at this cross section. On the other hand, the potential
difference between two infinitesimal points along the normal line with respect to the cross
section V is given by V = E · n∆L, where E is the electrical field at the cross section and
∆L is the distance between the two points. Using the equations, one can derive

j = σE, (3.16)
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where σ(= 1/ρ) is a conductivity defined as the inverse of ρ = R∆S/∆L called resistivity,
which depends on temperature and material of the conductor. Note that σ (and ρ) is in
general a tensor that connects two vectors, j and E. This formula expresses Ohm’s law
in the infinitesimal space, also called the differential form of Ohm’s law. In the language
of the linear response theory, j and E are the response and external field, and σ is the
response function.

Obviously, this formalism is based on a phenomenological classical picture, which does
not enable one to understand the microscopic origin of resistivity. Nevertheless we stress
that physical quantities measured in experiments are V and I of a sample.

Drude model

The Drude model was proposed by Paul Karl Ludwig Drude in 1905. This model is one of
the applications of the kinetic theory of gases. It is assumed that charged particles such
as electrons or holes can move around and are scattered by cations fixed at certain space
points in a certain relaxation time τ . Note that the scattering of the charged particles is
introduced phenomenologically in this model, hence the microscopic mechanism of the
scattering is not considered at all. In this model, the classical mechanical equation of
motion of one charged particle can be described as

m
d

dt
v = −m

τ
v + qE, (3.17)

where m,v, q are the mass, velocity, and charge of a charged particle, respectively. In a
steady state (dv/dt = 0), one can obtain

j = qnv =
(
nq2τ

m

)
E, (3.18)

where n is the carrier density. It is nothing but the differential form of Ohm’s law (Eq.
3.16). Under the magnetic field H the equation of motion is modified due to the Lorentz
force as follows:

m
d

dt
v = −m

τ
v + q

(
E + 1

c
v × H

)
. (3.19)

The Hall coefficient is defined as RH = Ey/Hzjx in a steady state, therefore it turns out
that

RH = 1
nqc

. (3.20)

Remarkably by measuring the Hall effect RH, one can identify the type of the carrier
from the sign of RH since it depends on the charge q: +/− corresponds to holes/electrons.
However, the scope of the Drude law is limited and it is theoretically imperfect for the
following reasons. As mentioned above, we treat the charged particles in the framework
of classical mechanics while they should be treated quantum mechanically. In fact, the
Drude model cannot predict the existence of band insulators for this reason.
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Boltzmann transport theory

Here, we describe the Boltzmann equation to treat the transport coefficients of quasi-
particles. Since this is a semiclassical picture, one can define (r,k, t) by ignoring the
uncertainty principle between r and k. The distribution function of particles f(r,k, t) is
defined as

f(r,k, t)d3rd3k =
(

The number of the particles whose position and wave number
are within (r, r + dr) and (k,k + dk), respectively

)
.

(3.21)
The distribution function obeys the following equation (Boltzmann equation),

∂

∂t
f(r,k, t) + v · ∂

∂r
f(r,k, t) + F

h̄
· ∂

∂k
f(r,k, t) =

(
∂f

∂t

)
coll
, (3.22)

where v = ∂r/∂t and F = ∂(h̄k)/∂t = eE. The right side (∂f/∂t)coll implies the collisions
among the particles. Note that this formalism is quite general so that one can apply
various physical models to express general flows beyond electrons in solids. To calculate
electrical transport properties of electrons in solids, the relaxation time approximation
is often used: (∂f/∂t)coll = − (f(r,k, t) − f0) /τ(k), where f0 is the distribution function
in the equilibrium state in the absence of the electric field (the Fermi-Dirac distribution
function) and τ(k) is the relaxation time. Assuming the steady state ((∂f/∂t) = 0), the
uniformity in the real space (∂f(r,k, t)/∂r = 0), and the relaxation time approximation,
the distribution function is given by

f(k) = f0 + eτ(k)E · v
∂f(k)
∂ε(k) , (3.23)

where v = ∂ε(k)/∂(h̄k) is the group velocity of the quasiparticles. The current along the
i-direction ji under the electric field along the j-direction Ej (i, j = x, y, z) is given by

ji = −e
∑

k

vif(k) ' e2∑
k

vivjτ(k)
(

−∂f0(k)
∂ε(k)

)
Ej. (3.24)

Therefore the conductivity σij defined in the Ohm’s law (Eq. 3.16) is

σij = e2∑
k

vivjτ(k)
(

−∂f0(k)
∂ε(k)

)
. (3.25)

If one assumes isotropic scattering, i.e., a k-independent scattering rate τ , for the energy
dispersion of free electrons ε(k) = h̄2k2/2m, the conductivity is given by σxx = ne2τ/m
which reproduces the result of the Drude model. The group velocity of quasiparticles can
be derived from the single particle spectra of quasiparticles ε(k), but there are a number
of candidate scattering mechanisms which are reflected by τ(k): impurities, phonons,
magnons, Coulomb interactions between electrons etc... Those could be in principle
decomposed by their temperature dependence of resistivity yet it is often difficult to
accurately identify which scattering mechanism plays a dominant role especially when
multiple scattering mechanisms are of comparable strength. In this regard, complementary
scattering experiments are valuable source of information about possible elementary
excitations which scatter with quasiparticles and about the origin of the charge transport
properties. We remark that an attempt to relate the resistivity of cuprates with the
lifetime of quasiparticles obtained in photoemission experiments was reported [188].
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Linear response theory: Kubo formula

To treat transport properties further microscopically beyond the Boltzmann theory, the
linear response theory is famously known. In the quantum field theory, the current operator
j(r) under the electromagnetic fields is given as follows:

j(r) = − ieh̄

2m
(
ψ†(r)∇ψ(r) − ∇ψ†(r)ψ(r)

)
− e2

m
A(r)ψ†(r)ψ(r), (3.26)

where ψ(r) is the field operator of the electron and A(r) is the vector potential of the
electromagnetic field. The first term on the right side of Eq. 3.26 is called the paramagnetic
current jpara(r) and the second term is called the diamagnetic current jdia(r). The latter
quantity plays an important role to interpret the Meissner effect in superconductors
theoretically. The diamagnetic current is by definition proportional to the vector potential,
therefore it is already a part of the linear response. Let us consider the contribution
from the paramagnetic current. The Hamiltonian of the free-electron system under the
electromagnetic field in the second quantization formalism is given by

H =
∫
drψ†(r)

( 1
2m(p − eA(r))2 + eϕ(r)

)
ψ(r), (3.27)

where p is the momentum operator and ϕ(r) is the electric potential. Thus the perturbative
Hamiltonian H′ within the first order of A(r) is given as follows:

H′ = −
∫
dr jpara(r) · A(r). (3.28)

Therefore one obtains the expected value of the current operator in the Fourier space as a
linear response of the vector potential, by following the general treatments in the linear
response theory (the Kubo formula) for the present case [163]:

〈jµ(q, ω)〉 =
∑

ν=x,y,z

{
Φµν(q, ω) − ne2

m
δµν

}
Aν,q,ω, (3.29)

where the current-current correlation function Φµν(q, ω) is defined as

Φµν(q, ω) = i

h̄

∫ ∞

0
dt eiωt−δt

∫
dr e−iq·(r−r′)

〈
[jpara

µ (r, t), jpara
ν (r′, 0)]

〉
. (3.30)

Note jpara(r, t) is a current operator in the Heisenberg picture. Therefore one can
understand the electrical transport associated with the energy dissipation by means of
the current-current correlation function in the equilibrium state. In this scheme, the Hall
coefficient for a free electron system in a weak magnetic field was also derived [189].

Theoretically one ends up calculating the correlation function Φµν(q, ω) with realistic
interactions to derive the conductivity experimentally observed in solids in some ways such
as the Feynman diagram method at zero temperature or the Feynman diagram method
through Matsubara Green functions at nonzero temperature [190]. Since the field operator
of electrons ψ(r) is directly related to the Green function of electrons, one can see how the
transport properties are related to such fundamental microscopic correlation functions.
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3.4.3 Experimental setup
The resistivity measurement was performed with the typical four-point setup. It is hard
to accurately measure the resistance of the sample with a two-point setup because one
measures the total voltages arising from the resistance of wires between the sample and
voltmeter plus the resistance of the sample which is often much smaller than that of the
wires due to only a few hundred µm scale sample size. For the Hall measurements, on top
of two contacts for the current, two additional contacts perpendicular to the current flow
are indispensable, therefore the geometry has to be four-point. Nevertheless, six contacts
were prepared for one sample to obtain a possibility to measure two longitudinal and
two transverse potential drops simultaneously. In this method, the current flows through
the sample homogeneously and the potential drop between two points of the sample is
accurately measured.

Lock-in amplifiers, e.g., SR830 from Stanford Research Systems, have been used for
the voltmeter as well as a part of the current source. The output voltage with a certain
frequency from the lock-in amplifier with a series resistor acts as the current source. A
sophisticated current source which enables one to minimize the common-mode voltage
was used in all the measurements (see details in Appendix A of Ref. [168]). The reference
voltage from the lock-in amplifier and the series resistor were set to 1-5 V and 1 kΩ,
therefore the typical current value was 1-5 mA. A digital lock-in multiplies the reference
and sample voltages, thereby rejects all signals whose frequencies are different from the
reference frequency. This acts as a low-pass filter. The DC signal of the sample resistance
can be obtained from the voltage with the frequency of the current, which is identical
to the reference one, therefore the in-phase signal is used for the resistance. Likewise
the signal with π/2 shift is simultaneously obtained using the lock-in amplifier. In the
electrical circuit we used for the transport measurements, the in-phase and out-of-phase
signals correspond to the resistance and reactance of the complex impedance, respectively.
The reference frequencies used for all the experiments were 50-100 Hz, however the actual
frequencies strongly depend on the cryostat environment and sample preparation. For
instance, bad contacts on the sample can be highly capacitative.

Transport measurements on quantum materials at cryogenic temperature and/or under
magnetic field are routinely conducted in PPMS R© from Quantum Design. However the
sample space of the PPMS R© is not large enough to accommodate the stress rig, therefore
the variable temperature insert (VTI) from Oxford Instruments was used to realize the
simultaneous applications of uniaxial stress and magnetic field at low temperature.

3.5 X-ray scattering measurements

3.5.1 Introduction
In the previous section, we have explained how the macroscopic transport properties are
related to the atomic scale correlation functions. The latter physical quantities can be
experimentally obtained in microscopic experiments such as photoemission and scattering
measurements. The results obtained in microscopic experiments directly constrain the-
oretical proposals of transport properties. Conversely, studying low energy elementary
excitations by scattering experiments provides crucial hints to understand the anomalous
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transport properties of quantum materials.
Elementary excitations, quasiparticles and collective modes, can be described by the

following three basic quantities [8]. The single particle Green function G(r, r′, t− t′) is
defined as follows:

G(r, r′, t− t′) = −i
〈
{ψ†(r, t), ψ(r′, t′)}

〉
θ(t− t′), (3.31)

where ψ(r, t) is the field operator of electrons and θ(t) is a step function. 〈· · ·〉 indicates
the thermal average in the grand canonical ensemble. The single particle Green function
represents the probability that one electron placed at a certain place and time (r, t)
propagates to another (r′, t′). Experimentally this quantity can be measured by ARPES, a
”photon-in and electron-out” technique, which measures a single particle spectral function
A(k, ω) = −Im(G(k, ω))/π, where G(k, ω) is the Fourier transform of G(r, r′, t− t′) [47].
The charge density response function χρρ(r, r′, t− t′) is defined as

χρρ(r, r′, t− t′) = −i 〈[ρ(r, t), ρ(r′, t′)]〉 θ(t− t′), (3.32)

where ρ(r, t) is the charge density operator. χρρ(r, r′, t − t′) represents the probabil-
ity that the charge density at (r, t) propagates to (r′, t′). This quantity character-
izes charge collective modes such as plasmons. The electron energy-loss spectroscopy
(EELS), an ”electron-in and electron-out” technique, measures the dielectric loss function
−Im[1/ε(Q, ω)] ∝ Im[χρρ(Q, ω)]. Likewise, for spin operators S(r, t) instead of the charge
counterparts ρ(r, t), the spin response function χSS(r, r′, t− t′) is defined as

χSS(r, r′, t− t′) = −i 〈[S(r, t), S(r′, t′)]〉 θ(t− t′). (3.33)

Inelastic neutron scattering (INS), a ”neutron-in and neutron-out” technique, measures
Im[χSS(Q, ω)] and characterizes spin collective modes such as magnons [191, 176]. Those
are the three basic quantities that describe the elementary excitations. On the other hand,
inelastic x-ray scattering (or light scattering in general), a ”photon-in and photon-out”
technique, measures Im[χnn(Q, ω)], i.e., the Fourier transformation of the electron density
response function,

χnn(r, r′, t− t′) = −i 〈[n(r, t), n(r′, t′)]〉 θ(t− t′), (3.34)

where n(r, t) is the electron density operator. Technically speaking, this quantity is
different from the charge density response function χρρ and, therefore, its sensitivity to the
type of excitations is different. For instance, the dominant contributions in χnn are phonons
since most of the electrons in a solid reside in core states, while valence excitations, such as
plasmons, are dominant contributions in χρρ. In this sense inelastic x-ray scattering (χnn)
is an essentially good probe of phonons. However, as stressed in chapter 2, x-ray scattering
has played an important role to observe not only phonons but also spin excitations and
charge-density waves in the research of cuprates. In next section, we will explain the
scattering cross section of the inelastic x-ray scattering process more explicitly with a
particular focus on the resonant condition.

3.5.2 Inelastic x-ray scattering
Here we will explain the basic principle of the non-resonant inelastic x-ray scattering
measurements (IXS) and resonant inelastic x-ray scattering measurements (RIXS) [192].
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The system in a light scattering experiment comprises a matter and a photon. To describe
the cross section of the light scattering, let us consider the non-relativistic Hamiltonian H
of the system:

H =
∑

j

1
2m

(
pj − eA(rj, t)

)2
+
∑
j 6=k

e2

|rj − rk|
+
∑
q,ω

(
a†

ω(q)aω(q) + 1
2

)
, (3.35)

where m, e,pj, and rj are the mass, charge, momentum operator, and position operator of
the electron j in a solid, respectively. A(r, t), and a†

ω(q)(aω(q)) are the vector potential and
the creation (annihilation) operator of the photon whose energy and momentum are ω and
q, respectively. The initial and final states of the scattering process are |Φi〉 = |i〉⊗ |k0, ω0〉
and |Φf〉 = |f〉 ⊗ |k1, ω1〉, respectively ( |i〉 , |f〉 and |k0, ω0〉 , |k1, ω1〉 denote eigenstates
of electrons and photons, respectively). The eigenenergies of |i〉 and |f〉 are Ei and Ef,
respectively. The characteristic energies in solids (∼ 0.1 - 1 eV) are much lower than x-rays
(∼ 1 keV) and, hence, the Born approximation is valid (Fig. 3.13). Thus the transition
rate from |Φi〉 to |Φf〉 (Ri→f) is given by Fermi’s golden rule.

Ri→f = 2π

∣∣∣∣∣∣
〈
Φf

∣∣∣H(2)
∣∣∣Φi
〉

+
∑
m

〈
Φf

∣∣∣H(1)
∣∣∣Φm

〉 〈
Φm

∣∣∣H(1)
∣∣∣Φi
〉

Ei + ω0 − Em

∣∣∣∣∣∣
2

δ ((Ei + ω0) − (Ef + ω1)) ,

(3.36)
where |Φm〉 = |m〉 ⊗ |0, 0〉 whose eigenenergy is Em + 0 and

H(1) = − e

2m
∑

j

(pj · A(rj, t) + A(rj, t) · pj), (3.37)

H(2) = e2

2m
∑

j

A(rj, t)2. (3.38)

Non-resonant condition

Since the energy of the x-ray ω0, ω1 is much higher than the excitation energy in solids
|Ei −Em|, the dominant contribution in Ri→f is from the first term of the right side in Eq.
3.36. In this case,

Ri→f(Q, ω) = 2π
(

2π
Ωt

e2

m

ε1 · ε0√
ω1ω0

)2 ∣∣∣〈f∣∣∣nQ
†
∣∣∣i〉∣∣∣2 δ (Ei + ω − Ef) , (3.39)

where Ωt is the sample volume and ε1 and ε0 are the polarization of the scattered photons.
nQ

† is the Fourier transformation of the electron density operator n(r, t). In experiments,
one observes the statistical average over the initial states of the sum over the final states
of this transition rate,

R(Q, ω) =
∑

i
eβ(Ω−Ei)

∑
f
Ri→f(Q, ω) = 2π

(
2π
Ωt

e2

m

ε1 · ε0√
ω1ω0

)2

S(Q, ω), (3.40)

where β is the inverse temperature, Ω is the grand potential of the grand canonical
ensemble, and S(Q, ω) is called the dynamical structure factor (i.e., the electron density
correlation function) and given by

S(Q, ω) =
∫ ∞

−∞

dt
2πe

iωt
∫

dr e−iQ·r
∫

dr′ e−iQ·r′ ∑
i
eβ(Ω−Ei) 〈i|n(r, t)n(r′, 0)|i〉 . (3.41)
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Experimentally one counts the number of photons δN whose energy is between ω1 and
ω1 + dω1 within the differential solid angle dΩ.

