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Abstract

Environmental analyses require detailed understanding and supporting
analytics of the surroundings together with visualisation for easy interpret-
ation. Many cities are now providing open environmental data, but the
online analysis capabilities in their open data platforms are usually weak
or non-existent. Moreover, increasing the efficiency of maintaining and
planning the detailed activities require an increase in the amount of digit-
ally available environmental and surrounding monitoring awareness. This
may need that the environmental data is collected continuously through
sensors. The relationships of environmental data (meteorological and pollu-
tion parameters) and their variations make prediction estimations of how
their distributions vary in space and time very important. The demand for
a reliable prediction algorithm that would work directly on the original
historical temporal environmental data, without any transformation, on
a large dataset and with the user-defined time frame of prediction in fu-
ture with adequate accuracy (close to actual or reality) is still challenging.
Moreover, a technique is required that can help in automated analyses with
interactive visualisation, thereby assisting in the easier understanding of
the spatio-temporal environmental data along with decision making cap-
abilities. A framework that combines the above prediction and interactive
visualisation in a single platform is also desirable.

The prediction can be achieved using Machine Learning models com-
prising deep learning algorithms. These Machine Learning techniques
including deep learning are subsets of Artificial Intelligence. The inheriting
qualities to self learn the insightful patterns and trends directly from the
data makes deep learning a comprehensive and favourable methodology in
order to automate seasonality and information extraction for the environ-
ment domain. Visual Analytics increases the value by combining machines’
processing power and accuracy with the human capabilities to perceive
information visually, fuse, and aggregate the data and detect hidden pat-
terns therein. The integrated prediction and visualisation framework in a
web based platform would increase the trust in data, models, and results,
which is especially important when decisions are needed to be based on
environmental analyses and quality assessments. These aspects provide the
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Abstract

requisite research motivation of designing the meteorological and pollution
parameters visual prediction temporal analyses model.

In view of the above, the objective of this thesis is to focus on developing
Machine Learning methods and their visualisation for environmental data.
The presented approaches primarily focus on devising an accurate Machine
Learning framework that supports the user in understanding and compar-
ing the model accuracy in relation to essential aspects of the respective
parameter selection, trends, time frame, and correlating together with con-
sidered meteorological and pollution parameters. Later, this thesis develops
approaches for the interactive visualisation of environmental data that are
wrapped over the time series prediction as an application. Moreover, these
approaches provide an interactive application that supports

1. a Visual Analytics platform to interact with the sensors data and
enhance the representation of the environmental data visually by
identifying patterns that mostly go unnoticed in large temporal
datasets,

2. a seasonality deduction platform presenting analyses of the results
that clearly demonstrate the relationship between these paramet-
ers in a combined temporal activities frame, and

3. air quality analyses that successfully discovers spatio-temporal
relationships among complex air quality data interactively in dif-
ferent time frames by harnessing the user’s knowledge of factors
influencing the past, present, and future behaviour with Machine
Learning models’ aid.

Some of the above pieces of work contribute to the field of Explainable
Artificial Intelligence which is an area concerned with the development
of methods that help understand, explain and interpret Machine Learning
algorithms. In summary, this thesis describes Machine Learning prediction
algorithms together with several visualisation approaches for visually ana-
lysing the temporal relationships among complex environmental data in
different time frames interactively in a robust web platform. The developed
interactive visualisation system for environmental data assimilates visual
prediction, sensors’ spatial locations, measurements of the parameters, de-
tailed patterns analyses, and change in conditions over time. This provides
a new combined approach to the existing visual analytics research. The
algorithms developed in this thesis can be used to infer spatio-temporal
environmental data, enabling the interactive exploration processes, thus
helping manage the cities smartly.
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Zusammenfassung

Umweltanalysen erfordern ein genaues Verstandnis sowie unterstiutzen-
de Analysen der Umgebung in Kombination mit Visualisierung, um Ana-
lyseergebnisse leichter interpretierbar zu machen. Viele Stadte stellen
inzwischen Umweltdaten offen zur Verfugung, allerdings sind Online-
Analysefunktionen in deren offenen Datenplattformen in der Regel nur
rudimentar oder gar nicht vorhanden. Daruber hinaus erfordert eine Ef-
fizienzsteigerung bei der Wartung und Planung detaillierter Aktivitaten
eine wesentlich groSere Menge an digital verfugbaren Umwelt- und Umge-
bungsdaten. Dies macht es mitunter erforderlich, Umweltdaten mit Hilfe
von Sensoren kontinuierlich zu sammeln. Aufgrund der Abhangigkeiten
zwischen Umweltdaten (z.B. zwischen meteorologischen Daten und Ver-
schmutzungsdaten) sowie deren Schwankungen, sind Vorhersagen daruber,
wie sich deren Verteilungen in Raum und Zeit andert, von grof3er Bedeu-
tung. Die Forderung nach einem zuverlassigen Vorhersagealgorithmus, der
direkt mit den urspriunglichen zeitlich dynamischen Umweltdaten arbei-
tet, ohne auf die Transformation eines grofSen historischen Datensatzes
zuruckzugreifen, und mit dem, in einem von Benutzerinnen und Benutzern
zuvor festgelegten Zeitraum, eine Vorhersage mit angemessener Genau-
igkeit (nahe an der Realitat) realisiert werden kann, ist immer noch eine
Herausforderung. Daruber hinaus wird eine Technik benotigt, die auto-
matisierte Analysen mit interaktiver Visualisierung kombiniert und damit
zum Verstandnis raumlich-zeitlicher Umweltdaten beitragt und die Ent-
scheidungsfindung unterstutzt. Ein Framework, das die oben genannte
Vorhersage und interaktive Visualisierung in einer einzigen Plattform kom-
biniert, ist ebenfalls winschenswert.

Die Vorhersage kann mithilfe von Modellen des maschinellen Lernens
erfolgen, die nicht zuletzt auf Deep Learning-Algorithmen basieren. Tech-
niken des maschinellen Lernens, einschlieSlich Deep Learning, sind Teil-
gebiete der Forschung zu Kunstlicher Intelligenz (Artificial Intelligence).
Die inharente Fahigkeit, aufschlussreiche Muster und Trends direkt aus
den Daten zu lernen, macht Deep Learning zu einer geeigneten Methode,
die Erkennung wiederkehrender Effekte in den Daten und Informationsex-
traktionen fur den Umweltbereich zu automatisieren. Visual Analytics kann
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Zusammenfassung

dabei einen Mehrwert schaffen, indem es die Verarbeitungsgeschwindig-
keit und -genauigkeit von Computern mit den menschlichen Fahigkeiten
kombiniert, Informationen visuell wahrzunehmen, Daten zu fusionieren
und zu aggregieren, sowie darin verborgene Muster zu erkennen. Ein web-
basiertes Framework fur die integrierte Vorhersage und Visualisierung
konnte das Vertrauen in Daten, Modelle und Ergebnisse erhohen. Dies ist
besonders wichtig, wenn Entscheidungen basierend auf Umweltanalysen
und Qualitatsbeurteilungen getroffen werden miissen. Diese Uberlegungen
bilden die Forschungsmotivation fur die Entwicklung eines Analysemodells
zur visuellen Vorhersage zeitabhangiger meteorologischer Daten sowie von
Verschmutzungswerten.

Vor diesem Hintergrund ist das Ziel dieser Arbeit die Entwicklung von
Methoden des maschinellen Lernens und deren Visualisierung fur Umwelt-
daten. Die vorgestellten Ansatze konzentrieren sich in erster Linie auf die
Entwicklung eines prazisen Frameworks fur maschinelles Lernen, das Nut-
zerinnen und Nutzer beim Verstandnis und Vergleich der Modellgenauigkeit
in Bezug auf wesentliche Aspekte der Parameterauswahl, Trends, Zeitrah-
men und Korrelationen der betrachteten meteorologischen Daten und
Schadstoffparameter unterstiitzt. Im weiteren Verlauf dieser Arbeit wer-
den Ansatze zur interaktiven Visualisierung von Umweltdaten entwickelt,
welche Vorhersagen uiber Zeitreihen in eine entsprechende Anwendung
integrieren. Daruber hinaus ermoglichen diese Ansatze eine interaktive
Anwendung, die folgende Optionen bietet:

1. Eine Visual-Analytics-Plattform zur Interaktion mit den Sensor-
daten und zur Verbesserung der visuellen Darstellung von Um-
weltdaten durch Identifizierung von Mustern, die sonst in grofSen
zeitlichen Datensatzen meist unbemerkt bleiben,

2. eine Webplattform zur Erkennung zeitlich wiederkehrender Effek-
te, die Ergebnisanalysen prasentiert, um Beziehungen zwischen
Parametern in einer kombinierten Zeit-/Aktivitdtsspanne deutlich
machen, und

3. Luftqualitatsanalysen, die raumlich-zeitliche Beziehungen zwi-
schen komplexen Luftqualitatsdaten interaktiv in verschiedenen
Zeitrahmen erfolgreich aufdecken, indem sie auf das Nutzerwissen
uber vergangene, gegenwartige und zukunftige Einflussfaktoren
mit Hilfe von Modellen des maschinellen Lernens zuruckgreifen.

Einige der oben genannten Arbeiten leisten einen Beitrag zum For-
schungsfelds Explainable Artificial Intelligence, einem Fachgebiet, das sich
mit der Entwicklung von Methoden befasst, die helfen, Algorithmen des
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maschinellen Lernens besser zu verstehen, zu erklaren und zu interpretie-
ren. Zusammengefasst werden in dieser Arbeit maschinelle Lernverfahren
fur die Vorhersage zusammen mit verschiedenen Visualisierungsansatzen
zur visuellen, interaktiven Analyse der zeitlichen Beziehungen zwischen
komplexen Umweltdaten in verschiedenen Zeitraumen als Teile einer ro-
busten webbasierten Anwendung vorgestellt. Das entwickelte interaktive
Visualisierungssystem fir Umweltdaten integriert die visuelle Vorhersa-
ge, raumliche Positionierung von Sensoren, Messungen der Parameter,
detaillierte Musteranalysen und zeitliche Anderungen der Situation. Dies
erweitert die bisherige Forschung im Bereich Visual Analytics um einen
neuen kombinierten Ansatz. Die in dieser Arbeit vorgestellten Algorith-
men konnen verwendet werden, um die raumlich-zeitliche Entwicklung
von Umweltdaten abzuschatzen. Damit ermoglichen sie interaktive Erkun-

dungsprozesse und tragen so zu einem intelligenten Stadtmanagement
bei.
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Introduction

The environmental data focusing on meteorological and pollution para-
meters, is an important aspect for monitoring environmental conditions,
ambient air quality, efficient management and understanding of renewable
resources [2013). Correlating and combining the meteorological
information with pollution parameters facilitate in environmental data un-
derstanding. The meteorological data comprises parameters like pressure,
temperature, wind and humidity. The pollution parameters combine city air
pollutants such as Particular Matter (PM,o, PM; 5), Nitrogen Oxide (NO),
Nitrogen Dioxide (NO;), and Ozone (O3). The large volume of temporal
environmental data is continuously collected and monitored throughout
the cities, including spatial information based on the sensor’s position. It
is difficult to analyse and understand the insights of this acquired raw
environmental data without a proper framework. Moreover, complex and
volatile environmental data are challenging to analyse in different time
frames along with estimating their nature for the future confidently. This
has increased the demand for an intelligent framework for analyses and
visualisation using Machine Learning (ML) integrated with Visual Analytics
(VA) concepts for environmental data. This would provide the ability to
transform the collected environmental raw data into meaningful informa-
tion for better decision making. ML aids in the detailed pattern analyses
and prediction of the diverse environmental data having the aforemen-
tioned characteristics. VA provides faster decisions making, as users can
understand data insights much more quickly by seeing and working with
datasets when they are in a visual format. Moreover, providing detailed
analyses supported by ML advanced techniques along with delivering the
findings and insights by VA convenience is a required solution for these
volatile temporal parameters and air quality conditions.

Section explains ML concepts briefly (related concepts are explained

in section followed by the thesis ML work in Chapter|3)),

1



1.1

1.2

1 Introduction

gives an overview of VA (related concepts are expanded in
followed by the thesis VA related work in Chapter 4] and Chapter [5),
explores the current trends in the time series visual prediction for
environmental data, and [section 1.4/ and [section 1.5/ highlight the issues
in the existing literature and the thesis objective, respectively, followed by
that discusses the structure and contribution of the thesis.

Machine Learning

ML provides algorithms that learn about the given dataset by using training
samples, and after the algorithms have been trained, testing is done on
samples that are not part of training samples. ML has opened up new
possibilities and approaches for applications in environmental data (Chol
2018} [Lamba et al, [2019).

Presently the existing models for environmental data temporal predic-
tion (discussed in detail in have used limited datasets to
analyse the models and predict only a few values in the future
2018). However, a prediction model that would work directly on the original
temporal dataset, without any transformation, and over a large historical
dataset for the user-defined time frame of prediction in the future is still
required.

Visual Analytics

VA is a sub field of visualisation which integrates data analyses with in-
teractive visualisations (Thomas and Cook] [2005}; [senberg et al., [2017).
The visualisation of spatio-temporal data in an interactive temporal time
frame is essential for VA of environmental data, magnifying the insight
of data in a visual context by identifying trends. These patterns usually
go unrecognised in voluminous historical temporal environmental data.
This helps in developing techniques representing spatio-temporal data in
more sophisticated formats using maps, detailed bars, charts, and heat
maps to communicate the relationships between the sensor measurements.
Furthermore, VA combines automated analyses techniques with interactive
visualisation, thereby assisting in the easier understanding of the spatio-
temporal data along with decision making capabilities. Thus, there is a need
for research on effective solutions for detail analyses of the environmental
data, taking into account the resources that are available.
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1.3 Time Series Visual Prediction

Time Series Visual Prediction

The visual exploration of past, present and future trends in complex mul-
tivariate time series environmental datasets plays an important role in bet-
ter judging the environmental conditions by finding relationships between
meteorological and pollution parameters. Including the context and his-
torical information in the visualisation could improve user understanding
of the environmental dataset exploration process and enhances the re-
usability of mining and managing techniques and parameters analysis to
achieve the required insights.

The traditional approaches (more details in cannot fully
support the visual exploration of future trends in complex multivariate

time series datasets such as environmental data, mainly due to their lack
of consideration of inter-variable parameters relationships
2011} [Kothur et al.| 2012). A platform is still required to support the
user in formulating hypotheses about the environmental data that may be
useful for further stages of the mining process, such as cluster detection,
important feature and pattern detection, with interactive visualisation
options. Furthermore, the platform could give a provision of including the
prediction of meteorological and pollution parameters in the desired time
frame with the especially designed deep learning models support, along
with highlighting the respective model’s success and failure, suggesting
the best option to choose. Additionally, it could provide the freedom to the
users to compare and analyse the environmental data as per their selection
in the considered time frame. Moreover, it would justify the arguments
with easy graphical support, along with historical, present, and future data
patterns that could be visualised under one platform.

Problem

Many cities are providing open environmental data, but the online analysis
capabilities in their open data platforms are usually weak or non-existent.
The research that could be used to fill this gap is a highly relevant and de-
sirable development. The literature survey of the above topics in
reveals that an approach is still required that can combine ML prediction
algorithms together with VA techniques for visually analysing the temporal
relationships among environmental data in different time frames interact-
ively in a web platform. This motivates the below research objective that is
answered in this thesis.
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Thesis Objective

The main objective of this thesis is to visually analyse the temporal rela-
tionships interactively in different time frames (past, future) for the en-
vironmental data. The main difference between the developed techniques
and state-of-the-art (discussed in detail is providing a solution
combining the advantages of both ML and visualisation for temporal envir-
onmental data. The primary focus is to devise an accurate deep learning
framework support at the backend with an interactive visualisation fron-
tend to perform the prediction analyses and environmental data interaction.
This objective is further divided into the following pieces of work:

1. Use ML including deep learning algorithms for environmental data
predictions in the future.

2. As an expanded application for these predictions, visualise and
evaluate these predictions’ results and algorithms’ assessments
using visual analytics concepts for time series data.

3. Development of an interactive web platform that combines these
predictions and analyses for selected time frame and meteorolo-
gical and pollution parameters.

The above objective and some sub tasks also contribute to the field of
Explainable Artificial Intelligence (XAI), which is an area that is concerned
with the development of new methods that explain and interpret ML al-
gorithms (Choo and Liu| [2018]; Xie et al.| [2020)). Furthermore, the above
objective

1. helps to understand the temporal relations between meteorological
and pollution parameters,

2. explains prediction outputs of ML through VA for environmental
data,

3. highlights the respective sensor’s location along with measure-
ments whenever a query related to the sensor nature monitoring is
performed. Here a comparison is performed among environmental
sensors at different spatial locations. Finally, the sensor location
is predicted that would measure the highest value of the selected
parameter for the predicted time frame.
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1.6 Structure and Contributions

This section outlines the rest of this thesis and gives an overview of each
chapter’s content. It is divided into sub tasks that are part of
the (referchapter 6.2) published papers and form each individual chapter,
highlighting the findings. Each chapter of this thesis acts as a building
block that is improved, integrated and advanced to achieve the desired
solutions. I am the first author of all the publications that are presented in
these chapters. These findings and developments have passed double blind
peer review during a publication process already (refer|chapter 6.2).

Chapter [2| - Fundamentals & Background: This chapter introduces
the concepts and techniques that are relevant during the remainder of the
thesis. The first part presents the general concept of GeoVisualisation and
VA, and the necessary visualisation fundamentals. This chapter is based
on the published survey paper [Harbola and Coors| (2018). The second part
of the chapter provides a comprehensive overview of the development
from traditional to advanced ML based prediction approaches, data pre-
processing, and analysis algorithms implemented for environment data
(meteorological and pollution parameters). Furthermore, discussing the
visualisation technique for interactive prediction of time series data helps
in understanding essential visualisation concepts. Moreover, ML and VA
integration importance is highlighted along with the role of environmental
analyses combined together with ML and VA using methods which are
empirical ML architectures and wrapped with the advantages of interactive
visualisation to help plan our surroundings.

Chapter [3| - Machine Learning Algorithms for Predictions: This
chapter introduces techniques that are designed for environmental data
temporal prediction. This contributes to the first thesis objective task of
implementing future prediction of the environmental data. In this thesis,
five advanced ML and deep learning temporal prediction models to analyse
the environmental data, have been developed. This work is part of the
following papers [Harbola and Coors| [202714a). These algorithms
take successive time values in terms of environmental data as input and
predict the future nature. The advantage of these methods is that they do
not apply any smoothening and noise removal techniques and are based
on a classification approach. Each designed model is the advancement and
extension of the previous method (lacking part is improved in the next
model design) in terms of architectures, accuracy, classes, design, and
multiple features. A total of 58 features in the input layers are designed
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by employing recent ML concepts. The multiple features are based on per-
centage difference, standard deviation, correlation coefficient, eigenvalues,
and entropy for efficiently describing and exploring the data trend. The
sections of the designed techniques are summarised as follows:

Long Short Term Memory, Random Forest & Support Vector Ma-
chine: The first technique is based on the temporal prediction
of the wind flow, using three supervised algorithms i.c., Long Short Term
Memory (LSTM), Random Forest (RF) and Support Vector Machine (SVM).
These algorithms take successive time values in terms of wind speed and
direction as input and predict the future dominant wind flow, as classific-
ation approach. The developed algorithms are trained and tested using
historical wind datasets of Stuttgart (Germany) and Netherlands. The total
accuracy of prediction using LSTM and SVM were similar and reached
up to 94.7%, providing an improvement over RF. The advantage of these
methods is that they do not apply any smoothening and noise removal tech-
niques and are based on classification approach. LSTM learns long term
dependencies in the temporal data, SVM finds the probable hyperplane
between points of different classes and RF uses multiple decision trees.
However, in these algorithms a limited number of features and classes
are used. A better approach is required that could incorporate multiple
features and more number of classes.

