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Abstract

We establish a framework for systematically analyzing and designing
output-feedback controllers for linear impulsive and related hybrid
systems that might even be affected by various types of uncertainties.
In particular, the framework encompasses uncertain switched and
sampled-data systems as well as networked systems with switching
communication topologies.
The framework is based on recently developed convex criteria in-
volving a so-called clock for analyzing impulsive systems under
dwell-time constraints. We elaborate on the extension of those
criteria for dynamic output-feedback controller synthesis by means
of convex optimization and generalize the so-called dual iteration to
impulsive systems. The latter originally and still constitutes a promis-
ing heuristic procedure for the challenging and non-convex design of
static output-feedback controllers for standard linear time-invariant
systems. Moreover, for uncertain impulsive systems as modeled in
terms of linear fractional representations, we generalize the nominal
analysis criteria by providing novel robust analysis conditions based
on a novel time-domain and clock-dependent formulation of integral
quadratic constraints. Finally, by combining the insights on nominal
synthesis and robust analysis, we are able to tackle challenging
output-feedback designs of practical relevance, such as the design
of gain-scheduled, robust or robust gain-scheduled controllers for
impulsive systems.
Most of the obtained analysis and synthesis conditions involve infinite-
dimensional (differential) linear matrix inequalities which can be
numerically solved by using relaxation methods based on, e.g., linear
splines, B-splines or matrix sum-of-squares that we discuss as well.
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Abstract

We establish a framework for systematically analyzing and designing
output-feedback controllers for linear impulsive and related hybrid systems
that might even be affected by various types of uncertainties. In particular,
the framework encompasses uncertain switched and sampled-data systems
as well as networked systems with switching communication topologies.

The framework is based on recently developed convex criteria involving
a so-called clock for analyzing impulsive systems under dwell-time con-
straints. We elaborate on the extension of those criteria for dynamic output-
feedback controller synthesis by means of convex optimization and gener-
alize the so-called dual iteration to impulsive systems. The latter originally
and still constitutes a promising heuristic procedure for the challenging and
non-convex design of static output-feedback controllers for standard linear
time-invariant systems. Moreover, for uncertain impulsive systems as mod-
eled in terms of linear fractional representations, we generalize the nominal
analysis criteria by providing novel robust analysis conditions based on a
novel time-domain and clock-dependent formulation of integral quadratic
constraints. Finally, by combining the insights on nominal synthesis and
robust analysis, we are able to tackle challenging output-feedback designs
of practical relevance, such as the design of gain-scheduled, robust or robust
gain-scheduled controllers for impulsive systems.



Most of the obtained analysis and synthesis conditions involve infinite-
dimensional (differential) linear matrix inequalities which can be numer-
ically solved by using relaxation methods based on, e.g., linear splines,
B-splines or matrix sum-of-squares that we discuss as well.
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Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung von Werkzeugen zur systemati-
schen Analyse von impulsiven linearen Systemen und dem Entwurf von
Ausgangsrückführungsreglern für solche Systeme und verwandte Hybrid-
systeme selbst, wenn deren Modelle diverse Arten von Unsicherheiten auf-
weisen. Zu den verwandten Hybridsystemen gehören beispielsweise geschal-
tete Systeme, Systeme mit Datenabtastung und Netzwerksysteme mit ge-
schalteten Kommunikationsstrukturen.

Die Basis unserer Überlegungen bilden die vor Kurzem entwickelten kon-
vexen Analysekriterien für impulsive Systeme mit Verweilzeit, die eine Art
von Taktgeber beinhalten. Wir diskutieren die Erweiterung dieser Kriteri-
en zum Entwurf von dynamischen Ausgangsrückführungsreglern mit Hil-
fe von Techniken aus der konvexen Optimierung und verallgemeinern die
sogenannte Dual-Iteration so, dass diese auf impulsive Systeme angewen-
det werden kann. Die Dual-Iteration ist ein vielversprechendes heuristi-
sches Verfahren für den Entwurf von statischen Ausgangsrückführungs-
reglern für lineare zeitinvariante Systeme, der ein schwieriges und nicht-
konvexes Problem darstellt. Außerdem etablieren wir neue Kriterien für
die Robustheitsanalyse von impulsiven Systemen, die mit gebrochen line-
ar eingehenden Unsicherheiten behaftet sind, basierend auf einer neuarti-
gen Zeitbereichsformulierung von sogenannten quadratintegrablen Neben-



bedingungen. Schließlich kombinieren wir die gewonnenen Einsichten aus
dem nominalen Reglerentwurf und der Robustheitsanalyse, um einige her-
ausfordernde und praktisch höchst relevante Reglerentwurfsprobleme für
impulsive Systeme zu lösen. Dazu gehören beispielsweise der Entwurf von
robusten, gain-scheduled1 oder robusten gain-scheduled Reglern.

Beinahe alle erarbeiteten Analyse- und Entwurfskriterien bestehen aus
unendlichdimensionalen linearen Matrix(differential)ungleichungen, zu de-
ren numerischen Lösung wir verschiedene Relaxationen verwenden. Kon-
kret diskutieren wir Verfahren, die auf linearen Splines, B-Splines oder
Matrixquadratsummen basieren.

1Dieser Begriff is nicht vernünftig übersetzbar. Er beschreibt eine spezielle Art der
Adaptivität.
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1
Introduction

1.1 Motivation
Hybrid and Linear Impulsive Systems

Hybrid systems are dynamical systems that evolve continuously but also
undergo instantaneous changes at certain events. They, hence, admit a
combination of continuous-time and discrete-time dynamics which makes
their study interesting and challenging. One of the most intuitive and

x

v

Figure 1.1: A bouncing
ball.

classical examples of a hybrid system is given
by a bouncing ball as depicted on the right and
which can be modeled as follows. While the ball
is in the air, it behaves continuously as described
by the differential equations

v̇(t) = −g and ẋ(t) = v(t)

where g = 9.81 m/s2 denotes the acceleration
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Figure 1.2: (Left) position x and (right) velocity v of the bouncing ball.

due to gravity, x(t) is the ball’s distance from the ground (in m) and v(t)
is the ball’s velocity (in m/s) at time t. The hybrid nature of this example
becomes apparent when modeling the collision of the ball with the ground.
If one assumes a partially elastic collision with the ground, then the veloc-
ity before and after the collision (denoted by v− and v+, respectively) can
be related by

v+ = −cv−

where c = 0.7 is the ball’s coefficient of restitution that is related to its
deformation. Hence, the ball’s velocity experiences a jump (or an impulse)
whenever the ground is hit, i.e., whenever x(t) = 0 for some time instance
t. This is confirmed in a simulation of the bouncing ball as shown in Fig. 1.2
where it is thrown up with a velocity of v(0) = 10 m/s from a height of
x(0) = 10 m.

Hybrid systems are practically highly relevant since they are encountered
in numerous real-world applications related, e.g., to the fields of embedded
control, fault tolerant control, traffic flow optimization, power electron-
ics, robotics and system biology. Consequentially, considerable attention
has been devoted to their investigation in the past years [63, 64, 88, 103].
Particularly in embedded control, one deals with interconnections of to-
be-controlled systems and controllers modeled in continuous-time by dif-
ferential equations with components for logical decision making that are
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Controller 1 Controller 2

u =

{
u1 if an object is grasped

u2 otherwiseu

u1 u2

y

Figure 1.3: An embedded control system involving a manipulator.

intrinsically discrete. An example of such an interconnection involving a
manipulator is schematically displayed in Fig. 1.3.

(Linear) impulsive systems constitute a rich subclass of hybrid systems
which is considered on its own, e.g., in [76, 173, 68, 172]. We focus on this
class because it even encompasses switched, sample-data and networked
systems as shown for example in [22], [154] and [114]. Currently, networked
systems composed of a great number of individual subsystems that share
information enjoy increased attention due to, e.g., the recent interest in
social and other digital networks as well as the developments on so-called
smart cities. In such communication networks impulses and switches occur
naturally, e.g., as a result of link failures or creations during operation of
the system. An example of a switching network with three possible config-
urations or modes is illustrated on the cover of this thesis.

Systems and Control Theory

Systems and control theory is a field with a long history and big impact
on society due to its applications in various branches in science and engi-
neering. Some of them are summarized in the survey [130]. In a nutshell,
systems and control theory is essentially about

• the analysis of a given dynamic system’s response to external exci-
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tations and

• the design of controllers that provide commands for actuatable sys-
tems based on measurements of the underlying system such that
some desired objective is achieved.

In this thesis we conceptually follow the paradigm propagated in the mono-
graphs [149, 141, 179, 178] since it permits an efficient analysis and design
even if the underlying system is affected by uncertainties or subcomponents
that are difficult to grasp. This is highly relevant in practice since any em-
ployed mathematical model deviates from the underlying real system (e.g.,
caused by unknown system parameters or by neglected dynamics).

1.2 Main Goals
Despite the availability of many approaches to deal with impulsive and
hybrid systems, there is still a lack of a common and flexible framework
that permits a systematic analysis and design for such systems, particu-
larly if they are affected by uncertainties. This is in contrast to standard
linear time-invariant (LTI) systems where such a framework is available
and elaborated on, e.g., in [160, 71, 78]. Its key ingredients are linear frac-
tional representations (LFRs) for modeling uncertain or complex systems
in a flexible fashion and integral quadratic constraints (IQCs) that allow
for systematically analyzing such systems. These ingredients are accompa-
nied by dedicated optimization tools based on linear matrix inequalities
(LMIs) for the numerically efficient design of controllers. This motivates
the following:

The general theme of this thesis is the establishment of a systematic
analysis and design framework for linear impulsive systems based on
LFRs, IQCs and LMIs.
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To this end, we have to achieve several (partly technical) subgoals that
each constitute individual scientific contributions and which are discussed
in the remaining chapters.

1.3 Outline and Contributions
In the remainder of this section, we briefly summarize the contents and
individual contributions of the next four chapters that form the main part
of this thesis. We also point the reader towards the already published con-
tributions by the author that resulted from this work.

In Chapter 2 we elaborate in detail on analysis techniques for linear
impulsive systems unaffected by uncertainties and with impulses satisfy-
ing dwell-time constraints based on the methodology introduced in [18]
characterizing stability. In particular, we

• show that the proposed stability criteria generalize naturally to con-
ditions for assuring dissipation based performance objectives and

• provide alternative analysis criteria in terms of so-called slack vari-
ables that permit the derivation of synthesis criteria with reduced
conservatism.

In Chapter 3 we consider the systematic design of controllers for impul-
sive systems in the case that the full state is unavailable for control. We il-
lustrate several variations and show that the provided approach seamlessly
applies to switched and sampled-data systems. In particular, we provide

• several new LMI based criteria for designing dynamic output-feedback
controllers for impulsive, sampled-data and switched systems and

• an extension of the so-called dual iteration for synthesizing static
output-feedback controllers for impulsive systems by iteratively solv-
ing LMIs.
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In Chapter 4 we provide tools for analyzing uncertain impulsive systems
and demonstrate that these also permit the analysis of networked systems
in a scalable fashion and even if the underlying communication topology is
switching. Technically, this relies on

• a generalization of the IQC framework that applies to linear impul-
sive systems based on a novel notion of time-domain IQCs.

In Chapter 5 we combine the results from the previous chapters in order
to tackle the problems of synthesizing so-called gain-scheduled and robust
output-feedback controllers for linear impulsive systems. The contributions
of this chapter are

• a gain-scheduled design approach for impulsive systems affected by
piecewise constant parameters based on dynamic IQCs and

• an extension of the dual iteration for synthesizing robust output-
feedback controllers for uncertain impulsive systems in an iterative
fashion.

In Chapter 6 we provide several general concluding remarks as well as
an outlook on potential future research. The appendix comprises an expla-
nation of utilized symbols and abbreviations in Appendix A and Appendix
B, respectively. Appendix C contains several auxiliary results on LMIs and
tools for dealing with them. Most of these results are extracted from [149]
and repeated here in order to turn this thesis self-contained. Thus, ba-
sic linear algebra and calculus should be sufficient for reading this work.
Appendix D elaborates on three relaxations for turning differential LMIs,
that frequently appear in this work, into standard semidefinite programs.
These relaxations are based on sum-of-squares matrices, linear splines and
B-splines. The B-spline relaxation is not standard and we

• demonstrate how to employ this relaxation for analyzing impulsive
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systems and for synthesizing impulsive output-feedback controllers
and

• show for the first time that this relaxation is asymptotically exact.

A dependency graph including the main chapters and the relevant ones
from the appendix is depicted in Fig. 1.4.

Finally, we stress that this work resulted in the peer-reviewed publica-
tions [79, 80, 81, 82, 83, 84, 85] and that, albeit most of the material has
been streamlined and enhanced over the time, some portions of the text
still overlap. In particular, there is some overlap between Chapter 2 and
the reference [84], Chapter 3 and [84, 85], Chapter 4 and [80, 83], as well
as Chapter 5 and [81, 83, 85]. We will more precisely link the presented
results in these chapters with the publications by the author.



8 Chapter 1 Introduction

Appendix C
Manipulation

of LMIs

Appendix D
Differential

LMIs
Chapter 2
Nominal
Analysis

Chapter 3
Nominal
Synthesis

Chapter 4
Robust

Analysis

Chapter 5
Gain-Scheduled

and Robust
Synthesis

Figure 1.4: Dependency graph of covered topics.



2
Nominal Analysis

A key task in control engineering is the investigation of the internal be-
havior of a dynamical system and the detailed analysis of its output in
response to external excitations. Thereby, a fundamental and highly rel-
evant property is stability which usually translates into a safe operation
of the underlying system. Consequently, this property is of tremendous
importance in numerous commercial and industrial applications involving,
e.g., cars, trains, planes, rockets, power plants and robot manipulators.

Next to assuring stability, control engineers are also often asked to ver-
ify whether or not some desired performance objective is achieved. For
example, airplanes and cars should be designed such that the passengers
experience a comfortable flight or ride while being fuel efficient. Similarly, a
solar power plant should generate as much electrical energy as possible and
a robot manipulator could be tasked to grasp an object and to accurately
place it at a specified target location.

In this chapter we focus on nominal stability and performance analysis
for impulsive and related hybrid dynamical systems. This means that we
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provide tools and criteria for assuring stability and certain performance
specifications for such dynamical systems in the case that they are unaf-
fected by uncertainties. Of course, this is not very realistic because there
are always discrepancies between the faced real system, which might be ex-
tremely complex in practice, and the employed mathematical model, which
is limited, e.g., by the available computational resources and the knowledge
about the real system. The theory of robust control [179, 141, 66] was pre-
cisely developed in order to provide means to deal with uncertainties as
induced by the latter discrepancies. In Chapter 4 we will extend some of
the most important analysis tools of robust control to uncertain intercon-
nections involving impulsive systems. However, since the underlying tech-
niques are based on those for nominal analysis, the latter are discussed
here in detail.

2.1 Stability

2.1.1 Stability Analysis of Impulsive Systems

For matrices A,AJ ∈ Rn×n, some initial condition x(0) ∈ Rn and a se-
quence of impulse instants 0 = t0 < t1 < t2 < . . . , let us consider an
autonomous linear impulsive system with the description1

ẋ(t) = Ax(t), (2.1a)

x(tk) = AJx(t−k ) (2.1b)

for t ≥ 0 and k ∈ N. Under the additional assumption that the monotone
sequence (tk)k∈N0 does not admit an accumulation point, there exists a
unique piecewise continuously differentiable and right continuous function

1For a normed vector space X, a function f : [0, ∞) → X and time t > 0 we let
f(t−) := lims↗t f(s) denote the limit from below once it is well defined; for nota-
tional simplicity we set f(0−) := f(0).
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x : [0,∞) → Rn satisfying (2.1a) and (2.1b). This function2 is referred to
as state or state trajectory of the system (2.1). The components (2.1a) and
(2.1b) of the system (2.1) are usually called flow and jump component,
respectively. If we assume that the jump component is absent or that it
is rendered trivial by choosing AJ = I, then (2.1) describes again a stan-
dard linear time-invariant (LTI) dynamical system in continuous-time as
modeled by a single ordinary differential equation.

As for such standard LTI systems, we intend to analyze the asymptotic
behavior of the state trajectory of (2.1) for t → ∞. The most important
concept related to safe operation of the underlying system is the following.

Definition 2.1 (Stability) The system (2.1) is said to be (globally) (ex-
ponentially) stable if there exist constants M,γ > 0 such that ∥x(t)∥ ≤
Me−γt∥x(0)∥ holds for all t ≥ 0 and all initial conditions x(0) ∈ Rn.

For an impulsive system (2.1), stability is not only determined by prop-
erties of the describing matrices A and AJ , but also greatly influenced
by the sequence of impulse instants or, more precisely, by the differences
tk − tk−1 for all k. These so-called dwell-times equal the duration of how
long the flow component is active until a jump occurs and also determine
the number of impulses within a given time period. Thus stability results
are usually formulated under concrete assumptions on the dwell-times. The
most typical and relevant ones are the following.

2The state of the system (2.1) is explicitly given by (2.1b) as well as x(t) = eA(t−t0)x(0)
for all t ∈ [t0, t1) and

x(t) = eA(t−tk+1)AJ eA(tk+1−tk) · · · AJ eA(t1−t0)x(0)

for all t ∈ [tk+1, tk+2) and all k ∈ N0.
If (2.1b) is absent, the state is simply given by x(t) = eAtx(0) for all t ≥ 0.
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Definition 2.2 (Dwell-Time Conditions) The strictly increasing sequence
(tk)k∈N0 with t0 = 0 is said to satisfy

• an exact dwell-time condition if there exists some T > 0 such that

tk − tk−1 = T for all k ∈ N (EDT)

• a minimum dwell-time condition if there exists some Tmin > 0 such
that

tk − tk−1 ∈ [Tmin,∞) for all k ∈ N (MDT)

• a range dwell-time condition if there exist 0 < Tmin ≤ Tmax such
that

tk − tk−1 ∈ [Tmin, Tmax] for all k ∈ N. (RDT)

There are various more ways to constrain the dwell-times such as re-
stricting the average number of jumps in given time intervals (average
dwell-time) and it is also possible to constrain them not at all which is
referred to as arbitrary dwell-time [74, 98, 97]. One could also allow the
impulse instants tk to depend on the value of (parts of) the current state
x at time t which leads to the field of event-triggered control [70, 153], but
this is not pursued here. In the sequel, we focus on an analysis based on
a range dwell-time condition and will comment on some of the alternative
criteria stated in Definition 2.2.

Our first stability result is essentially taken from [18] and forms the basis
of all upcoming results. It involves Lyapunov arguments [11] and also relies
on the incorporation of a so-called clock. This clock is the function defined
by

θ(t) := t− tk for all t ∈ [tk, tk+1) and k ∈ N0 (2.2)

which depends on the sequence of impulse instants (tk)k∈N0 and which is
illustrated in Fig. 2.1. This clock allows us, by its very nature, to define
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0

Tmax

Tmin

t0 t1 t2 t3 t4 . . .

Figure 2.1: The clock (2.2) for a sequence (tk)k∈N0 satisfying (RDT).

piecewise continuous Lyapunov functions capable of adequately dealing
with the flow and jump component of the system (2.1) simultaneously.

We emphasize that, in contrast to, e.g., lifting or looped-functional based
approaches [171, 45, 24], the resulting conditions are particularly well suited
for deriving controller design criteria as the system matrices A and AJ enter
in a convex and very convenient fashion.

Theorem 2.3 (Clock-Based Stability Analysis Criteria) The system (2.1) is
stable for all sequences (tk)k∈N0 satisfying (RDT) if there exists a function
X ∈ C1([0, Tmax],Sn) satisfying the (differential) linear matrix inequalities
(LMIs)3

X(τ) ≻ 0 (2.3a)

and

Ẋ(τ) +A⊤X(τ) +X(τ)A =
(
A

I

)⊤(
0 X(τ)

X(τ) Ẋ(τ)

)(
A

I

)
≺ 0 (2.3b)

3A brief introduction to standard LMIs and some useful tools are given in Appendix C;
the employed (mostly standard) notation is recalled in Appendix A. How to numer-
ically deal with non-standard LMIs as in (2.3) is discussed in Appendix D.
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for all τ ∈ [0, Tmax] as well as

A⊤
JX(0)AJ −X(τ) =

(
AJ

I

)⊤(
X(0) 0

0 −X(τ)

)(
AJ

I

)
≺ 0 (2.3c)

for all τ ∈ [Tmin, Tmax].

Proof. By continuity of X and Ẋ, compactness of [0, Tmax], and strictness
of the inequalities in (2.3a) and (2.3b), we infer the existence of positive
constants α, β, γ satisfying

αI ≼ X(τ) ≼ βI and Ẋ(τ) +A⊤X(τ) +X(τ)A+ γX(τ) ≼ 0

for all τ ∈ [0, Tmax]. Let x(0) ∈ Rn and (tk)k∈N0 satisfying (RDT) be
arbitrary and let x be the corresponding state trajectory of the system
(2.1). Then we define the function

η : t 7→ x(t)⊤X(θ(t))x(t)

with θ being the clock as given in (2.2). From the previous inequalities we
infer

α∥x(t)∥2 ≤ η(t) ≤ β∥x(t)∥2 for all t ≥ 0

and also

η̇(t) + γη(t) = x(t)⊤[Ẋ +A⊤X +XA+ γX
]
(θ(t))x(t) ≤ 0

for all t ∈ (tk, tk+1) and all k ∈ N0. By continuity of η on (tk, tk+1) and
right continuity at tk, this yields

η(t) ≤ e−γ(t−tk)η(tk) for all t ∈ [tk, tk+1) and k ∈ N0.
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Moreover, by (2.3c) we have, for all k ∈ N,

η(tk) = x(tk)⊤X(0)x(tk) = x(t−k )⊤A⊤
JX(0)AJx(t−k )

≤ x(t−k )⊤X(θ(t−k ))x(t−k ) = η(t−k ).

A combination with the previous inequality leads to

η(t) ≤ e−γtη(0) for all t ≥ 0

and thus

∥x(t)∥2 ≤ 1
α
η(t) ≤ 1

α
e−γtη(0) ≤ β

α
e−γt∥x(0)∥2 for all t ≥ 0.

This yields the claim. •
Intuitively, the piecewise continuous function η plays a similar role as a

Lyapunov function. In particular, (2.3b) ensures that η is monotonically
decreasing on each of the intervals [tk, tk+1), while (2.3c) assures a decrease
from one of these intervals to the next; the condition (2.3a) allows us to
link the values of η with the norm of the state trajectory and, hence, to
conclude an asymptotic decrease as desired.

Structurally, (2.3a) and (2.3b) constitute exactly the most commonly
employed nominal stability analysis criteria for the continuous-time sys-
tem ẋ(t) = Ax(t) on the finite time horizon [0, Tmax], and (2.3c) is closely
related to the LMI based nominal analysis criteria for the discrete-time
system x(k + 1) = AJx(k). We will show that this is essentially the same
for most of the results developed in this thesis, but with “nominal stability
analysis” replaced by “nominal performance analysis”, “nominal synthe-
sis”, “robust stability analysis”, etc. and with the systems ẋ(t) = Ax(t)
and x(k + 1) = AJx(k) replaced by systems with inputs and outputs cor-
responding to the considered problem.
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Remark 2.4 (a) We recover stability criteria for the system (2.1) in-
volving sequences of impulse instants with arbitrary dwell-time by
restricting the map X to be constant. Moreover, in the case that
the jump component is absent, i.e., (2.1) constitutes a standard
continuous-time LTI system, we recover the well-known Lyapunov
based stability criteria

X ≻ 0 and A⊤X +XA ≺ 0

by additionally omitting (2.3c). Feasibility of these LMIs is equiv-
alent to the matrix A being Hurwitz, i.e., all its eigenvalues are
contained in the open left half-plane.

(b) Analogous stability conditions for sequences of impulse instants sat-
isfying (EDT) are obtained by choosing Tmax := Tmin := T in The-
orem 2.3. In this case, it is shown in [18] that (2.3) is equivalent to
the existence of some matrix X satisfying

X ≻ 0 and A⊤
J e

A⊤TXeATAJ −X ≺ 0,

which is the same as saying that all eigenvalues of eATAJ are located
in the complex unit disk4.

(c) Stability conditions for sequences (tk)k∈N0 satisfying (MDT) can be
obtained by formally taking the limit Tmax → ∞. However, it is often
more convenient to work with alternative ones obtained by choosing
Tmax := Tmin and by additionally enforcing Ẋ(Tmin) = 0. Their proof

4Note that if the sequence (tk)k∈N0 satisfies (EDT), then the state trajectory x of (2.1)
satisfies

x(t−
k+1) = eAT AJ x(t−

k
) for all k ∈ N

and
∥x(t)∥ ≤ max

τ∈[0,T ]
∥eAτ AJ ∥ · ∥x(t−

k
)∥ for all t ∈ [tk, tk+1).
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0

Tmin

t0 Tmin t1 t2 t3 . . .

Figure 2.2: Modified clock (2.2) for a sequence (tk)k∈N0 with (MDT).

relies on a modification of the clock (2.2) as depicted in Fig. 2.2 and
as given by θ(t) = t − tk for t ∈ [tk, tk + Tmin] and θ(t) = Tmin for
t ∈ [tk + Tmin, tk+1) for all k ∈ N0.

(d) Note that Theorem 2.3 can also be viewed as a robust analysis result
since the conditions (2.3) guarantee stability for all sequences of
impulse instants (tk)k∈N0 satisfying (RDT).

(e) Similarly as other approaches based on introducing a clock [4, 19, 21],
Theorem 2.3 only yields sufficient conditions for stability. Necessary
and sufficient stability criteria for hybrid systems are rather seldom
and typically involve conditions that are numerically delicate; for ex-
ample the approaches in [29, 169] are based on homogeneous polyno-
mial Lyapunov functions and the resulting LMIs are very expensive
to solve. However, in the case of exact dwell-time, it is shown in [18]
that the above conditions are indeed necessary and sufficient.

(f) An inspection of the proof reveals that feasibility of the LMIs (2.3)
also implies that, for any state trajectory of the system (2.1), the
following inequality is satisfied

x(t)⊤X(θ(t))x(t) ≤ x(0)⊤X(0)x(0) for all t ≥ 0.
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This inequality yields the following invariance property

x(t)∈
⋃

τ∈[0,Tmax]

{
z ∈ Rn : z⊤X(τ)z ≤ x(0)⊤X(0)x(0)

}
for all t ≥ 0

involving the union of an infinite family of ellipsoids. Similarly as,
e.g., in [12, 51], such inequalities and/or properties pave the way for
a refined local stability analysis, but we will mostly stick to a global
analysis in the sequel.

(g) The condition X(τ) ≻ 0 for all τ ∈ [0, Tmax] can be replaced without
loss of generality by X(0) ≻ 0, which usually results in a smaller
computational burden; a similar complexity reduction is possible for
some of our design results as well. Indeed, by denoting the left hand
side of (2.3b) by W (τ), we can express X(τ) as

X(τ) = e−A⊤τ

(
X(0) +

∫ τ

0
eA

⊤sW (s)eAsds
)
e−Aτ

since both functions solve the same initial value problem and by the
uniqueness of this problem’s solution. Then we infer

X(τ) ≽ e−A⊤τ

(
X(0) +

∫ Tmax

0
eA

⊤sW (s)eAsds
)
e−Aτ

= eA
⊤(Tmax−τ)X(Tmax)eA(Tmax−τ)

≻ eA
⊤(Tmax−τ)A⊤

JX(0)AJeA(Tmax−τ) ≽ 0

for all τ ∈ [0, Tmax]. Here, the three inequalities are consequences of
(2.3b), (2.3c) and X(0) ≻ 0, respectively.

(h) Note that finding a function X satisfying (2.3) constitutes an infi-
nite dimensional problem that cannot be solved directly in general.
However, numerically tractable sufficient conditions can be obtained
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via each of the approaches discussed in Appendix D. They result
in finite dimensional semidefinite programs that can be solved via
semidefinite programming solvers such as SeDuMi [155], Mosek [113]
or LMIlab [55].

Example

As an illustration, let us consider a concrete linear impulsive system (2.1)
described by the matrices

A :=
(

−1 0.1
0 1.2

)
and AJ :=

(
1.2 0
0 0.5

)
, (2.4)

which is also considered in [18]. Based on Theorem 2.3 and a simple bisec-
tion, we can, for example, determine the largest Tmax such that this im-
pulsive system is assured to be stable for all sequences of impulse instants
(tk)k∈N0 satisfying (RDT) for Tmin := 0.19. In order to turn the analysis
conditions (2.3) into a standard semidefinite program that can be solved
numerically (e.g., with LMIlab [55]), we employ the B-spline relaxation as
discussed in detail in Section D.3.

We obtain that stability is guaranteed for all (tk)k∈N0 satisfying (RDT)
as long as Tmax ≤ 0.5776 holds, which is the same upper bound as obtained
in [18]. Note that this bound is essentially tight because the matrix eATAJ
has an eigenvalue λ with |λ| > 1 if T ≥ 0.5777. In particular, the system
(2.1) with the (periodic) impulse instants tk = Tk is unstable for any
T ≥ 0.5777.

Three state trajectories x = ( x1
x2 ) of the impulsive system (2.1) with

describing matrices (2.4) and initial condition x(0) = ( 0
1 ) are illustrated

in Fig. 2.3; the corresponding sequence of impulse instants (tk)k∈N0 are
given by (0.5k)k∈N0 , (0.57k)k∈N0 and (0.58k)k∈N0 . The first two trajectories
converge to zero as time goes to infinity and the last trajectory admits
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Figure 2.3: State trajectories of the system (2.1) with (2.4) and (tk)k∈N0

given by (0.5k)k∈N0 , (0.57k)k∈N0 and (0.58k)k∈N0 , respectively.

unstable characteristics which is in accordance with our analysis results.

2.1.2 Stability Analysis of Switched Systems

The most popular class of hybrid systems consists of so-called switched
systems as studied, e.g., in [4, 98, 97]. For a sequence of impulse instants
0 = t0 < t1 < t2 < . . . , matrices A1, . . . , AN ∈ Rn×n and some initial
condition x(0) ∈ Rn, a switched linear system admits the description

ẋ(t) = Aσ(t)x(t) (2.5)

for t ≥ 0; here, the switching function σ : [0,∞) → {1, . . . , N} is constant
on each of the intervals [tk−1, tk). The switching function σ determines
which mode of the system (2.5) is currently active and a change of the value
of σ induces the transition from one mode to another. These transitions are
instantaneous and, thus, introduce discrete-time behavior to the otherwise
continuous dynamics. Hence, (2.5) constitutes indeed a hybrid system.
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A benefit of studying impulsive systems is that numerous results can
easily be converted to corresponding results for switched systems. In par-
ticular, we obtain the following criteria guaranteeing stability by a minor
modification of the proof of Theorem 2.3; here, stability of the system (2.5)
is analogously defined as in Definition 2.1. These criteria involve conditions
of the form (2.3a) and (2.3b) for each of the modes of the system (2.5) as
well as a jump condition of the form (2.3c) with AJ = I for each pair of
modes.

Corollary 2.5 (Clock-Based Stability Analysis Criteria for Switched Systems)
The system (2.5) is stable for all switching functions σ defined by sequences
(tk)k∈N0 satisfying (RDT) if there exist X1, . . . , XN ∈ C1([0, Tmax],Sn)
satisfying

Xk(τ) ≻ 0 and
(
Ak

I

)⊤(
0 Xk(τ)

Xk(τ) Ẋk(τ)

)(
Ak

I

)
≺ 0 (2.6a,b)

for all τ ∈ [0, Tmin] and k ∈ {1, . . . , N} as well as

Xl(0) −Xk(τ) =
(
I

I

)⊤(
Xl(0) 0

0 −Xk(τ)

)(
I

I

)
≺ 0. (2.6c)

for all τ ∈ [Tmin, Tmax] and k, l ∈ {1, . . . , N}.

Remark 2.6 (a) For switched systems one has even more possibilities to
define constraints on the dwell-times by formulations that depend
on the currently active mode and/or several past ones. This is for
example done in [20].

(b) The above description allows the transition from each mode to each
mode (including the current mode). In practice, it might be mean-
ingful to consider or allow only some of those transitions. Formally,
this can be achieved by introducing a directed (unweighted) graph
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G = (V,E) with vertices V = {1, . . . , N} and edges E ⊂ V 2 and
constraining the switching function σ to satisfy (σ(tk−1), σ(tk)) ∈ E

for all k ∈ N. For example, let us consider the system (2.5) with
N = 3 modes and a switching function constrained by the graph
G with edges E = {(1, 2), (2, 3), (3, 1), (3, 3)}. Then the system can
only switch from mode 1 to mode 2, from mode 2 to mode 3, from
mode 3 to mode 1 and it can stay in mode 3. The corresponding
criteria for stability are identical to the ones in Corollary 2.5, but
(2.6c) must be satisfied only for all (k, l) ∈ E. It is also possible to
constrain the values of σ by utilizing other objects from computer
science such as finite-state machines as done, e.g., in [92, 165].
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G

GJ

e d

eJ dJ

x(t−• ) x(t•)

Figure 2.4: Block diagram corresponding to the impulsive system (2.7).

2.2 Performance
Next to analyzing stability of a dynamical system, it is important to in-
vestigate its behavior or performance with respect to exogenous inputs.
To this end, for real matrices A,B,C,D, AJ , BJ , CJ , DJ of appropriate
dimensions, some initial condition x(0) ∈ Rn and a sequence of impulse
instants 0 = t0 < t1 < t2 < . . . , let us consider now a linear impulsive
system with the description(

ẋ(t)
e(t)

)
=
(
A B

C D

)(
x(t)
d(t)

)
, (2.7a)(

x(tk)
eJ(k)

)
=
(
AJ BJ

CJ DJ

)(
x(t−k )
dJ(k)

)
(2.7b)

for t ≥ 0 and k ∈ N. This system is also depicted in Fig. 2.4, where G and
GJ stand for its flow and the jump component, respectively. The input
signals d ∈ L2 and dJ ∈ ℓ2 are generalized disturbances5 and we wish to
analyze the effect of those inputs on the (performance) output signals e, eJ

5The terminology generalized disturbance stems from the fact that this signal can
comprise actual disturbances like wind hitting a truck on the highway and, e.g., for
a controlled mechanical system, a reference signal provided by some user that the
system is supposed to follow.



24 Chapter 2 Nominal Analysis

in some metric; in most situations the latter two signals are error indicators
and the goal is to minimize their norm. There are various possible and
interesting metrics to choose depending on the concrete application. For
standard LTI systems, as obtained by omitting the impulsive component
(2.7b), a summary is given, e.g., in [149, Section 3.3] and one can extend
most of them to hybrid systems such as (2.7).

2.2.1 Quadratic Performance

We will mostly focus on so-called quadratic performance criteria that are
defined as follows and involve two symmetric matrices P and PJ that are
usually partitioned accordingly to the stacked signals ( ed ) and

( eJ
dJ

)
, respec-

tively; we also make use of a notion of stability for (2.7) which is almost
identical to the one in Definition 2.1. For reasons of space, we will in the se-
quel indicate objects that can be inferred by symmetry or are not relevant
by the symbol “•”.

Definition 2.7 (Stability and Quadratic Performance)

• The system (2.7) is said to be stable if there exist constants M,γ > 0
such that ∥x(t)∥ ≤ Me−γt∥x(0)∥ holds for all t ≥ 0 and all initial
conditions x(0) ∈ Rn and for vanishing disturbances d = 0, dJ = 0.

• The system (2.7) is said to achieve quadratic performance with index
(P, PJ) if there exists some ε > 0 such that

∫ ∞

0
(•)⊤P

(
e(t)
d(t)

)
dt+

∞∑
k=1

(•)⊤PJ

(
eJ(k)
dJ(k)

)
≤ −ε∥d∥2

L2
− ε∥dJ∥2

ℓ2

holds for the initial condition x(0) = 0 and for all (d, dJ) ∈ L2 × ℓ2.

Note that Definition 2.7 is formulated only in terms of the state tra-
jectory as well as the input and output signals. In particular, it allows
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for more general descriptions than (2.7) that involve, e.g., time-dependent
describing matrices or nonlinear components.

For standard LTI systems, an important quantity with ample motiva-
tions found in the robust control literature (e.g., in [179, 66, 43]) is the
energy gain which equals

sup
d∈L2\{0}

∥e∥L2

∥d∥L2

and is identical to the H∞-norm of the system if its transfer matrix is
stable. An analogous quantity for the impulsive system (2.7), which we
also refer to as energy gain, is given by

sup
(d,dJ )∈(L2×ℓ2)\{0}

√
∥e∥2

L2
+ ∥eJ∥2

ℓ2√
∥d∥2

L2
+ ∥dJ∥2

ℓ2

.

It is not difficult to see that this gain is bounded by some γ > 0 if the system
(2.7) achieves quadratic performance with index

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
,

and that this gain equals the infimal γ > 0 such that (2.7) achieves
quadratic performance with index

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
.

Let us provide our first performance analysis result which extends The-
orem 2.3 and allows for more general performance indices than those cor-
responding to the energy gain.

Theorem 2.8 (Quadratic Performance Analysis) Let the symmetric matrices
P =

(
Q S

S⊤ R

)
, PJ =

(
QJ SJ
S⊤
J RJ

)
with Q ≽ 0 and QJ ≽ 0 be given. Then

the system (2.7) is stable and achieves quadratic performance with index
(P, PJ) for all (tk)k∈N0 satisfying (RDT) if there exists a function X ∈
C1([0, Tmax],Sn) satisfying the LMIs

X(τ) ≻ 0 (2.8a)
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and

(•)⊤

(
0 X(τ)

X(τ) Ẋ(τ)

)(
A B

I 0

)
+ (•)⊤P

(
C D

0 I

)
≺ 0 (2.8b)

for all τ ∈ [0, Tmax] as well as

(•)⊤

(
X(0) 0

0 −X(τ)

)(
AJ BJ

I 0

)
+ (•)⊤PJ

(
CJ DJ

0 I

)
≺ 0 (2.8c)

for all τ ∈ [Tmin, Tmax].

Proof. Stability: The left upper blocks of (2.8b) and (2.8c) read as

Ẋ(τ) +A⊤X(τ) +X(τ)A+ C⊤QC ≺ 0

and
A⊤
JX(0)AJ −X(τ) + C⊤

J QJCJ ≺ 0,

respectively. By Q ≽ 0, QJ ≽ 0 and (2.8a), we can then infer that the
LMIs (2.3) hold and conclude stability from Theorem 2.3.

Performance: By continuity of X and Ẋ, compactness of [0, Tmax] and
[Tmin, Tmax], and strictness of the inequalities in (2.8b) and (2.8c), we infer
the existence of some positive constant ε such that (2.8b) and (2.8c) hold
for R and RJ replaced by R+ εI and RJ + εI, respectively.

Let now d ∈ L2, dJ ∈ ℓ2 and (tk)k∈N0 satisfying (RDT) be arbitrary
and let x be the state trajectory of the system (2.7) corresponding to these
inputs and sequence of impulse instants as well as to the initial condition
x(0) = 0. With θ being the clock as given in (2.2), we then define the
function

η : t 7→ x(t)⊤X(θ(t))x(t)

as in the proof of Theorem 2.3 which is nonnegative due to (2.8a). From
the ε-modification of (2.8b), we infer, for all t ∈ (tk, tk+1) and all k ∈ N0,
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that

η̇(t) = (•)⊤

(
0 X(θ(t))

X(θ(t)) Ẋ(θ(t))

)(
A B

I 0

)(
x(t)
d(t)

)

≤ −(•)⊤P

(
C D

0 I

)(
x(t)
d(t)

)
− ε∥d(t)∥2

= −(•)⊤P

(
e(t)
d(t)

)
− ε∥d(t)∥2

holds. Similarly, the ε-modification of (2.8c) leads to

η(tk) − η(t−k ) = (•)⊤

(
X(0) 0

0 −X(θ(t−k ))

)(
AJ BJ

I 0

)(
x(t−k )
dJ(k)

)

≤ −(•)⊤PJ

(
CJ DJ

0 I

)(
x(t−k )
dJ(k)

)
− ε∥dJ(k)∥2

= −(•)⊤PJ

(
eJ(k)
dJ(k)

)
− ε∥dJ(k)∥2

for all k ∈ N. Moreover, continuity of η on the intervals [tk, tk+1) yields

η(t) − η(0) = η(t) − η(tk) +
k∑
l=1

(
η(tl) − η(tl−1)

)
= η(t) − η(tk) +

k∑
l=1

(
η(t−l ) − η(tl−1)

)
+

k∑
l=1

(
η(tl) − η(t−l )

)
=
∫ t

tk

η̇(s) ds+
k∑
l=1

∫ tl

tl−1

η̇(s) ds+
k∑
l=1

(
η(tl) − η(t−l )

)
for all t ∈ [tk, tk+1) and all k ∈ N0. Combining the latter identity and
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inequalities results in

η(t) − η(0) +
∫ t

0
(•)⊤P

(
e(s)
d(s)

)
ds+

k∑
l=1

(•)⊤PJ

(
eJ(l)
dJ(l)

)

≤ −ε
∫ t

0
∥d(s)∥2ds− ε

k∑
l=1

∥dJ(l)∥2

for all t ∈ [tk, tk+1) and all k ∈ N0. Due to the nonnegativity of η and
η(0) = x(0)⊤X(0)x(0) = 0, this yields

∫ t

0
(•)⊤P

(
e(s)
d(s)

)
ds+

k∑
l=1

(•)⊤PJ

(
eJ(l)
dJ(l)

)
≤ −ε

∫ t

0
∥d(s)∥2 ds−ε

k∑
l=1

∥dJ(l)∥2

for all t ∈ [tk, tk+1) and all k ∈ N0. The proof is finished by taking the
limit t → ∞. •
Remark 2.9 (Dissipativity) An inspection of the proof of Theorem 2.8 re-
veals that, even without positivity constraints on the matrices Q and QJ ,
we can also conclude from the LMIs (2.8) the existence of some ε > 0 such
that

x(tb)⊤X(θ(tb))x(tb) − x(ta)⊤X(θ(ta))x(ta)

≤ −
∫ tb

ta

(•)⊤P

(
e(s)
d(s)

)
ds−

k∑
l=j+1

(•)⊤PJ

(
eJ(l)
dJ(l)

)

− ε

∫ tb

ta

∥d(s)∥2 ds− ε

k∑
l=j+1

∥dJ(l)∥2

holds for all ta ∈ [tj , tj+1), tb ∈ [tk, tk+1) with ta ≤ tb and j ≤ k and
all admissible system trajectories. This is essentially a (strict) dissipation
inequality similarly as introduced in [167, 168] by Jan Willems, but for the
impulsive system (2.7). Dissipation inequalities play a fundamental role
in control and are strongly intertwined with quadratic performance. In
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the language of dissipation theory, the above inequality involves a (clock-
dependent) storage function

V : Rn × [Tmin, Tmax] → R, V (x, τ) := x⊤X(τ)x

as well as two supply rates s : Rne × Rnd → R and sJ : RneJ × RndJ → R
defined, respectively, by

s(e, d) := −(•)⊤P ( ed ) and sJ(eJ , dJ) := −(•)⊤PJ
( eJ
dJ

)
.

Remark 2.10 (a) As for stability analysis in Theorem 2.3, we obtain
corresponding performance analysis conditions for standard LTI sys-
tems in continuous-time by omitting (2.8c) and by constraining X

to be constant. Moreover, corresponding performance criteria for se-
quences of impulse instants satisfying (EDT) or (MDT) are obtained
with the same modifications as mentioned in Remark 2.4.

(b) Note that, in contrast to the standard LTI case, the quadratic per-
formance criteria in Theorem 2.8 are not necessary because the ones
from the underlying stability result Theorem 2.3 are only sufficient
in general. In particular, it is typically not possible to determine the
energy gain of the system (2.7) exactly based on Theorem 2.8, but
we can numerically determine good upper bounds on this value by
computing the infimal γ > 0 such that there exists a function X

satisfying (2.8) for (P, PJ) =
((

I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
.

(c) Also note that the conditions (2.8) are related to the performance
analysis criteria in [66, 156, 26] for (time-varying) linear systems
that are defined on a finite time-horizon [0, T ]. This is not surprising
because one can view the impulsive system (2.7) as a family of linear
systems (2.7a) defined on the finite time-horizons [tk, tk + 1), k ∈ N
with responses that are glued together according to (2.7b).
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Example

Let us consider an impulsive system (2.7) with describing matrices

(
A B

C D

)
=


−1 0.1 0
0 1.2 0.1
1 0 0
0 1 0

 and
(
AJ BJ

CJ DJ

)
=

1.2 0 0
0 0.5 1
1 0 0

 . (2.9)

Since A and AJ coincide with the matrices (2.4) from the previous example,
we already know that this system is stable for all (tk) satisfying (RDT) with
0.19 = Tmin ≤ Tmax ≤ 0.5776. Theorem 2.8 now permits us to analyze this
systems input-output behavior in more detail by determining upper bounds
on its energy gain for various values of Tmax.

Two of these upper bounds are given by the full lines in Fig. 2.5. These
curves are obtained by employing linear splines (Section D.2.1) and the
B-spline relaxation (Section D.3), respectively. The parameters in both ap-
proaches are chosen such that the latter always admits smaller running
times than the former. Since, in addition, uniformly smaller upper bounds
are obtained, we conclude that the B-spline approach is superior than the
one relying on linear splines; note that the sum-of-squares approach (Sec-
tion D.1) yields the same upper bounds as B-splines, but tends to require
larger computation times.

One observes that both curves are constant for 0.19 ≤ Tmax ≤ 0.44 and
grow dramatically as Tmax moves towards 0.5776. The latter is expected
since the system becomes unstable for Tmax ≥ 0.5777 and the former can
be partly explained by considering the upper bounds on the energy gain for
sequences (tk)k∈N0 satisfying (EDT) with T = Tmax (dashed lines). Since
these upper bounds are relatively large for T = 0.19 and because (Tk)k∈N0

satisfies (RDT) for Tmin = T and any Tmax, the upper bounds obtained
for sequences (tk)k∈N0 satisfying (RDT) are bounded from below by those
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Figure 2.5: Upper bounds on the energy gain of the system (2.7) with
(2.9) and sequences (tk)k∈N0 satisfying (RDT) / (EDT) result-
ing from applying the linear spline (LS) and the B-spline (BS)
approach.

values, respectively.

2.2.2 Energy-to-Peak Performance

Next to the energy gain, another interesting quantity related to the perfor-
mance of a given system is the so-called energy-to-peak gain, which is also
referred to as generalized H2-norm. A definition and discussion of this gain
for standard LTI systems is found, e.g., in [127]. For an impulsive system
(2.7), this gain can, e.g., be analogously defined as

sup
(d,dJ )∈(L2×ℓ2)\{0}

supt≥0 ∥e(t)∥√
∥d∥2

L2
+ ∥dJ∥2

ℓ2

.

Similarly as before, we can compute good upper bounds on this value based
on another extension of our stability result Theorem 2.3.
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Theorem 2.11 (Energy-to-Peak Analysis) Let Y be a positive definite matrix
and suppose that D = 0. Then the system (2.7) is stable and its output e
satisfies

e(t)⊤Y −1e(t) ≤
∫ t

0
∥d(s)∥2 ds+

k∑
l=1

∥dJ(l)∥2

for all t ∈ [tk, tk+1), all k ∈ N0 and all disturbances d, dJ all (tk)k∈N0

satisfying (RDT) and for the initial condition x(0) = 0 if there exists a
function X ∈ C1([0, Tmax],Sn) satisfying the LMIs6

(
Y C

C⊤ X

)
≻0,

(•)⊤

 0 X

X Ẋ

−I


ABI 0

0 I

≺0 and (•)⊤

X(0) 0
0 −X

−I


AJ BJI 0

0 I

≺0

(2.10)
on [0, Tmax], [0, Tmax] and [Tmin, Tmax], respectively.

Note that the energy-to-peak gain of (2.7) is smaller than γ > 0 if the
LMIs (2.10) are feasible for Y := γ2I. Theorem 2.11 is formulated for a
general matrix Y because viewing this matrix as a decision variable and
minimizing its trace subject to feasibility of (2.10) allows for determining
a “smallest” ellipsoid with the invariance property

e(t) ∈
{
x
∣∣ x⊤Y −1x ≤ 1

}
for all t ≥ 0 and all (d, dJ) with ∥d∥2

L2
+ ∥dJ∥2

ℓ2
≤ 1.

6For a matrix-valued function F with domain X, we will from now on frequently write

F ≻ 0 on X instead of F (x) ≻ 0 for all x ∈ X.

We proceed analogously for “≽”, “=”, “≼” and “≺”.
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Example

For the impulsive system (2.7) with (2.9) and for sequences (tk)k∈N0 with
(RDT) and [Tmin, Tmax] = [0.19, 0.5], we obtain the gray ellipsoid depicted
in Fig. 2.6 by utilizing the B-spline relaxation. Restricting the sequence
(tk)k∈N0 to satisfy (EDT) with T = 0.5 yields the black ellipsoid. The lat-
ter is tight as supported by two trajectories, which result from (worst-case)
disturbances (d, dJ) satisfying ∥d∥2

L2
+ ∥dJ∥2

ℓ2
≤ 1, hitting the boundary of

the black ellipsoid at different points. The blue trajectory from Fig. 2.6 and
its corresponding disturbances (d, dJ) are also illustrated in Fig. 2.7. Note
that the systematic construction of worst-case disturbances (especially in
the case of impulse sequences satisfying (RDT)) is an open problem; the
ones depicted in Fig. 2.7 are generated by a rather brute-force approach.
In a nutshell, we did express d = d(α) and dJ = dJ(αJ) as a linear com-
bination of few basis functions of L2 and ℓ2 with coefficients α and αJ ,
respectively. Then we applied a nonlinear program solver to the problem

max
α,αJ

sup
t≥0

∥e(t)∥ subject to (2.7) and ∥d(α)∥2
L2

+ ∥dJ(αJ)∥2
ℓ2

≤ 1

for several feasible initial values of α and αJ .
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Figure 2.6: Invariant ellipsoids for the system (2.7) with (2.9) and se-
quences (tk)k∈N0 satisfying (RDT) (gray) and (EDT) (black)
as well as two worst-case trajectories.
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Figure 2.7: (Left) both components of the blue trajectory from Fig. 2.6 and
(right) the corresponding input disturbances (d, dJ).

2.2.3 Alternative Analysis Criteria with Slack-Variables

In order to render several interesting controller design approaches convex
and thus numerically tractable, it is often mandatory to add constraints on
some of the decision variables in the underlying performance analysis result
which can introduce (severe) conservatism. The whole book [46] elaborates
in detail on the idea to utilize equivalent alternative performance criteria
involving so-called slack variables and to enforce the constraints required
for the design on these new artificial variables instead of on the original
ones. This procedure is usually referred to as S-variable approach, originates
from [39] and is by now known to be beneficial in a multitude of situations.
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Technically, the S-variable approach relies on the projection lemma C.12
as recalled in the appendix or variations thereof as, e.g., given in [38].
Our next result demonstrates how to appropriately add slack variables to
the quadratic performance criteria from Theorem 2.8 by utilizing a non-
standard variation of the projection lemma as stated in Lemma C.13. This
variation is required for ensuring that the constructed slack variables are
continuous functions.

Theorem 2.12 (Quadratic Performance Analysis with Slack Variables) Let X
be a fixed matrix-valued continuously differentiable map. Then the inequal-
ities (2.8) are satisfied if and only if there exist some scalar ρ > 0 and
continuous maps G, GJ satisfying

X ≻ 0 and (•)⊤


0 ρG⊤ G⊤

ρG −ρ(G+G⊤) X −G⊤

G X −G Ẋ

P




0 A B

I 0 0
0 I 0
0 C D

0 0 I

 ≺ 0

(2.11a,b)
on [0, Tmax] as well as

(•)⊤


0 GJ 0
G⊤
J X(0) −GJ −G⊤

J 0
0 0 −X

PJ




0 AJ BJ

I 0 0
0 I 0
0 CJ DJ

0 0 I

≺0 (2.11c)

on [Tmin, Tmax].

Proof. We begin with some preparations. Note that the left hand side of
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(2.11b) equals


0

(
X 0

)
(•)⊤

(
Ẋ 0
0 0

)
+(•)⊤P

(
C D

0 I

)
︸ ︷︷ ︸

:= Q

+He


ρII

0


︸ ︷︷ ︸

:= U

G
(

−I A B
)

︸ ︷︷ ︸
:= V

 ,

while the left hand side of (2.11c) reads as

X(0) 0

0
(

−X 0
0 0

)
+(•)⊤PJ

(
CJ DJ

0 I

)
︸ ︷︷ ︸

:= Q̂

+He


I0

0


︸ ︷︷ ︸
:= Û

GJ

(
−I AJ BJ

)
︸ ︷︷ ︸

:= V̂


.

Basis matrices of the kernels of U , V , Û , V̂ are given by

U⊥ :=

− 1
ρI 0
I 0
0 I

, V⊥ :=

A B

I 0
0 I

, Û⊥ :=

0 0
I 0
0 I

, V̂⊥ :=

AJ BJ

I 0
0 I

,
respectively. Next, observe that we have the following identities

V ⊤
⊥ QV⊥ = (•)⊤

(
0 X

X Ẋ

)(
A B

I 0

)
+ (•)⊤P

(
C D

0 I

)
,

U⊤
⊥QU⊥ =

(
Ẋ − 2

ρX 0
0 0

)
+ (•)⊤P

(
C D

0 I

)
,

V̂ ⊤
⊥ Q̂V̂⊥ = (•)⊤

(
X(0) 0

0 −X

)(
AJ BJ

I 0

)
+ (•)⊤PJ

(
CJ DJ

0 I

)
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and

Û⊤
⊥ Q̂Û⊥ =

(
−X 0

0 0

)
+(•)⊤PJ

(
CJ DJ

0 I

)
= V̂ ⊤

⊥ Q̂V̂⊥ − (•)⊤X(0)
(
AJ BJ

)
.

After these preparations, the proof is as follows.
“If”: This statement follows from pointwise applying the standard pro-

jection lemma C.12, from the above identities as well as recalling that the
inequalities V ⊤

⊥ QV⊥ ≺ 0 and V̂ ⊤
⊥ Q̂V̂⊥ ≺ 0 are identical to (2.8b) and (2.8c),

respectively.
“Only if”: By assumption and the above computations, we have the

inequalities V ⊤
⊥ QV⊥ ≺ 0 on [0, Tmax] and V̂ ⊤

⊥ Q̂V̂⊥ ≺ 0 on [Tmin, Tmax].
Due to X ≻ 0 on [0, Tmax], we can further conclude that

Û⊤
⊥ Q̂Û⊥ = V̂ ⊤

⊥ Q̂V̂⊥ − (•)⊤X(0)
(
AJ BJ

)
≺ 0 on [Tmin, Tmax]

holds. Finally, by (•)⊤P (DI ) ≺ 0 on [0, Tmax], continuity of Ẋ and X, and
compactness of [0, Tmax], the Schur complement C.6 allows us to infer the
existence of some small ρ such that U⊤

⊥QU⊥ ≺ 0 on [0, Tmax]. In total we
have

V ⊤
⊥ QV⊥ ≺ 0, U⊤

⊥QU⊥ ≺ 0, V̂ ⊤
⊥ Q̂V̂⊥ ≺ 0 and Û⊤

⊥ Q̂Û⊥ ≺ 0

on [0, Tmax], [0, Tmax], [Tmin, Tmax] and [Tmin, Tmax], respectively. Since U ,
V , Û and V̂ are constant, the latter inequalities permit us to apply the
projection lemma C.13 in order to construct continuous functions G and
GJ satisfying (2.11). •

In the following chapters we will provide examples and comment on the
benefits of including slack variables in various situations.
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2.3 Summary
In this chapter we elaborate in detail on the clock dependent stability
analysis criteria established in [18] for linear impulsive systems character-
ized by sequences of impulse instances satisfying dwell-time constraints. In
particular, these criteria are formulated in Theorem 2.3 and in terms of
differential LMIs that can be numerically solved based on, e.g., any of the
relaxation schemes discussed in Appendix D. We show in Corollary 2.5 how
to modify these criteria for analyzing switched systems, and demonstrate
in Theorem 2.8 that they generalize naturally to tractable conditions for
assuring dissipation based performance objectives for impulsive systems
with inputs and outputs in their flow and jump component.

Moreover, we provide in Theorem 2.12 novel alternative analysis crite-
ria involving slack variables. The benefit of introducing such variables in
various concrete situations is illustrated, e.g., in the book [46]. We have
published these criteria in [84] along with corresponding convex conditions
for designing output-feedback controllers as discussed in the next chapter.
In particular, we will employ these criteria for designing clock independent
controllers for impulsive systems.



3
Nominal Synthesis

Next to analyzing the behavior of a dynamical system, another key task
in control engineering is to govern a system such that its operation is
safe and some desired performance objective is achieved. This is usually
accomplished by employing sensors that measure parts of the system’s
state (such as positions, velocities, angles, forces, temperatures, pressures,
etc.), by processing the observed data, and by accordingly commanding the
system’s actuators (such as motors, heaters, pumps, etc.). It is instrumental
to view the conversion from measurements to actuator commands again as
a dynamical system that is interconnected to the original one and which is
referred to as controller. Unfortunately, appropriately designing controllers
is in general a challenging task that often requires a lot of tuning and
physical insights on the underlying system.

In the first part of this chapter, we systematically design dynamic con-
trollers for impulsive systems unaffected by uncertainties and where the
full state is unavailable for control. In particular, we show that the synthe-
sis of such a controller can be turned into a convex optimization problem
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that is efficiently solvable by means of standard algorithms. Alternative
results have been proposed, e.g., in [7, 108, 95, 174]. These are based on
separation principles and/or on suitable generalizations of geometric tech-
niques. Moreover, apart from [95], all of the above mentioned papers rely
on a specific structure of the underlying system. In contrast, our design
results allow for general linear impulsive systems and the flexible nature of
our approach permits us to illustrate several interesting variations such as
designing controllers for switched and sampled-data systems.

In the second part, we provide a generalization of the so-called dual
iteration to impulsive systems. The latter originally and still constitutes
a promising heuristic procedure for the challenging and non-convex de-
sign of static output-feedback controllers for linear time-invariant systems.
In contrast to dynamic ones, static controllers are more comfortable to
implement, but much more difficult to construct due to the intrinsic non-
convexity of the involved optimization problem. We will reconsider the dual
iteration in Chapter 5 for the purpose of designing controllers for uncertain
impulsive systems.

3.1 Dynamic Output-Feedback Controller
Design

3.1.1 Controller Design for Impulsive Systems

For real matrices of appropriate dimensions, an initial condition x(0) ∈ Rn,
generalized disturbances d ∈ L2, dJ ∈ ℓ2 and a sequence of impulse instants
(tk)k∈N0 satisfying (RDT), we consider now the impulsive open-loop plant
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with the generic descriptionẋ(t)
e(t)
y(t)

 =

A B B2

C D D12

C2 D21 0


x(t)
d(t)
u(t)

 , (3.1a)

x(tk)
eJ(k)
yJ(k)

 =

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 0


x(t−k )
dJ(k)
uJ(k)

 (3.1b)

for t ≥ 0 and k ∈ N. In addition to the signals in (2.7), the system (3.1)
involves measurement outputs y, yJ and control inputs u, uJ . For given
symmetric matrices P and PJ , we aim in this section to design a dynamic
output-feedback controller(

ẋc(t)
u(t)

)
=
(
Ac(θ(t)) Bc(θ(t))
Cc(θ(t)) Dc(θ(t))

)(
xc(t)
y(t)

)
, (3.2a)(

xc(tk)
uJ(k)

)
=
(
AcJ(θ(t−k )) BcJ(θ(t−k ))
CcJ(θ(t−k )) Dc

J(θ(t−k ))

)(
xc(t−k )
yJ(k)

)
(3.2b)

for t ≥ 0 and k ∈ N such that the closed-loop interconnection of (3.1)
and (3.2) is stable and achieves quadratic performance with index (P, PJ).
Here, θ denotes the clock as defined in (2.2) and Ac, Bc, Cc, Dc, AcJ , BcJ ,
CcJ , Dc

J are to-be-designed continuous matrix-valued maps1. The latter
interconnection is illustrated in Fig. 3.1, where G, K, GJ and KJ denote
the flow and jump components of the system (3.1) and the controller (3.2),
respectively.

