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Abstract

In recent years, the need for people to be able to do anything on the go has risen. Especially in
eastern countries like China, India, and Japan online payment methods like WeChat pay, Alipay,
or other mobile wallets are becoming more predominant, making old-fashioned cash transactions
obsolete. This trend has led to rising security requirements for applications running on smartphones
or other mobile devices. Therefore, the devices must be able to process transactions for the user
and service providers confidentially. A solution to this are Trusted Execution Environment (TEE),
which provide an isolated execution environment and secure storage where users can store and
process vital information, for example, passwords, biometrics, or cryptographic primitives. Two
prime solutions are Intel SGX, developed by Intel and included in most Intel processors. The other
one is ARM TrustZone, used in the processors of many mobile devices like smartphones or Internet
of Things (IoT) devices, examples include the chips for smartphones produced by Qualcomm.
This new approach was developed because the system software was becoming increasingly unreliable
in the past few years. Because of the large code size of common operating system (OS) like Windows
and Android, no one could guarantee that there were no exploits or other attack vectors that could be
abused by malicious parties. This can be seen by the number of security updates for these systems.
Another problem is that the user of the system is not necessarily trustworthy either, and he might
use it to steal information from other parties, for example, copyrighted content. For this reason,
TEEs were developed, because of their small code-base they are less vulnerable to attacks, as the
attack surface is reduced and more manageable. Additionally, it is able to keep secrets from the OS
and the user, enabling more use cases that were previously only possible on the server side. For
example, microtransactions where authentication requires sensitive input from the user to more
complex ones like verifiable cloud computing where vital computations are executed by potentially
untrustworthy third parties.
This thesis aims to compare two prominent TEE, Intel SGX, and ARM TrustZone, in two aspects,
how they perform against common security attacks and how they perform in common use cases.
Common security attacks contain expensive physical attacks to more sophisticated cache timing
attacks. The use cases discussed in depth include digital rights management, anonymous attestation,
secure multiparty computation, and verifiable cloud computing among others.
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Kurzfassung

In den letzten Jahren hat das Bedürfnis der Menschen zugenommen, alles unterwegs erledigen
zu können. Vor allem in asiatischen Ländern wie China, Indien und Japan setzen sich online-
Zahlungsmethoden wie Wechat Pay, Paypay oder andere mobile wallets immer mehr durch und
machen altmodische Bargeldtransaktionen obsolet. Dieser Trend hat zu steigenden Sicherheit-
sanforderungen für Anwendungen auf Smartphones oder anderen mobilen Geräten geführt, die
in der Lage sein müssen, Geheimnisse von Nutzern und Dienstleistern vertraulich zu verarbeiten.
Dies führte zu der Enticklung von TEE. Sie bieten eine isolated execution environment und einen
secure storage, in dem die Nutzer wichtige Informationen wie Passwörter, biometrische Daten
oder kryptografische Primitive speichern und verarbeiten können. Zwei bekannte Beispiele dieser
Technologie sind Intel SGX, das von Intel entwickelt wurde und in den meisten Intel-Prozessoren
enthalten ist. Das andere Beispiel ist ARM TrustZone, eine Architektur, die in den Prozessoren
vieler mobiler Geräte wie Smartphones oder IoT-Geräte verwendet wird, z. B. in den von Qualcomm
hergestellten Chips für Smartphones.
Dieser neue Ansatz wurde entwickelt, weil die Systemsoftware in den letzten Jahren immer unzu-
verlässiger wurde. Aufgrund der großen Codegröße der meisten Betriebssysteme wie Windows
und Android konnte niemand garantieren, dass es keine Sicherheitslücken oder andere Angriff-
smöglichkeiten gab, die von Angreifern missbraucht werden konnten, was an der Menge der
Sicherheitsupdates für diese Systeme zu sehen ist. Ein weiteres Problem besteht darin, dass der
Benutzer dieses Systems nicht unbedingt vertrauenswürdig ist und es dazu benutzen könnte, In-
formationen von anderen Parteien zu stehlen. Beispiele dafür sind urheberrechtlich geschützte
Inhalte. TEE bieten eine Lösung für diese Probleme. Sie sind aufgrund ihrer kleinen Code-Basis
weniger anfällig für Angriffe, da die Angriffsfläche kleiner und überschaubarer ist. Darüber hinaus
können sie Geheimnisse vor der OS und dem Benutzer bewahren, was mehr Anwendungsfälle
ermöglicht, die bisher nur auf der Serverseite möglich waren. Zu diesen Anwendungsfällen gehören
häufigere Anwendungen wie mobile transaction, bei denen die Authentifizierung sensible Eingaben
des Benutzers erfordert, bis hin zu komplexeren Anwendungen wie verfiable cloud computing, bei
dem wichtige Berechnungen von potenziell nicht vertrauenswürdigen Dritten ausgeführt werden.
In dieser Arbeit werden zwei prominente TEE Technologien vorgestellt, nämlich Intel SGX und
ARM TrustZone. Diese werden unter zwei Aspekten verglichen, zum einen wie sie sich gegen
gängige Sicherheitsangriffe verhalten und zum anderen wie sie in gängigen Anwendungsfällen
funktionieren. Gängige Sicherheitsangriffe umfassen teure physical attacks bis hin zu ausgefeilteren
side-channel attacks. Zu den Anwendungsfällen, die in dieser Arbeit eingehend erörtert werden,
gehören unter anderem die digital rights management, anonymous attestation, secure multiparty
computation und verfiable cloud computing.
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1 Introduction

In recent years, the demand of people to be able to do anything on the go has risen. One example
is a mobile wallet, an extension of the credit card system where applications on smartphones can
be used to pay and receive money. Especially in eastern countries like China, India, and Japan,
this payment method is widespread, with applications like WeChat pay, AliPay, or other mobile
wallets being prominent examples. In the year 2020 2.2 billion people were using mobile payment
applications worldwide, more than 5 times the amount of users than in the year 2015 [1]. And
it is not the only application on user devices that handle high security information, with Digital
Rights Management (DRM) and mobile identity being other prominent use cases that require high
security standards, something that the average system software is not able to provide nowadays.
This is because OS like Android and Windows have extremely large codebases, e.g. Windows 11
requiring at least 64 gigabyte of memory. This large codebase means a very large attack surface
for malicious parties who could examine it for potential vulnerabilities that could be exploited for
attacks. And the amount of vulnerabilities in system software is very high, which can be seen by
the large number of security updates OS like Windows and Android receive. This inevitably leads
to the OS being unable to guarantee the integrity of the software and the confidentiality of anything
stored in it. Therefore, traditional system software is considered untrustable, unable to provide the
security requirements necessary to handle confidential information like copyrighted content or other
important data.
A solution to this problem was developed by the trusted computing group in 2009, and it is called
the Trusted platform module (TPM). It provides a secure hardware area in a computer that could be
used to store important information, ranging from cryptographic keys to copyrighted content, which
would be protected from a potentially malicious OS. Another use case for the TPM was to act as a
root of trust for the device it was part of, verifying that the device was behaving as intended. One
key feature that was missing in the TPM was to provide an execution environment that could be used
to run important applications, severely hampering its usability for certain use cases. Because of
this, the TEE was developed. In addition to a secure storage provided by the TPM, it also included
an isolated execution environment that could be used by applications for higher security standards.
Two prominent examples of this technology are ARM TrustZone and Intel SGX. ARM TrustZone is
a hardware TEE technology developed by ARM and included inside most of its processors. These
processors are widely used on smartphones and IoT devices, with famous examples including the
chips produced by Qualcomm which are used in most Android smartphones. Intel SGX is another
hardware TEE technology developed by Intel and is more commonly found in larger computers
like laptops or servers, as these devices predominantly use Intel processors. This thesis aims to
compare these two TEEs from two aspects: protection again common security threats and usability
in common use cases.
The security threats compared in this thesis can be summarized into five categories. The first category
are the physical attacks, these attacks include non-invasive ones such as power analysis attacks
that aim to extract information about the current calculation by observing the power consumption
of the processor and semi-invasive attacks like chip imaging attacks. The second category are
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1 Introduction

the privileged software attacks, these include any attacks that use higher privilege levels to attack
applications with lower ones. This category is one of the main concerns of TEE. Another category
of attacks discussed in this thesis are software attacks on peripherals. This type of attack uses
peripheral devices to gain access to memory or enable other attacks. The fourth category are the
address translation attacks, these attacks include passive ones where the memory access pattern of
applications is monitored to active ones that aim to cause malfunctions by manipulating the address
translation results. Another form of attack are cache timing attacks, these attacks abuse the side
effect of caches in that caches respond faster if the memory access is already allocated, whereas
if it is not then the response time is slower as the memory has to get loaded first. This leads to
attackers being able to infer patterns which in turn can be used to extract important data, such as
cryptographic keys.
The common use cases discussed in this thesis include digital rights management. These involve any
applications that are used to protect and distribute copyrighted contents such as movies, songs, or
games and are one of the more prominent use cases involving TEE. Another prominent use case in
this thesis, especially on mobile devices like smartphones, are mobile payments methods and mobile
identity, where the authentication and subsequent payment involve sensitive information about the
user that have to be protected. Another use case that is explored is the use of TEE to detect malware
or even protect against it. Since the TEE is isolated from the system software an infected system
does not imply the TEE has also been compromised, as a consequence it can be used to check for
abnormal behaviour and serve as a root of trust. A more advanced use cases discussed in this thesis
are anonymous attestation, a way for the TEE to prove its integrity to third parties anonymously.
Secure multiparty computation is another use case where multiple participants execute a piece of
code using inputs from all parties while not revealing the inputs. The final use case shown in this
thesis is verifiable cloud computing, as the cloud providers are not necessarily trustworthy, a TEE
can be used to ensure the integrity and confidentiality of the execution happening in the untrusted
cloud.
This thesis continues with Chapter 2, where the topics required to understand the rest of the thesis
are presented. Chapter 3 discusses the implementation of the TEE to be compared in the thesis.
The thesis proceeds with Chapter 4, where the two environments will be compared in regards to
common security threats. Chapter 5 compares their performances when applied to common uses
cases. Chapter 6 concludes the thesis.
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2 Foundation

This chapter presents the required knowledge to understand the functionality of TEE. Section 2.1
will introduce the basics of computer architecture. It covers topics such as how a central processing
unit (CPU) works and memory management. Section 2.2 will further delve into the topic of TEE
and define it in the scope of this thesis.

2.1 Computer Architecture

This section summarizes the general principles of computer architecture. The first subsection gives
a general overview of common computer architectures in the form of a simplified computational
model. The second subsection goes over the basics of processors, including software privilege
levels and how they execute instructions. The final subsection goes over memory management
consisting of the different types of memories and how they are accessed.

2.1.1 Overview

This subsection presents a simplified version of the von Neumann architecture, an early computer
architecture described by John von Neumann in 1945 [2]. The functionality of the computer since its
inception in the early 20th century can be summarized as being devices that are used by humans to
execute functions. These functions range from simple calculations in calculators or early computers
to more complex modern applications like web servers or operating systems. No matter at which
point in time or on what kind of device, every computer relies on three core components to execute
functions, these being the logical processor, a device to store data, and Input/Output (I/O) devices
through which the outside world can influence or start these functions. These components are
connected via the system bus and are managed by the OS. This simplified model is depicted in
Figure 2.1.
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2 Foundation

Figure 2.1: computer model

The I/O devices, also known as peripherals, are responsible for the interaction of the computer with
the outside world, in the picture represented by the common user. It can also be sensors or other
computers which detect changes and alert the processors accordingly. Through these I/O devices, it
is possible to give instructions for the computer to execute which are stored in memory. Memory can
take many forms, for example, larger memory like the Dynamic random access memory (DRAM)
or smaller but more responsive memory in the form of register files and caches. No matter which
form memory takes in the computer they are all fundamentally storage cells that can be accessed
using natural numbers. The processors can then read the instructions stored in memory, execute
them, and write the results of the execution into memory again, which can then be outputted through
a respective I/O device. It should be mentioned here that a traditional von Neumann architecture
separates the von Neumann architecture into two different units, with one being responsible for
instructions and the other being used for arithmetic logic. They are referred to as the control unit
and the logic unit respectively. This is not represented here as it is not relevant to this thesis.

