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Abstract

Accurate estimates of river discharge are vital to quantify the amount of water
resources. Hydrological monitoring through spaceborne sensors comes to a res-
cue for the steadily declining in-situ gauge network. As SWOT mission will be
launched in November 2022, CNES has developed the Large-Scale SWOT Hy-
drology Simulator to identify SWOT applications, prepare for the use of SWOT
data, and quantify SWOT impacts prior to launch.

In this thesis, we use this simulator to generate monthly river products for Po
River from year 2002 to 2019. The input files are created with the support of satel-
lite data, in-situ data and SWORD. The simulation process runs step by step and
the final output files are river products. Besides, the changes in cross-sectional
area are simulated by a Matlab program. After the simulation the post-processing
is to compute river discharges. Based on Manning’s equation the flow law pa-
rameters must be known. For this purpose, on the basis of mass-conservation
equation the first round of Kalman Filter can be executed to obtain a priori dis-
charges. And then using interior-point optimization with inequality constraints
the flow law parameters are calculated, which will be used to recalculate dis-
charges. These recalculated data will be reversely as additional observations for
the second round of Kalman Filter and the posterior discharges could be then es-
timated. In the end the results are validated against in-situ gauge data.

The mean validation data of RMSE, correlation and NSE are respectively 501.87
m3/s, 0.45 and 0.19. The correlation and NSE values are larger than 0, which indi-
cates a positive linear dependence between the predicted and in-situ data and a
good predictive skill of this method. Surely, the validation doesn’t show the best
performance. Therefore, some suggestions for improvements are also discussed
in the end.
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vii

Contents

Abstract v

1 Introduction 1
1.1 River discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Study case and data 5
2.1 Study case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 The SWOT a priori River Database (SWORD) . . . . . . . . . 6
2.2.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 River width time series data . . . . . . . . . . . . . . . . . . . 8
2.2.4 Altimetry time series data . . . . . . . . . . . . . . . . . . . . 9

3 SWOT Hydrology Simulator 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 SWOT Hydrology Toolbox . . . . . . . . . . . . . . . . . . . 11
3.1.2 RiverObs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 SWOT simulation products . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Pixel cloud product . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 River product . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Lake product . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Raster product . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Simulation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Generating time-variable polyline shapefiles . . . . . . . . . 17

Time-variable width data . . . . . . . . . . . . . . . . . . . . 18
Time-variable altimetry data . . . . . . . . . . . . . . . . . . 20
Time-variable slope data . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Creating time-variable polygon shapefiles . . . . . . . . . . 22
3.3.3 Downloading and setting up the simulator . . . . . . . . . . 26
3.3.4 Running the simulator . . . . . . . . . . . . . . . . . . . . . . 27



viii

Setting up the working directory . . . . . . . . . . . . . . . . 29
Setting up your configuration files . . . . . . . . . . . . . . . 30
Creating the orbit file . . . . . . . . . . . . . . . . . . . . . . . 32
Running the simulator . . . . . . . . . . . . . . . . . . . . . . 33

4 Methodology 35
4.1 Introduction to river discharge estimation . . . . . . . . . . . . . . . 35
4.2 Flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 General steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Collecting data from the simulator . . . . . . . . . . . . . . . . . . . 40
4.5 Computation of the changes in cross-sectional area . . . . . . . . . . 45

4.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Building the fitting function . . . . . . . . . . . . . . . . . . . 45
4.5.3 Calculating A’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Estimation of flow law parameters . . . . . . . . . . . . . . . . . . . 48
4.6.1 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Space domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.2 Observation model . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.3 Obtaining a priori discharge estimates . . . . . . . . . . . . . 54
4.6.4 Computing the flow law parameters . . . . . . . . . . . . . . 56

4.7 Estimating posterior discharges . . . . . . . . . . . . . . . . . . . . . 58

5 Results and validation 61
5.1 Results of a priori discharges . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Results of flow law parameters . . . . . . . . . . . . . . . . . . . . . 64
5.3 Results and validation of posterior discharges . . . . . . . . . . . . 67

6 Conclusion and outlook 71
6.1 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Estimated a priori discharges 75

B Estimated posterior discharges 85

References 95



ix

List of Figures

1.1 Number of discharge monitoring stations according to GRDC database
(Fekete & Vörösmarty 2002) . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Po River and its corresponding area . . . . . . . . . . . . . . . . . . 5
2.2 SWORD networks with reach numbers per continent. Grey num-

bers in parentheses are reach numbers including ghost reaches (Al-
tenau et al. 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Divided reaches in Po River and location of gauge stations . . . . . 7
2.4 Discharge time series at gauge stations . . . . . . . . . . . . . . . . . 9

3.1 Pixel cloud product of a Po River section. This is the rawest prod-
uct for land surfaces. The product provides longitude, latitude,
height, pixel size and corrections for each point classified as water,
for points on a buffer zone around these water zones as well as on
systematically included areas. . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Reach product for the Po River. Reach product provides the mean
height, mean slope, etc. on each of these river sections, which will
be used in the following discharge estimate. . . . . . . . . . . . . . . 15

3.3 Node product for the Po River. Node product is with mean values
around each node for parameters such as width, height, flooded
area, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Lake product of Po River. The product for each cycle includes a
median contour, and the average height of the lakes for passes
when they were seen in their entirety (observations of only part
of the lake are not taken into account). . . . . . . . . . . . . . . . . . 16

3.5 Raster product of Po River. A raster product will be in NetCDF
2D format and will cover four point-cloud tiles (the 2 swaths and
120km along the ground track). . . . . . . . . . . . . . . . . . . . . . 17

3.6 Reach 21406402131 with only sporadic data from year 2015 to 2019 18
3.7 Distribution of scale factors among nearby reaches . . . . . . . . . . 19
3.8 Availability of altimetry data in reaches . . . . . . . . . . . . . . . . 20
3.9 "Buffer" tool to convert a polyline to a polygon . . . . . . . . . . . . 23



x

3.10 Transformation from polylines to polygons in the Po River in Jan-
uary 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.11 Add a field in the attribute table . . . . . . . . . . . . . . . . . . . . . 25
3.12 Field types. "HEIGHT" is the height attribute, which specifies the

initial WSE and is in the arithmetic type "double". "RIV_FLAG"
designates polygons as river segments in "short integer". "id" is an
identification field with the type "short integer" . . . . . . . . . . . . 25

3.13 Find the field calculator . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14 Field calculation for "HEIGHT" attribute . . . . . . . . . . . . . . . . 27
3.15 Field calculation for attribute "RIV_FLAG" . . . . . . . . . . . . . . 28
3.16 Obtaining the repository of the SWOT Hydrology Toolbox and River-

Obs (Elmer 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 Setting up the conda environment (Elmer 2020) . . . . . . . . . . . . 29
3.18 Setting the "PYTHONPATH" variables (Elmer 2020) . . . . . . . . . 29
3.19 Modify "parameter_orbit.rdf" for January 2002 . . . . . . . . . . . . 30
3.20 Modify directories in "parameter_sisimp.rdf" for January 2002 . . . 31
3.21 Modify orbit parameters in "parameter_sisimp.rdf" . . . . . . . . . 31
3.22 Modify height parameters in "parameter_sisimp.rdf" . . . . . . . . 31
3.23 Modify output products in "parameter_sisimp.rdf" . . . . . . . . . . 32
3.24 Modify "parameter_river.rdf" in January 2002 . . . . . . . . . . . . . 32
3.25 Command to create orbit file . . . . . . . . . . . . . . . . . . . . . . . 32
3.26 Orbit file "passplan.txt" in January 2002 . . . . . . . . . . . . . . . . 33
3.27 Command to create the pixel cloud product . . . . . . . . . . . . . . 33
3.28 Naming convention of pixel cloud product . . . . . . . . . . . . . . 33
3.29 Command to create the river product . . . . . . . . . . . . . . . . . 34
3.30 Naming convention of the river product . . . . . . . . . . . . . . . . 34

4.1 Whole process of this thesis . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Kalman Filter steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Interior-point optimization with inequality constraints . . . . . . . 39
4.4 A part of the output data in the river product . . . . . . . . . . . . . 41
4.5 Simulated vs. Landsat-observed width . . . . . . . . . . . . . . . . . 42
4.6 Simulated vs. satellites-observed WSE . . . . . . . . . . . . . . . . . 43
4.7 Histogram of residual between the simulated and Landsat width

in gauge stations to verify if it is white noise . . . . . . . . . . . . . 44
4.8 Composition of the cross-sectional area . . . . . . . . . . . . . . . . 45
4.9 A′ with σA′ in gauge stations . . . . . . . . . . . . . . . . . . . . . . . 48
4.10 Time domain transition matrix Φt . . . . . . . . . . . . . . . . . . . . 52
4.11 Time domain process noise Nt . . . . . . . . . . . . . . . . . . . . . . 52



xi

4.12 Space and time domain estimates . . . . . . . . . . . . . . . . . . . . 55
4.13 Probability distribution of Qs, Qt and their joint prior Qs,t . . . . . . 56

5.1 Comparison of a priori and in-situ discharges . . . . . . . . . . . . . 62
5.2 Comparison of simulated and in-situ width . . . . . . . . . . . . . . 63
5.3 Comparison of simulated and in-situ WSE . . . . . . . . . . . . . . . 64
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Chapter 1

Introduction

1.1 River discharge

Rivers are a link between atmospheric, terrestrial and oceanic processes, and
route about two-fifths of total global rainfall over land back to the ocean (Oki
& Kanae 2006). They also represent an important resource for agriculture and
urban development as well a major hazard during flood events (Durand et al.
2016). Thus, accurate estimates of river discharge are vital because they quantify
the amount of water available for human use, determine the amount of water
during a flood event, and indicate the overall response of the watershed to at-
mospheric pressure. Traditionally monitoring of river discharge is obtained by
using in-situ gauges. However, these in-situ gauge networks have their own lim-
itations, especially at full catchment of water discharge observations. Globally,
the available discharge database has steadily been declining over the past few
years (see figure 1.1).