1In order to underline some of the progress made in this chapter, we highlight the
describing maps of any controller in blue to emphasize that these enter the closed-
loop analysis conditions as variables in a non-convex fashion. In contrast, our design
results only involve variables that enter in a convex fashion and which we highlight
in light blue.



42 Chapter 3 Nominal Synthesis

G

GJ

e d

eJ dJ

x(t−• ) x(t•)

K

KJ

xc(t
−
• ) xc(t•)

uJ yJ

u y

Figure 3.1: Block diagram of the closed-loop interconnection (3.3) of the
system (3.1) with the controller (3.2).

Observe that this interconnection admits the equivalent description(
ẋcl(t)
e(t)

)
=
(

A(θ(t)) B(θ(t))
C(θ(t)) D(θ(t))

)(
xcl(t)
d(t)

)
, (3.3a)(

xcl(tk)
eJ(k)

)
=
(

AJ(θ(t−k )) BJ(θ(t−k ))
CJ(θ(t−k )) DJ(θ(t−k ))

)(
xcl(t−k )
dJ(k)

)
(3.3b)

(for t ≥ 0 and k ∈ N) with state xcl := ( x
xc ), initial condition xcl(0) and

(
A B
C D

)
:=

A 0 B

0 0 0
C 0 D

+

0 B2

I 0
0 D12

(Ac Bc

Cc Dc

)(
0 I 0
C2 0 D21

)
(3.4)



3.1 Dynamic Output-Feedback Controller Design 43

as well as analogously defined maps AJ ,BJ , CJ ,DJ . Note that the closed-
loop interconnection (3.3) is structurally of the same form as the impulsive
system (2.7), but with the describing matrices replaced by clock-dependent
ones. An inspection of the proof of Theorem 2.8 reveals that this analysis
result also applies to systems with description (3.3). To this end, we proceed
in this chapter under the following assumption on the performance index.

Assumption 3.1 The symmetric matrices P =
(
Q S

S⊤ R

)
and PJ =

(
QJ SJ
S⊤
J RJ

)
are partitioned accordingly to the stacked signals ( ed ) and

( eJ
dJ

)
, respectively.

Moreover, the left upper blocks of P and PJ are positive semidefinite, i.e.,
there exist matrices T , TJ , U , UJ satisfying U ≻ 0, UJ ≻ 0, Q = TU−1T⊤

and QJ = TJU
−1
J T⊤

J .

In particular, we have the following.

Corollary 3.2 (Closed-Loop Analysis) The closed-loop ystem (3.3) is stable
and achieves quadratic performance with index (P, PJ) for all (tk)k∈N0 sat-
isfying (RDT) if there exists a function X ∈ C1([0, Tmax],S2n) satisfying
the inequalities

X ≻ 0 and (•)⊤

(
0 X
X Ẋ

)(
A B
I 0

)
+ (•)⊤P

(
C D
0 I

)
≺ 0 (3.5a,b)

on [0, Tmax] as well as

(•)⊤

(
X (0) 0

0 −X

)(
AJ BJ
I 0

)
+ (•)⊤PJ

(
CJ DJ

0 I

)
≺ 0 (3.5c)

on [Tmin, Tmax].

One might wonder why we consider the design of controllers (3.2) with
clock-dependent describing matrices instead of constant ones. As revealed
by our next theorem, it is actually natural to search for controllers of the
former type because we can provide necessary and sufficient LMI condi-
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tions for their existence. Of course, this dependence on the clock is also due
to the employed closed-loop analysis criteria in Corollary 3.2. In a similar
fashion, clock-dependent controllers have been designed, e.g., in [18] un-
der the strong assumption that the full state x is available for control. In
particular, note that an implementation of the controller (3.2) requires the
knowledge of the clock-value θ(t) and its left-limit θ(t−) at time t, which
is the same as knowing the last impulse instant tk with tk < t. We com-
ment on the design of controllers (3.2) with constant describing matrices
in Remark 3.5. Finally, note that it is also possible to design controllers
with impulses occurring asynchronously to the ones of the underlying open-
loop system (3.1) based on the ideas from [170], but this is not elaborated
on here. They are closely related to the ones on so-called inexact gain-
scheduled controller design as considered, e.g., in [133].

In order to find a suitable controller (3.2) for the system (3.1) based
on Corollary 3.2, we are required to simultaneously search for some X
and Ac, Bc, Cc, Dc, AcJ , BcJ , CcJ , Dc

J satisfying (3.5). At the outset, this
appears to be a difficult non-convex problem. A possibility to circumvent
this issue is the application of a convexifying parameter transformation
that is by now well-known in the LMI literature and has been proposed in
[107, 137]. In our case, an extra issue results from the need to apply this
transformation on the flow (3.3a) and jump component (3.3b) of the system
(3.3) simultaneously. This leads to the following result which has also been
published by the author in [84]. Similar conditions also appeared in [6]
in the context of finite time stabilization, but they did consider neither a
performance nor a control channel in the system’s jump component and
only block diagonal matrices P .
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Theorem 3.3 (Controller Design via Confexifying Parameter Transformation)
There exists a controller (3.2) for the system (3.1) such that the LMIs (3.5)
are feasible if and only if there exist continuously differentiable X,Y and
continuous K,L,M,N , KJ , LJ ,MJ , NJ satisfying

X ≻ 0 and (•)⊤

(
0 I

I Z

)(
A B
I 0

)
+ (•)⊤P

(
C D
0 I

)
≺ 0 (3.6a,b)

on [0, Tmax] as well as

(•)⊤

(
X(0)−1 0

0 −X

)(
AJ BJ

I 0

)
+ (•)⊤PJ

(
CJ DJ

0 I

)
≺ 0 (3.6c)

on [Tmin, Tmax]. Here, the matrix-valued maps ( A B
C D ) ,

(AJ BJ
CJ DJ

)
,X and Z

are defined asAY A B

0 XA XB

CY C D

+

0 B2

I 0
0 D12

(K L

M N

)(
I 0 0
0 C2 D21

)
,

AJY AJ BJ

0 X(0)AJ X(0)BJ
CJY CJ DJ

+

0 BJ2

I 0
0 DJ12

(KJ LJ

MJ NJ

)(
I 0 0
0 CJ2 DJ21

)
,

(
Y I

I X

)
and

(
−Ẏ 0
0 Ẋ

)
,

respectively.

Note that the inequalities (3.6) can be turned into LMIs by our As-
sumption 3.1 on the quadratic performance index and by the linearization
lemma C.8, i.e., by utilizing the Schur complement C.6. In particular, we
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can express the inequalities in (3.6b) and (3.6c) as

Z + A + A⊤ B + C⊤S C⊤T

B⊤ + S⊤C D⊤S + S⊤D +R D⊤T

T⊤C T⊤D −U



=

I 0
0 S⊤

0 T⊤

(A B
C D

)(
I 0 0
0 I 0

)
+ (•)⊤ +

Z 0 0
0 R 0
0 0 −U

 ≺ 0 (3.7a)

on [0, Tmax] and


−X C⊤

J SJ A⊤
J C⊤

J TJ

S⊤
J CJ D⊤

J SJ + S⊤
J DJ +RJ B⊤

J D⊤
J TJ

AJ BJ −X(0) 0
T⊤
J CJ T⊤

J DJ 0 −UJ

 =


0 0
0 S⊤

J

I 0
0 T⊤

J


(

AJ BJ

CJ DJ

)(
I 0 0 0
0 I 0 0

)
+ (•)⊤ −


X 0 0 0
0 −RJ 0 0
0 0 X(0) 0
0 0 0 UJ

≺ 0

(3.7b)

on [Tmin, Tmax], respectively. Observe that all decision variables X, Y ,
K, L, M , N , KJ , LJ , MJ , NJ enter those inequalities and the cou-
pling condition (3.6a) in an affine fashion which permits us to solve them
by employing, e.g., any of the methods suggested in Appendix D. For
(P, PJ) =

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
, the performance index corresponding

to the energy gain, we can even simultaneously minimize the upper bound
on the energy gain γ since γ2 also enters in an affine fashion. Finally note
that an explicit formula for constructing the describing matrices Ac, Bc,
Cc, Dc, AcJ , BcJ , CcJ , Dc

J of the controller (3.2) is given in the proof below.
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Proof. We only prove sufficiency as necessity is essentially obtained by
reversing the arguments. Whenever we take an inverse of a matrix valued
map in the sequel, this is meant pointwise, i.e., for a map F the function
F−1 satisfies F−1(τ)F (τ) = I for all τ in its domain.

Step 1: Construction of X : Due to (3.6a), we can infer the existence
of differentiable and pointwise nonsingular functions U and V satisfying
UV ⊤ = I − XY ; a possible choice is U := X and V := X−1 − Y . By
(3.6a), we can then additionally infer that X := Y−TZ = Y−TXY−1 ≻ 0
holds for

Y :=
(
Y I

V ⊤ 0

)
and Z :=

(
I 0
X U

)
.

Step 2: Transformation of Parameters: Let us define the continuous maps(
Ac Bc

Cc Dc

)
:=
(
U XB2

0 I

)−1(
K−XAY −ẊY −U̇V ⊤ L

M N

)(
V ⊤ 0
C2Y I

)−1

and(
AcJ BcJ
CcJ Dc

J

)
:=
(
U(0) X(0)BJ2

0 I

)−1(
KJ−X(0)AJY LJ

MJ NJ

)(
V ⊤ 0
CJ2Y I

)−1

.

The bijective mapping from Ac, Bc, Cc, Dc, AcJ , B
c
J , C

c
J , D

c
J to K,L,M,N ,

KJ , LJ ,MJ , NJ is referred to as convexifying parameter transformation.
Its definition is motivated by the following observations. Note at first that
Y⊤Ẋ Y equals

ŻY−Ẏ⊤Z⊤ =
(

−Ẏ −Ẏ X − V̇ U⊤

ẊY + U̇V ⊤ Ẋ

)
= Z+

(
0 (•)⊤

ẊY + U̇V ⊤ 0

)

since Z = Y⊤X and Ż = Y⊤Ẋ + Ẏ⊤X . Moreover, we infer by routine
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computations that
(

Y⊤X AY Y⊤X B
CY D

)
equals

(
Z 0
0 I

)
A 0 B

0 0 0
C 0 D

+

0 B2

I 0
0 D12

(Ac Bc
Cc Dc

)(
0 I 0
C2 0 D21

)(Y 0
0 I

)

=

AY A B

0 XA XB

CY C D

+

0 B2

I 0
0 D12


×

((
U XB2

0 I

)(
Ac Bc

Cc Dc

)(
V ⊤ 0
C2Y I

)
+
(
XAY 0

0 0

))(
I 0 0
0 C2 D21

)
.

This equals by the convexifying parameter transformationAY A B

0 XAXB

CY C D

+

0 B2

I 0
0D12

((K L

M N

)
−

(
ẊY +U̇V ⊤ 0

0 0

))(
I 0 0
0C2 D21

)

=
(

A B
C D

)
− diag

((
0 0

ẊY + U̇V ⊤ 0

)
, 0
)
.

In particular, a combination with the identity for Y⊤Ẋ Y results in(
Y⊤(Ẋ + A⊤X + X A))Y Y⊤X B

CY D

)
=
(

Z + A⊤ + A B
C D

)
.

Finally, we compute in a similar fashion, for any τ ∈ [Tmin, Tmax],(
Y(0)⊤X (0)AJ(τ)Y(τ) Y(0)⊤X (0)BJ(τ)

CJ(τ)Y(τ) DJ(τ)

)
=
(

AJ(τ) BJ(τ)
CJ(τ) DJ(τ)

)
.

Step 3: Transformation of LMIs: Due to the identities from the previous
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step, the LMI (3.6a) and (3.6b) read, after congruence transformation with
Y−1 and diag(Y−1, I), as (3.5a) and (3.5b), respectively. Similarly, a con-
gruence transformation with diag(Y−1, I) leads from (3.6c) to (3.5c). •
Remark 3.4 (a) The corresponding controller design result for an im-

pulsive system (3.1) involving a sequence of impulse instants with
(MDT) is obtained by choosing Tmax := Tmin and adding the con-
straints Ẋ(Tmin) = Ẏ (Tmin) = 0. Indeed, this permits us to choose
U and V such that they additionally satisfy U̇(Tmin)V (Tmin)⊤ = 0;
a possible choice is still U := X and V := X−1 − Y . This yields
Ẋ (Tmin) = 0 as required by the modification of Corollary 3.2 for
sequence of impulse instants with (MDT).

(b) For systems (3.1) involving impulse instants with (EDT), the do-
main of the maps in the jump component of the controller (3.2) is
the singleton {T} and, hence, they can be viewed as constant matri-
ces. Moreover, note that in this case the impulses occur periodically
which permits the use of lifting techniques as in [45, 28] in order to
obtain alternative design criteria.

Remark 3.5 (Design of Controllers with Constant Describing Matrices) In
order to simplify the implementation of the impulsive controller (3.2), one
might aim for controllers with constant describing matrices; note that their
implementation still requires knowledge of the impulse instants (tk)k∈N0

due to the nature of the jump component. An inspection of the proof of
Theorem 3.3 reveals that we can synthesize such controllers by enforcing all
the matrices X,Y ,K,L,M,N,KJ , LJ ,MJ , NJ to be constant. However,
doing so renders the resulting synthesis inequalities (3.6) very conservative
and, thus, rarely feasible. As a remedy, we can also design such controllers
based on the alternative analysis criteria in Theorem 2.12 involving slack
variables by carefully adapting the parameter transformation from [40].
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This approach still requires to enforce several variables to be constant, but
turns out to be much less conservative. The derivation of the resulting
design criteria is similar to the one of the conditions in Theorem 3.11 and,
thus, omitted here. These criteria are explicitly shown in [84] where we also
provide a comparison to the ones in Theorem 3.3.

Remark 3.6 (Static State-Feedback) As for standard LTI systems, dynamic
output-feedback controller synthesis is conceptually more difficult than de-
signing a static state-feedback controller based on the same analysis result.
Such a static state-feedback controller admits the natural description

u(t) = Dc(θ(t))x(t), uJ(k) = Dc
J(θ(t−k ))x(t−k )

and relies on availability of measurements of the full state trajectory of the
system (3.1), i.e., y(t) = x(t) and yJ(k) = x(t−k ) as well as (C2, D21) =
(I, 0) and (CJ2, DJ21) = (I, 0). Similarly as in [18], the corresponding syn-
thesis LMIs are the same as in (3.6), but with simpler bold-face matrix-
valued maps given by X = Y , Z = −Ẏ ,(

A B
C D

)
=
(
AY +B2N B

CY +D12N D

)
and

(
AJ BJ

CJ DJ

)
=
(
AJY +BJ2NJ BJ

CJY +DJ12NJ DJ

)
.

Remark 3.7 (Possible Spectrum of Performance Index) Let D ∈ Rne×nd

and DJ ∈ RneJ×ndJ and suppose that the analysis inequalities (3.5) are
satisfied for some controller (3.2) and a performance index (P, PJ) satis-
fying Assumption 3.1. Then we have (•)⊤P

(
Ine

0
)
≽ 0 and infer from the

right lower block of (3.5b) that (•)⊤P
(

D(0)
Ind

)
≺ 0 holds as well. By the

strictness of the inequalities (3.5), by continuity and by compactness of
[0, Tmax], we can perturb P such that it is nonsingular and the inequalities
are still satisfied. This permits us to apply Lemma C.10 in order to infer
that this matrix P must have exactly nd negative and ne positive eigenval-
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ues. Analogously, we obtain that PJ must have exactly ndJ negative and
neJ positive eigenvalues. In the next results we will explicitly incorporate
a variant of these necessary design conditions while taking Assumption 3.1
into account.

As an alternative to the convexifying parameter transformation, we can
utilize in various situations the elimination lemma C.11 as recalled in the
appendix. This lemma can either be applied directly to the closed-loop
analysis LMIs (3.5) or to the inequalities in Theorem 3.3 in order to elim-
inate almost all of the appearing variables. The technical difficulty is to
assure continuity when reconstructing the eliminated variables.

Theorem 3.8 (Controller Design via Elimination) Let D ∈ R•×nd and DJ ∈
R•×ndJ , and suppose that P and PJ are nonsingular with exactly nd and
ndJ negative eigenvalues, respectively. Moreover, let U , V , UJ and VJ

be basis matrices of ker((B⊤
2 , D

⊤
12)), ker((C2, D21)), ker((B⊤

J2, D
⊤
J12)) and

ker((CJ2, DJ21)), respectively. Then there exists a controller (3.2) for the
system (3.1) such that the LMIs (3.5) are feasible if and only if there exist
continuously differentiable X,Y satisfying(

Y I

I X

)
≻ 0, (3.8a)

(•)⊤

 0 X

X Ẋ

P



A B

I 0
C D

0 I

V ≺0 and (•)⊤

Ẏ Y

Y 0
P−1




I 0
−A⊤ −C⊤

0 I

−B⊤ −D⊤

U≻0

(3.8b,c)
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on [0, Tmax] as well as

(•)⊤

X(0) 0
0 −X

PJ



AJ BJ

I 0
CJ DJ

0 I

VJ ≺ 0 (3.8d)

and

(•)⊤

Y (0) 0
0 −Y

P−1
J




I 0
−A⊤

J −C⊤
J

0 I

−B⊤
J −D⊤

J

UJ ≻ 0 (3.8e)

on [Tmin, Tmax].

Proof. Only if: Observe at first that we can express (3.5b) as

0 ≻ (•)⊤


0 X 0 0
X Ẋ 0 0
0 0 Q S

0 0 S⊤ R




A B
I 0
C D
0 I

 = (•)⊤


Ẋ 0 X 0
0 R 0 S⊤

X 0 0 0
0 S 0 Q


︸ ︷︷ ︸

=:P̃


I 0
0 I

A B
C D



= (•)⊤P̃

(
I2n+nd

W̃ + Ũ⊤ZṼ

)

on [0, Tmax] with Z :=
(
Ac Bc

Cc Dc
)

and matrices W̃ , Ũ , Ṽ that can be read
off from (3.4). Next, note that, for any τ ∈ [0, Tmax], the matrix P̃ (τ) is
nonsingular with exactly 2n+nd negative eigenvalues by its structure, the
assumptions on P =

(
Q S

S⊤ R

)
and by (3.5a). This permits us to apply the

elimination lemma C.11 pointwise for each τ ∈ [0, Tmax] and leads after
few computations to the LMIs (3.8b) and (3.8c) with maps X and Y that
are coupled as (3.8a) by (3.5a). Analogously, we can infer from (3.5c) that
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the LMIs (3.8d) and (3.8e) are satisfied which yields the claim.
Note that we did apply the elimination lemma pointwise on the closed-

loop analysis inequalities (3.5) in order to infer feasibility of the LMIs (3.8).
One can come to the same conclusion by pointwise applying elimination
on the synthesis LMIs (3.6) in Theorem 3.3.

If: For the converse we can also apply the elimination lemma C.11 point-
wise in order to construct maps K,L,M,N,KJ , LJ ,MJ , NJ satisfying the
transformed synthesis LMIs (3.6). However, these maps might then be dis-
continuous. By combining the elimination lemma C.11 with the continuous
selection theorem of [110] or the findings from [14], the existence of con-
tinuous maps satisfying the LMIs (3.6) is ensured. However, the latter
two results do not provide means to construct these continuous maps and,
hence, we need some extra work for their construction.

To this end let us now suppose that we have discontinuous maps K,
L, M , N , KJ , LJ , MJ , NJ satisfying (3.6). By a Schur complement, we
then infer that the LMI (3.7) is satisfied. The major benefit of considering
these LMIs is that we can apply a variant of the projection lemma C.13
to remove the discontinuous maps and then apply it once more in order to
construct continuous ones. Once the latter continuous maps are obtained,
it remains to apply the parameter transformation in the proof of Theorem
3.3 in order to construct the describing maps Ac, Bc, Cc, Dc, AcJ , BcJ , CcJ ,
Dc
J of the controller (3.2). •
For practical implementations, it usually seems to be sufficient to take

sufficiently fine grids of the intervals [0, Tmin] and [Tmin, Tmax], to build X
as in the proof of Theorem 3.3, to apply the elimination lemma C.11 on the
LMIs (3.5b) and (3.5c) for each of the knots in the grids, and to perform
an interpolation of the resulting matrices.
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Remark 3.9 Due to the much smaller number of decision variables, it is
typically preferable to work with Theorem 3.8 instead of Theorem 3.3. In
general, it is, however, more difficult to generalize the former to structured
design problems than the latter.

Remark 3.10 (Numerical Reconstruction of Controller Matrices) Similarly
as for standard H∞-controller design, the construction of the describing
matrices of the controller (3.2), once a feasible solution of the synthesis
criteria in Theorem 3.3 or 3.8 is available, can suffer from a number of
numerical issues. As a remedy, one can try one or multiple of the following
suggestions.

• Additionally enforce bounds on (all or some of) the decision variables
and on (all or some of) their derivatives. For example by introducing
the constraints

(
γI K

K⊤ 1
γ I

)
≻ 0 and/or X ≺ βI on [0, Tmax] for some

γ, β > 0.

• Include
(
Y βI
βI X

)
≻ 0 on [0, Tmax] for some β > 1. This aims at

pushing the eigenvalues of X − Y −1 away from zero and, hence,
improves the quality of X .

• Some SDP solvers have trouble to deal properly with strict inequal-
ities. It can then be beneficial to replace “≻ 0” and “≺ 0” by “≻ εI”
and “≺ −εI”, respectively, for some small ε > 0.

• If one aims, for example, to determine a controller that achieves a
small energy gain for the closed-loop by choosing the performance
index as

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
in Theorem 3.3 or 3.8 and by mini-

mizing γ, one should not try to construct a controller corresponding
to the optimal gain γopt. Instead, it is recommended to construct
a close-to-optimal controller corresponding to γ := (1 + ε)γopt for
some small ε > 0.
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Note that for (P, PJ) =
((

I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
, the performance index

corresponding to the energy gain, and if the orthogonality conditions

D⊤
12(C,D12) = (0, I),

(
B
D21

)
D⊤

21 = ( 0
I ) ,

D⊤
J12(CJ , DJ12) = (0, I),

(
BJ
DJ21

)
D⊤
J21 = ( 0

I )

as well as D = 0 and DJ = 0 hold, then the inequalities (3.8b)-(3.8e) can
be turned into

Ẋ +A⊤X +XA+ γ−2XBB⊤X + C⊤C − γ2C⊤
2 C2 ≺ 0,

Ẏ −AY − Y A⊤ − Y C⊤CY − γ−2BB⊤ +B2B
⊤
2 ≻ 0,

A⊤
JX(0)AJ −X − (A⊤

JX(0)BJ)
(
B⊤
J X(0)BJ − γ2I

)−1(•)⊤

+ C⊤
J CJ − γ2C⊤

J2CJ2 ≺ 0

and

Y (0)−AJY A⊤
J −(AJY C⊤

J )
(
I−CJY C⊤

J

)−1(•)⊤−γ−2BJB
⊤
J +BJ2B

⊤
J2 ≻0,

respectively. Orthogonality conditions of this type are frequently employed
in H∞-control for non-hybrid systems (see, e.g., [178, Section 14.2]) and
shown in [129] to be not restrictive in this context. The latter inequalities
essentially admit the form of continuous- and discrete-time Riccati inequal-
ities which also have a long history in control, but we will not work with
them. Let us just note that the reformulation of (3.8b) relies on choosing

V :=
(

I 0
−D⊤

21C2 D21⊥

)
with D21⊥ being a basis matrix of ker(D21),
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observing that B⊤ = D21⊥W holds for some matrix W , and on an applica-
tion of the Schur complement C.6. The remaining inequalities (3.8c)-(3.8e)
are modified analogously.

Example

θ2
θ1 Instrument

package

As an illustration let us consider a sim-
ple model for a flexible satellite which
is explained in [53] and modeled as fol-
lows with state x̃ = col(θ2, θ̇2, θ1, θ̇1)
and with constants J1 = 1, J2 = 0.1,
k = 0.091 and b = 0.0036:

(
˙̃x(t)
v(t)

)
=


0 1 0 0 0 0

− k
J2

− b
J2

k
J2

b
J2

1 0
0 0 0 1 0 0
k
J1

b
J1

− k
J1

− b
J1

0 1
J1

1 0 0 0 0 0


x̃(t)
d̃(t)
u(t)

 . (3.9)

The standard H∞-design procedure allows us, for example, to synthesize
a (non-impulsive) dynamic output-feedback controller K such that the
closed-loop interconnection with (3.9) is stable, the output v nicely fol-
lows a given piecewise constant reference signal r despite the presence of a
disturbance d̃, and such that the control input u is not too large.

To this end, we consider a standard weighted reference tracking config-
uration depicted in Fig. 3.2 with weights

Wr = 1, Wd = 0.2, Wu = 0.1 and Werr(s) = 0.5s+ 0.433
s+ 0.00433

and where G denotes the system (3.9); note that the dynamic weight Werr

can be equivalently expressed as a standard LTI system with state ξWerr via
the inverse Laplace transformation. Disconnecting the controller K from
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GK +
WdWr

Wu

Werr

u

d̃d̂
v

rr̂ −
ẽ ê

û

Figure 3.2: A standard weighted tracking configuration.

this configuration results in a weighted open-loop system which fits into
the generic description (3.1a) with the signals

x :=
(

x̃

ξWerr

)
, e :=

(
ê

û

)
, y :=

(
v

r

)
, d :=

(
r̂

d̂

)
as well as u

and for easily computed describing matrices A,B,B2, C,D,D12, C2, D21.
In particular, the latter description permits us to apply the specialization
of Theorem 3.8 to non-impulsive systems, which is standard in the LMI
literature and implemented in hinfsyn from Matlab. This results in a close-
to-optimal controller K which achieves a closed-loop energy gain of 0.877.
A simulation of the interconnection of this controller and the system (3.9)
for some reference r and some small random disturbance d̃ is shown at
the top of Fig. 3.3. In particular, we observe that the controller K indeed
admits the desired properties.

Let us now assume that, due to limited communication, the output v of
the system (3.9) can only be measured at times t0, t1, . . . with (tk)k∈N0 sat-
isfying (RDT) with [Tmin, Tmax] = [0.4, 0.5]. Naively driving the obtained
controller K without any modifications with the reference r and with the
piecewise constant signal

ṽ(t) := v(tk) for t ∈ [tk, tk+1) and k ∈ N0
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results in the closed-loop response depicted on the middle of Fig. 3.3. We
clearly observe that the tracking quality deteriorates and that the control
input u grows dramatically in size which is usually unacceptable.

As a remedy, we can explicitly take into account in the model of our
(weighted) open-loop system that r is available at all times and that we
have access to v only at time instances tk. To this end, recall from (3.1a)
that we have

ẋ(t) = Ax(t) +Bd(t) +B2u(t) and e(t) = Cx(t) +Dd(t) +D12u(t).

Since the reference r is available at all times we define the measured output
as

y(t) := r(t) = ( 1 0 ) d(t) for t ≥ 0.

Since v is only available at the time instances tk, we define the additional
measured output

yJ(k) :=
(
v(tk)
r(tk)

)
= C2x(tk) +D21d(tk) for k ∈ N0,

where we incorporated the reference for simplifying the exposition. By
defining the input disturbance dJ(k) := d(tk) and by recalling that the
open-loop state x is continuous in our configuration, i.e., x(tk) = x(t−k )
holds for all k ∈ N, this leads to the generic description of an impulsive
system (3.1)ẋ(t)
e(t)
y(t)

=

A B B2

C D D12

0 ( 1 0 ) 0


x(t)
d(t)
u(t)

,
x(tk)
eJ(k)
yJ(k)

=

 I 0 0
0 0 0
C2 D21 0


x(t−k )
dJ(k)
uJ(k)

,
where we incorporated the redundant signals eJ and uJ for the sake of com-
patibility. An application of Theorem 3.8 yields an impulsive controller
(3.2) which achieves a closed-loop energy gain that is guaranteed to be
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Figure 3.3: Some reference r and closed-loop responses of the system (3.9)
with controllers that have access to r as well as to the output
v at all times (top) and only at fixed time instances t0, t1, . . .
(middle and bottom). The one in the middle is naively designed
and the one at the bottom based on Theorem 3.8.

smaller than 0.936. The response of the interconnection of this controller
and (3.9) is shown at the bottom of Fig. 3.3. We observe a clear improve-
ment in terms of the size of the control input u and of the tracking behavior
which is of almost identical quality as initially obtained by the controller
K when measuring the output v at all times.

Clock-Independent Controller Design

We have mentioned that the ideas from [170] permit the design of impul-
sive controllers with impulses occurring asynchronously to the ones of the
underlying open-loop system (3.1). In a similar vein, one might raise the
question whether it is possible by means of convex optimization to design
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a controller that is independent of the clock and which does not rely on
knowledge of the impulse instants. Let us show that this is answered in the
affirmative under some structural assumptions on the system (3.1) and by
introducing slack variables similarly as in Theorem 2.12.

Theorem 3.11 Let
(
B2
D12

)
=
( 0

−I
)
,
(
BJ2
DJ12

)
= 0 and (CJ2, DJ21) = 0. Then

there exists a controller(
ẋc(t)
u(t)

)
=
(
Ac Bc

Cc Dc

)(
xc(t)
y(t)

)

for the system (3.1) such that the LMIs (3.5) are feasible for the corre-
sponding closed-loop interconnection if there exist some ρ > 0, a continu-
ously differentiable X, continuous G,H, S with S −G being constant, and
matrices K,L,M,N satisfying

X ≻ 0 and (•)⊤


0 ρI I

ρI −ρ(G + G⊤) X − G⊤

I X − G Ẋ
P




0 A B
I 0 0
0 I 0
0 C D
0 0 I

 ≺ 0

(3.10a,b)
on [0, Tmax] as well as

(•)⊤

(
X(0) 0

0 −X

)(
AJ BJ

I 0

)
+ (•)⊤PJ

(
CJ DJ

0 I

)
≺ 0 (3.10c)

on [Tmin, Tmax]. Here, the matrix-valued maps ( A B
C D ),

(AJ BJ
CJ DJ

)
and G are

defined asHAHAHBGA GA GB

C C D

+

0 0
I 0
0 −I

(K L

M N

)(
I 0 0
C2 C2 D21

)
,

 I 0 0
AJ − I AJ BJ

CJ CJ DJ
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and (
H H

S G

)
,

respectively.

The structural constraints on the describing matrices of (3.1) are such
that the control channel in the jump component vanishes and such that
the flow component corresponds to the open-loop plant for an estimator
synthesis problem. A block diagram of the corresponding closed-loop in-
terconnection is depicted in Fig. 3.4 where K denotes the to-be-designed
estimator, G stands for the flow-component of the to-be-estimated systemẋ(t)

v(t)
y(t)

 =

A B

C D

C2 D21

(x(t)
d(t)

)

and GJ is the underlying system’s jump component. The estimation of
non-measurable signals constitutes one of the most important problems
in systems and control theory and is, hence, frequently considered in the
literature and for various classes of dynamical systems [59, 60, 131]. In par-
ticular, the goal is to determine a controller (or estimator or filter) which
takes the measured signal y as input and generates an optimal approxima-
tion u of the signal v := e + u; by choosing P =

(
I 0
0 −γ2I

)
and neglecting

the jump component, the estimation quality is measured in terms of the
energy gain from the disturbance input d to the estimation error e.

An explicit formula for constructing the controller matrices Ac, Bc, Cc,
Dc is given in the proof below which is inspired by [60]. They employ a
convexifying parameter transformation in order to design robust estima-
tors for uncertain systems based on an analysis result involving parameter
dependent Lyapunov functions and slack variables. In contrast to [60], we
merely require the difference S −G to be constant instead of all the maps
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Figure 3.4: Block diagram corresponding to closed-loop interconnection in
Theorem 3.11.

H, S, G. This leads to less conservatism. Note that deriving convex design
criteria without constraining some of the maps H, S, G and the describing
matrices in the flow component (3.1a) seems not to be possible since those
matrices appear in the parameter transformation.

Proof. Step 1: Construction of Certificate X and Slack Variable G: Since
S − G is constant and by the left upper block of (3.10b), we infer the
existence of pointwise nonsingular functions U and V satisfying SH−1 =
UV ⊤ + GH−1 and such that U as well as V ⊤H are constant; a possible
choice is U := S −G and V := H−1. Note that G := Y−⊤Z = Y−⊤GY−1

holds for

Y :=
(

I I

V ⊤H 0

)
and Z :=

(
H 0
G U

)
.

Moreover, we have X := Y−⊤XY−1 ≻ 0 and Ẋ = Y−⊤ẊY−1 by (3.10a)
and since Ẏ = 0.

Step 2: Transformation of Parameters: Let us now define the matrices(
Ac Bc

Cc Dc

)
:=
(
U 0
0 I

)−1(
K L

M N

)(
V ⊤H 0

0 I

)−1

.
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Observe that Ac, Bc, Cc, Dc are indeed independent of τ because U and
V ⊤H as well as K,L,M,N are constant matrices. These choices are mo-

tivated by the fact that
(

Y⊤GAY Y⊤GB
CY D

)
equals

(
Z 0
0 I

)
A 0 B

0 0 0
C 0 D

+

0 0
I 0
0 −I

(Ac Bc
Cc Dc

)(
0 I 0
C2 0 D21

)(Y 0
0 I

)

=

HAHAHBGA GA GB

C C D

+

0 0
I 0
0 −I

((U 0
0 I

)(
Ac Bc

Cc Dc

)(
V ⊤H 0

0 I

))(
I 0 0
C2 C2 D21

)

=

HA HA HB

GA GA GB

C C D

+

0 0
I 0
0 −I

(K L

M N

)(
I 0 0
C2 C2 D21

)
=
(

A B
C D

)
.

For the jump component, we infer via elementary computations

(
Y⊤X (0)AJY Y⊤X BJ

CJY DJ

)
=
(

X(0)Y−1AJY X(0)Y−1BJ
CJY DJ

)

=
(

X(0)AJ X(0)BJ

CJ DJ

)
.

due to the particular choice of the transformation matrix Y.
Step 3: Transformation of LMIs: Due to the identities from the previ-

ous step and after congruence transformation with Y−1 and diag(Y−1, I),
the inequalities (3.10a) and (3.10c) read as (3.5a) and (3.5c), respectively.
Finally, a congruence transformation of (3.10b) with diag(Y−1,Y−1, I) fol-
lowed by an application of the projection lemma C.12, in order to eliminate
the slack variable G, yields (3.5b). •
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Figure 3.5: Second state of the system (3.1) with (3.11) and its estimate ob-
tained by an impulsive controller (3.2) and by a non-impulsive
LTI controller, respectively.

Example

As an illustration let us consider the system (3.1) with matrices describing
the flow and jump component given by

−1 0.1 0 0
0 1.2 1 0
0 1 0 −1
1 0 0 0

 and


1.2 0 0 0
0 0.5 0.1 0
0 0 0 0
0 0 0 0

 , (3.11)

respectively, and for a sequence of impulse instants (tk)k∈N0 satisfying
(RDT) with [Tmin, Tmax] = [0.45, 0.5]. In particular, this open-loop config-
uration is chosen with the intention to design an estimator which measures
the first state x1 and generates a good approximation u of the second state
x2 despite the presence of the disturbances d and dJ .

By employing Theorem 3.8 and choosing (P, PJ) corresponding to the
energy gain, we can design an impulsive (and in particular clock-dependent)
estimator of the form (3.2). Depicted on the left of Fig. 3.5 is the state x2

and the resulting estimate u in response to a random disturbance dJ and
a step function d(t) := −4χ[0,10)(t) + 4χ[10,20)(t) − 2χ[20,50)(t). Here, χ[a,b)
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is a so-called indicator function which equals 1 on the interval [a, b) and
vanishes elsewhere. We essentially achieve a perfect estimation as both
curves are on top of each other. This behavior is expected since Theorem
3.8 yields a very small upper bound of 0.05 on the closed-loop energy gain
from disturbance to estimation error.

Naturally, the design of an estimator which does not rely on knowledge
of the clock and the impulse instants (tk)k∈N0 is conceptually much more
challenging, but still possible based on Theorem 3.11. Indeed, the estimate
u obtained from such an estimator is shown on the right of Fig. 3.5. The
estimation error is of course larger if compared to the one obtained before,
but we stress that the estimator resulting from Theorem 3.11 is merely a
standard LTI system.

3.1.2 Controller Design for Sampled-Data Systems

Sampled-data systems constitute a highly relevant class of hybrid systems
because in practice essentially any continuous-time open-loop plant is con-
trolled with a digital device. Output-feedback design approaches for such
systems are typically based on lifting techniques [45, 28] or on their inter-
pretation as a delay system as, e.g., in [122]. In contrast, we follow [61] and
rely on a representation as an impulsive system. This permits us to employ
Theorem 3.3 or 3.8 for systematic output-feedback design with unprece-
dented ease.

Formally, for real matrices of appropriate dimensions, some initial condi-
tion x(0) ∈ Rn, generalized disturbances d ∈ L2, dJ ∈ ℓ2 and a sequence of
impulse instants (tk)k∈N0 , we consider an open-loop sampled-data system
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y(t−• ) u(t•)

Figure 3.6: Standard sampled-data closed-loop interconnection involving
a continuous-time system G, a discrete-controller K a sample
operator and a hold operator.

of the form

(
ẋ(t)
e(t)

)
=
(
A B B2

C D D12

)x(t)
d(t)
u(t)

, (eJ(k)
yJ(k)

)
=
(
CJ DJ DJ12

CJ2 DJ21 0•×nu

)x(t−k )
dJ(k)
u(t−k )


(3.12a)

for t ≥ 0 and k ∈ N where the control input u is piecewise constant, i.e.,

u(t) = u(tk) for all t ∈ [tk, tk+1) and k ∈ N0. (3.12b)

In particular, only output samples are available for control and the con-
trol input is the result of a so-called zero-order-hold operation. The stan-
dard sampled-data closed-loop interconnection is illustrated in Fig. 3.6
and corresponds to choosing (CJ , DJ , DJ12) = 0 as well as dJ = d(t−• ),
y(t) = CJ2x(t) +DJ21d(t) and yJ = y(t−• ) in the description (3.12).

In order to reformulate (3.12) as an impulsive system with description
(3.1), the property (3.12b) is handled by viewing u as an additional state.
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This leads to the description
ẋ(t)
u̇(t)
e(t)
y(t)

=


A B2 B 0
0 0 0 0
C D12 D 0
0 0 0 0



x(t)
u(t)
d(t)
û(t)

,

x(tk)
u(tk)
eJ(k)
yJ(k)

=


I 0 0 0
0 0 0 I

CJ DJ12 DJ 0
CJ2 0 DJ21 0



x(t−k )
u(t−k )
dJ(k)
uJ(k)


(3.13)

for t ≥ 0 and k ∈ N, which is indeed a special case of (3.1). As a consequence
of Theorem 3.8, we obtain the first statement of the following result.

Theorem 3.12 Let D ∈ R•×nd and DJ ∈ R•×ndJ , and suppose that P and
PJ are nonsingular with exactly nd and ndJ negative eigenvalues, respec-
tively. Then there exists a controller (3.2) for the system (3.12) such that
the corresponding closed-loop analysis LMIs (3.5) are feasible if and only
if the synthesis LMIs (3.8) are feasible for the system (3.13). Moreover,
the latter synthesis LMIs are feasible if and only if there exist continuously
differentiable X1 and Y = ( Y 1 •

• • ) satisfying(
Y (•)⊤(

In 0n×nu

)
X1

)
≻ 0, (3.14a)

(•)⊤

 0 X1

X1 Ẋ1

P



A B

I 0
C D

0 I

≺0 and (•)⊤

Ẏ Y

Y 0
P−1




I 0
−Â⊤ −Ĉ⊤

0 I

−B̂⊤ −D⊤

≻0

(3.14b,c)
on [0, Tmax] as well as

(•)⊤

X1(0) 0
0 −X1

PJ



I 0
I 0
CJ DJ

0 I

VJ ≺ 0 (3.14d)
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and

(•)⊤

Y 1(0) 0
0 −Y

P−1
J




I 0
−Â⊤

J −Ĉ⊤
J

0 I

0 −D⊤
J

 ≻ 0 (3.14e)

on [Tmin, Tmax]. Here Â :=
(
A B2
0 0

)
, B̂ := (B0 ), Ĉ := (C,D12), ÂJ := (I, 0),

ĈJ := (CJ , DJ12) and VJ is a basis matrix of ker(CJ2, DJ21).

Note that compared to the generic synthesis LMIs (3.8) for (3.13), the
LMIs (3.14) are less expensive to solve since fewer decision variables are
involved. Indeed, X in (3.8) for (3.13) takes values in Sn+nu , while X1 in
(3.14) takes values in Sn.

Sketch of Proof. We only have to show the second statement since the first
one is a direct consequence of Theorem 3.8.

Only if: This follows from noting that, due to the particular structure of
(3.13), the annihilators appearing in Theorem 3.8 can be chosen as

U = I, V = I, UJ =

I 0
0 0
0 I

 and VJ =

V1 0
0 I

V2 0

 ,

where
(
V1
V2

)
is a basis matrix of ker(CJ2, DJ21). This leads immediately

from (3.8c) and (3.8e) to (3.14c) and (3.14e), respectively. The remaining
inequalities are obtained from (3.8a), (3.8b) and (3.8d) by canceling the
block rows and columns corresponding to the right lower nu × nu block of
X.

If: This follows from augmenting the given matrix-valued map X1 as
X(τ) := diag(X1(τ), α

τ+1Inu) for all τ ∈ [0, Tmax] and for some large
enough α > 0. Let us exemplary consider the inequality (3.8b) for the
system (3.13) and denote its left hand side by Γ. This τ -dependent matrix
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can naturally be partitioned into a 3 × 3 block matrix with its (2, 2) block
being

Γ22(τ)=(•)⊤Ẋ(τ)
(

0
Inu

)
+(•)⊤P

(
D12

0

)
= −α

(τ + 1)2 Inu+ (•)⊤P

(
D12

0

)
.

By continuity of the involved functions, by compactness of [0, Tmax], since
all other blocks of Γ do not depend on α, and since

( Γ11 Γ13
Γ31 Γ33

)
is exactly the

left hand side of (3.14b), a Schur complement argument permits us indeed
to conclude that (3.8b) holds for all sufficiently large α > 0. Based on
similar arguments we can find some α > 0 such that the inequalities (3.8a)
and (3.8d) also hold. The remaining LMIs (3.8c) and (3.8e) are directly
obtained from (3.14c) and (3.14e). •

Apparently, it does not seem to be possible to further reduce the compu-
tational burden by removing blocks of Y without introducing conservatism.
However, due to the particular block triangular structure of the closed-loop
maps A and AJ , further simplifications along the lines of the ones sug-
gested in [18] for static-state feedback design are possible, but these are
not discussed here.

Observe that if (tk)k∈N0 is a sequence satisfying (EDT), i.e., tk+1−tk = T

for all k, then the impulsive controller resulting from the corresponding
modification of Theorem 3.12 can also be expressed as a discrete-time LTI
controller of order n + nu due to the particular structure of (3.12). This
follows from defining the state x̃c(k) := xc(t−k ) and the latter controller
admits the form(

x̃c(k + 1)
yJ(k)

)
=
(
U(T )AcJ U(T )BcJ
CcJ Dc

J

)(
x̃c(k)
uJ(k)

)

for k ∈ N and where U(t) is the so-called fundamental solution matrix
that satisfies U̇(τ) = Ac(τ)U(τ) on [0, T ] with initial condition U(0) = I.
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Performing an analogous reformulation in the presence of more general
sequences (tk)k∈N0 satisfying (RDT) yields a time-varying discrete-time
controller instead.

Finally, we emphasize that the conditions (3.14) easily permit a seamless
extension, e.g., to gain-scheduling controller synthesis or to the design of
consensus protocols as discussed in Chapter 5.

Example

As an illustration let us consider the LTI system

ẋ(t)
e(t)
y(t)

 =

A B B2

C D D12

C2 0 0


x(t)
d(t)
u(t)

 =


0 1 1 0

−2 0.1 0 1
1 0 0 0
0 0 0 0.15
1 0 0 0


x(t)
d(t)
u(t)

 (3.15)

for t ≥ 0 which is taken from [18] and augmented with a performance
channel. The design goals are to render the fist state small despite the
presence of a disturbance affecting this state and to bound the control input
u which acts on the second state. Synthesizing a standard H∞-controller
for this system via hinfsyn in Matlab leads to an output of the closed-loop
interconnection as depicted in the top row of Fig. 3.7; this output is the
response to the input disturbance d(t) := χ[0,10)(t)−χ[10,20)(t) and for zero
initial conditions.

Next, we suppose that the measurements y are only available at times tk,
where the sequence (tk)k∈N0 satisfies (RDT) with [Tmin, Tmax] = [0.4, 0.5].
Similarly as done earlier, we can still design a controller that achieves a
small energy gain by viewing the resulting open-loop system as an impulsive
system and by employing Theorem 3.8. Doing so results in a closed-loop
response as depicted in the middle row of Fig. 3.7. As expected, we can
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Figure 3.7: Some disturbance d and closed-loop responses involving vari-
ations of the system (3.15) and correspondingly designed con-
trollers.

observe that the disturbance rejection properties degrade and that more
control effort is required because less information is available.

Finally, we can additionally require that the control input u is piecewise
constant on the intervals [tk, tk+1), k ∈ N0 which leads to a sampled-data
system as described by (3.12) with CJ2 := C2 and vanishing matrices CJ ,
DJ , DJ12, DJ21. A suitable controller is now readily obtained by applying
Theorem 3.12 and yields the closed-loop response as shown in the bottom
row of Fig. 3.7. Here, we note that the disturbance is rejected almost as
before, but the control signal u is not as aggressive.

The computed upper bounds on the energy gain in the three design
scenarios are 0.410, 0.764 and 0.847, respectively.
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3.1.3 Controller Design for Switched Systems

Next, we demonstrate that the arguments underlying our synthesis results
Theorem 3.3 and 3.8 even permit us to systematically design not one but
several types of output-feedback controllers for switched systems. To this
end, we consider, for real matrices of appropriate dimensions, some initial
condition x(0) ∈ Rn and a sequence of impulse instants (tk)k∈N0 , an open-
loop switched system with the descriptionẋ(t)

e(t)
y(t)

 =

Aσ(t) Bσ(t) B2σ(t)

Cσ(t) Dσ(t) D12σ(t)

C2σ(t) D21σ(t) 0


x(t)
d(t)
u(t)

 (3.16)

for t ≥ 0 and for a switching function σ : [0,∞) → {1, . . . , N} which is
constant on each of the intervals [tk−1, tk). The first controller we aim to
design is of the form(

ẋc(t)
u(t)

)
=
(
Acσ(t)(θ(t)) Bcσ(t)(θ(t))
Ccσ(t)(θ(t)) Dc

σ(t)(θ(t))

)(
xc(t)
y(t)

)
,

xc(tk) = Ac
Jσ(t−

k
)σ(tk)(θ(t

−
k ))xc(t−k )

(3.17)

for t ≥ 0 and k ∈ N; recall that θ denotes the clock as defined in (2.2).
Note that the latter controller is itself a switched system since it is defined
by (time-varying) matrices that depend on the switching function σ, i.e.,
on the currently active mode. Its jump component additionally depends on
the previous mode. Interconnecting (3.16) and (3.17) yields the closed-loop
switched system (

ẋcl(t)
e(t)

)
=
(

Aσ(t) Bσ(t)

Cσ(t) Dσ(t)

)(
xcl(t)
d(t)

)
,

xcl(tk) = AJσ(t−
k

)σ(tk)(θ(t
−
k ))xcl(t−k )

(3.18)
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with state xcl := ( x
xc ) and jump map AJkl(τ) := diag(I, AcJkl(τ)); the re-

maining calligraphic maps are analogously defined as the ones in (3.3a). By
generalizing the stability criteria for switched systems in Corollary 2.5 to
also account for quadratic performance with an index P satisfying Assump-
tion 3.1 and to systems with description (3.18), we obtain the following.

Lemma 3.13 (Closed-Loop Analysis for Switched Systems) The system (3.18)
is stable and achieves quadratic performance with index P for all (tk)k∈N0

satisfying (RDT) if there exists functions X1, . . . ,XN ∈ C1([0, Tmax],S2n)
satisfying the inequalities

Xk ≻ 0 and (•)⊤

(
0 Xk

Xk Ẋk

)(
Ak Bk
I 0

)
+ (•)⊤P

(
Ck Dk

0 I

)
≺ 0

(3.19a,b)
on [0, Tmax] for all k ∈ {1, . . . , N} as well as

A⊤
JklXl(0)AJkl − Xk ≺ 0 (3.19c)

on [Tmin, Tmax] for all k, l ∈ {1, . . . , N}.

Due to the intended similarities with the closed-loop analysis conditions
for impulsive systems provided in Corollary 3.2, we can adjust the synthesis
criteria in Theorem 3.3 or 3.8 in order to characterize the existence of a
controller (3.17) by means of convex optimization. In particular, we have
the following constructive result.

Corollary 3.14 Let D1 ∈ R•×nd and suppose that P is nonsingular with
exactly nd negative eigenvalues. Moreover, let Uk and Vk be basis matri-
ces of ker((B⊤

2k, D
⊤
12k)) and ker((C2k, D21k)), respectively. Then there exists

a controller (3.17) for the system (3.16) such that the analysis LMIs (3.19)
are feasible if and only if there exist continuously differentiable X1, . . . , XN ,
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Y 1, . . . , Y N satisfying (
Y k I

I Xk

)
≻ 0, (3.20a)

(•)⊤

 0 Xk

Xk Ẋk

P



Ak Bk

I 0
Ck Dk

0 I

Vk≺0, (•)⊤

Ẏ k Y kY k 0
P−1




I 0
−A⊤

k −C⊤
k

0 I

−B⊤
k −D⊤

k

Uk≻0

(3.20b,c)
on [0, Tmax] for all k ∈ {1, . . . , N} as well as

X l(0) −Xk ≺ 0 and Y l(0) − Y k ≻ 0 (3.20d,e)

on [Tmin, Tmax] for all k, l ∈ {1, . . . , N}.

Since the conditions in Corollary 3.14 are necessary and sufficient, it is
in a sense natural to consider the design of switched controllers (3.17) ad-
mitting a jump component. However, in the literature on switched systems
the goal is almost always to design switched controllers without a jump
component, i.e., with a trivial one. We can also design such controllers by
employing suitable modifications of the proof of Theorem 3.3.

Theorem 3.15 (Synthesizing Controllers without Jump Component) There
exists a controller (3.17) with AcJkl(τ) = I for all k, l, τ such that the closed-
loop system (3.18) is stable and achieves quadratic performance with index
P for all (tk)k∈N0 satisfying (RDT) if there exist continuously differentiable
X1, . . . , XN , Y 1, . . . , Y N satisfying (3.20a)-(3.20d) and Y l(0) = Y k(τ) for
all τ ∈ [Tmin, Tmax] and all k, l ∈ {1, . . . , N}.

Proof. Recall that (3.20a) permits us to find differentiable and pointwise
nonsingular functions Uk and Vk satisfying UkV

⊤
k = I − XkY k. We can
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then define suitable certificates Xk ≻ 0 by Xk := Y−T
k Zk with

Yk :=
(
Y k I

V ⊤
k 0

)
and Zk :=

(
I 0
Xk Uk

)
=
(
Y k I

I Xk

)
Y−1
k .

It is now crucial to choose Vk := Y k and Uk := Y −1
k − Xk because this

allows us to conclude that Yl(0) = Yk(τ) holds for all τ ∈ [Tmin, Tmax]
and all k, l ∈ {1, . . . , N}. In particular, for any τ ∈ [Tmin, Tmax] and k, l ∈
{1, . . . , N}, we then infer by (3.20d)

Yl(0)⊤(Xl(0) − Xk(τ)
)
Yl(0) = Yl(0)⊤Xl(0)Yl(0) − Yk(τ)Xk(τ)Yk(τ)

=
(

0 0
0 X l(0) −Xk(τ)

)
≼ 0.

It remains then to recall that (3.20a)-(3.20c) imply the existence of maps
Ack, B

c
k, C

c
k, D

c
k such that (3.19b) is satisfied and that quadratic perfor-

mance is still assured even if the inequality in (3.19c) is non-strict. •
Remark 3.16 Note that the maps Y 1, . . . , Y N can vary on (0, Tmin) and
restricting them to be identical and constant on [0, Tmax] is not required.
Our proposed additional constraint on Y 1, . . . , Y N can still introduce some
conservatism which can again be reduced by introducing slack variables as
done in Theorem 2.12 if desired.

Even if the jump component of the controller (3.17) is rendered trivial,
the control input u is in general discontinuous and can involve large jumps
due to the switching nature of the controller (3.17). Such large jumps in
the control input might be not acceptable in a number of practical situa-
tions. Instead, one aims in such cases to design a controller such that the
signal u is as smooth as possible which is the so-called bumpless trans-
fer controller design problem [58, 33] that was at first considered in the
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context of LTI systems, e.g., in [69]. In order to tackle this problem, the
authors in [33] consider the design of switched controllers with vanishing
direct feedthrough matrices Dc

1, . . . , D
c
N in order avoid the jumps from the

measured output y. Moreover, they argue that bumps in the control input
can be reduced by including a simple constraint which is, our situation, of
the form

sup
τ∈[Tmin,Tmax]

∥
(
Cck(τ) − Ccl (0)

)
Bck(τ)∥2 ≤ β2 for all k, l ∈ {1, . . . , N}

(3.21)
for some parameter β > 0. In order to provide convex criteria for designing
a controller satisfying (3.21) next to achieving quadratic performance, we
can no longer rely on the elimination lemma C.11 since multiple objectives
are involved. Instead, we have to employ the convexifying parameter trans-
formation as done in Theorem 3.3 which leads to the following synthesis
criteria. Note that they could again be rendered less conservative but more
expensive to solve by introducing slack variables.

Theorem 3.17 (Synthesizing Controllers with Bump Limitation) There exists
a controller (3.17) satisfying (3.21), Dc

k = 0 and AcJkl = I for all k, l such
that the closed-loop system (3.18) is stable and achieves quadratic perfor-
mance with index P for all (tk)k∈N0 satisfying (RDT) if there exist contin-
uously differentiable X1, . . . , XN , Y 1, . . . , Y N and continuous K1, . . . ,KN ,
L1, . . . , LN , M1, . . . ,MN satisfying

Xk ≻ 0 and (•)⊤

(
0 I

I Zk

)(
Ak Bk

I 0

)
+ (•)⊤P

(
Ck Dk

0 I

)
≺ 0

(3.22a,b)
on [0, Tmax] for all k ∈ {1, . . . , N} as well as

X l(0) −Xk ≺ 0, Y l(0) = Y k (3.22c,d)
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and 

I 0 0 0 Mk(τ) M l(0)
0 β2I Lk(τ)⊤ Lk(τ)⊤ 0 0
0 Lk(τ) Xk(τ) 0 I 0
0 Lk(τ) 0 Xk(τ) 0 −I

Mk(τ)⊤ 0 I 0 Y k(τ) 0
M l(0)⊤ 0 0 −I 0 Y l(0)


≻ 0 (3.22e)

on [Tmin, Tmax] for all k, l ∈ {1, . . . , N}. Here, the maps
(Ak Bk

Ck Dk

)
, Xk and

Zk are defined asAkY k Ak Bk

0 XkAk XkBk

CkY k Ck Dk

+

0 B2k

I 0
0 D12k

(Kk Lk

Mk 0

)(
I 0 0
0 C2k D21k

)
,

(
Y k I

I Xk

)
and

(
−Ẏ k 0

0 Ẋk

)
,

respectively.

The argument that the inequality (3.22e) implies the bump limitation
(3.21) is essentially from [33] and repeated here for convenience.

Proof. Due to (3.22a)-(3.22d), we can construct Ack, Bck, Cck similarly as
in the proof of Theorem 3.3 in such a fashion that the inequalities (3.19)
are satisfied with Dc

k = 0 and AcJkl = I for all k, l ∈ {1, . . . , N}. As in the
proof of Theorem 3.15, the latter identity requires to choose Vk := Y k and
Uk := Y −1

k −Xk in the construction of the certificate Xk. In particular, for
this choice we have more precisely

Bck = U−1
k Lk = (Y −1

k −Xk)−1Lk and Cck = MkV
−T
k = MkY

−1
k .
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Let now τ ∈ [Tmin, Tmax] and k, l ∈ {1, . . . , N} be arbitrary. Then applying
the Schur complement C.6 on the inequality (3.22e) yields

I + Ω1 0 −Cck(τ) Ccl (0)
0 β2I Lk(τ)⊤ Lk(τ)⊤

− Cck(τ)⊤ Lk(τ) Xk(τ) − Y k(τ)−1 0
Ccl (0)⊤ Lk(τ) 0 Xk(τ) − Y k(τ)−1

 ≻ 0

with Ω1 := −(•)⊤Y k(τ)−1Mk(τ) − (•)⊤Y l(0)−1M l(0) ≼ 0; here we did
also make use of (3.22d). Another application of the Schur complement
results in (

I + Ω2 (Ccl (0) − Cck(τ))Bck(τ)
(•)⊤ β2I + Ω3

)
≻ 0

for some Ω2,Ω3 ≼ 0. Hence, we conclude(
I (Ccl (0) − Cck(τ))Bck(τ)

(•)⊤ β2I

)
≻ 0

which yields the desired constraint (3.21) by a final application of the Schur
complement and since τ ∈ [Tmin, Tmax] as well as k, l ∈ {1, . . . , N} were
arbitrary. •
Remark 3.18 (Alternative Designs for Switched Systems) We stress that the
multitude of possibilities to constrain the switching function σ in (3.16)
leads to various design approaches that each result in (structurally) differ-
ent analysis criteria. Unfortunately, this makes it rather difficult to find
appropriate literature on the concrete case one is working on and we,
hence, only mention few alternatives. Probably one of the most well-cited
paper dealing with dynamic output-feedback in the context of arbitrary
dwell-time is [75] which relies on the Youla parametrization. For switching
functions with (minimum) dwell-time constraints, even recent publications
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as, e.g., [4, 20, 89], that employ dedicated analysis results, merely con-
sider state-feedback which is in contrast to our last three results. Output-
feedback design for parametrically varying systems with a hysteresis switch-
ing function is considered in [102]; here, the switching function does depend
on the time-varying parameter entering the underlying system.

Another relevant synthesis problem is referred to as co-design and deals
with the issue of simultaneously finding a feedback controller and a switch-
ing function for the underlying system such some closed-loop objective
is achieved [41, 99]; we stress that in this case the switching function
is a degree of freedom. Output-feedback co-design is performed, e.g., in
[41], and usually relies on so-called Riccati-Metzler inequalities and min-
type piecewise quadratic Lyapunov functions for the underlying analysis;
the considered switching functions are typically of the form σ(y(t)) =
arg min y(t)⊤Xiy(t) where y is the system’s measured output. In [23] a
sampled-data co-design problem is considered involving clock-dependent
LMIs, but assumes that the full state is available for control. It is expected
the approach illustrated in this chapter permits removing the latter limi-
tation.

