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Abstract

Data centers consume large amounts of power around the world. It is estimated that over 1% of
global energy consumption is used for powering data centers. Therefore data centers have some
potential to reduce global CO2 output. This thesis therefore introduces a novel practical scheduler
implementation for saving CO2 emissions on a cluster by shifting load in time. Therefore a custom
CO2 power grid efficiency scheduler is developed. The implementation is written for kubernetes, as
it is widely used open source cloud orchestration tool. Different architectural solutions to implement
a scheduler inside kubernetes are discussed, to find a good approach for realization for this specific
cause. The scheduler predicts future CO2 emissions by using historical data and shifts job in time
to CO2 efficient power grid times. For comparison the implemented scheduler is tested against
the default kubernetes scheduling implementation with multiple different scenarios that were built
by using real world workload log data. The implementation presented achieved an average CO2
emission reduction between 0.5% and 2.0%. The scheduler CO2 reduction is similar to Googles
Borg scheduler implementation.
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1 Introduction

Kubernetes is one of the largest open source projects in the world. It defines a standard Application
Programming Interface (API) for cloud deployments and is available at almost any public cloud
provider in the market (p.1 [BBH18]). About 1% of the global energy usage is consumed by data
centers(p.1 [RKS+21]). Therefore finding solutions for reducing CO2 emissions without sacrificing
too much service quality could contribute to saving global emissions. This means that implementing
an intelligent scheduler that queues jobs on the kubernetes (k8s) cluster at times where power grid
efficiency is good can introduce a reduction of CO2 emission.

Currently there exists some implementation for data centers that try to optimize CO2 output by
shifting jobs in time or in execution environment. Google implemented a proprietary Borg scheduler,
that is able to delay jobs in execution time[RKS+21]. Their approach was tested with real business
workload, a more detailed description is summarized in Section 5.1. At Bristol students implemented
a carbon aware kubernetes scheduler[JS19]. CO2 is saved by moving existing pods to other regions
around the world, where currently CO2 power grid efficiency is better. The implementation however
does not seem to be open source. How their approach worked is explained in detail in Section 5.2.
Employees of University of Potsdam and Berlin theoretically evaluated potential reduction of CO2
emissions by shifting load (p.1 [WBS+21]). They build a model with certain error margins to
calculate relative CO2 optimization potential. Their findings are summarized in Section 5.3.

Googles sophisticated carbon aware scheduler is implemented for their proprietary Borg scheduler
and relies on an external API (p.6 [RKS+21]) that provides their CO2 prediction. The Low Carbon
Kubernetes Scheduler shifts jobs in location but not in time. The theoretical evaluation of potential
CO2 reduction lacks a real world data center implementation to prove their claims in a more practical
way.

This thesis will describe the process of developing a job scheduler for k8s that reacts to the power
grid CO2 efficiency. The implemented k8s CO2 scheduler will be tested in its ability to reduce CO2
emissions.

For implementing the scheduler, multiple scripts have been written to allow the benchmarking of
different scheduler implementations. Then an approach was found to predict future CO2 power grid
efficiency. This prediction is then utilized by a k8s scheduler implementation to shift different pods
in time. The benchmark scenarios are used to compare the custom k8s scheduler implementation to
the default k8s scheduler.

This thesis therefore introduces a new practical implementation approach of a K8s scheduler that
predicts CO2 power grid efficiency and shifts pods to time slots where efficiency is better. The
resulting performance numbers in the evaluation gives a resilient efficiency estimation of this
approach.
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1 Introduction

This thesis explains the core components of k8s in Chapter 2 and its scheduler in Chapter 3. Also
different approaches for testing are discussed in Chapter 4. The necessary CO2 and workload
prediction is explained in Chapter 6. Then, practical implementation of tests and scheduler code is
presented in Chapter 7 and Chapter 8. Practical advice of software requirements the originated
code, as well as instructions to setup the environment is shown in Chapter 9.

The evaluation of the k8s CO2 scheduler showed a potential to save CO2 emissions by about 0.5%
and 2.0% as seen in Chapter 10. These numbers where achieved by four different scenarios that
were passed by the k8s CO2 scheduler and the default k8s default scheduler. The CO2 scheduler
therefore is a viable approach for reducing cluster CO2 output.
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2 Kubernetes

"k8s is an open source orchestrator for deploying containerized applications. It was originally
developed by Google, inspired by a decade of experience deploying scalable, reliable systems in
containers via application-oriented API (p.1 [BBH18])."

This definition relies on a lot of previous knowledge and is far from self-explanatory. The following
sub sections will more deeply explain, what exactly k8s is and why it is used so much. k8s
itself is a very complex software, so facts mentioned here are not complete by any means. The
different components explained however are needed to understand the ensemble of the k8s scheduler
implementation.

2.1 Container

The traditional way of running applications on a cluster has been one single virtual or physical
machine that runs all the programs (p.3 [BBH18]). This introduces a major disadvantage. All
applications deployed on this specific environment are tightly coupled to the same version of libraries
they might share (p. 13[BBH18]). Also runtime failures of certain components can potentially
cause other components to fail, that would have performed flawlessly on their own.

Containers are the core technology that enables users to accomplish encapsulation between
components and solves dependency management (p.14 [BBH18]). There exist two different kinds
of standards for containerized applications Docker and Open Container Initiative (OCI). But since
this work relies on docker, explanations will focus on the leader of container formats. A container
image is a binary package that encapsulates all of the files necessary to run a program inside
of an OS container (p. 14[BBH18])."It is important to know that containerized applications are
fundamentally different in structure than a Virtual Machine (VM) which can be observed in the
architecture diagrams as in Figure 2.1. Whereas the Container applications in Figure 2.1a share
one host operating system and share the Operating System (OS) Kernel[web21]. This results in
a smaller size of the container image and fewer VM and operating systems. On the other hand a
VM as in Figure 2.1b is hosted by a Hypervisor which coordinates full operating system instances.
This introduces a larger boot time and in many cases more resource consumption as a individual
host instance is usually larger than its container equivalent. A general advantage for a VM and a
container is that these constructs can run in many different kind of environments and are agnostic to
it at to least a certain degree (p.43 [Kha17]). This enables users to easily change the environment
of their deployments with little to none changes necessary. Container technology itself is a very
far-reaching research topic, so this definition should suffice.
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2 Kubernetes

(a) Container (b) VM

Figure 2.1: Comparison VM vs Container[web21]

2.2 Container Orchestration

"Container orchestration platforms can be broadly defined as a system that provides an enterprise-
level framework for integrating and managing containers at scale (p.44 [Kha17])."Some important
key criteria for a container orchestration in scope of this thesis are:

cluster state management is the service level that the service provider and customer have agreed
(p. 44-45[Kha17])

scheduling is the cloud orchestration tool can schedule different deployments to the appropriate
infrastructure(p. 45[Kha17]).

simplifying networking is the network management in most parts is done automatically by the
cloud orchestration tool and does not need to be controlled manually(p. 46[Kha17]).

providing monitoring means the different deployments are monitored by the cloud orchestration
environment. This includes if provided, health status, resource consumption and up time (p.
47[Kha17]).

Many different Cloud orchestration tools exist on the market varying from googles k8s, Amazon’s
Elastic Container Service, and many different others (p. 44[Kha17]). While Amazon’s Elastic
Container Service is a proprietary from amazon, k8s as an open source can be used in many
different ways. Amazon, Google, Microsoft, IBM, Docker, Cisco, VMware, Tencent and many
more providers offer either managed instances which is essentially Platform-as-a-Service (PAAS)
or self managed productive k8s environments Infrastructure-as-a-Service (IAAS)[Kub21c] (p.
28-29[BBH18]). Anybody can host a k8s instance due to the Apache 2.0 license without paying
any fee[Kub21d]. For testing purposes, it is also possible to install a less resource intensive version
of k8s on a PC using Minikube (p. 29-30[BBH18]). Its main purpose is "[...]local development,
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2.3 Architecture

Figure 2.2: Architecture from k8s Cluster[Kub21a]

learning, and experimentation (p. 29[BBH18])". Although disregarding the obvious drawbacks
of reduced computational power and no distribution in the network which potentially decreases
reliability a Minikube cluster indeed in its feature level and behavior is a full-fledged k8s Cluster
operating with bare minimum resource usage.

2.3 Architecture

k8s itself is very versatile in its deployment capabilities. Multiple nodes can be composed to one
large k8s Cluster making it very easy managing cross cloud and hybrid cloud deployments. The
following describes an architectural overview as in Figure 2.2 of k8s and its main components.
Every k8s at least consists out of one k8s Master node (p. 32[BBH18]), which can be seen in
the dotted box in the left side of Figure 2.2. This master node is responsible for managing all
deployments in this distributed platform.

The kube-apiserver is in center of the master node Figure 2.2. The kube-apiserver connects
components internally and to k8s nodes that are directly attached. The API server also provides the
backend for the Command Line Interface (CLI). The kubectl tool accesses the k8s master node
to retrieve information of pods, nodes overall cluster state and all metrics that are collected by
the cluster (p. 37[BBH18]). As the API and CLI of k8s will be important to this work, they are
described in detail in Section 2.4.

In the following a description of the components of Figure 2.2 starting from the top left corner in
clockwise rotation of the k8s master will be provided. The kube-controller-manager is responsible
for the

Node Controller which initializes the other nodes and determines their network addresses[Kub21a].
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2 Kubernetes

Route Controller which is an optional component that can be used on Google compute engine
clusters to enable communication between Containers on different nodes[Kub21a].

Service Controller which is responsible for generating, deleting and updating services. It also
listens to events on the cluster and logs them[Kub21a].

The cloud-controller-manager in Figure 2.2 is an optional component to the k8s cluster which
enables cloud vendors to easily introduce new code to k8s on a plugin basis without modifying the
core code of k8s[Kub21a]. The cloud controller manager does not need to be used, but shows the
flexibility of k8s. The cloud controller is connected to the cloud connector which establishes and
maintains the connection to a vendor specific k8s cloud implementation[Kub21a].

The kube-scheduler will be described in detail in Chapter 3. In general it is consulted by the
master node to perform its allocation decisions on the whole cluster the k8s master is responsible
for (p.48 [BBH18]). More specific it is responsible for when and where different deployments get
deployed.

The etcd server is a persistent storage where all API objects are stored. Persistence in general is an
important topic in k8s. Entities always need to store information externally, as containers in k8s are
completely wiped if they are deleted and rebuild again (p.51 [BBH18]). This will be described in
more detail in Section 2.3.1.

The k8s Minions, seen in the lower right corner in Figure 2.2 also known as the k8s worker
nodes, are responsible for hosting the deployments that get hosted on the cluster (p.32 [BBH18]).
Usually, they get work assigned by the kube-apiserver and are accessible through it. Commonly
only worker nodes receive deployments, whereas the master node only focuses on managing the
cluster (p.32 [BBH18]). The kubelet is the node agent of the worker node, responsible for managing
and registering the worker node at the kube-api server[Kub21a]. The kube proxy is responsible
for managing network traffic of the node as well as load balancing it (p.34 [BBH18]). It is also
important to note that k8s enables users to utilize multiple different namespaces on the same cluster.
For example pods in the same namespace can interact with each other easily by their various service
names (p.77 [BBH18]). Namespaces should be seen as another layer of encapsulation enabling
different parts of a company to separate their projects from one another.

2.3.1 Pods

"k8s groups multiple containers into a single atomic unit called a Pod (p.46 [BBH18])."A Pod itself
at the bare minimum contains one container, but can also contain multiple different containers.