Figure 1.1: Number of discharge monitoring stations according to GRDC
database (Fekete & Vörösmarty 2002)

Therefore, discharge monitoring through spaceborne sensors is a viable tool due
to their large observation range, short cycle time and less restriction due to ground
conditions. The Surface Water and Ocean Topography (SWOT) mission is a swath
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altimeter satellite to be launched by National Aeronautics and Space Administra-
tion (NASA) and National Centre for Space Studies (CNES) in November 2022
(JPL 2021). Its main objective is to make a survey of the global Earth’s surface wa-
ter and ocean. It will provide measurements of water surface elevation, change
in cross-sectional area, river width, slope, etc., through which discharge can be
estimated indirectly for river widths down to 50–100 m (Pavelsky et al. 2014).
SWOT observations (change in cross-sectional area, width, slope) are combined
with flow law parameters from river database (SWORD) to estimate discharge
on each pass (Durand et al. 2020). There are now five proposed algorithms for
use in the SWOT mission: AMHG, GaMo, Metroman, MFG and MFCR. The me-
dian of these five is evaluated as a sixth algorithm herein. The theoretical basis
of the algorithm AMHG is at-many-stations hydraulic geometry and the others’
is Manning’s equation. These algorithms can estimate river discharge in some
ungauged rivers with approximately 35% root-mean-square error. (Durand et al.
2016)

Currently, CNES develops the Large-Scale SWOT Hydrology Simulator, which
accounts for a comprehensive error budget and produces output in formats com-
parable to that expected from official SWOT products (Elmer et al. 2020).

1.2 Objectives

In this thesis, we will take advantage of the SWOT Hydrology Simulator to sim-
ulate monthly SWOT-like data in Po River from January 2002 to December 2019
and then use them to estimate the monthly river discharges in this time interval
via Kalman Filter. To achieve the objectives, the specific tasks are as follow:

- Creating monthly input from January 2002 to December 2019 for the sim-
ulator via the available satellite data, in-situ data and a priori database of
SWOT, namely SWORD.

- Doing simulation to generate monthly river products.

- Collecting simulated data in time series.

- Simulating the changes in cross-sectional area.

- Estimating a priori river discharges via first round of Kalman Filter.
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- Computing flow law parameters through interior-point optimization with
inequality constraints.

- Recalculating discharge and estimate posterior river discharges via second
round of Kalman Filter.

- Validating the results with the support of in-situ data.

1.3 Structure of this thesis

The structure of this thesis is divided into the following chapters. In Chapter 2,
the study case Po River and the utilized data in this thesis will be introduced. In
Chapter 3, the simulator will be presented in detail, especially the composition
of the simulator, the products of it and the specific simulation steps. In Chapter
4, post-processing after simulation to estimate flow law parameters and the river
discharges through Kalman Filter will be illustrated. In addition, flowcharts of
the process in this thesis will be displayed. In Chapter 5 the results of Kalman
Filter will be shown and a validation via in-situ data will be executed. And some
tips for improvement will be given. Chapter 6 indicates the summary, conclusion
and further re- search direction.
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Chapter 2

Study case and data

2.1 Study case

Po river is the case study of this thesis. Stretching 652 km, the Po River is Italy’s
longest river, rising in the Monte Viso group of the Cottian Alps on Italy’s west-
ern frontier. It passes through the cities of Turin, Piacenza, and Cremona as well
as dozens of smaller towns and discharges into the Adriatic Sea in the east. At
its widest point, the opposing riverbanks are more than 500 m apart (Britannica
2019). Figure 2.1 shows the Po River and its corresponding area.

Figure 2.1: Po River and its corresponding area

2.2 Data

Three types of data were used in this study: SWOT A Priori River Database
(SWORD), in-situ data, altimetry and Landsat data. SWORD, altimetry and Land-
sat data mainly played a role in the simulation step as database and input. In this
thesis, the SWORD version v0.5 is used. In-situ data were utilized for the dis-
charge estimate and validation.
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2.2.1 The SWOT a priori River Database (SWORD)

The SWORD is a global a priori database of river networks and reaches (see Fig-
ure 2.2). The SWORD was created by merging multiple global hydrographic
databases into one consistent product. The SWORD provides high-resolution
river nodes and reaches with attached hydrologic variables (WSE, width, slope,
etc.). Each river over 30 m wide is defined in the SWORD either as the centerline
of the river divided into reaches approximately 10 km long or as nodes every 200
m along this line. Altenau et al. (2021)

Figure 2.2: SWORD networks with reach numbers per continent. Grey
numbers in parentheses are reach numbers including ghost reaches (Alte-

nau et al. 2020)

SWORD data are saved in shapefile and NetCDF formats. The shapefile format is
distributed as a set of files according to continent and the major basins on a con-
tinent, while the NetCDF format is allocated by continent. Altenau et al. (2020)
In this thesis SWORD data support the execution of the SWOT Hydrology Sim-
ulator in the creation of pixel cloud products and the transformation from pixel
cloud products to river products.

The shapefiles are separated for nodes and reaches, with nodes represented as
spaced points and reaches represented as polylines. All shapefiles follow geo-
graphic projection with reference to datum WGS84. In this study, the shapefile
of the Po River was processed to convert polylines to polygons for its monthly
width, which is part of the input for simulation.
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The NetCDF format is more comprehensive and is the official format required
by the Jet Propulsion Laboratory (JPL) to process SWOT observations. Each
NetCDF file contains a set of global attributes as well as three groups of variables
in different spatial scales (/centerlines, /nodes, /reaches). The NetCDF format
also contains an expanded set of subgroups under the reaches group (/area_fits,
/discharge) that are not included in the shapefile formats. These subgroups are
needed for SWOT discharge algorithms. The corresponding NetCDF file plays a
role as an a priori database while running the simulator (Altenau et al. 2020).

The SWORD version v0.5 divides the Po River into 286 reaches, with 65 reaches
in the mainstream. Each reach is roughly 10 kilometers long (see Figure 2.3). In
preparation for the simulation, the shapefile of this area was extracted from the
SWORD, and the NetCDF file in Europe was utilized.

Figure 2.3: Divided reaches in Po River and location of gauge stations

Notably, the SWORD database is still under development and therefore contains
some artifacts remaining. The value of these attributes was set as "not a number”
(NaN). Some of the attributes were inserted with valid values via "online" SWOT
processing or via the "offline" computations of the research team. More specifi-
cally, the reach subgroups "/area_fits" and "/discharge" were filled with "NaN"
because several important elements for discharge estimation were based on the
first year of mission operations or have not yet been defined.
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2.2.2 In-situ data

Along the Po mainstream, there are five gauge stations that provide daily obser-
vation data, or so-called "in-situ data". Table 2.1 lists the location and average el-
evation of these gauge stations and Figure 2.3 also shows the stations on the map.

Name Latitude [°] Longitude [°] Elevation [m]

Piacenza 45.06 9.70 42.37

Cremona 45.13 9.99 29.03

Borgoforte 45.05 10.75 14.05

Sermide 45.02 11.29 9.50

Pontelagoscuro 44.89 11.61 3.48

Table 2.1: Location and elevation of the gauge stations

The daily observation data includes stage, water level, water depth, discharge
and flow area from the years 1995 to 2011. Moreover, the approximate width
wgauge in time series can also be computed as:

wgauge(t) =
Agauge(t)

dgauge(t)
(2.1)

whereAgauge is the flow area and dgauge is the water depth. These data play impor-
tant roles in simulation, estimation, and validation. In-situ discharge is a partic-
ularly important measurement tool in validating the results of the Kalman Filter.
The monthly discharge of the five gauge stations is shown in Figure 2.4. Gener-
ally, the discharge of the gauge stations follows the same seasonal behavior. It is
noteworthy to mention that the discharge peaked in October 2000. Actually, dur-
ing the October 2000 flood more than 80 km2 of rural and settled areas located
in the floodplain close to the junction of the Sesia and Po rivers were inundated
(Fugazza et al. 2008).

2.2.3 River width time series data

As the SWORD provides a static database with no time series, it was necessary to
input the varying width and altimetry data to reflect the change in discharge in
different time periods.
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Figure 2.4: Discharge time series at gauge stations

The monthly width data were taken from cloud-free Landsat imagery from the
years 2000 to 2019. Only widths from March to October of every year were avail-
able in the data set for each reach. (Elmi et al. 2016) Thus, data for the other
months needed to be manually created before being input into the SWORD data,
which will be described in Section 3.3.1

2.2.4 Altimetry time series data

Altimetry data included merged data produced by several satellite missions, such
as Envisat, Topex, Jason, and so on (Tourian et al. 2016). The altimeters on the
satellites measure the roundtrip time taken by a radar wave to reach the surface
from the satellite (Durand et al. 2010). The available data varied from 2002 to
2019, which also determined the simulation period. There was no fixed time in-
terval, and some reaches had only sporadic data or no data at all.

To overcome the above problems and provide a complete timeline of altimetry
data, it is necessary to manually create appropriate data, as described in Section
3.3.1.
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Chapter 3

SWOT Hydrology Simulator

3.1 Introduction

The SWOT Hydrology Simulator provides open source tools that enable end
users to generate virtual SWOT products with representative characteristics; in
this way, users can become familiar with product contents and formats, use the
data to conduct studies, validate methodology and propose improvements. (Elmer
2020) The SWOT Hydrology Simulator is coded in high-level programming lan-
guage (Python 3) for simple distribution, installation, and use. The managing en-
vironment of the SWOT Hydrology Simulator is the conda environment, which
serves to create, remove, and package virtual environments as well as install soft-
ware for the simulator.

The SWOT Hydrology Simulator consists of two toolboxes: the SWOT Hydrol-
ogy Toolbox and RiverObs. The SWOT Hydrology Toolbox aims to easily and
quickly generate L2 (level-2) HR (high-rate) pixel cloud products over huge spa-
tial (e.g., large basin, national, or even continental scale) and time scales (e.g.,
months, years) with relatively representative errors. After that, RiverObs is used
to run end-to-end simulation of pixel cloud to L2 HR vector based river or lake
products. Conveniently, the simulator provides overall scripts that allow all steps
to be run consecutively. Furthermore, both algorithms and product formats are
still under development and are regularly updated. Hence, the versions of both
toolboxes must be associated with each other while running the simulator. For
this study, the SWOT version "release_version_11_24_2020" and the compatible
RiverObs version "release_version_06_18_2020" are used.

3.1.1 SWOT Hydrology Toolbox

The SWOT Hydrology Toolbox contains the following main tools:
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- select_orbit_cnes: An orbit selection tool to compute SWOT orbit files (pass-
plan). The orbit files include cycle, orbit number, and mission time of SWOT
over the study area. Based on this information, the following tools are able
to generate products for the appropriate region.