One-Dimensional Convolutional Neural Network Architectures:
The second technique is based on One-Dimensional (1D) Con-
volutional Neural Network (CNN). The developed 1D Single CNN (1DS)
takes as input the temporal values in terms of the wind speed and direction.
The 1DS comprises several convolutional layers along with fully connected
layers, that learn automatically numerous spatial and non-spatial features
at different scales during the training process. The developed third tech-
nique is 1D Multiple CNN (1DM) that combines several 1DS but with
different views of the same input, therefore, learning more information
compared to the 1DS. The 1DS and 1DM algorithms are trained and tested
for Stuttgart and Netherlands datasets with the achieved total accuracies
of 95.2% (1DS) and 99.7% (1DM). The 1DS improves upon LSTM, RF, and
SVM methods by using more number of classes (eleven) and higher number
of automatically learnt features in the convolutional and fully connected
layers, that enhances the accuracy. Further, the 1DM has better perform-
ance than the 1DS due to the use of multiple 1DS. In these approaches
limited (only two) features based on wind speed and direction are used in
the input layers. Further, the fully connected layers do not have memory to
retain the features learnt by neurons from the previous training iterations.
Thus, an algorithm is desired that could take multiple features in the input
layers as well.
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Multiple Densely Connected Convolutional Neural Network:
The fourth technique builds upon the 1DM method and proposes
a multiple CNN architecture with multiple input features, combined with
multiple LSTM, along with densely connected convolutional layers. The de-
signed architecture is called Multiple features, Multiple Densely Connected
Convolutional Neural Network ensembles with Multiple LSTM Architecture
i.e., MCLT. A total of 58 multiple features in the MCLT input layers are
designed using wind flow values. These empirical features are based on
percentage difference, standard deviation, correlation coefficient, eigenval-
ues, and entropy, for efficiently describing the wind trend. Two successive
LSTM layers are used after four densely connected convolutional layers
of the MCLT. LSTM has memory units that utilise learnt features from the
current as well as previous outputs of the neurons, thereby enhancing the
learning of patterns in the temporal wind dataset. The presence of densely
connected convolutional layers help to learn features of other convolutional
layers as well. The MCLT uses 21 classes for prediction unlike eleven
classes in the 1DM and performs better. The maximum total accuracy is
99.9%. However, in the above discussed ML based methods for prediction,
there is a lack of visualisation as required in VA. Thus, an approach is
required that helps in the visualisation of different patterns in the dataset
for different time frames.

Chapter [4]- Seasonality Deduction Application: This chapter presents
the ML models’ application in performing the VA. The second objective
of this work is expanded to help in understanding the temporal relation
between meteorological and pollution parameters interactively. Specifically,
it first presents an interactive dashboard to visualise meteorological and
pollution parameters for the desired time frame. This helps to analyse
the case study area’s temporal variations. Furthermore, the correlations
between meteorological and pollution parameters are analysed with the
help of this technique. Some of these findings are part of the following
papers [Harbola and Coors| (2020); [Harbola et al.| (2021D). In the fifth tech-
nique, emphasis is on the seasonality deduction for the pollution parameters
in relationship with the meteorological parameters. However, an improved
approach is required that combines more environmental data, correlation
analysis, temporal heat map and a better interactive visualisation integrat-
ing with the above developed ML visual predictors for multiple parameters
in depth analysis for various time frames in a robust web platform.

Chapter 5/ - Air Quality Temporal Analyser & Geospatial Data Visual
Assessments: This chapter discusses the third thesis objective to ex-
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plain prediction outputs of ML through VA for environmental data and
supports analysing the nature of a sensor for the selected meteorological
and pollution parameter. The approaches presented in this chapter focus
on supporting the application of these above designed ML models into VA.
This chapter presents visualisation and VA interface for the spatio-temporal
data represented in terms of sensors’s location, including time, and several
environment attributes to assess the detailed temporal patterns of these
parameters for combined interactive platform analyses. These work find-
ings are part of the following papers|[Harbola et al.| (2021a)); [Harbola and|
[Coors| (2021h).

Air Quality Temporal Analyser: The developed technique
is an Air Quality Temporal Analyser (AQTA), an interactive web based
visual analyses system support for the environment data. AQTA allows the
seamless integration of predictive models and detailed patterns analyses
visualisation. This interface provides back-and-forth dialogue with the
designed multiple ML models and comparisons for better visual predictive
assessments in different time conditions for chosen parameters. Moreover,
AQTA provides data selection, display, visualisation of past, present, future
and correlation structure among air parameters through various interactive
charts, highlighting the predictive models’ effectiveness. The findings
from this technique corroborate the city’s COVID lockdown (year 2020)
conditions and sudden changes in patterns, highlighting the improvements
in the pollutants concentrations. Further, this study also reveals that the
decrease in the concentration of one pollutant does not ensure that the
surrounding air quality would improve as other factors are interrelated.
The AQTA can be further advanced by highlighting the locations of different
sensors with an add-on to the sensor nature’s monitoring and this motivates
the following technique.

Geospatial Data Visual Assessments: The last technique
focuses on different environmental data geospatial locations (sensors loc-
ations). The unsupervised Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) clustering is applied on a series of
(above mentioned) parameters to analyse the data trends. The HDBSCAN
works well with noisy datasets. Furthermore, the ML transformer predictor
is trained for modeling the future dominant (high measurements) locations
with time as the output. The selected environmental data variations are
compared and analysed in the spatio-temporal frame to provide detailed
estimates on change in the average conditions in a region over the years.

Chapter 6| - Conclusion & Future Work: The last chapter of this thesis
first summarises the contributions presented in this thesis. Then, the
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conclusions of the approaches are discussed concerning the mentioned
research challenges. The results obtained from these experiments show
that the designed techniques are able to discover the temporal relationships
among complex environmental data interactively in different time frames.
Further, the thesis concludes with the summary of the techniques developed
to inference the spatio-temporal environmental parameters, enabling the
interactive exploration processes and recommendations for the future
work.






Fundamentals & Background

The thesis presents visual assessments of time series prediction approaches
designed especially for the environmental data. Furthermore, the presen-
ted approaches primarily focus on devising an accurate Machine Learning
and deep learning framework that supports the user in understanding and
comparing the model accuracy in relation to essential aspects of trends,
time frame, and correlating together with considered meteorological and
pollution parameters visually. This chapter provides the necessary found-
ations by introducing the general concepts of Visualsiation (section 2.1)),
an introduction to Visual Analytics (section 2.2), and GeoVisualisation and
Visual Analytics applications concerning this thesis domain (section 2.3).
Furthermore, in the the concepts of explainable Al, the intro-
duction of Machine Learning and deep learning architectures concepts are
discussed, followed by technical terminologies and concepts that are signi-
ficantly used in this work (section 2.5 |section 2.6| |[section 2.7 |section 2.8).
The accuracy measures which are considered in this work for evaluation
are discussed in

Parts of this chapter have previously been published in:

Harbola, S. and Coors, V. (2018), ‘Geo-Visualisation and Visual Analytics for Smart
Cities: A Survey’, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W11,
[https://doi.org/10.5194/isprs-archives-XLII-4-W11-11-2018| 11-18;

Harbola, S. and Coors, V. (2019a), ‘One Dimensional Convolutional Neural Network
Architectures for Wind Prediction’, Energy Conversion and Management, 195,
|//doi.org/10.1016/j.enconman.2019.05.007, 70-75;

Harbola, S., Storz, M., and Coors, V. (2021b), Augment Reality for Windy-cities:3D Visual-
isation of future wind nature analysis in city planning (Springer, (To appear, accepted on
2020- July -20));

Harbola, S., Koch, S., Ertl, T., and Coors, V. (2021a), ‘Air Quality Temporal Analyser: Inter-
active temporal analyses with visual predictive assessments’, Workshop on Visualisation
in Environmental Sciences (EnvirVis), |https ://doi.org/10.2312/envirvis. 20211083}
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2.1

2 Fundamentals & Background

In the second part of this chapter, the concepts of predictions for time
series data (with focus on environmental data) using Machine learning are
discussed followed by the essential background work review (section 2.10).
Based on comprehensive studies of the above mentioned topics, interactive
prediction techniques to support users predicting the future of time series
data visually is discussed in the following Moreover, this
chapter also highlights how environmental data’s Visual Analytics can
blend in with advanced Machine Learning and deep learning
prediction models for creating applications for our surrounding that will
increase environmental data sense making and awareness.

After the foundations have been laid, the chapter concludes with an
introduction of visualisation and Machine Learning including deep learning
advancements in time series predictions, outlining how Visual Analytics
could comprehensively leverage information to enable task oriented envir-
onmental situation awareness visually.

Visualisation

The ease of analysing the data quickly and interactively is getting advanced
daily, with increasing complexity for unstructured data analyses and rep-
resentation that are challenging. There is a requirement for exploring the
data insight to aggregate analysis for better technology intelligence
[1999). Visualisation is an art of using computer supported, interact-
ive visual demonstrations of the data in order to escalate user knowledge
and comprehension gain. Extensive literature exists that explains how data
needs to be operated to transform into user readable views, first extracting
the relevant data aspects that shall be presented to the user, followed by
mapping data with visual structure that the users can manipulate through
interaction at any stage of view and operation (Shneiderman), [1996} [Card|
[1999). Thus, it aims at data transformation into a visual representa-
tion that is understandable for the users, helping them explore more of the
data insights.

The following section first introduces GeoVisualisation and Visual Analyt-
ics on a conceptual level. Afterwards, the core components of Visualisation,
elaborating the concept of data processing and analyses algorithms are
elucidated, building the background of the techniques that are used in this
thesis. Thus, it aids in explaining and simplifying the time series predict-
ive analyses using Machine Learning concepts and their applications in
combination.
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2.1 Visualisation
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Figure 2.1: Real world examples of Visualisation MacEachren et al.| (201 3).
(This figure is modified after[MacEachren et al.| (2013)).

GeoVisualisation

Data Visualisation can be categorised into three groups, namely, Informa-
tion Visualisation, Scientific Visualisation and GeoVisualisation depending
on the type of the data. Information Visualisation helps in Visualisation of
abstract data, Scientific Visualisation covers spatial data and GeoVisualisa-
tion (GV) incorporates both the abstract and the spatial data. Figure [2.1]
shows the real world examples that can be resolved using these techniques
(MacEachren et al.| [2013).

GV integrates approaches from Visualisation in Scientific Computing
(ViSC), cartography, image analysis, Information Visualisation, Exploratory
Data Analysis (EDA) and Geographic Information Systems (GIS)
let al.] 2010; [Andrienko et al] 2011, [Ramathan et al., 2013} [Chen et al
[2014)). A city’s geospatial data is collected using traditional techniques like
surveying, photogrammetry, sensors and techniques like Global Navigation
Satellite System (GNSS), Light Detection and Ranging (LiDAR), Synthetic
Apeture Radar (SAR) and Unmanned Aerial Vehicle (UAV), and can vary
from small to large volumes (Komninos et al., 2013} [Bhattacharya and|
[Painhol| 2017). Common types of the geospatial data are:

1. point data, e.g., crime cases,

2. continuous values and discrete distributions, e.g., earthquake read-
ings, and

3. continuous values and continuous distributions, e.g., climate simu-
lation data.

Table[2.1] expands the various domains and corresponding examples of
the georeferenced data.
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Table 2.1: Georeferenced data present in various domains.

Domain Example of georeferenced data

Daily life Position, destination, routes

Demographics Population, labor, crime rate by areas, regions
Urban planning Growth rate, architecture, district types
Transportation/Logistics  Location of assets, delivery networks
Security/Intelligence Location and movement of suspects
Medicine/Epidemics Region of reported infections

Climatology/Meteorology Weather, regional climate changes, pollution

2.1.2 Modules

GV consists of six main modules: data transformation and analysis, filtering,
mapping, rendering and interactive user involvement. The collected large
data either can be in structured form or as well as in complex form (z.e.,
semi-structured, unstructured, spatial, temporal and multimedia). The data
transformation and analysis are tasked with extracting the structured data
from the large input data (MacEachren and Kraak], 2001} [Thomson et al.|
2005} [Maciejewski et al.| 2010} [MacEachren and Kraak, 2011} MacEachren|
[2012). For the complex form data, the data mining techniques like
clustering can be used to extract the related structured data for visual-
isation (Southworth and Peterson), [2000). Filtering module corrects the
structured data for noise by applying smoothening filters, for missing values
by applying interpolation techniques and for measurement errors (Church|
land Coval, [2000}; Johnson|, 2004} |(Chudal, [2007).

These corrections automatically select the key data for visualisation
(Arentze and Timmermans| 2000} [Dasgupta and Kosaral, 2011} [Kitchin]
2011} [Dasgupta et al] 2012} [Broring et al.| [2014). After filtering, the
data is mapped to geometric primitives like points, lines, regions and may
have several attributes like colour, texture, position, and size. Users can
transform the geometric data into image data using the rendering module
and interact with the generated images through various interactive controls
to explore and understand the data from different perspectives
2012).

Moreover, interactive analysis and visualisation are driven by the ap-
plications and solutions in the domain it is applied (Trindade et al.| [2017)
and as a result, research in this field is usually motivated by real world
user requirements and desired output (Claessen and van Wijk|, [2011}; [LIoyd|

and Dykes|, 2011} [Chen et al., 2014}, [Cao and Cuil, [2016).
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2.1 Visualisation
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Figure 2.2: The differences between the separate view and space time
combined view, according to [Harbola and Coors| (2018).

Techniques

The techniques that can be used for visualising sensor’s data are scatter
plot, heat maps, height maps, survey plot, logic diagrams, parallel coordin-
ates, multiple line graph, sammon plots and multi-dimensional scaling,
polar charts, principal component and principal curve analysis, logic dia-
grams, choropleth maps, isolines, tilevis, plume chart, dashboards, quartile
chart, trees, network and glyphs. [Del Fatto et al.| (2007) give schematized
representations of territories :.e., chorems, for visual summary of spatial
databases.

Moreover, combining time and space provides temporal and geospatial
correlation and helps in interactive temporal visualisation and examples of
these are population development over time, epidemic spread over time
and movements (traffic, animals, pedestrians, hurricanes, particles)
let al, 2013} [Sun and Li, [2016). Figure gives the difference between
visualising time, space separately (Figure first column) and in combin-
ation (Figure [2.2] second column). Mapping time to space can be achieved
using three methods,

1. separate views of each and interaction by brushing and linking,
2. space time cube where third axis represents time,

3. animation involving time.
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Spatial Decision Support
System (SDSS) & Web-based
Spatial Decision Support
System (WebSDSS)
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Figure 2.3: Data management and visualisation techniques and tools, ac-
cording to|Harbola and Coors| (2018).

2.1.4 Data Management

The management of the geospatial data is also an important aspect for
visualising the georeferenced data collected from the cities because differ-
ent sensors measure more than one kind of data at a time and may cover
a large area, thus displaying all sensors value is difficult. GIS manages
geographically referenced information and aids in the geospatial data visu-
alisation by analysing, managing and displaying the geospatial data and is
also supported by Spatial Data Infrastructure (SDI) for both static and real
time data (Figure [2.3). Integrating the GIS with the web (i.e., Web-GIS)
enhances the interactivity of users with maps and improves spatial analysis
as shown in Figure [2.3| (Goodchild), [2007| 2013}; [Holliman et al., [2017).
The two types of geospatial data management models can be represen-
ted either by raster or vector data models (Huang and Liang] 2014} [Stefan|
[2017). The Open Geospatial Consortium (OGC) with its Senor Web
Enablement (SWE) initiative passed the standards to control, detect and
receive sensor data and some examples are, Sensor Observation Service
(SOS) designed for 2D data and dynamic 3D SDIs for 3D data. OGC sensor
web enabled open architecture makes it possible to handle most types of
sensors (Prandi et al.| [2013]). Web based Spatial Decision Support System
(SDSS/WebSDSS) helps to solve complex geospatial data problems relat-
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2.2.1

2.2 Visual Analytics

ing to urban planning, site selection and decision making (Figure [2.3). A
WedSDSS includes problem solver web based GIS and geographic data
retrieval facilities, analysis and display (Sugumaran and Sugumaran), [2013).
Recently multidimensional distributed spatial platform integrating sensor
web with SDIs, Smart Cities Intelligence System (SMACiSYS) has been
developed (Bhattacharya and Painho} [2017).

Visual Analytics

The Visual Analytics (VA) became popular and more advanced with
land Cooki (2005) work, where the research and development agenda for
Visual Analytics was explored. They have elaborated VA as "the science of
analytical reasoning facilitated by interactive visual interfaces” (Thomas
land Cookl|, [2005). Moreover, VA combines visualisation with data processing
and algorithms assessments using domain expert’s experiences and know-
ledge with machine advancements and the system’s potential to process
extensive datasets into meaningful information quickly (Thomas and Kiel{
[2009). The VA concept is further explained in the following section
along with visualisation core components.

General Concept

Visual Analytics aims to efficiently use a large volume of information in
various applications by adequately merging the strengths of intelligent
automatic data analysis with the user’s visual perception and analysis
capabilities interactively. Figure |2.4| provides a glimpse of the Visual Ana-
lytics workflow cycle as described by [Keim et al.| (2010). Visual Analytics
provides two broad ways for applications and problem solving. Firstly, it
could be intended to give the user the capability to extract insights from
the data to help interactive user decision making (Pirolli and Card] [2005).
Creating a workflow to gain insights from the available data presents an
apparent attempt for such a sense making process. Secondly, it could help
to present concept workflow in order to provide the ability to enable data
processing that combined user readable visualisations along with automatic
data processing (Thomas and Cookj [2005).

[Sacha et al.|(2014) provided the concept of combining these two ways
into a knowledge generation model that incorporated the advantages of
both ways. The available data is processed, followed by visualisation and
data models are generated; the experts can examine that to analyse the
data. Different stages of knowledge about the data are acquired as an out-
come of the performed analyses (Sacha et al.|, [2014)). During the analyses,
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Visual data exploration
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Knowledge
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Figure 2.4: The visual analytics cycle according to [Keim et al.| (2010). (This
figure is modified after[Keim et al.| (2010)).

the user could extract findings from the data. If findings are already known
or are of no relevance, the study continues. While if the findings were
relevant, they become insights that need to be verified. This verification
could be performed by formulating a hypothesis about the understanding
and continuing the analysis with regard to the hypothesis and upgrading.
Furthermore, if the data supports the hypothesis, the insights becomes
knowledge that may also be transferable by the user analyst to other data
sets or situations.

Visual Analytics Importance

Digital visualisation gives an effective medium to analyse, but it is Visual
Analytics (VA) that aids in the design of the cities (Marsal-Llacunal 2015).
VA transcends the pictorial representations and links the various tasks to
appeal visually as well as reflects the quality and efficacies of the urban
design (Groger and Plumer, [2012} [Albino et al.| [2015)). Thomas and Cookl
have explained a coordinated technical vision for government and
research investments and help to ensure that a continual stream of techno-
logy and tools enters analysts’ hands and answers related crisis queries
accordingly. Moreover, providing many advancements of services available
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2.3 GeoVisualisation & Visual Analytics Applications

in the cities and the corresponding use of VA are discussed below. By
categorising the services into seven broad categories, VA helps explore
and gain insight into each section. VA enhances building services to main-
tain and manage cities’ assets, providing asset performance index and
other optimal intervention point analytics. This makes the information
transfer more transparent by connecting and involving citizens with in-
teractive visual interfaces while gaining citizens’ satisfaction levels and
citizens awareness levels index. Visual assessments of data quality index,
transportation conditions index, traffic forecast help in supporting cities
infrastructure based on sensors services. Cities services like smart land
use analyses are improved with observed rates for different land uses and
travel between zones, land value transportation index, and zone accessibil-
ity index visually. Furthermore, VA supporting business models strategies
and partnering services, helps to resolve queries by answering the percent-
age of private sector investment, number of partnerships, improvement
in service delivery, private public sector interaction and money invested
2013). Morover, VA enhances the urban automation by supporting
a lot of work investigating the percentage of automated vehicles within the
entire citywide convoy, the percentage of automated vehicles in use by city
public and private groups, the proportion of deliveries made by automated
vehicles, and the proportion of passengers carried by automated transit.
The services related to user centric mobility provide knowledge on the
citywide mobility index, user satisfaction index, and reliability index of
transportation service delivery.

In designing an interactive urban VA, there are generally four essential
features of VA, involved in the smart design of a city. First is the GeoVisual-
isation of the city design in 3D or 2D maps and transforming into several
virtual environments to aid city designers and users to experience the
design (Fu and Zhangj, [2017). The second feature is the layout of the net-
works for understanding the interaction among users and their movement
(Tan et al.| [2017). The third feature involves social media that reflects the
users’ communication in the real and virtual design of the city
[2017). The fourth feature deals with the planning process based on
the online information where users contribute to the improvement of the
designs and generating more data (Kumar and Prakash| [2016]).

GeoVisualisation & Visual Analytics Applications

GV and VA tools and methods encourage collaboration and communication
between entities and provide services to many sectors in the smart city,
as well as improve customer’s experiences and business opportunities
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(Hashem et al.] [2016). The solutions found in the recent literature can
be classified into the following categories: smart grids, smart healthcare,
smart transportation, smart governance.

Smart grids have enabled researchers to integrate, analyse, and use
real time power generation and consumption data, as well as other types
of environmental data (Nga et al., [2012}; [Tsolakis and Anthopoulos| [2015];
[Sanchez and Riveral 2017} [Stefan et al., [2017).

Smart healthcare related analytics tools allow healthcare specialists to
collect and analyse patients’ data, which can likewise be used by insurance
agencies and administration organisations. Moreover, proper analytics of
large healthcare data can help predict epidemics, cures, and diseases,
as well as improve quality of life and avoid preventable death

Smart transportation provides VA applications to visualise and analyse a
large amount of data collected from transportation system, thereby helping
in the improvement of the transportation systems in terms of minimising
traffic congestion, by providing alternative routes and reducing the number
of accidents through the analyses of the history of mishaps, including
factors such as their cause and the driver speed (Andrienko and Andrienko)
2013} [Kalamaras et al.| [2018). [Singh et al.| (2016) developed a framework
of interactive VA for detecting bike riders without helmet automatically in
city traffic.

