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Abstract

Teaching programming can be performed in many different ways, such as focusing on object-oriented
concepts in first place combined with mini-worlds like the hamster simulator. At the University of
Stuttgart, such a solution is provided with the focus on teaching Java. But now the need to teach
C++ in a similar way is also intended. To solve this necessity, a model-driven solution is proposed
to model mini-worlds and generate code into multiple programming languages like Java or C++.

The proposed solution covers requirements based on the existing approaches relevant for teaching
programming at the University of Stuttgart at the Institute of Software Engineering. Based on
these requirements, a modeling environment is designed which provides a framework part and
a concrete mini-world simulator part. Technically, the modeling environment is based on the
Eclipse platform and makes use of research related tooling for input modeling, model-to-model
transformations and code generation. Generated simulators are based on a modular architecture,
which enables high automation for tests and independence of concrete third-party frameworks.
Further, the interface provided for students is based on object-oriented principles and contract-based
design, including formalized pre- and postconditions defined for commands. By providing a meta-
model to define mini-worlds in a generic way, the proposed solution can be adapted for modeling of
different mini-worlds. In addition, a code generator is developed to transform adjusted intermediary
models to concrete source code. By achieving that most complexity is handled by model-to-model
transformations, this allows also to adapt the solution for further programming languages.

Finally, different aspects for the proposed solution are evaluated. On the one hand, the combination
of object-oriented teaching concepts with model-driven software development is evaluated. On the
other hand, the use of existing ideas such as the generation of graph transformations at Fujaba or
technologies such as Henshin is discussed. The functionality of the solution is shown by adapting
it to the Java and C++ programming languages. Furthermore, another mini-world is adapted in
addition to the hamster simulator with Kara the ladybug.
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Kurzfassung

Das Lehren von Programmierung kann auf viele verschiedene Arten erfolgen, wie beispielsweise
durch die Fokussierung auf objektorientierte Konzepte in Kombination mit Mini-Welten wie dem
Hamster-Simulator. An der Universität Stuttgart wird eine solche Lösung mit dem Fokus auf das
Lehren von Java angeboten. Aufbauend soll nun auch C++ in ähnlicher Weise gelehrt werden. Um
diese Notwendigkeit zu erfüllen, wird eine modellgetriebene Lösung vorgeschlagen, um Mini-Welten
zu modellieren und Code in mehrere Programmiersprachen wie Java oder C++ zu generieren.

Die vorgeschlagene Lösung deckt Anforderungen ab, die auf den bestehenden Ansätzen basieren,
welche für die Lehre der Programmierung an der Universität Stuttgart am Institut für Softwaretechnik
relevant sind. Basierend auf diesen Anforderungen wird eine Modellierungsumgebung entworfen,
die einen Framework-Teil und einen konkreten Miniwelt-Simulator-Teil bereitstellt. Technisch basiert
die Modellierungsumgebung auf der Eclipse-Plattform und nutzt forschungsnahe Werkzeuge für die
Eingabe-Modellierung, Modell-zu-Modell-Transformationen und Codegenerierung. Die generierten
Simulatoren basieren auf einer modularen Architektur, die eine hohe Testautomatisierung und die
Unabhängigkeit von externen Frameworks ermöglicht. Darüber hinaus basiert die für Studierende
bereitgestellte Schnittstelle auf objektorientierten Prinzipien und vertragsbasiertem Design, ein-
schließlich formalisierter Vor- und Nachbedingungen für Kommandos. Durch die Bereitstellung
eines Meta-Modells zur generischen Definition von Mini-Welten kann die vorgeschlagene Lösung
für die Modellierung verschiedener Mini-Welten angepasst werden. Zudem wird ein Code-Generator
bereitgestellt, um geeignete Zwischenmodelle in konkreten Quellcode zu transformieren. Durch die
Tatsache, dass die meiste Komplexität durch Modell-zu-Modell-Transformationen gehandhabt wird,
ermöglicht dies die Anpassung der Lösung auch für weitere Programmiersprachen.

Schließlich werden verschiedene Aspekte für die vorgeschlagene Lösung evaluiert. Einerseits wird
das Zusammenspiel aus objektorientierte Lehrkonzepte mit der modellgetriebenen Softwareent-
wicklung bewertet. Andererseits wird der Einsatz bestehender Ideen wie die Generierung von
Graph-Transformationen bei Fujaba oder Technologien wie Henshin diskutiert. Die Funktionswei-
se der Lösung wird durch die Adaptierung auf die Programmiersprachen Java und C++ gezeigt.
Außerdem wird neben dem Hamster-Simulator mit Kara der Marienkäfer eine weitere Mini-Welt
adaptiert.
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1 Introduction

These days, computers can be used to solve many different problems. To translate requirements into
executable code, programmers have to create programs, which consist of sequences of statements
[BB14].

For many programmers, their programming skills are thought in programming courses, where
teachers have to select proper methods and contents to teach. But teaching programming can be
done in many different approaches, e.g. by focusing on a certain programming paradigm like the
object-oriented programming from the start. Additionally, there are several challenges for teachers,
since students have to be prepared for real challenges, while core principles have to be thought for
durability. Simultaneously, the quality of exercises is critical to keep students motivated [PM06].

One practical way is to teach the object-oriented programming paradigm by using gamification
scenarios, which can be combined with the Outside-In approach. This approach targets to teach
concepts of object-oriented languages including abstraction and interface design first. Later, standard
low-level concepts like data-structures and algorithms are introduced [Mey09].

Based on this idea, at the University of Stuttgart the introductory course Programming and Software
Engineering (PSE) is offered for students to learn programming [BBF20]. On the one hand, the
hamster simulator originally developed by Boles is used as a concrete gamification model, which
belongs to the class of Mini-Programming-Worlds (MPWs) [BB14]. On the other hand, the didactics
is combined with the Outside-In approach to profit from the benefits of focusing on object-orientation
and well-defined Application Programming Interface (API) design.

1.1 Problem Statement

The original hamster simulator is not developed for teaching the concepts of Outside-In in the
first place. Therefore a re-implementation by the Institute of Software Technology (ISTE) at the
University of Stuttgart has been performed in the past [BBF20]. This re-implementation for the
PSE course will be called PSE-Simulator, while the original hamster simulator will be called Boles-
Simulator in this thesis. One major advantage of the PSE-Simulator is that the client programs in
an external IDE like Eclipse or IntelliJ, which enables full debugging, auto-completion, static-code-
analysis and further tooling support. This allows clients to further use the latest Java version, since
there are no third-party dependencies which could make the migration difficult.

While the PSE-Simulator re-implementation has a focus on the Java programming language and is
successfully applied for teaching, there is now a need to teach other programming languages such
as C++ as well. A first approach has been tried to wrap the Java-based simulator with a C API and
hence enable C++ programs to interact with the existing PSE-Simulator. However, this approach
has some weaknesses and leads to unsatisfactory experiences.
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1 Introduction

Therefore the overall problem statement for this thesis is to develop another solution to support reuse
teaching concepts based on the hamster simulator for teaching C++. This leads to a redesign of the
PSE-Simulator which is called Proposed-Simulator in context of this thesis. Besides the support of
multiple programming languages, the Proposed-Simulator shall include the basic design goals of the
PSE-Simulator like Outside-In concepts or Integrated Development Environment (IDE) flexibility.
Further, the solution shall support the adaption for additional MPWs like Kara the ladybug, to
enable more variation while teaching programming.

1.2 Solution Approach

The motivation of this thesis is to design a portable system, where MPWs like the hamster simulator
are natively available in other programming languages like C++. As the central idea, the proposed
approach will be based on Model-driven Software Development (MDSD). It combines advantages
of the Boles-Simulator and the PSE-Simulator using a multi-language approach, which is designed
for Outside-In concepts. This native multi-language approach provides full debugging support
and full transparency for the client, by avoiding technical boundaries which are introduced by
API-wrappers.

As a more concrete MDSD approach, the Dynamic Meta Modeling (DMM) will be applied for
modeling of dynamic aspects like moving the hamster in the territory. To realize this, research
related tools based on the Eclipse Modeling Framework (EMF) will be used. This includes Henshin
to model graph transformation rules, Xtext to create a query language, QVT-Operational (QVT-O)
for model-to-model transformations and Xpand to finally generate source code.

Further, Boles developed another tool called Solist with the support of creating arbitrary MPWs
[Bol]. The solution approach of this thesis will make reuse of the meta-model used in Solist to
support also the modeling of multiple MPWs.

To summarize the contribution of this thesis, a MDSD framework will be created to model different
MPWs for multiple programming languages like Java or C++.

1.3 Thesis Structure

The thesis is structured as follows:

Chapter 2 – Foundations: Covers relevant foundations used to develop the proposed solution for
this work.

Chapter 3 – Related Work: Gives an overview of related works, which are relevant for this thesis
and are used as important orientations.

Chapter 4 – Concept: Outlines the overall concepts and approach used for developing the pro-
posed solution.

Chapter 5 – Modeling Workflow: Describes the modeling workflow and its realization in more
detail.
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1.3 Thesis Structure

Chapter 6 – Evaluation: Evaluates the goals and results of this work by focusing on several
research questions.

Chapter 7 – Conclusion: Concludes the final results and gives ideas for improvements and exten-
sions for future works.

3





2 Foundations

This chapter outlines the relevant foundations of this work. Figure 2.1 gives a brief overview of the
concepts and technologies used. Additionally, the relations of the foundations are depicted. First
the main topic Teaching Programming is described in Section 2.1 on the following page. The focus
of this section lies on the concepts of the Outside-In approach based on the book Touch of Class
by Meyer [Mey09]. Especially the concepts of contracts are relevant in this work, which are also
described in more detail.

The second main topic MDSD is handled in Section 2.2 on page 8, where the concepts of meta-
models and model transformations are described. Concepts and related technologies like the EMF
for describing meta-models, Xtext to define a concrete syntax or the Object Constraint Language
(OCL) to specify static semantics are illustrated. Additionally, QVT-O as a model transformation
language is introduced, which is intensively used in this work. Another important foundation is
about dynamic semantics, where graph transformations and the used tool environment Henshin are
described in detail.

Model-driven Software Development

Dynamic
Semantics

Static
Semantics

Teaching Programming

Syntax

Touch of Class Contracts

Meta-Models Model
Transformation

Graph
Transformations

OCL

EMF

Xtext Henshin

QVT-O

Legend
Concept Technology

Figure 2.1: Overview of relevant foundations
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2 Foundations

2.1 Teaching Programming

This section outlines the related foundations of the programming course which is the context of this
work. It is fundamentally based on the Outside-In approach [Mey09]. The preceding work of the
approach described in the book is also reported in a paper of Pedroni and Meyer [PM06].

2.1.1 Outside-In Approach by Touch of Class

Pedroni and Meyer stated in their paper that traditional teaching approaches do not properly address
the introductory of programming [PM06]. They observed that teachers often use object-oriented
programming languages like Java or C++ to teach programming, but their focus lies usually on the
low-level concepts like algorithms and data-structures [Mey09]. Their approach is called Outside-In.
It is an inverted one compared to the traditional practice. The term Objects-First is used as a
synonym in this thesis. Key aspects in this approach are the object-orientation, Design by Contract
and the reuse of a software framework developed for teaching. Students are learning concepts like
components and how to program from the perspective of a consumer first, where the design of APIs
and documentation plays an important role. Later on, they will learn the role of the producer side
and the relating techniques to program the implementation details [PM06].

Pedroni and Meyer identified the following six challenges when teaching introductory programming
[PM06]:

• Durability of skills: Teachers shall educate future software professionals in a way that their
skills are more durable. Globalization leads to massive outsourcing and the option that
cheaper programmers are available, which are skilled in a required immediately applicable
technology. This brings responsibility for teachers to focus on teaching durable and long-term
relevant skills to allow students to be demanded even when short-term technology skills
become obsolete.

• Precisely define what to teach: Programming can be seen as an elementary form which is
exposed to a large part of the population. Hence it is important that it must be precisely
defined which contents shall be taught in a programming education.

• Diversity of knowledge: Through the growing impact of software, the diversity of backgrounds
of the students grows. The challenge of teaching programming is to find the right approach.
On the one side, it shall not be too difficult for those who have barely touched the world of
computers. On the other side, it must also be interestingly enough for those with extensive
programming experience. With the use of components from the start the novices have simple
and more abstract interfaces which are more understandable to use. The more advanced
students can optionally dive into the internals of a component to learn from them.

• Quality of examples: People from the ”Nintendo generation” and later are unlikely to be
impressed by small and too abstract examples which are traditionally used. To improve
the quality of examples, libraries providing advanced graphics, multimedia and interaction
capabilities can be introduced.

6



2.1 Teaching Programming

• Teaching the real challenges: Teaching in the small is often not sufficient to prepare students
for professional software development with large systems. While combining teaching and
practice is one approach to tackle this challenge, it may also be possible that students are
faced with large programs even in the university context.

• Introduce advanced principles: The sixth issue is how to teach also more advanced, essential
principles without disconnecting from students. As an example, students can be taught how to
work with a well-defined interface of components and principles such as Design by Contract.

To overcome the challenges previously described, Pedroni and Meyer defined multiple principles
which they follow in their introductory programming course [PM06]:

• Objects first: From the beginning they use object-oriented concepts in their course. They
argue that this approach is natural, especially for the introduction, since classes reflect things
which are familiar to the students.

• Components: Students get access to multiple existing, feature-rich libraries to learn how to
deal with components. This way they can produce impressive applications from the start with
only few lines of code. On the one side this teaches the importance of reuse and abstraction,
while on the other side it catches the interest how libraries work.

• Abstraction and contracts: With contracts, as an important concept, the specification of
routines can be formalized in a solid way. They are implemented with preconditions, post-
conditions and class invariants which help students to learn to correctly call routines as a
conform consumer.

• Order of topics: Like mentioned before, in their Outside-In approach first outer structures
like classes, interfaces, objects and features are taught. This is followed by the inner structure
consisting of building blocks such as variables, assignments or control structures.

• Formality: By including a certain degree of formality, they teach in a durable way that
mathematical foundations are also important for practical programming. Examples are loop
invariants and the concepts of Design by Contract which seems to be the right portion of
formality.

• The source framework: They introduce a base framework to let students build their programs.
It provides an immediately familiar context for the students and a rich base for interesting
algorithms and data-structure examples. Further, multi-media and advanced graphics are
included.

The reference course PSE [BBF20], which uses the hamster simulator, is also based on the Outside-
In approach. Therefore the concepts are important to be considered in the solution of this work as
well.
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2 Foundations

2.1.2 Contracts

Based on the Outside-In approach the terminology for defining contracts is described in this section.
This terminology is used in this work to model behavior and hence represents an important aspect.

Operations used to deal with an object are classified into queries and commands. With queries
information of an object is accessed and returned in a side-effect free manner. In contrast, commands
modify the state of an object. In addition, operations can be extended by contracts which precisely
describe what is permitted. Preconditions are imposed to all clients and restrict the state or arguments
when invoking the operation. The client calling an operation has to ensure that the required
preconditions hold. In contrast, postconditions are used to describe the ensured properties which
hold after successfully processing an operation. While postconditions are processed at the end of an
operation, they may refer to a value which is present at the entry point. This is performed with old
expressions. Further, class invariants are defined on the context of a class and must hold as soon as
an object is created. They are checked at any time before or after the invocation of an operation
[Mey09].

2.2 Model-Driven Software Development

This section describes the MDSD approach in detail, which is the characteristic method for software
development used in this thesis.

2.2.1 Meta Modeling

The definition of Stachowiak can be used to define the word model. According to his definition,
a model is a representation of the reality, which is reduced to the essentials, depending on the
modeling context. He defines three characteristics which can be identified on a model [Sta73]:

1. Homomorphism: Models are representations of natural or artificial originals. Statements
made on a model must also hold for the real entity.

2. Abstraction: The model is a simplified representation of the real entity. Not every detail will
be retained.

3. Pragmatics: A model is created with a specific intent. It fulfills a replacement of one or
multiple originals.

According to Kühne a meta-model is a model of another model [Küh06]. Stahl et al. state that it is
important to formalize the structure of a domain which results in a meta-model. The structure can
be divided into the following parts [VSB+13]:

• Concrete Syntax: Represents a concrete form of a language like the textual syntax of Java. It is
a realization of an abstract syntax, where it is possible that multiple concrete ones are related
to one abstract syntax [VSB+13]. The concrete syntax can be represented in a graphical or a
textual form.
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2.2 Model-Driven Software Development

• Abstract Syntax: Defines how the structure of a language looks like. It abstracts its relating
concrete syntax and omits details used in the concrete syntax like keywords. Often a parser
instantiates the abstract syntax to represent e.g. the textual program code as an object tree in
the program’s memory [VSB+13].

• Static Semantics: Describes the validation criteria for a language. It plays an important role
in the context of MDSD since it can detect modeling errors and enforce that models are
valid. As an example, the OCL can be used to specify constraints on the abstract syntax of a
language. These constraints are ideally checked at model time [VSB+13].

• Dynamic Semantics: Specifies the meaning of the meta-model elements. While static seman-
tics define aspects of a model at a specific point in time, the dynamic semantics define how
individual elements in the model change over time. The Unified Modeling Language (UML)
shows some important distinctions for dynamic semantics. For example, the operational
behaviors define how the state of a class changes by including input and output parameters
and optionally including pre- and postconditions. Other distinctions are property default
values or the semantics, which are activated when an object is created [Obj17]. The related
approach of DMM to model dynamic semantics is described in Section 2.2.2.

Besides the structural view of models, the hierarchical relationships between models can be also
considered which is shown in Figure 2.2.

M3: Meta-Meta-Model

M2: Meta-Model

M1: Model

M0: Instances

describes instanceof

describes
instanceof

describes
instanceof

describes
instanceof

Type: Classifier
Name: Classifier

Type: Classifier
Name: Class

Type: Class
Name: Person

Type: Person
Name: John

Figure 2.2: Meta-layers defined by the OMG [VSB+13]

For this, the Object Management Group (OMG) defined a hierarchy of models and their meta-models,
where it holds that every model has a meta relationship to a meta-model. In the M1 layer the model
is defined which is usually used to generate source code. One level below, the M0 layer contains
instances which are instantiated by their relating class. The instances represent real entities like a
person named John. For the attributes defined in their relating class concrete values are defined.
Classes like Person of the instances like John are described in the meta-layer M1 and they define
their attributes, operations or relationships. Above the dotted line the meta-layers are shown. The
layer M2 represents the meta-model of the model in M1 and in this layer concepts are defined,
which are used in the M1 layer to describe instances in the M0 layer. For example, a Class is an
instance of the meta-class Classifier. The upper layer M3 defines a meta-meta-model which is
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used to describe the M2 layer and its meta-model. Like depicted in the figure, M3 also recursively
instantiates and describes itself. This means that the meta-meta-model is defined in a way that its
concepts like Classifier can be used to describe themselves [VSB+13]. While theoretically more
layers could be defined, for most systems the four layers are sufficient [Obj19].

The OMG defines the widely used Meta Object Facility (MOF) where a meta-meta-model is
defined which is the base of UML. A reduced version of the complete MOF is the Essential Meta
Object Facility (EMOF) which has been designed to be aligned with object-oriented programming
languages. As a primary goal it shall allow simple meta-models to be defined [Obj19]. The meta-
meta-model used in the EMF has influenced the specification of EMOF and they closely equal each
other [SBMP08].

2.2.2 Dynamic Meta Modeling

DMM is a meta-modeling-based approach which can be used to specify dynamic semantics of
models. The approach was proposed by Engels et al. in their paper to propose a graphical approach
to enrich UML behavior diagrams by operational semantics [EHHS00]. One goal of DMM is
to reach highly understandable semantic models, which are precisely enough for formal analysis
[ESW07].

Meta-Model

Syntax
Definition

Runtime Meta-Model

Semantics
Definition

Operational
Rules

Semantic Meta
Modeling

Graph Transformation
Rules

Semantic
Mapping

Figure 2.3: Overview of the DMM approach (based on [SE10])

Figure 2.3 gives an overview over the core components of the DMM approach. A requirement
for applying DMM is a static meta-model which describes the abstract syntax of a model. Based
on this static meta-model an extended runtime meta-model can be derived. Through a semantic
mapping, elements of the static meta-model can be mapped to elements of the runtime meta-model.
Additionally operational rules are defined by using graph transformation rules. These rules act
as transitions and describe how instances of the runtime model are modified to result in other
instances of the runtime model. Finally, this specification can be used to compute a transition system
which precisely represents the operational behavior of models [ESW07]. In addition to a visual
representation of the behavior, DMM allows further analysis like testing the transitions of certain
model instances [BSE10].

The ideas of DMM are representative to the approach of modeling the operational behavior of
MPWs in this work. For example, the operational rule to pick a grain in the hamster simulator is
modeled as a graph transformation and operates on a concrete instance of the runtime model. As
part of this exemplary transition, a grain is removed from the territory and added to the hamster’s
mouth. Therefore, DMM can be seen as the general approach to model dynamic semantics used in
this work.
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2.2.3 Model Transformations

While transformations in general are a basic concept in software development and every computation
can be viewed as a data transformation, model transformations can be viewed as a form of meta-
programming where the semantics of meta-data are handled. Model transformations are a key
aspect of MDSD and they usually operate on object-oriented representations of models. There are
the following applications for which model transformations are primarily used [CH06]:

• generate lower-level models or code from higher-level models

• perform a mapping or synchronization of models on the same abstraction level

• create query-based views on a system

• perform model refactorings

• to reverse engineer higher-level models from lower-level ones

In Figure 2.4 the basic concepts of a model transformation are shown. Basically, there is a source
model which is transformed by a transformation engine into a target model. The transformation
engine uses for the transformation a transformation definition, which refers to the meta-models of
the source and target model. Source and target models might be the same, or it might also be the
case that there are multiple models. The former case is called in-place transformation as well.