- sisimp: A large scale simulator to produce L2 HR pixel cloud products from
an input shapefile of a water mask.

- scripts: This is a river processing tool that contains scripts to improve ge-
olocation and link RiverObs to convert one or more tiles of pixel cloud into
the same number of L2 HR river products.

- processing: This project is dedicated to the production of L2 HR lake prod-
ucts from pixel cloud.

- test: This folder saves the input, output, and configuration files (rdf.file) of
our study cases.

It is noteworthy to mention that although the large scale simulator (sisimp) pro-
vides fairly representative statistical errors, several simplifications or approxima-
tions are made. For instance, the simulator utilizes spherical Earth approximate
geolocation equations, which potentially leads to a loss of accuracy at high lat-
itudes (> 60°). In addition, topography is not taken into account, and idealized
pixel cloud processing with perfect water detection is assumed. However, there
is an option to introduce dark water. The simulator also allows simplified repre-
sentation of water height, such as a spatially constant height for each water body
or 2D height models. There are also options to insert true heights from an input
shapefile or a NetCDF file.

3.1.2 RiverObs

RiverObs contains the following main packages:

- RiverObs: This is the main package for associating data with river reaches,
and estimating hydrology parameters base on reach averaging.

- Centerline: This provides a class that can be used to project data or refine a
river centerline.

- GeometryDataBase: This package aims to quickly find which reach inter-
sects with a geometry of interest. The geometries are assumed to be stored
in a shapefile.
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- SWOTRiver: This package contains classes that use the RiverObs capabili-
ties to produce hydrology outputs from SWOT (simulated) data.

- GDALOGRUtilities: This provides homegrown utilities for reading and
writing various GIS files.

- GWDLR: This is an optional package to convert Global Width Database
Large Rivers raster data into vectors that can be used as centerlines.

RiverObs must be linked to the a priori SWORD database because the latter con-
tains fixed node locations, reach boundaries, and high-resolution reach center-
lines that are necessary for data processing. The version of SWORD must be
associated with the version of RiverObs. In our case, the SWORD version is v0.5.

3.2 SWOT simulation products

The SWOT Hydrology Simulator provides four main L2 HR products: pixel cloud
products, river products, lake products, and raster products. By executing the
corresponding scripts, they can be generated in a certain order.

3.2.1 Pixel cloud product

The pixel cloud product is the rawest product of SWOT and it is available in
NetCDF and shapefile format, covering a tile corresponding to a swath over 60
km long on one of the two sides (left or right) of the satellite’s ground track. The
pixel cloud covers an area that is defined a priori in input shapefile and classified
as water and a surrounding buffer zone. Each pixel indicates longitude, latitude,
height, pixel size, metadata (date, pass number), and corrections. This product is
generated for each pass of the satellite. Figure 3.1 shows an example of a pixel
cloud product in a section of the Po River.

The required inputs of this product are SWOT orbit files in NetCDF format, a
polygon-shapefile covering water zone, and eventually roll residual errors etc.
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Figure 3.1: Pixel cloud product of a Po River section. This is the rawest
product for land surfaces. The product provides longitude, latitude, height,
pixel size and corrections for each point classified as water, for points on a
buffer zone around these water zones as well as on systematically included

areas.

3.2.2 River product

Like the a priori SWORD database, the river product has two types of breakdown.
The reach product (see Figure 3.2) is located at the centerline of the river and di-
vided into sections. The reach product provides mean height, mean width, mean
slope, and so forth for each of the river sections. This product was the main prod-
uct used to estimate river discharge in this study. The node product (see Figure
3.3) is composed of nodes placed approximately every 200 m along the centerline
and provides the mean values of each node for parameters such as width, height,
flooded area, and so on. These products are provided for each satellite pass.

Table 3.1 compares the attributes of the reach and node products. The differences
between the products mean that they are used for different purposes in post-
processing or analysis.

The required inputs of this product are SWORD v0.5, the associated pixel cloud
product, and a configuration file "parameter_river.rdf" to control the output. Im-
portantly, the river and the following lake product only consider the water pixels.
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Figure 3.2: Reach product for the Po River. Reach product provides the
mean height, mean slope, etc. on each of these river sections, which will be

used in the following discharge estimate.

Figure 3.3: Node product for the Po River. Node product is with mean
values around each node for parameters such as width, height, flooded area,

etc.

3.2.3 Lake product

The lake product (see Figure 3.4) for each individual satellite pass gives informa-
tion about height, surface area, contour, and so on for each observation of water
surfaces that are not known rivers and that are more than one hectare in size. Like
the river product, an a priori lakes database must be linked for the identification
of lake elements and to provide relevant information.

The required inputs of this product are an a priori lakes database, the associated
river product, and a configuration file "parameter_laketile.cfg" to control the out-
put.
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Reach Product Node Product

- reach ID - reach ID

- time - node ID

- latitude - time

- longitude - latitude

- WSE - longitude

- width - WSE

- slope - width

- total water surface area - total water surface area

- geoid slope - solid Earth tide height

- fractional area of dark water - river flow direction

- number of nodes in the reach - number of pixels that have

that have a valid WSE a valid WSE

... ...

Table 3.1: Comparison of output attributes of reach and node product

Figure 3.4: Lake product of Po River. The product for each cycle includes
a median contour, and the average height of the lakes for passes when they
were seen in their entirety (observations of only part of the lake are not

taken into account).

3.2.4 Raster product

The computation of the raster product is still under development. It will be sys-
tematically generated from the pixel cloud product and will be in the NetCDF and
GeoTiff formats with two resolutions: 100 m and 250 m. It will cover four point-
cloud tiles corresponding to two swaths of 120 km along the ground track. The
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points of the pixel cloud will be plotted on a regular grid according to a Univer-
sal Transverse Mercator (UTM) projection. This will be a one-per-pass product.
Figure 3.5 shows an example of the raster product for the Po River.

Figure 3.5: Raster product of Po River. A raster product will be in NetCDF
2D format and will cover four point-cloud tiles (the 2 swaths and 120km

along the ground track).

3.3 Simulation steps

Much of the effort required to run the simulator is made upfront to create the
simulator input. In our case, the SWOT Hydrology Toolbox generated monthly
river products from 2002 to 2019. To reflect the monthly variation of the Po River,
width data from Landsat and altimetry data (see Section 2.2.3) replaced the con-
stant values in SWORD for each reach. Then, the time-variable polyline shape-
files from SWORD were processed to the required polygon shapefiles based on
ArcGIS because the simulator uses the polygon extent to calculate river width.
Finally, the time-variable input was allocated to each month’s working directory,
where each month has its own configuration files and output directory. The sim-
ulation was executed separately for each month.

3.3.1 Generating time-variable polyline shapefiles

As mentioned, the constant width, altimetry data, and slope in SWORD were re-
placed. Since SWORD data is saved in shapefile and NetCDF formats, files in
both formats have to be changed at the same time with consistent information.
The input of width and altimetry data is based on existing satellite data, and
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slope is calculated from altimetry data and reach length. Finally, each month has
its own specific shapefiles and NetCDF files with corresponding data, which is
termed the "time-variable input".

Time-variable width data

Ideally, Landsat would have provided each reach’s monthly width data and vari-
ance from March to October for each year from 2000 to 2019 for the Po River.
However, in reality, there was no complete data for any of the reaches, and in
some cases there was no data for a whole year (see Figure 3.6). As such, these gaps
needed to be filled before the input. If width data was available in a given month
for other years, the mean monthly data was inserted for the missing month. Ad-
ditionally, if there was no data for a given month in any year, data inter- or ex-
trapolation from other months was utilized to create an appropriate width for the
month.

Figure 3.6: Reach 21406402131 with only sporadic data from year 2015 to
2019

Following these steps, the width data for January, February, November, and De-
cember was created manually. First, for each gauge station i, the mean width
wigauge , standard deviations σwigauge

, and mean monthly width w̃ijgauge for these
months j were calculated. Then, a scale factor was computed for each month at
each gauge station:

sij =
w̃ijgauge − wigauge

σwigauge

(i : Piacenzao... j : January...) (3.1)

Table 3.2 shows the values obtained.
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[-] Jan. Feb. Nov. Dec.

Piacenzao -0.155 -0.222 0.489 0.086

Cremona -0.050 -0.172 0.465 0.156

Borgoforte 0.061 -0.102 0.541 0.306

Sermide 0.053 -0.116 0.515 0.327

Pontelagoscuro 0.116 -0.054 0.515 0.358

Table 3.2: Scale factors to fill width

These scale factors were assigned to nearby reaches (see Figure 3.7). Using the
distributed scale factors, widths wkSWORD

and standard deviations σwkSWORD
from

SWORD, the mean monthly widths w̃ijk for each reach k were computed:

w̃ijk = wkSWORD
+ sij · σwkSWORD

(3.2)

i : Piacenzao...

j : January...

k : reaches

w̃ijk was then allocated to those months with missing data in each year. At this
point, all reaches had time-variable width data and could be overwritten into
their own shapefiles and NetCDF files. The corresponding variance is overwrit-
ten by the Landsat width variance data. In addition, nodes within the same reach
were assigned the width of this reach.

Figure 3.7: Distribution of scale factors among nearby reaches
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Time-variable altimetry data

Ideally, the various satellites would have provided each Po River reach’s altime-
try data and standard deviation from 2002 to 2019. However, as width data, there
was no complete data for any of the reaches, and some reaches had no data at all
(see Figure 3.8). Therefore, it was necessary not only to fill the gaps but also to
create suitable data for the reaches without data. The process for filling the gaps
in altimetry data was similar to that followed for width data. If the month miss-
ing data in one year has data from other years, the missing data was filled with
mean monthly data from other years. Otherwise, inter- or extrapolation with data
from other months was performed to create an appropriate value.

Figure 3.8: Availability of altimetry data in reaches

After this, reaches with unavailable data were processed. Neighboring reaches
with valid data were utilized along with wave travel time between reaches.

To build the wave travel time, average flow velocity (Tourian et al. 2016) between
reaches was computed:

V = 1.48 · w0.8
Landsat · s0.6

SWORD (3.3)

V is the average flow velocity of the reach. wLandsat is the mean width of the reach
according to Landsat. sSWORD is the slope of the reach according to SWORD.

