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Abstract

With the introduction of renewable energies, the power grid has transformed from a centralised
to a decentralised system. To balance the supply and demand of power in the energy grid at
all times in spite of the volatile nature of wind and solar power, grid operators have to rely on
accurate forecasts. However, state of the art wind power forecasting methods are not able to
forecast changes of power in the minute-scale accurately. Therefore new methods are needed.
This thesis investigates the use of a long-range lidar to forecast wind power on the minute-scale.

To that aim, two measurement campaigns were carried out. One was an onshore campaign,
where the lidar was installed fixed on a radio tower next to a turbine that a forecast was made
for. The second was an offshore campaign where the lidar was installed on top of the nacelle of
a wind turbine. Both campaigns lasted over several months and the wind speed was measured
in several kilometers in front of the turbine. During this time the turbine‘s own data system
also recorded the 10-minute average power from the turbine.

In this thesis, a wind power forecast process is established. Lidar data is transformed from
radial velocity to filtered horizontal wind speed and wind direction. The wind field information
is then propagated to the wind turbine with an advection model based on Taylor’s hypothesis.
The forecasted wind speed at the turbine is then transformed into a forecasted power with the
help of the power curve of the turbine.

To account for the uncertainty in the wind speed and power forecast, probabilistic forecast
methods are applied. The results show that lidar-based forecasts at the offshore site are accu-
rate in a forecast horizon up to ten minutes and outperform the benchmark forecast method
persistence. Longer forecast horizons are biased because only small wind speeds measured fur-
ther away from the wind turbine arrive with a delay of more than ten minutes. At the onshore
site, persistence outperforms the lidar-based method in all forecast horizons, includinig the
forecast horizon up to 10 minutes. The reason is that the Taylor based advection model does
not model the actual propagation at the complex onshore site well enough.

During ramp events, the lidar-based forecast demonstrates its strength: information from the
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wind speed measured a few kilometers in front of the turbine allows us to forecast changes of
power. In comparison, persistence only uses old information and therefore cannot forecast any
future changes. It is concluded that the added value of using a lidar for minute-scale forecasts
lies in forecasting changes of power. As wind ramps are potentially critical to the grid stability,
or can affect the cost of balancing the power system if they are not forecast well, using lidars
at wind farms to improve the power forecast is advised.

However, challenges to the implementation of lidar-based forecasts remain. Lidar measure-
ments depend on the aerosol content in the air and therefore the availability of the measurements
for a forecast is not guaranteed. A fallback solution is needed such as statistical models or nu-
merical weather prediction. To achieve forecast horizons of more than 10 minutes, the lidar
measurement range needs to be extended beyond 10 kilometers. And to establish lidars as a
state-of-the-art forecasting tool, standards are needed, which could be enabled by groups such
as the IEA Wind community.

Wind lidar data coupled with propagation models and power curves has fundamental ad-
vantages for minute-scale wind power forecasting. Although this thesis has shown that current
approaches may not be perfect, the rapid pace of wind lidar technology development, the in-
creasing number of users, and the growing network of third party service providers, suggests
that wind lidar is the future of minute-scale wind power forecasting.



Kurzfassung

Mit der Einführung der erneuerbaren Energien hat sich das Stromnetz von einem zentralen zu
einem dezentralen System gewandelt. Um trotz der volatilen Natur von Wind- und Solaren-
ergie das Angebot und die Nachfrage von Strom im Energienetz jederzeit auszugleichen, sind
Netzbetreiber auf genaue Vorhersagen angewiesen. Die aktuellen Methoden zur Vorhersage
der Windkraft sind jedoch nicht in der Lage, Leistungsänderungen im Minutenbereich genau
vorherzusagen. Daher werden neue Methoden benötigt. In dieser Arbeit wird der Einsatz eines
long-range Lidars zur Vorhersage der Windleistung im Minutenbereich untersucht.

Zu diesem Zweck wurden zwei Messkampagnen durchgeführt. Die erste war eine onshore
Kampagne, bei der das Lidar fest auf einem Funkturm neben einer Windenerrgieanlage in-
stalliert wurde, für die eine Vorhersage gemacht werden sollte. Die zweite war eine offshore
Kampagne, bei der das Lidar oben auf der Gondel einer Windkraftanlage installiert wurde.
Beide Kampagnen dauerten mehrere Monate und die Windgeschwindigkeit wurde in mehreren
Kilometern vor der Anlage gemessen. Während dieser Zeit zeichnete das anlageneigene Daten-
erfassungssystem auch die 10-minütige Durchschnittsleistung der Anlage auf.

In dieser Arbeit wird ein Verfahren zur Windleistungsvorhersage entwickelt. Die Lidardaten
werden von der Radialgeschwindigkeit in die gefilterte horizontale Windgeschwindigkeit und
Windrichtung transformiert. Die Windfeldinformationen werden dann mit einem Advektion-
smodell, das auf der Taylor-Hypothese basiert, auf die Windenergieanlage übertragen. Die
prognostizierte Windgeschwindigkeit an der Anlage wird dann mit Hilfe der Leistungskurve der
Anlage in eine prognostizierte Leistung umgewandelt.

Um die Unsicherheit in der Windgeschwindigkeits- und Leistungsvorhersage zu berücksichti-
gen, werden probabilistische Vorhersagemethoden angewendet. Die Ergebnisse zeigen, dass
lidarbasierte Vorhersagen am offshore Standort in einem Vorhersagehorizont von bis zu zehn
Minuten genau sind und Persistenz als Benchmark-Vorhersagemethode übertreffen. Längere
Vorhersagehorizonte sind fehlerbehaftet, da nur kleine Windgeschwindigkeiten, die weiter ent-
fernt von der Windkraftanlage gemessen werden, mit einer Verzögerung von mehr als zehn
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Minuten eintreffen. Am onshore Standort übertrifft die Persistenz die lidarbasierte Methode
in allen Vorhersagehorizonten, einschließlich des Vorhersagehorizonts bis zu 10 Minuten. Der
Grund dafür ist, dass das Taylor-basierte Advektionsmodell die tatsächliche Ausbreitung an
dem komplexen onshore Standort nicht gut genug abbildet.

Bei Rampenereignissen spielt die lidarbasierte Vorhersage ihre Stärke aus: Die Information
aus der wenige Kilometer vor der Anlage gemessenen Windgeschwindigkeit erlaubt es, Leis-
tungsänderungen zu prognostizieren. Im Vergleich dazu nutzt die Persistenz nur alte Informa-
tionen und kann daher keine zukünftigen änderungen vorhersagen. Es wird gefolgert, dass der
Mehrwert der Verwendung eines Lidars für Prognosen im Minutenbereich in der Vorhersage
von Leistungsänderungen liegt. Da Windrampen potenziell kritisch für die Netzstabilität sind
oder die Kosten für den Ausgleich des Stromsystems beeinflussen können, wenn sie nicht gut
vorhergesagt werden, ist der Einsatz von Lidaren in Windparks zur Verbesserung der Leis-
tungsvorhersage ratsam.

Allerdings bleiben Herausforderungen bei der Implementierung von lidarbasierten Vorher-
sagen bestehen. Lidarmessungen sind abhängig vom Aerosolgehalt in der Luft und daher ist
die Verfügbarkeit der Messungen für eine Vorhersage nicht garantiert. Es wird eine Auswe-
ichlösung benötigt, wie statistische Modelle oder numerische Wettervorhersagen. Um Vorher-
sagehorizonte von mehr als 10 Minuten zu erreichen, muss der Lidarmessbereich außerdem auf
mehr als 10 Kilometer erweitert werden. Und um Lidare als modernes Vorhersageinstrument
zu etablieren, werden Standards benötigt, die durch Gruppen wie die IEA Wind Community
ermöglicht werden könnten.

Windlidardaten, die mit Ausbreitungsmodellen und Leistungskurven gekoppelt sind, haben
fundamentale Vorteile für die Vorhersage von Windenergie im Minutenbereich. Obwohl diese
Arbeit gezeigt hat, dass die derzeitigen Ansätze nicht perfekt sind, legen die rasante Entwick-
lung der Wind-Lidar-Technologie, die steigende Anzahl von Nutzern und das wachsende Net-
zwerk von Drittanbietern nahe, dass Windlidar die Zukunft der Windleistungsvorhersage im
Minutenbereich ist.
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Introduction

1.1 Motivation

The use of renewable energies is an essential part of reducing climate-changing emissions. Dur-
ing the last years, the energy grid transitioned from centralized and manageable energy produc-
tion with conventional sources such as coal, nuclear and gas, to decentralised energy production
from solar and wind power.

Both technologies work with energy sources that nature provides for free, but they come with
a catch. Solar and wind power are fluctuating energy sources and are governed by local changes.
Without intermediate storage, they do not provide a steady energy output. However, in order
to keep the energy grid stable, the supply from power plants and the demand from consumers
need to be balanced at all times. As a result of the energy transition, weather forecasting
became a crucial tool to tackle the challenge of grid balancing, because it helps to manage the
variable energy supply.

If one looks up weather forecasting in Wikipedia, it says that “Weather forecasting is the
application of science and technology to predict the conditions of the atmosphere for a given
location and time.” In fact, people have tried to forecast the weather for millennia and since
the 19th century national weather services successfully forecast meteorological conditions [1].
With the introduction of renewable energies into the energy grid, weather forecasts became
important to forecast wind and solar power.
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Wind power generation forecasts hours or days ahead of real time are based on weather
forecasts which are calculated with Numerical Weather Prediction (NWP) models. NWP mod-
els are accepted as baseline forecasts and use input data such as temperature, humidity and
pressure from weather stations and simulate future weather conditions by solving physical and
mathematical equations [2]. NWP models are computationally expensive and so tend to be
run by large governmental organisations, such as the Deutscher Wetterdienst (German Meteo-
rological Service), or commercial providers.

However, for wind power forecasts up to 60 minutes, different forecast methods are needed
because due to their spatial resolution of several kilometers, NWP models are not accurate for
short time scales. The state-of-the-art is to use statistical methods that are based on historic
measurement data of wind and power at the target wind turbine or wind farm. These forecasts
are reliable, cheap and do not need much computing power [3], but have a disadvantage. Because
they use old measurement information to predict the future performance, they are not able to
predict changes in power generation.

The successful integration of wind energy into the grid therefore requires a different ap-
proach to wind and power forecasting. Ideally this would be an accurate forecast that provides
temporally-resolved data at the point of interest and can be updated within a few seconds or
minutes.

Wind lidar may be an ideal tool for this application. Long-range lidars can measure the wind
speed several kilometers upstream of a wind turbine or wind farm. This preview information
of the wind speed that will affect the turbine’s power generation, can be used to generate
power forecasts for the next minutes. The lidar is able to measure the variation in wind
speed and should therefore be able to predict changes in generated power more accurately than
conventional time series based methods.

This thesis will therefore investigate the use of a long-range lidar to predict the power output
of a wind turbine in the minute-scale.

1.2 Research areas in this thesis

Lidars are used for many different applications in wind energy such as site assessment, turbine
or wind farm control and power curve measurements [4]. All applications have one thing in
common: the lidar data needs to be processed to be usable. This is the case for all data from
measurements, and not specific to lidar data. The goal of lidar data processing for wind power
forecasting is to make sure that only accurate wind measurements are used to generate the
forecast.
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The first step is to check for outliers in the data and filter the data accordingly. Lidars
measure radial wind speed, so the second step is to apply wind field reconstruction methods
to retrieve wind parameters such as horizontal wind speed and wind direction from the mea-
surements [5]. When the work for this thesis was started, long-rage lidars were still new on the
market and there was not much experience in terms of data processing. Therefore, the process-
ing chain first had to be developed in this thesis based on existing methods for ground-based
and short-range nacelle-based lidar measurements.

Having chosen wind lidar as the tool to deliver the wind data, it is necessary to consider how
to convert this into a forecast.

The forecasting method that is applied in this thesis is probabilistic forecasting. Probabilistic
forecasting is also called uncertainty forecasting and aims to provide a forecast of a value and
quantifies the uncertainty of the forecast [6] at the same time. The goal is to help and facilitate
decision making processes. For wind power forecasting, this means that not only the power
output of a wind turbine is forecast for a specific time in the future, but also a probability that
this power will be generated is given. Probabilistic power forecasting is able to quantify the
uncertainty resulting from the volatile nature of the wind, which is responsible for the power
generation. This thesis builds on existing methods for probabilistic forecasting and adapts them
for the application of lidar-measurements.

In parallel to the work carried out for this thesis, similar research was carried out by col-
leagues at other institutes. In 2019, Elliot Simon finished his PhD thesis on ”Minute-Scale
Wind Forecasting Using Lidar Inflow Measurements” [7]. He focused on using scanning-lidar
to examine space-time correlations of wind patterns measured onshore, upstream of a lidar.
In the same year Laura Valldecabres defended her PhD thesis. She showed in her work that
lidars can forecast wind speeds at near-coastal conditions [8] and then focused on using radars
to carry out minute-scale probabilistic power forecast [9], [10] and forecast ramp events [11].
The author of this thesis worked together with Elliot Simon and Laura Valldecabres and to-
gether they organised a collaborative workshop between the IEA Wind Tasks 32 and 36 on
”Very short-term forecasting of wind power”, which took place in 2018. The outcome of this
workshop was an overview paper of methods for minute-scale forecasting, led by the author of
this thesis [12] and reported elsewhere in this thesis.
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1.3 Research objectives, methodology and organization

This thesis aims to improve minute-scale forecasts of wind power using wind speed data from
a long-range lidar and power data from wind turbines. The following research questions arise:

• How should the lidar data information be processed to gain a power forecast for a wind
turbine?

• How does the measurement setup and measurement site influence the forecast?

• What is the forecast horizon of lidar-based forecasts and what influences the forecast
horizon?

• How does the lidar-based forecast perform in comparison to state-of-the-art statistical
methods and what are its benefits?

The data needed to answer these questions were collected in two measurement campaigns. In
one campaign a wind lidar was installed next to an onshore wind turbine. In another, a wind
lidar was installed on top of an offshore wind turbine. Both campaigns were carried out over
a period of several months. Simultaneous to the lidar data, turbine data was made available
by the operator and used in the forecast process to generate the power curve of the turbines
and validate the forecasts. At both sites, data from a meteorological mast was available which
recorded meteorological conditions.

The methods used in this thesis to process the data and to generate the forecasts were
previously established for other applications. This thesis introduces each method, discusses its
context and previous application, and explains how it was adapted to be used for lidar-based
minute-scale forecasting in this work. Assumptions that were made for simplification are stated
clearly.

The methodology applied in this thesis is valid for the power forecast of a single wind turbine.
To forecast the power output of a wind farm, the methods applied here need to be extended
and wind farm effects need to be considered.

The thesis starts by explaining background information in Chapter 2. An overview of the use
of lidar in wind energy applications is given and the need for minute-scale forecasts is explained
by discussing the variability of intra-hourly wind power generation. By describing the state of
the art forecasting methods, the gap that lidar-based forecasts can close is described.

The forecast chain that is established in this thesis is explained in Chapter 3. The chain is
an overview of which steps are taken in order to process lidar data and to gain a wind power
forecast of a wind turbine. The thesis structure then follows the chain links step by step and
explains the processing steps.
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• In the fist link of the forecasting chain, wind speed measurements from the lidar are
converted into horizontal wind speeds, which are the basis for the forecast. The methods
for filtering lidar data, the wind field reconstruction, as well as the measurement setup
are explained in Chapter 4.

• In order to forecast the power of a wind turbine, these distant measurements need to be
propagated through time and space to the wind turbine’s location. This is the second
link in the forecasting chain and the use and implementation of a propagation model are
explained in Chapter 5.

• The final link in the forecast chain is to transform the predicted wind speeds into pre-
dicted power, and to calculate the forecasts. The methods applied are explained in 6
and the results of the forecasts from an onshore and offshore campaign are compared and
discussed.

The challenges for the implementation of lidar-based minute-scale forecasting are discussed
in Chapter 7. To that end first the correlation of the measurement range and the forecasting
horizon is analysed, and then solutions to overcome barriers are suggested and discussed.

The thesis concludes with Chapter 8, where conclusions and recommendations for further
research are given.
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Background

This chapter explains the background that is needed to understand the need for minute-scale
forecasting and the reason why a lidar was chosen as a tool. First the reason for the intra-hourly
variability of wind power is explained in Section 2.1 and the need for minute-scale forecasting
in different application areas that arises from the power variability is discussed in Section 2.2.
The use of lidar in different wind energy applications is explained in Section 2.3. In Section 2.4
the state-of-the-art forecasting methods are described and the need for lidar-based forecasting
is derived. Section 2.5 summarises the key information needed to understand the background
of this thesis.

2.1 Intra-hourly variability of wind power generation

The need to forecast wind power on timescales in the order of minutes arises from the variability
of the wind speed in these time scales. The cause for the variability can be found in atmospheric
phenomena with spatial scales from one up to tens of kilometers that introduce the fluctuations
in the wind. There are four dominant phenomena [13]:

• Open cellular convection is an offshore phenomenon that occurs when cold air is convected
over warm sea water. Clouds are formed that have a honeycomb-like structure and rising
air in the cloudy cell walls leads to a horizontal wind speed variability. When such cells
move over an offshore wind farm, the farm experiences the spatial wind speed variability
as a temporal variability.
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• For coastal wind farms the land and sea breeze can lead to power fluctuations in the
minute scale. The breeze is caused by the surface temperature difference of mainland and
water causing sea breezes during the day and land breezes at night. Although the sea
breeze circulation is predominantly a diurnal effect, it can also influence smaller scales
when, for example, convergence of the sea breeze front with the background flow results
in squall lines or showers near the coast.

• Gravity waves in the atmosphere are a phenomenon that occurs over land and over sea.
Gravity waves are waves generated in a fluid medium or at the interface between two
media when the force of gravity or buoyancy tries to restore equilibrium. They cause
wave-like cloud structures in the atmosphere and similar wave structures in the wind
speed pattern with amplitudes of several meters per second.

• Low level jets are regions of increased wind speed in the lower hundred meters of the
atmospheric boundary layer. They occur onshore and offshore and are of special interest
to wind energy as the extreme wind shear over the rotor causes extreme loading on the
turbine and unexpectedly high power generation. As the mechanism for low-level jet
formation is not fully understood, they are difficult to forecast.

All these phenomena cause fluctuations in the wind speed in the minute scale that are aug-
mented to the third power when transferred to the power generated by a wind turbine or wind
farm. In Figure 2.1 an example time series of one day of wind speed and generated power of
a single wind turbine is given. Small fluctuations in wind speed result in large fluctuations in
generated power. The figure also shows phenomena referred to as ramp events. These rapid
and strong changes in generated power are caused by extreme changes in wind speed or direc-
tion and are associated with the passage of weather fronts. Ramp events can also have other
causes than extreme changes in wind speed. Ramp events are especially critical around cut-out
wind speed. If the cut-out wind speed of a wind farm is reached the whole wind farm shuts
down. In this case a small fluctuation in wind speed can lead to a strong decrease in the power
production.

Ramp events are critical for the grid balancing as they are difficult to forecast and thus often
occur unexpectedly. In [14] an overview of recent ramp forecasting techniques is presented. The
article also points out that despite being critical, there is no common definition of ramp events.
Instead, the definition usually depends on location as well as the size of the considered wind
turbine or wind farm. However, the basic parameters that need to be forecast are clear: ∆t is
the duration of the ramp and ∆P is the minimum change of power within ∆t. Positive ∆P

implies an upward ramp, negative ∆P a downward ramp. Downward ramps tend to be more
critical for grid stability than upward ramps. A downward ramp causes an energy shortage
that needs to be compensated using available power generations, while an upward ramp can
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Figure 2.1: Example time series of wind speed and generated power of a single wind turbine with
wind ramps marked for a time window of 60min and a change of power of 40%. Each data point in
the time series corresponds to a 10-minute average. Reproduced without modifications from Würth et

al. [16] with permission.

be managed by curtailing the wind farm [15]. Wind ramp forecasting errors are specified as
level errors and phase errors. Level error describe the magnitude of the power change that was
forecast inaccurately, while phase errors describe the deviation in time when the ramp occurred.

2.2 Application areas for minute-scale forecasting

Minute-scale forecasts of wind speed and power are needed in three application areas in the
wind energy sector [12]:

• Wind farm control: the controller of the wind farm uses preview information of the wind
speed and direction to optimize the power output and reduce loads.

• Power grid balancing: the Transmission System Operators (TSO) need information about
changes of the produced power in their grid to balance power production and load at all
times and to manage power reserves.

• Energy and ancillary services markets: wind power energy trade takes place in intra-day
markets and forecasts are needed to reduce imbalance costs and increase revenue.

Each application area is associated with a different minute-scale forecast horizon in the minute
scale (Figure 2.2).

Wind turbine and wind farm control uses forecast information of the wind parameters of
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Figure 2.2: Overview of forecast horizons of different wind energy applications in the second and
minute scale. Reproduced with modifications from Würth et al. [12] with permission.

up to 10 minutes before they arrive at the turbine or wind farm. These forecasts can be used
to control wind turbines by modifying turbine alignment or blade pitch. For instance for yaw
control, an estimation of the wind direction is used to align the rotor with the wind direction.
The preview wind information can also be used for wake steering which uses the misalignment
effect to steer the wake of a wind turbine away from a downstream turbine.

TSOs have the task to balance the power supply and power demand at all times to keep
the frequency of the grid stable at 50 Hz. If the power production differs from the demand,
balancing actions are needed. A shortage of power supply (or a rise in consumption) would
otherwise lead to a frequency drop, a rise in power supply (or a drop in consumption) would lead
to a frequency increase. To balance the supply and demand of power all times TSOs therefore
need a control reserve, which is also called balancing power. There are three different control
mechanisms established to activate the balancing power and they are categorized according
to the activation time: primary control (within 30 sec), secondary control (within 5 min) and
tertiary control (directly activated or supplied in schedules of up to 4 times 15 min). Forecasts
are therefore useful in time ranges of up to 60 minutes to reduce the need for balancing actions
and to lower the amount of balancing power that a TSO needs to keep on hold.

Short-term wind energy trading takes place in intra-day markets. The regulations for the
market depend on the country and also the lead times are country specific. In Germany and
Australia for example the lead time for the trade is 5 min and the trading block of power is
15 min. This means that if a TSO or wind farm operator wants to sell their produced power on
such a market, they need to know the amount of power they can sell as accurately as possible
in advance. Forecasts are therefore necessary in the range of 5 min to 60 min. Minute-scale
forecasts help to reduce the risk for penalties, that arise when the actual produced power differs
from the power that was traded. This can happen if the produced power differs significantly
from the forecast.

Apart from the wind energy sector, wind speed forecasts are also relevant for other sectors, e.g.
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the construction sector. Wind speed forecasts could help increase the safety during commission
and operations on construction sites. If it is known in advance that a gust is coming, accidents
can be avoided if heavy objects are lifted by a crane.

2.3 Lidar in wind energy applications

Doppler wind lidars use the Doppler frequency shift of light to measure the speed of airborne
particles. The measuring principle is based on the backscattering of the emitted laser light to
a receiver [17]. The backscattering takes place at particles in the air, so-called aerosols, which
scatter back the light frequency shifted by their own speed. This frequency shift is based on
the Doppler effect. Due to the fact that the Doppler shift only affects particles moving in the
direction of the laser beam, only this directional component of the wind speed can be measured.
The radial wind speed is known as the line-of-sight wind speed and is denoted vlos.

The aerosols that the lidar measuring principle is based on are [18]:

• sea salt aerosols, especially near the sea.

• dust aerosols, mineral origin

• secondary aerosols, nitrates and sulfates

• biological aerosols, e.g. fungal spores and pollen

• smoke aerosols, from forest fires or anthropogenic caused

• volcanic aerosols, especially in higher air layers

These aerosols with a size in the order of the laser wavelength of 1.5 µm are particles that have
very low settling velocities and thus are suspended by the wind. The quantity of the individual
aerosols in the air however is strongly dependent on the location. The optical properties of
the particles are subject to strong fluctuations. By accumulation of moisture from the air, for
example, the diameter of the particles can fluctuate strongly and thus change the backscattering
properties [18]. As a result, the lidar measurement properties are subjected to fluctuations and
depend on the existence and the properties of the aerosols.

Lidars are used for different applications in wind energy such as site assessment, turbine or
wind farm control and power curve measurements [4]. For each application, a different lidar type
is used, because the requirements for the wind measurements vary. For site assessment, ground-
based vertical measuring lidars are ideal, which measure the wind speed and wind direction
over several heights [19]. For turbine control, nacelle-based lidar systems are used, which use
the preview information from the incoming wind field several hundred meters in front of the
rotor, to determine control actions at the wind turbine to optimize the power performance and
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reduce loads [20]. For wind farm control, forecasting of the wind is necessary, but not on a
minute-scale, but on a second-scale [12]. Ground-based, and nacelle-based lidars are also used
for power curve assessment to correlate the inflow wind speed over the whole rotor area to
the generated power of the wind turbine [21]. For this application long-range lidars are used
and mounted e.g. on the transition piece of offshore wind turbines, to measured the inflow
wind speed outside of the induction zone of the turbine over several heights [22]. Minute-scale
forecasting is a new application for wind lidars, and so far it is not established as common
practice. All investigations conducted so far used long-range scanning lidars to measure the
upstream wind velocity and forecast future power generation [12].