2.1.2 Processors

Processors are the main component of computers, as they enable the execution of instructions. These
instructions are bundled together in a process, as singular instructions only enable the use of basic
operations such as read, write, add, and subtract. Only together do they allow for more complex
actions such as the calculation of complex functions. Modern computers support the running of
multiple processes, which are supported by multiple processors managed by the OS. To achieve
this the OS allocates memory and processors to the different processes and isolates them using
virtualization. Virtualization can be summarized as creating multiple virtual computers by using
software to simulate hardware functionality on the same device [3]. This enables the execution
of multiple applications on the same device, which provides better scalability and efficiency than
earlier solutions. Larger computers, for example, servers, benefit from this technology. Another
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2.1 Computer Architecture

advantage is that it prevents malicious processes from negatively interfering with other processes.
Additionally, it reduces software complexity as developers do not need to keep interactions with
other processes in mind. Address Translation is a key part of virtualization technology. It gives
the processes an illusion that they own a very large amount of storage, maybe even all available
storage. This component will be further described in Section 2.1.3. Software privilege level or
protection ring is another part of virtualization technology. Software have different levels of access
to resources, with more privileged levels having access to all resources available at less privileged
levels. This partitioning of resources protects higher level rings from faults or malicious code of
lower levels. The x86 architecture, the most common computer architecture, defines four levels of
privilege, starting at ring 0 for the kernel and ending at ring 3 for applications. These rings can be
seen in Figure 2.2

Figure 2.2: software privilege levels in an x86 architecture [4]

Processes are executed by creating multiple threads. These threads are a sequence of instructions
that are executed by a logical processor. This starts with the assignment of threads to processors,
which is managed by the OS and can happen concurrently or sequentially. Because of virtualization
processors have the impression that they have access to an infinite amount of logical processors. The
number of threads spawned by this impression from different processes is managed using different
methods such as preemptive multi threading, which will not be further covered in this thesis. Finally,
the corresponding logical processors execute the instructions provided by the threads. It should be
mentioned that modern processors can execute instructions much faster than they can be loaded from
DRAM. Accordingly, modern architectures provide smaller but faster memory for the processors,
such as register files and caches. After a process is computed the results are stored in memory from
where they can then be outputted to the user via I/O devices.
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2.1.3 Memory Management

The second main component of computers is memory. Memory can take many forms, with each
differing in size and access speed. The first form of memory related to the scope of this thesis is
the DRAM. Compared to hard drives it is fast and because of its affordable price relatively large,
ranging from 8 Giga Byte (GB) on flagship smartphones to 32 GB on high end computers. Processor
caches are another form of memory, and it is faster than DRAM. These are further divided into
different levels, ranging from Level 1 to Level 3. They are up to 100 times faster than DRAM.
However, because of their higher cost, they are mostly limited between 32 Kilo Byte (KB) for Level
1 caches up to 32 Mega Byte (MB) for Level 3 caches. The fastest form of memory available to
processors are the registers, they are integrated into the processor itself and are consequently more
expensive than caches. For this reason, they are only available in a very limited amount.
The different forms of memories also get different address spaces, specified by the respective
developers. For example, Intel uses four address spaces, these being register spaces, memory spaces,
I/O spaces, and model-specific register space. Register memory is addressed using register spaces,
which are defined by CPU architecture. These registers are further divided into different categories,
with control registers being responsible for the operation of the CPU and therefore only accessible
by the OS. The rest of the registers can be used by all applications at all software privilege levels.
The memory space contains the addresses of memory mapped devices, such as the DRAM. This
memory space is further partitioned by the OS for the different connected devices. The I/O space
is usually referred to as ports and is responsible for communicating with the outside world. The
allocation of this space is managed by different standards. The model-specific register space consists
of the memory responsible for the operation of the CPU. Consequently, any instructions that interact
with these memory addresses can only be performed by the OS to prevent faulty behaviour.
Because of the small size of faster memory, they only hold the most often used portions of a
processes instructions. The rest are fetched from larger memory when they are needed. This creates
the illusion that the memory is much larger than it actually is, and this illusion is enabled by address
translation and called virtual memory [5]. Address translation maps the larger virtual memory to
smaller physical addresses and this happens at the level of pages. The physical memory is therefore
partitioned into different pages, each with its own number with the virtual memory referencing the
respective pages. The basic functionality of this system can be summarized as follows. When virtual
memory is addressed, the OS will first check whether the translated address is already cached in the
translation look-aside buffer (TLB). If it is, the physical address will be taken from the cache. If not,
then the virtual address will be translated to the actual physical address. If the addressed virtual
memory is loaded in the physical memory then it could be instantly accessed by the processor. If
virtual memory is addressed that has not been loaded into the actual physical memory, the virtual
page will be paged in. In case the physical memory is full, the least used page will be paged out in
the progress. This requires the OS to be aware of the actual location of the memory, if it is aware of
it this piece of memory is considered mapped. An unmapped page is memory that is deallocated
and its mapping information is not available. Another important aspect is called virtual address
aliasing, this means that the same physical page may be referenced by multiple virtual addresses.
This among other example mappings can be seen in Figure 2.3. Here the physical page 3 is pointed
at by the virtual addresses 0x00003 and 0xFFFFE.
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Figure 2.3: address translation example
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2.2 Trusted Execution Environments

This section gives a brief overview of TEE. The first subsection presents the basics of a TEE, what
it is and how it is commonly used. The second subsection describes one way of how TEE achieves
isolated execution, an important feature of all TEEs. The third subsection shows how TEEs protect
their memory from malicious software, referred to as secure storage. The remaining subsections
go over other desirable features of TEEs, these being remote attestation, secure provisioning, and
trusted path. The final subsection concludes with common Trusted Execution Environments and
their core features.

2.2.1 Trusted Execution Environments Basics

With the ever increasing demand for security, traditional technologies are no longer sufficient.
Trusted Computing was therefore introduced to provide secure computation, privacy, and data
protection. Initially realized on separate hardware, called TPM, this solution soon became insuffi-
cient. This is because while the TPM provided evidence of its integrity and could securely store
cryptographic keys on its separate module, it could not provide a tamper resistant environment for
the execution of code [6]. Another solution for secure computation was the TEE, examples of which
include Intel SGX and ARM TrustZone. In contrast to TPM a TEE provides an isolated execution
environment that allows for the execution of code without malicious software interfering with it,
from here on out referred to as Isolated Execution which will be discussed further in Section 2.2.2.
Another core feature of TEE is its ability to provide secure storage for confidential information,
for example, cryptographic keys, this will be further described in Section 2.2.3. Other desirable
features for trusted computing bases in addition to the previous two were defined by Vasudevan
in his paper about trustworthy execution on mobile devices [7]. These include remote attestation,
which is the ability of third parties to verify the integrity of a TEE it wants to use. This feature
is further described in Section 2.2.4. Another feature is called secure provisioning, which is the
ability to send data to the TEE while protecting it from the potential malicious device it is part
of. Section 2.2.5 describes this in more detail. The final feature defined by Vasudevan is called
trusted path. It ensures the authenticity of the communication happening between the TEE and a
peripheral, preventing attackers from spoofing peripherals to gain access to the environment. This
feature will be further discussed in Section 2.2.6. All these features are desirable in trusted execution
environments on common computers such as laptops or smartphones, but they may not necessarily
be supported. Table 2.1 gives an overview of these features.
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2.2 Trusted Execution Environments

Table 2.1: desirable features of trusted execution environments

Feature Description

isolated execution running code isolated from surrounding code
like system software, preserving the integrity
of the executed code

secure storage store data in a secure area, for example a privi-
leged memory area or a separate storage device,
protects the integrity of the data

remote attestation enable third parties to verify the integrity of
the TEE in question, establishing trust between
both parties

secure provisioning enable a secure way to transfer data between
the TEE and the third party and protect its in-
tegrity

trusted path a path between the TEE and a peripheral that
protects the authenticity of it, preventing mali-
cious spoofing attempts

2.2.2 Isolated Execution

One core feature of any TEE is isolated execution. This means that sensitive code can be executed
separately from potentially compromised OS. Isolated execution is commonly achieved by having
the sensitive code execute in a secure mode, sometimes on a physically protected part, referred to as
secure world in TrustZone and as enclave mode in Intel SGX. The secure mode is implemented
differently for every TEE technology. While some have the processor execute the code on the same
processor with extra security features, others execute it on a physically different processor that can
only be accessed in secure mode and is invisible normally. This has led to several new definitions
of additional software privilege levels below level 0, which was previously the most privileged
level in the x86 architecture. One definition comes from Ning, Zhang, and Shi in their paper about
hardware assisted execution environments which defines three additional levels more privileged
than level 0 [8]. Privilege level -1 is reserved for hypervisors, which are executed at the same level
as the kernel on level 0 in other models. Privilege level -2 is reserved for special system functions
and is used to implement TEEs that rely on hardware to set up access permissions. The TEEs that
execute on this level share the processor with the OS. At Privilege level -3 the code is executed
on a separate processor. This is the level at which TPM operate, as they, per definition, have their
own coprocessors. Figure 2.4 shows the new software privilege levels and what they are commonly
used for. Additionally, it shows which prominent TEE execute at which level, including Intel SGX
and TrustZone which will be further discussed in this thesis. Bastion [9] and AEGIS [10] are two
other TEEs depicted in the picture. The reader can further examine in their respective papers if
interested.
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Figure 2.4: alternative software privilege levels

The secure mode is generally set up when the computer is started. When the computer boots its
processor, it enters secure mode and setups internal data structures and protection for secure memory
regions and peripherals. After this is done, the computer finishes booting and the secure mode can
be entered. Entering is normally done by calling specific instructions.

2.2.3 Secure Storage

Secure storage is another core component of TEE. It is the memory where the confidentiality and
integrity of the stored information are guaranteed. Without having a place to store important data
such as cryptographic keys or other primitives, isolated execution can not provide any security
guarantees, as attackers could just run another execution of the code with the same inputs. For this
reason, secure storage is a major concern for any TEE technology. Secure storage can be achieved
in many different ways. One common solution is to store the information in memory, but encrypt
it using private keys that are stored within the respective TEE and not accessible to the outside
world. Assuming the underlying encryption scheme is secure attackers are able to get access to the
encrypted data but are unable to decrypt it and acquire the details. While this solution protects most
of the relevant information, some details are still available to the attackers, such as when it was
written and subsequently when the TEE was executing, and the approximate amount of information.
Other approaches include but are not limited to using level -2 system functions to define memory
ranges which are only able to be accessed during the secure mode. ARM TrustZone uses this
approach.
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2.2.4 Remote Attestation

Another important component of TEE is remote attestation, which is the ability of a TEE to prove
to third parties that it has not been compromised and its result can be trusted. This is important as
third parties rely on the fact that the surrounding potentially malicious OS is unable to tamper with
the execution happening inside the TEE to ensure important information is not leaked. A way to
implement this is using one time writable memory to store secrets at the time of manufacturing and
an attestation service provided by the manufacturer. By creating a hash of the code to be executed
and encrypting it using the stored secrets it is possible to verify the execution using the attestation
service provided by the manufacturer. As this solution is rather complex a more detailed explanation
is given in Section 3.2.3 where it is implemented by Intel SGX.