Figure 2.3 shows one Pod that contains the Web servicing Container and the Git Synch Container.
They both share a database that is also contained in their deployment. Because Pods are the atomic
unit of a deployment in k8s, all decisions of k8s regarding scheduling, allocation or scaling can not
be more granular than the Pod level. This means that entities that should be scaled independently,
such as a web service and a database shall never be combined into one pod, but be separated into
multiple ones (p.47 [BBH18]). Therefore Figure 2.3 should be considered as an Anti-Pattern, as for
instance the Web servicing Container can not be scaled independently from the database and vice
versa(p.47 [BBH18]). Since Docker has a whale as its company logo the naming "Pod"resembles
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2.3 Architecture

Figure 2.3: Pod Infrastructure with two Containers(p.45[BBH18])

Listing 2.1 Example of Minimal Pod Configuration

apiVersion: v1

kind: Pod

metadata:

name: podname

spec:

containers:

- name: nginx-container

image: nginx

ports:

- containerPort: 80

this relation. A "Pod of whales"means a group of multiple whales, so multiple docker containers
form a Pod (p.46 [BBH18]). When multiple containers are grouped into one pod, this ensures
that:

same time All containers contained in the pod are created together when the pod is scheduled
(p.46 [BBH18]). This ensures that all containers start in conjunction not one by one.

same place All containers are queued on the same node (p.46 [BBH18]). As one node is always
one physical machine, communication between the different deployments has less lag, high
bandwidth and a good reliability.

Listing 2.1 shows an almost bare minimum working pod configuration. apiVersion is an internal
parameter necessary for k8s.

Pod is the type of the deployment. There exist various other types of entities such as services or
replicas.

Metadata name is the only essential field of various other metadata types. This is the name of the
created pod which can be important for monitoring or maintenance.

In the spec field the different containers are listed. In the example in Listing 2.1 there is only one
container named nginx-container, with the docker image nginx. The container port field opens
port 80 on the container for external access.
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It has to be stated, that this example is not optimal for production use, as it is the bare minimum in
its configuration. As no namespace is mentioned in the configuration, it will fall back to the default
namespace (p.38 [BBH18]).

Containers on k8s also don’t get saved in their state once deleted. "It’s important to note that when
you delete a Pod, any data stored in the containers associated with that Pod will be deleted as well
(p.51 [BBH18])."This means that any files that should survive the reboot of a pod need to be saved
to a external storage service called PersistentVolume on the k8s cluster(p.51 [BBH18]).

2.4 Kubectl CLI

"The kubectl command-line utility is a powerful tool[...](p.37 [BBH18])". Kubectl is locally
installed on the machine where it is used for interaction with the k8s cluster. Different namespaces
can be directly attached to the kubectl command or be included into the yaml description of the
entity deployed. It has to be noted that defining no namespace results in using the default namespace.
This thesis uses two different abilities of the API. The k8s CLI is able to create objects, monitor
them and also view the deployment on the cluster. The Cluster that wants to be accessed via kubectl
can be passed inline with each command. This is not recommended, since the access token is a
potential security threat. The recommended way is by using a config yaml file usually located in
the .kube folder in the user directory. It contains the server ip address, the client certificate and
key storage location or is directly included in the config. These commands can be used manually
via console or be embedded into other source code such as bash to. With kubectl CLI complex
scenarios can be automated on a k8s cluster or even Continuous Integration / Continuous Delivery
(CI/CD) pipelines can be realized.

2.4.1 Viewing and Monitoring Objects

All objects created in k8s can be managed by the kubectl CLI. The most commands follow the
schema:

"kubectl get <resource-name>(p.38 [BBH18])"

In the following some example commands that are necessary for implementing and debugging basic
deployments in k8s are listed:

kubectl get pods lists all pods created in the default namespace(p.38 [BBH18]).

kubectl get pods –all-namespaces lists all pods created on the whole k8s cluster (p.38, 41
[BBH18]).

kubectl describe pod storage-provisioner –namespace kube-system describes the pod named
"storage-provisioner"in the "kube-system"namespace (p.117-118[BBH18]). This includes
basic information about the deployment, information about its state and a backlog of all
events that occurred with it during deployment(p.117-118[BBH18]).
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2.4 Kubectl CLI

2.4.2 Viewing and Monitoring Resources

The kubectl API offers some basic mechanisms to protocol resource usage:

kubectl top nodes lists cluster nodes and their CPU and Memory usage (p.41 [BBH18]).

kubectl describe nodes is a detailed report of the deployed Pods on the Cluster with their resource
usage, events that occurred and basic information about the cluster(p.32 [BBH18]).

The Cluster has 3 different kind of performance metrics that need to be understood and differentiated.
All of them can be applied to memory or CPU usage.

The actual resource usage of the k8s node that can be obtained by the kubectl top nodes(p.41
[BBH18]).

The requested resource usage acquired by kubectl describe nodes. Each container can reserve
some CPU time or memory on its k8s node. The scheduler ensures that never more than 100% of
the CPU and memory is reserved (p.57 [BBH18]). If the resource consumption of Pods is too high
and other services could potentially suffer from it, the scheduler forcefully shuts down services that
exceed their reserved usage too much.

The limited CPU usage is also acquired by kubectl describe nodes. This describes a hard cap
of the resource usage. The k8s cluster will never assign more resources to a container than this
(p.58-59 [BBH18]). It also means, that a k8s cluster node can have an accumulated resource limit
of over 100%.

2.4.3 Creating Objects

k8s deployments can be created by either using a yaml or json description of them (p.48 [BBH18]).
The following commands are most commonly used to deploy for example a pod on the cluster via
the CLI:

kubectl apply -f obj.yaml Creates a k8s object based on the specified file (p.49 [BBH18]).

kubectl delete -f obj.yaml Finds the deployment specified in the file on k8s and deletes the
deployment on the k8s cluster (p.51 [BBH18]).

kubectl edit <resource-name> <obj-name> Changes a k8s deployment that has been previously
deployed on the cluster. This usually triggers a termination of the old deployment and
redeploys a new instance according to updated definition (p.39 [BBH18]).

kubectl delete <resource-name> <obj-name> Finds a k8s deployment with the matching name
and deletes it(p.51 [BBH18]).
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2 Kubernetes

2.5 Minikube

Minikube is "[...]a simple single-node cluster[...] (p.29 [BBH18])". Its main goal is for "[...]de-
velopment, learning and experimentation[...](p.29 [BBH18]). It should not be used for real world
productive environments, as a single node cluster does not take advantage of the upside of a distributed
cluster. There exists an offical Minikube tool on github at: https://github.com/kubernetes/minikube
that automates installation, setup, starting and stopping or deleting of the minimal cluster setup(p.30
[BBH18]). An advantage is, that Minikube is easy to setup. Multiple different k8s versions can be
tested easily, as the version of k8s desired to be run can be attached as a console parameter and the
tool will take care of it. However, Minikube is limited as it only runs on a VM(p.29-30 [BBH18]).
But running k8s on a regular computer is not meant for real high performing deployments anyway.
An alternative to that is running k8s directly in a Docker container which allows using multiple
simulated nodes if necessary(p.30 [BBH18]). Minikube is also limited to 110 Pods, as this is
the maximum amount of pods that are allowed for one node in k8s[Kub21b]. This is due to ip -
address limitations, as every pod gets its own physical address space on a node to be reachable
externally[Kub21b].
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This section describes how the k8s scheduler works and what options exist to implement an alternative
k8s scheduler. These different approaches are explained in detail and finally compared against each
other. The best suiting approach is than explained in a more detailed way in Section 3.4.

3.1 Kubernetes Scheduler Reference Implementation

"The k8s scheduler is a control plane process which assigns Pods to Nodes"[Aut21b].

The basic implementation of the k8s scheduler first picks a pod from its queue of pods waiting for
deployment (p.32 [BBH18]). This priority queue is first sorted by the priority classes of the pods as
seen in Algorithm 3.1[Kub21f]. In the default case, no priority is attached to a pod, which results in
a default priority value of 0, the higher the value, the more privileged the pod becomes[Doc21]. Pod
values roughly can range from zero to one billion, but it has to be noted, that high priority values
are reserved for system critical k8s jobs. Using priority values that are too large can potentially
decrease cluster reliability[Doc21]. As a second priority of the sort function, the timestamps of the
pods are considered[Kub21e]. Oldest pods are favored here in a Operating System (FIFO) queue
manner implementation. Once a pod has been picked, the scheduler determines which nodes are
possible candidates for a pod according to resource and property constraints[Aut21b]. Property
constraints such as annotations for instance can be different labels attached to nodes. These can
indicate certain features available there such as a specific availability zone or different hardware
requirements. In a second stage the list of possible nodes is then prioritized by a rank function,
which in the ideal case returns at least one node. Later the best node is picked and the pod is then
bound by the cluster to this node. After this action, the scheduler has finished its job, and the cluster
manages the rest of the deployment process.

Algorithm 3.1 k8s Scheduler Heap Sort Function
// Less is the function used by the activeQ heap algorithm to sort pods.
// It sorts pods based on their priority. When priorities are equal, it uses
// PodQueueInfo.timestamp.
func (pl *PrioritySort) Less(pInfo1, pInfo2 *framework.QueuedPodInfo) bool {

p1 := corev1helpers.PodPriority(pInfo1.Pod)
p2 := corev1helpers.PodPriority(pInfo2.Pod)
return (p1 > p2) || (p1 == p2 && pInfo1.Timestamp.Before(pInfo2.Timestamp))

}
[Kub21f]

27



3 Scheduler

3.2 Options to Modify the Kubernetes Scheduling Behavior

In the scope of k8s there currently exist 4 different approaches to change the default scheduling
behavior of a k8s cluster[Gui20][Hua20]. This section will give a brief overview about the different
approaches possible. Each approach has its different advantages and disadvantages, so it is not
possible to rank them simply by good or bad.

custom reference scheduler This approach is using the standard k8s implementation and modifies
it to match the desired result [Gui20]. A benefit here is, that potentially there is almost no
limitation for implementation. However a large drawback here is, that the k8s scheduler
is not a static piece of code and changes from time to time. Changes in the k8s cluster
may require major adaptions in the adapted approach or even a complete rewrite. Also
this approach enforces the new scheduler being a replacement of the standard scheduler,
which is not available anymore, in addition the modified version has now become the default
implementation to the cluster[Gui20]. Consequently this is a very tightly integrated but yet
not flexible approach.

custom scheduler implementation This requires a full custom implementation of the sched-
uler[Gui20]. This scheduler is deployed on the cluster as an alternative scheduler. However,
not the standard scheduler is replaced, so multiple schedulers are available then[Gui20].
Pods for example can explicitly specify from which scheduler they want to be scheduled. A
potential drawback of this implementation style is, that this yet again produces a lot of boiler
plate code that again needs to be maintained or becomes obsolete over time. However the
worst case in this scenario is, that the scheduler becomes useless with a k8s update and the
environment needs to be reconfigured to the default scheduler.

scheduler extender Using the scheduler extender is a rather quick approach in changing the
scheduling behaviour[Gui20]. This approach applies a filter to the default scheduler, rather
than requiring a complete new implementation of the whole scheduler. The scheduler extender
is deployed as a basic rest service communicating over HTTP or HTTPS with the standard
scheduler implementation[Gui20]. The standard scheduler receives a configuration file with
the connectivity information of the scheduler[Gui20]. Benefits of this approach are, that
boiler plate code is reduced to a minimum, as the filters can directly be written in the scheduler
extender with very less code needed around it. As the scheduler extender is rather small, code
changes can be made very rapidly so fast prototyping for academic purposes. However, as the
scheduler extender is realized with a web socket, there is a potential limit in performance,
as method call duration over a web socket is potentially higher, than over a local method
call[Hua20]. This is no problem with smaller k8s implementations but more for large clusters
managing hundreds of nodes with thousands of simultaneous running pods. This should not
be a limiting factor in small to medium sized clusters. Another limiting factor is, that the
scheduler extender can only extend the the standard scheduler in certain predefined phases,
where the standard scheduler sends the request to the extender. This can potentially be
circumvented, by yet again implementing changes in the scheduler that call the extender, but
this would make the whole approach more complex and bypasses the reason of simplification.

scheduler framework The scheduling framework by k8s is the most recent approach of k8s for
extending the scheduler behavior[Hua21]. It basically is trying to eliminate the shortcomings
in large cluster scalability of the scheduler extender approach[Hua21]. With the scheduler
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framework the main code of the scheduler stays untouched. Changes of the scheduler is realized
by implementing plugins and linking them to the standard scheduler implementation[Hua21].
This requires however a recompilation of the whole scheduler. A large benefit of this approach
compared to rewriting the complete scheduler code is, that in theory, scheduler plugins should
be less or ideally not affected of future k8s updates[Hua21]. For a production environment,
this approach is more scalable, but rapid prototyping is easier with the scheduler extender.