Source Meta-Model Transformation
Definition Target Meta-Model

Target ModelSource Model Transformation
Enginereads writes

executesconforms to conforms to

refers to refers to

Figure 2.4: Basic concepts of model transformation [CH06]

Model transformations can be distinguished into two major categories model-to-text and model-to-
model. For the former category the following approaches are identified:

• Visitor-Based: This approach uses a visitor mechanism to traverse the input model and then
write text to the output stream.

• Template-Based: Often tools use this approach where a template containing the target text
and parts of meta-code is processed to generate the final text.

The latter major category contains approaches where both the source and the target instances are
based on a meta-model [CH06]:

• Direct-Manipulation: This kind of approaches is very basic. It uses an internal model
representation which is modified by some API. Usually transformation rules, scheduling,
tracing and other facilities have to be implemented from scratch.

11
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• Structure-Driven: Here two phases are distinguished. The first phase is used to create the
hierarchical structure of the target model. In the second phase, attributes and references
in the target are set. Users of a structure-driven approach usually do not have to deal with
scheduling and application strategies.

• Operational: Similar to a direct manipulation approach a model instance is directly manip-
ulated using operations. But in contrast for operational approaches more tooling support
is given e.g. by tracing capabilities or by extending the meta-model facilities like querying
elements.

• Template-Based: Here model templates are used which embeds meta-code into variable parts
of the target instances. One possible realization is to embed concrete syntax like source code
or OCL expressions into annotations of model elements. Different kinds of annotations might
be used like conditions, iterations or expressions to reach the possibility to embed imperative
logic in the meta-language.

• Relational: This group is based on declarative approaches and mainly uses mathematical
relations. Generally, they can be viewed as an approach where given constraints on models
shall be solved. One important property of relational approaches is that they are side-effect-
free, where non-executable specifications like relations or mapping rules are executed by the
transformation engine.

• Graph-Transformation-Based: In this category graph transformations are used, which operate
on typed, attributed and labeled graphs. Since they play an important role in this work they
will be described in more detail in the next subsection.

• Hybrid: If approaches combine different techniques described in the previous categories, they
are classified as hybrid. An example is Query View Transformation (QVT) where the three
components named Relations, Operational mappings and Core are combined.

• Others: There are also other approaches like XSL Transformation (XSLT) which can be
classified as term rewriting using a functional language. XSLT is a standalone technology
which performs on Extensible Markup Language (XML) documents. Another approach in this
category is the application of meta-programming to perform model transformations, where
e.g. a Domain Specific Language (DSL) is embedded in a meta-programming language.

In this work the operational, template-based and graph-based model-to-model approaches are mainly
used.

2.2.4 Graph Transformations

This category of transformations is based on the theoretical work on graph transformations [CH06].
Graphs consist of nodes and edges, where nodes are connected by edges. Variants are that they can
be directed or undirected, labeled or unlabeled, attributed or not attributed. In addition, graphs can
be distinguished by being a simple, multi- or hypergraph, where the latter is a generalization where
edges can have sequences of target or source nodes [AEH+99].

Graph transformations are based on applying rules to a graph, while this procedure can be iterated
until no rule can be applied any more. These graph replacement rules consist of a left-hand side
and a right-hand side. When applying the rule, an occurrence of the left-hand side will be replaced
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by the right-hand side in the given graph [AEH+99]. In Figure 2.5 a sample graph transformation
is shown with one graph replacement rule. Like depicted in the figure, a rule can be rendered by
explicitly stating the left-hand side and the right-hand side. Alternatively, the integrated option can
be used, where the differences of the two sides are rendered with an additional label and color. An
edge or node which only occurs on the right side is labeled ”++” while the label ”--” indicates that
they are only occurring on the left side [Win15].

LHS

GT

a: Attribute
c1: Class

c2: Class

RHS

a: Attribute
c1: Class

c2: Class

GT

a: Attribute
c1: Class

c2: Class

Expanded Integrated

++

--

Figure 2.5: Rendering options of graph replacement rules (based on [Win15])

There are three common theoretical approaches of a graph transformation [Win15]:

• Algorithmic: This approach is based on set theory where graphs are described as sets of
nodes and edges. Usually nodes and edges can be labeled or attributed to describe models of
abstract data types. Complex graph transformations on a given host graph then can be built by
using graph pattern matching and graph replacement rules on sub graphs. The procedure of a
graph transformation starts with searching the left side of the production in the host graph.
Next the nodes of the identified sub-graph are removed. Then the sub-graph of the right side
of the production will be inserted and correctly embedded into the host graph. Finally, the
attributes of the nodes are set and recalculated if necessary.

• Algebraic: In this approach a generalization of Chomsky grammars is used to define strings as
graphs. As a main concept the concatenation of strings is handled as the gluing construction for
these graphs. The process of gluing to construct a graph is seen as an ”algebraic construction”
which is called pushout. As the basic idea general results from algebra and category theory
can be applied for these kinds of graphs. Additionally, graph grammars can be used as a
generalization of term rewriting systems, which uses trees as terms [Roz97].

• Logical: This is a hybrid approach of the previous two and defines graph replacements
with the use of first-order logic. Graph schemes are used to statically describe conditions
which are checked as integrity constraints after modifying the graphs [Win15]. One practical
implementation of this approach was made in PROGRES developed by Schürr [Sch13].

A further relevant approach regarding graph transformations are Triple Graph Grammars (TGG)
described by Schürr [Sch94]. TGGs are mainly used for bidirectional model transformations which
have a high relevance in applications like model synchronization, round-tripping and realizing
editable views [ALS16]. TGGs provide a declarative approach to specify consistency relationships
between three different graphs: source, target and correspondence. The correspondence graph is
used which primarily allows to synchronize the other source and target graphs. The ideas of a TGG
can be used in an algorithmic as well as an algebraic approach [Sch94].
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2.3 Tooling and Techniques

This section gives an overview over tools and techniques which are used in this work. First the EMF
is introduced which represents the foundation of the tooling. Next, the OCL is briefly described
which is used to validate models in the transformation chain of this work. Afterwards, the Xtext
framework is introduced, which is used to create the concrete syntax of the DSL for modeling
queries of MPWs in Section 5.1.3. In addition to Xtext, the generation of code with Xpand is also
illustrated. For modeling commands, the tool Henshin is introduced which allows to visually define
in-place graph transformations used as operational behaviors. Finally, QVT-O is described, which
plays an important role in this work to perform model-to-model transformations.

2.3.1 Eclipse Modeling Framework

The tooling used in this work is fundamentally based on the EMF which is widely used in industry
and research for MDSD. EMF is based on the Eclipse framework and is the core of the Eclipse
Modeling Project which provides model-based software development technologies. As examples
these technologies can be used for model transformation, database integration and graphical editor
generation. For this the EMF model can be used to achieve a unification of UML, Java and XML
[SBMP08].

The EMF meta-meta-model named Ecore is a simplified version of the OMG defined EMOF and
like the MOF meta-meta-model specified on the abstraction level M3. Therefore, Ecore is also
an EMF model and recursively describes itself. Figure 2.6 shows the Ecore meta-model. The
figure is based on the documentation of the EMF version 2.11 [Fou], while it leaves out some
redundant details and most derived references to simplify the graphic. Every class shown in the
figure derives from the base class EObject, which is not shown for simplicity. On the one side
EObject provides a reflection mechanism where the underlying EClass can be obtained by the method
eClass(). Reflective operations eGet() and eSet() can be used to modify the state of the object.
On the other side a notification mechanism based on the observer pattern is supported. Besides
EObject, there is another basic class named EModelElement which is used for most of the EMF
meta-classes to allow that EAnnotations can be embedded. EPackage objects are used to have a
container of EClassifiers and they also define an EFactory, which is used to instantiate concrete
EObjects from the types defined in the package. While every type shown in the diagram is usually
realized by Java interfaces, with factories the Abstract Factory pattern [Gam95] is implemented
which decouples the user from the concrete Java classes. To express typed elements in an EMF
model the two meta-classes ETypedElement and EClassifier are used. ETypedElement is used for
any object which contains a type information like operations, parameters and structural properties.
The type information on the one side consists of a reference to a type represented by an EClassifier

named eType. On the other side the type information can be specified in more detail by the attributes
ordered, unique, lowerBound, upperBound, many or required which e.g. allows to specify sequences,
ordered or unordered sets or single relationships to other objects. EMF classes are represented
by the type EClass which derives from the meta-class EClassifier. The properties abstract and
interface are used to specify if a class is concrete, abstract or an interface. EClasses also define a
collection of super types by the reference eSuperTypes, which allows the use of multi-inheritance.
The structure of an EClass is defined by the two types EStructuralFeature and EOperation. With
the former structural properties like references or attributes are defined, while the latter allows to
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define operations with optional parameters. EStructuralFeature provides several attributes to be
precisely configured, e.g. changeable, unsettable, derived or a defaultValue. Further, it provides a
feature identifier which can be queried with the operation getFeatureID() and used to be identified
on the context of the relating EClass. While EAttributes are relatively simple and can only be
typed by EDataTypes, with EReferences other objects based on EClasses can be referenced and
the containment relation can be controlled by the containment and container attributes. Ecore
restricts that every containment has only up to one parent container. It is also possible to specify
opposite relations with EReferences. The type EDataType is an alternative to EClass to provide a type
for an element, which is restricted to primitive types like integers, strings or enumeration literals.
Enumerations can be specified by the types EEnum and EEnumLiteral [SBMP08].
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Figure 2.6: Simplified view of the Ecore meta-model (based on [Fou])

XML Metadata Interchange (XMI) is a standard to enable the serialization by XML for modeling
and is specified by the OMG [Obj15]. With XMI the exchange of meta-data of models is supported
in a standardized way across multiple tools. By default, any instance of an EMF model can be
serialized by XMI where the names and the element hierarchy regarding the containment relations
are used [SBMP08].

All meta-models defined in this work are based on the Ecore meta-model and make use of most of
the details described previously.
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2.3.2 Object Constraint Language

OCL is a formal language standardized by the OMG which allows to describe expressions on
UML models. These expressions are always side-effect free and used e.g. to specify preconditions,
postconditions, invariant conditions or queries. While the expressions themselves are side-effect
free, they can specify the behavior of operations altering the state of a system e.g. through postcon-
ditions. One main motivation of OCL is to get a possibility to describe constraints on objects in an
unambiguous language. It has been developed for being easy to read and write. Since OCL is a
typed language, each expression has a dedicated type. An OCL expression hence has to be well
formed w.r.t. its type conformance, so used types have to be compatible. Each object which is used
from a UML model is typed by its given classifier of the meta-model. Additionally, to custom types,
the OCL comes with predefined types [Obj14].

Several modeling tools like Eclipse include OCL for verification and validation features. But often
OCL is not included for code generation in modeling tools, instead simplified DSLs are sometimes
designed as a workaround [CG12]. This is also the case for specifying constraints and queries in
this work. OCL is a helpful orientation, but a dedicated DSL has the advantage of being much
simpler and better suited for the needs of this work.

2.3.3 Xtext and Xpand

The Xtext framework is part of the openArchitectureWare project and can be used to build textual
DSLs. The input for specifying a DSL with Xtext is written in an Extended Backus-Naur Form
(EBNF)-like notation. Xtext then generates Abstract Syntax Tree (AST) classes based on Ecore and
a parser which reads the textual concrete syntax of the language. Further, an Eclipse editor will be
generated to have syntax highlighting, code completion and static error checking for a given textual
syntax [EV06].

When defining DSLs, the base language Xbase can be used which already provides a tight integration
into the Java type system. It is used as a base for the language Xtend which is a functional and
object-oriented general-purpose language for the Java Virtual Machine (JVM) [EEK+12]. Xtend
is integrated into the model-to-text generation template language Xpand which is also part of the
openArchitectureWare project. With Xpand textual template files are defined which can import
Ecore meta-models and define generation statements based on them. With special characters,
dynamic code snippets in templates can be marked based on a given context type. In dynamic code
snippets loops, branches or sub-routine calls can be used to implement the behavior of the generator.
Using Xtend, it is possible to define extension methods for used meta-types to add behavior or
derived properties [EV06].

Xtext is used in this work to specify an input language for queries and constraints, while Xpand is
used to generate the final code of the MPW simulators.
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2.3.4 Henshin

Henshin is an EMF based tool to define in-place graph transformations, which operate on Ecore
models. The underlying approach can be classified as an algebraic approach of graph transforma-
tions (see Section 2.2.4 on page 12). Henshin provides a textual syntax for rapid development
of transformations. It also supports a graphical editor based on the integrated rendering option
depicted in Figure 2.5 [SBG+17]. The modeled graph transformation rules can be translated to the
Attributed Graph Grammar System (AGG), which is a tool environment to further analyze algebraic
graph transformations [ABJ+10].

The EMF based meta-model for Henshin transformations defines rules consisting of nodes, edges
and attributes. Nodes are typed as EClass, edges carry the type EReference and attributes are
modeled by EAttribute. Further, rules can define positive or negative application conditions on
the level of an attribute, a reference or a node. It is also possible to define graph conditions in a
first-order logic, which are formulated in the context of the whole graph.

Henshin defines so-called units which are used to invoke and structure the control flow of rules. The
simplest unit is a single rule, while more complex units might be used for sequences, conditions or
loops. Every unit in Henshin can have multiple parameters, which can be used to provide already
bound object variables or simple values to parameterize a unit. To pass parameters from one unit
to another, parameter mappings have to be defined which connect a source parameter to a target
parameter of the invoked sub-unit [ABJ+10].

The runtime component can be used to execute Henshin transformations. It provides an interpreter
engine which allows to define an Ecore model as input and run a selected unit on it. In addition,
the runtime component contains a state space generator and an extension point for further analysis
[ABJ+10]. Additionally, Henshin transformations can be invoked directly by the Henshin’s Java
API. This way an engine can be started, which transforms a selected Henshin transformation, based
on given Ecore models and parameters [SBG+17].

In this work, the Henshin tool is reused to model commands for target MPW simulators. Since there
is no planned code generation feature of Henshin transformations [Win15], a custom code generator
for Henshin models will be designed from scratch. With this custom code generator, executable
code in target languages like Java and C++ is generated for related Henshin models.

2.3.5 QVT-Operational

QVT is an OMG specification for the three transformation languages Core, Relations and Opera-
tional. While the Core and Relations languages provide a declarative approach, the Operational
language uses the imperative paradigm [Obj11]. In this work, the QVT-O is used to perform
model-to-model transformations, therefore the focus for this section lies on this language part.

In QVT-O it is possible to provide input, output or input/output models for a transformation. The
used model types have to be declared in order to be used for a transformation signature. When using
QVT-O on the base of EMF, a meta-model can be referenced by its registered URI which points to the
Ecore based meta-model. For executing a transformation, matching model instances must therefore
be provided to match the right signature. Each QVT-O transformation has to provide a main routine
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which specifies the entry-point and allows to consist of a sequence of QVT-O expressions. Besides
transformation modules, it is also possible to use library modules to achieve a modularization of
more complex QVT-O transformations [Nol10].

QVT-O defines three kinds of top-level operations [Nol10]:

• mapping: The mainly used operation in QVT-O are mapping operations which operate on
input and output model instances and optional further parameters. The general purpose is to
map an element of the source model into an element of the target model. If mappings use
types of the declared source or target model-types of the transformation, then these objects are
automatically bound to the source or target models. By using the keyword inout, mappings
can also use the source element as the target element. Further, parameters with a modification
direction can be provided to control if an object is read-only (in), modifiable (inout) or as
output created by the mapping (out).

• helper: A helper operation can be used to extract code into a sub-routine which may take
parameters. Like mapping operations, the direction of a parameter might be controlled by in,
out or inout. Helper operations hence can have side effects on the given objects they operate
on.

• query: Queries are also operations to extract code into sub-routines. In contrast to helper
operations they are not allowed to have any side effects on any object.

Preconditions and invariants can be defined as guards for mappings in addition to the operational
body. Preconditions are declared with the keyword when and can be used to specify if a mapping
shall be executed. Invariants are declared with the keyword where. To express predicates or queries,
the consequent integration of OCL can be used in QVT-O [Nol10].
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This chapter is dealing with related work which plays an important role as an orientation for realizing
the proposed solution. Figure 3.1 gives an overview of the structure of the related work. Basically,
three survey questions are used as guidance to cluster the sections in this chapter:

• How to design MPWs?

• How to generate entity models?

• How to generate operational behavior?

The first question is focusing on the design of a MPW which is closely related to previously
implemented variants of the hamster simulator and described in detail in Section 3.1 on the next
page. The second question deals with the generation of the static part on entity models in multiple
programming languages and is part of Section 3.2 on page 23. Finally, the third question deals
with the generation of executable code for operational semantics in Section 3.3 on page 24 for
commands and in Section 3.4 on page 25 for queries. Further, the two standards Foundational UML
(fUML) and Action Language for Foundational UML (ALF) are handled in Section 3.5 as related
approaches.

Proposed
Approach

PSE Hamster
Simulator

Boles Hamster
Simulator

Solist

EMF4CPP

CrossEcore

Fujaba

OCL4EMF
How to generate

operational
behavior?

How to design
MPWs?

How to generate
entity models?

Legend

QuestionWork

fUML and ALF

Figure 3.1: Overview of related work
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3.1 Mini Programming Worlds

This section describes related implementations of hamster simulators. First, Section 3.1.1 introduces
the PSE-Simulator, which is an important reference as the main motivation of this work. Afterwards,
the Boles-Simulator as the original hamster simulator and a more generic successor project Solist
both developed by D. Boles are described [BB14] [Bol]. Finally, a comparison of the related
implementations and the proposed simulator developed in this work is given in Section 3.1.4 on
page 22.

3.1.1 PSE-Simulator

For the introductory course PSE at the University of Stuttgart the gamification approach of the
hamster simulator is reused. The motivation is to overcome the sheer number of concepts by
starting with a simple miniature language. Additionally the didactic is combined with the Outside-In
approach described in Section 2.1.1 [BBF20].

The PSE-Simulator1 is a Java-based re-implementation of the Boles-Simulator described in Sec-
tion 3.1.2. The re-implementation allows to use modern Java versions and modern IDEs. In sample
programs usually a class is derived from a helper class like SimpleHamsterGame which hides the
main() method and prepares an instance of the hamster to be used by a client. The rendering of
the simulator is processed by JavaFX 2. When running the simulator, a JavaFX window is popping
up which allows that the rendering is processed in parallel to the IDE. To also enable web-based
User Interfaces (UIs), the PSE-Simulator has been extended by a client-server capability. This way
the core of the simulator can be processed on a server, while the rendering can be separated to be
processed on the client side like web-browsers.

Since the PSE-Simulator is based on modern Java and provides a simple API, it is also possible to
use other client languages like Scala, Kotlin or even Python. Due to an additional need to support
the native languages C/C++, the PSE-Simulator has also been extended by a C-API. However, since
the C-API wrapper approach is cumbersome, this thesis strives to achieve the goal that a native
simulator core is available.

3.1.2 Boles-Simulator

The scope of this work is oriented towards the hamster simulator by Boles which is a self-contained
tool to support the editing, compilation and execution of commands and queries related to a hamster.
As a purpose of the tool, Boles mentions that the simulator shall provide a simple didactic way to
teach programming and let the focus of the learner be on the problem-solving aspects and not on
technical tooling issues. The simulator world consists of a two-dimensional, grid-based territory
of tiles where one or more hamsters, grains or walls can be placed. For a hamster, the four base
commands vor(), linksUm(), gib() and nimm() are available to move the hamster, turn the hamster

1https://git.rss.iste.uni-stuttgart.de/open-to-public/pse
2https://openjfx.io/
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to the left, put a grain on the hamster’s current tile or let a grain pick one from it. Furthermore, the
three queries vornFrei(), maulLeer() and kornDa() are supported to check if the front is clear, if the
mouth is empty or if any grain is available on the hamster’s tile.

The self-contained tool developed by Boles has its own debugger and instruments the written Java
text to be compiled with the original Java compiler 3. Its integrated editor has the drawback, that
it has no auto-completion features to assist the learning programmer with code suggestions and
no simple navigation to other methods is possible. The integrated debugger is not so powerful as
modern debuggers, e.g. since it does not allow to set breakpoints or does not provide advanced
features like mutation of variables. Compared to modern IDEs, there is no built-in support for a
versioning control system given [BB14].

One notable advantage of Boles’ hamster simulator is that it allows to use multiple programming
languages. Even visual ones are supported, like Scratch, finite state machines, program-control-
flows or structograms. While programming languages like Scheme, Prolog, JavaScript, Python and
Ruby are can be used, no support for C++ is given, which is one of the main goals of this work
[HamsterModell20]. As a further distinction, the simulator created in this work shall run in modern
IDEs with full refactoring and code assistance support.

3.1.3 Solist

A successor project to the hamster simulator is the Solist tool. This has also been developed by Boles
and it allows to build other simulators for a MPW as well. Popular examples besides the hamster
simulator are Kara the ladybug or Turtle-Graphics. While Solist represents a generic approach
where custom MPWs can be created, they are more lightweight as the original hamster simulator.
For example, they are currently only available for the language Java and the visual language Scratch.
As a basis of the approach a meta-model is defined which is oriented on a theater and depicted in
Figure 3.2. Important classes in the meta-model are Stage, Component, Actor, Prop or Performance.
As a further restriction in the Solist tool only one actor can be created, hence it is not possible to
place more than one hamster on the territory [Bol].