2.2.5 Secure Provisioning

Secure provisioning goal is to be able to send information to the TEE while protecting its secrecy
and integrity. This is important as TEE are part of a larger untrusted system, which may be able
to read or even intercept any data sent through it. To prevent this, there are many approaches.
One of them is to use remote attestation to confirm that a public encryption key belongs to the
environment in question and use it to encrypt the data which can then not be read or changed by the
attacker. Another solution used by Intel SGX is the Diffie-Hellman key exchange. It uses the public
and private keys of the participating users to generate a shared secret, which can then be used to
perform symmetric encryption on any data transferred between them. This approach will be further
described later on.

2.2.6 Trusted Path

The last feature discussed in the paper by Vasudevan is the trusted path, the ability to set up an
isolated channel for communication between the TEE enabled processor and a peripheral from
which it can communicate with the outside world. This is important for third parties, as this allows
them to be certain that they are interacting with the environment and not a spoofed one. While
ARM TrustZone does not inherently support this feature, one of its extensions does. It is called
peripheral isolation and partitions peripherals into secure and non-secure ones, with the secure
peripherals being invisible to applications during normal execution.
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2.2.7 Common Trusted Execution Environments

This section goes over some of the common TEEs and discusses their core aspects.
Intel SGX is the first technology to be discussed. It is commonly found in larger computers like
desktops that include Intel made processors. In contrast to common TEE implementations which ex-
ecute at more privileged levels to protect itself from malicious system software, Intel SGX executes
its applications at Ring 3. It achieves isolated execution by having a special processor mode called
enclave mode that enables the execution of important applications at Ring 3 while being isolated
from the system software that executes at Ring 0. Furthermore, it uses a special memory region
that is inaccessible for untrusted parties to protect itself against DRAM attacks. Additionally, it
possesses an inbuild remote attestation protocol based on Enhanced Privacy ID (EPID), which will
be discussed in detail later on. It should be mentioned that while Intel SGX security aspects are
sufficient for most applications, it still has security flaws, mainly side channel attacks. This issue
is addressed by Sanctum, another TEE that similarly executes at Ring 3[11]. It also possesses an
enclave mode that allows isolated execution of applications at ring 3, but in contrast to Intel SGX,
Sanctum does not have encrypted memory, making it vulnerable to attacks targeting the DRAM.
Sanctum improves upon Intel SGX security issues concerning side channel attacks but is currently
not commercially available.
AEGIS is one of the first TEE, proposed in 2003 by Suh [10], 12 years prior to Intel SGXs introduc-
tion. It executes at ring 0 by separating the OS into a trustworthy part, called the security kernel,
and an untrusted section. This partition can happen on a software level, but it is also possible to
implement it on a hardware level. Important applications are then executed in a tamper-evident
environment or a tamper-resistant environment, AEGIS’s version of a secure mode, through which
it achieves isolated execution. These environments can either detect memory tampering attempts by
untrusted software or can prevent them in the tamper-resistant environment and can therefore enable
secure storage. It also possesses a remote attestation scheme, called certified execution, in which a
tamper-evident environment produces a certificate confirming that a calculation was executed by
the environment which can then be verified by the third party.
An example for a TEE operating at ring -1 is Bastion, which was introduced by Champagne and
Lee in 2010 [9]. It is based on a trusted hypervisor that is able to allocate resources to important
applications and execute them in isolation from surrounding software, achieving isolated execution.
Additionally, secure storage is guaranteed by encrypting memory stored on unsafe devices, prevent-
ing attacks that target the secrecy of the data. It does not possess any remote attestation scheme.
ARM TrustZone is a prominent example of a TEE executing at ring level -2. It can safely execute
security sensitive code in its secure environment which is segregated from the surrounding code.
Even untrusted hypervisors are unable to negatively impact it. By partitioning memory regions
or devices into secure and nonsecure ARM TrustZone is able to provide secure storage for any
cryptographic primitives and other important data. Similar to Bastion ARM TrustZone does not
feature a remote attestation scheme, but solutions to this can be implemented which will be discussed
later. Another technology that falls into the ring -2 TEE is the System Management Mode developed
by Intel for x86 platforms [12]. While not inherently a TEE it is capable of providing an isolated
execution environment for small TEEs. However, it does not feature secure storage or remote
attestation because of its size.
The most prominent TEE that executes at Ring -3 is the TPM [13]. It is able to safely store crypto-
graphic primitives, such as software measurements. However, it is unable to provide an execution
environment that can be used to safely execute applications. Nevertheless, the cryptographic primi-
tives stored inside the TPM can be used to instantiate trusted hypervisors, ensuring a certain level
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of trust for the platform the TPM is part of. The TPM can also be used for remote attestation as
it can store keys used for it in its secure storage. The Intel Management Engine [14] is another
example for a TEE technology at ring -3, unlike the TPM it is able to execute code but does not
feature secure storage or remote attestation. Table 2.2 gives a overview over the presented TEE and
their features.

Table 2.2: common trusted execution environments and their features

TEE Ring Isolated Execution Secure Storage Remote Attestation

Intel SGX 3 yes yes yes
Sanctum 3 yes yes yes
AEGIS 0 yes yes yes
Bastion -1 yes yes no
ARM TrustZone -2 yes no no
TPM -3 no yes yes
Intel ME -3 yes no no

Of the presented TEE technologies, Intel SGX and ARM TrustZone are the most important, and
therefore the target of comparison in this thesis. The reason is that while there are many technologies
that enable TEE they are not popular. Some technologies such as Sanctum are not available to the
general public and others are only used for research purposes. The relevant TEE for the general
consumer can be limited down to a few environments, with both ARM TrustZone and Intel SGX
being part of them. Intel SGX is included in most of the modern Intel processors available on
the market. Because Intel holds a large market share compared to other computer processors it
is of greater interest [15]. For this reason, it is one of the environments to be compared in this
thesis. ARM TrustZone, the other TEE compared in this thesis, was chosen for similar reasons. In
contrast to Intel SGX, ARM TrustZone is more commonly found on smartphone processors and IoT
devices. It holds more than about 90 percent of the market share in both sectors and is continuously
increasing its share in sectors such as cloud processors and car assistance [16]. This thesis presents
some of the reasons for their success and why they are used by so many consumers.
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This chapter goes over the two hardware TEE technologies that are the topic of this thesis. The first
section goes over ARM TrustZone, a hardware based TEE enabler that uses a secure area in the
main processor to enable important features. The second section introduces Intel SGX, a hardware
TEE technology that uses a special processor mode, privileged supervisors, and cryptographic
encryption to provide isolated execution and secure storage. Additionally, it also possesses a remote
attestation scheme that will be described here.

3.1 ARM TrustZone

ARM TrustZone is a hardware TEE enabling technology developed by ARM since 2004 and
distributed in most ARM designed processors. These processors include but are not limited to the
Snapdragon series and the Apple Silicon series, both of which see widespread use in smartphones
developed based on Android and iOS respectively. This technology is based on two worlds in
which the processor can execute, referred to as normal world and secure world which will be further
described in Section 3.1.1. Another key component is the ability of TEE enabled processors to
partition the memory, no matter which kind, into those accessible during the secure world and those
that can be used while in the normal world, which will be extended in Section 3.1.2. Finally, in
Section 3.1.3 this thesis describes features that are not inherently included in TrustZone processors
but can be included by adding additional components or software. The information in this section
were provided by the papers TrustZone Explained by Ngabonziza [17] and Demystifying ARM
TrustZone by Pinto and Santos [18]. Interested readers may go over them for more information.

3.1.1 Normal World and Secure World

The core feature of ARM TrustZone is its processor’s ability to switch between the secure world and
the normal world. These worlds are managed by their own OS and provide the same functionality,
e.g., it is still possible to execute multiple applications in the secure world. The main difference
between them is the security guarantees provided. The processor can only execute in one of the two
worlds, determined by the value of a special bit, referred to as the Non-Secure (NS) bit. The value
of this bit is known by the whole system through the Secure Configuration Register (SCR) from
which memory and peripherals can read it, but cannot be changed by them.
Switching between both modes depends on the specific ARM architecture. In the Cortex-A archi-
tecture, which is the architecture used for performance-intensive systems like smartphones [19], the
secure world is accessed through a special processor mode called secure monitor, which connects
both worlds and is the sole point of entry to the secure world. While in the normal world the
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instruction Secure Monitor Call (SMC) allows the processor to switch from normal world to secure
world through the secure monitor. Certain exceptions or interrupts which pass through the secure
monitor are also handled in the secure world. This setup is shown in Figure 3.1.

Figure 3.1: Cortex-A worlds

Cortex-M architecture is commonly used in embedded applications [19], its world switching is
achieved in a different fashion. As Cortex-M has an emphasis on being faster and less resource
intensive it skips the monitor mode to enable faster world transitions. Instead, this architecture
supports three new instructions that allow for world switches. The first one is Secure Gateway (SG)
which is used to enter the secure world from the normal world. The second is called branch with
exchange to non-secure state (BXNS). It is called when a program wants to return to the normal
world from the secure world. The last one is used when calling functions in the normal world from
the secure world. It is referred to as branch and link with exchange to non-secure state (BLXNS).
This new architecture is displayed in Figure 3.2.
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Figure 3.2: Cortex-M worlds

These different worlds are separated physically by having specific registers only be visible in the
secure world and inaccessible in the normal world. Other hardware such as memory or peripherals
can be set to be only accessible in specific worlds by the producer of a system. These are then
commonly enforced by special access control hardware that are aware of the existence of the
TrustZone during normal mode and prevent software from accessing hardware they should not be
able to in the normal world. An example configuration can be seen in Figure 3.3. This example
shows a configuration in which access to certain hardware, in this case, part of the cache, the
DRAM, and all peripherals, is only possible while the processor is in the secure world. It should be
mentioned that the use of access control hardware is optional and there exist processors based on
ARM architecture that do not make use of them, opening potential attacks which are described in
Chapter 4.
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Figure 3.3: example access configuration

3.1.2 Memory Partitioning

To achieve secure storage ARM TrustZone partitions its memory into secure areas and non-secure
areas, with the nonsecure area being used for memory and devices accessible from the normal
world and the secure area reserved for those only usable in the secure world. This is achieved
through the use of the TrustZone Address Space Controller (TZASC) and the TrustZone Memory
Adapter (TZMA). The TZASC is responsible for classifying the DRAM into secure and non-secure
zones. It is controlled by the secure world and can be used by software running in it. The TZMA
is able to divide the cache or other on-chip memory into secure and non-secure areas, which have
to be in multiples of four KB. The Cortex-M architecture further divides the secure area of the
memory into secure memory and non-secure callable. This new non-secure callable memory area
holds special SG instructions that allow for the transition between secure world and normal world.
These additional memory sections were introduced to prevent attackers from using binary data with
the same opcode as the SG instruction to enter the secure world. These additional gateways and
controllers are optional in ARM TrustZone architectures. Developers can decide to forego them in
favor of smaller and less power hungry processors. However, more recent processors that support
TrustZone tend to include these to provide secure storage for a TEE.
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3.1.3 Other Components