2.4 How is wind power forecast today?

The classic method to generate a wind power forecast comprises one or several of the following
ingredients (Figure 2.3):

• A numerical weather prediction (NWP) model which computes the state and evolution
of the atmosphere e.g. weather forecast,

• Observational data, e.g. Supervisory Control and Data Acquisition (SCADA) data from
the wind turbine or wind farm that is either used to compute a forecast using statistical
time series methods or serves as input for the forecast model,

• Terrain information and information about the wind farm layout,

These ingredients are combined using a forecast model that uses the information from NWP,
observational data, and terrain information to generate a power forecast for a wind turbine or
wind farm [23, 2].

In the following the ingredients are explained in more detail and their limitations for minute-
scale forecasts are discussed. The goal is to derive the need for the lidar-based forecasting
method. But first, the forecast terminology is clarified in the next section.

2.4.1 A note on terminology

When talking about forecasting of wind power, the concept of the forecast horizon is often
mentioned. The forecast horizon describes the time period or point in time in the future,
for which the forecast is generated. When it comes to forecast horizons from seconds to a few
hours, the terminology used for the description varies between nowcasting, very short-term, and
short-term forecasting with no clear definition of the length of the time period. Therefore, for
the sake of clarity, it was decided in the collaborative IEA Wind Task 32 and 36 Workshop on
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Figure 2.3: Elements in the forecasting approaches. Reproduced without modifications from Giebel
et al. [2] with permission.

“Very short-term forecasting of wind power”, to use the exact forecast horizon as a description.
Therefore, this thesis only uses the term minute-scale forecast which describes a forecast horizon
from one minute up to one hour. Longer forecast horizons would then be called hour-ahead or
day-ahead forecasts.

2.4.2 Numerical weather prediction

Numerical weather prediction models divide the atmosphere up into cells. Physical models are
used to describe the state of the atmosphere in each of these cells. The parameters describing
the atmosphere can then change over space and time. Depending on the size of the cells
and the domain that is covered, the models are roughly divided into different classes (Figure
2.4). More accurate physics or bigger domains require more computational effort. As a result,
forecasting the weather over large areas and longer periods of time is usually only possible for
large organisations such as national weather services [23].

It is possible to provide high resolution time series forecasts by decreasing the size of the
domain, or reduce the details of physics (but this might lead to increased uncertainty). Minute-
scale forecasting requires a combination of high spatial resolution and domain sizes in the order
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Figure 2.4: Different classes of weather models. The borders of the boxes are fuzzy, because the size
specifications are to be understood as approximate values.

of 10 km to 50 km. This makes numerical weather forecasting challenging, because it requires a
combination of high resolution and comprehensive physics that is computationally expensive.

NWP models also require boundary and initial condition data to deliver accurate minute-
scale forecasts. Unfortunately these data are often not available for wind farms which makes it
difficult to provide accurate forecasts. NWP forecasts are usally time consuming, meaning that
it may be unable to deliver a minute-scale forecast in time for the operators to take actions.
For these reasons, minute-scale forecasting is more typically based on simple algorithms based
on the available on-site data.
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2.4.3 Statistical time series models

Statistical approaches to forecasting mainly rely on deducing patterns from past observational
data and extrapolating these relationships to predict future values over a desired time step [12].
Forecasts in wind energy are carried out for one dimensional time series signals such as a wind
speed measurement, or SCADA data such as wind turbine or wind farm active power signal.
The chosen forecast horizon should relate to the time resolution of available input data, and at
a minimum be one sample (time step) ahead to avoid errors introduced by interpolation.

Minute-scale statistical forecasting methods are largely identical to techniques employed for
longer horizons. The main differences are the temporal resolution of the data and the variability
of the physical process being predicted [12].

Benchmark statistical time series models are persistence and climatology. Persistence is a
very simple forecast method and assumes that the forecasted conditions are the same as the
present conditions. This means the most recent power measurement of a wind turbine is used
for the power forecast. Climatology uses statistics from historic measurements, e.g. an average
of the last n hours of measured power generation, to create a forecast.

2.4.4 Where is the gap that needs to be closed?

NWP models are optimized to produce forecasts in the hour- and day-scale. They can produce
weather forecasts for up to 15 days ahead. However, they are not very accurate in the minute-
scale, where statistical time series models perform better (Figure (2.5). In fact, persistence
frequently outperforms hour-ahead or day-ahead forecasts in the time range up to 60 min.

This means new methods for minute-ahead forecasts need to be more accurate than persis-
tence and persistence is therefore the benchmark.

Persistence however has one disadvantage: it uses historic measurements to forecast future
events. This approach produces large errors if the future event deviates significantly, such as
a wind ramp. Considering that these changes in power are crucial information for TSOs who
need to balance the grid, or wind farm operators selling their produced power, a better forecast
method than persistence is needed.

It is therefore of great interest to investigate if lidar-based forecasting can close the gap of
forecasting power changes in the minute-scale and outperform the persistence model.
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Figure 2.5: Qualitative visualization of the forecast error development over the first hours of a forecast
for different temporal forecast techniques. Reproduced without modifications from Würth et al. [12]

with permission.
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2.5 Summary

Minute-scale forecasts of wind speed or power are important for TSOs to keep the grid stable
and to reduce balancing power, or for wind farm operators to optimize wind farm control or
energy trading if they sell power on rolling markets.

State-of-the-art NWP models are optimized to forecast wind conditions in the hour and day-
scale. Time-series based forecasts produce more accurate minute-scale forecasts than NWP
models, but rely on historical measurement data from the wind farms to forecast the power.
Therefore they cannot forecast large changes in future power output, e.g. from wind ramps.

Long-range lidars measure the wind speed remotely and can be used to measure the upstream
wind speed of a wind turbine or wind farm. Lidar-based measurements therefore contain pre-
view information of future wind speed changes. Therefore it is of great interest to investigate
if lidar-based minute-scale forecasts are able to outperform conventional methods such as per-
sistence.
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The forecasting chain:

from radial velocity

to minute-scale wind power forecasts

In order to gain minute-scale forecasts of wind power of a wind turbine from long-range lidar
data, a forecasting chain had to be established in this thesis. The thesis will follow the chain
link by link in the next chapters and explain the steps in detail.

This chapter presents an overview of the steps and serves as orientation. In principle, the
chain shows that data exists in one form and needs to be processed in order to reach a new
form of data (Figure 3.1). On overview of the data forms and the steps of processing is given
in the following.

• LOS. Lidars measure the wind speed in Line-Of-Sight (LOS) direction along the laser
beam and therefore measure the radial component of wind field in this direction.

• Wind field reconstruction. As the lidar measures the radial component of the wind
field at each measurement point, the three wind vector components u, v, w need to be
deduced from this measurement at each point. This process is called wind field recon-
struction. In order to reconstruct the wind field components from the LOS measurements,
assumptions have to be made and algorithms have to be applied to the data, see Chapter
4.
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• Wind field. Long-range lidars are able to measure the wind field simultaneously in
several measurement points up to a range of several kilometers. After wind field recon-
struction, the wind field components u, v, w and the wind direction in those points are
known. This data of the wind field is the basis for the minute-scale forecasting, because
the measured wind field contains the preview information of the wind conditions the tur-
bine will experience in the following minutes, if the lidar measures the inflow of the wind
turbine.

• Propagation model. The wind vectors measured in the distance are transported
through space and time. This is known as wind field propagation. A model needs to
be applied to the measured wind field data that determines how the propagation is hap-
pening. With the help of the propagation model, the goal for minute-scale forecasting
is to determine which wind vector measured in the inflow of the turbine will reach the
turbine and at which future point in time this will happen, see Chapter 5.

• Predicted wind speed at turbine. With the help of the propagation model, the
measured wind field is transported though time and space and the predicted wind speed
at turbine level is determined. This means, the wind conditions at the turbine location
for the minutes after the forecast is issued are known. This wind speed forecast contains
information from the lidar measurements several minutes prior to when the forecast is
issued.

• Power curve. In order to gain the power forecast of the turbine, the predicted wind
speed at the turbine needs to be converted to power. This is achieved through means of
the turbine’s power curve. The power curve is a unique property of each turbine type
and sets the inflow wind speed in relation to the power the turbine produces for this wind
speed. The power curve of a turbine is determined in a measurement campaign using free
stream wind speed measurements and measured power values.

• Predicted power. The predicted wind speed of the turbine is converted into the pre-
dicted power using the turbine’s power curve. Similar to the predicted wind speed, this
means the power output of the turbine for the minutes after the forecast is issued is
known. The forecast can be generated for different forecast horizons, depending on the
desired horizons and depending on for how many minutes in the future the forecasted
power is actually available, see Chapter 6.

This chain represents a very high level overview. To get from link to link, many more steps
need to be considered, which is the task of the next chapters. It should also be noted that
in this thesis the forecast of only one wind turbine is investigated. However, if the forecast is
extended to wind farm level in the future, the chain can be extended with considerations of
taking into account wake effects to aggregate the predicted power of several wind turbines.
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Figure 3.1: The lidar forecasting chain. Data exists in one form (circle) and needs to be processed
(arrow) in order to each a new form of data. Reproduced without modifications from Würth et al.

[16].
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In the first step in the lidar forecasting chain, the radial wind speed measurements from the
lidar are converted in several processing steps into horizontal wind speeds, which are the basis
for the forecast. This chapter explains the processing steps but starts with an overview of the
measurement setup in Section 4.1. Section 4.2 then explains the methods applied for filtering
and wind field reconstruction in order to obtain a useful wind speed and wind direction signal
from the lidar.
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4.1 Measurement setup at the onshore and offshore site

The data used in this thesis were generated in the projects VORKAST and ParkCast. VORKAST
was a German national funded research project to optimise the design and operational man-
agement of hybrid power plants and energy storage technologies by means of wind and Photo-
voltaics (PV) power minute-scale forecasting [24]. The focus of the project was on onshore sites
for wind and PV power forecasting. It was running from September 1st, 2014 to October 31st,
2017. ParkCast is the follow-up project to VORKAST and started in November 2018 with the
goal to develop, optimize and evaluate new methods for minute-scale forecasts of offshore wind
farms. ParkCast will end in October 2021. The author of this thesis was Project Organizer
(PO) for the University of Stuttgart’s contributions for both projects.

To describe the measurement setup that was used in the projects and that resulted in data
that are used in this thesis, a 10-step methodology has been applied that was introduced by
Vasiljevic et al. in 2017 [25]. This methodology provides guidance on how to carry out a lidar
measurement campaign in order to ensure its success. The next sections will following these
steps and explaining how they apply to the present campaigns, in order to give the reader a
comprehensive understanding of the measurement setup.

4.1.1 Definition of scientific objectives

Three scientific goals drove the planning of the VORKAST measurement campaign. First,
the idea for the project was born in a time where commercial lidar measurement systems
were first brought on the market that had an extended range and were able to measure the
wind speed in distances of several kilometers. Therefore the first goal of the project (and
thus the measurement campaign) was to test one of the new systems for functionality, and its
applicability for minute-scale forecasting.

Second, during the campaign the lidar should be able to measure as far as possible. The
goal was to find out how to set up the lidar and carry out the measurements in order to obtain
the best wind speed measurement for forecasting. This included the development of laser scan
strategies to extract the wind field components from the radial wind speed, testing the data
analysis process, and the maximum measurement range that could be reached.

Third, the goal was to carry out minute-scale forecasts of wind speed and also wind power of
an onshore wind turbine using the data from the long-range lidar. To that end, new forecasting
methods using the lidar data should be developed, which had to take into account the dynamic
variability of the wind. Thus the forecasts should be able to capture the variability of the power
fluctuation.
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Figure 4.1: Measurement sites marked on map of Germany. Reproduced with modifications from [27]
with permission.

In ParkCast, the results from VORKAST should be used and transferred to an offshore
wind farm. The goal was to investigated how the lidar-based minute-scale forecast methods
developed for one turbine onshore could be transferred to a wind farm with several turbines
offshore and how the forecasts perform under offshore conditions.

It should be pointed out, that this thesis compares the methods developed for minutes-scale
forecasts for one turbine onshore and offshore and does not take into account the forecasts of
the whole offshore wind farm.

4.1.2 Site selection

The site that was selected for the onshore measurement campaign was near Stötten in the south
of Germany (Figure 4.1 bottom marker). The site was chosen due to its proximity to Stuttgart
and prior use in related studies [26]. The proximity to the institute was important, because for
this campaign a new lidar system had to be tested. When testing a new measurement system,
it has proven beneficial to have easy access to be able to adjust its settings or repair it in case
of failure. Due to related studies, the site also offered easy access to local wind turbine data
and access to meteorological data from the institute’s meteorological (met) mast.

As offshore site the alpha ventus wind farm in the Northern Bight 45 km north of the German
island of Borkum was chosen (Figure 4.1 top marker). For ParkCast is was important to
find a site that offered the possibility to install the lidar and get access to turbine data and
also meteorological data. In 2003 the research platform FINO 1 (Forschungsplattformen in
Nord- und Ostsee) was erected at the site, measuring the meteorological conditions with a met
mast. In 2007 the German Federal Ministry for the Environment, Nature Conservation and
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Figure 4.2: Wind characteristic in Stötten measured at the met mast. (a) Reproduced with modifi-
cations from Hofsäß et al. [26] with permission.

.

Nuclear Safety (BMU) launched the RAVE (Research At Alpha Ventus) research initiative.
The initiative’s goal was to support and facilitate research projects at the offshore wind farm.
In 2009 alpha ventus started operating with 12 turbines and became Germany’s first offshore
wind farm [28]. University of Stuttgart is member of the RAVE initiative and has conducted
several research projects at the site. Access to the wind farm data and the FINO 1 data
is obtained through data portals hosted by the Federal Maritime and Hydrographic Agency
of Germany (BSH). Alpha ventus was chosen as a site for the ParkCast project, because as a
RAVE member, easy access to the turbines to install and maintain a lidar and access to turbine
and meteorological data was guaranteed.

4.1.3 Site characterization

Stötten is in the Swabian Alps; the location is a very hilly area consisting of high plateaus
surrounded by a pronounced 100 – 150 m tall wooded escarpment known in the region as the
Albtrauf. A detailed study of the local meteorology [26] shows that the main wind direction
is west to north-west and the most frequent wind speed is around 5 m s−1 (Figure 4.2). The
measurements described in [26] are centred on a 100 m high met mast in relatively flat land
less than 1 km easterly from a section of Albtrauf (Figure 4.3). On the plateau several wind
turbines and a radio tower are located.

alpha ventus is an offshore wind farm consisting of 12 turbines with two different turbine
types set out in a 4-by-3 grid (Figure 4.4 (c)). The two northern rows are 5 MW turbines of type
REpower 5M, with a rated power of 5 MW, a hub height of 92 m, and a rotor diameter of 126 m.
The two southern rows are 5 MW turbines of the type Adwen AD 5-116, with a rated power of
5 MW, a hub height of 90 m, and a rotor diameter of 116 m. The turbines are enumerated row
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Figure 4.3: Map of the measurement site in Stötten. Map data: ©OpenStreetMap-Mitwirkende,
SRTM | map display ©OpenTopoMap (CC-BY-SA)

wise to identify them, starting with the AV01 which is the turbine at the top left corner, and
AV12 which is the turbine at the bottom right corner. FINO 1 is located directly west of the
AV04 turbine in a distance of 405 m.

alpha ventus was the first wind farm installed in the area, but not the last. Around the
site, several other wind farms were commissioned after alpha ventus (Figure 4.4 right) and
they influence the inflow conditions of alpha ventus. With 60 MW total capacity alpha ventus
is small in comparison to the wind farms around it. Direct neighbors of alpha ventus are
Borkum Riffgrund I with 312 MW capacity and Borkum Riffgrund II with 448 MW capacity
in the south-west, and Merkur with 396 MW capacity in the north-west. The closest distance
between alpha ventus and the surrounding wind farms is around 2 km. The main wind direction
at alpha ventus is south-west (Figure 4.4a), the mean wind speed at 91 m is 8.52 m s−1 (Figure
4.4b). The wakes of the surrounding wind farms in the main wind direction affect the power
production of alpha ventus and lead to an increased turbulence intensity at the site [29].

https://www.openstreetmap.org/copyright
https://opentopomap.org/#map=6/52.052/9.789
https://creativecommons.org/licenses/by-sa/3.0/
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Figure 4.4: Wind characteristic in alpha ventus measured at FINO1 at 91 m (top) and layout of alpha
ventus situated in the North Sea (bottom).
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Figure 4.5: StreamLine XR lidar on the top level platform of the radio tower.

4.1.4 Experiment layout design

The lidar system that was used for the measurement campaign in VORKAST is a StreamLine
XR pulsed doppler scanning-wind-lidar from the company Halo Photonics. The lidar was
chosen because of its measurement range of 10 km and because of its light weight and compact
form. The lidar was mounted on the top level platform of the radio tower (Figure 4.5) at a
height of 736 m above sea level. The unobstructed view towards the main wind wind direction
west/north–west was the reason for installing the lidar on the 91 m tower (Figure 4.3).

Together with the lidar, a webcam was installed on the platform in order to take pictures of
the view in westerly direction. The 102 m met mast was located in 1350 m distance westerly
from the tower at 652 m above sea level and is fully equipped with meteorological sensors.
Adjacent to the tower a reference turbine is located for which the minute-scale power forecasts
are carried out. The hub height of the turbine is at the same level with the lidar mounting. Due
to a confidentiality agreement with the turbine owner, data of this turbine will be displayed
normalized by relevant parameters such as rated power.

The met mast was operated by University of Stuttgart as part of the project LidarComplex
to record the environmental conditions at the site. It is equipped with sensors at 5 m, 50 m,
75 m, and 98 m that record high resolution meteorological data. Wind speed and wind direction
data from the mast are used in this thesis to verify the reconstructed wind speed from the lidar
data (cf. Section 4.2.2). Other meteorological data from the mast such as temperature, relative
humidity, and precipitation are used to assess environmental conditions at the site. This will
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Figure 4.6: StreamLine XR lidar on the nacelle of the AV04 turbine in alpha ventus.

be relevant for the assessment of the analysis of the lidar measurement range and the possible
forecast horizon (cf. Section 7.1). Details of the met mast’s sensor equipment are given in the
appendix. The met mast was dismantled in August 2016, which means only a few months of
concurrent lidar and met mast data were available.

In alpha ventus, the same lidar system (StreamLine XR) was installed on the nacelle of the
AV04 turbine (marked in Figure 4.4c). It was installed behind the rotor in a corner of the
service platform of the turbine (Figure 4.6). The lidar was raised up on a 2.5 m high frame, to
measure above the railing of the service platform and to have more clearance before the lidar
beam hits the nacelle when measuring in a vertical pattern, e.g. with an Range Height Indicator
(RHI) scan. It was decided to mount the lidar on top of a turbine - and not for example on
the transition piece - as the lidar then rotates with the yaw angle of the turbine and faces
the inflow direction. Another benefit of installing the lidar on the nacelle is that a horizontal
measurement is automatically at the hub height and therefore can be directly used to assess
the power production of the turbine. The turbine AV04 was chosen, as it is a turbine at the
outside of the wind farm layout facing the main wind direction, and located directly opposite of
the met tower FINO1. This configuration ensured that the lidar was able to measure directly
the inflow of the wind farm and at the same time this inflow could be further characterised
using the meteorological data from the met mast.

FINO1 is a platform equipped with a met mast that measures wind speed, wind direction,
air temperature, air pressure, precipitation and relative humidity at several heights up to a
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100 m [32]. Wind speed and wind direction are measured with cup anemometers and sonic
anemometers. The wind speed data from the cup measurements are available with a mast
correction, which account for lateral speed-up effects, upwind flow retardation and downwind
wake effects due to the mast construction itself [33]. A table with all sensors and their respective
measurement heights can be found in Table A.2 in the Appendix.

The minute-scale forecasts at alpha ventus in this thesis are performed for the turbine AV04.
Sensitive data of the turbine, such as the power curve are displayed normalized for confiden-
tiality reasons.

4.1.5 Infrastructure planning

Two factors are important to consider when measuring at remote sites: the power supply of the
measurement device and the remote access to the device to change the settings and transfer
data.

During the campaign at Stötten the lidar was plugged into the power supply of the radio
tower and remote data access was ensured via a modem. Measurement data from the lidar
and met mast was automatically downloaded every night. New trajectories to test different
configurations and methods for the forecasting were set via the remote access. The met mast
was plugged into a nearby wind turbine and had access to the turbine’s internet connection.
The data from the reference turbine was supplied by the owner.

At alpha ventus, the lidar was connected to the turbine’s power supply and the remote access
to the device was established by connecting the lidar directly to the network of the wind farm.
Data was downloaded directly to the institute server every night. Access to the turbine data
was established via the data portal hosted by BSH. A data user agremeement regulated the
conditions between BSH and University of Stuttgart. It is important to note that the turbine
data of the wind farms is not automatically uploaded to the data portal, but has to be handed
over by the wind farm operator. This causes delays in access to the data of several months.
The FINO1 data is available through another data portal hosted by the BSH, where just a
registration but no user agreement is necessary.
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4.1.6 Deployment and calibration procedures

After initial tests, the lidar was mounted for the first campaign on the top level platform of
the radio tower in Stötten in October 2015 and measured there until August 2017. To find out
the exact device alignment, a step-by-step procedure was established in the beginning of the
campaign to ensure that the exact position of the laser beam is well known. The procedure
is described in [16] in detail and was not part of this thesis. The wind speed calibration of
this device was part of this thesis in so far, as they are needed to reconstruct the horizontal
wind speed using measurements from the radio tower. To test these methods, the results were
compared to the horizontal wind speeds measured at the met mast. The details are explained
in Section 4.2.2.

For the second offshore campaign in alpha ventus, the lidar used in the VORKAST project
was installed on the nacelle of the AV4 turbine in March 2019. Unfortunately, the device
had a malfunction and did not measure more than around 1 km. Therefore it had to be
decommissioned and sent to repair to the manufacturer. In the meantime an identical unit
of a StreamLine XR lidar could be installed in the same spot and started measuring in October
2019. At the time of writing of this thesis, the measurement is still ongoing and planned until
summer 2021. These data are available for the ParkCast project and this thesis.

4.1.7 Scanning modes design

The StreamLine XR lidar is able to measure radial wind speeds along the line-of-sight direction
of the emitted laser beam. The beam can be steered to any direction in the hemishere above
the device and in an angle of 15° below. The steering angles are defined as elevation for vertical
movements and azimuth for horizontal movements (cf. Figure 4.7). The measurement distance
of the lidar is divided into range gates and as it is a pulsed device, the measurements are carried
out simultaneously. The length of the range gates can vary from 18 to 60 m. A radial velocity is
measured for each of the range gates. A sequence of emitted beams along a predefined azimuth
and elevation angle is called a scan. For more technical device parameter, see Table A.1 in the
appendix.

The scanning modes carried out during the first onshore campaign had the goal to measure
the horizontal wind speed component which defines a wind turbine’s power conversion and
not the vertical component. Therefore only horizontal scans, with varying azimuth and zero
degree elevation angle were carried out. The so-called Plan Position Indicatior (PPI) scans
were directed westerly into the main wind direction. An overview of the different scans is given
in Table 4.1. Each scan in the table is tagged with a scan ID and the time period, the number
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Figure 4.7: Schematic drawing of the lidar measurement setup.

of rays per horizontal scan, the number of range gates for each ray and its number of pulses,
the azimuth angle of the scan and the time it takes to perform the scan is given. In the first
few months of the campaign, only the number of pulses was varied, to test the influence on the
measurement range (Section 7.1). It should be noted that along with the number of pulses,
also the scan time varied, as these two parameters are directly linked. Later, also the range of
azimuth angle was broadened. All scans were carried out in a step-stare mode, which means
that the scan motors stop, and only move on after the measurement is carried out.

For the offshore campaign a similar approach for the scan modes was chosen. The goal was
to measure the horizontal wind component, therefore horizontal PPI scans were carried out.
The range of the azimuth angle was set broad, in order to capture the inflow of the whole wind
farm. The number of pulses was only changed once. An overview of the different scans in given
in Table 4.2.

4.1.8 Execution and data collection

During the onshore campaign, the lidar measured reliably on the radio tower platform from
October 2015 to August 2017. Data from lidar and webcam was downloaded every few days
via the modem connection or on regular maintenance checks on site. New scan modes were
tested every few weeks. Data from the met mast was collected automatically every night.