Example

As an example, let us consider a switched system (3.16) with

(
A1 B1

)
=
(

0 1 1
−5 1 0

)
,
(
A2 B2

)
=
(

5 5 5
1 1 1

)
,
(
A3 B3

)
=
(

1 −5 1
5 2 0

)
,

(3.23a)
as well as

B2k =
(

0
1

)
,

(
Ck Dk D12k

C2k D21k 0

)
=

0 1 0 0
0 0 0 0.3
1 0 0 0

 for k ∈ {1, 2, 3}

(3.23b)
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1

2 3

Figure 3.8: A graph G = (V,E) with vertices V = {1, 2, 3} and edges
E = {(1, 1), (1, 2), (2, 3), (3, 2), (3, 1)}.

and a sequence of impulse instants (tk)k∈N0 satisfying (EDT) with T = 2.
Moreover, let us assume that the switching function σ is constrained as

(σ(t−k ), σ(tk)) ∈ E for all k ∈ N0 (3.23c)

where E denotes the edge set of the unweighted graph G depicted in
Fig. 3.8. Recall that designing an output-feedback controller for this system
is possible based on small modifications of Corollary 3.14, Theorem 3.15 or
of Theorem 3.17 along the lines of the ones mentioned in Remark 2.6. In
the sequel, we choose the performance index P accordingly to the energy
gain and utilize the sum-of-squares approach D.1 with ε = 0.01, ansatz
polynomials of degree da = 4 and multiplier polynomials of degree dm = 2
in order to turn the involved differential LMIs into standard SDPs.

Note at first that an application of Corollary 3.14 for (3.23) yields an
optimal upper bound of 3.698 on the achievable closed-loop energy gain. In
contrast, omitting the constraint (3.23c), i.e., allowing for arbitrary switch-
ing, yields an upper bound of 4.143 which is partly because the system
might stay longer in mode 2 which amplifies the input disturbance by a
lot. The response of the switched system (3.23) interconnection with a
close-to-optimal controller (3.17) obtained from Corollary 3.14 to the dis-
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Figure 3.9: Second state and control input of the system (3.16) with (3.23)
interconnected with a controller with jump component obtained
from Corollary 3.14 (dark blue) and one with bump limitation
from Theorem 3.17 (light blue) for some switching function σ.

turbance d(t) = −4χ[0,5)(t) + 4χ[5,10)(t) −χ[10,18)(t) is depicted in Fig. 3.9
together with the switching function σ in dark blue; recall that χ[a,b) is the
characteristic function of the interval [a, b) and note that the performance
output of the system (3.16) with (3.23) is given by e = ( x2

0.3u ).
For this particular example, employing Theorem 3.17 instead of Corol-

lary 3.14 in order to design a controller (3.17) with trivial jump component,
yields visually not much of a difference in the closed-loop response and we
merely observe a minor increase in the determined optimal upper bound
which equals 3.758. We emphasize at this point that enforcing the jump
component of the controller (3.17) to be trivial can actually lead to larger
jumps in the control signal u which might be counter intuitive. However,
for several examples we observe that the controller’s jump component plays
a vital role in reducing the jumps induced by the switching of modes in the
flow component of the controller.

Finally, let us employ Theorem 3.17 in order to design a controller sat-
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isfying the bump limitation constraint (3.21) with β =
√

10. The resulting
closed-loop response illustrated in Fig. 3.9 in light blue shows that the con-
trol input u indeed admits fewer jumps as desired. The price we have to
pay for this improved behavior is that the disturbance attenuation prop-
erties of the controller degrade as reflected by the larger amplitude of the
corresponding state response x2.

Summary

This concludes the first part of this chapter on the design of dynamic
output-feedback controllers for impulsive and related hybrid systems. A
summary of the presented results is given in Section 3.3. Next, we move on
to the design of static output-feedback controllers for such systems.
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3.2 Static Output-Feedback Controller Design
Even for standard LTI systems, the design of static output-feedback con-
trollers constitutes a conceptually simple and yet theoretically very chal-
lenging problem. Such a design is also a popular approach of practical
interest due to its straightforward implementation and the fact that, typi-
cally, only some (and not all) states of the underlying dynamical system are
available for control. However, in contrast to, e.g., the design of static state-
feedback or dynamic full-order controllers, the synthesis of static output-
feedback controllers is intrinsically a challenging bilinear matrix inequality
feasibility problem. Such problems are in general non-convex, non-smooth
and NP-hard to solve [159]. These troublesome properties have led to the
development of a multitude of (heuristic) design approaches, which only
yield sufficient conditions for the existence of such static controllers. Next to
providing only sufficient conditions, another downside of these approaches
is that they might get stuck in a local minimum of the underlying optimiza-
tion problem that can be far away from the global minimum of interest.
Nevertheless, such approaches are employed and reported to work nicely on
various practical examples. Two detailed surveys on static output-feedback
design for standard LTI systems elaborating on several of such approaches
are provided in [158, 128].

Static output-feedback controller design for hybrid systems, as studied
for example in [37, 1], is even more difficult and is less frequently consid-
ered in the literature. This is partly due to vast amount of possibilities
to describe hybrid systems and due to the typically more involved analysis
conditions if compared to those for standard LTI systems. A consequence of
the increased complexity is that not all of the approaches discussed in the
surveys [158, 128] generalize nicely to hybrid systems such as the algorithm
hinfstruct from [9] or hifoo from [27]. This is in contrast to approaches
based on solving LMIs such as the classical D-K iteration as suggested,
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e.g., in [15, 47] or methods involving S-variables as, e.g., in Chapter 6.3 of
[46]. These approaches are typically much more amenable for generaliza-
tions, but tend to be slower due to underlying complexity of solving LMI
problems.

Throughout this section we restrict our attention to static controller
synthesis for linear impulsive systems, but we emphasize that the provided
results can be adapted without much effort to other interesting hybrid
systems similarly as demonstrated in the previous section. We begin by
concretely specifying the considered static design problem.

3.2.1 Problem Description

We consider again the open-loop impulsive system with generic description
(3.1) and our main goal is the design of a static output-feedback controller
for this system of the form

u(t) = K(θ(t))y(t), uJ(k) = KJ(θ(t−k ))yJ(k) (3.24)

for t ≥ 0 and k ∈ N such that the corresponding closed-loop energy gain is
as small as possible. In contrast to the dynamic controller (3.2) considered
in the previous section, the controller (3.24) does not involve an internal
state variable which is particularly convenient for its implementation since
its output (u(t), uJ(k)) for fixed (t, k) is then readily obtained by two simple
matrix-vector multiplications.

The interconnection of the system (3.1) and the controller (3.24) is given
by (

ẋ(t)
e(t)

)
=
(

A(θ(t)) B(θ(t))
C(θ(t)) D(θ(t))

)(
x(t)
d(t)

)
,(

x(tk)
eJ(k)

)
=
(

AJ(θ(t−k )) BJ(θ(t−k ))
CJ(θ(t−k )) DJ(θ(t−k ))

)(
x(t−k )
dJ(k)

) (3.25)
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for t ≥ 0 and k ∈ N as well as with describing matrix-valued maps(
A B
C D

)
=
(
A+B2KC2 B+B2KD21

C+D12KC2 D+D12KD21

)
=
(
A B

C D

)
+
(
B2

D12

)
K
(
C2 D21

)
.

and analogously defined AJ ,BJ , CJ ,DJ . Since this closed-loop intercon-
nection is of the same form as the impulsive system (2.7), we can easily
determine (optimal) upper bounds on its energy gain based on our anal-
ysis result Theorem 2.8. The resulting LMI criteria are repeated here for
convenience where (Pγ , PJγ) :=

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
.

Corollary 3.19 (Closed-Loop Analysis) The system (3.25) is stable and its
energy gain is bounded by γ for all (tk)k∈N0 satisfying (RDT) if there exists
a continuously differentiable function X satisfying the LMIs

X ≻ 0 and (•)⊤

(
0 X
X Ẋ

)(
A B
I 0

)
+ (•)⊤Pγ

(
C D
0 I

)
≺ 0 on [0, Tmax]

(3.26a,b)
as well as

(•)⊤

(
X (0) 0

0 −X

)(
AJ BJ
I 0

)
+ (•)⊤PJγ

(
CJ DJ

0 I

)
≺ 0 on [Tmin, Tmax].

(3.26c)
We denote by γopt the infimal γ > 0 such that there exists a static controller
(3.24) that renders the closed-loop analysis LMIs (3.26) feasible.

Note that γopt is not the optimal energy gain achievable by controllers
with description (3.24), but both values are often close to each other. The
possible gap between both values is due to the conservatism in the employed
analysis criteria in Theorem 2.8. Recall that we accept this gap since we
require the structure of the latter criteria for applying controller design
tools such as the convexifying parameter transformation or the elimination
lemma.
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As in the previous section, trouble arises through the simultaneous search
for some certificate X and for the maps K, KJ describing the controller
(3.24), which constitutes a challenging non-convex problem. In contrast to
the synthesis of dynamic controllers (3.2) and even if we would restrict our
attention to standard LTI systems, this lack of convexity is not resolved
by employing a convexifying parameter transformation similarly to the
one suggested in [107, 137], by utilizing the elimination lemma C.11 or by
relying on any other presently known technique. Exemplary, by directly
using the elimination lemma on the closed-loop analysis LMIs, we obtain
the following.

Theorem 3.20 (Static Output-Feedback Controller Synthesis) Let U , V , UJ
and VJ be basis matrices of the subspaces ker((B⊤

2 , D
⊤
12)), ker((C2, D21)),

ker((B⊤
J2, D

⊤
J12)) and ker((CJ2, DJ21)), respectively. Then there exists a

static controller (3.24) for the system (3.1) such that the closed-loop anal-
ysis LMIs (3.26) are feasible if and only if there exists a continuously dif-
ferentiable X satisfying

X ≻ 0, (3.27a)

(•)⊤

 0 X

X Ẋ

Pγ



A B

I 0
C D

0 I

V ≺ 0 and (•)⊤

 0 X

X Ẋ

Pγ


−1


I 0
−A⊤ −C⊤

0 I

−B⊤ −D⊤

U≻ 0

(3.27b,c)
on [0, Tmax] as well as

(•)⊤

X(0) 0
0 −X

PJγ



AJ BJ

I 0
CJ DJ

0 I

VJ ≺0 (3.27d)
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and

(•)⊤

X(0) 0
0 −X

PJγ


−1


I 0
−A⊤

J −C⊤
J

0 I

−B⊤
J −D⊤

J

UJ ≻0 (3.27e)

on [Tmin, Tmax]. Moreover, γopt is equal to the infimal γ > 0 such that the
above inequalities are feasible.

The elimination lemma permits us to remove the describing maps K
and KJ of the controller (3.24) from the closed-loop analysis LMIs (3.26).
However, the variable X now enters the above inequalities in a non-convex
fashion. Therefore, determining γopt or computing a suitable static con-
troller (3.24) remain difficult.

Since non-convexity seems to be an intrinsic feature of the static con-
troller synthesis problem, heuristic approaches are usually employed and
upper bounds on the optimal γopt are computed. In the sequel, we present
a generalization to impulsive systems of the dual iteration originating from
[90, 91] which is a heuristic procedure based on iteratively solving convex
semidefinite programs. In [85] we elaborate on this procedure in detail for
standard LTI systems and argue that it is especially useful if compared to
alternative approaches for two reasons:

• It provides good upper bounds on the optimal achievable energy gain.

• It seamlessly generalizes, e.g., to robust and multi-objective design.

Its essential features are discussed next.

3.2.2 Dual Iteration

Initialization of the Iteration

In order to initialize the dual iteration, we propose a starting point that
allows the computation of a lower bound on γopt as a valuable indicator of
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how conservative any later computed upper bound on γopt is. This lower
bound is obtained by the following observation. If there exists a static
controller (3.24) for the system (3.1) achieving a closed-loop energy gain
of γ, then there also exists a dynamic controller (3.2) which achieves (at
least) the same closed-loop energy gain. Indeed, by simply choosing(

Ac Bc

Cc Dc

)
=
(

−In 0
0 K

)
and

(
AcJ BcJ
CcJ Dc

J

)
=
(

0n×n 0
0 KJ

)
,

we observe that the energy gain of (3.25) is identical to the one of the
interconnection of the system (3.1) and the dynamic controller (3.2). Recall
that n denotes the number of columns of the matrix A in (3.1).

We have already shown in Theorem 3.3 and 3.8 that finding such a
dynamic controller (3.2) for the system (3.1) is possible by means of convex
optimization. In particular, recall that we have the following.

Corollary 3.21 (Dynamic Output-Feedback Controller Synthesis) Let U , V ,
UJ and VJ be as in Theorem 3.20. Then there exists a controller (3.2) for
the system (3.1) such that the corresponding closed-loop analysis LMIs (3.5)
are feasible for (P, PJ) = (Pγ , PJγ) if and only if there exist continuously
differentiable X,Y satisfying (

Y I

I X

)
≻ 0, (3.28a)

(•)⊤

 0 X

X Ẋ

Pγ



A B

I 0
C D

0 I

V ≺0 and (•)⊤

Ẏ Y

Y 0
P−1
γ




I 0
−A⊤ −C⊤

0 I

−B⊤ −D⊤

U≻0

(3.28b,c)
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on [0, Tmax] as well as

(•)⊤

X(0) 0
0 −X

PJγ



AJ BJ

I 0
CJ DJ

0 I

VJ ≺ 0 (3.28d)

and

(•)⊤

Y (0) 0
0 −Y

P−1
Jγ




I 0
−A⊤

J −C⊤
J

0 I

−B⊤
J −D⊤

J

UJ ≻ 0 (3.28e)

on [Tmin, Tmax]. In particular, we have γdof ≤ γopt for γdof being the infimal
γ > 0 such that the above LMIs are feasible.

Note that by using the Schur complement C.6 on the inequalities (3.28c)
and (3.28d), it is possible to solve the above synthesis LMIs (3.28) while
simultaneously minimizing over γ in order to compute γdof . In particular,
since the latter is a lower bound on γopt, it is not possible to find a static
output-feedback controller by relying on Corollary 3.19 that is guaranteed
to achieve an energy gain smaller than γdof

As an intermediate step, let us consider the design of a static full-
information controller for the system (3.1). This is a controller with de-
scription

u(t) = F (θ(t))ỹ(t), uJ(k) = FJ(θ(t−k ))ỹJ(k)

for t ≥ 0 and k ∈ N. Here, the gains F = (F1, F2) and FJ = (FJ1, FJ2)
are continuous matrix-valued maps, while the input signals are given by
ỹ := ( xd ) and ỹJ(k) :=

(
x(t−

k
)

dJ (k)

)
, respectively. Hence, this controller relies

on access to the full state and the full input disturbances of the system
(3.1). By replacing the measurements y, yJ in (3.1) with the virtual mea-
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surements ỹ, ỹJ , we can interconnect this controller with the system (3.1)
which results in a closed-loop interconnection of the form (3.25), but with
( A B

C D ) and
(AJ BJ

CJ DJ

)
replaced by(

AF BF

CF DF

)
:=
(
A+B2F1 B +B2F2

C +D12F1 D +D12F2

)
=
(
A B

C D

)
+
(
B2

D12

)
F (3.29a)

and(
AJF BJF

CJF DJF

)
:=
(
AJ+BJ2FJ1 BJ+BJ2FJ2

CJ+DJ12FJ1 DJ+DJ12FJ2

)
=
(
AJ BJ

CJ DJ

)
+
(
BJ2

DJ12

)
FJ ,

(3.29b)
respectively. Consequently, we can characterize the existence of a suit-
able full-information controller for example by employing the elimination
lemma C.11 in order to obtain the following.

Lemma 3.22 (Full-Information Controller Synthesis) There exist some full-
information gains F and FJ such that the closed-loop analysis LMIs (3.26)
with ( A B

C D ) and
(AJ BJ

CJ DJ

)
replaced by (3.29) are feasible if and only if there

exists a continuously differentiable Y satisfying Y ≻ 0 on [0, Tmax], (3.28c)
and (3.28e).

Main Loop

We are now in the position to discuss the core of the dual iteration. The
first key result provides LMI conditions that are sufficient for static output-
feedback design based on the assumption that full-information gains F =
(F1, F2) and FJ = (FJ1, FJ2) are available.
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Theorem 3.23 (Primal Design Result) Let V and VJ be as in Theorem 3.20.
Then there exists a static controller (3.24) for the system (3.1) such that the
closed-loop analysis LMIs (3.26) are feasible if there exists a continuously
differentiable X satisfying

X ≻ 0, (3.30a)

(•)⊤

 0 X

X Ẋ

Pγ



A B

I 0
C D

0 I

V ≺0 and (•)⊤

 0 X

X Ẋ

Pγ



AF BF

I 0
CF DF

0 I

≺0

(3.30b,c)
on [0, Tmax] as well as

(•)⊤

X(0) 0
0 −X

PJγ



AJ BJ

I 0
CJ DJ

0 I

VJ ≺ 0 (3.30d)

and

(•)⊤

X(0) 0
0 −X

PJγ



AJF BJF

I 0
CJF DJF

0 I

 ≺ 0 (3.30e)

on [Tmin, Tmax]. Moreover, we have γdof ≤ γopt ≤ γF for γF being the
infimal γ > 0 such that the LMIs (3.30) are feasible.

Proof. Applying the elimination lemma C.11 in order to remove the full-
information controller gain F from (3.30c) yields exactly the inequality
(3.27c). Analogously, we obtain (3.27e) from (3.30e). Since the remaining
inequalities are satisfied by assumption, we can construct the desired static
controller via Theorem 3.20. •
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Note that we even have γopt = γF if we view the gains F and FJ as
decision variables in (3.30). However, this would render the computation
of γF as troublesome as that of γopt itself.

Intuitively, Theorem 3.23 links the difficult static output-feedback and
the manageable full-information design problem with a common quantity
(here, the Lyapunov matrix X). This underlying idea is also employed in
order to deal with many other non-convex and/or difficult problems such
as the ones considered in [46, 10, 73].

While Theorem 3.23 is interesting on its own, the key idea of the dual
iteration is that improved upper bounds on γopt are obtained by also con-
sidering a problem that is dual to full-information synthesis. This consists
of finding full-actuation gains E and EJ such that the closed-loop analysis
LMIs (3.26) are feasible if we replace ( A B

C D ) and
(AJ BJ

CJ DJ

)
by(

AE BE

CE DE

)
:=
(
A B

C D

)
+ E

(
C2 D21

)
(3.31a)

and (
AJE BJE

CJE DJE

)
:=
(
AJ BJ

CJ DJ

)
+ EJ

(
CJ2 DJ21

)
, (3.31b)

respectively. Determining such gains is again a convex problem and a so-
lution is obtained for example by utilizing the elimination lemma C.11.

Lemma 3.24 (Full-Actuation Controller Synthesis) There exists some full-
actuation gains E and EJ such that the closed-loop analysis LMIs (3.26)
with ( A B

C D ) and
(AJ BJ

CJ DJ

)
replaced by (3.31) are feasible if and only if there

exists a continuously differentiable X satisfying X ≻ 0 on [0, Tmax], (3.28b)
and (3.28d)

Given some full-actuation gains E and EJ we can formulate another set
of LMI conditions that are sufficient for static output-feedback design. The
proof is analogous to the one of Theorem 3.23 and is hence omitted.
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Theorem 3.25 (Dual Design Result) Let U and UJ be as in Theorem 3.20.
Then there exists a static controller (3.24) for the system (3.1) such that the
closed-loop analysis LMIs (3.26) are feasible if there exists a continuously
differentiable Y satisfying

Y ≻ 0, (3.32a)

(•)⊤

Ẏ Y

Y 0
P−1
γ




I 0
−A⊤ −C⊤

0 I

−B⊤ −D⊤

U≻0 and (•)⊤

Ẏ Y

Y 0
P−1
γ




I 0
−A⊤

E −C⊤
E

0 I

−B⊤
E −D⊤

E

≻0

(3.32b,c)
on [0, Tmax] as well as

(•)⊤

Y (0) 0
0 −Y

P−1
Jγ




I 0
−A⊤

J −C⊤
J

0 I

−B⊤
J −D⊤

J

UJ ≻ 0 (3.32d)

and

(•)⊤

Y (0) 0
0 −Y

P−1
Jγ




I 0
−A⊤

JE −C⊤
JE

0 I

−B⊤
JE −D⊤

JE

 ≻ 0 (3.32e)

on [Tmin, Tmax]. Moreover, we have γdof ≤ γopt ≤ γE for γE being the
infimal γ > 0 such that the LMIs (3.32) are feasible.

In the sequel, we refer to the LMIs (3.30) and (3.32) as primal and dual
synthesis LMIs, respectively. Accordingly, we address Theorems 3.23 and
3.25 as primal and dual design results, respectively. Observe that the latter
are nicely intertwined as follows.
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Theorem 3.26 The following two statements hold.

• If the primal synthesis LMIs (3.30) are satisfied for some γ, some
matrix X and some full-information gains F and FJ , then there
exists some full-actuation gains E and EJ such that the dual syn-
thesis LMIs (3.32) are satisfied for the same γ and for Y = X−1. In
particular, we have γE < γ.

• If the dual synthesis LMIs (3.32) are satisfied for some γ, some ma-
trix Y and some full-actuation gains E and EJ , then there exists
some full-information gains F and FJ such that the primal synthe-
sis LMIs (3.30) are satisfied for the same γ and for X = Y −1. In
particular, we have γF < γ.

Proof. We only show the first statement as the second one follows with
analogous arguments. If the primal synthesis LMIs (3.30) are feasible, we
have in particular X ≻ 0 on [0, Tmax], (3.28b) and (3.28d). This permits
us to apply Lemma 3.24 and we can thus conclude the existence of full-
actuation gains E and EJ satisfying

(•)⊤

 0 X

X Ẋ

Pγ



AE BE

I 0
CE DE

0 I

≺0 and (•)⊤

X(0) 0
0 −X

PJγ



AJE BJE

I 0
CJE DJE

0 I

≺0

on [0, Tmax] and [Tmin, Tmax], respectively. An application of the dualization
lemma C.9 as given in the appendix allows us to infer that (3.32c) and
(3.32e) are satisfied for Y = X−1 ≻ 0. Finally, by using the elimination
lemma C.11 on the LMIs (3.30c) and (3.30e) to remove the full-information
gains F and FJ , we conclude that (3.32b) and (3.32d) are satisfied as well.
This finishes the proof. •

The dual iteration now essentially amounts to alternately applying the
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Primal
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FJF
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Figure 3.10: Schematic description of the main loop of the dual iteration.

two statements in Theorem 3.26 and is conceptually stated as follows. An
illustration of its main loop is provided in Fig. 3.10.

Algorithm 3.27 (Dual Iteration for Static Output-Feedback Design)
(a) Initialization: Compute the lower bound γdof based on solving the

dynamic synthesis LMIs (3.28) and set γ0 := +∞ as well as k = 1.
Design initial full-information gains F and FJ from Lemma 3.22.

(b) Primal step: Compute γF by solving the primal synthesis LMIs (3.30)
for the given gains F and FJ and choose some small εk > 0 such
that γk := γF (1 + εk) < γk−1. For γ = γk, determine some X

satisfying the LMIs (3.30) and apply the elimination lemma C.11 on
(3.30b) and (3.30d) in order to construct full-actuation gains E and
EJ satisfying the dual synthesis LMIs (3.32) for Y = X−1.

(c) Dual step: Compute γE by solving the dual synthesis LMIs (3.32)
for the given gains E and EJ and choose some small εk+1 > 0 such
that γk+1 := γE(1 + εk+1) < γk. For γ = γk+1, determine a matrix
Y satisfying the LMIs (3.32) and apply the elimination lemma C.11
on (3.32b) and (3.32d) in order to construct full-information gains
F and FJ satisfying the primal synthesis LMIs (3.30) for X = Y −1.
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(d) Termination: If k is too large or γk does not decrease any more, then
stop and construct a static output-feedback controller according to
Theorem 3.25.
Otherwise set k = k + 2 and go to the primal step.

Remark 3.28 (a) Theorem 3.26 ensures that Algorithm 3.27 is recur-
sively feasible, i.e., it will not get stuck due to infeasibility of some
LMI, if the primal synthesis LMIs (3.30) are feasible when performing
the primal step for the first time. Additionally, the proof of Theo-
rem 3.26 demonstrates that we can even warm start the feasibility
problems in the primal and dual steps by providing a feasible ini-
tial guess for the involved variables. This reduces the computational
burden remarkably.

(b) The small numbers εk > 0 are introduced since, in general, it is
not possible to determine optimal controllers or gains because these
might not even exist; this is the reason for working with close-to-
optimal solutions instead.

(c) We have γdof ≤ γopt ≤ γk < · · · < γ2 < γ1 for all k ∈ N and thus the
sequence (γk)k∈N converges to some value γ∗ ≥ γopt. As for other
approaches, there is no guarantee that γ∗ = γopt. Nevertheless, the
number of required iterations to obtain acceptable bounds on the
optimal energy gain is rather low as will be demonstrated.

(d) As for any heuristic design, it can be beneficial to perform an a pos-
teriori closed-loop analysis via Corollary 3.19. The resulting closed-
loop energy gain is guaranteed to be not larger than the correspond-
ing computed upper bound γk.
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Remark 3.29 (Initialization) (a) If static controller gains K and KJ are
available that achieve a closed-loop energy gain bounded by γ, then
the dual iteration can be initialized with F = (KC2,KD21) and
FJ = (KJCJ2,KJDJ21). In particular, the primal synthesis LMIs
(3.30) are then feasible and we have γF ≤ γ.

(b) The selection of suitable gains F and FJ during the initialization of
Algorithm 3.27 can be crucial, since feasibility of the primal synthesis
LMIs (3.30) is not guaranteed from the feasibility of dynamic syn-
thesis LMIs (3.28) and depends on the concrete choice of the gains F
and FJ . Similarly as in [91], we propose to compute the lower bound
γdof and then to reconsider the LMIs (3.28) for γ = (1 + ε)γdof and
some fixed ε > 0 while minimizing trace(X+Y ). Due to (3.28a), this
is a common heuristic that aims to push X towards Y −1 and which
promotes feasibility of the non-convex design matrix inequalities in
Theorem 3.20. Constructing gains F and FJ based on Lemma 3.22
and these modified LMIs promotes feasibility of the primal synthesis
LMIs (3.30) as well.

Remark 3.30 (Control Theoretic Interpretation) The dual iteration as ex-
plained above solely relies on algebraic manipulations by heavily exploit-
ing the elimination lemma C.11. This turns the derivation of the algorithm
rather simple, but not that insightful. In [85] we additionally provide a con-
trol theoretic interpretation of the individual steps and argue that these
can be related to the well-known separation principle2. More precisely, it
is shown that the primal synthesis LMIs correspond to solving a partic-
ular robust design problem that structurally resembles robust estimation
and which depends on a previously designed full-information controller.

2The classical separation principle for LTI systems states that one can synthesize a
stabilizing dynamic output-feedback controller by combining a state observer with
a state-feedback controller, which can be designed completely independently from
each other.
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We omit the details here for brevity since they are fully provided in [85].
Instead, we emphasize that the latter robust design problem is convex with
a solution that is obtainable by a convexifying parameter transformation.
As shown in [85], this permits the extension of the algorithm to much more
challenging design problems such as those involving multiple objectives.

While the dual iteration, as illustrated above, theoretically extends nicely
from standard LTI systems to impulsive ones due to the underlying analysis
criteria in Corollary 3.19, there are also some issues that we have swept
under the carpet so far.

Compatibility Issues with DLMI Relaxations

Recall that all LMI problems appearing in Algorithm 3.27 are in fact infi-
nite dimensional differential LMI problems which we can numerically solve
only by relying on relaxations such as the ones discussed in Appendix D.
Let us exemplary suppose that we intend to employ the sum-of-squares
relaxation which relies on restricting all appearing decision variables to
be polynomials and which is capable to deal with inequalities of the form
P (τ) ≺ 0 for all τ ∈ [a, b] if P is a polynomial (see Section D.1 for more
details). Next, note that any full-information gains F and FJ as obtained
from Lemma 3.22, i.e., by employing the elimination lemma C.11, will in
general not be polynomials. Consequently, in order to apply the SOS relax-
ation for solving the primal synthesis LMIs (3.30), we have to interpolate
the functions F and FJ with polynomials. Moreover, we note that once
the latter LMIs are feasible for some polynomial certificate X, the dual
synthesis LMIs (3.32) are still guaranteed to be feasible for Y = X−1 if
the generated gains E and EJ are approximated sufficiently well, but X−1

is a rational function in general and not a polynomial. All of this leads to
the following.
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Remark 3.31 • The dual iteration as explained in Algorithm 3.27 and
by solving the underlying DLMIs via the SOS relaxation can be
implemented if we incorporate suitable polynomial approximations
of the full-information and full-actuation gains (and, if warm starts
are desired, of the inverse certificates X−1 and Y −1).

• In general, the generated sequence of upper bounds (γk)k will only
be monotonically decreasing if large polynomial degrees are used in
the interpolation and in the decision variables of the SOS relax-
ation. However, utilizing large polynomial degrees becomes quickly
prohibitive from a numerical point of view.

• Analogously, the dual iteration as explained in Algorithm 3.27 and
by solving the underlying DLMIs via the piecewise linear polyno-
mial relaxation (see Section D.2.1) can be implemented if we incor-
porate suitable piecewise linear polynomial approximations of the
full-information and full-actuation gains. Note that in this case the
left hand sides of the inequalities (3.30c) and (3.32c) will in gen-
eral be a piecewise quadratic polynomial and that these inequali-
ties have to be relaxed accordingly. One can for example use that
f(t) = at2 + bt + c > 0 holds on [x, y] if f(x) > 0, f(y) > 0 and
4f(x+y

2 ) − f(x) − f(y) = f(x) + f(y) − a(x− y)2 > 0 hold which is
a consequence of expressing f(t) as

(t− x)2

(y − x)2 f(y) + (t− x)(y − t)
(y − x)2 [4f(x+y

2 )−f(x)−f(y)] + (t− y)2

(y − x)2 f(x).

Admittedly, the interpolation of the full-information and full-actuation
gains and the loss of monotonicity in the sequence of upper bounds is
quite unfavorable from a numerical point of view. At this point we leave it
for future research to investigate possibilities to circumvent the discussed
compatibility issues with DLMI relaxations. We expect such further investi-
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gations to be highly fruitful due to the effectiveness of the iteration for LTI
systems as demonstrated in [85]. Moreover, we show in the next example
that even the present status of the dual iteration is capable to outperform,
e.g., the D-K iteration which was recently employed in [26] for the related
design problem of synthesizing static controllers for time-varying systems
on a finite-horizon.

Example

As an illustration let us consider some modified examples from the col-
lection in COMPleib [96] which consists of numerous continuous-time LTI
systems with descriptionẋ(t)

e(t)
y(t)

 =

A B1 B

C1 D11 D12

C D21 0


x(t)
d(t)
u(t)

 (3.33)

for t ≥ 0. The dual iterations permits us, e.g., to systematically design
static sampled-data controllers for these systems. To this end, recall from
Subsection 3.1.2 that we have to consider corresponding impulsive systems
of the form
ẋ(t)
u̇(t)
e(t)
y(t)

=


A B B1 0
0 0 0 0
C1 D12 D11 0
0 0 0 0



x(t)
u(t)
d(t)
û(t)

 ,


x(tk)
u(tk)
eJ(k)
yJ(k)

=


I 0 0 0
0 0 0 I

0 0 0 0
C 0D21 0



x(t−k )
u(t−k )
dJ(k)
uJ(k)


involving some redundant signals for the sake of compatibility with (3.1).
Here, we suppose that the involved impulse sequence (tk)k∈N0 satisfies
(EDT) with T = 0.5. Note that considering such sampled-data systems
conveniently removes almost all of the compatibility issues mentioned ear-
lier.
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In order to design a static sampled-data controller for (3.33), we can
alternatively apply a D-K iteration scheme (also termed V-K iteration, e.g.,
in [15, 48] and similarly as recently employed in [26]). Here, this scheme
relies on minimizing γ subject to the closed-loop analysis inequalities (3.26)
and with decision variables (γ,K,KJ ,X ) while alternately fixing (K,KJ)
and X . We emphasize that this approach requires an initialization with a
static controller for which the inequalities (3.26) are satisfied and employ
the static controller as obtained from computing γ1 to this end. We denote
the resulting upper bounds on γopt as γkdk, where the superscript k indicates
that the algorithm was stopped after k iterations.

All computations are carried out with Matlab on a general purpose desk-
top computer (Intel Core i7, 4.0 GHz, 8 GB of ram) and we use LMIlab
[55] for solving the LMIs resulting from relaxing all involved DLMIs via the
linear spline relaxation D.2.1 with a grid of the interval [0, T ] consisting of
21 knots.

The numerically obtained results are illustrated in Table 3.1 and show
that the dual iteration outperforms the D-K iteration in terms of the com-
puted upper bounds which is analogous to observations in [85] for LTI sys-
tems. The dual iteration is slightly slower if compared to the D-K iteration
in terms of required running time per iteration, but the latter converges
very slowly. Note that the most time-consuming part of the dual iteration
is its initialization since it involves twice as many variables; the actual
iteration is relatively fast in comparison. The initialization is also numeri-
cally more delicate than the iteration which explains the phenomenon that
the computed lower bounds are actually larger than the obtained upper
bounds for few of the examples; this phenomenon is also promoted by the
hard bounds on the entries of the decision variables introduced by the
solver LMIlab.

For an additional comparison, we also show in Table 3.1 the computed
optimal (upper bounds on the) energy gains achieved by dynamic and static
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Table 3.1: Numerically determined lower and several upper bounds on γopt
resulting from the dual iteration and a D-K iteration for a
sampled-data design together with corresponding bounds for a
standard LTI design. All values are rounded to two decimals.

Sample-Data Design LTI Design

Dual Iteration D-K Iteration hinfsyn hinfstruct

Name γdof γ1 γ5 γ9 γ5
dk γ9

dk γdof γhis

AC3 5.42 6.54 5.45 5.42 6.30 6.22 1.61 3.64
AC6 4.78 5.83 5.58 5.57 5.89 5.88 2.36 4.11
HE2 3.43 6.13 5.01 5.00 5.39 5.39 2.44 4.25
REA1 3.88 4.27 3.93 3.75 4.12 4.11 1.78 0.87
DIS1 4.72 5.40 4.38 4.27 5.40 5.40 4.20 4.19
DIS3 2.41 2.41 2.07 2.07 2.41 2.41 1.05 1.09
DIS4 3.48 2.95 2.88 2.68 2.94 2.93 0.17 0.74
PSM 1.86 1.94 1.91 1.91 1.94 1.93 0.84 0.92
NN2 2.06 2.45 2.03 2.03 2.26 2.25 1.78 2.22
NN4 1.72 3.47 2.20 2.19 2.76 2.75 16.61 1.36
NN15 0.15 0.24 0.21 0.21 0.22 0.22 0.10 0.10

output-feedback controllers for the system (3.33) as obtained via hinfsyn

and hinfstruct [9], respectively.
Finally, note that based on the underlying closed-loop analysis result

Corollary 3.19, one could also generalize other LMI-based static controller
design approaches from LTI systems to impulsive ones such as the one
suggested in Chapter 6.3 of [46] involving S-variables. This is in contrast
to more specialized (and fast) algorithms such as hinfstruct [9] or hifoo

[27] that are much less amenable for generalizations.
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3.3 Summary
In the first part of this chapter, we show how to employ the convexify-
ing parameter transformation introduced in [107, 137] and the elimination
lemma C.11 from [72] for designing impulsive dynamic output-feedback
controllers for impulsive open-loop systems. The corresponding convex de-
sign criteria are given in Theorem 3.3 and Theorem 3.8, respectively, and
have been published by the author in [84]. Note that there are few alter-
native dynamic output-feedback design results for impulsive systems, e.g.,
in [6, 7, 174], but these often consider particularly structured underlying
systems. More importantly, none of them provides design criteria based
on elimination even though these are numerically much more favorable if
compared to those relying on a convexifying parameter transformation.

Moreover, we demonstrate that the flexibility of our approach along with
the richness of the class of impulsive systems permits us to provide new
dynamic output-feedback synthesis criteria for designing

• LTI estimators for impulsive systems in Theorem 3.11;

• aperiodic sampled-data controllers in Theorem 3.12;

• two structurally different controllers for switched systems in Corol-
lary 3.14 and Theorem 3.15, as well as a controller with bump limi-
tation in Theorem 3.17.

Similar design criteria for sampled-data controllers have been obtained
in [61], but only based on a convexifying parameter transformation. For
switched systems there are output-feedback approaches, e.g., if considering
switching functions with arbitrary dwell-time [75] or performing co-design
[41, 99]. However, for switching functions with dwell-time constraints, even
recent publications as, e.g., [4, 20, 89], that employ dedicated analysis re-
sults, rely on measurements of the full state which is in contrast to our
results.
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In the second part of this chapter, we consider the challenging design of
static output-feedback controllers for impulsive systems. To this end and
based on the developed design approach for designing dynamic controllers,
we propose an extension to impulsive systems of the dual iteration that
was established in [90, 91] for designing static stabilizing controllers for
standard LTI systems. In [85] we revisit the dual iteration in the context
of LTI systems, provide a novel control theoretic interpretation of its indi-
vidual steps, extend it to multi-objective design problems, and generalize
it to robust output-feedback design.



4
Robust Analysis

Engineers are typically faced with discrepancies between the real system,
which might be extremely complex in practice, and some employed math-
ematical model, which is limited, e.g., by the available computational re-
sources and the knowledge about the real system. In the field of robust
control [179, 141, 66] such discrepancies are called uncertainties. One of
the most common sources of such uncertainties is the presence of several
unknown parameters in the employed model that might even change over
time. As an example, just think of the total mass of a car which varies
by the weight of all passengers and their luggage. Such uncertainties are
referred to as parametric uncertainties. Another common source is the ap-
proximation or the deliberate neglect of (difficult) dynamics in order to
simplify the considered model of the real system which leads to so-called
dynamic uncertainties.

In order to systematically analyze the real system despite the presence of
numerous of such uncertainties, the essential strategy established in robust
control is



106 Chapter 4 Robust Analysis

• to identify (rough) descriptions of the uncertainties present in the
real system,

• to directly include these descriptions into the considered mathemat-
ical model, and

• to verify stability and performance for all possible objects corre-
sponding to the identified descriptions.

In particular, these steps guarantee stability and performance for the true
dynamical system. Note that the identification in the first step is motivated
by the fact that determining some bounds on an uncertain parameter is
usually much easier compared to obtaining its true value. Think again
of the mass of a car with some passengers which is surely bounded by its
tare weight and by its admissible total weight, if it is loaded in a reasonable
way. The last step might sound challenging since stability and performance
have to be guaranteed for a whole family of models, but over the past
years numerous techniques have been developed for exactly this purpose
and for various classes of uncertainty descriptions. Still, even today it is of
interest to refine those techniques and to expand their scope. To this end,
we consider in this chapter robust analysis for linear impulsive and related
hybrid systems.

4.1 Robust Analysis for Impulsive Systems
Let us at first confine the discussion to linear impulsive systems affected
by arbitrarily time-varying parametric uncertainties. To this end, we rely
on the framework of linear fractional representations (LFRs) and on so-
called separation techniques which are summarized and briefly discussed
in Section C.6 for the reader’s convenience in the context of standard LTI
systems. The LFR framework is discussed in detail, e.g., in [149, 44, 178]
for LTI systems and is known to be a highly flexible modeling tool that
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Figure 4.1: Block diagram of the uncertain impulsive system (4.1).

permits for effectively capturing structural dependencies of models on un-
certain scalar parameters or on matrix sub-blocks. As we will see, another
big advantage of this framework is the perfect fit to all our preparations
provided in Chapter 2.

4.1.1 Arbitrarily Time-Varying Parametric Uncertainties

For real matrices of appropriate dimensions, an initial condition x(0) ∈ Rn,
generalized disturbances d ∈ L2 and dJ ∈ ℓ2, a sequence of impulse instants
0 = t0 < t1 < t2 < . . . as well as two sets ∆ ⊂ Rq×p and ∆J ⊂ RqJ×pJ ,
let us consider an uncertain linear impulsive system with the descriptionẋ(t)
z(t)
e(t)

=

A B B2

C D D12

C2 D21 D22


x(t)
w(t)
d(t)

,
x(tk)
zJ(k)
eJ(k)

=

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 DJ22


x(t−k )
wJ(k)
dJ(k)

,
w(t)=∆(t)z(t), wJ(k)=∆J(k)zJ(k)

(4.1)
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for t ≥ 0 and k ∈ N and as schematically displayed in Fig. 4.1. Here, w,
wJ , z and zJ are interconnection variables and the uncertainties ∆ and ∆J

are piecewise continuous maps that are merely known to satisfy

∆(t) ∈ ∆ for all t ≥ 0 and ∆J(k) ∈ ∆J for all k ∈ N. (4.2)

In particular, note that we do not make any assumptions on the rate of
variation of the uncertainties. Moreover, recall that the sets ∆ and ∆J are
typically of the form

{
diag(δ1I, . . . , δmrI,∆1, . . . ,∆mf )

∣∣ |δi| ≤ 1 and ∥∆i∥ ≤ 1
}

with (repeated) diagonal and full unstructured blocks on the diagonal,
all bounded in norm by one. The purpose of these sets is to encode a
priori available (crude) guesses on the ranges of all the involved uncertain
parameters and to specify the structural dependencies of the underlying
system on these uncertain parameters. Robust stability and performance
of the uncertain system (4.1) are defined as follows.

Definition 4.1 (Robust Stability and Robust Quadratic Performance)

• The system (4.1) is said to be well-posed if I −D∆ and I −DJ∆J

are nonsingular for all ∆ ∈ ∆ and all ∆J ∈ ∆J .

• The system (4.1) is said to be robustly stable if it is well-posed and
there exist constants M,γ > 0 such that ∥x(t)∥ ≤ Me−γt∥x(0)∥ holds
for all t ≥ 0, all initial conditions x(0) ∈ Rn and all uncertainties
∆,∆J with (4.2) and for vanishing disturbances d = 0 and dJ = 0.

• It achieves robust quadratic performance with index (Pp, PJp) if
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there exists some ε > 0 such that

∫ ∞

0

(
e(t)
d(t)

)⊤

Pp

(
e(t)
d(t)

)
dt+

∞∑
k=1

(
eJ(k)
dJ(k)

)⊤

PJp

(
eJ(k)
dJ(k)

)
≤ −ε∥d∥2

L2
− ε∥dJ∥2

ℓ2

holds for the initial condition x(0) = 0, for all d ∈ L2, all dJ ∈ ℓ2

and for all uncertainties ∆,∆J satisfying (4.2).

As in the previous chapter, we assume throughout this section that the
performance index (Pp, PJp) satisfies Assumption 3.1, i.e., that these ma-
trices are partitioned accordingly to the signals ( ed ) and

( eJ
dJ

)
and have

positive semidefinite left upper blocks.
Note that well-posedness allows us to remove the interconnection vari-

ables z, zJ , w, wJ and to equivalently express (4.1) as an impulsive system
of the form (2.7) with time-varying describing matrices in the flow and
jump component given by(

A B2

C2 D22

)
+
(
B

D21

)
∆(t)(I −D∆(t))−1

(
C D12

)
and (

AJ BJ2

CJ2 DJ22

)
+
(
BJ

DJ21

)
∆J(k)(I −DJ∆J(k))−1

(
CJ DJ12

)
,

respectively. Note that these matrices depend rationally on the uncertain-
ties; in particular, the description (4.1) involves an LFR for the systems’
flow and for its jump component. As a consequence of this alternative rep-
resentation, we can combine the arguments of the proofs of our nominal
analysis result Theorem 2.8 and of Lemma C.22, which is an application
of the so-called full block S-procedure, in order to obtain the following.
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Theorem 4.2 (Robust Analysis Criteria for Arbitrarily Time-Varying Uncer-
tainties) The system (4.1) is robustly stable and achieves robust quadratic
performance with index (Pp, PJp) for all (tk)k∈N0 satisfying (RDT) if there
exist functions X ∈ C1([0, Tmax],Sn), P ∈ C([0, Tmax],Sp+q) and PJ ∈
C([Tmin, Tmax],SpJ+qJ ) satisfying the LMIs

X ≻ 0, (•)⊤


0 X

X Ẋ

P

Pp





A B B2

I 0 0
C D D12

0 I 0
C2 D21 D22

0 0 I


≺ 0 and (•)⊤P

(
I

∆

)
≽ 0

(4.3a,b,c)
on [0, Tmax] for all ∆ ∈ ∆ as well as

(•)⊤


X(0) 0

0 −X
PJ

PJp





AJ BJ BJ2

I 0 0
CJ DJ DJ12

0 I 0
CJ2 DJ21 DJ22

0 0 I


≺0 and (•)⊤PJ

(
I

∆J

)
≽ 0

(4.3d,e)
on [Tmin, Tmax] for all ∆J ∈ ∆J .

Analogously as discussed in Section C.6 or, e.g., in [149, 160], the func-
tions P and PJ are usually referred to as multipliers and confined to take
values in so-called multiplier sets as defined in Definition C.18 and cor-
responding to ∆ and ∆J , respectively. The latter restriction is imposed
in order to ensure in a numerically tractable fashion that the inequalities
(4.3c) and (4.3e) are satisfied.
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Example
As an illustration let us consider an active sus-
pension system of one wheel of a transport vehicle
as schematically depicted on the right and as also
considered, e.g., in [13, 149]. This system is mod-
eled by the differential equations

0=m2q̈2+b2(q̇2−q̇1)+k2(q2−q1)−f

0=m1q̈1+b2(q̇1−q̇2)+b1(q̇1−q̇0)+k2(q1−q2)

+ k1(q1 − q0) + f.

(4.4)

b2 f

m1

m2

k1 b1

k2

q1

q2

q0

Here, the force f is a control input acting on the chassis mass m2 and the
axle mass m1. Moreover, q2 − q1 is the distance between chassis and axle
(and also called suspension deflection), q̈2 denotes the acceleration of the
chassis mass and q0 denotes the road profile. The remaining parameters bi,
k1 and k2 are damping, tire and air spring coefficients, respectively. In the
sequel we assume that k1 and m2 can vary over time and are only known
within 10% of their nominal values kn1 and mn

2 . This means that

k1(t) = kn1 (1 + 0.1δ1(t)) and m2(t) = mn
2 (1 + 0.1δ2(t))

with uncertainties δ1(t), δ2(t) ∈ [−1, 1]. The nominal values and remaining
constants are assumed to be given by

b1 = 5.0 · 101 Ns/m, b2 = 1.45 · 103 Ns/m, kn1 = 3.1 · 105 N/m,
k2 = 3.0 · 104 N/m, m1 = 5.0 · 101 kg, mn

2 = 4.0 · 102 kg.

Let us say that we intend to design a controller that keeps q2 constant
and close to zero which is related to passenger comfort and such that the
suspension deflection q2 − q1 is bounded to avoid damage to the mechani-
cal system by measuring the signal y :=

( q2
q2−q1

)
. Of course, the controller
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should achieve those objectives for all admissible uncertainties δ1, δ2. By
introducing the state x := col

(
q1, q2, q̇1 − b1

m1
q0, q̇2

)
, we arrive at the un-

certain unweighted open-loop plant P : ( du ) 7→ ( ey )

ẋ(t)
e(t)
y(t)

=

 Ã B̃ B̃2

C̃ D̃ D̃12

C̃2 D̃21 D̃22


x(t)
d(t)
u(t)



=



0 0 1 0 b1
m1

0
0 0 0 1 0 0

−k1+k2
m1

k2
m1

− b1+b2
m1

b2
m1

k1
m1

− b1
m1

b1+b2
m1

− 1
m1

k2
m2

− k2
m2

b2
m2

− b2
m2

b1
m1

b2
m2

1
m2

0 1 0 0 0 0
−1 1 0 0 0 0
0 1 0 0 0 0

−1 1 0 0 0 0



x(t)
d(t)
u(t)



with signals e := y, d := q0 and u := f and where we omit the time-
dependence of the uncertain coefficients.

In order to design a controller that satisfies the desired specifications by
means of H∞-techniques, one usually augments the plant P with weights to
Pw = WoPWi and designs an H∞-controller for the latter weighted plant.
Here, we choose the weights (defined in the frequency domain) as

Wi(s) :=diag
(

0.01
0.4s+1 , 1

)
and Wo(s) :=diag

(
200, 0.6 · 0.125s+10

0.05s+0.4 , 1, 1
)
.

Such weights are typically chosen such that the specifications are as desired
if the energy gain of the weighted closed-loop interconnection is bounded by
one. Appropriately designing weights is essentially an art in itself, requires
a lot of tuning or expertise and is not discussed here. The above choices
are just picked for the purpose of illustration.
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Figure 4.2: An input disturbance d and closed-loop response for the nomi-
nal system (dark blue) and for the uncertain system for several
samples of δi (light blue).

Now note that designing robust controllers is difficult in general and,
thus, we design here a controller for the nominal weighted plant, i.e., for
vanishing uncertainties δ1, δ2, and afterwards perform a robustness analysis
of the uncertain closed-loop interconnection in order to decide whether this
controller also does its job for the uncertain system.

Finally, we design here a sampled-data controller(
x̃c(k + 1)
ũ(k)

)
=
(
Ac Bc

Cc Dc

)(
x̃c(k)
y(tk)

)

with a sampling time of tk+1 −tk = 0.15 seconds which can, e.g., be done in
Matlab with the command sdhinfsyn. Note that the latter requires all D-
matrices in the weighted open-loop interconnection to be zero which limits
its applicability and is in contrast to our synthesis approach presented in
Subsection 3.1.2. Anyhow, via sdhinfsyn we obtain a sampled-data con-
troller for which the weighted nominal closed-loop’s energy gain is guaran-
teed to be smaller than 0.455 < 1. The corresponding (unweighted) closed-
loop response to some disturbance d for the nominal system and for the un-
certain system for several samples of constant δ1, δ2 is depicted in Fig. 4.2.
As expected, we observe that the closed-loop performance (slightly) dete-
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riorates in the presence of uncertainties if compared to the response of the
nominal closed-loop interconnection. Note that the response can be worse
for uncertainties that are actually time-varying.

Let us now be more concrete by determining upper bounds on the robust
energy gain achieved by the computed controller by means of our robust
analysis result Theorem 4.2. To this end, we have to express the (weighted)
closed-loop interconnection as impulsive system (4.1). This is achieved by
pulling out the uncertainties as described, e.g., in Chapter 4.4 of [141]. To
this end, observe that, by introducing the signals

z1 := q1 − q0, w1 := δ1z1, z2 := q̈2 and w2 := δ2z2,

and by recalling that the state is x = col
(
q1, q2, q̇1 − b1

m1
q0, q̇2

)
, the equa-

tions (4.4) read as

0 = m2q̈2 + b2(q̇2 − q̇1) + k2(q2 − q1) − f

= mn
2 q̈2 +mn

2 0.1w2 + b2(q̇2 − q̇1) + k2(q2 − q1) − f

= mn
2 ẋ4 +mn

2 0.1w2 + b2(x4 − x3) + k2(x2 − x1) − u− b2
b1

m1
d

and

0 = m1q̈1 + b2(q̇1 − q̇2) + b1(q̇1 − q̇0) + k2(q1 − q2) + k1(q1 − q0) + f

= m1q̈1+b2(q̇1 − q̇2) + b1(q̇1 − q̇0) + k2(q1 − q2) + kn1 (q1 − q0)

+ kn1 0.1w1 + f

= m1ẋ3−b2x4 + (b2 + b1)x3 − k2x2 + (k2 + kn1 )x1 + kn1 0.1w1

+
(
(b2 + b1) b1

m1
− kn1

)
d+ u.

This leads to the following linear fractional representation of the uncertain
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open-loop system


ẋ(t)
z(t)
e(t)
y(t)

=



0 0 1 0 0 0 b1
m1

0
0 0 0 1 0 0 0 0

k2+kn1
−m1

k2
m1

b2+b1
−m1

b2
m1

0.1kn1
−m1

0 kn1
m1

− b1
m1

b2+b1
m1

−1
m1

k2
mn2

− k2
mn2

b2
mn2

− b2
mn2

0 −0.1 b2b1
m1mn2

1
mn2

1 0 0 0 0 0 −1 0
k2
mn2

− k2
mn2

b2
mn2

− b2
mn2

0 −0.1 b2b1
m1mn2

1
mn2

0 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0




x(t)
w(t)
d(t)
u(t)



=


A B B2 B3

C D D12 D13

C2 0 0 0
C3 0 0 0



x(t)
w(t)
d(t)
u(t)

 , w(t) =
(
δ1(t)

δ2(t)

)
︸ ︷︷ ︸

=:∆(t)

z(t).

We stress that these representations are highly non-unique and that there
are tools for their automatic generation available, e.g., in Matlab. By inter-
connecting the sampled-data controller we arrive at an impulsive closed-
loop system with description
ẋ(t)
u̇(t)
ẋc(t)
z(t)
e(t)

=


A B3 0B B2

0 0 0 0 0
0 0 0 0 0
C D13 0DD12

C2 0 0 0 0




x(t)
u(t)
xc(t)
w(t)
d(t)

,
 x(tk)
u(tk)
xc(tk)

=

 I 0 0
DcC3 0Cc

BcC3 0Ac


 x(t−k )
u(t−k )
xc(t−k )

,

w(t) = ∆(t)z(t)

which is a special case of the generic description (4.1). Note that the
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weighted closed-loop can be expressed in a similar form, which is not shown
here for reasons of space. Hence, we can apply Theorem 4.2 for its robust-
ness analysis. Doing so with a multiplier set corresponding to D-G-scalings
(see Remark C.19) and with the B-Spline relaxation (Section D.3) yields
for example 1.176 as a guaranteed upper bound on the robust energy gain;
note that this bound can be improved to some extend by adjusting the
parameters in the relaxation and at the expense of a higher computational
burden.

Remark 4.3 (Lower Bounds and Worst-Case Uncertainties) Theorem (4.2)
with quadratic performance index (Pp, PJp) =

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
per-

mits us to systematically generate upper bounds on the robust energy gain.
Unfortunately, determining good lower bounds on this number or finding
worst-case uncertainties is much more challenging and not discussed here.
Note that even for standard LTI systems, these are rather difficult tasks
and there are only few methods for systematically coping with them. One
of them is the µ-analysis framework [44, 178] which, however, is limited in
the variety of uncertainty classes that can be considered.

Let us finally demonstrate that restricting the multipliers P and PJ in
Theorem 4.2 to be constant functions is conservative in general. Indeed,
for our example, with this restriction and with exactly the same relaxation
parameters, we merely obtain 1.569 as an upper bound on the robust energy
gain

4.1.2 Integral Quadratic Constraints

In this subsection, we allow for vastly more general types of uncertainties
compared to the previously considered parametric ones. We still rely on
linear fractional representations, but, this time, adapt the framework of
integral quadratic constraints (IQCs) to appropriately apply for impulsive
systems. The latter robust analysis framework for standard LTI systems
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has been proposed in [109]. Since then it was established as a powerful
and highly flexible tool, e.g., in aerospace applications precisely because it
allows for a systematic robustness analysis for systems affected by various
types of (challenging) uncertainties. We refer the reader to the recent theses
[160] and [50] that provide a comprehensive in-depth discussion of system
analysis via IQCs.

We consider, for real matrices of appropriate dimensions, some initial
condition x(0) ∈ Rn, generalized disturbances d ∈ L2 and dJ ∈ ℓ2 and a
sequence of impulse instants 0 = t0 < t1 < t2 < . . . , an uncertain linear
impulsive system with the descriptionẋ(t)

z(t)
e(t)

 =

A B B2

C D D12

C2 D21 D22


x(t)
w(t)
d(t)

 , w(t) = ∆(z)(t) (4.5a)

x(tk)
zJ(k)
eJ(k)

 =

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 DJ22


x(t−k )
wJ(k)
dJ(k)

 , wJ(k) = ∆J(zJ)(k)

(4.5b)

for t ≥ 0 and k ∈ N. The uncertainties ∆ : Lp2e → Lq2e and ∆J : ℓpJ2e → ℓqJ2e

are potentially nonlinear functions that are merely known to be contained
in given sets ∆ and ∆J , respectively. Here, L•

2e and ℓ•
2e denote the spaces

of locally square integrable functions and summable sequences with values
in R• and their corresponding standard norms, respectively.

In order to simplify the exposition, we assume that the uncertainty sets
∆ and ∆J are such that the description (4.5) is well-posed for any con-
tained uncertainties; here well-posedness means that, for any d ∈ L2 and
dJ ∈ ℓ2, there exists a unique piecewise continuous and right continuous
state trajectory x satisfying (4.5). We also have to slightly weaken the def-
inition of robust stability since an exponential decay rate of the state can
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usually no longer be assured for general non-parametric uncertainties.

Definition 4.4 (Robust Stability and Robust Quadratic Performance)

• The system (4.5) is said to be robustly stable if there exist a constant
M > 0 such that

lim
t→∞

x(t) = 0 and ∥x(t)∥ ≤ M∥x(0)∥ for all t ≥ 0

hold for all (x(0),∆,∆J) ∈ Rn × ∆ × ∆J and for vanishing distur-
bances d = 0 and dJ = 0.

• It is said to achieve robust quadratic performance with index (P, PJ)
if there exists some ε > 0 such that

∫ ∞

0
(•)⊤P

(
e(t)
d(t)

)
dt+

∞∑
k=1

(•)⊤PJ

(
eJ(k)
dJ(k)

)
≤ −ε∥d∥2

L2
− ε∥dJ∥2

ℓ2

holds for x(0) = 0 and for all (d, dJ ,∆,∆J) ∈ L2 × ℓ2 × ∆ × ∆J .

Similarly as is the previous subsection, instead of directly considering
the uncertain system (4.5) as a whole, the key idea behind IQCs is

• to identify constraints on interconnection variables w, z, wJ , zJ that
are enforced by the uncertainties ∆ and ∆J , and afterwards

• to analyze the auxiliary system given by (4.5) with the uncertainties
being removed, but with the identified constraints on the intercon-
nection variables w, z, wJ , zJ .

Naturally, if we find that the latter auxiliary system is stable, then stability
of the original system is guaranteed as well since the uncertain system is a
particular instance of the auxiliary one. Note that the involved constraints
are typically formulated in the frequency-domain such as in [109]. However,
since we deal with impulsive systems with potentially aperiodic impulses,
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Ψ

ΨJ

∆ wz

v

vJ

ξ(t−• ) ξ(t•)

∆J wJzJ

Figure 4.3: Graphical illustration of an integral quadratic constraint.

we cannot rely on frequency-domain techniques and will, instead, formulate
constraints in the time-domain. Here, the definition of these constraints
relies on an a priori chosen linear impulsive filter

(
ξ̇(t)
v(t)

)
=
(
AΨ BΨ BΨ2

CΨ DΨ DΨ2

)ξ(t)z(t)
w(t)

, (ξ(tk)
vJ(k)

)
=
(
AΨJ BΨJ BΨJ2

CΨJ DΨJ DΨJ2

) ξ(t−k )
zJ(k)
wJ(k)


(4.6)

for t ≥ 0 and k ∈ N with initial condition ξ(0) = 0 which captures the
input-output behavior of the uncertainties ∆ and ∆J ; a graphical inter-
pretation is shown in Fig. 4.3 where Ψ and ΨJ stand for the flow and
jump component of (4.6), respectively. Precisely, we introduce the follow-
ing notion that involves again the clock θ as defined in (2.2). In order to
specify dimensions, we suppose that CΨ and CΨJ are elements of Rnv×nΨ

and RnvJ×nΨ , respectively.