Wave travel time TL could then be estimated:

TL =
L

c
(3.4)
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where L is the distance between two reaches from their center points (provided
by SWORD) and c is the celerity. In the kinematic wave equation, the momentum
balance can be arranged using the Manning formula; consequently, celerity c was
expressed as

c = b · V (3.5)

where b = 5
3

and V is the above computed average flow velocity.

Next, the time lag was applied to the computation of missing altimetry data based
on data from neighboring reaches either up- or downstream. Since the WSE and
standard deviation of all reaches are accessible in SWORD, a factor based on it
was built first:

f =
σWSESWORD2

σWSESWORD1

(3.6)

where σWSESWORD1
is the WSE standard deviation from SWORD of the neighbor-

ing reach and σWSESWORD2
is that to compute. If h1(t) and σh1(t) are the known al-

timetry time series data and the corresponding standard deviations of the neigh-
boring reach, the unknown h2(t) and σh2(t) can be derived by

h2(t) = f · (h1(t+ TL)−WSESWORD1) + (WSESWORD2 −WSESWORD1) (3.7)

σh2(t) = f · σh1(t+TL) (3.8)

When one reach, which is to be computed, has a number of neighboring reaches,
the h2(t) and σh2(t) for each reach were first processed separately, after which their
weighted mean was determined.

Next, the time-variable altimetry data and corresponding standard deviations of
all reaches were obtained, which could be written into the specific shapefiles and
NetCDF files. Nodes within the same reach were also assigned with data from
this reach.



22 Chapter 3. SWOT Hydrology Simulator

Time-variable slope data

Slope data were derived from altimetry data and the reach length. The slope of a
reach was computed through its neighboring reach:

s(t) =
hup(t)− hdown(t)

L
(3.9)

where hup(t) andhup(t) are the altimetry data of the up- and downstream at t, re-
spectively, and L is the distance between two reaches from their center points.

The corresponding standard deviations were obtained by the propagation of un-
certainty:

σs(t) =

√
σ2
hup(t) + σ2

hdown(t)

L
(3.10)

When a reach had more than one neighbor, the weighted mean was computed.

After obtaining the time series of the slope for all reaches, this was written into the
corresponding shapefiles and NetCDF files. Unlike other data, slope is specific to
each reach section, and the node section therefore did not need to be changed.

Up to this point, the time series input files were already prepared. The shape-
files will continue to be processed to complete the transformation from polyline
to polygon files. The details of the operation are explained in Subsection 3.3.2.
Additionally, NetCDF files will be used as input directly. The main purpose of
the shapefiles is to produce a pixel cloud product, while NetCDF files enable the
generation of the river product.

3.3.2 Creating time-variable polygon shapefiles

There are many ways to create a polygon shapefile depending on the application
used, such as ArcGIS, QGIS, or even Python (for experienced users). Further-
more, a polygon shapefile can be generated from different types of files, such as
a digital elevation map, a water mask raster, or a polyline shapefile. In this study,
the starting point was the polyline shapefile, and the processing platform was
ArcGIS.
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Before the transformation, it had to be ensured that the shapefiles had a WGS84
coordinate system, which is necessary for running the simulator. Otherwise, the
"Project" tool would be used to reset it. Fortunately, all shapefiles in SWORD are
referenced to datum WGS84. The coordinate system could also be verified by
considering the shapefile properties.

In ArcGIS, the "Buffer" tool was used to convert a polyline to a polygon (see Fig-
ure 3.9).

Figure 3.9: "Buffer" tool to convert a polyline to a polygon

The "Distance" field can be specified using a constant value ("Linear Unit") or
a width field ("Field"). In this study, the polyline shapefiles already had the
width attribute, but the distance was one-sided; thus, setting a value of 50 me-
ters resulted in a polygon width of 100 meters. As such, half of the width of
all reaches was calculated and saved as a new attribute of the polyline shape-
files ("half_width"), or the “Distance” field in the "Buffer" tool. Other options like
"Side type" and "End type" could also be selected. A comparison between poly-
lines and polygons in the Po River is given in Figure 3.10.

Once the polygon shapefile was generated, three attributes were added:

- HEIGHT: A height attribute specifies the initial WSE.

- RIV_FLAG: A river flag designates polygons as river segments.
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Figure 3.10: Transformation from polylines to polygons in the Po River in
January 2000

- id: This is an identification field.

This operation can be done by opening the attribute table of the polygon shape-
file and adding the above-mentioned attributes (see Figure 3.11). The "HEIGHT"
attribute is specified as the type "double," while the other two are "integer" type
(see Figure 3.12).

Afterwards, values were assigned to these attributes through the field calculator
(see Figure 3.13). Input altimetry data was duplicated to "HEIGHT" and saved in
the field "wse" (see Figure 3.14). "RIV_FLAG" is set to 1 for river segments and 0
for lakes or reservoirs along the network. To distinguish, the shapefile attribute
"lakeflag" can be used, which is a water body identifier for each reach (see Table
3.3). The “lakeflag” attribute allows a simple Python code to be written in the
field calculator to identify the composition of water bodies for "RIV_FLAG" (see
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Figure 3.11: Add a field in the attribute table

Figure 3.12: Field types. "HEIGHT" is the height attribute, which speci-
fies the initial WSE and is in the arithmetic type "double". "RIV_FLAG"
designates polygons as river segments in "short integer". "id" is an iden-

tification field with the type "short integer"

Figure 3.15). The attribute "id" also utilizes the values in "FID".

Afterwards we can assign values to these attribute through the field calcula-
tor (see figure 3.13). For "HEIGHT" we can directly copy the input altimetry data,
which is saved in the field "wse" (see figure 3.14). "RIV_FLAG" should be set to
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1 for river segments, but 0 for an lakes or reservoirs along the network. To dis-
tinguish we can refer to the attribute "lakeflag" in the shapefile, which is a water
body identifier for each reach (see Table 3.3). According to it we can write a sim-
ple python code in field calculator to identify the composition of water bodies
for "RIV_FLAG" (see figure 3.15). And the attribute "id" also directly utilizes the
values in "FID".

Figure 3.13: Find the field calculator

Identification number Type

0 river

1 lake/reservoir

2 tidally influenced river

3 canal

Table 3.3: Water body identifier

3.3.3 Downloading and setting up the simulator

The simulator can be run on Windows or Linux/Mac OS. The following approach
is based on Linux/Mac OS.

The SWOT Hydrology Toolbox and RiverObs can be downloaded from GitHub.
Figure 3.16 shows the steps to obtain the repository of them. To run the simulator,
a conda environment must be created; this can be done by visiting the Anaconda
website and downloading the product "Anaconda3".
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Figure 3.14: Field calculation for "HEIGHT" attribute

After setting up the conda environment, the file "environment.yml" in the SWOT
Hydrology Toolbox lists the dependencies for the execution of the simulator. Fig-
ure 3.17 indicates the commands to control the environment.

If the conda environment is activated, Python must be able to find all the mod-
ules needed for the simulator (see Figure 3.18).

3.3.4 Running the simulator

Once the simulation was ready for implementation, a separate working directory
was established for each observation time (i.e., per month). The input in time se-
ries was consequentially allocated to the appropriate directory based on month.

After this, the configuration files in each directory were modified. Finally, com-
mands were issued sequentially in the terminal to create the output. The detailed
process that followed is described below using January 2002 as an example. Other
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Figure 3.15: Field calculation for attribute "RIV_FLAG"

Figure 3.16: Obtaining the repository of the SWOT Hydrology Toolbox
and RiverObs (Elmer 2020)

months were approached in a similar manner.
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Figure 3.17: Setting up the conda environment (Elmer 2020)

Figure 3.18: Setting the "PYTHONPATH" variables (Elmer 2020)

Setting up the working directory

The working directory of the simulator is in the "/test" folder in the SWOT Hy-
drology Toolbox. An original path "/Po_2002_01" was set up. This folder al-
ready contains example datasets showing how to configure the data, run the
simulation, and process the results. There are three sub-folders under the main
path: "/data", "/output," and "/rdf." These three folders were also created under
“/Po_2002_01” for the following purposes:

- "/data" saves the input polygon shapefile, and the corresponding shapefile
in January 2002 was moved to it.

- "/output" can store all output files, or all products of the simulator. Two
folders needed to be established in "/output": "/orbit" and "/simu." "/orbit"
contains all orbit files. The cycle number, mission time, and so on along with
the pixel cloud product were created in "/simu." Note that the river product
was located in "/river," which was also under "/output," and the path was
automatically generated by running RiverObs.

- "/rdf" includes the three configuration files "parameter_orbit.rdf," "parame-
ter_sisimp.rdf," and "parameter_river.rdf." These files played different roles
as control input in the simulation and are detailed in the next sub-section.
The rdf files in the example case "/river_and_lake" under "/test" were copied
with appropriate modifications.
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Setting up your configuration files

First, "parameter_orbit.rdf" was opened in the text editor. This file sets param-
eters describing the SWOT orbit, which was used to determine the observation
times for the Po River. The mission start time was specified as April 1, 2001; this
was used to determine SWOT overpass times. The study area bounding box de-
fines the area where the Po River is located. The simulation start and end time
corresponded to January 2002. The simulation time for other periods was ad-
justed according to the simulation month. Figure 3.19 exhibits the above param-
eters. Other parameters can be modified as needed, although the defaults will
likely work for most applications.

Figure 3.19: Modify "parameter_orbit.rdf" for January 2002

"parameter_sisimp.rdf" was then specified. This file contains the control parame-
ters to generate pixel cloud products.

The directory for orbit files, polygon shapefiles, and output were set to the corre-
sponding paths under "/Po_2002_01" (see Figure 3.20).

Then, orbit files were chosen for processing. There are three options (see Figure
3.21). In this simulation, “Multiple orbit = passplan” was chosen so that the orbit
files would be processed according to the "passplan.txt" file, which is located in
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Figure 3.20: Modify directories in "parameter_sisimp.rdf" for January
2002

"/orbit" and creates orbit files.

Figure 3.21: Modify orbit parameters in "parameter_sisimp.rdf"

Next, the height parameters were specified. There are also three options (see Fig-
ure 3.22). In this case, height model option 2 was used. Height is given as the
attribute "HEIGHT" in the input shapefile, which matches "Height shp attribute
name" in this option.

Figure 3.22: Modify height parameters in "parameter_sisimp.rdf"

Finally, to quicken the simulation, intermediate output files such as pixel cloud
shapefiles that will not be utilized later can be excluded from the exported file
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(see Figure 3.23).