During the offshore campaign, the lidar measured from March 2019 to August 2019 with a
malfunction and was decommissioned. The replacement lidar was installed in October 2019
and measured reliably from then on. The data was collected automatically every night. Only
in June 2020, the lidar was shut down due to a wind farm shut down and could only be started
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ID Period No. No. range No. Azimuth
angle

Scan
rays gates pulses time

1 28.04.2016 00:00 41 167 10,000 250°– 290° 1′12′′26.05.2016 23:40

2 07.06.2016 00:00 41 167 30,000 250° – 290° 2′30′′02.09.2016 12:20

3 02.09.2016 14:00 41 167 40,000 250° – 290° 3′10′′26.09.2016 08:20

4 26.09.2016 08:30 41 167 60,000 250° – 290° 4′27′′05.10.2016 08:20

5 05.10.2016 08:10 41 111 60,000 250° – 290° 4′27′′03.11.2016 10:00

6 19.01.2017 10:27 16 111 60,000 252° – 282° 1′42′′26.04.2017 14:10

7 26.04.2017 14:20 11 111 45,000 282°– 302° 0′52′′01.08.2017 00:00

Table 4.1: Overview of lidar scans at the onshore campaign in Stötten. Azimuth angle given in
geographical coordinate system. Maximum measurement range always set to 10 km.

ID Period No. No. range No. Azimuth
angle

Scan
rays gates pulses time

1 14.01.2020 00:00 91 7980 20,000 240° – 60° 4′21′′27.02.2020 09:30

2 11.01.2021 15:42 71 400 40,000 260° – 40° 2′47′′11.01.2021 15:30

Table 4.2: Overview of lidar scans at the offshore campaign in alpha ventus. Azimuth angle given
in geographical coordinate system. In the first scan, gate overlapping was turned on. Maximum

measurement range always set to 12 km.
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again a month later. This was the only gap in the measurements.

4.1.9 Decommissioning and post-calibration procedures

For the onshore campaign, the lidar was removed from the radio tower in August 2017 as the
VORKAST project is finalized. Post-calibration procedures were not performed, as no met
mast was available at that time. The met mast was decommissioned a year before in August
2016, as the project Lidar Complex finished.

The offshore campaign is still ongoing at the time of this writing. It is planned to send the
lidar for maintenance to the manufacturer, after decommissioning at alpha ventus.

4.1.10 Data availability

An overview of available data used from the onshore and offshore campaigns is given in Table
4.3 and Table 4.4 respectively. Data is available from different sources: lidar, webcam, met
mast, and turbine.

The lidar data is available for both campaigns with a time resolution that depends on the
scan configuration. For the onshore campaign, a webcam was available which recorded a picture
every minute.

For the onshore campaign, met mast data is available only until August 2016 but with a high
time resolution which depends on the sensor. Offshore, FINO1 met mast data is only available
as 10-minute mean values.

The turbine data at Stötten are available as 10-minute averages for a period from July 2016
to December 2017. Available data are the turbine power, nacelle anemometer wind speed and
the corresponding time stamp. For the AV04 offshore turbine, besides the above mentioned
data the yaw angle of the nacelle is also available. For the alpha ventus wind turbine, also only
10-minute averaged data is available.
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Device Recorded signal Time resolution Available period

Lidar Radial wind speed Scan dependent Oct. 2015 – Aug. 2017

Webcam Pictures in westerly direction 1-min Apr. 2016 – Aug. 2017

Met mast

Wind speed 50 Hz

Oct. 2015 – Aug. 2016
Wind direction 50 Hz
Temperature 1 Hz
Relative humidity 1 Hz
Precipitation 1 Hz

Turbine Power 10-min mean Oct. 2015 – Aug. 2016 /Nacelle wind speed 10-min mean

Table 4.3: Overview of available data for the onshore campaign. More details on the met mast
instrumentation is given in Appendix A.2.

Device Recorded signal Time resolution Available period

Lidar Radial wind speed Scan dependent Jan. 2020 – Jan. 2021

Met mast

Wind speed 10-min mean

Jan. 2020 – Sep. 2020
Wind direction 10-min mean
Temperature 10-min mean
Relative humidity 10-min mean
Precipitation 10-min mean

Turbine
Power 10-min mean

Jan. 2020 – Apr. 2021Nacelle wind speed 10-min mean
Nacelle azimuth angle 10-min mean

Table 4.4: Overview of available data for offshore measurement campaign. More details on the met
mast instrumentation is given in Appendix A.2.
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4.2 Getting a useful wind speed out of a lidar

Conventional ground-based, profiling lidar devices are prepared by the manufacturer and are
ready for costumers to use. For applications such as wind resource assessment the relevant
data are 10 minute averages of horizontal wind speed wind direction and turbulence intensity.
In these cases, the lidar is treated as a black box and algorithms that are applied for the data
processing are not modified.

However, the StreamLine XR lidar that is used in this thesis requires customized data pro-
cessing before the data can be used for power forecasting.

4.2.1 Data filtering

The lidar measurement principle is based on the reflection of laser pulses on particles in the
air which backscatter the light with a frequency shift due to the airspeed of the particles (cf.
Section 2.3). The measurement depends on the existence of these aerosols. If the concentration
in the air is too high or too low, or the laser energy of the scan is set too low, the device may
measure an incorrect signal. Especially in far range gates, the backscattered signal intensity is
often low. As a consequence lidar data needs to be filtered and the measurement range may
deviate from the maximum range given in the product data sheet.

When designing a filter for lidar data, filter requirements should be defined first, as the
requirements vary from application to application. In this thesis the following requirements
apply:

1. Conservative filtering with least possible data loss

2. Adaptability to varying environmental conditions

3. Highly efficient processing for real time capability.

The requirements are specified for the application of minute-scale forecasting. Therefore
as many corrupted data as possible are to be filtered out (conservative filtering), but at the
same time the least possible amount of data should be lost in order to reach the maximum
measurement distance. The filter should also be robust and work in varying environmental
conditions, and in order to be able to use it for real time application of the forecast, the
processing speed needs to be accordingly high.
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Carrier-to-Noise Ratio (CNR) filter

The standard approach for detecting outliers and noise in the lidar raw data is to use the CNR,
which is an indicator for the signal quality. The CNR is an output signal of the lidar device. It
will be used in this thesis with its normalized unit in decibel [dB]. The CNR is saved for to every
radial velocity measurement for every range gate. Very high CNR is the result of the beam
hitting a hard target. A low CNR value can be the result of either low aerosol concentration
at a certain gate and therefore not enough backscattered signal or the result of too low signal
intensity reaching the gate.

A typical timeline of unfiltered measured radial velocity V EL over the range of a typical
measurement period is plotted in Figure 4.8a . The measured wind speed data in the first
kilometers is coherent. After a transition range where outliers enter the homogeneous data, it
becomes very noisy in the far measurement ranges. In the 30-hour time series that is shown,
the sign of the wind speed changes from negative (wind speed towards LOS) to positive (wind
speed away from LOS). From this, a change in wind direction from westerly to easterly can be
deduced.

The radial wind speed is plotted over the corresponding CNR sorted by the measurement
range in Figure 4.9. The data in the first 1000 m start off as a cloud in a CNR range from -12 to
0 dB. This cloud then moves gradually towards lower CNR levels with increasing measurement
distance. Between 3000 to 4000 m range the first wind speed outliers occur. These outliers
increase with increasing distance and spread from -20 to 20 m s−1 until the former data cloud
vanishes in the outlier spread. There is a CNR threshold at around −22 dB below which wind
speed outliers occur.

In CNR filter algorithms this threshold is used as a filter parameter. One can be sure that
radial wind speed measurements that are tagged with a CNR above this threshold, are valid
measurements. The only exception are data with CNR values above the threshold and a wind
speed around 0 m s−1. These data can result from hard targets, i.e. solid objects. A standard
approach to filter lidar data using the CNR values is to set the device specific CNR threshold
and mark all wind speed data below the threshold as invalid. This approach is used for example
for applications such as lidar-assisted control for wind turbines where short-range wind lidars are
used, and the use of any incorrect lidar data must be avoided [20]. However, the disadvantage
is that potentially valid wind speed data with CNR below the threshold (and therefore marked
as invalid) are lost and the measurement range therefore is cut short unnecessarily (Figure
4.8b). The challenge for the application of minute-scale forcasting is therefore to implement a
filter algorithm that removes only the incorrect wind speed data, and includes valid wind speed
measurements although they might have low CNR.
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(a) Unfiltered
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(b) CNR filtered; CNR threshold of −22 dB
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(c) Edge filtered; window size 3, ∆V EL limit > 3 m s−1

Figure 4.8: Typical time series of LOS lidar data unfiltered and filtered.
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Figure 4.9: Radial wind speed over CNR sorted by the measurement range.

Edge detection filter

The solution to filter lidar wind speed data comes from the area of image processing.1 When
processing any image, chart or photo, often there is an edge detection algorithm involved. An
edge within an image is classified as a significant local change in the image intensity, which
typically occurs right on the boundary of two adjacent areas within the image [34]. For this
reason “edge detection is frequently the first step in recovering information from images” [34].

Figure 4.10 shows a photograph of the Stuttgart TV tower on the left and the result of the
edge detection filter on the right. Local changes in the color data are detected with the filter.
Transferred to the application of wind speed filtering, an edge detection algorithm detects local
changes in the wind speed by calculating the difference of maximum and minimum of radial
wind speed ∆VEL within a predefined window. A window size of [1 3] for the edge filter
means that three velocity values are included in the window from the same range gate of three
neighbouring beams. The window then moves over all range gates and beams. Thus, a matrix
with differences for each measurement point is stored. Afterwards it is checked whether the
differences ∆VEL exceed a predefined ∆VEL threshold. If this is the case for both adjacent
values of a measurement point, the corresponding measurement is marked as invalid. This
results in a logical matrix which contains an entry for valid or invalid measurement points
for all range gates and beams. It is important to note that by checking ∆VEL of adjacent
measurement points, only the outliers are marked as invalid, and not necessarily the neighbours.

To demonstrate the functionality of the filter, an example of a generic wind speed time series

1This section is based on the Bachelor thesis "Adaptive filtering of long range lidar data" carried out by Malte
Justus Niemeier, which was handed in at SWE in 2016 and supervised by the author of this PhD thesis and
her colleague Maayen Wigger.
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Figure 4.10: Image of the Stuttgart TV tower (left) and edge detection filtered (right). Left image
reproduced with modifications from [35] with permission.

is given in Figure 4.11. The Figure also gives the wind speed difference ∆VEL for a window
size of [1 3]. For the first and last beam in the scan, the left and right values next to the center
point of the moving window are ignored. For a ∆VEL threshold of >2 m s−1, the measurement
points from beam 1, 5 and 6 would be marked as invalid in this example. For a wind threshold
of >3 m s−1 only beam 1 would be excluded.

The filter parameters that are relevant for the performance of the edge filter are the window
size and the wind speed limit ∆VEL. To test filter requirement 1, a parameter study is carried
out, to find out how many data remain after filtering with the edge filter for different window
sizes and wind speed limits (Figure 4.12). This study was carried out for the time series in
Figure 4.8a. The results show that for a window size of 3 adjacent data points (smallest possible
window), the least amount of data are filtered. By increasing the window size to 5, around 10 %

more data are filtered. Increasing the window more, leads to more data loss. The wind speed
limit ∆VEL also has a significant influence on the data availability after filtering. Setting the
limit to 0.5 m s−1, thus allowing only very small wind speed fluctuations, leads to a rigorous
filtering of the data. When increasing the limit gradually, the amount of available data increases
rapidly at first, and then evens out.

Figure 4.8c shows the result of the edge filter for a window size [1 3] and a wind speed
limit ∆VEL of >3 m s−1. Compared to the CNR filter (26 % data availability), much less data
is discarded with the edge filter (65 % data availability). Hence, the measurement range is
increased significantly. Wind speed values with a CNR below the threshold of −22 dB are then
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moving window

ΔVEL 4 4 2 3 6 6 3 1 1

Figure 4.11: Demonstration of edge filter for a generic wind speed time series for window size [1 3]
and ∆VEL threshold of > 2 m s−1. Filtered values marked grey.
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Figure 4.12: Percentage of good points after filtering with edge filter with different ∆VEL limits
(thresholds) and window sizes. Study carried out for time series in Figure 4.8
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Figure 4.13: Radial velocity over CNR filtered with the edge filter.

“rescued” when applying the edge detection filter with those filter parameters (Figure 4.13).
Although some outliers remain in the data, it is decided to apply the edge detection filter with
a window size [1 3] and a wind speed limit ∆VEL of >3 m s−1, for the sake of the increased
measurement range for both the onshore and offshore data.

The edge filter can adapt to varying environmental conditions such as the wind direction
change, and is very simple so that it is computationally highly efficient. Thus all the filter
criteria are fulfilled.

4.2.2 Wind field reconstruction

A lidar measures the radial component V EL of the wind vector in the laser beam direction
LOS, in contrast to classical wind measuring systems such as a cup anemometer that measure
horizontal wind speed. The challenge is to derive the horizontal wind velocity from the measured
radial wind velocities of the discrete measuring points of the lidar scan; this is known as wind
field reconstruction.

The basic equation to reconstruct the three wind components u, v, w from the radial compo-
nent is

V EL =
xi
di
ui +

yi
di
vi +

zi
di
wi. (4.1)

where the lidar measures at the coordinate point [xi yi zi] in a distance di the unknown wind
vector [ui viwi] [5]. At least three measurement points are necessary to solve this equation.
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Therefore assumptions must be made. For example assuming a constant and homogeneous
wind field during the measurement, the previous equation can be described in matrix form for
all measured radial wind velocities as


V EL1

...
V ELn


︸ ︷︷ ︸

r

=


x1
d1

y1
d1

z1
d1...

...
...

xn
dn

yn
dn

zn
dn


︸ ︷︷ ︸

A

·

uv
w


︸ ︷︷ ︸
s

. (4.2)

The wind field vectors u, v and w are assumed to be constant for the time it takes to measure
points 1 . . . n. The matrix equation can then be simplified in abbreviated form to

r = A s. (4.3)

If sufficient linearly independent measuring points are available, the wind speed components
u, v and w can be estimated using the inverse A−1 if A is square, or the least-square Penrose
pseudo inverse A+ when there are more than three measurements availableuv

w

 = A−1


V EL1

...
V ELn

 . (4.4)

Onshore campaign

In this thesis two different approaches for wind field reconstruction had to be applied for the
onshore and offshore campaign. For the onshore campaign, the lidar was installed fixed on the
radio tower and the scan direction was therefore fixed. There was no information about the
wind field available from an external source. Consequently wind direction and horizontal wind
speeds used for the minute-scale forecasting had to be derived solely from the radial wind speed
itself using Equation 4.4.

The question that Equation 4.4 presents is how many data points are necessary, in order to
estimate reliably a wind vector at a specific location.

To answer the question, two methods are developed and investigated in this thesis for the
onshore campaign: i. the global-local reconstruction and ii. the moving window reconstruction.
Both approaches are applied scanwise, thus only using data from one horizontal sweep at a
time. One scan consists of 41 beams with 167 measurement distances (Table 4.1). Thus a total
number 6,847 (41x167) measurement points are available to solve the linear equation system
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and it needs to be investigated for which points the solution of the equation provides the best
estimates of the wind speed vector. Data from the local met mast serves as reference for results
of the wind field reconstruction methods. The mast was located westerly of the lidar and
records both wind speed and wind direction (cf. Section 4.1). The mast data is the basis for
the evaluation of the wind field reconstruction methods. The idea is to compare data from the
mast and the reconstructed lidar data measured closest to the mast location. It needs to be
noted that the highest sonic measurements on the met mast are still 73 m below the lidar scan.

To ensure a correct reconstruction, it is important to know in which coordinate system the
lidar data is analyzed. Four coordinate systems are defined, which are shown in Figure 4.14.

1. The lidar coordinate system (L) in which the raw data are recorded. This depends on the
alignment of the lidar device and the system specifications. The StreamLine XR measures
in a left hand coordinate system.

2. The geographic coordinate system in which the wind direction is specified. The wind
direction is defined by the direction the wind is coming from.

3. The inertial coordinate system (I) is a fixed right-hand system with arbitrary orientation.
The origin is set at the location of the lidar measurement and the x-axis points west in
the main wind direction.

4. The wind coordinate system (W), which rotates with the reconstructed global wind direc-
tion and in which the lidar raw data are projected onto this global wind direction vector.
Thus, the reconstructed local wind velocity components u and v per measuring point are
obtained.

Global-local reconstruction method

The first wind field reconstruction approach developed and tested is the global-local method.
In a first step a global wind field reconstruction per lidar scan is performed using Equation
4.4, to determine the horizontal wind vector components u, v over the entire measuring range.
It is assumed that the vertical component w of the wind field can be neglected. From the
reconstructed velocity components u, v a global wind direction is derived. In a second step,
the local horizontal wind speeds are determined by projecting the radial wind speeds V ELi on
the global wind direction, assuming that the wind direction does not change for the duration
of a scan.

Before discussing the results, first a list of lessons learned from the implementation of the
global-local reconstruction method is given.

• The precise wind direction reconstruction is critical for a correct wind speed reconstruc-
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Figure 4.14: Overview of the coordinate systems that are necessary for the wind field reconstruction.
The inertial coordinate system xI , yI (green) is fixed; the lidar coordinate system xL, yL (orange) is
fixed and depends on the alignment of the lidar; the wind coordinate system rotates xW , yW (blue)

along with the wind direction.

tion.

• In order to reconstruct the wind direction correctly, the exact position of the lidar coor-
dinate system needs to be known.

• Scans with poor data availability must be neglected, as it can lead to wrong reconstruction
of the wind direction if too little data are available to solve the equation system. Therefore
a filter was installed to check the data availability per scan and to reject scans with an
availability less than 15 %.

• The reconstruction of the local wind speed fails when the wind direction is 90° offset to the
lidar scanning direction. In this case, the lidar device can only measure very small values
of the radial wind speed, and large errors occur during reconstruction, since the sensitivity
for reconstruction errors is high. Therefore a filter was implemented which detects areas
in which the scanning direction is in a range of 90° ± 15° of the wind direction and filters
out the erroneous data of the reconstructed wind speed.

After the implementation, the reconstruction algorithm is applied to a test data set from
July 2016, where data from lidar and met mast are available for validation. The 10-minute
averaged reconstructed global wind direction is compared with the wind direction measurement
at the mast in the time domain (Figure 4.15 top) and as regression (Figure 4.16a). The
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Figure 4.15: Time series of wind direction (top) and wind speed (bottom) of sonic (black) and lidar
measurements (grey) calculated using the global-local reconstruction method. Data averaged over 10

minutes.

local reconstructed horizontal wind speed closest to the mast is retrieved, averaged over 10
minutes and compared to the horizontal wind speed of the mast in the time domain (Figure
4.15 bottom) and as regression plot (Figure 4.16b). In order to avoid the corruption of the
calculated regression parameter due to the north jump of the wind direction around 360° and
0° and to and to give credit to its circular nature, the sonic wind directions are shifted 360°if
lidar and sonic data are on the opposite sides of the north jump respectively.

The comparison in the time domain shows that lidar and sonic wind directions are well
aligned. Changes in wind direction are captured when reconstructing the global wind direction
using the data from one scan. The regression plot shows however that outliers reduce the
regression parameter R2 significantly. Overall, the assumption of a global wind direction which
does not change during the time it takes to carry out one scan and which is valid over the
whole measurement range is reasonable. The comparison of lidar and sonic wind speed shows
that the lidar data follows the trend of the sonic measurements. However, the regression plot
reveals a high scatter in the data. The positive offset and Root Mean Square Error (RMSE)
can be explained with the distance in measurement height between sonic and lidar. Overall,
the projection of V EL on the global wind direction to obtain a local wind speed is a reasonable
reconstruction method but leaves room for improvement.
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Figure 4.16: Regression of wind data between sonic and lidar measurements calculated using the
global-local reconstruction method. A linear fit is also shown (grey). Data averaged over 10 minutes.

Moving window method

The second wind field reconstruction approach developed and tested is the moving window
method. Assuming that the vertical component w of the wind field can be neglected, the local
horizontal wind vector components u, v are estimated using Equation 4.4 with V EL data
from a moving window. The method uses a window which is centered on each measurement
point of a scan and moves through the data (Figure 4.17). Thus for each center point of the
window the local horizontal wind vector and wind direction is estimated. The question that
arises is which data points should be used for the reconstruction, i.e. the size of the window.
Therefore different window sizes are tested. To evaluate the results, the same test data set as
for the global-local reconstruction is used and the reconstructed horizontal wind speed at the
measurement location closest to the mast is compared to the sonic data.

The linear regression of the 10-minute averaged data of wind direction and wind speed (Figure
4.18 shows that the window size has a significant influence on the quality of the reconstruction.
A reconstruction in a 3x3 window using 9 radial velocity measurements, results in a big scatter
in wind direction (R2 = 0.71), and reconstructed wind speeds that are on average twice as high
as the sonic wind speeds (m = 2.03). Outliers with wind speed over 60 m s−1 can occur as well.
The more data is used for the reconstruction, the better the regression becomes. A saturation
seems to be reached however with a window size of 19x19. Increasing the window size further
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Figure 4.17: Sketch of the local moving window reconstruction method with two exemplary window
sizes.

to the maximum of 41x41 measurement points, does not change the regression significantly.

Figure 4.19 gives an overview of the regression parameter for all tested window sizes ranging
from 3x3 to 41x41. Only odd numbers and square windows are tested because of the need to
center the moving window. The maximum window size tested corresponds with the maximum
number of beam per scan. Each point in the figure is derived from a linear regression between 10
minute averaged lidar and sonic data of wind direction and horizontal wind speed respectively.
Generally the wind direction reconstruction works better than the wind speed reconstruction
(R2 is higher and slopem is closer to 1). For small window sizes, the reconstruction is inaccurate
(low R2, slope well over 1 and a significant offset). When increasing the window size, that is
taking more data into account for the reconstruction, the reconstruction improves considerably.
For window sizes > 25 the reconstruction improves only slightly.

Comparison of global-local and moving window reconstruction method

The two different reconstruction methods have been introduced and tested. The question that
arises, is which method is more appropriate for minute-scale forecasting. To compare the global-
local and moving window reconstruction method, Figure 4.19 also shows the regression results of
the global-local reconstruction. The comparison shows an improvement of the reconstruction
using the moving window method for window sizes > 19 (R2 is higher, offset b and RMSE
lower).
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(c) 19x19

0 5 10 15
Wind speed met mast [m/s]

0

5

10

15

20

25
W

in
d 

sp
ee

d 
lid

ar
 [m

/s
]

m=1.1767, b=0.25891

R2=0.68496, RMSE=1.5422

(d) 19x19

0 100 200 300 400
Wind direction met mast [deg]

0

100

200

300

400

W
in

d 
di

re
ct

io
n 

lid
ar

 [d
eg

]

m=0.95193, b=13.5685

R2=0.94023, RMSE=18.0229

(e) 41x41

0 5 10 15
Wind speed met mast [m/s]

0

5

10

15

20

25

W
in

d 
sp

ee
d 

lid
ar

 [m
/s

]

m=1.1177, b=0.15805

R2=0.77595, RMSE=1.1003

(f) 41x41

Figure 4.18: Regression of wind direction (left) and wind speed (right) between sonic and lidar
measurements calculated using the moving window reconstruction method with different window sizes.

A linear fit is also shown (grey). Data averaged over 10 minutes.
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Figure 4.19: Regression parameters of 10 minute averaged wind direction (black) and wind speed
data (grey) between lidar and sonic measurements using the moving window reconstruction method

with different window sizes. Results of the global-local reconstruction are given for comparison.
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The analysis so far was carried out with 10-minute averaged reconstructed wind speeds from
the location closest to the met mast. However, for the application of minute-scale forecasting
high resolution measurements of the horizontal wind speed are necessary to forecast the power
output of wind turbines in a minute-scale time resolution. Therefore, as a last step to evaluate
the reconstruction methods, the reconstructed wind speed is analysed scanwise without aver-
aging. Figure 4.20 gives an overview of wind direction (left) and wind speed (right) for the
global-local method and for three different window sizes of the moving window method. For
comparison the measured radial wind speed is given in the top row. The plotted area is limited
to a measurement distance of 3 km as there are data gaps in further distances due to filtered
values.

The particular scan is chosen as the radial wind speed shows an inhomogeneous wind field and
is a typical example for the complex measurement site. The wind direction for this scan is 270°,
thus the scan direction and wind direction are aligned. Therefore the magnitude of the measured
radial wind speed is directly comparable to the magnitude of the reconstructed horizontal wind
speed. The result of the global-local reconstruction method reflects the inhomogeneity of the
wind field accurately in the reconstructed horizontal wind speed. As expected, the reconstructed
wind direction of the global-local method is constant over the scan as this assumption is the
basis of the method.