One core component of TEE that is not inherently supported by ARM TrustZone is remote attestation.
However, support for it can be included by the manufacture of the processor. One possible solution
is presented by Wang, Zhuang, and Yan called TZ-MRAS [20]. This solution requires two new
components, a report module and a measurement module, in addition to an existing secure storage
located on a TPM. The scheme starts by having a verifier generate a nonce and sending it to the
prover, who uses the nonce to generate a report in its report module. The report includes information
about the current platform configuration in hash form and the attestation path of the TEE measured
by the measurement module and signed by the report module using the TPM. For this signature,
the report module uses an identity verification key called the AIK which is stored in the secure
storage. This report is then sent back to the verifier who can then confirm the identity of the prover
by checking the AIK signature and confirm the integrity of the TEE by checking the measurement of
the TEE with the expected value. It should be noted that the generation of signature and the secure
storage are located on a TPM, which may not be available on all platforms, but can be implemented
using ARM TrustZone on a software basis as presented by Raj called fTPM [21].
Other important components that are commonly part of ARM TrustZone based architectures are the
Generic Interrupt Controller (GIC) and the TrustZone Protection Controller (TZPC). The TZPC
allows for the separation of devices into those accessible in the secure world and those accessible
in the normal world, providing a trusted path from the TEE to the devices. It achieves this by
setting three 2-bit registers which allow for it to control up to 8 signals. The GIC is responsible for
controlling both secure and non-secure interrupts. It prevents non-secure interrupts from maliciously
affecting the secure world and protects itself from Denial of Service (Dos) attacks by prioritizing
certain interrupts and therefore ignoring less prioritized non-secure interrupts which may be used
against it. Furthermore, ARM TrustZone can support secure boot or trusted boot by authenticating
each software image executed during the startup sequence of a computer and preventing malicious
code from being run.
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3.2 Intel SGX

This section goes over Intel SGX and gives a high level overview of it. If the reader is interested
in a more detailed description, this thesis points to the Intel Software Developer Manual[12]. A
shorter summary can also be found in the paper Intel SGX explained by Costan [22]. Both sources
were used during the writing of this thesis.
Intel SGX, short for Intel Software Guard Extension, was introduced by Intel in 2015 with its
sixth generation of Intel Core microprocessors. It is included in many modern laptops and desktop
computers which use Intel processors, ranging from vendors such as Lenovo to Dell.
Intel SGX revolves around the enclave, a separated and encrypted region for code and data. Code can
be executed in an enclave, isolated from potentially malicious software. It provides confidentiality
and integrity. This is achieved by many different components and protocols. One of those is a
special memory region, called the Processor Reserved Memory (PRM), which provides secure
storage that can not be accessed by other software even at the kernel level. This memory is further
described in Section 3.2.1. To execute code in a secure mode the processor loads code from outside
into the PRM. After this is done the processor uses special instructions to enter secure mode, called
enclave mode, and execute the loaded code. This is further specified in Section 3.2.2. The remote
attestation scheme Intel SGX uses is described in Section 3.2.3.

3.2.1 Processor Reserved Memory

The Intel SGX’s form of secure storage is called PRM. It is part of the DRAM and protected from
access by non-enclave mode software by dedicated memory access controllers. This special memory
is further subdivided. One partition is the Enclave Page Cache (EPC). This cache is further divided
into 4 KB pages which store the code of the specific enclave they belong to, enabling the running of
multiple enclaves in the system. The EPC is managed by the OS and as it is a subset of the PRM.
Therefore, it can not be accessed by non-enclave software. As the OS is not trusted in TEE Intel
SGX possesses a feature to supervise the OS interactions with the EPC, called the Enclave Page
Cache Map (EPCM). The EPCM is an array with one entry for each page stored in the EPC, which
stores information about the ownership, the virtual address, and the structure of the respective page.
The security checks can then use the information to prevent malicious attack attempts by the OS,
for example allocating the same page twice. Other details about the EPCM are not public [22],
therefore the developer can mostly ignore it. Another important part of the EPC is the SGX Enclave
Control Structure (SECS), which is stored in a special page part of the EPC. The SECS contains the
metadata of their respective enclave and are therefore very important in defining its identity. These
include attributes that influence the execution environments of the enclaves, part of which is the
debug flag which enables the use of SGX debugging features and if enabled leads to the loss of all
SGX security features. Because of this, the page that contains them possesses additional security
measures which prevent them from being mapped into address space, making them only accessible
to the SGX implementation. The structure of the memory is pictured in Figure 3.4.
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Figure 3.4: SGX memory layout

An enclave accesses the EPC by dedicating a part of its virtual memory to the Enclave Linear
Address Range (ELRANGE), which contains the addresses which are mapped to the EPC. Other
addresses in the virtual memory are mapped to memory outside the EPC. A core feature of the
memory layout is that the processor checks that if an address translation results in a physical address
of a page stored in the EPC the virtual address matches the one stored in the EPCM. This can prevent
certain address translation attacks. Another security measure taken in this regard is that pages
possess access permissions which are set at the allocation of the respective page and defined by the
author of the enclave. This defines addresses that are allowed to read, write and execute enclave
code. This information is stored in the EPCM. One more component in regards to the memory layout
of Intel SGX is the State Save Area (SSA). It is a special memory region used to store the enclave
codes execution context when an interrupt or exception occurs which necessitates the processor to
exit enclave mode and enter normal mode. If the processor wants to continue executing the previous
code it can then load the previous state from the SSA and resume the execution. Another feature
important for security reasons and performance is the possibility to evict pages from the PRM to
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non-PRM memory. This is supported as most modern computers support the over commitment of
memory by loading memory when required and evicting them when they are not used anymore,
as described in Section 2.1.3. Intel SGX enables this by adding certain measures to guarantee the
integrity and confidentiality of the evicted pages. To achieve this Intel SGX uses symmetric key
encryption with nonces which are stored in the Version Arrays, which are special pages stored in the
EPC. By having the memory stored outside the PRM be encrypted, SGX protects it from malicious
reading attempts in unsafe memory.

3.2.2 Enclave Life Cycle

Before the enclave can be used, it first has to be created. This starts with calling the instruction
ECREATE, which creates a new enclave and stores its metadata in a new SECS with its INIT value
set to false. To add new pages to the new Enclave EADD is used. This results in the OS loading a
new page into the EPC and setting its VALID value to 1, indicating that it is allocated. It should be
mentioned that attempting to add additional pages after this stage will result in an error. Additionally,
the OS will calculate a new measurement for the enclave by using the instruction EEXTEND 16
times which will be used for attestation purposes described later. When the enclave pages are all
allocated, the processor can start executing them. This happens by calling EINIT and by providing
the instruction with a token that is received from the Launch Enclave. The enclave’s INIT value is
then set to true. Applications executing at Level 3 can now execute the enclave code. The Launch
Enclave is a special enclave provided by Intel, which also goes through the same step as other
enclaves to initialize but skips the token step in EINIT. It is solely used to provide launch tokens to
other enclaves based on a white list of approved enclaves, which is partially managed by Intel. This
means that any company that wants to use an enclave needs to be approved by Intel. Applications
can execute the enclave if they have the respective EPC pages in their virtual memory. They can
then call EENTER to enter enclave mode and execute enclave code, and exit it when they are done
using EEXIT. If an exception or interrupt occurs during execution in enclave mode, the processor
can exit it using AEX which saves the current execution context in an SSA. After the interrupt or
exception is handled the processor can use ERESUME to resume its execution using the execution
context stored in the SSA. It should be mentioned that an enclave can have more than one SSAs to
store multiple execution contexts in the scenario of multiple interrupts happening while executing
the same enclave. After the execution is done, the pages associated with the enclave are evicted by
setting the VALID value in the respective EPCM entry to zero and the TLB is flushed to prevent
memory attacks. Figure 3.5 illustrates this process with an enclave that is in possession of a single
SSA.
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Figure 3.5: life cycle of an enclave

3.2.3 Local and Remote Attestation

Intel SGX supports two different attestation schemes. The first scheme, local attestation, is used to
establish a channel between two different enclaves on the same device that guarantees confidentiality,
integrity, and replay protection. The second scheme, remote attestation, is used to prove the integrity
and intactness of the hardware in question, in this case, the enclave, to a third party that is not
situated on the same device and gain his trust. This subsection will first go over local attestation
and then describe remote attestation.
Local attestation is used if two different enclaves on the same device want to work together. For this,
they require a secure channel through which they can communicate. For this scheme, Intel SGX
uses a security protocol called Diffie-Hellman Key Exchange, which is used to share a symmetric
key through an untrusted channel.
Diffie-Hellman can be summarized as follows as an analogy with colours, but in practice, it is
used with very large numbers and mathematic operations. The example shown here is depicted in
Figure 3.6. Imagine two parties, called Alice and Bob, attempting to establish a communication
channel using a symmetric key. Both parties begin the Diffie-Hellman Key Exchange by sharing a
common paint, in this example blue, through an untrusted communication channel. The common
paint is considered known to potential attackers. Both parties also possess a secret colour that is
only known to themselves and they proceed to mix their secret colour with the common colour
blue. In this example, Alice has the secret colour yellow, mixed with blue it results in green colour.
Bob has the secret colour red which mixed with blue makes magenta. These mixed colours are
then shared again between both parties through the untrusted channel, resulting in the attacker now
knowing the common colour blue and the mixes of both parties green and magenta. Alice and Bob
can now mix the colour they received from the other party with their own secret colour to make
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brown, which is then used as the symmetric key for both parties as green mixed with red results
in brown and magenta mixed with yellow results in brown. As the attacker is only aware of blue,
magenta, and green. He is unable to use them to create the colour brown and determine the secret
key. This protocol works under the assumption that it is very difficult for the attacker to derive the
secret colour of either party while only knowing the mix of the colour and the common component
of it.

Alice Bob

common paint

untrusted
communication

channel

alice secret

alice mix

bob secret

bob mix

secret keysecret key

Figure 3.6: diffie hellman example using colours

Intel SGX Local Attestation scheme begins with one enclave sending its identity, the MRENCLAVE
value, to another enclave it presumes to be on the same device. The sender is from now on referred
to as the verifier as he wants to verify that the receiver is on the same platform, who in turn is from
now on referred to as the claimer. The claimer now uses the MRENCLAVE value he received from
the verifier to produce a report which it sends back to the verifier. This report can be verified by
the REPORT KEY which is stored on the device and therefore accessible to all enclaves that are
on it, it also contains Diffie-Hellman Key Exchange data which can be used to establish a secure
communication channel. After the verifier gets the report, he can therefore verify it using the
REPORT KEY. After the verification, he too creates a report for the claimer so that the claimer can
verify that the verifier is also on the same platform. Both parties can then create a secure channel
using the Diffie-Hellman Data contained in both reports. Figure 3.7 shows the local attestation
scheme in Intel SGX.
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Figure 3.7: local attestation in Intel SGX