Definition 4.5 (Finite-Horizon IQC with Terminal, Jump and Flow Cost) The
pair (∆,∆J) satisfies a finite-horizon IQC with terminal, jump and flow
cost with respect to the impulsive filter (4.6) and the maps ZT , ZJ , ZF ∈
C1([0, Tmax],SnΨ), M ∈C([0, Tmax],Snv ) and MJ ∈C([Tmin, Tmax],SnvJ ) if
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the inequality

∫ t

0
v(s)⊤M(θ(s))v(s) ds+

k∑
l=1

vJ(l)⊤MJ(θ(t−l ))vJ(l)

+ µT (t) −
∫ t

0
µ̇F (s) ds−

k∑
l=1

(
µJ(tl)−µJ(t−l )

)
≥ 0

for all t ∈ [tk, tk+1) and all k ∈ N0

holds for any trajectory of the impulsive filter (4.6) driven by
( z

∆(z)
)

and( zJ
∆J (zJ )

)
with any (z, zJ) ∈ Lp2e×ℓpJ2e and any sequence of impulse instants

(tk)k∈N0 satisfying (RDT); here, we make use of the abbreviations µ•(t) :=
ξ(t)⊤Z•(θ(t))ξ(t) for • ∈ {T, J, F}. We denote the set of all such pairs
(∆,∆J) by IQC(ZT , ZJ , ZF ,M,MJ).

Admittedly, this definition appears rather technical. However, for van-
ishing ZJ and ZF , it essentially states that the impulsive interconnection
depicted in Fig. 4.3 satisfies a non-strict dissipation inequality similarly to
the one that appeared in Remark 2.9. Recall that for deriving such dissipa-
tion inequalities for impulsive systems, we rely on expressing the function
µT as

µT (t) = µT (t) − µT (0)

= µT (t) − µT (tk) +
k∑
l=1

(
µT (tl) − µT (tl−1)

)
= µT (t)−µT (tk)+

k∑
l=1

(
µT (t−l ) − µT (tl−1)

)
+

k∑
l=1

(
µT (tl) − µT (t−l )

)
=
∫ t

0
µ̇T (s) ds+

k∑
l=1

(
µT (tl) − µT (t−l )

)
for all t ∈ [tk, tk+1) and all k ∈ N0, as well as on estimates for both the
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integral and the latter sum. The jump and flow costs, as characterized
by the maps ZJ and ZF , are introduced to account for the situation that
merely one of these estimates is available.

Note that the notion in Definition 4.5 generalizes the one proposed in
[148] for standard LTI systems to impulsive ones. Indeed, we recover the
dissipation inequality∫ t

0
v(s)⊤Mv(s) ds+ ξ(t)⊤Zξ(t) ≥ 0 for all t ≥ 0

considered in [148] by dropping the jump component in Fig. 4.3 as well as
the corresponding signals and maps, and by restricting the maps Z and M
to be constant. Another related notion of IQCs was recently proposed in
[26], where uncertain systems on a finite time horizon [0, T ] are considered.
Their notion relies on an inequality of the form∫ t

0
v(s)⊤M(s)v(s) ds ≥ 0 for t = T,

i.e., they do not consider a terminal cost and their inequality is not required
to hold for all t ∈ [0, T ]. Since we consider impulsive systems on the horizon
[0,∞), the corresponding analogue is obtained by formally taking the limit
T → ∞ and accounting for the jumps:

∫ t

0
v(s)⊤M(θ(s))v(s) ds+

k∑
l=1

vJ(l)⊤MJ(θ(t−l ))vJ(l) ≥ 0 for t = k = ∞.

This constitutes a so-called soft infinite-horizon IQC. It remains to be ex-
plored whether the arguments given in [148] generalize to impulsive systems
and allow for linking the analysis criteria based on Definition 4.5 with those
based on soft infinite-horizon IQCs.

Before giving several examples, we formulate the main result of this chap-
ter, a genuine generalization of the IQC based analysis criteria in Theorem 4
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eJ dJ

x(t−• ) x(t•) ξ(t−• ) ξ(t•)

Figure 4.4: Block diagram of the augmented system (4.7) involving the
system (4.5) and the filter (4.6).

from [148] to uncertain impulsive systems. To this end, we introduce the
following augmented impulsive systemζ̇(t)v(t)
e(t)

=

A B B2

C D D12

C2 D21 D22


ζ(t)w(t)
d(t)

,
ζ(tk)
vJ(k)
eJ(k)

=

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 DJ22


 ζ(t−k )
wJ(k)
dJ(k)


(4.7)

for t ≥ 0 and k ∈ N with state ζ := ( ξx ) as well as describing matrices

A B B2

C D D12

C2 D21 D22

 =


AΨ BΨC BΨD +BΨ2 BΨD12

0 A B B2

CΨ DΨC DΨD +DΨ2 DΨD12

C2 0 D21 D22


for the flow component; the matrices describing the jump component are
given analogously. As illustrated in Fig. 4.4 in terms of a corresponding
block diagram, this system results from the uncertain system (4.5) by re-
moving the uncertainties and by an augmentation with the filter (4.6).
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Theorem 4.6 (IQC based Robust Analysis Criteria) Let P =
(
Q S

S⊤ R

)
and

PJ =
(
QJ SJ
S⊤
J RJ

)
be symmetric matrices with Q ≽ 0 and QJ ≽ 0. Then

the system (4.1) is robustly stable and achieves robust quadratic perfor-
mance with index (P, PJ) for all (tk)k∈N0 satisfying (RDT) if there ex-
ist functions X ∈ C1([0, Tmax],Snψ+n), ZT , ZJ , ZF ∈ C1([0, Tmax],SnΨ),
M ∈ C([0, Tmax],Snv ) and MJ ∈ C([Tmin, Tmax],SnvJ ) satisfying

XT ≻ 0 and (•)⊤


0 XF

XF ẊF

M

P




A B B2

I 0 0
C D D12

C2 D21 D22

0 0 I

 ≺ 0 (4.8a,b)

on [0, Tmax],

(•)⊤


XJ(0) 0

0 −XJ

MJ

PJ




AJ BJ BJ2

I 0 0
CJ DJ DJ12

CJ2 DJ21 DJ22

0 0 I

 ≺ 0 (4.8c)

on [Tmin, Tmax] and

∆ × ∆J ⊂ IQC(ZT , ZJ , ZF ,M,MJ) (4.8d)

where X• := X − diag(Z•, 0) for • ∈ {T, J, F}.

The full proof of Theorem 4.6 is given Subsection 4.1.3. Conceptually,
it follows the lines of the one of Theorem 2.8 for nominal performance
analysis, involves separation techniques similarly as in Lemma C.22, and
relies on Lyapunov arguments involving a clock in order to capture the
impulsive nature of the underlying augmented system (4.7). However, the
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individual steps are much more intricate due to the involved filter (4.6)
that is itself an impulsive system.

In order make use of the IQC analysis conditions from Theorem 4.6, it is
mandatory to employ numerically tractable criteria which imply the inclu-
sion (4.8d). Analogously as discussed in Section C.6, these criteria should
be not too conservative, not too costly to implement and, in particular,
always be tailored to the concrete instance of the uncertainty sets ∆ and
∆J . Next, we provide several of such choices as an illustration and be-
gin by reconsidering arbitrarily time-varying parametric uncertainties as
discussed in the previous subsection.

Lemma 4.7 (Arbitrarily Time-Varying Parametric Uncertainties) Suppose that
∆̃ ⊂ Rq×p and ∆̃J ⊂ RqJ×pJ are given value sets and let the uncertainty
sets are given by

∆ :=
{

∆(z)(t) :=∆̃(t)z(t)
∣∣∣∣∣ ∆̃ is piecewise continuous and

∆̃(t) ∈ ∆̃ for all t ≥ 0

}
,

∆J :=
{

∆J(zJ)(k) :=∆̃J(k)zJ(k)
∣∣ ∆̃J(k) ∈ ∆̃J for all k ∈ N

}
.

Moreover, suppose that the filter (4.6) is static, i.e., nΨ = 0, and satisfies
(DΨ, DΨ2) = I, (DΨJ , DΨJ2) = I. Then the inclusion (4.8d) holds for
ZT := ZJ := ZF := 0 and all functions M ∈ C([0, Tmax],Sp+q), MJ ∈
C([Tmin, Tmax],SpJ+qJ ) satisfying

(•)⊤M

(
I

∆̃

)
≽0 for all ∆̃∈∆̃ and (•)⊤MJ

(
I

∆̃J

)
≽0 for all ∆̃J ∈∆̃J

on [0, Tmax] and on [Tmin, Tmax], respectively.

Proof. The proof is a consequence of Definition 4.5 and the particular
choice of the filter since its outputs are given by v = ( z

∆̃z ) =
(
I
∆̃
)
z and
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vJ =
( zJ

∆̃JzJ

)
=
(

I
∆̃J

)
zJ , respectively. Indeed, we have

∫ t

0
v(s)⊤M(θ(s))v(s) ds+

k∑
l=1

vJ(l)⊤MJ(θ(t−l ))vJ(l)

=
∫ t

0
(•)⊤M(θ(s))

(
I

∆̃(s)

)
z(s) ds+

k∑
l=1

(•)⊤MJ(θ(t−l ))
(

I

∆̃J(l)

)
zJ(l)≥0

for all t ∈ [tk, tk+1) and all k ∈ N0 and any trajectory of the filter (4.6)
and any sequence of impulse instants (tk)k∈N0 satisfying (RDT). •

Note that the specific choice of the filter (4.6) in Lemma 4.7 renders the
augmented system (4.7) identical to the known part of the original one
(4.5). Thus, we recover the analysis criteria in Theorem 4.2 for impulsive
systems affected by arbitrarily time-varying uncertainties by combining the
IQC analysis criteria in Theorem 4.6 with Lemma 4.7. In particular, we
have, e.g., the following result for a concrete choice of the value sets ∆̃ and
∆̃J which involves the abbreviation

Pp(S) := P a,bp (S) :=
(
bI −I

−aI I

)⊤(
0 S⊤

S 0

)(
bI −I

−aI I

)
(4.9)

for any square matrix-valued map or square matrix S; many more robust
analysis results for various instances of the value sets can be generated on
the basis of Remark C.19.

Corollary 4.8 (Arbitrarily Time-Varying Parametric Uncertainties for Con-
crete Value Sets) Let the uncertainty sets ∆, ∆J and the filter (4.6) be
as in Lemma 4.7 with value sets ∆̃J :=

{
∆̃J ∈ RqJ×pJ | ∥∆̃J∥ ≤ 1

}
and

∆̃ :=
{
δ̃I | δ̃ ∈ [a, b]

}
. Then the inclusion (4.8d) holds ZT := ZJ :=

ZF := 0, M := Pp(N) and MJ :=
(
αI 0
0 −αI

)
and for any maps N ∈
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C([0, Tmax],Rq×q) and α ∈ C([Tmin, Tmax],R) satisfying

N +N⊤ ≻ 0 on [0, Tmax] and α > 0 on [Tmin, Tmax].

Proof. This follows from Lemma 4.7 and from that

(•)⊤M

(
I

∆̃

)
= (δ̃ − a)(b− δ̃)(N +N⊤) ≽ 0

and

(•)TMJ

(
I

∆̃J

)
= α(I − ∆̃⊤

J ∆̃J) ≽ 0

hold for all ∆̃ = δ̃I ∈ ∆̃ and all ∆̃J ∈ ∆̃J , respectively. •
Note that Lemma 4.7 and Corollary 4.8 rely on rendering the filter (4.6)

trivial and only take information on the involved value sets into account;
since the considered parametric uncertainties are assumed to be arbitrarily
time-varying, there is also essentially nothing more we can do. However,
in practice there frequently is additional information on the variation of
the parametric uncertainties available or, e.g., it is known that they do
not vary at all. One of the major benefits of Theorem 4.6 if compared
to Theorem 4.2 is the possibility to readily incorporate such additional
information via nontrivial filters (4.6) and on the basis of suitable IQCs.
As an illustration, let us consider another class of parametric uncertainties
that is relevant, e.g., in the context of switched systems.

Lemma 4.9 (Piecewise Constant Parametric Uncertainty in Flow Component
Only) Suppose that the uncertainty channel in (4.5b) is absent, i.e., pJ =
qJ = 0, and that the uncertainty sets are given by ∆J = ∅ and

∆ :=
{

∆(z)(t) :=δ(t)z(t)
∣∣∣∣∣ δ is constant on each interval [tk, tk+1)

with values in [a, b]

}
.
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Moreover, let Pp be as in (4.9) and, for some matrices Aψ, Bψ, Cψ, Dψ,
let the describing matrices of the filter (4.6) be structured as

(
AΨ BΨ BΨ2

CΨ DΨ DΨ2

)
=


Aψ 0 Bψ 0
0 Aψ 0 Bψ

Cψ 0 Dψ 0
0 Cψ 0 Dψ

 and AΨJ = 0.

Then the inclusion (4.8d) holds for ZT := ZJ := 1
2Pp(R), ZF := 0 and

M := Pp(N) with any functions N ∈ C([0, Tmax],Rnv
2 ×nv

2 ) and R ∈
C1([0, Tmax],S

nΨ
2 ) satisfying

(•)⊤

(
0 R

R Ṙ

)(
Aψ Bψ

I 0

)
+ (•)⊤(N +N⊤)

(
Cψ Dψ

)
≻ 0 on [0, Tmax].

(4.10)

Note that by choosing the filter in Lemma 4.9 to be static, i.e., for nΨ =0,
we essentially treat the uncertainties in the same fashion as arbitrarily
time-varying ones as in Corollary 4.8. Such a choice is by now well-known
in the robust control literature to simplify the resulting analysis conditions
and to reduce their computational burden at the prize of potentially being
overly conservative. This is also natural from an optimization point of view,
just because much less degrees of freedom are involved. Corresponding
demonstrations are found, e.g., in [120] for standard LTI systems.

The detailed dissipation based proof of Lemma 4.9 is given in Subsec-
tion 4.1.3. Its key element is the state resetting property of the filter (4.6)

ξ(tk) = 0 for all k ∈ N0

as induced by AΨJ = 0. This property and the filter’s block diagonal struc-
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ture assure that the filter’s output admits the commutation property

v = Ψ
(
z

w

)
= Ψ

((
I

δI

)
z

)
=
(
I 0
0 δI

)
Ψ
(
z

z

)
=
(
I

δI

)
v1 (4.11)

for the output v1 of the (sub-)filter(
ξ1(t)
v1(t)

)
=
(
Aψ Bψ

Cψ Dψ

)(
ξ1(t)
z(t)

)
, ξ1(tk) = 0

and for all admissible inputs and uncertainties; here, we denote by Ψ the
input-output map ( zw ) 7→ v corresponding to (4.6). The remaining ingre-
dients for generating the desired estimates are the inequality∫ t

0
˙̃η(s) ds ≥ −

∫ t

0
v1(s)⊤(N(θ(s)) +N(θ(s))⊤)v1(s) ds for all t ≥ 0

for the map η̃ : t 7→ ξ1(t)⊤R(θ(t))ξ1(t) which is assured by (4.10), and the
identity

(•)⊤Pp(N)
(
I

δI

)
= (δ − a)(b− δ)︸ ︷︷ ︸

≥0

(N +N⊤)

which holds for any δ ∈ [a, b] and any square matrix N .
By combining Lemma 4.9 with Theorem 4.6, we can employ IQCs with

dynamic filters for the robustness analysis of systems affected by piece-
wise constant uncertainties for the first time. We have published the novel
robust analysis criteria resulting from this combination in [83], where we
additionally provide a detailed discussion of this particular result with sev-
eral interesting applications, e.g., to consensus problems. In order to render
the paper [83] self-contained, this paper provides an alternative motivation
of these analysis criteria resulting in a more direct, but less modular proof.

If the underlying system (4.5) admits a trivial jump component, then
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we can recover a robust analysis result from [83] for standard LTI systems
by combining Theorem 4.6 with the following lemma and by choosing all
involved decision variables to be constant matrices. Its proof is similar to
and simpler than the one of Lemma 4.9 and thus omitted.

Lemma 4.10 (Constant Parametric Uncertainties in Flow Component Only)
Suppose that the uncertainty channel in (4.5b) is absent, i.e., pJ = qJ = 0
and that the uncertainty sets are given by ∆J = ∅ and

∆ := {∆(z)(t) :=δz(t) | δ ∈ [a, b]}.

Moreover, let the map Pp and the filter (4.6) be as in Lemma 4.9, but
with AΨJ = I. Then the inclusion (4.8d) holds for ZT := ZJ := 1

2Pp(R),
ZF := 0, and M := Pp(N) with any maps N ∈ C([0, Tmax],Rnv

2 ×nv
2 ) and

R ∈ C1([0, Tmax],S
nΨ

2 ) satisfying (4.10).

In particular, note that the employed filter in Lemma 4.10 is a standard
LTI system since its jump component is trivial. It is not difficult to see
that this filter also admits the essential commutation property (4.11) for
the constant parametric uncertainties considered in Lemma 4.10.

In fact, for all of the so far considered (parametric) uncertainties, it is
essential to choose filters (4.6) that are compatible with the encountered
uncertainties in the sense that property (4.11) is assured. Some possible
combinations are illustrated in Table 4.1 where

∆c :=
{

∆(z)(t) :=δz(t)
∣∣ δ ∈ [a, b]

}
,

∆pwc :=
{

∆(z)(t) :=δ(t)z(t)
∣∣∣∣∣ δ is constant on intervals [tk, tk+1)

with values in [a, b]

}
,

∆atv :=
{

∆(z)(t) :=δ(t)z(t)
∣∣∣∣∣ δ is piecewise continuous

with values in [a, b]

}

and where



130 Chapter 4 Robust Analysis

Table 4.1: Illustration of the compatibility of filter types with classes of
single repeated parametric uncertainties.

∆c ∆pwc ∆atv

LTI Ψ
✓ ✗ ✗

Ψ with resets
(✓) ✓ ✗

Static Ψ
(✓) (✓) ✓

✓ means that (4.11) is guaranteed for the particular combination of
∆• and Ψ;

(✓) means that (4.11) is guaranteed, but the resulting analysis criteria
can be overly conservative for the particular instance of ∆•;

✗ means that (4.11) is not assured.

The plots on the top and on the left in Table 4.1 display the corresponding
functions

t 7→ ∥∆(z)(t)∥
∥z(t)∥ and t 7→

∥Ψ(
( z

∆(z)
)
)(t)∥

∥
(

z(t)
∆(z)(t)

)
∥
,

respectively, for some pointwise nonzero function z and illustrate that com-
patibility is related to the interplay of these functions over time (and on
the intervals of interest). Based on such considerations it is, e.g., possi-
ble to develop novel filters that are compatible with and precisely capture
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piecewise constant and periodic parametric uncertainties, but this is not
further elaborated on here.

Instead, let us formulate the jump component analogue of Lemma 4.10.

Lemma 4.11 (Constant Parametric Uncertainties in Jump Component Only)
Suppose that the uncertainty channel in (4.5a) is absent, i.e., p = q = 0,
and that the uncertainty sets are given by ∆ = ∅ and

∆J := {∆J(zJ)(k) :=δJzJ(k) | δJ ∈ [a, b]}.

Moreover, let Pp be as in (4.9) and, for some matrices AψJ , BψJ , CψJ ,
DψJ , let the describing matrices of the filter (4.6) be structured as

AΨ = 0 and
(
AΨJ BΨJ BΨJ2

CΨJ DΨJ DΨJ2

)
=


AψJ 0 BψJ 0

0 AψJ 0 BψJ

CψJ 0 DψJ 0
0 CψJ 0 DψJ

 .

Then the inclusion (4.8d) holds for ZT := ZF := 1
2Pp(R), ZJ := 0 and

MJ := Pp(NJ) with any maps NJ ∈ C([Tmin, Tmax],R
nvJ

2 ×
nvJ

2 ) and R ∈
C1([0, Tmax],S

nΨ
2 ) satisfying

(•)⊤

(
R(0) 0

0 −R

)(
AψJ BψJ
I 0

)
+(•)⊤(NJ+N⊤

J )
(
CψJ DψJ

)
≻ 0 (4.12)

on [Tmin, Tmax].

The proof of this novel result is also found in Subsection 4.1.3. We stress
that such analogous results are not too difficult to obtain due to the flexi-
bility and generality of Theorem 4.6 and the underlying notion of IQCs in
Definition 4.5.

Note that all of the given examples so far involve parametric uncertain-
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ties. Naturally, IQCs as established in Definition 4.5 permit us to capture
the input-output behavior of much more general uncertainties and Theo-
rem 4.6 gives us dedicated robust analysis criteria for them. We give here
two more examples involving nonparametric uncertainties and refer the
reader to [109, 160, 50] for a multitude of further examples. In those publi-
cations they are formulated for standard LTI systems, but their extension
to impulsive ones is not difficult based on the illustrations given next.

Lemma 4.12 (Dynamic Repeated Uncertainty in Flow Component Only) Sup-
pose that the uncertainty channel in (4.5b) is absent, i.e., pJ = qJ = 0,
and that the uncertainty sets are given by ∆J = ∅ and

∆ :=
{

∆(z)(t) :=
∫ t

0
Cδe

Aδ(t−s)Bδz(s) ds+Dδz(t)
∣∣∣∣

δ(s) :=Cδ(sI−Aδ)−1Bδ+Dδ satisfies δ∈RH1×1
∞ and ∥δ∥∞ ≤1

}
.

Moreover, let the filter (4.6) be structured as in Lemma 4.10. Then the
inclusion (4.8d) holds for ZT := ZJ :=

(
R 0
0 −R

)
, ZF := 0 and M :=(

N 0
0 −N

)
with any matrices R ∈ S

nΨ
2 and N ∈ S

nv
2 satisfying

(•)⊤

(
0 R

R 0

)(
Aψ Bψ

I 0

)
+ (•)⊤N

(
Cψ Dψ

)
≻ 0. (4.13)

The proof is given in Subsection 4.1.3. Similarly as before, it revolves
around the commutation property (4.11) which can be shown to be valid
on the basis of Fubini’s theorem.

Note that one of the arguments in the proof of Lemma 4.12 breaks down,
if we replace the inequality (4.13) with

(•)⊤

(
Ṙ R

R 0

)(
Aψ Bψ

I 0

)
+(•)⊤N

(
Cψ Dψ

)
≻ 0 on [0, Tmax] (4.14)
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for nonconstant maps R ∈ C1([0, Tmax],S
nΨ

2 ) and N ∈ C([0, Tmax],Snv2 ).
This issue seems to be related to the fact that

N(t)∆(z)(t) = ∆(Nz)(t) for all ∆ ∈ ∆

holds only for constant functions N . Nevertheless, one can show that the
statement in Lemma 4.12 is true, if we replace (4.13) with (4.14) and a
particular monotonicity criterion

(•)⊤

(
R̈ Ṙ

Ṙ 0

)(
Aψ Bψ

I 0

)
+ (•)⊤Ṅ

(
Cψ Dψ

)
≼ 0 on [0, Tmax]

for R ∈ C2([0, Tmax],S
nΨ

2 ) and N ∈ C1([0, Tmax],Snv2 ). How these alterna-
tive criteria compare to the ones in Lemma 4.12 remains to be explored.

Finally, let us consider a class of nonlinear uncertainties and provide a
suitable IQC for them that is essentially taken from [50]. The proof is found
in Section 4.1.3.

Lemma 4.13 (Slope-Restricted Nonlinear Repeated Uncertainty in Jump Com-
ponent Only) Suppose that the uncertainty channel in (4.5a) is absent, i.e.,
p = q = 0, and that the uncertainty sets are given by ∆ = ∅ and

∆J :=
{

∆J(zJ)(k) := (ϕ(zJ1(k)), . . . , ϕ(zJ2(k)))⊤
∣∣∣

ϕ : R → R satisfies ϕ(0) = 0 and 0 ≤ ϕ(x) − ϕ(y)
x− y

for all x ̸= y

}
.

Moreover, let the filter (4.6) be structured as

AΨ = 0 and
(
AΨJ BΨJ BΨJ2

CΨJ DΨJ DΨJ2

)
=

Jν ⊗ IpJ eν ⊗ IpJ 0
Cν ⊗ IpJ eν+1 ⊗ IpJ 0

0 0 IpJ
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for some length ν ∈ N0; here, Cν :=
(

Iν
01×ν

)
, ej denotes the jth standard

unit vector of appropriate dimension and Jν ∈ Rν×ν is a single Jordan
block with ones in the entries located directly above the main diagonal and
zeros elsewhere. Then the inclusion (4.8d) holds for ZT := ZJ := ZF := 0
and MJ :=

(
0 (•)⊤

(Λ1,...,Λν+1) 0pJ×pJ

)
with any matrix Λ := (Λ1, . . . ,Λν+1) ∈

RpJ×(ν+1)pJ satisfying componentwise

ν+1∑
j=1

Λj1≥0,
ν+1∑
j=1

1⊤Λj≥0, Λ1 ≤0, . . . , Λν ≤0, e⊤
jΛν+1ei≤0 for i ̸=j,

(4.15)
where 1 denotes the all-one vector.

Note that all of the provided examples merely deal with a single or two
uncertainties affecting the underlying impulsive system (4.1) or only one
of its components. In view of the modularity of the IQC approach, this is
more than sufficient because it is a simple exercise to combine Theorem 4.6
with, e.g., Lemmas 4.7, 4.12 and 4.13, in order to generate “novel” robust
analysis criteria for an impulsive system affected by an arbitrarily time-
varying parametric and a dynamic uncertainty in its flow component and a
slope-restricted nonlinear uncertainty in its jump component. Completely
analogous as illustrated, e.g., in Remark C.19 or in [160, 50], this is achieved
by diagonally stacking the involved maps and the describing matrices of
the filter (4.6). This modularity is one of most beautiful properties of the
IQC framework and is also highly relevant for practical purposes when
encountering a variety of different sources of uncertainties.

Remark 4.14 (Generalizations of Definition 4.5 and Theorem 4.6)
(a) In principle we can replace the decoupled uncertainties in the system

description (4.5) by a single more general one of the form ∆ : ( z
zJ ) 7→

( w
wJ ). Such coupled uncertainties could emerge, e.g., from neglected

or unknown impulsive dynamics in the underlying model or appear
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in descriptions of uncertain sampled-data systems. However, it seems
that appropriately dealing with such uncertainties requires to merge
the robustness analysis inequalities for the flow and jump component,
(4.8b) and (4.8c), into a single, larger and more intricate inequality
similarly as we did in [80] in a different context. There we considered
systems affected by piecewise constant uncertainties with bounds on
the involved jump heights.

(b) Analogously as for our initial nominal analysis result Theorem 2.3,
the describing matrices of the uncertain system (4.1) can be allowed
to depend continuously on the clock θ which is relevant, e.g., for
closed-loop analysis involving controllers as designed in the next
chapter. The describing matrices of the filter (4.6) are allowed to
vary in the same fashion as long as this is compatible with the con-
sidered uncertainty set. While such filters are potentially superior to
those with constant describing matrices, it is not yet clear how to
systematically benefit from the additionally freedom that is involved.

Remark 4.15 (Switched and Sampled-Data Systems) By recalling the previ-
ous chapters it is not much of a surprise that all our robust analysis results
for linear impulsive systems also apply, e.g., to switched and sampled-data
systems after minor modifications only.

Example

Recall that we obtained via Theorem 4.2 the upper bound 1.176 on the ro-
bust energy gain in our previous example on page 111 involving an active
suspension system affected by two scalar arbitrarily time-varying paramet-
ric uncertainties that take values in the interval [−1, 1].

Let us now suppose that the latter uncertainties are known to be constant
instead. This additional information permits us to generate better upper
bounds based on combining Theorem 4.6 with a minor modification of
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Lemma 4.10. To this end note that the matrices (Aψ, Bψ, Cψ, Dψ) in the
original version of Lemma 4.10 are typically chosen as−


α 2α . . . 2α
... . . . . . . ...
0 . . . α 2α
0 . . . 0 α

⊗Ip,


−

√
2α

...
−

√
2α

−
√

2α

⊗Ip,


0 . . . 0
0 . . .

√
2α

... ... ...√
2α . . .

√
2α

⊗Ip,


1
1
...
1

⊗Ip


(4.16a)

or


−α 0 . . . 0

1 . . . . . . ...
. . . . . . 0

0 1 −α

⊗ Ip,


1
0
...
0

⊗ Ip,

(
01×ν

Iν

)
⊗ Ip, ⊗

(
1

0ν×1

)
⊗ Ip


(4.16b)

for some fixed α > 0 and some length ν ∈ N0. These choices correspond to
the stable transfer matrices

Ip
s−α
s+αIp

...(
s−α
s+α

)ν
Ip

 and


Ip

1
s+αIp

...( 1
s+α

)ν
Ip

 ,

respectively, which are known to admit nice approximation properties [147,
119]. In order to analyze the concretely given system, we employ a diago-
nally stacked version of the first choice with α = 5 and ν = 2. This results
in an upper bound of 0.708 on the robust energy gain which is much smaller
than the previous one 1.176 (that is recovered by choosing ν = 0). Note
that this bound can be improved to some extend by increasing ν and/or
by adjusting the underlying relaxation parameters at the prize of a higher
computational burden. Of course, we can also reduce the computational
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burden, e.g., by restricting the functions in Lemma 4.10 to be constant,
but this results in 0.993 as an upper bound which is close to the one ob-
tained for arbitrarily time-varying uncertainties.

4.1.3 Technical Proofs and Auxiliary Results

Main IQC Based Robust Analysis Criteria

Proof of Theorem 4.6. We prove the result in four steps.
Step 1: Preparations: By continuity of the involved functions, compact-

ness of [0, Tmax] and [Tmin, Tmax], and by strictness of the inequalities
(4.8a)-(4.8c), we infer the existence of positive constants α, β, ε with

αI ≼ XT ≼ βI, (∗1)

such that the inequality (4.8b) also holds if εI is added to its left hand side
and such that (4.8c) hold for RJ replaced by RJ + εI.

Now let (d, dJ ,∆,∆J) ∈ L2×ℓ2×∆×∆J be arbitrary and let (tk)k∈N0 be
an arbitrary sequence of impulse instants satisfying (RDT). By our stand-
ing well-posedness assumption on ∆ and ∆J , there exists a corresponding
state trajectory x of the system (4.5) and the remaining signals are also
well-defined. Next, we let ξ be the state of the filter (4.6) and infer that
ζ := ( ξx ) satisfies (4.7). With all those signals and the clock θ as given in
(2.2), we define the functions

ν : t 7→ ζ(t)⊤X(θ(t))ζ(t), µ• : t 7→ ξ(t)⊤Z•(θ(t))ξ(t) and η• := ν − µ•

for • ∈ {T, J, F}. In particular, we have α ≤ ηT (t) ≤ β for all t ≥ 0 due to
(∗1).
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Step 2: Individual Estimates: From the ε-modification of (4.8b), we infer

η̇F (t) = (•)⊤

(
0 XF (θ(t))

XF (θ(t)) ẊF (θ(t))

)(
A B B2

I 0 0

)ζ(t)w(t)
d(t)



≤ −(•)⊤

(
M(θ(t))

P

) C D D12

C2 D21 D22

0 0 I


ζ(t)w(t)
d(t)

− ε

∥∥∥∥∥∥∥
ζ(t)w(t)
d(t)


∥∥∥∥∥∥∥

2

= −(•)⊤M(θ(t))v(t) − (•)⊤P

(
e(t)
d(t)

)
− ε

∥∥∥∥∥∥∥
ζ(t)w(t)
d(t)


∥∥∥∥∥∥∥

2

for all t ∈ (tk, tk+1) and k ∈ N0. Thus, continuity of ηF on the intervals
[tk, tk+1) implies

∫ t

0
η̇F (s) ds≤−

∫ t

0
(•)⊤M(θ(s))v(s) +(•)⊤P

(
e(s)
d(s)

)
+ ε

∥∥∥∥∥∥∥
ζ(s)w(s)
d(s)


∥∥∥∥∥∥∥

2

ds

for all t ≥ 0. Similarly, the ε-modification of (4.8c) yields, for all k ∈ N,

ηJ(tk) − ηJ(t−k )

= (•)⊤

(
XJ(0) 0

0 −XJ(θ(t−k ))

)(
AJ BJ BJ2

I 0 0

) ζ(t−k )
wJ(k)
dJ(k)



≤ −(•)⊤

(
MJ(θ(t−k ))

PJ

) CJ DJ DJ12

CJ2 DJ21 DJ22

0 0 I


 ζ(t−k )
wJ(k)
dJ(k)

− ε∥dJ(k)∥2

= −(•)⊤MJ(θ(t−k ))vJ(k) − (•)⊤PJ

(
eJ(k)
dJ(k)

)
− ε∥dJ(k)∥2.
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Step 3: Combined Estimates: Recall that the state ξ of the filter (4.6) is
initialized in zero. Then the particular piecewise continuity of ν and the
definition η• = ν − µ• for • ∈ {T, J, F} yield

ηT (t) − ηT (0) + µT (t)

= ν(t) − ν(0) =
∫ t

0
ν̇(s) ds+

k∑
l=1

(
ν(tl) − ν(t−l )

)
=
∫ t

0
η̇F (s) ds+

∫ t

0
µ̇F (s) ds+

k∑
l=1

(
ηJ(tl)−ηJ(t−l )

)
+

k∑
l=1

(
µJ(tl)−µJ(t−l )

)
for all t ∈ [tk, tk+1) and all k ∈ N0. By the inclusion (4.8d), i.e., (∆,∆J) ∈
IQC(ZT , ZJ , ZF ,M,MJ), we then obtain

ηT (t) − ηT (0) ≤
∫ t

0
η̇F (s) ds+

k∑
l=1

(
ηJ(tl) − ηJ(t−l )

)
+
∫ t

0
(•)⊤M(θ(s))v(s) ds+

k∑
l=1

(•)⊤MJ(θ(t−l ))vJ(l)

for all t ∈ [tk, tk+1) and all k ∈ N0. Finally, we can conclude by the in-
equalities from the previous step that

ηT (t) − ηT (0) ≤ −
∫ t

0
(•)⊤P

(
e(s)
d(s)

)
ds−

k∑
l=1

(•)⊤PJ

(
eJ(l)
dJ(l)

)

− ε

∫ t

0

∥∥∥∥∥∥∥
ζ(s)w(s)
d(s)


∥∥∥∥∥∥∥

2

ds− ε

k∑
l=1

∥dJ(l)∥2 (∗2)

holds for all t ∈ [tk, tk+1) and all k ∈ N0.
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Step 4: Robust Stability: Let us now suppose that the input disturbances
vanish, i.e., that d = 0 and dJ = 0 hold. Then (∗2) yields, in particular,

ηT (t)+ε
∫ t

0

∥∥∥∥∥
(
ζ(s)
w(s)

)∥∥∥∥∥
2

ds ≤ ηT (0)−
∫ t

0
(•)⊤Qe(s)ds−

k∑
l=1

(•)⊤QJeJ(l) ≤ ηT (0)

for t ≥ 0 because Q ≽ 0 and QJ ≽ 0 hold by assumption. As a consequence
of (∗1) and ξ(0) = 0, we get

∥x(t)∥2 ≤ ∥ζ(t)∥2 ≤ 1
α
ηT (t) ≤ 1

α
ηT (0) ≤ β

α
∥ζ(0)∥2 ≤ β

α
∥x(0)∥2

for all t ≥ 0, i.e., uniform boundedness. Moreover, we can conclude ζ =
( ξx ) ∈ LnΨ+n

2 and w ∈ Lq2 which yields, in particular, x ∈ Ln2 and ẋ ∈ Ln2 .
Due to a variant of Barbalat’s lemma [49], this finally yields x(t) → 0 as
t → ∞.

Step 5: Robust Performance: Let us now suppose that x(0) = 0 holds
which results in ηT (0) = 0 since ξ(0) = 0 holds as well. Together with the
nonnegativity of ηT , this allows to conclude from (∗2) that

∫ t

0
(•)⊤P

(
e(s)
d(s)

)
ds+

k∑
l=1

(•)⊤PJ

(
eJ(l)
dJ(l)

)
≤ −ε

∫ t

0
∥d(s)∥2 ds− ε

k∑
l=1

∥dJ(l)∥2

holds for all t ∈ [tk, tk+1) and all k ∈ N0. The proof is finished by taking
the limit t → ∞. •
Assuring the IQC for Piecewise Constant Repeated Parametric
Uncertainties in the Flow Component

Proof of Lemma 4.9. Let (tk)k∈N0 with (RDT), ∆ ∈ ∆ and z ∈ Lp2e be
arbitrary. Then there exists a particularly piecewise constant function δ

with w := ∆(z) = δz. Let us partition the state ξ =
(
ξ1
ξ2

)
and the output

v = ( v1
v2 ) of the filter (4.6) driven by

( z
∆(z)

)
accordingly to the partition
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of AΨ and CΨ, respectively. In order to proceed, it is crucial to note that
ξ(0) = 0 and AΨJ = 0 imply ξ(tk) = 0 for all k ∈ N0. These resets of the
filter’s state lead to the following important commutation property which
is due to the variation of constants formula and the piecewise constant
nature of δ:

ξ2(t) = eAψ(t−tk)ξ2(tk) +
∫ t

tk

eAψ(t−s)Bψw(s) ds

= δ(tk)
∫ t

tk

eAψ(t−s)Bψz(s) ds = δ(t)ξ1(t)

for all t ∈ [tk, tk+1) and all k ∈ N0. Similarly we have v2(t) = δ(t)v1(t) for
all t ≥ 0. Next, observe that

(•)⊤Pp(S)
(
I

rI

)
x = (•)⊤

(
0 S⊤

S 0

)(
bI −I

−aI I

)(
I

rI

)
x

= (•)⊤

(
0 S⊤

S 0

)(
(b− r)I
(r − a)I

)
x

= (b− r)(r − a)x⊤(S + S⊤)x = 2(b− r)(r − a)x⊤Sx

holds for any scalar r, vector x and matrix S.
Let us now define the function µT : t 7→ ξ(t)⊤ZT (θ(t))ξ(t) and observe

that the preparations, ZT = 1
2Pp(R) and ξ(t) =

(
I

δ(t)I
)
ξ1(t) imply

µT (t) = 1
2(•)⊤Pp(R(θ(t)))ξ(t) = (b− δ(t))(δ(t) − a) · (•)⊤R(θ(t))ξ1(t)

for all t ≥ 0. Utilizing (4.10) and a ≤ δ ≤ b yields then

µ̇T (t) ≥ −(b− δ(t))(δ(t) − a) · (•)⊤
(
N(θ(t)) + (•)⊤

)(
Cψ Dψ

)(ξ1(t)
z(t)

)
= −(b− δ(t))(δ(t) − a) · (•)⊤

(
N(θ(t)) + (•)⊤

)
v1(t)
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for all t ∈ [tk, tk+1), k ∈ N0. Similarly as before, the last expression can be
written as

−(•)⊤Pp(N(θ(t)))
(

I

δ(t)I

)
v1(t) = −(•)⊤M(θ(t))v(t).

Consequently, we have

µT (t) − µT (0) =
∫ t

0
µ̇T (s) ds+

k∑
l=1

(
µT (tl) − µT (t−l )

)
≥ −

∫ t

0
(•)⊤M(θ(s))v(s) ds+

k∑
l=1

(
µT (tl) − µT (t−l )

)
for all t ∈ [tk, tk+1) and k ∈ N0. This yields the claim by µT (0) = 0 as well
as by defining µJ := µT and µF := 0. •
Assuring the IQC for Constant Repeated Parametric Uncertainties in
the Jump Component

Proof of Lemma 4.11. Let (tk)k∈N0 with (RDT), ∆J ∈ ∆J and zJ ∈ ℓpJ2e

be arbitrary. Then there exists some δJ ∈ [a, b] with wJ := ∆J(zJ) = δJzJ .
Let us partition the state ξ =

(
ξ1
ξ2

)
and the output vJ = ( vJ1

vJ2 ) of the filter
(4.6) driven by

( zJ
∆J (zJ )

)
accordingly to the partition of AΨJ and CΨJ ,

respectively. In order to proceed, it is crucial to note that AΨ = 0 implies
ξi(t) = ξi(tk) for all t ∈ [tk, tk+1) and all k ∈ N0. Consequently, we obtain
ξ(tk) =

(
I
δJI

)
ξ1(tk) and vJ(k) =

(
I
δJI

)
vJ1(k) for all k by the discrete-time

variation of constants formula.
Let us now define the function µT : t 7→ ξ(t)⊤ZT (θ(t))ξ(t) and observe

that we have, similarly as in the proof of Lemma 4.9,

µT (t) = 1
2(•)⊤Pp(R(θ(t)))ξ(tk) = (b− δJ)(δJ − a) · (•)⊤R(θ(t))ξ1(t)
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for all t ∈ [tk, tk+1) and all k ∈ N0. Utilizing (4.12) and a ≤ δJ ≤ b yields
then

µT (tk) − µT (t−k )

≥ −(b− δJ)(δJ − a) · (•)⊤
(
NJ(θ(t−k )) + (•)⊤

)(
CψJ DψJ

)(ξ1(t−k )
zJ(k)

)
= −(b− δJ)(δJ − a) · (•)⊤

(
NJ(θ(t−k )) + (•)⊤

)
vJ1(k)

= −(•)⊤Pp(NJ(θ(t−k )))
(
I

δJI

)
vJ1(k) = −(•)⊤MJ(θ(t−k ))vJ(k)

for all k ∈ N and consequently

µT (t) − µT (0) =
∫ t

0
µ̇T (s) ds+

k∑
l=1

(
µT (tl) − µT (t−l )

)
≥
∫ t

0
µ̇T (s) ds−

k∑
l=1

(•)⊤MJ(θ(t−l ))vJ(l)

for all t ∈ [tk, tk+1) and k ∈ N0. This yields the claim by µT (0) = 0 as well
as by defining µF := µT and µJ := 0. •
Assuring the IQC for Dynamic Repeated Uncertainties in the Flow
Component

In order to show Lemma 4.12, we require the following auxiliary result.

Lemma 4.16 Let g : L1
2e → L1

2e and H : Lk2e → Ll2e be linear maps of the
form

g(w)(t) :=
∫ t

0
Cge

Ag(t−s)Bgw(s) ds+Dgw(t)

and
H(w)(t) :=

∫ t

0
CeA(t−s)Bw(s) ds+Dw(t),
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respectively. Then we have

H ◦ (gIk) = (gIl) ◦H,

where gIm : Lm2e → Lm2e, w = col(w1, . . . , wm) 7→ col(g(w1), . . . , g(wm)).

Proof. Let us introduce the abbreviations g̃(s) := Cge
AgsBg and H̃(s) :=

CeAsB. Since g̃ is scalar-valued, note that we have

H̃g̃ = g̃H̃, g̃D = Dg̃, H̃Dg = DgH̃ and DDg = DgD. (∗1)

Let now w ∈ Lk2e and t ≥ 0 be arbitrary. Then we have via integration by
substitution∫ t

0
H̃(t− s)

(∫ s

0
g̃(s− r)w(r) dr

)
ds

=
∫ t

0
H̃(s)

(∫ t−s

0
g̃(t−s−r)w(r) dr

)
ds

=
∫ t

0
H̃(s)

(∫ t−s

0
g̃(r)w(t−s−r) dr

)
ds

=
∫ t

0

(∫ t

0
H̃(s)g̃(r)w(t− s− r)χ[r≤t−s] dr

)
ds;

here χ[a≤b] := 1 if a ≤ b and χ[a≤b] := 0 otherwise. By using H̃g̃ = g̃H̃ and
Fubini’s theorem, the last term equals

∫ t

0

(∫ t

0
g̃(r)H̃(s)w(t− s− r)χ[r≤t−s] dr

)
ds

=
∫ t

0

(∫ t

0
g̃(r)H̃(s)w(t− s− r)χ[r≤t−s] ds

)
dr

=
∫ t

0

(∫ t

0
g̃(r)H̃(s)w(t− s− r)χ[s≤t−r] ds

)
dr.
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Again via integration by substitution this is now the same as

∫ t

0
g̃(r)

(∫ t−r

0
H̃(r)w(t− s− r) ds

)
dr

=
∫ t

0
g̃(r)

(∫ t−r

0
H̃(t− r − s)w(s) ds

)
dr

=
∫ t

0
g̃(t− r)

(∫ r

0
H̃(r − s)w(s) ds

)
dr

which yields the statement for D = 0 and Dg = 0. The general case is
obtained by using linearity and (∗1). •
Proof of Lemma 4.12. Let (tk)k∈N0 with (RDT), ∆ ∈ ∆ and z ∈ Lp2e be
arbitrary. Then there exists some δ ∈ RH1×1

∞ with ∥δ∥∞ ≤ 1 characterizing
the map ∆. Without loss of generality, we can assume that (Aδ, Bδ, Cδ, Dδ)
is a minimal realization of δ and recall that Aδ is then Hurwitz

Next, let ε > 0 be arbitrary and set Pε :=
( 1+ε 0

0 −1
)
. From the KYP

lemma [123] and ∥δ∥∞ ≤ 1, we can then infer the existence of a symmetric
matrix Y satisfying

(•)⊤

(
0 Y

Y 0

)(
Aδ Bδ

I 0

)
+ (•)⊤Pε

(
0 I

Cδ Dδ

)
≻ 0. (∗1)

Since Aδ is Hurwitz and by negativity of the (2, 2) entry of Pε, we even
conclude Y ≻0.

Let now K ∈ S• denote the whole left hand side of (4.13) and observe
that we can incorporate this positive definite matrix into the LMI (∗1) in
order to obtain

(•)⊤
(

0 K⊗Y
K⊗Y 0

)(
I•⊗Aδ I•⊗Bδ
I 0

)
+ (•)⊤Pε⊗K

(
0 I

I•⊗Cδ I•⊗Dδ

)
≻0.

(∗2)
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Next, we define (C̃ψ, D̃ψ) := (( I0 ) , ( 0
I )) and the auxiliary signals

ṽ1 := ψ̃(z) := C̃ψξ1 + D̃ψz and ṽ2 := ψ̃(∆(z)) := C̃ψξ2 + D̃ψ∆(z)

involving the state ξ =
(
ξ1
ξ2

)
of the filter (4.6) driven by

( z
∆(w)

)
with a

partition induced by the one of the describing matrices of the filter. Let us
finally introduce the system(

ρ̇(t)
y(t)

)
=
(
I• ⊗Aδ I• ⊗Bδ

I• ⊗ Cδ I• ⊗Dδ

)(
ρ(t)
ṽ1(t)

)
, ρ(0) = 0

as well as the function η : t 7→ ρ(t)⊤(K ⊗ Y )ρ(t). Note that the latter is
nonpositive by K ≻ 0 and Y ≺ 0 and that (∗2) implies

η̇(t) ≥ −(•)⊤(Pε⊗K
)( 0 I

I•⊗Cδ I•⊗Dδ

)(
ρ(t)
ṽ1(t)

)
= −(•)T(Pε⊗K

)(̃v1(t)
y(t)

)

for all t ≥ 0. By integration, η(0) = 0 and nonpositivtiy of η we obtain

0 ≤
∫ t

0
(•)⊤(Pε ⊗K

)(̃v1(s)
y(s)

)
ds+ η(t) − η(0) ≤

∫ t

0
(•)⊤(Pε ⊗K

)(̃v1(s)
y(s)

)
ds

for t ≥ 0. Next, observe that Lemma 4.16 yields

y = (δI•)(ṽ1) =
(
(δI•) ◦ ψ̃

)
(z) =

(
ψ̃ ◦ (δIp)

)
(z) = ψ̃(∆(z)) = ṽ2.

It remains to untangle the matrix K, i.e., to observe that we have after
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few elementary computations

0 ≤
∫ t

0
(•)⊤(Pε ⊗K

)(ṽ1(s)
ṽ2(s)

)
ds

=
∫ t

0
(•)⊤(Pε ⊗N

)
v(t) + d

ds

(
ξ(s)⊤(Pε ⊗R

)
ξ(s)

)
ds

=
∫ t

0
(•)⊤(Pε ⊗N

)
v(s)ds+ ξ(t)⊤(Pε ⊗R

)
ξ(t)

for all t ≥ 0. Finally, taking the limit ε → 0 and defining µF := 0 as well
as µT := µJ : t 7→ ξ(t)⊤ZT ξ(t) for ZT :=

(
R 0
0 −R

)
yields the claim. •

Assuring the IQC for Nonlinear Repeated Uncertainties in the Jump
Component

We employ the following auxiliary result from [50].

Lemma 4.17 Suppose that ϕ : R → R satisfies ϕ(0) = 0 and 0 ≤ ϕ(x)−ϕ(y)
x−y

for all x ̸= y and let L = (Lij) ∈ Rk×k be a matrix satisfying

Lij ≤ 0 for i ̸= j, L1 ≥ 0 and 1⊤L ≥ 0.

Then the repeated map (ϕIk) : Rk → Rk, x 7→ (ϕ(x1), . . . , ϕ(xk))⊤ satisfies

(ϕIk)(x)⊤Lx ≥ 0 for all x ∈ Rk.

Proof of Lemma 4.13. Let (tk)k∈N0 with (RDT), ∆J ∈ ∆J and zJ ∈ ℓpJ2e be
arbitrary. Then there exists some slope-restricted function ϕ with wJ(k) :=
∆J(zJ)(k) = (ϕIpJ (zJ(k))).

Observe at first that AΨ = 0 implies ξ(t) = ξ(tk) for all t ∈ [tk, tk+1)
and k ∈ N0 and, thus, ξ(tk) = ξ(t−k+1) for all k ∈ N0. By induction and the
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particular choice of the filter, we infer

vJ(k) = col(zJ(k − ν), . . . , zJ(k), wJ(k)) for all k ∈ N,

where we set zJ(l) := 0 for l ≤ 0. This allows us to conclude

k∑
l=1

(•)⊤MJvJ(l) = 2
k∑
l=1

wJ(l)⊤
ν+1∑
j=1

ΛjzJ(l − ν + j + 1)

= 2

(ϕIpJk)


zJ(1)

...
zJ(k)




⊤

Lk


zJ(1)

...
zJ(k)


for all k ∈ N, where Lk is a block Toeplitz matrix in RpJk×pJk with its
(l, 1) block given by Λν+2−l if l ≤ min{ν + 1, k} and 0pJ×pJ otherwise.
From (4.15) we infer that Lk is as required by Lemma 4.17 and can, hence,
conclude that

k∑
l=1

(•)⊤MJvJ(l) ≥ 0 holds for all k ∈ N.

This yields the claim by defining µF := µT := µJ := 0. •
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4.2 Analysis of Networked Systems
In this section we demonstrate the application of our robust analysis ap-
proach for analyzing (potentially large-scale) networked systems composed
of M ∈ N homogeneous subsystems of possibly high order in a scalable1

fashion. These subsystems are of the formẋi(t)zi(t)
ei(t)

 =

A B B2

C D D12

C2 D21 D22


xi(t)wi(t)
di(t)

 (4.17a)

for t ≥ 0, i ∈ {1, . . . ,M} and with initial conditions x1(0), . . . , xM (0) ∈ Rn

as well as generalized disturbances d1, . . . , dM ∈ L2. The interconnection
structure of these subsystems is specified by constraining the interconnec-
tion variables zi and wi according to the coupling condition

wi(t) =
M∑
j=1

aijσ(t)zj(t) (4.17b)

which involves coupling weights aijk ∈ [0,∞) and a switching function
σ : [0,∞) → {1, . . . , N} corresponding to a given sequence of impulse
instants (tk)k∈N0 . This concrete coupling condition allows for modeling a
possibly non-periodically switching communication topology with N con-
figurations similarly as also considered, e.g., in [100, 105, 57]. Such switch-
ing topologies occur in practice, e.g., as a result of link failures or creations
during operation of the networked systems. Similarly, as we have already
seen when considering constrained switching functions, the communica-
tion topology as defined by the coupling conditions (4.17b) is usually visu-
alized by means of a weighted time-varying graph G(t) = (V,E(t), d(t))
with vertices V = {1, . . . ,M}, edges E(t) ⊂ V 2 and weight function

1Here, scalability is meant in the sense that one aims for analysis criteria with a
resulting computational burden that grows slowly as M increases.
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Figure 4.5: Two constant graphs corresponding to the adjacency matri-

ces
(

0 1 0
0 0 2
4 3 0

)
(left) and

(
0 1 0 0
0 0 2 0
6 5 0 3
4 0 0 0

)
(right), respectively.

d(t) : E(t) → R. The latter graph is conveniently characterized by its
time-varying adjacency matrix

Aσ(t) :=


a11σ(t) . . . a1Mσ(t)

... . . . ...
aM1σ(t) . . . aMMσ(t)

 ∈ RM×M

through E(t) := {(i, j) ∈ V 2 | aijσ(t) ̸= 0} and d(t) : (i, j) 7→ aijσ(t) for all
times t ≥ 0. Two constant weighted graphs with corresponding adjacency
matrices are illustrated in Fig. 4.5 and its caption.

In order to obtain scalable analysis criteria for the networked system
(4.17), we assume in the sequel that the adjacency matrix corresponding
to (4.17b) is symmetric, i.e., the underlying graph is undirected and infor-
mation is shared bilaterally for all time instances, and that bounds on the
location of the spectra of A1, . . . ,AN are available. Precisely, we assume
that

Al ∈ SM and eig(Al) ⊂ [al, bl] for all l ∈ {1, . . . , N} (4.18)
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for some a priori given al < bl. Such bounds are typically not difficult
to obtain; for example one can take bl = ∥Al∥2 for all l ∈ {1, . . . , N}.
Note that our analysis results will not require precise knowledge of the
communication topology, but are robust in sense that they ensure stability
and performance for all A1, . . . ,AN satisfying (4.18).

Next, note that the homogeneity of the subsystems in (4.17) permits us to
express their interconnection by using the Kronecker product equivalently
and more compactly asẋ(t)
z(t)
e(t)

=

 I ⊗A I ⊗B I ⊗B2

I ⊗ C I ⊗D I ⊗D12

I ⊗ C2 I ⊗D21 I ⊗D22


x(t)
w(t)
d(t)

, w(t) = (Aσ(t) ⊗ I)z(t)

(4.19)
for all t ≥ 0 and with stacked signals x := col(x1, . . . , xM ), etc. Similarly
as for example in [100, 105, 57], the assumed symmetry of the matrices
A1, . . . ,AN permits us to find orthogonal matrices T1, . . . , TN and scalars
λ11, . . . , λM1, . . . , λMN such that

TlAlT
⊤
l =


λ1l 0

. . .
0 λMl

 holds for all l ∈ {1, . . . , N}.

Based on the latter representation and the rules of the Kronecker product,
we can rewrite (4.19) equivalently as an impulsive system with description ˙̂x(t)
ẑ(t)
ê(t)

=

I⊗A I⊗B I⊗B2

I⊗C I⊗D I⊗D12

I⊗C2 I⊗D21 I⊗D22


x̂(t)
ŵ(t)
d̂(t)

, x̂(tk)=
(
Tσ(tk)T

⊤
σ(t−

k
)⊗I

)
x̂(t−k )

ŵ(t) = diag
(
λ1σ(t)I, . . . , λMσ(t)I

)
ẑ(t)

(4.20)
for all t ≥ 0, k ∈ N and with the transformed signals x̂ := (Tσ ⊗ I)x, etc.
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We emphasize that this transformation leads from (4.19) to a system with
decoupled flow component in the following sense: If we partition all signals
as induced by the involved matrix blocks, then we can express the flow
component of (4.20) as M individual systems of the form ˙̂xi(t)

ẑi(t)
êi(t)

 =

A B B2

C D D12

C2 D21 D22


x̂i(t)ŵi(t)
d̂i(t)

 , ŵi(t) = λiσ(t)ẑi(t)

affected by a single repeated parametric uncertainty λiσ(t) satisfying λil ∈
[al, bl] for all l by our assumption (4.18). However, the transformation rein-
troduces a coupling of the individual states x̂i through the impulsive com-
ponent of (4.20).

As a consequence of all these considerations, we are now in position to
apply a modification of Theorem 4.6 and Lemma 4.9 in order to obtain the
following novel analysis result for networked systems (4.17).

Theorem 4.18 Let P =
(
Q S

S⊤ R

)
be a symmetric matrix with Q ≽ 0, let

Pp be as in (4.9) and let Aψ, Bψ, Cψ, Dψ be matrices with Cψ ∈ Rnv×nψ .
Then the interconnection (4.19) is stable and achieves quadratic perfor-
mance with index

(
I⊗Q I⊗S
I⊗S⊤ I⊗R

)
for all A1, . . . ,AN satisfying (4.18) and all

(tk)k∈N0 with (RDT) if there exist X1, . . . , XN ∈ C1([0, Tmax],S2nψ+n),
R1, . . . , RN ∈ C([0, Tmax],Snψ ) and N1, . . . , NN ∈ C([0, Tmax],Rnv×nv )
satisfying

X̂l ≻ 0, (•)⊤


0 Xl

Xl Ẋl

P al,blp (Nl)
P




A B B2

I 0 0
C D D12

C2 D21 D22

0 0 I

 ≺ 0 (4.21a,b)
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and

(•)⊤

(
0 Rl

Rl Ṙl

)(
Aψ Bψ

I 0

)
+ (•)⊤(Nl +N⊤

l )
(
Cψ Dψ

)
≻ 0 (4.21c)

on [0, Tmax] for all l ∈ {1, . . . , N} as well as

(•)⊤X̂l(0)AJ − X̂k ≺ 0 (4.21d)

on [Tmin, Tmax] for all k, l ∈ {1, . . . , N}; here, we employ the abbreviations
X̂l := Xl − diag( 1

2P
al,bl
p (Rl), 0) as well as

A B B2

C D D12

C2 D21 D22

 :=



Aψ 0 BψC BψD BψD12

0 Aψ 0 Bψ 0
0 0 A B B2

Cψ 0 DψC DψD DψD12

0 Cψ 0 Dψ 0
0 0 C2 D21 D22


and AJ :=

0 0 0
0 0 0
0 0 In

.

Note that this result substantially generalizes the findings of, e.g., [100,
57], since they only consider constant Lyapunov matrices and because they
merely employ static filters with nψ = 0.

We also emphasize that the size of the LMI problems corresponding to
the conditions (4.21) is completely independent of the total number of
subsystems M and, thus, Theorem 4.18 is easily applicable even for large
scale networks. This scalability is achieved by relying on a particularly
structured Lyapunov matrix which is well-known to introduce some con-
servatism. However, this conservatism is typically accepted since scalability
is considered to be more important in the context of networked systems.