3.3 Suitable Approach for CO2 Scheduler Implementation

In Section 3.2 4 different approaches were described for implementing an alternate k8s scheduler.
We will evaluate these approaches in terms of the scope of implementation for this thesis. The
drawn conclusion here eventually does not cover the use case of a real world large k8s cluster
deployment.

Programming Language This category evaluates how tightly coupled the programmer is to the
programming languages he can use in every approach.

Over the 4 approaches, implementing an entire new scheduler from scratch is by far the most
versatile solution. Potentially even the programming language could be changed here, if
using GO as the programming language is not an option. However not sticking to GO as the
scheduler language could increase the difficulty of embedding the code into k8s by a large
margin. Theoretically, the scheduler extender by itself can also be written in any language, as
it is a basic rest webservice[FK21]. However by using the k8s scheduler framework approach
or modifying the k8s reference implementation, the programmer is forced to use go[Hua21],
which is not essentially a disadvantage but definitely a limitation.

Feature Set Feature set in terms of software means, how versatile the options for implementing
the scheduler are by using this approach.

Implementing a new scheduler gives basically all options for implementation with the only
limit being the k8s cluster itself. Theoretically the k8s scheduler implementation can be
modified to a degree, by which no limits out of the algorithm itself are induced. Implementing
the scheduler with the scheduler framework is limited by plugin extension points[Hua21].
The scheduling algorithm itself here is in a core part of the implementation so only plugins
can extend the default behavior when they are called. The most reduced approach is the
scheduler extender[FK21]. It does not have as many extension points as the scheduling
framework has, so it depends on, if the scheduler extender approach is powerful enough for
the implementation or not.

Implementation Effort Implementation effort means, how much effort has to be put into the code,
to make meaningful changes to the scheduling behavior. The highest initial effort by deploying
a new k8s scheduler is by rewriting the whole code from scratch. Every basic functionality of
the scheduler has to be implemented before using it without runtime errors is possible, in
case not covered scenarios occur. A lot less cumbersome is the approach of alternating the
code of the k8s scheduler reference implementation. However both of these approaches are
not recommended[Hua20] Using the scheduler framework or the scheduler extender are the
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faster approaches because in both cases the basic core scheduler code stays untouched and
only pieces of external code are attached to it[FK21][Hua21]. This keeps the potential error
rate low.

Maintenance Effort Maintenance effort is similar to implementation effort. Consequently writing
more lines of code increases the maintenance effort, approaches that need less lines of code
are potentially beneficial in future k8s versions. This means that potentially the modified
reference k8s scheduler and the rewritten k8s scheduler can be very impractical in real world
deployments, as potentially major changes can even cause the need for an entire rewrite of
the scheduler, which yet again would be very time intensive[Hua20]. This means that the
plugin approach of the scheduling framework and the REST HTTP handler approach of the
scheduler extender require a lot less changes in code, once k8s is updated. Both of these
approaches rely on continued support from k8s. Since breaking changes occur, at least the
work effort that was lost is by a magnitude smaller than with the rewriting approaches, these
extender and framework approach are a lot cheaper to maintain[Hua20].

Rapid Prototyping Rapid software prototyping is an iterative software development methodology
aimed at improving the analysis, design and development of proposed systems (p.470[LS92]).
So the ability of an approach to be highly viable for iterative development in this case means,
how fast different versions of the approach can be implemented and then be tested. Rapid
prototyping usually contains 5 phases:

Formulating requirements, demonstrating feasibility, reduce risk of system miss-development,
communicate ideas and answering questions about system properties (p.470 [LS92]). These
criteria is very important in the scope of this thesis, as time is limited. The re-implementation
of the scheduler and the modified version of the reference implementation both need more
time for each feature to be implemented. Especially a complete custom scheduler needs a
lot of effort for each feature, as flawless interaction with the k8s cluster needs to be insured.
The scheduler framework streamlines the process of implementing new features, as the
plugins can be written and just coupled to the scheduler[Hua21]. However this requires a
recompilation of the entire scheduling algorithm and a redeployment of the whole scheduler.
The scheduler extender itself is a very small REST application[FK21]. Since it is only
extending an existing scheduler, just the scheduler extender needs to be recompiled and
redeployed in every iteration[FK21]. This makes the scheduler extender really fast for a rapid
prototyping solution.

Potential Performance Performance describes how good the potential real world deployment of
this application can perform. With the scheduler rewrite and the modified reference scheduler,
potentially the performance result can be extremely good, as code can be optimized to a very
deep level. However the scheduler framework itself is written in go which by itself is a very
good optimized programming language[Hua21]. The least performing result by a margin
should come from the scheduler extender[Hua20]. This is because the method calls from the
scheduler to the scheduler extender and vice versa come with a relatively large performance
hit in comparison to a tightly coupled local method call. However, this should not be an issue
for small to medium deployments, as this performance hit will only come into play once
many multiple scheduling calls in a short period of time hit the k8s cluster.
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custom custom scheduler scheduler scheduler
reference scheduler implementation extender framework

Programming language - - + + + + - -
Feature set + + + + - +
Implementation effort - - - - + + -
Maintenance effort - - - - + + +
Rapid prototyping - - - - + + -
Potential performance + + + + - + +

Table 3.1: Benefits and Drawbacks of Scheduler Implementation Approaches with (+ +) Being the
Best Possible Value and (- -) Being the Worst Value

3.3.1 Conclusion of Scheduler Approach

The goal of comparing the different approaches focuses on finding a viable solution for an efficient
implementation of the CO2 scheduler. As the article Create a custom Kubernetes scheduler[Hua20]
suggests either the custom scheduler or custom scheduler implementation are not recommended due
to diminishing returns. As in Table 3.1 the scheduler extender has a lower implementation effort
than the other approaches and its lightweight structure simplifies the deployment process. As it is
powerful enough to implement a time shift approach for CO2 emissions, the scheduler extender is
the perfect fit for a straight forward implementation of an alternated scheduler in k8s.

The scheduler extender is the most viable approach currently for implementing an extended
scheduler[Hua20]. "The phrase “scheduler extender” simply means configurable webhooks, also
known as “filter” and “prioritize”, which corresponds to the two major phases (“Predicates” and
“Priorities”) in a scheduling cycle"[Hua20].

The structure of the k8s scheduler that the scheduler extender expands, works in the following
way:

• start default scheduler with specific configuration in yaml file.

• standard scheduler watches scheduler API for pods that have an empty spec.nodeName field.

• the first pod of the scheduling queue gets popped and the scheduling cycle is started[Hua20].

– function for sorting the priority queue, more detailed version with comment seen in
Algorithm 3.1: p1 > p2) || (p1 == p2 \&\& pInfo1.Timestamp.Before(pInfo2.Timestamp

)) [Aut21a].

– p1 and p2 are priority classes, if they are undefined, which is the default case, the
timestamp of the pod is used to order the queue. Oldest pods get queued first.

• hard and soft requirements of the pods are checked [Hua20].

– hard requirements are CPU or memory requirements of the pod.

– soft requirements are policies that for example define a class of nodes to run the pod on.

• the scheduler sets the spec.nodeNam attribute of the pod via the API server to indicate that
the pod should get deployed here by the main node[Hua20].
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(a) Communication between the k8s scheduler and
the scheduler extender[FK21]

(b) Architecture of the main node communicating
with the scheduler extender to make deployment
decisions

Figure 3.1: Scheduler Extender Architecture[FK21]

3.4 Scheduler Extender

In this scheduling process multiple extension points are exposed to the scheduler extender via a
REST API[Hua20]. The Architecture of the scheduler extender can be seen in Figure 3.1 The three
extension points provided to the scheduler extender framework can be seen in Figure 3.1a. It shows
the internal communication between the k8s scheduler and the scheduler extender deployment can
be seen. The k8s scheduler and the scheduler extender get deployed in one Pod in the k8s cluster, so
they represent one atomic unit only being able to exist with each other in the k8s cluster. A brief
description of what the different stages are doing:

Filter The filter stage is used for determining nodes that are feasible for hosting the current
pod[Hua21]. If a node is called infeasible in the stage, the later stages are skipped for this
node.

Priority In the priority stage, each node that is feasible for the pod is scored. The pod with the
highest score is the top candidate[Hua21].

Bind Finally the Bind plugin is called and sends the command to the cluster to bind the pod to a
node[Hua21].

Figure 3.1b is a diagram of the deployment of the scheduler extender. In the top the master node
is seen with all of its deployments. It has to be noted, that the scheduler extender, as well as the
k8s scheduler are both deployed on the master node. This has to be the case, as pods are atomic
units in k8s and therefore need to be deployed on the same node(p.46 [BBH18]). Also this effect is
desired and necessary in this scenario, as the scheduler communicates with the scheduler extender
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via HTTPS. The performance penalty for these two components being on different nodes in the
same data center or even distributed around the world would be large. Also all worker nodes do ask
the master node how to allocate resource in k8s see Figure 3.1b.
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This chapter mainly describes the techniques and considerations to develop and implement a
benchmarking and logging solution for the k8s CO2 scheduler. Multiple different benchmarking
tools and approaches are discussed as well as a technique to log the k8s usage data to a .csv file.
Also some details are mentioned to create a fair benchmark for evaluating the implementation.

4.1 Kubernetes Benchmark Tools

In this section a brief overview of available benchmark tools for the k8s cluster is given. Not all
benchmark tools for k8s are designed to measure system performance but instead other properties
of the cluster. As the load applied to the cluster is important to evaluate scheduler performance, the
design of the load to test the cluster is a crucial part for generating comparisons between different
implementations.

4.1.1 CIS-Benchmark

The Center for Internet Security (CIS) benchmark is a k8s benchmark that performs many security
checks on a deployed cluster[IBM21]. Settings of the system are reviewed and a score is given to
the security level of the cluster. The cluster report shows drawbacks of the configuration and even
clues how to fix them. Unlike an usual benchmark no raw system performance is measured but a
metric for security is generated.

4.1.2 K-Bench

"K-Bench is a framework to benchmark the control and data plane aspects of a Kubernetes
infrastructure[Tan21]." The following describes the flow chart in Figure 4.1 from flow start to flow
end starting with K-Bench config on top and ending with infrastructure at the bottom.

K-Bench config file is a JSON file that contains a flow description of multiple commands that get
executed during the benchmark run. The default Benchmark itself is starting creating some pods,
deployments and service on the cluster and measures the latency of operations which are performed.
The config.json file can be customized in an arbitrary manner[Tan21].

Kube yaml is the authorization file for being able to connect to the k8s API via CLI. The Kube
yaml file is automatically generated by Minikube once the cluster is started.

Docker compose files can be optionally provided and converted to k8s spec files with the compose
module[Tan21].
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Figure 4.1: Flow Chart of the K-Bench Benchmark[Tan21]

Config Parser & Workload Generator The shell script "install.sh" installs all necessary dependen-
cies and compiles the K-Bench config JSON file. After some modifications the workload generator
can be enabled by running the "recompile.shßcript.

K-Bench Dispatcher & Driver is started by running the "run.shßcript. The dispatcher then scans
the config file and plans the execution of tasks[Tan21].

Resource Managers are spawned by the dispatcher to manage the different actions for each type of
resource. These can be executed in a parallel or sequential order[Tan21].

k8s Client Go The different actions specified are then executed at one operation by their Go Client.
Different resources have different Go Clients so their executions can be parallelized[Tan21].