To achieve remote attestation, Intel has included different components into their processors, including
one time writable memory and special enclaves. One important component of remote attestation
is the enclave measurement, which was already mentioned previously. The enclave measurement
is used to identify the software executing inside, and the third party compares the measurement
with an expected value to verify that the code executed inside the enclave is the one the third party
wants. The measurement consists of many different parts and is computed using the secure hash
functions SHA-2 [23] on the inputs of the ECREATE, EADD, and EEXTEND instructions in an
order specified by the author of the enclave. After EINIT is called, the measurement cannot be
changed anymore. Using this, the third party can be sure that the code inside the enclave is correct
and has not been tampered with. Another important aspect is that the code is running inside an
intact Intel SGX enclave. To attest this SGX uses an Intel Attestation Service run by Intel, which is
used to verify the integrity of an SGX enclave. This is done by verifying the quote provided by the
quoting enclave which contains the local attestation report of the proving enclave. Other important
components used in the remote attestation process are inbuilt secrets and the provisioning enclave.
The secrets that are inbuilt at the time of manufacturing are the seal secret and the provisioning
secret, with the provisioning secret being generated by Intel and the Seal Secret being generated
inside the processor and consequently unknown to Intel. The provisioning enclave can then use a
provisioning key derived from the provisioning secret to authenticate itself to an Intel Provisioning
service, proving that it can be trusted. The Provisioning service then sends the enclave an attestation
key. The remote attestation process starts by having the challenger send out a request to the third
party which includes its enhanced private ID. The ID is used for the key exchange based on the
SIGMA protocol [24]. The third party replies with a challenge for the enclave that creates a report.
The report is forwarded to the quoting enclave, who then uses local attestation to verify the enclave
attempting to attest. The quoting enclave can then use the attestation key from the provisioning
process to create a quote including the measurement and other proofs, for example, that the key has
not been revoked. The quote is encrypted using the key of the Intel Attestation Service. The quote
is then sent to the attesting enclave who forwards it to the third party. As the quote is encrypted, the
third party has to forward the quote to the Intel Attestation Service that checks that the platform
has not been revoked before reporting the quote to the third party who can check the measurement.
This process ensures that the enclave is properly running using the latest SGX security measures
and executing a specific piece of code. Figure 3.8 displays the steps in this process.
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Figure 3.8: remote attestation in Intel SGX

3.3 Differences between Intel SGX and ARM TrustZone

The goal that Intel SGX and ARM TrustZone want to achieve is the same. Both technologies want
to enable the execution of security sensitive applications on devices without having to rely on the
integrity of the device in question. To achieve isolated execution, both environments use a special
processor mode, referred to as enclave mode in Intel SGX, and secure world in ARM TrustZone,
which allows for the execution of applications in isolation of surrounding system software. Both
TEE also enable the execution of multiple applications at the same time, Intel SGX enabling the
creation of multiple enclaves. ARM TrustZone can execute multiple applications while in the
secure world. Where both environments differ in terms of isolated execution are in regards to their
execution levels. Intel SGXs enclaves execute at ring level 3, with more privileged components
ensuring the integrity of the execution. In contrast ARM TrustZone executes at a higher privilege
level than the system software, at ring level -2 in a mode that is inaccessible and invisible to the
untrusted OS.
Secure Storage is also achieved in a different fashion. Intel SGX uses a special memory region, the
PRM, to save important information and relies on encrypted memory in an unsafe memory location
to achieve a persistent secure storage. This leaves Intel SGX vulnerable to passive memory attacks
where the attacker only listens to memory accesses, as the memory is managed by untrusted system
software. ARM TrustZone is able to solve this by partitioning memory and memory devices into
secure and non-secure ones. Non-secure applications are unable to access the secure memory or
even see it. Because TrustZone also uses a secure OS to manage memory passive attacks are not
feasible as an attack vector.
Another large contrast is regarding Remote Attestation. While Intel SGX provides its own attestation
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scheme using EPID which provides additional anonymity features and revocation features, ARM
TrustZone does not. This is because ARM TrustZone is more commonly used as a TEE enabling
technology and not as a TEE. Many TEE implementations, for example, Samsung Knox developed
by Samsung, use ARM TrustZones secure world to implement more applications, ranging from core
usability features like remote attestation to performance features like Digital Rights Management.
Intel SGX on the other hand provides most of the features already desired by TEE. Software TEE
that are based on SGX are less common but still exist.
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This chapter compares Intel SGX and ARM TrustZone in terms of how they perform against common
security threats. For this purpose, this thesis will first summarize the main security features of ARM
TrustZone and Intel SGX. The second section goes over the main attacks that can be used against
TEE. The third section presents common security threats that can be used against TEE. The final
section contains the comparison.

4.1 Security Goal of TEE

The main goal of TEE is the ability to provide an environment in which applications can be executed
safely and cryptographic primitives can be stored in a secure manner. For this reason, most TEE
aim to provide an isolated execution environment, in which the integrity and confidentiality of
the executed code can be guaranteed. Secure storage guarantees the integrity of the stored data
such as keys used for encryption or signing purposes. Remote attestation proves the integrity of
the environment to third parties. Therefore, the end goal of TEE technologies is to guarantee the
integrity and confidentiality of code, data, and itself. For this reason, the attacks in this section only
consider attacks threatening the isolated execution and secure storage. Attacks that threaten the
trusted path or secure provisioning are therefore not considered.

4.2 Overview of security features of ARM TrustZone and Intel SGX

The core security feature of ARM TrustZone is the separation of the system into two different
worlds: a normal world that is considered insecure and therefore untrusted; and a trusted secure
world. When the processor is executing inside the secure world, untrusted applications are unable
to interfere with it, at the same time, the processor can have access to devices that were previously
inaccessible, including secure memory or I/O devices. The secure memory is protected by the
TZASC and the TZMA. For this reason, memory access from the normal world is not possible.
Additionally, it is managed by the secure OS running in the secure world, meaning a compromised
normal OS is unable to interact with the secure storage. The TZPC is responsible for the I/O devices
that are only accessible inside the secure world. It also enables a trusted path to the outside world.
Another potential security feature that ARM TrustZone can have is the secure boot, which prevents
malicious code from being run before the security mechanism is enforced by the system.
Intel SGX security guarantees revolve around the enclave, in which code can be executed isolated
from untrusted system software. The first core security feature of Intel SGX is memory isolation.
The PRM allows for the definition of an area of memory on the DRAM at boot time that is not

41



4 Comparison when facing common security threats

directly accessible for applications outside of those in enclave mode and the OS. While the system
software is unable to directly access it, it still manages the PRM using special instructions. This
makes SGX vulnerable to passive memory attacks. Another important security feature is the enclave
measurement. It is used to establish the identity of the enclave, which can then be verified by a third
party to check the integrity of the enclave. This enforces that the code inside the enclave is initialized
in predetermined steps and executed properly. The third security feature is the SGX’s ability to
provide software attestation. This allows it to show third parties that it has been properly instantiated,
prove its identity and that it can execute code isolated from surrounding software. The final security
feature is the sealing of pages evicted from the PRM. By using symmetric encryption with nonces,
these pages are inaccessible to malicious attacks even though they are stored in unprotected memory.
The implementation differences of the core TEE features are summarized in Table 4.1

Table 4.1: Implementation of the core security features in Intel SGX and ARM TrustZone

Feature Intel SGX ARM TrustZone

isolated execution applications execute in enclave
mode

applications execute in the secure
world

secure storage important information stored inside
the PRM, persistent storage through
encryption in non-secure memory

secure memory devices with access
management by the secure world
aware TZASC and the TZMA

remote attestation supported, using EPID not supported but can be imple-
mented using software
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4.3 Common Security Threats

Even with the reduced attack surface, the TEE has compared to normal system software, there are
still many possible attack vectors that can be used against it. While not all of them result in remote
code execution, losing secrets stored in the TEE can still be devastating. Even knowing when and
where a TEE is executing may result in potential danger for its integrity. This section describes some
common attack patterns and gives a few examples of how they work. These range from physical
attacks over privileged software attacks to address translation attacks. A more detailed summary of
the presented attacks can be found in the paper by Costan [22].

4.3.1 Physical Attacks

Physical attacks generally involve the use of hardware or the exploiting of hardware. They can
be categorized from noninvasive to invasive, depending on the degree of hardware manipulation.
A simple denial of service attack that falls under this category is simply disconnecting the power
supply of a computer or other electrical hardware and preventing it from being used. Other more
advanced techniques include connecting USB drives through ports and starting a cold boot to
gain access to a system’s peripherals and steal encryption keys. Another physical attack is the bus
tapping attack. By monitoring the bus on a computer motherboard, attackers are able to eavesdrop
on the traffic, potentially even modifying it with malicious intent by injecting new commands or
replaying old ones. Another approach to physical attacks is monitoring the power consumption
of the processor and inferring the type of computation currently happening inside it. This type
of attack is called the power analysis attack and can also be used against TEE, as they rarely alter
their consumption habits to mask their current computation. The last class of physical attacks
discussed in this thesis is chip imaging attacks. These attacks use advanced tools, such as ionbeam
machines to enable semi-invasive attacks on chips. They can then control the behaviour of hardware
chips and circumvent the protection mechanism. They do not damage the chip and are therefore
considered semi-invasive. More invasive attacks such as reverse engineering and microprobing are
not considered in this thesis. These types of attacks are generally considered costly, as most of them
require access to the victim’s device, which is very difficult for most attackers.

4.3.2 Privileged Software Attacks

The privileged software attack is one of the main concerns for all TEE. It assumes that attacks
can happen from all privilege levels, even from the OS or other more privileged levels. These
types of attacks include gaining access to the System Management Mode (SMM), which is the
most privileged software mode on the computer and grants access to all software contained on it.
While SMM was initially only accessible through the hardware, modern systems enable access to it
through software. Some attacks exploit this vulnerability to gain access to the SMM and execute
code there, which compromises the whole computer. Wojtczuk describes one such attack on Intel
computers where the attacker provides the SMM with code to execute through a poisoned cache
[25].
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4.3.3 Software Attacks on Peripherals

Another form of attack is to use peripheral devices or their interfaces to gain access to memory
or enable other attacks. In contrast to physical attacks, these attacks do not require hardware or
physical attacks on the victim’s computer and are therefore considered cheaper than them. An
example of such an attack is the rowhammer attack [26]. The attack abuses a circuit level failure by
repeatedly changing the content of a memory cell, which causes adjacent cells to change their value.
The reason for this is that frequent activations cause adjacent rows to lose their charge more quickly
than normal. This is depicted in Figure 4.1. By repeatedly changing the values of specific memory
addresses the attacker could then alter data structures that were responsible for security decisions
and then gain kernel level privileges. Another form of these kinds of attacks is the abuse of certain
features for malicious purposes. An example is using the performance and temperature monitoring
features of modern processors to gain information about the activity and current calculations of
the processor. A more malicious approach is to use system software to alter the firmware of the
computer and use it for a cold boot attack and generate massive security problems in the process.

rapid activation
rows

victim memory can
change value

Figure 4.1: Rowhammer attack

4.3.4 Address Translation Attacks

Another major concern for TEE are address translation attacks, especially for Intel SGX, as its
address translation process is managed by the untrusted system software in contrast to ARM
TrustZone where it is managed by a trusted OS. As system memory is commonly managed by
the OS, which is not trusted by TEE. It opens up attacks patterns executed by the OS. These can
happen passively, by simply having the OS monitor access patterns of the software in the isolated
environment and inferring information from it. To active ones that include the OS rearranging the
memory in such a fashion that undesirable actions are taken. The OS can do this by switching
the content of two memory addresses that contain different sets of instructions, with one set being
the intended instructions and the other containing malicious instructions. The application that is
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attacked would then execute the malicious instructions, which may disclose secret information.
Another point of weakness is when memory is evicted from the protected memory to the unprotected
one. When the memory is reallocated into the protected memory the OS can simply switch the
memory to facilitate defects and have the application execute the wrong set of instructions. TEEs
have to protect from these attacks by not only tracking the correct virtual address for each physical
memory, but they also have to bind each piece of memory evicted to the correct virtual address.
However, even this may be insufficient, as address translation results are stored in the TLB and
managed by the system software, which is mentioned in Section 2.1.3. This enables another more
subtle attack: The malicious OS does not flush the TLB entries when an associated piece of memory
is evicted. When the piece of memory is reallocated the OS can swap its content with malicious
instructions. This is not detected as the TEE believes that the mapping stored inside the TLB is
correct. For this reason, TEEs have to ensure that the TLB is flushed after the memory is evicted.