Smart governance data analytics can help governments establish and
implement satisfactory policies taking into consideration the needs of the
people in terms of health, social care and education. In addition, the ra-
tio of unemployment can also be reduced by analysing the large data of
different educational institutes (Lara et al., 2016} Wang et al.| [2017h).
[Kohlhammer et al.| (2010) developed information visualisation and VA for
governance and policy modelling. Similarly, the Trento i-scope project deals
with citizen participation for web based services, giving an interoperable
framework for the visualisation and processing of 3D city models on mobile
devices. Smartmap Berlin provides visualisation and analysis of Berlin in
photorealistic 3D format. Strengthening the smart governance application
attempts of the city modelling in focus to match with the emerging prac-
tices of eco-town based urban developments have been implemented in
Germany, Netherlands, Sweden and example smart city initiatives from
Korea (Bayulken and Huisingh| 2015} [Yigitcanlar and Kamruzzamanl, [2018).
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2.4 Machine Learning Fundamentals

Artificial Intelligence (Al)

Machine Learning (ML)

Deep Learning (DL)

DL € ML c Al

Figure 2.5: Relationship between AI, ML, and DL, according to |Goodfello
(2016). (This figure is modified after [Goodfellow et al|(2016)).

Machine Learning Fundamentals

The studies involved in exploring the various ways to build an intelligent
mechanism or program that would help solve problems creatively, which
usually requires human intelligence, comes under Artificial Intelligence
(AI). Machine Learning (ML) is the subset of Al, a general term to define
when computers learn from data. Algorithms are designed to recognise
patterns in the data and help make predictions for new data. Furthermore,
Deep Learning (DL) is a subset of Machine Learning where algorithms
are based on a hierarchy of neural networks. A large number of features
are automatically learnt by these deep learning algorithms during the
training phase instead of manually designing them, in contrast to basic
ML algorithms e.g., linear regression, decision trees, and Support Vector
Machine (SVM) etc. where features are manually designed additionally
if required. Figure shows the relationship between AI, ML, and DL,
highlighting that ML is a type of Al, while DL is an important complex part
of ML (Goodfellow et al.| [2016).

Explainable Artificial Intelligence (XAI) represents methods that can be
of different formats, such as rules, numerical, textual or visual information
for interpreting ML algorithms (Miller} 2017}, [Vilone and Longo| [2020} Xie|
[2020). These methods can comprise basic toolkits, complex tech-
niques, and interactive and simple visual interfaces. XAI can be broadly

21



2 Fundamentals & Background
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Figure 2.6: XAl overview.

based on the understanding, debugging, and refinement at the ML al-
gorithm design stage or after the algorithm has been trained and tested
in order to perform results interpretability and comparison (Choo and Liu,
2018). Here, the focus of explanation can involve anyone of this motive (i.e.,
either for understanding, debugging and refinement) or all these purposes
together to enable the user to manage, understand, and appropriately
trust the developed ML model, thus contributing to the decision making
process towards XAI. This decision making process can be based on the
methods focused on producing visual representations of the ML models,
their delivered output, intermediate results, tunning parameters, accuracy
metrics and architecture insights using basic graphs such as heat maps
and bubble charts.

The Figure [2.6] explains the concept of XAI, where an image’s class
prediction is performed. Image input is given to the designed ML network
that classifies the input image’s class (here the class is the star). Now to
debug, refine and understand this developed model during the training
time as well as after the model has been trained for performing the testing
and inference process would require some visual representations and thus
contributing towards the domain of XAI. For example, a user constructs
simple line graphs and histograms of desired parameters, such as the ac-
curacy, loss value of a particular neuron, that offer a simple representation
of the low level (describing in detail the individual components) information
of the ML model. Further, XAI can involve a user in the analysis process
using his domain knowledge and expertise to increase understanding of
the ML techniques and intuitively analyse that the model follows the rules,
thereby building trust. This analysis process can use VA to interact with
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Figure 2.7: ML components overview.

ML models at various stages (Choo and Liu [2018).

Furthermore, the important motive behind using ML is to create al-
gorithms that learn and make predictions on the desired datasets. In order
to make the machine learn and perform, essential starting components
based on datasets, features and algorithms, are required. Figure |2.7| shows
the ML components graphically.

Datasets: The collections of samples on which the ML systems are
trained are known as datasets. The samples can include any kind of data
(images, text, numbers); moreover, historical temporal environmental data
are considered for this thesis work samples creations.

Features: The essential properties or example of data used as the key
for solving the problem, explaining to the machine where and what are the
crucial aspects to pay attention to are called features.

Algorithms: The algorithms are designed in order to solve the task. Mul-
tiple algorithms can be used to solve one task. Moreover, depending upon
the accuracy achieved, resources utilised, desired results, and total execu-
tion time taken, algorithms assessments can be performed and appropriate
algorithm can be selected.

Furthermore, a neural network consists of some layers, where the first
layer is known as the input layer, the last layer is defined as the output
layer. In contrast, the intermediate layers are known as hidden layers as
their values are not determined in the training set and computed by the
network itself. Each layer consists of an array of neurons, which have their
own weights and biases. If each neuron of one layer is connected to every
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Figure 2.8: The 1D Convolutional Neural network (CNN) architecture (1DS).
(This architecture is designed in this work and explained in detailed in the

following [chapter 3).

other neuron of the previous layer, that layer is called a fully connected

layer (Nielsen| [2015)).

To explain these terms in more details with respect to this thesis domain,
suppose the designed deep learning architecture is similar to as shown
in Figure that represents an One Dimensional (1D) Convolutional
Neural Network (CNN). A CNN consist of some convolutional layer, fully
connected layer, input and output layer. In this figure the leftmost layer
(parallel plates) represents the input layer while rightmost (circles array)
represents the output layer. The intermediate layers are three convolutional
layer (C', (5, and C3) and fully connected layer (£} and F7). To make an easy
graphical understanding of the convolutional layer and the fully connected
layer are represented with vertical rectangular plates array and vertical
circles array, respectively, in Figure [2.8|

Moreover, a convolutional layer performs a convolution operation, a
linear function that involves the multiplication between an array of input
data and a 1D array of weights, called a kernel. A dot product (element-
wise multiplication) is applied between the kernel size input and kernel,
resulting in a single value (because of the summation). The kernel size
is kept smaller than the input as it helps in multiplying several times the
input array at different places with the same kernel (set of weights) in the
input. The number of steps the kernel moves in each convolution step is
controlled by stride. For 1D CNN, this is equal to 1. More details about
the CNN layers insights are discussed later in the following sections. The
obtained output array after applying the convolutional task is called a
feature map (Andrade] 2019). This feature map (each value) become input
for the following successive layers. All layers of CNN comprise of multiple
neurons; for the input layer, this number is equal to the input matrix for
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2.5 Layers of Convolutional Neural Network

e.g., in a Neural Network if the number of neurons in the input layer is
seven, then it’s each sample expected to have seven values. Moreover, for
all the layers (excluding the input layer), the activation function determines
how each layer’s neurons pass the sum of weighted input, act on it, and
transform this input (weight and bias) into output. There are various types
of activation functions, and below are discussed some of the activation
functions used in this thesis work.

Activation Functions

Sigmoid: A sigmoid activation function is a logistic activation function
that takes any possible real value type input and transforms this into 0 to 1
range output values. The more positive is the input, the closer the output
value is to 1, whereas the more negative the input, the closer the output is
to 0.

Tanh: A tanh activation function is a hyperbolic tangent activation func-
tion that takes any real value as input and outputs values in the range -1 to
1. The more positive the input, the closer the output value is to 1, whereas
the more negative the input, the closer the output is to -1.

ReLU: A Rectified Linear Activation Function (ReLU) activation function
transforms the input if negative into 0; otherwise, the unmodified input
value is returned. This function also overcomes the limitations of Sigmoid
and tanh.

ELU: An Exponential Linear Unit (ELU) activation function overcame some
of the problems of ReLUs and inherited some of its positive qualities. The
function transforms the negative input into a value slightly less than 0; oth-
erwise, the original input value is returned. To explain it further, suppose,
if inp defines the input value, then the mathematical representation of the
ELU function is given as: if inp > 0 then ELU (inp) = wnp, else if inp < 0
then ELU («np) = ELU (inp) + « For this activation function, an « value is
picked commonly between 0.1 and 0.3.

Layers of Convolutional Neural Network

The Convolutional Neural Network (CNN) architecture has an input layer
followed by multiple consecutive convolutional layers. Successive convo-
lutional layer followed by multiple fully connected layers. Moreover, the
last fully connected layers act as an output layer :.e., the softmax layer
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Figure 2.9: The structure of a single neuron.

(Krizhevsky et al.] [2012). Multiple feature maps in the convolutional layers
enable finding various patterns at various locations of the datasets. The
neurons of subsequent fully connected layers and convolutional layers are
connected differently. Each feature map in a convolutional layer is spatially
related to all the feature maps in the previous layer. A convolutional layer
feature map consists of point (1D) or a pixel (in 2D) which takes input from
all the points lying on the previous layer feature maps, for the same kernel
portion at the same spatial position. The training of the CNN architecture
is performed using the backpropagation algorithm. In order to comprehend
the weight and biases of the neurons, during network training, several
samples whose inputs and corresponding outputs are known are used. The
learnt weights and biases of the trained network are used to estimate
the classes of unseen testing and inference samples which are different
from the training samples. The concept of the layers, softmax, functions,
feedforward and backpropagation steps are elaborated in the following
section.

In a typical convolutional neural network, the feed-forward and back-
propagation steps play a crucial role. Calculating the value of the neuron
from input layer to output layers are performed as the feed-forward step.
While computing the error of neurons with simultaneously updating their
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2.5 Layers of Convolutional Neural Network

weights and biases from the output layer to the input layer is defined as
a back-propagation task (Andrade| [2019). Furthermore, expanding the
terminologies mentioned above the neuron (neu) in a specific layer can be
mathematically represented as follows (as shown in Figure E[) if nequ
represents ¢ neuron in the layer M with multiple inputs inp,*~!) (where, r
= 1...n, and output of » neuron after applying an activation function avt in
layer M — 1), bis,™ a single bias and out,™ corresponding output (Nielsen|
2015). wig, ™ defines the associated weights with the inputs inp, ™~V (r
= 1...n). The weighted sum of the inputs is given by output out,* and can
be written in the form of an equation, as shown in equation. 2.1, where ”.”
denotes the matrix multiplication. An activation function avt, for example
RELU, sigmoid, and ELU (as discussed in [section 2.4), any can be applied

on outh in order to obtain iinM (z.e., iinM = avt(outh).

out M = Z wigq, o inpM T+ biqu (2.1)
r=1

Unlike convolutional layers, the fully connected layers have multiple
linearly arranged neurons. Each neuron of the preceding fully connected
layers is connected to every other neuron in the next fully connected layer.
Considering that the fully connected layer M — 1 each neuron is connected
to every neuron in fully connected layer M, and there are n,;_1, ny; neurons
in each layer, respectively. Equation. [2.2] denotes the feed-forward step
between fully connected layers, to obtain the output outpc™ (a 1D matrix
consist of out,™ (¢ = 1...ny;) (Nielsen, [2015).

. . _ .M
out pc™ = wngcM cinpre™ T + bispe (2.2)

Moreover, the motive behind the back-propagation step is to update after
each iteration of training the weights and biases. This process calculates
the output layer neurons’ error first and then compute intermediate layer
neurons’ error (back-propagation, :.e., the error in the output layer is
propagated step by step towards the input layer). Estimating the weight
and biases changes using the calculated error and updating the weight
and biases continuously. Information about all the associated neurons in
the preceding and successive layers and their corresponding weights and
biases are utilised during these calculations.

Softmax

In the neural network classification approach, most of the time, the activ-
ation function avt used in the output layer is the softmax function. Thus
the output layer using the softmax function is also called the softmax layer.
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However, for the non-output layer, the activation functions can be any
activation function (sigmoid, tanh, ReLU, and ELU) other than softmax. The
softmax layer provides different classes probabilities. Typically in classifica-
tion, the output layer neurons’ number is equal to the number of classes in
which the input is required to be classified. Therefore, corresponding to n,,
classes, there must be n,, neurons in the last fully connected layer. Before
applying the softmax function, the output of each neuron in the last fully
connected layer is denoted by out, (¢ = 1...n,,) as given in equation.

6outh

inp,M = S (2.3)
The softmax function is applied to this output as defined by equation.
where exponential value of out,™ is represented as e°uta™  The sum over all
the neurons is denoted by > "™, eutr™ and corresponding softmax output
of a neuron is given by inp," (Nielsen| [2015). Furthermore, ZZZI eouta™ —
1 (as it can be computed from equation. [2.3), thus out," delivers the

probability of a class.

Cross Validation

One of the essential tasks is to identify the best way to split the datasets
into training and testing samples. The evaluation of the predictive model,
where one subset (samples) of the datasets is used to train the model,
and the remaining samples are used to test the model, is performed by
using cross validation. A k-fold cross validation technique is also used in
this work. Suppose there are AtoI (A, B, C, D, E, F, G, H, I) samples in
the dataset, and k = 3 (i.e., 3-fold cross validation) is applied. Now for a
simple explanation of the k-fold cross validation concept, the training and
testing samples would look like as shown in Figure After iterating this
step multiple times (here iteration = 3), the results are summarised and
aggregated, comparing all the iterations. Therefore in the above example,
three repeats of 3-fold cross validation are performed, meaning that 3-fold
cross validation is applied three times, fitting and evaluating models on the
dataset.

Regularisation

The situation in which the model cannot predict well for the training data
and performs poorly with respect to the accuracy metrics raises an under-
fit model and requires to be fixed. Furthermore, the condition in which
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2.8 Data Preparation & Feature Engineering
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Figure 2.10: Splitting the dataset using 3-fold cross validation.

the model works well during the training time while in the testing time
loses its ability and cannot predict test data. This raised problem and is
defined as over-fitting. In order to avoid these situations, regularisation
techniques are used, where the weights and biases of the neurons are
optimised to obtain a well fitted model. L2 regularisation, dropout, batch
normalisation, data augmentation (viz, Synthetic Minority Oversampling
Technique (SMOTE) and Adaptive Synthetic Sampling Approach (ADASYN))
techniques are used in this work to avoid over-fitting and under-sampling.

Data Preparation & Feature Engineering

The success of Machine Learning algorithms depends on how the data
is presented and designed for these models. Transforming the available
unstructured data into meaningful Machine Learning inputs is the re-
quirement of each prediction analyses (Liu and Motodal [1998). Learning
a solution to a problem from the input data making Machine Learning
algorithms perform successfully requires feature engineering. A feature
could be defined as the representation of the information of available data
into a format that would best fit the designed model’s requirements and
will solve the problem for which it is designed (Guyon et al., [2006).

Feature Importance & Selection

It is essential to estimate the usefulness of features objectively. The features
designing are carried out carefully, evaluating the feature’s effectiveness
with the algorithms used.

Correlation Coefficient

The degree to which the two variables are related to each other can be
discovered with the help of correlation analyses. Calculating the correla-
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tion coefficients helps identify the extent to which the two variables are
dependent on each other and their relationships. To evaluates the linear
relationship between the two continuous variables, Pearson Correlation
Coefficient (PCC) is used. Spearman correlation is often used to assess
relationships involving the dependency between two continuous or ordinal

variables 1963).

Euclidean Distance

The most used and simple technique of measuring similarity is to calcu-
late using the Euclidean distance between the points. For data with n
dimensions, the distance of two points A; and B; is calculated as shown in
equation. [2.4

D(A;, By) = | > (4= By)? (2.4)

j=1

where A; and B; indicate the value of the j-th dimension points.

Feature Extraction

Reducing the dimensionality of the highly voluminous unstructured data to
be modelled by predictive algorithms directly requires feature extraction
techniques (Liu and Motodal, |1998)).

Unsupervised Clustering

Unsupervised clustering identifies similar data points as distinct groups
(7.e., clusters) in unstructured datasets by finding the similarities among
the points and grouping them with their shared similar properties (Goy
[2021). Some of the techniques used in this thesis to analyse the tem-
poral time series dataset are discussed below. The two types of clustering
techniques categories can be defined as flat and hierarchical clustering.
Firstly the flat clustering partitions the data into clusters based on each
cluster individually (where each cluster centre :.e., centroid) and assigns
the points to the specific cluster ignoring the interrelationships between
the clusters. K-mean clustering is an example of centroid based clustering.
Secondly, hierarchical clustering provides clustering at varying levels of
details with introduced tree-like structures, describing the relationships
between the clusters. Moreover, the hierarchical clustering can be sub
categories into two types
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1. Divisive (top-down) clustering :.e., initially, all the data points are
considered as one giant cluster known as the root cluster. Then
recursively, the root gets divided into a set of child clusters, and
then each child cluster further splits until each cluster with only a
single point remains.

2. Agglomerative (bottom-up) clustering uses the concept of "dendro-
gram", constructed from the bottom level by combining the similar
pair of clusters till all the data points are integrated into a root
cluster i.e., a single cluster at the end, out of clusters similarities.

2.9 Accuracy Measures

Confusion Matrix

The performance of the machine learning algorithms can be measured by
a table called the confusion matrix (C). A table (matrix) where each row
and column of the matrix represents the instances of an actual class and
predicted class, respectively (Congalton and Greenl, [2008). Figure
shows the confusion matrix’s graphical structure. The accuracy measures
used in this work to evaluate the model efficacy are total accuracy, precision
and recall. In order to explore the concept with an example, suppose the
dataset contains samples from five classes (dog, tree, cat, rabbit, ground),
and a confusion matrix is constructed to compute the accuracy metrics of
the designed algorithm as shown in Figure [2.11] Here the column total,
row total, number of samples correctly identified for a class x and number
of total samples of all the classes are represented by C,,, Cy,, C,, and
Tsample, TESpectively. The total accuracy is defined as the number of correct
predictions obtained out of the total number of predictions performed by
the algorithm. The number of correct cases where the algorithm correctly
predicted the appropriate class x out of the total actual results is called
precision (as shown in equation. |2.5)).

CI‘$
Zy Cyl’
The number of cases where the algorithm correctly predicted = out
of the total cases which are predicted is called recall (as shown in equa-

tion. [2.6).

(2.5)

Precision, =

Recall, = (2.6)

Zy ny
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Actual

Predicted

Figure 2.11: Table of a confusion matrix.

Using the above equations the precision and recall of dog class are
given by equation. [2.7|and [2.8|.

78

Precision, = — 2.7

recision 20 (2.7)
78

Recall, = — 2.8

eca = (2.8)

Precision and recall of tree class are given by equation. 2.9 and [2.10]

o4

Precision, = — 2.9

recision, 0 (2.9)
54

Recall, = — 2.10

eca 0 ( )
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2.10 Environmental Data & Models

Similar calculations are repeated for rest of the other classes outputs
precision and recall assessments.

Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error is utilised to compare predictions
on different scales while expressing in percentage and is given by equa-
tion. 2.11| where M, actual;, and predict, are equal to mean absolute per-
centage error, actual and predicted value, respectively. The ¢t represents
the data time index, and n represents the total number of data points fitted
or predicted.

1 =  actual, — predict,
M= — 2.11
n; | actual; | ( )

Symmetric Mean Absolute Percentage Error (SMAPE)

The Symmetric Mean Absolute Percentage Error overcomes the weakness
of MAPE by expressing in percentage with upper and lower bounds of 0%
and 200% respectively and is given by equation. |2.12| where M, actual,
and predict, are equal to symmetric mean absolute percentage error, actual
and predicted value, respectively. ¢t represents the data time index, and n
represents the total number of data points fitted or predicted.

(2.12)

M- 100%zn: |predict, — actualy|
n = lactualy| + [predict|

Environmental Data & Models

An important source of renewable energy is the wind energy which is widely
used as a green source of electricity generation (Vargas et al., [2010}; [Colak]
2012). The speculative nature of the wind makes its modelling more
vital and challenging (Tarade and Katti, 2011} [Lawan et al., [2014}; [Marovic|
[2017). The past states of the wind speed, direction, temperature,
altitude, pressure, and other factors affect the behavior of the future wind
trend. Further, the installation of the new wind turbines and sensors over a
location requires prior assessment and prediction of the nature of the wind
and is highly dependent on the impact of the wind speed and direction
(Reed et al.| 2011} [Aissou et al., [2015). The time scales used for the wind
speed, and direction prediction can be grouped into four categories, namely,
very short term (these predictions include for a few seconds to 30 minute
ahead), short term (include predictions from 30 minute to 6 hours), medium
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term (predictions for 6 hours to 1 day ahead) and long term (from 1 day
to 1 week predictions) (Yesilbudak et al.| 2013} [Yesilbodak et al.| [2017).
Very short term and short term wind speed and direction prediction reduce
fluctuations and sudden cut-off in voltage and frequency due to variation
in wind power and excessive wind speed (Miranda and Dunn|, 2006). The
medium term prediction of the wind parameters helps in maintaining an
anticipatory control of the wind sensors (Kusiak et al., [2009b} [Daraeepour
land Echeverri, [2014) and for the online monitoring alerts (Zhou et al.|, 2011}
[Filik and Filik, [2017)). Meanwhile, the long term wind speed prediction is of
interest for the management of the energy distribution (Louka et al.| 2008).