The results for the moving window reconstruction reflect the results of the previous statistical
analysis with 10-minute averaged data. For small window sizes, the reconstruction fails at many
measurement locations and leads to high horizontal wind speed outliers. The reconstructed wind
direction in this case is inhomogeneous. With growing window sizes, the wind speed outliers
become less, and wind speed and wind direction of the scan become more homogeneous. As
the analysis of the 10-minute averaged data has suggested, the reconstruction with window
sizes bigger than 19x19 does not change the result. The disadvantage of the moving window
method becomes obvious: the window that runs through the data and takes all data within
the window into account to solve Equation 4.4 acts as a filter. It smoothes the wind speed
fluctuation within the window as it forces one valid result of the equation for all data within
the window. The inhomogeneity of the wind speed is lost.

At this point, the expectations have not been fulfilled. The idea to localize the wind field
reconstruction in order to account for to the inhomogeneity of the wind field did not work in
practice. Smoothing the wind speed fluctuations by forcing one result within a certain window
is counterproductive. For the most accurate minute-scale forecast, the fluctuations of the wind
speed are assumed to be crucial, in order to forecast correctly. It is therefore decided, to apply
the global-local reconstruction method for the following analysis in this thesis.
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Figure 4.20: Scan plots of wind direction (left) and wind speed (right) from different reconstruction
methods. 1st row: radial wind speed for comparison, 2nd row: global-local method, 3rd-5th row: wind

method with different window sizes.
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Figure 4.21: Overview of the coordinate systems used in alpha ventus. The inertial coordinate
system xI , yI (light green) is fixed, the lidar coordinate system xL, yL (dark green) rotates along with

the nacelle of the turbine.

Offshore campaign

For the offshore campaign, a different, simplified wind field reconstruction approach is applied
in order to obtain the horizontal wind speed and wind direction. This approach has been
introduced in previous studies for nacelle-based lidar systems [36]. The lidar on alpha ventus
is installed on top of the nacelle of the wind turbine AV04. The difference compared to the
onshore campaign is that the lidar rotates along with the wind direction, because the turbine’s
yaw control ensures, that the turbine is always facing into the wind. This means first that
information about the turbine’s yaw position is necessary, in order to know the lidar orientation.
Secondly, the information of the yaw or wind direction can be used to reconstruct the horizontal
wind speed. Before the reconstruction method can be applied, however, it is again important
to define the coordinate systems (Figure 4.21). The lidar measures in the lidar coordinate
system which rotates with the turbine yaw angle. In order to transfer the lidar measurement
coordinates into a fixed inertial coordinate system, the yaw angle has to be known. With this
knowledge, the reconstruction task can start.

However, in order to reconstruct the wind field and to solve the basic Equation 4.4, two
assumptions are required:

• The vertical wind speed w is zero.

• The wind turbine is always perfectly aligned with the wind direction, therefore the lateral
wind speed component v in the lidar coordinate system is zero.

With these assumptions, Equation 4.4 is transformed from an over-determined set of linear
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equation to the following equation:

ui =
fi
xi
V ELi (4.5)

That means for every lidar measurement point i, the radial velocity is projected on the
perpendicular vector to the rotor, in order to obtain the longitudinal wind speed component
u in the lidar coordinate system. If the wind direction is assumed to be the yaw angle of the
turbine, then the u component in the lidar coordinate system can be transferred to the fixed
inertial coordinate system in order to obtain the horizontal wind speed components u, v in the
inertial frame of reference.

The assumption that there is no yaw misalignment and that only the longitudinal wind speed
component u is reconstructed makes sense for the minute-scale forecasting. For the conversion
to power, only this longitudinal component is relevant. Yaw misalignment leads to a decrease
in power output, but since only the relevant wind speed component u is considered with this
approach, the decrease in wind speed and therefore power is considered automatically.

Figure 4.22 shows the reconstructed horizontal wind speed in alpha ventus from two simul-
taneous scans that measured the inflow and wake of the wind farm at the same time. The
scan was chosen because it shows the typical measurement conditions at the site. The wind
direction is south-west and the measurement range is around 5 km.

The reconstructed wind field shows the typical inhomogeneity in the inflow of the alpha
ventus which result from the wakes of surrounding wind farms. The wind field also shows that
the reconstructed wind speed has very large fluctuations, when the measurement is orthogonal
to the wind direction. This phenomenon was already observed in the global-local reconstruction
method, and results from the fact that the measured radial wind speed is very small in these
conditions and therefore the sensitivity to reconstruction errors is very high.

As with the Stötten data, a filter was implemented which detects areas in which the scanning
direction is in a range of 90° ± 15° of the wind direction and filters out the erroneous data of
the reconstructed wind speed.

Another filter had to be implemented for the turbine’s yaw angle data. A comparison of the
yaw angle and the wind direction measured at FINO1 revealed deviations for wind directions
around 0 deg and 360 deg (Figure 4.23). It was concluded that the averaging algorithm that
calculated 10-minute averages from high resolution azimuth data did not take into account
the correct calculation when the wind direction crosses the north during the averaging period.
These data were therefore filtered, as the correct yaw angle is crucial when using it to transfer
the lidar measurement coordinates into a fixed inertial coordinate system.
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Figure 4.22: Reconstructed horizontal wind speed in alpha ventus from two scans from 15.01.2020
20:23. Turbines are marked with black dots.
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Figure 4.23: Correlation of the azimuth angle of the AV04 turbine and the wind direction measured
at FINO1, including outliers (red). The correlation coefficients are calculated for the filtered data set.
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4.3 Lessons learned

Lidar data needs to be filtered before they can be used for forecasting. Traditional filter tech-
niques using CNR are too conservative for long-range measurements and remove valid data
from farther measurement ranges. Using only radial wind speed measurements as filter input
and searching for outliers within a size optimized data window leads to increased valid mea-
surement ranges.

Radial wind speed measurements need to be reconstructed to obtain horizontal wind speed
and wind direction information. The optimized reconstruction strategy for measurements that
are fixed and do not rotate along with the turbine azimuth is to solve the reconstruction equa-
tion per scan. It is then assumed that the wind direction is constant per scan and the radial
wind speed is project to the wind direction to gain the horizontal wind speed. Localized recon-
struction within a size optimized data window leads to a smoothing of the natural wind speed
fluctuations, which is not desired.

The optimized reconstruction strategy for measurements from the nacelle where the lidar
rotates along with the wind direction, is to assume that the nacelle is aligned with the wind
direction and then reconstruct only the longitudinal wind component in the lidar coordinate
system. For minute scale forecasting of power this assumption is reasonable, as the longitudinal
wind component is the most dominant component for the power conversion and therefore needs
to be forecast.

Scan angles of 90° to the wind direction should be avoided because the measured radial veloc-
ity is very small and therefore the reconstruction leads to large fluctuations of the reconstructed
values. Measuring in those areas costs unnecessary scan time and the data needs to be removed.





5

Along the forecasting chain:

wind field evolution

Wind field
reconstruction

LOS

Wind 
speed

Propagation 
model

Wind field

Predicted
wind 

speed at 
turbine

In the previous chapter, it was shown how horizontal wind speed data can be obtained
from lidar measurements. In order to forecast the power of a wind turbine, these distant
measurements need to be propagated through time and space to the wind turbine’s location.
The goal of this chapter is to find a method for wind field evolution and to apply it to the data
set, taking into account the local flow conditions of the boundary layer.

The simplest approach to propagating the wind field is to assume that the wind field measured
at a distance simply propagates with its existing characteristics. This is known as Taylor’s
frozen turbulence hypothesis and is introduced in Section 5.1. Its implementation for minute-
scale forecasting is discussed in Section 5.2.
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Figure 5.1: Sketch of a turbulent eddy passing a wind turbine according to Taylor’s frozen turbulence
hypothesis. If the length of the eddy is 100 m and the horizontal wind speed is 10 m s−1, it takes 10 s

to pass.

5.1 Using Taylor’s hypothesis in wind energy applications

In 1938 the British physicist and mathematician Geoffrey Ingram Taylor published the article
“The spectrum of turbulence” in the Proceedings of the Royal Society [37]. In the article he
postulated that for special conditions turbulent eddies in the atmosphere are transported with
the mean flow and do not evolve with time but remain unchanged. This hypothesis became
known as “Taylor’s frozen turbulence hypothesis”.

Eddies are turbulent structures in the atmosphere that are created by forces acting on the
flow. In the lower boundary layer turbulence is mostly generated by forces from the ground [38].
For instance, buoyancy forces act during sunny days when air is heated by the ground. Surface
roughness causes friction drag which leads to wind shear, which often generates turbulence.
Obstacles such as trees, forests, or in the case of the measurement site in Stötten an escarpment,
cause turbulent wakes downwind of the obstacles. The largest eddies in the boundary layer are
roughly the same size as the depth of the boundary layer, i.e. 100 m to 3000 m.

Following Taylor, one can calculate the time it takes an eddy with the diameter λ to pass a
sensor, or in our case a wind turbine, if the mean wind speed vhor of the eddy is known (see
Figure 5.1). The time period ∆t it takes the eddy to pass is then given by

∆t = λ/vhor (5.1)

with vhor as the horizontal wind speed.

In [38] Stull reminds the reader to remember that turbulence is not really frozen and that
Taylor’s simplified hypothesis is only valid for eddies that evolve with a time scale larger than
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it takes the eddy to pass the sensor. A recent study on the testing of Taylor’s hypothesis for
wind energy applications conducted by Schlipf et al. has shown that the hypothesis is valid for
eddy sizes relevant for multi megawatt wind turbines [5]. In the study, a nacelle-based lidar
was used to track the inflowing wind speed on the turbine and to calculate the coherence and
phase between measurement points from different measurement distances. The result showed
that for eddy length scales of around 250 m, Taylor’s hypothesis was found valid with a 90 %

accuracy.

In this thesis Taylor’s hypothesis is applied to propagate the reconstructed wind field mea-
sured by the lidar through time and space to obtain the wind speed at the turbine. It is
recognised that the conditions to apply Taylor’s hypothesis are not ideal: the long-range lidar
measures wind speed in several kilometers distance, over a large area. Moreover the onshore
measurement site in Stötten is situated in complex terrain and it is expected that inhomoge-
neous wind conditions may not meet the assumption of Taylor’s hypothesis of frozen turbulence.
Nevertheless, the approach is attractive because of the low computational effort, which is crucial
for minute-scale forecasting.

There are alternative approaches possible for modeling wind evolution in complex terrain.
For example, the measured wind fields could be used as the initial conditions for a numerical
weather prediction-based simulation [39] using local terrain and land cover data. However, this
approach would require much increased computational time compared to Taylor’s hypothesis.
The extra steps required for processing would add time and increase the risk of failure of the
forecast. For these reasons Taylor’s frozen turbulence hypothesis was used as a pragmatic first
engineering solution to investigate potential for lidar-based minute-scale forecasting.

5.2 Using Taylor’s hypothesis for minute-scale forecasting

The goal of using a wind field evolution model in minute-scale forecasting is to find out which
wind conditions reach the turbine at which point in time. Applying Taylor’s hypothesis, this
means that for each horizontally wind speed vector vhor measured by the lidar, the distance to
the turbine ∆x is used to calculate the time period δt it takes the wind speed vector to reach
the turbine (Equation 5.1).

What needs to be determined is which of the measured wind speed vectors actually reach
the turbine.

Two factors are important to find the answer to this question:

1. The measured wind speed vector needs to be moving towards the turbine. Only if the
actual inflow of the turbine is measured, the measurement is relevant for the forecasting.
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This means the measurement direction and the wind direction need to be aligned.

2. The measured wind speed vector needs to go through the wind turbine’s rotor diameter.
Only wind speed vectors that are relevant for the turbine’s power production are taken
into account.

In the case of the offshore campaign, where the lidar was measuring on top of the nacelle of
the turbine and therefore rotating along with the wind direction, the first condition is always
met. Only for periods where the wind turbine is stopped, e.g. for maintenance, the nacelle and
the lidar in not facing the incoming wind direction.

In case of the onshore campaign, where the lidar was fixed and did not rotate along with
the wind direction, the measured flow field was not necessarily blowing towards the turbine.
Only in the case of westerly winds, when the measurement trajectory was aligned into the wind
direction, the measured wind field would actually arrive at the turbine.

The ensure that the wind vectors go through the turbine’s rotor diameter, the turbine’s rotor
is implemented as a target: only if the measured wind speed vectors pass through the target,
they are taken into account for the forecasting of the power production. The target is set as
a horizontal line, with a length of two times the rotor diameter of the respective turbine, for
both measurement campaigns. Two times the rotor diameter was found to be the ideal area of
influence to optimize dual Doppler radar forecasts [10] and is therefore used here as well. The
results can be applied to doppler lidar measurements, because the propagation principle is the
same: a measured wind vector is advected to the turbine.

Taking the above criteria into account, the wind field evolution algorithm is implemented as
follows:

• At the time a forecast is issued, lidar data from 30 minutes before the forecast is issued
are taken into account to generate the forecast.

• Every measured wind speed vector is checked whether it actually reaches the target.

• For each vector that reaches the target, the time is calculated when the target is reached.

• If this time is before the forecast is issued, the vector is not used for the forecast.

Figure 5.2 visualizes the wind field evolution for an example period from the onshore cam-
paign. The target wind turbine is shown in red, and the visualization starts when the lidar
scan starts sweeping clockwise. For each following minute of the measurement a snapshot of the
wind field is shown, where the measured vectors would move though time and space according
to the Taylor hypothesis.

In this example, the vectors are moving towards the turbine, as the wind direction was
aligned in the scan direction. On the second sweep (starting at 02:31), the wind direction
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changed slightly and the blue vectors now come from a different direction. At around 2:32 the
first wind speed vectors reach the turbine, and more vectors are passing through the target in
the following minutes.

This is exactly the information that is needed for the forecasting: with the help of Taylor’s
frozen turbulence model, it is determined at which point in time the measured wind speed
vectors reach the turbine after the forecast is issued. Only wind speed vectors that actually
pass through the turbine are relevant for the turbine’s power output. These wind speed vectors
are taken into account for the forecast.

5.3 Lessons learned

To predict the wind speed at the turbine, the wind speed measured by the lidar needs to be
propagated though space and time. Therefore a wind field evolution model is necessary.

Taylor’s hypothesis can be used to calculate the time it takes the eddy (and its representative
wind speed vector) to move towards a target, under the assumption that a turbulent eddy does
not change but remains frozen.

Only wind speed vectors which actually reach the turbine should be taken into account for
the wind speed and power prediction. Using Taylor, it can be checked whether the wind speed
vectors pass the turbine’s rotor.

Nacelle-mounted wind lidars have the advantage that the measurement is always aligned to
the wind direction and therefore the measured wind speeds are always propagated towards the
wind turbine. Hence, there are always wind speed vectors available for the prediction (if the
lidar is measuring).
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Figure 5.2: Scan plots of wind speed propagation from seven consecutive minutes of measurements.
Wind direction is toward wind turbine (red). Wind speed vectors in grey miss the turbine (faded out

with time), wind speed vectors in blue pass through turbine (do not fade out).
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In the previous chapter it was discussed how useful wind field information can be gained from
raw lidar measurements and how this wind field can be propagated though time and space in
order to predict wind speed at the turbine.

Now the end of the chain is reached. In this chapter the last link of the forecasting chain is
explained: how the predicted wind speeds are transformed into predicted power, and how the
forecasts are then calculated. To this end, first the methodology of probabilistic minute-scale
forecasting is introduced and explained in Section 6.1. Then the results from the onshore and
offshore campaign are discussed in Section 6.2 and Section 6.3, respectively. Finally the impact
of wind ramps on the minute-scale forecasts is assessed in Section 6.4.



66
6 Reaching the end of the chain:

minute-scale forecasts of wind speed and power

16:08 16:13 16:18 16:23 16:28 16:33 16:38 16:43

Time [hh:mm]

0

2

4

6

8

10

W
in

d 
sp

ee
d 

[m
/s

]

1000

2000

3000

4000

5000

6000

7000

8000

R
an

ge
 [m

]

Measured wind speed
Forecasted wind speed

Forecast issued

Figure 6.1: Timeline of measured wind speed that reaches the turbine and forecasted wind speed
using Taylor’s frozen turbulence hypothesis. Measurement range that data originates from is given in

shades of grey.

6.1 Methodology of probabilistic minute-scale forecasts

In Chapter 5.1 the method for the propagation of the measured wind speeds of the lidar is
explained. This propagation is the basis for the forecasts which are the goal of this work. Each
wind speed vector is propagated though time and space, and so it can be calculated at which
time the wind speed vector reaches a certain target. This target is the wind turbine.

When the forecast is issued at a certain time, the last 30 minutes of measured lidar data
are taken into account for the forecast. For each measured wind speed vector, it is checked
whether it reaches the turbine and at which time after the forecast was issued. In the example
data set in Figure 6.1 the wind speed measurements that reached the turbine is depicted.
The corresponding forecasted wind speeds propagate along the timeline according to Taylor.
Wind speed vectors that were measured close to the turbine with a high wind speed value
are forecasted to arrive only a few minutes after the forecast was issued. Wind speed vectors
measured in a farther distance from the turbine with a low wind speed value are forecasted to
arrive later in time.

The spread of forecasted wind speeds is typical for this forecasting method. What it actually
represents is an uncertainty in the wind speed forecast due to the turbulent nature of the wind,
which also transfers into an uncertainty in the power forecast. For a specific time in the future,
there is not only one forecasted wind speed, but a range of wind speeds. To deal with the
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uncertainty in the forecast and to quantify it, probabilistic forecasting methods are applied.

Probabilistic forecasts are used in several different areas. The most common one is weather
forecasts [40] that predict for instance the probability of rainfall and therefore help to decide
whether to bring an umbrella or not. Probabilistic forecasts are also important for risk man-
agement in finances [41] or epidemiological studies [42]. In each area the goal is to assess the
uncertainty of the forecast and use this information for decision making.

Probabilistic wind power forecasting was introduced in the early 21st century and theories
and methods have been established since [6]. The method that was developed and applied in
this thesis for probabilistic forecasting using lidar data is based on those findings. It follows
the procedure depicted in Figure 6.2:

1. Transformation of wind speed to power: Using the power curve of the turbine, the fore-
casted wind speed is transformed into a forecasted power (Figure 6.2a). Details are in
Section 6.1.1.

2. Binning of data: The forecasted wind speed and power are binned according to the
forecast horizon (Figure 6.2b). For each bin a probabilistic forecast is calculated, which
takes into account the spread of the wind speed or power data in the bin. Details are in
Section 6.1.2.

3. Calculation of uncertainty of forecast as probability intervals: In each bin, the probability
of the wind speed or power forecast is calculated using a Probability Density Function
(PDF) and Cumulative Distribution Function (CDF). Using these tools, confidence in-
tervals can be calculated that indicate the likelihood of a wind speed or power forecast
value (Figure 6.2c). Details are in Section 6.1.3.

4. Evaluation of forecast: Using the actual measured wind speed of power observation of the
respective forecast horizon, the probabilistic forecast is evaluated (Figure 6.2d). Details
are in Section 6.1.4

5. Comparison with benchmark method: The probabilistic lidar forecast is compared to per-
sistence, a state-of-the-art minute-scale forecasting method. Persistence is a deterministic
model and is converted into a probabilistic forecast with historic wind speed and power
measurements, to be able to compare it to the lidar forecast. Details are in Section 6.1.5.

Results of the forecasts for both sites are shown and discussed in Section 6.2 and Section 6.3.
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(a) Transformation of wind speed into power forecast.
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(b) Binning of data according to forecast horizon.
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(c) Calculation of confidence intervals.
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(d) Evaluation of forecast with observation

Figure 6.2: Probabilistic lidar-based forecast process.
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6.1.1 Converting wind speed to power

To transform the forecasted wind speed into power, the power curve of the wind turbine is
used. The power curve is the relationship between the produced power of the turbine and wind
speed. The power curve is defined according to IEC standard 61400-12 by the wind turbine
manufacturer. According to this standard, the wind speed needs to be measured in the free
stream, ideally 2.5 rotor diameters in front of the turbine. The power data is given as 10-minute
averages and binned in wind speed bins of 0.5 m s−1. The power curve is calculated from the
wind speed and power mean of all data in each bin and the uncertainty is given as the standard
deviation of the power in each bin.

The power curve of the turbine in Stötten and the power curve of the AV04 were not provided
by the turbine operator. Therefore they had to be generated from the available measurement
data.

The power curve in Stötten is not IEC conform as wind speed data was only available from
the nacelle anemometer and not from a free stream measurement. Figure 6.3 top, shows the
scatter plot of normalised wind speed and power data. This data needed to be filtered in order
to obtain a clean curve. Three filter criteria were applied and data was filtered out accordingly
(Table 6.1).

Filter Power Wind speed

1 P ≤ 0 WS > 0
2 normal production too low
3 normal production too high

Table 6.1: Filter criteria that were applied to clean the power curve in Stötten.

In the first category the turbine power is zero or below zero but the wind speed is above
zero. Data in this category account for over a third of the total amount of available data and
occurs throughout the whole year. It is assumed that during these periods the turbine was shut
down due to malfunctioning or for maintenance. Data of the second category, where the wind
speed is too low for the generated power, only occur in winter times. It is a typical sign that
the anemometer was slowed down due to icing and therefore recorded lower wind speeds. Data
of the third category, where the wind speed is too high for the generated power, are very few
and occur throughout the year. They are discarded as temporary speed up of the anemometer
which the turbine did not follow due to its inertia.

The power curve of the AV04 was calculated in the same way as the power curve for the
Stötten turbine, but instead of the nacelle wind speed, the free stream wind speed from FINO1
was taken, and only undisturbed wind direction sectors were taken into account (Figure 6.3,
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bottom).

The filtered data are then used to generate the binned power curve which is also shown in
Figure 6.3. This curve is used as a look up table to transfer the forecasted wind speed into a
forecasted power. The uncertainties of the power curve are neglected.

6.1.2 Choosing a forecast horizon

The second step in the probabilistic forecast process is to choose a forecast horizon and bin the
forecasted wind speed accordingly (Figure 6.2b). The forecast horizon quantifies the period of
time for which the forecast is valid. It is important to note that the forecast horizon as per
definition is not a single time point in the future that relates to the forecasted power output in
that instant, but a period of time during which the forcasted power will occur.

In this thesis a practical approach to choosing the forecast horizon is taken: as the forecast
needs to be validated with actual power output measurements, the horizon is chosen according
to the sampling rate of the turbine measurements. In case of the onshore site 10 minute averages
of power output measurements are available. The same is the case for the offshore site alpha
ventus. Hence 10 minute forecast periods are chosen. This means the forecast is calculated for
a 0-10 minute period directly after the forecast is issued, and a 10-20 minute and 20-30 minute
period respectively. Forecasts for more than 30 minutes ahead are not issued as no data is
available for this horizon (cf. Section 7.1 on the influence of the measurement range on the
forecast horizon).

When the forecast horizon is chosen, the forecasted wind speed and power data spread
is binned accordingly. The data spread in each bin is analysed using probabilistic methods
explained in the following.

6.1.3 Quantifying the uncertainty with probability density function and cumulative

distribution function

The third step in the probabilistic forecast process is to quantify the uncertainty of the forecast
which is represented in the data spread in each forecast horizon bin. The method to quantify
the uncertainty is to estimate a probability density function (PDF) fX(x) in each bin. The
values of the function f can be interpreted as a relative probability that a random variable X
in the sample space (the set of possible values x taken by the random variable X) would equal
that sample [43].

It is differentiated between parametric, and non-parametric approaches to define a PDF.
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Figure 6.3: Binned normalised power curve (grey line) from the turbine in Stötten (top) and the AV04
in alpha ventus (bottom) with standard deviation and filtered data. Data are 10 minute averages.

Numbers in brackets give the number of data points in each category.
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Parametric approaches to PDFs for forecasting purposes are based on the assumed shape of
probability density, e.g. Gaussian distribution [6] and can be described by an analytical ex-
pression. They are low in computation time but the assumed shape of the distribution may be
incorrect and should change with time, if e.g. the wind speed conditions change. A well known
PDF in wind energy is the Weibull distribution used for site assessment [44].

Non-parametric approaches to estimate the density distribution do not assume a shape of
the density curve but are data driven. They estimate the density at a finite number of points
and then a PDF is obtained through interpolation between these points [6].

A very simple non-parametric approach is to calculate the histogram of a data set. In a
histogram the height of each bar indicates the number of data point in each bin. To obtain a
PDF the histogram is normalised so that the area of each bar is the relative number of data
points. The sum of the bar areas then is less than or equal to 1 (Figure 6.4, top).