4.3.5 Cache Timing Attacks

The fifth form of attack described in this thesis are cache timing attacks. These attacks can be
performed at ring 3. They abuse the fact that accessing memory that is already loaded is faster
than accessing memory that is currently deallocated. By measuring the time difference using the
system instructions available at ring 3, the attacker can determine whether its current access attempt
points to allocated or unallocated memory. By filling up the cache with the attacker’s memory and
afterward allowing the process in a TEE to execute, the attacker can then monitor the access pattern
of the software. The attacker does this by making repeated cache access attempts and determining
whether they are hits or misses. In this way, it can determine which cache lines are currently being
used by the victim, or even steal important secrets of the victim. This approach is called prime
and probe and is illustrated in Figure 4.2. At first glance, the attacker only gains knowledge of the
access pattern of the executing application and this type of attack does not seem severe. However,
by running the known algorithm multiple times using different nonces and keys, it is possible to
determine the values of the secret keys used in a computation based on the access pattern of the
application itself. This makes it possible to extract keys from the executing software. An example
of such an attack is presented by Bonneau and Mironov where it was used to retrieve AES keys
from OpenSSL implementations [27].
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Figure 4.2: prime and probe attack

4.3.6 Side Channel Attacks

Another very prominent attack concerning TEE are the side channel attacks. The attacks under this
category use knowledge about the implementation of a system and its side effects. Cache timing
attacks discussed in previous sections are one of the most prominent side channel attacks. Power
analysis attack is also a type of Side Channel Attack, but at the same time also a type of Physical
Attack. Since the attacks of this category already fall into previous categories, they are not handled
separately in this thesis.
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4.4 Comparison

This section begins by presenting some attacks that were carried out on the respective TEE in the
past. The attacks and security measures presented here are taken partly from other papers about this
topic [28][22][12]. This section concludes by comparing how the two TEEs performed.

4.4.1 Intel SGX attacks

Intel SGX provides many different security properties, ranging from special processor modes to
secure memory areas. Due to many details about the implementation and hardware of Intel SGX
being withheld from the general public, this thesis is only going to present some assumptions about
potential vulnerabilities and attacks that happened in the past but are now patched by Intel.
Intel SGX, similar to many other TEE, does not emphasize protecting the enclave against physical
attacks. There are two reasons for this. First, Intel considers this class of attack to be too expensive
to become a real threat. Such attacks require the attacker to have physical access to the device to
carry out an attack on it, which is unrealistic for most attackers. Even if they have access to the
device, the attacker needs special tools to carry out the attacks, for example, an iCEstick for bus
tapping attacks or ion-beam microscopy in the case of chip imaging attacks. This is much more
expensive compared to normal software attacks. Second, protecting against these sorts of attacks
is costly, as they require expensive design decisions on the architectural level. As a result, there
exist several potential physical attacks on Intel SGX. One example is an attack targeting the uncore
ring bus in combination with the Generic Debug eXternal Connection (GDXC). The GDXC is a
debug port present on Intel architectures, which reports CPU data to an external debugger. This
data includes the data transferred in the uncore ring bus. As this information is unencrypted in the
SGX architecture an attacker can use the GDXC port to extract the data. Another kind of physical
attack that works on Intel SGX are power analysis attacks. As already mentioned, Intel has made no
attempt to prevent this type of attack. It should be mentioned that at the time of this writing, no
known power analysis attack can be successfully carried out on Intel SGX. However, Intel SGX
is not vulnerable to all physical attacks, e.g., bus tapping attacks do not work with SGX. This is
because Intel SGX considers the system bus as untrusted, therefore any information transmitted
through it is encrypted, in contrast to the uncore bus where the data is unencrypted. Because of this,
the data extracted using a bus attack is unreadable for the attacker.
One of the main architectural features of Intel SGX is that it considers the system software as
untrusted. This is because system software possesses many vulnerabilities in its large codebase,
with most of them unknown to the general public. Intel SGX is very capable of resisting privileged
software attacks. The first component preventing malicious system software from gaining access
to SGX is the PRM. It is not directly accessible to the system software except for a select few
instructions required to maintain it. The second reason is that applications can enter and execute
in the enclave mode provided by Intel SGX. The enclave mode is further protected by microcode
running inside the processor. This protects the applications from more privileged applications, as
they are unable to interfere with it. With all these security measures in place, Intel SGX is capable
of protecting against most direct privileged software attacks, but there are still some vulnerabilities
in place. One of them is the fact that while the applications execute inside the enclave mode, the
management of its memory and resources is done by the untrusted OS. This can lead to denial of
service attacks if the OS refuses to allocate any resources to the enclave.
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As Intel SGX uses the same address translation process as the OS which was described in Sec-
tion 2.1.3, it is prone to address translation attacks described in Section 4.3.4. It protects itself
from these attacks by storing the virtual address of each page in the EPCM, which prevents the
active address translation attacks described earlier, even if they are evicted by the OS which it is
allowed to do. Even memory mapping attacks based on TLB are not possible, since every time the
processor exits the enclave mode it completely flushes the TLB. Additionally, when storing new
entries into the TLB Intel SGX performs security checks to prevent abnormal behaviours. Passive
address translation attacks are still possible. The OS is responsible for part of the address translation
process used by Intel SGX and manages its memory. It is therefore possible for it to monitor access
patterns of the software running inside the enclave.
Software attacks on peripherals aim to use connected devices to gain memory access or alter features
to enable more potent attacks. As Intel SGX configures the memory controller to reject any attempts
at accessing memory within the PRM, attacks attempting to access memory are prevented. Even
the rowhammer attack mentioned in Section 4.3.4 is unable to harm Intel SGX integrity. This
is because the memory is protected by cryptographic primitives which are stored in the memory
encryption engine and check the integrity of the memory regularly. Therefore, if a bitflip caused by
a rowhammer attack were to occur, it would be detected by the integrity check, causing the attack to
fail. The debugging features provided by the processor are not a threat either, as these are disabled
while the processor is in enclave mode, assuming the debugging feature is not provided by Intel
SGX itself.
The last class of attacks described previously is the cache timing attack. Intel does not attempt
to prevent these attacks, as they consider them to be highly complex and expensive. Such attacks
require advanced hardware which is inaccessible to the general public. Therefore, it is still possible
for malicious OS to make cache timing attacks. One such example is presented by Schwarz [29]. In
it, he uses the prime and probe approach described in Section 4.3.5 to extract the RSA key of an
RSA computation running inside an enclave. It should be mentioned that this attack is executed by
a compromised SGX enclave. It has a success rate of 96 percent.

4.4.2 ARM TrustZone attacks

For the attacks on ARM TrustZone, this thesis wants to preface that the success of every attack
heavily relies on the actual realization of TrustZone on the device in question. For example, the
realization of secure and nonsecure memory can heavily influence the success of a rowhammer
attack. As the rowhammer attack can only cause bitflips in adjacent memory, if the secure memory
were to be on a different storage device than the nonsecure memory then the rowhammer attack
would inevitably be not possible. This is because the attack is not able to cause bitflips on a different
memory device. For this reason, this section will mention the actual system the attacks were carried
out against, as the same attack may not be possible against a different ARM TrustZone implementa-
tion.
Similar to Intel SGX, ARM TrustZone does not include extra safety measures against physical
attacks. Consequently, there are many possible physical attacks against ARM TrustZone, including
power analysis attacks, chip imaging attacks, and, depending on the realization of ARM TrustZone,
port attacks. One example of a successful port attack against TrustZone is carried out by Benhani
[30]. The attack uses a general purpose port included on the Cortex-A based Xilinxs Zynq-7010
platform that connects the TrustZone to a custom built device. This attack allows the attacker to
change the value of the NS bit, enabling unauthorized access to the secure world. It should be
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mentioned that this port attack may not be possible on other ARM TrustZone platforms, as in most
cases the debug ports are disabled after the manufacturing process.
Privileged Software attacks are mostly unfeasible against ARM TrustZone. ARM TrustZone’s main
design concern is preventing this form of attack. The untrusted system software executing at ring 0
is mostly unaware of the existence of the TEE based on TrustZone. Only a few selected controllers
are TrustZone aware. They prevent the OS from accessing memory or other devices that are only
accessible while in the secure world and are managed by trusted system software. Therefore, the
untrusted OS is unable to access or even monitor the execution happening in the TEE.
Address translation attacks are similarly impossible in the TrustZone architecture. Direct memory
access attempts are rejected while the processor is executing in the secure world. This makes any
attacks based on Direct Memory Access (DMA) unfeasible. Attacks that attempt to rearrange the
memory structure in such a way to facilitate unintended behaviour as described in Section 4.3.4 are
also not possible, as those types of attacks require the untrusted OS to manage the memory. This is
not the case in ARM TrustZone as memory in the secure world is managed by the trusted system
software running in it. Similarly, attacks attempting to abuse a stale TLB are out of the question, as
the TLB is also managed by the secure OS. In contrast to Intel SGX, passive memory attacks are
also impossible, since the untrusted OS is unable to monitor memory access patterns in the secure
world.
Rowhammer attacks, a prominent attack on a peripheral, success depends on the actual implemen-
tation of ARM TrustZone. As rowhammer attacks aim to cause bit flips in neighboring memory
rows, they are only possible if non-secure memory is adjacent to an important memory row that
is part of the secure world. If the secure memory is on a different memory storing device, then
rowhammer attacks are not possible. If the memory part of the secure world is stored on memory
devices shared with the normal world, then the designers of the processors have to add additional
integrity checks to protect against rowhammer attacks, as ARM TrustZone itself does not include
them. One example of a successful rowhammer attacker is shown by Carru [31]. The attack used
a bitflip to circumvent prevention measures and gain access to secure memory. From there, the
attacker was able to extract RSA keys, breaking the secure storage provided by ARM TrustZone.
Cache timing attacks are feasible to attack ARM TrustZone. This is because even though the cache
lines are partitioned into nonsecure lines and secure lines, the allocation happens at runtime. This
enables nonsecure processors to use all cache lines, paving the way for cache timing attacks as it is
still possible for them to manipulate the cache lines in a way to gain information about the access
pattern of secure applications. Armageddon presents a cache timing attack based on the prime and
probe approach mentioned in Section 4.3.5 [32]. The devices attacked in this paper are based on
Qualcomm Snapdragon 801, Qualcomm Snapdragon 410 and Samsung Exynos 7 Octa 7420, but
it should also be possible on many other ARM TrustZone implementations. This attack enabled
malicious applications without any privileges to steal different types of information, ranging from
touchscreen inputs to cryptographic primitives stored in Java. Another attack presented by Zhang is
also based on prime and probe [33]. It is able to steal the AES key from an AES encryption scheme
running in the secure world without using a malicious OS. Based on these successful attacks, it
can be concluded that ARM TrustZone, similarly to Intel SGX, is unable to prevent this class of
attack.
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4.4.3 Conclusion