The wind prediction models can be based on firstly Numerical Weather
Prediction (NWP) models (Louka et al., [2008), secondly Machine Learning
(ML) (Sapronova et al.| [2016), and thirdly the combination of both NWP
and ML (Vladislavleva et al.| [2013). NWP approach is based on the physical
kinematic equations that use multiple meteorological variables which are
necessary as input for the prediction model and operates by solving the
complex mathematical models (Zhou et al., 2011} [Filik and Filik] [2017).

In ML various concepts can be used such as fuzzy logic (Monfared et al.|
[2009; Martinez-Arellano et al.| [2014)), Artificial Neural Networks (ANN)
with several hidden layers (EI-Fouly and EI-Saadanyj 2008} [Yesilbodak et al.]
2017), and statistical models (Miranda and Dunnl, [2006}; [Louka et al., [2008]).

[Daraeepour and Echeverri (2014) presented a multi variable model for
wind speed and power prediction in an hour for the next day. The model
first filtered out the data by selecting the best set of inputs features and
then used ANN to predict the successive values of the wind. Regression
models using neural networks along with techniques like particle swarm
optimization, wavelet transform (Martinez-Arellano et al., [2014; Wang et al.|
2017a;[Liu et al., [2018), REP tree, M5P tree, bagging tree, K-Nearest Neigh-

bor (K-NN) algorithm (Jursa and Rohrig|, [2008]; [Kusiak et al.| [2009a} [Kusiak]
and Zhang), [2010)), principal component analysis, moving average models,

Markov chain (Kusiak et al., [2009b}; [Vargas et al.| 2010} Treiber et al.| [2016),
have been used for wind analysis. An n-tupled inputs was used to predcit
the wind speed using K-NN classification by [Yesilbudak et al.| (2013). They
have analysed the effects of distance metrics, nearest neighbours and input
parameters. Support Vector Machines (SVM) and its variation (Kang et al.
[2017), Least Square Support Vector Machines (SVM) (LSSVM) have also
been used for forecasting wind speed (De Giorgi et al., [2014], [2016). [Yuan|
developed a short term wind power prediction hybrid model,
based on LSSVM and gravitational search algorithm. The gravitational
search algorithm was used to optimize the parameters of LSSVM. Different
kernel function of LSSVM and their effects on wind power prediction was
presented.
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2.11 Time Series Visual Prediction

Recently, in the computer vision domain, deep learning algorithm using
Convolutional Neural Networks (CNNs) have shown promising results for
Two Dimensional (2D) images and Three Dimensional (3D) CAD models
classification (Krizhevsky et al., 2012} [Long et al., 2015} [Szegedy et al.|
[2015). CNNs with multiple convolutional layers and fully connected lay-
ers, perform better than the traditional methods and learn their features
automatically instead of manually designing them (Kuo| 2016} [Qi et al.|
[2016). ANN with multiple hidden layers lack convolutional layers and are
thus, unable to extract features unlike CNN (Long et al.| [2015). Moreover,
multiple CNN with several input views improve upon the single CNN accur-
acy with one view (Jung et al.| [2019). Further, single CNNs (1D, 2D) have
been used for temporal wind dataset to predict wind power and wind speed
(Wang et al.|, 20174l [Liu et al.|, [2018), but by converting the One Dimen-
sional (1D) temporal wind data into wavelets decomposition and 2D image
information, thereby, losing the original 1D wind information.
used wavelet packet decomposition for dividing the data into high
frequency and low frequency data. The high frequency data was predicted
using the CNN with 1D convolution operator, while low frequency data was
predicted using CNN and Long Short Term Memory (LSTM) combination
as a regression model, and the input dataset was smoothed. Moreover,
these models for wind prediction have used limited datasets to analyse
their models and predict only a few values (e.g., 3) in the future. However,
a single and multiple 1D CNNs that would work directly on the original 1D
temporal wind dataset, without any transformation, with large historical
wind dataset and with user defined time frame of prediction in future, are
still required.

Time Series Visual Prediction

Temporal datasets are essential and measured across almost all the do-
mains including environmental, healthcare, scientific and financial. Visual
analytics (VA) supported with Scientific or Information Visualisation (Sci-Vis
or Info-Vis) techniques are in demand and also crucial for analysing these
time series datasets patterns (Aigner et al.| [2011). The characteristics of
data, its size, multi-dimensionality, and distribution contribute to make
situation assessment one of the most demanding tasks, both for the user
and the platform (Thomas and Cook|, [2005}; fsenberg et al., [2017). Visual
data exploration often follows Shniderman’s mantra (z.e., "overview first,
zoom and filter, then details on demand") (Shneiderman)| [1996). The work
related to visual prediction, time series visualisation and temporal analyt-
ical approaches which matches the keywords of the developed work were
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explored.

Recent techniques (Badam et al., 2016} [Krause et al., [2016) on visu-
alising the time series data supported with mathematical and statistical
metrics enable the user to build reasoning about the considered temporal
datasets interactively. Visualisation techniques, highlighting the anom-
alies and underlying trends correlations, through an undirected interactive
search (Sacha et al.|, [2016) were developed. Moreover, time series visual-
isation were explored by providing examples of simple charts including
stacked graphs, index charts, horizon graphs for visualising time series
datasets. The representations of time series data become more contextual
with the support of cluster, calendar based and, spiral visualisations
[2011). More detailed and aggregated representations, using multi-
resolution layouts for handling over plotting in large time series datasets
were developed 2011} [Hao et al] 2011). Moreover they also reviewed
the data mining method for classification, pattern exploration, segmenta-
tion and representation of time series data. Hochheiser and Shneiderman,
invented dynamic query tools for time series dataset interactive explor-
ations with user demand detailing (Hochheiser and Shneiderman), [2004)).
Chronolenses were proposed for time series data visual exploration and
correlation analysis (Zhao et al|, [2011al[b). Anomaly detection for modelling
multiple time series (Chan and Mohoney], [2005)), clustering and classific-
ation techniques to identify the similarity of data patterns
among time series dataset using weighted dynamic time warping
20171), distance metrics and agglomerative clustering have been de-
veloped. Inter parameters relationships definition rules are revolutionised
by Hetland and Saetrom (Hetland and Saetrom)| 2005) with rule mining
concept for time series database. The scientific temporal data visualisations
are frequently used in support of interactive visual analytics and are well
accepted within the disciplines (Andrienko and Andrienkol| [2003}; [Navarral
2020).

Moreover, for understanding the temporal datasets and its trends, pre-
dicting future and patterns remains a very challenging task with a few
interactive visual models and user explorations behaviour support. Pre-
dicting the time series data using statistical methodologies like regression
analysis, and computational machine learning approaches like neural net-
works, multilayer perceptron, fuzzy logic and self organising maps have
been successfully applied for the existing studies (Lorenc| [1986} [Guilherme|,
2007} Bollen et al., 2011} [Venugopal et al., 2011)). Visual prediction ap-
proaches in the act of visually predicting a time series variable by observing
the predictions from a computational model, shown alongside with the time
series representations for social media and financial datasets were de-

signed. (Hao et al.| 2011} [Lu et al, [2014}; [Badam et al.|, [2016). Furthermore,
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interaction techniques with engaging the user in an efficient dialogue in the
contribution by people and computers to solve the task together ¢.e., mixed
initiative interaction techniques have also been proposed (Horvitz, [1999)
2007} [Endert et al., [2012]; [Kapoor et al.,[2012). Data driven forecasting in
visual predictions for time series dataset visualisation with highlighting the
sequence and pattern in support of approaches to explore correlations in
multivariate spatio-temporal data have been designed by [Hao et al.| (2011);
[Malik et al.| (2012)).

However, the increased usage of the environmental monitoring system
and sensors installation on a day to day basis has provided more informa-
tion in monitoring the current environmental conditions. Sensor networking
advancement with quality and quantity for air parameters, has given rise to
an increase in techniques and methodologies supporting temporal data in-
teractive visualisation analyses (Hart), 2006} [Bogue] [2008). Moreover, there
exists a gap between the environment as observed and its digital represent-
ation in the user govern time frame for temporal data interactive analysis.
Visualisation of meteorological and pollution data history and context plays
an essential role in visual data mining, especially in exploring the large and
complex datasets and environmental conditions. Including the context and
historical information in the visualisation could improve user understand-
ing of the environmental dataset exploration process and enhancing the
re-usability of mining and managing techniques and parameters analysis
to achieve the required insights. Although, traditional approaches cannot
fully support the visual exploration of future trends in complex multivariate
time series datasets such as weather, and healthcare, mainly due to their
lack of consideration of inter-variable relationships (e.g., if PM;, increases,
NO, decreases). Exploring these relationships through “what if” questions
(e.g., what if PM,, increases?) could help the user to better judge the future
environmental conditions than blindly trusting computational models that
lack contextual information. Thus, there is still a gap the user likely needs
to bridge for comprehending the situation.
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Machine Learning Algorithms for
Predictions

This chapter discusses the implementations of the first objective of the

thesis given in the [section 1.5 These findings and developments have
passed double peer review during a publication process already.

1. The first development consists of three One Dimensional (1D)
algorithms based on LSTM, RF and SVM (section 3.1),

2. The second technique is based on One Dimensional (1D) Convolu-
tional Neural Network (CNN) called as 1DS, followed by the de-
veloped third technique of 1D Multiple CNN (1DM) that combines
several 1DS but with different views of the same input, therefore,

learning more information compared to the 1DS (section 3.2), and

3. The last technique builds upon the 1DM method and develops a
multiple CNN architecture with multiple input features, combined

Parts of this chapter have previously been published in:

Harbola, S. and Coors, V. (2019b), ‘Comparative analysis of LSTM, RF and SVM Archi-
tectures for Predicting Wind Nature for smart city planning’, ISPRS Ann. Photogramm.
Remote Sens. Spatial Inf. Sci., IV-4/W9, [https://doi.org/10.5194/isprs-annals-IV

65-70;
Harbola, S. and Coors, V. (2019a), ‘One Dimensional Convolutional Neural Network

Architectures for Wind Prediction’, Energy Conversion and Management, 195,
|//doi.org/10.1016/j.enconman.2019.05.007, 70-75;

Harbola, S. and Coors, V. (2019c), ‘Convolutional Neural Network Architectures for
Wind Analysis,’, EAWE PhD Seminar 2019 29-31 Oct 2019 Nantes, France,
|/ /eawephd2019.sciencescontf.org/285035;

Harbola, S. and Coors, V. (2021a), ‘Deep learning model for wind forecasting’, PFG -
Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 10,

//doi.org/10.1007/541064-021-00185- 6}
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with multiple LSTM, along with densely connected convolutional

layers (section 3.3).

The following chapter explains the experimental setup of the developed
prediction models. Afterwards, results and findings are discussed, elabor-
ating the analyses of algorithms, explaining the techniques that are used
in this thesis. The chapter summary in explains the advantages
and limitations of the developed models.

Developed Methods The developed methods are designed to provide an
accurate framework that helps to analyse the meteorological and pollution
parameters nature assessments and prediction. In the following sections,
the methods are discussed in the order they are developed along with
their findings and advantages. The shortcomings of the prior methods
are improved in the later designed models. A comparative analysis is put
together in investigating the improved accuracy of the developed predicting
models. Figure provides a brief overview of this chapter workflow along
with highlighting the motivation behind this work.
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Dataset Used The wind datasets of Stuttgart (Germany) and Netherlands
are used in this study. The historical data of 30 years from 1987 to 2017
are taken from Stuttgart (Stadtklima-Stuttgart, [2021), the climate and
air measuring station are located in the corner of Hauptstaetter Strasse
70173 Stuttgart, Germany. This dataset contains values of the wind speed
and direction at an interval of thirty minutes. The second dataset is from
Netherlands from the station 210 Valkenburg with 37 years of historical
data from 1981 to 2018 [2020). The dataset of each area is grouped
according to the individual month by arranging past data first and most
recent data later, thereby helping in predicting the dominating wind speed
and direction on a monthly basis. The above datasets are used for all the
following designed ML techniques.

Long Short Term Memory, Random Forest & Support
Vector Machine

This study develops three One Dimensional (1D) algorithms based on LSTM,
RF and SVM with the following contributions,

1. dominant wind speed and direction predictions using 1D LSTM
(IDLSTM), 1D RF (1DRF), and 1D SVM (1DSVM), without applying
any smoothening and noise removal techniques,

2. the time frame of prediction is user-defined,

3. using 1DLSTM, 1DRF and 1DSVM as classification instead of
regression to enhance accuracy, and

4. comparative study of the 1DLSTM, 1DRF and 1DSVM architec-
tures.

The designed models will provide foreknowledge of wind nature of an
area, thereby helping in the proper selection of sites for wind turbine
installation. This will provide more utilisation of renewable energy for safe
and better city planning, that in turn would help in efficient management
and development of the city’s resources.

The remaining work is organised as follows, developed methodologies
are discussed in |[subsection 3.1.1} |[subsection 3.1.2| explains the results
and subsection 3.1.3|provides discussion, followed by conclusion in
tion 3.1.4l
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Table 3.1: The designed various classes ranges.

Class | Lower limit | Upper limit

1 i —kio W+ ko
2 1+ ko W+ koo
3 W+ koo A+ kso
4 n—+ kgO' +00

5 W — koo w— ko
6 W — kso W — koo
7 —00 W — kso

3.1.1 Methodology

The wind dataset comprises wind speed and direction with temporal res-
olution t and ¢; (+ — 1 to k) denotes speed and direction at time i, where
1 and k are the first and last values in the dataset, respectively. Multiple
samples are designed using the dataset for training and testing the de-
signed algorithms. A sample consists of a feature vector as an input with a
corresponding output class. V}, (a scalar) consecutive values of wind speed
from t; to ¢;;y, form a feature vector of dimension 1}, x 1 which is the input
of the sample. V; (a scalar) successive values of wind speed after the last
value in the input i.e., t,1y,, are used to define the sample’s output class.
Mean (1), and standard deviation (o) of the wind speed of the entire dataset
are calculated. Various class boundaries are designed using ¢ and o as
shown in Table [3.1. Among V}, count of values occurring in each class in
Table is noted, and the class that has a maximum count ¢.e., dominant,
is assigned to the sample. Similarly, multiple samples based on wind speed
are created by taking V}, values in the corresponding input from ¢; to ¢;;y,
by varying ¢ from 1 to k - V}, at an increment of 1. The outputs of these
samples are designed as discussed above. Likewise, samples based on wind
direction are created where direction instead of speed is considered both
in the input and output and ; and o of direction are calculated. Thus, at
this stage, for V}, values in the input from ¢; to ¢;y,, there will be two sets
of samples, one based on wind speed and other based on wind direction.

The developed 1DLSTM is a special kind of Recurrent Neural Networks
(RNN) capable of learning long term dependencies with chain like struc-
ture. Figure My sy model shows the designed architecture for the
classification analysis approach for a temporal meteorological dataset. It
has an input layer, four neural layers (N1, N2, N3, N4), i.e., three sigmoid
layers along with tanh layer and an output layer. The input layer is 1D of
the size of V}. The input layer is successively followed by 1D N1, N2, N3
and N4, with the output layer in the end. The output layer is a softmax
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Figure 3.2: 1DLSTM model designed architecture overview.

layer (Goodfellow et al.| [2016), having the number of neurons same as the
number of the classes. There are seven classes in the present study as
shown in Table 3.1l

The designed 1DSVM algorithm classifies the data by finding the best
hyperplane that separates all data points of one class from those of the
other class. The best hyperplane for the 1DSVM signifies the one with the
largest margin between the two classes. The margin defines the maximal
width of the slab parallel to the hyperplane that has no interior data point
in time. The support vectors are the data point that are closest to the
separating hyperplane; these data points are on the bounds of the slab.
1DSVM can be used when data has exactly two classes. However, multiple
classes can be classified using the one-vs-all (OVA) approach, one-vs-one
(OVO), and all-vs-all (AVA) approach. In this study, OVO method along
with nonlinear Radial Basis Function (RBF) kernel, have been used for
classification.

The implemented 1DRF algorithm uses a decision tree as a decision
support tool for classification. 1DRF uses a tree like graph to show the
possible consequences. When the 1DRF is given a training sample, it
formulates a set of rules which are used to perform predictions. Moreover,
1DREF uses sufficient decision trees, to ensure the classifier does not overfit
the model while taking the average of all the predictions to remove the
biases. The advantage of the 1DRF as a classifier is that it can handle
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missing values, and the classifier can be modeled for categorical values
and to get the relative feature importance, that contributes in selection of
the most favorable features for the classifier. Therefore 1DLSTM, 1DSVM
and 1DRF are used to predict wind speed and direction separately. When
predicting dominant speed, samples based on speed are used to train and
test the 1DSVM. When the dominant direction is to be predicted, then the
samples based on direction are used to train and test the 1DSVM. Similarly,
the 1DLSTM and 1DRF are trained and tested with samples based on
speed for dominant speed prediction and direction for dominant direction
prediction. During training, the sample’s feature vector of dimension V}, x
1, forms the input of the 1DLSTM, 1DSVM and 1DRF while the sample’s
output class forms the output of the 1DLSTM, 1DSVM and 1DRF.

Results

The developed algorithms were implemented using Python and executed
with four cores on Intel® Core ™ i7- 4770 CPU @3.40 GHz. Stuttgart’s
30 year historical data was separated by month to create monthly data.
Similarly, according to each month, 37 years of historical data from the
Netherlands was grouped. For each month data (individually for Stuttgart
and Netherlands), each algorithm was executed separately to predict the
dominant wind speed and direction. Several samples were created from the
data of a month, each with input and corresponding output, as described
inlsubsection 3.1.1l

Values of &, ky; and k3 (Table were determined empirically as 0.15,
0.45 and 0.65 for both speed and direction. It ensured that adequate
number of samples was present in each class. Also, Synthetic Minority
Oversampling Technique (SMOTE) was utilized to do up-sampling of the
classes having inadequate number of samples. V, and V; were taken as
50 in this study. All the samples for a month, were randomly separated
into training and testing samples with 40% of the total samples as testing
samples. The designed algorithms were trained and tested with these
samples. In order to calculate the average accuracy values, the previous
procedure of random division of the total samples into training and testing
and the training of the designed methods was repeated ten times, taking
into account the randomness of division into training and testing.

1DLSTM learning curves for the testing samples of Stuttgart, Septem-
ber’s month are shown in Figure [3.3] where blue curve is for predicting
the dominating speed, and orange curve is for predicting dominating direc-
tion. Similar learning curves were obtained for the other months as well.
Total accuracies of classification for different months for the developed
algorithms both for Stuttgart and Netherlands for the wind speed and

44



3.1 Long Short Term Memory, Random Forest & Support Vector Machine

Total accuracy (%)

Total accuracy (%)

100
90
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

oo-n(\lO\\Omot\g—oommm\omonﬂ-—oom(\lm\o
— N wnvn O oA M RO NN OATWVIEO OA
—_ e = = = AN AN AN AN N NN NN N <t <t
Epoch
—LSTM speed —LSTM direction

Figure 3.3: Learning curves for testing samples.
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Figure 3.5: Total accuracy for different months for Stuttgart (in direction
case).

direction cases (separately) are shown in Figure Figure Figure (3.6
and Figure 3.7

For Stuttgart data, minimum and maximum total accuracy for predicting
dominant speed are 77.2% and 87.3% respectively using the designed
1DRF method, 83.9% and 90.9% respectively using the developed 1DSVM
method, and 84.5% and 92.4% respectively using the developed 1DLSTM
method. Prediction of dominant direction of Stuttgart data, using the 1DRF
results in minimum and maximum total accuracy of 81.6% and 89.3%
respectively, 84.6% and 93.8% respectively using the 1DSVM and 87.4%
and 93.3% respectively using the 1DLSTM (Figure [3.4] and Figure [3.5).
Similarly, for Netherlands data, minimum and maximum total accuracy for
predicting dominant speed are 80.7% and 88.7% respectively using the
1DRF method, while 86.9% and 92.8% respectively using the designed
1DSVM method, and 87.7% and 93.9% respectively using the developed
1DLSTM method. Prediction of dominant direction using the 1DRF method
results in minimum and maximum total accuracy of 80.6% and 88.3%
respectively, whereas 87.7% and 92.4% respectively using the 1DSVM
method and 87.2% and 94.7% respectively using the 1DLSTM method, for
the same Netherlands data (Figure [3.6 and Figure [3.7).