Figure 3.23: Modify output products in "parameter_sisimp.rdf"

The last rdf file to be edited was "parameter_river.rdf." This file contributes to
converting the pixel cloud product into a river product. The sole modification
needed was updating the "reach_db_path," which references the input NetCDF
file of this month (see Figure 3.24).

Figure 3.24: Modify "parameter_river.rdf" in January 2002

Creating the orbit file

When commands were issued utilizing "parameter_orbit.rdf" (see Figure 3.25), a
"passplan.txt" file and several other files were created under "/output/orbit" with
information about orbit, cycle number, and mission time (see Figure 3.26). These
files were selected by "parameter_sisimp.rdf" in the orbit parameters (mentioned
above) to process orbit and cycle of interest in the following steps.

Figure 3.25: Command to create orbit file
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Figure 3.26: Orbit file "passplan.txt" in January 2002

Running the simulator

With the support of "parameter_sisimp.rdf," the pixel cloud product was created
by issuing the command in Figure 3.27. Figure 3.28 presents the naming conven-
tions of the pixel cloud product.

Figure 3.27: Command to create the pixel cloud product

Figure 3.28: Naming convention of pixel cloud product

Further process to create the river product was completed using the "parame-
ter_river.rdf" and the RiverObs. The RiverObs was executed through the script
in the SWOT Hydrology Toolbox. Therefore, it was sufficient to issue commands
for script implementation under the toolbox (see Figure 3.29). The three product
types were stored under "/output/river/rivertile." Figure 3.30 indicates the nam-
ing conventions; these are similar to the pixel cloud product, but the prefix was
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changed from "PixC" to "RiverTile" and the suffix of the shapefiles added "_reach"
and "_node" to distinguish between the two output products. In this study, the
reach product was the target product, which is collected and processed in the
next chapter.

Figure 3.29: Command to create the river product

Figure 3.30: Naming convention of the river product
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Chapter 4

Methodology

4.1 Introduction to river discharge estimation

In this study, Manning’s equation (Manning et al. 1891) was used to estimate river
discharge:

Q =
1

n
(Ā+ A′)5/3w−2/3s1/2 (4.1)

where n is the reach-averaged Manning’s roughness coefficient, Ā is the reach-
averaged cross-sectional area at the time of the lowest observed river elevation,
A′ is the change in cross-sectional area with respect to Ā, w is the observed chan-
nel top width, and s is the slope of the water surface elevation.

n and Ā are known as "flow law parameters" and are normally provided by
SWORD. However, these data are based on the first year of mission operations
and were not defined yet. Thus, before the estimation of river discharge, an ap-
proach was needed to specify the flow law parameters for each reach.

For more precise description of n, it was modeled based on Durand et al. (2021):

n = nb

(
1 +

5

6

[
wσz
Ā+ A′

]2)
(4.2)

where nb is the roughness coefficient at a high flow, such as bankfull, and σz is
the spatial variation of river bed elevation. Ā, nb and σz denote time-invariant
parameters that must be estimated for each reach.

In the SWOT mission, A′, w and s were observed for each overpass. Until now,
the SWOT Hydrology Simulator can provide simulated w, s and standard devia-
tions in time series. A′ can be calculated via integration over a function relating
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water surface elevation h to width w(h), which is a simulation implemented by
the Matlab code "SWOTAprimeCalcs" (Durand et al. 2014).

4.2 Flowcharts

This section summarizes the process of this thesis through flowcharts. Figure 4.1
shows the whole process of simulation and post-processing until the posterior
discharges Q̂est. are calculated.

Figure 4.2 describes the details of two rounds of Kalman Filter. According to the
Manning’s equation (see Equation 4.1) the flow law parameters must be known
before the computation of discharge. Thus, the first round of Kalman Filter is set
on the basis of mass conservation to compute the prior dischargeQest.(t), through
which the flow law parameters could be estimated by the interior-point optimiza-
tion with inequality constraints. After that, using the flow law parameters dis-
charge could be recalculated, which will be the observations of the second round
of Kalman Filter for a more accurate estimation of posterior discharges Q̂est..

Figure 4.3 depicts the concrete steps of interior-point optimization with inequal-
ity constraints.
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Figure 4.1: Whole process of this thesis
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Figure 4.2: Kalman Filter steps



4.2. Flowcharts 39

Figure 4.3: Interior-point optimization with inequality constraints
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4.3 General steps

In general, four steps could be summarized from the flowcharts above to obtain
time series data for monthly river discharge:

1. The required data for the subsequent process: w(t), s(t), h(t) with their stan-
dard deviations was extracted from the simulated river product. Over time,
monthly time series data was collected for each reach.

2. A′(t) and σA′(t) were computed through "SWOTAprimeCalcs" with simulated
w(t), σw(t), h and σh(t) as the input.

3. The first Kalman Filter estimated the prior discharge Qest.(t) for each reach
in the mainstream. Flow law parameters were calculated through interior-point
optimization with inequality constraints. The initial values of the Kalman Filter
were taken from in situ data. The process model includes a model in the space
and time domain. Before updating via the observation model, the joint prior of
the two process models was computed. The mass conservation condition served
as an observation equation.

4. Discharge Qrecal.(t) was recalculated through the estimated flow law param-
eters. The second Kalman Filter was implemented using the results of the first
Kalman Filter as starting values. The space and time process model were also the
same as the first Kalman Filter. The observation model contains the mass conser-
vation condition and Qrecal.(t).

4.4 Collecting data from the simulator

Section 3.3.4 notes that a separate working directory was created for each month
featuring output files in NetCDF format and divided by orbit, cycle number,
and mission time under "/output/river/rivertile." Each file contained various at-
tributes, and there were many invalid data points that were assigned the invalid
value of "-99999999999" or "no_data" (see Figure 4.4). Hence, it was necessary to
extract required and valid information from these files.

Table 4.1 lists the attributes that were collected from each output file. When all at-
tributes of an object were assigned valid data, they were extracted from the river
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Figure 4.4: A part of the output data in the river product

product.

Notation Attribute Name Unit

reach_id Reach id [-]

time Time (UTC) [s]

WSE Water surface elevation [m]

WSE_u Uncertainty in WSE [m]

slope Slope [m/m]

slope_u Uncertainty in slope [m/m]

width Reach width [m]

width_u Uncertainty in width [m]

Table 4.1: Extracted attributes from the river product

After this, the data was organized into a chronological order for each river reach.
Additionally, the monthly weighted mean of slope, WSE, and width were calcu-
lated for use in the Kalman Filter. Figure 4.5 compares simulated and Landsat-
observed widths in gauge stations. Figure 4.6 compares the simulated WSE with
the WSE observed by various satellite missions in gauge stations. As shown, the
input data are highly correlated to the simulated data. Table 4.2 shows the cor-
relations in each gauge station. We can then compute the residual between the
simulated and Landsat width:

residual = widthsimu − widthLandsat (4.3)
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The histogram of the residual could also be built and be compared with the nor-
mal distribution fit line (see Figure 4.7). We can see that the bars of residual
approximately fit the normal distribution and the noise between the simulated
and Landsat width is white noise.

There are always offsets for width because the simulator uses polygon extent to
calculate river width. The river product is created based on the pixel cloud prod-
uct, which covers the area classified as water and the buffer zone around these
water zones (see Section 3.2.1). Each pixel has its own area. If a pixel happens to
be at the edge of the river, it is counted as a water pixel in the RiverObs process,
which offsets width because of its pixel area.

Figure 4.5: Simulated vs. Landsat-observed width
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Figure 4.6: Simulated vs. satellites-observed WSE

Corr. of width [-] Corr. of WSE [-]

Piacenzao 0.9525 0.9844

Cremona 0.9937 0.9902

Borgoforte 0.9967 0.9979

Sermide 0.9887 0.9977

Pontelagoscuro 0.9932 0.9988

Table 4.2: Correlation of input and simulated data in gauge stations
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Figure 4.7: Histogram of residual between the simulated and Landsat
width in gauge stations to verify if it is white noise
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4.5 Computation of the changes in cross-sectional area

Changes in cross-sectional area A′ are a SWOT data product. In the Manning
equation for discharge algorithms (see Equation 4.1), the sum of A′ and reach-
averaged cross-sectional area Ā determine the cross-sectional area A, which is
of primary importance in river hydraulics. This section describes the estimation
of A′ and σA′ with the help of simulated width w(t) and height h(t) based on
"SWOTAprimeCalcs".

4.5.1 Definition

The computation of the cross-sectional area can be written as (Durand et al. 2014):

A(h(t)) = Ā+ A′(h(t)) = Ā+ εĀ +

∫ h(t)

h̄

fw(h′)dh′ (4.4)

where h(t) is the observed WSE at time t, εĀ is a slight mismatch that does not
vary with time. As shown in Figure 4.8, A′ is computed by integrating the WSE at
Ā (h̄) to h(t)) through the fitting function fw(h′). The challenges of this approach
are finding an appropriate fw based on height-width data and calculating A′ us-
ing fw. This were done "offline" by the research team and “online” as part of the
SWOT processing chain.

Figure 4.8: Composition of the cross-sectional area

4.5.2 Building the fitting function

To better express the height-width variation, the cross-section was divided into
sub-domains. Empirically, three sub-domains are adequate for this estimation.
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A continuous piecewise-linear function met these requirements, and the bound-
ary definition of the sub-domains was done via an optimization routine of min-
imizing square errors by choosing different sub-domain boundaries. Therefore,
an errors-in-variables model (Carroll et al. 2006) was utilized with simultaneous
consideration of errors in height and width data (Durand 2018):

min
ns∑
s=1

(σ2
w + p2

s,1σ
2
h)
−1
∑
j

(ps,1hj + ps,2 − wj)2 (4.5)

where ns is the number of sub-domains, σw and σh are the standard deviations of
width and height, ps,1 and ps,2 are the slopes and intercepts for each sub-domain,
and hj and and wj indicate the time-various height-width observations. Further-
more, this optimization problem requires a constraint:

ps,1hb,s+1 + ps,2 = ps+1,1hb,s+2 + ps+1,2 (4.6)

where hb,s are the breakpoints or sub-domain boundaries defined in terms of their
river height including start and end points. This constraint equation indicates
that the fitting function fw meets at breakpoints.