Proof. For notational convenience, we drop the performance channel and
we only consider the case of a static filter with nψ = 0 and Dψ = I. The
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general case is shown with essentially the same arguments.
In order to apply a corresponding modification of Theorem 4.6 and

Lemma 4.9 on the transformed system (4.20), it then suffices to show that
the particularly structured maps

X̌l := I ⊗Xl and Ňl := I ⊗Nl for l ∈ {1, . . . , N}

satisfy the inequalities

X̌l ≻ 0, (•)⊤

 0 X̌l

X̌l
˙̌
Xl

P al,blp (Ňl)



I ⊗A I ⊗B

I 0
I ⊗ C I ⊗D

0 I

≺ 0 and Ňl+Ň⊤
l ≻ 0

(∗1a)
on [0, Tmax] for all l ∈ {1, . . . , N} as well as

(•)⊤X̌l(0)
(
TlT

⊤
k ⊗ I

)
− X̌k ≺ 0 (∗1b)

on [Tmin, Tmax] for all k, l ∈ {1, . . . , N}. Due to the structure of X̌l and Ňl
and by some Kronecker algebra, we observe that (∗1a) is equivalent to

Xl ≻ 0, (•)⊤

 0 Xl

Xl Ẋl

P al,blp (Nl)



A B

I 0
C D

0 I

 ≺ 0 and Nl+N⊤
l ≻ 0.

(∗2)
By making use of the orthogonality of Tl, (∗1b) can be expressed as

0 ≻
(
TkT

⊤
l TlT

⊤
k

)
⊗Xl(0) − X̌k = I ⊗Xl(0) − X̌k = X̌l(0) − X̌k

which is equivalent to
Xl(0) −Xk ≺ 0.
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It remains to note that the latter inequality and (∗2) correspond exactly
to the inequalities (4.21) for the considered specialization. •

Note that Theorem 4.18 allows for arbitrary switches between the com-
munication topologies described by the adjacency matrices A1, . . . ,AN .
Analogously as we have seen for switched systems, we can adjust Theo-
rem 4.18 to incorporate additional knowledge on the switching sequence σ
with ease if such information is available.

Moreover, note that if the network (4.17) involves numerous individual
communication topologies, i.e., if N is large, then it can make sense to
enforce several of the decision variables in Theorem 4.18 to be identical
and to coordinate these restrictions with the available bounds in (4.18). We
recover our analysis result for networked systems from [83] by considering
the extreme case that all intervals in (4.18) are identical.

Corollary 4.19 Suppose that [a1, b1] = · · · = [aN , bN ] =: [a, b]. Then the
interconnection (4.19) is stable and achieves quadratic performance with
index

(
I⊗Q I⊗S
I⊗S⊤ I⊗R

)
for all A1, . . . ,AN satisfying (4.18) and all (tk)k∈N0

with (RDT) if there exist X ∈ C1([0, Tmax],S2nψ+n), R ∈ C([0, Tmax],Snψ )
and N ∈ C([0, Tmax],Rnv×nv ) satisfying

X̂ ≻ 0, (•)⊤


0 X

X Ẋ

P a,bp (N)
P




A B B2

I 0 0
C D D12

C2 D21 D22

0 0 I

 ≺ 0

and

(•)⊤

(
0 R

R Ṙ

)(
Aψ Bψ

I 0

)
+ (•)⊤(N +N⊤)

(
Cψ Dψ

)
≻ 0



156 Chapter 4 Robust Analysis

on [0, Tmax] as well as

(•)⊤X̂(0)AJ − X̂ ≺ 0

on [Tmin, Tmax], where X̂ := X − diag( 1
2P

a,b
p (R), 0).

Remark 4.20 (Consensus) Theorem 4.18 and Corollary 4.19 can also be
modified to yield criteria which guarantee that the subsystems in (4.17)
asymptotically achieve consensus, i.e., they agree on a common value of
their states asymptotically. Precisely, this means that

lim
t→∞

∥xk(t) − xl(t)∥ = 0 for all k, l ∈ {1, . . . ,M}

for any initial conditions x1(0), . . . , xM (0) ∈ Rn. In this context the adja-
cency matrices Al = (aijl) are usually replaced by the Laplacian matrices
of the graphs Ll := Dl − Al where Dl :=

∑M
ν=1 diag(a1νl, . . . , aMνl). One

can show that in order to guarantee consensus, one has merely to replace
the numbers al in (4.18) by lower bounds on the algebraic connectivity,
i.e., the second smallest eigenvalue, of the Laplacian matrices Ll for all
l ∈ {1, . . . , N}. Some lower bounds on this number can for example be
found in [35]. For a general and detailed introduction to consensus prob-
lems see for example [124] or [166].

Remark 4.21 (Including Uncertainties) Due to the modularity of the IQC
approach, it is not difficult to derive scalable stability analysis criteria for
networks (4.17) involving various types of uncertainties. In particular, by
viewing a heterogeneous network as a homogeneous one subject to uncer-
tainties, we even have means to treat such more general networks in a
scalable fashion.
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Figure 4.6: Two constant graphs with Laplacian matrices L1 and L2.

Example

As an illustration let us perform a consensus analysis for a networked sys-
tem composed of M = 8 subsystems and given by(

ẋ(t)
z(t)

)
=
(
I ⊗A I ⊗B

I ⊗ C I ⊗D

)(
x(t)
w(t)

)
, w(t) = (Lσ(t) ⊗ I)z(t) (4.23a)

with describing matrices

A =
(

0 1
1
4 −2

)
, B =

(
0
β
7

)
, C =

(
−2 0

)
and D = β

7 (4.23b)

involving some parameter β ∈ (0, 2) and with Laplacian matrices L1 and
L2 corresponding to the graphs depicted in Fig. 4.6. Further, we assume
that the switching sequence σ : [0,∞) → {1, 2} is constant on the intervals
defined by the sequence of impulse instants (tk)k∈N0 with tk−1 − tk = 0.5
for all k ∈ N and that the switches are constrained by

(σ(tk−1), σ(tk)) ∈ {(1, 2), (2, 1)} for all k ∈ N.
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In other words, the communication topology switches periodically between
the two configurations depicted in Fig. 4.6.

We stress that we can allow for much more complex subsystem dynamics
which is in contrast to, e.g., the underlying analysis result of [134] which
requires that all eigenvalues of the matrix A are located in the closed left
half-plane. Moreover, note that only the first graph in Fig. 4.6 is connected2

since the node 4 cannot be reached from the node 2 in the second graph.
Naturally, connectedness is a crucial property in consensus problems and,
for time-varying graphs, there are various notions thereof; several of them
can be found, e.g., in [166]. The analysis criteria from [100, 57] or the one in
Corollary 4.19 require (implicitly) that the underlying graph is connected
for all time instances or that the matrix A is Hurwitz. This means that
none of them can be applied here since one of the eigenvalues of A is larger
than zero.

In order to apply the corresponding modification of Theorem 4.18 for
consensus analysis, we observe that we can employ

• the lower bounds (a1, a2) = (2.5858, 0) on the algebraic connectivity

• the upper bounds (b1, b2) = (6, 4) on the maximal eigenvalue

of the Laplacian matrices L1 and L2, respectively. Moreover, we choose
(Aψ, Bψ, Cψ, Dψ) as in (4.16a) with α = 5 and length ν ∈ {0, 1, 2, 3}.
Combining Theorem 4.18 with a bisection permits us now for example
to determine for each of the latter lengths ν the maximal value of the
parameter β for which consensus is guaranteed; we denote these maximal
values by βν . By employing the B-spline relaxation (with a fixed set of
parameters) we obtain β1 = 1.011, β2 = 1.013, β3 = 1.013 and that no

2A graph G = (V, E) is called connected, if any node can be reached from any other
node by moving along the edges of the graph. Formally, this means that for any pair
(t0, tf ) ∈ V × V with t0 ̸= tf there exists some N ∈ N and t1, . . . , tN ∈ V such that
(t0, t1), . . . , (tN−1, tN ), (tN , tf ) ∈ E. As shown, e.g., in [62], a graph G is connected
if and only if its algebraic connectivity nonzero.
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Figure 4.7: First (left) and second (right) component of the state trajec-
tories of the subsystems of the network (4.23) for β = 1 (top)
and for β = 1.065 (bottom).

such β exists for ν = 0. These findings demonstrate the benefit of utilizing
dynamic filters as in (4.16a) with length ν > 0 over static ones with ν =
0 and show that even small values of ν can yield good results. Indeed,
the bottom of Fig. 4.7 depicts the subsystem’s state trajectories for β =
1.065, which is close to β3, and illustrates that for this parameter value
consensus is no longer achieved. Interestingly, we still observe some kind of
agreement since the eight individual states follow four distinct trajectories.
This behavior is termed cluster consensus which is studied in few papers
only; one of them is [67].

Finally, note that there is a gap between the maximal β ∈ (0, 2) for which
consensus is achieved and our computed values βi; the size of this gap is
difficult to estimate in general. In this example this gap is mostly due to
desired scalability in the employed analysis criteria and the fact that we
did not take into account the periodicity of Lσ(t) in the utilized filters.
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4.3 Summary
In this chapter’s first part, we develop tools for analyzing uncertain impul-
sive system modeled in terms of LFRs. We begin by considering systems
affected by arbitrarily time-varying parametric uncertainties and derive
corresponding robust analysis criteria based on the full block S-procedure
and multiplier separation techniques in Theorem 4.2.

Afterwards, we substantially generalize this result in Theorem 4.6 by re-
lying on the dissipation based notion of finite-horizon IQCs with terminal,
jump and flow cost as established in Definition 4.5. Theorem 4.6 consti-
tutes a genuine generalization of Theorem 4 in [148] from non-impulsive
systems to impulsive ones. Moreover, we provide several numerically ver-
ifiable criteria for assuring that IQCs with terminal, jump and flow costs
are satisfied. These criteria are given in Lemmas 4.7 - 4.13 and tailored
to concrete classes of uncertainties affecting the underlying system, with
some of the involved dissipation inequalities appearing for the first time.

In particular, the novel robust analysis criteria resulting from combining
Theorem 4.6 with Lemma 4.9 have been published by the author in [83]
along with a detailed discussion and applications, e.g., to consensus prob-
lems for networked systems. This happened before we were able to derive
Theorem 4.6 in its full generality and relies on a more direct, but much
less modular proof.

In this chapter’s second part, we demonstrate how our analysis results
can be employed for analyzing networked systems in a scalable fashion
and even if the underlying communication topology is switching. Our main
result Theorem 4.18 is new and generalizes the findings of, e.g., [100, 57],
since these authors only consider constant Lyapunov matrices and rely on
the use of IQCs with static filters. Moreover, we illustrate that our criteria
not only allow for guaranteeing stability and quadratic performance, but
also permit us to assure that the considered network achieves consensus.



5
Gain-Scheduled and Robust
Synthesis

In Chapter 3, we elaborated on the design of feedback controllers for impul-
sive systems unaffected by uncertainties, and in Chapter 4, we developed
new tools for systematically analyzing uncertain impulsive systems. In this
chapter we benefit from the modularity of our employed approach which
permits us to almost seamlessly combine those insights in order to syn-
thesize output-feedback controllers for uncertain impulsive systems. Recall
that the design of such robust controllers is of tremendous practical rele-
vance since any designed controller is required to appropriately deal with
the mismatch between the employed model and the real dynamical system
to be controlled.

As an intermediate step, we consider the synthesis of so-called gain-
scheduled controllers which can be viewed as a special case of the design
of robust ones and which is also of independent interest. Roughly speaking
and in contrast to a robust controller, a gain-scheduled controller aims to
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exploit that the parameters (or other objects such as delays) emerging in
the encountered underlying system are only unknown at the outset but, in
fact, measurable on-line. As an example think of the mass of a commercial
airplane which is not known at the outset due to the unknown weight of
the passengers and time-varying due to the consumption of fuel. However,
by incorporating suitable sensors one can measure the weight on-line and
should then incorporate those measurements in a controller design.

Usually one faces a mixture of genuine uncertainties and parameters
that can be measured (or well approximated) on-line which leads to the
challenging design of robust gain-scheduled controllers as elaborated on,
e.g., in [160]. We will only briefly comment on this design for impulsive
systems since it relies on another seamless combination of the approaches
for robust and gain-scheduled synthesis.

5.1 Gain-Scheduled Synthesis
Recall that we adopt the framework of linear fractional representations
(LFRs) [178] for robust analysis in Chapter 4 because it poses a well-
established and flexible modeling tool in robust control [179]. In partic-
ular, this framework nicely permits us to separate known from unknown
(or difficult) components. It is hence not surprising that the design of gain-
scheduled controllers for non-impulsive systems modeled by LFRs has been
considered in a number of works such as [116, 71, 140, 151, 147, 145]. In
particular, the synthesis of gain-scheduled controllers for such system is by
now well-established in various situations and successfully employed, e.g.,
in aerospace applications. Due to all of our preparations, we can essen-
tially follow the conceptual design procedure even if the underlying open-
loop system is impulsive and with few mandatory technical modifications
only. In the sequel, we will briefly describe the conceptual procedure and
highlight the required modifications.
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Note that gain-scheduled controller synthesis is also possible without
employing LFRs as for example done in [8, 132] for non-impulsive sys-
tems and in [19] for impulsive ones by relying on measurements of the
full state. Without much difficulty, we could also design output-feedback
gain-scheduled controllers based on these alternative approaches, but this
is omitted here.

For brevity and in order to simplify the notation, we consider only the
design of controllers assuring closed-loop stability. In view of the related
works, e.g., [116, 71, 140, 145], this is no limitation as our synthesis results
can be extended to the design of controllers achieving a desired quadratic
performance criterion in a straightforward fashion. As in Chapter 4 we
begin by considering arbitrarily time-varying parameters.

5.1.1 Arbitrarily Time-Varying Parameters

For real matrices of appropriate dimensions, an initial condition x(0) ∈ Rn,
a sequence of impulse instants (tk)k∈N0 satisfying (RDT) and two sets
∆ ⊂ Rq×p and ∆J ⊂ RqJ×pJ , we consider now an impulsive open-loop
plant with the descriptionẋ(t)

z(t)
y(t)

 =

A B B2

C D D12

C2 D21 0


x(t)
w(t)
u(t)

 , w(t) = ∆(t)z(t), (5.1a)

x(tk)
zJ(k)
yJ(k)

 =

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 0


x(t−k )
wJ(k)
uJ(k)

 , wJ(k) = ∆J(k)zJ(k)

(5.1b)

for t ≥ 0 and k ∈ N. Here, y, yJ denote measured outputs, u, uJ are control
inputs and w, wJ , z, zJ are interconnection variables. The involved time-
varying parameters ∆ and ∆J are assumed to be piecewise continuous maps
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that can be measured on-line, i.e., they are available for control. However,
at the outset, these parameters are merely known to satisfy

∆(t) ∈ ∆ for all t ≥ 0 and ∆J(k) ∈ ∆J for all k ∈ N. (5.2)

In this subsection our goal is the design of a dynamic gain-scheduled con-
troller which ensures that the resulting closed-loop interconnection is ro-
bustly stable, i.e., stable for all admissible parameters ∆ and ∆J . Con-
cretely, we aim for controllers that admit the descriptionẋc(t)zc(t)

u(t)

 =

A
c(θ(t)) Bc(θ(t)) Bc2(θ(t))

Cc(θ(t)) Dc(θ(t)) Dc
12(θ(t))

Cc2(θ(t)) Dc
21(θ(t)) Dc

22(θ(t))


xc(t)wc(t)
y(t)

 ,

wc(t) = S(θ(t),∆(t))zc(t)xc(tk)
zJc(k)
uJ(k)

 =

AcJ(θ(t−k )) BcJ(θ(t−k )) BcJ2(θ(t−k ))
CcJ(θ(t−k )) Dc

J(θ(t−k )) Dc
J12(θ(t−k ))

CcJ2(θ(t−k )) Dc
J21(θ(t−k )) Dc

J22(θ(t−k ))


xc(t

−
k )

wJc(k)
yJ(k)

 ,

wJc(k) = SJ(θ(t−k ),∆J(k))zJc(k)
(5.3)

for t ≥ 0 and k ∈ N with initial condition xc(0) ∈ Rnc and with to-
be-designed continuous describing matrices Ac, Bc, etc. and continuous
scheduling functions

S : [0, Tmax] × ∆ → Rr×s as well as SJ : [Tmin, Tmax] × ∆J → RrJ×sJ .

Due to these scheduling functions, the controller (5.3) is able to adjust its
describing matrices according to the concrete instances of ∆ and ∆J and,
thus, has the opportunity to benefit from their measurements. Also recall
that θ denotes the clock (2.2) which appears naturally in (5.3) as discussed
in the beginning of Chapter 3.
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The closed-loop interconnection (5.1) and (5.3) reads as(
ẋcl(t)
zcl(t)

)
=
(

A(θ(t)) B(θ(t))
C(θ(t)) D(θ(t))

)(
xcl(t)
wcl(t)

)
, wcl(t) = ∆e(t)zcl(t) (5.4a)(

xcl(tk)
zJcl(k)

)
=
(

AJ(θ(t−k )) BJ(θ(t−k ))
CJ(θ(t−k )) DJ(θ(t−k ))

)(
xcl(t−k )
wJcl(k)

)
, wJcl(k)=∆Je(k)zJcl(k)

(5.4b)

with stacked signals xcl := col(x, xc), wcl := col(w,wc), etc., parameters

∆e(t) :=
(

∆(t) 0
0 S(θ(t),∆(t))

)
and ∆Je(k) :=

(
∆J(k) 0

0 SJ(θ(t−k ),∆J(k))

)

as well as

(
A B
C D

)
:=


A 0 B 0
0 0 0 0
C 0 D 0
0 0 0 0

+


0 0 B2

Inc 0 0
0 0 D12

0 Is 0


A

c Bc Bc2

Cc Dc Dc
12

Cc2 D
c
21 D

c
22


 0 Inc 0 0

0 0 0 Ir

C2 0 D21 0



and analogously defined maps AJ ,BJ , CJ ,DJ . Two equivalent block dia-
grams of this closed-loop interconnection are depicted in Fig. 5.1 where G,
GJ K and KJ stand for the flow and jump component of (5.4) and the ones
of (5.3), respectively. Ge and GJe denote the flow and jump component of
an augmented system whose flow component is


ẋ(t)
zcl(t)
wc(t)
y(t)

=


A B 0 0 B2

C D 0 0 D12

0 0 0 Is 0
0 0 Ir 0 0
C2 D21 0 0 0




x(t)
wcl(t)
zc(t)
u(t)

;

its jump component is structured in the same fashion.
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G

GJ

∆e

∆Je

zcl wcl

zJcl wJcl

xcl(t
−
• ) xcl(t•)

Ge

GJe

∆e

∆Je

K

KJ

zcl wcl

zJcl wJcl

(
wJc

yJ

) (
zJc
uJ

)

(
wc

y

) (
zc
u

)

x(t−• ) x(t•)

xc(t
−
• ) xc(t•)

Figure 5.1: Two equivalent block diagrams of the closed-loop interconnec-
tion (5.4) of the system (5.1) with the controller (5.3).

Due to the particular structure of the closed-loop interconnection (5.4)
and by the nature of the involved parameters, we can make use of a varia-
tion of Theorem 4.2 for its robust stability analysis. To this end, recall that
a formal definition of robust stability was already given in Definition 4.1.

Corollary 5.1 (Closed-Loop Robust Stability Analysis) The interconnection
(5.4) is robustly stable for all (tk)k∈N0 satisfying (RDT) if there exist
functions X ∈ C1([0, Tmax],Sn+nc), P ∈ C([0, Tmax],S(p+s)+(q+r)) and
PJ ∈ C([Tmin, Tmax],S(pJ+sJ )+(qJ+rJ )) satisfying, for all ∆ ∈ ∆ and all
∆J ∈ ∆J , the inequalities

X ≻ 0, (•)⊤

(
0 X
X Ẋ

)(
A B
I 0

)
+ (•)⊤P

(
C D
0 I

)
≺ 0, (5.5a,b)
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(•)⊤

(
X (0) 0

0 −X

)(
AJ BJ
I 0

)
+ (•)⊤PJ

(
CJ DJ

0 I

)
≺ 0, (5.5c)

(•)⊤P


Ip 0
0 Is

∆ 0
0 S(·,∆)

 ≽ 0 and (•)⊤PJ


IpJ 0
0 IsJ

∆J 0
0 SJ(·,∆J)

 ≽ 0

(5.5d,e)
on [0, Tmax], [0, Tmax], [Tmin, Tmax], [0, Tmax] and [Tmin, Tmax], respectively.

Similarly as for nominal controller synthesis as discussed in Chapter 3,
attempting to solve the inequalities (5.5) and simultaneously searching a
controller (5.3) (together with its corresponding scheduling functions) is
numerically prohibitive due to the non-convex dependencies on all decision
variables. However, we can render this simultaneous search convex if we
add the (inertia) constraints

P and PJ are constant maps, (5.6a)

(•)⊤P

(
I

0

)
≻ 0 on [0, Tmax] and (•)⊤PJ

(
I

0

)
≻ 0 on [Tmin, Tmax]

(5.6b)
as well as

(•)⊤P

(
0
I

)
≺ 0 on [0, Tmax] and (•)⊤PJ

(
0
I

)
≺ 0 on [Tmin, Tmax]

(5.6c)
to the closed-loop analysis criteria (5.5). With those additional constraints
and due to the particular structure of the describing matrices in (5.4), we
can employ the elimination lemma C.11 similarly is in Theorem 3.8 for
nominal synthesis. This leads to the following theorem which is essentially
an extension of the main result from [139] to impulsive systems.
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Theorem 5.2 (Gain-Scheduled Controller Design via Elimination) Let U , V ,
UJ and VJ be basis matrices of the sets ker((B⊤

2 , D
⊤
12)), ker((C2, D21)),

ker((B⊤
J2, D

⊤
J12)) and ker((CJ2, DJ21)), respectively. Moreover, suppose that

0 ∈ ∆ and 0 ∈ ∆J . Then there exist scheduling functions S, SJ and a
controller (5.3) for the system (5.1) such that the LMIs (5.5) and (5.6) are
feasible if and only if there exist continuously differentiable maps X,Y and
matrices P , P̃ , PJ , P̃J satisfying(

Y I

I X

)
≻ 0, (5.7a)

(•)⊤

 0 X

X Ẋ

P



A B

I 0
C D

0 I

V ≺0, (•)⊤

Ẏ Y

Y 0
P̃




I 0
−A⊤ −C⊤

0 I

−B⊤ −D⊤

U≻0,

(5.7b,c)

(•)⊤

X(0) 0
0 −X

PJ



AJ BJ

I 0
CJDJ

0 I

VJ ≺0, (•)⊤

Y (0) 0
0 −Y

P̃J




I 0
−A⊤

J −C⊤
J

0 I

−B⊤
J −D⊤

J

UJ ≻0

(5.7d,e)
on [0, Tmax], [0, Tmax], [0, Tmax], [Tmin, Tmax], [Tmin, Tmax], respectively, as
well as

(•)⊤P

(
0
I

)
≺ 0, (•)⊤P

(
I

∆

)
≽ 0, (•)⊤P̃

(
I

0

)
≻ 0, (•)⊤P̃

(
−∆⊤

I

)
≼ 0

(5.7f)

(•)⊤PJ

(
0
I

)
≺ 0, (•)⊤PJ

(
I

∆J

)
≽ 0, (•)⊤P̃J

(
I

0

)
≻ 0, (•)⊤P̃J

(
−∆⊤

J

I

)
≼ 0

(5.7g)
for all (∆,∆J) ∈ ∆ × ∆J .
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Sketch of Proof. Only if: This is the simple part and follows from pointwise
applying the elimination lemma C.11 on each of the LMIs (5.5b), (5.5d),
(5.5c) and (5.5e), as well as from defining X, Y , P , P̃ , PJ and P̃J by
corresponding sub-blocks of X , X −1, P, P−1, etc. For example, one chooses

X :=(•)⊤X

(
I

0

)
, Y :=(•)⊤X −1

(
I

0

)
and P :=(•)⊤Pdiag

((
I

0

)
,

(
I

0

))
.

If: By continuity of X, Ẋ, Y, Ẏ on the compact interval [0, Tmax] and
strictness of all inequalities aside from the four in (5.7g) and (5.7f), we
can perturb P, P̃ , PJ and P̃J as P + ( εI 0

0 0 ), P̃ − ( 0 0
0 εI ), PJ + ( εI 0

0 0 ) and
P̃J − ( 0 0

0 εI ), respectively, such that all inequalities in (5.7) are strict. Then
Corollary C.10 allows us to infer from (5.7g) and (5.7f) that the perturbed
P , P̃ , PJ and P̃J are nonsingular. Note that via another perturbation we
can even ensure that P − P̃−1 and PJ − P̃−1

J are nonsingular.
Due to (5.7g) and (5.7f) as well as 0 ∈ ∆ and 0 ∈ ∆J , we can then apply

Lemma C.16 in order to construct matrices P and PJ as well as continuous
scheduling functions S and SJ such that (5.5d), (5.5e) and (5.6) are satis-
fied. Since P and PJ satisfy (5.6a) and (5.6b), we can follow the proof of
Theorem 3.8 for nominal output-feedback design via elimination in order to
construct describing maps of the controller (5.3) that are continuous. •

As for the underlying analysis criteria in Corollary 5.1 or Theorem 4.2,
in order to turn the gain-scheduled synthesis inequalities (5.7) into stan-
dard LMIs, we can apply one of the DLMI relaxations from Appendix D
and confine the multipliers P , PJ , P̃ and P̃J to suitable choices of (dual)
multiplier sets P(∆), P(∆J), P̃(∆) and P̃(∆J), respectively, similarly
as explained in Section C.6 or, e.g., in [149, 160]. Here, the set P(∆) is
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required to admit a characterization in terms of LMIs and to satisfy

(•)⊤P

(
I

∆

)
≽ 0 for all ∆ ∈ ∆ and all P ∈ P(∆);

the remaining sets are taken with analogous properties.
Recall that we summarized some strategies to improve the controller

reconstruction in Remark 3.10 in Chapter 3 on nominal synthesis. These
strategies can be applied here analogously.

Note that dropping (5.6a) and correspondingly searching for continuous
functions P, P̃ , PJ and P̃J instead of constant matrices means that we have
to construct continuous P and PJ in the proof of Theorem 5.2. Unfortu-
nately, this is not easily possible based on Lemma C.16. One of the reasons
is that the number of positive/negative eigenvalues of P − P̃−1 and/or
PJ − P̃−1

J might not be constant which breaks the whole construction. An-
other technical issue is that systematically constructing a continuous map
T that is pointwise nonsingular and satisfies T (τ)⊤M(τ)T (τ) ≺ 0 for all
τ for some given continuous map M with a constant number of negative
eigenvalues is only easy if its eigenvalues are distinct for all τ .

Further, note that we require (5.6b) in order to follow the proof of Theo-
rem 3.8 for nominal output-feedback design via elimination and, in partic-
ular, to guarantee continuity of the reconstructed describing maps of the
controller (5.3).

Finally, note that we employ (5.6c) for applying Lemma C.16. Similarly
as shown in [140] for standard LTI systems, one might be able to drop this
inequality along with the corresponding ones in (5.5c) and (5.5e). How-
ever, this will then lead to gain-scheduling controllers with a more general
description than the one shown in (5.3).
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Remark 5.3 (Convexifying Parameter Transformation) In contrast to nom-
inal synthesis, there seems to be no direct way to render the closed-loop
analysis inequalities (5.5) convex by means of a convexifying parameter
transformation. However, it is possible to perform such a transformation
by relying on lifting techniques as an intermediate step. These techniques
have been employed, e.g., in [126] for designing gain-scheduled controllers
that (if desired) are particularly structured and in [163] for robust analysis
via IQCs.

Remark 5.4 (Simple Scheduling Functions) For some multiplier sets such
as those based on D or D-G scalings (see Remark C.19), it is possible to
choose the scheduling functions without loss of generality as

S(τ,∆) := ∆ and SJ(τ,∆J) := ∆J

which simplifies implementations. This is partly due to availability of suit-
able results on matrix extensions as addressed in Section C.5. These ded-
icated results on matrix extensions even permit us to drop the constraint
that all multipliers are constants maps which can be highly beneficial as
illustrated in the examples of the last chapter.

5.1.2 Piecewise Constant Parameters

Next we consider the situation that more information on the involved pa-
rameters is available which permits us to employ Theorem 4.6 for a more
dedicated underlying closed-loop analysis by means of IQCs with dynamic
filters. Recall that utilizing static filters essentially corresponds to the cri-
teria provided in Corollary 5.1 that capture only few properties of the
involved parameters.

Unfortunately and even for standard LTI systems, it is still unknown
how to perform gain-scheduled controller design based on IQCs with gen-



172 Chapter 5 Gain-Scheduled and Robust Synthesis

eral dynamic multipliers and by means of convex optimization. One of the
major technical stumbling stones is the lack of suitable dynamic version of
Lemma C.16 on matrix extensions. So far, convex solutions to the gain-
scheduled design problem have been found only for dynamic multipliers
composed of D scalings and of D-G scalings [147, 145]. In [81, 83], we were
able to extend the latter two approaches to impulsive systems and piece-
wise constant parameters based on special cases of our main analysis result
Theorem 4.6. Here, we briefly repeat our main design result from [83].

For real matrices of appropriate dimensions, a sequence of impulse in-
stants (tk)k∈N0 and an initial condition x(0) ∈ Rn with (RDT), we consider
now an impulsive open-loop plant with the descriptionẋ(t)
z(t)
y(t)

 =

A B B2

C D D12

C2 D21 0


x(t)
w(t)
u(t)

, (x(tk)
yJ(k)

)
=
(
AJ BJ

CJ 0

)(
x(t−k )
uJ(k)

)
,

w(t) = δ(t)z(t),
(5.8)

for t ≥ 0 and k ∈ N. Here, we assume that the parameter δ is measurable,
piecewise constant and known to take values in a given interval, i.e.,

δ(t) = δ(tk) ∈ [a, b] holds for all t ∈ [tk, tk+1) and all k ∈ N0. (5.9)

Our goal is the synthesis of a gain-scheduled controller of the formẋc(t)zc(t)
u(t)

=

A
c(θ(t)) Bc(θ(t)) Bc2(θ(t))

Cc(θ(t)) Dc(θ(t)) Dc
12(θ(t))

Cc2(θ(t)) Dc
21(θ(t)) Dc

22(θ(t))


xc(t)wc(t)
y(t)

, wc(t) = δ(t)zc(t),

(
xc(tk)
yJ(k)

)
=
(
AcJ(θ(t−k )) BcJ(θ(t−k ))
CcJ(θ(t−k )) Dc

J(θ(t−k ))

)(
xc(t−k )
uJ(k)

)
(5.10)
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for t ≥ 0, k ∈ N and with continuous describing matrices such that the re-
sulting closed-loop interconnection is stable for all parameters δ satisfying
(5.9) and all (tk)k∈N0 with (RDT). Instead of simply applying a variant
of Theorem 5.2, which would be possible in principle, we seek to provide
another design approach based on the IQC analysis results in Theorem 4.6
and Lemma 4.9. We have already argued and shown in a numerical exam-
ple that the combination of the latter results often permits a much more
accurate analysis than the criteria that underlie the corresponding variant
of Theorem 5.2. Recall that this stems from the possibility to employ dy-
namic filters (4.6) in Theorem 4.6 and Lemma 4.9 which are more flexible
than static ones as implicitly used in Theorem 5.2. Hence, we intend to
achieve analogous benefits for controller design.

The closed-loop interconnection of the system (5.8) and the controller
(5.10) is essentially of the same form as the one in (5.4) and not repeated
here. We stress that this interconnection’s description is again structured in
a way such that we can apply Theorem 4.6 together with Lemma 4.9 for its
analysis. Recall that for this combination and in the present situation where
the performance channel is absent, the analysis criteria in Theorem 4.6 are
formulated in terms of an augmented system (4.7) with describing matrices

(
A B
C D

)
:=


Aψ 0 BψC BψD

0 Aψ 0 Bψ

0 0 A B

Cψ 0 DψC DψD

0 Cψ 0 Dψ

 and AJ :=

0 0 0
0 0 0
0 0 In



for some matrices Aψ, Bψ, Cψ and Dψ with Cψ ∈ Rmψ×nψ . Next to these
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describing matrices, we employ their dual1 version

(
Ã B̃
C̃ D̃

)
:=


−A⊤

ϕ 0 0 C⊤
ϕ

0 −A⊤
ϕ −C⊤

ϕ B
⊤ −C⊤

ϕ D
⊤

0 0 −A⊤ −C⊤

−B⊤
ϕ 0 0 D⊤

ϕ

0 −B⊤
ϕ −D⊤

ϕB
⊤ −D⊤

ϕD
⊤

 and ÃJ :=

0 0 0
0 0 0
0 0 −I⊤

n



for some matrices Aϕ, Bϕ, Cϕ and Dϕ with Bϕ ∈ Rnϕ×mϕ in order to state
our design criteria. Finally, we introduce the abbreviation

Pd(S) := 1
(b− a)2

(
I I

aI bI

)(
0 S

S⊤ 0

)(
I I

aI bI

)⊤

for any square valued map or square matrix S which is also related to
Pp(S) as defined in (4.9) by duality. This permits us to formulate our gain-
scheduled controller synthesis result based on combining Theorem 4.6 with
Lemma 4.9 for the underlying closed-loop analysis.

Theorem 5.5 Let Ũ , Ṽ , ŨJ and ṼJ be basis matrices of ker(C2, D21),
ker(B⊤

2 , D
⊤
12), ker(CJ) and ker(B⊤

J ), respectively. Moreover, define

UJ :=
(
I2nψ 0

0 ŨJ

)
, VJ :=

(
I2nϕ 0

0 ṼJ

)
, U :=

(
I2nψ 0

0 Ũ

)
, V :=

(
I2nϕ 0

0 Ṽ

)
.

Then there exists a controller (5.10) for the system (5.8) such that their
closed-loop is stable for all (tk)k∈N0 with (RDT) and all δ with (5.9) if
there exist maps X ∈ C1([0, Tmax],S2nψ+n), Y ∈ C1([0, Tmax],S2nϕ+n),(
R S
S⊤ Q

)
∈ C1([0, Tmax],Snψ+nϕ), M ∈ C([0, Tmax],Rmψ×mψ ) as well as

1A motivation of this notion is provided in [145, 147]. Essentially, the matrices Ã, B̃, C̃
and D̃ emerge after applying a variant of the dualization lemma C.9 on the underlying
IQC based analysis criteria.
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N ∈ C([0, Tmax],Rmϕ×mϕ) satisfying(
Ŷ Ŝ

Ŝ⊤ X̂

)
≻ 0, (5.11a)

(•)⊤

 0 X

X Ẋ

Pp(M)


A B
I 0
C D

V ≺ 0, (•)⊤

Ẏ Y

Y 0
Pd(N)


 I 0

Ã B̃
C̃ D̃

U≻ 0,

(5.11b,c)

(•)⊤

0 R
R Ṙ

M+M⊤


Aψ BψI 0
Cψ Dψ

≻ 0, (•)⊤

Q̇ Q

Q 0
N+N⊤


 I 0

−A⊤
ϕ C⊤

ϕ

−B⊤
ϕ D

⊤
ϕ

≻0

(5.11d,e)
on [0, Tmax] as well as

(•)⊤

(
X̂(0) 0

0 −X̂

)(
AJ

I

)
UJ ≺ 0 and (•)⊤

(
Ŷ (0) 0

0 −Ŷ

)(
I

ÃJ

)
VJ ≻ 0

(5.11f,g)
on [Tmin, Tmax] where Ŝ := diag(S, S, I), X̂ := X − diag

( 1
2Pp(R), 0

)
and

Ŷ := Y − diag
( 1

2Pd(Q), 0
)
.

The constructive proof is admittedly, somewhat technical and not shown
here. It is given in full detail in [83] together with several elaborating and
technical comments. Further remarks can be extracted from the related
results in [147, 145] for standard LTI systems.

At this point we only emphasize that for static filters (corresponding
to nψ = nϕ = 0 and Dψ = Dϕ = I) the inequalities (5.11) simplify
drastically and we recover a special case of Theorem 5.2 with multiplier
sets corresponding to D-G-scalings. Moreover, the constructive proof of
Theorem 5.5 leads usually to a controller (5.10) that has at most degree
n+2nψ in the flow component and q = p+2nψ repetitions in the scheduling
block.
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Finally, next to the suggestions in Remark 3.10 for improving the nu-
merical reconstruction of the controller matrices, it can be beneficial to
enforce S = I when solving the LMIs (5.11) in order to avoid the coor-
dinate transformation in the proof and to reduce the number of required
algebraic manipulations.

5.1.3 Distributed Control for Networked Systems

Recall that we have seen in Section 4.2 that our robust analysis tools can be
employed for analyzing networked systems in a scalable fashion. Next, we
show how to utilize those insights for designing controllers for such systems
in the same vein.

To this end, we consider an homogeneous open-loop networked system
composed of M subsystems and with the descriptionẋi(t)zi(t)

yi(t)

 =

A B B2

C D D12

C2 D21 0


xi(t)wi(t)
ui(t)

 , wi(t) =
M∑
j=1

aij(t)zj(t) (5.12)

for t ≥ 0, i ∈ {1, . . . ,M} and with initial conditions x1(0), . . . , xM (0) ∈ Rn.
In order to simplify the formulation of our design criteria, we suppose that
the time-varying communication topology of the network (5.12) is undi-
rected and piecewise constant. Precisely, we assume that the corresponding
adjacency matrix A = (aij) satisfies

A (t) = A (tk) ∈ SM and eig(A (t)) ⊂ [a, b] for all t ∈ [tk, tk+1), k ∈ N0

(5.13)
for some sequence (tk)k∈N0 satisfying (RDT). We have seen in Section 4.2
how to incorporate additional knowledge on the communication topology
and could apply those modifications here as well.

In the vast amount of literature on control for networked systems it
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Figure 5.2: An undirected cyclic interconnected system with a centralized
controller (left) and a distributed controller (right).

is generally suggested to design so-called distributed controllers (see, e.g.,
[100, 105, 57, 166, 34]). These are highly structured controllers that con-
stitute themselves networked systems with a communication topology that
is similar (or often even identical) to the one of the underlying open-loop
network. The reason for synthesizing distributed controllers is that, for
large networks, the design of a single controller which takes care of the full
network becomes computationally prohibitive, e.g., due to the large num-
ber of required internal states; controllers of the latter type are referred
to as centralized controllers in this context. Fig. 5.2 illustrates a closed-
loop network involving a centralized and a distributed controller where the
underlying open-loop network is characterized through a constant cyclic
interconnection.

Hence, we follow this approach and consider the design of a distributed
controller that admits, in our situation, the descriptionẋci(t)zci(t)

ui(t)

 =

A
c(θ(t)) Bc(θ(t)) Bc2(θ(t))

Cc(θ(t)) Dc(θ(t)) Dc
12(θ(t))

Cc2(θ(t)) Dc
21(θ(t)) Dc

22(θ(t))


xci(t)wci(t)
yi(t)

 ,

wci(t) =
M∑
j=1

aij(t)zcj(t), xci(tk) = AcJ(θ(t−k ))xci(t−k )

(5.14)
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for t ≥ 0, k ∈ N and i ∈ {1, . . . ,M}. The key for developing scalable
design criteria is to recall the transformation employed in Section 4.2 in
order to diagonalize the adjacency matrix, as well as the resulting equiva-
lent representations of the system (5.12) and the controller (5.14). In fact,
this permits us to view the problem of constructing a distributed controller
(5.14) as a gain-scheduled controller synthesis problem. This has the par-
ticularly nice benefit that we immediately obtain suitable design criteria
from Theorem 5.5 as stated earlier.

Corollary 5.6 There exists a distributed controller (5.14) for the network
(5.12) such that their closed-loop is stable for all (tk)k∈N0 with (RDT)
and all switching communication topologies defined by A with (5.13) if
there exist maps X ∈ C1([0, Tmax],S2nψ+n), Y ∈ C1([0, Tmax],S2nϕ+n),(
R S
S⊤ Q

)
∈ C1([0, Tmax],Snψ+nϕ), M ∈ C([0, Tmax],Rmψ×mψ ) as well as

N ∈ C([0, Tmax],Rmϕ×mϕ) satisfying (5.5) with UJ = VJ = I.

Let us stress that these design criteria do not depend on the number of
subsystems in the network. Moreover, they involve for the first time (apart
from [83]) IQCs with dynamic multipliers and a switching communication
topology which generalizes, e.g., the findings of [100, 166, 57] that rely on
static multipliers.

Example

In view of our insights obtained in Subsection 3.1.2 on the synthesis of
sampled-data controllers and due to the modularity of our approach, it
is natural that our methodology also permits us to synthesize distributed
sampled-data controllers in a scalable fashion. As an illustration, we con-
sider a network of M = 10 simple subsystems with dynamics

ẋi1(t) = xi2(t), ẋi2(t) = −xi1(t) + ui(t) for all i ∈ {1, . . . ,M}
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where the control inputs are restricted to be piecewise constant, i.e.,

ui(t) = ui(tk) for all t ∈ [tk, tk+1), k ∈ N0 and all i ∈ {1, . . . ,M}

for some sequence (tk)k∈N0 satisfying (RDT). Moreover, we assume that
only the relative distances of the first states of neighbors at the time in-
stances t0, t1, t2, . . . are measurable, i.e., the outputs

yJi(k) :=
M∑
j=1

aij
(
xj1(tk) − xi1(tk)

)
for i ∈ {1, . . . ,M}

are available for control. Here, we suppose that the coupling weights aij
are constant and describe an undirected cyclic communication graph as
depicted in Fig. 5.2, i.e., they are given by

aij := 1 if |i− j| = 1 or |i− j| = M − 1 and aij := 0 otherwise.

Our goal is now to find a distributed sampled-data controller such that
consensus is asymptotically achieved. Recall that this means that

lim
t→∞

∥xk(t) − xl(t)∥ = 0 holds for all k, l ∈ {1, . . . ,M}

and all initial conditions. To this end, we express the given network as

(
ẋi(t)
u̇i(t)

)
=

 0 1 0
−1 0 1
0 0 0

(xi(t)
ui(t)

)
,


xi(tk)
ui(tk)
zJi(tk)
yJi(tk)

 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0




xi(t−k )
ui(t−k )
wJi(k)
uJi(k)

,

wJi(k) =
M∑
j=1

aij
(
zJj(k) − zJi(k)

)
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for t ≥ 0, k ∈ N and i ∈ {1, . . . ,M}. Thus, we target at controllers with
description

ẋci(t) = Ac(θ(t))xci(t),xci(tk)
zJci(k)
uJi(k)

 =

AcJ(θ(t−k )) BcJ(θ(t−k )) BcJ2(θ(t−k ))
CcJ(θ(t−k )) Dc

J(θ(t−k )) Dc
J12(θ(t−k ))

CcJ2(θ(t−k )) Dc
J21(θ(t−k )) Dc

J22(θ(t−k ))


xci(t

−
k )

wJci(k)
yJi(k)


that are coupled through

wJci(k) =
M∑
j=1

aij
(
zJcj(k) − zJci(k)

)
.

For analogous reasons as stated above, we can design such a distributed
controller, e.g., by employing a variant of Theorem 5.2 with multiplier sets
corresponding to the set of D-G-scalings.

Fig. 5.3 displays the second states xi2 of the closed-loop in response
to random initial conditions for impulse sequences (tk)k∈N0 with (RDT)
and Tmin = 0.1 and Tmax ∈ {0.5, 1, 2} and correspondingly designed dis-
tributed controllers. As comparison, the analogous closed-loop response for
a standard distributed controller that relies on permanently available mea-
surements and unconstrained control inputs is shown as well. We observe
that, in all cases, consensus is achieved even if information is only rarely
exchanged. However, we note that reaching consensus takes longer in the
latter cases which is expected intuitively.
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Figure 5.3: Second states xi2 (dark blue) of the closed-loop interconnec-
tion involving a standard distributed controller (top left) and a
sampled-data distributed controller obtained from Theorem 5.2
for Tmin = 0.1 as well as Tmax = 0.5 (top right), Tmax = 1 (bot-
tom left) and Tmax = 2 (bottom right). The light blue markers
denote the time instances at which measurements are taken.
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5.2 Robust Synthesis
It is by now well-known in the literature on LMIs that the robust controller
synthesis problem is amenable to techniques from convex optimization only
for particular classes of uncertain dynamical systems. For example, if con-
sidering non-impulsive systems modeled by LFRs and employing multiplier
theory or IQCs for robustness analysis of the closed-loop, the following
classes have been identified.

• Systems for which the full-state is available for control if static mul-
tipliers are employed for the robustness analysis.

• Systems affected by a single unstructured uncertainty if using small-
gain arguments.

• Systems emerging in estimation (or filter design) problems [157, 161]
and feedforward control [152]. More generally, one can deal with
systems having a control channel that is unaffected by uncertainties
[143].

• Systems for which certain matrix pencils are left (or right) invertible
[94].

For uncertain impulsive systems we essentially face the same challenges
when tackling the general robust output-feedback design problem and are,
hence, forced to employ heuristic procedures similarly as we did in Sec-
tion 3.2 for (nominal) static output-feedback synthesis. In fact, the problem
of finding such a static controller is closely related to the robust output-
feedback problem in terms of reason for non-convexity, which can often be
exploited.

In this section, we generalize the dual iteration to uncertain impulsive
systems modeled by LFRs which is an extension of our results in Section 3.2
of tremendous practical relevance. Due to our particular (robust) analysis
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results and the flexibility of the LFR framework which is accompanied by
corresponding design tools (such as the elimination lemma C.11 and the
nonstandard variation thereof Lemma C.13), we can reuse several of the
arguments already provided in Section 3.2 for static design and only require
few additional ones. Isn’t that nice?

Let us finally stress that, next to the dual iteration and based on our
robust analysis criteria in Chapter 4, one could also extend several other
static design approaches, e.g., of the ones suggested in [128], to uncertain
impulsive systems. However, we focus on the dual iteration because it is,
in our opinion, efficient with a high flexibility; due to the LFR framework
it can deal with systems simultaneously affected by several uncertainties
of different types. Unfortunately, so far we rely on IQCs with static filters
for the underlying analysis which might be resolved in the future.

5.2.1 Problem Description

For real matrices of appropriate dimensions, a sequence of impulse instants
(tk)k∈N0 satisfying (RDT), some initial condition x(0) ∈ Rn and two un-
certainty (value) sets ∆ ⊂ Rq×p and ∆J ⊂ RqJ×pJ that both contain the
origin, we now consider an uncertain open-loop plant with the description

ẋ(t)
z(t)
e(t)
y(t)

 =


A B B2 B3

C D D12 D13

C2 D21 D22 D23

C3 D31 D32 0



x(t)
w(t)
d(t)
u(t)

 , w(t) = ∆(t)z(t), (5.15a)


x(tk)
zJ(k)
eJ(k)
yJ(k)

=


AJ BJ BJ2 BJ3

CJ DJ DJ12 DJ13

CJ2 DJ21 DJ22 DJ23

CJ3 DJ31 DJ32 0



x(t−k )
wJ(k)
dJ(k)
uJ(k)

, wJ(k) = ∆J(k)zJ(k)

(5.15b)
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for t ≥ 0 and k ∈ N. As earlier in (5.1), the signals y, yJ denote measured
outputs, u, uJ are control inputs and w, wJ , z, zJ are interconnection vari-
ables; moreover, we include again a performance channel with generalized
disturbances d, dJ and error signals e, eJ .
The involved (arbitrarily) time-varying uncertainties ∆ and ∆J are as-
sumed to be piecewise continuous maps satisfying

∆(t) ∈ ∆ for all t ≥ 0 and ∆J(k) ∈ ∆J for all k ∈ N.

In this section we aim to design a robust output-feedback controller for
the system (5.15) such that the corresponding closed-loop energy gain is
as small as possible for all admissible uncertainties; we refer to the worst
of these gains as robust energy gain. We target at controllers of the form(

ẋc(t)
u(t)

)
=
(
Ac(θ(t)) Bc(θ(t))
Cc(θ(t)) Dc(θ(t))

)(
xc(t)
y(t)

)
,(

xc(tk)
uJ(k)

)
=
(
AcJ(θ(t−k )) BcJ(θ(t−k ))
CcJ(θ(t−k )) Dc

J(θ(t−k ))

)(
xc(t−k )
yJ(k)

)
,

(5.16)

for t ≥ 0 and k ∈ N with initial condition xc(0) ∈ Rn and with to-be-
designed continuous describing matrices Ac, Bc, etc. The interconnection
of the uncertain system (5.15) with the controller (5.16) is of the formẋcl(t)z(t)

e(t)

 =

A(θ(t)) B(θ(t)) B(θ(t))
C(θ(t)) D(θ(t)) D12(θ(t))
C2(θ(t)) D21(θ(t)) D22(θ(t))


xcl(t)w(t)
d(t)

 ,

xcl(tk)
zJ(k)
eJ(k)

 =

AJ(θ(t−k )) BJ(θ(t−k )) BJ2(θ(t−k ))
CJ(θ(t−k )) DJ(θ(t−k )) DJ12(θ(t−k ))
CJ2(θ(t−k )) DJ21(θ(t−k )) DJ22(θ(t−k ))


xcl(t

−
k )

wJ(k)
dJ(k)

,
w(t) = ∆(t)z(t), wJ(k) = ∆J(k)zJ(k)

(5.17)
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G

GJ

∆

∆J

K

KJ

z w

zJ wJ

yJ uJ

y u

eJ dJ

e d

x(t−• ) x(t•)

xc(t
−
• ) xc(t•)

Figure 5.4: Block diagram of the closed-loop interconnection (5.17) of the
uncertain system (5.15) with the robust controller (5.16).

with state xcl := col(x, xc),

A B B2

C D D12

C2 D21 D22

:=


A 0 B B2

0 0 0 0
C 0 D D12

C2 0D21 D22

+


0 B3

Inc 0
0 D13

0 D23


(
Ac Bc

Cc Dc

)(
0 Inc 0 0
C3 0 D31 D32

)

and analogously defined maps AJ ,BJ , etc. A block diagram of this closed-
loop interconnection is depicted in Fig. 5.4 where G, GJ K and KJ refer to
the flow and jump component of (5.15) and the ones of (5.16), respectively.

The particular structure of the closed-loop interconnection (5.17) permits
us to apply Theorem 4.2 for its robustness analysis. Because we intend to
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measure performance in terms of the system’s robust energy gain, recall
that this gain is bounded by γ > 0 if the closed-loop system achieves robust
quadratic performance with index (Pγ , PJγ) :=

((
I 0
0 −γ2I

)
,
(
I 0
0 −γ2I

))
as

introduced in Definition 4.1.
In the sequel, all of our analysis and design criteria require only one

of the relaxations in Appendix D to render them finite dimensional and
thus numerically tractable. To this end, we suppose that we are given
suitable multiplier sets P(∆) and P(∆J) as explained in Definition C.18
and corresponding to ∆ and ∆J . This leads to the following result.

Corollary 5.7 (Closed-Loop Robust Analysis) The interconnection (5.17)
is robustly stable and achieves robust quadratic performance with index
(Pγ , PJγ) for all (tk)k∈N0 with (RDT) if there exist X ∈ C1([0, Tmax],S2n),
P ∈ C([0, Tmax],P(∆)) and PJ ∈ C([Tmin, Tmax],P(∆J)) satisfying the
inequalities

X ≻ 0, (5.18a)

(•)⊤


0 X
X Ẋ

P

Pγ





A B B2

I 0 0
C D D12

0 I 0
C2 D21 D22

0 0 I


≺ 0 (5.18b)

and

(•)⊤


X (0) 0

0 −X
PJ

Pγ





AJ BJ BJ2

I 0 0
CJ DJ DJ12

0 I 0
CJ2 DJ21 DJ22

0 0 I


≺ 0 (5.18c)
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on [0, Tmax], [0, Tmax] and [Tmin, Tmax], respectively. We denote by γopt the
infimal γ > 0 such that there exists a robust controller (5.16) that renders
the closed-loop analysis inequalities (5.18) feasible.

Note that, as a consequence of the underlying conservatism in our anal-
ysis result, γopt is in general not the optimal robust energy gain achievable
by robust controllers with description (5.16), but it often constitutes a good
upper bound.

In order to slightly simplify the exposition, we proceed under the follow-
ing assumption.

Assumption 5.8 (Additional Properties of Multiplier Sets) We assume that
any multiplier P ∈ P(∆) is nonsingular and satisfies (•)⊤P ( 0

I ) ≺ 0 as
well as that the dual multiplier set P̃(∆) := {P̃ : P̃−1 ∈ P(∆)} admits
an LMI representation. Moreover, we suppose that the multiplier set P(∆J)
has analogous properties.

Note that these assumptions are satisfied, e.g., for the concrete examples
of multiplier sets given in Remark C.19. Moreover, note that the dual
multiplier set of

P(∆) :=


(
bI −I

−aI I

)⊤(
0 H⊤

H 0

)(
bI −I

−aI I

) ∣∣∣∣∣∣ H +H⊤ ≻ 0


for ∆ := {δI : δ ∈ [a, b]} is given by

P̃(∆) :=

 1
(b− a)2

(
I I

aI bI

)(
0 H

H⊤ 0

)(
I I

aI bI

)⊤
∣∣∣∣∣∣ H +H⊤ ≻ 0

 .

Since the origin is contained in ∆ and ∆J and by Assumption 5.8, we can
apply the elimination lemma C.11 in all of the upcoming design scenar-
ios. Otherwise, we would have to employ suitable perturbations ensuring



188 Chapter 5 Gain-Scheduled and Robust Synthesis

nonsingularity and to explicitly enforce in some spots that the multipliers
(in a pointwise fashion) have the correct amount of positive and negative
eigenvalues. Note that the latter property is assured automatically at the
most relevant spots.

In particular, we obtain the following intermediate non-convex design
result by applying the elimination lemma C.11 on the analysis inequalities
(5.18). The proof follows the lines of the one of Theorem 3.8 for nominal de-
sign via elimination even if the involved multipliers P and PJ not restricted
to be constant matrices. Indeed, by 0 ∈ ∆ and 0 ∈ ∆J , we can still apply
the involved Schur complement argument and employ Lemma C.13 in or-
der to construct describing maps of the controller (5.16) that are assured
to be continuous.

Theorem 5.9 (Robust Output-Feedback Controller Synthesis) Let U , V ,
UJ and VJ be basis matrices of ker((B⊤

3 , D
⊤
13, D

⊤
23)), ker((C3, D31, D32)),

ker((B⊤
J3, D

⊤
J13, D

⊤
J23)) and ker((CJ3, DJ31, DJ32)), respectively. Then there

exists a controller (5.16) for the system (5.15) such that the analysis in-
equalities (5.18) are feasible if and only if there exist functions X,Y ∈
C1([0, Tmax],Sn), P ∈C([0, Tmax],P(∆)) and PJ ∈C([Tmin, Tmax],P(∆J))
satisfying the inequalities (

Y I

I X

)
≻ 0, (5.19a)

(•)⊤


0 X

X Ẋ

P

Pγ





A B B2

I 0 0
C D D12

0 I 0
C2 D21 D22

0 0 I


V ≺ 0, (5.19b)
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(•)⊤


Ẏ Y

Y 0
P̃

P−1
γ





I 0 0
−A⊤ −C⊤ −C⊤

2

0 I 0
−B⊤ −D⊤ −D⊤

21

0 0 I

−B⊤
2 −D⊤

12 −D⊤
22


U≻ 0 (5.19c)

on [0, Tmax] as well as

(•)⊤


X(0) 0

0 −X
PJ

PJγ





AJ BJ BJ2

I 0 0
CJ DJ DJ12

0 I 0
CJ2 DJ21 DJ22

0 0 I


VJ ≺ 0, (5.19d)

(•)⊤


Y (0) 0

0 −Y
P̃J

P−1
Jγ





I 0 0
−A⊤

J −C⊤
J −C⊤

J2

0 I 0
−B⊤

J −D⊤
J −D⊤

J21

0 0 I

−B⊤
J2 −D⊤

J12 −D⊤
J21


UJ ≻ 0 (5.19e)

on [Tmin, Tmax] where

P̃ := P−1 and P̃J := P−1
J . (5.19f)

Moreover, γopt is equal to the infimal γ > 0 such that the above inequalities
are feasible.

In contrast to static output-feedback design as considered in Section 3.2,
non-convexity emerges here through the multipliers P , PJ , P̃ , P̃J and the
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coupling (5.19f) instead of the Lyapunov certificate X and its inverse. Due
to this non-convexity, computing γopt or a corresponding controller is dif-
ficult in general. Subsequently, we modify the dual iteration in order to
compute upper bounds on γopt and, in particular, solve the robust output-
feedback design problem for uncertain impulsive systems.

5.2.2 Dual Iteration

Initialization of the Iteration

In order to initialize the dual iteration, we aim again to compute a meaning-
ful lower bound on γopt. Such a bound can be obtained by considering the
design of a gain-scheduled controller as in Section 5.1. Indeed, if there ex-
ists a robust controller for the system (5.15) achieving a robust energy gain
of γ, then there also exists a gain-scheduled controller (5.3) which achieves
(at least) the same robust energy gain. This just follows from the obser-
vation that the robust controller (5.16) can be viewed as a gain-scheduled
controller (5.3) with trivial scheduling functions S = 0 and SJ = 0.

Recall that the problem of finding a gain-scheduling controller (5.3) for
the system (5.1) can be rendered convex with design criteria as given in
Theorem 5.2. For our purposes we only need the following.

Corollary 5.10 (Gain-Scheduled Design Criteria) Suppose there exists a ro-
bust controller (5.16) such that the analysis inequalities (5.18) are fea-
sible, then there exist continuously differentiable X, Y as well as P ∈
C([0, Tmax],P(∆)), PJ ∈ C([Tmin, Tmax],P(∆J)), P̃ ∈ C([0, Tmax], P̃(∆))
and P̃J ∈ C([Tmin, Tmax], P̃(∆J)) satisfying the synthesis LMIs (5.19a) -
(5.19e). Moreover, we have γgs ≤ γopt with γgs being the infimal γ > 0 such
that the latter LMIs are feasible.

Such lower bounds can be good indicators for measuring the conservatism
of algorithms that generate upper bounds on some value of interest.
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As for the static design in Section 3.2, the dual iteration is initialized by
the design of a suitable full-information controller. For robust synthesis,
such a controller admits the description

u(t) = F (θ(t))ỹ(t), uJ(k) = FJ(θ(t−k ))ỹJ(k)

for t ≥ 0, k ∈ N. Here, the gains F = (F1, F2, F3) and FJ = (FJ1, FJ2, FJ3)
are continuous matrix-valued maps and the input signals are given by ỹ :=
col(x,w, d) and ỹJ(k) := col(x(t−k ), wJ(k), dJ(k)). Thus, these controllers
are even able to measure both uncertain signals w = ∆z and wJ = ∆JzJ in
addition to the state x and the generalized disturbances d, dJ . By replacing
the measurements y, yJ in (5.15) with the virtual measurements ỹ, ỹJ , we
can interconnect this controller with the system (5.15). This results in a
closed-loop interconnection of the form (5.17), but with the maps

G :=

A B B2

C D D12

C2 D21 D22

 and GJ :=

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 DJ22


in the flow and jump component replaced by

GF :=

AF BF BF2

CF DF DF12

CF2 DF21 DF22

 :=

A B B2

C D D12

C2 D21 D22


︸ ︷︷ ︸

=:G

+

 B3

D13

D23

F

and

GJF :=

AJF BJF BJF2

CJF DJF DJF12

CJF2 DJF21 DJF22

 :=

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 DJ22


︸ ︷︷ ︸

=:GJ

+

 BJ3

DJ13

DJ23

FJ ,
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respectively; the abbreviations G, GJ , etc. are introduced here to save a
lot of space in the upcoming results. By Assumption 5.8, the elimination
lemma C.11 yields the following design criteria for full-information con-
trollers as described above.

