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Abstract

Time-Sensitive Networks are a substantial part of the Industrial Internet of Things. Extensive
computation is required to generate sufficient schedules, in order to allow for real-time communication
within them. This is due to a time-constraint that each communication has. These communications
can vary from various logistical operations to heavy machinery. As such, not meeting these
time-constraints can incur financial costs, or even human harm. Most existing solutions for this
problem are ill-suited for the dynamic scenario which often appears in real-life. Modern factories
are rarely static, since changes to devices, and therefore their communications, occur as new ones
are added, or old ones are modified.

We built upon a previous approach, using a vertex colored conflict graph model and searching for
an independent colorful set, to solve the time-triggered flow scheduling problem. Specifically, we
introduce two new algorithms that dynamically generate an independent colorful set, and do so in a
fraction of the time. We compare our algorithms to the original one, concluding that a combined
approach might lead to the best outcome in terms of runtime and resulting scheduling quality.

Kurzfassung

Time-Sensitive Networks sind ein wesentlicher Bestandteil des Industrial Internet of Things.
Umfangreiche Berechnungen sind erforderlich, um Zeitpläne zu generieren, die eine Kommunikation
darin ermöglichen. Dies liegt daran, dass jede Kommunikation eine Zeitbeschränkung hat. Diese
Kommunikation kann von verschiedenen logistischen Operationen bis hin zu Schwermaschinen
variieren. Daher kann die Nichteinhaltung dieser Zeitbeschränkungen zu finanziellen Kosten oder
sogar zu Personenschäden führen. Die meisten bestehenden Lösungen für dieses Problem sind für
das dynamische Szenario, das in der Realität üblich ist, schlecht geeignet. Moderne Fabriken sind
selten statisch, da sich die Geräte, die miteinander kommunizieren müssen, ändern, wenn neue
hinzugefügt oder alte modifiziert werden.

Wir haben auf einem existierenden Ansatz aufgebaut, der ein gefärbtes Konfliktdiagrammmodell
verwendet und nach einem unabhängigen farbigen Menge gesucht haben, um das zeitgesteuerte
Flussplanungsproblem zu lösen. Insbesondere führen wir zwei neue Algorithmen ein, die dynamisch
ein unabhängiges buntes Set erzeugen, und zwar in einem Bruchteil der Zeit. Wir vergleichen
unsere Algorithmen mit dem Original und kommen zu dem Schluss, dass ein kombinierter Ansatz
zu den besten Ergebnissen in Bezug auf Laufzeit und resultierende Scheduling-Qualität führen
könnte.
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1 Introduction

The industrial internet of things (IIOT) is a modern concept, where industrial devices are all
interconnected [BHCW18]. Examples are production lines in the automobile industry, medical
equipment in a hospital and many more. A Jeep production facility, for example, has conveyor belts,
security sensors and robot arms in various configurations to enable the part by part construction
of a car or car part. All these devices communicate with each other and with various managerial
implements, to enable a smooth operation. These communications can be time-sensitive and are
essential for the facility to operate. Problems of failures can range from significant financial cost to
potential human injury or even casualty [Fra21]. To solve the problem of enabling this time-sensitive
communication between all connected devices, the concept of a time-sensitive network (TSN)
was introduced. Two communications intersecting at some point within this network lead to
delays. The Problem therefore becomes, when and how to route different communications, so that
no intersections happen. Different solutions for this problem have been widely studied, such as
integer linear programming [SDT+17], satisfiability modulo theory [COA17], using constraint
programming [GP20] or by mapping the constraints to a graph and finding an independent set
[FGD+21]. What most of those solutions have in common is that they are static. Dynamic solutions
to this problem are also vitally important, since many use-cases of time sensitive networks are in a
dynamic setting [RPGS17; SALC21]. However, many of these dynamic solutions are slow.

A previously proposed method is the Greedy Flow Heap Heuristic (GFH) [FGD+21]. GFH uses a
conflict graph of different communications, called flows, and calculates an independent set in it.
The vertices in the conflict graph represent different flow configurations and edges between them
represent a conflict between two flows, aka. using both flow configurations leads to a violation of
the time constraint. As such, an independent set represents a set of flow configurations that do
not interfere with each other within the original TSN. In a dynamic setting, devices are added and
removed, leading to constraints shifting. That leads to a previously calculated result of GFH loosing
validity, since newly added devices are not included in the result anymore. The only way to solve
that using GFH, is to completely recompute a solution, using the new conflict graph. Most changes
to such a network tend to be relatively small. It is likely, that only a few flows are added or removed.
The conflict graph changes only marginally, but still requires a complete rerun of GFH. If these
changes happen more frequently, GFH quickly becomes inefficient. That is because GFH is a static
algorithm, no information of a previous result is used to potentially increase efficiency. Changes to
a network also add another constraint, since adding a new device should not result in previously
working connections to suddenly cease working. We want to prioritize already active connections
when updating a network. GFH supports this prioritization by doing just that, any newly added
connection has a significantly lower priority than an already existing one. However, it does still
require a complete rerun of GFH.

We propose some changes to GFH, that lead to a more efficient computation in a dynamic scenario.
In this paper, we make the following contributions:
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1 Introduction

• Two adaptations, DynGFH and WRandomGFH, to GFH employing dynamic conflict graph
updates

• An empiric evaluation of our approaches to find feasible configuration parameters

• An extensive comparison against the GFH algorithm on multiple network topologies

Chapter 2 introduces our notation, as well as various concepts we use in our paper. It also introduces
the problem statement, as a more formal description of the problem. In Chapter 3 we present
the related work, that has been done on time-sensitive-networks, conflict-graphs and independent
sets. Chapter 4 explains the application domain of TSN and scheduling problems. This chapter
also explains GFH in more detail, showing its functionality and implementation. In Chapter 5, we
introduce our two approaches to solving the problem. We explain our thought-process as well as
the implementation of DynGFH and WRandomGFH. Following that, in Chapter 6 we evaluate
DynGFH and WRandomGFH. We inspect our algorithms for optimal parameters and compare them
to GFH. Chapter 7 summarizes our findings and discusses future work.
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2 Preliminaries and Problem Statement

In the following, we introduce our notation of graphs and independent vertex sets, as well as their
specialized forms, the vertex colored graph and independent colorful vertex set.