δN = ΩtR(Q, ω)Ωtd3k1

(2π)3 = ΩtR(Q, ω)Ωtω
2
1|dω1|dΩ
(2π)3 . (3.42)

The differential cross section of this scattering is defined by δN , dω1, and dΩ as follows
and thus is described by means of S(Q, ω):

d2σ

dΩdω = δN

|dω1|dΩ = e4

m2
ω1

ω0
(ε1 · ε0)2S(Q, ω). (3.43)

It is the cross section of the non-resonant inelastic x-ray scattering. It is the same formula
for the light scattering with free electrons in vacuum, known as Thomson scattering. This
is because the energy scale of incoming and outgoing photons is much higher than that of
the elementary excitations in solids. Using the fluctuation-dissipation theorem generally
proven in the linear response theory, the relationship between the electron density response
function χnn(Q, ω) and the dynamical structure factor S(Q, ω) is given by

Im[χnn(Q, ω)] = −π(1 − e−βω)S(Q, ω). (3.44)

This is what ”the inelastic x-ray scattering measures the electron density response function.”
stated above means. Note that the Raman scattering is also classified in this scattering
process yet the momentum range is limited only in the vicinity of zero [193]. Since the
charge-density wave is the modulation of electron density, the CDW can be detected
in non-resonant x-ray scattering. For instance, the reciprocal space dependence of the
dynamical structure factor of the CDW in YBa2Cu3O6.54 has been well studied by means
of the non-resonant x-ray diffraction measurements [194]. Also, the uniaxial stress effects
on the CDW in YBa2Cu3O6.67 were also pointed out by the non-resonant x-ray scattering
experiments [18].

Resonant condition

On the other hand, the second term of the right side in Eq. 3.36 is dominant if the energy
of the incoming photon is tuned to be ω0 = Em − Ei. The resonant condition enables
one to obtain stronger intensity in spectra as one can imagine from the dominator which
is almost zero. Moreover, the spectra becomes element-specific, and the intermediate
state |Φm〉 plays a crucial role unlike the non-resonant process. To calculate the resonant
contribution and compare with experimental RIXS spectra for their interpretations, one
ends up approximating the formula in some ways, such as the dipole approximation:
eik·r = 1+ ik ·r + · · · ∼ 1. Therefore here we explain unique features in RIXS by intuitively
explaining elementary excitations experimentally observed in cuprates and other materials
instead of explaining approximation methods to calculate RIXS spectra from theoretical
perspectives.

The first example is orbital excitations, specifically so called dd-excitations. As in the
case of other Mott insulators, the orbital physics in cuprates is governed by the crystal
field. The energy levels of the orbitally active ion are split and the orbital ground state
is uniquely determined by local single-ion considerations. The orbital excitations from



58 Chapter 3. Experimental methods

Figure 3.13: Elementary excitations accessible by RIXS. The approximate energy
scales of each excitation in correlated electron materials such as transition-metal oxides
are also indicated. Figure from Ref. [195].

Figure 3.14: Feynman diagram of the leading
one phonon contribution to RIXS. The dotted
lines denote the Cu 2p core hole, solid lines denote the
3d conduction electrons, and the circular line denotes
the phonon. Figure from Ref. [152].

the ground state are transitions between the different crystal-field levels. Crystal-field
transitions between different d orbitals are called dd-excitations. In optical spectroscopy
local dd-transitions in which the angular momentum does not change are forbidden by
the dipole selection rule (∆l = 0) while they are clearly observed in RIXS spectra (Fig.
3.13) because this process is two dipole-allowed transitions (d-to-p and p-to-d) (∆l = ±1).
Despite the low energy resolution at the early stage of the RIXS studies, RIXS has provided
complementary information about the dd-excitations that cannot be measured by optical
spectroscopy. We remark that a many-body approach is essential to be more general
beyond the single ion treatment.

IXS and INS4 are often used to measure phonons whose energy scale in solids is typically
below 100 meV (Fig. 3.13). Because of the typical energy resolution, RIXS is currently not
a routine technique to detect phonons. On the other hand, the theoretical studies have
shown that the leading term of RIXS phonon cross sections is fundamentally different from
the one of the non-resonant IXS (Fig. 3.14) [152, 196], and therefore the electron-phonon
coupling can be extracted from the RIXS phonon spectra [197]. Experimentally it has been
recently attempted to extract the electron-phonon coupling from the phonon contribution
in cuprates by RIXS experiments [153].

Other features which can be accessible by L-edge RIXS are magnetic excitations,
also known as magnons. When the long range magnetic orders set in, the global spin
rotational symmetry in solids is broken. As a consequence, characteristic collective
magnetic excitations emerge. The magnons have been dominantly measured by INS where

4We stressed only spin excitations in neutron scattering experiments early on yet phonons are also
observable because neutrons are also scattered by nuclei.
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neutrons with spin 1/2 can change the spin of valence electrons. On the other hand the
photon spin couples only very weakly with the valence electron spins. Thus the spins are
changed by other interactions such as the spin-orbit interactions. For valence electrons,
the spin-orbit coupling is usually weak but electrons in core levels possess the very large
spin-orbit coupling up to tens of electron volts. In RIXS processes, the core-hole in the
intermediate state can play this role: the core-hole can induce the large spin-orbit coupling
between the orbital moment generated by a photon and the spin moment of the valence
electrons. This explains why the magnon dispersions are not observed in the O K-edge
RIXS where the angular momentum of the core hole is 0 (L = 0). In cuprates, the magnon
dispersions were first detected in RIXS by Braicovich et al. in 2010 [62]. Note that the
accessible parameter space in RIXS is limited compared with other scattering techniques
because of the strong constraint of the incoming energy which has to be one specific
absorption energy. For instance, the wave vectors accessible by the Cu-L3 edge energy are
not as long as the (π, π) in the reciprocal space where the magnetic Bragg peak of the
antiferromagnetic order is located. As mentioned in the previous sections, INS has been
dominantly used to study magnons. However this method typically requires a massive
number of samples to compensate small cross sections of magnetic scattering. In this
regard, RIXS has a huge advantage where only a single piece of sample is required to
obtain spectra and this has been indeed demonstrated by the recent Ru-L edge RIXS
experiments where the clear magnon was observed from the sample whose size was only
around 50 µm [198]. This is desirable for our strain experiments where one needs to make
a sample into the needle shape for the application of homogeneous strain.

We end the discussion of the RIXS features by explaining the CDW. The CDW,
i.e., electron-density modulation, can be detected in the non-resonant x-ray diffraction
measurements as demonstrated in previous studies [22, 155, 16]. However the diffraction
intensity of the CDW originating from valence electrons is in general not strong in the
non-resonant condition and is enhanced significantly in the resonant condition. This has
been experimentally demonstrated in the previous resonant x-ray scattering experiments
for a variety of cuprate families: YBa2Cu3O6+x [146], La2−xBaxCuO4 [131], Nd2−xCexCuO4
[199], and La1.8−xEu0.2SrxCuO4 [200, 201]. Using the resonant feature of RIXS spectra,
one can also investigate the chemical nature of the scattering spectra in comparison with
the x-ray absorption spectra [160]. Also for the strain experiments, one has to consider the
sample mounting method and the complicated design of the strain rig for the transmission
geometry in the hard x-ray scattering measurements, while it is relatively easier in the
soft x-ray measurements where the back scattering geometry is used to detect the CDWs
in cuprates.

3.5.3 Cu-L3 edge REXS and RIXS
We have seen that the cross section of RIXS is given as a function of (Q, ω),

Q = qin − qout and ω = ωin − ωout, (3.45)

where qin (qout) and ωin (ωout) are the wave vector and energy of the incoming (outgoing)
photons, respectively. From the typical scattering geometry shown in Fig. 3.15, the norm
of the wave vector of the elementary excitations is

|Q| = 2|qin| sin(2θ/2). (3.46)
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Figure 3.15: Schematics of a typical diffractometer and kinematics for the scat-
tering process. ν is used to express the photon energy here instead of ω written in the
main text. Abbreviations, PD: photon detector, SC: scattering. Figures from Ref. [192].

Note here the ”2θ” is the scattering angle and not necessary twice of the sample angle
θ. Also |qin| ' |qout| is assumed because the difference of photon energy ω is typically at
most a few electron volt while the incident energy ωin for the Cu L3 edge is ∼ 932 eV, thus
the difference in the wave vector norm is negligibly small. Q can be further decomposed
into

Q = Q|| + Q⊥. (3.47)

For practical reasons, 2θ (and as a result |Q|) is often fixed in RIXS experiments. However
it is not a big issue when one measures the two dimensional materials such as layered
cuprates where our region of interest is only Q|| and one can assume the physical properties
do not strongly depend on Q⊥.

In summary, simultaneous measurements of the scattering angle, sample angles, and
scattered photon intensities correspond to the RIXS cross section.

The data obtained in synchrotron facilities and presented in this thesis were measured
at two different facilities: the UE46-PGM1 beamline at the BESSY II synchrotron of the
Helmholtz-Zentrum-Berlin for REXS experiments and the beamline ID32 of the European
Synchrotron Radiation Facility, Grenoble, France (ESRF) for RIXS experiments.

REXS at UE46-PGM1 in BESSY II

The UE46-PGM1 beamline in BESSY II is a soft x-ray spectroscopy beamline, which has
an XUV diffractometer and high-filed diffractometer [202, 203]. The energy range of the
soft x-ray provided by the beamline is between 120 eV and 2000 eV, which includes the
L2,3-edges of the 3d transition metals. The polarization of the incident photons is tunable:
linear or circular. In this setup, the photodiode counts the intensity of the scattered
photons over a wide energy range including both elastic and inelastic scattering processes.
This is why this experiment is called resonant energy-integrated x-ray scattering (REXS)
in contrast with RIXS. In REXS spectra the dominant contribution over the entire energy
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range arises from the elastic component, therefore the inelastic signals which reside in the
REXS intensity are usually interpreted as the background of the elastic signal. On the
other hand, the photodiode in the XUV diffractometer (2θ) can be rotated during the
measurements as well as the sample (θ). This capability of rotating the photodiode allows
one to vary the norm of the scattering vector Q during the measurements, and therefore
vary only one component of Q (K, for instance) while fixing the other two components
of Q (H and L, in this example). In principle, the same type of measurements can be
carried out in the RIXS setup but it is not practical because the huge spectrometer has to
be moved for this purpose and realistically this is too time consuming.

RIXS at ID32 in ESRF

The ID32 beamline in the ESRF is a soft x-ray spectroscopy beamline, one of whose
end-stations possess the ERIXS spectrometer dedicated to RIXS experiments [204]. The
energy range of the incoming photons provided by the beamline is 0.3 - 1.6 keV, which
includes the L2,3-edges of the 3d transition metals and M4,5-edges of the 4f rare-earth
elements. The medium energy resolution in usual operations is around 60 meV at the
Cu-L3 edge which we used for our experiments. According to the estimation by the
beamline after the upgrade in 2020, the highest resolution at the Cu-L3 edge is 25 meV.
Before the x-rays are scattered by a sample, a plane grating monochromator is used with
variable line spacing (VLS) to obtain a beam whose band width is very narrow. RIXS
experiments are performed under the ultra-high vacuum because the x-rays are strongly
attenuated in the ambient condition. An in-vacuum four-circle manipulator is available
in the sample chamber. This allows one to investigate most of the first Brillouin zone of
the cuprates and in particular to explore the azimuthal angle dependence of the RIXS
spectra. The ERIXS spectrometer has a 11 m-long arm that moves in the range 2θ = 50 -
150◦ (Fig. 3.16). After the photons are scattered by the sample, they are collimated by an
elliptical horizontal mirror and dispersed in energy by a spherical VLS grating analyzer.
The photons go thorough the 11 m distance and are detected by the charge-coupled device
(CCD) detector. Photons with different energies can be distinguished by isoenergetic lines
in the CCD image. This is how one obtains the inelastic signals.
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Figure 3.16: High-resolution ERIXS spectrometer at the beamline ID32. Figure
from the website of ESRF ID32.



4
C h a p t e r

Normal-state charge transport
of YBa2Cu3O6.67 under uniaxial
stress

4.1 Introduction

The anomalous normal-state transport properties of the cuprate superconductors challenge
the fundamental tenets of solid-state theory, and have thus become emblematic of analogous
phenomena in a much larger class of quantum materials [2]. Recent NMR and x-ray
scattering experiments have identified charge-density wave (CDW) as a ubiquitous feature of
the cuprates families, and as the leading competitor of high-temperature superconductivity
at moderate doping levels [159, 14, 15]. However, the gradual “freezing” of the charge
correlations upon cooling and the absence of sharp anomalies in transport properties have
made it difficult to establish a correspondence between both sets of observables.

To see how anomalous the correspondence in the cuprates is, it is useful to review
macroscopic transport behaviors of classical CDW materials. The concept of CDW was
theoretically proposed by Peierls for an atomic one-dimensional (1D) chain. Because of the
specialty of the Lindhard function for the 1D case, a 1D free-electron system has a generic
instability that results in a softening of its phonon dispersion, known as Kohn anomaly, and
in the opening of a gap around the Fermi level in the free-electron band due to the periodic
potential of the CDW at low temperature that offers the chance of Fermi surface nesting
(FSN). The gap opening drives a metal-insulator transition that can be and was observed
in resistivity measurements on quasi-1D materials such as TTF-TCNQ as shown in Fig. 4.1
(a) [205, 206]. For higher dimensions, the origin of the CDW and the resulting transport
properties usually depend on details of the material. For example, in one of the most
prominent 2D materials NbSe2, it is widely considered that the electron-phonon coupling
(EPC) plays a key role for the CDW formation [207] and a small hump in resistivity is
observed near the onset temperature of the CDW due to the partial gap opening in the
2D Fermi surface (Fig. 4.1 (c)) [208]. As a consequence, the resistivity is usually a good
(and often first experimental) indicator of the CDW formation in such materials.

However, it is not clear whether EPC and FSN drive the formation of CDW in quasi-2D
cuprates [209] and interestingly, there are no obvious signatures in the resistivity at the
onset temperature of the CDW as shown in Fig. 4.2 (a,b) [210], whereas it is well known
that the temperature dependence of the resistivity changes at the pseudogap temperature
T ∗ (Fig. 4.2 (c)) [122]. Only a very recent work has suggested a more intimate connection
between the onset of the CDW and the departure from T -linear resistivity in underdoped
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|2

Figure 4.1: Temperature dependence of the resistivity in classical CDW ma-
terials. (a) One dimensional chain TTF-TCNQ. The clear metal-insulator transition
is observed at the onset temperature of the CDW. (b) One dimensional chain NbSe3
(c) Two dimensional layered NbSe2. The hump-like features were observed at the onset
temperatures. Figures from Ref. [11].

cuprates showing that the T -linear resistivity of YBa2Cu3O6+x is extended and restored
when the CDW is suppressed in strained thin films [211]. Recently, experimental efforts
under external fields have opened up fresh perspectives on the correspondence between the
macroscopic transport and the charge ordering phenomena in the cuprates. Specifically, the
application of external magnetic fields of order 100 T has revealed new information about
quantum transport phenomena at the lowest temperature where one cannot acquire the
transport signals due to zero resistivity of superconductivity [20, 161, 212, 162, 213, 214],
but the application of complementary scattering probes under these extreme conditions
remains a major technical challenge to date [155, 21, 156, 196].