Stage

Territorium

Actor

Hamster

solist
1

Component
components

0..*

Prop

KornMauer

Performance

Figure 3.2: Excerpt of the meta-model of Solist [Bol]

With its already established meta-model the project Solist is an important related work for this thesis.
It gives a helpful orientation to create a modeling approach which also supports other MPWs.

3Like mentioned in the manual, the Java tools.jar is included in the simulator
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3.1.4 Comparison of Mini-Programming-World Simulators

Table 3.1 summarizes the different aspects of the Boles-Simulator, Solist, PSE-Simulator and
Proposed-Simulator.

(*) more languages might be extended in future 

Aspect Boles-Simulator Solist PSE-Simulator Proposed-Simulator 

Didactics 
Approach 

algorithm-first algorithm-first object-first 
(Outside-In) 

object-first 
(Outside-In) 

Native Platform Java Java Java Java, C++ (*) 

Client-IDE integrated integrated external external 

Client-Language 
(Code) 

Java, Python, Ruby, 
JavaScript, Prolog, 
Scheme 

Java, Scratch Java, Python, 
C++ 

Java, C++ (*) 

Client-Language 
(Visual) 

Control-Flow-Diagram, 
Scratch, Automata, 
Structograms 

Scratch - - 

Remote Client no no yes no 

Multi-Language 
Approach 

interpreter & 
compiler 

interpreter & 
compiler 

API-wrapper generated code 

Mini-World 
Adaptability 

no yes no yes 

Table 3.1: Hamster simulator aspects

First, each didactics approach is highlighted where both the PSE-Simulator and Proposed-Simulator
are designed for courses based on Outside-In. For example, this is notable by the principles of
Design of Contract which is given by the hamster’s API.

The second aspect looks at the native platform which states on which platforms or programming
languages a simulator’s core is natively available. While the core of the Proposed-Simulator is
generated in multiple programming languages like Java or C++, the other ones are written in Java.

Next, the usage of the client-IDEs is compared. Both, Boles-Simulator and Solist are built as a
standalone tool with their own integrated editor. In contrast, the other both are designed to be
developed in an external IDE like IntelliJ or Eclipse. For this, they are using a build management
tool like Maven. While an integrated IDE simplifies the setup of the simulator, the external one
comes with more powerful and modern coding assistance and debugging support.

A further aspect is the supported set of languages which can be used by a client. The Boles-Simulator
supports several coding-languages and also several visual ones. Simulators built with Solist are
simpler variants of the Boles-Simulator and support fewer languages. In contrast, the PSE-Simulator
and Proposed-Simulator support the native language C++. Visual ones are not available for them.
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The implementation of a remote feature is only done by the PSE-Simulator. It allows to distribute
the client side to other machines and also enables the usage of web-IDEs. This avoids that students
have to setup an IDE by themselves. While the Proposed-Simulator is currently not supporting any
remote features, it follows the Humble Object pattern [Fow20] to provide a simple view model for
rendering. This approach simplifies the extension of a remote capability in the future.

Since every approach provides more than one client language, additionally the multi-language
approach is compared. Boles-Simulator and Solist are both using internal compilers or make use
of interpreters to execute non-Java code. The PSE-Simulator makes use of an API-wrapper. For
example, to allow that clients can use C/C++, a native C-wrapper is used to internally start a JVM
and control it via this API. In contrast, the Proposed-Simulator uses a code generation approach
where the simulator with its core are completely available in the client languages like Java or C++.
This avoids third party tools to integrate the client languages, simplifies error handling and allows
clients do dig into the internals of the simulator’s core.

Finally, the mini-world adaptability is noted. Only Solist and the Proposed-Simulator are designed
to create multiple MPWs. While Solist allows to do this in the Solist tool, for the Proposed-Simulator
a full setup of the modeling environment is required.

3.2 Model Generation

In this section, projects related to the generation of EMF models into code for multiple programming
languages are compared. As one important requirement of this work especially the code generation
to the languages Java and C++ shall be possible, hence approaches are being researched to generate
EMF models in further languages besides Java.

With EMF4CPP, an EMF-like code generator for C++ has been developed. The motivation has
been the weak support of other programming languages besides Java, especially C++ [JMJ+16].
The generator is implemented with Xpand and Xtext and C++ 11 libraries are generated as output
[EMF4CPP20]. Many EMF features are supported like reflection, bi-directional relations and
an EMF conform meta-model. Jäger et al. mention that special challenges are to implement the
multi-inheritance relations of EMF, the reflection capabilities and a consistent memory management.
As a limitation, currently no OCL generation is supported [JMJ+16].

Another approach which targets to adapt EMF to other programming languages is CrossEcore.
It is a multi-language approach which allows to generate C#, Swift, TypeScript and JavaScript
from Ecore models with embedded OCL expressions. While many code generators exist, which
generate code from Ecore models into languages like Java, C#, C++ and more, only for the languages
Java and C# the generation of OCL is also provided. As a solution, CrossEcore provides a multi-
platform modeling framework which allows to be extended for new programming languages. But
no generation for C++ is supported at the moment [SJGE18].

In this work a model generator is written for Java and C++. While the combination of CrossEcore
and EMF4CPP would allow to generate models in several languages including C++, especially OCL
expressions are currently not available for C++. A generator which makes use of the simplicity of the
MPW domain can circumvent the gap of missing support of generation features for a programming
language. In addition, several other advantages can be identified. On the one side this allows that
the generated code is similar in both programming languages. On the other side it allows much
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more flexibility, e.g. it allows to define stereotypes for value-types which are generated as simple
data-structures and not as an Entity class. Another main motivation is that the generated code
shall be used to teach programming, so the focus of the generated code is also on readability and
not only on performance aspects. As an example, for C++ it is helpful to use smart pointers like
std::shared_ptr as defined in the standard.

3.3 Generation of Graph Transformations with Fujaba

As a further important related work, the tool environment Fujaba is described in this section which
allows to generate executable code from graph transformation rules. Fujaba is a Computer Aided
Software Engineering (CASE) tool which integrates UML and Java. This allows the development
of applications by the usage of graph transformations [GZ06]. It is categorized as an algorithmic
approach of graph transformations [Win15]. Fujaba stands for From UML to Java and back again
and relies on the Story Driven Modeling (SDM) approach, which has been prominently realized
by Zündorf in his work Rigorous Object Oriented Software Development. With this approach,
Zündorf tried to fill the gap between high-level aspects like use-cases and the formal description of
the aspects of a software system [Zün01]. The main concepts of Fujaba is to use so-called Story
Diagrams to describe behavior, which are a combination of UML like activity diagrams and graph
rewrite rules [NNZ00].

Figure 3.3: Fujaba Petrinet sample

In Figure 3.3 an example of such a Story Diagram is shown. Each diagram has a start and one to
many end nodes similar to UML activity diagrams. A graph rewriting rule is placed as a special
activity, which looks like a UML object diagram and represents graph patterns. These graph patterns
have to be matched for executing the rule. In the example there has to be an object of type PetriNet
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which is represented by the this object. There must also be one object of type Transition, two
objects of type Place and one of type Token. The red link marked with <<destroy>> will be deleted
when the activity is executed, and the green link marked with <<create>> will be created.

Another main concept of Fujaba is that it has a round-trip capability. This means that written
Java code can be used to reconstruct Story Diagrams. This feature allows that the generated code
can be adjusted for testing and maintenance reasons on-the-fly, e.g. for global-search-and-replace
refactorings [NNZ00].

Fujaba has successor projects and is no longer actively maintained. Zündorf mentioned that the
motivation has been GUI problems. The direct successor of Fujaba is the SDMlib, which is also
Java-based but allows to express the operational behavior by tables in Java code. In this approach it
is also possible to parse the written code and then let the visual representation like UML object
diagrams be generated. In 2018 the SDMlib was re-implemented by the project Fulib which stands
for Fujaba library [Zün19].

Fujaba is developed for Java, since the main goal was that it is based on a well-accepted object-
oriented programming language. C++ has been also a candidate for the development, but due to its
complexity compared to Java it has not been chosen [Zün01]. While Fujaba is a tool to develop
any kind of system, in this work the target systems are MPWs and hence many assumptions can be
made to overcome the general complexity of C++ as a target language. Nevertheless, the ideas how
Fujaba solved the generation of Java code from visual graph transformation patterns are used as an
important orientation in this work.

3.4 Generating OCL to Code

Besides the compilation of operational behavior by graph transformations which is described in the
previous section, in this work another aspect is to compile queries and constraints into executable
code. During the development of the project OCL Compiler for EMF, the authors Garcia and
Shidqie stated that the tooling to compile models and also their model constraints together into
code were often not provided. This motivated them to fill this gap for the EMF by developing an
integrated OCL compiler to translate OCL to Java. They focused on an Eclipse plugin for their work,
to allow them to generate code from OCL expressions attached as annotations in Ecore models.
Their approach is to hook into the GenModel mechanism of the EMF code generation and let the
OCL expressions be parsed, which are contained in EAnnotations attached to the model elements.
For designing the architecture, they identify two approaches to generate expressions into code. The
first approach is to perform a direct translation from an OCL AST into Java code. As a second
approach, one can define an intermediary model, which contains imperative statements. These
imperative statements can be more easily generated into Java expressions. This second approach is
also used by their project [GS07] [SMGG07].

AOCL is a more recent project to compile OCL into Java code which uses Java streams and lambda
expressions. It provides a similar language which relies on relational algebra and allows a simple
generation of executable code. The motivation is that OCL is often criticised to be too complex and
difficult to learn. Another motivation is that previous projects like the OCL Compiler for EMF have
been completed before Java 8 and hence no use of lambda functions is made, which leads to a more
verbose code [BA20].
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Regarding the discussed related projects, in this work a simple query language oriented on OCL is
designed using Xtext. As mentioned before, the previous projects are often based on OCL which
brings its own complexity. This is not needed for the relatively simple constraints and queries of
a MPW. Besides that, an approach is intended which allows that the generation of code shall be
easily adaptable to other programming languages like C++. While approaches like CrossEcore
already support the generation of Ecore and constraints into multiple programming languages,
especially the language C++ is missing and there is currently no other multi-platform approach
which fills this gap. Furthermore, the custom language has the advantage that it can be adjusted for
graph transformations and hence can also be reused e.g. for attribute conditions. To have a helpful
orientation for the generation of the MPW queries and constraints, the related projects like OCL
Compiler for EMF are used as a reference how the generation of OCL expressions can look like.

3.5 Executable Modeling with fUML and ALF

The OMG defines two standards fUML and ALF for modeling of executable semantics in the context
of UML. With fUML, a subset of the UML is defined, which is computationally complete and
provides precise execution semantics. Based on fUML, the ALF defines a standard of a textual
concrete syntax to represent fUML models [Obj13a][Obj13b].

Schröpfer and Buchmann developed an Eclipse based approach to integrate ALF and static modeling
aspects by the UML. This enables a fully executable Java code generation approach. They reused a
graphical UML editor for modeling structural aspects, while they developed a concrete ALF syntax
with Xtext for behavior modeling. To enable a consistent integration, the static model for ALF and
the visually modeled abstract syntax are synchronized with a bidirectional model transformation
approach named BXtend [SB19].

Guermazi et. al describe experiences with fUML and ALF based on the open source tool Papyrus4.
They focused in their paper on the concerns extensibility, control and observability, time support and
connectivity. Most identified limitations can be improved by further enhancements of the tooling
support [GTC+15].

Bedini et. al. further developed a fUML execution engine for C++, which allows to execute models
based on given class and activity diagrams. With fUML2C++ and UML2C++, two generators
are implemented which takes a fUML model and generates C++ source code. Linked with further
provided libraries, an executable software is realized [BMW+17].

The standards are addressing similar problems, which have to be solved by this work. For example,
the graphical modeling of control flows by activity diagrams are comparable to control flow units in
Henshin. Henshin also provides a textual concrete syntax, but in contrast to ALF, the focus lies on
the declarative modeling of rule transformations.

4https://www.eclipse.org/papyrus/
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This chapter illustrates the main concepts used to develop the proposed solution. First, in Section 4.1
a brief overview of the most important requirements is given. Then, an introduction for the central
MDSD approach is depicted in Section 4.2. Afterwards, Section 4.3 will outline the module structure
designed for the MPW modeling framework, which includes most of the relevant artifacts related to
the MDSD approach. Next, Section 4.4 will move the focus on the simulator architecture, which
defines the basic building blocks of the concrete MPW simulators. Based on this, Section 4.5
will show the design of the central simulator core model in more detail, including its client API,
commands and relevant meta-models. The ongoing sections will focus on further non-functional
aspects. Section 4.6 is about the testing strategy used in different layers and development phases.
Then, Section 4.7 briefly states how different approaches for documentation in the final MPW
simulators are applied. Next, in Section 4.8 the adaptability of the proposed solution is described.
On the one hand, the adaption to new programming languages is illustrated, while on the other hand
the modeling of further MPWs is outlined. Finally, Section 4.9 will give a complete overview of
the used tools and technologies.

4.1 Requirements

This section gives an overview over gathering and specification of requirements for implementing
this project. Most functional requirements are derived directly from analyzing the existing solutions.
Therefore, the first phase in this project has been to analyze and specify the requirements in a
structural manner.

To give an overview, some main goals of this project are as follows:

• Commands of the hamster simulator shall be modeled by Henshin.

• Queries and constraints like pre- and postconditions shall be modeled with an OCL-like
syntax.

• Entity models and operational behavior shall be generated for at least the two languages Java
and C++.

• Other MPWs like Kara the ladybug shall be possible to be modeled as well.

• The core API shall be similar to the API of the PSE-Simulator.

Other related works like the PSE-Simulator, Boles-Simulator and Solist, as illustrated in Sec-
tion 3.1.4, already provide working implementations for the hamster simulator. To provide a C++
implementation is one main requirement, which is not fulfilled by these other works. Further, they
achieve a multi-language approach based on interpreters, internal compilers or API wrappers, where
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the simulator’s core implementation is not available in the target language. This shall be realized in
a different way, e.g. by generating the simulator’s core for the target language. In this way, it will be
easier for students to dive into internals without being confronted with technical boundaries. Finally,
the concepts of Design by Contract shall be supported in a formalized way. The PSE-Simulator deals
with Design by Contract by specifying constraints as Java Modeling Language (JML) statements.
But relating statements in executable code have to be manually added, therefore it only provides
a formalized documentation. With the approach in this project, pre- and postconditions shall be
supported as first-class aspects, which allow that relating code can be generated.

While the previously mentioned requirements are the most relevant ones, the full list can be found
in the wiki of the code repository1. To be able to classify these requirements, following categories
are defined:

API: Specify requirements for the final simulator API, which is used by clients like students.
PLT: Specify platform requirements of the final simulator like the portability to Java and C++.
UI: Specify UI simulation requirements like graphical representation of the game state.
HCMD: Specify concrete hamster commands to control the hamster in the simulation world.
TCMD: Specify concrete territory commands to build the territory and its tile contents.
HQRY: Specify concrete hamster queries, to query information about the simulation state.
MDE: Specify requirements for the MDSD approach to develop the simulator.
NONF: Specify non-functional requirements.

Each concrete requirement is specified in a tabular structure which is shown in Table 4.1. Every
requirement has a unique identifier, which consists of the category identifier and a number. Next, a
short summary of the requirement is given. Additionally, a user story describes the requirement in
more detail from a user’s perspective. Finally, a priority is specified, which is used as an important
orientation for time planning. The priority MUST HAVE defines the highest one, which has to be
implemented by the thesis. SHOULD HAVE is planned to be implemented, but on time problems
these requirements might be omitted. The lowest priority is marked by NICE TO HAVE, which
indicates that a requirement is not necessarily to be implemented by this thesis.

ID Summary User Story Priority

HCMD-010 Hamster-Model provides a
Move-Command

As a student I want to move the
hamster to the front tile.

MUST
HAVE

Table 4.1: Example requirement

1https://github.com/SQAHamster/mpw-modeling-framework/wiki/Requirements
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4.2 Model-driven Software Development Approach

MDSD is used as the basic approach to develop the MPW simulators in this project. Besides the
concrete simulators, like the hamster simulator, it covers also a framework part. Further, it can be
separated in the modeling and implementation of the simulators. This results in the four segments
MPW modeling framework, concrete MPW modeling, MPW simulator framework and concrete
MPW simulator to be distinguished in the development.

Figure 4.1 gives an overview of these four segments, showing the two dimensions modeling vs.
simulator and MPW framework vs. concrete MPW. The modeling workflow and the simulators are
each developed in different development environments. Hence, in the following the term modeling
environment relates to the modeling segments, while simulator environment covers the simulator
framework and concrete simulator parts.

MPW Modeling
Framework

Concrete MPW
Modeling

MPW Simulator
Framework

Concrete MPW
Simulator

MPW Framework Concrete MPW
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Figure 4.1: Four segments of the MDSD approach for developing MPWs

On the upper left, the MPW modeling framework is placed, which is developed in the modeling
environment. It contains the MPW meta-models described in Section 4.5.2, Section 4.5.3 and
Section 4.5.5. Further, it covers main parts of the modeling workflow. The modeling workflow is
key of Chapter 5 and consists of three phases for input modeling, model-to-model transformations
and code generation. The modeling framework is published as an OSGi bundle to allow reusing by
separate Eclipse environments. On the upper right side, the concrete MPW modeling is shown. This
segment is based on the MPW modeling framework and includes the input modeling for a concrete
MPW like the hamster simulator’s entities, commands and queries. Input modeling for concrete
MPWs is described in Section 5.1.

On the lower left side of Figure 4.1 the MPW simulator framework is depicted. It is part of the
simulator environment and represents the basic framework for a concrete simulator. The meta-
models of the modeling framework are generated into concrete code like Java. Further classes
are implemented, which are reused for concrete simulators. Examples are the implementation of
the game control, primitive commands and further utility classes. The simulator framework is
published as a library for each specific target programming language. Last, at the lower right side,
the figure shows the segment for the concrete MPW simulator, which is the result of the concrete
MPW modeling segment. It depends on the simulator framework by including the related library
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and contains the final implementation for a concrete MPW simulator. In case of the Java based
hamster simulator, it provides a JavaFX application to visually show the execution of a hamster
simulator program.

4.3 MPW Modeling Framework Modules

This section gives an overview of the modularization for the MPW modeling framework. The
modules are implemented in Eclipse using the EMF framework and are structured to be deployed as
an OSGi component. The structure is oriented on the best-practice layout for publishing with Tycho2

by using sub-folders named bundles, features and releng3. Figure 4.2 shows a package diagram
representing the relevant modules of the MPW framework. While the related Eclipse module names
have the prefix ”de.unistuttgart.iste.sqa.mpw”, for readability this is omitted in the figure.

feature updatesite targetplatform
«include»

mpw framework

transformation

«merge»

workflow

querydsl

«import»

«import»
«load»

«call» «call»

generator.cpp

generator.java

«include»

bundles

modeling

generator

relengfeatures

Figure 4.2: Modules of the MPW modeling framework

The modules placed under bundles are Eclipse plugin projects which represent the essence of the
MPW modeling framework. These plugins are classified as modeling or generator modules, while
the former contain entity models, transformations and workflow scripts. First, the module mpw

contains meta-models used to describe MPWs and contains the MiniProgrammingWorld package
(Section 4.5.3), Command package (Section 4.5.2) and ViewModel package (Section 4.5.5). Trans-
formation logic is placed in the transformation module, which includes QVT-O transformations and
further intermediate meta-models. It imports mpw, since some entity types are transformed for the
simulator, e.g. by adding roles to concrete Actor or Stage classes. Section 5.2 gives more information
about the contents of this module. Next, the workflow module provides the basic infrastructure to

2see https://sdqweb.ipd.kit.edu/wiki/Maven_Tycho
3release engineering

30

https://sdqweb.ipd.kit.edu/wiki/Maven_Tycho


4.4 Simulator Architecture

execute the transformation workflow based on the Modeling Workflow Engine 2 (MWE2). It defines
several classes to load different input models on the file-system, integrates the QVT-O Java API to
execute transformation rules and calls the generator components. Since the workflow module is not
intended to be executed directly, a separate framework module is defined. This module contains a
concrete MWE2 workflow to generate MPW simulator framework classes. For generation, primarily
the two modules generator.cpp and generator.java are used. They contain Xpand and Xtend code
to generate the intermediate models after executing transformation rules into executable code. To
share common generation logic, a further module generator.utils is defined, which is omitted in
Figure 4.2 for simplicity. Section 5.3 will provide more information about these generation modules.
Another relevant component is represented by the querydsl module (Section 5.1.3), which defines
the concrete and abstract syntax of the Query-DSL, which is used to model queries and constraints.
It is deployed as a separate OSGi bundle with its own modularization structure. The transformation

module imports querydsl to operate on these input models. The next modules are mainly used for
deployment of the plugins projects. While the feature module represents an OSGi feature including
the modeling and generator plugin projects, the updatesite defines a repository consisting of this
feature. Last, the targetplatform module defines several update sites, which provide all required
OSGi dependencies used in the MPW modeling framework.

4.4 Simulator Architecture

In this section, the target architecture is depicted, which is used for the MPW simulators and covers
the simulator environment introduced in Section 4.2. A schematic view on the architecture is shown
in Figure 4.3. Basically it defines a layered architecture which uses the Humble Object pattern
[Fow20] to decouple any UI framework from application logic. Additionally it separates UI logic
from the simulator’s core.