2.1 Vertex Colored Graphs

A Graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices V and edges 𝐸 ⊆ 𝑉 ×𝑉 . Edges from 𝐸 connect
two vertices of 𝑉 . An edge 𝑒 ∈ 𝐸 can also be written as a tuple (𝑣𝑖 , 𝑣 𝑗) with 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , which
contains the two vertices that 𝑒 connects.
A graph can be directed or undirected. Directed graphs contain edges which can only be traversed
in one direction, and edges in undirected graphs can be traversed in both. Formally, this means that
in a directed graph, (𝑣𝑖 , 𝑣 𝑗) ≠ (𝑣𝑖 , 𝑣 𝑗) and in an undirected one (𝑣𝑖 , 𝑣 𝑗) = (𝑣𝑖 , 𝑣 𝑗). Graphs in this
paper are purely undirected.
Vertex colored graphs are a special case, where each vertex inside the graph has a color. So, every
vertex 𝑣 in V additionally contains information on what color it belongs to. To do this, we can
extend the model of graph 𝐺 to 𝐺 = (𝑉, 𝐸, 𝐶), where 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛} is a set of sets. These
sets represent the colors of vertices: ∀𝐶𝑖 ∈ 𝐶 : 𝐶𝑖 ⊆ 𝑉 and ∀𝐶𝑎, 𝐶𝑏 ∈ 𝐶 : 𝐶𝑎 ∩ 𝐶𝑏 = ∅ and lastly⋃𝑛

𝑖=0 𝐶𝑖 = 𝑉 . This model limits each vertex to being a member of exactly one color. We use a
function 𝑐(𝑣) : 𝑉 → 𝐶, where 𝑣 ∈ 𝑉 and, 𝑐 ∈ 𝐶 to return the color a vertex belongs to.
To model a dynamically changing graph, we add another parameter to the graph tuple. This
parameter is a positive number denoting a timestep. A graph 𝐺 = (𝑉, 𝐸, 𝐶, 𝑡) describes the graph at
the time 𝑡. This means that changes to G can be modelled by increasing 𝑡 incrementally and changing
𝑉, 𝐸, 𝐶. As a shorthand for the edges, vertices and groups of a graph at the timestep 𝑡 we use 𝑉 𝑡 , 𝐸 𝑡

and𝐶𝑡 . Then, to describe a graph at a given time, we use 𝐺𝑡 = (𝑉 𝑡 , 𝐸 𝑡 , 𝐶𝑡 ) = (𝑉, 𝐸, 𝐶, 𝑡). To model
the change in the set of vertices between two timesteps, we use 𝑡𝑚𝑜𝑑𝑉 (𝑡1, 𝑡2) : N × N→ 𝑉𝑡1 ∩𝑉𝑡2 .
The function 𝑡𝑚𝑜𝑑𝑉 () produces the set of vertices that changed between the two given timesteps.
The given changes between two time steps 𝑡1 and 𝑡2 are the differences
𝑉
𝑡2
𝑡1
= 𝑉 𝑡2\𝑉 𝑡1 ,

𝐸
𝑡2
𝑡1
= 𝐸 𝑡2\𝐸 𝑡1 ,and

𝐶
𝑡2
𝑡1
= 𝐶𝑡2\𝐶𝑡1 .

2.2 Independent Colorful Vertex Set

Given a graph 𝐺 = (𝑉, 𝐸) and a subset of vertices 𝑉 ′ ⊆ 𝑉 , we say that 𝑉 ′ is independent, if
∀𝑣1, 𝑣2 ∈ 𝑉 ′ : (𝑣1, 𝑣2) ∉ 𝐸 . So, an independent vertex set is a set, where no two vertices inside
it have an edge in E connecting them. Extending this to an independent colorful vertex set of a
vertex colored graph, means that the independent set has some amount of colors represented by
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2 Preliminaries and Problem Statement

its vertices. We differentiate between the amount of colors represented. We call a set tropical, if
∀𝑐 ∈ 𝐶 : ∃𝑣 ∈ 𝑉 ′ with 𝑐𝑂 𝑓 (𝑣) = 𝑐. If this only holds for a subset of all colors 𝐶 ′ ⊂ 𝐶, then the set
is called colorful. Every vertex colored graph has a maximum colored set, meaning an independent
colored vertex set in which the most colors possible are represented. Not every graph has a tropical
set, as the restriction of containing every color is sometimes impossible to meet.

2.3 Problem Statement

Let G be a dynamic vertex colored conflict graph and S an Independent Colored Solution Set (ICSS)
for G at the time of 𝑡. Assuming G now changes and is now at the time step of 𝑡 + 1, how can we
dynamically calculate the new ICSS?
This can be summarized in the following optimization problem:
Let 𝐺𝑡 = (𝑉 𝑡 , 𝐸 𝑡 , 𝐶𝑡 ), S ⊆V an ICSS for 𝐺𝑡 .

Let 𝐶𝑟 ⊂ 𝐶𝑡+1 be the remaining colors used in the old ICSS S. We want to find a new ICSS S’ that
maximizes the objective:

(2.1) max𝑆′
∑︁

𝑣∈𝑆′∩𝐶𝑟

1 +
∑︁

𝑣∈𝑆′\𝐶𝑟

1
|𝐶𝑡′ |

The factor 1
|𝑆′ | in Eq. 2.1 accounts for the relative importance of previously existing vertices in

an ICSS to newly added ones. In general, this equation boils down to prioritizing colors that
already existed in the previous ICSS (𝐶𝑟 ). Prioritizing previously used colors is necessary in some
applications. Using the network flow as an example, removing a color between two time-steps
means that a previously possible communication suddenly is not included anymore.
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3 Related Work

This paper addresses algorithms to dynamically generate an independent colorful vertex set in a
vertex-colored graph. While generating independent vertex sets has been widely studied already
[KW85], the special case of generating them in vertex-colored graphs has not.
A naive approach to generating a non-colored independent set is going through all possible
combinations of vertices. This has an exponential complexity and is thus not suited for larger
problems, due to lack of scalability. In the following, we show a brief overview of discovered
solutions for the independent vertex set problem.
The first implementations of algorithms that have a complexity of 𝑂 (2𝑛), with n being the number
of vertices, were developed in the early 70s [BS73; NT75]. In 1977 Tarjan et. al. first showed an
algorithm to generate an independent vertex set while being a little more efficient than the previous
examples [TT77]. They show that their method has a complexity of 𝑂 (2 𝑛