One of the most remarkable transport features was observed in the Hall effect, which
is a powerful transport probe to extract the information of Fermi surfaces in metals. In a
certain hole doping regime in the underdoped YBa2Cu3O6+x, the sign of the Hall coefficient
RH changes from positive to negative, suggesting that the conductive carriers change from
hole-like quasiparticles to electron-like ones, upon cooling (Fig. 4.3) [161, 215, 52]. Since
the electronic structure of cuprates is essentially a single band, the sign reversal is attributed
to the reconstruction of the Fermi surface: from hole-like pocket centered at (π, π) in the
Brillouin zone proposed by the first-principle calculations to the electron pocket of the 2D
Fermi surface. The small pocket is consistent with the Fermi surface area estimated by
quantum oscillation experiments under extremely high magnetic field [20, 162, 216]. In the
same doping region where the Fermi surface reconstruction is suggested by the macroscopic
transport experiments, the charge orders were observed as the 2D-CDW, which breaks
the translational symmetry of the crystal lattice [217, 218, 219, 14, 22, 146, 220, 221, 222].
In fact, those two anomalous transport properties sensitive to the Fermi surface had
already suggested the possible presence of the density waves as a trigger of the Fermi
surface reconstruction, before the CDW was directly observed as Bragg peaks in the
x-ray scattering measurements [14]. Therefore it has been widely accepted that the Fermi
surface reconstruction is triggered by this symmetry breaking [214]. However the Fermi
surface in the underdoped YBa2Cu3O6+x has not been fully known due to a lack of direct
observations in photoemission experiments. Therefore the direct information about the
reconstructed Fermi surface, e.g., its shape and location in the reciprocal space and more
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Figure 4.2: Temperature dependence of the in-plane resistivity in YBa2Cu3Oy.
(a) y = 6.30 − 6.55 (b) y = 6.55 − 7.00. The CDW emerges between y = 6.45 − 6.93
according to the x-ray scattering experiments [151], yet no anomalies are noticeable around
the onset temperatures of the CDW, TCDW = 100−150 K. (c) The temperature dependence
of (ρab(T ) − ρab(0)/αT ) to emphasize the anomaly at pseudogap temperature T ∗. α is
the slope of the T -linear region of the in-plane resistivity. The temperature where the
resistivity deviates from the T -linear region coincides with the pseudogap temperature T ∗

determined by other experiments. Figures from Ref. [210, 122].

crucially the relation with the CDW, are not clear yet.
The propagation vectors of the bidirectional 2D-CDWs are Q2D−CDW∼(0, 0.3, 0.5) and

(0.3, 0, 0.5). Therefore it is straightforward to explain the Fermi surface reconstruction
by this bi-axial nature of the 2D-CDW as shown in Fig. 4.4 (a) [223]. In this case the
electron pocket is located around the nodal region of the d-wave superconducting order
parameter. However it was pointed out that the correlation length of the short range
2D-CDW was not large enough to explain the transport properties, in particular the
quantum oscillations, because the cyclotron radius was estimated to be greater than the
correlation length of the short range 2D-CDW [223]. Because of the high superconducting
transition temperature Tc, quantum oscillation measurements at very low temperature
have been performed under the high magnetic field, which is known to induce a 3D-CDW
whose correction length is much greater than the 2D-CDW, albeit only along the b-axis of
YBa2Cu3O6+x [158, 155, 21]. Thus the Fermi surface reconstruction could be due to the
3D-CDW: a unidirectional charge order could create an electron pocket in the presence of
nematic order, that is, an electronic state characterized by rotational symmetry breaking
(Fig. 4.4 (b)) [224]. Nevertheless, the sign of the Hall coefficient changes even in the low
magnetic field that is not enough to induce the 3D-CDW (≤ 5 T) (Fig. 4.5). Therefore
the static 3D-CDW is less likely to be responsible for at least the sign reversal of the
Hall coefficient. Moreover, the sign reversal of the Hall coefficient could be explained by
completely different theories unrelated to density waves such as vertex corrections proposed
for electron-doped cuprates [225]. Overall, it is not clear whether the static charge orders
are responsible for the unusual temperature dependence of the Hall coefficient and the
proposed Fermi surface reconstruction.
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Figure 4.3: Temperature evolution of the Hall
coefficient RH of YBa2Cu3Oy. The value of RH is
normalized to its value at 100 K. T0 is the sign change
temperature of RH. p and B indicate the doping levels
and the magnetic fields used in the measurements,
respectively. Figures from Ref. [215].

Figure 4.4: Proposed Fermi surface reconstruction by density waves. Reconstruc-
tion by bidirectional orders (left) and by unidirectional order with nematic distortion of the
underlying Fermi surface (right). The underlying Fermi surface is obtained from the tight
binding Hamiltonian. The correspondence with the real material is that Q1 and Q2 are
the propagation vectors of the 2D-CDW and Q is the one of the 3D-CDW of YBa2Cu3Oy.
Figures from Ref. [223].
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Figure 4.5: Magnetic field dependence of RH in YBa2Cu3O6.67. The sign change
of RH is observed below 5 T although the signal at lower field is not observable due to
the zero resistivity. The sign reversal temperature T0 ∼ 70 K dose not depend on the
magnetic field. Figure from Ref. [161].

Figure 4.6: Phonon dispersions in YBa2Cu3O6.6
under hydrostatic pressure. The phonon anomaly
at the propagation vector of the CDW ∼ (0,0.31,6.5)
is vanished by the hydrostatic pressure. Figure from
Ref. [17].

Hydrostatic pressure is another continuously tunable parameter, by which Tc is enhanced
[226]. The anomaly in the phonon dispersion, one of the signatures of 2D-CDW, is
completely suppressed by hydrostatic pressure as small as 1 GPa (Fig. 4.6) [17, 227].
Moreover hydrostatic pressure greatly reduces the magnitude of both resistivity and
Hall coefficient [228], thereby suggesting the suppression of the CDW by hydrostatic
pressure. Since the superconductivity and CDW compete in the underdoped cuprates,
the suppression of the CDW by pressure is qualitatively consistent with the enhanced Tc,
yet Tc continuously increases even above the critical pressure at which the CDW vanishes
completely. Therefore, the hydrostatic pressure effects on different physical quantities are
quantitatively contradictory. Moreover the magnitude of the effect is also highly debated
in comparison with other probes: pressure of 1.9 GPa has only a modest effect on the
CDW measured in NMR [229] and the Hall coefficient at a specific doping level almost
does not change up to 2.6 GPa [23]. One key aspect to be considered is the doping change
induced by pressure as well as the intrinsic pressure effect on the charge order. Moreover,
the measurements were carried out on different samples, and the strong dependence of the
doping level on hydrostatic pressure has so far precluded firm conclusions.

Recent experimental advances have enabled the application of highly homogeneous uniaxial
stress to complex quantum materials, thereby opening up additional perspectives for in situ
experiments with a continuously tunable parameter, which were particularly demonstrated
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in Sr2RuO4 [173, 170]. The application of uniaxial stress in x-ray scattering experiments
has already uncovered substantial modifications of the charge-ordered state of the cuprates
[18, 142]. Specifically, the 2D-CDWs in YBa2Cu3O6.67 were selectively enhanced by the
uniaxial stress in contrast to the isotropic hydrostatic pressure. Moreover the 3D-CDW
was induced in the absence of the magnetic field at high temperature compared with the
one uncovered by the magnetic field. However, complementary transport measurements
under high stress are difficult because even small cracks can disrupt the current flow, so
that little is known about the stress response of the transport coefficients [230]. Despite
technical challenges in experiments, it is important to elucidate macroscopic properties, in
particular transport properties, corresponding to those underlying ground states confirmed
by the microscopic measurements to provide foundations for developments of many-body
theories.

To this end, in this chapter, we present measurements of the stress dependence of the
normal-state resistivity and Hall coefficient of twin-free single crystals of the underdoped
high-Tc superconductor YBa2Cu3O6+x, which is particularly suitable for such experiments
because of its low degree of lattice disorder, which is also evident from a number of
quantum oscillation experiments in this compound [20, 162]. We chose the doping level of
∼ 0.12 holes per copper ion (x = 0.67) where charge ordering is most pronounced [151].
A substantial stress-induced enhancement of the charge order was recently observed on
crystals identical to those investigated here, using a nearly identical experimental setup in
Ref. [18, 142] and the next chapter. We find remarkable parallels in the stress responses of
the transport coefficients and the diffraction signal from static charge-ordering, especially
with regard to their temperature evolution and in-plane anisotropy. This correspondence
allows us to conclude that the condensation of collective charge fluctuations reduces the
resistivity, similar to classical CDW materials with quasi-two-dimensional electron systems,
where this effect has been attributed to a loss of inelastic scattering channels in the CDW
state [10, 11]. However, we also conclude that the impact of static charge order is too
weak to explain the sign reversal of the Hall coefficient as a function of temperature [212].
We argue that in YBa2Cu3O6.67, liquid-like collective fluctuations of the electron system
take on the role of static order in the classical CDW compounds, and we point out the
need to develop a theoretical framework to describe the underlying mechanisms [231].

4.2 Experimental methods

The YBa2Cu3O6.67 samples for the strain experiments have been prepared as explained
in section 3.3 of the previous chapter. The oxygen content was controlled by annealing
samples at 555 ◦C in the mixture of 5 % O2 and 95 % Ar for one week to obtain this
specific doping level homogeneously [178]. Subsequently the samples were detwinned
with a standard mechanical method [180]. Tc was determined with standard SQUID
measurements and the hole doping p was estimated from the c-axis lattice constant
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Figure 4.7: Annealing temperature dependence
of the contact resistance. Silver and gold are used
as contacts of YBa2Cu3Oy samples. Figure from [232].

Figure 4.8: Temperature evolution of the resis-
tivity in optimally doped YBa2Cu3O6+x. Both
in-plane resistivity ρab and out-of-plane resistivity ρc

are shown. Figure from Ref. [233].

measured with x-ray diffraction measurements at room temperature [182]. The typical
sample dimensions are ∼ 2.5 mm × 0.2 mm × 0.1 mm as illustrated in section 3.3. After
shaping the sample, electrical contacts were prepared by sputtering Au on the surface
[232]. This is because the surface of YBa2Cu3O6+x reacts with CO2 in air and, therefore,
the insulating material BaCO3 forms on the surfaces, which prevents ones from obtaining
good contacts for transport experiments [185]. To obtain the good contacts with the bulk
YBa2Cu3O6+x, the sample has to be annealed after the deposition so that the gold can
diffuse into the bulk material. Desirable temperature to obtain low resistive contacts
has been systematically studied as shown in Fig. 4.7 [232]. In many cases, this process
to obtain good contacts is simultaneously done when the samples are annealed to tune
their oxygen contents. However this routine method is not feasible in our case because we
have to cut and polish samples after tuning the oxygen contents and detwinning samples1.
Therefore, instead of this routine method, we annealed the needle-shaped samples with
gold at 500 ◦C for one hour in 100 % Ar to make the contact resistance lower and to
keep the homogeneity of the oxygen content and detwinned structure as much as possible.
In this way, we obtained the contact resistance of the order of 1-10 Ω, which enabled us
to perform decent transport experiments. In order to accurately measure the in-plane
resistivity, one must be careful not to deposit Au on the ab plane of the rectangular shape
sample for the driving current. Inhomogeneous currents along the c-axis would turn the
resistivity signal into a mixture of the in-plane and out-of-plane components which are very
different in YBa2Cu3O6+x due to its high anisotropy. As one expects from the anisotropic

1One may come up with a possibility to control the oxygen contents of needle-shaped samples with
gold in an opposite fashion to our steps. This would mean that the samples have to be dropped into the
liquid nitrogen when they are quenched, and it is not ideal for quite fragile needle-shaped samples. Also,
even if this process were possible, the sample would have to be detwinned afterwards with the pressure
of 50 MPa along the long direction of the needle. There is almost no hope to apply such a pressure on
the sample in a controlled way with our detwinning setup, where two ends of a sample are just pressed
mechanically.
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Figure 4.9: Masking methods. (a) Aluminum foil mask on a glass plate carefully
prepared by the laser cutter, which enables one to make holes whose width is only 30
µm. The dotted circle indicates the zoomed region in panel (b). (b) Expanded picture of
the aluminum foil masks. Green lines indicate traces made by the laser cutter for better
visibility. Here, five sets of masks including the one indicated by green lines are present.
On the left side, a method to mount a sample is shown: 1. place a needle shaped sample, 2.
cut the end of the mask, and 3. fold the mask to wrap the sample. (c) Samples wrapped
by the mask on the small glass plate. The holes at the center of the sample are for voltage
contacts and exposed parts at the ends of the sample are for current contacts. (d) Sample
stage for spattering Au. The dashed circle indicates the mask on the small glass plate
shown in panel (c). The sample is tilted by 45 degrees and the stage keeps rotating while
the deposition, thereby, Au is spattered homogeneously on the surfaces except for the
bottom and masked region of the sample. (e) ab-surface of the sample after the deposition.
The sample is buried in glue for polishing. By polishing the top ab-surface, one obtains
the sample with gold only on ac- and bc-surfaces.
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Figure 4.10: Typical temperature dependence of
the in-plane resistivity of YBa2Cu3O6.67. As an
example, the data on the sample 1 is shown here.

crystal structure, the anisotropy of the resistivity ρc/ρab is 100-1000 and their temperature
dependence is very distinct (Fig. 4.8) [233]. Therefore it is easily noticeable if the c-axis
component contaminates the resistivity signal. To meet those geometrical demands of
the electrical contacts, a masking method has been used [185]. The detailed procedure
to make the gold contacts with the masking method is summarized in Fig. 4.9. Keeping
those facts about the electrical contacts in mind, the gold was carefully deposited only on
the ac and bc planes. An example of the resistivity curve prepared in this method is shown
in Fig. 4.10 and it is in excellent agreement with previous studies [210]. The longitudinal
resistivity ρxx (ρyy) was measured only along the uniaxial stress σxx (σyy) direction. In
particular uniaxial pressure was applied along the a-axis for samples 1 and 3 and along the
b-axis for sample 2, to measure ρxx and ρyy, respectively. The Hall effect was measured
with the magnetic field applied along the c-axis for all the samples. The measurements
were performed with both positive and negative fields, thereby the contribution of the
longitudinal magnetoresistivity was eliminated. Since the transverse contact resistance
for the sample 1 was not great enough to perform the Hall effect experiment, the results
of only samples 2 and 3 are presented. The characterizations of the three samples are
summarized in Table 4.1. The measurements were carried out by a standard ac lock-in
method with the driving current with frequency ∼80 Hz. The stress rig has been used
and the contact geometry of the sample is seen in Fig. 4.11. Note that in this chapter, we
discuss the pressure effect by means of stress rather than strain because the stress was
measured more directly in this setup.

Sample name c (Å) p Tc (K) Dimensions (a×b×c) (mm3)
Sample 1 (R555c2N12) 11.721 0.1267 64.8 2.6 × 0.23 × 0.15
Sample 2 (R555e1N1) 11.723 0.1241 64.7 0.26 × 2.1 × 0.12
Sample 3 (R555c1N4) 11.724 0.1229 64.2 3.2 × 0.23 × 0.10

Table 4.1: List of the YBa2Cu3O6.67 crystals measured in the resistivity experiments. All
samples were used for the resistivity measurements and the samples 2 and 3 were used
for the Hall effect measurements. The c-axis lattice parameter c is determined with XRD
measurements at room temperature and the doping p is estimated using Eq. (3.13). Tc
was determined by magnetometry as a midpoint of the diamagnetic response.
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Current contacts

Voltage contacts
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5 mm(a)
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Figure 4.11: Mounted sample on the stress rig. (a) Top view of the stress rig. (b)
Zoomed side view of the sample. Gold wires were attached on gold pads deposited on
the sample with silver epoxy. (c) Schematic figure of panel (b). The longitudinal and
transverse voltage contacts were used for the resistivity and Hall effect measurements,
respectively. The current flows along the long direction in both measurements.
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σxx || a-axis

Sample 2
σyy || b-axis

(b)

(c) (d)

(a)
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σxx || a-axis

Sample 2
σyy || b-axis

Figure 4.12: Stress sweep experiments of the normalized electrical resistance
at fixed temperatures. (a) Change of the normalized resistance ∆R/R vs. uniaxial
pressure σxx for different temperatures above 150 K. Resistance R was measured and the
uniaxial pressure σxx was applied along the a-axis. Solid lines are liner fits. (b) Same as
(a) with ≤ 150 K. (c,d) Same as (d,e) with R and σyy parallel to the b-axis.