Figure [3.8| and Figure 3.9 show precision and recall values of dominant
speed and direction prediction for June month of Stuttgart. Similar results
were obtained for other months as well. Maximum precision and recall
values are 92.6% and 92.7% respectively using 1DRF, 92.4% and 93.1% re-
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Figure 3.6: Total accuracy for different months for Netherlands (in speed
case).
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Figure 3.8: Precision values of different classes for June month of Stuttgart.
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Figure 3.9: Recall values of different classes for June month of Stuttgart.

48



3.1.3

3.1 Long Short Term Memory, Random Forest & Support Vector Machine

100
90

80 |

7

6

5

4

3 m 1DSVM
2 ® 1DRF
! | ®LSTM

20 25 30 35 40 0 55 60 65

45 5
m1DSVM 76.7 783 77.7 83.2 848 86.8 90.7 86.4 883 882
m 1DRF 712 722 705 76.7 79.6 79.4 842 803 822 818
mISTM 794 812 765 843 87.2 854 925 857 90.2 893

Vs

Total accuracy (%)
O OO O O O O O

Figure 3.10: Total accuracy variation for different V}, with V; = V.

spectively using 1DSVM and 93.7% and 93.4% respectively using 1DLSTM.
Further, value of V,, was varied to carry out its sensitivity analysis. In first
case, V;, was varied and V; remains same as V. In second case, V; was kept
constant at 50 while V, varies. These were performed for June month of
Stuttgart and total accuracy for dominant speed prediction is shown in
Figure [3.10] and Figure [3.11] As value of V; increases from 20 to 50, the
total accuracy increases, which after 50, remains approximately similar for
the 1DLSTM, 1DRF and 1DSVM. Thus, V;, and V; were taken as 50 in this
study. Higher V}, value presents a larger feature vector as input of a sample
which contributes to more information and 1DLSTM, 1DRF and 1DSVM
perform better.

Discussion

The designed 1DRF using multiple decision trees is able to detect patterns
in the input feature vector of a sample and is able to predict dominant wind
speed and direction with good accuracy. The 1DSVM method maximises
the margin between the support vectors and the hyperplane and is able to
perform better using a non linear Radial Basis Function (RBF) kernel. The
1DSVM performs better by up to 8.4% and 6.4% in comparison to 1DRF for
predicting dominant wind speed and direction respectively. The 1DLSTM
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Figure 3.11: Total accuracy variation for different V;, with V; = 50.

with four recurrent layers with long term dependencies performs better by
up to 9.3% and 7.9% in comparison to 1DRF for predicting dominant wind
speed and direction respectively, and by up to 1.0% and 1.5% in comparison
to the 1DSVM. Moreover, 1DLSTM and 1DSVM share similar results for
most of the dataset cases. The performance of 1DLSTM can be improved
with increased numbers of neural layers with advanced activation functions,
though it requires better hardware resources.

The higher number of classes (7) in the output ensures that the designed
methods are able to learn varieties of samples during the training and can
predict with good accuracies during the testing. Moreover, the higher
number of classes helps to identify the sudden changes in the wind speed
and direction and ensures that most of the minor and major details are
learnt during the training phase. During the designing of the samples,
their output classes were decided statistically using ;. and o of a particular
month’s wind dataset, thereby representing the dataset better. However,
currently with 7 classes in the 1DLSTM, 1DRF and 1DSVM, for Stuttgart,
total accuracy enhances by up to 6.7% and 6.9% (for May month) using
1DLSTM and 6.3% and 6.6% (for May month) using 1DSVM for wind speed
and direction, respectively, with respect to the corresponding month using
1DRF (Figure [3.4] and Figure [3.5). Similarly, for Netherlands, using the
1DLSTM, total accuracy is enhanced by up to 7.1% and 5.4% (for March
month) and using 1DSVM by 6.9% and 5.5% (for October month) for wind
speed and direction, respectively, with reference to the corresponding
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month using 1DRF (Figure and Figure[3.7). The input feature vectors
of samples are based on the original wind data values. The developed
1DLSTM, 1DRF and 1DSVM algorithms take as input the original data
without applying any smoothening technique to filter out the noise and
have only a single user-defined parameter V}, thus making these algorithms
less susceptible to the noise along with the use of real data and minimum
parameter tuning. The comparative study of the designed 1DSVM with

[De Giorgi et al.| (2014) and [Yuan et al.| (2015) is performed, along with the
comparison of 1IDLSTM with [Ghaderi et al.| (2017), as these algorithms are

nearest to the developed methods. [De Giorgi et al.|(2014) and
have used SVM and LSTM but with regression analysis (LSSVM) and
smoothening and filtering techniques have been applied to remove noise
from the dataset. Similarly, [Ghaderi et al.| (2017) have used LSTM with
regression and noise has been removed from the dataset by smoothening
and filtering, thereby modifying the originality of wind dataset. The samples
used in the present study are utilized to train and test the [De Giorgi et al.|
(2014)); [Yuan et al.] (2015), and [Ghaderi et al.| (2017) architectures. In this
case outputs of the samples are changed to real values (i.e., regression)
unlike classification as in the 1DLSTM, 1DSVM and 1DRF. Values of 1}, and
Vy are kept as same. Symmetric Mean Absolute Percentage Error (SMAPE)
(Shuyang et al., [2017) for wind speed using [De Giorgi et al.| (2014), [Yuan|
let al.] (2015)), and [Ghaderi et al.| (2017) are more or less similar and is 18.2%
for V; = 15 and increases as V; increases, reaching up to 32.5% for V; =
50. Likewise results using [De Giorgi et al.| (2014), Yuan et al.| (2015), and
[Ghaderi et al.| (2017) architectures were obtained for the wind direction.
Thus, error increases substantially when more values are predicted in
future using state-of-the-art SVM and LSTM based regression architectures
[De Giorgi et al.| (2014)), [Yuan et al.| (2015), and [Ghaderi et al.| (2017).
However, the designed 1DSVM method for predicting dominant speed and
direction based on classification, achieves high accuracy reaching up to
93.9% and 94.7% (1DLSTM), up to 92.8% and 93.8% (1DSVM) and up to
88.7% and 89.3% (1DRF) for speed and direction, respectively for V; = 50
even without applying any smoothening or filtering to the original data.
Thus, the implemented 1DLSTM, 1DSVM and 1DRF methods are suited
for predicting dominant speed and direction for a larger time period in the

future unlike the [De Giorgi et al.|(2014), [Yuan et al.|(2015), and [Ghaderi|
(2017) regression based architectures.

Conclusion

The integration of new knowledge, innovative technologies in sustainable
transformation is a motive of this work. The algorithms using 1DLSTM,
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1DRF and 1DSVM have been developed for predicting the dominant wind
speed and direction classes. V}, continuous values of the wind speed and
direction separately form a sample’s input and predict the dominating
speed and direction, among V; values after the last value in the sample
input, using 1DLSTM, 1DRF and 1DSVM. The developed algorithms show
promising results when trained and tested using wind datasets of Stuttgart
and Netherlands. The maximum total accuracy using the 1DRF in case of
Stuttgart for predicting dominant speed and direction are 83.7%, 89.3%
respectively, and for Netherlands 88.7%, 88.3% respectively. Meanwhile,
using the 1DSVM maximum total accuracy for predicting the dominant
speed and direction for Stuttgart are 90.9%, 93.8% respectively, and for
Netherlands 92.8%, 92.4% respectively. Further, using the 1DLSTM max-
imum total accuracy for predicting the dominant speed and direction for
Stuttgart are 92.7%, 93.5% respectively, and for Netherlands 93.9%, 94.7%
respectively. The total accuracy enhances by up to 6.7% and 6.9% (for
May month) using 1DLSTM and 6.3% and 6.6% (for May month) using
1DSVM for Stuttgart’s wind speed and direction, respectively, with respect
to the corresponding month using 1DRF. At the same time for Netherlands,
total accuracy using the 1DLSTM is enhanced by up to 7.1% and 5.4% (for
March month) and using 1DSVM by 6.9% and 5.5% (for October month) for
wind speed and direction, respectively, with reference to the corresponding
month using 1DRF. The advantage of these methods is that they do not
apply any smoothening and noise removal techniques and are based on
classification approach. LSTM learns long term dependencies in the tem-
poral data, SVM finds the probable hyperplane between points of different
classes and RF uses multiple decision trees. However, in these algorithms
a limited number of features and classes are used. A better approach is
required that could incorporate multiple features and more number of
classes.

One Dimensional Convolutional Neural Network
Architectures

This study develops

1. 1D Single CNN (1DS) for predicting dominant wind speed and
direction of 1D time series wind data,

2. 1D Multiple CNN (1DM) with multiple views of time series wind
data to enhance the 1DS accuracy, and
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3. the 1DS and 1DM as classification methods working on the original
1D wind data values and future time frame of prediction depends
on the user.

The rest of the sections are organised as follows: subsection 3.2.1| explains
the developed algorithms, describes the datasets used in this
study, followed by |subsection 3.2.2| and |[subsection 3.2.3| where detailed
results are discussed and the conclusion is given in [subsection 3.2.4|

Methodology

The wind dataset has values of wind speed and wind direction at regular
time interval ¢t. ¢; (j — 1 to n), gives values of wind speed and direction
at time j, where 1 and n are the first and last values, respectively, in the
dataset. A sample has multiple input values and an output class. The sample
comprises, say Wy (a scalar), consecutive values from ¢; to ¢; .y, of the
dataset with two features of speed and direction, in the input. Wy (a scalar)
successive values in the dataset, after the last value in the sample’s input
i.e., tjywg, are used to define the output class of the sample separately
for speed and direction. For this, mean (1) and standard deviation (o) of
the speed and direction for the complete dataset are computed separately.
Table lists the lower (inclusive) and upper (exclusive) boundary ranges
for the various classes based on ; and o.

In this study, same boundary ranges are used for defining the output
class based on speed and direction. Among Wp, respective count of the
values of the speed occurring in these classes (Table @]) are calculated
and the class with the maximum count, i.e., dominant, is assigned to the
sample. Similarly, among Wp, count of the values of the direction occurring
in each class is computed and the class with the maximum count, i.e.,
dominant, is assigned to the sample. Thus, the sample at this stage has
same Wg values with two features of speed and direction in the input, but
two output classes, one based on the speed and the other based on the
direction. Moreover, scalar Wz multiplied by the temporal resolution () of
the wind dataset, gives the future prediction time frame for the dominating
wind speed and wind direction. Likewise, more such samples are designed
by taking W values in the input from ¢; to ¢;,w, of the dataset by varying
7 from 1 to (n — Wp), at an increment of 1. The output classes of these
samples are designed accordingly as discussed above.

The developed 1DS has an input layer, three convolutional layers (C', Cs,
(3), two fully connected layers (Fi, F3) and an output layer (Figure [3.12).
The input layer is 1D of size of Ws. A sample which is passed through the
1DS input layer, comprises Wy consecutive values from the dataset with
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input C, C, C; F, F, output

Figure 3.12: Single CNN (1DS) architecture.
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Figure 3.13: Multiple CNN (1DM) architecture.
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Table 3.2: The designed various classes ranges.

1 Ww—kio W+ ko
2 1+ ko W+ koo
3 W+ koo W+ kso
4 w1+ kso w1+ kyo
5 p+ ko w+ kso
6 M+k50’ +00
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8 w— kso [ — koo
9 W — kyo w— kso
10 w— kso W — kyo
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Figure 3.14: Inputs to 1DM. (a) represents W values of a sample. (a),
(b), (c), (d) and (e) represent input to CNN;, CNN,, CNN3;, CNN,, CN N5,
respectively where blue-squares denote values included in input and yellow-
black strips denote excluded values.
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two features of speed and direction (as discussed above). The input layer
is successively followed by 1D (', (5, (5 with C3 connected to F; and F;
is followed by F,, with the output layer in the end. The output layer is a
softmax layer (Memisevic et al., 2010} [Su et al.| [2015), with the number
of neurons same as the number of the classes. There are eleven classes
in the present study as shown in Table 3.2 The 1DS is trained and tested
separately for the prediction of the dominant speed and direction. When the
1DS is used for dominant speed prediction, then the samples output classes
based on the speed are considered. When the 1DS is used for dominant
direction prediction, then the samples output classes based on the direction
are considered. Thus, the input values of the samples remain the same, but
the corresponding output classes change based on the speed or direction
prediction. Therefore, for a test sample, the 1DS can predict the speed and
direction classes separately. The developed 1DM has five single CNN, say
(CNN;, CNNy, CNN;, CNN,, CNN5), as shown in Figure [3.13| Each of
these CNN; (+ — 1 to 5) has its own input layer, C;, (5, (3, as in the 1DS
and C5 of each C'N N; connects to the common F; which is followed by F,
and the softmax layer. The number of neurons in the softmax layer of the
1DM, are same as in the 1DS. In Figure the input of CN N, is same as
input of the 1DS with Wy values and two features. The input of C N N, takes
Ws values but at an increment of two, starting from the first value, thus,
the input has half of the Wy values. Similarly, the input of C N N5 takes Wy
values at an increment of two but starts from the second value. The input
of CN N, and CN Nj; are designed similarly by using an increment of three,
starting from the first and the second values of WWg respectively as shown in
Figure 3.14] Thus, the sample having W values is passed through the five
different CNNs of the 1DM by taking the corresponding inputs. Moreover,
as in the 1DS, for the designed 1DM also the input values of the samples
remain the same, but the corresponding output classes change based on
the speed or direction prediction.

Results

The developed algorithms were implemented using Keras library
with TensorFlow in backend in Python and executed on Intel® Core
™ §7-4770 CPU @3.40 GHz having four cores. The 30 years historical data
from Stuttgart was separated by each month to create respective months
data. Similarly, 37 years historical data from Netherlands was grouped
according to each month. Each algorithm was executed separately for
each month data (of Stuttgart and Netherlands individually) for predicting
the dominating wind speed and direction. Several samples, each having
input and corresponding output, were created from a month’s data as
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Figure 3.15: Learning curves for testing samples.

described in[subsection 3.2.1| Values of ki, k9, k3, k4 and k5 (Table were
taken as 0.15, 0.45, 0.65, 0.95 and 1.25 respectively (same for both speed
and direction), so that a sufficient number of samples occur in each class.
Moreover, Synthetic Minority Oversampling Technique (SMOTE) was used
to do up-sampling of the classes having less number of samples. Wg and Wp
were taken as 50. Total samples for a given month were randomly split into
training and testing with 35% of the total samples as the testing samples.
The developed algorithms were trained and tested on these samples.

Previous procedure of randomly splitting the total samples into training
and testing along with the training and testing of the developed methods
was repeated ten times to calculate the average accuracies values, consid-
ering the randomness of splitting into training and testing. The developed
algorithms use Exponential Linear Units (ELUs) (Clevert et al., [2016}; [Peda}
[2018) as activation function with « of 3.0, kernel size of 3 and stride
of 1 for all the convolutional layers and these values have been selected
empirically. The batch normalisation is used after every convolution layer
(Jung et al.| 2019) and dropout of 0.20 is used, which along with ELUs pre-
vent overfitting (i.e., network shows high accuracy during training but less
accuracy when new data is given during testing). The number of feature
maps in C;, (5 and C3 of 1DS are 10, 10, and 20, respectively, whereas
the number of neurons in F} and F, of 1DS are 200 and 100 respectively.
Further, the number of feature maps in ', C5 and C5 of each of CNN; are
10, 10, and 20, respectively, whereas the number of neurons in F; and F;
of 1DM are same as in 1DS.

Learning curves for the testing samples of May month of Stuttgart are
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Figure 3.16: Total accuracy for different months for Stuttgart.

shown in Figure where cyan and pink color curves are of the 1DS
and 1DM respectively for predicting dominating speed and off-white and
brown color curves are for the 1DS and 1DM respectively for predicting
dominating direction. Similar learning curves were obtained for the other
months as well. Classification accuracies in terms of the total accuracies
for the designed methods for different months are shown in Figure |3.16
Figure [3.17] Minimum and maximum total accuracy using the 1DS for
predicting dominant speed are 85.4% and 90.2% respectively, whereas
using the 1DM these are 92.0% and 96.8% respectively, for Stuttgart.

Further, minimum and maximum total accuracy using the 1DS for pre-
dicting dominant direction are 89.8% and 95.1% respectively, whereas
using the 1DM these are 93.6% and 99.7% respectively, for Stuttgart (Fig-
ure[3.16). Similarly, for Netherlands, minimum and maximum total accuracy
using the 1DS for predicting dominant speed are 90.0% and 95.2% respect-
ively, whereas using the 1DM these are 97.5% and 98.8% respectively
and minimum and maximum total accuracy using the 1DS for predicting
dominant direction are 91.3% and 94.7% respectively, whereas using the
1DM these are 97.6% and 99.4% respectively (Figure [3.17).

Precision and recall values for predicting dominant speed for various
classes for May month (of Stuttgart) are represented in Figure[3.18] and
similar were the results for other months. The 1DM has precision and
recall values for all the classes above 79.1% whereas the 1DS has above
59.0%. Moreover, sensitivity analysis of W was performed by calculating
the total accuracy for different Wy, firstly with W = Wy (Figure and
secondly by keeping Wy constant as 50 (Figure [3.20), for May month (of
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Figure 3.17: Total accuracy for different months for Netherlands.
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Figure 3.18: Precision and recall values of different classes for May month
of Stuttgart.

Stuttgart) to know its effect. In Figure Figure the total accuracy
increases as Wy increases from 20 to 50 and after 50 remains more or
less similar for both the 1DS and 1DM when predicting wind speed for
May month. Therefore, in this study WWg was taken as 50. The increase in
accuracy can be attributed to the more input values in a sample, therefore,
more information is passed through the CNNs input layer and the networks
perform better.

Discussion

The developed 1DS has three 1D convolutional layers and three fully con-
nected layers (including output layer), where the convolution layers act as
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feature extractors from the input wind dataset whereas the fully connected
layers act as a classifier thereby predicting the dominant wind speed and
direction. An input sample comprising Wgs consecutive values from the
dataset with two features of speed and direction provide temporal informa-
tion for both speed and direction and the 1D convolutional operations are
able to detect temporal trends and features. The CNN can detect more
details with a large number of feature maps (Qi et al., [2016)) but due to
the hardware constraints in the current study, limited feature maps and
neurons have been used. The higher number of classes (11) in the output
ensures that the developed methods are able to learn varieties of samples
during the training and can predict with good accuracies during the test-
ing. Moreover, the higher number of classes helps to identify the sudden
changes in the wind speed and direction and ensures that most of the
minor and major details are learnt during the training phase. During the
designing of the samples, their output classes were decided statistically
using ¢ and o of a particular month’s wind dataset, thereby representing
the dataset better.

The 1DM combines multiple 1DS information by merging last convo-
lutional layer of each 1DS at common F;j. Different variations of Wy in
the corresponding input layers of CNN; (+ — 1 to 5), provide additional
views in terms of temporal resolution of the same input (Figure [3.14),
thereby the 1DM learns more information than the 1DS. More views can be
used in the 1DM for enhanced accuracy. However, currently with 5 views
in the 1DM, for Stuttgart, total accuracy is enhanced by up to 8.4% (for
June) and 6.3% (for March) for the wind speed and direction, respectively,
with respect to the 1DS (Figure [3.3). Similarly, for Netherlands, using the
1DM, total accuracy is enhanced by up to 6.9% (for April) and 7.3% (for
March) for wind speed and direction, respectively, with respect to the 1DS
(Figure [3.17). The developed 1DS and 1DM algorithms take as input the
original data without applying any smoothening technique to filter out the
noise and have only a single user-defined parameter W, thus making these
algorithms less susceptible to the noise along with the use of real data and
minimum parameter tuning. The comparative analysis with the existing
literature method [Liu et al.| (2018) using 1D CNN which is nearest to the
designed algorithms is carried out.

1D CNN with the regression concept has been used in [Liu et al.|] (2018)
along with the smoothening and filtering of the values of the samples
which amends the originality of the wind dataset. When the same samples,
comprising Ws (= 50) input values, that are utilised for the developed
1DS and 1DM, are used to train and test the regression CNN architecture
[Liu et al.| (2018) without applying smoothening and filtering, Symmetric
Mean Absolute Percentage Error (SMAPE) for wind speed is
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14.5% for W = 10 and increases as Wp increases, reaching up to 19.5%
for Wi = 50. Similar results were obtained for the wind direction. It may
be noted that that in this case outputs of the samples are based on real
values (i.e., regression) unlike classification as in the 1DS and 1DM. This
indicates that error increases significantly as more values in future are
predicted using state-of-the-art CNN based regression architecture
(2018), whereas, the developed CNN architectures based on classification
for predicting dominant speed and direction, give high accuracy reaching
up to 99.7% for Wi = 50 even without applying any smoothening to the
original data.

This makes the developed 1DS and 1DM architectures suitable for
predicting dominant speed and direction for a larger time frame in the
future unlike [Liu et al.| (2018). The accuracies of the designed methods can
be enhanced by increasing the number of convolutional and fully connected
layers along with more feature maps in convolutional layers. However,
it requires better hardware resources and faster graphical processing
units (GPUs) as more calculations are to be done during feedforward and
backpropagation stages.