Lemma 5.11 (Full-Information Controller Synthesis) There exist some full-
information gains F and FJ such that the closed-loop analysis LMIs (5.18)
with the (G,GJ) replaced by (GF , GJF ) are feasible if and only if there
exist functions Y ∈ C1([0, Tmax],Sn), P̃ ∈ C([0, Tmax], P̃(∆)) and P̃J ∈
C([Tmin, Tmax], P̃(∆J)) satisfying Y ≻ 0 on [0, Tmax], (5.19c) and (5.19e).

Main Loop

Once we have synthesized suitable initial full-information gains F , FJ via
Lemma 5.11, we can advance to the main loop of the dual iteration that
begins with the following.

Theorem 5.12 (Primal Design Result) There exists a controller (5.16) for
the system (5.15) such that the analysis LMIs (5.18) are feasible for the
corresponding closed-loop system if there exist X,Y ∈ C1([0, Tmax],Sn) as
well as P ∈ C([0, Tmax],P(∆)), PJ ∈ C([Tmin, Tmax],P(∆J)) satisfying(
X Y

Y Y

)
≻ 0, (5.19b) and (5.19b) with (X,G, V ) replaced by (Y,GF , I)

(5.20a,b,c)
on [0, Tmax] as well as

(5.19d) and (5.19d) with (X,GJ , VJ) replaced by (Y,GJF , I)
(5.20d,e)

on [Tmin, Tmax]. Moreover, we have γgs ≤ γopt ≤ γF for γF being the infimal
γ > 0 such that the above LMIs are feasible.

Proof. By strictness of the LMIs (5.20), continuity of X, Ẋ, P and PJ ,
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and compactness of the intervals [0, Tmax] and [Tmin, Tmax], we can infer
that the LMIs (5.20) remain satisfied if we replace (P, PJ) by (Pε, PJε) :=(
P + ε

(
Ip 0
0 0
)
, PJ + ε

(
IpJ 0

0 0

))
for some small ε > 0. Note that we then

have the strict inequality

(•)⊤Pε

(
I

∆

)
= (•)⊤P

(
I

∆

)
+ εI ≻ 0 for all ∆ ∈ ∆

and similarly (•)⊤PJε
(
I

∆J

)
≻ 0 for all ∆J ∈ ∆J . In particular, we

still have Pε ∈ C([0, Tmax],P(∆)) and PJε ∈ C([Tmin, Tmax],P(∆J)).
Next observe that the (2, 2) blocks of (5.20c) and (5.20e) then imply
(•)⊤Pε

(
DF
Iq

)
≺ 0 on [0, Tmax] and (•)⊤PJε

(
DJF
IqJ

)
≺ 0 on [Tmin, Tmax],

respectively. By Corollary C.10, we can then conclude that Pε has point-
wise exactly p positive and q negative eigenvalues; we obtain analogously
that PJε has pointwise exactly pJ positive and qJ negative eigenvalues.

This permits us to eliminate the full-information gains F and FJ from the
LMIs (5.20c) and (5.20e) which leads to (5.19c) and (5.19e) for (Y, P̃ , P̃J)
replaced by (Y −1, P−1

ε , P−1
Jε ). Finally, performing a congruence transfor-

mation of (5.20a) with diag(I, Y −1) yields (5.19a) for Y replaced by Y −1.
Since we still have (5.19b), (5.19d), Pε ∈ C([0, Tmax],P(∆)) and PJε ∈
C([Tmin, Tmax],P(∆J)), we can apply Theorem 5.9 in order to construct
the desired robust controller (5.16). •

The employed dual versions of Lemma 5.11 and Theorem 5.9 are given
next. They involve full-actuation gains E = (E⊤

1 , E
⊤
2 , E

⊤
3 )⊤ and EJ =

(E⊤
J1, E

⊤
J2, E

⊤
J3)⊤ as well as the maps

GE :=

AE BE BE2

CE DE DE12

CE2 DE21 DE22

 :=

A B B2

C D D12

C2 D21 D22

+ E
(
C3 D31 D31

)
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and

GJE :=

AJE BJE BJE2

CJE DJE DJE12

CJE2 DJE21 DJE22

:=

AJ BJ BJ2

CJ DJ DJ12

CJ2 DJ21 DJ22

+EJ

(
CJ3 DJ31 DJ32

)
.

The elimination lemma C.11 yields the following two results.

Lemma 5.13 (Full-Actuation Controller Synthesis) There exists some full-
actuation gains E and EJ such that the closed-loop analysis LMIs (5.18)
with (G,GJ) replaced by (GE , GJE) are feasible if and only if there ex-
ist maps X ∈ C1([0, Tmax],Sn), PJ ∈ C([Tmin, Tmax],P(∆J)) and P ∈
C([0, Tmax],P(∆)) satisfying X ≻ 0 on [0, Tmax], (5.19b) and (5.19d).

Theorem 5.14 (Dual Design Result) There exists a controller (5.16) for
the system (5.15) such that the analysis LMIs (5.18) are feasible for the
corresponding closed-loop system if there exist X,Y ∈ C1([0, Tmax],Sn) as
well as P̃ ∈ C([0, Tmax], P̃(∆)), P̃J ∈ C([Tmin, Tmax], P̃(∆J)) satisfying(
X X

X Y

)
≻ 0, (5.19c) and (5.19c) with (Y,G,U) replaced by (X,GE , I)

(5.21a,b,c)
on [0, Tmax] as well as

(5.19e) and (5.19e) with (Y,GJ , UJ) replaced by (X,GJE , I)
(5.21d,e)

on [Tmin, Tmax]. Moreover, we have γgs ≤ γopt ≤ γE for γE being the infimal
γ > 0 such that the above LMIs are feasible.

Theorems 5.12 and 5.14 are again nicely intertwined, in analogy of what
has been stated in Theorem 3.26 and illustrated in Fig. 3.10 in Section 3.2.
In particular, the following conceptual algorithm generates a monotoni-
cally decreasing sequence (γk)k∈N of upper bounds on γopt and we can
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essentially make the same statements as in Remark 3.28. As pointed out
at the end of Section 3.2, we face again some compatibility issues with the
employed DLMI relaxation for numerically solving the involved synthesis
inequalities; we already proposed several initial suggestions, but leave a
dedicated investigation for future research.

Algorithm 5.15 (Dual Iteration for Robust Output-Feedback Design.)
(a) Initialization: Compute the lower bound γgs based on solving the

gain-scheduling synthesis LMIs in Theorem 5.10 and set γ0 := +∞
as well as k = 1. Design initial full-information gains F and FJ from
Lemma 5.11.

(b) Primal step: Compute γF based on solving the primal synthesis LMIs
(5.20) for the given gains F and FJ and choose some small εk > 0
such that γk := γF (1 + εk) < γk−1. For γ = γk, determine X,Y and
P, PJ satisfying the LMIs (5.20) and apply Lemma 5.13 in order to
design gains E and EJ satisfying the dual synthesis LMIs (5.21) for
(X,Y, P̃ , P̃J) = (X−1, Y −1, P−1, P−1

J ).

(c) Dual step: Compute γE based on solving the dual synthesis LMIs
(5.21) for the given gains E and EJ and choose some small εk+1 > 0
such that γk+1 := γE(1 + εk+1) < γk. For γ = γk+1, determine X,Y
and P̃ , P̃J satisfying the LMIs (5.21) and apply Lemma 5.11 in order
to design gains F and FJ satisfying the primal synthesis LMIs (5.20)
for (X,Y, P, PJ) = (X−1, Y −1, P̃−1, P̃−1

J ).

(d) Termination: If k is too large or γk does not decrease any more, then
stop and construct a robust output-feedback controller (5.16) for the
system (5.15) according to Theorem 5.14.
Otherwise set k = k + 2 and go to the primal step.
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Remark 5.16 (Robust Gain-Scheduled Output-Feedback Design) It is not
difficult to extend Algorithm 5.15 to the more general and practically rel-
evant design of robust gain-scheduling controllers as considered, e.g., in
[162, 71]. For this problem, the uncertainties ∆ and ∆J in the description
(5.15) are replaced by diag(∆u,∆s) and diag(∆Ju,∆Js), respectively, with
∆u, ∆Ju being unknown, while ∆s, ∆Js are measurable on-line and taken
into account by the to-be-designed controller. As for robust design, this
synthesis problem is known to be convex only in very specific situations;
for example if the control channel is unaffected by uncertainties [162].

An interesting special case of the general robust gain-scheduling design
is sometimes referred to as inexact scheduling [133]. As for standard gain-
scheduling it is assumed that a parameter dependent system (5.15) is given,
but that the to-be-designed controller only receives noisy on-line measure-
ments of the parameter instead of exact ones.

We emphasize that such modifications are all straightforward to handle,
due to the flexibility of the design framework based on linear fractional
representations and the employed multiplier separation techniques under-
lying Corollary 5.7. In a nutshell, these modifications amount to adding
a scheduling channel to both of the components of the underlying system
(5.15) and diagonally augmenting all synthesis LMIs with multipliers corre-
sponding to the scheduling component. The augmentation is essentially the
same as when moving from nominal controller design to robust synthesis.

Dual Iteration: An Alternative Initialization

It can happen that the LMIs appearing in the primal step of algorithm 5.15
are infeasible for the initially designed full-information gains. In order to
promote the feasibility of these LMIs, we propose an alternative initializa-
tion that relies on the following result.
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Lemma 5.17 Suppose that the gain-scheduling synthesis LMIs in Theo-
rem 5.10 are feasible and that some full-actuation gains E and EJ are de-
signed from Lemma 5.13. Then there exist some α > 0, continuously differ-
entiable X, Y as well as P ∈C([0, Tmax],P(∆)), P̃ ∈ C([0, Tmax], P̃(∆)),
PJ ∈ C([Tmin, Tmax],P(∆J)) and P̃J ∈ C([Tmin, Tmax], P̃(∆J)) satisfying
the LMIs (5.21) with P̃ in (5.21b) replaced by P , with P̃J in (5.21d) re-
placed by PJ ,(

αI P − P̃

P − P̃ I

)
≻ 0 and

(
αI PJ − P̃J

PJ − P̃J I

)
≻ 0 (5.22)

Note that, with a Schur complement argument, (5.22) is equivalent to
∥P − P̃∥2 < α and ∥PJ − P̃J∥2 < α. Thus by minimizing α > 0 subject
to the above LMIs, we push the multipliers (P, PJ) and (P̃ , P̃J) as close
together as possible. Due to the continuity of the map M 7→ M−1, this
means that their inverses are close to each other as well. We can then design
corresponding full-information gains F and FJ based on Lemma 5.11 for
which the LMIs (5.20) are very likely to be feasible for P−1 ≈ P̃−1 and
P−1
J ≈ P̃−1

J .

Remark 5.18 (a) In the case that the above procedure does not yield
gains F and FJ for which the LMIs (5.20) are feasible, one can, e.g.,
iteratively double γ and retry until a suitable gain is found. This
practical approach works typically well in various situations.

(b) It would be nicer to directly employ additional constraints for the
gain-scheduling synthesis LMIs in Theorem 5.10 which promote P ≈
P̃−1 and PJ ≈ P̃−1

J and, thus, the feasibility of the primal synthe-
sis LMIs (5.20) similarly as it was possible for static design in Re-
mark 3.29. However, as far as we are aware of, this is only possible
for specific multipliers and corresponding value sets.
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5.2.3 Example

θ2
θ1 Instrument

package

As an illustration let us consider a
slight modification of the flexible satel-
lite as considered in Chapter 3 which
originates from [53]. Recall that we em-
ployed the following model with state
x̃ = col(θ2, θ̇2, θ1, θ̇1) and with exactly
known constants J1 = 1, J2 = 0.1,
k = 0.091 and b = 0.0036:

(
˙̃x(t)
v(t)

)
=


0 1 0 0 0 0

− k
J2

− b
J2

k
J2

b
J2

1 0
0 0 0 1 0 0
k
J1

b
J1

− k
J1

− b
J1

0 1
J1

1 0 0 0 0 0


x̃(t)
d̃(t)
u(t)

 . (5.23)

This time, we assume instead that the constants J1 and b are merely known
to be contained in the intervals [0.8, 1.2] and [0.0018, 0.0072], respectively.
The goal now is to design a dynamic output-feedback controller K such
that, for any possible value of J1 and b, the closed-loop interconnection
with (5.23) is stable, the output v nicely follows a given piecewise constant
reference signal r despite the presence of a disturbance d̃, and such that
the control input u is not too large.

To this end, we consider essentially the same reference tracking configu-
ration as before and as shown again in Fig. 5.5 for convenience. It involves
the weights

Wr = 1, Wd = 0.2, Wu = 0.1 and Werr(s) = 0.5s+ 0.433
s+ 0.00433

and G(∆) denotes the uncertain system (5.23). By disconnecting the con-
troller K from this configuration and by pulling out the uncertainties as for
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G(∆)K +
WdWr

Wu

Werr

u

d̃d̂
v

rr̂ −
ẽ ê

û

Figure 5.5: A standard weighted tracking configuration.

example explained in Section 9.2 of [178], we obtain a weighted open-loop
system that fits into the description (5.15a) with the stacked signals

x :=
(

x̃

ξWerr

)
, e :=

(
ê

û

)
, y :=

(
v

r

)
, d :=

(
r̂

d̂

)
,

where ξWerr
denotes the state corresponding to the weight Werr, with the

static uncertainty

∆ :=
(
J1 0
0 b

)
∈ ∆ :=

{(
δ1 0
0 δ2

)
∈ R2×2

∣∣∣∣∣ δ1 ∈ [0.8, 1.2] and
δ2 ∈ [0.0018, 0.0072]

}
,

and for some describing matrices A,B, etc. involving a vanishing matrix
D31. In Chapter 3 we have seen that once the system’s output v can only
be measured at times t0, t1, . . . a standard (robust) H∞ design can easily
lead to undesired closed-loop behavior. Here, we suppose that the sequence
(tk)k∈N0 satisfying (EDT) with T = 0.4 and instead design a corresponding
impulsive controller. To this end we express the uncertain open-loop system
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as an impulsive one of the form
ẋ(t)
z(t)
e(t)
y(t)

=


A B B2 B3

C D D12 D13

C2 D21 D22 D23

0 0 ( 1 0 ) 0



x(t)
w(t)
d(t)
u(t)

,

x(tk)
zJ(k)
eJ(k)
yJ(k)

=


I 0 0 0
0 0 0 0
0 0 0 0
C3 0D32 0



x(t−k )
wJ(k)
dJ(k)
uJ(k)

,

w(t) = ∆z(t) and wJ = 0 · zJ .

This description involves several redundant signals to emphasize that it
constitutes a special case of the generic one in (5.15). In particular, we
can apply the dual iteration as summarized in Algorithm 5.15 in order to
determine an impulsive controller with the desired properties.

Before doing so let us demonstrate that neglecting the uncertainty ∆
and designing a controller for the much simpler nominal system, i.e., for
the unknown ∆ replaced by ( 1 0

0 0.0036 ), can lead to poor performance if the
true parameters deviate from their guessed nominal values. In this case
we can design a controller by applying Theorem 3.8 and, in particular, by
means of solving a single convex optimization problem. Several simulations
of the interconnection of this controller and the uncertain system (5.23)
for some reference r, some small random disturbance d̃ and for several
values of ∆ ∈ ∆ are shown at the top of Fig. 5.6; here the signals with
subscript ’nom’ denote the response of the nominal system. As expected, we
observe that the tracking capabilities are fine for the nominal system, but
deteriorate in the presence of uncertainties. In fact, if we were to increase
the size of ∆ a bit, then there are uncertainties ∆ ∈ ∆ for which the
closed-loop is not even stable anymore.

The same simulation is shown in the middle of Fig. 5.6, but, this time,
the controller is designed via the dual iteration and explicitly takes the
presence of uncertainties into account. We observe a much better tracking
behavior and also a less aggressive control input for all of the samples ∆.
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Figure 5.6: Some reference r and closed-loop responses of the uncertain
system (5.23) for several instances of ∆ ∈ ∆ with a controller
designed for the nominal system (top) and two robust controller
as obtained from the dual iteration (middle and bottom). The
controller at the bottom has its output constrained to be piece-
wise constant.

Let us finally note that it is by now straightforward to include the ad-
ditional constraint on the controller that its output is piecewise constant.
Applying the dual iteration for this situation yields another robust impul-
sive controller and a simulation of the closed-loop response as depicted on
the bottom of Fig. 5.6.
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5.3 Summary
In the first part of this chapter, we consider the problem of convexifying the
design of gain-scheduled output-feedback controllers for impulsive systems
modeled in terms of LFRs and affected by on-line measurable parameters.
We begin by considering arbitrarily time-varying parameters and derive
Theorem 5.2, which constitutes an extension of the criteria in [139] from
non-impulsive systems to impulsive ones. Afterwards, we consider piecewise
constant parameters and establish Theorem 5.5 which relies on combining
Theorem 4.6 and Lemma 4.9 for the underlying closed-loop robust anal-
ysis. In particular, it evolves around dynamic IQCs with impulsive filters
admitting a state resetting property and D-G scalings along with a dedi-
cated extension of those scalings. Theorem 5.5 has been published by the
author in [83] and a related preliminary version involving D scalings is
given in [81]. Related results that merely apply to non-impulsive systems
are found in [145], but rely on an extension that is numerically much more
intricate and susceptible to numerical errors.

In the second part of this chapter, we show how to employ the dual
iteration for synthesizing robust output-feedback controllers for uncertain
impulsive systems. This can be viewed as a generalization of the results in
Section 3.2 on nominal static output-feedback design and relies on the use
of static filters for the underlying closed-loop robustness analysis. We pub-
lished the corresponding algorithm for non-impulsive uncertain systems in
[85] since even this specialization is of tremendous practical relevance. Re-
lated (heuristic) approaches for uncertain impulsive systems usually rely
on variations of the D-K iteration as, e.g., in [26], even though this method
is known to be not very efficient. For non-impulsive systems there are effi-
cient alternatives that completely avoid solving LMIs such as hinfstruct

[9] or hifoo [27], but these merely apply to few classes of uncertainties and
they are not amenable for generalizations to impulsive systems.
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We also stress that the proposed variant of the dual iteration general-
izes in a straightforward fashion to the interesting problem of synthesizing
robust gain-scheduled output-feedback controllers. For non-impulsive sys-
tems, several specializations of this general problem that admit a convex
solution are found, e.g., in [160].





6
Conclusions

In this thesis we provide the essentials for a systematic analysis and design
framework for linear impulsive and related hybrid systems with dwell-time
constraints. Conveniently, this framework is in various ways analogous to
the one for non-impulsive systems based on integral quadratic constraints
(IQCs). The latter is capable to accurately handle such systems even in the
presence of numerous and diverse uncertainties in an efficient fashion, and,
therefore, is acknowledged by practitioners particularly from the aerospace
industry. The most important ingredients of the proposed framework can
be summarized as follows:

• Specifically tailored nominal analysis criteria as developed in [18] and
as elaborated on in Chapter 2 which rely on Lyapunov arguments
and the introduction of a clock to capture the impulse instants char-
acterizing the considered hybrid systems. As illustrated in Chapter 3,
the particular structure of these criteria permits us to design impul-
sive output-feedback controllers for impulsive open-loop systems in
terms of convex optimization. This is achieved by carefully adjusting
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available design tools for non-impulsive systems and by employing
suitable DLMI relaxations.

• A genuine generalization of the notion of finite-horizon IQCs with
terminal cost as proposed in [148] for systematically analyzing uncer-
tain non-impulsive systems which we introduce and discuss in Chap-
ter 4. In particular, our time-domain formulation paves the way for
extending various robust analysis results from the rich body of the
IQC literature to uncertain impulsive systems.

• A convex solution to the gain-scheduled controller design problem for
impulsive systems and an extension of the dual iteration for designing
robust output-feedback controllers for uncertain impulsive systems in
an iterative fashion as provided in Chapter 5. The former is expected
to facilitate convexifying several of the related synthesis problems
considered in [160] in the context of hybrid systems such as the
design of robust gain-scheduled estimators.

We illustrate the flexibility of the proposed framework by demonstrating
how to apply it, e.g., for switched, sampled-data and networked systems,
and support most of the presented results by numerical examples.

Despite the title of this work, which is admittedly somewhat provocative
since there is always room for improvements, there are several (technical)
issues and challenges that are recommendable for future research. We high-
light the ones that are expected to enhance the proposed framework the
most.

• Most IQC based analysis and design criteria rely on numerically solv-
ing LMIs which is expensive or even prohibitive for large systems and
if employing standard semidefinite programming solvers; this is the
case for non-impulsive systems and is naturally even more delicate for
impulsive ones since we are required to solve inherently larger LMIs
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resulting from DLMI relaxations. Hence, there is a strong need for
numerically stable and fast LMI solvers that can be parallelized and
which exploit the particular structure of optimization problems faced
in control; currently, there are only few algorithms with the latter
trait and most of them only apply to analysis problems. Moreover,
there is a lack of suitable preconditioning techniques which can also
help for dealing with large systems.

• As an alternative to the underlying clock based nominal analysis cri-
teria, it could be interesting to analyze the feedback interconnection
of linear systems with an impulsive component by means of suitable
IQCs.

• As mentioned at the end of Section 3.2, we face some compatibility
issues of the dual iteration with the employed DLMI relaxations.
We have proposed several initial measures to produce relief, but we
believe that a dedicated investigation would be fruitful.

• So far robust output-feedback design with the dual iteration relies on
the use of static multipliers in the underlying IQC analysis criteria. It
is well-known that dynamic multipliers can be much less conservative
than static ones. Hence, incorporating those into the dual iteration
is expected to be very beneficial.
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A
Explanation of Symbols

Basics and Matrices

Nonnegative integers are usually denoted by i, j, k, l,m, n, p, q and N .
Sometimes • is some unspecified but fixed nonnegative integer.
Z, N, N0 Set of integers, of positive integers and of

nonnegative integers.
R, C Set of real and complex numbers.
K Stands for either R or C. Its meaning does not

change within theorems and other statements.
Re(z), Im(z), z Real part, imaginary part and complex conjugate of

z ∈ C.
C◦, C∞

◦ {z ∈ C | Re(z) ◦ 0}, C◦∪{∞} for ◦ ∈ {<,≤,=,≥, >}.
Rn, Cn Vector space of real, complex n-tuples with

standard Euclidian inner product ⟨·, ·⟩, norm ∥ · ∥
and standard unit vectors e1, . . . , en.

Rn×m, Cn×m Vector space of real, complex n×m matrices with
induced norm ∥A∥ := sup∥x∥=1 ∥Ax∥.
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Sn, Hn Set of real symmetric and complex Hermitian n× n

matrices.

Let A ∈ Cn×m, B ∈ Cp×q and M,N ∈ Cn×n.

I Identity matrix.
A⊤, A∗ Transpose and conjugate transpose of the matrix A.
M−1 Inverse of the square and nonsingular matrix M .
ker(A), im(A) Kernel and image of the matrix A.
trace(M), det(M) Trace and determinant of the matrix M .
eig(M) Set of eigenvalues of the matrix M .
M ≻ N M = M∗, N = N∗ and M −N is positive definite.
M ≺ N M = M∗, N = N∗ and M −N is negative definite.
M ≽ N M = M∗, N = N∗ and M −N is positive

semidefinite.
M ≼ N M = M∗, N = N∗ and M −N is negative

semidefinite.
A⊗B Kronecker product of A and B [see 87, P. 239 -287].
diag(A1, . . . , AN ) Block diagonal matrix with matrices A1, . . . , AN on

its diagonal.
col(A1, . . . , AN ) := (A⊤

1 , . . . , A
⊤
N )⊤ for matrices A1, . . . , AN with the

same number of columns.
He(M) := M +M∗.

Function Spaces

Ln2e Set of locally square integrable functions from
[0,∞) to Rn.

ℓn2e Set of locally square summable sequences with
elements in Rn.

Ln2 :=
{
x : [0,∞) → Rn

∣∣∣ ∥x∥ :=
(∫∞

0 x(t)⊤x(t) dt
)1

2 < ∞
}

.
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ℓn2 :=
{

(xk)k∈N

∣∣∣ ∥x∥ :=
(∑∞

k=1 x(t)⊤x(t)
) 1

2 < ∞
}

.
RHm×n

∞ ,RLm×n
∞ Set of real rational proper m× n matrices without

poles in the extended closed right half-plane
(imaginary axis) equipped with the maximum norm
∥G∥∞ = maxω∈R∪{∞} ∥G(iω)∥.

C(X,Y ), C1(X,Y ) Set of continous, continously differentiable functions
from X to Y with normed spaces X and Y . In this
work X is usually a closed interval and we consider
one-sided derivatives at its boundaries.

Miscellaneous

• For a normed space Y , a function f : [0,∞) → Y and t > 0 we
let f(t−) := lims↗t f(s) denote the limit from below once it is well
defined. For notational simplicity we further set f(0−) := f(0).

• Objects, that can be inferred by symmetry or are not relevant, are
indicated by the symbol “•”. For example, we frequently abbreviate
the expressions

A⊤MA and
(
A B

B⊤ D

)
as (•)⊤MA and

(
A B

(•)⊤ D

)
,

respectively.





B
Abbreviations

ARE Algebraic Riccati Equation
ARI Algebraic Riccati Inequality
DLMI Differential Linear Matrix Inequality
EDT Exact Dwell-Time
FDI Frequency Domain Inequality
IQC Integral Quadratic Constraint
KYP Kalman Yakubovich Popov
LFT Linear Fractional Transformation
LFR Linear Fractional Representation
LMI Linear Matrix Inequality
LPV Linear Parameter Varying
LTI Linear Time Invariant
MDT Minimum Dwell-Time
RDT Range Dwell-Time
SOS (Matrix) Sum-of-Squares





C
Manipulation of Linear
Matrix Inequalities

It is by now well-known in the control community that a multitude of diffi-
cult engineering optimization problems can be translated into or effectively
approximated by linear matrix inequality (LMI) problems [16, 149]. How-
ever, such a transition, i.e., the required manipulation of the underlying
problem, can be intricate and not obvious. In this chapter, we summarize
several highly useful tools for (algebraically) manipulating matrix inequal-
ities and, in particular, for generating LMIs problems.

C.1 Linear Matrix Inequality Problems and
Basics

Let us begin by providing the canonical description of LMIs and of the
corresponding LMI problems as also given, e.g., in [16, 149]. To this end,
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we employ mostly standard notation from linear algebra1 as recalled in
Appendix A.

Definition C.1 Let F : Rn → Sm be an affine map and c : Rn → R be a
linear function.

• An LMI is an expression of the form F (x) ≼ 0.

• An LMI feasibility problem amounts to testing whether there exists
some (decision) variable x ∈ Rn such that F (x) ≼ 0 holds. The LMI
F (x) ≼ 0 is said to be feasible if the result of the latter test is in the
affirmative.

• An LMI optimization problem constitutes the minimization of the
cost function c(x) over all decision variables x ∈ Rn that satisfy
F (x) ≼ 0.

LMI optimization and feasibility problems are special cases of convex
semidefinite programs (SDPs), which can be viewed as generalizations of
linear programs (LPs); both, SDPs and LPs are extensively discusses in
[17]. Thereby convexity plays a crucial role as it allows us for example
to conclude that locally optimal solutions are also globally optimal. In
particular, LMI problems can efficiently be solved if the problem size, as
determined by the dimensions n and m, is not too large [17, 16]. Some
of the commonly used numerical solvers are LMIlab [55], SeDuMi [155]
and Mosek [113], but nowadays there are many more available. As for any
other optimization problem, it is recommended to pick a solver that takes
as much properties of the underlying problem into account as possible.

In most control applications, one faces strict LMIs F (x) ≺ 0 with partic-
ularly structured maps F such as in the following well-known basic result.

1Working with LMIs requires some basic background in linear algebra. The books
[86, 87] are particularly interesting in this context and provide much content beyond
what is mandatory.
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Lemma C.2 The matrix A ∈ Rn×n is Hurwitz, i.e., all its eigenvalues
are located in the open left half-plane, if and only if there exists a matrix
X ∈ Sn satisfying X ≻ 0 and A⊤X +XA ≺ 0.

This result involves an LMI described by the map F̃ : Sn → S2n, X 7→(
−X 0

0 A⊤X+XA

)
. We recover the canonical LMI description by choosing a

basis (E1, . . . , Er) of Sn and expressing any X ∈ Sn as linear combination
of the basis elements. Indeed, for X =

∑r
j=1 xjEj , this yields

F̃ (X) = F̃

 r∑
j=1

xjEj

 = F̃ (0) +
r∑
j=1

xjF̃ (Ej) =: F (x).

Naturally, it is not very efficient to utilize the canonical LMI description
for such situations and most solvers try to exploit the available structured
descriptions.

Note that even when facing non-strict LMIs F (x) ≼ 0, it is recommended
for numerical reasons to render these inequalities strict by introducing some
small ε > 0 and to consider the LMI Fε(x) := F (x) + εI ≼ 0 instead. This
stems from the observation that a numerically determined optimizer x∗

of some cost subject to F (x) ≼ 0 might, due to numerical errors, merely
satisfy F (x∗) ≼ ε̂I for some small ε̂ > 0 depending on the employed solver’s
accuracy. Exactly the same might happen if we replace F by Fε, but in the
latter case we have F (x∗) = Fε(x∗) − εI ≼ ε̂I − εI which is fine if ε ≥ ε̂.

Finally, we will in some situations deal with complex matrix inequalities,
but these can equivalently be expressed as inequalities involving only real
matrices based on the following immediate result.

Lemma C.3 Suppose that A = X + iY ∈ Cn×n with X and Y ∈ Rn×n.
Then A ≼ 0 if and only if

(
X −Y
Y X

)
≼ 0. Analogous statements hold for

“≽”, “≺” and “≻”.
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Proof. We only show necessity as sufficiency follows from reversing the
arguments. Since A is Hermitian, we have X+iY = (X+iY )∗ = X⊤ −iY ⊤

and hence X = X⊤ as well as Y = −Y ⊤. This yields(
Y X

−X Y

)⊤

=
(

−Y −X
X −Y

)
= −

(
Y X

−X Y

)

and thus x⊤ ( Y X
−X Y

)
x = 0 for all x ∈ R2n. Then we conclude

(
u

v

)⊤(
X −Y
Y X

)(
u

v

)
=
(
u

v

)⊤((
X −Y
Y X

)
+ i

(
Y X

−X Y

))(
u

v

)

=
(
u

v

)∗ (
I iI

)∗
(X + iY )

(
I iI

)(u
v

)
= (•)∗A(u+ iv) ≤ 0

for all u, v ∈ Rn, i.e., negative definiteness of
(
X −Y
Y X

)
. •

In order to directly cover the real and complex case, we denote by the
set K either R or C.

C.2 Schur Complement
The Schur complement is an elementary and very powerful tool in many
practical and theoretical fields with a surprisingly large number of inter-
esting applications [175, 17].

Definition C.4 (Schur Complement) Let M = (A B
C D ) ∈ K(n+m)×(n+m). If

A is nonsingular then D − CA−1B is the Schur complement of A in M ,
and if D is nonsingular then A − BD−1C is the Schur complement of D
in M .
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Both Schur complements appear as a result from performing a single
block Gaussian elimination. Indeed, we have(

I 0
−CA−1 I

)(
A B

C D

)
=
(
A B

0 D − CA−1B

)

and (
I −BD−1

0 I

)(
A B

C D

)
=
(
A−BD−1C 0

C D

)
if A and D are nonsingular, respectively. Many interesting results can be
inferred from this identity, but we only need and state two of them. The
first is easily obtained by taking the inverses.

Lemma C.5 (Block Inversion) Let M = (A B
C D ) ∈ K(n+m)×(n+m). Then the

following statements hold.
(a) If A is nonsingular, then M is nonsingular if and only if D−CA−1B

is nonsingular.

(b) If A and SA := D − CA−1B are nonsingular, then we have

M−1 =
(
A−1 −A−1BS−1

A

0 S−1
A

)(
I 0

−CA−1 I

)

=
(
A−1+A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)
.

(c) If D is nonsingular, then M is nonsingular if and only if A−BD−1C

is nonsingular.
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(d) If D and SD := A−BD−1C are nonsingular, then we have

M−1 =
(

S−1
D 0

−D−1CS−1
D D−1

)(
I −BD−1

0 I

)

=
(

S−1
D −S−1

D BD−1

−D−1CS−1
D D−1+D−1CS−1

D BD−1

)
.

In the case that the matrix M =
(
A B
B∗ D

)
is Hermitian and either A or

D is nonsingular, then M can even be rendered block diagonal based on a
congruence transformation2. This leads to the following result.

Lemma C.6 Let M =
(
A B
B∗ D

)
∈ K(n+m)×(n+m) be Hermitian. Then the

following statements are equivalent.
(a) M ≻ 0.

(b) A ≻ 0 and D −B∗A−1B ≻ 0.

(c) D ≻ 0 and A−BD−1B∗ ≻ 0.
Analogous statements hold for “≻” replaced by “≺”.

The proof of Lemma C.6 is an immediate consequence of the following
result that is, e.g., found in [86] and also highly useful for our purposes.

Lemma C.7 Let A be a Hermitian matrix and T be nonsingular. Then the
matrices A and T ∗AT have exactly the same number of negative, zero and
positive eigenvalues.

A more general version of Lemma C.6 involving nonstrict inequalities
and potentially singular matrices A and D can be found in [17, Appendix
A], but the above version is sufficient for our purposes. An important conse-
quence is the following lemma which is for example exploited in the design
of H∞-controllers.

2Given a Hermitian matrix A and some nonsingular matrix T , then the map A 7→ T ∗AT
is called a congruence transformation.
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Lemma C.8 (Linearization Lemma) Let V , S, T be real matrices of appro-
priate dimensions and let Q, U , W be affine real matrix-valued functions.
Then testing the existence of some x such that

U(x) ≻ 0 and
(

V

W (x)

)⊤(
Q(x) S

S⊤ TU(x)−1T⊤

)(
V

W (x)

)
≺ 0

is an LMI feasibility problem.

Proof. The second inequality reads as

V ⊤Q(x)V + V ⊤SW (x) +W (x)⊤S⊤V +W (x)⊤TU(x)−1T⊤W (x) ≺ 0.

By Lemma C.6, the first and second inequality are equivalent to(
V ⊤Q(x)V + V ⊤SW (x) +W (x)⊤S⊤V W (x)⊤T

T⊤W (x) −U(x)

)
≺ 0.

It remains to observe that the term on the left hand side is affine in x. •

C.3 Dualization Lemma
The so-called dualization lemma plays a key role in many controller design
approaches.

Lemma C.9 (Dualization Lemma) Let A ∈ K(p+q)×q, B ∈ K(p+q)×p, P =
P ∗ ∈K(p+q)×(p+q) and suppose that (A,B) and P are nonsingular. Further,
let U and V be basis matrices of ker(A∗) and ker(B∗), respectively. Then
the inequalities A∗PA ≺ 0 and B∗PB ≽ 0 are equivalent to U∗P−1U ≻ 0
and V ∗P−1V ≼ 0.

A proof of a more general version is provided, e.g, in [149]. The proof
relies on a corollary of the so-called min-max theorem of Courant and
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Fischer as found, e.g., in [86, Theorem 4.2.11]. Since this corollary is very
useful for our purposes, it is repeated here.

Corollary C.10 Let P be a Hermitian matrix and let U be a subspace of
dimension k satisfying

x∗Px > 0 for all x ∈ U \ {0}.

Then P has at least k positive eigenvalues. Analogous statements hold for
the inequalities “≥”, “≤” and “<”.

The dualization lemma is most typically applied in the case that A =(
Ip
W

)
and B =

( 0
Iq

)
for some matrix W ∈ Kq×p. Then Lemma C.9 states

that (
Ip

W

)∗

P

(
Ip

W

)
≺ 0 and

(
0
Iq

)∗

P

(
0
Iq

)
≽ 0 (C.1)

are equivalent to(
−W ∗

Iq

)∗

P−1

(
−W ∗

Iq

)
≻ 0 and

(
Ip

0

)∗

P−1

(
Ip

0

)
≼ 0

for any nonsingular Hermitian matrix P . Note that if both inequalities in
(C.1) are strict, Corollary C.10 allows us to conclude that P has exactly p
positive and q negative eigenvalues, which implies that P is nonsingular.

There are some variants of the dualization lemma that we do not need.
We just mention the so-called partial dualization which is used, e.g., in
[143] to show that robust controller synthesis is convex for systems without
control channel uncertainties.
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C.4 Elimination Lemma
Very often one wishes to reduce the number of decision variables appearing
in LMI problems or aims to eliminate variables that enter the appearing
matrix inequalities in a non-convex fashion. This is possible based on the
following elimination lemma which is a very powerful tool to turn several
apparently non-convex controller design problems into convex LMI feasi-
bility problems.

Lemma C.11 (Elimination Lemma) Let U ∈ Kr×q, V ∈ Ks×p, W ∈ Kq×p,
P ∈ K(p+q)×(p+q) and suppose that P is nonsingular and Hermitian with
exactly p negative eigenvalues. Further, let U⊥ and V⊥ be basis matrices
of ker(U) and ker(V ), respectively. Then there exists a matrix Z ∈ Kr×s

satisfying (
Ip

U∗ZV +W

)∗

P

(
Ip

U∗ZV +W

)
≺ 0 (C.2)

if and only if

V ∗
⊥

(
Ip

W

)∗

P

(
Ip

W

)
V⊥ ≺ 0 and U∗

⊥

(
−W ∗

Iq

)∗

P−1

(
−W ∗

Iq

)
U⊥ ≻ 0.

(C.3a,b)

Note that we make use of the standard convention that U⊥ is an empty
matrix if ker(U) = {0}. In this case there exists a matrix Z satisfying (C.2)
if and only if (C.3a) holds. The case that ker(V ) = {0} holds is treated
analogously.

We give here a full proof of the elimination lemma since it provides a
scheme for constructing a solution Z ∈ Kr×s if it exists. The original proof
is found in [72].

Proof. “Only if”: Multiplying (C.2) with V⊥ from the right and its con-
jugate transpose from the left leads immediately to (C.3a). By (C.2) and
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since P is nonsingular with exactly p negative eigenvalues, we also find a
matrix B such that (A,B) is nonsingular for A :=

(
Ip

U∗ZV+W

)
and such

that B∗PB ≽ 0. Applying the dualization lemma C.9 yields then(
−(U∗ZV +W )∗

Iq

)∗

P−1

(
−(U∗ZV +W )∗

Iq

)
≻ 0

and hence (C.3b) by multiplying U⊥ from the right and its conjugate trans-
pose from the left.

“If”: By the singular value decomposition, we can find unitary matrices
Wu, Wv and nonsingular matrices Tu, Tv such that

U = Tu

(
Iq1 0
0 0•×q2

)
︸ ︷︷ ︸

=:Û

W ∗
u and V = Tv

(
Ip1 0
0 0•×p2

)
︸ ︷︷ ︸

=:V̂

W ∗
v .

With this decomposition we can express U⊥ and V⊥ more concretely as
Wu

( 0
Iq2

)
Xu and Wv

( 0
Ip2

)
Xv, respectively, for some nonsingular matrices

Xu and Xv. Let us now transform the remaining matrices accordingly as
P̂ := (•)∗Pdiag(Wv,Wu), Ŵ = W ∗

uWWv and Ẑ := T ∗
uZTv with a to-be-

determined matrix Z. Further, we define the matrices

R :=

(Ip
Ŵ

)(
Ip1

0

)
,

 0p×q1

Iq1

0q2×q1


, S :=

(
Ip

Ŵ

)(
0
Ip2

)
and T :=

(
−Ŵ ∗

Iq

)(
0
Iq2

)

that are elements from K(p+q)×(p1+q1), K(p+q)×p2 and K(p+q)×q2 , respec-
tively. Then we have by elementary computations(

Ip

Û∗ẐV̂ + Ŵ

)
=
(
R

(
Ip1

Ẑ11

)
S

)
for Ẑ11 :=

(
Iq1

0

)∗

Ẑ

(
Ip1

0

)
,
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and (C.3) is equivalent to

S∗P̂S ≺ 0 and T ∗P̂−1T ≻ 0.

Moreover, (C.2) holds if and only if

0 ≻ (•)∗P̂

(
Ip

Û∗ẐV̂ + Ŵ

)
=

(•)∗P̂R
(
Ip1
Ẑ11

)
(•)∗

S∗P̂R
(
Ip1
Ẑ11

)
S∗P̂S

 .

By S∗P̂S ≺ 0 and the Schur complement, this inequality is equivalent to(
Ip1

Ẑ11

)∗ (
R∗P̂R−R∗P̂S(S∗P̂S)−1S∗P̂R

)(Ip1

Ẑ11

)
≺ 0. (∗1)

Let P̃ now be the inner matrix in (∗1) and let in−(M) denote the number
of negative eigenvalues of any Hermitian matrix M3.

Next we show that in−(P̃ ) = p1. If this holds, there exists
(
Z1
Z2

)
∈ K•×p1

with (•)∗P̃
(
Z1
Z2

)
≺ 0. We can for example choose

(
Z1
Z2

)
= (v1, . . . , vk1)

with v1, . . . , vk1 being orthonormal eigenvectors corresponding to the p1

negative eigenvalues of P̃ . Via a small perturbation of Z1 if necessary, we
can ensure that Z1 is nonsingular and that (•)∗P̃

(
Z1
Z2

)
≺ 0 remains valid.

Then (∗1) holds for Ẑ11 = Z2Z
−1
1 and Z := T−∗

u

(
Ẑ11 •

• •
)
T−1
v is a solution

of (C.2) for any choice of the • matrices.
Indeed, applying the Schur complement yields, for Q := (R,S),

in−

(
Q∗P̂Q

)
= in−

(
R∗P̂R R∗P̂S

S∗P̂R S∗P̂S

)
= in−(P̃ ) + in−(S∗P̂S).

3For a Hermitian matrix M , the ordered triple in(M) := (in+(M), in0(M), in−(M))
where in+(M), in0(M) and in−(M) denote the number of positive, zero and negative
eigenvalues counting multiplicity, respectively, is referred to as inertia of M [86, page
221]. We need the following two properties:
If M is Hermitian and T is nonsingular, then in−(T ∗MT ) = in−(M).
If M is Hermitian and nonsingular, then in−(M) = in−(M−1).
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By S∗PS ≺ 0 and S∗PS ∈ Kp2×p2 , we get

in−(P̃ ) = in−

(
Q∗P̂Q

)
− p2.

Next, one can show, e.g., via a permutation and a block Gaussian elimina-
tion, that the matrix (T,Q) is nonsingular. By Gram-Schmidt, we can then
find an unitary matrix (T̂ , Q̂) with im(T̂ ) = im(T ) and im(Q̂) = im(Q).
Let us define

(
A B
B∗ D

)
:= (•)∗P̂−1(T̂ , Q̂) and note that A = T̂ ∗P̂−1T̂ is

positive definite by the choice of T̂ and by T ∗P̂−1T ≻ 0. Then the Schur
complement and the properties of in−(·) imply

in−(P̂−1) = in−(A) + in−(D −B∗AB) = in−
(
(D −B∗AB)−1).

Next, we can apply the block-inversion formula as A is nonsingular:(
A B

B∗ D

)−1

= (•)∗

(
A 0
0 D −B∗A−1B

)−1(
I 0

−B∗A−1 I

)
.

Since (T̂ , Q̂) is unitary, this leads to

Q̂∗P̂ Q̂ = (•)∗P̂
(
T̂ Q̂

)(0
I

)
= (•)∗

(
A B

B∗ D

)−1(
0
I

)
= (D −B∗AB)−1

and, thus,

in−(P̂ ) = in−(P̂−1) = in−
(
(D −B∗AB)−1) = in−(Q̂∗P̂ Q̂) = in−(Q∗P̂Q)

by the choice of Q̂. Finally, we can conclude

in−(P̃ ) = in−(Q∗P̂Q) − p2 = in−(P̂ ) − p2 = in−(P) − p2 = p− p2 = p1

as claimed. •
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Unfortunately, it is in general not possible to enforce structural con-
straints on the matrix Z in (C.2). This prevents the application of the
elimination lemma, e.g., in multi-objective control problems. There are few
exceptions such as the one in [144] involving a variant with a block trian-
gular matrix Z.

By considering the special case P =
(
Q I
I 0
)

and W = 0 for some Her-
mitian matrix Q, we recover a more common version of the elimination
lemma which we refer to as projection lemma in order to distinguish both
results. Another constructive proof of this result can also be found in [54].

Lemma C.12 (Projection Lemma) Let Q = Q∗ ∈ Kq×q, U ∈ Kr×q and
V ∈ Ks×q be given. Further, let U⊥ and V⊥ be basis matrices of ker(U)
and ker(V ), respectively. Then there exists a matrix Z ∈ Kr×s satisfying

Q+ U∗ZV + V ∗Z∗U ≺ 0

if and only if
U∗

⊥QU⊥ ≺ 0 and V ∗
⊥QV⊥ ≺ 0.

The elimination and projection lemmas can not only be used to remove
variables, but also to artificially add new variables. Such an application can
be beneficial if one has to constrain some of the variables, e.g., in order to
ensure convexity. Indeed, it is typically possible and much less conservative
to constrain the artificially added variables instead of the original ones. The
whole book [46] illustrates and elaborates on this idea.

Note that for V = I, the projection lemma can be shown to be equivalent
to a variant of the so-called Finslers lemma [52]; the proof involves another
Schur complement argument. Moreover, note that there are some robust
versions of the projection lemma provided in [38] involving parameter de-
pendent matrices Q, U and/or V and a parameter independent matrix Z.
Unfortunately, they are not very practical for our purposes.

Instead, we will make use of the following nonstandard variant that in-
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volves continuous matrix-valued functions instead of matrices.

Lemma C.13 (Projection Lemma) Let Q∈C([a, b],Sq), U ∈C([a, b],Rr×q),
V ∈ C([a, b],Rs×q) and suppose that there exists a pointwise nonsingular
continuous map S = (S1, S2, S3, S4) with the property that, for all τ ∈ [a, b],

S3(τ), (S1(τ), S3(τ)) and (S2(τ), S3(τ)) are basis matrices of

ker(U(τ)) ∩ ker(V (τ)), ker(U(τ)) and ker(V (τ)), (C.4)

respectively. Then there exists a function Z ∈ C([a, b],Rr×s) satisfying

Q+ U⊤ZV + V ⊤Z⊤U ≺ 0 on [a, b] (C.5)

if and only if

U⊤
⊥QU⊥ ≺ 0 and V ⊤

⊥ QV⊥ ≺ 0 hold on [a, b]; (C.6)

here, U⊥ = (S1, S3) and V⊥ = (S2, S3).

Admittedly, the technical condition (C.4) is difficult to verify for gen-
eral maps U and V , but it is exactly what we need for the construction
of a continuous function Z satisfying (C.5). Fortunately, in most of our
applications we are able to construct a map S satisfying (C.4) due to the
particular structure of the emerging maps U and V . In particular, note
that if U and V are constant functions, then it is a standard linear algebra
problem to construct a suitable matrix S.

In order to prove Lemma C.13, we carefully modify the one of the stan-
dard projection lemma C.12 as given in [54].

Proof. We only have to show “if” since “only if” follows immediately. Note
at first that by employing the standard projection lemma C.12 in a point-
wise fashion and without additional care, we can construct a function Z

satisfying (C.5), but this functions might be discontinuous. An application
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of the standard projection lemma C.12 together with the continuous se-
lection theorem from [110] or with the findings from [14] guarantees the
existence of a continuous map Z satisfying (C.5), but the latter do not
provide means to construct this map. Hence, we need some extra work for
its construction.

To this end, observe that a pointwise congruence transformation of (C.5)
with S leads to the equivalent LMI

S⊤QS + (US)⊤Z(V S) + (V S)⊤Z⊤(US) ≺ 0 on [a, b]. (∗1)

Here, US and V S have the structure (0, U2, 0, U4) and (V1, 0, 0, V4), respec-
tively, where (U2, U4) as well as (V1, V4) have pointwise full column rank.
In particular, we have

(US)⊤Z(V S) =


0
U⊤

2

0
U⊤

4

Z
(
V1 0 0 V4

)
=


0 0 0 0
X21 0 0 X24

0 0 0 0
X41 0 0 X44


for X :=

(
X21 X24
X41 X44

)
:=
(
U2 U4

)⊤
Z
(
V1 V4

)
. With P := S⊤QS parti-

tioned accordingly, (∗1) reads then as
P11 P12 +X⊤

21 P13 P14 +X⊤
41

P21 +X21 P22 P23 P24 +X24

P31 P32 P33 P34

P41 +X41 P42 +X⊤
24 P43 P44 +X44 +X⊤

44

 ≺ 0 on [a, b]. (∗2)

Next, note that the hypothesis (C.6) read in terms of P as(
P11 P13

P31 P33

)
≺ 0 and

(
P22 P23

P32 P33

)
≺ 0 on [a, b].
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Thus we infer

P33 ≺ 0, P11 − P13P
−1
33 P31 ≺ 0 and P22 − P23P

−1
33 P32 ≺ 0 on [a, b]

by the Schur complement C.6. Let us now choose the continuous function

X21 : τ 7→ P32(τ)⊤P33(τ)−1P31(τ) − P21(τ)

and observe that this choice renders the marked 3×3 block in (∗2) negative
definite. Indeed, by the Schur complement this is equivalent to

0 ≻

(
P11 (•)⊤

P21 +X21 P22

)
−

(
P13

P23

)
P−1

33

(
P31 P32

)
=
(
P11 − P13P

−1
33 P31 0

0 P22 − P23P
−1
33 P32

)

on [a, b] which is true by assumption. Next, we note that (∗2) is satisfied
for the constant matrices

X41 := 0, X24 := 0 and X44 := −αI

if we choose α > 0 sufficiently large. Indeed, this is a consequence of the
Schur complement, continuity of all involved functions and compactness
of [a, b]. It remains to recover a continuous map Z from the constructed
continuous map X. This is achieved by recalling that the (τ -dependent)
matrix equation

(
U2 U4

)⊤
Z
(
V1 V4

)
= X can be expressed with the

vectorization of matrices and the Kronecker product as((
V1 V4

)⊤
⊗
(
U2 U4

)⊤
)

vec(Z) = vec(X) on [a, b].

Let us denote the matrix-valued map on the left hand side by A and recall
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that A(τ) has full row rank for all τ ∈ [a, b] by construction. This permits us
to construct the desired continuous matrix-valued function Z by collecting
its entries from the continuous function

vec(Z)(τ) := A(τ)⊤(A(τ)A(τ)⊤)−1vec(X(τ)) for τ ∈ [a, b]

and finishes the proof. •

C.5 Matrix Extensions
After an application of the elimination lemma to remove decision variables,
we often observe that several sub-blocks of the matrices P and P−1 in
(C.3) are canceled. Since one usually aims to reconstruct the eliminated
variables later on, it is required to extend these sub-blocks of P and P−1

to the original matrix P that satisfies (C.2).
The most well-known result on matrix extensions in the control literature

is the following because it plays an important role, e.g., in the design of
dynamic output-feedback H∞-controllers. It is also not difficult to proof
by applying the Schur complement as well as the block inversion formula.

Lemma C.14 Let X and Y be matrices satisfying (X I
I Y ) ≻ 0 and choose

nonsingular matrices U and V satisfying I = Y X + V U∗. Note that a
possible choice is V = Y and U = Y −1 −X. Then the matrix

X :=
(
X U

U∗ −V −1Y U

)

satisfies X ≻ 0, X = (X •
• • ) and X −1 = ( Y •

• • ).

In a similar fashion one obtains the following result.
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Lemma C.15 Let X and Y be matrices with X +X∗ ≻ 0 and Y +Y ∗ ≻ 0.
Then the nonsingular matrix

X :=
(

X X − Y −1

X + Y −∗ X + Y −∗

)

satisfies X + X ∗ ≻ 0, X = (X •
• • ) and X −1 = ( Y •

• • ).

More challenging is the follow result that is employed, e.g., for the design
of gain-scheduling controllers and when working with so-called full-block
multipliers.

Lemma C.16 Let P =
(
Q S
S∗ R

)
and P̃ =

(
Q̃ S̃

S̃∗ R

)
be matrices in Hp+q with

(
D

Iq

)∗

P

(
D

Iq

)
≺ 0 and

(
Ip

−D∗

)∗

P̃

(
Ip

−D∗

)
≻ 0 (C.7)

for some matrix D ∈ Kp×q and such that P̃ as well as P − P̃−1 are non-
singular. Moreover, let ∆ be a subset of Kq×p such that additionally(
Ip

∆

)∗

P

(
Ip

∆

)
≻ 0 and

(
−∆∗

Iq

)∗

P̃

(
−∆∗

Iq

)
≺ 0 hold for all ∆ ∈ ∆.

(C.8)
Then there exist p2, q2 ∈ N with p2 + q2 = p+ q, a nonsingular matrix P ∈
H(p+p2)+(q+q2) with exactly q + q2 negative eigenvalues and a continuous
function ∆c : ∆ → Kq2×p2 such that

P =


Q • S •
• • • •
S∗ • R •
• • • •

 , P−1 =


Q̃ • S̃ •
• • • •
S̃∗ • R̃ •
• • • •

 and (•)∗P


Ip 0
0 Ip2

∆ 0
0 ∆c(∆)

 ≻ 0

(C.9)
holds for all ∆ ∈ ∆.
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This result is an extension of the one found in [139] since we neither
require 0 ∈ ∆ nor that (C.7) is satisfied for D = 0. The result from [140]
is even more general since it does not require (C.7) at all, but the obtained
inequality in (C.9) is structurally different in this case.

Proof. For some fixed ∆0 ∈ ∆, we define Z :=
(
D
Iq

)
, Z̃ :=

(
Ip
∆0

)
as well as

N :=(P−P̃−1)−1, M :=N−Z(Z∗PZ)−1Z∗ and M̃ :=N−Z̃(Z̃∗PZ̃)−1Z̃∗.

Moreover, let p2 = in−(N) and q2 = in+(N) denote the number of negative
and positive eigenvalues of N , respectively. Since N is nonsingular with
p+ q columns, these numbers indeed sum up to p+ q. Next, one can pick a
nonsingular matrix T = (T1, T2) ∈ K(p+q)×(p2+q2) such that the inequalities
T ∗

2MT2 ≺ 0 and T ∗
1 M̃T1 ≻ 0 hold. Indeed, we have

in−(M) + in−(Z∗PZ) = in−

(
N Z

Z∗ Z∗PZ

)
= in−(N) + in−(Z∗P̃−1Z)

by the definition of N and by the Schur complement C.6. By (C.7) and
the dualization lemma C.9 we have in−(Z∗PZ) = in−(Z∗P̃−1Z) and thus
in−(M) = in−(N) = p2 which implies the existence of a matrix T2 with
the claimed properties. Analogously, we find a suitable matrix T1 and can
ensure nonsingularity of T = (T1, T2) with a small perturbation if necessary.

Then we define the matrix

P̃ :=
(
P T

T ∗ T ∗NT

)

which satisfies

P̃−1 =
(
P̃ •
• •

)
, (•)⊤P̃

(
Z 0
0 Z2

)
≺ 0 and (•)⊤P̃

(
Z̃ 0
0 Z̃2

)
≻ 0
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for Z2 =
( 0
Iq2

)
and Z̃2 =

(
Ip2
0

)
by another Schur complement, (C.7), (C.8),

T ∗
2MT2 ≺ 0 and by T ∗

1 M̃T1 ≻ 0. Finally, a permutation of P̃ results in a
matrix P with the desired properties.

Since P satisfies the requirements for pointwise applying the elimina-
tion lemma C.11, we can find a function ∆c : ∆ → Kq2×p2 satisfying the
inequality in (C.9) for all ∆ ∈ ∆. However, this function might be not
continuous. Instead, we construct a continuous function ∆c as follows. Let
∆ ∈ ∆ be fixed. By construction and by the elimination lemma we have

(•)∗P

(
D
I

)
≺ 0 and (•)∗P

(
I

∆e

)
≻ 0

for D = diag(D, 0) and ∆e = diag(∆, ∆̃c) for some ∆̃c ∈ Kq2×p2 . Let us
now partition the transformed matrix P̂ := (•)∗P ( I D

0 I ) =:
( Q S

S∗ R
)

and
observe that we have R ≺ 0 as well as

0 ≺ (•)∗P

(
I

∆e

)
= (•)∗P̂

(
I −D
0 I

)(
I

∆e

)
= (•)∗P̂

(
I − D∆e

∆e

)
.

Since I − D∆e = diag(I − D∆, I) is nonsingular, the latter inequality is
equivalent to

0 ≺ (•)∗P̂

(
I

∆e(I − D∆e)−1

)
= (•)∗P̂

(
I

∆̃e

)
= Q + S∆̃e+ (•)∗ + ∆̃∗

eR∆̃e

with ∆̃e := diag(∆̃, ∆̃c) and ∆̃ := ∆(I − D∆)−1. It remains to note that
the latter inequality is equivalent to(

Q − SR−1S∗ R−1S∗ + ∆̃e

(•)∗ −R−1

)
≻ 0
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by the Schur complement. By introducing the partitions(
U11 U12

U21 U22

)
:=Q − SR−1S∗,

(
V11 V12

V21 V22

)
:=−R−1,

(
W11 W12

W21 W22

)
:=R−1S∗,

a permutation as well as another Schur complement, we infer that the latter
inequality is satisfied for

∆c(∆) := ∆̃c := −W22 +
(
W21 V21

)( U11 (•)∗

W11 + ∆̃ V11

)−1(
U12 W ∗

21

W12 V12

)
.

It remains to note that the function ∆c obtained in this fashion is contin-
uous and even smooth on ∆. •

C.6 Separation, LFRs and S-Procedure
A fundamental algebraic problem in robust control that is related to the
well-posedness of feedback interconnections of systems with uncertain ob-
jects is to decide whether

I −D∆ is nonsingular for all ∆ ∈ ∆.

Here, D is a matrix in Kp×q and ∆ is a subset of Kq×p that is usually
referred to as uncertainty set. For the above problem it is typically rather
difficult to come to a decision by numeric means and essentially impossible
if ∆ is a more general object than a matrix; e.g., we might then have to
decide whether the map x 7→ x − D∆(x) is bijective for all ∆ in a set of
functions ∆.
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image (DI )

⋃
∆∈∆ image ( I

∆ )

{x : x∗Px ≥ 0}

{x : x∗Px < 0}

Figure C.1: Separation in terms of the positive and strictly negative cone
of a Hermitian matrix P .

A key observation that leads to implementable criteria and nicely gen-
eralizes to more difficult settings is that, for any fixed ∆ ∈ ∆, we have

I−D∆ is nonsingular if and only if image
(
D

I

)
∩image

(
I

∆

)
= {0}.

For nonsingularity of I −D∆, we hence need to make sure that the graph
of ∆ and the inverse graph of D are separated, i.e., they only intersect
at the origin. Geometrically, we can guarantee such a separation if these
graphs are located in the positive cone {x ∈ Kp+q : x∗Px ≥ 0} and
strictly negative cone {x ∈ Kp+q : x∗Px < 0} of some Hermitian matrix
P , respectively. This is illustrated in Fig. C.1. The involved matrix P is
usually referred to as multiplier and this observation leads to the following
simple, but instrumental result.
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Lemma C.17 Let D ∈ Kp×q and ∆ ⊂ Kq×p. Suppose that there exists a
matrix P ∈ Hp+q with(

D

I

)∗

P

(
D

I

)
≺ 0 and

(
I

∆

)∗

P

(
I

∆

)
≽ 0 for all ∆ ∈ ∆.

(C.10)
Then I − D∆ is nonsingular for all ∆ ∈ ∆. The converse holds if ∆ is
compact.