3 ), which allows for three
times the problem size of earlier implementations. Later research revealed sequential algorithms
that solve the problem in as little as 𝑂 (1.1996𝑛 ∗ 𝑛𝑂 (1) ) time [BEPR12; XN17]. These solve
the problem bottom-up, meaning they firstly consider a smaller subset of a graph and iteratively
increase the problem-space to get the maximum solution. Even still, this method has more of a
theoretical significance, since an algorithm of that runtime has little use since the complexity still
grows exponentially.
Later, in the 80s, parallel algorithms were introduced that could speed up the process of finding
an independent set by optimizing calculations to use parallelization [KW85; Lub86]. These
implementations were modified Monte Carlo Algorithms that had runtimes of 𝑂 (𝑙𝑜𝑔(𝑛)) up to
𝑂 (𝑙𝑜𝑔(𝑛)2) while using 𝑚 up to 𝑛2 ∗ 𝑚 processors, with m being the number of edges.
Another approach appeared in the 90s, that approximated a maximum independent set. These
methods cannot guarantee to find the maximum independent set, but approximate them through
various methods [BH92; BS92; BSK09]. The outcome of these approximations can still be large
and useful independent sets in most scenarios.
Algorithms based on approximation generally operate on a greedy method. They apply some
form of heuristic that assigns a value to nodes and then pick the node with the highest (or lowest,
depending on the heuristic) value. With repeated application of this heuristic and greedy choice, an
end point is reached and the resulting set is guaranteed to be independent, but not guaranteed to be
the maximum independent set of the graph. This is because the greedy method can occasionally
make choices that exclude the true maximum independent set by prioritizing a local maximum in
one step, when a lower value could have opened up a much larger value later on. How often this
occurs and the general impact on efficiency and accuracy depends on the given heuristic. None of
the methods mentioned consider colors of vertices.
We now show some solutions that include the additional attribute of colored vertices as well. K.
Kurita et. al. search for tropical dominating sets in graphs [KWAU21]. Due to dominating sets
being only vaguely related to independent sets, their research results aren’t applicable to our problem
here. Research on the specific problem of calculating colorful independent sets has been studied
as well. Italiano et. al. managed to solve it for some classes of graphs such as complements of

15



3 Related Work

bipartite chain graphs and complete multipartite graphs [IMTP18]. More specifically, they solved
the problem of finding a maximum colored clique in vertex colored graphs, which can be reduced
to our independent set problem. This could be remedied by applying their algorithm on the inverse
of a graph. However, their algorithm can only be applied to a limited selection of graph types and
as such does not fit our specific generalized problem.
Manoussakis and Phang show that finding maximum independent colorful graphs is NP-hard and
provide polynomial algorithms for cluster and tree graphs [MP18]. This limit to the two certain
types of graphs limits their applicability to the problem in this paper.
Another method of obtaining an ICSS is the Greedy Flow Heap Heuristic (GFH) [FGD+21].
This heuristic takes an incremental greedy approach to find an independent colored set. It also
allows for weighing of colors, meaning that some colors can have a higher priority to be in the
resulting set than others. When applied to a graph where a change has occurred, this can be
used to calculate a new ICSS that prioritizes colors that were in the ICSS previously. A use
case for this is Traffic planning, which requires this option, because this can make sure that
active flows do not get deactivated because new traffic flows appear. A problem with GFH
is, that it does not dynamically calculate this ICSS. It allows for previous iterations of ICSS’s
to influence newer ones, with the prioritization of colors. However, it does not include data
of previous solutions and recalculates an entirely new solution. This means that every change
to the structure of a conflict graph leads to a potentially large amount of computation. A fre-
quent number of small changes to a conflict graph would be the worst case, since the change
from a previous solution to a new one is small, but the calculation is similar to making a large change.
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4 Application Domain

The following chapter discusses time-sensitive networks (TSN) as an application domain, where
scheduling problems can be resolved by solving an independent colorful set problem. TSN describe
real-world networks that have a time-sensitive aspect. These networks usually consists of various
end devices, that communicate with each other via a series of interlinked switches. The topology of
TSN-networks can vary, however some are more common (like circles). In this paper, we assume
that every end device only has one connection, meaning that every end device has one access point
into the network of switches.

The idea of TSN’s sprung out of the industrial internet of things (IIOT), in which machines
sometimes have to communicate with each other to allow for complex processes. These machines
and the various switches connecting them make up a TSN network. The time-sensitive aspect
comes into play when end devices have to send packets of information to each other periodically,
which have to arrive before a deadline. Violating that requirement can have outcomes that vary from
hampering functionality to potentially bringing harm to humans and as such, are vital to uphold.
This need to periodically communicate between two end devices can be summarized in the concept
of flows. A flow includes how much has to be communicated, called the payload and how frequently
is has to be communicated, called the period. Conventional methods of routing usually cannot even
guarantee that packets arrive at all. This is because they can lead to bottlenecks appearing, due to
two or more flows needing to traverse the same link between two switches at the same time, in the
same direction. One switch then has to store one of the flow’s information and delay its transmission.
Since this can happen multiple times across the path of a packet, retaining the time-sensitive nature
becomes less and less likely. Therefore, TSN usually has to include zero-queuing, where the
networking does not allow for queues to form. Zero-queue networking predefines every flow in
such a way, that none of these collisions previously mentioned occur. Depending on the network,
the number of flows and their requirements, implementing such a queue-less networking can be
impossible, but even knowing if it is possible is not trivial and turns out to be a NP-hard problem.

A method to calculate these flows, is to generate a conflict graph and derive the actual scheduling
from the computed independent set. This conflict graph describes the conflicts that exist within
our network graph. A vertex within it represents a possible configuration of a flow. What flow it
belongs to is represented by a color. Two configurations are in conflict with each other, i.e. the use
of both would lead to a queue forming at some point, they are in conflict with each other. Any two
configurations that are in conflict with each other are connected with an edge, unless they belong to
the same color. An independent colorful set in this conflict graph leads to a set of configurations of
flows, that will never lead to a queue forming, and thus allows for potential use inside a TSN.