A very popular non-parametric approach to PDF estimation often used in forecasting is the
Kernel Density Estimation (KDE) method. Similar to a histogram, it is a data driven approach
but smooths the curve [6], cf. Figure 6.4, top. The KDE, also known as the Parzen-Rosenblatt
window method is defined as [45]

fh(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)

where x1, x2,..., xn are random samples from an unknown distribution, n is the sample size, K is
the kernel function, and h is the bandwidth or smoothing parameter. Similar to a histogram, the
kernel distribution builds a function to represent the probability distribution using the sample
data. But unlike a histogram, which places the values into discrete bins, a kernel distribution
builds the PDF by creating an individual probability density curve for each data value, then
summing the smooth curves. This approach creates one smooth, continuous probability density
function for the data set [46].

Both approaches, the histogram and the Kernel approach, are used for wind power forecasting
to estimate a PDF of a forecasted wind speed. In Figure 6.4, top, the histogram and Kernel
approach to estimate a PDF are compared. In this example, a data set of 0-10 minute forecasted
power data from the onshore site is used, with a number of 85 forecasted power values. The
histogram and KDE have a similar shape, but the smoothing effect of the KDE is clrearly
visible.

Testing the forecast with both approaches for a longer period, it was decided that the his-
togram approach will be used for this thesis. For forecast horizons with low number of forecasted
values, the smoothing effect of the KDE led to unrealistic power forecasts. For example when
only a few power values around rated power were forecast, the KDE PDF estimated values
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Figure 6.4: Example of uncertainty information for forecasted power data from Figure 6.2. Top:
Comparison of PDFs from histogram and Kernel Density Estimation. Frequency is normalised so that
the height of each bar is (number of observations in the bin) / (total number of observations ∗ width
of bin). The area of each bar is the relative number of observations. The sum of the bar areas is 1.
Bottom: Comparison of CDFs from histogram and Kernel Density Estimation. Exemplary quantiles

and intervals and how they can be read from PDF and CDF are marked in blue.
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above rated power to smooth the curve and make it continuous. The simple approach of the
histogram with no assumptions and no smoothing applied, produced more reliable results in
such cases.

After the PDF is calculated, the next step is to calculate the Cumulative Distribution Func-
tion (CDF) (Figure 6.4 bottom). Similar to the PDF, the CDF FX(x) = P (X <= x) gives
the probability P that the random variable X is less or equal to x. The CDF of a continuous
random variable X can be expressed as the integral of its probability density function fX as
follows:

FX(x) =

∫ x

−∞
fX(t)dt

With the help of PDF and CDF, the uncertainty of the forecast can be quantified. The tools
for that are quantiles or intervals which are used to describe uncertainty. A quantile Qα(x)

is defined so that the probability of the observation X being smaller than Qα(x), is equal to
the proportion α, with α ∈ [0, 1]. This property can also be expressed with the CDF so that
FX(Q(x)) = α but unlike the CDF the unknown value that has to be predicted is x, not P [30].

The most common quantile with α = 0.5 is the median, a value separating the higher half from
the lower half of the data sample. Intervals on the other hand, intend to provide a range where
the random variable (or rather the forecast in this case) lies, defined by a given probability.
Therefore they are refered to as confidence intervals. For example the 50 % confidence interval
lies between the 0.25 and 0.75 quantile (6.4). That means that 50 % of the forecasted values
lie within this interval. For the forecast it means that the probability is 50 % that the actual
wind speed or power is in that range.

Intervals are ideal to visualize the probability of a wind power forecast within a certain
range of wind power output (cf. Figure 6.2). Even though they have less information content
than PDFs and CDFs, they are often applied, as the range of a forecast is crucial information
for decision making [6]. Since they do not make any assumption of the distribution shape,
approaches using quantiles or intervals are classified as non-parametric as well. Figure 6.4
shows how PDFs, CDFs, quantiles, and intervals can be visualized and how they are related.
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6.1.4 Evaluating probabilistic forecasts

Once the forecast is issued and the uncertainty information is obtained, the next step is to
evaluate the forecast using appropriate criteria.

The evaluation is carried out using the actual observation, which means the measurement
of the forecasted wind speed or power. For a deterministic or spot forecast an evaluation is
simple, as only the one forecasted value is compared to the observation, using error measures
such as the mean average error (MAE) or the root mean square error (RMSE). For probabilistic
forecast, the evaluation is not so straightforward, because there is a spread of forecasted values.
This section first explains what the methods for the evaluation of probabilistic forecasts are
and then describes the necessity to prepare the data so it can be used as a reliable reference.

Methods for evaluation

For probabilistic forecast evaluation, different methods are used and different properties of the
forecast are evaluated. The main required properties of a probabilistic forecast are [47]:

• Reliability: is referred to as the statistical consistency of the predictive distribution and
the observation. This property is also called probabilistic calibration. It means that the
observed and forecasted probabilities should be as close as possible and the probabilistic
forecasts is therefore unbiased. It should be noted that this is a joint property of the pre-
diction and the observation measurements. If the measurements are not well calibrated,
the forecast will be biased due to the error in the measurements [48].

• Sharpness: is the concentration of the predictive distribution. It is a property only of
the predictive distribution and not of the observation. The smaller the scatter in the
forecasted data, the smaller is the predictive interval and the sharper is the forecast [48].

• Skill: is reliability and sharpness in one score and provides the whole information of
uncertainty forecasting performance. The definition depends on the scoring rule, but one
requirement is that the skill score is proper, which means that the best forecast has the
best score [6].

A reliable or well calibrated forecast which is not biased and the forecasted probability is
as close as possible to the actual observed probability. A tool to check the calibration is the
Probability Integral Transform (PIT) histogram [48]. The PIT histogram is a simple visual
tool to evaluate the reliability of a probabilisic forecast. The PIT is defined as

PIT = F (O)
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Figure 6.5: Examples of PIT histograms of different forecasts. The forecasts can be miscalibrated
as in (a)-(c) or well calibrated as in (d). The ideal frequency is marked as horizontal line. As the

probabilities are binned in 10 bins, the ideal frequency for each bin is 0.1.

where PIT is the value that the predictive CDF F of the forecast takes at the observation O.
The value of PIT is therefore in the interval [0, 1]. The cumulative distribution function F of
a probabilistic forecast is well calibrated, if PIT is uniformly distributed [49]. This means that
statistically, all probabilities are forecast an equal amount of time.

The values PIT of a forecast are analyzed in a PIT histogram and for a reliable or well
calibrated forecast, the observed frequency of the PIT is even (Figure 6.5 (d)). If the forecast
is not well calibrated, the frequencies are not evenly distributed. Examples of miscalibrated
forecasts and a calibrated forecast are shown in Figure 6.5 (a) to (c). Forecasts can be biased,
under- or over-dispered. In all cases, the PIT is not evenly distributed, but the observation
tends to take a specific value of the CDF. For example in case of an under-dispersed forecast,
the forecasted values do not have enough spread (or dispersiveness) and therefore the outer
bins of the PIT histogram are overpopulated.

The sharpness and skill of a forecast is checked with the Continuous Ranked Probability
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Score (CRPS). The CRPS is one of the most widely used accuracy metrics where probabilistic
forecasts are involved [6]. It is defined as the area between the predictive CDF and a step-
function at the observation. In mathematical terms it is defined as

CRPS(F,O) =

∫ x

−∞
(F (x)− 1{x ≤ O})2dx

where 1{x ≤ z} denotes the Heaviside step-function, returning one if x ≤ O and zero otherwise
[50].

The CRPS is expressed in the same unit as the observed variable. The CRPS generalizes the
mean absolute error (MAE); in fact, it becomes the MAE if the forecast is deterministic. Just
like the MAE, the theoretically ideal CRPS for the power prediction is 0 and the worst possible
score is 1.

Figure 6.6 shows an examples of two predictive PDFs and the corresponding CDFs with high
and low sharpness. A sharp PDF results from a low dispersion of the forecasted values which is
indicated by the narrow width of the 50 % confidence interval, meaning the interval that covers
50 % of the data. In the CDF, the sharper PDF corresponds to a steeper cumulative curve.
The steeper CDF results in a lower CRPS as the area between the CDF and the step function
at the observation becomes smaller.

Preparing observational data

The wind speed and power data measured at the turbine is the basis for the evaluation of the
forecast. Therefore it is important to prepare it with the same care as the lidar data. This
means

1. filtering out outliers that would corrupt the forecast evaluation,

2. making sure that lidar data and turbine data have the same time stamp.

In Section 6.1.1 it was already explained how the wind speed and power data of the onshore
and offshore site were filtered, in order to calculate the power curve of the respective turbines.
For evaluating the forecast, only observational data is used where the same filter criteria were
applied: the turbine was actually running and producing power; the power was not curtailed
and the turbine was operating at full rated power; and the wind speed was not corrupted by a
malfunctioning wind speed sensor due to icing.

For the offshore data, a comparison of the wind speed data of the turbine and the wind speed
data of the met mast in the time domain shows a time delay (Figure 6.7). It was noted that
a measured wind speed peak occurred in the turbine data with a time delay of 10 min 48 sec.
As the met mast and the turbine at the site were not directly next to each other, a delay
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Figure 6.6: Predictive PDF (top) and CDF (bottom) of a forecast with low sharpness (dashed line)
and high sharpness (solid line). The step function is taking the value 1 at the observation (blue solid
line). The CRPS is indicated as the area in blue between the step function and the respective CDF.

The 50 % confidence interval is indicated in each PDF.
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Figure 6.7: Comparison of the wind speed measurements at the met mast (black) and the turbine
(grey) at the onshore site in Stötten for a time period with a stong change in wind speed. The original
turbine data (dark grey) was time shifted (light grey) to fit the UTC time stamp of the met mast.

was expected (the wind direction in that period was coming from the met mast towards the
turbine). However, with a separation of 1350 m and a wind speed peak of 12.68 m s−1, applying
Taylor’s hypothesis, this delay should be around 1 min 46 sec.

Both the lidar and the met mast were operated by the University of Stuttgart and it was
known that they recorded the time stamp in Universal Time Coordinated (UTC). Therefore the
time stamp of the turbine data was shifted to match the the lidar’s time stamp. A correlation
of the wind speed between mast and turbine before (Figure 6.8a) and after time correction
(Figure 6.8b) proved that the time correction was valid and necessary for the whole turbine
data set, as the slope, offset and coefficient of determination as shown in the figures improved.

6.1.5 Comparing to benchmark forecasting method persistence

After describing how to calculate the probabilistic lidar forecast, and how to evaluate it, the
question is how to compare this new forecasting method to state-of-the art minute-scale fore-
casting techniques.

In this thesis, the lidar forecasts are compared to the persistence method. Persistence is the
classical benchmark method because it is the simplest and therefore most cost effective method
[51]. Persistence assumes that the system is in equilibrium and only changes slowly, so that it
is most likely that the forecasted value will be the same as the present value. In other words,
persistence assumes that the forecasted wind speed or power in the future will be the same as
when the forecast is issued. If v(t) and P (t) are the wind speed and power at the time t the
forecast is issued, then the forecasted values can be formulated as the following terms:

v(t+ ∆t) = v(t) (6.1)
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Figure 6.8: Correlation of the wind speed [m/s] measured at turbine and met mast before and after
time correction, to prove that the correction of the turbine time stamp is valid.

P (t+ ∆t) = P (t) (6.2)

where ∆t is the forecast horizon.

Since wind speed and power measurements are available for every wind turbine through the
SCADA system, persistence is the chosen method for minute-scale forecasts. Especially in the
minute-scale forecast time range the forecasts are very accurate, but the accuracy decreases
rapidly when the time-scale of the forecast increases [12].

The above described persistence method only works as benchmark for deterministic forecasts
as only one value is forecasted for a specific forecast horizon. To obtain a predictive distribu-
tion of forecasted values, the point forecast can be dressed with recent observed values of the
persistence error, as suggested in [48]:

{max(Ot −Ot−h +Ot−h−n, 0) : h = 0, ...17} (6.3)

Here O are the recent values of the observed wind speed or power, t is the time stamp
when the forecast is issued, h denotes the time steps of recent data that should be taken into
account and n is the number of forecast horizons. As suggested in [48] the last 18 time steps,
corresponding to the last 3 hours of available wind and power data, are used to calculate a
set of forecast values. As the forecast is calculated for three forecast horizon bins (0-10min,
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time 12:00 12:10 12:20 12:30 12:40 12:50 13:00
P [kW] 300 400 600 200 800 1000 1200

h 6 5 4 3 2 1 0

Table 6.2: Example timeline of turbine power data used to calculate a predictive distribution of a
persistence forecast. h are the time steps that are taken to calculate the predictive distribution from

the time, when the forecast is issued at h = 0.

aaaaaaaaaaaaa

n
(forecast horizon)

h 0 1 2 3 4 5 6

1 (13:00-13:10) 1000 1000 600 1600 1000 1100 -
2 (13:10-13:20) 800 400 1000 1400 900 - -
3 (13:20-13:30) 200 800 800 1300 - - -

Table 6.3: Example of probabilistic persistence power data sets. The values are calculated from data
in Table 6.2 and Equation 6.3 for three forecast horizons n and seven time steps h. The values are

given in kW.

10-20min, 20-30min), n is 1,2 or 3. For each bin, the suggested approach results in a set of
predictive wind speed and power values that can be used to calculate a PDF and CDF that
represent the probabilistic persistence forecast.

To explain in more detail, how the predictive distribution is calculated, Table 6.3 gives the
results of the persistence power forecast data sets which are calculated using Equation 6.3
and data from Table 6.2. In this example 7 time steps are available (hmax = 6), the forecast
is issued at the last time stamp of the example data set, and three forecast horizons n are
considered (nmax = 3). The first value in the forecast set for h = 0 and n = 1 is calculated as
1200kW− 1200kW + 1000kW = 1000kW, and the other values are calculated accordingly. The
result is a set of forecasted power values for each forecast horizon n. In this example, the sets
do not have an equal amount of values. To calculate a full set of power values for each forecast
horizon, at least hmax + 1 + nmax measured power values need to be available at the time the
forecast is issued.

Figure 6.9 shows the persistence forecast for the same day and time as used as an example
in Figure 6.2 to explain the lidar forecast procedure. The forecast horizons are set equally as
to the lidar forecast (0-10min, 10-20min, 20-30min) and for each horizon, a set of persistence
power forecasts is calculated according to Equation 6.3. In each forecast horizon, it is made
sure that an equal amount of 18 predictive power values are available. In Figure 6.9, the time
for each persistence forecast is set to the bin center, but in reality, the values of the persistence
forecast in each forecast bin are not allocated to a specific time in the bin.

The procedure to extract probabilistic information from the persistence forecast, is then
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Figure 6.9: Example of a probabilistic persistence power forecast.

exactly the same as for the lidar forecast: first a PDF and CDF for the forecasted set of
values in each bin is calculated using the histogram approach. With this probabilistic data,
the uncertainty can be quantified and visualised, e.g. using intervals. The evaluation of the
forecast is then carried out using the observed wind speed or power to calculate the PIT and
CRPS (compare Section 6.1.4). Using the same methods for quantifying the uncertainty in the
probabilistic lidar and persistence forecast, and using the same tools for the evaluation, allows
both methods to be directly compared.

6.2 Results of minute-scale forecasts from the onshore campaign

In the last sections, the methodology of minute-scale forecasting was explained. This section
analyses the results of the minute-scale forecasts of the onshore campaign. First the forecast
availability is discussed, followed by the results of the forecast in the time domain, and the
statistical analysis of the forecast calibration, sharpness and skill.
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6.2.1 Availability of forecasts

For the onshore campaign, lidar data from the measurements on top of the radio tower were
analysed for the period from July 1st, 2016 to July 31st, 2017. During this time the lidar
measured with a horizontal scan towards the main wind direction (cf. Table 4.1 in Section
4.1.7). Between November 3rd, 2016 and January 19th, 2021, no measurements were available.
As the scan direction was fixed, but the wind direction and thus the turbine turned, forecasts
could only be carried out when the lidar actually measured into the wind direction. Also,
forecast were only carried out when there was a wind speed and power observation from the
turbine available to validate the forecast.

In Stötten, the power data was available for evaluation of the forecast for 45.3 % of the time
(Figure 6.10, top). The gaps result from filtering of the data, as explained in Section 6.1.4.
The forecasts with the forecast horizon 0-10min were only possible 17.2 % of the time (Figure
6.10, bottom). This means in 28.1 % of the cases when a forecast could have been carried out,
either the wind direction did not match the scan direction, or the lidar did not measure (e.g.
due to foggy conditions) hence, a forecast was not possible.

The forecast were carried out for three forecast horizons 0-10min, 10-20min and 20-30min,
and for each horizon the total number of available forecasts is analysed (Table 6.4). For the
lidar-based forecasts, each of the horizons has a different availability, as the number of forecasts
depends on the availability of the forecasted wind speed vectors. The availability of the forecasts
for the persistence method also varies, but not as strongly. When a persistence forecast is
possible depends only on the number of the historic measurements of turbine data. If the last
18 wind speed or power measurements are available, a 0-10min forecast is possible (19 and 20
measurements for the 10-20min and 20-30min forecast respectively), cf. Section 6.1.5.

0-10min 10-20min 20-30min

Lidar-based 9877 (71.9 %) 4137 (61.9 %) 1103 (56.6 %)
Persistence 22,892 (94.6 %) 22,354 (93.6 %) 21,510 (92.2 %)

Table 6.4: Total number of available lidar-based and persistence forecasts for different forecast horizons
during the onshore campaign. The availability in percent is given in respect of the availability of power

data.

To conclude, the availability of lidar forecasts at Stötten is significantly lower compared to the
availability of the persistence forecast for all forecast horizons. The reason is the measurement
setup, as the lidar measures with a fixed trajectory that does not change the measurement
direction with the wind direction. To improve the availability, the lidar should be installed
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Figure 6.10: Availability of data during the onshore campaign. Top: power data after filtering.
Bottom: 0-10min forecasts for periods where power data was available. Periods where no data is

available are marked white.
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on top of the nacelle (as in the offshore campaign in this thesis), or the trajectory should be
adapted automatically, depending on the wind direction.

6.2.2 Forecasts in the time domain

Figure 6.11 shows an example of a 0-10min forecast horizon from March 1st, 2017. During
the period, the actual wind speed was initially around 10 m s−1 and then decreased to around
6 m s−1. During the period shown, the lidar-based forecast is able to forecast the wind speed
well, in that the observation is lying within the forecasted confidence interval. Changes in the
wind speed are anticipated and there are not many 10-minute periods where there is no forecast
available.

The power forecast in the period first fluctuates around the maximum power, as the wind
speed is close to rated wind speed. Along with the wind speed, the observed power then
decreases and the forecasts follow this trend. The confidence intervals for each 10-minute
forecast are however much broader than the intervals of the wind speed forecast. This results
from the fact that power change is proportional to the third power of the wind speed change
in the below rated area of the power curve.

The period shown in Figure 6.11 is actually not a typical example of the forecast results
in Stötten. It was chosen because there were only few 10-minute periods where there was no
forecast available, and the observation was within the confidence interval of the forecast. The
visualization of the forecasts with intervals is however, not a good method to analyse the results
statistically, as it only shows a limited forecast period that might not be representative for the
whole forecast method. The statistical analysis will be done in the following, using appropriate
tools.

6.2.3 Calibration

As explained in Section 6.1.4, to evaluate a forecast first the reliability, or calibration of the
forecast should be checked. In order to do that, the value of the predicted wind speed and
power cumulative distribution function (CDF) at the point of the actual wind speed and power
observation was determined for each forecast horizon. As explained in Section 6.1.4, this is
called the Probability Integral Transform (PIT). The PIT values were then plotted in a PIT
histogram for the wind speed (Figure 6.12) and power forecast (Figure 6.13). The frequency is
normalised, so the sum of the bar heights is less than or equal to 1. This analysis was carried
out both for the lidar-based forecast and for the benchmark forecast method (persistence).

For a well calibrated forecast, the bars in the PIT histogram should have an equal height.
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Figure 6.11: Example of the probabilistic wind speed (top) and power forecast (bottom) for the
0-10min forecast horizon at the onshore site in Stötten. Data are for March 1st, 2017. Three different
confidence intervals are given (shades of blue). The actual wind speed and power observations are give

for comparison (black). Periods where no forecast is available are marked (grey).
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(b) 0-10 min, persistence
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(d) 10-20 min, persistence
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(e) 20-30 min, lidar
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Figure 6.12: PIT histograms for onshore lidar wind speed forecasts (left) and persistence wind speed
forecasts (right) for different forecasting horizons. The ideal frequency is marked as horizontal line.

As the probabilities are binned in 10 bins, the ideal frequency for each bin is 0.1.
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Figure 6.13: PIT histograms for onshore lidar power forecasts (left) and persistence power forecasts
(right) for different forecasting horizons. The ideal frequency is marked as horizontal line. As the

probabilities are binned in 10 bins, the ideal frequency for each bin is 0.1.



6.2 Results of minute-scale forecasts from the onshore campaign 89

This height depends on the number of bins that is used for the histogram. The analysis of the
PIT histograms is a visual tool to check calibration and does not include a statistical analysis
of the PIT values.

The PIT histograms of the lidar-based wind speed and power forecast shown here, are not
very well calibrated. The 0-10min and 10-20min forecasts are under-dispersed, which means
the forecasted distribution does not have enough spread (or dispersion). Therefore the actual
observation occurs often either at the lower end of the CDF, or even outside of it, or at the
high end of the CDF (or outside of it). In other words, the lidar-based forecasts are biased and
have a tendency to be either too high or too low.

The lidar-based forecasts of the 20-30min forecast horizon are heavily biased. In this forecast-
horizon, the actual observation is most of the time at the high end of the CDF or outside of
it. This means that the lidar-based forecasts predicts a wind speed and power that is too low.
There are much less forecasts available compared to the other forecast horizons, which is a
results of the lidar measurement: a forecast is only available if there are measurements from far
ranges, or with low wind speeds that will actually arrive at the turbine with a delay of 20-30
minutes after the measurement took place. This also explains the bias: if only low wind speeds
are available in this forecast horizons, the forecasted power will be too low and therefore biased.
This further emphasizes the need to increase the range of wind lidars used for this application.

To sum up, the lidar-based forecasts of the onshore campaign are reasonably well calibrated
in the first two forecasting horizons, but heavily biased for the forecast horizon of 20-30min.
The calibration shows the limitations of lidar-based forecasts using Taylor’s hypothesis: for
bigger forecast horizons, there are less forecasts available, because the availability depends on
the measurement range and the wind speed. Only low wind speeds of far ranges need such a
long time to arrive at the turbine, and therefore the forecast in the 20-30min horizon is biased
and too low. A more complete physical model might reduce this effect.

The calibration of the persistence forecast is better for all forecast horizons. In the persistence
PIT diagrams for wind speed and power, the bars are evenly distributed, indicating that there
is no bias in the forecast. Since this method just relies on historic turbine measurements and
projects the persistence error of available historic data into the future, there are also an equal
amount of forecasts available for all forecast horizons.
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6.2.4 Sharpness and skill

To evaluate the sharpness and skill of the lidar-based forecasts, the Continuous Ranked Prob-
ability Score (CRPS) was calculated for the wind speed and power forecasts of each forecast
horizon (as explained in Section 6.1.4). The CRPS is an error metric of the probabilistic fore-
cast, with the same unit as the forecasted values, i.e. wind speed and power. The smaller the
CRPS, the smaller the deviation between the actual observation and the prediction.

To statistically analyse the CRPS of the forecasts, a boxplot was created for both the wind
speed and power forecasts (Figure 6.14). In addition, histograms are calculated of the wind
speed (Figure 6.15) and power forecasts (Figure 6.16) to analyse the distribution of the respec-
tive data sets. The forecasts are analysed for different forecast horizons, and compared to the
benchmark forecast method.

The lidar-based wind speed and power forecasts of the onshore campaign have a higher CRPS
value than the persistence forecast for all forecast horizons. This means that the predictive
wind speed and power spread used to calculate the CDF of the lidar-based forecast is higher.
Therefore, the forecast is less sharp than the persistence forecast and the actual wind speed or
power does not lie within the predicted interval.

It is noted that for both the lidar-based and the persistence forecast, the CRPS increases
with increasing forecast horizon. This is expected, as the calibration has shown that (especially
for the 20-30min forecast horizon) the lidar-based forecast is significantly biased.