Infrastructure is hosted by vSphere a virtualization platform by VMware[VMw21]. It can manage
applications that are hosted on VM and k8s at the same time[VMw21]. Openshift is a tool that
provides an uniform developer experience wherever it is deployed[red21]. Openshift can be used to
control the whole application life cycle[red21]. Finally Google Kubernetes Engine (GKE) is in this
case a Minikube deployment.

k8s Cluster & Resource Objects The k8s Cluster is the hosting application of the containers. The
different resource objects get a "k-label"and "u-label"which is either a transaction id or an operation
id[Tan21]. Also some meta information about the deployed resources are stored in the label to
enable detailed logging[Tan21].

36



4.1 Kubernetes Benchmark Tools

Listing 4.1 Example Configuration of a Sysbench CPU Test YAML File[Kub21i]

apiVersion: perf.kubestone.xridge.io/v1alpha1

kind: Sysbench

metadata:

name: sysbench-sample

spec:

image:

name: xridge/sysbench:1.0.17-1

# pullPolicy: IfNotPresent

# pullSecret: null

options: --threads=1 --time=10

testName: cpu

command: run

[Kub21i]

4.1.3 Sysbench

"Sysbench is a scriptable multi-threaded benchmark tool based on LuaJIT. It is most frequently
used for database benchmarks, but can also be used to create arbitrarily complex workloads that do
not involve a database server[Kub21g]."Sysbench can benchmark a variety of parameters on a k8s
cluster.

This includes CPU, Memory and Database testing[Kub21g]. The different benchmark loads can
be defined in yaml as in Listing 4.1. A minor drawback of Sysbench is, that windows support
was dropped with its release version 1.0[Kub21h]. This can be circumvented by using Windows
Subsystem for Linux (WSL) by installing it on a Linux based runtime[Kub21g]. The installation
process under the major Linux distributions is straight forward, as it is included into the most
common package managers[Kub21h].

The scheme of a sysbench start is the following:

sysbench [options]... [testname] [command] Usually most default scripts include a prepare phase,
e.g. setting up a database or files that are needed. A run phase to start the benchmark script and a
cleanup phase that removes any temporal needed files from the benchmark[Kub21h]. There also
exist several sample benchmarks, most of them include some basic launch parameters. Some useful
command line parameter are:

–threads The number of threads that are created.

–time Time limit for execution, can be set to 0 for no limit.

–thread-init-timeout Wait time until the worker thread initializes

–warmup-time Execution time of the benchmark script until performance metrics of the task are
logged.

For the use case of applying load to the k8s cluster, logging is not the major advantage of Sysbench,
however it can still be useful to see if a modification of the scheduler creates changes in reliability
and performance of the cluster. To build more realistic and less static benchmark scenarios multiple
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Random Number Generator (RNG) can be used with various distributions such as Gaussian or
uniform[Kub21g]. The configuration YAML of the Sysbench as for example in Listing 4.1 has
an easy to comprehend and brief syntax. A potential drawback could be a limitation in terms of
settings which are applied to the different loads. It is definitely equipped well enough for putting a
basic load to a k8s cluster.

4.1.4 Custom Benchmark Solution

As mentioned in Section 2.4 k8s provides a CLI that can be accessed via the k8s dashboard, which
is a graphical representation of it or via a Console. This CLI can be utilized to write a bash or
batch script, that triggers certain scenarios in k8s during a benchmark run. Both bash and batch
have the ability to trigger console commands in an arbitrary manner with time delays in between.
Potentially this solution could be more or less complex than the other approaches depending on the
use case. As the aim for the benchmark is to benchmark for CO2 efficiency rather than pure cluster
performance, standard of the shelf solutions are not specifically tailored to this approach. For a
custom benchmark script it would be essential to have some kind of fixed pre-generated scenario,
that can be rerun from implementation to implementation, to keep results comparable, reasonable
and fair. Another problem is that benchmark frameworks don’t come with the option to track the
cluster utilization or cluster efficiency.

4.2 CO2 Cluster Benchmark

When testing performance relevant systems, benchmarks are an important type of artificial
performance evaluation. Benchmarks can test all kinds of attributes, most of the times computational
power or efficiency is evaluated. In the term of the CO2 aware job job scheduler the carbon efficiency
has to be evaluated. Therefore some load has to be applied to the cluster with the modified scheduling
algorithm. This load scenario is then compared against a regular scheduling implementation to
measure any potential benefits of the modified implementation. An important part is that "[...]such
comparisons are meaningful only if the systems are evaluated under equivalent conditions (p.8
[Fei15])". As the goal is to evaluate CO2 efficency only, every other aspect of the test setup should
be kept static to get comparable results. Following some basic properties that need to be considered
for a realistic benchmark scenario:

equivalent hardware Ideally both benchmarks should be run on the same system or at least on a
system with similar hardware specifications.

equivalent type of measurement The type of measurement for the performance evaluation should
be equivalent or at least similar, as two different types of API could potentially return unequal
kind of data. The measurement can potentially stress the system under evaluation too. To
decrease any potential side effects at least the same kind of static load should be applied to
the system under evaluation.

equivalent workload Finally the exact same kind of workload or at least workload with a similar
pattern should be run to keep the results comparable.
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reasonable workload pattern To get results that provide realistic results for real world scenarios it
has to be ensured, that is the workload is similar to real world load(p.10 [Fei15]). Otherwise
an artificial scenario has been proven, but potentially no impact is seen in real world scenarios.

4.3 Suitable Scheduler Testing Approach

The CO2 benchmark as mentioned before has specific requirements for bench-marking efficiency of
the cluster. As CIS Benchmark in Section 4.1.1 is only for checking the security configuration and
was mentioned to show variety of k8s benchmarks. Because of this the main comparison is between
K-Bench in Section 4.1.2, Sysbench in Section 4.1.3 and a custom benchmark implementation in
Section 4.1.4. Sysbench has the major drawback for this project, because its only deployable under
a Linux environment but not for windows. Also another major drawback of Sysbench is, that it is
designed for benchmarking cluster performance. In theory, complex scenarios can be configured in
Sysbench, but it is not really tooled for scheduling performance benchmarking. K-Bench is better in
creating custom scenarios for workloads as Sysbench. However K-Bench is still rather complex for
creating simple deployments that are needed to test the scheduler in a Minikube setup. As both
benchmark frameworks in consideration seemed to be too complex and inflexible for this kind of
use case, the decision is to utilize the k8s CLI to implement a small benchmark script. This script
makes calls to the kubectl API to automate the queue of different deployments.

4.4 Cluster Utilization Logging

For evaluating k8s cluster utilization during the benchmark run, performance metrics has to be
requested from the cluster. The k8s cluster has its own panel in the self hosted k8s dashboard
(p.241[BBH18]), which shows current resource usage.

In Figure 4.2 a graphical representation of the basic data of the k8s cluster can be seen. On the
top left corner the actual CPU utilization is displayed. On the top right corner the actual memory
utilization is displayed. In the bottom section 5 meters are displayed indicating limits and requests.
The requests (green circle) show, how many resources have been reserved by deployments on
the cluster. The limits (orange circle) show how many resources can in theory be utilized by all
deployments concurrently until something is shutting down. The default k8s cluster actually uses
the CPU and memory request to find new deployments that fit on a worker node concerning resource
utilization. These values can not only be displayed by the k8s dashboard but also retrieved via
the kubectl CLI. With the command: kubectl describe nodes a text containing resource limits
and requests. The single numbers can potentially be retrieved by filtering from the output. With
kubectl top nodes –use-protocol-buffers the real time resource utilization of CPU and memory
can be grabbed from the CLI. With a bash script these data can then be written into a .csv file to be
analyzed later.
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Figure 4.2: k8s Dashboard Performance Metrics

4.5 Workload Modeling

To analyze the performance of the scheduling algorithm some load has to be applied. The
implementation of a custom scheduler sometimes relies on metadata to change the scheduling
behavior according data provided. The CO2 aware job scheduler needs labels assigned to the
different pods to determine the type of load that has been queued. Therefore a workload has to be
modeled that puts some artificial load to the k8s cluster to test the scheduling behavior. [Fei15]
describes workload modeling as the following. "Workload modeling is the attempt to create a
simple and general model, which can then be used to generate synthetic workloads as needed,
possibly with slight (but well controlled!) modifications(p.10[Fei15])."The definition suits very
well to this use case, as the scheduler is implemented for scientific research. [Fei15] states further:
"The goal is typically to be able to create workloads that can be used in performance evaluation
studies, and the synthetic workload is supposed to be similar to those that occur in practice on real
systems (p.10 [Fei15])."For the test methodology the workload itself applied to the system should
not be the focus. The aim of the workload is to get some general results that should be applicable to
real world data center use cases. "It is thus of crucial importance that benchmarks be representative
of real needs(p.8 [Fei15])."
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Three different papers where mainly interesting for the scope of this thesis. Section 5.1 discusses
a paper published by Google which presents the proprietary Borg scheduler implementation.
Section 5.2 examines a scientific implementation of a k8s scheduler, which shifts load from clusters
to different zones around the globe to reduce CO2 emissions. Section 5.3 discusses a paper with a
model based implementation of a load shifting scheduler, which analyzes the theoretical potential
of a CO2 optimized scheduler. Section 5.4 explains the need and benefits of the implementation
presented in this thesis.

5.1 Carbon-Aware Computing for Datacenters

Google implemented a carbon aware data center load shifter named Carbon-Intelligent Computing
System (CICS)[RKS+21]. The system itself does not use a specific scheduler implementation but a
Virtual Capacity Curves (VCC) to constrain maximum load during carbon intense power grid times.
The VCC artificially limits the clusters CPU usage by reducing the total amount of calculation power
that is available at a specific hour of the day (p.1 [RKS+21]). It is also very important to sustain the
reliability of the cluster. Multiple pipelines are arranged in series to calculate an optimal VCC:

Carbon fetching pipeline "which reads hourly average carbon intensity forecasts from tomorrow
for each electricity grid zone where Google’s data centers reside (p.1 [RKS+21])."

Power models pipeline which trains models that introduce a function to convert computation
usage to electricity usage (p.6 [RKS+21]). The main power draw is in many cases implied by
CPU load, as data access and GPU operations converges with CPU load.

Load forecasting pipeline that generates a forecast of the expected load of the next day. Therefore
the mixture of flexible and inflexible loads is computed and an uncertainty percentage is
added (p.6 [RKS+21]).

Optimization pipeline to determine the load curve an optimization pipeline was implemented
that predicts the power peaks of the carbon emissions for the next day and plans the VCC
according to that (p.6 [RKS+21]).

The system is monitored by a Service Level Objective (SLO) violation detection algorithm. Once
the VCC is persistently exceeded the SLO flag is set and the system stops to shape the load of the
cluster (p.6 [RKS+21]). The cluster then stops shaping the CPU utilization for a week to retrain the
models for load forecasting(p.6 [RKS+21]).

The efficiency gains heavily rely on the load that is applied to the servers and the change of the
carbon intensity of the power grid over the day. Therefore two different kind of loads that are
classified:
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Shapeable workload flexible workload, that does not need to be computed instantly and the
computation effort stays the same after delaying

Not shapeable workload Not flexible workload that needs to be performed immediately.

The total results of carbon savings are between 1% to 2% during high carbon hours (p.12 [RKS+21])
but significant, since even a low power reduction on a large cluster can have a big impact. If the
CICS was calibrated to aggressively and the VCC was set too low, many tasks were rescheduled at
other clusters. This behavior however was not considered in the calculations of the power models
pipeline. Comparisons to other schedulers are difficult as the CICS implementation is written for
the proprietary Borg system of Google and therefore not open source (p.4 [RKS+21]).