4.3 Results and discussion

4.3.1 Resistivity
Figure 4.12 shows the stress dependence of the normalized electrical resistance for different
temperatures. In the stress sweep measurements, samples were mounted on the carrier
which can be split by tensile stress as described in section 3.2.4 so that we were able to
determine zero force accurately. When the stress was applied and released, no hysteretic
behavior was observed. It indicates that the samples were elastically deformed below
the plastic limit. At each temperature, within the small noise the resistance shows a
linear dependence vs. uniaxial pressure. At relatively high temperature, the resistance R
increases under the uniaxial compression as shown in Fig. 4.12 (a). This behavior cannot
be explained in terms of a mere geometric effect as discussed in detail later. On the other
hand, upon cooling this pressure response is gradually weakened and finally below 100
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K it changes direction and the resistance R decreases under the uniaxial compression as
shown in Fig. 4.12 (b). One may think that the uniaxial pressure dependence along the
a-axis is caused by the enhanced a-b crystal anisotropy because the resistivity gets more
anisotropic as the crystal anisotropy is increased, e.g., by changing the hole doping [96]. If
this were the case one would then expect the qualitatively opposite behavior by the b-axis
compression which makes the sample less orthorhombic and less anisotropic. However this
possibility is clearly excluded since the stress response along the b-axis shows qualitatively
the same behavior as observed along the a-axis as shown in Fig. 4.12 (c,d). We therefore
attribute the stress dependence of the in-plane electrical resistance to electrons in the
CuO2 planes rather than the CuO chains which run along the b-axis.

The temperature dependence of the uniaxial pressure responses is summarized in Fig.
4.13 (a) as the pressure derivative −d(∆R/R)/dσ deduced from the linear fits of ∆R/R
vs. σ in Fig. 4.12. (Note that we take the negative sign for the compressive stress σ as
conventional notation, and then we multiply d(∆R/R)/dσ by −1 so that the positive and
negative response in −d(∆R/R)/dσ correspond to more resistive and conductive changes,
respectively.) ∆R/R measured on sample 3 with the a-axis compression in temperature
sweep experiments is also plotted to ensure the reproducibility of our observation.

In interpreting our observation, we first considered the impact on the sample geometry,
which was deformed by the external stress. In particular, with the aim of being more
quantitative, one can derive the Gauge factor d(∆R/R)/dε as

d(∆R/R)
dε = d(∆ρ/ρ)

dε + (1 + 2ν), (4.1)

where ρ, ε, and ν are the resistivity, applied strain, and the Poisson’s ratio of an elastic
material, respectively. It is derived from the relationship between the resistance and
resistivity, R = ρl/A, where l and A are the sample length and cross section, respectively.
The second term on the right side of Eq. (4.1), 1 + 2ν, is the geometric factor. Suppose
the uniaxial pressure dependence is only due to the geometric factor, i.e., ∆ρ = 0, one
obtains −d(∆R/R)/dσ = −(1 + 2ν)/E, which is a negative constant at all temperature.
Using ν ' 0.25 [18] and the Young’s modulus E ' 150 GPa [234] for YBa2Cu3O6.67, the
geometric factor −(1 + 2ν)/E is only -0.01 GPa−1. It is clear that this simple model based
on the geometric factor does not reproduce our experimental results at all. Therefore
most of the uniaxial pressure response in the electrical resistance (−d(∆R/R)/dσ) is due
to the first term on the right side of Eq. (4.1), i.e., resistivity, whose changes depend
on the electronic structure and/or scattering rate. Likewise, the resistivity simulated
in the non-interacting tight-binding model is expected to monotonically decrease under
uniaxial compressive stress and thus does not explain the experimental data (see details in
Appendix A).

The strong, non-monotonic temperature dependence of the stress response indicates
many-body correlations of the electron system. In view of the recent observation of strongly
T -dependent incommensurate charge order by x-ray diffraction on samples of identical
composition [144], we compare our transport data to the amplitude of the diffraction
signal arising from charge order, which is displayed in Fig. 4.13 (b). We note that the
temperature onset of this signal at TCO ∼ 150 K coincides approximately with the onset
of the downturn in −d(∆R/R)/dσ (Fig. 4.13 (a)). It was shown by the recent RIXS
measurements that the 2D-CDW orthogonal to the uniaxial stress direction is always
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Figure 4.13: Comparison of transport and diffraction signatures of 2D-CDW.
(a) −d(∆R/R)/dσ vs. temperature deduced from Fig. 4.12. One of ∆R/R of sample 3
obtained in temperature sweep measurements is also shown. The magnitude of ∆R/R
was scaled by -1 GPa to convert to −d(∆R/R)/dσ. (b) Temperature dependence of the
normalized intensity of the 2D-CDW measured in resonant x-ray scattering experiments.
Reproduced from Ref. [144]. Inset: Uniaxial stress dependence of integrated peak intensity
of the 2D-CDW (normalized to zero stress) is shown. It was estimated based on the RIXS
data in Ref. [142] and details can be seen in Appendix B.
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enhanced for both uniaxial pressure directions [142]. The qualitatively symmetric response
of −d(∆R/R)/dσ along both a- and b-directions and its close coincidence between TCO and
the temperature at which −d(∆R/R)/dσ shows the downturn indicate the signature of the
static 2D-CDW in the resistivity which was not apparent in the normal resistivity curves
(Fig. 4.2 (a,b) and Fig. 4.10). On top of those qualitative isotropies, the quantitative in-
plane anisotropies of the stress response of both quantities also exhibit striking similarities.
Specifically, stress along both principal in-plane axes enhances the charge-ordering signal
with an amplitude that is larger along b-axis than along a-axis (Inset of Fig. 4.13 (b)
and Appendix B) [142], mirroring the amplitude and anisotropy of the stress response of
the resistivity where −d(∆R/R)/dσ crosses zero at ∼ 110 K and 100 K with the b- and
a-axis compression, respectively (Fig. 4.13 (a)). These parallels suggest that the electrical
resistivity is reduced by the onset of charge order. A similar effect has been observed in
classical CDW compounds with two-dimensional electron systems, where the CDW gap
partially reconstructs the Fermi surface such that the impact of the reduced carrier density
on the resistivity is over-compensated by the reduced scattering probability of the residual
carriers [10, 11].

4.3.2 Hall effect
In light of these considerations, we now discuss measurements of the Hall coefficient RH,
which are displayed in Fig. 4.14. In agreement with prior work in the absence of pressure
also shown in Figs. 4.3 and 4.5, the Hall coefficient, RH, is positive at high temperatures
and exhibits a maximum on cooling below T ∼ 150 K, followed by a zero-crossing at
T0 ∼ 70 K2 [161, 215]. Based in part on quantum oscillation measurements at high
magnetic fields, these phenomena have been ascribed to the formation of electron pockets
via a Fermi surface reconstruction induced by charge ordering (Fig. 4.4) [20, 214, 213, 223].
In qualitative agreement with this scenario, the application of stress amplifies the downturn
of RH upon cooling as is evident from ∆RH, consistent with the stress-induced enhancement
of the charge ordering amplitude inferred from x-ray diffraction [142]. The effect is again
larger for stress along b-axis than along a-axis (Fig. 4.14 (c)), mirroring the in-plane
anisotropies of the longitudinal resistivity (Fig. 4.13 (a)) and charge-ordering amplitude
(Inset of Fig. 4.13 (b)). On a qualitative level, our data thus support the notion of a
Fermi-surface reconstruction induced by the experimentally observed charge correlations
which are enhanced by the uniaxial stress.

However, we note a large quantitative disparity in the stress responses of the charge
ordering amplitude and the transport coefficients. In particular, the intensity of the x-ray
reflections increases by ∼ 100% for a-axis compression by 1 GPa [142], whereas only a small
modification of RH and a ∼ 1 K shift of T0 are observed under the same conditions (Fig.
4.14 (d)). A related discrepancy was noted for hydrostatic pressure (Fig. 4.15) [23, 228],
which appears to affect the manifestations of charge order in scattering experiments much
more strongly than the corresponding transport features [17]. In the latter case, however,
the association is complicated by the influence of hydrostatic pressure on the doping
level, which varies strongly as a function of doping and may obscure the comparison of

2The magnitude of the magnetic field was not high enough to completely obliterate superconductivity,
therefore the signal below 40 K turns up towards zero in Fig. 4.14 (a) due to the zero resistivity. The
similar upturn is seen around 30 K in Fig. 4.14 (b).



4.3. Results and discussion 77

Sample 2
σyy || b-axis
B = 12 T

(a)

Sample 3
σxx || a-axis
B = 8 T

T0

(b)

(c)

(d)

σyy || b-axis

σxx || a-axis
σyy || b-axis

σxx || a-axis

Figure 4.14: Hall effect under uniaxial stress. (a) The uniaxial pressure σxx is parallel
to the a-axis and the magnetic field is 8 T along the c-axis. (b) The uniaxial pressure
σyy is parallel to the b-axis and the magnetic field is 12 T. (c) The difference in the Hall
coefficient ∆RH between σ ∼ -1 GPa and σ = 0. (d) The sign reversal temperature T0 as
a function of stress.
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p = 0.11

(a)
(c)

Figure 4.15: Hall effect under hydrostatic pressure. The measurements were per-
formed under the high magnetic fields unlike our experiments. (a) Figure from Ref. [23].
(b,c) Figures from Ref. [228].

data on different samples [229]. Uniaxial stress, on the other hand, does not affect the
doping level. If the uniaxial stress primarily affects the doping, one would then expect the
supression of the CDW, which was never observed in diffraction experiments. Moreover,
our measurements were taken on samples prepared in an identical fashion and can thus
be compared without any ambiguity. The quantitative disparity between diffraction and
transport signatures of charge order is therefore an intrinsic feature of YBa2Cu3O6.67. We
remark that little change in RH is not because the uniaxial stress response is prohibitted
by the symmetry of the system (see details in Appendix C). A possible solution to this
conundrum is spatial inhomogeneity of the static charge order, which is indicated by
the nonzero width of the diffraction features. X-ray scattering experiments with high
energy resolution [16] indicate that the x-ray reflections originate predominantly from
charge ordered domains nucleated by residual disorder – a finding that is also supported
by NMR results [235]. Conversely, the current flow detected in transport experiments
may predominantly originate from regions with weak or absent static charge order, thus
explaining the quantitative disparity between the stress responses of static charge order
and transport properties.

However, these considerations also show that static charge order is not responsible for
the most prominent anomalous transport features of YBa2Cu3O6.67, including particularly
the maximum and sign reversal of the Hall coefficient which only depend weakly on
stress (Fig. 4.14). In exploring alternative explanations, we can also rule out a Fermi-
surface reconstruction by magnetic order, because static magnetism is not present in the
YBa2Cu3O6+x system in the doping and magnetic-field range probed by our experiments. In
principle, the unusual behavior of the Hall coefficient may arise from electronic correlations
unrelated to density-wave orders, including flux-flow phenomena in a phase-incoherent
superconducting state that precedes superconducting long-range order. This scenario was
invoked early on to explain the sign reversal of RH [236], but subsequent experiments
have called this interpretation into question, based in part on the observed magnetic
field independence of T0 (Fig. 4.5), and on the continuous evolution of the low-field
Hall coefficient into the quantum-oscillation regime that indicates a reconstructed Fermi
surface in high magnetic fields [215]. Moreover, recent theoretical work indicates that
phase-incoherent Cooper pairing does not reverse the sign of RH [237].

Conventional static CDW order can thus be ruled out as the main origin of the transport
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anomalies, and one may ask whether slowly fluctuating, dynamical charge correlations
recently uncovered by RIXS with the high-energy resolution [15, 238, 239, 240, 241] offer
an alternative explanation. Two factors argue in favor of such a scenario. First, the
temperature evolution of the dynamical correlations is closely similar to the one of the
static order. Indeed, the diffraction features in elastic x-ray scattering can be understood
as a “central peak” resulting from pinning of low-energy collective charge fluctuations by
defects [16]. The analogy between the T -evolution of charge order and transport coefficients
pointed out above therefore also holds for dynamical correlations. Second, in contrast to
the (slightly broadened) Bragg reflections manifesting static order, the dynamical charge
correlations exhibit a ring-like pattern in reciprocal space [242], akin to analogous patterns
in quantum spin liquids and superfluid helium. Such liquid-like correlations are expected
to be less susceptible to stress along particular lattice directions than the static order.
Therefore the present results suggest that such ring-like correlations might be present in
YBa2Cu3O6+x as well.

4.4 Conclusions
In summary, our investigation of the stress dependence of the resistivity and Hall coefficient
of YBa2Cu3O6.67 has demonstrated surprising qualitative analogies to classical CDW
materials with two-dimensional electron systems, where the loss of scattering channels in
the CDW state lowers the resistivity. One can link the observed resistance under uniaxial
pressure to the 2D-CDW via three observations: i) the temperature dependence of the
differential resistance peaks and changes trend at a temperature coincident with the onset
of the 2D-CDW, ii) a- and b-axis pressures have qualitatively the same effect, and iii) the
effect of b-axis pressure is quantitatively larger, in agreement with the RIXS experiments
[142]. Our data are compatible with recent experiments on YBa2Cu3O6+x thin films, which
found that a suppression of charge order by biaxial strain restores the linear-in-T behavior
of the resistivity usually observed at higher doping levels [211]. In contrast to our in-situ
study, however, modification of the biaxial-strain state requires preparation of different
thin-film samples, so that the resistivities are difficult to compare on an absolute scale.
Interestingly, the long-range-ordered “striped” state in the La2−xBaxCuO4 family leads to
an increase of the resistivity [13], possibly due to the influence of concomitant magnetic
and lattice instabilities.

Quantitatively we found that the uniaxial pressure has very little effect on the Hall
coefficient RH. The sign reversal temperature T0 changed only by ∼ 1 K under the highest
stress that we achieved. This observation is in stark contrast to the picture of Fermi surface
reconstructed by the static charge orders which are strongly affected by the uniaxial stress
demonstrated in the previous x-ray scattering measurements. To ultimately test the Fermi
surface reconstruction picture, quantum oscillation measurements under uniaxial stress
is desirable. Due to the absence of the magnetism in the sample presently studied, the
possibility of the reconstruction by the static magnetic order is firmly excluded. Therefore
we inferred the role of slowly fluctuating charge or spin orders should play an important
role to reconcile the apparent contradiction.

More importantly, our data suggest a key role of liquid-like, nearly critical charge corre-
lations for fermionic transport, in contrast to the electron-phonon-interaction driven static
charge order in the classical systems. There has been a number of theoretical proposals
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along these lines, but few explicit calculations of transport coefficients. Calculations of
the Hall coefficient in the framework of models with slowly fluctuating charge [231] or
spin [243] order indicate a subtle downturn at low temperatures, but a sign reversal has
not been predicted to the best of our knowledge. The concrete link between transport
and scattering probes of charge correlations uncovered in our parametric study should
motivate further progress in the development of this theoretical framework, for instance
by including the interplay with pairing fluctuations.



5
C h a p t e r

Resonant soft x-ray scattering
of YBa2Cu3O6+x under uniaxial
stress

5.1 Introduction

X-ray scattering techniques have played an important role to reveal the nature of charge
ordering phenomena in YBa2Cu3O6+x and other cuprate families [15]. This was the case also
for studies of the CDW response to uniaxial stress, which was reported before any transport
measurements. Indeed non-resonant inelastic x-ray scattering measurements under uniaxial
stress showed that the strong softening of a phonon mode drives the formation of the
3D-CDW [18]. The results provided a new perspective to control competing phases and
indicated that uniaxial stress can become a new interesting axis orthogonal to those of
temperature and hole doping in the phase diagram. However, the limited counting rate in
energy-resolved x-ray experiments has prevented systematic strain studies of CDWs as a
function of hole doping. We addressed this issue by using the strain rig at the beamline
UE46-PGM1 at BESSY-II to perform much faster Cu-L3 resonant energy-integrated x-ray
scattering (REXS) measurements on YBa2Cu3O6+x single crystals with different doping
levels under large uniaxial stress.