Since we are only given a network of end devices and switches, as well as a number of flows, we
first have to generate a conflict graph from them. Then we have to calculate an independent set in
this conflict graph. A method of calculating this independent set is the Greedy Flow Heap heuristic,
which we cover in 4.1.

17



4 Application Domain

A problem with GFH and many other ways of calculating a solution for the zero-queue network is
that most networks are not static and change over time. That means that new flows are added, and
old flows are removed. GFH does not react dynamically to these sorts of changes, which can lead to
decreased efficiency. This is what we strive to improve in this paper.

4.1 Greedy Flow Heap

The Greedy Flow Heap Heuristic (GFH) [FGD+21] is an iterative greedy algorithm, that heuristically
solves the independent colorful set problem. GFH takes a colored conflict graph and returns an
independent colorful set, though not necessarily the maximum independent colorful set.

GFH has an iterative procedure, in which every iteration tries to add a vertex to the independent set
that has been calculated so far. To keep the runtime feasible, some form of rating has to occur, so
that the algorithm can “greedily” pick the best option in the next step. GFH introduces a “shadow
rating”, this rating is calculated via a ratio of shadowed and eligible neighbors every neighbor of a
vertex has. Shadowed vertices are vertices, that were removed as potential candidates in a previous
step, because one of their neighbors has been added to the independent set. Adding a shadowed
vertex in a later iteration would lead to a conflict. Eligible vertices are all the candidates that are
not shadowed or already in the set. Every iteration adds the vertex with the minimum shadow
rating, until all colors are covered, or no eligible candidates remain of the missing colors. The
result of GFH is a set of vertices that make up the independent set. The input to GFH is a conflict
graph and two sets that make up all colors in that graph. All colors in the active set are prioritized
when generating a new independent colorful set, because previously accepted flows have to still be
accepted, though they do not necessarily have to follow the same path. Colors in the required set
thus have a lower priority.

GFH does not use any previously calculated independent sets in any way. In a dynamic setting,
changes to the underlying network graph may occur or the amount and setup of flows may change.
This leads to changes in the conflict graph and thus can invalidate a previously calculated independent
colorful set. Using GFH in such a dynamic setting is only doable, by recalculating the entire
independent set, every time the conflict graph is changed. So, depending on the frequency or scale
of changes, GFH’s efficiency can decrease drastically.

The overall structure of GFH can be seen in algorithm 4.1. The input variable n determines the
amount of times this main loop will be carried out. A higher amount of loops can potentially
increase the accuracy of the end result, but increases the runtime linearly. Each loop calculates a
viable output set and after all iterations are done, the best set is returned. It computes four different
sets out of the given active flows (ActiveF) and requested flows (ReqF). These are the accepted
active flows (aActiveF), not accepted active flows (naActiveF) and similarly aReqF and naReqF.
In the first iteration, both aActiveF and aReqF are empty, these sets only come into play in later
iterations. GFH then first adds any unconnected vertices to a potential result set, removing the
flows those belong to from consideration. It then prioritizes adding configurations of flows from the
active flows first. The way addConfigPerFlow adds configs, is in a hierarchical, iterative process.
A heap of all the flows given to addConfigPerFlow is sorted by the number of remaining eligible
configurations a flow has. The flow with the fewest eligible configurations is processed first. What
specific configuration is used is determined by assigning a shadow-rating to each and taking the one
with the lowest. The shadow-rating of a configuration 𝑎 is calculated by checking what percentage
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4.1 Greedy Flow Heap

Algorithm 4.1 GFH: main algorithm loop
procedure GFH // Input: active flow set ActiveF( p), new flow set ReqF( p), n re-runs

𝐶 ← ∅
while 𝑛 > 0 do

𝑛𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹 ← 𝐴𝑐𝑡𝑖𝑣𝑒𝐹 (𝑝) 𝐶
𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹 ← 𝐴𝑐𝑡𝑖𝑣𝑒𝐹 (𝑝)⋂𝐶

𝑛𝑎𝑅𝑒𝑞𝐹 ← 𝑅𝑒𝑞𝐹 (𝑝) 𝐶
𝑎𝑅𝑒𝑞𝐹 ← 𝑅𝑒𝑞𝐹 (𝑝)⋂𝐶

𝐶 ← {𝑣 ∈ 𝑉 : 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) == 0} // C gets solitary configurations
𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑛𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹, 𝐶)
𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹, 𝐶)
𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑛𝑎𝑅𝑒𝑞𝐹, 𝐶)
𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑎𝑅𝑒𝑞𝐹, 𝐶)
if C is Maximum Independent set then

return C
else

cache C
end if
n–

end while
end procedure

of remaining eligible configurations different flows would lose, if the configuration 𝑎 was chosen.
The higher the percentage, the higher the shadow-rating, with a huge penalty for eliminating all
remaining configurations of a flow. This setup results in always choosing the configuration that
has the least impact on other flows, potentially allowing for more flows to be included in the end
result.

Our problem statement aims to allow for a more dynamic approach. It is similar to the problem
statement that lead to GFH, but includes the additional aspect of time steps. Instead of looking at
the problem as calculating an independent colorful set out of a conflict graph, we add the additional
variables of the previous conflict graph and its calculated independent set. Our algorithm thus has
additional access to the previous conflict graph, as well as the previous independent set.
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5 Dynamic Independent Colorful Set

This chapter discusses how we construct our two dynamic algorithms, DynGFH and WRandomGFH.
DynGFH caches how additions to an ICSS affect other vertex candidates and uses that data to
update an ICSS instead of completely recalculating it. WRandomGFH uses weighted randomness
to add new colors iteratively, with colors weighing more, the lower the total degree of all their
vertices is.

The Greedy Flow Heap Heuristic (c.f. Section 4.1) is an example of a static algorithm. It takes an
input graph and generates an Independent Colorful Set. When the graph is changed, e.g., flows are
added or removed, GFH does not react to it, instead it needs to be reapplied to the changed graph.
Since real-life applications are usually factories with many cyber physical systems, most changes
boil down to a few new flows being added or some flows being removed. This means that these
networks usually remain relatively static, with only small changes occurring over time.