5.2 A Low Carbon Kubernetes Scheduler

Students of the University of Bristol implemented a carbon aware scheduling policy for the k8s
container orchestrator (p.1 [JS19]). An extension of the k8s scheduler was written. An important
part of Demand Side Management (DSM) in their implementation is distributing load between
different locations(p.1 [JS19]). The modified scheduler uses solar radiation as a scheduling metric
to reduce carbon emissions, as data centers with high solar radiation are preferred. According to
them, following approaches can be used to increase energy efficiency in data centers:

Virtualisation Dynamical provisioning or deprovisioning of resources(p.3 [JS19]).

Server consolidation and encapsulating application Reduces the amount of active servers by
consolidating the workload of multiple servers to one(p.3 [JS19]).

Dynamic Capacity Planning (DCP) Adjusts the available resources to the current demand to
prevent over or under provisioning(p.3 [JS19]).

Load Balancing Balances the workload among different servers to level out average server
utilization(p.3 [JS19]).

Scheduling and VMs placement Places VM into a most energy efficient time slot and location(p.3
[JS19]).

Live migrations Migrates VMs from over-utilized and under-utilized to more efficient servers to
consume less energy(p.3 [JS19]).

Renewables Replaces VM from carbon inefficient servers to servers run by renewable energy
sources(p.3 [JS19]).

"The carbon intensity is calculated as the sum of the carbon intensity of the various energy sources
weighted by the relative production volumes per energy source (p.4 [JS19])". For Europe the
Bristol students acquired their data by the European Network of Transmission System Operators for
Electricity API that allows them to calculate carbon intensity in real time. Unlike in Section 5.1 no
forecasting of the data is done and the scheduler reacts to the current situation.

To calculate if a deployment should be rescheduled from cluster A to cluster B they used the
following formula:

𝐸𝐶𝐴𝐼𝐴 > 𝐸𝐶𝐵 𝐼𝐵 + 𝐸𝑅𝐵 + 𝐸𝑁𝐴𝐵 𝐼𝐴𝐵
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5.2 A Low Carbon Kubernetes Scheduler

Algorithm 5.1 The Low Carbon k8s Scheduler
Require: kubectl
Require: cloudproviderCLI

𝑃 = (𝑥, 𝑦)
𝐼𝑑
𝑔𝑟𝑒𝑒𝑛𝑒𝑠𝑡𝑟𝑒𝑔𝑖𝑜𝑛 =

for all P do
getcarbonintensity
for all P do

if 𝐼𝐷 = 0 then
delete

end if
𝑠𝑜𝑟𝑡_𝑏𝑦_𝑐𝑎𝑟𝑏𝑜𝑛_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
if [𝑙𝑜𝑐0] u 𝐼 [𝑙𝑜𝑐0] then

for all P do
𝑠𝑜𝑟𝑡𝑏𝑦𝑎𝑖𝑟𝑡𝑒𝑚𝑝

end for
return 𝑡𝑜𝑝𝑟𝑒𝑔𝑖𝑜𝑛

else
return 𝑡𝑜𝑝𝑟𝑒𝑔𝑖𝑜𝑛

end if
end for

end for
𝑤𝑎𝑖𝑡30𝑚𝑖𝑛𝑠

(p.6 [JS19])

[JS19].

𝐸𝐶𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑑𝑒𝑥 Compute energy in data center named in an index.

𝐼𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑑𝑒𝑥 The carbon intensity in the region of the data center in an index.

𝐸𝑅𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑑𝑒𝑥 The energy consumed for deploying in the index cluster.

The Algorithm 5.1 sorts by carbon intensity and if multiple clusters are similar the one with lowest
air temperature is picked. The process is repeated every 30 minutes. Algorithm 5.1 therefore uses
the renewable approach described in Section 5.2. Unfortunately this paper does not show any
numbers concerning saved CO2 during their runs(p.8 [JS19]). Their evaluation mainly focuses
to prove correctness of their implementation, rather than efficiency. Comparison to their work is
therefore difficult, as source code and performance numbers remain unknown.
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5.3 Let’s wait awhile: How temporal workload shifting can reduce
carbon emissions in the cloud

Researchers from Potsdam and Berlin tried to calculate the potential of load shifting by implementing
a model in a simulator[WBS+21]. They found that 1% of global energy consumption is used by
data centers and this number is expected to grow in the future (p.261 [WBS+21]). In the approach
of this thesis total load was not decreased but shifted in time to take energy from the power grid in
carbon efficient power cycles (p.260 [WBS+21]). Their take on saving power was achieved only by
shifting load in time, but not location (p.263 [WBS+21]). During their research Googles CICS
already existed but further research is still necessary, as their code is not publicly available. Most
workloads in modern data centers are short running and 90% of these batch jobs are running less
than 15 minutes (p.261 [WBS+21]). Examples for short running workloads are:

Function-as-a-Service (FAAS) Cloud execution of small code snippets with a constrained lifetime
that are usually executed instantly.

CI/CD Rapid prototyping of code with continuous code roll outs that require contemporary
execution.

Nightly backups Have the potential for large carbon savings, as their SLA can allow them to be
very flexible their point of execution time.

However only 7% of jobs are long running workloads. These therefore have a very low potential for
saving carbon emissions (p.262 [WBS+21]). Spontaneous workloads such as FAAS are hard to
predict but nightly backups can be very easy to optimize in a real world scenario(p.262[WBS+21]).
Theoretical potential on a cluster can be huge as periodic batch jobs make up about 60% of
processing power on clusters at Microsoft. A critical point of the paper is the possibility to interrupt
workloads. They assume that many workloads can be interrupted, for example Machine Learning
(ML) training’s. This may be true for the workload itself, as such calculations are maintained by
themselves and do not need any input from outside during execution. However pausing and re
enabling workloads on real world clusters is highly uncommon today and therefore not easy to
implement. This is because applications might have to be build with this specific use case in mind.
A general finding was that a large amount of regenerative energy sources leads to a larger carbon
emission saving potential(p.264-265 [WBS+21]). Fossil energy sources usually have a steady
output over the day in contrast to solar panels that are highly dependent on sun radiation (p.264-265
[WBS+21]). To calculate the potential of energy shifting the following formula was presented.

𝑝(𝑡,𝑊) = 𝐶𝑡 − 𝑚𝑖𝑛∀𝑡′∈𝑊𝐶𝑡′

(p.265[JS19]).

𝑊 forecast window of carbon intensity data points

𝑡 time the specific job is shifted

𝐶𝑡 the not optimized CO2 emission

𝐶𝑡′ the CO2 emissions of the forecast window
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5.4 Benefits of the CO2 Scheduler

The paper also assumed that some workloads can be shifted on a weekly basis, as carbon emissions
are usually the lowest at weekends. The simulations use a simulator program called LEAF and
no real world implementation was used to verify real world performance data. A single node was
simulated that attempts to shift flexible workloads in time. The model was also quite optimistic
as a 5% forecast error in workload prediction seems extremely good for a real world scenario.
Results of their theoretical model suggest that potential carbon savings are at around 7.4% up to
33.7%(p.267 [JS19]). Compared to a real world implementation of the google CICS Borg scheduler
in Section 5.1 these results have to be taken with a grain of salt. The optimization pipeline of
the CICS implementation utilizes far more optimization techniques and only achieves a decrease
of about one tenth of the simulated theoretical optimum (p.267[RKS+21]). The results for this
large difference are manifold. No resource constraints where considered (resources exceeded by
maximum of 43% (p.269 [RKS+21]) and the load forecasting model precision was very optimistic.
Technical necessities like un-deploying and redeploying load shifts are unmentioned which can add
dramatically to energy consumption if utilized too often.

5.4 Benefits of the CO2 Scheduler

Googles Borg scheduler implementation in Section 5.1 utilizes multiple different mechanisms to
reduce CO2 emissions. However their implementation itself is closed source and only usable in
context of their proprietary BORG cluster manager. Therefore their work can not be taken as a
starting point for academic work implementation wise. Section 5.2 is the most similar paper to this
thesis. The follow the sun approach does not make its own prediction but rather uses an API to see,
where CO2 is currently cheapest. They also do not shift jobs in time, but instead in location. The
implementation of thesis could be seen as a more robust test of the load shifting approach presented
in Section 5.3. A key weakness of their potential CO2 reduction is, that they used a model instead
of a real scheduler implementation for calculating a theoretical maximum of CO2 savings. This
thesis could establish a connection to future research, as the implementation as well as the tools
provided can be used to compare against a more sophisticated CO2 scheduling algorithm.
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6 CO2 Emission and Workload Prediction

For the CO2 scheduler it is essential to have a prediction of the CO2 emissions for the current day
to plan the shifting workload. As shifting the workload creates load spikes on the cluster it is
essential to also predict the workload to reserve cluster resources according to the predicted load.
It is important to guarantee cluster availability at every time. However also a trade off between
potential CO2 savings and availability of resources has to be made. More available resources to the
shiftable workload can increase the amount of CO2 savings but also decrease the vulnerability of
the cluster which will become unresponsive.

6.1 CO2 Emission Prediction

For the CO2 prediction, the weighted moving average (WMA) approach was chosen. "Moving
Average is one of widely known technical indicator used to predict the future data in time series
analysis(p.1 [Han13])". The WMA can be applied to any time series and is still widely used for its
"[...] easiness, objectiveness, reliability, and usefulness (p. 1[Han13])Äs the CO2 data used for this
project has similar characteristics from day to day, this approach seems promising to have a good
estimation for an average day in in the future. In most real world applications the WMA is used for
smoothing out curves for stock market prediction (p.1 [Kli11]). As both the stock market and the
CO2 power grid efficiency subordinate to periodic patterns. The WMA can be used to smoothed
out the curve for future predictions (p.1 [Kli11]).

𝑊𝑀𝐴 =
𝑛𝑃𝑀 + (𝑛 − 1)𝑃(𝑀−1) + · · · + 2𝑃(𝑀−𝑛+2) + 𝑃(𝑀−𝑛+1)

𝑛 + (𝑛 − 1) + · · · + 2 + 1
[Han13]

For the implementation of the CO2 prediction, whole days where parsed out of the CO2 file and then
calculated with the WMA formula. The data kindly provided by electricitymap.org/research

contained the CO2 data for the year 2020 and 2021 for Germany. The CO2 efficency is measured in
𝑔𝐶𝑂2𝑒𝑞
𝑘𝑊 ℎ

[map22]. Values are given for every day of the year in an interval of one hour (24 values per
day). The following formula was used:

𝐸𝑊𝑀𝐴(𝑑, ℎ)21 =

1 ∗ 𝑒(𝑑 − 2, ℎ)20 + 2 ∗ 𝑒(𝑑 − 1, ℎ)20 + 4 ∗ 𝑒(𝑑, ℎ)20 + 2 ∗ 𝑒(𝑑 + 1, ℎ)20 + 1 ∗ 𝑒(𝑑 + 2, ℎ)20

10
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6 CO2 Emission and Workload Prediction

6.2 Prediction Accuracy

For measuring the accuracy in mean absolute percentage error (MAPE)(p.2[Han13]) the following
formula is used:

𝑀𝐴𝑃𝐸 =

∑𝑛
𝑡=1 |

𝑒𝑡
𝑋𝑡
|

𝑛
· 100

[Han13]

𝑛 is the number of data, 𝑒𝑡 is the forecasting error calculated 𝑒𝑡 = 𝑋𝑡 − ¥𝑋𝑡

The CO2 prediction error in MAPE, calculated with the formula shown in Section 6.1, results in the
error value 32.7 % which can be considered as a reasonable forecasting (p.501[MPAB13]). By
manual observation, it can be seen that the error of CO2 prediction can be quite high in terms of
extreme values. However results of CO2 window calculation stay rather precise, as only the relative
minimum interval prediction needs to be precise instead of the absolute CO2 prediction value.