Conclusion

In this work, two deep learning algorithms using 1D single CNN and 1D
multiple CNN have been designed for predicting the dominant wind speed
and direction classes. The 1DS takes Wy continuous values of the wind
speed and direction as an input sample and predicts the dominating speed
and direction, separately, among Wy values after the last value in the input
sample. The designed 1DM combines several 1DS with different views of
the same input Wy, thereby learning additional information. The algorithms
are trained and tested on the wind datasets of Stuttgart and Netherlands
and have shown promising results. Maximum total accuracy using the
1DS for predicting dominant speed and direction are 90.2%, 95.1% re-
spectively, for Stuttgart, and 95.2%, 94.7% respectively, for Netherlands.
Maximum total accuracy using the 1DM with 5 views, for predicting the
dominant speed and direction are 96.8%, 99.7% respectively, for Stuttgart,
and 98.8%, 99.4% respectively, for Netherlands. The 1DM enhances total
accuracy by up to 8.4% (for June) and 6.3% (for March) for wind speed
and direction, respectively, for Stuttgart, with respect to the corresponding
1DS. Similarly, for Netherlands, total accuracy using the 1DM is enhanced
by up to 6.9% (for April) and 7.3% (for March) for wind speed and direction,
respectively, with respect to the corresponding 1DS. Further, the 1DM has
better performance than the 1DS due to the use of multiple 1DS. In these
approaches limited (only two) features based on wind speed and direction
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are used in the input layers. Further, the fully connected layers do not have
memory to retain the features learnt by neurons from the previous training
iterations. Thus, an algorithm is desired that could take multiple features
in the input layers as well.

Multiple Densely Connected Convolutional Neural
Network

The present work improves upon the 1DM model (subsection 3.2.1) and
develops deep multiple CNN architecture with multiple input features,
along with multiple Long Short Term Memory (LSTM) and having densely
connected convolutional layers. More number of features in CNN archi-
tecture helps in learning the various properties of a sample from finer to
coarser levels. Therefore, a large number of features are used in this study.
This architecture is called Multiple features, Multiple Densely Connected
Convolutional Neural Network ensembles with Multiple LSTM Architecture
1.e., MCLT with the following essential contributions,

1. multiple features (58 in total) are used in the input layers for better
representation of the temporal wind dataset,

2. fully connected layers are replaced with LSTM layers to provide
memory for a longer period and thus improved training of the
model,

3. connecting convolutional layers as in the 2D ResNet (for images)
architecture are used so that each convolutional layer learns fea-
tures of previous convolutional layers as well,

4. a higher number of classes (21) are used for analysing detailed
trend of the temporal wind dataset, and

5. visual validation of the model’s output using wind rose plots.

The author is unable to find any existing literature that has used these
five contributions for in depth analysis and prediction of wind nature. The
remaining work is arranged as follows: [subsection 3.3.1|describes the MCLT
architecture followed by which gives detail of the wind datasets
used in the experiments. The |subsection 3.3.2|and |[subsection 3.3.3| present
the results and discussion followed by conclusion and recommendations in

subsection 3.3.4l
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Methodology

The developed MCLT architecture is an advanced deep learning archi-
tecture, which is a combination of multiple features, multiple LSTM, and
densely connected convolutional layers in the multiple CNN model for the
wind nature analysis. The designed multiple features, a total of 58 features,
are based on the various combinations of two important temporal wind
properties, i.e., wind speed and direction. This ensures that several details
of the wind features are learnt by the MCLT. The following sections discuss
the design of these multiple features, along with the MCLT framework.

Designing Multiple Features

Wind speed and direction are two input features to the developed archi-
tecture. Besides these two features, 56 additional features also form part
of the input. Suppose, matrix M; ; has r rows and 58 columns, where r
equals to the number of temporal wind values present in the dataset (each
row of M; ; is a time instance for wind dataset), and 7, j denote row and
column number of a cell respectively, in the matrix. Moreover, each column
denotes a feature. The first feature (first column), second feature (second
column) comprise the wind speed and direction values, respectively. M; ;_s3
(third feature) is the percentage difference (per) between M, ;—; (speed
values) and M, ;=i. M; ;-4 (fourth feature) is the percentage difference
between M; ;—, and M;_, ;. Similarly, the features from M; ;_5 to M; ;_ss
are based on the percentage difference (per), standard deviation (std), cor-
relation coefficient (corcoef), eigenvalues (eigl, eig2) and entropy (entr) of
wind speed and direction. These are discussed in detail in Figure [3.21]
where values up to M;_; ; are used only due to hardware constraints in
the present study, it could be decreased or increased as per available hard-
ware. In Figure for example std ( M; j—o, M;_1, j—o, M;_5 j—») means
standard deviation of three quantities inside the brackets. Similar is the
explanation of other features in Figure [3.21]

Samples for training and testing the designed architecture are designed
using M; ;. A sample comprises input values and a corresponding output
value. Rows from 7 to 7 + Kp (and all columns of these rows) of M ;
form the input of the sample, where K is a scalar. These columns are
treated as separate features, each of one dimension, in the input layers
of the MCLT as discussed in the next section. The output of the sample is
designed using values of speed from M;, k41, j=1 t0 M k1K, j=—1, Where
K is a scalar. For this, mean (1) and standard deviation (o) of a historical
temporal wind dataset are calculated, separately for speed and direction.
Then 21 classes are made using x and o, as shown in Table The p and o
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Figure 3.21: The designed various features in MCLT.

— various
features

concepts provide statistical segregation of classes (Ghilani, [2010). k;, where
i — 1 to 10 as shown in Table [3.3] is decided empirically. Speed values
from M, k,+41, j=1 t0 M k,tK,, j=1 are grouped into these 21 classes, and
count of values in each class is found. The class having maximum count
is assigned to the output of the sample. This maximum count represents
the dominant speed. Likewise, the output class of the sample based on the
direction is determined by finding the maximum count of direction values
from M, kp+41, j=2 t0 My kp+ K, j=2 @among these 21 classes. Further, more
training samples are designed by incrementing ¢ from 1 to r — Kz , at a
step of 1.
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Table 3.3: The designed various classes formed using the mean and stand-
ard deviation of the wind data.

Class | Lower limit | Upper limit
1 W —kio w+ ko
2 w+ ko W+ koo
3 W+ koo W+ kso
4 W+ kso W+ kyo
5 w+ kyo W+ kso
(§) n+ k’50 n+ k’60'
7 n—+ kﬁO’ n+ k70’
8 w+ ko w+ kso
9 W+ kso W+ koo
10 W+ koo W+ ko
11 un+ k’lQU +00
12 W — koo w—kio
13 W — kso — koo
14 W — kyo u— kso
15 w— kso 1 — kyo
16 W — keo w— kso
17 W — kro 1w — keo
18 W — kgo w— kro
19 W — koo — kgo

20 1 — kigo W — koo
21 —0o0 ou— k’l()O'

MCLT Architecture

MCLT architecture is shown in Figure There are five input layers cor-
responding to each view CNN; (CNNy, CNN;, CNN3, CNNy, and C'N N5)
as in the 1DM. The input layer of each view is followed by four successive
convolutional layers (C;, Cs, 3, C4). The densely connected convolutional
layers similar to ResNet are realised as follows,

1. (5 directly takes as input, features from both C5 and C (while in
the 1DM model, C3 took input only from previous layer C5), and

2. (4 directly takes input features from (5, (s and (' (while in tra-
ditional CNN models, C; takes input only from C5) (Zhao et al.]
2019).

The detailed pseudo code of MCLT implementation is discussed in
Algorithm [1] All the feature maps from the last convolutional layer C, of
each view (total 5 views) are first flattened to 1D form (step 13 Algorithm
and then appended one after another (step 14 Algorithm [I)). This appended
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Figure 3.22: MCLT architecture. Arrows denote connections between con-
volutional layers and LSTM. Multiple vertical rectangles in Input, C, (5,
C3 and Cj represent multiple features in that layer.
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1D feature is then passed to a common LSTM layer, called LST M, (step 16
Algorithm [1), which in turn is followed by the second LSTM layer called
LSTMs;. In the 1DM model, fully connected layers were present in the place
of LST M, and LST M,. The output layer comes after LST M,. The output
layer uses softmax function for classification, and the number of neurons in
this layer would be the same as the number of classes in the dataset (step
18 Algorithm [1).

Algorithm 1 Architecture pseudo code

1: procedure MCLT(Input, Output) > Input + MCLT multiple views
2: > Output <— MCLT output layer
3:

4. Merged < [ 1 > Merged < Empty list
5: fori«+ 1 to 5do

6: CN N;processing

7: Cy < ConvlD(features, stride,input = CN N;Input, ELU, dropout)

8: Cy <+ ConvlD(features, stride, input = C1, ELU, dropout)

9: Coconcat < Concatenate(Cy, Ca)
10: C3 + ConvlD(features, stride, input = Caonear, ELU, dropout)
11: C3concat < Concatenate(Cy,Co, C3)
12: Cy < ConvlD(features, stride, input = C3.opear, ELU, dropout)
13: Cy + flatten(C4)
14: Merged.append(Cy)

15: end for

16: LSTM; < LSTM (neurons,input = Merged, dropout)
17: LST My < LST M (neurons, input = LST M, dropout)
18: Output < Dense(neurons, input = LST M, softmax)
19: end procedure

Further, Merged in Algorithm (1} is initially defined as an empty list
(step 4) and for each iteration inside for loop, flattened C, is appended
to it (step 14). C N N;Input in step 7 means input corresponding to C N N;.
ConvlD in Algorithm [1| denotes a function representing 1D convolutional
operation, that takes values such as number of features, stride (amount by
which 1D kernel shifts), input from a CNN layer, activation function and
dropout (Srivastava et al.| [2014) value. Concatenate in Algorithm 1| means
that C; and () (step 9), (1, C5 and C5 (step 11), are joined together one
after another and then treated as input for the next step i.e., making the
densely connected convolutional layers. LST M and Dense (step 16 - 18 in
Algorithm [I) denote LSTM and fully connected layers, respectively. LSTM
units include a memory cell that can maintain information in memory for
long periods of time (Hochreiter and Schmidhuber, 1997} [Karpathy et al.|
2016). A set of gates is used to control when information enters LSTM units,

68



3.3.2

3.3 Multiple Densely Connected Convolutional Neural Network

when it leaves, and when it is forgotten. Thus, these memory units aid in
learning longer term dependencies. The densely connected convolutional
layers help C; directly learn features from both ', and C5, unlike the 1DM
where (5 learnt features from C'; only. Likewise, () directly learns features
from C}, (5, and (3, unlike traditional CNN where C} considers input only
from (5. For a given sample’s input, five views corresponding to each input
layer in the MCLT are formed as follows:

1. first view takes all Kz values of the sample’s input 7.e., rows from
1 to ¢+ + Kp (and all columns of these rows) of M ;,

2. second view takes half of Kz values of the sample’s input from
rows ¢ to 7+ + Kp at an interval of two (and all columns of these
rOWS) of Mi, G

3. third view also takes half of K5 values of the sample’s input but
from rows 7 + 1 to 7 + K5 at an interval of two (and all columns of
these rows) of M, ,

4. fourth view takes one-third of Kz values of the sample’s input but
from rows i to ¢« + Kp at an interval of three (and all columns of
these rows) of M/, ;, and

5. fifth view again takes one-third of K values of the sample’s input
but from rows 7 + 1 to + + Kp at an interval of three (and all
columns of these rows) of M, ;.

Each input layer of the MCLT, thus, takes multiple 1D features. In the
present study, there are 58 features in each input layer. A higher number
of features in CNN architecture helps in learning the various properties of
a sample from finer to coarser levels. Therefore many features are used in
this study. Thus, for a sample having input values from : to ¢« + Kp of M, ;,
each column of these rows form a 1D feature of the input layer. Thus, the
MCLT incorporates multiple features and multiple views in the input layers,
as well as each convolutional layer takes input from several previous layers,
with the presence of memory units in the LSTM layers. The output layer of
the MCLT uses the sample’s output class, either based on the wind speed
or direction, for training and testing the architecture. The sample’s output
class is designed using M, x,+1 to M, k,+k, values as discussed in the
previous section.

Results

This section explains the results of MCLT for Stuttgart and Netherlands
datasets. It [section 3.3.2| provides the details of the hardware and soft-
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Figure 3.23: Total accuracy comparison of 2 and 58 features in MCLT for
different values of Kp.

ware configuration along with the organisation of the training and testing
samples. Also presents the obtained accuracies for different
datasets and features. Moreover, |subsection 3.3.3|represents the qualitat-
ive discussion of the obtained results and comparison with other existing
methods.

System & Samples Details

The developed MCLT architecture has been coded in Python language
using Keras library (Chollet], 2017) with TensorFlow in the backend and
executed on Intel® Core ™ i7- 4770 CPU @3.40 GHz having four cores. The
historical temporal wind data of both the areas Stuttgart and Netherlands
were separated by each month to create respective month data. In each
month data, past temporal values were arranged first and then recent
temporal values. M; ; is created for each month. For Stuttgart, several
samples, each having input and corresponding output, were created from
a month’s M; ; as discussed insubsection 3.3.1. When the samples were
used for predicting dominant speed, then the outputs of the samples were
based on speed. Similarly, when the samples were used for predicting
the dominant direction, then the outputs of the samples were based on
direction. However, in both speed and direction predictions, the input of
the samples remained the same. These samples created from a month’s
data are then used to train and test the MCLT separately for dominant
speed and direction predictions. Likewise, samples were created from
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each month’s data of Netherlands, and the MCLT was trained and tested.
The total samples for a month were randomly divided into training and
testing samples, with 30% of the total samples as the testing samples. This
procedure of random division of the total samples into training and testing
samples, followed by the training and testing of the MCLT was repeated 20
times in order to determine the mean accuracies values. This procedure,
thus, accounted for the randomness in splitting into training and testing.
Further, Adaptive Synthetic Sampling (ADASYN) technique (He et al.| [2008)
was used to enhance the number of training samples for better learning
of the MCLT. ADASYN generates samples of the minority class according
to their density distributions and avoids over-sampling. The number of
feature maps in ', (5, (5 and C, of each of CN Ny, CNN;, CNN3, CNNy,
and C'N N5, of the MCLT architecture are 16, 28, 32 and 32, respectively,
whereas the number of neurons in LST M; and LST M, are 200 and 200
respectively. Values of ki, ks, ks, k4, ks, k¢, k7, ks, ko and kyo (Table (3.2)
were empirically determined as 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60,
0.70, 0.80 and 1.0 respectively (same for both speed and direction), so
that sufficient number of samples occur in each class, by observing the
histograms comprising 21 bins corresponding to 21 classes. Moreover, Kp
and Kr were taken as 60. K multiplied by the temporal resolution gives
a time frame of future prediction as per user desire. Figure |3.23| shows
the variations in total accuracy of the MCLT with 58 features by varying
Kpg (here Kr = Kp). In this work, Kp is taken as 60 as accuracy increases
till 60 and after that remains similar as shown in Figure [3.23] Exponential
Linear Units (ELUs) (Clevert et al.| 2016} [Pedamonti| [2018)) with « of 3.0
have been used as activation function in the MCLT. The higher value «
of 3.0 was chosen to avoid dead neurons problem during training with
highly variable wind datasets (Nair and Hintonl|, [2010} [Clevert et al.| [2016).
Kernel size of three along with stride of one has been applied for all the
convolutional layers. Batch normalisation (Jung et al.,[2019) and dropout
(Srivastava et al.| [2014)) of 0.45 have been employed after every convolution
layer. This helps to prevent over-fitting, and the MCLT architecture learns
better. The cross-entropy loss function has been used during training of the
MCLT.

Model Accuracies

The total accuracies for different months of Stuttgart for the test samples,
obtained using the MCLT are shown in Figure[3.24]and Figure In these
figures, MCLT with 58 features means that all the columns (or features) of
M;, ; have been used in the input layers of the MCLT, whereas MCLT with
2 features means only first two columns (of speed and direction) of M; ;
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Figure 3.24: Total accuracies in percentage for different months of Stuttgart
for dominant speed prediction.
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Figure 3.25: Total accuracies in percentage for different months of Stuttgart
for dominant direction prediction.

have been used in the input layers. Similar are the interpretations of 1DM
with 58 features and 2 features. Figure [3.24] and Figure [3.25| represent
total accuracies for dominant speed and direction prediction for different
months of Stuttgart, respectively. Figure [3.26|and Figure represent
total accuracies for dominant speed and direction prediction for different
months of Netherlands, respectively.

The maximum, minimum, and mean total accuracies for dominant speed
prediction (for Stuttgart) using the MCLT with 58 features are 99.1%,
94.9%, and 97.2%, respectively, as shown in Table @ The maximum,
minimum, and mean total accuracies for dominant speed prediction (for
Stuttgart) using the MCLT with 2 features are 96.8%, 92.4%, and 95.1%,
respectively (Table [3.4). Similarly, the maximum, minimum, and mean total
accuracies for dominant direction prediction (for Stuttgart) using MCLT

72



3.3 Multiple Densely Connected Convolutional Neural Network
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Figure 3.26: Total accuracies in percentage for different months of Nether-
lands for dominant speed prediction.
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Figure 3.27: Total accuracies in percentage for different months of Nether-
lands for dominant direction prediction.

Table 3.4: The obtained maximum, minimum, and mean total accuracies
for dominant speed prediction.

Stuttgart Netherlands
TA (%) 1DM2 1DM 58 MCIT2 MCLT58 1DM2 1DM58 MCLT2 MCLT 58
features features features features features features features features

Max
(%) 94.1 95.5 96.8 99.1 94.8 96.0 97.4 99.9
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Table 3.5: The obtained maximum, minimum, and mean total accuracies
for dominant direction prediction.

Stuttgart Netherlands
TA (%) 1DM2 1DM58 MCLT2 MCILT58 1DM2 1DM58 MCLT2 MCLT 58
features features features features features features features features

Max
(%) 96.4 97.6 98.8 99.9 95.6 96.6 97.9 99.6
Min
(%) 90.1 91.2 92.5 94 .4 91.6 93.1 95.1 96.4
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Figure 3.28: Learning curves for MCLT with 2 and 58 features.

with 58 features are 99.9%, 94.4%, and 98.7%, respectively (Table |3.5).
The maximum, minimum, and mean total accuracies for dominant direction
prediction (for Stuttgart) using MCLT with 2 features are 98.8%, 92.5%,
and 97.0%, respectively (Table [3.5). Figure [3.24] to Figure Table 3.4]
and Table also represent results when the 1DM architecture with 2 and
58 features is used for prediction. Learning curves and loss curves (for
speed prediction) of January month’s test samples of Stuttgart using the
MCLT with 2 and 58 features are shown in Figure [3.28 and Figure [3.29
respectively.

Discussion

The developed MCLT architecture shows promising results for dominant
wind speed and direction prediction of temporal wind datasets from Stut-
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Figure 3.29: Loss curves for MCLT with 2 and 58 features.

tgart and Netherlands. Below subsections discuss the results with the help
of rose plot, comparison among 2 and 58 features, and comparison with
other suitable approaches.

Rose Plots

Wind rose plot helps in the visualisation of wind speed and direction in
the same graph, in a circular format. The length of each spoke around the
circle indicates the number of times (count) that the wind blows from the
indicated direction. Colors along the spokes indicate classes of wind speed.
The data of March (Mar) 2020 of Stuttgart is used to represent the real
world sensor’s measurements (true values) and prediction outcomes of the
MCLT in Figure [3.30| and Figure [3.31] respectively. The high resemblance
among Figure [3.30| and Figure [3.31] signifies that the prediction results
are similar to the true (real) values. This augments visually the accuracies
obtained previously in the results|subsection 3.3.2| In these figures, there
are 21 different colour ranges denoting the wind speed divided into 21
classses with varying spoke length and direction highlighting the wind
blows count from the indicated directions in this study.