Interestingly, the intrinsic instability towards uniaxial CDW in cuprates can result in
the observed biaxial, short-ranged 2D-CDW in the presence of quenched defects according
to theoretical studies [244]. Indeed, many aspects of the previous resonant inelastic x-ray
scattering (RIXS) data under uniaxial pressure can be described by this scenario [142]. This
manifests itself in the observed symmetric response to compressive strain applied either to
the a- or b-axis which alternatively favours the b- or a-CDW1 domains, respectively, which
are already pinned by defects at the onset temperature of the CDW. We carried out further
Cu-L3 RIXS measurements on YBa2Cu3O6.67 under uniaxial pressure at the beamline
ID32 at the ESRF to investigate the defect-pinned 2D-CDW scenario by comparing the
intensity of a- and b-CDW upon cooling with and without applied stress.

1For simplicity, in this chapter, the 2D-CDW with the propagation vectors Qa ' (0.305, 0, 0.5) and
Qb ' (0, 0315, 0.5) are termed a-CDW and b-CDW, respectively.
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5.2 REXS measurements

5.2.1 Introduction
It has been well established that the 2D-CDW is a ubiquitous feature in the underdoped
region of YBa2Cu3O6+x and all other cuprates, which was initially found only in the 214
systems as the stripe order where the charge and spin sectors are intertwined. On the
other hand, the 3D-CDW has been to date observed only in YBa2Cu3O6+x bulk crystals
under external fields (magnetic field [21] and strain [18]) and thin films [160]. While
the nucleation around random defects is proposed as the mechanism of development and
stabilization of 2D-CDWs, the mechanism of the 3D-CDW is considered to be purely
electronic [142]. Therefore the observation of the strain-induced 3D-CDW at the 1/8
doping does not immediately imply how the charge orders, in particular the 3D-CDW,
should be affected by strain in other doping regions of the phase diagram of YBa2Cu3O6+x.
To investigate the uniaxial stress effects on the CDWs in YBa2Cu3O6.67, energy-resolved
techniques, namely IXS and RIXS, have been very insightful so far [18, 142]. Thanks
to the high energy resolution of hard x-ray scattering measurements (∼ 3 meV), it was
revealed that the strong softening of a phonon mode drives the formation of the 3D-CDW
induced by strain and observed as quasielastic peak in the IXS spectra. However, from
a practical point of view, energy-resolved spectroscopies require a long acquisition time
to obtain spectra with a sufficient signal-to-noise ratio. This aspect in RIXS and IXS
has prevented researchers from investigating the nature of the strain-induced 3D-CDW
systematically, in particular as a function of hole doping of YBa2Cu3O6+x. Indeed, for this
reason, only one particular doping level YBa2Cu3O6.67 (p = 0.12) where the CDW is the
strongest has been investigated so far to study the effect of uniaxial stress on the CDWs
in YBa2Cu3O6+x. Taking advantage of the faster acquisition time of REXS measurements,
we carried out a systematic doping dependence of the uniaxial stress effects on the CDWs
of YBa2Cu3O6+x.

5.2.2 Experimental methods
The high-quality YBa2Cu3O6+x crystals (x = 0.5, 0.8, and 0.93) have been prepared as
explained in the previous chapters. The oxygen content was controlled by annealing
samples at 614 ◦C (x = 0.5) in the mixture of 5 % O2 and 95 % Ar and 597 ◦C (x = 0.8)
and 494 ◦C (x = 0.93) in 100 % O2 for one week to obtain the specific doping levels [178].
All the samples were detwinned with a standard mechanical method (chapter 3.3.3) [180].
The samples were shaped for the application of strain in the same manner as the transport
experiments, yet without the electrical contacts. The detailed information of each sample
can be found in Table 5.1. REXS measurements were performed at the UE46-PGM1
beamline of the BESSY II synchrotron (chapter 3.5.3) [202]. The incident energy was
set to the Cu-L3 edge, 932 eV and the σ-polarization (perpendicular to the scattering
plane) was used to maximize the charge scattering contribution [63]. The energy and
polarization of scattered photons were not resolved, therefore the intensity detected by
the photodiode represents an integration over all elastic and inelastic scattering processes
with both σ- and π-polarizations. In order to reach the structural Bragg peak (0,0,2), an
incident energy of 1100 eV was used. For all doping levels, the compressive stress was
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applied along the a-axis of the sample and the measurements were performed at first at
the superconducting transition temperature Tc where the CDW intensity is maximized
and then at various temperatures to collect a temperature dependence. The strain rig,
described in chapter 3.2.3, was used to apply uniaxial stress during the REXS experiments:
therefore the strain inferred from the capacitance change is used as a measure of the
deformation of the samples and the negative values in strain indicate compression. The
strain was monitored in all measurements by looking at the shift of a structural Bragg
peak. Due to the scattering geometry, so far only CDWs along the b-axis were observed as
a function of the a-axis stress.

Sample name c (Å) p Tc (K) a× b× c (mm3) Structure
YBa2Cu3O6.5 (R614C5N3) 11.739 0.1051 56 2.6 × 0.20 × 0.09 O-II
YBa2Cu3O6.8 (R597R1N3) 11.708 0.1448 80 1.9 × 0.20 × 0.13 O-III
YBa2Cu3O6.93 (R494L1N4) 11.694 0.1681 93 3.2 × 0.20 × 0.10 O-I

Table 5.1: List of the YBa2Cu3O6+x crystals measured in the REXS experiments.
The c-axis lattice parameter c is determined with XRD measurements at room temperature
and the doping p is estimated based on c using Eq. (3.13). Tc was determined by
magnetometry as the midpoint of the diamagnetic response. The structure indicates the
oxygen orders in the CuO layers (see details in chapter 2.2 and Ref. [33]).

5.2.3 Results

YBa2Cu3O6.5 (Tc = 56 K)

We first present the REXS results of YBa2Cu3O6.5 whose doping is lower than that of
YBa2Cu3O6.67, and thus Tc is slightly lower as well. The strain application was well
confirmed by the progressive shift of the Bragg peak (0,0,2) (Fig. 5.1 (a)) as in the case
of previous studies. Note that it is not the in-plane Bragg peak but one can observe the
elongation along the c-axis, as seen in the Bragg peak shift towards smaller 2θ values, as
induced by the uniaxial stress along the a-axis and due to Poisson’s effect (see chapter
3.2.2). The intensity of the 2D-CDW is enhanced by strain as shown in Fig. 5.1 (b). It is a
similar behavior to the one previously observed in YBa2Cu3O6.67. Our central observation
on YBa2Cu3O6.5 under uniaxial stress is summarized in the reciprocal space mapping in
Fig. 5.2. In the absence of strain, the quasi-two dimensional nature of the CDW without
correlations along the crystallographic c direction is evident as a rod extending along
the L direction in the K-L map (Fig. 5.2 (a)). The closer to the half integer point L=
1.5 the wave vector is, the stronger the intensity is before applying the strain as already
observed in a number of previous studies. At the intermediate strain level (-0.7 %), the
intensity distribution in the rod along the L direction changes and the intensity near the
integer point L = 1 becomes stronger (Fig. 5.2 (b)). Figure 5.2 (c) shows the data at the
highest strain level (-1.2 %) where a new peak-like feature is now emerging in at (K,L)
= (0.327, 1.025). This is the indication of the three dimensional correlation of the CDW
as similarly observed in the recent RIXS experiments on YBa2Cu3O6.67. Comparing the
data displayed in Fig. 5.2 (d) and (e) whose color scale is identical to that in Fig. 5.2 (c),
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(a) (b)

Figure 5.1: REXS data of YBa2Cu3O6.5. (a) Bragg peak (0,0,2) shifts due to Poisson’s
effect by the in-plain uniaxial stress. (b) REXS intensity around Q2D-CDW along the K
direction at T = Tc for different strain levels.

one can confirm how intense the feature of the 3D-CDW is. The intensity of this peak
is not as intense as the one obtained in the IXS measurements where the feature of the
3D-CDW was observed at (K,L) ' (0.3, 7) to maximize the structure factor [194]. This
change in intensity from IXS to REXS is considered to be due to the weaker structure
factor at the accessible momentum space positions confined by the limited photon energy
at the Cu-L3 edge combined with the fact that REXS probes valence charges rather than
the core electrons probed by IXS which follow the small atomic displacements associated
with the CDW. Also, as shown in Fig. 5.2 (g), the intensity scan along the L direction is
strongly distorted and as a consequence the peak position (L ∼ 1.025) is slightly greater
than the integer value 1 where one expects to observe the peak from the three dimensional
correlation. This is likely because of self-absorption effects caused by the grazing conditions
for outgoing photons which were discussed in the supplementary material of the recent
RIXS study. The 3D-CDW REXS peak in the present study in fact completely agrees
with the 3D-CDW from the previous RIXS data collected in a similar scattering geometry
[142].

To investigate the relationship with superconductivity, the temperature dependence
of the strain-induced 3D-CDW was also measured. Figure 5.3 shows the temperature
dependence of the REXS scans along the L direction around Q3D-CDW = (0, 0.327, 1.025).
The intensity is maximized at Tc, which implies a strong competition with superconductivity.
The 3D-CDW remains intense and visible above Tc at least up to 80 K while the onset
temperature of the 2D-CDW at this doping level is 125 K [151]. Essentially the same
temperature dependence is evident from complementary measurements along the K
direction shown in Fig. 5.4. The sharpness of the 3D-CDW along the K direction enables
us to analyze the peak intensities and widths at various temperatures. The temperature
dependence of the fitting parameters obtained by the Lorentzian fits are displayed in Fig.
5.5. The competition between the 3D-CDW and superconductivity is clear from the fitting
results as well.
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Figure 5.2: REXS reciprocal space mapping of YBa2Cu3O6.5 at T = Tc under
different strain levels. The strain direction is parallel to the a-axis. (a-c) REXS
intensity color map in the K-L plane under strain of 0 %, -0.7 % and -1.2 %, respectively.
(d,e) Same as (a,b) but the color scale of (c) is used to compare their intensities. (f)
Original data of (a-e). The solid, dashed, and gray solid curves are data under uniaxial
strain of 0 %, -0.7 %, and -1.2 %, respectively. The linear background was subtracted
from the raw data and the curves are shown with vertical offsets for clarity. (g) REXS
scans at (0,0.327,L) along the L direction for different strain levels.



86 Chapter 5. Resonant soft x-ray scattering of YBa2Cu3O6+x under uniaxial stress
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Figure 5.3: Temperature dependence of the strain-induced 3D-CDW in
YBa2Cu3O6.5 along the L direction around the Q3D-CDW = (0, 0.327, 1.025). (a)
REXS scan along the L direction measured at T ≥ Tc. The black dashed curve is the
unstrained curve at T = Tc. (b) Same as (a) but measured at T ≤ Tc. (c) REXS intensity
map at (0,0.327,L) obtained from (a,b). Intensity at 80 K is subtracted from that at each
temperature for clarity.



5.2. REXS measurements 87

(a)

(b)

(c)

-1.2
%

Figure 5.4: Temperature dependence of the strain-induced 3D-CDW in
YBa2Cu3O6.5 along the K direction around the Q3D-CDW = (0, 0.327, 1.025). (a)
REXS scan along the K direction measured at T ≥ Tc. (b) Same as (a) but measured
at T ≤ Tc. (c) REXS intensity map at (0,K,1.025) obtained from (a,b). The linear
background is subtracted from that at each temperature for clarity.

(a) (b)

Figure 5.5: Temperature dependence of the fitting parameters obtained by
Lorentzian fits of the K scans around Q3D-CDW shown in Fig. 5.4. (a) Area of
the Lorentzian. (b) HWHM of the Lorentzian. The error bars are the standard deviations.
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YBa2Cu3O6.8 (Tc = 80 K)

Figure 5.6 shows the REXS data of YBa2Cu3O6.8 whose doping is higher than that of the
extensively studied YBa2Cu3O6.67. As in the previous cases, the strain application is well
confirmed from the shift of the Bragg peak (0,0,2). As shown in Fig. 5.6 (b), the 2D-CDW
along the b-axis was enhanced by uniaxial stress along the a-axis. This is also evident in
the K-L mappings where the rod extending along the L direction became more intense
(Fig. 5.6 (c,d)). However no clear indication of the peak near L=1 was observed even at
the highest strain level which induces the 3D-CDW in YBa2Cu3O6.5 and YBa2Cu3O6.67.

YBa2Cu3O6.93 (Tc = 93 K)

Figure 5.7 shows the REXS data of the optimally doped sample YBa2Cu3O6.93 where the
superconductivity is the strongest in the phase diagram. Despite of the strain application
confirmed by the Bragg peak (0,0,2) shifts, the very weak and broad 2D-CDW peak seen
at this doping does not seem to be affected by the strain at all.

5.2.4 Discussion

Sample (hole doping) Enhancement of 2D-CDW Emergence of 3D-CDW
YBa2Cu3O6.5 (p = 0.105) Yes Yes (T3D-CDW ' 80 K)
YBa2Cu3O6.67 (p = 0.12)∗ Yes Yes (T3D-CDW ' 75 K)
YBa2Cu3O6.8 (p = 0.145) Yes No
YBa2Cu3O6.93 (p = 0.168) No No

Table 5.2: Summary of the observations of the CDWs under compressive strain along the
a-axis (∼ - 1 %). The results for YBa2Cu3O6.67 are taken from Ref. [18, 142].

The results regarding the 2D-CDW and 3D-CDW under uniaxial stress are summarized
in Table 5.2. Let us first discuss the strain-induced 3D-CDW, which was observed only in
YBa2Cu3O6.5 in the present study. It is reminiscent of the one observed in YBa2Cu3O6.67
in the previous studies. Considering the proposals of a Fermi surface reconstruction due
to charge orders whose correlation length is shorter than that of the oxygen orders in
the CuO chain layers [214], it is reasonable to consider that the valence electrons in the
CuO2 planes might be affected by the periodic structure of the CuO chains. However the
observation of the same 3D-CDW at both doping levels despite the different oxygen orders
in the CuO chain layers (Ortho-II and Ortho-VIII in YBa2Cu3O6.5 and YBa2Cu3O6.67,
respectively) seems to indicate that the CuO chains (or at least their periodicity) are
not crucial for the formation of the 3D-CDW. Indeed the 3D-CDW resonates only at the
energy of planar Cu atoms in the CuO2 planes. Notice that this is at odds with the 3D
charge order observed in YBa2Cu3O6+x thin films, whose energy dependence also shows a
contribution from the Cu atoms in the CuO chain layers [160].