The presented attacks show that attacks aimed at memory storage are generally not feasible for both
Intel SGX and ARM TrustZone. The fact that the memory storage used by the secure world is stored
in the secure world and managed by it in ARM TrustZone is sufficient to ensure secure storage,
under the assumption that it is properly protected by memory access controllers. Similarly, the PRM
and its security mechanism are sufficient to ensure the feature of secure storage for Intel SGX based
TEEs, even though the memory is managed by an untrusted OS. The only attack enabled by this
management are passive memory attacks. Neither memory mapping attacks nor DMA based attacks
can break the security mechanisms in place for both TEE. Attempting to attack both TEEs through
their peripherals is also not possible. Integrity checks, or the complete separation of nonsecure and
secure memory, prevent rowhammer attacks from having their desired effects. While it may be able
to cause bit flips in the secure memory area for both environments, it is unable to capitalize on it as
the integrity checks detect it fast enough to prevent unintended behaviour, assuming these integrity
checks exist in the ARM TrustZone implementation. Port attacks are also generally not possible.
This is because the debug ports that may be abused to mount these attacks are deactivated shortly
after the manufacturing process is done. Both TEEs start to falter when facing more sophisticated
attacks. This can be seen by the various side channel attacks that are possible to use against Intel
SGX and ARM TrustZone. These attacks include power analysis attacks on the physical level or
cache timing attacks on the software level. They can compromise the confidentiality of the current
execution happening inside the TEE. These attacks are hard to prevent as they exploit the inherent
features of computers, e.g., the time difference between cache misses and hits; or the inherent need
for power supply for any electrical hardware. Therefore, fixes are hard to come by, as one can not
simply equalize the time needed for a cache miss and hit. Finding measures against side channel
attacks is a topic of future research to ensure the continued success of TEEs and computers in
general.
The overall conclusion is that the security features both TEEs provide are very similar. Both
environments are secure from address translation attacks, privileged software attacks, and attacks
on their peripherals, with only Intel SGX being vulnerable to passive memory attacks. At the same
time, both TEEs are unable to prevent more advanced attacks, namely, power analysis attacks, chip
imaging attacks, and cache timing attacks. Another key factor in their performance, especially
regarding ARM TrustZone, is their specific implementation. Depending on the design decisions
made during the development process, it could lead to vulnerabilities that can be abused by attackers.
This can be seen in Xilinx Zynq-7010 vulnerability to port attacks. Table 4.2 shows the performances
of both environments regarding certain attacks.
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Table 4.2: Performance of Intel SGX and ARM TrustZone in regards to common attacks

Attack Type Intel SGX ARM TrustZone

physical attacks Secure for port attacks as debug
port disabled, but not secure against
other physical attacks as no mea-
sures have been taken to prevent
them

Secure for port attacks as debug
port disabled, but not secure against
other physical attacks as no mea-
sures have been taken to prevent
them

privileged software attacks Secure as system software is un-
trusted and unable to access enclave
memory through special controllers
and integrity checks

Secure as untrusted OS is unaware
of the secure world and its de-
vices and memories, with TrustZone
aware controllers preventing the OS
from accessing them

attacks on peripherals Secure as integrity checks prevent
rowhammer attacks from achieving
their desired results

Secure as secure memory can be
seperated from non-secure memory,
preventing bit flips in secure mem-
ory regions through rowhammer, al-
ternatively integrity checks can also
be included

address translation attacks Secure because DMA access at-
tempts are rejected in PRM, addi-
tionally the TLB is flushed after exit-
ing enclave mode and evicted pages
are encrypted, passive memory at-
tacks are still possible as memory is
managed by untrusted OS

Secure because secure world mem-
ory with all relevant components,
for example the TLB, are managed
by trusted system software, with un-
trusted OS being unaware and un-
able to access them

cache timing attacks not secure, as prime and probe at-
tacks are still possible

not secure, as prime and probe at-
tacks are still possible
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This chapter presents some common use cases of trusted execution environments. It begins by
giving an overview of the use cases. It proceeds by going over the various use cases this thesis will
discuss, including Digital Rights Management, malware detection and protection, and SMC. Each
section will also give an example implementation of the use case. This chapter concludes with the
final comparison of both TEEs.

5.1 Overview

In general, a TEE can be used to execute any application. The problem is that it may not be efficient.
Setting up an enclave, entering the secure world, and any checks that result from executing in
the isolated execution environments add extra overhead that may not be desirable for common
applications. Therefore, TEE are mostly used for use cases that require higher security standards
that a common execution environment may not be able to provide. These use cases can range from
smaller applications that only aim to protect information, to larger ones where confidential code is
executed by themselves or enabled to be executed by third parties.
The first use case to be described is Digital Rights Management. It is one of the most common use
cases. It deals with the protection and distribution of digital content: e.g. films, songs, or games.
The second topic is mobile transactions. A use case that is becoming more and more important
in recent years, as digital payment methods like AliPay becoming more commonplace. Another
use case that TEE are used for is mobile identity. This use case deals with anything that involves
the authentication of the user using a mobile device. Malware detection is a use case that TEE can
also be used for. By having the TEE regularly scan the OS for malware or malicious behaviour,
it can be used to improve the reliability of normal system software. More advanced use cases
include anonymous attestation, an extension of remote attestation where the attesting party remains
anonymous. Another advanced use case is secure multiparty execution, where a piece of code is
executed using the inputs of many different parties without revealing anything about the inputs. The
final subsection presents verifiable cloud computing, an approach to make cloud computing more
secure by protecting the information from potentially malicious cloud providers.
Table 5.1 gives an overview of the final results.
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Table 5.1: Performance of Intel SGX and ARM TrustZone in regards to common use cases

Use Case Intel SGX ARM TrustZone

DRM 3 3

mobile transactions 7 3

mobile identity 7 3

Malware Detection/Prevention 3 3

Anonymous Attestation 3 7

SMC 3 7

Verifiable cloud computing 3 7

5.2 Digital Rights Managment

One major use case for TEE is DRM. A TEE is capable of enforcing DRM on user devices. By
using the TEE to restrict unauthorized access to copyrighted content, for example, movies, songs, or
applications, companies can distribute these while avoiding legal concerns. One common approach
to DRM using TEE is to first distribute encrypted content, for example, an encrypted movie or game
for pre-download. The user can download the movie but is initially unable to play it. If he wants to
watch it the device must first access a licensing server to get an access key. The licensing server
assigns an access key if the user has a valid license or payment. A TEE then uses the provided key
to decrypt the movie so that the user can watch it. It should be mentioned that the decrypted version
of the movie is stored inside the TEE and the user is unable to extract it to distribute it illegally to
other people. This enables different monetization schemes. For example, the user may only borrow
the movie for a week. After a week passed the TEE would then block the user’s attempt to access
the content. Additionally, the TEE can be used to protect against the stealing of copyrighted content,
for example, a movie could be recorded using screen recorder software and illegally redistributed.
The TEE can prevent this by having privileged access to the output device and preventing other
applications from having access to it. One example of a DRM application is PlayReady [34]. It
is a DRM solution developed by Microsoft that manages content protection and distribution. It is
divided into multiple security levels: SL150, SL2000, and SL3000. SL150 is the lowest security
level and is unable to enforce any security guarantees. SL3000 is the highest which uses a TEE
implementation to protect important information, such as the decrypted content, the key used for
the decryption, and any licensing information.
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Figure 5.1: PlayReady workflow

The architecture and workflow of PlayReady are depicted in Figure 5.1. It starts by having the
content in question get encrypted. This happens at a packaging server that then proceeds to send
the encrypted content to the distribution server. The encryption key and the license information
are messaged to the license server. When a user wants to use copyrighted content, the TEE on the
device sends a request to the license server that contains relevant information about the user and
the content the user wants to consume. After the licensing server confirms the request it answers
by providing the TEE with the decryption key and license information. The TEE can then use the
provided key to decrypt the requested content and let the user consume it as defined by the licensing
agreement.
PlayReady can be implemented using both Intel SGX and ARM TrustZone.

5.3 Mobile Transactions

Another prominent use case for TEE are mobile transactions. With the increasing use of mobile
payment applications such as GooglePay, PayPal, or WePay modern smartphones have to achieve
more stringent security measurements. This is because mobile payment applications use important
security relevant credentials and have a wide array of transaction methods, ranging from NFC,
QR Codes to in-app purchases. Therefore, these applications have a big attack surface. Since the
credentials of the parties involved in the transaction are transmitted across different participants,
their protection is extremely important. TEE can be used to secure these credentials in transit and at
rest.
One prominent application that uses TEE to enable mobile transactions is Samsung Pay [35]. It
can be used for a wide range of use cases. Examples include peer to peer transactions and in-
app payments. Samsung Pay uses Samsung KNOX technology, a software TEE that uses ARM
TrustZone to create a secure storage and an isolated execution environment. Samsung Pay uses
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important credentials, for example, card information, to create a secure token that is stored in the
secure storage provided by Samsung KNOX. This token does not contain any information about
the card but can be used by retailers for transaction purposes. The workflow of this system can be
summarized as follows. When a user wants to initiate a payment the user starts by authenticating
himself through passcode or biometrics. After that, the trusted application running inside the secure
world will use trusted drivers to pass the secure token to the retailer. The retailer can then use the
secure token to finalize the transaction. This approach keeps the credentials of the user opaque for
the retailer. Figure 5.2 shows the structure of Samsung Pay on a Samsung Smartphone.
Samsung Pay is implemented using Samsung KNOX, which is implemented on ARM TrustZone.

Normal World

Applications

TEE Client API

Untrusted OS

Secure Monitor

Trusted Application for Payment Purpose

Trusted OS

Trusted Devices (NFC, memory, authentication)

Figure 5.2: Samsung Pay structure

5.4 Mobile Identity

Mobile Identity is another use case for TEE on mobile platforms. Mobile Identity describes any
application with some kind of secure data in it. Such application can be used to authenticate the
user, for example by using a smartphone application to replace a driver’s license or a passport.
Another example is that during the coronavirus epidemic the application CovPass is used as a digital
vaccination certification. These information contain private interests critical to most users. Their
protection on a potentially compromised device is therefore vital. This can be seen in a recently
passed directive by the European Union, the Payment Services Directive. The directive requires
companies to use strong customer authentication and even recommends using secure execution
environments in the regulatory technical standards section of the law [36]. Even though the secure
execution environment could be implemented using only software methods, hardware solutions like
a TEE based on ARM TrustZone are a more secure option. More specifically an application could
use the secure storage provided by a TEE to store important information and communicate it to
interested parties using a trusted path to an output device, e.g., through NFC communication or the
display of the smartphone.
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One example application is HYPR [37]. It is a passwordless multi factor authentication application
used by many companies. It allows the pairing of mobile devices with devices such as workstations
and authenticating the user without passwords. This is because passwords are considered error
prone. Instead, HYPR uses biometrics, PIN or face unlock. These features are provided by most
smartphone devices to unlock computers or similar. To achieve this, they run part of the application
in the secure world provided by ARM TrustZone, which is responsible for the authentication process
and stores security relevant information in the storage of the secure world. Figure 5.3 shows how
this application runs on a mobile device using ARM TrustZone.
As shown by HYPR, ARM TrustZone is the preferred TEE when it comes to mobile identity. The
main reason is that mobile identity prefers smaller devices that are easier to carry around. Most
smaller devices use processors based on the ARM architecture.

Normal World

Applications

TEE Client API

Untrusted OS

Secure Monitor

Trusted OS

Trusted Devices (NFC, memory, authentication)

Application

Secure World

Trusted Application

Figure 5.3: HYPR structure

5.5 Malware Detection and Prevention

With the increasing prominence of malware attacks that put user data at risk, common solutions
like behaviour based malware detection are quickly becoming insufficient. Especially ransomware
attacks that encrypt user data and use a direct monetization model are becoming more rampant and
can have a high impact on the victim. One possible solution for this problem is the use of TEE. By
storing important user data in the secure storage of a TEE it is possible to prevent malware from
altering those. One such application is presented by Zhao where a TEE is used to securely store
important user data[38]. Another more prominent implementation of malware detection is done by
Samsung Knox, with a feature called Knox Attestation [39]. In KNOX Attestation, the TEE is used
to check the health of the device, for example, whether it has been tampered with, rooted, or has
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malware. This information is then bound to a nonce and signed with an attestation key. The key can
then be verified by Samsung’s Attestation Server. This enables the TEE to serve as a root of trust
for the device, improving its trustability. Figure 5.4 illustrates the workflow of KNOX attestation.