6.3 Workload Forecasting

The utilization prediction of the k8s cluster setup was simulated, as a workload prediction would
need to be implemented and learned in a long running cluster. This cluster adapts to the workload
applied to the scheduler from time to time. The workload prediction is therefore pre calculated and
saved into a .csv file that is passed into the scheduler deployment. Therefore the following formulas
are used on the workload scenario as seen in Section 7.1, that has to be created prior to calculating
the workload prediction:

𝑑𝑝 (ℎ) is the time interval, at which pods get queued, 𝑡𝑝 is the time a pod runs, therefore concurrent
pods is defined as 𝑃𝑐 (ℎ) =

𝑡𝑝 (ℎ)
𝑑𝑝 (ℎ)) . 𝑐𝑝 (ℎ) is the core usage of a pod in mili cores, 𝑐𝑠 is the static

reserved resources of the k8s cluster and 𝑐𝑡𝑜𝑡𝑎𝑙 are the total available cores to the cluster. The
hourly utilization 𝑈 (ℎ) of the cluster can be calculated with the following formula:

𝑈 (ℎ) =
𝑃𝑐 (ℎ) ∗ 𝑐𝑝 (ℎ) + 𝑐𝑠

𝑐𝑡𝑜𝑡𝑎𝑙

It has to be noted, that this formula looks ahead the job duration 𝑑𝑝 (ℎ), but since average pod
runtime will not be that long for the benchmark runs, the error of prediction should be negligible.
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7 Test Implementation

Test implementation for a k8s cluster is rather complex, in particular with a reasonable workload
scenario to a cluster. The Test implementation consists out of three major blocks. First some kind
of workload scenario has to be generated and saved in a file to allow multiple runs of the exact same
benchmark run to achieve comparable results. Then this workload scenario needs to be executed on
the k8s cluster exactly as specified in the generated workload scenario. Lastly, the performance data
of the k8s cluster has to be tracked, to allow an analyzation of the different runs with the target to
gain knowledge about the performance of the implementation.

7.1 Generating a Workload Scenario

To generate a reasonable workload scenario, some steps had to be taken in considera-
tion. The real code implementation can be seen in the project directory path: ./bench-
mark_scripts/workload_generator/analyseJobTraceAndGenerateWorkloadPattern.py. A
main problem that had to be solved is, that it is not possible to simply parse a .gwf file by translating
the jobs to k8s pods and execute them directly on the cluster. Condition for this is that this would
require a server cluster with exact same specifications and software, which is not the case. Also
since the scheduler is implemented for a single node cluster, the maximum concurrent pod limit of
110 pods at a time has to be taken into consideration. The basic idea of Algorithm 7.1 is to first
analyze a standardized .gwf file. For this, jobs are sorted by hour of day and the average core count,
job duration and number of jobs per hour are queued is calculated. In a final step, these values get
normalized to be distributed around 1. The second part of the implementation has been split into a
separate pseudo code in Algorithm 7.2. In the workload generator algorithm a workload model is
defined and the characteristics of the hourly normalized values are then applied to it. This leads to a
similar workload pattern of the given .gwf file, compatible to the Minikube single node cluster. It
has to be noted, that the specified utilization goal will not be met exactly as all parameters are only
accepted as integer values. In practical however the deviance was not noticeable.

7.2 Executing a Workload Scenario on Cluster

After generating a workload scenario, a script needs to execute the workload pattern defined
in Section 7.1. The workload execution script is written in bash and can be found in ./bench-
mark_scripts/workload_generator/workloadGenerator.sh. The script takes a dummy pod file
prepared as in Listing 7.1, changes essential parameters and sends the modified pod definition to
the k8s cluster via the kubectl CLI. All parameters have been written in capital letters, to separate
elements of the pod from values that need to be replaced. The following list explains the parameters
order of appearance in Listing 7.1:
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7 Test Implementation

Algorithm 7.1 Workload Analysis
Require: .gwf workload file

duration[24][]
cores[24][]
// contains average values per hour, per job
avg_density[24]
avg_duration[24]
avg_cores[24]

// sort job values by hour
for all lines in .gwf do

job_duration,job_start_hour,job_cores = parse relevant .gwf cloumns of line
duration[job_start_hour].append(job_duration,job)
avg_density[job_start_hour] ++
cores[job_start_hour].append(job_cores)

end for

//calculate hourly averages
for hour = 0, hour < 24, hour++ do

sum_duration = 0
sum_cores = 0
for job = 0, i > density[hour], job++ do

sum_duration = sum_duration + duration[hour][job]
sum_cores = sum_cores + cores[hour][job]

end for
avg_duration[hour] = sum_duration / avg_density[hour]
avg_cores[hour] = sum_cores / avg_density[hour]

end for

// calculate normalized values
normalized_avg_density[24]
normalized_avg_duration[24]
normalized_avg_cores[24]
for hour = 0, hour > 24 , hour ++ do

normalized_avg_density[hour] = (avg_density[hour] / sum(avg_density)) * 24
normalized_avg_duration[hour] = avg_duration[hour] / sum(avg_duration) * 24
normalized_avg_cores[hour] = avg_cores[hour] / sum( avg_cores) * 24

end for

//calculate model with normalized values
Create
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7.2 Executing a Workload Scenario on Cluster

Algorithm 7.2 Workload Generation
Require: Algorithm 7.1

//define workload parameters
total_cores
system_cores
average_pod_count
average_runtime
critical_job_rate
utilization_goal

avg_utilization = utilization_goal - system_cores / total_cores
cores_available = total_cores - system_core
avg_job_interval = average_runtime / average_pod_count
avg_core_per_job = avg_utilization * cores_available / average_pod_count

//average job is
object job = (cores, runtime, interval)
avg_job = (avg_core_per_job, average_runtime, avg_job_interval )

// use parameters calculated by Algorithm 7.1
job_list = []
for hour = 0, hour <24, hour ++ do

while time_left_in_hour do
core = avg_core_per_job * normalized_avg_cores[hour]
runtime = average_runtime * normalized_avg_duration[hour]
density = avg_job_interval * 1 / normalized_avg_density[hour]
job_list.add(job(core, runtime, density))

end while
end for
write to .csv file

Name_LABEL is the name of the pod, followed by naming pattern testpod[index] with incremental
order, as pod names must be unique in k8s.

CRITICAL-LEVEL is used as a naming label and also assigning a priority class to a pod to influence
its scheduling queue

SCHEDULER-IMPLEMENTATION can be set in the workload script to select the desired scheduler
implementation. It can be selected between "my-scheduler", the CO2 scheduler implementa-
tion or "default-scheduler", the default scheduler k8s is shipped with.

TIMEOUT_DURATION is the time the deployed pod will run

CPU_MILICORES is the resource reservation of the pod during its runtime
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7 Test Implementation

Listing 7.1 Benchmark Pod YAML File

apiVersion: v1

kind: Pod

metadata:

name: NAME_LABEL

namespace: pod-benchmark

labels:

realtime: CRITICAL-LEVEL

spec:

schedulerName: SCHEDULER-IMPLEMENTATION

containers:

- name: sleep-container

image: perl

command: ["sleep", "TIMEOUT_DURATION"]

resources:

requests:

memory: "8Mi"

cpu: "CPU_MILICORESm"

ports:

- containerPort: 80

priorityClassName: CRITICAL-LEVEL

restartPolicy: Never

7.3 Logging Performance Data

For evaluation of benchmark runs, logging the status of the k8s cluster is essential. The k8s
dashboard allows users to see all relevant scheduler resource metrics in real time, however the
values are only logged and visualized for the last ten minutes. Therefore a bash script needs to be
developed, that utilizes the kubectl CLI to grab the performance data from the k8s metrics server
over a long period of time. The script itself uses two main kubectl commands named: kubectl top
nodes and kubectl describe nodes. Both commands generate a large textual description of the
cluster state, one including the cluster limits, the other the cluster CPU utilization. The relevant
values are then extracted by a pipeline to be later used for writing the log file. In addition, CPU
limit is calculated more precisely by using the mili core number (precision of 1

4000 instead of 1
100 ).

This is to get a more precise measurement of CPU resource reservation for minimizing errors in
result evaluation later. The data is then piped into a .csv file to be analyzed later.

52



8 Scheduler Implementation

The CO2 scheduler is implemented as a scheduler extender in k8s. For this, an empty scheduler
extender dummy implementation licensed under the Apache 2.0 license has been used as a basis
and modified to the degree to achieve the desired result[Omu22]. The dummy implementation
basically is scheduling every pod on every possible node without applying any kind of filtering.
The scheduler extender example has been modified to a large degree. The Code can be mainly seen
in the ./predicate.go file in the project directory.

The pseudo code in Algorithm 8.1 reads in the calculated workload and CO2 prediction and grabs
the current CO2 limit state via the kubectl CLI.

Then an optimal CO2 window of fixed size of 6 hours is determined.

If a pod is allowed to get scheduled following requirements are checked:

pod priority class means that if a pod is marked as "critical", it immediately gets queued, if
classified as "not-critical"additional conditions are checked.

podage is a parameter that ensures if a pod has been waiting for over 24 hours to be allowed for
scheduling. This prevents pods from getting stuck infinitely in the queue. This reduces CO2
optimization potential, but ensures reliability.

CPU limit and CO2 window means, that if the current CPU reservation of critical tasks is not
exceeded and the time of the day is currently within a CO2 optimal time window, the task is
allowed to run.

last case means if all of the properties do not apply, the pod is delayed further, until it reaches a
pod age of 24 hours or it can be executed within a 24 hour time frame.

8.1 Service Level Agreement

The Term SLA has originated multiple definitions by literature, but a good general definition used
as a starting point for this thesis is the following:

"A Service Level Agreement is a formal negotiated agreement which helps to identify expectations,
clarify responsibilities, and facilitate communication between a service provider and it’s customers
(p.18[Ber05])."

It has to be noted that the term customer is used as a group of individuals not a single person, as
the effort of a SLA would be too high for a small group of stakeholders. In general this focuses
about service parameters that represent an agreement between provider and customer based on a
metric scale (p.20[Ber05]). In the scope of this thesis a complete SLA would inflate the thesis too
much. Also the implementation is based on a modified version of the default k8s scheduler and
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8 Scheduler Implementation

Algorithm 8.1 CO2 Scheduler
Require: metrics-server plugin
Require: CO2 prediction file
Require: workload prediction file

parse workload and prediction file
j = (podname, priority_class, milicore_Reservation)
q = list of j
for all j in q do

for i = 0, i < 24 - 6, i ++ do
calculate average CO2 emissions for 7 hour window
return optimal minimum CO2 window

end for
var workload_limit = 0.95 - workload_prediction[hour]*0.1
cpu_limit = get_from_kubectl
if priority_class = critical then

schedule job
else if podage > 24h then

schedule job
else if cpu_limit < workload_limit && inside CO2 window then

schedule job
else

keep job in queue (do not schedule)
end if

end for

many guarantees are provided by default of the k8s environment. Therefore this SLA definition will
in any means not be complete and focus on the more technical definition rather than the economical
point of view. Therefore the focus will be on the following point of [Ber05]: "Description of the
provided service through the definition of classification numbers which quantify the relevant service
properties and service levels1"

As seen in Figure 8.1, as service level agreement includes multiple services each of which can again
include several quality attributes. In the ideal case, these are quantifiable by classification numbers
as inFigure 8.1. Each classification attribute then has an agreed service level and an actual service
level.

agreed service level means the service level that the Service provider and customer have agreed
on(p.89[Ber05]).

actual service level means the service level that is measured on the real implementation to be
verified with the agreed service level indicator(p.89[Ber05]).

These two indicators in combination then form the score of the service level value(p.89[Ber05]).

1translated quotation from (p.21 [Ber05])
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8.2 CO2 Scheduler SLA

Figure 8.1: ER Diagram of SLA Classification[Ber05] p.27

8.2 CO2 Scheduler SLA

The CO2 scheduler is a service deployed in k8s to efficiently schedule k8s pods to reduce absolute
CO2 output of the kuberentes cluster. The main goal is to efficiently shift labeled k8s pods in
execution time to time frames with more favorable CO2 efficiency in the power grid. For achieving
this in an acceptable manner, the scheduler ensures, that all jobs scheduled are scheduled within a
24 hour period.