For the onshore campaign, it is concluded that the lidar-based forecast method as it is carried
out in this thesis does not offer value over the persistence method. Due to the fact that the
campaign was carried out in complex terrain, the forecast error of the lidar-based method
is higher in all forecast horizons. The simple Taylor frozen turbulence assumption does not
account for the complex flow at the site and the wind speeds that are measured in a distance
in front of the lidar are not transported to the turbine using the Taylor hypothesis. Therefore,
the preview information provided by the lidar does not add value to the forecast.
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Figure 6.14: CRPS of lidar and persistence forecast from the onshore campaign for different forecast
horizons. Central mark indicates the median; bottom and top edges of box indicate q1 = 25th and
q3 = 75th percentiles; whiskers extend to extreme data points not considered outliers; points are
considered outliers if they are greater than q3 + 1.5 · (q3 − q1) or less than q1 − 1.5 · (q3 − q1); outliers

are plotted individually.
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Figure 6.15: Histograms of CRPS from onshore wind speed forecast for lidar (top) and persistence
(bottom) forecasts for different forecasting horizons. Median of data is marked as grey line. Note:
y-axes limits are not the same for lidar and persistence histograms; x-axes are limited to 5 m/s and do

not comprise all outliers.
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Figure 6.16: Histograms of CRPS from onshore power forecast for lidar (top) and persistence (bottom)
forecasts for different forecasting horizons. CRPS given in percentage of rated power. Median of data
is marked as grey line. Note: y-axis limits are not the same for lidar and persistence histograms; x-axes

are limited to 60 % and do not comprise all outliers.
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6.3 Results of minute-scale forecasts from the offshore campaign

This section analyses the results of the minute-scale forecasts of the power generated by the
AV04 turbine of the offshore campaign at alpha ventus. First the forecast availability is dis-
cussed, followed by the results of the forecast in the time domain, the statistical analysis of the
forecast calibration, and assessment of sharpness and skill for different conditions.

6.3.1 Availability of forecasts

For the offshore campaign at alpha ventus, lidar data from the measurements on top of the
AV04 turbine were analysed for a period from March 1st to December 31st, 2020. During this
time the lidar measured the inflow of the turbine on top of the nacelle with a horizontal scan
(cf. Table 4.2 in Section 4.1.7). Between May 27 and June 25, 2020, no measurements were
available, because after a shut down of the wind farm the measurement systems of the turbine
could not be restarted. Forecast were only carried out when there was a wind speed and power
observation from the turbine available to validate the forecast.

In alpha ventus, the power data of the AV04 was available for evaluation of the forecast for
64.0 % of the time (Figure 6.17, top). The gaps result from filtering of the data, as explained
in Section 6.1.4. The forecasts for the forecast horizon 0-10min were available at 62.2 % of
the time (Figure 6.17, bottom). This means in only 1.8 % of the cases, when a forecast could
have been carried out, a forecast was not possible. The availability of the forecasts is much
higher compared to the onshore campaign. In contrast to the onshore campaign, the lidar on
the AV04 was always looking into the wind direction, because it rotated along with the nacelle.
This proved to be a big advantage, because it means the reason that a forecast was not possible
could not have been that scan direction and wind direction were not aligned, but that the lidar
did not measure due to e.g. foggy conditions. This did not happen very often (as mentioned,
only in 1.8 % of the time).

Table 6.5 summarised the availability of forecasts at the offshore campaign. As for the onshore
campaign, the forecasts of the AV04 were carried out for three forecast horizons 0-10min, 10-
20min and 20-30min, and the number of available forecast was analysed. The lidar-based
forecast has a different availability for each of the horizons, as the number of forecasts depends
on the availability of forecasted wind speed vectors. The number of available persistence forecast
is actually lower in the 0-10min horizon compared to the lidar-based forecast. This results from
the fact that the probabilistic persistence forecasts needs several measurements from the last
minutes to be able to be carried out. If these are not available, e.g. due to a technical reasons, a
persistence forecast cannot be issued, whereas a the lidar forecast can be carried out. However,
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Figure 6.17: Availability of data during the offshore campaign. Top: power data after filtering.
Bottom: 0-10min forecasts for periods where power data was available. Periods where no data is

available are marked white.
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in contrast to the lidar forecast availability, the availability of the persistence forecast, decreases
only slightly for the other forecast horizons.

0-10min 10-20min 20-30min

Lidar-based 27,776 (98.2 %) 7327 (52.4 %) 963 (38.2 %)
Persistence 26,996 (96.5 %) 26,724 (95.8 %) 26,132 (95.5 %)

Table 6.5: Total number of available lidar-based and persistence forecasts for different forecast horizons
during the offshore campaign. The availability in percent is given in respect of the availability of power

data.

To conclude, the availability of the lidar-based forecast in the first forecast horizon at the
offshore campaign is significantly higher than at the onshore campaign (98.2 % compared to
71.9 %) and is also slightly higher compared to persistence. The reason for the increased
availability is the measurement setup on top of the nacelle. As the lidar automatically measures
into the wind direction, the only reason why a forecast is not possible is if no or not enough
measurements are available (e.g. due to foggy conditions). In the 10 months measurement
campaign this happened only about 1.8 % of the time. However, the availability of the lidar
based forecast for forecast horizons of more than 10 minutes is significantly lower compared to
the persistence method in the offshore case.

6.3.2 Forecasts in the time domain

To analyse the offshore forecasts, the forecasted confidence intervals of wind speed and power
are analysed in the time domain. To that end, the 90 %, 50 % and 10 % confidence interval
are plotted together with the actual wind speed and power observation (Figure 6.18). In the
example, the measured wind speed first fluctuates around rated wind speed, it then decreases
within 40 minutes to around 7 m s−1 and even further in the next hours.

The lidar forecast is able to anticipate the wind speed and power fluctuations and also the
decrease in wind speed (and power) is forecasted. During the whole period, the actual wind
speed and power was in the forecasted intervals. It is noticeable, that the forecasted wind speed
intervals are broader for higher wind speeds. Thus the corresponding forecasted power intervals
are proportionally larger as well, as the fluctuation in wind speed is proportional to the third
power of the change in power forecast.

The period shown in Figure 6.18 is representative of the forecasts at alpha ventus for the
AV04. Compared to the onshore campaign, it was easy to find time periods, where forecasts
were available during several consecutive hours without gaps. A trend was noted that for high
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Figure 6.18: Example of the probabilistic wind speed (top) and power forecast (bottom) for the
0-10min forecast horizon of the AV04 at the offshore site at alpha ventus. Data are for March 15,
2020. Three different confidence intervals are given (shades of blue). The actual wind speed and power
observations are give for comparison (black). The wind direction was 265° and the AV04 was not

affected by the wakes of its neighbouring turbines.

wind speeds, the lidar-based forecast tended to overestimate the wind speed (as also notable
in the first hour of the example period). However, to analyse the forecasts statistically for the
whole period, the calibration and sharpness are checked in the following step.
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6.3.3 Calibration

To check the calibration, and to find out if the forecasts are biased, the PIT values for each
forecast were calculated and then plotted in a PIT histogram for the wind speed (Figure 6.19)
and power forecast (Figure 6.20). This analysis was carried out for the lidar-based forecast and
for the benchmark forecast method persistence.

For the PIT histograms of the offshore campaign, the forecasts were filtered. Only values were
taken into account when the AV04 was not affected by the wakes of its neighbouring turbines.
As the wakes represent a decrease in wind speed behind the rotor due to the energy extraction,
and this effect is not covered in the forecast model, the wake situations would corrupt the
forecasts.

The calibration of the lidar-based offshore forecast actually differ from the onshore forecast
for the first forecasting horizon. The PIT distribution of the wind speed and poweer forecast
is over-dispersed (and not under-dispersed as in Stötten). This means that statistically, the
wind speed and power observations are not equally spread over the corresponding predictive
CDFs, but tend to be between the 0.3 and 0.7 quantile of the predictive distribution. Hence
the forecasted distribution has too much spread (or dispersion). What it also means however,
is that the observed wind speed and power is most of the time within the forecasted confidence
intervals for the 0-10min forecast horizons. For the onshore campaign, the forecast of this first
horizon tended to be outside of the forecasted intervals.

For the forecast horizon 10-20min and 20-30min, the calibration of the lidar forecast is biased
towards high PIT values, just as it was for the onshore campaign. This means the actual
observation tends to be at the upper end or even outside of the forecasted CDF distribution -
or in other words, the forecasted wind speed and power is biased and has a tendency to be too
low. This bias is more pronounced for the 20-30min horizon than the 10-20min horizon.

To conclude, in contrast to the onshore forecast, the calibration of the first horizon of the
lidar-based offshore forecast shows that the forecast and the observations match well, but
the predictive distribution tends to have too much spread. The calibration of the lidar-based
forecasts of the second and third horizon, shows the same limitations of the method as has been
observed onshore: using Taylor’s advection model, mostly slow wind speeds that are measured
in far range gates reach the turbine with a delay of 10 minutes and more. This leads to a bias
in the forecast, and the forecast is too low.

The calibration of the persistence method is the same offshore as it was onshore: all forecast-
ing horizons are fairly well calibrated and show a slight trend towards under-dispersion: the
predictive CDFs do not have enough spread and the actual observation tend to be at the lower
and upper end of the CDF.
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Figure 6.19: PIT diagrams for offshore lidar wind speed forecasts (left) and persistence wind speed
forecasts (right) for different forecasting horizons. The ideal frequency is marked as horizontal line.

As the probabilities are binned in 10 bins, the ideal frequency for each bin is 0.1.
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Figure 6.20: PIT diagrams for offshore lidar power forecasts (left) and persistence wind speed forecasts
(right) for different forecasting horizons. The ideal frequency is marked as horizontal line. As the

probabilities are binned in 10 bins, the ideal frequency for each bin is 0.1.
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6.3.4 Sharpness and skill

To analyse statistically the sharpness and skill (and thus the error) of the forecasts, a boxplot of
the CRPS was created of both the wind speed and power forecasts (Figure 6.21). In addition,
histograms are calculated of the wind speed (Figure 6.22) and power forecasts (Figure 6.23)
to analyse the distribution of the respective data sets. The forecasts are analysed for different
forecast horizons, and compared to the benchmark forecast method. As for the calibration, the
data are filtered such that only forecast are taken into account, when the AV04 turbine is not
affected by the wake of its neighbors.

For the first 0-10min forecast horizon, lidar-based and persistence wind speed forecasts result
in a very similar CRPS distribution, with most of the CRPS below 1 m s−1. The median of
the lidar-based forecast is only 0.04 m s−1 higher (Table 6.6), but the spread of the CRPS is
smaller. The lidar-based wind speed forecast errors increase significantly for the second and
third forecast horizons. It should be noted however, that there are less data available in those
horizons, as the CRPS distributions show in Figure 6.22. The persistence error in contrast
increases only slightly.

0-10min 10-20min 20-30min

Lidar-based 0.34 0.69 1.53
Persistence 0.30 0.38 0.44

Table 6.6: Median of CRPS in m/s of lidar-based and persistence wind speed forecasts.

The CRPS for the power forecasts show a similar trend, only that the error for the lidar-
based forecast does not increase as much as for the wind speed forecast with increasing forecast
horizon. This phenomenon is against the assumption that an increased error in the wind speed
forecast, results in a proportionally increased error by the third power for the power forecast.
However, this is not the case, and the explanation is found in the power curve. For wind speeds
lower than cut-in wind speed (as they are mostly forecast for the third forecast horizon), the
corresponding power is zero. Therefore the forecasted power values in this forecast horizon do
not vary but the distribution is small. In comparison the forecasted wind speed values vary
less. This results in a predictive distribution which is very steep for the power forecast, but not
for the wind speed forecast (Figure 6.24). In such a case, the corresponding CRPS of the power
forecast does not increase for the third forecast horizon, as it does for the wind speed forecast,
because the area between the CDF and the step function of the corresponding observation is
small. Therefore, the power forecast error is small, although the wind speed forecast error is
high.
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Figure 6.21: CRPS of lidar and persistence forecast from the offshore campaign for different forecast
horizons. Central mark indicates the median; bottom and top edges of box indicate q1 = 25th and
q3 = 75th percentiles; whiskers extend to extreme data points not considered outliers; points are
considered outliers if they are greater than q3 + 1.5 · (q3 − q1) or less than q1 − 1.5 · (q3 − q1); outliers

are plotted individually.
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Figure 6.22: Histograms of CRPS of wind speed forecast for lidar (top) and persistence (bottom)
forecasts from the offshore campaign for different forecasting horizons. Median of data is marked as

grey line. Note: x-axes are limited to 3 m/s and do not comprise all outliers.
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Figure 6.23: Histograms of CRPS of power forecast for lidar (top) and persistence (bottom) forecasts
from the offshore campaign for different forecasting horizons. CRPS given in percentage of rated
power. Median of data is marked as grey line. Note: x-axes are limited to 40 % and do not comprise

all outliers.
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Figure 6.24: Example of Cumulative Distribution Functions (CDF) for three different forecast hori-
zons. Left: wind speed forecast. Right: corresponding power forecast. Forecast horizons: 0-10min
(black), 10-20min (dark grey) and 20-30min (light grey). Observation of 20-30min horizon is given as

dashed vertical line.

To conclude, the results are in line with the findings of the calibration analysis: the lidar-
based forecast method is working well for forecasts in the horizon up to 10 minutes. In fact,
compared to the persistence method, the forecasts show less spread in the CRPS values. For
forecast horizons above 10 minutes, however persistence performs better.

To confirm the conclusion of the calibration analysis, that the lidar-based forecast above 10
minutes are too low, because only small wind speeds arrive with such a delay, the deterministic
forecast error is analysed as well. The advantage of the deterministic error compared to the
CRPS is that the sign of the error indicates an over- or under-prediction. To calculate the
error, all forecasted wind speed and power vectors in each forecast horizon bin were averaged,
and the error between the average and the observation was calculated. Indeed, for forecasts
over 10 minutes, the deterministic wind speed and power error of the lidar-based method is
negative and underestimates the wind speed and power (Figure 6.25). It can be concluded
that the lidar-based method as applied in this thesis, with a limited measurement range, is
not suitable for forecast horizons over 10 minutes. All further analysis will concentrate on the
forecast horizon of 0-10min.

Apart from the general analysis different forecast horizons and the comparison of the lidar-
based forecast with persistence, the forecast accuracy is analysed for different parameter in the
following section.
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Figure 6.25: Histograms of error of deterministic lidar-based wind speed (top) and power forecast
(bottom) of the offshore campaign for different forecasting horizons. Median of data is marked as grey

line.

Influence of the wind direction

The results up to now were analysed for periods where the AV04 turbine was not affected by
the wakes of other turbines. These wakes have an influence on the CRPS (Figure 6.26). The
CRPS from wind speed and power forecasts increase significantly for wind directions from 0°
to 180° where the AV04 is affected by the wakes of its neighbors. In the power forecast, this
effect is more pronounced.

The lidar-based forecast model as presented in this thesis does not consider the decrease of
wind speed due to the energy extraction of each turbine in the wind farm. In future forecast
models, a wake model should be implemented and then forecasts for wind directions where the
turbine is affected by wakes should be possible [52]. Wake modelling was out of scope for this
thesis.
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Figure 6.26: Polar plots of CRPS of the 0-10min forecast horizon of the AV04 depending on wind
direction for wind speed (left) and power forecast (right). CRPS of wind speed forecast is given in

m/s; CRPS of power forecast is normalised with rated power and given in %.

Influence of the wind speed

The CRPS of the wind speed forecast increases for increasing wind speeds (Figure 6.27). This
effect is also noticeable and even more pronounced in the power forecast, but only up to rated
wind speed. In the partial load region of the power curve, an error in the wind speed forecast
leads to an error of the power forecast proportional to the third power. Above rated, the power
is constant and therefore wind speed prediction errors do not affect the power prediction.

The reason for the increase in forecast error for increasing wind speeds can be found in the
lidar measurement setup. The lidar is supposed to measure on a horizontal plane in front of the
turbine. As wind speed increases, the thrust acting on the turbine increases as well until rated
wind speed is reached, and the turbine structure tilts backwards. This tilt angle γ is small
and in the range up to 1° on the nacelle, but it also affects the lidar measurements. The lidar
tilts backwards along with the nacelle and therefore the measurement height is not constant
anymore, but increases with the measurement range (Figure 6.28). The height deviation ∆h is
calculated as follows:

∆h = sin(γ) · range. (6.4)

To analyse the influence of the measurement height deviation on the measured wind speed,
a turbine tilt angle of 1° was assumed and the wind speed deviation ∆v between the actual
measurement height and the intended measurement height (hub height) was calculated using



106
6 Reaching the end of the chain:

minute-scale forecasts of wind speed and power

3 5 7 9 11 13 15 17 19 21 23

Turbine wind speed [m/s]

0

2

4

6

8

C
R

P
S

 [m
/s

]

(a) Wind speed forecast

3 5 7 9 11 13 15 17 19 21 23

Turbine wind speed [m/s]

0

10

20

30

40

50

N
or

m
al

is
ed

 C
R

P
S

 [%
 o

f r
at

ed
 p

ow
er

]

(b) Power forecast

Figure 6.27: CRPS of the offshore forecast depending on the turbine wind speed for the 0-10min
forecast horizon.
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Figure 6.28: Increase of measurement height against the measurement range of the lidar due to a
turbine tilt of 1°.

the wind profile power law relationship:

∆v = vHub − vLidar = vLidar

(
hHub
hLidar

)α
− vLidar (6.5)

where vLidar is the horizontal wind speed measured by the lidar, vHub the horizontal wind
speed at hub height, and hHub and hLidar the respective measurement heights. The wind speed
deviation was calculated for three different the power law coefficients α and three different lidar
wind speeds (Figure 6.29).

For lower wind speeds, the wind speed deviation is below 1 m s−1. For wind speeds of 18 m s−1

the wind speed deviation is around 2 m s−1 for a typical measurement range of 6 km and a strong
shear. This deviation influences the forecasted wind speed and thus the predicted power.

To correct the measured wind speed deviation resulting from the turbine tilt, the turbine tilt
would have to be known. With this information, the lidar trajectory could either be corrected
online during the measurement campaign, so it measures horizontally in spite of the turbine
tilt. Another approach would be to use the tilt information to correct the wind speed in
post-processing using assumptions such as a certain power law coefficient, as shown above.

For this thesis, the information about the turbine tilt is not available, and therefore it is
ignored. It is recommended however, to investigate the matter thoroughly in future research
projects.
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Figure 6.29: Deviation of wind speed between lidar measurement and hub height wind speed for
different lidar wind speeds and power law coefficients α. The calculation is based on a turbine tilt

angle of 1 deg.
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Influence of the measurement range

All available wind speeds from all lidar measurement range gates were taken into account up
to now, to calculate the wind speed and power forecast. To analyse, if the measurement range
that the wind speed vectors are measured at has an influence on the forecast accuracy, the
measurement range of 10 km was split into 10 bins of 1 km range, and then forecasts were
calculated with wind speed vectors only from the respective bin. Then the CRPS was analysed
(Figure 6.30).

The measurement range does not have a significant influence on the forecast accuracy. Fore-
casts with wind speeds measured up to 2 km in front of the turbine have a slightly smaller
CRPS than forecasts with wind speeds measured up to 5 km.

The CRPS deteriorates for forecasts where only wind speeds from a measurement range
of >5 km were taken into account. However, for these ranges, also the number of available
measurements is low.

An interpretation of this CRPS analysis is that the Taylor-based propagation model works
well up to 5 km. Below that range, there is no optimal measurement range where wind speeds
for power forecasts should be measured to gain the highest forecast accuracy. Above that range,
there are only few measured wind speed vectors available and those vectors produce forecasts
with low accuracy.

Influence of the number of wind speed vectors

Depending on the measurement range of the lidar, a different number of wind speed vectors
are available for the forecast. To analyse the effect of the number of wind speed vectors on the
forecast accuracy, the number was recorded for each 0-10min forecast and compared with the
corresponding CRPS of the wind speed and power forecast (Figure 6.31).

The effect of the number of the available wind speed vectors is clear for the wind speed
forecast: the more vectors are available, the smaller the CRPS and the better the forecast. For
high numbers of available vectors of around 100 the spread of CRPS of the forecasts is lower
and there are fewer outliers.

The effect on the power forecast is not so clear: for a low availability of less than 40 wind
speed vectors, the power forecasts tend to have a high CRPS. The average power CRPS is
lowest for an available number of vectors of around 60. The CRPS average increases again if
more vectors are available, but for 200 and more wind speed vectors the CRPS decreases again.
Also the spread of CRPS decreases significantly.

The conclusion for this analysis is that forecasts should not be carried out if there are less
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Figure 6.30: CRPS of the offshore forecast for different measurement ranges that were taken into
account to calculate the forecast.
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than 40 wind speed vectors available. Forecasts for these cases tend to have a low accuracy.
Another conclusion is that the measurement range should be as high as possible: the more
wind speed vectors are available for the forecast, the better is the forecast accuracy in general
and the less spread in CRPS is to be expected.

Influence of atmospheric stability

Atmospheric stability is a measure of the thermal stratification of the atmosphere and deter-
mines the fluctuation of the air. Stability describes whether air parcels will rise, sink or or
stay neutral and can be classified as unstable, stable or neutral [53]. The stability has a strong
influence on the wind shear: unstable conditions enhance vertical mixing within the boundary
layer and therefore the wind profile does not change as much with increasing height compared
to neutral or stable conditions. Stable conditions lead to a strong shear and the wind speed
can change significantly with the height [54].

In this section it is analysed whether the stability influences the forecast accuracy. The Speed
Richardson number RiS is used as a measure of stability [55]:

RiS =
g

Θ̄v

¯dΘv/dz(
d̄U/dz

)2 , (6.6)

where g is the gravitational constant, Θ̄v an average potential temperature, dΘv the potential
temperature, d̄U the wind speed difference between two heights and dz the vertical distance
between these heights.

The Speed Richardson number was calculated with FINO1 data with temperate and humidity
from 101 m and 34 m height, pressure data from 92 m and 21 m height, and wind speed data
from 91 m and 34 m height. Stability was classified using the ranges in Table 6.7:

Stability classes RiS

Unstable <-0.01
Neutral |RiS| ≤ 0.01

Stable >0.01

Table 6.7: Stability classes using RiS

The analysis shows that the stability does not have a significant influence on the forecast
quality (Figure 6.3.4). The CRPS for stable and unstable conditions is similar for the wind
speed and power forecasts. Only for neutral conditions, the CRPS is increased significantly.
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Figure 6.31: CRPS of the offshore forecast depending on the number of measured wind speeds vectors
that were available for the forecast. Data is binned and for each bin an average CRPS is calculated

(grey marker).
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Figure 6.32: CRPS of the wind speed (left) and power forecast (right) depending on stability classes.

However that there are only 412 forecasts available for the stable stability class, whereas for
unstable conditions there are 2072, and for stable conditions there are 2851 forecasts available.
The increase in CRPS for neutral conditions could be a biased, as not enough forecasts are
available to compare them to the stable and unstable conditions.

6.4 Impact of wind ramps on the forecast accuracy

A wind ramp is a fast and strong increase or decrease of wind power generation of a wind
turbine or wind farm. An increase in power is considered an upward ramp, and a decrease in
power is a downward ramp [14]. Ramp events can be critical to electrical grid stability and
therefore the forecast of such events has become more important.

An example of a critical scenario is a severe drop in power generation of a large offshore wind
farms. This drop in power could lead to a restriction of the demand in the electrical grid. A
wind ramp that is not forecasted well and affects a large cluster of offshore wind farms, can
also lead to a significant impact on the cost of balancing the power system on a national level,
as a case study from the Thames Estuary has shown [56].

Ramps are rare events that result from a variety of underlying meteorological conditions.
There are two main atmospheric processes that can cause ramps [57]: large horizontal processes
in the atmosphere, such as weather systems (fronts) or mesoscale circulations (e.g. sea-breeze
or mountain valley winds), can affect whole regions and several wind farms. Local vertical
processes caused by convection - such as thunderstorms or low level jets - are short-cycle
phenomena that are sensitive to local conditions and therefore harder to predict.
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Another reason for a (downward) ramp is the exceeding of the turbine’s cut-off wind speed.
When wind speeds is above cut-off wind speed, turbines shut down and stop producing power.
Typically this is at around 25 m s−1 and is intended to protect the structure from extreme loads.
This type of event is very difficult to forecast, as small errors in wind speed forecast lead to a
big error in the power forecast.

A ramp is defined by the following parameter [14]:

• Magnitude ∆Pr: the variation of power

• Duration ∆tr: the time during which the variation of power occurs

• Ramp rate ∆Pr/∆tr: a metric to quantify the intensity of a ramp

• Direction: states whether it is an up-ramp or a down-ramp.

Up to now, there is no consistent definition of what the magnitude and duration of the
variation in power should be for an event to be considered as a ramp. For ∆tr the definitions
range from 10 min to 5 h. The associated ∆Pr are partially defined as absolute values, e.g.
∆Pr = 150MW or as relative deviations from the rated power of the considered wind turbine
or wind farm. Extreme ramp events, are for example ramps with a magnitude of ∆Pr ≥ 50 %

over a duration of 30 minutes, or ramps with a magnitude of ∆Pr ≥ 70 % over two hours (Figure
6.33).

In this thesis, all ramps with a duration of 30 minutes and longer and magnitudes of ∆Pr ≥
30 % will be considered.