Legend

Simulator Core
Model

UI
Logic

View
Model

Client API

UI
Framework

Client CodeDependency

Figure 4.3: Simulator architecture

The Simulator Core Model represents the main component, where most of code is generated and
modeled behavior is integrated. It provides an API for clients to create games, build stages or
interact with actors by their commands and queries. For internal access, the core model provides
several roles which represent dedicated interfaces for use-cases like reading information, processing
game commands or building a stage. Further, state information can be observed by the observer
pattern [Gam95]. More details of the core model are described in Section 4.5.
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The UI Logic and View Model represent another combined component, which depends on the core
model. By using a view model, relevant information which is rendered on screen is defined as an
in-memory representation. It acts as a simple, observable data-structure which can be observed by
code based on a concrete UI framework. A presenter class represents the implementation of the UI
logic and is responsible to fill or update the view model. For the UI component, only data-structures
and class stubs are generated. The UI logic itself has to be implemented manually, since generating
this code is out of scope of this thesis.

On the left side the UI Framework component is depicted, which is handled as an infrastructural
detail of the architecture and therefore placed on an ”outside” layer [Mar18]. It is responsible to
render the view model on the screen and obtain user input events to trigger the UI logic. In case of
Java, the framework JavaFX4 is used. For the C++ variant, the Simple DirectMedia Library (SDL)5

is used as an application framework. Alternatively, this component can be replaced by a test runner,
which can interact with the whole UI logic for automated testing.

Last, the Client Code is shown below the core model. It represents code which is implemented via
an IDE of choice, like Eclipse6 or IntelliJ IDEA7. Called commands on the core are processed with
a delay to be able to follow changes on the rendered view.

Since the main focus of this thesis lies on the modeling and generation of the core model and view
model, in the following section the design of these components are described in more detail.

4https://openjfx.io/
5https://www.libsdl.org/
6https://www.eclipse.org/
7https://www.jetbrains.com/idea/
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4.5 Mini-Programming-World Core Design

This section is about the core design in concrete MPW simulators. First, the API exposed to clients
by a facade is depicted. Then, the design of commands for undo and redo functionality is illustrated.
Afterwards, the central meta-meta-model named MiniProgrammingWorld is explained, which covers
central meta-types used to define MPWs. Additionally, the idea to design different role interfaces
for the reading of information or game and editor use-cases is described. Finally, the view model
design is also highlighted as an important concept.

4.5.1 Facade

To provide a convenient API such that clients can easily perform game commands and queries,
the core design makes use of the Facade pattern [Gam95]. Figure 4.4 gives an overview of the
main components which make up the facade for a MPW like the hamster simulator. Basically, the
facade API provides several operations to support the main use-cases, like to control the game
state, perform game commands, gathering information by queries or building up a stage by editor
commands. While the design is independent of a concrete MPW, in following it is described by the
example of the hamster simulator.

«Facade»

«Actor»
Hamster

«Stage»
Territory

«MiniProgrammingWorld»
HamsterGame

Game Control

Client Game
Commands

Client
Queries

Editor
Commands

TerritoryBuilder

Convenient
Editor

Commands

Figure 4.4: Facade of the core model

The HamsterGame represents the root class which derives from the meta-class MiniProgrammingWorld.
On the one side, it provides several operations to control the game state, like starting the game,
pausing the game or resuming the game. It also provides methods to undo or redo commands. On
the other side it acts as the container of the stage of a MPW.

For clients, the Hamster class is usually the most important one, which inherits from the meta-
class Actor. It provides game commands to let clients interact with the MPW in a simplified way.
Examples are moving a hamster or let it pick or put grains for its current tile location. Besides game
commands, it also provides queries. They represent operations to allow to gather dedicated pieces
of state information. Examples relating the hamster simulator are to query if a wall is in front of the
hamster or if a hamster has grain in its mouth.
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The third component is the Territory, which derives from the meta-class Stage. It contains tiles,
actors and props which represent the main contents of the MPW. Clients usually do not interact
with a stage directly, but indirectly with the actor commands and queries. For building up contents
of a stage, dedicated editor commands are supported. By making use of the TerritoryBuilder,
any editor command can be invoked by a fluent API, which is implemented by the Builder pattern
[Gam95]. To load pre-defined territories, clients can make use of the class TerritoryLoader which
parses serialized territories from an input stream, e.g. based on a resource file. This class internally
uses the builder API and hides the editor commands completely from clients.

The previously described classes, which make up the facade, are generated by a code generator.
They internally delegate invoked operations to concrete implementation classes, which implement
the operational behavior of a MPW. These internal classes are described in the following subsections
in more detail.

4.5.2 Commands Package

In this subsection, the Command package is described. It is based on the Command pattern [Gam95]
and defines generic base classes, which are used to encapsulate certain behavior represented by an
object.

Basically, a command provides execute, undo or redo of behavior which can be triggered by a client.
The concrete implementation of commands supporting to perform undo and redo functionality can
be done in one of following two variants:

1. Complex Commands: In this variant, one class is implementing the behavior for executing or
reverting operational behavior of a command like moving the hamster. As a contradiction to
composite commands, they do not make use of primitive child commands. In addition to the
”forward” logic, the ”backward” logic is also implemented explicitly in the complex command
class. One advantage of this variant is a simpler class design, since no composite or primitive
commands are necessary. As a disadvantage, the code generation of such commands is more
difficult, since the reverse case has to be explicitly regarded. Another disadvantage is, that
destructive actions like clearing the territory have to notice the previous state e.g. as a full
copy of the territory.

2. Composite and Primitive Commands: In contrast to complex commands, this variant makes
use of primitive commands. These commands are defined in a central place and might be
manually implemented. They represent primitive modifications like modifying a property,
adding an entity to a collection or removing an entity from a collection. A command like
moving the hamster is represented by a composite command, which defines a sequence of
primitive commands. The main advantage of this variant is, that the composite-undo is simply
the undo of each primitive command in reverse order. This makes generation of code much
simpler.

To simplify generation of code in this project, the second variant is used. In Figure 4.5 an Ecore
class diagram is shown, which is used for code generation described in Section 5.3.1.

An interface Command defines the abstract base type of any command and provides the three abstract
methods execute(), undo() and redo(). One implementation of this interface is the abstract class
CompositeCommand, which makes use of the Composite pattern [Gam95]. Each concrete command
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PrimitiveCommand

propertyName : EString

featureKey : EInt

 entity : Entity

SetPropertyCommand

oldValue : Object

newValue : Object

AddEntityCommand

entityToAdd : Entity

RemoveEntityCommand

entityToRemove : Entity

CommandStack

execute(command Command)

undo()

redo()

undoAll()

redoAll()

Command

execute()

undo()

redo()

CompositeCommand

[0..*] executedCommands

[0..*] subCommands

[0..*] undoneCommands

Figure 4.5: Command package

like moving the hamster is generated as a subclass of CompositeCommand. The other implementation
of the Command interface is the abstract class PrimitiveCommand. Since each primitive command is
based on a concrete property of a target entity, it defines a propertyName and featureKey which are
used to uniquely identify a structural feature of the target entity’s class. Additionally, the target entity
is noticed in the field entity, on which the primitive command performs the modification. There are
three sub-classes SetPropertyCommand, AddEntityCommand and RemoveEntityCommand. While the first
one is used to modify a single value of the given property, the latter two implementations deal with
collection properties. For undoing a SetPropertyCommand, the value at time of execution is stored
in the field oldValue, while the new value is stored in newValue. These two fields are typed with
Object, which indicates that they take any value. In Java it maps to the base class Object, while in
C++ a custom type Any is implemented as a union. An undo of the execution of AddEntityCommand
or RemoveEntityCommand is simply the reverse action, like removing the entity which was added by
an AddEntityCommand instance.

To store the list of executed commands, a separate class named CommandStack is modeled. It keeps
track of executed and undone commands to let a caller undo and redo any command in the right
order. In contrast to the design of the PSE-Simulator, a command stack has no responsibility to
control the mode of the game. This is implemented by a separate class named GamePerformance

which is described in Section 4.5.3.
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4.5.3 MiniProgrammingWorld Package

The internal structure of a simulator’s core is mostly represented by the MiniProgrammingWorld
package. This package represents the meta-model of a concrete MPW. It is oriented to the design
of the PSE-Simulator (Section 3.1.1) and the Solist meta-model (Section 3.1.2). Figure 4.6 shows
the modeled Ecore package of the MPW package.

Actor

direction :

Direction = 

NORTH

Prop

Tile

 location : 

Location

TileContentStage

 stageSize : Size

MiniProgrammingWorld

CommandStack

Direction

NORTH

SOUTH

WEST
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UserInputInterface

readInteger(message EString) : EInt

readString(message EString) : EString

confirmAlert(t Throwable)

abort()

GameLog

LogEntry

message : EString

GamePerformance

mode : Mode = INITIALIZING

speed : EDouble = 4.0

delayEnabled : EBoolean = true

startGame()

startGamePaused()

pauseGame()

resumeGame()

stopGame()

hardReset()

abortOrStopGame()

preExecuteGameCommand()

preExecuteEditorCommand()
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STOPPED
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ABORTED

[0..1] currentTile

[0..*] contents
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[0..1] stage

[0..*] tiles

[0..1] stage
[1..1] gameLog

[1..1] userInputInterface

[0..*] logEntries

[0..1] actor

[1..1] editorCommandStack

[1..1] performance

[1..1] gameCommandStack

Figure 4.6: MiniProgrammingWorld package

MiniProgrammingWorld acts as a root container and represents an abstract meta-type, which is
implemented by concrete game classes like HamsterGame or KaraGame. Important composed
classes are GamePerformance, Stage and GameLog. There are two instances of CommandStack im-
ported from the Command package. The editorCommandStack is used for editor commands, while
gameCommandStack executes game commands and is controlled by the GamePerformance. The link
between MiniProgrammingWorld and Stage is marked as derived indicated as a blue reference. This
implies that the concrete containment reference is set in the derived model. For example, in the
hamster simulator the HamsterGame defines a territory reference to the Territory, which is used as
a replacement for this derived stage reference on the meta-level.

The class Stage represents the meta-type for concrete two-dimensional maps like the hamster
simulator’s territory. Its dimensions are defined by the attribute stageSize, which makes use of the
helper type Size. Figure 4.7 illustrates an example of the contents of a stage, which consists of two
rows and two columns. A stage consists of multiple tile-instances of type Tile, which are contained
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in the tiles reference. Each tile has a location consisting of its column and row indices. Important
references are the four bidirectional links east, west, south and north, which are used to build up a
mesh. Whenever tiles are neighbors of each other, these links are set accordingly. The connections
by these links are used to let actors move from tile to tile in this mesh. Besides tiles, a stage acts
also as a container for objects of type TileContent, which can be placed on tiles as contents. A
TileContent is semantically placed on a tile, if the bidirectional reference currentTile is set and
hence it is contained in the contents references of the Tile.

: Tile : Tile

: Tile: Tile

west
east

north

east
south

west

north
south

: Hamster :Wall: Grain

contents
currentTile

contents
currentTilecontents

currentTile

direction=EAST

Figure 4.7: Example object diagram of tiles and tile contents

There are two sub types of TileContent: Actor and Prop. Actor defines the meta-type for objects
which are controlled by clients, like the hamster in the hamster simulator or the ladybug in Kara the
ladybug. A special property is its direction allowing it to look to one of the four directions EAST,
WEST, SOUTH or NORTH. Prop is the second sub type of TileContent, which is used for any requisite to
be placed on the stage. They are not intended to have a direction nor to accept any command to let
it actively move to another tile. Examples are grains or walls in the hamster simulator. In Kara the
ladybug, other examples are leafs, trees and mushrooms.

Similar to the class Performance of the Solist design, the class GamePerformance controls the state
of the game and handles suspending of the control flow. An important state variable is the field
mode of enumeration type Mode, which can take one of five values. Several methods provided by
GamePerformance are used to realize a state machine, which is depicted in Figure 4.8. The label
”<any>” is used to indicate, that the transition can be executed from any of the five states. Transitions,
which are not explicitly depicted, have no changing effect in the mode variable. On creation of a new
game, the state machine starts in state INITIALIZING. From this state usually the game is started,
either with startGame() or startGamePaused(). While the former switches to the state RUNNING, the
latter lets the game start in PAUSED. The state RUNNING indicates that the current game is processing
a client program and processes game commands. As a restriction, undo and redo actions are not
allowed to be called in the running state. From the running state, it is also possible to switch into
PAUSED by calling pauseGame(). The paused state is used to suspend the client program, which
e.g. has the effect, that the hamster does not move. Additionally, in the PAUSED state undo and
redo actions are allowed. By calling resumeGame(), the state PAUSED can be leaved. There are two
states which define that a game is stopped. The first one is STOPPED, which gets active whenever
stopGame() is called or an exception is thrown while executing a game command. STOPPED allows
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undo and redo of commands, but not to process new game commands. The second stopped mode is
ABORTED, which occurs when calling abortOrStopGame() in one of the two states RUNNING or PAUSED.
By executing a game command in state ABORTED, a transition to STOPPED is processed and also a
dedicated GameAbortedException will be thrown. From any state, the method hardReset() can be
used to set the state back to INITIALIZING, where a new stage can be created. Editor commands are
only allowed to be processed in INITIALIZING.

INITIALIZING

PAUSED

STOPPED

ABORTED

RUNNING

startGame
Paused

startGame

resumeGame
pauseGame

abortOrStopGame

stopGame
<any>

<any>

hardReset

game command
exception thrown

abortOrStopGame

execute game
command

abortOrStopGame

execute game
command

Figure 4.8: GamePerformance state machine

Another class of a MPW is GameLog, which is used to collect a list of LogEntry objects. Each game
command is generated to insert a message into the game log when executed. Additionally, it notices
the related actor of the game command by setting the actor reference of the related log entry. This
information can be used to mark log messages e.g. by color, to distinguish them between multiple
actors. The text message itself is set with the attribute message.

To be able to call operations back to a higher layer in the architecture, a UserInputInterface is
hold as a dependency of MiniProgrammingWorld. It is injected using the Dependency Injection
pattern [Fow04] and supports callbacks to read integers, read strings or confirming alerts. This
interface is usually implemented in a UI framework component to get feedback from the user. When
invoking readInteger() or readString(), the user is asked to type strings or integers into a text-box.
Exceptions, which occur during the simulation, like violating preconditions, are shown as an alert
dialog box when calling confirmAlert(). For testing, the UserInputInterface can be replaced by a
test double like a mock or fake implementation.
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4.5.4 Roles Idea

Like the design of the PSE-Simulator, for stages and actors like Territory or Hamster separate classes
are designed for the representation of roles. Basically, there are two kinds of commands: editor
commands and game commands. Additionally, information like the current tile of a tile content
might be gathered. This leads to three roles of an actor or a stage: game, editor and read-only.

«interface»
EditorTerritory

«interface»
GameTerritory

«interface»
ReadOnlyHamster

«interface»
GameHamster

«interface»
EditorHamster

«interface»
ReadOnlyTerritory

+ getCurrentTile(): Tile

+ getStage(): Stage

+ frontIsClear(): Boolean
...

ConcreteHamsterConcreteTerritory

+ initHamster(parameters)

+ move(parameters)

+ pickGrain(parameters)
...

+ initTerritory(parameters)

+ addWallToTile(parameters)

+ getEditorDefaultHamster()
    : EditorHamster

...

+ getGameDefaultHamster()
    : GameHamster

...

+ getTiles(): Tile [0..*]

+ getTerritorySize(): Size

+ getReadOnlyDefaultHamster()
    : ReadOnlyHamster

...

Figure 4.9: Roles design

In contrast to the PSE-Simulator design, this is not solved by creating a hierarchy of concrete
classes. Instead in this project, interfaces are used to get a diamond inheritance, which is depicted
in Figure 4.9. On the left side, the example of the Territory’s role is shown. The base interface
is ReadOnlyTerritory, which represents the read-only role. It provides methods for gathering any
property of the territory, like obtaining the tiles collection, the territory size or the read-only role of
the default-hamster. Additionally, further queries like isLocationInTerritory() can be modeled
for the territory, which are also declared by this interface. GameTerritory and EditorTerritory

are extending the read-only role interface. While there are usually no game commands modeled
on a stage, this game-role does not define further command operations. But as an extension to its
read-only role, it provides a getter-operation which returns the game role of the default-hamster.
Editor commands modeled for the territory are declared on the EditorTerritory interface. Examples
are initTerritory() or addWallToTile(). Each command provides an operation and takes additional
arguments which are placed inside a single parameters object. Similar to the other two roles, the
EditorTerritory interface defines a getter-operation which returns the editor role of the default-
hamster. Finally, there is one concrete implementation class for all three roles, which is named with
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the prefix ”Concrete”. These concrete implementation classes are completely generated. In case of
territory, the concrete class is ConcreteTerritory, which implements all commands, queries and
getter-operations defined by the three roles.

In addition to the territory roles as a representative example of a stage, the example of the hamster
is shown on the right side of Figure 4.9. Symmetrically to the territory, there are four classes
which make up a diamond inheritance. ReadOnlyHamster defines the getter-operations for properties
and queries modeled for the hamster. EditorHamster is empty, since there are no modeled editor
commands, therefore it defines no further details to its read-only role. GameHamster instead defines
all operations of the hamster commands, like move() or pickGrain(). To allow that multiple
hamsters are placed on a territory, there is an initHamster() game command. This command
allows to be executed while the game is running and initializes a further hamster. Finally, the class
ConcreteHamster implements all three role interfaces.

4.5.5 View Model Design

This section describes the package, which contains the Ecore types used to define the view model.
Figure 4.10 shows the class diagram of the Ecore package. While the GameViewPresenter represents
the UI logic, the class GameViewModel and its related types represent an observable data-structure.

GameViewModel

playButtonEnabled : EBoolean = false

pauseButtonEnabled : EBoolean = false

undoButtonEnabled : EBoolean = false

redoButtonEnabled : EBoolean = false

speed : EDouble = 0.0

getCellAt(row EInt, column EInt) : ViewModelCell

init(size Size)

 logEntries : ViewModelLogEntry

 size : Size

GameViewInput

playClicked()

pauseClicked()

undoClicked()

redoClicked()

speedChanged

(speedValue EDouble)

close()

GameViewPresenter

bind()

ViewModelCell

 location : Location

ViewModelRow ViewModelCellLayer

imageName : EString

rotation : EInt

visible : EBoolean = false

[0..*] rows
[1..1] viewModel

[0..*] layers[0..*] cells

Figure 4.10: View model package

GameViewPresenter implements the interface GameViewInput, which defines several input operations
used to perform interactions with the UI. The first four operations playClicked(), pauseClicked(),
undoClicked() and redoClicked() are event-handlers for clicking on buttons. Further, the input
operation speedChanged() is used to change the delay, which is inserted between game commands.
GameViewPresenter implements these operations by delegating to the GamePerformance class. Finally,
there is a close() input, which indicates that the user wants to close the application. Besides
derived input operations from GameViewInput, the presenter defines a bind() operation. This
operation contains most of the UI logic, since it picks the relevant parts of the core model and adds
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observers to them. Using these observers, the view model will be updated accordingly. For common
UI logic, the MPW simulator framework includes a GameViewPresenterBase class derived from
GameViewPresenter, which can be derived by concrete presenter classes.

The view model itself is defined by the class GameViewModel, which provides any information
used to control the visible state of the UI. It defines four boolean properties playButtonEnabled,
pauseButtonEnabled, undoButtonEnabled and redoButtonEnabled. Each of those define if the related
button shall be enabled. The speed property can be used to display the current speed value, e.g. by a
slider-control. The helper operation getCellAt() is used to return the related ViewModelCell object
for a given row and column position. With init(), the GameViewModel takes a Size and creates the
given amount of ViewModelRow and ViewModelCell objects. Further, it stores the dimensions in the
property size.

The main content of the view model is defined by the ViewModelRow references. Each ViewModelRow

is representing a row of the stage. While a row of a stage consists of Tile objects, in the view model
ViewModelCell objects are used, which are stored in the cells containment reference. Therefore, each
ViewModelRow has to contain one ViewModelCell for each column of the stage. The contents of each
cell in the view model are defined by objects of type ViewModelCellLayer. Typically TileContent

objects are mapped to these layers, which are ordered and represent images to be rendered. Since
the view model has a clear focus on the information to be rendered on screen, it contains a logical
name of the target image in the attribute imageName. Further, it defines the rotation in degrees and
a boolean flag, indicating if the layer shall be hidden or visible. Since these information details
are filled by the presenter, the UI framework specific part has no special logic regarding rotation,
ordering or selecting the images for a cell. Besides rows, cells and layers, the view model also
defines the list of log entries. They are stored in the containment reference logEntries and are
represented by objects of type ViewModelLogEntry, which defines a message and a color. These
entries are intended to be displayed in a list of strings, which can be colorized to indicate further
information like which hamster has done the relating action.

4.6 Testing Strategy

This section describes the approach for testing code of the proposed solution. Testing is the
fundamental method used in this project to ensure the correctness of the software and enable to
safely refactor code. Like described in Section 4.2, there are multiple steps involved to develop the
MPW modeling workflow. Each of the three major workflow steps is tested in the following way:

• Modeling: The first step in the workflow is the modeling of entity models and operational
behavior. On the one side, the validation of the modeling tools are used to ensure, that the
modeled elements are syntactically correct. On the other side, an advanced validation is done
by processing OCL rules after loading these models. For example, these OCL rules ensure
that the modeled Henshin commands fulfill certain assumptions and do only use features,
which are supported by the model-to-model transformation. While these validations are only
covering static aspects of the modeled artifacts, they represent a kind of testing to early catch
potential errors.
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• Transformation: The transformation of the modeled artifacts covers dynamic aspects, which
is tested differently. For this project, there are two ways regarded, which can be used to test the
transformation aspects: directly or indirectly. In a direct test approach, transformation logic
to transform given inputs can be tested in an isolated way, such as by checking the immediate
output models. In contrast, an indirect approach does not test transformations directly, but
e.g. focuses on the generated code, which results by these transformations. In this project,
the direct approach is explicitly avoided. Since one disadvantage is a more difficult later
refactoring. This is caused by the fact, that the transformation structures are bound by tests.
An indirect approach is much better suited here. First, the compiler represents a first process,
which can be used to easily ensure that the basic transformation logic is valid. Second, testing
against the generated code can be used to cover transformation logic indirectly, while not
forcing to couple test code to transformation details.