Comparison Among 2 & 58 Features

The 58 multiple features in the input layers help the MCLT learn better the
temporal variations in the samples. These features are based on percentage
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Figure 3.30: Wind rose plot for Mar 2020 (sensor’s measurements).

difference, standard deviation, correlation coefficient, eigenvalues, and
entropy, that are calculated by taking into account some of the nearby tem-
poral values. As the temporal values adjacent to a time instance change, the
values of these features also adapt to these changes. Thus, these features
help in comprehensive description of wind speed and direction, describing
the trend like increase, decrease, stationary, sudden turbulence, rate of
increase and decrease, deviation from the mean, behavior of speed with
respect to direction (i.e., correlation), energy (i.e., entropy) of the adja-
cent temporal values and its variation. Therefore, they provide additional
information about samples. Moreover, the movements of the 1D kernels
in the convolutional layers further help the convolutional layers to learn
their own features in the form of weights and biases during the training
phase of the MCLT. When only two features were used in the input layers
of the MCLT, maximum total accuracy was 96.8% and 97.4% for Stuttgart
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Figure 3.31: Wind rose plot for Mar 2020 (model predictions).

and Netherlands, respectively, for speed (Table and 98.8% and 97.9%
for Stuttgart and Netherlands, respectively, for direction (Table [3.5). The
maximum total accuracy for MCLT with 58 features is increased by 2.3%
and 2.5% for Stuttgart and Netherlands, respectively for speed (Table [3.4)
and by 1.1% and 1.6% for Stuttgart and Netherlands, respectively for dir-
ection (Table in comparison to MCLT with 2 features. Similarly, the
effect of these 58 features over 2 features can also be seen in the case
of 1DM (Table [3.4] Table where maximum total accuracy for speed
improved by 1.4% and 1.2% for Stuttgart and Netherlands, respectively,
and by 1.2% and 1.0% for Stuttgart and Netherlands, respectively for dir-
ection. Learning of the MCLT with 58 features is better than 2 features as
shown by respective learning curves in Figure [3.28|and by the loss curves
in Figure [3.29]

Convolutional layers (C4, C5) near the input layers learn the smaller
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Table 3.6: The difference in the achieved total accuracies of MCLT with 58
features and 1DM with 2 features. Positive value denotes MCLT has higher
accuracy than 1DM.

Stuttgart Netherlands

TA (%) Dominant Dominant Dominant Dominant
wind speed wind direction Wwind speed wind direction
prediction prediction prediction prediction

Max

(%) 5.7 4.3 6.1 4.8

Min

(%) 5.0 3.5 5.1 4.0

Mean

(%) 5.0 4.3 5.3 4.4

features, while the convolutional layers (C3, C,) near the output layer learn
larger features (Krizhevsky et al.] 2012} [He et al] 2016} Xie et al., 2017
[Huang et al. [2018). C5 takes as input the learnt features from both C}, and
(s, while C,, takes as input the features from 1, (5, and Cj3, therefore, the
MCLT gets trained by learning features at different scales. Further, as the
convolutional layers (C3, C'4) are connected to all the previous convolutional
layers, providing that gradient vanishing problem would not occur, i.e.,
MCLT learning does not slow down during training via back propagation
(He et al, 2016} Xie et al, 2017} [Huang et al.|, [2018). Moreover, LSTM
layers after the last convolutional layers (C},), have memory units that retain
the learnt features from previous output of the neurons and operate upon
them with features learnt from the current output of the neurons. This
gives better learning over the fully connected layers (present in traditional
CNNs) that lack these memory units. Additionally, the memory units in the
LSTM help in finding correlations between patterns learnt across different
time, as a recent pattern is a function of pattern learnt at previous time.

Comparison With Existing Related Work

The developed MCLT architecture is compared with the 1DM. The MCLT
with 2 features as well as 58 features performs better than the 1DM with
58 features, as shown in Figure to Figure for both Stuttgart and
Netherlands. Minimum, maximum and mean total accuracies of the MCLT
with 58 features are compared with 1DM with 2 features in Table 3.6]. Thus,
the MCLT performs better than the 1DM. Moreover, the MCLT with 58
features efficiently predicts for the larger time frame in future (K as 60,
multiply by the temporal wind dataset resolution) whereas the 1DM with 2
features could only predict for 50 values in future (see [subsection 3.2.1).
The MCLT is also compared with the methods in the existing literature
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that are near to the developed architecture. 1D CNN algorithm designed by
[Liu et al.| (2018) has used regression technique working on the smoothed
and filtered data thereby losing the originality of the wind dataset. The same
samples comprising K = 60, input values without applying smoothening
and filtering, that have been employed for the designed MCLT, are also
used to train and test the regression CNN architecture (Liu et al., [2018).
In this case, Symmetric Mean Absolute Percentage Error (SMAPE)
for wind speed in Stuttgart is 20.5% for K = 8 and reaches up to
25.5% for Kp = 60, while 14.9% for Kg = 15 and reaches up to 21.2%
for Ky = 60 for wind speed in Netherlands. SMAPE of wind direction
were moreover similar to these patterns. It may be noted that, here the
outputs of the samples are designed using the real values (z.c., regression)
whereas MCLT outputs are based on the classes (i.c., classification). As the
future time frame of prediction increases, error also increases using the
state-of-the-art CNN based regression method (Liu et al. [2018).

However, the developed MCLT based on classification shows high ac-
curacy and mean total accuracy reaches up to 99.9% for K = 60, without
smoothening and filtering the original wind data. Thus, the designed MCLT
method gives satisfactory results for predicting dominant speed and direc-
tion for a greater time duration in the future unlike[Liu et al.|(2018)). Limited
58 features in the input layers are only due to hardware constraints and
more can be designed with more GPUs. The accuracies achieved using the
designed MCLT can be further improved with better hardware resources
by using a greater number of feature maps, neurons, convolutional and
LSTM layers. Thus, the use of multiple features at various levels in the
MCLT, viz.

1. 58 features in the input layers,

2. inputting a convolutional layer with features from all the previous
convolutional layers, and

3. retaining the memory of learnt features by LSTM from previous
outputs (of neurons) during training, help the designed architec-
ture predict in future the dominating speed and direction classes
with good accuracy.

Further, as the number of classes of the samples increases, detailed
patterns of the nonlinear nature of the wind can be analysed but at the
same time ambiguity in classification also increases. However, the designed
MCLT architecture is able to overcome this ambiguity by learning multiple
features and performs well even with 21 classes. The objective behind using
more number of classes with close difference range helped to identify more
details and results behave very close to regression with best accuracy.
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Conclusion

In this work, a deep learning architecture is successfully designed and
demonstrated to predict the dominant speed and direction classes in the fu-
ture for the temporal wind datasets. The developed MCLT architecture uses
58 multiple features in the input layers, that are designed using wind speed
and direction values. These features are based on percentage difference,
standard deviation, correlation coefficient, eigenvalues, and entropy, for
comprehensively and efficiently describing the wind trend and its variations.
LSTM layers at the end of the last convolutional layers, have memory units
that employ features learnt during current as well as the previous output of
the neurons. Further, densely connected convolutional layers in the MCLT
help the convolutional layers to learn features of other convolutional layers
as well. Two large wind datasets from Stuttgart and Netherlands are used
for training and testing the MCLT. The maximum total accuracies for speed
and direction prediction are 99.9% and 99.9%, respectively. The average
total accuracies reach up to 98.9% and 98.7%, for speed and direction
prediction, respectively. The model’s real world prediction demonstration
support the novelty of the work while explaining visually with the help of
wind rose plots. Thus, the MCLT shows promising results for different wind
datasets. The limited hardware resources restricted this study in using 58
features in the input layers. However, in the above discussed ML based
methods for prediction, there is a lack of visualisation as required in VA.
Thus, an approach is required that helps in the visualisation of different
patterns in the dataset for different time frames.

Chapter Summary

In this chapter, several deep learning architectures have been developed to
provide a comprehensive framework to perform the prediction analyses of
meteorological and pollution parameters. The first approach develops three
(comparative) One Dimensional (1D) algorithms using Long Short Term
Memory (LSTM), Random Forest (RF) and Support Vector Machine (SVM)
for dominant wind speed and direction prediction. The developed 1D LSTM
(1DLSTM), RF (1DRF) and SVM (1DSVM) take successive time values in
terms of wind speed and direction as input and predict the future dominant
speed and direction, separately. The developed algorithms are trained
and tested using the historical wind dataset of Stuttgart and Netherlands.
Prediction using 1DLSTM results in total accuracies reaching up to 94.0%,
up to 92.0% using 1DSVM and up to 88.0% using 1DRF for speed and
direction.
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3.4 Chapter Summary

Previous accuracies are improved upon in the next developed algorithms
based on Convolutional Neural Networks (CNNs). The concept is advanced
and implemented progressively for more environmental data (meteorolo-
gical and pollution parameters), and their effects integrated together in the
following work. The 1D Single CNN (1DS) takes as input the consecutive
temporal values in terms of the wind speed and direction and predicts in
future dominating speed and direction, separately, after the last value in
the input. The 1D Multiple CNN (1DM) combines several 1DS but with
different views of the same input, therefore, learning more information
compared to the 1DS. Total accuracies reached up to 95.2%, 95.1% for
predicting the dominant wind speed and direction, respectively, using the
1DS and up to 98.8%, 99.7% for predicting the dominant wind speed and
direction, respectively, using the 1DM. Unlike other (existing) methods
that use regression techniques with manually designed features to predict
speed and direction, the developed methods have used classification tech-
niques with the 1DS and 1DM learning their features automatically on the
original environmental dataset.

Moreover, this chapter has also successfully demonstrated an approach
based on a multiple CNN architecture with multiple input features, com-
bined with multiple LSTM, along with densely connected convolutional
layers (i.e., MCLT), for temporal wind nature analysis. Multiple features
(total 58) features in the input layers of the MCLT, are designed using wind
speed and direction values. These empirical features are based on percent-
age difference, standard deviation, correlation coefficient, eigenvalues, and
entropy, for efficiently describing the wind trend. Two successive LSTM
layers are used after four densely connected convolutional layers of the
MCLT. Moreover, LSTM has memory units that utilise learnt features from
the current as well as previous outputs of the neurons, thereby enhancing
the learning of patterns in the temporal wind dataset. The presence of a
densely connected convolutional layer helps to learn features of other con-
volutional layers as well. The maximum and minimum total accuracies for
dominant speed prediction are 99.1% and 94.9%, (for Stuttgart) and 99.9%
and 97.5% (for Netherlands) and for dominant direction prediction are
99.9% and 94.4% (for Stuttgart) and 99.6% and 96.4% (for Netherlands),
respectively using MCLT with 58 features. The wind rose plot analyses
are also performed to deliver clarity of the designed model. The MCLT
therefore, with multiple features at different levels, i.e., the input layers,
the convolutional layers, and LSTM layers, shows promising results for the
prediction of dominant speed and direction as a classification method. The
developed framework is implemented for the Stuttgart and Netherlands
sensors locations. However, it can be applied to any number of sensors for
any given location (area) with some ML tuning and training of the respect-
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ive datasets. The results of the MCLT, 1DS and 1DM are analysed based
on a lesser (2) and higher (58) number of features in the designed input
layers, as well as accuracy variation with different sizes of the forward and
backward windows has been plotted for these algorithms. Also, learning
curves have been plotted. These aspects contribute to XAI domain (Choo

and Liul 2018).

82



Seasonality Deduction Application

This chapter presents seasonality deduction approach designed in this
work. The following explains the setup of developed seasonality
deduction platform. The core components of results and findings are given
in [subsection 4.1.3|along with the elaborate discussion of the results in
lsubsection 4.1.4] Furthermore, the chapter summary at the
end gives an overview of the concepts of this chapter in a simplified way.

Developed Methods The approach considers the hourly time series Par-
ticular Matter (PM) PM, 5 and PM,,, Nitrogen Oxide (NO), and Nitrogen
Dioxide (NO,), and Ozone (O3) along with the measured wind flow and hu-
midity. The study’s objective is to assess the temporal seasonality patterns
of these parameters in Stuttgart, Germany. The temporal variations over
the city center in Stuttgart are analysed using unsupervised approach to
perform seasonal hierarchical clustering on a series of parameters NO,
NO,, O3, PM,y, and PM; 5, wind speed and humidity. Furthermore, the cor-
relations between meteorological and pollution parameters are analysed
using the Spearman rank correlation method. Moreover, a dashboard is

Parts of this chapter have previously been published in:

Harbola, S. and Coors, V. (2018), ‘Geo-Visualisation and Visual Analytics for Smart
Cities: A Survey’, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W11,
[https://doi.org/10.5194/isprs-archives-XLII-4-W11-11-2018] 11-18;

Harbola, S. and Coors, V. (2020), ‘Seasonality Deduction Platform : For PM;y, PM> 5, NO,
NO5 and O3 in Relationship with Wind Speed and Humidity’, ISPRS Ann. Photogramm.
Remote Sens. Spatial Inf. Sci, VI-4/W2, |https://doi.0org/10.5194/isprs-annals-VI-4
W2-2020-71-2020] 71-78;

Harbola, S., Storz, M., and Coors, V. (2021b), Augment Reality for Windy-cities:3D Visual-
isation of future wind nature analysis in city planning (Springer, (To appear, accepted on
2020- July -20)).
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4.1

4 Seasonality Deduction Application

developed to provide the user with the desired time frame of visualisation
of these parameters.

Overview: Seasonality Deduction Platform

The human activities not only contributed to the lifestyle advancement and
developments, meanwhile also to pollution, and change in the climate as
byproducts. Very small aerial pollutants are discharged from the chimneys,
industrial waste, vehicle smokes, and construction sites, that can be inhaled
with the air leading to heart diseases, lung and respiratory problems all
over the world. The traffic related pollutants like Particular Matter (PM)
PM, s and PM,,, Nitrogen Oxide (NO) and Nitrogen Dioxide (NO,), and
Ozone (O3) remain at a high level. The air quality is affected by, NO, NO,,
O3, PM,y, PM, 5 and their atmospheric concentrations. The lung tissue
damage, cardiovascular and chronic respiratory diseases, could be hassled
by coming in exposure to PM;, and PM, 5 i.e., particles with aerodynamic
diameters less than 10 and 2.5 pm, respectively (Chen and Zhao| [20171).
Over the urban areas, the elevated levels of pollution parameters are
incorporated with both local emission sources and regional transportation
(Chen and Zhao| 20171} Jasen et al., [2013). Regional transportation with
diesel vehicles are the main sources of particular matters and contribute a
significant portion to their levels (Wallace and Hobbs|, [1977). Many studies
have been performed to discover the seasonality of the pollution parameters
along with the meteorological datasets, e.g., wind speed, wind direction,
temperature, humidity, precipitation, pressure.

Some existing literature concluded that when the wind speeds were
lower than 3.5 m/s, and the temperature was higher than 21.1 °C than
often high concentrations of PM,,, and PM, 5 were detected with refer-
ence to a study of PM in Ohio USA (Arthur and Owen| [2003}; [Fraser et al.]
2003). Moreover, some researchers emphasised that pollution parameters
are correlated to humidity and wind flow during winter (EIminir], 2005).
Hien et al.| (2002) showed that wind speed, and temperature highly con-
trol the concentration of particulate matter. Few studies link pollutant
characteristics to the meteorological parameters as with wind effects and
humidity (Garrett and Casimiro| [2011)). Several above discussed studies
used smoothening and filtering techniques, ignoring the data noise and
modifying the originality of temporal dataset. The comprehensive study of
meteorological parameters and their contribution to PM;4., 5, NO, NO,, O3
are poorly understood. Above research suggests that there is still a number
of questions that remain to be addressed such as temporal wind nature and
pollution parameters correlations, how humidity governs the PM¢., 5, and
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4.1 Overview: Seasonality Deduction Platform

NO, NO,, O3 relationships for user desired time frame, without modifying
the authenticity of the original temporal dataset.

A better insight into the system is required by improving human inter-
action with the meteorological data (see in relationship with
pollution parameters. Thus, this motivates the current research. The prob-
lem of air pollution has caused considerable public concern in Stuttgart
(Germany). Therefore, investigations into the spatio-temporal variation of
concentrations of PM¢; 5 and gaseous pollutants across Stuttgart are ne-
cessary and essential. To keep track of the mass concentrations of PMy¢; 5,
NO, NO,, O3, these parameters have been monitored in all important cit-
ies of Germany. Data from provincial and more effective center weather
monitoring in Stuttgart were selected. Temporal variations of meteorolo-
gical and pollution parameters were assessed and their trends of variation
between each other with respect to time for Stuttgart were investigated.
Thus, unsupervised hierarchical clustering and correlation method which
work on the original temporal datasets by taking into consideration the
above listed gaps, are still required. Therefore, the current study proposes
hierarchical clustering and Spearman rank correlation method with the
following contributions:

1. in depth temporal analysis of pollution and meteorological para-
meters using hierarchical clustering method, without applying any
smoothing and noise removal technique on the collected temporal
dataset,

2. the time frame of analysis is user-defined,

3. dendrogram and heatmap temporal dataset visualisation to high-
light the behavior of these parameters and to enhance accuracy,
and

4. comparative study of the pollution parameters and their effects
with interactive dashboard view.

The developed work would provide foreknowledge of meteorological
parameters nature in relationship to pollution parameters of an area,
thereby helping and supporting in optimal selection of green sites with
highlighting and tuning the air pollution quality. This would encourage
more utilisation of renewable energy for safe and better city planning,
which in turn would help for efficient management and development of
the city’s green resources. The increasing air pollution in big industrial
cities would be alarmed and reduced for the future with this analysis.
The remaining sections are organised as follows, designed methods and
datasets employed are discussed in [subsection 4.1.1|and [subsection 4.1.2]
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respectively, subsection 4.1.3|and |subsection 4.1.4| demonstrate the results
and discussion, followed by conclusion in section |[subsection 4.1.5|

Methodology

The developed method analysed seasonality in seven parameters using
hierarchical clustering and Spearman rank correlation. Initially, the val-
ues of each parameter are preprocessed before applying the clustering.
The preprocessing involves normalising of the data followed by temporal
filtering. The mean and standard deviation of a parameter are calculated.
The values of a parameter are then subtracted by mean, followed by di-
vision with standard deviation, to get the normalised value. Further, the
temporal filtering is applied on these normalised values. In the current
study, the temporal filtering based on four quarters in a year is applied.
First-quarter Q; is spring (March to May), second-quarter Q, is summer
(June to August), third-quarter Q3 is autumn (September to November),
and fourth-quarter Q, is winter (December to February). These four time
quarters divisions help in depth seasonality analysis of the considered
seven parameters. Unsupervised agglomerative hierarchical clustering is
applied on the temporal dataset (values) of a quarter (i.e., the output of
temporal filtering). The proximity matrix in hierarchical clustering helps in
identifying the similarity of the clusters and combines most similar clusters
hierarchically until the desired number of clusters are obtained. Ward’s
method in hierarchical clustering minimises the variance within the cluster
by using the objective function of the error sum of squares 11963).
The pair of clusters that leads to a minimum increase in total within cluster
variance after merging is searched. This increase is a weighted squared
distance (D) between cluster centers (A;, A;) as shown in equation.
(Cormack] [1971).

In order to provide more detailed comparison and seasonality trends
analysis, each quarter is considered for all the parameters. The quarter
has been divided into two sets of 15 days starting and 15 days back. The
sum of the squares starting from the clusters found by Ward’s method is
kept minimised. This gives a hint through the merging cost. The number of
clusters keeps on reducing until the merging cost increases and then used
the cluster number, right before the merging cost increased simultaneously
(Paul and Murphy], 2009). Moreover, a dendrogram is used to obtain the
final number of clusters as k. The dendrogram is a technique of agglom-
erative hierarchical clustering that gives a tree like diagram that records
the sequences of merges or splits. In addition Spearman rank correlation
analysis between the meteorological and pollution parameters helps to de-
rive the relationship among these parameters. Spearman rank correlation

86



4.1.2

4.1.3

4.1 Overview: Seasonality Deduction Platform

is defined in equation. where d? represents square of the difference, p
is the correlation coefficient, n is the number of measurements, and % is
the number of clusters.

Di; = D(A, 4) = || 4 — Al)? 4.1)
6 2

=1-—=— 4.2

P n(n? —1) (4.2)

Moreover, an interactive dashboard is developed to provide in depth
analytic and seasonality patterns clarity in between the meteorological and
pollution parameters for user desired inputs in the four time quarters. This
dashboard is called as seasonality analysis kit. The user could select the
parameters over the desired time frame and compare the patterns inter-
actively. The interactive dashboard is still in the first phase and would be
more refined in future work. The developed work provides a comprehensive
understanding of the relationship among the pollution parameters like NO,
NO,, O3, PM,y, PM, 5, and the meteorological parameters such as wind
flow and humidity.

Dataset Used

Stuttgart pollution parameters and meteorological temporal datasets are
used in this study. In the corner of Hauptstaetter Strasse 70173 Stuttgart,
the historical data from 2015 to 2019 are taken from central Stuttgart
station sensor (Stadtklima-Stuttgart] [2021). This dataset contains the wind
(speed and direction) and humidity along with NO, NO,, O3, PM,,, PM; 5,
with temporal information attached in a 30 minute time interval. Amongst
multiple values of a parameter in a single day, the mean value is considered
in this study. The area’s dataset is organised separately into an individual
month by using time information, with past data first, followed by current
data then subdivision into four considered quarters Q;, Q,, Q3, and Q.
This helps to perform pollution parameters and meteorological temporal
datasets seasonality test and in depth analysis.