After the minimization, the fit parameters ps,1 and ps,2 and breakpoints hb,s of
each reach were obtained. It is important to note that these parameters were
not yet defined because they would be included in the SWORD based on the
first year of mission operations. Thus, in this study, the calculation of fit pa-
rameters and breakpoints was based on simulated height-width observations. In
"SWOTAprimeCalcs," the height and width data with their errors were input into
the "FitData" function, which solved the optimization problem.

4.5.3 Calculating A’

For the computation of A′, the optimal height point needed be found. The errors-
in-variables approach finds the optimal height point by combining height and
width observations:

ĥ(t) = h(t) + (σ2
w + p2

1σ
2
h)
−1(p2

1σ
2
h)(w(t)− p2 − p1h(t)) (4.7)
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With this information, the fitting functions can be integrated. If the optimal height
point ĥ(t) falls within the sub-domain d (Durand 2018),

A′(ĥ(t)) =
d−1∑
s=1

∫ hb,s+1

hb,s

(ps,1h+ ps,2)dh+

∫ ĥ(t)

hb,d

(pd,1h+ pd,2)dh− A′(h̄) (4.8)

where A′(h̄) is the difference with the median cross-sectional area at h̄, which can
be calculated through:

A′(h̄) =
d−1∑
s=1

∫ hb,s+1

hb,s

(ps,1h+ ps,2)dh+

∫ h̄

hb,d

(pd,1h+ pd,2)dh (4.9)

When a height observation falls outside all sub-domains, a simple trapezoidal
approximation between the height point and the nearest sub-domain boundary
can be used.

So for now, the computation of the error ofA′ is a very simple approach, assuming
half of the error variance in the estimator comes from the height error, and it is
approximated as a response of height error and width using the Durand et al.
(2014) way of computing:

σA′(t) =
√

2w(t)σh(t) (4.10)

Furthermore, there are several required data elements that will be considered
for computation in the future, such as the width error, covariance matrix of the
height and width observations, the sub-domain boundary values for WSE and
width, and others.

In "SWOTAprimeCalcs," A′(h̄) could initially be computed according to Equation
4.9 through the "CalculatedAEIV" function using the median of the height ob-
servations, the calculated fit parameters, and the breakpoints from the previous
step. After this,A′(h̄) could be inversely used as an input of the "CalculatedAEIV"
function to calculate A′(ĥ) (see Equation 4.8). At the same time, σA′(t) could be
computed using the width and height error (see Equation 4.10). For further pro-
cesses, the weighted mean of A′ for each month must be computed. Figure 4.9
shows the monthly time series for A′ with the σA′ of the gauge stations. For all
gauge stations, A′(t) varies around 0 m2. σA′(t) has the largest value in Cremona
because Cremona has the largest product of w(t) and σh(t).
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Figure 4.9: A′ with σA′ in gauge stations

4.6 Estimation of flow law parameters

With these data, the first Kalman Filter was executed. The aim of this step was to
derive the flow law parameters through the Kalman-Filtered a priori discharges
in the mainstream. This section outlines how to build the process model, obser-
vation equation, estimate of a priori discharge, and the computation of flow law
parameters.

4.6.1 Process model

First, the process model was set up using in situ data. As mentioned in Section
4.3, the process model was divided into the space and time domain. For each
domain, the transition matrix and process noise must be established.

Space domain

To build the transition matrix Φs, the spatial transformation parameters a and b

for each month must be estimated via adjustment of this linear model:

Qgauge(Ω, t) = aQgauge(Ω− 1, t) + bQgauge(Ω− 2, t) (4.11)
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where t indicates a month, Ω refers to a gauge station, and (Ω − 1) is the station
before Ω. Hence, Qgauge(Ω, t) indicates the in situ discharge of reach Ω in month t.
Because the available in situ discharge was observed daily from 1995 to 2011, the
mean value for each month in this period needed to be calculated.

To solve this model, the discharges of a given month were collected, and Equation
4.11 was extended as follows using data from January as an example:

Qgauge(Ω3, Jan.1995)

Qgauge(Ω4, Jan.1995)

Qgauge(Ω5, Jan.1995)

Qgauge(Ω3, Jan.1996)
...


︸ ︷︷ ︸

ym×1

=



Qgauge(Ω2, Jan.1995) Qgauge(Ω1, Jan.1995)

Qgauge(Ω3, Jan.1995) Qgauge(Ω2, Jan.1995)

Qgauge(Ω4, Jan.1995) Qgauge(Ω3, Jan.1995)

Qgauge(Ω2, Jan.1996) Qgauge(Ω1, Jan.1996)
...

...


︸ ︷︷ ︸

Am×2

[
a

b

]
︸︷︷︸
x2×1

(4.12)
This equation was solved through the following adjustment (P = I):

x̂ = (ATPA)−1ATPy (4.13)

e = y −Ax̂ (4.14)

σ2
0 =

eTPe

m− 2
(4.15)

Σ̂x = σ2
0(ATPA)−1 (4.16)

Σ̂y = AΣ̂xA
T

(4.17)

(4.18)

The adjustment was executed separately for each month and yielded the monthly
a, b and residuals e. At this point, prediction of the state vector was possible:

Qs(Ω, t)

Qs(Ω− 1, t))

Qs(Ω, t− 1)

Qs(Ω− 1, t− 1)


︸ ︷︷ ︸

x̂s

=


a(t) b(t) 0 0

1 0 0 0

0 0 a(t− 1) b(t− 1)

0 0 1 0


︸ ︷︷ ︸

Φs


Qs(Ω− 1, t)

Qs(Ω− 2, t)

Qs(Ω− 1, t− 1)

Qs(Ω− 2, t− 1)


︸ ︷︷ ︸

x̂s−1

(4.19)

where Ω here denotes the reach and t still indicated the month. -1 refers to the
previous reach or month. The corresponding prediction of the covariance matrix
is:

Ps = ΦsPs−1Φ
T
s + Ns (4.20)
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where Ps and Ps−1 are the covariance matrix of state x̂s and x̂s−1. Ns is process
noise given by residuals e:

Ns =


var(e) 0 0 0

0 var(e) 0 0

0 0 var(e) 0

0 0 0 var(e)


Notably, the starting values of the space domain process model for the first period
(i.e., January 2002) were taken from the monthly discharge of two neighboring
gauge stations, namely Cremona (Ω−1) and Borgoforte (Ω) in January (t−1) and
February (t) 2002. The corresponding covariance matrix of state was built using
10% of σ̂y estimated in adjustment (see Equation 4.16).

Time domain

The creation of the transition matrix Φt was more complicated than that of Φs.
The first residual of monthly discharge required calculating (Tourian et al. 2017)

rt = dt − d̃t (4.21)

with dt as the in-situ monthly time series discharge and d̃t as the corresponding
in situ mean monthly discharge, which represents the cyclostationary behavior of
monthly river discharge. Because there are 17·12=204 months from 1995 to 2011
and five gauge stations, the size of rt is 204×5. Hence, Φt needed to be found to
build the linear process model

rt = Φtrt−1 + e (4.22)

with minimized process error:

tr[cov{e}] = min (4.23)

The outer product of the error vector can be calculated first:

eeT = (Φtrt−1 − rt)(Φtrt−1 − rt)
T

= Φtrt−1r
T
t−1Φ

T
t − rtr

T
t−1 −Φtrt−1r

T
t + rtr

T
t

(4.24)
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The auto-covariance and cross-covariance can be defined as:

Auto-covariance: Σ = cov{rt} = E{rtrTt } =
1

T

T∑
t=1

rTt rt

Cross-covariance: Σ∆ = cov{rt, rt−1} = E{rtrTt−1} =
1

T − 1

T∑
t=2

rTt−1rt

(4.25)

where T refers to the total of 204 months.

Then, the error covariance matrix of the process model is as follows:

cov{e} = E{eeT} = ΦtΣΦT
t −Σ∆ΦT

t −ΦtΣ
T
∆ + Σ

= Σ−Σ∆Σ−1ΣT
∆ + (Φt −Σ∆Σ−1)Σ(Φt −Σ∆Σ−1)T

(4.26)

Because the term Σ−Σ∆Σ−1ΣT
∆ is independent of Φt, the minimum trace can be

determined when
Φt = Σ∆Σ−1 (4.27)

The corresponding covariance matrix is:

cov{e} = Σ−Σ∆Σ−1ΣT
∆ (4.28)

which was treated as process noise Nt in the process model. Φt and Nt are 5×5-
matrices which indicating the change in five gauge stations. The values in the
matrices were evenly distributed to the reaches around each gauge station. Fig-
ures 4.10 and 4.11 show the distributed Φt and Nt respectively.

At this point, the time domain process model needed to be adjusted accordingly.
Combining Equations 4.21 and 4.22 yielded

dt − d̃t = Φt(dt−1 − d̃t−1) + e

dt = Φtdt−1 −Φtd̃t−1 + d̃t + e
(4.29)

which could be rewritten as:

dt = Φtdt−1 + GUt−1 + e (4.30)

where G =
[
−Φt I

]
and Ut−1 =

[
d̃t−1

d̃t

]
.
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Figure 4.10: Time domain transition matrix Φt

Figure 4.11: Time domain process noise Nt

Thus the time domain process model could be understood as{
xt = Φtxt−1 + GUt−1 + e

Pt = ΦtPt−1Φ
T
t + Nt

(4.31)
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where vector xt refers to the discharges of 65 reaches in the Po mainstream during

the period t: xt =


Qt(Ω1, t)

Qt(Ω2, t)
...

Qt(Ω65, t)

. The initial values of xt and Pt were informed by

the Kalman-Filtered results of the previous period.