• Generated Simulator Code: The last step in the workflow produces simulator code, which is
used to get an executable MPW simulator. The generated simulator code is intensively tested
using unit tests on two abstraction layers. On the lower abstraction layer, tests are directly
written against the simulator’s core model, e.g. by using the facade or internal classes. By
using the Humble Object pattern, the view model additionally provides a second abstraction
layer to test the simulator code. On this layer, also several tests are written to ensure that
the presenter code works integrated with the simulator’s core. By using this approach, a
high code coverage can be achieved, which automatically ensures that the transformation and
modeling steps have to be correct.

Since this project is developed in an iterative approach, the transformation and generation code
has been refactored multiple times. These refactoring actions have been performed safely, since
the high coverage of the simulator code ensured, that the simulator’s API and functionality were
not broken. By using more unit tests to directly test transformation and generation code, these
refactoring actions probably would have required much more effort.

4.7 Documentation

In this section, different approaches to document the MPW simulators are depicted. First,
the usage of MDSD in this project already provides diagrams for several meta-models, which
are useful to document the architecture and design aspects. In Ecore models, the annota-
tion ”http://www.eclipse.org/emf/2002/GenModel” is used to add a documentation entry on
EModelElement instances. On the one side, this documentation is displayed in the Ecore editor
of Eclipse, while on the other side it is used to be generated as documentation comments in the
target programming languages. Further, Design by Contract focuses on a formalized way to docu-
ment constraints on operations, which is provided in this project by the usage of the Query-DSL
(Section 5.1.3). Invariants, pre- and postconditions are used to generate documentation comments
on the generated operations. Additionally, they can be documented by comments in the Query-DSL
themselves. These comments are generated as simple comments in the related statements in the
executable code. Manually written code, e.g. in QVT-O, Xpand, Xtend, Java or C++ is documented
by appropriate comments which are supported by the related programming language.

42



4.8 Adaptability

Besides the explicit documentation, several unit tests are written in a behavior-driven manner. They
follow a pattern of the wording given, when and then, which specify the arrangement, acting and
assertion of the test. With this approach, unit tests can also be seen as a formalized documentation
of the working simulators.

Finally, an overall documentation of the whole project is done in a wiki of the related code repository.
It describes architectural concepts and design decisions related to the development of this thesis.

4.8 Adaptability

The non-functional requirement to adapt the hamster simulator for other programming languages is
one of the main objectives in this work. Therefore, the first subsection 4.8.1 gives an idea of how an
adaptation of the hamster simulator can be done for other programming languages. As a starting
point for the adaption, the Java based hamster simulator is used, which has been re-implemented
in this thesis. Another goal of this thesis is the adaptability to other MPWs like Kara the ladybug,
which is handled by the second subsection 4.8.2.

4.8.1 Adding new Programming Languages

This subsection states a workflow, how the hamster simulator can be adapted for further programming
languages. Like mentioned before, the Java based simulator is used as a starting point, which
already brings a working code generator, multiple test-cases and a helpful orientation of a possible
implementation.

Open Hamster
Simulator

Adapt Test-
CasesAdapt LoaderAdapt UI LogicIntegrate UI

Framework

Adapt Generator
in Framework

Adapt MPW-
Framework

Generate Hamster
Simulator

Integrate New MPW-
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Figure 4.11: Adaption for new programming languages

Figure 4.11 illustrates the workflow used in this thesis to adapt the hamster simulator for further
programming languages, like C++. Steps are performed in the modeling or simulator environment
(see Section 4.2), indicated by a small icon. The first step is the adaption of the code generator,
written in Xpand. Section 5.3 describes in more detail, how the code generator templates are
structured. However, the adaption of these code generator templates is performed in the following
steps:
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1. Entity Templates: First, the Xpand templates are adapted, which are responsible for generating
the entity model. Different types of EClassifiers like EClass and EEnum are handled to be
generated correctly for the target programming language. Furthermore, the interface flag on
EClass has to be regarded to generate interfaces aligned with the target language. Additionally,
there are custom stereo-types like ValueType defined, which is used to generate an EClass

as a simple value type like Location or Size. An important aspect that also needs to be
considered is the life-cycle-management of objects. For C++ as an unmanaged language,
entity compositions are realized using smart-pointers. Simple references, which have no
containment semantics, are instead mapped to weak-pointers. Further, a generic access to
properties is required, which is solved in Java by reflection. In C++ instead, an own reflection
mechanism is required to be generated for entities. Finally, observable properties in generated
entities have to be regarded.

2. Query Templates: The second templates to adapt are used to generate expressions for queries
and constraints. The adaption is relatively straight forward, since expressions or statements,
like defining a variable, are easily mapped to other programming languages.

3. Command Templates: Afterwards, the templates for graph transformations in commands are
adapted. Like the templates for queries, parts of generating commands can be transferred to
other languages by a mapping of each statements to the target programming language feature.

As a short, intermediary summary of the experience gathered by adapting the code generator
from Java to C++, the most effort is spent into the entity generation. This is caused by a different
support of programming language features on class and object level, like an unmanaged life-cycle
management, the need for observable properties or missing reflection capabilities. These missing
features are implemented manually or solved by adapting the generator appropriately. There can be
assumed, that adapting to other programming languages is more straight-forward, since Java and
C++ templates are provided as a result of this project. They already show, how these features can
be generated by example.

The second main step of the workflow in Figure 4.11 is about manually adapting the MPW
framework. By executing the adapted generator from step one, several stubs are already pre-
generated. Especially primitive commands AddEntityCommandImpl, RemoveEntityCommandImpl and
SetPropertyCommandImpl have to be implemented. Also, central classes like GamePerformanceImpl or
CommandStackImpl needs to be adapted accordingly. In addition, the base class GameViewPresenterBase
for concrete presenters and special methods in the GameViewModelImpl have to be adapted. Optionally,
helper classes like central assertions or exception types can be defined as part of the framework.

After adapting the MPW framework, it has to be published in an appropriate way to allow concrete
MPWs to depend on it. For Java, this publish step is processed by Maven and a public Maven
Repository. In C++, the publishing step is skipped, since a method is used, where library code gets
re-compiled by the library user. CMake is used to download the C++ code and compile it with
the same compiler settings like the target MPW simulator environment. For other languages, an
appropriate method has to be applied to deploy a library for later reuse by other repositories.

The next steps take place in the hamster simulator environment as a concrete MPW, where several
commands and queries are already modeled. First, in the modeling environment of the hamster
simulator, the new version of the MPW modeling framework needs to be integrated. This will extend
the hamster modeling environment by the new programming language generator. In the hamster
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simulator core, the MPW simulator framework library has to be integrated, too. Next, the generation
has to be executed, which will generate source code for the simulator in the target programming
language. Based on the generated core, it is suggested to adapt unit tests of the existing hamster
simulator to get a reliable test harness. If these tests pass, the TerritoryLoader shall be implemented
as a next step. It is responsible to parse territories from input streams and files. Accessing streams
has to be adapted to related features based on the target programming language.

The last two steps are about the UI. First, the logic has to be adapted, where primarily the concrete
presenter of the hamster simulator has to be implemented. Afterwards, an appropriate UI framework
has to be chosen, similar to JavaFX for Java or SDL for C++. Intended by the separation of the view
model data-structure, this code is relatively simple. In case of a rendering loop, which is the case
by game-frameworks like the SDL, in each loop iteration the view model contents are mapped to
rendering calls. Otherwise, some frameworks like JavaFX are based on UI components, where the
view model is observed for changes and related UI components are updated accordingly.

It is important to notice, that this workflow does not imply a strict sequential flow. At any step, it
may require to go back to a previous step e.g. in case of a compile error caused by mistakes in the
adapted generator. Therefore, it might be helpful to split some steps into separate concerns like
the entity model, commands or queries and perform iterations based on them. To allow a more
efficient loop between the hamster and framework steps, the publishing might be performed on the
local machine. Finally, other derivations of this workflow might be reasonable. In summary, the
adaption to a new programming language comes with some effort, especially when language aspects
like life-cycle-management are different to previous ones. But this effort primarily has to spent
only once, while allowing that multiple MPWs can be generated on the new target programming
language.

4.8.2 Adding new Mini-Programming-Worlds

As the second requirement on adaptability, the MPW framework shall provide a base to model further
MPWs as well. This subsection therefore describes, how to adapt a new MPW like Kara the ladybug.
Figure 4.12 gives an overview over the workflow, which shows the major steps for this adaption.
While the first four steps are performed in the concrete MPW modeling environment, the other ones
are primarily done directly in the concrete MPW simulator environment (see Section 4.2).

The first step is to model the concrete entities for the new MPW (see Section 5.1.1). Similar to the
hamster simulator entity model, an Ecore model is created which is based on the MPW meta-model.
In case of Kara, the following entity types are modeled:

• Kara: Derives from the meta-type Actor, similar to the Hamster.

• World: Extends from Stage and provides the two-dimensional world. It is similar to the
Territory of the hamster simulator.

• Tree, Mushroom and Leaf: Three different types deriving from Prop. While trees and mush-
rooms block the ladybug from moving, leafs can be collected or put on tiles.
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Figure 4.12: Adaption for new MPWs

The next two steps are about modeling the commands and queries of the MPW. Game or editor
commands are modeled in Henshin (see Section 5.1.2), while it might be helpful to use the existing
hamster game commands as an orientation. For example, the relatively complex initTerritory()

editor command of the hamster simulator can be very closely mapped into an initWorld() editor
command for the Kara MPW. As an example of the Kara MPW, the following game and editor
commands are modeled:

• move(): Moves Kara one tile in front of its facing direction. Additionally, a mushroom in
front of the actor is also moved, if the tile behind the mushroom is clear.

• removeLeaf() and putLeaf(): Removes a leaf on the tile of Kara or puts a leaf on the tile.

• turnLeft() and turnRight(): Turns the actor to the left or right direction.

• putTreeToTile(), putMushroomToTile() and putLeafToTile(): Editor commands to put props
on a given tile.

• clearTile(): An editor command, which clears any contents from a given tile.

• initKara() and initWorld(): Two editor commands which are used to initialize the actor
instance Kara or stage instance World.

In parallel to modeling commands, the queries and constraints of the MPW can be modeled. Like
modeling the hamster simulator, these elements are modeled using the Query-DSL (see Section 5.1.3).
Several queries are also similar to the hamster queries. Again, in case of the Kara MPW, some
example queries are the following:

• mushroomFront(): Checks if the tile in front of Kara contains a mushroom.

• onLeaf(): Checks if the current tile of Kara contains a leaf.

• treeFront(), treeLeft() and treeRight(): Determines if on the left, right or in front of Kara
a tree is placed.
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Besides queries to gather information, also several constraints for preconditions, postconditions and
invariants are modeled. Finally, after all required commands and queries are modeled, the code
generator is executed.

The next steps in the workflow are handled in the simulator’s programming environment for the
language Java. The adaption for other programming languages like C++ is performed similar. First,
the programming environment has to be set up and the MPW framework library has to be integrated.
In case of Java, primarily Maven build scripts are used, which are close to the hamster simulator
ones.

After the setup, it is intended to write several test-cases for the modeled commands and queries. On
the one side, this can be done directly on the MPW facade. On the other side, they can be written
on the level of the view model. It is also intended to adapt the test utilities and similar test-cases
from the hamster simulator.

Based on these tests, the missing stage loader class is implemented. For Kara, the class is named
WorldLoader and internally uses the generated WorldBuilder class. The loader class can also be
adapted from the hamster simulator’s TerritoryLoader, as most of the implementation is very close.
Since the loader deals with a serialized representation of the stage, every prop can be mapped to a
character. If the serialization is much more complex compared to the hamster simulator, it has to be
implemented by custom logic, which is not scope of this thesis.

After implementing the stage loader class, the presenter has to be implemented. In case of Kara, the
presenter class will be named KaraGameViewPresenter. In the MPW framework, an appropriate base
class is intended to be reused, which already handles common logic. It remains to implement the
logic to fill the view model cells with related ViewModelCellLayer objects. Typically this is done
by observing the contents of the stage and inserting the layers into the cells, which have the same
location.

As a final step, the simulator’s UI and core parts will be integrated into the UI framework. In case of
Java, most of JavaFX framework related code of the hamster simulator can be re-used. Additionally,
the images of the custom MPW have to be included by their related names.

Like the adaption to a new programming language described in Section 4.8.1, the presented workflow
is not strictly required to be done in this sequential order. For example, the test-cases can be written
after implementing the UI logic, but describing them first enables a test-first approach. Performing
the workflow in iterations is also reasonable.

4.9 Tooling and Technologies

This section describes, which tools are used for modeling and implementing the MPW simulators
in this project. Like already highlighted in previous chapters, Eclipse EMF8 is used as the base
platform.

8https://www.eclipse.org/
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First, the used tools for modeling and transformation are described. Entity models are defined
using Ecore and a visual representation is also provided by Ecore diagrams, which are stored by
.aird files. For deploying Eclipse plugins, the OSGi9 standard is used, which enables dependency
management based on a dedicated repository layout. Henshin10 is used to visually model game
and editor commands as graph transformations for concrete simulators. Queries are modeled by
the custom Query-DSL, which is developed using the Xtext framework11. Validation of models
is primarily performed by using the OCL Software Development Kit (SDK)12. Model-To-Model
transformations are realized using QVT-O. QVT-O allows to use Ecore models, query models and
Henshin models as input and operates on these models. For code generation, Xpand13 is applied,
which allows to use text templates to generate code. As a workflow language to integrate these tools,
the MWE214 is used. MWE2 allows to call custom components written in Java. This aspect is used
to call e.g. the Java API of QVT-O to integrate other technologies into a MWE2 workflow. While
formatting generated code in Java can be done by a pretty-printer provided by Xtext, for C++ the
Eclipse C/C++ Development Tooling (CDT)15 is used, which provides a separate pretty-printer to
format C++ code.

The source code of this project is versioned with Git and stored on GitHub16, which also provides a
continuous integration workflow. To execute automated tests and use the fast feedback of continuous
integration, the modeling workflow is also managed by the build tool Maven17. Since most of the
modules are based on Eclipse, the Maven plugin Tycho18 is applied as an extension.

Finally, concrete MPW simulators are built and executed independently of modeling tools. For Java,
the build tool Maven is also used, but without using Tycho. The UI of Java simulators is based on
JavaFX19. Automated testing is performed with JUnit 520. For C++, MPW simulators are managed
by the cross-platform build tool CMake21. CMake allows to build C++ on multiple tool chains
based on different operating systems like Windows, MacOS or Linux. Rendering is performed by
the SDL 222, which provides a platform independent rendering API. GoogleTest23 is used to execute
automated tests for C++.

9https://www.osgi.org/
10https://www.eclipse.org/henshin/
11https://www.eclipse.org/Xtext/
12https://projects.eclipse.org/projects/modeling.mdt.ocl
13https://projects.eclipse.org/projects/modeling.m2t.xpand
14https://www.eclipse.org/Xtext/documentation/306_mwe2.html
15https://www.eclipse.org/cdt/
16https://github.com/
17https://maven.apache.org/
18https://www.eclipse.org/tycho/
19https://openjfx.io/
20https://junit.org/junit5/
21https://cmake.org/
22https://www.libsdl.org/
23https://github.com/google/googletest
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5 Modeling Workflow

This chapter is about concepts used to implement the modeling environment, which represents the
MDSD approach used to develop the project. While Chapter 4 has the focus about general concepts,
the design of meta-models and the architecture of MPW simulators, this chapter describes the
workflow with its transformations on the modeling side. Figure 5.1 gives an overview of the three
phases modeling, transformation and generation, which are outlining the workflow. Additionally,
the relevant artifacts are shown, which are related to each phase.

Commands

Entities Queries Transformations

Transformation

Constraints Intermediate Models

Modeling Generation

Target
Code

Generation
Templates

Figure 5.1: Overview of the MDSD workflow

First, in Section 5.1 the input modeling will be illustrated, which cover the modeling of Ecore entities,
Henshin commands, Query-DSL queries and constraints. Second, in Section 5.2 the essential logic
of the model-driven workflow is shown, which is implemented by model-to-model transformations.
The transformations cover further validation of the inputs, intermediate models adjusted for the
final code generation and also the operational logic. These transformations are written in QVT-O to
transform these models. Last, in Section 5.3 an overview is given for the generation of target code
like Java and C++, based on Xpand generation templates. The generation is described separately
for the generation of entities, queries and commands.

5.1 Input Modeling

This section deals with the modeling of artifacts, which are used as input for the transformation
phase. The following subsections will describe, how these models are created using Ecore, Henshin
and the Query-DSL. In the following, the hamster simulator is used as a concrete example of a
MPW, while the ideas can be mapped to other MPWs as well.

Figure 5.2 illustrates the relevant artifacts, which consist of entities, commands, queries and con-
straints. The first activities are to define the MPW meta-models and the concrete hamster meta-model.
Both activities provide Ecore models as a result. Next, these meta-models are used to write queries
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and model Henshin commands. Additionally, constraints for the modeled commands are written,
which specify pre- and postconditions. As a result, Henshin and Query-DSL based artifacts are
produced, which in addition to the Ecore models represent the outcome of the modeling phase.
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Models (.ecore)
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Legend Activity Artifact Data-Flow Hamster Specific Workflow Step

Figure 5.2: Modeling phase of the MDSD workflow

5.1.1 Ecore Entities

As input artifacts for the workflow, the MPW meta-models are introduced already in Chapter 4 for
illustrating the concept of an abstract design to describe MPWs. This subsection further illustrates
how the hamster model based on the MiniProgrammingWorld package is designed. Figure 5.3 shows
the Ecore diagram of the Hamster package. The class HamsterGame derives from the meta-class
MiniProgrammingWorld to specify the concrete root class of the game. Territory acts as the concrete
realization of the Stage, which is contained in the game class by a containment reference territory.
The figure also shows the derived stage reference between the meta-classes MiniProgrammingWorld

and Stage, which is realized by using the concrete territory reference. Hamster is defined as the
Actor class of the hamster simulator. Since a hamster can pick grains into its mouth, it defines a
collection reference named grains, which can hold Grain objects. The territory defines a dedicated
default hamster, which is realized by the reference defaultHamster and is intended to be used in
simple scenarios, e.g. where only one hamster is needed. Additionally, further Hamster objects can
be created, which will be added to the tileContents collection of the Stage parent type. Grain and
Wall inherit from Prop and define further contents, which can be placed on tiles of the territory.
While grains are used to be picked and placed by game commands called on a Hamster object, walls
do block the relating tile and are only intended to be placed or removed by editor commands.
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HamsterTerritory Grain WallHamsterGame

ActorMiniProgrammingWorld PropStage

[0..*] grains[1..1] defaultHamster

[1..1] territory

[1..1] /stage

Figure 5.3: Hamster package

5.1.2 Henshin Commands

This subsection outlines the modeling of Henshin modules, which express game and editor com-
mands and are used as input artifacts for the transformation phase. Henshin allows to model graph
replacement rules, which declaratively describe, how an object graph will be modified for a certain
rule. The editor of Henshin can be reused to visually draw these graph replacement rules. Figure 5.4
depicts the move() command of the hamster simulator as an example.

Since most of commands needed for MPWs are relatively simple, not all flexibility provided by
Henshin is needed. The following restrictions are defined for modeling MPWs with Henshin:

• Each graph replacement rule has to define one object with the name self, which is typed for
the target Actor or Stage. This is used to have an explicit starting point, which makes the
generation of related code easier.

• Starting from the object named self, every other object of the left side graph has to be
reachable by traversing existing edges. This is a consequence of the previous restriction, since
only self is used as a starting point. Alternatively, given input parameters are also considered
as possible starting points.

• When defining any control unit like a sequence, which is no rule, one of these control units
has to be defined as the main unit. To define a main unit, it has to be named equal to the
Henshin module’s name.

• If there is no main unit explicitly defined, each rule has to be distinguishable by attribute
conditions on the self object. For example, the move command depicted in Figure 5.4 defines
a direction condition for each of the four rules. The resulting command is like a PriorityUnit

in Henshin, where each rule represents a possible case to be matched.

These restrictions are validated by OCL expressions, which are checked at the beginning of the
transformation phase. By using Henshin control units of types like ConditionalUnit, IteratedUnit,
PriorityUnit or SequentialUnit, also commands with higher complexity can be modeled. This is e.g.
used for the initTerritory() command, which has to loop over two dimensions to create the related
Tile objects. Additionally, these objects have to be connected consistently with their neighbors.
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Figure 5.4: Hamster move() command

5.1.3 Query-DSL

For specifying queries and constraints, a custom DSL named Query-DSL is developed for this thesis.
It is oriented on OCL, but omits many OCL features, which are not required for modeling a MPW.
The language is developed with Xtext, which provides a practicable way to define custom DSLs.