These main goals apply to the scheduler:

• shift workload to CO2 efficient time window

• ensure that all jobs get scheduled within a 24 hour time limit

• correctly queue pods that are scheduler agnostic
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8 Scheduler Implementation

To achieve this, following needs to be done by the user:

• pods that are shiftable in time, are assigned the priority class "not-critical"

– refer to Test Pods in project directory for examples

• a CO2 emission log of the last year is provided for the current region

• reasonable workload, that leaves headroom is applied to the cluster

• be compliant with the installation manual at Chapter 9
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9 Test Environment

To use the CO2 scheduler implementation, certain system requirements need to be meet. This
chapter gives an overview about what hardware requirements should be meet for running and testing
the CO2 scheduler implementation. Also the Minikube setup for testing is described in detail, as
installing Minikube in the correct way and configuration is critical for the environment to run at its
full potential.

9.1 Hardware Requirements

According to the Minikube documentation the basic system requirements for running Minikube
are at least two CPU cores, 2GB of free memory, a internet connection and 20 GB of free disk
space[Aut22].

However these requirements mark a minimum and are not suitable to any use case. During
development most of these requirements stayed the same. The memory requirement and disk space
requirement are enlarged in comparison to minimum requirements. The hardware and software
requirements for running the source code of this project are therefore:

CPU: 2 cores or more

memory: 16GB +

free disk space: 30 GB or more

internet connection

OS: windows 10 pro Build 21H1 or newer/better

9.2 Software Requirements

To be able to run the CO2 scheduler, some tools need to be installed to be able to compile, install
and log the behavior of the cluster.

Git Bash git bash can be downloaded here. It is mandatory for executing bash scripts that are run
for logging and executing benchmark runs.

Pyhton 3 Environment for generating performance diagrams and generating workload scenarios.
The recent Python version can be downloaded here

Docker for building the scheduler extender container and uploading it to docker hub for k8s
installation. Follow this guide for optimal installation.
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9 Test Environment

WSL enabled for performance reasons the installation of docker using WSL is highly recommended.

Minikube a detailed description of the installation is explained in Section 9.3. Version of Minikube
is fixed to 1.18.1. It has to be noted, that other versions might also work, but changes in
scheduling architecture are not uncommon for k8s.

A Linux based operating system might work, but code has not been tested for this operation.

9.3 Minikube Setup

The description of installing a matching k8s setup mainly follows the Minikube get started guide
[Aut22]. The prerequisites of successfully installing the Minikube environment are the following
programs mentioned as above: git bash, python 3, docker with WSL enabled for performance
reasons. The CO2 scheduler is not implemented for the latest k8s release. The main reason is, that
a stable version of k8s had to be picked, as k8s changes versions quite frequently. The version of
Minikube, and therefore the requirement of k8s itself is version 1.18.1. This Minikube version can
either be downloaded from the release repository or directly following this Link: minikube 1.18.1
installer.exe. Minikube can be launched out of directory directly with a powershell with admin
privileges or anywhere, if the minikube.exe is bound as a local variable. For binding the local
variable, create a folder named "minikube"directly in the "C:d̈irectory. rename the downloaded
executable file to "minikube.exe". Then the command for binding the path variable in Minikube get
started guide[Aut22] can be used to bind Minikube. An instance of Minikube can then be simply
started in a powershell in the C:/minikube directory by executing minikube start –cpus 4.

Attention!, it has to be noted, that on first start of Minikube, docker desktop needs to be inactive,
as Minikube needs to run directly on WSL instead through the docker daemon for performance
reasons(p.30 [BBH18]). This is because docker itself is shipped with its own k8s version, that is
performing worse, than the Minikube standalone installation(p.30 [BBH18]). Shutting down the
docker deamon ensures, that the setup is performed in the correct way. If warnings of high latency
occur while opening the dashboard or enabling the required addon, this is very likely due to a wrong
installation on the docker daemon version. Please execute minikube delete and try to reinstall as
described. Finally the Minikube metrics server needs to be enabled to make the scheduler and
logger scripts operative. Enable the metrics server by entering the following command in console
minikube addons enable metrics-server. A potential problem here might be, that Minikube will
state, that the user performing this action does not have enough permissions to do so. Either change
the user performing this command, or giving the current user admin privileges for the Windows
Hyper-V service. Performing this fix will resolve this issue like mentioned. For manually inspecting
cluster state and correctness of the setup, check the log of the minikube start command and/or
start the k8s dashboard by entering "minikube dashboard"to look the current state of the cluster in
a Graphical User Interface (GUI).
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10 Evaluation of Test Run Results

This chapter describes what the system specifications of the benchmark system where in Section 10.1.
All the different containing the Power Model in Section 10.2 and the calculation from CPU utilization
to CO2 savings are explained detailed for the first benchmark run in Section 10.4.1. Results are then
shown described in Section 10.5 with a very brief summary of the benchmark runs in Table 10.2.

10.1 Benchmark System Specifications

For benchmarking the test setup was installed on a windows PC with windows 10 pro as its operating
system. Windows 10 home or lower will not work, as virtualization is required for the Minikube
setup. To keep energy consumption during benchmark runs as low as possible a low power Intel
processor was used for running the k8s cluster. Important system specifications were:

CPU: i5 6200U (dual core @2.3GHz, 15 Watt tdp)

RAM: 16 GB

OS: Win 10 pro 21H2 on SSD

Also since the power consumption of the CPU is so low, it can be neglected in the power consumption
evaluation later.
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Figure 10.1: Utilization against Power Consumption[FWB07]
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10 Evaluation of Test Run Results

scenario 1 scenario 2 scenario 3 scenario 4
avg. job duration 10 min 54s 32min 45 s 10 min 2 s 5 min 0s
avg. utilization 51.24% 49.81% 44.00% 49.70%
avg. jobs / hour 184.2 60.5 185.2 378.3
uncritical jobs rate 20% 40% 40% 40%

Table 10.1: Workload Scenario

10.2 Power Model

As measuring power consumption directly is time consuming, a conversion from CPU utilization to
power consumption via a simple CPU power model is taken. Its converting CPU utilization fairly
well, because RAM and CPU utilization are the main dynamic scaling power consumers in PC
architecture[FWB07]. Therefore a static baseline of a server can be measured with the device in
idle and the power consumption at maximum load. The CPU to power consumption function is a
simple linear extrapolation between the baseline and the maximum power consumption resulting in
the following formula converting utilization in percent to power consumption in Watt:

𝑝(𝑢) = 𝑝𝑏𝑎𝑠𝑒 + (𝑝𝑚𝑎𝑥 − 𝑝𝑏𝑎𝑠𝑒) ∗ 𝑢
100

A power estimation for a single server rack of the supercomputer of University of Stuttgart consumes
212 Watt as a baseline and 597 Watt at peak performance. This leads to the following formula:

𝑝(𝑢) = 212 + (597 − 217) 𝑢
100

which is shown in Figure 10.1.

10.3 Workload Scenarios

Four different benchmark runs with different workload characteristics where used. Two different
.gwf files where analyzed in the process to make the scenarios reasonable. Job execution duration
was kept rather short, this is because usually about 90% of batch job workloads run under 15
minutes (p.261 [WBS+21]). Creating too long workloads can also potentially increase difficulty of
benchmarking, as the benchmark run can only be stopped, once the full scenario was assigned and
finished by the cluster. Scenario 1 and Scenario 2 were based on the workload analysis shown in
Section 10.3.1 and Section 10.3.2.

10.3.1 First Workload Characteristic

The first workload scenario used the .gwf file provided at [Kub22a]. The file contains a job trace of
about one million jobs[Kub22c]. The workload was tracked for about one and a half years[Kub22c].
The average throughput per day was a total of 3000 jobs, with a maximum of 30000 jobs per day.
The average job arrival rate excluding intervals with no jobs at all was about 180 jobs / hour[Kub22c].
The overall generated workload pattern as seen in Figure 10.2d shows a workload scenario, that
has a rather low utilization from midnight until 14:00. This for example could suit a scenario for
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Figure 10.2: First Workload Log Analysis[Kub22a]

educational purposes, where employees mainly develop their tasks and let them run overnight.
Overall, optimization potential for this scenario is good, since cluster utilization is low during noon,
where CO2 efficiency in Germany is pretty good. Also utilization during CO2 inefficient hours is
rather high. Since this data set provided no summary about average cluster utilization, values in a
range between 50% and 60% where assumed[Kub22c].

10.3.2 Second Workload Characteristic

The second workload characteristics uses a .gwf workload file provided at [Kub22b]. The statistical
values can be seen in Figure 10.3. The data set contains 400.000 entries which were logged during
one year[Kub22b]. The cluster used 475 CPU cores[Kub22d]. Average cluster utilization was
provided by the online statistics report and was around 58%[Kub22d]. The average job arrival rate
was 48 jobs per hour with a maximum of 823 jobs within a hour[Kub22d]. However all jobs seem
to have consumed only one processing core, this can be seen in the workload file at [Kub22b] and is
also backed up by the online report[Kub22d]. The deviation of the job arrival rate and runtime in
Figure 10.3 doesn’t have such a high variability as in the scenario seen in Figure 10.2. This results
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Figure 10.3: Second Workload Log Analysis[Kub22b]

in a workload scenario which has a plain characteristic of CPU demand over the 24% period. Also
utilization is rather high during the optimal period which most of the times is between 9:00 to 15:00
during the day. This leads to a scenario for the CO2 scheduler that potentially has less potential for
optimization.

10.4 Benchmark Runs

For analysis of the scheduler four different scenarios have been tested each with the default k8s
implementation and with the CO2 optimized scheduler implementation. The basic parameters of
the workload scenarios can be seen in Table 10.1, the workload characteristics are explained in
Section 10.3.1 and Section 10.3.2. It has to be considered, that the scenarios don’t start at 0:00,
this is because the comparison between the default and the optimized scheduler should be fair.
The benchmark runs are started, so that the last jobs gets queued at the end of the efficiency time
window. This is, so that both schedulers have finished all specified jobs within a 25 hour time
period. This would not be necessary if the benchmark scenario would be longer. It needs to be
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taken into account, that for every scenario, the benchmark had to run 24 hours with each scheduler.
The first scenario in Section 10.4.1 is explained in detail, to show how the results are calculated
later in a visualized way. The other three are then only focused on the contents of the diagrams
others not needed for analyzing are left out.

10.4.1 First Scenario

Figure 10.4a shows the CPU reservation of the k8s cluster. As in Section 10.3.1 the workload
is very high at the beginning of the benchmark run at 16:00. As 20% of the jobs are marked as
"not-critical"the jobs are shifted in time. Therefore the load before the CO2 window is reached is
on a lower level at the optimized curve (marked green) than the default scheduler (marked red). As
the CO2 optimal window is reached at 9:00, the CO2 efficient scheduler spikes to a high utilization,
but keeps its threshold to hold the cluster responsible until the workload debt is processed. Once
this point is reached, both schedulers behave very similar.

The function in Figure 10.4a is then multiplied by the power model in Figure 10.1. The resulting
curve, as in Figure 10.4b, then shows an assumption about the power used by the cluster during the
benchmark run. This function is the same, as in Figure 10.4a. This is because the CPU reservation
function in Figure 10.4a is shifted on the y-axis by a fixed constant because of the application of the
power model to it.

Figure 10.4c visualizes the core part of the CO2 scheduler. The magenta curve shows the CO2
prediction of 2021 that the scheduling algorithm utilizes to calculate its CO2 window. This prediction
is calculated by using CO2 data of Germany for the year 2020 The cyan curve shows the real CO2
data for the year 2021. For achieving a good effect on saved CO2 emissions it is not necessary that
both curves match exactly, but that they would forecast the same 7 hour efficiency time period. As
seen in Figure 10.4c, both curves have their maximum efficiency period very similar, so saved CO2
potential should be pretty high in this scenario.