4.6.2 Observation model

The observation equation benefited from mass conservation for the channel (Du-
rand et al. 2014):

∂Q̄

∂x
(Ω, t) +

∂Ā

∂t
(Ω, t) = q̄(Ω, t) (4.32)

where the overbars indicate the average reach of each quantity. On the right side,
q̄(Ω, t) is the reach’s average floodplain-channel exchange, which was set as 0
m2/s for a rough estimation. On the left side, the first and second terms are the
"flow imbalance" and "mass imbalance," respectively. Given that the flow imbal-
ance term represents the reach’s average discharge spatial derivative, Equation
4.32 can be understood as

1

2

(
∂Q̄

∂x

∣∣∣∣
t

+
∂Q̄

∂x

∣∣∣∣
t−1

)
+
∂Ā

∂t
(Ω, t) = q̄(Ω, t) (4.33)

which can be continued to be extended as:

1

2

[
Q(Ω, t)−Q(Ω− 1, t)

L(Ω)
+
Q(Ω, t− 1)−Q(Ω− 1, t− 1)

L(Ω)

]
+
A′(Ω, t)− A′(Ω, t− 1)

∆t

= q̄(Ω, t) (4.34)

This can be rewritten as

q̄(Ω, t)− A′(Ω, t)− A′(Ω, t− 1)

∆t
=

1

2L(Ω)
[Q(Ω, t)−Q(Ω− 1, t) +Q(Ω, t− 1)−Q(Ω− 1, t− 1)] (4.35)
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Using Equation 4.35, the observation model can be established as

q̄(Ω, t)− A′(Ω, t)− A′(Ω, t− 1)

∆t︸ ︷︷ ︸
z

=
[

1
2L(Ω)

− 1
2L(Ω)

1
2L(Ω)

− 1
2L(Ω)

]
︸ ︷︷ ︸

H


Q(Ω, t)

Q(Ω− 1, t))

Q(Ω, t− 1)

Q(Ω− 1, t− 1)


︸ ︷︷ ︸

x

(4.36)
which illustrates that if there are A′(Ω) in two adjacent months (and q̄(Ω, t) =

0 m2/s), the state estimates can be updated via this equation. In addition, the
corresponding covariance of observation R can be obtained by propagation of
uncertainty:

R =
σ2
A′(Ω,t) + σ2

A′(Ω,t−1)

∆t2
(4.37)

4.6.3 Obtaining a priori discharge estimates

The process and observation models can offer a priori discharge estimates Qest.

through Kalman Filter.

Firstly, the Kalman Filter was executed in the space domain only. In other words,
starting from the neighboring gauge stations in Cremona and Borgoforte in Jan-
uary 2002, only the space domain process models (see Equations 4.19 and 4.20)
were utilized for the estimate and the observation models (see Equation 4.36);
this allowed discharge values for each reach in January 2002 to be obtained.

Then, the normal Kalman Filter was implemented for other epochs t. Using the

time domain process model (see Equation 4.31), the state vector xt =


Qt(Ω1, t)

Qt(Ω2, t)
...

Qt(Ω65, t)


can be predicted from discharges in the previous xt−1. Secondly, using the space

domain process model the state vector xs =


Qs(Ω, t)

Qs(Ω− 1, t))

Qs(Ω, t− 1)

Qs(Ω− 1, t− 1)

 can be predicted.
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Notably, the starting values of Qs(Ω, t) and Qs(Ω − 1, t) represented timely pre-
dicted discharges of the Borgoforte gauge station and its neighboring reach, while
the starting values of Qs(Ω, t − 1) and Qs(Ω − 1, t − 1) were extracted from the
Kalman-Filtered results of the previous period:

xs0 =


Qt(Borgoforte, t)

Qt(Borgoforte− 1, t))

Qest.(Borgoforte, t− 1)

Qest.(Borgoforte− 1, t− 1)

 (4.38)

Figure 4.12 indicates the space and time domain estimates.

Figure 4.12: Space and time domain estimates

Thirdly, a joint prior xs,t was calculated that combined the predictions of the two
process models xs and xt with the corresponding covariance matrix Σs and Σt:

Qs(Ω, t)

Qs(Ω− 1, t))

Qs(Ω, t− 1)

Qs(Ω− 1, t− 1)

Qt(Ω, t)


︸ ︷︷ ︸

xs and xt(Ω,t) as y5×1

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


︸ ︷︷ ︸

A5×4


Qs,t(Ω, t)

Qs(Ω− 1, t))

Qs(Ω, t− 1)

Qs(Ω− 1, t− 1)


︸ ︷︷ ︸

xs,t 4×4

(4.39)
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The weight matrix of this model is:

P = Q−1
y =

[
Σs 0

0 Σt

]−1

(4.40)

Then the joint prior x̂s,t could be obtained by adjustment (see Equation 4.13). The
corresponding covariance of xs,t, namely Σ̂x, can be computed as:

e = y −Ax̂s,t (4.41)

σ2
0 =

eTPe

5− 4
(4.42)

Σ̂x = σ2
0(ATPA)−1 (4.43)

Figure 4.13 shows the probability distribution of Qs, Qt and their joint prior Qs,t.
We can see that joint prior Qs,t is the combination of Qs and Qt with improved
standard deviation.

Figure 4.13: Probability distribution of Qs, Qt and their joint prior Qs,t

Next, the joint prior was updated if possible; otherwise, only predictions were
available for this reach. After performing these steps for all reaches in the main-
stream, a priori discharge estimates Qest. were obtained for this period.

4.6.4 Computing the flow law parameters

Using the obtained a priori discharges Qest., the flow law parameters for each
reach were estimated using interior-point optimization with inequality constraints.
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The function to optimize was based on the combination of Manning’s equation
(see Equation 4.1) and the extended description of the roughness coefficient n (see
Equation 4.2):

Q =
1

nb(1 + 5
6
[ wσz
Ā+A′

]2)
(Ā+ A′)5/3w−2/3s1/2 (4.44)

With the support of Qest. and simulated w, s and A′, the time-invariant param-
eters Ā, nb and σz for each reach can be estimated by minimizing the following
function:

min[f(Ā, nb, σz)] = min

[∣∣∣∣Q̄est. −
1

nb(1 + 5
6
[ w̄σz
Ā+Ā′

]2)
(Ā+ Ā′)5/3w̄−2/3s̄1/2

∣∣∣∣] (4.45)

where the overbars of Qest., w, s and A′ indicate their weighted mean over all pe-
riods in each reach given that the parameters to be computed are time-invariant
(constant).

In addition, inequality constraints can be obtained by minimizing the function
0.3 > nb > 0

Ā > 0

σz ≥ 0

(4.46)

It was observed that the interior-point optimization required initial parameters
values to be computed.

- σz0 was set as 0 for all reaches.

- nb0 was derived from gauge and SWORD data. For each gauge station, a
mean value was calculated (σz0 = 0):

nb0 = mean

[
1

Qgauge(t)
Agauge(t)

5/3wgauge(t)
−2/3s

1/2
SWORD

]
(4.47)

where Qgauge(t), Agauge(t) and wgauge(t) are time series gauge data, while
sSWORD is extracted from SWORD. Then, each nb0 was allocated to the reaches
neighboring the gauge stations as per Figure 3.7.

- For Ā0, temporary Ā(t) was first computed for each epoch with the help of
nb0, Qest.(t), simulated w(t), s(t) and A′(t):

Ā(t) = 3/5

√
nb0Qest.(t)w(t)2/3s(t)−1/2 − A′(t) (4.48)
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After this, the weighted mean of Ā(t) was used as the initial Ā0.

The whole procedure of interior-point optimization with inequality constraints is
presented in Figure 4.3. After that we can obtain optimized σ̂z, n̂b and ˆ̄A for each
reach were obtained and utilized to recalculate the discharges. These recalculated
discharges were treated as observations for a new round of Kalman Filtering with
the aim of estimating posterior discharges.

4.7 Estimating posterior discharges

As noted above, a new round of Kalman Filtering was executed. The time and
space domain process models (see Section 4.6.1) and the computation of joint
prior (see Section 4.6.3) followed the same steps as above, with one difference in
the observation model and its use of the mass conservation equation (see Equa-
tion 4.36) and recalculated discharges. With the aid of estimated flow law param-
eters and simulated data, the discharges were recalculated as follows:

Qrecal. =
1

n̂b(1 + 5
6
[ wσ̂zˆ̄A+A′

]2)
( ˆ̄A+ A′)5/3w−2/3s1/2 (4.49)

And the corresponding variance can be obtained by propagation of uncertainty.
The new observation model is:
q̄(Ω, t)− A′(Ω,t)−A′(Ω,t−1)

∆t

Qrecal.(Ω, t)

Qrecal.(Ω− 1, t)

Qrecal.(Ω, t− 1)

Qrecal.(Ω− 1, t− 1)


︸ ︷︷ ︸

z

=



1
2L(Ω)

− 1
2L(Ω)

1
2L(Ω)

− 1
2L(Ω)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

H


Q(Ω, t)

Q(Ω− 1, t))

Q(Ω, t− 1)

Q(Ω− 1, t− 1)


︸ ︷︷ ︸

x

(4.50)
In addition, the corresponding covariance of observation R is:

R =



σ2
A′(Ω,t)

+σ2
A′(Ω,t−1)

∆t2
0 0 0 0

0 σQrecal.(Ω,t) 0 0 0

0 0 σQrecal.(Ω−1,t) 0 0

0 0 0 σQrecal.(Ω,t−1) 0

0 0 0 0 σQrecal.(Ω−1,t−1)


(4.51)
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Finally, after the new round of Kalman Filter, the posterior time series discharges
Q̂est.(t) for each station were collected. Note that, the steps of Kalman Filter are
shown in the Figure 4.2. The results of the flow law parameters and prior and
posterior discharges are presented in the Chapter 5. In addition, the data is vali-
dated via comparison with gauge data.
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Chapter 5

Results and validation

This chapter will show the results of post-processing after simulation. For the val-
idation in-situ data is an important measurement tool. The Table 4.2 has shown
that the simulated data are highly correlated to the input data derived from satel-
lite data. But the measurement positions of gauge station and satellites could be
different. Hence, for the better comparison and validation with estimated dis-
charges, the in-situ discharges will be fitted to the satellites discharges through
their width data.

According to the Manning’s equation (see Equation 4.1) for each gauge station a
scale factor s can be built:

s = mean

[(
wLandsat(t)

wgauge(t)

)−2/3]
(5.1)

where wLandsat(t) and wgauge(t) are respectively the monthly Landsat and in-situ
width from year 2000 to 2011. s is the mean value of the monthly scale factors.
After that the fitted in-situ discharges in each gauge station can be computed:

Qfit = Qgauge · s (5.2)

Notably in this chapter all mentioned or utilized in-situ discharges Qgauge refer to
Qfit, which will not be specifically declared in the following.

5.1 Results of a priori discharges

Through the first round of Kalman Filter the prior discharges from year 2002 to
2019 could be computed. The monthly results for each reach and the comparison
with in-situ data are shown in Appendix A. It is noteworthy that the comparison
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with in-situ data is only available from year 2002 to 2011. Furthermore for a bet-
ter comparison, the data in gauge stations were extracted separately and shown
in time series in Figure 5.1.