Figure 5.5 illustrates an excerpt of the abstract syntax of the DSL, which is described in the following.
The figure is based on the meta-model, which is generated by the definition of the DSL by the
Xtext grammar language. The root is represented by a Model node, which defines the context of
Query-DSL elements represented by the sub type Context. There are two different context variants:
CommandContext and ClassContext. While the former defines the context of a command, which
relates to a Henshin command modeled for the context class, the latter is used to define elements
on a class level, e.g. queries or class invariants. Besides the commandName, a CommandContext also
declares the parameters of a command, which can be used in the inner expressions of the element.
The context declaration has to match an existing Actor or Stage class of the related MPW, otherwise
errors in the later transformation phase will be thrown. In case of command contexts, additionally the
method signature to a related Henshin command has to match. Context also defines a composition
reference elements, which is used for the collection of Element objects. Element is used as the
base type for queries and constraints. It defines an attribute name, which is required for queries
and optional for constraints. Further, it also contains an attribute documentation, which contains
an optional string documenting the element in natural language. These documentation values are
used e.g. to generate JavaDoc comments in case of the Java code generation. Each element can
consist of multiple Expression objects, which are used to specify the behavior of the element. The
type Expression has multiple sub types, which are omitted in the figure and outlined in a later
paragraph.
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Figure 5.5: Excerpt of the Query-DSL abstract syntax meta-model

There are the following sub types of Element:

• CommandConstraint: This element represents a base type for constraints, which are defined in
the context of a command. It has two derivations for pre- and postconditions.

• Precondition: This is the first sub type of CommandConstraint, which represents a precondition
element for a related command. Its expressions return boolean values, which have to pass to
allow an execution of the command.

• Postcondition: The second derivation of CommandConstraint is used for postconditions, which
also use expressions evaluating boolean values. In contrast to preconditions, they represent
rules to be valid after the execution of the related command. Additionally, OldValueStatement
statements are allowed to be used in expressions of postconditions. These statements refer to
values, which are present at the beginning of a command execution.

• Invariant: This element represents invariants and are defined on a class context. They contain
boolean expressions, which have to be valid before and after the execution of any command
related to the context class.

• Query: The last element type in the Query-DSL is used for queries. These elements are
defined on a class context, since they are intended to extend the class by side-effect free
methods. In addition to a required name, they optionally define a list of parameters, which
can be used in expressions similar to command parameters. By default, queries are used to
extend the facade of the related context class by a public method. To avoid this, a query can
be hidden from the facade by setting the internal attribute to true. In contrast to constraints,
Expression elements of a query can also return non-boolean values. Queries can also be
called in constraints or other queries to allow reuse.

With a custom validator class QueryDslValidator, the implementation of the DSL ensures, that
command contexts only contain CommandConstraint objects. Additionally, it ensures, that a class
context can only contain Invariant and Query elements.
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The essence of each Element is represented by its Expression objects, which are stored in the
expressions containment reference like mentioned above. Most expressions are common binary
operations, like AndExpression, OrExpression and EqualityExpression which are used to evaluate
boolean values. Further, an ImpliesExpression is used to have a convenient syntax to express
implications, e.g. for evaluating a sub expression in case of a specific direction of the hamster. There
are also numeric expressions for addition, subtraction, multiplication or division of numbers. While
these expressions introduced so far are used for a binary composition of sub expressions, there are
atomic ones as well. On the one side, constants are expressed by IntConstant, StringConstant,
BoolConstant or NullConstant. On the other side, there is a special StatementsExpression, which
is used to store statements. A statement is used to express a single value by accessing parameters
or variables and is represented in the abstract syntax by the Statement type. Further, statements
can be chained in a StatementsExpression, which e.g. can be used to navigate through multiple
properties or methods of a given variable. Besides simple statements for accessing single target
values, a Statement object can also be bound to a CollectionMethod. These methods are used to
call dedicated methods on a collection, e.g. for accessing the size, accessing an object at a given
index or performing a type selection. A type selection works like the typeSelect() of Xtend, where
the collection will be filtered by objects with a given type.

In the following, examples of Query-DSL models for the hamster simulator are presented to illustrate
the concrete syntax. First, Listing 5.1 shows an exemplary query, which is used to check if the front
of a hamster is clear. In the first line, the class context for the type Hamster is defined, followed
by the keyword query to indicate, that a query will be specified. For the frontIsClear() query, it
has to distinguished between each possible direction of the hamster. Each of the four directions
is checked with an implies expression, which are composed by and expressions. In the right part
of each implies expression, the related neighbor of the current tile is taken through statements.
Further, the contents of these tiles are filtered by a typeSelect, to check if any object of type Wall

is included. Above the query keyword and its name, a documentation comment is added, which
includes a human readable description of the query. This documentation will be used to generate a
JavaDoc comment on the frontIsClear() query on the Java based Hamster facade.

Listing 5.1 Hamster frontIsClear() query
 

 

context Hamster 
/** Checks the front of the hamster. */ 
query frontIsClear:  
        ( self.direction = WEST implies  
            self.currentTile.west.contents->typeSelect(Wall)->isEmpty() ) 
    and ( self.direction = EAST implies 
            self.currentTile.east.contents->typeSelect(Wall)->isEmpty() ) 
    and ( self.direction = NORTH implies 
            self.currentTile.north.contents->typeSelect(Wall)->isEmpty() ) 
    and ( self.direction = SOUTH implies 
            self.currentTile.south.contents->typeSelect(Wall)->isEmpty() ); 

The second example of a Query-DSL module is shown by Listing 5.2, which specifies a pre- and
postcondition for the pickGrain() command. Different to the previous example, a command context
is declared by extending the Hamster type with the name of the target command pickGrain(). Since
no parameters are used for this command, no further parameter list has to be attached. The first
constraint is a precondition, which checks if any grain is available on the hamster’s tile. Because
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grainAvailable() is defined as a query in another Query-DSL module, it can be called as a statement.
The second constraint is a postcondition, which checks that the number of grains in the hamster’s
mouth has to be increased by one. While the expression self.grains->size() returns the amount of
grain after executing the command, the expression old(self.grains->size()) returns the amount
at the begin of the command execution. With this usage of an old expression, the relative effect on
a specific state information can be checked. Both constraints are also enhanced by a documentation
comment. These texts will be used as the exception message in the generated code, which is used to
better describe the violation in case of not fulfilling the given conditions.

Listing 5.2 Hamster pickGrain() command constraints
 

 

context Hamster::pickGrain 
 
/** there have to be grains available on the hamster's tile */ 
precondition: self.grainAvailable(); 
 
/** the number of grains has to be increased by one */ 
postcondition: self.grains->size() = old(self.grains->size()) + 1; 

The third example shows an invariant, which is given by Listing 5.3. Like the frontIsClear() query,
it is defined on the Hamster class context. The keyword invariant is used to mark the expressions
as an invariant, followed by the optional name isInitialized. The invariant checks before and after
each command, if the hamster is correctly initialized. This is done by the heuristic, to check if the
stage property is set and if the hamster is placed on a tile.

Listing 5.3 Hamster isInitialized invariant
 

 

context Hamster 
/** Invariant which checks if the hamster is placed on a tile. */ 
invariant isInitialized: self.stage <> null  
                             and self.currentTile <> null; 

To summarize, the Query-DSL is effectively used to describe queries and constraints for the modeling
of the hamster simulator or other MPWs. The custom DSL has some advantages, like having full
control on features which are necessary for the MPW domain. Further, it allows to give a higher
usability, e.g. by using directions as built-in literals and omitting many features compared to OCL,
which are not required. Currently at time of writing, the language has no intelligent auto-completion,
which might be extended in the future by suggesting available properties on a given context.

5.2 Intermediate Transformation

While the previous section illustrates the input modeling, this section will outline how these input
models are transformed into intermediate models, which are better suited for code generation.
Figure 5.6 shows relevant artifacts and activities of the transformation phase. First, the write activity
includes the creation of QVT-O transformations based on several meta-models. On the one side,
the Ecore, Query-DSL and Henshin meta-models are used for accessing the abstract syntax trees of
the input models. On the other side, the QueryBehaviors and CommandBehaviors meta-models for
the intermediary models are additionally used.
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Figure 5.6: Transformation phase of the MDSD workflow

As the second activity, the QVT-O transformations are executed. On execution time, the four
artifacts hamster meta-model, queries, commands and constraints have to be provided, which are
results of the previous modeling phase. After executing the transformation phase, the hamster
meta-model is extended by aspects like annotations, roles and facade classes. Additionally, the
query and command behavior models are created, which contain the essence of the Henshin and
Query-DSL input models. These three artifacts are the result of the transformation phase and are
used as input for the generation phase, described in Section 5.3.

Figure 5.7 gives a brief overview of the intermediate models, while the following subsections
will describe each meta-model in more detail. There are four packages designed for intermediate
models:

• CommandBehaviors: Used for transformed Henshin commands, which are structured in a
simplified model.

• QueryBehaviors: Allows to store models for queries and constraints, which are transformed
by Query-DSL input models.

• GenerationAnnotations: Contains custom EAnnotation types which are used to enrich Ecore
models by further information, e.g. hints how an operation body may be generated.

• BehaviorsBaseTypes: Provides common meta-types which are used by the three previously
mentioned meta-models.

The main intent of these intermediate models is a closer focus on code generation. For example,
the CommandBehaviors models have ordered references, such that the generator does not need to
further consider dependencies on edges in the object graph of the transformation rules. In contrast
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Figure 5.7: Overview of intermediate meta-models

to the Query-DSL, which is based on the concrete syntax specified by the Xtext grammar, the
QueryBehaviors also focuses on generation instead of input modeling. It provides much more
type information for statements and expressions, while referring to elements of the related Ecore
model like EStructuralFeature instances. As a positive side-effect, these intermediate models
decouple the generation aspects from the concrete input technology. This would allow to exchange
Henshin with another technology to model commands, which only requires to adapt the related
transformation scripts.

5.2.1 BehaviorBaseTypes Package

Like mentioned, the BehaviorBaseTypes package provides common types used in the intermediate
models. Figure 5.8 shows the class diagram for this package. There are three base types defined,
which are similar to Ecore types EModelElement, ENamedElement and ETypedElement1. The first
one is AnnotationableElement, which defines a containment reference collection for EAnnotation
elements. NamedElement is the second base type, which defines the attribute name of type EString.
The third base type is TypedElement. It defines an EClassifier in the field type to reference Ecore
type elements. Additionally, it specifies with isCollection if the type is used as a collection.
With isOptional, the type can further be marked as an optional. Compared to ETypedElement of
the Ecore meta-model, isCollection is like setting upperBound to -1, while isOptional relates to
setting lowerBound to 0. Besides the three base types, the common type Parameter is also defined in
this package. It derives from NamedElement and TypedElement and represents parameters used in
operation signatures.

NamedElement

name : EString

TypedElement

isCollection : EBoolean = false

isOptional : EBoolean = false

 type : EClassifier

Parameter

AnnotationableElement

 annotations : EAnnotation

Figure 5.8: BehaviorBaseTypes package

1Due to technical reasons, the similar Ecore types are not used as base types
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5.2.2 CommandBehaviors Package

The first intermediate meta-model is realized by the CommandBehaviors package. Figure 5.9 shows
the structural types of this package, which focuses on the Unit level.
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RuleSequentialUnit IteratedUnit

repeat : EString

PriorityChainUnit IfElseUnit

Invocation

targetMethodName : EString

mappedParameters : ParameterMapping

[0..*] transformations

[0..*] units

[1..1] mainUnit

[0..*] targetInvocations

[1..1] targetInvocation[0..*] conditionalInvocations

[1..1] ifInvocation

[1..1] thenInvocation

[1..1] elseInvocation

Figure 5.9: Excerpt of units in the CommandBehaviors meta-model

Module acts as the root container to store up to many Transformation objects. The type
Transformation represents the central class in this package, which is related to a game or editor com-
mand. Omitted in the figure for simplicity, it derives from NamedElement and AnnotationableElement

to define a name field and optional annotations. It also contains several meta-information attributes.
With roleName the role is noticed, which contains either ”game” or ”editor”. A documentation can
also be defined, which is usually taken from the documentation of the related Henshin module.
Further, with isInit the transformation can be marked as a command, which is used for initialization.
This has to be considered when generating invariants, since conditions shall not be checked before
the initialization of an entity has finished. Since each command is based on a target class, the
field targetClass is defined, which references the EClass relating to an actor or a stage. Each
transformation also defines up to many Constraint objects, which are part of the QueryBehaviors
meta-model described below in Section 5.2.3.

Similar to Henshin commands, the modifying behavior is represented by Unit elements, which can
be invoked and result either in a successful or failed state. They are stored in the units containment
reference collection of Transformation, while exactly one of them has to be further set as the
mainUnit of the transformation. Each unit can define up to many Parameter instances, while the
main unit’s parameters are used as the parameters for the whole command. In addition, Unit defines
a collection of type VariableDeclaration, which is used to define variables in the unit’s scope.
The CommandBehaviors package defines five units, while the first four are used for structuring the
control flow. They are compositions of sub units, which are invoked during runtime. An invocation
is represented by the Invocation type, which defines the targetMethodName for the generated method
relating to the target unit. Additionally, the collection mappedParameters specifies the parameters
which will be passed as arguments to the invocation of the related method.
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The control flow units are designed as following:

• SequentialUnit: Contains a collection of targetInvocations, which are invoked in sequential
order. If any of the invocations is not successful, the SequentialUnit is marked as failed.

• PriorityChainUnit: Similar to the sequential one, this unit specifies a collection of invocations.
But in contrast, only if the execution of a unit is not successful, the next one will be tried to
be evaluated. If no invocation in conditionalInvocations is successful, the invocation of the
PriorityChainUnit is handed as failed, otherwise as successful.

• IteratedUnit: Defines a unit, which repeats the invocation specified by targetInvocation a
certain number of times. The attribute repeat contains the numeric literal or variable name
which is used to evaluate the number of times to repeat. The IteratedUnit is only successful
itself, if all iterations are completed and all target invocations are successful.

• IfElseUnit: This unit is used for branching the control flow. The ifInvocation defines the
conditional unit, which is invoked to control the branch. If the invocation results as successful,
the thenInvocation is called. Otherwise, if it results as failed, elseInvocation is invoked.
The result of thenInvocation or elseInvocation is used to mark the IfElseUnit as successful
or failed.

The last unit is represented by the type Rule and represents a graph transformation rule. In contrast to
the control flow units, it does not contain sub units and describes an atomic modification of an object
graph, based on a Henshin rule. Figure 5.10 depicts another excerpt of the CommandBehaviors
package, with the focus on the types relevant for Rule. On the left side the type Rule is shown again,
which contains several references to sub objects.

Rule

 variables : 

VariableDeclaration

 variableAssignments :

VariableAssignment

AttributeCondition

attributeName : EString

isCreate : EBoolean = false

 attributeValue : Expression

InstanceCondition

variableName : EString

isCreate : EBoolean = false

 instanceType : EClass

ReferenceCondition

referenceName : EString

isCreate : EBoolean = false

useForExploring : EBoolean = false

 type : EReference

SingleReferenceCondition

isForbid : EBoolean = false

ManyReferenceCondition

ClearReferenceCondition

Modification

newAttributeValue : 

EString

action : Action = 

CREATE

Action

DELETE

CREATE

MODIFY

CLEAR

[1..1] thisInstance

[0..*] instanceConditions

[0..*] referenceConditions

[0..*] attributeConditions

[0..*] modifications

[1..1] instance

[1..1] source[1..1] target

[0..1] reference

[0..1] instance

[0..1] attribute

Figure 5.10: Excerpt of rule elements in the CommandBehaviors meta-model
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There are three types of conditions, which describe the object graph to be matched:

• InstanceCondition: Relates to a node in the object graph and represents the condition for an
object to be matched. It defines a variableName, which is used to store an object reference in
the generated code. If the name is not specified in the Henshin input model, a unique variable
name is chosen by the transformation logic. A boolean flag isCreate is used to indicate, if
the instance is only available on the right side of the transformation rule and hence shall be
created in context of this rule. Further, the type is defined with instanceType, which relates to
an EClass and is determined by the type information of the related Henshin input node. Rule
has a containment reference collection instanceConditions where the InstanceCondition

objects are stored. The main instance identified by the name ”self” in the Henshin rule is
further referenced by the dedicated thisInstance reference.

• ReferenceCondition: Represents edges in the object graph of the transformation rule and
describes conditions to be matched at runtime. Since it connects two nodes in the graph,
the two source and target references are used to refer to related InstanceCondition objects.
It defines a referenceName used to identify the accessor method to be called on the source
instance in the generated code. Similar to the related Henshin input reference, it links to the
underlying EReference by the type field. If isCreate is set, it defines a creating edge, which
results in a setter or insertion call in the generated code. The flag useForExploring is evaluated
for traversing the object tree to find all required InstanceCondition objects. If the flag is
set to false, in generated code a reference will only be used for pattern matching based on
previously found instances. ReferenceCondition itself is abstract and defines three sub types.
First, SingleReferenceCondition relates to a simple reference, which links only to one object.
As a restriction, only single references are allowed to be used with forbid semantics, which
represents a negative application condition. The second sub type is ManyReferenceCondition,
which is used for collection references. With ClearReferenceCondition a sub type is defined,
which is used for clearing a collection.

• AttributeCondition: Defines further conditions to be matched on instance attributes. With
attributeName the name of the EAttribute is noticed, while instance is the reference to the
related InstanceCondition which owns the attribute. The value to be matched is stored in
the attributeValue expression, which has to be compatible with the attribute’s type. Like in
previously described conditions, isCreate indicates if the condition is used as a modification
on the right side of the object graph. If set, the attribute condition will be set on the instance.
Further, the attribute value can be resolved by an Expression used from the QueryBehaviors
package. It might refer to parameters or property paths to refer to nested properties.

While Henshin rules are designed with a left and right side graphs, for generation it is easier with a
merged design like illustrated in the CommandBehaviors package. Therefore, the type Modification

is used to link to the condition types for expressing modifications. The type defines the field action,
which is based on the enumeration type Action. The enumeration consists of four actions DELETE,
CREATE, MODIFY and CLEAR, which represent the according modifications. Further, Modification
defines three links to ReferenceCondition, InstanceCondition and AttributeCondition, while
only one of them is used at a time. In combination with the action, it represents a modification
like deleting an instance. If the MODIFY action is used for an attribute, it further needs a value
for newAttributeValue, which will be set as the new value of the attribute. Some information is
explicitly redundant to make generation easier, e.g. by setting the redundant isCreate flag at the
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condition types. Further, the design is kept simple, e.g. by not deriving dedicated modification
types for each consistent modification. Through validation of the input models, inconsistent states
like setting multiple condition links on a Modification objects are prevented.

Besides conditions, the type Rule also contains containment references for variables. The two
related types VariableDeclaration and VariableAssignment are not explicitly shown in Figure 5.10
to keep the figure more simple. First, with a VariableDeclaration object stored in variables,
which is derived from the base class Unit, the declaration of a variable at the beginning of the
generated rule’s method body is inserted. It defines a variableName as a string and the variableType

as an EClassifier. These declared variables are assigned after matching all InstanceCondition
objects in the generated code. For assignment, an object of type VariableAssignment is used,
which is contained in the variableAssignments reference collection. An assignment refers to a
VariableDeclaration by its variableName and further defines an element of type Expression (see
QueryBehaviors package below).

5.2.3 QueryBehaviors Package

This subsection outlines the next intermediate meta-model, which is about queries and constraints.
It is similar to the meta-model represented by the Query-DSL language described in Section 5.1.3,
which is driven by the concrete textual syntax of the Xtext grammar. Instead, the QueryBehaviors
meta-model is targeting code generation and hence differs in several details to the related input
meta-model. Figure 5.11 depicts the excerpt of the QueryBehaviors package, which focuses on the
Module and ExpressionalElement types.

Module ExpressionalElement

documentation : EString

 contextClass : EClass

Query

defaultValueLiteral : EString

internal : EBoolean = false

type : EClassifier

parameters : Parameter

Constraint

CommandConstraint

commandName : EString

PreconditionPostcondition

ClassInvariant

Expression

 type : EClassifier
[0..*] elements [1..1] mainExpression

Figure 5.11: Excerpt of expressional elements in the QueryBehaviors meta-model

The type Module represents a root node of the model, which defines a collection containment
reference elements of type ExpressionalElement. It relates to the Query-DSL Element type and
hence is the base type for queries and constraints. Each object of type ExpressionalElement contains
a mainExpression of type Expression, which encapsulates the operational behavior. With Query,
Precondition, Postcondition and ClassInvariant the element types are represented with the same
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responsibility like the related types of the Query-DSL. But in QueryBehaviors, no dedicated context
classes are used, therefore necessary context information is directly embedded into the related
element types. For example, the parameters of queries are available in the Query type. As another
example, the base type CommandConstraint simply refers to the related command by its commandName.
If pre- or postconditions access command parameter values, the related Expression objects are
enriched by the necessary information like the parameter name and type. In contrast to the Query-
DSL, each Expression is enriched by a type information, therefore it derives from TypedElement

and contains a type feature. Since a query also returns information of a certain type, it is derived
from TypedElement, too. The figure does not include the TypedElement class to keep the diagram
simple, but the inherited type features are visible to see the type information.

The abstract Expression type has the following sub types, which are used to build the operational
behavior:

• NotExpression: Negates an inner expression, which has to be a boolean typed expression.

• AndExpression: Binary expression, which takes two boolean typed expressions and performs
a logical AND on them.

• OrExpression: Binary expression, which takes two boolean typed expressions and performs a
logical OR on them.

• CalculationExpression: Binary expression, which takes two numeric typed expressions and
performs a basic calculation on it. The calculation is controlled by the enumeration type
CalculationOperator allowing the values PLUS, MINUS, MULTIPLY and DIVIDE.

• ImpliesExpression: Binary expression to evaluate a logical implication. If the first, boolean
typed expression is true, it will evaluate the second expression, which must also return a
boolean value.

• CompareExpression: Binary expression, which compares two values given by sub expressions.
The operator is set by the enumeration CompareOperator, which defines the literals EQUAL,
NOT_EQUAL, GREATER, SMALLER, GREATER_EQUAL and SMALLER_EQUAL.