Device

TEE scans device
health

bind health data to
nonce sign data with key

Samsung Attestation Server

validate data

Figure 5.4: KNOX Attestation workflow

In regard to Malware Detection and Prevention, both Intel SGX and ARM TrustZone can be used,
as it mainly relies on having a secure area to verify the health of the main system software.

5.6 Anonymous attestation

Anonymous attestation is an extension of remote attestation. Remote attestation confirms to a
third party that a TEE is being run on a computer and that its integrity has not been compromised.
Anonymous attestation adds on to remote attestation that the user of the TEE remains anonymous.
I.e. it only exposes that a TEE is used, but not which one is used. A simple solution to this would
be to use an asymmetric encryption scheme, where each TEE has the same secret key. The TEE
could then authenticate itself to a third party using the secret key. And because each secret key is
the same the verifier can not identify the TEE. However, this approach has major drawbacks. If
a single TEE is compromised or the secret key is somehow leaked, the attestation scheme would
become unusable. This raises another major challenge for anonymous attestation schemes, it must
have the ability to detect revoked clients, without actually knowing who the client is.
The first solution for anonymous attestation was presented in 2004 by Brickell, Camenish, and Chen
[40]. It was initially developed for the use of TPM. It achieved this by using a group signature
with the verifier being unable to identify the specific signer of a signature. The problem with this
scheme is that it is very hard to revoke a compromised client. This solution was therefore improved
later on in 2007, by Brickell and Li, to ease the revocation of certain secret keys, called Enhanced
Privacy ID (EPID) [41]. While this was possible in the old scheme, it required the secret key of the
compromised TPM to be published. This is usually not the case since the attacker would most likely
not publish the key but use the compromised TPM to perform further attacks. EPID works around
this by being able to revoke a system with only an example signature of a compromised system,
without the need to know the underlying secret key. EPID is nowadays used by Intel in its remote
attestation scheme described in Section 3.2.3. It should be indicated that Swami argues in his paper
that the EPID scheme used by Intel SGX does not provide anonymity [42]. This is because Intel
SGXs remote attestation scheme uses a root provisioning key to authenticate a TEE using the Intel
Attestation Service. This requires Intel to store the root provisioning key of each manufactured TEE.
This effectively destroys the anonymity of the user since Intel is able to identify the TEE currently
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running the remote attestation scheme.
ARM TrustZone itself does not inherently support remote attestation, even less anonymous attes-
tation. This does not mean that ARM TrustZone is incapable of including these features. This
can be seen in Section 3.1.3, where a remote attestation scheme based on TrustZone is presented.
For this reason, ARM TrustZone could support anonymous attestation, but it would require the
manufacturer of the processor to add additional components to store important information such as
the root provisioning key or an equivalent of it. This potentially makes a solution based on ARM
TrustZone more expensive than an Intel SGX solution.

5.7 Secure Multiparty Computing

Another interesting use case is SMC, which enables two or more computers to perform a computation
together. Initially developed by Yao in 1982 [43], it relied on a cryptographic protocol, called
a garbled circuit, to enable two party computations. Garbled circuits can be understood as an
encrypted function. This encrypted function takes encrypted inputs, and after executing returns
the unencrypted output. The execution is referred to as decrypting. This allows all members of the
computation to know the output, with the provided encrypted inputs providing less information
about their unencrypted state than the output itself. This was improved by Goldreich to enable
multiparty computation using garbled circuits [44]. While this allowed for SMC, it cannot be
considered practical as encrypting and decrypting the function is very resource intensive, with
real-time performance being unfeasible [45].
A solution to this problem are TEE. By having multiple parties provide their input to multiple TEE
and comparing their outputs to detect compromised members it is possible to perform SMC while
offloading the cryptography primitives to the security mechanisms of the TEEs. This is possible as
TEE guarantee isolated execution, meaning that the user of the computer in question has no access
to the inputs of the other parties, assuming these were provided over a secure channel. The paper by
Bahmani presents a way in which SMC can be implemented using TEE [46]. This specific example
uses Intel SGX but it also mentions that it can be done using other TEEs such as ARM TrustZone.
It relies on two of the TEEs core feature, namely isolated execution and remote attestation. It uses
them to guarantee that the execution of the code has not been tampered with or leaked to malicious
parties. To achieve this the protocol described in the paper starts with a key exchange to establish a
secure channel between the participants. After the input has been shared over the secure channel the
TEE can execute it and return the output over the same channel. This reduces the complexity of the
operation since the client only has to establish the secure channel and send the input. The function
is executed inside the TEE. This removes the need for creating garbled circuits and encrypting the
inputs and makes the process much more efficient. As Intel SGX already supports all the required
features: isolated execution and remote attestation. This protocol is easier to implement using it.
ARM TrustZone supports isolated execution but does not inherently provide remote attestation.
Therefore, it is harder to implement but not impossible as it is possible for TrustZone to enable
remote attestation.
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5.8 Verifiable cloud computing

Cloud computing describes the outsourcing of several resources, for example, storage or computing
power and providing them on demand. It is a rising trend as the IoT is becoming more and more
prevalent in modern society. The IoT requires a lot of sensors and other small devices to monitor
the human world to interconnect the life of its inhabitants a shared resource pool of resources is
becoming more and more important. This is because most of the small devices do not have the
computation power to process the information in an effective fashion. Cloud computing offers a
solution by providing a large amount of computational power on demand, with important features
such as scalability, fault tolerance, and pay-per-use. However, this new technology presents new
security risks, as outsourcing computations may leak information to the computer executing it. This
puts the integrity and confidentiality requirements of users at a potential risk. TEE may present a
solution to this problem by providing an isolated execution environment in which the integrity and
confidentiality can be verified by the consumer. It is the so called verifiable cloud computing.

Trusted Cloud  
(consisting of TEEs)

Client

Untrusted Cloud

Figure 5.5: Twin Clouds model

One approach for verifiable cloud computing is called twin clouds, outlined by Bugiel, Nürnberger,
Sadeghi, and Schneider in their paper [47]. It splits the cloud into two parts. One is the commod-
ity cloud where the majority of the performance intensive execution is made; the second one is
called the trusted cloud, where the security critical executions are carried out. This is depicted in
Figure 5.5. The trusted cloud can consist of multiple secure hardware, for example, TEEs. They
are used to encrypt the functionalities and inputs provided by the client over a secure channel
using a version of the garbled circuits described earlier. These encrypted circuits and inputs are
then provided to the commodity cloud to execute. This outsources the resource intensive part of
the process, making this approach much more scalable. The output calculated by the untrusted
commodity cloud is then verified by the trusted cloud and returned to the client. This solution
requires the trusted cloud and its parts to be able to verify their integrity. Therefore, remote attesta-
tion and isolated execution have to be provided. As Intel SGX already provides these, it is more
efficient to use for this approach than ARM TrustZone, because it does not provide remote attestation.
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5.9 Comparison

As discussed previously, both TEEs can be used for common use cases. There are many reasons
for this. The first is that both Intel SGX and ARM TrustZone were built to realize the same thing,
a TEE that provides a secure execution environment on the hardware level with higher security
guarantees than the normal OS can provide. Secondly, both TEE can be used for most use cases is
that they are often used as hardware TEE enablers, and not as a TEE itself. This applies especially
to ARM TrustZone. Many smartphone applications use a software TEE built on top of the hardware
TEE features provided by ARM TrustZone as the actual environment. Prominent software TEE
build on TrustZone are Google Trusty [48] and Samsung KNOX [49]. KNOX is approved by the
US government and is used by its employees. Therefore, the fact that some key features are missing
from Intel SGX or ARM TrustZone is not important, as they can be supplemented when developing
a software TEE based on them.
Because of the aforementioned reasons the choice of the TEE for a use case is only partially
dependent on its features. Instead, the main reason why Intel SGX or ARM TrustZone may be
preferred is the device or more specifically the processor of the device. Intel processors are more
commonplace in larger devices, such as computers, laptops, or servers. Therefore, use cases that
are executed on these platforms like verified cloud computing may prefer to use Intel SGX. If the
use case instead requires smaller devices that are easier to carry around like smartphones or IoT
devices, then they may prefer ARM TrustZone, as it is more commonplace than Intel SGX on those
platforms. Examples of such use cases are mobile transactions and mobile identity. This does not
mean that the other TEE is never used by the devices in question, there exist servers and laptops
with processors based on the ARM architecture, there are also smartphones that use Intel chips. Of
course, they are much rarer.
Therefore, this thesis concludes that both Intel SGX and ARM TrustZone can be used for all use
cases discussed in this thesis, and the reason one may be preferred over the other is not necessarily
because of the TEE itself but instead the processor they use.

61





6 Conclusion

This thesis started by introducing core foundations that are required to understand trusted execution
environments. It proceeded to discuss their important features: secure storage, isolated execution,
remote attestation, secure boot, and trusted path. The thesis then goes over two environments: Intel
SGX and ARM TrustZone. The end goal of both environments was the same, enabling an execution
environment isolated from the untrusted system software. The approaches Intel and ARM took
to achieve that goal were vastly different. Intel SGX executes at ring 3, meaning that most of the
resource management is done by the OS. As the OS is considered untrusted, most of the security
guarantees in the SGX architecture are based on checks and restrictions imposed on the OS. These
are microcode for integrity checks and a careful selection of instructions that can be used by the
untrusted OS to interact with security-sensitive resources. ARM TrustZone in contrast executes at
ring -2. Therefore, the secure world executes at a higher privilege level than the untrusted OS. This
has the advantage that it is not that important to control the behaviour of the system software as it is
unable to interact with the secure world. Additionally, the concrete design of the secure world can
be left to the manufacturers of the processor. They can freely include extra memory, I/O devices, or
other features to improve the functionality of the secure world.
Despite these architectural differences, the security guarantees both TEE offer are largely the same,
with both environments being able to resist the same common security threats. Both TEEs consider
privileged software attacks as the main attack type, against which both environments perform well.
The main vulnerabilities both TEE share mostly stem from the side effects that all computers have.
A typical example is the different cache response time depending on whether a piece of memory
is allocated or not. Another problem is that preventing sophisticated attacks on the physical level
is too expensive, even impossible with the current technology. Therefore, Intel and ARM did not
consider these attack vectors when building TrustZone and SGX respectively and left them partially
vulnerable to this class of attack.
Regarding common use cases, both TEE aim to provide a secure execution environment for high
security applications. Therefore, both environments can be used for all use cases. The reasons why
someone may prefer one over the other depends on two aspects. The first is whether the TEE already
supports required features. One example of this is anonymous attestation to a third party. Because
Intel SGX already uses an anonymous attestation scheme in EPID, it is preferable compared to
ARM TrustZone. The second is the device that the use case is run on. The devices ARM TrustZone
and Intel SGX are used on have a small overlap. ARM TrustZone is mostly seen on smartphones
and IoT devices while Intel SGX is more common on larger laptops or servers. This influences
the decision for some use cases, for example when deciding which TEE to use for mobile identity,
ARM TrustZone has a large advantage as most devices used for mobile identity use TrustZone.
Overall this thesis concludes that the performance of both Intel SGX and ARM TrustZone is similar.
The differences between them on a high level are minor. Their security guarantees are also very
similar, both sharing vulnerabilities against side channel attacks. The most important difference
regarding security is that Intel SGX is vulnerable to passive attacks as its resources are managed
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by the untrusted OS. In terms of use cases, the decision depends on the device and the features
required for the use case. In the end, both TEE can be used for all use cases as extending their
features through software TEE is common practice in the market.
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