Figure 5.1: Comparison of a priori and in-situ discharges

It can be seen that, the trend of the curves in Appendix A is similar for the same
month in each year. Figure 5.1 also reflect that, the prior discharges are almost
periodic. In addition, there are obvious differences between a priori and in-situ
discharges.

One of the possible reasons for this is that in the process model, Φs is a mean
monthly matrix and Φt is even constant. The linear model may not be well
adapted to predict discharges, which could be influenced by different factors,
such as weather conditions, human factors, etc. On the other hand in the first
round of Kalman Filter, only the mass conservation equation (see Equation 4.36)
was used as the update. In this thesis, the reach’s average floodplain-channel
exchange q̄(Ω, t) was roughly set as 0 m2/s. And by computing of A′ through
"SWOTAprimeCalcs" (see Section 4.5), the fit parameters and breakpoints were
not yet defined. Thus, the calculation of them was based on simulated height-
width observations. This requires high demands on the accuracy of simulated
height-width observations. Worse still, the computation of the error of A′ is still
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being elaborated. All the above mentioned factors have a negative impact on the
computation of mass conservation equation, which also leads to less accurate up-
dates of the predicted estimates.

To verify the influence of simulated height-width observations, the simulated
width and height were separately compared with them in gauge stations in Fig-
ure 5.3 and 5.2. Table 5.1 also lists the correlations in each gauge station. All these
information reveal that there are big differences between the in-situ and the sim-
ulated height-width observations, which could result in the differences between
prior and in-situ discharges by computing A′, and even have a negative influence
on the following estimation of flow law parameters and posterior discharges.

Figure 5.2: Comparison of simulated and in-situ width
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Figure 5.3: Comparison of simulated and in-situ WSE

Corr. of width [-] Corr. of WSE [-]

Piacenzao 0.4646 0.5789

Cremona 0.4470 0.6200

Borgoforte 0.5261 0.6293

Sermide 0.4685 0.6426

Pontelagoscuro 0.4440 0.6598

Table 5.1: Correlation of simulated and in-situ data

5.2 Results of flow law parameters

After estimating the prior discharges, the interior-point optimization with in-
equality constraints could be executed. The respective comparison of initial and
optimized parameters Ā, σz and nb for each reach are shown in Figures 5.4, 5.5
and 5.6. It can be seen that the data has been improved essentially. It is note-
worthy that not every reach can obtain optimized flow law parameters, because
in these reaches the simulated w, s or A′ are not available to execute the interior-
point optimization.

Moreover, the reach-averaged Manning’s roughness coefficient n could be com-
puted through the Equation 4.2 with the aid of optimized flow law parameters
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Figure 5.4: Initial vs. optimized Ā

Figure 5.5: Initial vs. optimized σz

and simulated data. Figure 5.7 shows calculated n for each gauge station in time
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Figure 5.6: Initial vs. optimized nb

series. In comparison with the time-invariant nb, n changes in time series accord-
ingly due to the variation of simulated data, but the change is stable in a relatively
small interval.

The interior-point optimization (see Equation 4.45) has some potential risks. On
the one hand, it uses Qest., that doesn’t perform well according to Section 5.1. On
the other hand, the optimization equation utilizes mean values of Qest. and sim-
ulated data, which leads to the risk that the results are less accurate, since the
particular circumstances of each period are not taken into account. Besides, as
the inequality constraints are manually established, it may not contribute to the
best optimization.
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Figure 5.7: Calculated n for each gauge station in time series

5.3 Results and validation of posterior discharges

After the second round of Kalman Filter the posterior discharges can be obtained.
The monthly results for each reach and the comparison with in-situ data are
shown in Appendix B. The curve trend for the same month each year now re-
veals a difference. The standard deviation has also been improved. Differences
from in-situ discharges have been also slightly reduced in some periods.

Figure 5.8 displays the comparison with in-situ discharges in time series. To fur-
ther validate the results, the Root-Mean-Square Error(RMSE), correlation, and
Nash-Sutcliffe Efficiency (NSE) values have been calculated between in-situ and
posterior discharges (see Table 5.2).

It can be observed that there are still considerable differences between posterior
and the in-situ data. The RMSE is a little bit large (approximately 30% of the
mean in-situ discharge) and is maximum in the gauge station Sermide with the
largest mean discharge. The correlation is larger than 0, which indicates a pos-
itive linear dependence between the estimated and in-situ discharge. The NSE
is also greater as 0, which reflects that this model is a better predictor than the
mean of in-situ discharge. The best correlation and NSE values are in the gauge
station Borgoforte, which is also the starting station of the spatial process model
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Figure 5.8: Comparison of posterior and in-situ discharges

RMSE [m3/s] Correlation [-] NSE [-]

Piacenzao 283.3072 0.4434 0.1910

Cremona 554.8363 0.4490 0.1816

Borgoforte 452.7548 0.4532 0.2028

Sermide 670.1480 0.4497 0.2015

Pontelagoscuro 548.3018 0.4472 0.1731

Table 5.2: Validation in gauge stations

in Kalman Filter.

In general, validation results do not show good performance. In Section 5.1 and
5.2, the disadvantages of first round of Kalman Filter and risks of interior-point
optimization with inequality constraints have been analyzed, which have nega-
tive chain effects to the estimation of posterior discharges. Additionally, in the
second round of Kalman Filter the discharges were recalculated with the support
of simulated w(t), s(t) and A′(t). Table 5.1 has shown that, the simulated and
in-situ width and WSE are not well correlated. Since the computation of slope is
dependent on WSE, it can be presumed that the simulated s(t) and in-situ slope
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do not correlate very well either. Besides, the calculation of A′(t) is based on sim-
ulated height-width observations. Therefore it can be inferred that, Qrecal. have
a poor performance and have a low correlation with Qgauge.. The combination of
the above reasons led to the unsatisfactory results.
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Chapter 6

Conclusion and outlook

6.1 Summary and conclusion

This article consists of two main steps: simulation and post-processing:

In the simulation, first the SWOT-like data in time series over the Po River are
simulated by SWOT Hydrology Simulator. As input Landsat provide width data,
various satellites such as Envisat, Topex etc. provide altimetry data, and via al-
timetry data slope could be created. Then the Matlab code SWOTAprimeCalcs
could compute the change in cross-sectional area with the support of the simu-
lated height-width observations.

In the post-processing, at first the prior discharge is obtained by a Kalman Filter
estimation with a spatio-temporal process model and mass conservation condi-
tion as the observation equation. Next using the obtained prior discharge flow
law parameters are estimated through interior-point optimization with inequal-
ity constraints. Finally, posterior discharge estimates are obtained by a second
round of Kalman Filter, with adding discharge observations derived from simu-
lated measurements and estimated flow law parameters.

The validation through comparison with in-situ discharge shows a poor perfor-
mance with the average RMSE of 501.87 m3/s, correlation of 0.45 and NSE of
0.19. RMSE is a little bit large. The correlation and NSE values are larger than 0,
which indicates a positive linear dependence between the predicted and in-situ
data and a good predictive skill of this method. The validation doesn’t show the
best performance. Such low performance may be due to the following reasons:

- The input width and altimetry data for simulation reveals a low correlation
with in-situ data, but the simulated data are highly dependent on the width
data.
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- The computation of change in cross-sectional area is still being elaborated
and some parameters have not yet been optimally defined.

- The reach’s average floodplain-channel exchange in mass conservation con-
dition was only roughly set as 0 m2/s.

- The interior-point optimization method uses the not satisfactory prior dis-
charge. And the mean value of prior discharge and simulated data were
applied for the computation, so that the specific scenarios in each period
cannot be considered.

- The inequality constraints of interior-point optimization are set manually
but there is no error estimate to evaluate the quality of flow law parameters.

- As additional observations to estimate posterior discharge, the recalculated
discharges uses the simulated data and optimized flow law parameters,
which have been proved to have potentially poor performance.

6.2 Outlook

The following tips could probably improve the results:

1.The input data of simulation needs to be improved. As mentioned in Section
3.3.1, many of the input width or height data are manually created because they
are not available in some periods or reaches. Hence, to obtain more information,
data from more various satellites should be collected and compared.

2. Since the SWOT Hydrology Toolbox and SWOTAprimeCalcs are still in de-
velopment, we can use the latest version to check if the output data have been
improved.

3. Instead of the traditional linear Kalman Filter, extended or other non-linear
Kalman Filter could be tried.

4. The real reach’s average floodplain-channel exchange in mass conservation
condition should be taken into account.

5. A better interior-point optimization method should be derived, which could
consider the variation of simulated data in time series and combine all the sce-
narios to give an optimal result. And the errors of the flow law parameters also
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need to be estimated in some way, so that the inequality constraints could be ac-
cordingly modified.
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Appendix A

Estimated a priori discharges

Figure A.1: Qest. in 2002
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Figure A.2: Qest. in 2003

Figure A.3: Qest. in 2004
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Figure A.4: Qest. in 2005

Figure A.5: Qest. in 2006
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Figure A.6: Qest. in 2007

Figure A.7: Qest. in 2008



Appendix A. Estimated a priori discharges 79

Figure A.8: Qest. in 2009

Figure A.9: Qest. in 2010
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Figure A.10: Qest. in 2011

Figure A.11: Qest. in 2012
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Figure A.12: Qest. in 2013

Figure A.13: Qest. in 2014
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Figure A.14: Qest. in 2015

Figure A.15: Qest. in 2016
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Figure A.16: Qest. in 2017

Figure A.17: Qest. in 2018
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Figure A.18: Qest. in 2019
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Appendix B

Estimated posterior discharges

Figure B.1: Q̂est. in 2002
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Figure B.2: Q̂est. in 2003

Figure B.3: Q̂est. in 2004
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Figure B.4: Q̂est. in 2005

Figure B.5: Q̂est. in 2006
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Figure B.6: Q̂est. in 2007

Figure B.7: Q̂est. in 2008
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Figure B.8: Q̂est. in 2009

Figure B.9: Q̂est. in 2010
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Figure B.10: Q̂est. in 2011

Figure B.11: Q̂est. in 2012
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Figure B.12: Q̂est. in 2013

Figure B.13: Q̂est. in 2014
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Figure B.14: Q̂est. in 2015

Figure B.15: Q̂est. in 2016
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Figure B.16: Q̂est. in 2017

Figure B.17: Q̂est. in 2018
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Figure B.18: Q̂est. in 2019
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