These types of changes are the worst case for GFH, since every minor change in the conflict graph
requires a complete rerun that recalculates the entire independent colorful set. A Dynamic solution
would react to only the changes and their affected areas. This means that the input to our algorithm
has to change, instead of getting a set of active and required flows, we need a set that encapsulates
the change that happened in the new time step, as well as the changed conflict graph.

5.1 DynGFH

One way we thought to implement a dynamic solution, is by only modifying GFH to what we
call DynGFH, for Dynamic GFH. DynGFH functions almost identically to GFH, but we take
the additional input of all the colors that were removed in the time step, and use them to update
the configuration we calculated in the previous time step. This way, the first iteration of the
GFH algorithm already has a configuration set to work with. DynGFH tries to jump ahead in a
typical GFH execution, by assuming that removing a few colors would not change the resulting set
significantly. We therefore assume, that removing a few colors is a faster method than recalculating
with all colors to end up with a similar result.

Removing colors from configuration sets can be done in various ways. One method is to recalculate
the shadowed vertices of a configuration based on the remaining admitted vertices of each color.
Another approach we considered, was to cache additional information during construction of an
ICSS, that could be used in the next time step to remove colors more dynamically. Every time we
add a vertex to an ICSS, we save which other vertices were shadowed by it. The cached data can be
updated when removing colors. When a shadowed vertex is not shadowed anymore, it becomes
an eligible vertex again. How much this setup reduces runtime depends on the ratio of removed
colors to total colors, since we now iterate over all removed colors. This method also adds a lot of
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5 Dynamic Independent Colorful Set

overhead to simply adding a vertex into the ICSS. For this method to be feasible, the additional
overhead needs to impact the performance less, than what the dynamic approach improves. If this is
the case is not obvious and will be discussed in Chapter 6.

Algorithm 5.1 DynGFH: main algorithm loop
Input: added flow set AddF, set of removed flows RemF, number of repeats n
Output: An ICSS

1: procedure DynGFH
2: ⊲ Changes start here
3: 𝐶 ← config calculated in previous time step
4: 𝐶 ← remove flows in RemF from C // Here is where we recalculate or use cached data
5: 𝐴𝑐𝑡𝑖𝑣𝑒𝐹 (𝑝) ← acctepted flows in C
6: 𝑅𝑒𝑞𝐹 (𝑝) ← 𝐴𝑑𝑑𝐹

7: ⊲ Changes end here
8: 𝑛𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹 ← 𝐴𝑐𝑡𝑖𝑣𝑒𝐹 (𝑝) 𝐶
9: 𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹 ← 𝐴𝑐𝑡𝑖𝑣𝑒𝐹 (𝑝)⋂𝐶

10: 𝑛𝑎𝑅𝑒𝑞𝐹 ← 𝑅𝑒𝑞𝐹 (𝑝) 𝐶
11: 𝑎𝑅𝑒𝑞𝐹 ← 𝑅𝑒𝑞𝐹 (𝑝)⋂𝐶

12: 𝐶 ← {𝑣 ∈ 𝑉 : 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) == 0} // Not strictly neccessary anymore
13: 𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑛𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹, 𝐶)
14: 𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑎𝐴𝑐𝑡𝑖𝑣𝑒𝐹, 𝐶)
15: 𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑛𝑎𝑅𝑒𝑞𝐹, 𝐶)
16: 𝐶 ← 𝑎𝑑𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑃𝑒𝑟𝐹𝑙𝑜𝑤(𝑎𝑅𝑒𝑞𝐹, 𝐶)
17: return C
18: end procedure

Algorithm 5.1 shows how we changed the GFH algorithm to work more dynamically. In line 3,
the previous configuration is updated, any accepted flows that have now been removed, need to
be accounted for. That means, the configuration no longer accepts them, and any vertices that
were shadowed by that flow need to be recalculated as well. Here is where we either recalculate
completely, based on the reduced number of flows, or implement the previously introduced caching
method. We do not need ActiveF as input anymore, since we have the solution of the previous time
step and can get them there. Instead, we set ActiveF and ReqF in lines 4 and 5. ReqF is still the set
of added flows, while ActiveF is now the remaining accepted flows in our configuration.

Next, DynGFH continues in the same fashion as GFH. We calculate ActiveF and ReqF from the
input, ActiveF from the previous config and ReqF are just all added colors. GFH has an additional
loop, where an input variable dictates how many times a valid config is calculated, each with slightly
different priorities. In the original algorithm, this was to potentially generate a better solution due
to the different priorities. In our case, this additional looping would greatly reduce the impact of
having the updated solution of the previous time step, since each loop completely generates a new
config. As such, we only gain an advantage in the first iteration. We will evaluate in Chapter 6,
whether additional reruns have a significant enough impact, to warrant implementation.

Due to DynGFH’s defensive approach to scheduling, integrating our problem statement Section 2.3
is trivial. Since no vertex is removed, unless the color no longer exists, all previously accepted
colors are guaranteed to be in any generated ICSS. We rate an ICSS based on the amount of colors
in it.
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5.2 WRandomGFH

5.2 WRandomGFH

We also implemented a different algorithm, WRandomGFH. The way GFH and DynGFH choose a
vertex can lead to pitfalls. A greedy choice can prevent the algorithm from reaching better results,
due to lack of “foresight”. Therefore, WRandomGFH has a probabilistic approach, instead of
relying on deterministic sorting and evaluation, like GFH and DynGFH. It is a weighted, randomized
algorithm, which works off the first calculated GFH configuration. The first step cannot be done in
a dynamic way, since no previous data exists, and therefore could be done with any algorithm that
generates an ICSS. But since we are evaluating against GFH, it lends itself to use for calculating the
first ICSS. WRandomGFH tries to find a fitting ICSS for a new time step, by locking the remaining
configurations of the previous time step, then iteratively and randomly choosing a color to add to the
set. This still takes into account the shadowed and therefore not eligible vertices, but removes the
computation of shadow ratings. Instead, we use weights to increase the chances of more important
colors and vertices to be chosen. In each iteration, a color is chosen, then a random vertex of that
color is chosen. A color, whose total combined degree of all its vertices is higher than that of
another color, has a lower weight. When a color has been chosen, a vertex’ weight depends on
its degree, with a higher degree leading to a lower weight. We base these weights on the degree,
because the higher the degree of a color or degree, the more neighbors are potentially shadowed.
This makes it more likely that colors, that had few possible vertices to choose from, get eliminated
entirely. Since we want to include as many colors into our solution as possible, we have to “penalize”
colors and vertices that are likely to limit it.