Proof. Sufficiency is obtained with elementary computations. For the con-
verse one can choose λ1, λ2 > 0 such that (I −D∆)∗(I −D∆) ≽ λ1I and
∆∗∆ ≼ λ2I hold for all ∆ ∈ ∆ by compactness and continuity. Then a
suitable multiplier is given by P :=

( 0 0
0 −λ1/λ2I

)
+
(

I
−D∗

)
( I −D ). •

Note that the condition (C.10) is still numerically problematic as it in-
volves infinitely many LMIs. In order to obtain numerical tractable criteria,
one can employ so called multiplier sets.

Definition C.18 (Multiplier Set) The set P(∆) ⊂ Hp+q is called multiplier
set for the set ∆ if it admits an LMI representation, i.e., there exist affine
functions F and G such that P(∆) = {F (ν) | ν ∈ R• and G(ν) ≻ 0},
and if(

I

∆

)∗

P

(
I

∆

)
≽ 0 holds for all ∆ ∈ ∆ and all P ∈ P(∆).

(C.11)

Given a fixed multiplier set P(∆), we can immediately conclude that

I −D∆ is nonsingular for all ∆ ∈ ∆

if there exists some P ∈ P(∆) satisfying (DI )∗
P (DI ) ≺ 0.

Due to the LMI representation of P(∆), finding a suitable multiplier P
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constitutes a numerically tractable problem as desired. The price to pay
for this tractability is that the resulting criterion is in general no longer
necessary. To counteract the introduced conservatism while maintaining
computational efficiency, one should aim for multiplier sets that describe
the set ∆ as good as and as simple as possible in terms of quadratic inequal-
ities. As a negative example consider the set P(∆) := {P ∈ Hp+q : P ≻ 0}
which always satisfies (C.11), but we will never find some P ∈ P(∆) sat-
isfying (DI )∗

P (DI ) ≺ 0.
Next we give some examples of concrete sets ∆ and common choices

for corresponding multiplier sets as well as some helpful insights for the
construction of multiplier sets. Some additional examples can be found,
e.g., in [149] and a detailed summary in the context of integral quadratic
constraints [109] is available in [160].

Remark C.19 (Examples and Properties of Multiplier Sets)

• Suppose that ∆ = {∆ ∈ Kq×p : ∥∆∥2 ≤ r} for some r > 0.
Then the following set, that involves so-called D-scalings, is a suitable
multiplier set for ∆:

P(∆) :=
{(

r2dI 0
0 −dI

) ∣∣∣∣∣ d > 0
}
.

Indeed, due to ∥∆∥2 ≤ r ⇔ ∆∗∆ ≼ r2I, we can conclude that
(•)∗d

(
r2I 0

0 −I
) (

I
∆
)

= d(r2I − ∆∗∆) ≽ 0 holds for all ∆ ∈ ∆ and all
d > 0. Analogously, the set

P(∆) :=
{(

r2D 0
0 −D

) ∣∣∣∣∣ D ≻ 0
}

is a suitable multiplier set for ∆ = {δI : |δ| ≤ r}.

• Suppose that ∆ is the convex hull of some generators ∆1, . . . ,∆N ∈
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Kq×p, i.e., ∆ = co{∆1, . . . ,∆N}. Then

P(∆) :=
{
P = P ∗

∣∣∣∣∣ (•)∗P ( 0
I ) ≺ 0 and (•)∗P

(
I

∆i

)
≻ 0

for all i = 1, . . . , N

}

is a suitable multiplier set for ∆. Indeed, ( 0
I )∗

P ( 0
I ) ≺ 0 implies

that the mapping M : ∆ 7→
(
I
∆
)∗
P
(
I
∆
)

is concave. Then convexity
of ∆ and its concrete description in terms of the generators allows
us to conclude that M(∆) ≻ 0 holds for all ∆ ∈ ∆ if and only if
M(∆i) ≻ 0 for all i = 1, . . . , N .

• Suppose that ∆ = {δI : δ ∈ [a, b]} for some a < b. Then it is
possible to employ the above multiplier set for ∆ as well or the
commonly used alternative involving the so-called D-G scalings

P(∆) :=
{(

−abD b+a
2 D +G⊤

b+a
2 D +G −D

) ∣∣∣∣∣ D ≻ 0 and G+G⊤ = 0
}

=


(
bI −I

−aI I

)⊤(
0 H⊤

H 0

)(
bI −I

−aI I

) ∣∣∣∣∣∣ H +H⊤ ≻ 0

 .

Indeed, observe that (•)∗P
(
I
δI

)
= δ(G+G⊤) + (b− δ)(δ− a)D ≽ 0

holds for any δ ∈ [a, b] and any P ∈ P(∆).

• Suppose that P1(∆) and P2(∆) are two multiplier sets correspond-
ing to ∆. Then

P(∆) :=
{
λ1P1 + λ2P2

∣∣∣∣∣ λ1 ≥ 0, λ2 ≥ 0, P1 ∈ P1(∆)
and P2 ∈ P2(∆)

}

is another and even larger set of suitable multipliers for ∆.

• Suppose that ∆ := {diag(∆1,∆2) : ∆1 ∈ ∆1, ∆2 ∈ ∆2} and that
P(∆1) and P(∆2) are multiplier sets corresponding to ∆1 and ∆2,
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Figure C.2: Some uncertainty set ∆ ⊂ R2 in blue and in gray the (ba-
sic) supersets {(δ1, δ2) | δ2

1 + δ2
2 ≤ 3} (left), {(δ1, δ2) | δ1 ∈

[−3, 2.2] and δ2 ∈ [−2.1, 2]} (middle) and co{∆1,∆2,∆3,∆4}
(right).

respectively. Then

P(∆) :=




Q1 0 S1 0
0 Q2 0 S2

S∗
1 0 R1 0

0 S∗
2 0 R2


∣∣∣∣∣∣∣∣∣∣

(
Q1 S1

S∗
1 R1

)
∈ P(∆1) and(

Q2 S2

S∗
2 R2

)
∈ P(∆2)


is a suitable multiplier set for ∆. However, note that this set does
not take any interaction between the components ∆1 and ∆2 into
account.

• Suppose that ∆1 ⊆ ∆2 and that P(∆2) is a multiplier set corre-
sponding to ∆2. Then P(∆2) is also a multiplier set corresponding
to ∆1. In particular, even complex uncertainty sets can be captured
by multiplier sets corresponding to rather basic uncertainty sets as
long as the latter are supersets. This is also illustrated in Fig. C.2.
However, such supersets are not always easy to detect in practice.

Next we introduce the so-called linear fractional representation frame-
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G

∆(δ(t))

z w

Figure C.3: Block diagram of the feedback interconnection (C.14).

work which is a powerful tool to systematically represent various types of
uncertainties in dynamical systems and which permits a dedicated robust-
ness analysis of the resulting models.

Definition C.20 (Linear Fractional Representation (LFR)) The map F : δ ⊂
Rr → Rm×n admits a linear fractional representation if there exist matrices
A,B,C,D and a linear function ∆ : δ → Rq×p such that

• I −D∆(δ) is nonsingular for all δ ∈ δ and

• F (δ) = A+B∆(δ)(I −D∆(δ))−1C =: (A B
C D ) ⋆∆(δ) for all δ ∈ δ.

The operation ⋆ is often called lower linear fractional transformation or
star-product.

A detailed discussion on the application of LFRs in the field of control
can be found, e.g., in [149, 44, 178]. It is shown there, for example, that
the sum, the product and the inverse of functions that admit an LFR does
also admit an LFR. Moreover, we have the following result.

Theorem C.21 Let F : δ ⊂ Rr → Rm×n be rational without a pole at zero.
Then F admits a linear fractional representation and we can construct
matrices A,B,C,D such that the corresponding linear function is given by
∆ : δ → Rq×q, δ 7→ diag(δ1Iν1 , . . . , δrIνr ).

Let us at first demonstrate that LFRs fit perfectly well to the ideas of
separation presented so far. To this end, let us consider, for some initial
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condition x(0) ∈ Rn, the autonomous system

ẋ(t) = F (δ(t))x(t) (C.12)

where δ is an unknown piecewise continuous function with values in some
compact set δ ⊂ Rr. It is not difficult to show that the system (C.12) is
robustly stable, i.e., limt→∞ x(t) = 0 holds for all δ : [0,∞) → δ and all
initial conditions x(0) ∈ Rn, if there exists some matrix X ≻ 0 satisfying

F (δ)⊤X +XF (δ) =
(

I

F (δ)

)⊤(
0 X

X 0

)(
I

F (δ)

)
≺ 0 for all δ ∈ δ.

(C.13)
Searching a suitable matrix X does not constitute a practical robust sta-
bility test as infinitely many LMIs are involved and since F is a rational
function. However, if the function F does admit an LFR, then we can
express the system (C.12) equivalently as(

ẋ(t)
z(t)

)
=
(
A B

C D

)(
x(t)
w(t)

)
, w(t) = ∆(δ(t))z(t) (C.14a,b)

by introducing two additional interconnection signals w and z. In particu-
lar, by utilizing the LFR of F , we are able to express the uncertain system
(C.12) as feedback interconnection of a known linear system (C.14a) and
an unknown block (C.14b). This is illustrated in Fig. C.3 in terms of a
block diagram where we identify the linear system (C.14a) with its trans-
fer function G(s) := C(sI − A)−1B + D. In this sense LFRs permit the
separation of the unknown system components from the known ones and
both components are only coupled through the interconnection signals w
and z. This leads to the following instrumental result which is taken from
[140] and involves an application of the so-called full block S-procedure
[138].
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Lemma C.22 (Concrete Full Block S-Procedure) The LFR of F is well-
posed, i.e., the matrix I − D∆(δ) is nonsingular for all δ ∈ δ, and the
robust analysis LMI (C.13) holds if and only if there exists a symmetric
matrix P satisfying

(•)⊤

(
0 X

X 0

)(
I 0
A B

)
+ (•)⊤P

(
C D

0 I

)
≺ 0 and (•)⊤P

(
I

∆(δ)

)
≽ 0

(C.15)
for all δ ∈ δ.

Similarly as before the LMI condition (C.15) is still numerically prob-
lematic, but one obtains tractable criteria by employing suitable multiplier
sets as defined earlier and corresponding to the set {∆(δ) : δ ∈ δ}.

Proof. Necessity: See [138] or [140].
Sufficiency: The right lower block of the first LMI in (C.15) implies the
inequality (DI )⊤

P (DI ) ≺ 0. By Lemma C.17 we can then conclude well-
posedness of the LFR.

Next, we fix some δ ∈ δ and abbreviate H := (I−D∆(δ))−1C. Then we
observe that(

I 0
A B

)(
I

H

)
=
(

I

F (δ)

)
and

(
C D

0 I

)(
I

H

)
=
(

∆(δ)
I

)
H

hold. Consequently, we infer from (C.15)

(•)⊤

(
0 X

X 0

)(
I

F (δ)

)
= (•)⊤

(
0 X

X 0

)(
I 0
A B

)(
I

H

)

≺ −(•)⊤P

(
C D

0 I

)(
I

H

)
= −(•)⊤P

(
∆(δ)
I

)
H ≼ 0.

This yields the claim since δ ∈ δ was arbitrary. •
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A major benefit of the formulation in (C.14) as depicted in Fig. C.3 over
the one in (C.12) is that the former allows us to replace the uncertain
time-varying matrix in (C.14b) with essentially any uncertain operator
or (troublesome) object. In particular, in structured singular value theory
[44, 178, 141] one studies the properties of feedback interconnections of
linear systems as in (C.14a) with w = ∆z and for an uncertain ∆ with a
block diagonal structure

∆(s) = diag
(
r1I, . . . , rnrI, δ1(s)I, . . . , δncI,∆1(s), . . . ,∆nf (s)

)
;

here, the identity matrices can vary in size and ri ∈ R, δi ∈ RH1×1
∞ as well

as ∆i ∈ RH•×•
∞ ; here, RHm×n

∞ denotes the set of real rational proper m×n

matrices without poles in the extended closed right half-plane. It is shown
that the resulting interconnections allow for efficiently modeling various
types of uncertainties in dynamical systems such as parametric uncertain-
ties, neglected dynamics and mixtures thereof. This high flexibility comes
in tandem with dedicated extensions of Lemma C.22 and implementable
derivations. Integral quadratic constraint theory [109] provides even more
general separation based results and allows for additionally dealing, e.g.,
with uncertain time-delays and nonlinearities.



D
Differential Linear Matrix
Inequalities

Most of the analysis and design criteria presented in this thesis are formu-
lated in terms of so-called differential linear matrix inequalities (DLMIs).
These appeared for the first time in the context of linear quadratic con-
trol for linear systems on a finite horizon where they are tightly linked to
the Riccati differential equation and inequality. See, e.g., [25, 93, 111] for
some of the early publications on this topic. They still emerge frequently
when dealing with systems admitting finite horizon characteristics such as
the hybrid systems considered in this work. Inequalities of this type also
appear in analysis and design criteria for systems affected by constant or
rate bounded uncertainties as, e.g., in [56, 5].

We base our discussion on the following canonical description of a DLMI
and the corresponding DLMI problems.
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Definition D.1 Let F : Rn × Rr × Rr × Rr → Sm be an affine map and
c : Rn → R be linear. Further, let Ω be some set and suppose that τ0 ∈ Ω.

• A DLMI is an expression of the form F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0 for
all τ ∈ Ω.

• A DLMI feasibility problem amounts to testing whether there exist
some x ∈ Rn and some differentiable function f : Ω → Rr such
that F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0 holds for all τ ∈ Ω. The DLMI
F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0 is said to be feasible if the result of the
latter test is in the affirmative.

• A DLMI optimization problem constitutes the minimization of the
cost c(x) over all vectors x ∈ Rn and all differentiable functions
f : Ω → Rr that satisfy the DLMI F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0 for all
τ ∈ Ω.

Note that this canonical description of a DLMI does not fit perfectly to
the inequalities considered in this work, for example, since we sometimes
face functions F depending on multiple evaluations of f (and ḟ) at fixed
points τ1, . . . , τN ∈ Ω. Nevertheless, this description covers the essential
features.

Observe that DLMI feasibility and optimization problems are infinite
dimensional which means that they cannot be numerically solved directly.
A general recipe in order to reduce these problems to finite dimensional
ones is to restrict the search to functions of the form

f(τ) =
N∑
k=1

fkbk(τ)

with scalar-valued differentiable basis functions b1, . . . , bN , that span some
finite dimensional space S, and free decision variables f1, . . . , fN ∈ Rr.
The most common choices for S are the space of polynomials of some fixed
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degree and finite dimensional subspaces of the space of piecewise polyno-
mials; spaces containing rational or more involved function are rarely used.
This approach allows us to express the DLMI F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0
for all τ ∈ Ω equivalently as

F̃ (x̃, τ) = F̃ (x, f1, . . . , fN , τ) ≼ 0 for all τ ∈ Ω (D.1)

for some function F̃ that is affine for any fixed τ and whose coefficients
are affine combinations of bk(τ) and ḃk(τ). An inequality of this form is
usually referred to as parameter dependent LMI. Note that finding some
decision variable x̃ = (x, f1, . . . , fN ) satisfying the latter inequality still
constitutes a numerically intractable problem since this amounts to solv-
ing infinitely many LMIs. Moreover, we stress that introducing a discretiza-
tion τ0, . . . , τM of Ω and simply replacing (D.1) with the finite number of
inequalities

F̃ (x̃, τk) ≼ 0 for all k ∈ {0, . . . ,M} (D.2)

leads to a problem than can be handled numerically, but there is in general
no guarantee that some x̃ with (D.2) also satisfies (D.1). Instead, one typi-
cally employs so-called inner approximations that assure (D.1) and usually
rely on rather simple basis functions b1, . . . , bN .

Next we illustrate some possibilities to (inner) approximate DLMI prob-
lems via finite dimensional SDPs and start by briefly recalling the matrix
sum-of-squares (SOS) approach from [118, 146] that is also discussed, e.g.,
in [42, Chapter 2] and [142]. The latter two publications also elaborate
on several alternative approaches such as those based on the KYP lemma
[123] or on separation techniques similarly as briefly demonstrated in Sec-
tion C.6. Further approximation strategies can be found, e.g., in [65]. As a
demonstration, we will apply such approximations to the nominal stability
result Theorem 2.3 and recapitulate here a variation thereof for conve-
nience.
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Theorem D.2 (Clock-Based Stability Analysis) The system (2.1) is stable for
all (tk)k∈N0 satisfying (RDT) if there exists a function X∈C0([0, Tmax],Sn)
that is piecewise continuously differentiable with finitely many pieces which
satisfies the inequalities

X(τ) ≻ 0 and Ẋ(τ) +A⊤X(τ) +X(τ)A ≺ 0 for all τ ∈ [0, Tmax]
(D.3a)

as well as

A⊤
JX(0)AJ −X(τ) ≺ 0 for all τ ∈ [Tmin, Tmax]. (D.3b)

D.1 Sum-of-Squares Relaxation
Sum-of-squares polynomials constitute a topic with a rather long history in
mathematics and a survey thereof is provided in [125]. Applications in the
field of optimization and control appeared, e.g., in [118], and the extension
to matrix valued polynomials1 is due to [146].

Definition D.3 (Sum-of-Squares Matrices) P ∈ R[x]p×p is said to be a sum-
of-squares (SOS) matrix if there exists Q ∈ R[x]q×p with q ∈ N such that
P (x) = Q(x)⊤Q(x). If p = 1, then P is said to be an SOS polynomial.

If p = 1, then Q(x) = col(Q1(x), . . . , Qq(x)) is a polynomial vector and
we can express P as

P (x) =
q∑

k=1
Qk(x)2

which motivates the terminology. The interest in SOS matrices in the con-
trol literature stems from the fact that SOS matrices constitute a nice

1In the sequel, R[x]q×p denotes the set of polynomials in the variable x = (x1, . . . , xn)
with coefficients in Rq×p. Any P ∈ R[x]q×p can be expressed as P (x) =∑

α∈Nn0 , |α|≤d
Pαxα with coefficients Pα by recalling the multi-index notation |α| :=

α1 + · · · + αn and xα := xα1
1 . . . xαn

n . If Pα ̸= 0 for some α ∈ Nn
0 with |α| = d, then

d is the degree of P .
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numerically tractable approximation to globally positive semidefinite poly-
nomial matrices. Indeed, it is rather immediate that we have

P (x) ≽ 0 for all x ∈ Rn if P is an SOS matrix.

Moreover, we have the following result which states that testing the SOS
property amounts to solving an LMI feasibility problem.

Theorem D.4 (Characterization of the SOS Property) Let P ∈ R[x]p×p have
degree 2d and let us abbreviate ud(x) := (1, x1, . . . , xn, x

2
1, x1x2, . . . , x

d
n)⊤.

Then P is an SOS matrix if and only if there exists a symmetric matrix X
satisfying

P (x) = (ud(x) ⊗ Ip)⊤X(ud(x) ⊗ Ip) and X ≽ 0.

Instead of global positivity properties one is typically much more in-
terested in positivity on prescribed subsets of Rn. In the context of SOS
matrices, one usually employs subsets with the following general descrip-
tion.

Definition D.5 (Semi-Algebraic Sets) A set G ⊂ Rn is called a (basic)
semi-algebraic set if there exist polynomials q1, . . . , gq ∈ R[x] such that
G = {x ∈ Rn | g1(x) ≥ 0, . . . , gq(x) ≥ 0}.

One of the possibilities to guarantee positivity of some P ∈ R[x]p×p on
a semi-algebraic set G is motivated by introducing multipliers analogously
as in Lagrange duality theory (see, e.g., [17, Section 5.2] and [115, Section
12.9]). More precisely, P (x) ≽ 0 holds for all x ∈ G if there exist positive
semidefinite matrices Λ1, . . . ,Λq such that

P (x) −
q∑

k=1
Λkgk(x) ≽ 0 holds for all x ∈ Rn.
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In general, the latter test is improved by considering polynomial matrices
Λ1, . . . ,Λq and can be rendered computational by replacing global positive
semidefiniteness with the SOS property. This gives the following.

Lemma D.6 Let P ∈ R[x]p×p be given. Then P (x) ≽ 0 holds for all x ∈ G
if there exist SOS matrices Λ1, . . . ,Λq ∈ R[x]p×p such that P −

∑q
k=1 Λkgk

is an SOS matrix.

This observation permits us to define a hierarchy of relaxations for a
number of optimization problems involving infinitely many LMIs such as
in (D.1) with a basis consisting of polynomials. The following theorem from
[146] states that this hierarchy consists of improving relaxations and is even
asymptotically exact. It relies on an extension of a famous result from [121]
to matrix valued polynomials.

Theorem D.7 (Asymptotically Exact SOS Relaxation Hierarchy) Let c ∈ Rm

and the polynomial matrix P (x, y) =
∑
α∈Nn0 , |α|≤da Lα(y)xα with degree

da ∈ N0 and affine functions Lα : Rm → Sp for α ∈ Nn0 with |α| ≤ da be
given. Moreover, define

γopt := inf
{
c⊤y

∣∣ P (x, y) ≻ 0 for all x ∈ G
}

and, for any d ∈ N0,

γd := inf

c⊤y

∣∣∣∣∣∣∣
There exist SOS matrices Λ1, . . . ,Λn ∈ R[x]p×p

of degree d and some ε > 0 such that
P (·, y) − εI −

∑q
k=1 Λkgk is an SOS matrix

 .

Then the following statements hold.
(a) γd can be computed by solving a standard linear SDP.

(b) The sequence (γd)d∈N0 is monotonically decreasing and bounded from
below by γopt.
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(c) The sequence (γd)d∈N0 converges to γopt for d → ∞ if one of the
polynomials gk characterizing the set G equals r2 − ∥x∥2 for some
fixed radius r > 0.

Applying the matrix SOS relaxation to the DLMI stability criteria in
Theorem D.2 yields the following set of conditions that also appeared in
[18] and which can be turned into a standard SDP via Theorem D.4.

Corollary D.8 (Stability Analysis via Sum-of-Squares) The system (2.1) is
stable for all (tk)k∈N0 satisfying (RDT) if there exist a polynomial matrix
X ∈ R[τ ]n×n of degree da, SOS matrices Λ1,Λ2,ΛJ ∈ R[τ ]n×n of degree
dm and some ε > 0 such that

X − εI − Λ1g, −
[
Ẋ +A⊤X +XA

]
− εI − Λ2g

and
−[A⊤

JX(0)AJ −X] − εI − ΛJgJ

are SOS matrices. Here, the polynomials g and gJ are given by g(τ) :=
(Tmax − τ)τ and gJ(τ) := (Tmax − τ)(τ − Tmin), respectively.

Remark D.9 (a) By now several software packages are available that
allow for introducing polynomial variables, their manipulation and
for turning SOS constraints into SDP constraints which can dealt
with by various SDP solvers such as LMIlab [55], SeDuMi [155] and
Mosek [113]. One of these packages is SOSTOOLS [117] and the very
versatile parser Yalmip [101] also supports optimization problems
involving SOS matrices.

(b) SDPs resulting from SOS constraints are often costly to solve for
reasonably large underlying systems. There are several techniques
for improving the computational efficiency of such SDPs by relying
on sparsity. For example one can exploit the inherent sparsity of
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the SDPs resulting from SOS constraints or make use of structure
in the underlying system [3]; both approaches are implemented in
the Matlab packages SOSADMM [176] and CDCS [177]. Another
possibility to reduce the computational burden for solving DLMIs
such as (D.3) is the application of the diagonally-dominant SOS or
scaled-diagonally-dominant SOS approaches from [3, 2] instead of the
SOS relaxation. While this typically leads to less accurate results,
severe speed-ups can be observed as these approaches are based on
solving linear and second order cone programs, respectively.

D.2 Piecewise Convex/Concave Polynomial
Relaxation

In contrast to the previous section, we now consider an approach that relies
on searching a map f satisfying the DLMI F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0 for all
τ ∈ Ω := [a, b] in the space of piecewise polynomial functions defined on the
grid a = λ1 < · · · < λM+1 = b. It is then natural to consider the inequality
F (x, f(τ), ḟ(τ), f(τ0)) ≼ 0 individually on each of the smaller intervals
[λk, λk+1]. Note that, as explicitly required in Theorem D.2, we usually have
to ensure continuity of the function f , but enforcing f to be continuously
differentiable everywhere is not necessary. Moreover, because the restriction
of F (x, f(τ), ḟ(τ), f(τ0)) on the interval [λk, λk+1] depends polynomially
on τ , one could apply an SOS approach for each of these intervals. However
the resulting SDP would then be rather costly to solve even for small values
M > 2. Instead, the approach presented in this sections relies on convexity
and concavity and, more precisely, on the following result.
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Lemma D.10 Let G : [λk, λk+1] → Sm, G(τ) := F (x, f(τ), ḟ(τ), f(τ0)).
Then the following two statements hold.

(a) Suppose that G is convex2. Then G(τ) ≼ 0 holds for all τ ∈ [λk, λk+1]
if and only if G(λk) ≼ 0 and G(λk+1) ≼ 0 hold.

(b) Suppose that G is two times continuously differentiable on (λk, λk+1).
Then G is convex if and only if G̈(τ) ≽ 0 holds for all τ ∈ (λk, λk+1).

Of course, applying Lemma D.10 makes only sense if the inequality
G̈(τ) ≽ 0 for all τ ∈ (λk, λk+1) is very easy to guarantee.

D.2.1 Piecewise Linear Polynomials

The idea to employ piecewise linear polynomials for solving DLMIs ap-
peared, e.g., in [4] in the context of switched systems and in [106] for
solving general parameter dependent LMIs involving functions on more
general domains. Linear polynomials are particularly convenient because
they and their derivatives are automatically convex and concave. Hence,
no additional constraints are required to enforce convexity.

Concretely, by applying this approach to the DLMI conditions in Theo-
rem D.2, we obtain the following result involving only standard LMIs.

Corollary D.11 (Stability Analysis via Piecewise Linear Polynomials) Suppose
that we are given, for some M,N ∈ N, a grid defined by

0 = λ1 < λ2 < · · · < λM+1 = Tmin < λM+2 < · · · < λM+N+1 = Tmax.

Then the system (2.1) is stable for all (tk)k∈N0 satisfying (RDT) if there
exist symmetric matrices X1, . . . , XM+N+1 ∈ Rn×n satisfying

Xk ≻ 0 for all k ∈ {1, . . . ,M +N + 1},

2A function G : Ω → Sm is called convex if G((1 − t)x + ty) ≼ (1 − t)G(x) + tG(y) for
all t ∈ [0, 1] and all x, y ∈ Ω. The function G is called concave if −G is convex.
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∂kXk +A⊤Xk +XkA ≺ 0 and ∂kX +A⊤Xk+1 +Xk+1A ≺ 0

for all k ∈ {1, . . . ,M +N} as well as

A⊤
JX1AJ −Xk ≺ 0

for all k ∈ {M + 1, . . . ,M + N + 1}. Here, we employ the abbreviation
∂kX := 1

λk+1−λk (Xk+1 −Xk) for all k ∈ {1, . . . ,M +N}.

If the above LMIs are feasible, we recover a function X∈C0([0, Tmax],Sn)
that is piecewise continuously differentiable satisfying (D.3) by defining

X(τ) := Xk
τ − λk

λk+1 − λk
+Xk+1

λk+1 − τ

λk+1 − λk

for all τ ∈ [λk, λk+1] and all k. Indeed, this defines a continuous function
which satisfies X(λk) = Xk for all k and Ẋ(τ) = ∂kX for all τ ∈ (λk, λk+1)
and all k.

Remark D.12 Employing piecewise linear polynomials usually requires
rather fine grids in order to achieve comparable results to those obtained via
an SOS approach. This is illustrated in our numerical experiments in Sec-
tion D.4 and similar observations have been made, e.g., in [22] in the context
of stability and stabilization of impulsive and switched positive systems.
Intuitively, the reason for this issue is that we essentially simultaneously
approximate a function f and its derivative ḟ . While f is approximated
with piecewise linear polynomials, its derivative is merely approximated
with piecewise constant ones that are known to admit very limited approx-
imation properties. Since such fine grids lead to a large number of decision
variables that can be difficult to handle, the piecewise linear polynomial
approach is generally considered inferior if compared to the SOS approach.
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D.2.2 Piecewise Quadratic Polynomials

Due to the downsides of piecewise linear polynomials, it is natural to con-
sider piecewise quadratic ones in a next step. In general, these have better
approximation properties and their second derivative is a piecewise con-
stant function which is very convenient for ensuring convexity or concav-
ity on sub-intervals. Unfortunately, we will argue that, for our purposes,
it is still numerically challenging to enforce convexity or concavity in a
suitable fashion. To this end, observe that employing piecewise quadratic
polynomials and utilizing Lemma D.10 leads to the following extension of
Corollary D.11.

Corollary D.13 (Stability Analysis via Piecewise Quadratic Polynomials) Let
M,N ∈ N and suppose that we are given a grid defined by

0 = λ1 < λ2 < · · · < λM+1 = Tmin < λM+2 < · · · < λM+N+1 = Tmax.

Then the system (2.1) is stable for all (tk)k∈N0 satisfying (RDT) if there
exist symmetric matrices X1, . . . , XM+N+1, X̃1, . . . , X̃M+N ∈ Rn×n satis-
fying

A⊤X̃k + X̃kA ≼ 0, X̃k ≽ 0,

∂kXk+A⊤Xk+XkA ≺ 0, ∂kXk+1 +A⊤Xk+1 +Xk+1A ≺ 0 and Xk ≻ 0

for all k ∈ {1, . . . ,M +N} and XM+N+1 ≻ 0 as well as

X1 −A⊤
JXkAJ ≺ 0

for all k ∈ {M + 1, . . . ,M + N + 1}. Here, we employ, for any k, the
abbreviations ∂kXk := 1

λk+1−λk (Xk+1−Xk)+(λk+1−λk)X̃k and ∂kXk+1 :=
1

λk+1−λk (Xk+1 −Xk) − (λk+1 − λk)X̃k.

If the above LMIs are feasible, we recover a function X∈C0([0, Tmax],Sn)
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that is piecewise continuously differentiable satisfying (D.3) by defining

X(τ) := X̃k(λk+1 − τ)(τ − λk) +Xk
λk+1 − τ

λk+1 − λk
+Xk+1

τ − λk
λk+1 − λk

for all τ ∈ [λk, λk+1] and all k. Indeed, this defines a continuous function
which satisfies Ẍ(τ) = −2X̃k for all τ ∈ (λk, λk+1), X(λk) = Xk as well as

lim
τ↗λk+1

Ẋ(τ) = −(λk+1 − λk)X̃k + 1
λk+1 − λk

(Xk+1 −Xk) = ∂kXk+1

and

lim
τ↘λk

Ẋ(τ) = (λk+1 − λk)X̃k + 1
λk+1 − λk

(Xk+1 −Xk) = ∂kXk

for all k. Moreover, note that we recover the conditions in Corollary D.11
by setting X̃k = 0 for all k.

Remark D.14 While the inequalities in Corollary D.13 are all standard
LMIs, the inequalities A⊤X̃k + X̃kA ≼ 0 and X̃k ≽ 0 constitute numer-
ically troublesome ones in general. This issue stems from the fact that,
for impulsive systems as described by (2.1), the matrix A is usually not
Hurwitz stable and, consequently, the latter two LMIs can not be strictly
satisfied. Typically, this is poison to any solver for semidefinite programs.
In order to circumvent this issue, one should perform some preprocessing by
factorizing the matrices X̃k = T⊤

(
0 0
0 X̃rk

)
T according to the eigenspaces

of the matrix A similarly as done, e.g., in [135, 136], but we do not further
pursue this approach here.

Considering piecewise polynomials of a higher degree is possible, but en-
forcing piecewise convexity/concavity suffers from the same deficiencies as
mentioned in Remark D.14 for our applications. For our purposes, merely
the piecewise linear polynomials work “well” in this regard because con-
vexity/concavity is guaranteed at the outset.
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D.3 B-Spline Relaxation
In this section we consider another relaxation hierarchy which, this time,
relies on different representations of splines that are composed of so-called
B-splines. In particular, as in the previous section, we deal with piecewise
polynomial functions, but we enjoy much more flexibility. This relaxation
hierarchy is also very briefly discussed in [77] and included in the Linear
Control Toolbox [164] in Matlab. Here, we will elaborate on it in full detail
and, in particular, prove that this hierarchy is asymptotically exact which
has, to the best of our knowledge, not been done yet. Thereby, we focus our
attention on univariate splines and B-splines because multivariate splines
and B-splines inherit most of their properties from univariate ones.

Finally, most of the following results from spline theory are taken from
the textbooks [104] and [36]. At this point, my thanks also go to Jörg
Hörner and Benjamin Ziegler for stimulating discussions and sharing some
of their knowledge on splines.

D.3.1 Definition and Basic Properties of B-Splines

We start by presenting the basic definition of B-splines and splines as well
as some basic properties of them. B-splines are piecewise polynomials and
their definition relies on knot sequences which induce a partition of their
domain.

Definition D.15 (Knot Sequence) Let a, b ∈ R, k ∈ N0, n ∈ N.

• The finite sequence λ = (λi) ∈ [a, b]k+n+1 is called a knot sequence
if

a = λ1 ≤ · · · ≤ λk+n+1 = b.

• The knot t ∈ [a, b] is said to have multiplicity m ∈ N0 in λ if t
appears exactly m times in the knot sequence λ. In particular, if t
does not appear in λ, then it has multiplicity 0.
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• The knot sequence λ is called k+ 1 regular if the knots a and b have
multiplicity k+1 and no other knot has multiplicity larger than k+1.

• The k+1-regular knot sequence λ is called simple if all knots λi with
λi /∈ {a, b} have multiplicity 1.

The basic definition of B-splines is now as follows.

Definition D.16 (B-Splines) Let a, b ∈ R, k ∈ N0, n ∈ N and let λ ∈
[a, b]k+n+1 be a knot sequence. Then, for j ∈ {1, . . . , n}, the jth B-spline
of degree k corresponding to the knot sequence λ is defined by

Bj,k,λ(x) := ωj,k,λ(x)Bj,k−1,λ(x) + (1 − ωj+1,k,λ(x))Bj+1,k−1,λ(x)

where Bj,0,λ = χ[λj ,λj+1) is the indicator function of the interval [λj , λj+1)
and where

ωj,k,λ(x) :=


x−λj

λj+k−λj if λj ̸= λj+k,

0 otherwise

for all x ∈ [a, b). If λ is k + 1 regular, we set Bn,k,λ(b) := 1.

As an illustration, let us consider the k+1 regular knot sequences defined
by

k = 1, n = 5, λ =
(

− 1, −1, − 1
2 , 0, 1

2 , 1, 1
)
, (D.6a)

k = 2, n = 6, λ =
(

− 1, −1, −1, − 1
2 , 0, 1

2 , 1, 1, 1
)
, (D.6b)

k = 2, n = 8, λ =
(

− 1, −1, −1, − 1
2 , 0, 0, 1

4 ,
1
2 , 1, 1, 1

)
. (D.6c)

The corresponding B-splines B1,k,λ, . . . , Bn,k,λ are depicted in Fig. D.1.
Note that the knot sequences in (D.6a) and (D.6b) are simple, but the one
in (D.6c) is not simple, because the inner knot 0 has multiplicity 2.

Equipped with the definition of B-splines, we now state some of their
basic and highly useful properties. These are all consequences of the re-
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Figure D.1: The B-splines B1,k,λ, . . . , Bn,k,λ corresponding to the knot se-
quences defined in (D.6a) (top left), (D.6b) (top right) and
(D.6c) (bottom).

cursion formula in Definition D.16, which is also referred to as recurrence
relation, and can for example be found in [36, 150].

Lemma D.17 (Basic Properties) Let k ∈ N0, n ∈ N and let λ ∈ [a, b]k+n+1

be a knot sequence. Then the B-splines admit the following properties.
(a) Positivity: Bj,k,λ(x) ≥ 0 for all x ∈ [a, b].

(b) Partition of unity:
∑n
j=1 Bj,k,λ(x) = 1 for all x ∈ [a, b].

(c) Local support: Bj,k,λ(x) = 0 for all x /∈ [λj , λj+k+1].

The space of scalar-valued splines of degree k corresponding to a knot
sequence λ is now naturally defined as the linear span of all B-splines of
degree k corresponding to the knot sequenceλ. However, for our purposes,
we consider matrix-valued splines.
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Definition D.18 (Space of Splines) Let k ∈ N0, n ∈ N and λ ∈ [a, b]k+n+1

be a knot sequence. The space of (univariate polynomial matrix-valued)
splines of degree k corresponding to the knot sequence λ is defined as

Sp×q
k,λ :=


n∑
j=1

CjBj,k,λ

∣∣∣∣∣∣ Cj ∈ Rp×q for all j ∈ {1, . . . , n}

 .

If the dimensions are not relevant we write Sk,λ instead of Sp×q
k,λ .

As an example let us consider again the knot sequences (D.6b) and (D.6c)
and the scalar-valued splines S and Ŝ defined by their (stacked) coefficients

c :=
( 1

2 , 1, 1, − 1
4 , 1, 2

)⊤ and ĉ :=
( 1

2 , 1, 1, − 1
2 , 1, 2, −1, 2

)⊤
,

(D.7a,b)
respectively. The splines S and Ŝ are depicted in Fig. D.2 together with
their corresponding weighted B-splines c1B1,k,λ, . . . , cnBn,k,λ and ĉ1B1,k,λ,
. . . , ĉnBn,k,λ, respectively. Note that both splines are continuous and ob-
serve that Ŝ is not continuously differentiable at the point 0. The latter
stems from 0 being a knot with multiplicity 2 in the knot sequence (D.6c).
Indeed, this is a consequence from a more general statement which is in-
cluded in the following remark.

Remark D.19 • The B-splines B1,k,λ, . . . , Bn,k,λ are linearly indepen-
dent and form a basis of the space of scalar-valued splines S1×1

k,λ if
the knot sequence λ is k + 1 regular. Hence, the space Sp×q

k,λ has
dimension npq in this case.

• One can show that any S ∈ Sp×q
k,λ is a matrix-valued piecewise poly-

nomial of degree k, which constitutes an alternative definition of the
space of spline.

• A spline of degree k corresponding to a k + 1 regular knot sequence
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Figure D.2: (Left) the spline S defined by the coefficients (D.7a) and the
knot sequence (D.6b) as well as (right) the spline Ŝ defined
by the coefficients (D.7b) and the knot sequence (D.6c). The
corresponding scaled B-splines are illustrated as well.

is d ≤ k − 1 times continuously differentiable at an inner knot λj ∈
(a, b) if λj has multiplicity k − d. In particular, if λ is a simple knot
sequence, then Sk,λ ⊂ Ck−1([a, b]).

We are now in position to state an important intermediate idea under-
lying the B-spline relaxation for solving parameter dependent LMIs. It is
a consequence of the positivity of the B-spline functions and since they do
not vanish all at the same time.

Lemma D.20 Let k ∈ N0, n ∈ N, λ ∈ [a, b]k+n+1 be a knot sequence and
suppose that S =

∑n
j=1 CjBj,k,λ ∈ Sp×p

k,λ is given. Then S(x) ≻ 0 holds for
all x ∈ [a, b] if Cj ≻ 0 holds for all j ∈ {1, . . . , n}.

Note that, obviously, testing whether Cj ≻ 0 holds for all j ∈ {1, . . . , n}
is a standard LMI and hence amounts to a numerically tractable test. The
converse of Lemma D.20 is not true in general as illustrated by the spline
S on the left of Fig. D.2. Indeed, this spline is positive on its domain, but
one of its defining coefficients in (D.7a) is negative.

The B-spline relaxation hierarchy relies on finer representation of a given
spline as we precisely discuss next.
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D.3.2 Spline Representations

In this subsection we present the main ingredients for the B-spline relax-
ation hierarchy. The key observation is that a spline S in some spline space
Sk,λ is also contained in a certain ordered sequence of higher dimensional
spline spaces (Skν ,λν )ν∈N, i.e.,

S =
n∑
j=1

CjBj,k,λ ∈ Sk,λ ⊂ Sk1,λ1 ⊂ Sk2,λ2 ⊂ . . .

Thus, instead of considering the original coefficients C1, . . . , Cn, we can
also consider the coefficients of the same spline in the space Skν ,λν and
apply Lemma D.20 there. In the sequel, we illustrate that this procedure
is indeed beneficial.

The main operations for generating dedicated higher dimensional spline
spaces are knot insertion and degree elevation which we both discuss next.

Knot Insertion

Inserting knots into a given knot sequence will yield a refinement of this
sequence. Refinements are naturally defined as follows.

Definition D.21 (Refinements) Let λ ∈ [a, b]m be a knot sequence. A knot
sequence λ̃ ∈ [a, b]m̃ is said to be a refinement of λ and we write λ ⊂ λ̃

if the multiplicity of any knot t in the sequence λ is not larger than the
multiplicity of t in the sequence λ̃.

Note that the knot sequence (D.6c) is a refinement of (D.6b) and that the
latter is a refinement of (D.6a). The following instrumental result involving
refined knot sequences is from [31].
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Lemma D.22 (Knot Insertion) For k ∈ N0 and n,m ∈ N let λ ∈ [a, b]k+n+1

be a knot sequence with refinement λ̃ ∈ [a, b]k+m+1. Then the following
statements hold.

(a) Sp×q
k,λ ⊂ Sp×q

k,λ̃
.

(b) S =
∑n
j=1 CjBj,k,λ =

∑m
j=1 C̃jBj,k,λ̃ with C̃l =

∑n
j=1 a

(k)
lj Cj for all

l ∈ {1, . . . ,m}. The numbers a(k)
lj are recursively given as

a
(k)
lj = ωj,k,λ(λ̃l+k)a(k−1)

lj + (1 − ωj+1,k,λ(λ̃l+k))a(k−1)
l,j+1

and a(0)
lj = Bj,0,λ(λ̃l) with ωj,k,λ given in Definition D.16.

(c) The numbers a(k)
lj are sometimes called discrete B-splines and admit

the following properties.

• If λ̃l < λj or λ̃l+k ≥ λj+k+1 then a
(k)
lj = 0.

• a
(k)
lj ≥ 0 for all l ∈ {1, . . . ,m} and all j ∈ {1, . . . , n}.

•
∑n
j=1 a

(k)
lj = 1 for all l ∈ {1, . . . ,m}.

In particular, the knot insertion matrix Mki
k,λ̃,λ

:= (a(k)
lj,λ̃,λ

)lj ∈ Rm×n

is a sparse row stochastic matrix3.

Recall that we were unable to guarantee positivity of the scalar-valued
spline S depicted on the left hand side of Fig. D.2 corresponding knot
sequence (D.6b) and with stacked coefficients c = ( 1

2 , 1, 1,−
1
4 , 1, 2)⊤ by

employing the test in Lemma D.20. Moreover, as stated before, the knot
sequence (D.6c) is a refinement of (D.6b). By applying the above result,
we can hence alternatively express S as sum of B-splines corresponding to
(D.6c) and with the new stacked coefficients

c̃ :=
( 1

2 , 1, 1, 3
8 ,

1
16 ,

1
16 , 1, 2

)⊤
.

3A matrix A = (alj)lj ∈ Rm×n is said to be row stochastic if its entries are nonnegative
and the entries of each row sum up to one.
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Figure D.3: (Left) the spline S defined by the coefficients c in (D.7) and the
knot sequence (D.6b) as well as (right) the same spline repre-
sented as sum of B-splines corresponding to the knot sequence
(D.6c). The corresponding scaled B-splines are illustrated as
well.

Both representations are illustrated in Fig. D.3. For the new representation
of S, the test in Lemma D.20 is in the affirmative and, hence, we have
shown that S(x) > 0 holds for all x ∈ [−1, 1]. In total, this demonstrates
the benefit utilizing knot refinements in tandem with Lemma D.20.

Let us stress that statement (b) implies, in particular, that the new co-
efficients are easily obtained by a linear combination of the original ones.
This is of tremendous importance for our applications since the original co-
efficients will depend in an affine fashion on decision variables and because
handling our optimization problems requires expressions that are affine in
all decision variables! For later, note that we can also express statement (b)
as follows. Suppose that S ∈ Sp×q

k,λ has the coefficients C1, . . . , Cn and let
us abbreviate C := col(C1, . . . , Cn). Then the coefficients of the refined
representation of the spline S in Sp×q

k,λ̃
are given by the p× q blocks of the

matrix

C̃ = (Mki
k,λ̃,λ

⊗ Ip)C, i.e., C̃j = (ej ⊗ Ip)⊤(Mki
k,λ̃,λ

⊗ Ip)C

for j∈{1, . . . ,m}. Here, e1, . . . , em denote the standard unit vectors in Rm.
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Moreover and as a consequence of statement (c), we have the following
result that will ensure monotonicity of the B-spline hierarchy based on knot
insertion.

Corollary D.23 (Monotonicity of the Hierarchy) Let k ∈ N0, n,m ∈ N, let
λ ∈ [a, b]k+n+1 be a knot sequence with refinement λ̃ ∈ [a, b]k+m+1 and
suppose that S =

∑n
j=1 CjBj,k,λ ∈ Sp×p

k,λ is given. Then Cj ≻ 0 for all
j ∈ {1, . . . , n} implies that

∑n
j=1 a

(k)
lj Cj ≻ 0 holds for all j ∈ {1, . . . ,m}.

In other words, once the coefficients of a spline are positive definite, all
alternative representations resulting from inserting additional knots also
admit positive definite coefficients. Note that consecutive refinement via
knot insertion are related as follows if the final knot sequence is k + 1
regular and, hence, the corresponding B-splines are linearly independent.

Lemma D.24 (Consecutive Refinements) For k ∈ N0 let λ ∈ [a, b]k+n+1,
λ̃ ∈ [a, b]k+ñ+1 and λ̂ ∈ [a, b]k+n̂+1 be k+1 regular knot sequences satisfying
λ̂ ⊃ λ̃ ⊃ λ. Then the corresponding knot insertion matrices are related as
Mki
k,λ̂,λ

= Mki
k,λ̂,λ̃

Mki
k,λ̃,λ

.

Remark D.25 If the refined knot sequence λ̃ results from λ by inserting a
single knot, then the knot insertion matrix is easily computed without a
recursion and admits a particular triangular and band structure [36, page
136]. In particular, due to Lemma D.24, we can write any knot insertion
matrix as the product of very specific rectangular matrices. However, we
do not exploit this further.

Next we consider alternative spline representations resulting from degree
elevation.

Degree Elevation

It is clear that each spline of degree k can be written as a spline of degree
k + 1 since any polynomial of degree k can be viewed as a polynomial of
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degree k+1. The following result from [32] suggests a suitable correspond-
ing knot sequence and yields a practical formula for the construction of
the new coefficients. In particular, these new coefficients are again a linear
combination of the original ones.

Lemma D.26 (Degree Elevation) For k ∈ N0 and n ∈ N let λ ∈ [a, b]k+n+1

be a k + 1 regular knot sequence composed of knots ξ1 < · · · < ξν with
multiplicities m1, . . . ,mν . Further, let λ̃ be the knot sequence composed
of the same knots, but with multiplicities m1 + 1, . . . ,mν + 1. Then the
following statements hold.

(a) Sp×q
k,λ ⊂ Sp×q

k+1,λ̃.

(b) S =
∑n
j=1 CjBj,k,λ =

∑ñ
j=1 C̃jBj,k+1,λ̃ with C̃l = 1

k+1
∑n
j=1 Λ(k)

lj Cj

for all l∈{1, . . . , ñ} and with ñ := n+ ν − 1. The numbers Λ(k)
lj are

recursively given as

Λ(k)
lj = ωj,k,λ(λ̃l+k+1)Λ(k−1)

lj + (1 − ωj+1,k,λ(λ̃l+k+1))Λ(k−1)
l,j+1 + a

(k)
lj,λ̃,λ

and Λ(0)
lj = a

(0)
lj with ωj,k,λ as in Definition D.16 and a

(k)
lj as in

Lemma D.22.

(c) The numbers Λklj admit the following properties.

• Λ(k)
lj ≥ 0 for all l ∈ {1, . . . , ñ} and all j ∈ {1, . . . , n}.

•
∑n
j=1 Λ(k)

lj = k + 1 for all l ∈ {1, . . . , ñ}.

In particular, the degree elevation matrix Mde
k,λ := 1

k+1 (Λ(k)
lj )lj is a

row stochastic matrix.

Let us again consider the scalar-valued spline S depicted on the left of
Fig. D.2 corresponding knot sequence (D.6b) and with stacked coefficients
c = ( 1

2 , 1, 1,−
1
4 , 1, 2)⊤. By applying the above result, we can equivalently

express S as sum of B-splines of degree k + 1 = 3 corresponding to a
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Figure D.4: (Left) the spline S defined by the coefficients (D.7a) and the
knot sequence (D.6b) as well as (right) the same spline rep-
resented as sum of B-splines of degree k + 1 = 3. The corre-
sponding scaled B-splines are illustrated as well.

modified knot sequence and with the new stacked coefficients

c̃ :=
( 1

2 ,
5
6 , 1, 1, 19

24 , − 1
24 , − 1

24 ,
19
24 ,

4
3 , 2

)⊤
.

Both representations are illustrated in Fig. D.4. For the new representation
the test in Lemma D.20 is still not in the affirmative, but the magnitude
of the coefficients with negative sign is much smaller than before. For this
example, after two further degree elevations the criteria in Lemma D.20
are satisfied which demonstrates the benefit utilizing degree elevation in
tandem with Lemma D.20.

Due to the last statement of Lemma D.26, the complete analogue of
Corollary D.23 holds and reads as follows.

Corollary D.27 (Monotony of the Hierarchy) Let k ∈ N0, n ∈ N, let λ ∈
[a, b]k+n+1 be a k + 1 regular knot sequence and suppose that the spline
S =

∑n
j=1 CjBj,k,λ ∈ Sp×p

k,λ is given. Then Cj ≻ 0 for all j ∈ {1, . . . , n}
implies that 1

k+1
∑n
j=1 Λ(k)

lj Cj ≻ 0 holds for all j ∈ {1, . . . , ñ}.
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Differentiation of Splines

Because we consider mainly differential LMIs in this work, it is natural
that we need access to the derivative of a given spline or, more precisely,
to its coefficients in a suitable representation. Moreover, these coefficients
should be again a linear combination of the ones from the original spline.
Fortunately, there is again such an explicit expression for the coefficients
that can be found, e.g., in [36] and is repeated here. To this end, recall that
we have already mentioned that splines in Sk,λ are d times continuously
differentiable where d ≤ k − 1 depends on the multiplicity of the inner
knots in the knot sequence λ.

Lemma D.28 (Derivative of a Spline) Let k, n ∈ N and let λ ∈ [a, b]k+n+1

be a knot sequence such that Sk,λ ⊂ C1([a, b]). Further, suppose that S =∑n
j=1 CjBj,k,λ. Then

Ṡ =
n−1∑
j=1

C̃jBj,k−1,λ̃

with

C̃j = αj+1,k,λ(Cj+1 − Cj) for all j ∈ {1, . . . , n− 1}.

Here, the knot sequence λ̃ is obtained by discarding the first and last knot
in λ and αj,k,λ := k

λj+k−λj if λj+k ̸= λj and αj,k,λ := 0 otherwise.

For reasons of compatibility, we define the derivative matrix Md
k,λ =

(alj)lj ∈ R(n−1)×n by

alj :=


−αj+1,k,λ if l = j,

αj+1,k,λ if l = j − 1,

0 otherwise

in order to infer that C̃l =
∑n
j=1 aljCj holds for all l ∈ {1, . . . , n− 1}.
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Note that we usually face conditions that simultaneously involve a vari-
able X and its derivative Ẋ such as in the inequality Ẋ +A⊤X +XA ≺ 0
on some interval [a, b] and for some matrix A ∈ Rn×n. In order to apply
Lemma D.20, it is mandatory to represent both Ẋ and X as functions
in a common spline space. This can be achieved as follows. Suppose that
X =

∑n
j=1 XjBj,k,λ with coefficients X1, . . . , Xn ∈ Rn×n and for some

given degree k and knot sequence λ. Then, by Lemma D.28, the derivative
of X is given by

Ẋ =
n−1∑
j=1

X̃jBj,k−1,λ̃ with X̃j := (e⊤
j M

d
k,λ ⊗ In)col(X1, . . . , Xn)

and with λ̃ being the knot sequence obtained by discarding the first and
last knot in λ. In order to achieve a common representation, the idea is
to apply a degree elevation to Sk−1,λ̃ ⊂ Sk,λ̂ with yields another knot
sequence λ̂. By its construction, λ̂ is a refinement of λ and a knot insertion
yields Sk,λ ⊂ Sk,λ̂. In particular, we obtain

X =
n̂∑
j=1

X̂jBj,k,λ̂ ∈ Sn×n
k,λ̂

with X̂j := (e⊤
j M

ki
k,λ̂,λ

⊗ In)col(X1, . . . , Xn)

and

Ẋ =
n̂∑
j=1

X̌jBj,k,λ̂ ∈ Sn×n
k,λ̂

with X̌j := (e⊤
j M

de
k−1,λ̃M

d
k,λ ⊗ In)

 X1
...
Xn

 ,

i.e., a common representation as desired. Thus, by applying Lemma D.20,
we can ensure that the inequality Ẋ + A⊤X + XA ≺ 0 holds on [a, b] if
X̌j +A⊤X̂j + X̂jA ≺ 0 holds for all j ∈ {1, . . . , n̂}.

There are many more results on spline representations. We just mention
two additional ones of them that can be useful for our purposes.
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Remark D.29 (a) Representation of Polynomials: Let p be a polynomial
of degree ≤ k and let λ be a k + 1 regular knot sequence. Then the
so-called Marsden’s identity states that the polynomial p can be rep-
resented as linear combination of B-splines of degree k corresponding
to the knot sequence λ and also provides an efficient way to compute
the coefficients of the linear combination. The precise result can for
example be found in [104].

(b) Representation of Spline Products: Intuitively, it is rather obvious
that the product of two splines is again a spline. However, formulat-
ing and deriving the concrete representation as provided in [112] is
tedious. In particular, the number of knots required for the represen-
tation is rather large in general which is partly due to the continuity
requirements.

D.3.3 Asymptotic Exactness

In this subsection, we precisely define the B-spline relaxation hierarchy and
show that this hierarchy has the beautiful property of being asymptotically
exact. The latter property is a consequence of characteristics of the so-called
control polygon which is defined as follows.

Definition D.30 (Control Polygon) Let k, n ∈ N, let λ ∈ [a, b]k+n+1 be a
knot sequence and suppose that S =

∑n
j=1 CjBj,k,λ ∈ Sk,λ. Then the con-

trol polygon corresponding to S ∈ Sk,λ is the piecewise linear interpolant
to the points (λ∗

1, C1), . . . , (λ∗
n, Cn), where λ∗

j := (λj+1, . . . , λj+k)/k is the
jth knot average.

Let us once more consider the spline S defined by (D.6b) and (D.7a).
This spline and its control polygon are depicted on the left of Fig. D.5. The
control polygon corresponding to the spline S after a knot insertion and a
degree elevation is illustrated in the middle and on the right of Fig. D.5,
respectively. In both of the latter two cases, we observe that the control
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Figure D.5: (Top left) the spline S defined by (D.6b) and (D.7a) as well
as its control polygon. (Top right) the control polygon of S
after adding the knots 0 and 1

4 to (D.6b). (Bottom) the control
polygon of S after performing a degree elevation.

polygon approaches the spline it is corresponding to. This observation is a
provable fact that holds for splines and relies on the following two results
from [104, Lemma 9.17] and [30], respectively.

Lemma D.31 Let k, n ∈ N, let λ ∈ [a, b]k+n+1 be a knot sequence and
suppose that S =

∑n
j=1 CjBj,k,λ ∈ Sk,λ. Then

∥Cj − S(λ∗
j )∥ ≤ M(λj+k − λj+1)2 holds for all j ∈ {1, . . . , n}

where M is a constant that only depends on S and k.
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Lemma D.32 Let k, n ∈ N, let λ ∈ [a, b]k+n+1 be a k + 1 regular knot
sequence and suppose that S =

∑n
j=1 CjBj,k,λ ∈ Sk,λ. Moreover, let Γν

denote the control polygon corresponding to S after performing ν degree
elevations. Then there exists a constant M such that

max
x∈[a,b]

∥S(x) − Γν(x)∥ ≤ M
1
ν

holds for all ν ∈ N.

A consequence of Lemma D.31 is that, loosely speaking, the control poly-
gon obtained via suitable successive knot insertions converges quadratically
to the spline it is corresponding to. This is in stark contrast to the linear
convergence obtained via degree elevation in Lemma D.32. In the sequel we,
thus, focus on the B-spline hierarchy based on knot insertions for brevity.

Combining Lemmas D.20 and D.31 yields the following instrumental
result.

Lemma D.33 Let k, n ∈ N, let λ ∈ [a, b]k+n+1 be a k + 1 regular knot
sequence and suppose that S :=

∑n
j=1 CjBj,k,λ. Moreover, let (λν)ν∈N

be a sequence of refinements of λ with λν ∈ [a, b]k+nν+1 satisfying λ ⊂
λ1 ⊂ λ2 ⊂ . . . and limν→∞ maxj∈{1,...,nν} |λνj+k − λνj+1| = 0. Finally, let
Cν1 , . . . , C

ν
nν denote the coefficients of S with respect to the knot sequence

λν . Then S(x) ≻ 0 holds for all x ∈ [a, b] if and only if there exists some
ν ∈ N such that Cνj ≻ 0 holds for all j ∈ {1, . . . , nν}.

Proof. Sufficiency is a consequence of Lemma D.20. Necessity is obtained
as follows. Due to the continuity of S and compactness of [a, b], we infer the
existence of some ε > 0 such that S(x)−εI ≻ 0 holds for all x ∈ [a, b]. Let us
define λν,∗j := (λνj+1 + · · · +λνj+k)/k and hν := maxj∈{1,...,nν} |λνj+k −λνj+1|
for all ν and j. From Lemma D.31 we infer the existence of some constant
M such that

∥Cνj − S(λν,∗j )∥ ≤ M(λνj+k − λνj+1)2 ≤ Mh2
ν
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holds for all j ∈ {1, . . . , nν} and all ν ∈ N. In particular, we have

Cνj = Cνj − S(λν,∗j ) + S(λν,∗j ) ≻ Cνj − S(λν,∗j ) + εI

for all j ∈ {1, . . . , nν} and all ν ∈ N. Since ∥Cνj − S(λν,∗j )∥ converges to 0
uniformly in j and by continuity, we conclude the existence of some ν0 ∈ N
such that Cν0

j − S(λν0,∗
j ) + εI ≻ 0 for all j ∈ {1, . . . , nν0}. This yields

Cν0
j ≻ 0 for all j ∈ {1, . . . , nν0}. •
We are now in position to precisely introduce the B-spline relaxation

hierarchy based on knot insertion and refinements and state its properties.
The latter are consequences of combining Lemma D.33 and Corollary D.23.

Theorem D.34 (Asymptotically Exact B-Spline Relaxation Hierarchy via Knot
Insertion) Let c ∈ Rm, k, n ∈ N and let λ ∈ [a, b]k+n+1 be a k + 1 regular
knot sequence. Further, suppose that C1, . . . , Cn : Rm → Sp are affine
functions and define

γopt := inf

c⊤y

∣∣∣∣∣∣
n∑
j=1

Cj(y)Bj,k,λ(x) ≻ 0 for all x ∈ [a, b]

 .