• VariableExpression: A special expression, which is intended to introduce a new variable
with a given name. The value of the variable is evaluated by a sub expression. Variables
introduced with a VariableExpression can be used by a VariableReferenceUsageStatement,
which will be described below.

• OldExpression: Wraps an inner expression to indicate, that the value shall be evaluated before
performing the body of the related ExpressionalElement. Like mentioned in the Query-DSL,
through validation it is ensured, that only PostCondition elements can use old expressions.

• StatementsExpression: Represents an expression which refers to an value built by statements.
In contrast to Query-DSL statements, there are more dedicated sub types to be better suited
for generation.

In many expressions there are variables, parameters or properties of entities that are accessed with
Statement objects. Like mentioned above, they are embedded into a StatementsExpression to
be used within an expression tree. The type Statement derives from TypedElement and therefore
defines a type, which results on evaluation. Further, it defines a previous and next reference to
other Statement objects, to realize a chain of statements. This is used to access multiple properties

62



5.2 Intermediate Transformation

in a property path. An example of the grainAvailable() query is shown in Figure 5.12, where a self
statement initially accesses the this instance variable of the type Hamster. Based on this statement,
it refers to a FeatureStatement by its next reference for navigating to the currentTile property of
the Hamster type. Then, the next statement navigates to the feature contents of the Tile class, which
is used to provide a collection of TileContent instances. The fourth statement on the bottom right
performs a type select collection method, to filter out only instances of type Grain. Finally, the last
statement calls a collection method to check, if the filtered collection is not empty. Since the last
statement is typed as a boolean, the expression containing these statements also gets the boolean
type. For simplicity, the figure omits the fact, that intermediary results are inserted like described
below.

: SelfStatement

selfAlias="this"
type=Hamster

: FeatureStatement

feature=currentTile
type=Tile

next
previous

: FeatureStatement

feature=contents
type=TileContent
isCollection=true

next
previous

: CollectionMethodStatement

methodType=TYPE_SELECT
type=Grain
isCollection=true

next
previous

: CollectionMethodStatement

methodType=NOT_EMPTY
type=EBoolean

next
previous

Figure 5.12: Property path example realized with statements

To build property paths for different use cases, several Statement sub types are defined:

• SelfStatement: Allows to access the this instance or another dedicated object, which repre-
sents the context object of the current class. With the attribute selfAlias, the name of the self
variable is defined. A SelfStatement is often used as the starting point of a property path.

• FeatureStatement: Realizes a statement to refer to an EStructuralFeature of a given type.
Usually, it is set as the next statement of a previous statement, which obtains an object of the
type containing the feature. It defines an attribute directAccessible, which indicates, if the
feature is directly accessible or a getter operation has to be used.

• GetPropertyStatement: A special statement which is similar to FeatureStatement, but does
not directly relate to an EStructuralFeature. It is used for calling getter operations related
to properties, which are not directly available in the given class. Examples are the getter
operations on the role interfaces of the hamster. The name of the target getter operation is
defined by the attribute propertyGetterName.

• QueryStatement: Allows to call an operation based on a query. It has a reference query which
links to the related Query instance. If the query requires parameter values, the parameter
names have to be specified by the attribute parameterNames. These parameter names are used
to refer to variables or parameters of the current context.

• IntermediaryResultStatement: Represents a technical helper statement, which encapsulates
sub statements as an intermediary result. It derives from VariableExpression, since it
introduces a new variable by its intermediary result. The transformation logic determines
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with a heuristic, which statements have to be handled by an intermediary result. The main
intent is to allow a safe return in case of absent property values. Section 5.2.4 will describe
the implementation of these statements in more detail.

• ElementByNameUsageStatement: Represents a simple statement to refer to parameters or
variables by providing their names. Besides SelfStatement, they provide a further construct
to start a property path.

• CollectionMethodStatement: Provides a statement, which can be applied on collections
only. It defines an attribute methodType, which indicates which operation shall be applied by
using the enumeration CollectionMethodType. Possible methods are NOT_EMPTY, IS_EMPTY,
SIZE, TYPE_SELECT and AT. While NOT_EMPTY, IS_EMPTY and SIZE are parameter-less methods,
TYPE_SELECT and AT require a parameter. Hence, the property parameters can be used to set
parameter objects, which have to be compatible with the method type.

• EnumLiteralStatement: Used to refer to an enumeration literal, like directions.

• VariableReferenceUsageStatement: An alternative statement for accessing variables. While
ElementByNameUsageStatement refers to a variable only by its name, this statement type
makes use of a previously defined VariableExpression. One use case is to refer to a
VariableExpression inserted by the transformation logic for an old value expression to
store the value on start of a command. For realizing the related postcondition, afterwards
the VariableReferenceUsageStatement is used to link to this variable. Another use case is to
reuse variables introduced by IntermediaryResultStatement objects.

While the expressions illustrated in this subsection are primarily used for queries and constraints, they
are also reused in the transformation logic to generate certain method bodies. For example, the facade
is generated with methods delegating to nested objects like the Actor, Stage or GamePerformance.
More details about the transformation logic follows in Section 5.2.4.

5.2.4 Transformation Logic

With the transformation logic written in QVT-O, the central process of the modeling workflow is
performed. It contains the transformation rules to convert input models into intermediate models,
which are adjusted for code generation. The attempt in this project is to make the code generation
simple by extracting complexity and logic into the transformation phase. The QVT-O rules are
coarsely classified into four responsibilities, which are each separately called in a MWE2 workflow.
Figure 5.13 depicts the corresponding activity flow of these transformation rules.

RoleTransformation

CommandTransformation

QueryTransformation

FacadeTransformation

Figure 5.13: Major activities relating to rules of the transformation logic
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First, the QueryTransformation.qvto deals with the transformation from Query-DSL modules into
QueryBehaviors models. While many expressions and statements can be mapped straight for-
ward, few types need special logic. For example, old value expressions are created by inserting
a VariableExpression with the nested expression, which will store the evaluated value in a vari-
able at start of the related, generated method. Then, an OldExpression is created with a nested
VariableReferenceUsageStatement, which links to this VariableExpression instance. Further logic
is implemented for intermediate results, represented by IntermediaryResultStatement objects. Like
mentioned in context of the QueryBehaviors package in Section 5.2.3, they are used as logical
wrappers around statements to introduce intermediate statement results. Their main intent is to
avoid access to absent objects by returning the related expression immediately. The need for these
intermediate results is determined by statements in a property path, which return optional values,
e.g. by an access to structural features with optional semantics. In case any intermediate result is
required for a property path, a name for a dedicated helper method is also determined. These helper
methods allow to execute return statements in the generated helper method, if an intermediate
result is empty. Since IntermediaryResultStatement also derives from VariableExpression, it can
be referenced by VariableReferenceUsageStatement to start a new succeeding property sub path in
the decomposed statements expression.

Next, the CommandTransformation.qvto is responsible for converting Henshin modules into Com-
mandBehaviors models. It extracts role names from the given Uniform Resource Identifiers (URIs),
transforms units and determines heuristically, which unit has to be marked as the main unit. Ad-
ditionally, for actor game commands, it implicitly adds a rule to insert an entry into the game log.
Finally, it iterates over the ReferenceCondition instances and determines the order, in which they
shall be generated to have a valid graph transformation rule. To handle multiple paths leading to an
InstanceCondition, the references on the main path are marked for exploration. Only exploring
references are generated for finding new instances, while the others are only generated as checks.
Further, the related constraints are embedded in the commands that were previously transformed
into QueryBehavior elements. For actors, a dedicated write command is also added by a separate
QVT-O transformation rule, while this command is not originated from a Henshin model.

The third responsibility is the transformation of roles, like introduced in Section 4.5.4. This is
performed by the RoleTransformation.qvto file, which operates on derived types from the meta-
types Actor and Stage. The original class will be renamed with the prefix ”Concrete”, since it
represents the concrete implementation of the type. Then, read-only, game and editor interfaces
are created as EClass instances with the interface flag set. On the concrete class, the game and
editor interfaces will be set as super types, while the read-only interface becomes the super type for
the game and editor interfaces. Additionally, annotations are added to these types, e.g. with a key
value pair noticing the role of a class or the base name without added prefixes. Finally, the newly
created role interfaces are extended by their contents. The read-only role gets query operations for
the related Query elements and property getters for features of the concrete class. For the game and
editor role interfaces, operations related to Transformation instances are added, which represent
commands. The Query and Transformation objects are further cloned and attached to the created
operations as annotation contents, to make them available at generation time.

Last, the facades described in Section 4.5.1 are inserted by the FacadeTransformation.qvto trans-
formation. It creates new EClass objects for the game facade, which get the base names of the
roles. Internally, these game facade classes contain references to the derived MiniProgrammingWorld

instance and the concrete class, on which the facade is based on. For example, for the hamster
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game role, a Hamster facade class is created which references ConcreteHamster and the HamsterGame

objects. Game facade classes get operations for each game command and each query defined on the
related roles. These facade operations are extended by dedicated GenerationAnnotation instances,
which inherit from EAnnotation to allow to add custom content to the annotation collections of
EModelElement objects. The generation annotations are defined in a further meta-model named
GenerationAnnotations and cover common low-level constructs like calling methods, defining con-
structors or performing field assignments. For game commands, annotations to call the commands
on the game role interface are added accordingly. Further, each query is also created as an operation
on the game facade, which contains generation annotations to indicate which query shall be called.
For the game facade of the Actor, operations for readNumber() and readString() are also added,
which delegate to the respective method on the game instance. Additionally, if any game command
is marked by isInit, it will be generated as an init() facade operation used in a special constructor
with matching parameters. Besides game facades, for the editor role of the derived Stage class a
stage builder class is generated as well, which gets delegation operations for the editor commands
in a fluent API style. Finally, the derived MiniProgrammingWorld class is also modified. For control
of the game mode, it is extended by delegates for several methods of the GamePerformance, e.g.
startGame() or pause(). Instead of containing the concrete class for a stage, the reference is replaced
by the facade stage. For example, HamsterGame finally contains a Territory instance.

5.3 Code Generation

Following on from the transformation phase in the previous section, this section shows the generation
phase based on a model-to-text transformation.

Legend Activity Artifact Data-Flow Hamster Specific

Transformation

Workflow Step

Generation

Hamster Meta-Model   
Extended (.ecore)

Query
Behaviors Models

Command
Behaviors Models

Write Xpand Generation

Generation Templates
(.xpt)

Generate Code

C++ Simulator
Code

Java Simulator
Code

Figure 5.14: Generation phase of the MDSD workflow

Figure 5.14 depicts this phase on the MDSD workflow, which takes the transformed models as
input to generate Java and C++ code. There are several Xpand templates implemented for the code
generation, which are called by a MWE2 workflow file using the built-in generator, which supports
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to integrate Xpand. The core activity of the generation phase is the writing of these Xpand templates
for the two target languages each. As resulting artifacts, the Xpand templates with the file extension
.xpt are produced, which are used in the second activity to generate the code in conjunction of the
workflow. The inputs are extended entity models, QueryBehaviors models and CommandBehaviors
models. As described in the last section, entity models are extended in the transformation phase,
e.g. by roles, facades or dedicated generation annotations to provide more information for the
generator.

The first four subsections will go into the major responsibilities for generating code regarding entity
models, queries, commands and facades. These sections will focus on the Java based generator
exemplary, while the last Section 5.3.1 describes identified challenges, especially when generating
C++.

5.3.1 Code Generation of Entities

The first responsibility is given by the JavaEcoreEntitiesTemplate.xpt template, which generates
entity models. Its entry-point accepts a list of EPackage objects, which are the root nodes of Ecore
models. Each EClassifier instance will be iterated and handled in one of four cases:

• EClass Entities: Includes types, which are no interfaces and do not derive from the ValueType

stereotype. They are used to generate several entity classes like MiniProgrammingWorld, Tile,
GameLog or concrete ones like ConcreteHamster. One major aspect for entity classes are their
properties and accessor method based on structural features. Dependent on the changeable

attribute of the EStructuralFeature meta-type, a property is generated as observable or
final. Observable properties are generated with property wrappers, which provide observer
mechanisms automatically. In case of Java, the JavaFX base properties are used, which can
be used without being dependent on the JavaFX UI modules. For every property, a getter
method is generated, while for observable ones a getter method to return the property wrapper
is also added. Each changeable properties additionally gets a generated setter method, which
is used to change the value. For EReference instances, which define bi-directional relations,
special setter methods are generated. They also ensure to set the opposite reference. In case of
collections, there are addTo() methods generated, which also ensure bi-directional consistency.
There is further generation logic, which handles more specific cases like properties based on
dependency types or changeable, but non-observable features. Besides properties, declared
methods based on EOperation instances are also generated. On the one side, there are methods
to call queries and commands, which internal structures are described in the following
subsections. On the other side, usual operations are generated as abstract methods, since the
implementation has to be added manually. As a consequence, the class itself is generated as
abstract, while a further class with the suffix ”Impl” is generated, which is used to implement
the method. This approach follows the generation pattern for inherit and overwrite [VSB+13].

• EClass Value Types: Handles types, which are derived from the ValueType stereotype. Exam-
ples are Location or Size, which represent simple data-structures consisting of EAttribute
properties. For each attribute, getter and setter methods are generated. To ensure consistent
equality and hashing mechanisms when using these value types, equals() and hashCode()

methods are generated. Last, the generator also adds a convenient constructor method with
the name from(), which allows to create an instance of the value type in a more readable way.
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• EClass Interfaces: Contains interface types, which are generated to pure virtual interface
classes. On the one hand, the transformed role interfaces are given by interface EClass

instances. On the other hand, there are explicitly modeled instances like GameViewInput for
the view model or UserInputInterface as a dependency interface, which is injected into the
MPW model. The latter is derived from the Dependency stereotype, which is defined in a
further Ecore package.

• EEnum: Includes enumeration types. In case of Java, a simple type using the enum keyword is
generated including each defined enumeration literal.

While the generation of entity models is primarily based on static semantics, the following two
subsections are dealing with generating operational behavior.

5.3.2 Code Generation of Queries

The second responsibility in context of the code generator is the generation of queries, constraints
and related expressions. The related Xpand file is named JavaQueriesTemplate.xpt, which pro-
vides entry points for generating query operations defined on an EClass or to generate a given
Expression, e.g. for command constraints. Queries are generated in the concrete classes of stages
and actors. For example, for ConcreteHamster, all related queries are generated as methods. The
signatures of these query methods are derived from the read-only interfaces, which already declare
appropriate abstract operations. In concrete role classes, the bodies are generated using EXPAND

directives for processing related templates of each Expression sub type. Besides expressions, the
Statement instances are generated by Xpand templates, which are defined in a separate file named
JavaStatementsTemplate.xpt. Helper statement methods are generated, if the transformation logic
has set the needsHelperMethod flag on a StatementsExpression. These helper methods contain
return statements for IntermediaryResultStatement instances, which are evaluated in separate
variables. In the following, the generation of the grainAvailable() query for the hamster simulator
is illustrated. While Listing 5.4 depicts the modeled query in the Query-DSL syntax, Listing 5.5
shows the generated Java code.

Listing 5.4 Hamster grainAvailable() query
 

 

context Hamster 
/** Checks the hamster's current tile for grain. */ 
query grainAvailable: self.currentTile.contents 
                          ->typeSelect(Grain) 
                          ->notEmpty(); 

In the example, the expression for the query needs a statement helper method, since it navigates
over the currentTile reference, which has an optional semantic resulting from a lowerBound of zero.
Therefore, it has a dedicated helper method which is generated below in line 9 of Listing 5.5, which
is called in the body of the query in line 4. The helper method first obtains the currentTile and
stores it in a result variable named result0. Line 11 contains the presence check of the intermediate
result, which returns the helper method with false in the absent case. Afterwards, the helper method
performs the type selection statement on the contents reference and determines, if any Grain object
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Listing 5.5 Generated Java code for the grainAvailable() query

1 @Override

2 public boolean grainAvailable() {

3 try {

4 return helperGrainAvailableCurrentTileResult0ContentsTypeSelectGrainNotEmpty();

5 } catch (Exception e) {

6 return false;

7 }

8 }

9 private boolean helperGrainAvailableCurrentTileResult0ContentsTypeSelectGrainNotEmpty() {

10 Tile result0 = this.getCurrentTile();

11 if (result0 == null) {

12 return false;

13 }

14 boolean result1 = result0.getContents().stream().filter(Grain.class::isInstance).map(Grain

.class::cast)

15 .collect(Collectors.toList()).size() > 0;

16 return result1;

17 }

is selected. Line 16 returns the final value, which represents the full result. In case of non-boolean
query types, the appropriate default value is used for returning absent property values, e.g. null for
references.

In the next subsections, the generation of commands and facades is described, which also makes
use of the generation of QueryBehaviors expressions. While commands use expressions in con-
straints, the facade contains dedicated GenerationAnnotation instances, which also allow to generate
expressions.

5.3.3 Code Generation of Commands

The third responsibility of the code generator is represented by the template for commands, named
JavaCommandTemplate.xpt. Each command is generated into a separate class, which results in a
better modularization. In the concrete actor or stage classes like ConcreteHamster, a method for each
related command is generated, which instantiates the command class and executes it with given
parameters. Listing 5.6 depicts the generated example for instantiating the move() command of the
hamster simulator.

Listing 5.6 Generated Java code for instantiating and calling MoveCommand

1 public class ConcreteHamster extends Actor implements GameHamster, EditorHamster { ...

2 @Override

3 public void move(MoveCommandParameters parameters) {

4 parameters.self = this;

5 var command = new MoveCommand(parameters);

6 parameters.commandStack.execute(command);

7 } ...
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As shown in the listing, there is also a dedicated parameter class generated for each command, like
MoveCommandParameters. This represents a simple data-structure, which is used to store all needed
dependencies and parameters for execution of a command. The following information is stored in
these parameter types:

• Self Reference: All parameter command structures are defining a self reference to the
concrete Actor or Stage instance, which is the context object of the command. In the example,
the ConcreteHamster object sets itself as the self instance.

• Command Stack Reference: Further, each command needs to be executed in context of a
CommandStack object. The facade, which calls the command on the concrete class is responsible
to set a reference to the game or editor command stack. Like illustrated in Listing 5.6, this
reference is used to call the execute() method on the command stack.

• Game Log Reference: For every actor command, the GameLog instance is also set on the
parameters object. This allows to insert an entry to the game log, which includes the name of
the command and a reference to the Actor instance.

• Custom Parameters: Whenever a command defines custom parameters, these are also included
in the parameters object. For example, editor commands to add props on tiles usually have
custom parameters like a Location object.

The essence of commands is generated in the mentioned command classes like MoveCommand. These
classes are derived from CompositeCommandBase, which is manually implemented in the MPW
simulator framework and itself inherits from CompositeCommand. This base class provides helper
methods, to execute primitive commands and insert them into the composite. In generated code
for transformation rules, these helper methods are used to make the generated code simpler. The
execute() method represents the entry point of each command, which evaluates constraints and
executes the internal logic. Listing 5.7 shows an excerpt of the MoveCommand class, which includes
parts of the execute() method.

Listing 5.7 Generated Java code for the MoveCommand class

1 public class MoveCommand extends CompositeCommandBase { ...

2 @Override

3 public void execute() {

4 if ((self.frontIsClear()) == false) {

5 throw new CommandConstraintException(

6 "Violation of Precondition: Hamster front must not be blocked or outside territory");

7 } ...

8 if (!internalMainUnit()) {

9 throw new RuntimeException("Transformation was not successfully executed: move");

10 }

11 addGameLog();

12 if ((self.getStage() != null && self.getCurrentTile() != null) == false) {

13 throw new CommandConstraintException(

14 "Violation of ClassInvariant: the hamster is placed on a tile.");

15 }

16 } ...
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In line 4 the precondition is evaluated, which checks, if the front tile of the hamster is clear. If the
precondition fails, a CommandConstraintException is thrown, which contains the documentation of
the condition defined in the related Query-DSL file as the exception message. After precondition
checks, in line 8 the internalMainUnit() method is called, which represents the generated unit
marked with mainUnit in the CommandBehaviors model. Every generated unit is returning a
boolean value, which indicates, if the execution has been successful. In case of a non-successful
execution, a RuntimeException will be thrown. Usually, this should not happen, since the modeling
of preconditions shall cover each invalid case to provide better semantics. After successful execution,
line 11 shows that the addGameLog() method is called. This represents a transformation rule inserted
by the transformation logic for actor commands. Finally, postconditions are evaluated. In the listing
on line 12, the postcondition to check the effect of the command is performed. In case of violation,
again a CommandConstraintException is thrown with an appropriate message. Like mentioned in the
previous subsection, constraints are generated by reusing Xpand templates of the QueryTemplate.xpt

to generate Expression instances into code. The next subsection will show, how commands and
queries are integrated into facades, which makes interaction with MPWs more convenient.

5.3.4 Facades

While the previous subsections have depicted how the entity models and operational behavior are
generated, in the following the generation of facade classes is described. The generation of facades is
processed by a further Xpand template named JavaFacadeClassesTemplate.xpt, which primarily is
based on GenerationAnnotation objects attached to an Ecore model. Figure 5.15 gives an overview
of the different GenerationAnnotation types used by this generation template.

GetPropertyAnnotation

CommandParameterCreation
Annotation

CommandCallAnnotation

QueryCallAnnotation ParameterToFieldAssignment
Annotation

ConstructorSimpleField
InitializationAnnotation

ExpressionFieldAssignment
Annotation

ExpressionAnnotation

MethodCallAnnotation

ReturnAnnotation

VariableObjectConstruction
Annotation

VariableDefinitionAnnotation

Figure 5.15: Overview of GenerationAnnotation types

These annotation types have the following purposes:

• GetPropertyAnnotation: Generates a getter method, which returns a field defined on the
current class. For the facade, it is used e.g. to return the internal role interfaces of the related
actor or stage instance.