6.4.1 Detecting wind ramps

The wind ramps in this thesis are analysed for the offshore site alpha ventus, using the power
data of the AV04 turbine. To detect wind ramps, the so called minimum-maximum method
[58] is applied to the power data of the AV041. This method finds the maximum magnitude
change of power ∆P within a moving window with the length ∆t, where Pmin and Pmax are the
minimum and maximum power value within this window. If ∆P ≥ ∆Pr, and the magnitude
of the power change is greater or equal to the predefined ramp threshold ∆Pr, the event is
considered a ramp. If multiple pairs of points meet the threshold criteria, only the shortest
time ∆t is used.

The ramp duration ∆tr is determined by the times tmin and tmax that correspond to Pmin
and Pmax. If tmin < tmax the event is an upward ramp, and vice versa.

1This section is based on the Master thesis "Lidar-based Wind Ramp Forecasting in Complex Terrain" carried
out by Svenja Ellinghaus, which was handed in at SWE in 2018 and supervised by the author of this PhD
thesis.
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Figure 6.33: Schematic diagram of a ramp matrix. The ramp duration is denoted WL, the ramp mag-
nitude is denoted ∆pRD. Extreme ramps are in the top-left corner, and low-amplitude ramps of longer
duration are in the bottom-right corner. Reproduced without modifications from [58] ©American

Meteorological Society. Used with permission.

Up- and down ramps were counted at the AV04 from March 1st, 2020 to December 31, 2020.
Four different time windows and five different power thresholds were used [58]. The ramp-count
matrix (Figure 6.34) counts the cumulative numbers of ramps with magnitudes ∆P equal to
and above this threshold. This means that a wind ramp of ∆P ≥70 % over 1 h fulfills this
threshold but also the threshold ∆P ≥30 % over the same duration and will therefore be taken
into account in the matrix.

The number of upward ramps and downward ramps are very similar for the AV04. Small
ramps with a magnitude of ∆P ≥30 % over 30 minutes occur frequently. Extreme ramps (up-
or downward) with a magnitude of ∆P ≥70 % over 30 minutes occur on average around twice
per month. Figure 6.35 gives an example for both cases.
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Figure 6.34: Number of upward (left) and downward ramps (right) for different ramp durations ∆t
and ramp magnitudes ∆P at the AV04 turbine. Axis limits and color scale are the same on both plots.
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Figure 6.35: Timeline of power generation of the AV04 turbine with wind ramps marked with a
magnitude of ∆P ≥30 % over 30 minutes (top) and wind ramps marked with a magnitude of ∆P ≥70 %

over 30 minutes (bottom).
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6.4.2 Assessing the ramp impact on the forecast accuracy

Since there were several ramp events occurring during the offshore forecast campaign, the
question is what impact the ramps have on the forecast accuracy. It is assessed, whether the
lidar-based forecast method is able to forecast the variation in power and whether it is able to
forecast the variation more precisely than the persistence method.

To that end, the probabilistic error metric CRPS is compared for 0-10min forecasts of the
AV04 of periods where a ramp event was taking place and periods where no ramps event was
taking place (Figure 6.36). All periods were marked as ramp events that were found in the
previous section. This analysis is only carried out for the offshore site, as the availability of
forecasts is significantly higher, and therefore the statistical analysis is more meaningful.

For periods where no ramps occur, the lidar-based forecast and persistence have almost the
same accuracy. However, the error of the lidar-based forecast is significantly smaller than the
error of the persistence forecast during ramp events, both for the wind speed and the power
forecast. During the ramp events, the lidar-based forecast demonstrates its strength: using the
preview information from the wind speed measured a few kilometers in front of the turbine, it
is able to forecast the changes of power. Persistence only uses old information from the past
and therefore cannot forecast large changes in the future.

6.4.3 Case study of a failed ramp forecast in the onshore campaign

In the previous section the impact of ramp events on the forecast was statistically analysed for
the offshore campaign. The same analysis is not conducted for the onshore campaign, because
in the analysis process it was found that the lidar-based forecast failed in several cases to
forecast ramp events in Stötten. In order to determine the cause, one ramp event is analysed
in this section as a case study.

In July 21, 2016 the measured wind speed at the onshore turbine increased within 20 minutes

from 4.74 m s−1 at 02:40 to 13.73 m s−1 at 03:00 (Figure 6.37). Accordingly an upward wind
ramp in the turbine power was detected with a magnitude of ∆P ≥86 % over 20 minutes. The
lidar-based forecast however was not able to detect this ramp and resulted in a CRPS error of
4.27 m s−1 for the wind speed forecast and a CRPS error of 39.8 % for the power forecast at
03:00.

To analyse the cause, the measured lidar wind speed and the wind speed that is actually taken
into account for the forecast is analysed (Figure 6.38). At 02:52 the wind direction was around
270° and the lidar measured straight into the wind direction. The maximum measurement
range was around 6 km and the wind speeds that were taken into account for the forecast from
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Figure 6.36: CRPS of offshore forecast for periods with and without ramp event taking place for the
lidar-based and persistence forecast.
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Figure 6.37: Timeline of a ramp event at the onshore site in Stöetten. The ramp is seen in the
wind speed (top) and power data (second from top) of the turbine. The ramp event with a magnitude
∆P ≥86 % over 20min is marked in the power data. Timeline of the lidar-based power forecast (third
from top) and wind direction reconstructed from lidar data given for the same time period (bottom).
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the lidar scan were low. With the next scan, the wind direction changed to 300° and the lidar
started to measure high wind speeds in the distance at 02:54. At this point, the wind ramp
started to pass the area, and the lidar-based forecast would have had the chance to forecast it.
However, the measured wind speeds were not taken into account for the forecast, because the
wind direction had changed while the scan direction stayed fix and the lidar did not measure
into the wind direction anymore. In this configuration the measured wind vectors never actually
arrived at the turbine.

In the following minutes, the wind ramp passed through the area quickly, and the lidar
measured high wind speeds. The forecast however, continued to use old information with low
wind speeds vectors from the time, when scan direction and wind direction were aligned. The
result was that the wind ramp was not forecasted, and the error in the forecast increased.

Two lessons can be learned from this case study. First, it is crucial that the measurement
direction and the wind direction are aligned. If the lidar does not measure into the wind, it
misses the information for the forecast, and wind ramps cannot be forecasted. Therefore, it
is advised to mount the lidar on top of the nacelle, so it rotates automatically along with the
wind direction. If the lidar is installed on a fixed platform, the other option is to automatically
adjust the scan direction of the lidar according to the measured wind direction. The downside
of this second option is that for the scan direction adjustment, old information from a last scan
has to be used (which might not be valid anymore).

The second lesson to be learned from this example is that the lidar scan trajectory should be
kept as narrow as possible. In the case of the campaign in Stötten, the range of azimuth angle
of the scan trajectory was set to 40°. However, - at the cost of additional scan time - only a
fraction of the measured information was used for the forecast. Since time is crucial to forecast
wind ramps, the scan trajectory and its duration should be optimized, in order to measure only
the necessary wind speed information as quickly as possible.

6.5 Lessons learned

Inflow measurements from lidars contain preview information of the stochastic variation of
the wind field, which the wind turbine experiences after a forecast is issued. With the help
of the turbine’s power curve, the power forecast is obtained from the wind speed forecast.
The variation of wind speed results in a variation of forecasted power. Therefore probabilistic
forecast methods are necessary to quantify the uncertainty in the forecast for a specific forecast
horizon.

Probability Density Functions (PDF) and Cumulative Distribution Functions (CDF) quantify
the forecasted wind speed and power variation for each forecast horizon. Using these tools,
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Figure 6.38: Scan plots of wind speed propagation from four consecutive scans of measurements
during a ramp event at the onshore site in Stötten. Wind direction changes with each scan. Wind
speed vectors in grey miss the turbine (marked red) and fade out with time, wind speed vectors in blue

are used for the power forecast and do not fade out.
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confidence intervals can be calculated, that indicate the likelihood of a wind speed or power
forecast value.

To evaluate probabilistic forecasts, the calibration of the forecast needs be checked and the
forecast error needs to be quantified, by comparing the forecast to the actual wind speed or
power measurement of the turbine. Appropriate tools need to be chosen, such as the Probability
Integral Transform (PIT) histogram for the calibration, or the Continuous Ranked Probability
Score (CRPS) for the forecast error.

It should be ensured that the wind speed and power measurement which is used for reference
is well calibrated and free of outliers. Good quality observational data is essential to evaluate
a forecast.

To analyse a new forecast method, the forecast horizon should be chosen according to the time
resolution of the available observation from the wind turbine, which is used for the evaluation
of the forecast.

The results of the calibration of the onshore and offshore campaign show that forecast hori-
zons above 10 minutes result in biased lidar-based wind speed and power forecasts. For these
forecast horizons, only small wind speeds are used which were measured in farther distances
and therefore take longer to reach the turbine. Therefore the forecasts underestimates the ac-
tual wind speed and power. A forecast of more than 10 minutes with the lidar-based method
proposed in this thesis, and with the limited measurement range of the long-range lidar used,
is therefore not advised.

The availability of the forecast for the nacelle-based lidar setup offshore is significantly higher,
than for the fixed setup onshore. A forecast was not possible only in 1.8 % of the cases when a
forecast could have been carried out (because the turbine was running and in power production).
As the lidar was rotating along with the wind direction, a forecast was not possible only when
the available of the lidar signal, e.g. due to fog, was too low. At the onshore campaign, the
forecast was not carried out, although it could have been, in 28.1 % of the cases. This high
number is due to the fact that a forecast was only carried out when the scan direction matched
the wind direction. It is concluded that it is necessary to install a lidar on top of the nacelle for
minute-scale forecasting, or to automatically adjust the scan direction according to the wind
direction.

The forecast error of the lidar-based forecast in the first forecast horizon up to 10 minutes of
the onshore campaign is higher than the error of the benchmark forecast method persistence.
It can be concluded that the simple Taylor-based propagation model used in this thesis, does
not reflect the actual propagation at the complex onshore site well enough, and the lidar-based
forecast therefore has a higher error. To use lidar-measurements to forecast in complex terrain,
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a more sophisticated wind evolution model will be necessary.

The forecast error of the lidar-based forecast in the first forecast horizon up to 10 minutes
of the offshore campaign is lower than the error of the benchmark forecast method persistence.
Only data where the wind turbine was not affected by the wake of the surrounding turbines was
taken into account for this analysis. It can be concluded that lidar-based minute-scale forecast
holds value over the benchmark persistence for the first 10 minutes forecast horizon.

Analysing the error of the lidar-based forecast further shows that the error depends on the
wind speed. This is most likely related to the tilt of the turbine and the wind shear. Firstly,
as wind speeds increase the thrust acting on the turbine increases and so the turbine tilts
back. At rated wind speeds the thrust reaches its peak. As a result the lidar does not measure
horizontally, but with an upward tilt. Therefore the measurement height of the lidar increases
with the measurement range and is highest at rated wind speed. The actual measured wind
speed then deviates from the hub-height wind speed. Depending on the wind shear, this leads
to a measured wind speed that is higher than the hub height wind speed. Secondly, wind
shear usually increases as wind speed increases [59]. This means that the effect of small height
differences leads to bigger deviations in lidar derived wind speed at higher wind speeds, than
at lower wind speeds. For both reasons the wind speed forecast overestimates the actual wind
speed for higher wind speeds. It is noted however, that this does not necessarily affect the
power forecast, as the error is most significant for above rated wind speeds, when the power is
constant rated power.

The analysis of the lidar-based offshore forecast during wind ramps shows that the power
variations are correctly predicted. Compared to the benchmark persistence, the error of the
lidar-based forecast is significantly lower during these events (maximum CRPS of 11 % of rated
power for the lidar forecast versus 17 % for persistence). During ramp events, the lidar-based
forecast demonstrates its strength: using preview information from the wind speed measured a
few kilometers in front of the turbine, it is able to forecast changes of power. Persistence on the
other hand only uses old information from the past and therefore cannot forecast any future
changes. It can be concluded concluded that the added value of using a lidar for minute-scale
forecast lies in forecasting significant changes of power. As wind ramps are potentially critical
to the grid stability, or can affect the cost of balancing the power system if they are not forecast
well, using a lidar to improve the forecast can be beneficial and valuable.

At the onshore site, it was noted that the lidar failed several times to forecast a wind ramp.
This is due to the fact that the lidar measured the increase in wind speed, but the wind vectors
never arrived at the turbine because scan direction and wind direction were not aligned. Again,
it is concluded, that the scan direction should be optimized and aligned with the wind direction
at all times. Also the opening angle of the scan trajectory should be as narrow as possible, and
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only necessary wind speed information should be measured, to reduce the scan duration - as
time is critical to forecast wind ramps.





7

Challenges for the implementation of lidar-based

minute-scale forecasting

In the previous chapters, the forecasting chain for minute-scale forecasting using lidar data was
introduced and results from two measurement campaigns were discussed. It was shown that the
forecast accuracy can be increased - especially for wind ramp events - when using the preview
information that a lidar provides of the inflowing wind field.

In this chapter, the challenges for the implementation of lidar-based minute-scale forecast-
ing are discussed. One challenge is the availability of the measurement itself. Therefore the
influence of the measurement range on the forecasts and the factors impacting the measure-
ment range are analysed in Section 7.1. Finally in Section 7.2 other barriers to the adoption of
lidar-based forecasting and possible solutions are explored.

7.1 How far do we see?

The measurement range of a lidar is not constant but varies because it depends on the content
of aerosols in the air. The aerosols are responsible for the backscattering of the laser light,
which in turn allow the lidar to measure the speed of the aerosols. If there is too much, or too
little aerosol content, the lidar does not measure the correct wind speeds and is “blind”.

The challenges for minute-scale forecasting are a) a reliable forecast should be available at
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all times and b) that the measurement range influences the forecast horizon. Therefore, this
Section seeks to answer to the question: how far do we actually see with the long-range lidar
used in the measurement campaign and what is the influence of the measurement range on the
forecast horizon.

7.1.1 Correlating the measurement range and the forecasting horizon

The possible time horizon for short term forecasts depends on two factors. One is the wind
speed itself - at very high wind speeds the wind field moves faster and the forecast time is
correspondingly shorter. Another factor influencing the forecast horizon is the measurement
range. If, for example, the wind can actually be measured at a distance of 10 km, the forecast
time is twice as long as when measured at a distance of 5 km, provided that the parameters
remain otherwise constant. The lidar measurement range is, due to its measurement principle,
strongly dependent on the prevailing environmental conditions [60] and prone to fluctuations.
In unfavourable conditions, the measuring range is strongly limited. As a result, the forecast
horizon of the wind speed or power forecast is also influenced by environmental conditions and
not constant.

Figure 7.1 shows the relationship between the measurement range, the wind speed and the
forecasting horizon based on Taylor’s frozen turbulence hypotesis (cf. Chapter 5.1). For a
10-minute-ahead forecast at 5 m s−1, the measurement range needs to be over 3 km. A 20-
minutes-ahead forecast is only possible for wind speed less than 8 m s−1, because only low wind
speeds take that long to reach the turbine from a distance of 10 km. And if a critical shut down
of the wind turbine due to wind speeds above the cut-out wind speeds of 25 m s−1 should be
forecast with a forecast horizon of 5 minutes, the measurement range needs to be at least 7 km.

7.1.2 Analysing the measurement range

The goal of this analysis is to investigate the possible range of the lidar measurement depending
on different factors. Data from the onshore site in Stötten was used for this analysis measure-
ment. In particular, the effects of environmental influences on the achieved measuring ranges
were investigated. Met mast data was used to correlate environmental conditions to the lidar
measuring range. The met mast was located in the immediate vicinity of the lidar measurement
and could therefore provide data on meteorological parameters at the same time (c.f. Chapter
4.1). The data evaluation is done with the help of statistical methods.

For the statistical evaluation of the measurement range, data from different measurement
trajectories were analysed (c.f. Table 4.1 in Chapter 4.1). For each trajectory, the number
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Figure 7.1: Forecast horizon calculated based on Taylor for different wind speeds and measurement
ranges; the horizon is given in minutes. The wind speed ins shown only for wind turbine operational

range. Reproduced without modifications from Würth et al. [16] with permission.

of range gates is given in the data sheet. This number indicates how many parts the mea-
suring range is divided into. Together with the length of the range gates the range for each
measurement point can be calculated.

The first question is, what is the maximum measurement range per ray. The measurement
data that remain after filtering do not allow a clear distinction of the maximum range, as valid
and invalid data are mixed in farther measurement distances. However, in order to determine
the maximum measurement range, the limit of valid data for each measurement ray must be
known. Therefore, a method had to be developed to determine the range of a measurement. To
determine the range for each individual beam, the methods Sum Range and Weighted Range
were developed 1. With the Sum Range method, the measurement distances where valid data
are available are summed up for each beam.

RangeSum Range =
∑

Measurement distance of valid data. (7.1)

The second method Weighted Range takes into account the gaps of data along a ray and
weights sections with adjacent areas of valid measurement data, so called blocks, higher com-
pared to sections with a lot of data gaps. This means the number of valid data as well as the
length of a block with valid data is taken into account:

1The methods were developed by Alex Brenner in a study thesis supervised by the author of this document
[61]. The methods were also discussed in a paper, written by the author of this thesis and co-authored by
Alex Brenner [62]
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Figure 7.2: Schematic visualization of the results of two methods to determine the maximum range of
a lidar measurement of an example data set of 10 range gates (first row) and maximum measurement
range (second row). Filled points mark valid data. Reproduced without modifications from Würth et

al. [62] with permission.

RangeWeighted Range =

∑
(block end · block length)∑

block length
. (7.2)

The end of the block represents the maximum range of the measurement within a block of
valid data. The block length determined by the product between the number of range gates
and the range gate length within a data block.

The results of both methods are schematically visualized in Figure 7.2. The comparison
shows that the gaps in the data lead to a lower range using the weighted range method.

In order to decide which of the range determination methods should be used, the results
were compared for different data sets. Figure 7.3 shows a data set where the range varies
greatly over a period of several hours. Comparing the calculated ranges of the Sum Range and
Weighted Range methods, it is noticeable that for periods of time with a greater range, the two
methods match well. However, for periods of time in which the lidar device measures almost
no valid data, the Weighted Range method still calculates a range of several hundred meters.
The reason is that measurement data that have been erroneously marked as valid by the filter
algorithm are more important for this method. If there are few data available, the calculated
range is therefore erroneously extended by these outliers for the Weighted Range method. One
can conclude that the Weighted Range method does not work robustly and reliably, especially
for periods of time with a very short range. For this reason, further investigations into the
influence on the range were carried out using the Sum Range method.

Once it was clear which method could be used to determine the range, research was carried
out to determine which factors influence the range. First the maximum measurement range of
the onshore data set was calculated (Figure 7.4). During the campaign, the measurement range
varied with time, alternating between ranges close to 0 m and ranges up to almost 10,000 m.
Three sources were identified and investigated that could cause a variation in the measurement
range:
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Figure 7.3: Comparison of the Sum Range and Weighted Range method applied to a filtered data
set. Reproduced without modifications from Würth et al. [62] with permission.
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Figure 7.4: Maximum measurement range over time for the onshore measurement campaign in Stötten
averaged over 10 minutes.
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1. Data processing method. During the analysis of the data, it was found that the choice
of filter algorithm significantly impacts the amount of valid data in farther ranges, and
therefore has an impact on the measurement range.

2. Lidar measurement setting. When starting a lidar measurement, the number of pulses
emitted per ray must be chosen by the user. This setting influences the quality of the
backscattered signal, and therefore also the measurement range.

3. Environmental conditions. The lidar measurement principle is based on the backscatter of
the laser pulses from aerosols. Therefore the quality of the signal (and the measurement
range), depend on the amount of these aerosols in the air. The amount of aerosols in turn
depend on environmental conditions at the measurement site.

The influence of each of these factors on the measurement range is discussed in the following.

Filter algorithm

As described in chapter 4.2.1, the measured lidar data must be checked for invalid data points.
Depending on the filter algorithm, different data will be marked as valid or invalid. A very
conservative algorithm filters out all invalid data but also marks valid data as invalid. This
in turn has an effect on the measurement range, since data is lost, especially at greater mea-
surement distances (Figure 4.8). A robust filter algorithm that detects only invalid data is
therefore essential for achieving the highest possible measurement range. In this thesis, the
so-called “range filter” was developed and used for this purpose.

Number of pulses

The number of pulses emitted by the lidar device is an important, device-specific factor influenc-
ing the measuring range. The number of pulses determines how many pulses are emitted which
are then reflected by aerosols. The radial velocity is then determined from the backscatter.
The more pulses are emitted, the more laser energy is emitted and the higher the probability
of a good backscatter signal. The number of pulses can be selected by the user. During the
measurement campaign in Stötten four different configurations were tested. The number of
pulses changed from 10,000 to 60,000 and each trajectory was executed over several weeks.

Figure 7.5 shows the progression of the proportions of valid data over the measurement
range for different pulse counts. All curves show that the proportion of valid data decreases
with increasing range, with the largest decrease being observed at about 4500 m. At higher
ranges, the proportion of valid data for all pulse numbers approaches zero. In this graph the
data of the first three range gates show no physically meaningful values. The reason for this
is the length of the emitted pulse. This pulse cannot be infinitely short and so the backscatter
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Figure 7.5: Comparison of of the valid measurement points over the measurement range for different
number of pulses. The legend also indicates the number of days the measurements were conducted.

signal from the first three range gates would reach the lidar before the pulse is completely
transmitted.

If one looks at the figure with regard to the different numbers of pulses, it is noticeable that
from 10,000 to 40,000 pulses the measurement distance with the highest loss of data is shifted to
higher ranges. Thus it could be assumed that the range improves on average with the number
of pulses. This can be explained by the fact that a higher number of pulses increases the
probability of encountering aerosols which generate a detectable backscatter signal. However,
increasing the number further to 45,000 pulses does not lead to a higher measurement range.
An explanation might be found if one compares the amount of days during which the respective
measurements were carried out (c.f. Table 7.1). The scan with 45,000 pulses was running four
times as long as the scan with 40,000 pulses, which leads to the conclusion that apart from
the data filter, and number of pulses, also the season and environmental conditions influence
the measurement range. This conclusion is confirmed, as increasing the number of pulses to
60,000 does not increase the range significantly. It should be noted that in order to analyse
the impact of the number of pulses independently of other influences, a measurement campaign
should be carried out with several lidars measuring simultaneously with different numbers of
pulses. However, this was outside of the scope of this thesis.

There is high variability in the measurement range, independent of the number of pulses
(Figure 7.6). Also, it is clearly shown that the average measurement range which can be achieved
does not come close to the measurement range of 10,000 m from the product specification. In
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ID Period No. pulses No. days

1 28.04.2016 00:00 10,000 2926.05.2016 23:40

2 07.06.2016 00:00 30,000 87.502.09.2016 12:20

3 02.09.2016 14:00 40,000 23.826.09.2016 08:20

5/6 05.09.2016 08:20 60,000 120.125.04.2017 23:50

7 26.04.2017 14:20 45,000 9601.08.2017 00:00

Table 7.1: Overview of measurement periods with different number of pulses, cf. also Table 4.1.

fact, depending of the number of pulses, the median of the measurement range is close to
5000 m. Only rarely and only with high number of pulses of 60,000 the measurement range
extends to 10,000 m. The histograms in Figure 7.7 confirms this and also show that frequently
the measurement range is close to 0 m for all number of pulses. This bi-modal distribution of
the range with two peaks is typical for long-range lidar measurements. Either they measure
several kilometers, or they measure close to 0 m. This variability of measurement cannot be
explained with the lidar settings but is caused by external factors.

To conclude, an increase of the number of pulses does not necessarily improve the measuring
range proportionally. A doubled number of pulses however doubles the time required for the
respective measurement. During this time the wind field within a scan can change and it
becomes difficult to get a coherent picture of the wind speeds. The choice of the number of
pulses should therefore be made according to the intended use of the measurements or it could
be made adaptive according to wind speed and environmental conditions.

Environmental conditions

Aerosol content and composition have a decisive influence on the measuring range of the lidar
measurement. The aerosols in turn are changed by environmental influences [63]. For this
reason, the correlations between environmental influences and the resulting measuring range
of the lidar measuring device have been analysed. The measurement data of the environmen-
tal parameters for this purpose were obtained from the measuring mast which recorded data
simultaneously to the lidar measurements at the beginning of the measurement campaign.

Figure 7.8 shows an overview of the correlation between the maximum measurement range
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(c) 40,000 pulses
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Figure 7.7: Histograms of maximum range for different number of pulses. Median of data marked as
grey line.
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and several environmental variables of the site: the relative humidity, rain, air temperature,
atmospheric pressure, air density, wind speed, wind direction and turbulence intensity. In
Figure 7.9 the correlation between humidity and rain is given. For the figures only scans with
30,000 pulses, measured in summer conditions, were considered and the data were averaged
over 10 min.