This algorithm is randomized, and unlike GFH or DynGFH it might provide bad solutions by chance.
GFH and DynGFH on the other hand might generate bad solutions due to problematic inputs. They
put a lot more computational effort into choosing a vertex each iteration, whereas WRandomGFH
only looks at the total degree. Therefore, we use the fact that this algorithm runs a lot faster than
either of those, and just repeat it a number of times, taking the best result.

Algorithm 5.2 presents WRandomGFH’s workflow as pseudocode. The first time step is the same as
DynGFH or GFH, we simply calculate an ICSS for the first time step, since no dynamic calculation
is applicable. In all other time steps, we have a loop, that repeatedly generates a random potential
ICSS configuration and finally outputs the best one. Each loop iteratively chooses a vertex of a
color and adds it to the potential configuration until no colors remains in the pool of available colors.
Colors leave that pool, when they have been chosen, or they have no eligible vertices remaining.

First, all colors that contain at least one solitary vertex are added, since these do not need any
further calculation and can just be added to the set. Then a weighted random algorithm is used
to determine what vertices are chosen. A random color is chosen, based off a weight that is
calculated with their total-color-degree. The total-color-degree of a color is the total degree of all
vertices inside with a color. A higher total-color-degree leads to a lower weight of the color. To
facilitate this weight behavior, we use a number to divide by the total-color-degree. The number
we use, is the amount of edges inside the conflict graph times two, called 𝑤𝑒𝑖𝑔ℎ𝑡𝐷𝑒𝑐𝑖𝑑𝑒𝑟, i.e.
𝑐𝑜𝑙𝑜𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡𝐷𝑒𝑐𝑖𝑑𝑒𝑟

𝑡𝑜𝑡𝑎𝑙−𝑐𝑜𝑙𝑜𝑟−𝑑𝑒𝑔𝑟𝑒𝑒 . Edges get multiplied by two, because the calculation of the
degree of a vertex ignores if an edge has been counted by a different vertex before. This leads
to the minimum weight being 2, when a color’s vertices encompass all edges within the conflict
graph. Since a color never has edges between its own vertices, the max total color degree is the
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5 Dynamic Independent Colorful Set

Algorithm 5.2 WRandomGFH: main algorithm loop
Input: added flow set AddF, set of removed flows RemF, number of repeats n
Output: An ICSS

procedure WRandomGFH
if Its the first time step then return DynGFH(AddF, RemF)
end if
𝐶 ← config calculated in previous time step
𝐶 ← remove flows in RemF from C
𝐶 ← add flows in AddF with solitary vertices
𝑏𝑒𝑠𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔 ← 𝐶

while 𝑛 > 0 do
𝐴𝑑𝑑𝐹_𝐶𝑜𝑝𝑦 ← 𝐴𝑑𝑑𝐹

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔 ← 𝐶

while 𝐴𝑑𝑑𝐹_𝐶𝑜𝑝𝑦 ≠ ∅ do
𝑓 ← randomly choose a color, based on its total degree
𝑣 ← randomly choose a vertex of color f that is eligible, based on its degree
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔 ← add v
𝐴𝑑𝑑𝐹_𝐶𝑜𝑝𝑦 ← remove f

end while
if potentialConfig > bestConfig then

𝑏𝑒𝑠𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔 ← 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐶𝑜𝑛 𝑓 𝑖𝑔

end if
end while
return 𝑏𝑒𝑠𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔

end procedure

amount of edges in the conflict graph. The maximum color weight would be 𝑤𝑒𝑖𝑔ℎ𝑡𝐷𝑒𝑐𝑖𝑑𝑒𝑟 , when
a color only has one edge going from all its vertices, since colors without edges, have already been
accepted.

After a color has been randomly chosen, a vertex belonging to that color is chosen. We looked at
three different options here:

• randomly choosing a vertex of the color

• choosing a random vertex of a color, but the vertex has to have below the average degree of
the color

• similar to how we choose the color, take a random vertex with the weight depending on its
degree

The weight divider for the third option would be the total color degree. We evaluate these options in
Chapter 6. Algorithm 5.3 contains the pseudocode for choosing a color based on weight. It details
the procedure for calculating weights of colors and how we implemented the weighted random
selection.

Similarly to DynGFH, WRandomGFH’s ICSS is guaranteed to contain all remaining colors from
the previous time step. We rate an ICSS based on the amount of colors within, which automatically
maximizes the formula we introduced in our problem statement 2.3.
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5.2 WRandomGFH

Algorithm 5.3 Weighted Random Color
Input: Set C of colors, graph G that contains those colors
Output: A random color in C, with probabilities proportional to their weights

1: procedure WRColor
2: 𝑤𝑒𝑖𝑔ℎ𝑡𝐷𝑒𝑐𝑖𝑑𝑒𝑟 ← |𝐸𝐺 | ∗ 2 // number of vertices in G times two
3: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠← ∅
4: ⊲ calculate the weights of colors in C
5: for color c in C do
6: 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑙𝑜𝑟_𝑑𝑒𝑔𝑟𝑒𝑒 ← Σ𝑣∈𝑐𝑑𝑒𝑔𝑟𝑒𝑒𝑂 𝑓 (𝑣)
7: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐] ← 𝑤𝑒𝑖𝑔ℎ𝑡𝐷𝑒𝑐𝑖𝑑𝑒𝑟

𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑙𝑜𝑟_𝑑𝑒𝑔𝑟𝑒𝑒
8: end for
9: ⊲ Choose a random color

10: 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 ← Σ𝑤∈𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑤 // The total weight of all colors added together
11: 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 ← a random number between 0 and 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡
12: 𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑜𝑙𝑜𝑟 ← first color in C
13: while 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑜𝑙𝑜𝑟] do
14: 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑜𝑙𝑜𝑟]
15: end while
16: return 𝑐ℎ𝑜𝑠𝑒𝑛𝑐𝑜𝑙𝑜𝑟

17: end procedure
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6 Evaluation

This chapter evaluates our the algorithms WRandomGFH, DynGFH and GFH, and compares them
to each other. We investigate the impact of the parameters we used for WRandomGFH, DynGFH on
their performance. Further, we explain what how we generated the datasets used in the evaluation,
and the specifications of the system they were executed on.