Moreover, let (λν)ν∈N be a sequence of knot sequences λν ∈ [a, b]k+nν+1

satisfying λ ⊂ λ1 ⊂ λ2 ⊂ . . . and limν→∞ maxj∈{1,...,nν} |λνj+k −λνj+1| = 0.
Finally, define

γν := inf
{
c⊤y

∣∣∣∣∣ (e⊤
j M

ki
k,λν ,λ ⊗ Ip)col(C1(y), . . . , Cn(y)) ≻ 0

for all j ∈ {1, . . . , nν}

}
.

Then the following statements hold.
(a) γν can be computed by solving a standard linear SDP.

(b) (γν)ν∈N0 is monotonically decreasing and bounded from below by γopt.

(c) limν→∞ γν = γopt.
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Remark D.35 (a) A concrete strategy for constructing a suitable refine-
ment is to insert the knots ξ̃j = 1

2 (ξj + ξj+1) if the current knot se-
quence is composed of the knots ξ1 < · · · < ξm, i.e., to insert knots at
the midpoints of the intervals defined by the current knot sequence.
An adaptive alternative strategy could be as follows. Suppose that γν
is computed and pick some feasible ỹ ∈ Rm such that c⊤ỹ is close to
γν . Next, consider the corresponding spline S̃ =

∑n
j=1 Cj(ỹ)Bj,k,λ

and insert knots at locations where S(x) has eigenvalues close to
zero or at places that are interesting for other reasons in order to
construct a suitable refined knot sequence.

(b) We stress that the relaxation hierarchy based on degree elevation is
defined analogously and admits the same properties. Moreover, note
that there can be situations where a combination of knot insertions
and degree elevations is profitable.

As a final illustration, let us apply the B-spline relaxation to the DLMI
stability criteria in Theorem D.2 which yields the following set of standard
LMIs.

Corollary D.36 Let k, n ∈ N and let λ ∈ [0, Tmax]k+n+1 be a k + 1 regular
knot sequence which contains the knot λm = Tmin exactly once. Further,
let

• λd be the knot sequence obtained by discarding the first and last knot
in λ,

• λde the sequence obtained by increasing the multiplicity of each knot
in λd by one,

• λki be the sequence obtained by k times inserting the knot Tmin into
the sequence λ such that discarding the knots λ1, . . . , λm−1 yields a
k + 1 regular knot sequence λres ∈ [Tmin, Tmax]k+nres+1 with nres =
n+ k −m+ 1.
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Moreover, let λD ∈ [0, Tmax]k+nD+1 , λF ∈ [0, Tmax]k+nF+1 and λJ ∈
[Tmin, Tmax]k+nJ+1 be refinements of λ, λde and λres, respectively. Then
the system (2.1) is stable for all (tk)k∈N0 satisfying (RDT) if there exist
X1, . . . , Xn ∈ Sn satisfying

XD
j ≻ 0 for all j ∈ {1, . . . , nD},

ẊF
j +A⊤XF

j +XF
j A ≺ 0 for all j ∈ {1, . . . , nF }

and
A⊤
JX

J
0 AJ −XJ

j ≺ 0 for all j ∈ {1, . . . , nJ}.

Here, the matrices with indices are given by XJ
0 :=

∑n
j=1 XjBj,k,λ(0) as

well as
XD
j := (e⊤

j M
ki
k,λD,λ ⊗ In)X,

ẊF
j := (e⊤

j M
ki
k,λF ,λdeM

de
k−1,λdM

d
k,λ ⊗ In)X,

XF
j := (e⊤

j M
ki
k,λF ,λ ⊗ In)X

and

XJ
j := (e⊤

j M
ki
k,λJ ,λres

(
0nres×(m−1) Inres

)
Mki
k,λki,λ ⊗ In)X

where X := col(X1, . . . , Xn).

In particular, if the above LMIs are feasible, then X =
∑n
j=1 XjBj,k,λ is

a continuous function satisfying the DLMIs (D.3).
Note that the knot sequence λki is introduced because it guarantees that

the B-splines B1,k,λki , . . . , Bm−1,k,λki and Bm,k,λki , . . . , Bn+k,k,λki are sup-
ported only on the compact interval [0, Tmin] and [Tmin, Tmax], respectively.
This is important since otherwise one might enforce negative definiteness
of A⊤

JX(0)AJ −X on a larger interval than [Tmin, Tmax] which can lead to
conservatism.
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D.4 A Numerical Comparison
In order to provide a brief comparison of the presented relaxations for
numerically dealing with differential LMIs, we consider the stability criteria
in Theorem D.2 and compare Corollaries D.8, D.11 and D.36 on a variety
of examples that are generated as follows. We take several continuous-time
LTI systems with descriptionẋ(t)

e(t)
y(t)

 =

A B1 B

C1 D11 D12

C D21 0


x(t)
d(t)
u(t)

 (D.8)

for t ≥ 0 from the COMPleib [96] collection and design, for each of these
open-loop systems, a static output-feedback H∞-controller KF via the
Matlab command hinfstruct [9]. Additionally, we convert the continuous-
time model (D.8) into a discrete-time model by applying a zero-order-hold
approach with T = 0.5 time units via the command c2d and design another
static output-feedback H∞-controller KJ for the resulting model. Finally,
we interconnect both static controllers to the original system by defining
the control input signal u as the convex combination

u(t) := 2
5uF (t) + 3

5uJ(t)

with
uF (t) := KF y(t) and uJ(t) := uJ(tk) := KJy(tk)

for all t ∈ [tk, tk+1) and all k ∈ N0; here (tk)k∈N0 is some given sequence
of impulse instants. Note that uJ is a piecewise constant function with
values determined by the controller KJ and samples of the signal y at
the time instants tk. If we now drop the performance channel d → e in
the description (D.8), we can equivalently express the resulting closed-loop
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interconnection as a linear impulsive system of the form(
ẋ(t)
u̇J(t)

)
=
(
A+ 2

5BKFC B

0 0

)(
x(t)
uJ(t)

)
,

(
x(tk)
uJ(tk)

)
=
(

I 0
3
5KJC 0

)(
x(t−k )
uJ(t−k )

)
(D.9)

for t ≥ 0 and k ∈ N, which we can analyze via Theorem D.2. We are then
able, for example, to numerically determine the largest number Tmax such
that the interconnection (D.9) is stable for all sequences of impulse instants
(tk)k∈N0 satisfying a range dwell-time condition (RDT) on the interval
[0.1, Tmax] by employing Corollary D.8, D.11 or D.36 as well as a bisection.
Note that it is impossible to simplify the analysis criteria in Theorem D.2
by restricting X to be a constant matrix because the describing matrices
of the flow and jump component of (D.9) are not Hurwitz and not Schur
stable, respectively.

Table D.1 displays the obtained results, where we denote by T da,dmSOS ,
TM,N
LS and TM,N,r

BS the numerically determined largest number Tmax ∈
[0.1, 40] such that the inequalities in Corollary D.8, D.11 and D.36 are
feasible, respectively. The superscripts in the numbers T da,dmSOS and TM,N

LS

denote the parameters appearing in Corollary D.8 and D.11, respectively.
For the application of Corollary D.36, we employ B-splines of degree k = 3
and use a k + 1 regular knot sequence corresponding to the partition used
in Corollary D.11 which is defined by the numbers M and N . We refine the
emerging knot sequences as mentioned in the beginning of Remark D.35
(a) r times. All computations are carried out with Matlab on a general
purpose desktop computer (Intel Core i7, 4.0 GHz, 8 GB of ram) and we
use Yalmip [101] together with Mosek [113]. Note that we render all in-
equalities strict by adding or subtracting εI with ε = 10−3; reducing the
size of ε often yields better results, but also promotes the occurrence of
numerical issues.

Moreover, we denote the average running times within twenty runs in sec-
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onds for applying Corollary D.8, D.11 and D.36 with Tmax = 1 analogously
as Ada,dmSOS , AM,N

LS and AM,N,r
BS . These numbers are depicted in Table D.2

where nxu stands for the number of columns in (A,B).
We observe that the linear spline approach often requires rather fine grids

to get results compatible with the other two approaches. This leads to a
large number of decision variables which might trouble some solvers. Mosek
[113] is one of the solvers that seems to be good in exploiting the resulting
underlying problem structure and can handle such fine grids. Moreover,
note that the computation of T 6,2

SOS seems to be problematic for several of
the considered examples. The numerically determined values are actually
smaller than the ones for T 4,2

SOS and, hence, only a poor approximation of
T 6,2
SOS . Nevertheless, the SOS approach is usually superior if compared to

the one using linear splines as demonstrated, e.g., in [22, 82]. For most of
the examples, the B-spline approach is the least conservative one, while, at
same time, being faster than the SOS or the linear spline approach. Next to
the nice approximation properties of splines, another reason for this might
be that relatively few decision variables but many constraints are involved
in the B-spline approach.
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Table D.1: Some instances of the values T da,dmSOS , TM,N
LS and TM,N,r

BS for sev-
eral examples from [96]. All values are rounded to two decimals.

Sum-of-Squares Linear Splines B-Splines

Name T 2,1
SOS T 4,2

SOS T 6,2
SOS T 10,10

LS T 30,30
LS T 20,70

LS T 3,3,0
BS T 3,3,1

BS T 3,10,0
BS T 5,20,1

BS

AC2 2.66 3.58 3.46 2.66 3.21 3.42 2.84 3.15 3.54 3.69
AC6 3.11 3.60 3.07 3.25 3.60 3.68 3.42 3.56 3.73 3.79
AC8 2.35 2.45 2.41 1.92 2.21 2.31 2.06 2.19 2.39 2.45
HE2 2.17 3.19 2.92 2.29 2.84 3.03 2.39 2.76 3.17 3.32
HE5 1.47 1.84 0.32 2.55 0.95 0.85 2.27 2.53 3.21 3.34
DIS2 2.82 9.89 12.66 7.55 22.79 40.00 4.47 6.68 19.63 40.00
MFP 1.22 1.84 1.86 1.49 1.71 1.79 1.55 1.69 1.82 1.90
EB1 1.96 2.66 2.45 2.60 2.90 3.15 2.66 2.80 5.97 19.07
PSM 8.90 13.98 35.00 4.61 14.31 28.53 3.25 4.84 14.12 40.00
NN2 1.88 2.17 2.17 1.80 2.00 2.08 1.94 2.04 2.14 2.16
NN13 1.80 3.54 3.23 2.41 6.97 13.65 2.06 2.78 8.55 25.51
CSE1 2.33 2.33 2.33 1.79 2.08 2.19 1.96 2.14 2.29 2.33
IH 1.10 1.38 1.38 1.12 1.28 1.32 1.22 1.30 1.38 1.38

Table D.2: Average running times in seconds Ada,dmSOS , AM,N
LS , AM,N,r

BS and
nxu, the number of columns of (A,B), for examples from [96].

Sum-of-Squares Linear Splines B-Splines

Name nxu A2,1
SOS A4,2

SOS A6,2
SOS A10,10

LS A30,30
LS A20,70

LS A3,3,0
BS A3,3,1

BS A3,10,0
BS A5,20,1

BS

AC2 8 0.65 0.80 1.42 0.31 0.88 1.66 0.19 0.24 0.39 1.53
AC6 9 0.77 0.98 1.90 0.37 1.02 2.00 0.22 0.29 0.46 1.78
AC8 10 0.89 1.23 2.37 0.42 1.18 2.32 0.25 0.33 0.52 1.96
HE2 6 1.75 2.93 3.90 0.53 1.42 2.49 0.27 0.32 0.53 1.69
HE5 12 1.29 2.15 4.10 0.74 2.38 4.42 0.41 0.63 0.90 3.74
DIS2 5 0.39 0.40 0.54 0.17 0.41 0.73 0.11 0.14 0.24 1.09
MFP 7 0.84 1.36 1.99 0.33 0.91 1.67 0.19 0.24 0.40 1.47
EB1 11 1.06 1.61 3.17 0.53 1.55 2.96 0.32 0.45 0.68 2.53
PSM 9 0.75 0.98 1.85 0.34 0.94 1.77 0.21 0.27 0.43 1.59
NN2 3 0.28 0.26 0.32 0.13 0.31 0.53 0.09 0.11 0.20 0.93
NN13 8 0.66 1.04 1.88 0.35 1.00 1.86 0.21 0.28 0.44 1.70
CSE1 22 5.46 11.03 26.07 3.09 9.25 16.84 1.44 2.52 3.49 20.59
IH 32 17.86 45.15 123.36 12.83 42.35 71.42 6.35 12.95 14.55 80.55





References

[1] S. Aberkane, J. C. Ponsart, M. Rodrigues, and D. Sauter. Output
feedback control of a class of stochastic hybrid systems. Automatica,
44(5):1325–1332, 2008.

[2] A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization:
More tractable alternatives to sum of squares and semidefinite opti-
mization. arXiv:1706.02586 [math.OC], 2017.

[3] A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, and
Y. Zheng. Improving efficiency and scalability of sum of squares
optimization: Recent advances and limitations. In Proc. 56th IEEE
Conf. Decision and Control, pages 453–462, 2017.

[4] L. I. Allerhand and U. Shaked. Robust stability and stabilization
of linear switched systems with dwell time. IEEE Trans. Autom.
Control, 56(2):381–386, 2010.

[5] F. Amato, M. Corless, M. Mattei, and R. Setola. A multivariable
stability margin in the presence of time-varying, bounded rate gains.
Int. J. Robust Nonlin., 7(2):127–143, 1997.

[6] F. Amato, G. De Tommasi, and A. Pironti. Input-output finite-

https://doi.org/10.1016/j.automatica.2007.09.021
https://doi.org/10.1016/j.automatica.2007.09.021
https://arxiv.org/abs/1706.02586
https://arxiv.org/abs/1706.02586
https://arxiv.org/abs/1706.02586
https://doi.org/10.1109/CDC.2017.8263706
https://doi.org/10.1109/CDC.2017.8263706
https://doi.org/10.1109/TAC.2010.2097351
https://doi.org/10.1109/TAC.2010.2097351
https://doi.org/10.1002/(SICI)1099-1239(199702)7:2<127::AID-RNC303>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1099-1239(199702)7:2<127::AID-RNC303>3.0.CO;2-G
https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1016/j.nahs.2015.08.005


284 References

time stabilization of impulsive linear systems: Necessary and suffi-
cient conditions. Nonlinear Anal. Hybri., 19:93–106, 2016.

[7] D. Antunes, J. P. Hespanha, and C. Silvestre. Control of impulsive
renewal systems: Application to direct design in networked control.
In Proc. 48h IEEE Conf. Decision and Control and 28th Chinese
Control Conf., 2009.

[8] P. Apkarian and R. J. Adams. Advanced gain-scheduling techniques
for uncertain systems. IEEE Trans. Control Syst. Technol., 6(1):
21–32, 1998.

[9] P. Apkarian and D. Noll. Nonsmooth H∞ synthesis. IEEE Trans.
Autom. Control, 51(1):71–86, 2006.

[10] D. Arzelier, D. Peaucelle, and S. Salhi. Robust static output feedback
stabilization for polytopic uncertain systems: Improving the guaran-
teed performance bound. IFAC Proc. Vol., 36(11):425–430, 2003.

[11] A. Bacciotti and L. Rosier. Liapunov functions and stability in con-
trol theory. Springer Berlin Heidelberg, 2005.

[12] V. Balakrishnan. Lyapunov Functional in Complex µ Analysis. IEEE
Trans. Autom. Control, 47(9):1466–1479, 2002.

[13] G. Balas, R. Chiang, A. Packard, and M. Safanov. Robust control
toolbox: Getting started guide. Technical report, The MathWorks,
Inc., 2021.

[14] P.-A. Bliman. On robust semidefinite programming. In Proc. 16th
Int. Symp. Math. Netw. Syst., 2004.

[15] S. Boyd. Robust control tools: Graphical user-interfaces and lmi
algorithms. Syst. Control Inform., 38(3):111–117, 1994.

https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1016/j.nahs.2015.08.005
https://doi.org/10.1109/CDC.2009.5400444
https://doi.org/10.1109/CDC.2009.5400444
https://doi.org/10.1109/87.654874
https://doi.org/10.1109/87.654874
https://doi.org/10.1109/TAC.2005.860290
https://doi.org/10.1016/S1474-6670(17)35701-4
https://doi.org/10.1016/S1474-6670(17)35701-4
https://doi.org/10.1016/S1474-6670(17)35701-4
https://doi.org/10.1007/b139028
https://doi.org/10.1007/b139028
https://doi.org/10.1109/TAC.2002.802766


References 285

[16] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix
inequalities in system & control theory. Society for Industrial &
Applied, 1994.

[17] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[18] C. Briat. Convex conditions for robust stability analysis and stabi-
lization of linear aperiodic impulsive and sampled-data systems under
dwell-time constraints. Automatica, 49(11):3449–3457, 2013.

[19] C. Briat. Stability analysis and control of a class of LPV systems
with piecewise constant parameters. Syst. Control Lett., 82:10–17,
2015.

[20] C. Briat. Convex conditions for robust stabilization of uncertain
switched systems with guaranteed minimum and mode-dependent
dwell-time. Syst. Control Lett., 78:63–72, 2015.

[21] C. Briat. Stability analysis and stabilization of LPV systems with
jumps and piecewise differentiable parameters using continuous and
sampled-data controllers. arXiv:1705.00056v1 [math.OC], 2017.

[22] C. Briat. Dwell-time stability and stabilization conditions for linear
positive impulsive and switched systems. Nonlinear Anal. Hybri., 24:
198–226, 2017.

[23] C. Briat. Co-design of aperiodic sampled-data min-jumping rules for
linear impulsive, switched impulsive and sampled-data systems. Syst.
Control Lett., 130:32–42, 2019.

[24] C. Briat and A. Seuret. A looped-functional approach for robust
stability analysis of linear impulsive systems. Syst. Control Lett., 61
(10):980–988, 2012.

https://doi.org/10.1137/1.9781611970777
https://doi.org/10.1137/1.9781611970777
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1016/j.automatica.2013.08.022
https://doi.org/10.1016/j.automatica.2013.08.022
https://doi.org/10.1016/j.automatica.2013.08.022
https://doi.org/10.1016/j.sysconle.2015.05.002
https://doi.org/10.1016/j.sysconle.2015.05.002
https://doi.org/10.1016/j.sysconle.2015.01.012
https://doi.org/10.1016/j.sysconle.2015.01.012
https://doi.org/10.1016/j.sysconle.2015.01.012
https://arxiv.org/abs/1705.00056
https://arxiv.org/abs/1705.00056
https://arxiv.org/abs/1705.00056
https://doi.org/10.1016/j.nahs.2017.01.004
https://doi.org/10.1016/j.nahs.2017.01.004
https://doi.org/10.1016/j.sysconle.2019.06.003
https://doi.org/10.1016/j.sysconle.2019.06.003
https://doi.org/10.1016/j.sysconle.2012.07.008
https://doi.org/10.1016/j.sysconle.2012.07.008


286 References

[25] A. E. Bryson. Time-varying linear-quadratic control. J. Optim. The-
ory and Appl., 100(3):515–525, 1999.

[26] J. Buch and P. Seiler. Finite horizon robust synthesis using integral
quadratic constraints. Int. J. Robust Nonlin., 31(8):3011–3035, 2021.

[27] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton. HIFOO - a
Matlab package for fixed-order controller design and H∞ optimiza-
tion. IFAC Proc. Vol., 39(9):339–344, 2006.

[28] T. Chen and B. A. Francis. Optimal sampled-data control systems.
Springer-Verlag London, 1995.

[29] G. Chesi, P. Colaneri, J. C. Geromel, R. Middleton, and R. Shorten.
A nonconservative LMI condition for stability of switched systems
with guaranteed dwell time. IEEE Trans. Autom. Control, 57(5):
1297–1302, 2012.

[30] E. Cohen and L. L. Schumaker. Rates of convergence of control
polygons. Comput. Aided Geom. Des., 2(1-3):229–235, 1985.

[31] E. Cohen, T. Lyche, and R. Riesenfeld. Discrete b-splines and subdi-
vision techniques in computer-aided geometric design and computer
graphics. Comput. Vision Graph., 14(2):87–111, 1980.

[32] E. Cohen, T. Lyche, and L. L. Schumaker. Degree raising for splines.
J. Approx. Theory, 46(2):170–181, 1986.

[33] J. Daafouz, J. C. Geromel, and G. S. Deaecto. A simple approach for
switched control design with control bumps limitation. Syst. Control
Lett., 61(12):1215–1220, 2012.

[34] R. D’Andrea and G. E. Dullerud. Distributed control design for
spatially interconnected systems. IEEE Trans. Autom. Control, 48
(9):1478–1495, 2003.

https://doi.org/10.1023/A:1022682305644
https://doi.org/10.1002/rnc.5431
https://doi.org/10.1002/rnc.5431
https://doi.org/10.3182/20060705-3-FR-2907.00059
https://doi.org/10.3182/20060705-3-FR-2907.00059
https://doi.org/10.3182/20060705-3-FR-2907.00059
https://doi.org/10.1007/978-1-4471-3037-6
https://doi.org/10.1109/TAC.2011.2174665
https://doi.org/10.1109/TAC.2011.2174665
https://doi.org/10.1016/0167-8396(85)90029-9
https://doi.org/10.1016/0167-8396(85)90029-9
https://doi.org/10.1016/0146-664X(80)90040-4
https://doi.org/10.1016/0146-664X(80)90040-4
https://doi.org/10.1016/0146-664X(80)90040-4
https://doi.org/10.1016/0021-9045(86)90059-6
https://doi.org/10.1016/j.sysconle.2012.09.001
https://doi.org/10.1016/j.sysconle.2012.09.001
https://doi.org/10.1109/TAC.2003.816954
https://doi.org/10.1109/TAC.2003.816954


References 287

[35] Nair Maria Maia de Abreu. Old and new results on algebraic con-
nectivity of graphs. Linear Algebra Appl., 423:53–73, 2007.

[36] C. de Boor. A practical guide to splines. Applied Mathematical
Sciences. Springer New York, 2001.

[37] A. M. de Oliveira, O. L. V. Costa, and J. Daafouz. A suboptimal
LMI formulation for the h2 static output feedback control of hidden
Markov jump linear systems. In Proc. Eur. Control Conf., 2018.

[38] M. C. de Oliveira. A robust version of the elimination lemma. IFAC
Proc. Vol., 38(1):310–314, 2005.

[39] M. C. de Oliveira, J. Bernussou, and J. C. Geromel. A new discrete-
time robust stability condition. Syst. Control Lett., 37(4):261–265,
1999.

[40] M. C. de Oliveira, J. C. Geromel, and J. Bernussou. Extended H2

and H∞ norm characterizations and controller parametrizations for
discrete-time systems. Int. J. Control, 75(9):666–679, 2002.

[41] G. S. Deaecto, J. C. Geromel, and J. Daafouz. Dynamic output
feedback H∞ control of switched linear systems. Automatica, 47(8):
1713–1720, 2011.

[42] S. G. Dietz. Analysis and control of uncertain systems by using
robust semi-definite programming. PhD thesis, TU Delft, 2008.

[43] J. Doyle, B. Francis, and A. Tannenbaum. Feedback control theory.
Macmillan Publishing Co, 1990.

[44] J. Doyle, A. Packard, and K. Zhou. Review of LFTs, LMIs, and µ.
In Proc. 30th IEEE Conf. Decision and Control, pages 1227–1232,
1991.

https://doi.org/10.1016/j.laa.2006.08.017
https://doi.org/10.1016/j.laa.2006.08.017
https://www.springer.com/us/book/9780387953663
https://doi.org/10.23919/ECC.2018.8550540
https://doi.org/10.23919/ECC.2018.8550540
https://doi.org/10.23919/ECC.2018.8550540
https://doi.org/10.3182/20050703-6-CZ-1902.00996
https://doi.org/10.1016/S0167-6911(99)00035-3
https://doi.org/10.1016/S0167-6911(99)00035-3
https://doi.org/10.1080/00207170210140212
https://doi.org/10.1080/00207170210140212
https://doi.org/10.1080/00207170210140212
https://doi.org/10.1016/j.automatica.2011.02.046
https://doi.org/10.1016/j.automatica.2011.02.046
http://resolver.tudelft.nl/uuid:c4d7e9b8-14d2-4337-838e-41cf46679186
http://resolver.tudelft.nl/uuid:c4d7e9b8-14d2-4337-838e-41cf46679186
https://doi.org/10.1109/CDC.1991.261572


288 References

[45] G. E. Dullerud. Control of uncertain sampled-data systems.
Birkhäuser Basel, 1996.

[46] Y. Ebihara, D. Peaucelle, and D. Arzelier. S-variable approach to
LMI-based robust control. Springer-Verlag London, 2015.

[47] L. El Ghaoui and V. Balakrishnan. Synthesis of fixed-structure con-
trollers via numerical optimization. In Proc. 33rd IEEE Conf. Deci-
sion and Control, pages 2678–2683, 1994.

[48] L. El Ghaoui, F. Oustry, and M. AitRami. A cone complementarity
linearization algorithm for static output-feedback and related prob-
lems. IEEE Trans. Autom. Control, 42(8):1171–1176, 1997.

[49] B. Farkas and S.-A. Wegner. Variations on Barbălat’s lemma. Amer.
Math. Mon., 123(8):825, 2016.

[50] M. Fetzer. From classical absolute stability tests towards a com-
prehensive robustness analysis. PhD thesis, University of Stuttgart,
2017.

[51] M. Fetzer, C. W. Scherer, and J. Veenman. Invariance with dynamic
multipliers. IEEE Trans. Autom. Control, 63(7):1929–1942, 2018.

[52] P. Finsler. Über das Vorkommen definiter und semidefiniter For-
men in Scharen quadratischer Formen. Commentarii Mathematici
Helvetici, 9(1):188–192, 1936.

[53] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback control
of dynamic systems. Pearson, 2010.

[54] P. Gahinet and P. Apkarian. A linear matrix inequality approach to
H∞ control. Int. J. Robust Nonlin., 4:421–448, 1994.

https://doi.org/10.1007/978-1-4612-2440-2
https://doi.org/10.1007/978-1-4471-6606-1
https://doi.org/10.1007/978-1-4471-6606-1
https://doi.org/10.1109/CDC.1994.411398
https://doi.org/10.1109/CDC.1994.411398
https://doi.org/10.1109/9.618250
https://doi.org/10.1109/9.618250
https://doi.org/10.1109/9.618250
https://doi.org/10.4169/amer.math.monthly.123.8.825
https://doi.org/10.18419/opus-9726
https://doi.org/10.18419/opus-9726
https://doi.org/10.1109/TAC.2017.2762764
https://doi.org/10.1109/TAC.2017.2762764
https://www.pearson-studium.de/feedback-control-of-dynamic-systems-global-edition.html
https://www.pearson-studium.de/feedback-control-of-dynamic-systems-global-edition.html
https://doi.org/10.1002/rnc.4590040403
https://doi.org/10.1002/rnc.4590040403


References 289

[55] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. LMI control
toolbox: For use with Matlab. Technical report, The MathWorks,
Inc, 1995.

[56] P. Gahinet, P. Apkarian, and M. Chilali. Affine parameter-dependent
Lyapunov functions and real parametric uncertainty. IEEE Trans.
Autom. Control, 41(3):436–442, 1996.

[57] L. Gao, C. Tong, and L. Wand. H∞ dynamic output feedback con-
sensus control for discrete-time multi-agent systems with switching
topology. Arab. J. Sci. Eng., 39(2):1477–1487, 2014.

[58] S. S. Ge and Z. Sun. Switched controllability via bumpless transfer
input and constrained switching. IEEE Trans. Autom. Control, 53
(7):1702–1706, 2008.

[59] J. C. Geromel. Optimal linear filtering under parameter uncertainty.
IEEE Trans. Signal Process., 47(1):168–175, 1999.

[60] J. C. Geromel, M. C. de Oliveira, and J. Bernussou. Robust filtering
of discrete-time linear systems with parameter dependent lyapunov
functions. SIAM J. Control Optim., 41(3):700–711, 2002.

[61] J. C. Geromel, P. Colaneri, and P. Bolzern. Differential linear matrix
inequality in optimal sampled-data control. Automatica, 100:289–
298, 2019.

[62] C. Godsil and G. F. Royle. Algebraic graph theory. Springer New
York, 2001.

[63] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical sys-
tems. IEEE Control Syst., 29(2):28–93, 2009.

https://doi.org/10.1109/9.486646
https://doi.org/10.1109/9.486646
https://doi.org/10.1007/s13369-013-0807-7
https://doi.org/10.1007/s13369-013-0807-7
https://doi.org/10.1007/s13369-013-0807-7
https://doi.org/10.1109/TAC.2008.929377
https://doi.org/10.1109/TAC.2008.929377
https://doi.org/10.1109/78.738249
https://doi.org/10.1137/S0363012999366308
https://doi.org/10.1137/S0363012999366308
https://doi.org/10.1137/S0363012999366308
https://doi.org/10.1016/j.automatica.2018.11.021
https://doi.org/10.1016/j.automatica.2018.11.021
https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1109/MCS.2008.931718
https://doi.org/10.1109/MCS.2008.931718


290 References

[64] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical
systems: Modeling, stability, and robustness. Princeton University
Press, 2012.

[65] T. R. Gonçalves, G. W. Gabriel, and J. G. Geromel. Differential lin-
ear matrix inequalities optimization. IEEE Control Systems Letters,
3(2):380–385, 2019.

[66] M. Green and D. J. N. Limebeer. Linear robust control. Prentice-Hall
Inc., 1995.

[67] X. Guo, J. Liang, and H. M. Fardoun. New methods to realize the
cluster consensus for multi-agent networks. Asian J. Control, 22(6):
2549–2557, 2019.

[68] W. M. Haddad, V. Chellaboina, and S. G. Nersesov. Impulsive and
hybrid dynamical systems. Princeton Univ. Press, 2006.

[69] R. Hanus, M. Kinnaert, and J.-L. Henrotte. Conditioning technique,
a general anti-windup and bumpless transfer method. Automatica,
23(6):729–739, 1987.

[70] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An intro-
duction to event-triggered and self-triggered control. In Proc. 51st
IEEE Conf. Decision and Control, 2012.

[71] A. Helmersson. Methods for robust gain-scheduling. PhD thesis,
Linköping University, Sweden, 1995.

[72] A. Helmersson. IQC synthesis based on inertia constraints. IFAC
Proc. Vol., 32(2):3361–3366, 1999.

[73] D. Henrion, M. Šebek, and V. Kučera. Positive polynomials and
robust stabilization with fixed-order controllers. IEEE Trans. Autom.
Control, 48(7):1178–1186, 2003.

https://www.ebook.de/de/product/18438259/rafal_goebel_hybrid_dynamical_systems.html
https://www.ebook.de/de/product/18438259/rafal_goebel_hybrid_dynamical_systems.html
https://doi.org/10.1109/LCSYS.2018.2884016
https://doi.org/10.1109/LCSYS.2018.2884016
http://dl.offdownload.ir/ali/Linear%20Robust%20Control%20Limbeer.pdf
https://doi.org/10.1002/asjc.2111
https://doi.org/10.1002/asjc.2111
https://doi.org/10.1016/0005-1098(87)90029-X
https://doi.org/10.1016/0005-1098(87)90029-X
https://doi.org/10.1109/CDC.2012.6425820
https://doi.org/10.1109/CDC.2012.6425820
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A507611&dswid=-4736
https://doi.org/10.1016/S1474-6670(17)56573-8
https://doi.org/10.1109/TAC.2003.814103
https://doi.org/10.1109/TAC.2003.814103


References 291

[74] J. P. Hespanha and A. S. Morse. Stability of switched systems with
average dwell-time. In Proc. 38th IEEE Conf. Decision and Control,
pages 2655–2660, 1999.

[75] J. P. Hespanha and A. S. Morse. Switching between stabilizing con-
trollers. Automatica, 38(11):1905–1917, 2002.

[76] J. P. Hespanha, D. Liberzon, and A. R. Teel. Lyapunov conditions
for input-to-state stability of impulsive systems. Automatica, 44(11):
2735–2744, 2008.

[77] G. Hilhorst, E. Lambrechts, and G. Pipeleers. Control of linear
parameter-varying systems using B-splines. In Proc. 55th IEEE Conf.
Decision and Control, 2016.

[78] C. Hoffmann. Linear parameter-varying control of systems of high
complexity. PhD thesis, University of Hamburg, 2016.

[79] T. Holicki and C. W. Scherer. Controller synthesis for distributed
systems over undirected graphs. In Proc. 55th IEEE Conf. Decision
and Control, pages 5238–5244, 2016.

[80] T. Holicki and C. W. Scherer. A swapping lemma for switched sys-
tems. IFAC-PapersOnLine, 51(25):346–352, 2018.

[81] T. Holicki and C. W. Scherer. Output-feedback gain-scheduling
synthesis for a class of switched systems via dynamic resetting D-
scalings. In Proc. 57th IEEE Conf. Decision and Control, pages
6440–6445, 2018.

[82] T. Holicki and C. W. Scherer. A homotopy approach for robust
output-feedback synthesis. In Proc. 27th Med. Conf. Control Autom.,
pages 87–93, 2019.

https://doi.org/10.1109/CDC.1999.831330
https://doi.org/10.1109/CDC.1999.831330
https://doi.org/10.1016/S0005-1098(02)00139-5
https://doi.org/10.1016/S0005-1098(02)00139-5
https://doi.org/10.1016/j.automatica.2008.03.021
https://doi.org/10.1016/j.automatica.2008.03.021
https://doi.org/10.1109/CDC.2016.7798757
https://doi.org/10.1109/CDC.2016.7798757
https://doi.org/10.15480/882.1301
https://doi.org/10.15480/882.1301
https://doi.org/10.1109/CDC.2016.7799071
https://doi.org/10.1109/CDC.2016.7799071
https://doi.org/10.1016/j.ifacol.2018.11.131
https://doi.org/10.1016/j.ifacol.2018.11.131
https://doi.org/10.1109/CDC.2018.8619128
https://doi.org/10.1109/CDC.2018.8619128
https://doi.org/10.1109/CDC.2018.8619128
https://doi.org/10.1109/MED.2019.8798536
https://doi.org/10.1109/MED.2019.8798536


292 References

[83] T. Holicki and C. W. Scherer. Stability analysis and output-feedback
synthesis of hybrid systems affected by piecewise constant parameters
via dynamic resetting scalings. Nonlinear Anal. Hybri., 34:179–208,
2019.

[84] T. Holicki and C. W. Scherer. Output-feedback synthesis for a class of
aperiodic impulsive systems. IFAC-PapersOnline, 53(2):7299–7304,
2020.

[85] T. Holicki and C. W. Scherer. Revisiting and generalizing the dual
iteration for static and robust output-feedback synthesis. Int. J.
Robust Nonlin., 31(11):1–33, 2021.

[86] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge Univ.
Press, 1990.

[87] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge
Univ. Press, 1991.

[88] D. Hristu-Varsakelis and W. S. Levine, editors. Handbook of net-
worked and embedded control systems. Birkhäuser Boston, 2005.

[89] H. Ishii and B. A. Francis. Stabilizing a linear system by switching
control with dwell time. IEEE Trans. Autom. Control, 47(12):1962–
1973, dec 2002.

[90] T. Iwasaki. The dual iteration for fixed order control. In Proc. Amer.
Control Conf., pages 62–66, 1997.

[91] T. Iwasaki. The dual iteration for fixed-order control. IEEE Trans.
Autom. Control, 44(4):783–788, 1999.

[92] J. P. Jansch-Porto and G. E. Dullerud. Decentralized control with
moving-horizon linear switched systems. In Proc. Amer. Control
Conf., pages 851–856, 2017.

https://doi.org/10.1016/j.nahs.2019.06.003
https://doi.org/10.1016/j.nahs.2019.06.003
https://doi.org/10.1016/j.nahs.2019.06.003
https://doi.org/10.1016/j.ifacol.2020.12.981
https://doi.org/10.1016/j.ifacol.2020.12.981
https://doi.org/10.1002/rnc.5547
https://doi.org/10.1002/rnc.5547
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1007/b137198
https://doi.org/10.1007/b137198
https://doi.org/10.1109/TAC.2002.805689
https://doi.org/10.1109/TAC.2002.805689
https://doi.org/10.1109/ACC.1997.611755
https://doi.org/10.1109/9.754818
https://doi.org/10.23919/ACC.2017.7963059
https://doi.org/10.23919/ACC.2017.7963059


References 293

[93] H. W. Knobloch and H. Kwakernaak. Lineare Kontrolltheorie.
Springer-Verlag Berlin, 1985.

[94] I. E. Köse and F. Jabbari. Robust control of linear systems with real
parametric uncertainty. Automatica, 35(4):679–687, 1999.

[95] D. A. Lawrence. On output feedback stabilization for linear impulsive
systems. In Proc. Amer. Control Conf., 2012.

[96] F. Leibfritz. Compleib: Constraint matrix-optimization problem li-
brary - a collection of test examples for nonlinear semidefinite pro-
grams, control system design and related problems. Technical report,
University of Trier, 2004.

[97] D. Liberzon. Switching in systems and control. Birkhäuser Boston,
2003.

[98] D. Liberzon and A. S. Morse. Basic problems in stability and design
of switched systems. IEEE Control Syst. Mag., 19(5):59–70, 1999.

[99] H. Lin and P. J. Antsaklis. Stability and stabilizability of switched
linear systems: A survey of recent results. IEEE Trans. Autom. Con-
trol, 54(2):308–322, 2009.

[100] Y. Liu and Y. Jia. H∞-consensus control of multi-agent systems
with switching topology: a dynamic output feedback protocol. Int.
J. Control, 83(3):527–537, 2010.

[101] J. Löfberg. Yalmip : A toolbox for modeling and optimization in
MATLAB. In Proc. IEEE Int. Symp. CACSD, 2004.

[102] Bei Lu, Fen Wu, and SungWan Kim. Switching LPV control of an
F-16 aircraft via controller state reset. IEEE Trans. Control Syst.
Tech., 14(2):267–277, 2006.

https://doi.org/10.1007/978-3-642-69884-2
https://doi.org/10.1016/S0005-1098(98)00184-8
https://doi.org/10.1016/S0005-1098(98)00184-8
https://doi.org/10.1109/ACC.2012.6314966
https://doi.org/10.1109/ACC.2012.6314966
http://www.complib.de
http://www.complib.de
http://www.complib.de
https://doi.org/10.1007/978-1-4612-0017-8
https://doi.org/10.1109/37.793443
https://doi.org/10.1109/37.793443
https://doi.org/10.1109/TAC.2008.2012009
https://doi.org/10.1109/TAC.2008.2012009
https://doi.org/10.1080/00207170903267039
https://doi.org/10.1080/00207170903267039
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/tcst.2005.863656
https://doi.org/10.1109/tcst.2005.863656


294 References

[103] J. Lunze and F. Lamnabhi-Lagarrigue, editors. Handbook of hybrid
systems control. Cambridge Univ. Press, 2009.

[104] T. Lyche and K. Mørken. Spline methods draft. University of Oslo,
2008.

[105] P. Massioni and M. Verhaegen. Distributed control for identical dy-
namically coupled systems: A decomposition approach. IEEE Trans.
Autom. Control, 54(1):124–135, 2009.

[106] I. Masubuchi. Numerical solution to a class of parameter-dependent
convex differential inequalities. Trans. Soc. Instr. Control Eng., 36
(3):248–254, 2000.

[107] I. Masubuchi, A. Ohara, and N. Suda. LMI-based controller synthe-
sis: a unified formulation and solution. Int. J. Robust Nonlin., 8(8):
669–686, 1998.

[108] E. A. Medina and D. A. Lawrence. Output feedback stabilization for
linear impulsive systems. In Proc. Amer. Control Conf., 2010.

[109] A. Megretsky and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Trans. Autom. Control, 42(6):819–830, 1997.

[110] E. Michael. Continuous selections. I. Ann. Math., 63(2):361–382,
1956.

[111] B. P. Molinari. The time-invariant linear-quadratic optimal control
problem. Automatica, 13(4):347–357, 1977.

[112] K. Mørken. Some identities for products and degree raising of splines.
Constr. Approx., 7:195–208, 1991.

[113] MOSEK ApS. The MOSEK optimization toolbox for MATLAB man-
ual. Version 8.1., 2017.

https://doi.org/10.1017/CBO9780511807930
https://doi.org/10.1017/CBO9780511807930
http://heim.ifi.uio.no/knutm/komp04.pdf
https://doi.org/10.1109/TAC.2008.2009574
https://doi.org/10.1109/TAC.2008.2009574
https://doi.org/10.9746/sicetr1965.36.248
https://doi.org/10.9746/sicetr1965.36.248
https://doi.org/10.1002/(SICI)1099-1239(19980715)8:8<669::AID-RNC337>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1099-1239(19980715)8:8<669::AID-RNC337>3.0.CO;2-W
https://doi.org/10.1109/ACC.2010.5530847
https://doi.org/10.1109/ACC.2010.5530847
https://doi.org/10.1109/9.587335
https://doi.org/10.1109/9.587335
https://doi.org/10.2307/1969615
https://doi.org/10.1016/0005-1098(77)90017-6
https://doi.org/10.1016/0005-1098(77)90017-6
https://doi.org/10.1007/BF01888153
http://docs.mosek.com/8.1/toolbox/index.html
http://docs.mosek.com/8.1/toolbox/index.html


References 295

[114] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel. Exponential stabil-
ity of impulsive systems with application to uncertain sampled-data
systems. Syst. Control Lett., 57(5):378–385, 2008.

[115] J. Nocedal and S. J. Wright. Numerical optimization. Springer New
York, 2006.

[116] A. Packard. Gain scheduling via linear fractional transformations.
Syst. Control Lett., 22(2):79–92, 1994.

[117] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna,
P. Seiler, and P. Parrilo. SOSTOOLS version 3.00 sum of squares
optimization toolbox for MATLAB. arXiv:1310.4716 [math.OC],
2013.

[118] P. Parrilo. Structured semidefinite programs and semialgebraic geom-
etry methods in robustness and optimization. PhD thesis, California
Institute of Technology, Pasadena, California, 2000.

[119] A. Pinkus. n-widths in approximation theory, volume 7 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. Springer-Verlag Berlin Hei-
delberg, 1985.

[120] K. Poolla and A. Tikku. Robust performance against time-varying
structured pertubations. IEEE Trans. Autom. Control, 40(9):1589–
1602, 1995.

[121] M. Putinar. Positive polynomials on compact semi-algebraic sets.
Indiana Univ. Math. J., 42(3):969–984, 1993.

[122] A. Ramezanifar, J. Mohammadpour, and K. M. Grigoriadis. Output-
feedback sampled-data control design for linear parameter-varying
systems with delay. Int. J. Control, 87(12):2431–2445, 2014.

https://doi.org/10.1016/j.sysconle.2007.10.009
https://doi.org/10.1016/j.sysconle.2007.10.009
https://doi.org/10.1016/j.sysconle.2007.10.009
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1016/0167-6911(94)90102-3
https://arxiv.org/abs/1310.4716
https://arxiv.org/abs/1310.4716
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.4148
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.4148
https://doi.org/10.1109/9.412628
https://doi.org/10.1109/9.412628
https://www.jstor.org/stable/24897130
https://doi.org/10.1080/00207179.2014.926394
https://doi.org/10.1080/00207179.2014.926394
https://doi.org/10.1080/00207179.2014.926394


296 References

[123] A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Syst. Control
Lett., 28(1):7–10, 1996.

[124] W. Ren and R. W. Beard. Distributed consensus in multi-vehicle co-
operative control: Theory and applications. Springer-Verlag London,
2008.

[125] B. Reznick. Some concrete aspects of Hilbert’s 17th problem. Con-
temp. Math., 253:251–272, 2000.

[126] C. A. Rösinger and C. W. Scherer. Lifting to passivity for h2-gain-
scheduling synthesis with full block scalings. IFAC-PapersOnLine,
53(2):7292–7298, 2020.

[127] M. A. Rotea. The generalized H2 control problem. Automatica, 29
(2):373–385, 1993.

[128] M. S. Sadabadi and D. Peaucelle. From static output feedback to
structured robust static output feedback: A survey. Annu. Rev. Con-
trol, 42:11–26, 2016.

[129] M. G. Safonov, D. J. N. Limebeer, and R. Y. Chiang. Simplifying the
H∞ theory via loop-shifting, matrix-pencil and descriptor concepts.
Int. J. Control, 50(6):2467–2488, 1989.

[130] T. Samad and A. M. Annaswamy, editors. The impact of control
technology. IEEE Control Systems Society, 2011.

[131] M. Sato. Filter design for LPV systems using quadratically
parameter-dependent Lyapunov functions. Automatica, 42(11):2017–
2023, 2006.

[132] M. Sato. Design method of gain-scheduled controllers not depending
on derivatives of parameters. Int. J. Control, 81(6):1013–1025, 2008.

https://doi.org/10.1016/0167-6911(95)00063-1
https://doi.org/10.1007/978-1-84800-015-5
https://doi.org/10.1007/978-1-84800-015-5
https://doi.org/10.1090/conm/253/03936
https://doi.org/10.1016/j.ifacol.2020.12.570
https://doi.org/10.1016/j.ifacol.2020.12.570
https://doi.org/10.1016/0005-1098(93)90130-L
https://doi.org/10.1016/j.arcontrol.2016.09.014
https://doi.org/10.1016/j.arcontrol.2016.09.014
https://doi.org/10.1080/00207178908953510
https://doi.org/10.1080/00207178908953510
http://ieeecss.org/general/impact-control-technology
http://ieeecss.org/general/impact-control-technology
https://doi.org/10.1016/j.automatica.2006.07.001
https://doi.org/10.1016/j.automatica.2006.07.001
https://doi.org/10.1080/00207170701691521
https://doi.org/10.1080/00207170701691521


References 297

[133] M. Sato and D. Peaucelle. A new method for gain-scheduled output
feedback controller design using inexact scheduling parameters. In
Proc. Conf. Control Tech. Appl., pages 1295–1300, 2018.

[134] L. Scardovi and R. Sepulchre. Synchronization in networks of iden-
tical linear systems. Automatica, 45(5):906–913, 2009.

[135] C. W. Scherer. A complete algebraic solvability test for the nonstrict
Lyapunov inequality. Syst. Control Lett., 25(5):327–335, 1995.

[136] C. W. Scherer. The general nonstrict algebraic Riccati inequality.
Linear Algebra Appl., 219:1–33, 1995.

[137] C. W. Scherer. Mixed H2/H∞ control for time-varying and linear
parametrically-varying systems. Int. J. Robust Nonlin., 6(9-10):929–
952, 1996.

[138] C. W. Scherer. A full block S-procedure with applications. In Proc.
36th IEEE Conf. Decision and Control, pages 2602–2607, 1997.

[139] C. W. Scherer. Robust mixed control and linear parameter-varying
control with full block scalings. In L. El Ghauoui and S. I. Niculescu,
editors, Advances in linear matrix inequality methods in control.
SIAM, 2000.

[140] C. W. Scherer. LPV control and full block multipliers. Automatica,
37(3):361–375, 2001.

[141] C. W. Scherer. Theory of robust control. Mechanical Engineering
Systems and Control Group, Delft University of Technology, 2001.

[142] C. W. Scherer. LMI relaxations in robust control. Eur. J. Control,
12(1):3–29, 2006.

https://doi.org/10.1109/CCTA.2018.8511424
https://doi.org/10.1109/CCTA.2018.8511424
https://doi.org/10.1016/j.automatica.2009.07.006
https://doi.org/10.1016/j.automatica.2009.07.006
https://doi.org/10.1016/0167-6911(94)00091-9
https://doi.org/10.1016/0167-6911(94)00091-9
https://doi.org/10.1016/0024-3795(93)00175-Y
https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<929::AID-RNC260>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<929::AID-RNC260>3.0.CO;2-9
https://doi.org/10.1109/CDC.1997.657769
https://doi.org/10.1137/1.9780898719833.ch10
https://doi.org/10.1137/1.9780898719833.ch10
https://doi.org/10.1016/S0005-1098(00)00176-X
https://doi.org/10.3166/ejc.12.3-29


298 References

[143] C. W. Scherer. Robust controller synthesis is convex for systems with-
out control channel uncertainties. In Model-Based Control: Bridging
Rigorous Theory and Advanced Technology, pages 13–30. Springer
US, 2009.

[144] C. W. Scherer. Structured H∞-optimal control for nested intercon-
nections: A state-space solution. Syst. Control Lett., 62(12):1105–
1113, 2013.

[145] C. W. Scherer. Gain-scheduling control with dynamic multipliers
by convex optimization. SIAM J. Control Optim., 53(3):1224–1249,
2015.

[146] C. W. Scherer and C. W. J. Hol. Matrix sum-of-squares relaxations
for robust semi-definite programs. Math. Program., 107(1-2):189–
211, 2006.

[147] C. W. Scherer and I. E. Köse. Gain-scheduled control synthesis using
dynamic D-scales. IEEE Trans. Autom. Control, 57(9):2219–2234,
2012.

[148] C. W. Scherer and J. Veenman. On merging frequency-domain tech-
niques with time domain conditions. Syst. Control Lett., 121:7–15,
2018.

[149] C. W. Scherer and S. Weiland. Linear matrix inequalities in control.
Lecture Notes, Dutch Inst. Syst. Control, Delft. 2000.

[150] L. L. Schumaker. Spline functions: Basic theory. Cambridge Univer-
sity Press, 2007.

[151] G. Scorletti and L. El Ghaoui. Improved LMI conditions for gain
scheduling and related control problems. Int. J. Robust and Nonlin.,
8(10):845–877, 1998.

https://doi.org/10.1007/978-1-4419-0895-7_2
https://doi.org/10.1007/978-1-4419-0895-7_2
https://doi.org/10.1016/j.sysconle.2013.09.001
https://doi.org/10.1016/j.sysconle.2013.09.001
https://doi.org/10.1137/140985871
https://doi.org/10.1137/140985871
https://doi.org/10.1007/s10107-005-0684-2
https://doi.org/10.1007/s10107-005-0684-2
https://doi.org/10.1109/TAC.2012.2184609
https://doi.org/10.1109/TAC.2012.2184609
https://doi.org/10.1016/j.sysconle.2018.08.005
https://doi.org/10.1016/j.sysconle.2018.08.005
https://doi.org/10.1017/CBO9780511618994
https://doi.org/10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I
https://doi.org/10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I


References 299

[152] G. Scorletti and V. Fromion. Further results on the design of robust
H∞ feedforward controllers and filters. In Proc. 45th IEEE Conf.
Decision and Control, 2006.

[153] A. Seuret, C. Prieur, S. Tarbouriech, and L. Zaccarian. Event-
triggered control via reset control systems framework. IFAC-
PapersOnLine, 49(18):170–175, 2016.

[154] N. Sivashankar and P. P. Khargonekar. Characterization of the L2-
induced norm for linear systems with jumps with applications to
sampled-data systems. SIAM J. Control Optim., 32(4):1128–1150,
1994.

[155] J. F. Sturm. Using SEDUMI 1.02, a Matlab toolbox for optimization
over symmetric cones. Optim. Method. Softw., 11(12):625–653, 2001.

[156] M. B. Subrahmanyam. Finite horizon h∞ and related control prob-
lems. Birkhäuser Boston, 1995.

[157] Kunpeng Sun and A. Packard. Robust H2 and H∞ filters for un-
certain LFT systems. IEEE Trans. Autom. Control, 50(5):715–720,
2005.

[158] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis. Static
output feedack - a survey. Automatica, 33(2):125–137, 1997.

[159] O. Toker and H. Özbay. On the NP-hardness of solving bilinear
matrix inequalities and simultaneous stabilization with static output
feedback. In Proc. Amer. Control Conf., pages 2525–2526, 1995.

[160] J. Veenman. A general framework for robust analysis and control: an
integral quadratic constraint based approach. PhD thesis, University
of Stuttgart, 2015.

https://doi.org/10.1109/cdc.2006.377469
https://doi.org/10.1109/cdc.2006.377469
https://doi.org/10.1016/j.ifacol.2016.10.158
https://doi.org/10.1016/j.ifacol.2016.10.158
https://doi.org/10.1137/S0363012991223121
https://doi.org/10.1137/S0363012991223121
https://doi.org/10.1137/S0363012991223121
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1007/978-1-4612-4272-7
https://doi.org/10.1007/978-1-4612-4272-7
https://doi.org/10.1109/tac.2005.847040
https://doi.org/10.1109/tac.2005.847040
https://doi.org/10.1016/S0005-1098(96)00141-0
https://doi.org/10.1016/S0005-1098(96)00141-0
https://doi.org/10.1109/ACC.1995.532300
https://doi.org/10.1109/ACC.1995.532300
https://doi.org/10.1109/ACC.1995.532300
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3963&lng=eng&id=
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=3963&lng=eng&id=


300 References

[161] J. Veenman and C. W. Scherer. Robust gain-scheduled estimation:
A convex solution. In Proc. 50th IEEE Conf. Decision and Control
and Eur. Control Conf., 2011.

[162] J. Veenman and C. W. Scherer. Robust gain-scheduled controller
synthesis is convex for systems without control channel uncertainties.
In Proc. 51st IEEE Conf. Decision and Control, pages 1524–1529,
2012.

[163] J. Veenman and C. W. Scherer. Stability analysis with integral
quadratic constraints: A dissipativity based proof. In Proc. 52nd
IEEE Conf. Decision and Control, 2013.

[164] M. Verbandt, L. Jacobs, D. Turk, T. Singh, J. Swevers, and
G. Pipeleers. Linear Control Toolbox - supporting B-splines in LPV
control. Mechatronics, 52:78–89, 2018.

[165] Y. Wang, N. Roohi, G. E. Dullerud, and M. Viswanathan. Stabil-
ity analysis of switched linear systems defined by regular languages.
IEEE Trans. Autom. Control, 62(5):2568–2575, 2017.

[166] P. Wieland. From static to dynamic couplings in consensus and
synchronization among identical and non-identical systems. PhD
thesis, University of Stuttgart, 2010.

[167] J. C. Willems. Dissipative dynamical systems part i: General theory.
Arch. Ration. Mech. An., 45(5):321–351, 1972.

[168] J. C. Willems. Dissipative dynamical systems part ii: Linear systems
with quadratic supply rates. Arch. Ration. Mech. An., 45(5):352–393,
1972.

[169] W. Xiang. Necessary and sufficient condition for stability of switched

https://doi.org/10.1109/CDC.2011.6160420
https://doi.org/10.1109/CDC.2011.6160420
https://doi.org/10.1109/CDC.2012.6426978
https://doi.org/10.1109/CDC.2012.6426978
https://doi.org/10.1109/CDC.2013.6760464
https://doi.org/10.1109/CDC.2013.6760464
https://doi.org/10.1016/j.mechatronics.2018.04.007
https://doi.org/10.1016/j.mechatronics.2018.04.007
https://doi.org/10.1109/tac.2016.2599930
https://doi.org/10.1109/tac.2016.2599930
https://doi.org/10.18419/opus-4295
https://doi.org/10.18419/opus-4295
https://doi.org/10.1007/BF00276493
https://doi.org/10.1007/BF00276494
https://doi.org/10.1007/BF00276494
https://doi.org/10.1109/TAC.2016.2524996
https://doi.org/10.1109/TAC.2016.2524996
https://doi.org/10.1109/TAC.2016.2524996


References 301

uncertain linear systems under dwell-time constraint. IEEE Trans.
Autom. Control, 61(11):3619–3624, 2016.

[170] J. Xiao and W. Xiang. New results on asynchronous H∞ control for
switched discrete-time linear systems under dwell time constraint.
Appl. Math. Comput., 242:601–611, 2014.

[171] Y. Yamamoto. New approach to sampled-data control systems -
a function space method. In Proc. 29th IEEE Conf. Decision and
Control. IEEE, 1990.

[172] T. Yang. Impulsive control theory. Springer Berlin Heidelberg, 2001.

[173] H. Ye, A. N. Michel, and L. Hou. Stability analysis of systems with
impulse effects. IEEE Trans. Autom. Control, 43(12):1719–1723,
1998.

[174] E. Zattoni, A. M. Perdon, and G. Conte. Measurement dynamic
feedback output regulation in hybrid linear systems with state jumps.
Int. J. Robust Nonlin., 28(2):416–436, 2017.

[175] F. Zhang, editor. The Schur complement and its applications.
Springer, 2005.

[176] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. Exploiting spar-
sity in the coefficient matching conditions in sum-of-squares program-
ming using ADMM. IEEE Control Syst. Lett., 1(1):80–85, 2017.

[177] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and
A. Wynn. Chordal decomposition in operator-splitting methods for
sparse semidefinite programs. arXiv:1707.05058 [math.OC], 2017.

[178] K. Zhou and J. C. Doyle. Essentials of robust control, volume 104.
Prentice Hall, 1998.

https://doi.org/10.1109/TAC.2016.2524996
https://doi.org/10.1109/TAC.2016.2524996
https://doi.org/10.1109/TAC.2016.2524996
https://doi.org/10.1109/TAC.2016.2524996
https://doi.org/10.1016/j.amc.2014.05.097
https://doi.org/10.1016/j.amc.2014.05.097
https://doi.org/10.1109/CDC.1990.203946
https://doi.org/10.1109/CDC.1990.203946
https://doi.org/10.1007/3-540-47710-1
https://doi.org/10.1109/9.736069
https://doi.org/10.1109/9.736069
https://doi.org/10.1002/rnc.3875
https://doi.org/10.1002/rnc.3875
https://doi.org/10.1007/b105056
https://doi.org/10.1109/LCSYS.2017.2706941
https://doi.org/10.1109/LCSYS.2017.2706941
https://doi.org/10.1109/LCSYS.2017.2706941
https://arxiv.org/abs/1707.05058
https://arxiv.org/abs/1707.05058


302 References

[179] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control.
Prentice Hall, 1996.



Declaration

I hereby certify that this thesis has been composed by myself, and describes
my own work, unless otherwise acknowledged in the text. All references and
verbatim extracts have been quoted, and all sources of information have
been specifically acknowledged.

Stuttgart, April 2022

Tobias Holicki







T
obias

H
olicki

A
C
om

plete
A
nalysis

and
D
esign

F
ram

ew
ork

for
L
inear

Im
pulsive

and
R
elated

H
ybrid

S
ystem

s

Abstract

We establish a framework for systematically analyzing and designing
output-feedback controllers for linear impulsive and related hybrid
systems that might even be affected by various types of uncertainties.
In particular, the framework encompasses uncertain switched and
sampled-data systems as well as networked systems with switching
communication topologies.
The framework is based on recently developed convex criteria in-
volving a so-called clock for analyzing impulsive systems under
dwell-time constraints. We elaborate on the extension of those
criteria for dynamic output-feedback controller synthesis by means
of convex optimization and generalize the so-called dual iteration to
impulsive systems. The latter originally and still constitutes a promis-
ing heuristic procedure for the challenging and non-convex design of
static output-feedback controllers for standard linear time-invariant
systems. Moreover, for uncertain impulsive systems as modeled in
terms of linear fractional representations, we generalize the nominal
analysis criteria by providing novel robust analysis conditions based
on a novel time-domain and clock-dependent formulation of integral
quadratic constraints. Finally, by combining the insights on nominal
synthesis and robust analysis, we are able to tackle challenging
output-feedback designs of practical relevance, such as the design
of gain-scheduled, robust or robust gain-scheduled controllers for
impulsive systems.
Most of the obtained analysis and synthesis conditions involve infinite-
dimensional (differential) linear matrix inequalities which can be
numerically solved by using relaxation methods based on, e.g., linear
splines, B-splines or matrix sum-of-squares that we discuss as well.

Keywords

Impulsive Systems, Output-Feedback Synthesis, Robust Analysis,
Integral Quadratic Constraints, Robust Synthesis, Gain-Scheduling
Control, Linear Matrix Inequalities
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