The relative humidity is an important indicator for fog or cloud formation. Figure 7.8a
shows the relative humidity from 5 m height in correlation with the measurement range of the
lidar. High humidity was frequently observed, when the lidar range was close to zero. When
lidar measured only up to 2000 m, the observed humidity was at least 85 %. When the lidar
measurement range was higher than 2000 m, there is no correlation observed between the range
and the humidity.

To investigate which environmental variable has the strongest correlation to the measurement
range, the Maximum Information Coefficient (MIC) between the maximum range and the
environmental variables is calculated (Figure 7.10). MIC is a tool to measure the strength of
the linear or non-linear association between two variables X and Y. It belongs to the maximal
information-based non parametric exploration (MINE) class of statistics [64]. Similar to the
coefficient of determination R2 for linear regressions, the MIC score takes values between [0 1],
with 1 showing a complete dependency between the two variables and vice versa for 0. While all
investigated variables do not have a very strong dependency with the range with MICs below
0.3, humidity scores the highest, followed by temperature, pressure and wind direction. Wind
speed and turbulence intensity do not have a a big impact on the measurement range.

With the help of a detailed observation for one day on June, 8th 2016 the correlation between
humidity and measurement range is investigated further. Figure 7.11 shows the trend of the
measurement range together with the trend of the relative humidity. The selected day shows
large fluctuations in the range of over 5000 m. In the morning, the range increases to over
6000 m while the humidity decreases. A first sharp declide of the range can then be observed
from 11:00 on. The range decreases from above 5000 m to about 3000 m. At the same time the
humidity begins to rise. A further decrease in range at 14:00 is accompanied by an increase in
relative humidity. The measurement range drops to few hundreds of meters. For the rest of
the day the range remains very low and the humidity high, only interrupted by a short period
of higher range at 18:00.

In the time periods with very high humidity it is assumed that fog or precipitation occurs
and thus the range is greatly reduced. To show the correlation between range and fog, the
same time period of one day is chosen and the range is compared with webcam images from the
measurement site (Figure 7.12). When cross checking significant points during the day with
high or low measurement range with the cloud formation at the site, it becomes clear that the
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Figure 7.8: Maximum measurement range versus different environmental conditions. Data are aver-
aged over 10 minutes for measurement period from June 7th - August 8th 2016 where lidar measured

with 30,000 pulses.
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Figure 7.9: Correlation of humidity and rain sensor data. Data are averaged over 10 minutes for
measurement period from June 7th - August 8th 2016 where lidar measured with 30,000 pulses.
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Figure 7.10: Maximum information coefficient (MIC) between maximum range and different envi-
ronmental variables.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time [HH:MM]

0

1000

2000

3000

4000

5000

6000

7000

M
ax

im
um

 r
an

ge
 [m

]

70

75

80

85

90

95

100
H

um
id

ity
 [%

]

Figure 7.11: Maximum measurement range (black line) on June, 8th 2016 with humidity (grey line)
and rain (blue bars).
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Figure 7.12: Webcam pictures of the measurement site on June 8th, 2016.

maximum measurement range is directly related to the visibility. At 09:00 in the morning, the
high visibility leads to a high measurement range. Due to the cloud front that moves through
at noon, the range drops. When rain starts around 15:00 in the afternoon, the measurement
range collapses further. Only when it brightens up at around 18:00 in the evening, the range
increases again.

In summary, it can be said that the range of the lidar measurement, and thus also the possible
prediction horizon, is strongly dependent on the humidity, the number of pulses and also the
filter used. Although the investigations in this sections were conducted only for the onshore
campaign, this conclusion is also valid for offshore measurements. The physical measurement
principle is the same offshore, but other environmental factors, such as the amount of salt
particles in the air might influence the measurement range. However, this investigation of
offshore conditions was outside of the scope of this thesis.

For the location on the Swabian Alb the average measurement range of the lidar was around
5 km and with a pulse number of 40,000 pulses, with a high variability between 0 km and 8 km.
The measurement range of 10 km documented in the product data sheet, was not reached.
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7.2 Overcoming barriers to adoption with the help of the community

On June 12/13 2018 a collaborative workshop between the IEA Wind Tasks 32 and 36 on ”Very
short-term forecasting of wind power” took place in Roskilde, Denmark. It was organised by the
author of this thesis organized together with colleagues from the University of Oldenburg and
DTU2. The goal of the workshop was to use the international platform provided by IEA Wind
to bring together experts from different countries; to enable an exchange of experience; and to
discuss the barriers and solutions to the adoption of minute-scale forecasting of wind power.
A tangible outcome form the workshop was an overview paper of methods for minute-scale
forecasting, led by the author of this thesis [12]. .

Several methods for minute-scale forecasting were discussed during the workshop and in
the paper. Using preview data from lidar data was categorized as a remote-sensing-based
propagation model method which brings unique advantages compared to historic time-series
based models or NWP models.

Only remote sensing data offers high resolution information of the wind field which has not
yet reached the turbine or wind farm and is therefore able to forecast not only trends, but
future critical events.

The discussion also identified barriers which stood in the way of implementing lidar as a
state-of-the art tool for minute scale forecasting.

• Availability of measurement: The measurement range fluctuates and measurements and
thus forecasts are not always available.

• Reliability and prizing of lidar devises: The hardware can break and loose functionality
and long-range lidars are very costly. A favourable cost-benefit ratio has not been proven.

• Need for common tools and standards: There are no common tools or standards available
for measurement campaign setup, maintenance scheduling or data processing.

In this section, those barriers will be discussed in light of the results and insights of this
thesis.

2Information including minutes and a link to a video recording of the workshop can be found at https:
//community.ieawind.org/task32/events/event-information/workshop-09

https://community.ieawind.org/task32/events/event-information/workshop-09
https://community.ieawind.org/task32/events/event-information/workshop-09
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7.2.1 Availability of measurements

The measurement range of the lidar fluctuates due to device settings but also due to envi-
ronmental conditions, which cannot be influenced. The measurement range is site specific and
depends on (for example) rain showers or fog. Physics cannot be changed and the measurement
principle dictates the measurement range and availability of data. The dilemma is that the mea-
surement range also determines the forecast horizon, and online forecasts are not possible if the
lidar cannot obtain data.

For this thesis, an analysis of the measurement range of a scanning-lidar was carried out for
the first time (cf. Chapter 7.1.2). Thanks to the measurement period over several months, it
was possible to thoroughly study the availability of data for different conditions. On average
the StreamLine XR measured at the onshore site with a measurement range of around 5 km,
which corresponds to a forecasting horizon ranging from 20 min for a wind speed of 4 m s−1

(cut-in) to 7 min for a wind speed of 12 m s−1 (rated) (Figure 7.1). Humidity was identified as
the strongest influence on the measurement range and it was shown that the range corresponded
with the visibility at the site. It was also shown that the range was frequently down to few
hundred meters and thus power forecasts were not possible.

A solution to this dilemma that was discussed in the workshop is to find out what the opti-
mum conditions for a good measurement range actually are. A thorough study in this area is
lacking. A conclusion from this thesis is that it should be investigated what the conditions are
that influence the visibility. Aerosol contents need to be studied, and it will be intersting to in-
vestigate, which sites (onshore/ offshore, complex/ non-complex) will come out as measurement
range winners.

A second solution to the range dilemma that was discussed, is the need for “Plan B” - a
fallback solution which is able to provide minute-scale forecasts in case the lidar does not
deliver. Other sensors, e.g. radars or drones should be investigated as supplements. Also
assimilating the measurement data into NWP models could make the forecasts more robust. A
simple solution could also be to fall back on persistence.

7.2.2 Reliability and pricing

Just as every other electronic device, the lidar can break down and lose functionality. Scanning
wind lidars have only been on the market for less than 10 years and especially new generations
of lidar devices still need to be optimized for robustness. Since there are only a handful of
manufacturers on the market, the competition has not led to a drop in prices of the devices.
Prices of more than 200k Euros are standard. Therefore the idea to have a second lidar as a
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backup, redundant system for minute-scale forecasting is financially unattractive.

To overcome the reliability and prizing barrier of lidar devices, the focus of the ongoing
research should be on evaluating the added value of the lidar-based minute-scale forecasting.
End users of the forecasts, such as wind farm operators, or transition system operators need to
be included in future research projects, to find out what the cost-benefit balance of lidar-based
forecasting is.

Another trend in research that could help overcome the pricing barrier, is conducted in the
area of lidar hardware. The initiative OpenLidar strives towards an open source collaboration on
wind lidar hardware and software [65]. Its goal is to encourage collaboration around wind lidar
by developing a modular wind lidar architecture and providing a framework for cooperation.
Modular lidars have the benefit, that malfunctioning parts can be easily exchanged, which
drives down the cost of maintenance. Also production lines for manufacturing can be set up
more cost effective, if the lidar modules are standardised in the future.

Another research activity that is of interest in the area of hardware development is the project
ANWIND. In the BMWi3-funded ANWIND project, the University of Stuttgart and a lidar
manufacturer are developing a robust and compact lidar scanner. Both initiatives, OpenLidar
and ANWIND, show clearly the trend: the future devices will have a lower cost and at the
same time increased robustness and reliability.

7.2.3 Need for standards and common tools

When planning the lidar measurement campaign for this work, there was no previous work
or experience that could be built on which explained how to set up such a campaign for the
application of minute-scale forecasting.

The campaigns that were carried out in this work are just a first attempt and there are more
open questions about what an ideal campaign should look like. Possible questions are

• how many lidars are necessary,

• if they are best installed on the nacelle of a wind turbine, or on the transition piece,

• and also what an ideal measurement strategy should be: only horizontal measurements
or mixing them up with vertical scans.

The solution to this lack of standards is to continue the work and set up measurement cam-
paigns for different forecasting use cases, such as for onshore/offshore sites and small/very large
wind farms. The workshops participants agreed that the next step should be the writing of

3Federal Ministry for Economic Affairs and Energy
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Recommended Practices which gather the experience and knowledge from a range of measure-
ment campaigns and experts. The IEA Wind community offers the perfect platform for such
a document. These Recommended Practices could lead to a set of standards, that give guid-
ance for the setup of the measurement campaigns, but also for practical matters such as lidar
maintenance schedules or data quality criteria to be assessed.

Another barrier is the lack of a common tool set to process lidar data. This barrier is not
unique to the application minute-scale forecasting but is relevant for all applications that use
long-range scanning lidar data. These devices only provide radial wind speed measurements
that need to be filtered and further processed before use. Significant amount of work in this
thesis had to go into the data processing (cf. Chapter 4). Up to now, there is no open source
toolbox available to process data, and every end user writes their own code. The solution lies
in creating such a toolbox that allows the exchange of data processing methods and code. Also
lidar suppliers should support this community effort and adapt to the needs of their customers
better.

7.3 Lessons learned

There are three challenges that need to be overcome in order to establish lidar-based forecasting
as a state of the art minute-scale forecasting method:

• the availability of the measurements,

• the robustness of the device and its cost,

• and the lack of standards.

The availability of the lidar measurement depends on the aerosol content in the air and so is
not guaranteed. Therefore the maximum measurement range varies and is especially impacted
by environmental conditions. Humidity has the strongest influence. If the lidar is used for
minute-scale forecasting, a fallback solution needs to be implemented that still guarantees a
forecast, even if the is no lidar data available.

Apart from environmental conditions, the maximum measurement range of a lidar is also
impacted by the trajectory setting and the data processing, meaning the number of pulses
per measurement and the filtering method used to find outliers. The maximum ranges were
achieved with 40,000 pulses and a filter that uses only the wind velocity data achieved the
highest ranges.

The forecasting horizon of lidar-based forecasting depends on the wind speed but also on the
maximum measurement range of the lidar. A measurement range between 2 km and 7 km is
needed, for forecasting horizons of 10 minutes. For forecasting horizons of more than twenty
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minutes, the measurement range needs to be at least 5 km for low wind speeds of 4 m s−1 and
over 10 km for wind speeds of 8 m s−1 and more.

Scanning-lidars are still a relatively new technology. The robustness of the devices and their
cost are perceived as a challenge. However, the lidar used in this thesis, worked reliably in
measurement campaigns of several months on- and offshore. A maintenance before and after
the campaign at the manufacturer is still recommended strongly. Although the current costs
of scanning lidar are high, it is expected that the costs will drop in the next years. Initiatives
like OpenLidar, striving for open, modular lidar systems, might help this development.

The lack of standards for using lidar for an application such as minute-scale forecasting can
be overcome with the help of the international community gathered around the IEA Wind
initiative. Task 32 on wind lidar and Task 36 on forecasting could work together to enable a
community driven exchange of experience that results in the writing of Recommended Practices.
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Summary and conclusions

This chapter concludes this thesis. First a summary of the major findings ins give in Section
8.1, then the future work is outlined in Section 8.2 and the final conclusions are drawn in
Section 8.3.

8.1 Summary

In this thesis, the use of a long-range lidar to forecast wind power on the minute-scale was
investigated. The objective of the thesis, as stated in the introduction, was to answer four
fundamental questions about lidar-based minute-scale forecasting. In the following section the
answers that were found are summarised.

8.1.1 How should the lidar data information be processed to gain a power forecast

for a wind turbine?

When the work for this thesis was begun, no prior knowledge on how to process lidar data to
gain a power forecast for a wind turbine was available. A process of a forecasting chain was
established for this purpose. The chain describes the transformation of measured radial wind
speed data to horizontal wind speed and wind direction as step number one; the propagation
of the measured wind speed information to the wind turbine, with the help of an advection
model as step number two; and finally the transformation of the forecasted wind speed at the



146 8 Summary and conclusions

turbine into forecasted power using the power curve as step number three.

Along this forecasting chain methods that were previously applied for other applications,
were adapted to the need of lidar-based forecasting. In step number one, a new filter method
to detect wind speed outliers in the lidar data was optimized for the use of long-range lidar
data. To transform the radial wind speed measurements into horizontal wind speed and wind
direction information, a new global-local wind field reconstruction algorithm was introduced.
The result was the wind field information upstream of the turbine that was needed for the
forecast.

In step number two, a simple Taylor-based advection model was implemented. This model
sets a linear relationship between the distance of each lidar measurement point, the measured
wind speed value at the point, and the time when the measured wind speed vector will arrive
at the turbine. With this information, a wind speed forecast at the turbine became possible.

In step number three, the forecasted wind speed information was processed. Each forecasted
wind speed was transformed into a forecasted power with the power curve of the wind turbine.
The power curves were generated with measured wind speed and power data. To account for
the uncertainty in the wind speed and power forecast, probabilistic methods were applied to
quantify the uncertainty. The probabilistic forecasts were then evaluated with the help of the
actual wind speed and power measurements.

The forecast chain that was established in this thesis is valid for the forecast of a single wind
turbine. However, to use it for the power forecast of a whole wind farm, it can be extended to
take wake effects into account. It is implemented as a modular process and if other methods
along the forecasting chain should be tested, existing methods can easily be swapped.

8.1.2 How does the measurement setup and measurement site influence the forecast?

To answer this question, two different measurement campaigns were carried out over several
months with the same lidar. The two campaigns had a different measurement setup and were
conducted at different locations.

During the first campaign, the lidar was installed fixed on top of a radio tower, next to
the wind turbine that the forecast was made for. Here the lidar measured horizontally with
a fixed azimuth angle into the same direction. The measurement direction was aligned into
the main wind direction. During the second campaign, the lidar was installed on top of the
nacelle of a wind turbine. Again, the lidar measured horizontally with a fixed azimuth angle,
but this time the lidar rotated along with the nacelle and therefore the measurement direction
was automatically aligned with the wind direction.
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The different measurement setup resulted in a different availability of the forecasts. In the
first campaign, lidar-based forecasts were only possible, when the wind direction was aligned
with the measurement direction. This resulted in a low forecast availability. In contrast, the
forecast availability was much improved in the second campaign, where the lidar rotated along
with the wind direction. It is therefore concluded that the lidar should be installed either on
top of the nacelle of a wind turbine, or the lidar measurement direction should automatically
be adapted to the wind direction if the lidar is installed on a fixed platform.

In terms of location, the difference was that the first campaign was conducted onshore, in
complex terrain and the forecast was carried out for a free standing turbine. The second
campaign was carried out offshore at the alpha ventus wind farm and the lidar was installed
on top of the AV04 turbine, which is surrounded by other turbines of the wind farm.

The location had an effect on the forecast accuracy. The forecast error was significantly
increased at the onshore site. It was deduced that the simple Taylor-based propagation model
used in this thesis, does not model the actual propagation at the complex onshore site well
enough. To use lidar-measurements to forecast in complex terrain, a more sophisticated model
will be necessary.

8.1.3 What is the forecast horizon of lidar-based forecasts and what influences the

forecast horizon? How does the lidar-based forecast perform in comparison to

state-of-the-art statistical methods and what are its benefits?

These last two questions can only be answered together. In principle the forecast horizon
depends on the measurement range of the lidar and the measured wind speed. The further the
lidar measures and the lower the wind speed, the longer the possible forecast horizon can be.
In this thesis three horizons were tested: 0-10min, 10-20min, and 20-30min. The reason for
this choice was the time resolution of the available power data that was used to validate the
forecasts. Only ten minute-averages were available, and the forecast horizon was aligned with
this resolution.

At the onshore and offshore campaign, forecasts were available in all forecast horizons up to
30 minutes. However, the number of available forecasts decreased significantly in the horizons
10-20min and 20-30min. The reason can be found in the measurement range of the lidar. The
range was found to be around 5 km on average at the onshore site, which limited the forecast
horizon. For a wind speed of 7 m s−1 this would mean a forecast horizon of no more than 12
minutes. For a longer forecast horizon, a longer lidar measurement range is necessary.

Also the forecast accuracy decreased along with the forecast horizon. In fact, the lidar-based



148 8 Summary and conclusions

forecast outperformed the persistence model only in the first 0-10min horizon offshore. In
the horizons from 10 minutes to 30 minutes ahead, the persistence model performed better.
The reason is that only small wind speeds arrived with a delay of more than 10 minutes and
therefore the forecast was biased. At the onshore campaign, the persistence model outperformed
the lidar-based forecast in all forecast horizons.

The lidar-based forecast was able to forecast changes in power significantly better than the
persistence model (11 % maximum error versus 17 %). Here the new method shows its strengths:
the preview information of the upstream wind speed measurements allow forecasting of rapid
changes in wind speed and power. During wind ramps, the lidar-based forecast error was
therefore significantly smaller than the error of persistence. As persistence only uses old power
data, future changes cannot be predicted. As wind ramps are potentially critical to the grid
stability, or can affect the cost of balancing the power system if they are not forecast well, using
lidars at wind farms to improve the power forecast is advised.

8.2 Discussion and future work

The forecasting chain presented in this thesis for lidar-based minute-scale forecasting has a
significant benefit: the modularity of the process chain allows for improvements. The methods
in each chain link can be adapted, optimized or swapped for better methods to improve the
forecast. This section goes through each link and suggests such improvements.

In the first forecasting link, the lidar data processing, the following improvements are sug-
gested:

• Data filtering: when the work for this thesis began, no tools were available to filter
long range lidar data adequately. A new method was developed, to find outliers in the
radial wind speed data. The result was a simple method that worked well, but not all
wind speed outliers were identified. By now more work has been done by others in the
wind lidar community on optimizing filtering methods. A new, dynamic filter approach
that is based on the assumption of self-similarity showed promising results [66]. Another
approach, using spatial information and a clustering algorithm was able to retrieve 38 %

more data compared to the CNR filtering [67]. In the future, the different filter approaches
should be compared to find the best solution for minute-scale forecasting.

• Measurement trajectory: at numerous points in this thesis, it was pointed out that it is
necessary to align the measurement direction into the wind direction, to achieve a high
availability of the forecast. It is therefore advised to install the lidar on top of the nacelle
of a wind turbine. If this (for some reason) cannot be done, and the lidar is fixed on
a platform next to or in the wind farm, the measurement direction should be adapted
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automatically into the wind direction. The lidar used in the measurement campaign
does not offer such a feature up to now, but this could be developed. In case the lidar
is mounted on top of the nacelle of a turbine, an algorithm should be developed that
ensures that the lidar trajectory automatically measures horizontally taking into account
the turbine tilt

In the second link in the forecasting chain, the advection of the wind field using propagation
model, the following improvements are suggested:

• Advection model: This thesis has shown that the simple advection model based on Tay-
lor’s hypothesis does not work in complex terrain. In the future, an optimized propagation
model should be tested, which accounts for the complex and turbulent flow in such ter-
rain. Such models could be for example WASP or other flow models [68] or a simple
model such as the open source tool Wind Ninja [69].

• Coupling to NWP model: another approach to optimize the propagation model is to
couple the measurements to a high resolution NWP model such as WRF, and to assimilate
the lidar data into the model. In the current ParkCast project, which also provided the
offshore lidar data for this thesis, this approach is tested. The idea is to use the lidar
data to correct the wind speed error of the NWP model, thus optimizing the minute-scale
forecast.

In the last link of the forecasting chain, the transformation from forecasted wind speed to
forecasted power, the following improvement are suggested:

• Extend forecast horizon: the forecast horizon in this thesis was limited to 10 minutes.
Forecasts of more than 10 minutes were biased and underestimated the wind power gen-
eration. The reason, as explained, was the measurement range of the lidar. In order
to extend the forecast horizon, new lidar developments are necessary. This is the task
of lidar manufacturers. By increasing the measurement range well over 10 km, while at
the same time keeping a compact, lightweight shape of the lidar devices, minute-scale
forecasting using lidar would be significantly improved.

• Adapt to forecast power of wind farms: this thesis optimized power forecast of a single
wind turbine using lidar data. The next step is to adapt this approach to forecast the
power output of a whole wind farm. First works by colleagues in this direction have been
carried out already. Power output of seven wind turbines from the offshore wind farm
Global Tech 1 has been successfully forecasted using a long range-lidar [70]. In Australia
the power output of a whole wind farm was forecasted by converting forward-propagated
lidar wind fields to turbine generation using in situ power curves [71]. In order to account
for wake effects between the turbines, wake models need to be implemented. The wake
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models are needed to predict the wind speeds at downwind turbines. Such a wind farm
model that accounts for the wakes is for example FLORIS [72].

8.3 Conclusions

This work shows that lidar-based forecasts have great potential to improve forecasts in the
minute-scale. Compared to the benchmark method (persistence), offshore forecasts up to 10
minutes were more accurate. The method is not perfect: on land, forecasts on all time horizons
were worse, due to the effects of complex terrain on wind field propagation. Also, offshore
forecasts for more than 10 minutes ahead were less accurate than persistence.

Also other barriers to adoption remain. As the availability of the measurements and therefore
the forecasts is not guaranteed, a fallback solution needs to be implemented. The lidar hardware
needs to be improved to allow for an increased measurement range, which in turn would lead
to an extended forecast horizon. The cost of lidar hardware is still high and expert knowledge
is necessary to handle the measurements. Standards are not available yet.

However, wind lidar data coupled with propagation models and power curves has fundamental
advantages for minute-scale wind power forecasting. It is the only method that processes
preview information of the inflow of the wind turbine or wind farm and measures changes in
wind speed and power ahead of time. Although this thesis has shown that current approaches
may not be perfect, the rapid pace of wind lidar technology development, the increasing number
of users, the fact that recommended practices are just being written that include the use of
lidar, and the growing network of third party service providers, suggests that wind lidar can
play a role in the future of minute-scale wind power forecasting.
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A.1 Lidar Data Sheet

Parameter Value

Eye safety Class 1M
Wavelength 1.5 µm
Laser pulse energy ≈ 100 µJ
Laser pulse width 150 ns
Pulse rate 15 kHz
Nyquist velocity 19.4 m s−1

Unambiguous range 10 km
Aperture 75 mm
Volume approximately 0.5 m3

Power consumption <300 W
Temporal resolution selectable from 0.1 to 30 s
Range gate size 18 to 60 m
Velocity precision <20 cm s−1 for SNR >−17 dB
Minimum range <100 m, typically 75 m
Scanning Step-stare, full upper hemisphere
Enclosure Weatherproof, temperature stabilized

Table A.1: Data sheet for Stream Line XR lidar.
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A.2 Met mast sensor equipment
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Figure A.1: Sensor equipment of the met mast in Stötten, effective 13.10.2015
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Sensor Heights [m]

Wind speed (cup anemometer) 34, 41, 51, 61, 71, 81, 91
Wind direction (wind vane) 34, 51, 71, 91
Wind speed and direction (sonic anemometer) 42, 62, 82
Air pressure 21, 92
Air temperature 34, 42, 52, 72, 101
Precipitation 24, 101
Relative humidity 34, 42, 52, 72, 101

Table A.2: Sensors on the met mast of the offshore research platform FINO1.
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