• CommandParameterCreationAnnotation: Generates code, which instantiates parameter classes
like MoveCommandParameters and fills the required fields.

• CommandCallAnnotation: Used for generation of a command call in context of the cur-
rent facade. It further calls appropriate methods on the GamePerformance method like
preExecuteGameCommand() or delayControlFlow().
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• QueryCallAnnotation: Generates code which calls a query on the internal instance of a facade
class and returns the value. For example, the Hamster facade has a public method for each
query, which internally delegates to the ConcreteHamster instance.

• ConstructorSimpleFieldInitializationAnnotation: Defines the initialization of a field by
calling a given constructor with specific parameters. As an example, the Territory facade
class instantiates the defaultHamster instance in its constructor with given parameters.

• ExpressionFieldAssignmentAnnotation: Based on an Expression of the QueryBehaviors
model, this annotation is used to generate a field assigment. It provides flexibility, since the
expression can be used to access arbitrary property paths.

• MethodCallAnnotation: Generates the call of a specific method, based on a variable. For
example, the Hamster actor facade has a readString() and readInteger() method, which
internally calls the appropriate method on the UserInputInterface reference.

• ReturnAnnotation: Generates a return statement based on an Expression. In addition to
MethodCallAnnotation, it is used to return the result value of the previous method call as a
result of the facade method.

• ExpressionAnnotation: Used to simply generate an Expression object into code. It provides
a way to insert expressions at any position of generated code. For facades, it is used to build
specific parameter assignments, which are not covered by other annotations.

• VariableObjectConstructionAnnotation: Generates an instantiation of a given class and
assigns the value to a variable.

• VariableDefinitionAnnotation: Defines a new variable with another GenerationAnnotation
object, which represents the right hand side of the assignment.

• ParameterToFieldAssignmentAnnotation: Generates code to assign a given parameter to a
field. It provides a more convenient annotation for such an assignment.

While some generation annotations are redundant to each other, they are used to explicitly make
the generation as simple as possible. The facade classes are completely generated based on these
annotations, which achieves that most complexity is processed in the transformation phase.

To illustrate the final control flow of a command call based on a method at the facade, Figure 5.16
shows a sequence diagram of the hamster simulator’s move command. In the example, a client
calls the move() method on an object based on the Hamster facade class. Since the command is
defined on the game role, the generated facade method first calls preExecuteGameCommand() on the
internal GamePerformance. This leads to assertion checks by the GamePerformance instance, e.g. to
ensure that the mode is in a running state. After that, the Hamster class calls the move() method
on the GameHamster interface, which is provided by the internal ConcreteHamster object. For this
call, an MoveCommandParameters object is created with a CommandParameterCreationAnnotation as
described above. The GameHamster instance then creates a MoveCommand object like illustrated in
Section 5.3.3 and calls the execute() method on the CommandStack. After execution, the command
is added to the stack collection and the control flow returns back to the Hamster facade class. To
enforce a time delay after the game command, finally the delayControlFlow() method is invoked,
before the command is finalized.
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:Hamster :GameHamster

command
:MoveCommand

:GamePerformance

preExecuteGameCommand()
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:CommandStack

new(parameters)

addToExecutedCommands
                         (command)

move(parameters: MoveCommandParameters)

execute(command)

return

execute()

return

delayControlFlow()

return

return

return

move()

Figure 5.16: Sequence diagram for calling move command on the hamster facade

While the generation described in this subsection focused on the generation of Java, the last subsec-
tion will give a brief overview of challenges identified for the C++ generation.

5.3.5 Challenges

The generation of Java code is easier to process in several aspects compared to the generation of
C++. In the following, some identified challenges are described.

First, the generated C++ entity model has to solve proper life-cycle handling. In C++, smart pointers
are used to have reference counting when allocating entity instances on the heap. It is important to
avoid cyclic references of shared pointers between instances, which can be achieved using weak
pointers. As a distinction criteria, the containment attribute on EReference objects is used to control
whether an owner semantic or only a weak reference is required.

As a second challenge the missing support of reflection has to be handled. For this, the code
generator adds a lightweight mechanism to set values based on a generic value and feature keys.
On the one hand, a dedicated interface is provided by the MPW simulator framework named
ReflectivePropertyObject, which declares the three methods setProperty(), addToCollection()
and removeFromCollection(). Each generated entity class implements these methods and handles
the structural features defined on the current type. On the other hand, to express generic values, a
custom Any type is defined, which makes use of std::variant of the C++ standard library to define
a typed union.

A further challenge is the generation of const-correct C++ code. Especially through the usage of
shared and weak pointers in collections, the generation of const-correctness for object getters is
not straight forward. To overcome the problem of const-correct smart pointers, custom collection
types are defined. These collection types provide a common ObjectListView interface, which
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provides iterators used to iterate over entities based on C++ references. With this design, code using
collections is decoupled from life-cycle semantics, which makes the generated code more simple.
Further, C++ references can be provided as const, if the collection is accessed from a const getter
method. This makes generation more simple, since only the const keyword has to be prepended to
the type.
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In this chapter, the evaluation of the thesis is depicted. The work is based on a constructive approach
to realize a solution with certain research related tooling. Section 6.1 first will introduce the goals
of this thesis from a research perspective. Afterwards, in Section 6.2 the results are discussed.

As an overview, the following six research questions are formulated to outline the goals:

RQ1: Is it practical to develop the Proposed-Simulator by building the meta-models on the idea of
the Outside-In approach?

RQ2: Which advantages and disadvantages can be achieved by the usage of the DMM technique
related to modeling the hamster-simulation?

RQ3: Does the right architecture decouple the main part of the simulator from the concrete
framework and allow an easy switch to other UI frameworks?

RQ4: Is it practical to use the graphical Henshin syntax to model simulator commands which are
then used to generate concrete code?

RQ5: Is it practical to reuse the concepts of Fujaba to develop the basic graph transformation engine
for the Proposed-Simulator?

RQ6: Is it sufficient to reuse the meta-model of Solist to build an adaptable approach which allows
the creation of other MPWs?

6.1 Evaluation Goals

This section briefly states the goal of each research question in a problem-oriented manner. Each
subsections sequentially relates to the questions formulated above.

6.1.1 Meta-Modeling targeting Outside-In

The first goal is to evaluate the combination of the Outside-In approach with meta-modeling. Outside-
In has the focus on Design by Contract, which introduces pre- and postconditions for interfaces.
Especially documentation and well-defined object-oriented design are required to teach this approach
properly. Through the application of MDSD, in context of the developed Proposed-Simulator these
concepts shall be applied for modeling and generated code.
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6.1.2 Dynamic Meta-Modeling of MPW Simulators

The second goal also targets meta-modeling, but with focus on the dynamic aspects. DMM provides
a method to define operational behavior through a runtime model and transformation rules. While the
behavior of related MPW simulators is implemented mostly imperatively, the declarative modeling
of behavior through graph transformation rules provides an alternative. Therefore, the second
question focuses on the advantages and disadvantages of applying a DMM approach to develop
MPWs. A further important goal in this context is to generate code for multiple programming
languages by using the modeled semantics.

6.1.3 Architecture separating UI Views

The third goal is about the architecture of the concrete MPW simulators. To achieve that most of
the simulator can be represented by similar programming language constructs, the UI framework
shall be decoupled from presenter logic and core. For this, concepts like the Humble Object pattern
suggested by the Clean Architecture are considered.

6.1.4 Command Modeling with Henshin

Next, the usage of the visual syntax of Henshin shall be evaluated in context of command modeling
for MPWs. It allows the modeling of graph transformation rules in conformance to DMM in a
graphical syntax. To reuse this tooling, the fourth question is about how to integrate the Henshin
models into the MPW modeling workflow properly.

6.1.5 Reuse of Fujaba Ideas

The next goal is about code generation of graph transformation rules for MPW commands. Fujaba
provides already ideas, how such code can be generated for Java. Therefore, the reuse of these
concepts for generation of MPW commands in Java and also C++ is evaluated.

6.1.6 Reuse of Solist Meta-Model

The last evaluation goal deals with the reuse of ideas related to the Solist meta-model. This enables
modeling not only specific to the hamster simulator, but also to other MPWs. As an evaluation goal,
Kara the ladybug shall be modeled as an alternative MPW.

6.2 Evaluation Results

After the previous section outlined the goals for each research question, this section evaluates
these aspects by reflecting the proposed solutions made in this project. Again, the subsections
are sequentially ordered and relate to the research questions formulated above. Finally, threats to
validity of the evaluation results are mentioned.
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6.2.1 Results for Meta-Modeling targeting Outside-In

The developed solution in this thesis focuses on the Outside-In concepts. Queries and commands
represent the basic building blocks to define operational behavior for MPW actors, like a hamster.
Any MPW modeled by the proposed solution has a designed entity model by Ecore diagrams, which
automatically focuses on object-orientation. Based on these entity models, the Henshin syntax
is used to model commands, while the Query-DSL developed in context of this thesis supports
modeling of queries. Further, with the Query-DSL, constraints can be modeled in addition to the
transformation rules of a command. This enables a full support of Design by Contract, which is a
central part of the Outside-In approach.

The generated source code for concrete MPWs retains any documentation which is added at modeling
time. For example, documentation on Ecore models is generated as JavaDoc in the generated Java
simulators. Pre- and postconditions are used to generate documentation on the public methods at
the client facade, while they are also consistently generated as executable code. Further, one major
objective in this context is to generate readable code, since the MPW simulators shall be used for
teaching. Especially internals of the MPW simulators shall be available for students, since they
might dive into the internal code and learn from it.

As a result, the experiences made in this thesis related to the combination of meta-modeling and the
Outside-In approach are positive. Especially the definition of pre- and postconditions at modeling
time allows to generate documentation and executable code from a single source, which ensures
that documentation is consistent. By focusing on the relative simplicity of MPWs, the generated
code can also be kept simple.

6.2.2 Results for Dynamic Meta-Modeling of MPW Simulators

Dynamic semantics for the developed MPW simulators is based on the DMM approach. The
advantages and disadvantages of this approach shall be identified in this subsection.

As the central idea, the final entity model contains several dynamic references which are modified
by graph transformation rules. For example, a Hamster object moves in the territory by updating its
currentTile reference, which is part of the runtime model. Modifying behavior is also modeled by
visual graph transformation rules, which allow a programming language independent representation.
With these rules, the final source code of different programming languages is generated, which
makes it possible to develop the Proposed-Simulator natively in Java or C++. It further represents a
declarative modeling, which leads to simple and comprehensive transformation rules for common
game commands. Another advantage is a better object-oriented design, since the runtime model
enforces to have objects to be modified for operational rules. As an example, grains for the hamster
simulator are modeled by a dedicated Grain class, such that they can be used as objects on the
tiles.

As a disadvantage of the applied DMM approach, there are commands which are more complex,
especially the initialization editor commands. They require multiple control flow units, combined
with multiple transformation rules. While this modeling also works and is used to generated code, a
procedural language might be simpler and more precise for creating a stage with its related tiles.
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6.2.3 Results for Architecture separating UI Views

The architecture of the concrete MPW simulators has the goal to be independent from concrete UI
frameworks. For this, the Humble Object pattern is applied in the proposed solution, which primarily
introduces a view model and dedicated interfaces to decouple UI logic from the framework. As a
resulting advantage, the manually written presenter code to fill up the view model is very symmetric
across different programming languages and MPW variants. The final, UI framework dependent
code has only the concern to display the contents of the view model on the screen, which does not
contain business logic anymore. As another advantage, the UI framework could be exchanged more
easily. Further, testing in an automated way is possible for large parts of the architecture, since unit
tests can directly simulate user inputs and check visible information written in the view model. This
achieves well testing capabilities.

6.2.4 Results for Command Modeling with Henshin

The fourth goal of this thesis is about the application of Henshin to model MPW commands. As
result, the visual editor can be reused and no custom one has to be developed. Unlike a concrete
textual syntax which is required for queries and constraints, a visual one would be more complicated
to develop.

There have been two major challenges when integrating Henshin in this project. On the one hand,
the modeled commands have to be integrated in the modeling workflow properly. Since the Ecore
meta-model can be simply accessed by depending on the Henshin OSGi plugin, the model instances
can be used in Ecore compliant tools. In this project, QVT-O is used to transform them into a
proper model, which is used to contain all relevant information. On the other hand, Henshin allows
to model arbitrary graph transformation rules and supports features and graph modifications not
required for MPWs like the hamster simulator. To simplify the approach in this project, some
restrictions have to be applied on Henshin models. This is realized by using OCL validation rules,
which are evaluated after reading these Henshin models from the corresponding files.

As a final summary about the proposed application of Henshin, the integration into common Eclipse
technologies like QVT-O, OCL and MWE2 works well. Further, people with Henshin experience
are able to model transformations, which are used to develop commands of a MPW in a graphical
and declarative representation.

6.2.5 Results for Reuse of Fujaba Ideas

In addition to the modeling of commands by Henshin, after processing a model-to-model transfor-
mation, the final target source code has to be generated. Since this generation aspect is relatively
challenging, the approach of Fujaba is used as a helpful orientation. Like Fujaba, graph transforma-
tion rules are directly generated as a sequence of related object-oriented constructs. For example, the
graph pattern matching is about navigating the object model from a dedicated start object marked
with ”self”. Modifications call related object reference or attribute methods like setter-operations.
In addition, all modifications have to be tracked in a command infrastructure, since MPWs shall
support undo and redo to allow the students to analyze the runtime behavior. The extension of
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the Fujaba-like approach by generating primitive commands by wrappers around the modifying
operations works. As a result, concepts of Fujaba are successfully applied for generating commands
for the proposed MPW simulators.

6.2.6 Results for Reuse of Solist Meta-Model

The last evaluation goal deals with the reuse of the Solist meta-model to allow modeling of more
than one MPW simulator. As a result, for this project the Solist meta-model is closely re-modeled as
the MiniProgrammingWorld package introduced in Section 4.5.3. It acts as a meta-meta-model for
concrete MPW meta-models like the hamster Ecore package shown in Section 5.1.1. By applying
only small changes, the meta-meta-model is successfully used to model the hamster simulator, as
well as Kara the ladybug. Additionally, it is also possible to use more than one Actor instance,
which is not possible in Solist. This restriction is not given, since the approach in this project makes
use of a more flexible design, where there is no need to mark a dedicated actor as a soloist instance.
As an example, the hamster simulator allows to add further Hamster objects on the territory, to teach
the object-orientation concepts like instantiating objects more properly.

6.2.7 Threats to Validity

There are some threats to the validity of the evaluation results.

First, the combination of meta-modeling with an Outside-In approach is only evaluated in the context
of relatively simple MPWs. Hence, there is some threat to the external validity. When teaching
different topics with examples not based on similar MPWs, the combination might not be useful as
well. Further, the application of more complex Design by Contract concepts might not be covered
by the proposed solution. For example, there might be complex constraints used for teaching, which
are not supported well enough by the solution.

Regarding the DMM approach for MPW simulators, the hypotheses for a better object-oriented
design and comprehensive graph transformations are based on a subjective view. This can also be
seen as a threat to the construct validity. These statements might be invalidated through a research
survey of multiple people, where e.g. students are asked with no deep knowledge of object-oriented
programming or meta-modeling. Further, the adaption to other programming languages is only
validated for Java and C++. As another external validity threat, there might be programming
languages, where an adaption of the proposed solution is not practicable.

The application of the Humble Object pattern to make the UI frameworks more easily exchangeable
is only based on two examples. In this case, the external validity is considered. The solution is
designed with aspects of these frameworks in mind, which could make the integration of other
frameworks more difficult. To express the degree of exchangeability in a more reliable way, the
proposed solution might be researched to be rendered with several additional UI frameworks.

Commands of MPWs can be modeled with Henshin, which provides a graphical and declarative
representation of transformations. The statement, that other people are also able to model MPW
commands with Henshin experience, is only based on a subjective view. Therefore, the construct
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validity of the statement could be threatened. This works for the developers of the proposed approach
with deeper knowledge, but people who have worked with Henshin in other contexts might still
have difficulties with this approach.

Fujaba ideas are successfully applied for the generation of commands of MPWs. While this shall
be valid for the simple MPWs used in this work, there might be MPWs not considered, where
more complex commands are necessary. If these commands are too complex to be generated with
the current proposed approach, this could threaten the external validity of the statement made in
context of the evaluation result. Further, other model-driven approaches in other contexts might have
different requirements, where the ideas of Fujaba are not applicable. Moreover, not all aspects of the
Fujaba code generation are used. For example, the generation of entity models is not oriented on the
Fujaba’s approach, hence the external validity might only be given for simple MPWs commands.

Finally, by using the Solist meta-model, the adaptability to other MPWs is shown. But, with Kara
the ladybug, this is only shown by one further example. Adaptions to many more MPWs might
show, that the meta-model is not flexible enough. This would threat the external validity of this
result. Furthermore, the adaption is made by the author of this thesis. As a further construct validity
problem, there might be developers with less experience, which would fail to adapt other MPWs
with the proposed approach.
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This chapter summarizes the results and key aspects of this work. The main goal to create a
hamster simulator for further programming languages based on the existing ones has been reached
successfully and all important requirements in scope of this work are fulfilled.

As the essential approach, a MDSD solution is proposed, which allows to model most of the aspects
of a MPW in a programming language independent way. A modeling environment is developed
based on the EMF, which provides the modeling workflow for input modeling, model-to-model
transformations and code generation. Entity meta-models are created by using Ecore, like the
central meta-meta-model for MPWs which defines basic meta-types for actors, stages or props.
Commands are modeled by reuse of the Henshin tool, which provides a visual editor to model
graph transformation rules. Also, a custom Query-DSL is developed with Xtext, which is used
for modeling queries and constraints. These input models are further transformed using QVT-O
into intermediate models, which are adapted for code generation. As the final step in the modeling
workflow, the generation of executable Java or C++ code based on Xpand templates is performed.

Besides the modeling workflow, there is the simulator environment which contains the generated
code for each target programming language. While common aspects are implemented in a central
MPW simulator framework for reuse, concrete simulator code is implemented in context of a concrete
MPW simulator. For this, an architecture is designed which allows to decouple UI concerns from
the simulator’s core. While most of the code in the simulator’s core is generated, UI logic has to be
manually implemented in context of the MPW specific presenter. By applying the Humble Object
pattern, the UI frameworks used to render the views are decoupled from the UI logic itself. This
makes most of the UI logic testable in an automated manner, while code dependent on concrete UI
frameworks like JavaFX or SDL are free of business logic.

As concrete MPWs, both the hamster simulator and Kara the ladybug are implemented by the
proposed solution. This shows, that the chosen meta-models are flexible enough to cover other but
similar MPWs. By the implementation based on two programming languages Java and C++, further
the adaptability for more than one programming language is shown. Finally, the API is close to the
PSE-Simulator, which is based on the Outside-In approach and has the focus on a well-documented
interfaces and object-oriented design.

Future Work

While the most important requirements are fulfilled and the proposed solution can be used to develop
MPW simulators for Java and C++, there might be further improvements and extensions.

As one improvement the manually written code for each target language could be produced in a
more automated way. Currently, presenter logic has to be implemented for each language separately,
which could be solved by using an language like ALF to describe logic in an independent manner.
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It might be researched, if presenter logic could even be generated without providing MPW specific
logic. Further, automated tests could also be modeled using a programming language independent
way. For example, with Xtext a simple testing language could be realized, which allows to create
unit tests based on the related Ecore meta-models. Similar to the code generation used in the MPW
simulator core, the concrete tests then could be generated for each target language. Additionally,
the loader classes like TerritoryLoader for deserializing hamster simulator territories are currently
implemented manually. Given meta-information about the serialization, this logic might also be
generated completely by a future work.

An extension could be to also develop an editor tool for creating stages. The existing stage builder
classes can be used to build up stages, but currently no convenient editor is given. Based on this, a
serializer must also be added, which e.g. stores stages into encoded strings.

For modeling of inputs, further improvements or extensions are possible. As an example, besides
graphical modeling of commands, a textual concrete syntax with Henshin Text could be used as
an alternative. More complex commands like initialization of stages might be written more easily
in the textual syntax. For modeling of queries and constraints, the Query-DSL can be further
improved. Currently, it provides no auto-completion on property paths or existing types, which
could be implemented using Xtext scopes. Also, when defining the command context for constraints,
a scope provider could make use of the canonical file paths to find available commands to provide
auto-completion.

For teaching purposes, the tracking of the command sequence as a Labelled Transition System
(LTS) could be further implemented. This enhancement can be used to show that students have
solved exercises in an expected way and not by cheating. Additionally, a dedicated game won query
could be used to decide if the current game is won. For example, in context of the hamster simulator
all grain has to be picked up or put in a certain way on the territory.

Another further improvement would be to integrate the existing HTTP integration developed for the
PSE-Simulator. Since the API is close to the PSE-Simulator and the visual representation is given
by a view model data-structure, the serialization for HTTP could be build on top of this. This would
allow to render the stages in a web-browser. Another, similar enhancement could be to develop a
Jupyter notebook integration. Jupyter notebooks are documents which allow to mix executable code
with documentation. They can be used to design learning environments and support activities like
creating lessons, lectures, courses or assignments [BBB+19]. Modern usage scenarios regarding
MPW simulators could be to demonstrate example code for exercises and provide an efficient way
for the students to make notes while they are typing real code.

Finally, the solution of this work could be adapted for more programming languages and MPWs.
Constraints in the generated Java code could also be generated using the JML, which provides a
formalized syntax. For this, the Java generator has to be improved by correctly generating rich JML
documentations above method definitions.
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