On the other hand, three aspects of the 3D-CDW temperature dependence can differ
for these two doping levels, namely, i) the onset temperature, ii) the temperature at
which the 3D-CDW is maximized, and iii) the intensity in the zero-temperature limit.
First of all, the onset temperature of the strain-induced 3D-CDW in YBa2Cu3O6.5 is
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Figure 5.6: REXS data on YBa2Cu3O6.8. The strain direction is parallel to the a-axis.
Data were taken at T = Tc. (a) Bragg peak (0,0,2) shifts. (b) REXS intensity around
Q2D-CDW along the K direction. (c) Reciprocal space mapping in the K-L plane without
strain. (d) Same as (c) but with the strain of -1.2 %.
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(a) (b)

Figure 5.7: REXS data on YBa2Cu3O6.93. The strain direction is parallel to the a-axis.
Data were taken at T = Tc. (a) Bragg peak (0,0,2) shifts. (b) REXS intensity around
Q2D-CDW along the K direction.

around 80 K (Fig. 5.5 (a)), which is comparable to or even slightly higher than that of
YBa2Cu3O6.67 (∼ 75 K, reported in Ref. [142]). If the 3D-CDW arises as the development
of the three-dimensional phase coherence of the 2D-CDW between adjacent layers, in a
similar manner to the 3D antiferromagnetic order formation in undoped cuprates [245],
one would expect the onset temperature of the 3D-CDW formation in YBa2Cu3O6.5 to
be lower than that of YBa2Cu3O6.67 because the onset temperature of the 2D-CDW in
YBa2Cu3O6.5 is 125 K v.s. 150 K in YBa2Cu3O6.67. Our result supports the scenario
that the 3D-CDW is an electronically driven phase with a distinct mechanism from the
one of the 2D-CDWs. The 3D-CDW signal of YBa2Cu3O6.5 is maximized at the original
unstrained Tc (= 56 K) while the 3D-CDW in YBa2Cu3O6.67 is the most enhanced at the
suppressed Tc by uniaxial stress. Note that at present the precise strain dependence of Tc
in YBa2Cu3O6.5 is not clear. However Tc is expected to be lowered by the compression
along the a-axis because the suppression of Tc of YBa2Cu3O6+x whose unstrained Tc is
59 K is reported in supplementary materials of Ref. [18]. Considerable intensity of the
3D-CDW persists at the lowest temperature in the present study as shown in Fig. 5.5
(a). At first sight, this feature looks different from the first observation of the 3D-CDW
investigated by the temperature-dependent non-resonant IXS measurements [18], where
more than 90 % of the intensity was already lost at 40 K compared to the maximum
intensity at 50 K. Indeed the IXS data supported a much more rapid suppression of the
3D-CDW than the 2D-CDW. However, according to more recent RIXS measurements
performed at the same doping level and strain conditions as in the IXS measurements
[142], more than 40 % of the intensity at 55 K is still present at 35 K, while the onset
and peak temperature of the 3D-CDW are identical in both IXS and RIXS experiments.
Therefore it would be better to restrain comparisons of the zero-temperature limit intensity
between different doping levels measured in the same setup or at the very least at the
same incoming energy, as that considerably affects the structure factor, as previously
discussed. It is remarkable that our REXS data shows a considerable intensity of the
3D-CDW at the lowest temperature. Nevertheless, comparing with the 2D-CDW in
YBa2Cu3O6.51 previously studied in the same setup [151], half of the maximum intensity
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Figure 5.8: Magnetic field-doping (H-p) phase
diagram of YBa2Cu3O6+x at T → 0. Hc2 indicates
the upper critical filed. Other points indicate the onset
magnetic field of the field induced 3D-CDW estimated
by the ultrasound measurements (red circle), x-ray
scattering (black triangle), and NMR (blue square).
Figure from Ref. [157].

at Tc persists at the lowest temperature. Therefore it is plausible to conclude that the
strain-induced 3D-CDW is more competitive with superconductivity than the 2D-CDW as
in the case of YBa2Cu3O6.67. These three specific differences between two doping levels,
i.e., the temperatures at which the strain-induced 3D-CDW sets in, is maximized, and is
completely suppressed by superconductivity call for further studies looking for possible
trends of strain-induced 3D-CDW, if any, in samples with even lower doping levels, i.e.,
more underdoped, investigated in the identical setup. Such a measurement are at the time
of writing already planned. In this respect, note that ultrasound measurements indicated
that 25 T is required to induce the 3D-CDW in the lower doped sample YBa2Cu3O6.48
despite the weaker superconductivity, whereas 15 T suffices to induce the 3D-CDW in
YBa2Cu3O6.67 [157]. It is thus possible that one may need to apply higher strain to
induce the 3D-CDW at lower doping levels. While the temperature dependence of the
strain-induced 3D-CDW between the two doping levels in the present study may be slightly
different, the temperature range in which the strain-induced 3D-CDW was observed is
clearly different from that of the 3D-CDW induced by the strong magnetic field (> 15 T),
which was observed only below 50 K in the entire doping region [21, 155]. Therefore, the
suppression of superconductivity is not a necessary condition for stabilizing the 3D-CDW
at those two doping levels although the strain-induced 3D-CDW does not persist up to
higher temperatures such as the pseudogap temperature T ∗ or room temperature as in
the case of the 3D charge order in the thin films [160].

The enhancement of the 2D-CDW by strain was observed in YBa2Cu3O6.8 as well
as YBa2Cu3O6.5 and YBa2Cu3O6.67. Such a symmetric response with respect to the 1/8
doping is generally anticipated from the rather symmetric 2D-CDW dome on top of the
1/8 anomaly of the superconducting dome in the phase diagram if the strain directly affects
the 2D-CDW. On the other hand, the indication of the strain-induced 3D-CDW was not
confirmed in YBa2Cu3O6.8. So far the magnetic field induced 3D-CDW was reported only
in the limited doping range between YBa2Cu3O6.5 and YBa2Cu3O6.67 by x-ray scattering
[21, 154, 155] and between YBa2Cu3O6.45 and YBa2Cu3O6.67 by NMR [235, 246]. The
ultrasound measurements indicated the thermodynamic phase transition into the 3D-CDW
induced by field also at higher doping2 levels such as YBa2Cu3O6.75 and YBa2Cu3O6.79,
which however require larger magnetic fields of 25 and 35 T, respectively (Fig. 5.8) [157].
Therefore, one plausible reason why the strain-induced 3D-CDW was not observed in

2Let us clarify that the ”higher doping” here always implies the doping region which is higher than the
1/8 doping. It does not necessarily mean the overdoped region.
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YBa2Cu3O6.8 is just because the maximum strain that we achieved is smaller than the
onset strain for the 3D-CDW. Such an application of huge stress was recently achieved by
F. Jerzembeck el al. on Sr2RuO4 where the uniaxial stress of -3.2 GPa (which corresponds
to the strain of ∼ -2 % for YBa2Cu3O6+x) was obtained using a more sophisticated sample
shaping method [247]. Note that even at low temperature, the sample could be plastically
deformed (e.g., -2 % at 5 K and -0.2 % at room temperature in Sr2RuO4 [174]). The
plastic limit which is the nature of any elastic materials restricts the experimentally
accessible strain. Therefore as a more realistic and alternative experimental proposal,
REXS measurements under simultaneous application of uniaxial strain of -1 % routinely
achievable with our current setup and magnetic field which weakens superconductivity
could give crucial insights to reveal whether the absence of the strain-induced 3D-CDW is
due to the stronger superconductivity or not.

Unlike underdoped samples, essentially no strain effects were observed in the optimally
doped sample YBa2Cu3O6.93. Considering the fact that the 2D-CDW and the strain-
induced 3D-CDW always compete with superconductivity, the absence of the strain
effects at this doping level can be understood as a result of the strong competition with
superconductivity: the superconducting state is more stable than the charge order in
general, even at the highest strain level. Such a robustness of superconductivity in the
optimally doped sample can be understood from the highest Tc among all the doping
levels.

The in-plane crystal anisotropy of YBa2Cu3O6+x monotonically increases as a function
of the hole doping as shown in Fig. 2.4. In this sense the ”built-in” compressive strain
along the a-axis is stronger in the more highly doped samples before applying the external
strain. Nevertheless the 3D-CDW was observed only in YBa2Cu3O6.5 and YBa2Cu3O6.67
whose in-plane crystal structure is less anisotropic. It indicates that the built-in anisotropy
has a marginal role, if any, for the 3D-CDW formation. Although one may associate
the 3D-CDW unidirectionally observed only along the b-axis with nematicity, the lack of
the 3D-CDW on the higher doping side is in stark contrast to the nematicity which is
generally greater in the higher doped compounds in YBa2Cu3O6+x [102] and even in other
tetragonal cuprates such as Bi2Sr2CaCu2O8+δ [100, 104]. Unlike a majority of reports on
the nematicity from charge sectors, the nematic spin fluctuations have been reported only
in the very underdoped samples, namely, YBa2Cu3O6.3, YBa2Cu3O6.35, and YBa2Cu3O6.45
below 150 K [105, 58]. Such a decoupling between the nematicity and charge order was
also pointed out by the qualitatively symmetric nematic response of the 2D-CDW to
uniaxial compression along both a- and b-axes and is also evident from the ubiquity of the
CDW phenomena observed at much lower temperature than the pseudogap temperature
T ∗ where the nematicity sets in among cuprate families [148, 94, 199, 222, 149]. Although
the relationship between the charge and spin sectors is not so trivial, such observations call
for future x-ray scattering measurements on YBa2Cu3O6.45 whose nematicity in the spin
sector is the greatest and charge order under the uniaxial stress has not been studied yet.

The electron-phonon coupling (EPC) has been widely considered to be a driving
mechanism of the CDW formation in ordinary two-dimensional CDW materials [248, 249,
250] except for one-dimensional CDW materials in which the CDW is well explained solely
by the simple Peierls mechanism in terms of the Fermi surface nesting [11]. While a
theoretical study has suggested that neither Fermi surface nesting nor EPC can be a simple
source for the CDW formation in the case of Bi2Sr2CaCu2O8+δ [209], the interplay between



5.3. RIXS measurements 93

the CDW and EPC in the cuprates has been revisited and demonstrated through anomalies
in phonon dispersions in a number of recent experiments [16, 153, 251, 252, 253, 254].
Therefore we can speculate that the anisotropic EPC deduced from high-energy phonons
[255, 256] can be one of reasons for which the 3D-CDW is stabilized only along the b-axis
as mentioned above.

5.2.5 Conclusions
In conclusion, taking advantage of the high detection efficiency of REXS measurements,
we have investigated the nature of the CDWs at doping levels that were not studied in
the previous IXS and RIXS experiments. In YBa2Cu3O6.5 (p = 0.105), the strain-induced
3D-CDW was observed in a similar manner to that of YBa2Cu3O6.67 (p = 0.12) with minor
quantitative differences. On the other hand, there was no clear indication of the 3D-CDW
even at the highest strain level we could reach in YBa2Cu3O6.8 (p = 0.145) while the
2D-CDW was enhanced. No strain effects on the CDW were observed in the optimally
doped sample YBa2Cu3O6.93 (p = 0.168). The fact that the 3D-CDW was not induced in
the higher doping regime implies that the superconducting state is a more stable ground
state than the CDW even under the high strain condition. To test this interpretation,
REXS experiments under larger uniaxial stress or simultaneous application of uniaxial
stress and magnetic field could give crucial insights. The lack of the 3D-CDW at the
higher doping levels also suggests that the larger built-in strain is not a primary source
of the 3D-CDW in YBa2Cu3O6.5 and YBa2Cu3O6.67 whose anisotropy is smaller before
applying the external strain. This further motivates future experiments on YBa2Cu3O6.67
under the larger uniaxial compressive stress along the b-axis which makes the system less
anisotropic or on different cuprate families whose crystal structure is tetragonal such as
Hg- or Bi-based ones under uniaxial pressure. We remark that it was recently reported in
REXS measurements that the stripe order in La1.475Nd0.4Sr0.125CuO4 was suppressed by
small tensile stress around 0.1 GPa [257]. Based on the spectroscopic observations here,
thermodynamic investigations such as stress-strain measurements utilizing the stress rigs
will make the nature of the strain-induced 3D-CDW clearer.

5.3 RIXS measurements

5.3.1 Introduction
One of the long-standing debates on 2D-CDWs in cuprates regards their spatial character,
i.e., uniaxial or biaxial (also termed stripes or checkerboard as seen in Fig. 5.9). Their
spatial character is crucial since the translational symmetry breaking due to the CDWs
is one of candidates to interpret the Fermi surface reconstruction. This is based on the
coincident doping regime where the 2D-CDWs and anomalous transport properties, such
as the sign reversal of the Hall coefficient and small electron pockets detected by quantum
oscillations, were observed. In YBa2Cu3O6+x, Comin et al. were the first trying to directly
answer the question about the spatial character based on the peak shape of the elastic
intensity in the reciprocal space obtained by the resonant x-ray scattering [141]. Their
findings support a stripe-like uniaxial CDW and this picture was later well established
by the differential growth of the 2D-CDWs under uniaxial stress (Fig. 5.10) [142]. In
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Figure 5.9: Possible spatial characters of 2D-CDW. (Top) Schematic electron density
modulations in the real space. (Bottom) Peak shapes of the elastic intensities in x-ray
scattering experiments in the reciprocal space corresponding to the real space character
shown in top panels. Figures from Ref. [141].

diffraction experiments, the intrinsic instability towards uniaxial CDW can result in the
observed biaxial, short-ranged 2D-CDW in the presence of quenched defects according
to theoretical studies [244]. This defect-pinned 2D-CDW scenario is supported by a
number of experimental evidences such as the broad transition, the finite CDW intensity
in the zero-temperature limit, and the lack of thermodynamic signatures for a 2D-CDW
transition to date. This manifests itself in the observed symmetric response to compressive
strain applied either to the a- or b-axis which alternatively favours the b- or a-CDW
domains, respectively, which are initially pinned by defects. In the non-resonant scattering
experiments, it is hard to detect the a-CDW because of the CuO chains developing along
the b-axis and shadowing with their Bragg reflection that of the CDW. Also the capability
of rotating the azimuthal angle of the sample in the vacuum chamber is indispensable
to study both a- or b-CDWs in the same experimental conditions. In order to get more
insights into the character and strain response of the CDW, we carried out high-resolution
Cu-L3 RIXS measurements on YBa2Cu3O6.67 under uniaxial pressure at the beamline
ID32 at the ESRF to investigate the defect-pinned 2D-CDW scenario by comparing the
intensity and correlation lengths of a- and b-CDW upon cooling with and without applied
stress. In Fig. 5.11, the straining and cooling processes and hypothesis expected from
the defect-pinned 2D-CDW scenario are summarized. Alongside the main purpose of
the measurements, the ring-like signal of dynamical charge fluctuations in the reciprocal
space recently observed in other cuprate compounds [258, 242] and the strain effect on the
magnetic excitations were also investigated and discussed.

5.3.2 Experimental methods
The YBa2Cu3O6.67 samples have been prepared as explained in the previous chapters.
The oxygen content was controlled by annealing samples at 555 ◦C in the mixture of 5 %
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Figure 5.10: Real-space pictures of 2D-CDW do-
mains in the CuO2 plane under uniaxial stress.
The CDW perpendicular to the uniaxial stress direction
is selectively enhanced, mirroring the stripe nature in
the 2D-CDW. Figures from Ref. [142].
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Figure 5.11: Two cooling processes and hypothesis of the strained cooling effects
on 2D-CDWs. In the previous studies, the process 1. namely, first cooling down to Tc
and applying the strain, was used. In the present study, we used the process 2.: applying
the strain at TCDW first and cooling down to Tc. We call this process strained cooling. The
solid gray curves are typical temperature dependence of the CDW intensity without strain.
The red and green dashed curves indicate hypothetical temperature dependence of the a-
and b-CDW upon strained cooling along the b-axis. The left and right scale indicate the
strain and CDW intensity, respectively. Data (gray curve) are reproduced from Ref. [144].
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O2 and 95 % Ar for one week to obtain this specific doping level [178]. All the samples
were detwinned with a standard mechanical method [180]. The samples were shaped for
the stress application in the same manner as the transport experiments, yet without the
electrical contacts. RIXS measurements were performed on the ERIXS spectrometer at the
beamline ID32 at the ESRF [204]. The incident energy was set to be the Cu-L3 edge, 932
eV. σ-polarization for most of the measurements and the π-polarization for measurements
of magnons were used. The polarization of scattered photons was not resolved, therefore
both σ- and π-polarized photons were detected. The in-vacuum four-circle diffractometer
manipulator of ERIXS enables one to rotate the sample along all three axes. Therefore one
can measure both a- and b-CDWs from one sample by rotating the azimuthal angle by 90
degrees without breaking the vacuum, which was not possible in the REXS measurements
presented in the previous section. In the previous RIXS experiments under uniaxial stress,
the strain was always applied at Tc, where the CDW intensity and correlation length are
maximized, indicated as process 1. in Fig. 5.11. On the other hand, in the present study,
we followed process 2.: the strain was applied at TCDW and the temperature was cooled
down to Tc. We call this process strained cooling. Those two different cooling processes
are reminiscent of zero field cooling and field cooling when studying magnetic materials or
superconductors. The strain rig without force sensor was used for the RIXS experiments,
therefore the strain gauged by the displacement capacitor is used as a measure of the
deformation of the samples. The negative values in strain indicate compression.

5.3.3 Results and discussion
We compared intensities of the 2D-CDW peaks along H and K directions as the crystals are
cooled down from high (∼ 150 K) to low temperature (Tc ∼ 60 K), where the static CDW
domains are established, with and without applied uniaxial stress. All the quasielastic data
here are the integrated intensity between ±100 meV of the quasielastic energy contribution
to the spectra. All the inelastic data are the integrated intensity between -100 and -700
meV in the energy loss. Also all the spectra were normalized by the dd-excitation area,
which is defined as the area of each RIXS spectrum integrated between -2400 and -1200
meV in the energy loss (see details about dd-excitation in chapter 3.5.2).