All evaluations were performed on a server machine. This machine runs on Ubuntu 20.04, has
two AMD EPYC 7401 24-Core processors (including hyper-processing, that leads to 96 threads),
and has 128 GB of RAM. We wrote GFH, DynGFH and WRandomGFH in C#, using dotnet
version 6.0.100, compiling to netcoreapp 5.0. To get the data necessary to compare all of these
algorithms, we used python to generate network graphs and evaluation scenario files that contain
flow configurations for that network graph, but used C# to compute the resulting conflict graph.

Two types of network graphs were used: a circle and random. The network graphs were made
to simulate real world scenarios, so they are made up of switches and end devices. The switches
make up the actual network graph structure, all end devices are only connected to this circle via one
edge. The circle was generated with each switch connected to its next two neighbors. The randomly
generated network was generated with twice its switches as edges, using the Erdös & Rényi method.
This network is used to generate the scenario file of flows in the python script. It randomly generates
a number of flows that go from one end device to another and chooses a random package size and
period, from a pool of choices, for each. Lastly, it simulates time steps, by randomly removing a
number of flows followed by adding new ones. Parameters are: the number of flows to start with,
the number of time steps to generate, the number of flows that are added or removed per time step,
as well as candidates for package size and period that can be chosen.

We used 100 switches and 50 end devices for our network graph. We compared various setups
for flow configurations, mainly differentiating them on the number of flows they start with. Every
scenario uses 10 time steps and removes one tenth of the starting number of flows each time step,
while adding one fifth, so a scenario with 100 starting flows would remove 10 and add 20 each time
step. We compared scenarios starting with 100, 200 and 500 flows. Each flow has a period of 250,
500, 1000 or 2000 `𝑠 and a package size of 125, 250, 500, 750, 1000 or 1500 bytes. We evaluated
ten different scenarios that were generated with the same configurations, i.e. we had 10 different
scenarios that started with 100 flows, ten with 200 and ten with 500.

6.1 Evaluating DynGFH Parameters

We now interpret our evaluation of the two methods we could use to remove sets from a DynGFH
config. Our two options are either completely recalculating a config after all colors have been
removed, or the caching method we introduced in Section 5.1. We compare them on a circle
graph, with 10 different flow configurations. DynGFH was executed on each configuration with

27



6 Evaluation

(a) Comparion of runtime (b) Comparison of accepted colors

Figure 6.1: Results of comparing Recalculating vs Caching. Compared configurations start with
200 colors. The left diagram depicts the time each method took in ms. The caching-
method has a slightly increased runtime. The left diagram shows, that, as expected,
both methods result in similar ICSS.

and without the caching method. The results can be seen in Figures 6.1. The first graph 6.1a
illustrates caching having a higher runtime, while the second graph 6.1b shows a slightly reduced
number of colors for caching. This might be due to inefficiencies in our implementation, as the
difference minor and does not change. Since Figure 6.1a has a logarithmic scale, the shown runtime
difference is quite small. Some optimizations might be able to decrease the runtime difference
substantially. We can conclude, that our implementation of caching shadowed vertices is not worth
the additional overhead it generates, with the parameters we used. Therefore, we will use the
recalculation approach in the remainder of the evaluation.

6.2 Evaluation of WRandomGFH Parameters

In this section, we evaluate different parameters of WRandomGFH and compare their impact. The
specific parameters we have to consider here are: First, the number of candidate configurations
that should be calculated. Every additional potential configuration increases the runtime linearly,
but also adds another chance to randomly generate a better configuration. Second, how a vertex is
chosen. We considered three different options here in Chapter 5: random, random-below-average
and degree-weighted. We started by comparing different amounts of candidate configurations. We
generated a network graph with a circle topography, and generated five different flow scenarios.
On each, we used four different amounts of candidate configurations, going from 1 candidate to
10, 100 and 1000 candidates. Figure 6.2 displays the results of our comparison. As expected, a
higher amount of repeats leads to longer execution times, as seen in the chart 6.2a. However, in our
scenario, the different amounts of repeats seem to have little impact on the amount of colors in the
resulting ICSS. This can be attributed to the defensive way that WRandomGFH operates. It is likely,
that without changing the already accepted colors in the last time step, even just one repeat already
reaches the maximum amount of colors possible, with this method. Given our starting amount of
200 flows, i.e. 200 colors, each time step adds 40 colors and removes 20. The maximum the amount
of colors can that can be reached in any time step 𝑡, is 200 + 𝑡 ∗ 20. Additionally, WRandomGFH

28
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(a) Comparison of runtime (b) Comparison of accepted colors

Figure 6.2: Results of comparing different amounts of repeats. The left chart illustrates the different
execution times. As expected, the higher the number of repeats, the longer the execution
time. The left chart displays how many colors ended up in the resulting ICSS each
time step. The parameters we used lead to no major differences between the different
amounts of repeats.

ignores any colors that were not accepted in the last time step, as such greatly lowering that ceiling.
All this leads to, is repeats having less of an impact when little changes between time steps. To
reach a middle ground between runtime and potential gains from repeats, we choose 100 repeats,
since the runtime difference to 1 or 10 is negligible in comparison to GFH runtimes and still leaves
room for benefits in higher starting flow numbers.

Next, we compare the different methods to choose a vertex. Similarly, we generated five different
flow configurations for a network and then executed WRandomGFH using the three ways of selecting
a vertex. These are: One, completely randomized. Two, randomized from all vertices that have
a degree below the average of the color. And three, randomized, but with weights depending on
the inverse of their weights. Figure 6.3 provides an overview on how they compare against each
other. The degree-weighted algorithm has the longest runtime, but also presents better results, when
inspected closely in Figure 6.4. The random-below-average is a good approximation and comes
close to degree-weighted, while random relies heavily on chance. It is also worth mentioning, that
the random algorithm has the highest gain from the previously inspected repeats. The nature of the
degree weighted algorithm makes repeats less and less impactful the more there are. Here again,
random-below-average is in the middle ground, because repeats have more of an impact than in
degree-weighted and less of one than in random.