Figure 10.4d shows the CO2 output of the cluster per hour. It is the respective curve of Figure 10.4b
with same color multiplied by the cyan curve shown in Figure 10.4c. The maximum CO2 output is
not performed during the CO2 efficiency window, although the cluster is at 95% utilization at this
period of time. This is because the CO2 efficiency function is compressed during the CO2 efficiency
window. If the CO2 emission looks small on the CO2 emission diagram, this is another good
indication for a successful CO2 emission optimization, as the high power utilization is canceled out
by good CO2 efficiency.

Figure 10.4e can be understood as the integral of Figure 10.4d. It shows the total CO2 emitted by
both runs. It can be observed that the difference between both implementations grows until the
optimal window has been reached. As the shifted workload then needs to be catched up, the CO2
advantage decreases, until the shifted workload has been processed. As the saving potential of
CO2 is rather small by shifting workload as seen in the other scenarios the difference is hard to be
visualized with this view.

Figure 10.4f is the final diagram, that shows how much CO2 is saved over time. Essentially it is
the subtraction of both curves in Figure 10.4e. You can see the mod CO2 is saved, when CO2
efficiency in the power grid is at its lowest between 16:00 and 0:00 as seen in the magenta curve
in Figure 10.4c. CO2 is saved until the window is reached. The steep descent indicates the catch
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Figure 10.4: First Scenario
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Figure 10.5: Second Scenario

up phase of the optimized scheduler. Once the shifted workload has been processed, the saved
CO2 essentially becomes a constant, as both schedulers now immediately queue jobs once they
are queued. The saved CO2 in gram can therefore be read on the y-axis at the last time stamp of
Figure 10.4f which is 76.48 g. This value divided by the maximum of the red curve in Figure 10.4e
then gives the percentage of saved CO2 which is 2.4%. The summary of all results can be seen in
Table 10.2 at the end of the benchmark evaluation.

10.4.2 Second Scenario

Figure 10.5a indicated a larger discrepancy between both implementations, this is because scenario
2 has double the amount of not-critical jobs as scenario 1. Therefore the catch up phase of the
optimized scheduler takes longer, as more workload can be shifted. CO2 savings will be poor in
this scenario as the variation of the CO2 efficiency is very low as seen in Figure 10.5b.

Figure 10.5b shows, that the prediction is very optimistic about the variance of the CO2 efficiency.
However the minimal turning point of both functions is very similar, although their absolute values
vary by a large degree.
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Figure 10.6: Third Scenario

Figure 10.5c suggests that a lot of CO2 was saved at the beginning of the scenario, as the rather flat
CO2 output during the CO2 window starting at 10:00 looks promising.

Figure 10.5d indicates, that almost no CO2 could be saved in the interval. A total of 6 gram was
saved which is 0.4%. It is however expected that the optimization potential is small with such a low
deviation throughout the day. In this scenario a scheduler implementation that shifts load between
different locations around the globe could potentially provide a larger benefit.

10.4.3 Third Scenario

The scenario in Figure 10.6 uses the second workload characteristic shown in Figure 10.3.

Figure 10.6a is a much more smooth utilization curve than the respective ones in Figure 10.4a and
Figure 10.5a. As the uncritical job rate is 40% as in Section 10.4.2, the used CO2 window is rather
large.
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Figure 10.7: Fourth Scenario

Figure 10.6b show, that the overlap of a potential optimal CO2 window is pretty similar, although
the prediction might tend to queue jobs a little bit early here. Therefore the CO2 prediction this
time is pretty good.

Figure 10.6c proves that workload has been queued too early during this run, as CO2 emission is
pretty high during the opening of the CO2 window. Although the cluster produces less CO2 per
hour at 9:00 with full utilization than at 22:00 with about 50% utilization.

Figure 10.6d shows that the relative CO2 saved is pretty good in this scenario. The rather large
amount of not critical workload, the high variance of the CO2 emissions and the pretty accurate
prediction contributes to this. 53.16 gram of CO2 could be saved in this run or 1.81% of the total
emission value.

10.4.4 Fourth Scenario

Figure 10.7 shows the fourth and last scenario. It considers multiple different parameters in
comparison to Figure 10.6. Many short running jobs serve the purpose to put the scheduler under
stress. Also average utilization was increased by 5% to extend the use of the CO2 window. Multiple
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effects in theory increase the window here. A higher base load decreases the headroom to shift load
from CO2 inefficient hours to efficient hours. Also the pre calculated workload prediction leads to a
lower threshold for not critical jobs, yet again decreasing the amount of computational power for
not critical jobs.

Figure 10.7a is very similar in workload characteristic to Figure 10.6a. But as the increase suggests
overall cluster utilization is higher.

Figure 10.7b shows a sub optimal example for a CO2 prediction. Although the curves might look
similar, the prediction suggests a CO2 window placed around noon. Compared to that for the real
CO2 data, queuing jobs starting from midnight at 0:00 would have been the best solution. However
shifting load from the spike that occurs at 17:00 is still possible with this prediction.

Figure 10.7c is the only CO2 emission rate diagram out of the four scenarios, where the peak CO2
output occurs during the CO2 efficiency window. Essential this does not directly conclude, that the
CO2 emission has increased but can potentially suggest that the prediction might have not been on
point.

Figure 10.7d shows that the amount of saved CO2 is really small. A total of 13.64g of CO2 was
saved within the time interval or 0.37%. With the prediction being this much off, the result seems
surprisingly good.

10.5 Summary of Results

Although many different parameters were chosen for the benchmark run as in Table 10.1, CO2
savings were between about 0.4% and 2.4%. The scheduler is able to work with jobs with an
average duration between 5 minutes or 30 minutes. Also the the implementation is performing well
enough to be deployed on large cluster. The implementation is able to manage job arrival rates
similar to the real workload logs used for creating the scenarios. For maximizing shifting potential
about 50% of the total workload needs to be marked as not critical to have the maximum potential
for this kind of CO2 saving technique. In the worst case, a job is 24 hours long which would make
this approach useless. Since most not critical workloads are rather short running and frequent batch
jobs(p.262 [WBS+21]), the parameters set for these benchmarks can be considered reasonable. For
the implementation to work efficient, the job duration of the shifted jobs should not be too long.

In real world applications results for CO2 reduction between 0.5% and 2.0% should be be realistic.
Compared to the BORG scheduler presented in Section 5.1 this result is pretty good, as their
implementation achieved CO2 savings in a range between 1% and 2%. However the benchmark
used here might be too optimistic, as the BORG scheduler implementation shifted jobs in time and
in location to achieve such good results. Because of this the numbers of the performance analysis
need to be taken with care. Although the benchmark scenario has been design to be as realistic as
possible, it is not a replacement for performance data that was acquired in everyday use as in the
Google implementation in Section 5.1. To achieve larger CO2 savings, shifting workload between
different locations and in time could increase CO2 reduction at locations where CO2 variance is
rather low within a day.
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scenario 1 scenario 2 scenario 3 scenario 4
CO2 window start 9:00 10:00 9:00 10:00
CO2 window end 16:00 17:00 16:00 17:00
total CO2 not optimized 3174.22 g 1489.48 g 2939.83 g 3725.28 g
total CO2 optimized 3097.74 g 1483.48 g 2886.67 g 3711.64 g
absolute CO2 reduction 76.48 g 6.00 g 53.16 g 13.64 g
relative CO2 reduction 2.41 % 0.40 % 1.81 % 0.37 %

Table 10.2: Benchmark Results
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11 Conclusion and Outlook

This thesis investigated the question how CO2 can be saved on a k8s cluster by implementing an
intelligent carbon aware scheduler. To implement the scheduler it is essential to understand basic
architectural concepts of k8s.

Therefore in Chapter 2 fundamental knowledge of k8s was explained. It should be highlighted that
the k8s kubectl CLI as well as the Minikube test environment were essential for implementing,
testing and benchmarking.

Four different approaches of implementing a scheduler in k8s were discussed in Chapter 3. The
scheduler extender approach was finally picked as the optimal solution in the scope of this thesis, as
it is fast to deploy, has a sufficient feature set and is sufficient in its architectural performance.

An important preparatory step for implementation was the development of a testing setup suitable for
testing a k8s scheduler. Chapter 4 discussed multiple different approaches for test implementations,
while Chapter 7 shows the practical implementation in code. As the overhead of existing k8s
benchmark tools is large, a specialized workload scenario generator program, a workload execution
script as well as a logging tool were needed to test and validate the correct functionality of the
implementation. The emerging tools for testing the scheduler implementation will be for future
implementations, as creating and executing these was a rather complex part in implementing the
scheduler. The tool itself can create a high variety of different scenarios for execution and gives the
possibility to show good and bad use cases of different approaches.

Chapter 6 discussed the core part of the scheduler for saving CO2 emissions. WMA was used as
the time series forecasting approach. It is wide spread, easy to understand and able to forecast
CO2 emissions to a certain degree in the use cases of this thesis. Chapter 8 showed the practical
implementation which utilizes logged CO2 data provided by electricitymap.org.

For full transparency about the concluding numbers, Section 10.1 introduces the four different
benchmark scenarios that were passed through the custom CO2 scheduler implementation of this
thesis and the default scheduler of k8s. Essentially different parameters for average job duration,
concurrently running jobs an average process utilization and day, at which the benchmark was
performed were set. This gave a broad understanding about the practical variance and performance
uplift in terms of CO2 saving of this scheduler implementation.

The analysis of the scheduler suggests that in average during deployment CO2 savings between
0.5% and 2.0% can be expected. This can be considered as a good result, since the BORG scheduler
presented in Section 5.1 produces results between 1% and 2% in real world scenarios. Efficiency of
the load shifting approach showcased depends on the accuracy of the CO2 window prediction, as
well as the type of workload that is put on the cluster. The implementation heavily favors days at
which a high variance of CO2 efficiency is taking place within a 24 hour frame. As the scheduler is
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11 Conclusion and Outlook

only responsible for starting jobs but not freezing or undeploying them, short running not critical
workloads give a good granularity to keep the workload shaping approach precise. Especially long
running workloads (>24 hours) would not show any effect.

The implementation presented this thesis is efficient, if the CO2 emission has a high variance
throughout the day and enough workload is labeled as not critical. The scheduling implementation
needs a good amount (around 50% of total load) of not critical jobs to have a sufficient enough
potential of modifying the load curve of the CPU, which essentially manipulates the power draw of
the entire cluster.

Overall the CO2 scheduler is successful in saving CO2 in all benchmark scenarios provided without
putting the reliability of the cluster in danger. All workloads were performed in the same interval
by both clusters and the CO2 scheduler was successful in keeping the cluster responsive during
peak load when CO2 efficiency in the power grid was best.

Outlook

Multiple approaches for extending or rewriting a new scheduler are possible to enhance CO2
efficiency. A more advanced ML algorithm could be used to improve the precision of the CO2
prediction. A better prediction of the CO2 emission ultimately leads to a better prediction of the
CO2 window which enhances the average amount of CO2 saved, as wrong predictions become more
sparse.

As an additional mechanism for saving CO2, the scheduler code can be extended to not only for
shifting workload in time but in node location as well. In scenarios where CO2 variation throughout
the day is rather low, this could increase the potential optimization outcome. Shifting load however
also introduces a new magnitude of complexity, since some workloads may be unable to shift in a
location because of data protection laws and/or environmental requirements that need to be met by
the respective node.

Finally a true real world implementation of the scheduler in a scientific or productive industrial
environment could be insightful about potential weaknesses in everyday usage of the CO2 scheduler.
This would be necessary to validate the findings of this thesis, as a theoretical approach can only
strive to a real world use case, but never replace it in its significance to the effectiveness. To keep
users of the scheduler motivated a financial incentive for marking jobs as being not critical could be
introduced to be attractive for end users that have their jobs potentially delayed in time.
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