Strained cooling process

Figure 5.12 shows the quasielastic intensity scans of the 2D-CDWs of YBa2Cu3O6.67 under
the a-axis compression. To show the background of the main intensity of the 2D-CDW,
the data at 150 K, where the static 2D-CDWs start to set in, are also displayed. The
strain (-1 %) was applied at 150 K, which is the onset temperature of the 2D-CDW, and
the temperature was decreased to 60 K (the process 2. in Fig. 5.11). To emphasize the
strain effect, the data after releasing the strain at 60 K are also displayed in Fig. 5.12.
Upon strained cooling, the b-CDW grows more and the a-CDW is slightly suppressed
under a-axis compression applied already at high temperature, compared with the normal
cooling case. This feature, the differential growth of the 2D-CDWs upon strained cooling,
was even more clearly observed under the b-axis compression as shown in Fig. 5.13. Note
that the lineshape of the peaks is not symmetric in Fig. 5.12 (a) and Fig. 5.13 (a). This
is likely due to the oxygen ortho-VIII order and the corresponding modulation along the
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a-axis generated by the CuO chains developing along the b-axis. One of the peaks is
expected to be located at H = 0.375 (= 3/8), which is consistent with our observations.

In the previous RIXS study, the stripe character of the 2D-CDWs was concluded based
on the differential response of the CDW, where the uniaxial stress enhanced the CDW
perpendicular to the stress. The differential growth of the CDWs upon strained cooling in
the present study further supports this scenario for the order parameter of the 2D-CDWs
since the differential growth of the intensities at (HCDW, 0) and (0, KCDW) cannot be
explained by the checkerboard type order parameter. While straining only after cooling
down to Tc did not affect the CDWs parallel to the strain, as demonstrated in the previous
study, in the present case the strained cooling prevented the CDW parallel to the strain
from growing. This is particularly evident in Fig. 5.13 (c,d). Phenomenologically one
can summarize these observations as follows: the 2D-CDW tends to develop along the
direction orthogonal to the external compressive stress upon cooling, but it is hard to
suppress the CDW already developed at low temperature by the external uniaxial stress
when this is applied only after cooling. Since the oxygen atoms in the CuO chain layers
have higher activation energy at TCDW than Tc, one may think that the b-axis compression
at TCDW made the crystal structure effectively retwinned, i.e., stabilize multi domains
of the orthorhombic structure. However the anisotropic scattering intensities at (HCDW,
0) and (0, KCDW) are not expected from the retwinned sample. Also the shoulder peak
originating from the O-VIII chain structure apparent only in Fig. 5.12 (a) and Fig. 5.13 (a)
allows us to discard the retwinning scenario. Crucially the CDW intensity of intentionally
disordered system is reduced by a factor of ∼ 2 [259], therefore it is hard to explain
the observed differential growth in terms of the disorders in CuO chain layers possibly
induced by strain along the direction unfavorable for CuO chains at high temperature. A
very recent RIXS study on YBa2Cu3O6+x thin films with tensile strain along the b-axis
generated by the substrate also shows the differential growth of the a-CDW and b-CDW,
qualitatively consistent with our findings [260]. Assuming the tensile stress has at least
qualitatively opposite effect to the compressive stress, the suppressed growth of a-CDW
under the b-axis tension is in fact consistent with our observation, i.e., the suppressed
growth of b-CDW under the b-axis compression. The unidirectional CDW in the thin
films has been discussed in the context of nematicity [224]. The differential growth in the
present case can be in line with the interpretation for the films.

Search for isotropic ring-like charge orders / fluctuations

Figure 5.14 and 5.15 show H-K reciprocal space maps of the quasielastic and inelastic
intensity, respectively. The data were taken by rotating the azimuthal angle of the sample.
We have measured those intensities in four different conditions, nevertheless none of the
quasielastic intensity maps has shown the peak at |Q| ∼ 0.3 along the radial direction
except for along the H and K axes (Fig. 5.14). In the previous study, quasielastic
scans only along the high-symmetry directions, namely, the CuO bond direction and its
diagonal direction were investigated in YBa2Cu3O6+x and NdBa2Cu3O6+x films [261]. It
was already pointed out that the diagonal scans were featureless, however a weaker feature
along the diagonal direction is generally expected compared to that along the CuO bond
direction, even if the circular feature of the charge orders is present as in the case of
Bi2Sr2CaCu2O8+δ [242]. Therefore the detailed azimuthal angle dependent measurements
in the present case first seems to demonstrate the absence of the ring-like feature in
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Figure 5.12: Quasielastic intensity scans of the 2D-CDW of YBa2Cu3O6.67 under
a-axis compression. The strain (-1 %) was applied at 150 K and the temperature was
decreased to 60 K (process 2. in Fig. 5.11). The strain direction is along the a-axis. To
indicate the background of the data at low temperature, data of the unstrained material at
TCDW (= 150 K) are also shown. Note that the data at 150 K are from a different sample.
Inset of (a) shows scans of (a-d) in the reciprocal space.
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Figure 5.13: Quasielastic intensity scans of the 2D-CDW of YBa2Cu3O6.67 under
b-axis compression. Same as Fig. 5.12 except for the strain direction, which is along
the b-axis. Note that the data at 60 K without strain are from Fig. 5.12.
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Figure 5.14: H-K reciprocal space map of the quasielastic intensity in four
different conditions. (a) T = 150 K. (b) T = 60 K. (c) T = 60 K with -1 % of uniaxial
strain along the a-axis applied at 150 K. (d) T = 60 K with -1 % of uniaxial strain along
the b-axis applied at 150 K. The energy integration range is between ±100 meV of the
quasielastic energy.

YBa2Cu3O6+x at quasielastic energies. Specifically at 150 K, at which the contribution
from the static CDW is not present in the quasielastic intensity yet the contribution from
the charge density fluctuation is still present, the quasielastic intensity does not show a
circular character as shown in Fig. 5.14 (a).

On the other hand, the intensity are weakly present at |Q| ∼ 0.3 along the radial
direction in the inelastic intensity maps (Fig. 5.15). The dynamical charge density
fluctuation persist towards higher energies in other cuprate families, Bi2Sr2CaCu2O8+δ

(500 - 900 meV) [242] and La2-xBaxCuO4 (200 - 350 meV) [239]. Therefore it is possible
that these dynamical charge fluctuations appear in the similar energy range (100 - 700 meV,
in the present case). Further careful studies are necessary to reveal more precise dispersive
features of the dynamical features observed in the inelastic intensity in YBa2Cu3O6+x,
including possible circular ones, by future RIXS experiments with significantly better
energy resolution.

No clear effect of uniaxial stress on paramagnons

We have also investigated the strain effects on the low energy excitations. This has been
already systematically discussed in the previous RIXS study under uniaxial stress [142], yet
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Figure 5.15: H-K reciprocal space map of the inelastic intensity in four different
conditions. (a-d) The same conditions as those in panels (a-d) of Fig. 5.14. The energy
integration range is between -100 and -700 meV in the energy loss.
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(a) (b)

Figure 5.16: RIXS spectra taken at 60 K at (0 0.4 1.19) with and without
uniaxial stress. The strain was applied along the a-axis. To access the magnetic
excitation, the π scattering geometry was used for this measurement. The spectra are
shown in a wide energy range (a) and narrow energy range (b).

the strained data were taken mostly with the σ scattering geometry where the contribution
from magnetic excitations is minimized. Here, therefore, the π scattering geometry, known
to enhance the magnetic scattering signal, was used for this measurement unlike those
in Fig. 5.12, Fig. 5.13, and Fig. 5.14 to potentially discuss the magnetic excitations too.
Figure 5.16 shows the RIXS spectra at (0, 0.4, 1.19) where the CDW is not affecting the
spectra. The strain (-1 %) along the a-axis is applied at 150 K and the spectra were
obtained at 60 K. The data without strain was taken after releasing the strain at 60 K.
As in the case of the σ polarization [142], there is no appreciable strain effect on the
dynamical part of the RIXS spectra.

The magnetostriction effect, i.e., distortions of the crystal structure by a magnetic
field which flips the spin orientation of the antiferromagnetic order, is known in the parent
compound of YBa2Cu3O6+x [262]. Therefore, as a future perspective, it can be interesting
to measure the RIXS spectra by applying compressive stress along the b-axis, which makes
the crystal structure more tetragonal and may therefore affect the spin orientation of the
antiferromagnetic order, although the magnetic long range order no longer develops in the
doping regions we have studied.

5.3.4 Conclusions

In conclusion, we have obtained three main findings from the RIXS experiments on
YBa2Cu3O6.67 under uniaxial stress. i) The application of stress before cooling favours the
formation of CDW domains perpendicular to the applied stress and conversely suppresses
the domains parallel to it. ii) The ring-like charge density fluctuations were not clearly
observed at very low energy but possibly exists at higher energy in the first systematic
azimuthal angle dependent RIXS measurement. Further measurements with significantly
better energy resolution are necessary to investigate low energy dynamical charge fluc-
tuations. iii) No noticeable strain effect on the magnetic excitations (∼ 200 meV) was
observed in the present study.
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5.4 Conclusions
In this chapter, we have presented the microscopic properties of YBa2Cu3O6+x under
uniaxial stress, while the macroscopic properties were investigated in the previous chapter.

In the first part, the doping dependence of the CDWs under the uniaxial stress was
studied performing REXS measurements in the doping regime that was not investigated
previously with energy resolved experiments, namely, IXS and RIXS. While the strain-
induced 3D-CDW was observed in the sample with doping lower than 1/8, no indication
of the 3D-CDW was confirmed in the more highly doped samples. The 2D-CDW was
enhanced in both higher and lower doping regimes, yet no strain effect was observed in the
optimally doped sample. Overall the strain responses of the CDWs can be understood in
terms of the strong competition between the CDWs and superconductivity. As a next step,
the simultaneous application of magnetic field and uniaxial stress will provide additional
insights regarding the competition of those phases.

In the second part, a RIXS study with a new cooling method was presented. As one
often compares field cooling and zero field cooling for studying magnetic materials, we first
carried out the strained cooling process. The suppressed growth of the 2D-CDW parallel
to the stress direction was observed, while the 2D-CDW perpendicular to the stress grows
more rapidly upon cooling similarly to the case of normal cooling and straining at low
temperature. As recently revisited in other cuprate compounds, the in-plane reciprocal
space character of the 2D-CDW was also carefully investigated. The absence of ring-like
quasielastic intensity implies that the static 2D-CDW in YBa2Cu3O6.67 is pinned along the
crystallographic axes. However the ring-like charge fluctuations possibly exist at higher
energy. The dynamical part was also carefully studied yet the strain effect on the magnetic
excitations was not as strong as the one on the static CDWs.
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6
C h a p t e r

Conclusions and outlook

The work presented in this thesis demonstrated the power of uniaxial-stress experiments
in the long-standing quest to establish correspondences between atomic-scale correlations
and macroscopic transport in high-Tc cuprate superconductors.

In chapter 4, we presented measurements of the stress dependence of the normal-
state resistivity and Hall coefficient of YBa2Cu3O6.67. We found remarkable parallels in
the stress responses of the transport coefficients and the diffraction signal from static
charge-ordering. This correspondence allows us to conclude that the condensation of
collective charge fluctuations reduces the resistivity, similar to classical CDW materials
with quasi-two-dimensional electron systems. However, we also conclude that the impact
of static charge order is too weak to explain the sign reversal of the Hall coefficient. We
argue that in YBa2Cu3O6.67, liquid-like collective fluctuations of the electron system take
on the role of static order in the classical CDW compounds, and we point out the need to
develop a theoretical framework to describe the underlying mechanisms.

In chapter 5, we have presented resonant soft x-ray scattering measurements of
YBa2Cu3O6+x under uniaxial stress. In the first part, the doping dependence of the
CDWs under uniaxial stress was studied performing REXS measurements at doping levels
not previously investigated. While the strain induced 3D-CDW was observed in the
samples with doping lower than 1/8, no indication of the 3D-CDW was confirmed in
the more highly doped samples. The 2D-CDW was enhanced in both higher and lower
doping regimes, yet no strain effect was observed in the optimally doped sample. Overall
the strain responses of the CDWs can be understood in terms of the strong competition
between the CDWs and superconductivity. In the second part, a RIXS study with a new
cooling method, strained cooling, was presented. The suppressed growth of the 2D-CDW
with modulation parallel to the stress direction was observed, whereas the 2D-CDW
perpendicular to the stress grows more rapidly upon cooling, similarly to the case of
normal cooling and straining at low temperature. As recently revisited in other cuprate
compounds, the in-plane reciprocal space character of the 2D-CDW was also carefully
investigated. The absence of ring-like quasielastic intensity is consistent with the notion
that the 2D-CDW in YBa2Cu3O6.67 is pinned along the crystallographic axes. However
ring-like charge fluctuations possibly exist at higher energy. The dynamical part was also
carefully studied yet the strain effect on the magnetic excitations is negligible in stark
contrast with the marked effect on the static CDWs.
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As in the case of the initial discovery of the CDW in YBa2Cu3O6+x [14], the uni-
axial stress effect on CDWs first became evident in the x-ray scattering experiments
at synchrotron facilities [18]. Motivated by the previous work, I have started studying
macroscopic charge transport under uniaxial stress at in-house laboratories for this the-
sis. Actually, the uniaxial stress devices based on piezoelectric stacks used in this thesis
were first employed in laboratory-based Tc measurements of Sr2RuO4 [173]. After this
experiment, facility-based microscopic measurements such as ARPES [263] and µSR [264]
were carried out to reveal the nature of the strain-induced Lifshitz transition. The bridge
established by the uniaxial stress method between macroscopic and microscopic experi-
ments from a theoretical point of view, and between laboratory-based and facility-based
experiments from a technical point of view, will stimulate future research on quantum
materials.

By carrying out the experiments presented in this thesis, I found that the sample
preparation for the transport experiments requires much more careful steps than that for
the x-ray scattering measurements. On the other hand, one has more opportunities to test
immature ideas in laboratory-based experiments while the experiments at synchrotron
facilities tend to be more strategic and less serendipitous because of limited beamtimes.
In this respect, I find that laboratory-based spectroscopy techniques, such as Raman
scattering, can provide several insights. On top of the efficiency of experiments, the
uniaxial stress directly deforms the lattice of a sample, therefore measurements of phonons
which are sensitive to the point group symmetries of the crystal lattice are potentially
interesting subjects for any kinds of crystals in principle. Magnetic excitations have
been dominantly studied by inelastic neutron scattering, which requires a big amount
of materials and thereby is not suitable for strain applications. Thanks to the resonant
nature of RIXS, magnetic excitations in tiny crystals and a few unit cell thick films can be
routinely measured these days. Recent developments of RIXS with the incident photon
energy at the L-edge of 4d transition metal elements will expand the range of material that
can be studied under strain. For instance, one could aim for the direct comparison between
RIXS data under strain and a number of previous experimental results and theoretical
proposals on Sr2RuO4.

The uniaxial stress techniques should not be dedicated only to cuprates and ruthen-
ates. There are a number of materials to be studied under uniaxial stress. In Fe-based
superconductors, nematicity, the spontaneous rotational symmetry breaking, has been
widely discussed [265]. At the early stage, nematic susceptibilities were studied only by
small strain. A larger strain was applied to FeSe only in a recent study [266] and this
could extend the knowledge about the nematicity in other Fe-based superconductors as
well. Superconducting order parameters in a certain class of materials, namely doped
topological insulators, are known to be nematic [267]. Researchers tried to align the
domain structure of the nematic superconducting order parameter by uniaxial stress
[268]. Such a real space domain control is one fresh way to utilize the uniaxial stress.
Superconductivity in nickelates has been realized only in thin films to date [269]. Single
crystals were synthesized only recently and strain experiments may reveal what plays a key
role for superconductivity in nickelates, e.g., the strain effects and the interface effects by
substrates [270]. A Kitaev spin liquid system has been reported only in the presence of an
external magnetic field [271] even in the leading candidate material α-RuCl3 [272]. It has
been widely considered that the spin-orbit interaction is a key, thus 4d and 5d compounds
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have been mainly discussed as solid-state candidates. Recently one 3d compound was
theoretically proposed as a new candidate under a crystal field distorted by external strain
[273] and, thus, experimental verifications are expected. Of course, applying the strain
technique to other cuprate families is also desirable. In this thesis, we have particularly
focused on the charge ordering phenomena in the cuprates, but the uniaxial stress can also
be utilized to reveal other issues in cuprates such as the pseudogap, strange metallicity,
quantum criticality, etc...