From these result, we conclude that 100 repeats is an adequate amount to allow random chance to
generate better results, while not drastically increasing the runtime. Furthermore, we select the
degree-weighted algorithm to choose vertices, since the runtime difference is negligible, while still
providing better results on average.
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6 Evaluation

(a) Comparison of runtime (b) Comparison of accepted colors

Figure 6.3: Results of comparing different ways of selecting a vertex. The left diagram indicates a
higher runtime for the degree-weighted algorithm and very similar runtimes for the
random and random-below-average ones. In the left diagram, again, a similar result for
all of them is expected.

Figure 6.4: A more detailed comparison of the different vertex-selection algorithms, in later time
steps. As expected, the degree-weighted algorithm, on average, ends up with the highest
amount of colors in the ICSS. Followed by random-below-average and random.

6.3 Evaluation against the state of the art

We now evaluate GFH, DynGFH and WRandomGFH and compare them based on runtime and
average number of colors in their ICSS. Ten graphs are generated, and three flow scenarios are built
for each of them, containing ten time steps, starting from zero. The first scenario built has 100 flows
starting out. The next has 200 and the last has 500. Each scenario uses parameters we introduced in
the beginning of this chapter. We run GFH, DynGFH and WRandomGFH on ten variations of each
scenario.

Figures 6.5, 6.6 and 6.7 present our results. We can see that there is little difference between
all three algorithms in the first step. This is because all of them use GFH to calculate the first
step, producing the same ICSS. The only difference is the slightly lower runtime of DynGFH and
WRandomGFH, because our reimplementation of GFH inside DynGFH’s code is slightly more
efficient. The later steps show a clear advantage for WRandomGFH and DynGFH when it comes to
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6.3 Evaluation against the state of the art

(a) Comparison of runtime (b) Comparison of accepted colors

Figure 6.5: Results of GFH, DynGFH and WRandomGFH, when run on a scenario with 100 initial
flows.

(a) Comparison of runtime (b) Comparison of accepted colors

Figure 6.6: Results of GFH, DynGFH and WRandomGFH, when run on a scenario with 200 initial
flows.

runtime. Due to both using a defensive approach, they only operate on the newly given colors each
time step. However, GFH has the advantage when it comes to accepted flows each time step. This is
most prominent in Figure 6.7b. WRandomGFH performed the worst, when it comes to accepted
flows, with DynGFH performing better on average. We can deduce, the higher the initial amount
of colors is, the more of an advantage GFH gets. With our parameters, the amount of change in
every time step scales with the initial flow amount. The more changes occur per time step, the
more DynGFH and WRandomGFH suffer in terms of size of ICSS. Each time step, their defensive
planning foregoes correcting now inefficient vertices and the more vertices are added, the more
likely those become.

In summary, DynGFH has potential as a dynamic algorithm for ICSS calculation. It generates
larger ICSS than a randomized application like WRandomGFH with a minimal increase in runtime.
Its defensive nature results in worse ICSS than GFH generates, but takes a fraction of the time.
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6 Evaluation

(a) Comparison of runtime (b) Comparison of accepted colors

Figure 6.7: Results of GFH, DynGFH and WRandomGFH, when run on a scenario with 500 initial
flows.
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7 Conclusion

With the advent of the industrial internet of things (IIOT), new scheduling problems arose, due
to the need to reliably and efficiently communicate between devices. As such, TSNs make up the
backbone of many IIOT implementations. However, most of them do so statically and require
massive time and resource investment every time a change has to be made. The Greedy Flow Heap
Heuristic (GFH), an existing static algorithm, abstracts the scheduling problem into an independent
set problem of a conflict graph. These sets are called independent colorful set (ICSS).

In this paper, we implemented two different dynamic algorithms for scheduling in TSNs. We built
on GFH and introduced time steps, a variable depicting the changes to the underlying TSN over
time. One algorithm, DynGFH, is deterministic, similar to GFH, and the other one, WRandomGFH,
is randomized. DynGFH uses a defensive scheduling approach, meaning the results of the previous
time steps are fixed. GFH is then executed on only the changes that occurred in each time step, to
generate a result. WRandomGFH uses GFH to calculate the first time step. Following time steps
are calculated, by iteratively adding colors to the ICSS in a randomized way. We base this random
choice on various aspects, leading to the most likely colors being ones, which put the least amount
of strain on future additions.

Our evaluation indicates, that while our algorithms generate smaller ICSS, compared to GFH, they
take a fraction of the time. The larger the network of flows becomes, the more this difference is
evident. The large disparity in runtime, compared to the smaller disparity in ICSS size, allows
for many quality-runtime tradeoffs. Especially with smaller networks, the reduced runtime could
allow for more frequent changes, that might be too much for GFH’s algorithm to calculate in
time. That same trade-off exists between DynGFH and WRandomGFH, although to a lesser
degree. WRandomGFH has an even shorter runtime than DynGFH, while not reaching the sizes
of DynGFH’s ICSS. In both runtime and ICSS size, this difference is a lot smaller than to GFH.
Each algorithm has its own use-case, where either the biggest ICSS or the fastest runtime are the
priority. Alternatively, DynGFH could be used in combination with GFH to achieve a tradeoff
between GFH’s results and DynGFH’s short runtimes.

7.1 Future Work

There are various additions to DynGFH and WRandomGFH that could result in a better performance.
Their low runtime lends itself to multiple calculations per time step. For example, instead of
executing the defensive algorithm of DynGFH on the last two to three time steps could result in
better ICSS, while only multiplying the runtime by two or three. That would still put it at a fraction
of GFH’s runtime, while giving the algorithm a higher number of colors to optimize decisions.
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7 Conclusion

A combination of DynGFH and GFH can also greatly reduce runtime, while barely affecting
resulting ICSS. By using GFH every n’th time step, any faulty decisions made in previous ones
would be mitigated, while reducing overall runtime substantially. Even using GFH every other time
step, would almost reduce overall runtime by half.

A possible extension to DynGFH would be to calculate the impact of the changes that occurred in
each time step. For example, checking, whether a vertex that is currently in the ICSS has a greatly
increased degree due to changes and selectively removing it. This would allow for potentially
removing the “bad” vertices, that the complete recalculation of GFH wouldn’t consider, while not
requiring said expensive recalculation.
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