Overall we have just started working on a limited number of experimental studies with
the uniaxial stress technique and still have a number of potential subjects for many other
materials and experimental probes. On the one hand, extending this approach to other
collective phenomena will open up new perspectives for quantum materials research, on
the other hand this methodology may shed light on controversial issues in a variety of
quantum materials as it has been demonstrated in Sr2RuO4 where a twenty years old
result was overturned [171]. I hope that the work presented in this thesis will be useful for
those who would like to study the nature of cuprates and other quantum materials and
plan to dig deeper into these subjects.
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A
A p p e n d i x

Tight-binding model calcula-
tion

We calculated the strain dependence of the resistivity with a semiclassical approach for
the tight-binding model to demonstrate the geometric effects on the electron hopping
parameters. Under the relaxation time approximation in a range of the linear response
from the Boltzmann equation, the current along the i-direction ji is given under the electric
field along the j-direction Ej (i, j = x, y, z),

ji = −
∑
k,σ

e2vk,i
vk,j

τk

(
df(ε(k))

dε(k)

)
Ej, (A.1)

where e is an elementary charge, τk is the relaxation time, f(ε(k)) is the Fermi-Dirac
distribution function, ε(k) is the energy dispersion of quasiparticles, and vk is the group
velocity of the quasiparticles defined as

vk,i
= 1
h̄

∂ε(k)
∂ki

. (A.2)

In our experiments the longitudinal conductivity σxx which reads

σxx =
∑
k,σ

e2v2
k,x
τk

1
|∇kε(k)|δ(k − kF). (A.3)

Here we assumed df(ε(k))/dε(k) = −δ(ε(k) − µ) because the temperature in our exper-
iments is much lower then the Fermi energy. To carry out the calculation further from
the general formula to apply the real system, one needs information of the electronic
structure ε(k) and the scattering rate 1/τk of the material. The latter really depends
on the microscopic origin of the scattering process [274, 275], let us assume it does not
depend on k, and to have isotropic scattering, as the simplest approximation. As for the
electronic structure, we use the tight-binding model whose Hamiltonian is

H =
∑
i,j,σ

ti,jc
†
i,σcj,σ, (A.4)

which describes phenomenologically well the quasiparticle band dispersion near the Fermi
level of cuprates [276]. Considering up to the second nearest neighbor hopping, the energy
eigenvalue in a case of a orthorhombic lattice is given as follows:

ε(kx, ky) = µ− 2t(cos(kxa) + cos(kyb)) − 4t′ cos(kxa) cos(kyb), (A.5)
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where a and b, µ, t, and t′ are the in-plane lattice parameters, the chemical potential, the
nearest, and second nearest hopping integral, respectively. t = 0.38 eV and t′/t = −0.32
are used in the simulation [276]. Strictly speaking, in YBa2Cu3O6.67 which is a bilayer
system, the band dispersion splits into the anti-bonding and bonding bands due to the
interlayer hopping between two CuO2 planes. However we used only the single band here
instead of those two bands for simplicity. Following prior work in Ref. [230], we model the
strain effect in the lattice parameters and the hopping integrals as follows:

a(εxx) = a(1 + εxx), b(εxx) = b(1 − νxyεxx)
tx(εxx) = t(1 − αεxx), ty(εxx) = t(1 + νxyαεxx)
t′(εxx) = t′(1 + (1 − νxy)αεxx/2)

where νxy is the Poisson’s ratio and α is a parameter that scales the strain effect in the
hopping integrals: α = 7 was chosen here because the relationship of the Slater-Koster
parameter (pdµ) and the distance between the p and d orbitals d is known as (pdµ) ∝ d−3.5

[277]. Thus the group velocity of the quasiparticles along the x direction is given by

vk,x
= a(1 + εxx)

h̄
(2t(1 − αεxx) sin(kxa) + 4t′(1 + (1 − νxy)αεxx/2) sin(kxa) cos(kyb)).

(A.6)

Using Eq. (A.3, A.6) , the strain dependence of the electronic structure and the conductivity
is estimated up to εxx = −1.5% as shown in Fig. A.1 (a). To compare with the experimental
results, the change in the resistivity ρxx = 1/σxx is plotted instead of the conductivity.
In this framework, we find that the resistivity decreases monotonically as a function of
compressive strain. It is consistent with an intuition that electrons gain additional kinetic
energy along the compressive strain which enhances the overlap of electron wavefunctions
between the nearest-neighbor sites. However, in reality, one has to consider also the
Coulomb interaction and in fact our simulation based on the tight-binding model does
not reproduce our experimental data at relatively high temperature (T > 100 K). The
Coulomb potential enhanced by the compression can inhibit the hopping of electrons.
Therefore the potential energy term could significantly contribute to the resistivity such
that it increases as a function of compressive strain. Therefore we expect that a numerical
analysis on the transport properties based on the Hubbard model under uniaxial strain
would provide closer agreement to our experimental results than our tight-binding model.
The disagreement between the experiments and our simple simulation here suggests the
importance of many-body correlations already at relatively higher temperature. In addition,
as noted we neglected the anisotropy of the scattering rate for simplicity. That also may
differentiate the simulation from our experimental results although it is not trivial how
we should assume the form of the scattering rate of the underdoped cuprates particularly
because of the pseudogap while the knowledge regarding optimally and overdoped cuprates
has been accumulated [274, 275]. Thus it is less intuitive to expect what can be improved
by adding the anisotropy of the scattering rate1.

1The analysis here with the Boltzmann equation is, as noted, semiclassical so that one may need to
consider the Kubo-formula even in the framework of the linear response theory to fully take into account
quantum mechanical effects. In addition, it is also not trivial how to take into account the effects of the
CDW and reconstructed Fermi surface at relatively low temperature. This has been recently attempted
to explain magnetoresistivity in Ref. [278].
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Figure A.1: Strain dependence of the longitudinal resistivity estimated within
the Boltzmann equation framework. The strain εxx|| the a-axis. When the summation
over the entire Fermi surface is performed, the contribution from the Fermi energy (EF) -
1 meV to EF + 1 meV is integrated. The hole doping was estimated to be 12.5 % (a) and
21.1 % (b) based on the unstrained Fermi surface area through Luttinger’s theorem. Inset
shows the Fermi surface derived from the tight-binding model on the orthogonal lattice.
The dotted red and solid blue curves indicate the Fermi surface which is unstrained and
strained by 1.5 %, respectively.

We simulated the same quantity for a different doping level of 21.1 %. The steep
change in the strain-dependent resistivity at a certain strain level was found (Fig. A.1
(b)). It is likely because of the Lifsitz transition, i.e., the Fermi surface topology changed
by the external strain. Therefore, the resistivity experiments under uniaxial stress in the
overdoped regime can be an interesting subject to be studied.
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B
A p p e n d i x

Integrated peak intensity of
charge orders

Here we explain how we estimated the integrated peak intensity of 2D-CDW shown in the
inset of Fig. 4.13 (b) of the main text. We refer to CDW domains with charge modulation
directions along the a- and b-axis as a-CDW and b-CDW, respectively. Likewise, the strain
along the i-axis is termed i-strain (i = a, b). The integrated peak intensity of j-CDW
domain under i-strain Ij−CDW(εi) (i, j = a, b) is defined as

Ij−CDW(εi) = (Ij,H(εi) + Ij,K(εi))/2, (B.1)

where Ij,X(εi) (X = H,K) is the integrated peak intensity of the j-CDW estimated from
the quasielastic intensity in the scan along the X direction for each i-strain level εi (Fig.
B.1). Note that only unstrained data are available for a-CDW under a-strain in the
scan along the (HCDW, K) (Fig. B.1 (b)) and b-CDW under b-strain in the scan along
the (H,KCDW) (Fig. B.1 (g)) due to the technical limitations of the RIXS experiments.
However the i-CDW is not affected by the i-strain (Fig. B.1 (a,h)), therefore we use those
unstrained data to estimate Ii−CDW(εi) as follows,

Ia−CDW(εa) = (Ia,H(εa) + Ia,K(0))/2, (B.2)
Ib−CDW(εb) = (Ib,H(0) + Ia,K(εb))/2. (B.3)

Ij−CDW(εi) is summarized in Fig. B.2 (a). Since the unstrained intensity of a-CDW in a par-
ticular sample under b-strain (Fig. B.1 (e,f)) is stronger than that of another sample under
a-strain (Fig. B.1 (a,b)), the normalized integrated peak intensity (Ij−CDW(εi)/Ij−CDW(0))
is shown in Fig. B.2 (b) to extract the relative strain effects on the CDW. We assume
that the transport properties are affected by both a- and b-CDWs, therefore the total
integrated peak intensity Itot(εi) is plotted in Fig. B.2 (c).

Itot(εi) = 1
2

(
Ia−CDW(εi)
Ia−CDW(0) + Ib−CDW(εi)

Ib−CDW(0)

)
. (B.4)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.1: Quasielastic intensity measured at 55 K in RIXS experiments. Solid
curves are the Lorentzian fits. (a,b) a-CDW under the a-strain along the H- and K-
directions, respectively. (c,d) b-CDW under the a-strain along the H- and K-directions,
respectively. (e,f) a-CDW under the b-strain along the H- and K-directions, respectively.
(g,h) b-CDW under the a-strain along the H- and K-directions, respectively. Note that
quasielastic signals under uniaxial pressure were not measured in configurations of (b) and
(g) due to technical limitations of RIXS experiments. Data are reproduced from Ref. [142].

(a) (b) (c)
a-CDW + b-CDW

CDW || strain

CDW ⊥ strain

Figure B.2: Strain dependence of the integrated peak intensity of the 2D-CDW.
(a) Ij−CDW(εi) for i, j = a, b. (b) Ij−CDW(εi)/Ij−CDW(0) for i, j = a, b. (c) Itot(εi) defined
in Eq. B.4 for i = a, b. This figure is identical to the inset of Fig. 4.13 (b) in the main
text whose horizontal axis is converted into stress.



C
A p p e n d i x

Elastoresistivity tensor

The effect of uniaxial stress was little as shown Fig. 4.14. Therefore one may think that
the change of RH by uniaxial stress is forbidden by the symmetry of the system. However
it is allowed in terms of the symmetry as we show in the following way. To discuss such a
property of the symmetry it is convenient to define so-called elastoresistivity tensor, that
is a physical response function between the relative change of resistivity and strain. As
described in Ref. [279], the elastoresistivity tensor is defined as

mij,kl = ∂(∆ρ/ρ)ij(H)
∂εkl

∣∣∣∣∣
ε=0

, (C.1)

where

(∆ρ/ρ)ij(H) =



(∆ρ/ρ)xx(H)
(∆ρ/ρ)yy(H)
(∆ρ/ρ)zz(H)
(∆ρ/ρ)yz(H)
(∆ρ/ρ)zy(H)
(∆ρ/ρ)zx(H)
(∆ρ/ρ)xz(H)
(∆ρ/ρ)xy(H)
(∆ρ/ρ)yx(H)


and εij =



εxx

εyy

εzz

εyz

εzy

εzx

εxz

εxy

εyx


. (C.2)

(∆ρ/ρ)ij(H) and εij are the relative change in the resistivity under the fixed magnetic field
H and strain, respectively. It is assumed that the magnetic field is applied along the c-axis.
By definition, the tensor in this representation has 81 components but some of components
are not independent because physical response functions such as the elastoresistivity tensor
must be invariant under the symmetry operations of the system, the crystal point group
symmetry and the Onsager relationship in the present case. In the same manner where
the elastoresistivity tensor for the D4h symmetry was derived [279], one can derive it for
the D2h symmetry which is the crystal point group symmetry of YBa2Cu3O6.67 as follows.
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mD2h
ij,kl =

mxx,xx mxx,yy mxx,zz 0 0 0 0 0 0
myy,xx myy,yy myy,zz 0 0 0 0 0 0
mzz,xx mzz,yy mzz,zz 0 0 0 0 0 0

0 0 0 myz,yz myz,yz myz,zx myz,zx 0 0
0 0 0 myz,yz myz,yz −myz,zx −myz,zx 0 0
0 0 0 mzx,yz mzx,yz mzx,zx mzx,zx 0 0
0 0 0 −mzx,yz −mzx,yz mzx,zx mzx,zx 0 0

mxy,xx mxy,yy mxy,zz 0 0 0 0 mxy,xy mxy,xy

−mxy,xx −mxy,yy −mxy,zz 0 0 0 0 mxy,xy mxy,xy


.

(C.3)

As can be seen, some of components in the tensor must be zero due to the symmetry
constraints and the number of independent components is 14 in this case. Since the uniaxial
stress σ> = (σxx, 0, 0, 0, 0, 0, 0, 0, 0)> was applied in our experiments, the corresponding
strain is ε> = (εxx, εyy, εzz, 0, 0, 0, 0, 0, 0)>. (Poisson’s effect explained in chapter 3.2.2).
It is thus allowed that the Hall resistivity ρxy(H) changes under uniaxial stress in our
experimental configuration because mxy,xx, mxy,yy, and mxy,zz can be finite according to
this symmetry analysis. Likewise, the longitudinal resistivity ρxx(H) can also be changed
by the uniaxial stress.
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Cyr-Choinière, Y. J. Jo, L. Balicas, J. Q. Yan, J. S. Zhou, J. B. Goodenough, and
Louis Taillefer, Nature Physics 5, 31 (2009). . . . . . . . . . . . . . . . . . . . . . . . . . . on page 28.

[126] A. Legros, S. Benhabib, W. Tabis, F. Laliberté, M. Dion, M. Lizaire, B. Vignolle,
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[157] Francis Laliberté, Mehdi Frachet, Siham Benhabib, Benjamin Borgnic, Toshinao
Loew, Juan Porras, Mathieu Le Tacon, Bernhard Keimer, Steffen Wiedmann, Cyril
Proust, and David LeBoeuf, npj Quantum Materials 3, 11 (2018). on pages 33, 34,
91, 91, 91.

[158] Tao Wu, Hadrien Mayaffre, Steffen Kramer, Mladen Horvatic, Claude Berthier,
W. N. Hardy, Ruixing Liang, D. A. Bonn, and Marc-Henri Julien, Nature 477, 191
(2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .on pages 33, 65.

[159] Tao Wu, Hadrien Mayaffre, Steffen Krämer, Mladen Horvatić, Claude Berthier,
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Bernd Büchner, Phys. Rev. B 83, 092503 (2011). . . . . . . . . . . . . . . . . . . . . . on page 59.

[202] J Fink, E Schierle, E Weschke, and J Geck, Reports on Progress in Physics 76,
056502 (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . on pages 60, 82.

[203] Eugen Weschke and Enrico Schierle, Journal of large-scale research facilities JLSRF
4 (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . on page 60.

[204] N. B. Brookes, F. Yakhou-Harris, K. Kummer, A. Fondacaro, J. C. Cezar, D. Betto,
E. Velez-Fort, A. Amorese, G. Ghiringhelli, L. Braicovich, R. Barrett, G. Berruyer,
F. Cianciosi, L. Eybert, P. Marion, P. van der Linden, and L. Zhang, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 903, 175 (2018). . . . . . . . . . . . . on pages 61, 96.



Bibliography 133

[205] C. W. Chu, J. M. E. Harper, T. H. Geballe, and R. L. Greene, Phys. Rev. Lett. 31,
1491 (1973). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . on page 63.

[206] J. Chaussy, P. Haen, J.C. Lasjaunias, P. Monceau, G. Waysand, A. Waintal, A. Meer-
schaut, P. Molinié, and J. Rouxel, Solid State Communications 20, 759 (1976). on
page 63.

[207] Matteo Calandra, I. I. Mazin, and Francesco Mauri, Phys. Rev. B 80, 241108 (2009).
on page 63.

[208] Michio Naito and Shoji Tanaka, J. Phys. Soc. Jpn. 51, 219 (1982). . . . on page 63.

[209] Xuetao Zhu, Yanwei Cao, Jiandi Zhang, E. W. Plummer, and Jiandong Guo, Proc.
Natl. Acad. Sci. U.S.A. 112, 2367 (2015). . . . . . . . . . . . . . . . . . . . . . . . . on pages 63, 92.

[210] Yoichi Ando, Seiki Komiya, Kouji Segawa, S. Ono, and Y. Kurita, Phys. Rev. Lett.
93, 267001 (2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . on pages 63, 65, 71.
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