Results: Use Case

The developed seasonality analysis was implemented using Python and
executed with four cores on Intel® Core ™ i7- 4770 CPU @3.40 GHz. Stut-
tgart’s 2015 to 2019 years of historical data with a temporal resolution
of 30 minute was separated by month to create monthly data over the
years for both meteorological and pollution parameters. Figure [4.1] and
Figure [4.2] show the data values recorded in a day over the 2015 to 2019
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Figure 4.1: Annual humidity data value per day over the years (2015 to
2019).
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Figure 4.2: Annual NO, data value per day over the years (2015 to 2019).

years in the heat maps representations for humidity and NO, respectively.
In these generated heat maps, the intensity of the color was governed by
the magnitude of parameter values. A similar heat map display existed
for other parameters as well. The selected parameter (anyone :i.e., wind
speed, direction and humidity along with NO, NO,, O3, PM;y, PM; 5), having
higher values (range) over the time, had been assigned a darker color in the
respective heat map. An unsupervised approach was used to perform com-
prehensive seasonal hierarchical clustering on a series of meteorological
and pollution parameters.

The comprehensive analysis for seasonality was studied based on four
quarters (Qq, Q,, Q3, Q4) over the years. In performing the hierarchical
clustering, k£ was taken as 6. This value of k£ was found empirically by
performing some sensitivity tests, like,

1. if the value of k£ was higher (i.e., number of clusters was equal
to the total values in a quarter) than the clustering outcome was
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Dendograms

Figure 4.3: Dendrograms for selecting clusters in the temporal data set
(here humidity as a considered parameter).

similar to Figure [4.1] and Figure 4.2 and this was not able to
represent the seasonality pattern,

2. if the value of k was lower (i.e., k = 1, 2, 3, 4), then also there was
information loss, and

3. the dendrograms were generated as an output from unsupervised
hierarchical clustering with the primary use to allocate objects to
clusters in the best possible way.

Figure [4.3] shows the obtained dendrogram for selecting clusters (possible
numbers) in the temporal data set, where in this Figure 4.3] e.g., the
humidity was considered. Similar parameter analyses were conducted for
rest of the parameters. Therefore £ was taken as 6 in the present study.
The unsupervised hierarchical clustering here aimed at inferring the inner
structure and trends present within the meteorological and pollution data,
trying to cluster them into six classes depending on similarities among
them.

In order to provide a more detailed comparison and seasonality trends
analyses, quarter time frames were considered for all the parameters.
Further, a quarter was divided into two parts comprising of the first fifteen
days and the last fifteen days in a quarter. This helped in discovering all
the possible changes in the quarter for each of the considered parameter.
The obtained outputs of the in depth unsupervised clustering analysis
performed for NO,, are represented in Figure 4.4} and Figure 4.5 where
the clustering outputs for NO, in first and last 15 days for Q; are shown
and, Figure 4.6, and Figure 4.7|show clustering outputs for Q,. Similarly,
Figure [4.8] and Figure depict the clustering outputs for NO, for first
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Figure 4.4: Clustering output for NO, for first 15 days in Q; over 2015 to
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Figure 4.5: Clustering output for NO, for last 15 days in Q; over 2015 to
20109.

and last 15 days in Qs, and Figure and Figure [4.11] show clustering
outputs for Q4. Like these hierarchical clustering outputs, similar outputs
were generated for other parameters in each respective quarters with the
first and last fifteen days comparisons.

Further, the correlation analysis between the meteorological and pol-
lution parameters were done to enhance the probability of deriving the
relationships among these parameters. Figure helps to study the
complex relationships among parameters very well. In addition, the user
could select the parameters over the desired time frame and compare
the patterns interactively with the help of the developed dashboard. The
screenshots of the designed dashboard are shown in Figure 4.13, where
wind speed (e.g., case) was selected as a parameter with respect to Qq, Qa,
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Figure 4.6: Clustering output for NO, for first 15 days in Q, over 2015 to
2019.
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Figure 4.7: Clustering output for NO, for last 15 days in Q; over 2015 to
2019.

Q3, Q4 over the years to visualise seasonality. Similarly more parameters
could be selected from the seasonality analysis Kkit.

Discussion

The hierarchical cluster analyses for meteorological and pollution paramet-
ers were done to highlight the trends at which any given pair of quarters
(over the years) joined together in clustering diagram with each class as-
signed a specific color code. A sequential scale of color brewer blues scale
color map was used for showing classes (0 to 5) with the color frequency
differentiating low values class from high values class. The blended pro-
gression using typically of a single hue, from the least to the most opaque
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Figure 4.8: Clustering output for NO, for first 15 days in Q3 over 2015 to
2019.
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Figure 4.9: Clustering output for NO, for last 15 days in Q3 over 2015 to
20109.

shades, represents low to high values. Each year dataset for the considered
parameter over the four quarters that joined together sooner (in clustering)
are more similar to each other than those that are joined together later. The
total within cluster variance is minimised during clustering. At each step,
the paired clusters with minimum between cluster distance are merged.
As a result it is observed that NO and NO, concentrations are high in Q3
autumn, and Q4 winter over 2015 to 2019 respectively (Figure (4.8, and
Figure [4.9 Figure [4.10} and Figure 4.11). Both are strongly correlated to
each other with similar trends over the years, also same can be seen in
the correlation graph in Figure [4.12] The comparison of Figure [4.4] and
Figure provides that in Q; there exits volatility in the first and last
fifteen days. From 3™ to 6" day during 2015 to 2019 there exist a pattern
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Figure 4.10: Clustering output for NO, for first 15 days in Q4 over 2015 to
2019.
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Figure 4.11: Clustering output for NO, for last 15 days in Q4 over 2015 to
20109.

with high NO, concentrations. The same pattern repeats again from 8% to
9% in 2016 to 2019 and on 14™ in 2015 to 2018. However, in the last fifteen
days from 215" to 2274, and 26" to 27 for 2015 to 2019, low magnitudes
of NO, are measured for Stuttgart. As shown in Figure [4.6| and Figure
from 12% to 15™ in Q, NO, concentrations are lowest during 2015 to 2017
and, reached highest in 2018 to 2019. For last fifteen days from 16" to
19" the concentrations reached highest during 2016 to 2019. However,
from 25%™ to 27" NO, measurement was negligible in 2015 to 2018, with
exceptional high concentrations during 2016 and 2019. The first and last
days clustering output (in Figure and Figure for Q; from 8™ to
10* recorded high values again in 2017 to 2019. On the other hand from
17" to 23" NO, concentrations are low for 2015 to 2018 but, measured

93



4 Seasonality Deduction Application

o
02
3
PM10
PM25
Humidity

03

PM10 0.00

PM2_5

Humidity

-0.75
wind speed
-1.00

Figure 4.12: Correlation output between meteorological and pollution para-
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Figure 4.13: Interactive dashboard for meteorological and pollution para-
meters.

highest in 2019. Figure and Figure conclude that in Q, from 8%
to 10" in 2015 to 2017 the concentrations are lowest and high in 2018 to
2019. Moreover, from 215 to 22" in 2015 to 2019 the NO, concentrations
approached highest again.

However, O3 concentrations are more in Q; spring, Q, summer, and less
in Q3 autumn with exceptional increase in Q4 winter during 2015 to 2019.
These (above) statements also validate that O3 and NO, are negatively
correlated to each other which also supports the obtained correlation in
Figure [4.12] Further, O3 concentration analysis for Q; has been shown in
Figure and Figure where from 1% to 3™ day concentrations are
highest in 2016, 2018 and 2019. O3 concentrations approach lowest from
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Figure 4.14: Clustering output for O3 for first 15 days in Q; over 2015 to
2019.
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Figure 4.15: Clustering output for O3 for last 15 days in Q; over 2015 to
20109.

27" t0 29' in 2015 to 2019. As shown in Figure and Figure in Q,
from 13™ to 14™ and 25" to 27" day O3 concentrations are highest in 2015
to 2019. During Q3 with reference to Figure and Figure from 8
to 10" O3 concentrations are lowest during 2015 to 2018 while measuring
highest in 2019. From 26™ to 27 the concentrations are increasing during
2015 to 2019. Oj variation in Q4 is shown in Figure [4.20, and Figure 4.21
where Oj3 is high from 8% to 13, 16" to 215 and 25" to 30'® and reaches
highest in 2019. Moreover, humidity magnitudes are lowest in Aug and then
starts increasing from Sep 7.e., in Q3 autumn to Q4 winter, over the years
2015 to 2019 as shown in Figure 4.26| and Figure [4.27| This shows that
humidity is negatively correlated to O3, however, positively correlated to
NO, that also get justified by the correlation graph in Figure Humidity
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Figure 4.16: Clustering output for O3 for first 15 days in Q; over 2015 to
2019.
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Figure 4.17: Clustering output for O3 for last 15 days in Q, over 2015 to
20109.

clustering output delivered that in Q; (in Figure |4.22| and Figure [4.23)
from 10%™ to 12, and 26" to 27" the humidity measurements are highest
in 2015 to 2019. As shown in Figure [4.24] and Figure for Q, from
3 to 4™, 9th to 11, and 28™ to 29 highest humidity was measured over
2015 to 2019. Moreover, from 10" to 15" humidity measured lowest in
2015 with sudden increasing spikes in 2016 to 2019 for Q3 (in Figure [4.26
and Figure . Similarly, from 25" to 28™ the humidity increased to
highest during 2015 to 2019. With reference to Figureﬂ in Q4 from 10" to
14"™, and 19" to 22", measured humidity increased in 2015 to 2019.
Moreover, wind datasets are highly volatile in nature over the years
2015 to 2019. High magnitude wind speeds are recorded more during Q,

!Figures available: GitHub |https ://www.github.com/shha rbola/SDSCZO,Images/l
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Figure 4.18: Clustering output for O3 for first 15 days in Q3 over 2015 to
2019.
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Figure 4.19: Clustering output for Oj; for last 15 days in Q3 over 2015 to
2019.

summer, Q3 autumn to Q4 winter, with sudden high spikes are observed
during the seasonal cycle changes mostly in the months of Jan, Mar, Jul, Sep
and Dec, as analysed with the help of Figures. These analyses devised that
wind speed is positively correlated to NO, however, negatively correlated
to O3. In Q; from 3™ to 7%, and 26™ to 29" in 2015 to 2019 there exists
pattern of low speed winds. In Q, first fifteen days from 6% to 12, and
27" to 30" wind speed keeps increasing and reached highest with volat-
ile nature in years 2015 to 2019. Moreover, in Q3 wind speed frequently
changes from mild to increasing (also reached highest) magnitudes from
19 to 20'™, and 26™ to 29 in 2015 to 2019. In Q, from 8™ to 14, and 21%
to 25" during 2015 to 2019 mild speed winds are measured. Furthermore,
PM concentrations are more in Q4 winter, and also in Mar, May, and Jul as
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Figure 4.20: Clustering output for O3 for first 15 days in Q4 over 2015 to
2019.

Figure 4.21: Clustering output for Oj; for last 15 days in Q4 over 2015 to
2019.
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concluded from the generated clustering outputs in Figures'. Analysing
for Q, from 1% to 15", and 23" to 27 in years 2015 to 2017 represents
existence of highest PM;, concentrations with constantly increasing level,
however, with strong ban policies for diesel and old vehicles use by the
German government and other regulatory movement restrictions and cli-
mate awareness, the PM concentrations are little controlled and reduced
(comparison to earlier years) in 2018 and 2019. In Q, from 13 to 15™ PM;,
concentration increased in 2015 to 2016 and reached highest during years
2018 to 2019. From 27" to 30" high concentration was measured in 2015
to 2016 and then reduced to lowest in 2019 again during Q,. Furthermore,
in Q3 first and last fifteen days of clustering output there exists frequently
changing PM;, concentration from lowest to increasing in 27" to 30" with
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Figure 4.22: Clustering output for humidity for first 15 days in Q; over
2015 to 2019.
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Figure 4.23: Clustering output for humidity for last 15 days in Q; over 2015
to 2019.

the concentration reaching highest during 2015 to 2019. In Q, from 2™
to 4™, and 13" to 15™ in 2015 to 2019 PM;, concentration was measured
highest. These interpretations (above analyses conclusions) provide a quick
facts crosscheck supporting the present alarming air quality situation in
the Stuttgart city and requirement of probable more control measures.
In addition, the performed correlation analyses on pollution and meteoro-
logical datasets helped to uncover the important interrelationships, and
also justified clustering analyses outcomes. Figure 4.12| contributes the
following important points:

1. NO and NO, are 77% positively correlated to each other, with 27%
positively correlated to PM;(., 5, and negatively correlated to wind
speed by 53%,
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Figure 4.24: Clustering output for humidity for first 15 days in Q, over
2015 to 2019.
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Figure 4.25: Clustering output for humidity for last 15 days in Q; over 2015
to 2019.

2. O3 is 50% positively correlated to wind speed, 77% negatively cor-
related to NO and NO,, and 27% negatively correlated to PM (. s,

3. humidity is 27% positively correlated to NO and NO, and 50%
negatively correlated to Os,

4. wind speed is 27% negatively correlated to PM;y., 5, moreover,
PM,y, and PM; 5 are positively correlated to each other with more
than 87%.

Moreover, the developed seasonality analysis kit is used to provide in-
teractive selections of considered meteorological and pollution parameters
to analyse the concurred pattern in the dataset, in a time based frame
over the years. Currently, the designed dashboard is in its first phase with
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4.1 Overview: Seasonality Deduction Platform
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Figure 4.26: Clustering output for humidity for first 15 days in Q3 over
2015 to 2019.
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Figure 4.27: Clustering output for humidity for last 15 days in Q3 over 2015
to 2019.

color based clustering display for each quarter over the years. This has
helped in making the seasonality analyses tests easy, user interactive and
comparable in the time domain.

Conclusion

The integration of new knowledge, innovative technologies in sustainable
transformation is the motive of this work. The interpretations (above ana-
lyses conclusions) provide a quick facts crosscheck supporting the present
alarming air quality situation in the city and requirement of probable more
control measures. The interactive dashboard seasonality analysis kit of
meteorological and pollution parameters would help to plan the future
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4 Seasonality Deduction Application

environmental conditions. However, an improved approach is required
that combines more environmental data, correlation analysis, temporal
heat map and a better interactive visualisation integrating with the above
developed ML visual predictors for multiple parameters in depth analysis
for various time frames in a robust web platform.

Chapter Summary

This chapter is the first step of interaction with meteorological and pol-
lution parameters visually. The first approach provides findings based on
the temporal seasonality of hourly time series PM; 5 and PM;o, NO, NO,,
and Oj along with the measured wind flow and humidity. The temporal
variations over the city centre in Stuttgart are analysed using an unsu-
pervised approach to perform seasonal hierarchical clustering on a series
of parameters NO, NO,, O3, PM,(, and PM, 5, wind speed and humidity.
Furthermore, the correlations between meteorological and pollution para-
meters clearly demonstrate the relationship between air pollutants, wind,
humidity together in a combined temporal activities frame. Moreover, a
dashboard is developed to provide the user desired time frame visualisation
of these parameters. Further, a limitation in these methods is that they
lack interactive comparison of the machine learning models simultaneously
with their output display in one temporal visualisation query frame. This is
an important requirement and is a motivation behind the visual assessment
for meteorological and pollution parameters.
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Air Quality Temporal Analyser &
Geospatial Data Visual Assessments

This chapter presents air quality temporal analyser and geospatial data
visual assessments designed in this work. The following section explains the
setup of the developed visual assessments platform for air quality analyses
and sensors health monitoring visualisation platform.

Developed Methods First the introduction of Air Quality Temporal Ana-
lyser (AQTA) is given in dataset used in[subsection 5.1.1|and
followed by approach in [subsection 5.1.2| The results of AQTA are ex-
plained in [subsection 5.1.3| followed by discussions in [subsection 5.1.4]
and conclusion in [subsection 5.1.5| Later in the introduction of
geospatial data and sensors health monitoring visual assessments platform

Parts of this chapter have previously been published in:

Harbola, S. and Coors, V. (2018), ‘Geo-Visualisation and Visual Analytics for Smart
Cities: A Survey’, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W11,
[https://doi.org/10.5194/isprs-archives-XLII-4-W11-11-2018| 11-18;

Harbola, S. and Coors, V. (2019a), ‘One Dimensional Convolutional Neural Network
Architectures for Wind Prediction’, Energy Conversion and Management, 195,
|//doi.org/10.1016/j.enconman.2019.05.007, 70-75;

Harbola, S. and Coors, V. (2019b), ‘Comparative analysis of LSTM, RF and SVM Archi-
tectures for Predicting Wind Nature for smart city planning’, ISPRS Ann. Photogramm.
Remote Sens. Spatial Inf. Sci., IV-4/W9, https://doi.org/10.5194/isprs-annals-IV
65-70;

Harbola, S., Koch, S., Ertl, T.,, and Coors, V. (2021a), ‘Air Quality Temporal Analyser: Inter-
active temporal analyses with visual predictive assessments’, Workshop on Visualisation
in Environmental Sciences (EnvirVis), |https://doi.org/10.2312/envirvis.20211083}

Harbola, S. and Coors, V. (2021b), ‘An Interactive Platform For Environmental Sensors
Data Analyses’, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci, VIII-4/W1-2021,
|nttps://doi.org/10.5194/1sprs-annals-VIII-4-W1-2021-57-2021, 57-64.
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Figure 5.1: Algorithms comparative analysis flow chart.

is discussed, followed by methodology in [subsection 5.2.1| and datset used
in |subsection 5.2.5. The [subsection 5.2.6|explains the results of geospatial
data and sensors health monitoring visual assessments platform followed by
discussion in [subsection 5.2.7|and findings, conclusions in [subsection 5.2.8|
Furthermore, the chapter summary is given at the end in[section 5.3| Fig-
ure provides a brief overview of this chapter workflow approach along
with highlighting the motivation behind this work.

Overview: Air Quality Temporal Analyser

Visual data exploration often follows Shniderman’s mantra (Shneiderman)
[1996). The work related to visual prediction, time series visualisation
and temporal analytical approaches which matches the keywords of the
developed work were explored. Recent techniques (Badam et al.| 2016}
[Krause et al.| [2016) on visualising the time series data supported with
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5.1 Overview: Air Quality Temporal Analyser

mathematical and statistical metrics enable the user to build reasoning
about the considered temporal datasets interactively. Visualisation tech-
niques, highlighting the anomalies and underlying trends correlations,
through an undirected interactive search (Sacha et al.| [2016) were de-
veloped. Moreover, time series visualisation were explored by providing
examples of simple charts including stacked graphs, index charts, horizon
graphs for visualising time series datasets. The representations of time
series data become more contextual with the support of cluster, calendar-
based and, spiral visualisations (Weber et al., 2011). More detailed and
aggregated representations, using multi-resolution layouts for handling
over-plotting in large time series datasets were developed
2011). Moreover, they also reviewed the data mining method for
classification, pattern exploration, segmentation and representation of time
series data. Hochheiser and Shneiderman, invented dynamic query tools
for time series dataset interactive explorations with user demand detailing
(Hochheiser and Shneiderman), [2004). Chronolenses were proposed for
time series data visual exploration and correlation analysis

[2011a)b). Anomaly detection for modelling multiple time series
Mohoney, [2005), clustering and classification techniques to

identify the similarity of data patterns among time series dataset using
weighted dynamic time warping (Jeong et al.|, [2011), distance metrics and
agglomerative clustering have been developed (see [subsection 4.1.1). Inter
parameters relationships definition rules are revolutionised by [Hetland and]
[Saetrom| (2005) with rule mining concept for time series database. The
scientific temporal data visualisations are frequently used in support of
interactive visual analytics and are well-accepted within the disciplines
(Andrienko and Andrienko| 2003 [Navarra et al., [2020).

Moreover, for understanding the temporal datasets and its trends, pre-
dicting future and patterns remains a very challenging task with a few
interactive visual models and user explorations behaviour support. Pre-
dicting the time series data using statistical methodologies like regression
analysis, and computational machine learning approaches like neural net-
works, multilayer perceptron, fuzzy logic and self organising maps have

been successfully applied for the existing studies (Lorenc) (1986} [Guilherme)
2007} Bollen et al., 2011} Venugopal et al.| 2017). Visual prediction ap-

proaches in the act of visually predicting a time series variable by observing
the predictions from a computational model, shown alongside with the time
series representations for social media and financial datasets were de-
signed (Hao et al.| 2011} [Lu et al.| 2014} [Badam et al.|, [2016)). Furthermore,
interaction techniques with engaging the user in an efficient dialogue in the
contribution by people and computers to solve the task together i.e., mixed-
initiative interaction techniques have also been proposed (Horvitz, [1999|,
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2007 [Endert et al.| 2012} [Kapoor et al.|, [2012]). Data driven forecasting in

visual predictions for time series dataset visualisation with highlighting
the sequence and pattern in support of approaches to explore correlations
in multivariate spatio-temporal data have been developed by
(2011); Malik et al|(2012).

However, the increased usage of the environmental monitoring system
and sensors installation on a day-to-day basis has provided more informa-
tion in monitoring the current environmental conditions. Sensor networking
advancement with quality and quantity for air parameters, has given rise to
an increase in techniques and methodologies supporting temporal data in-
teractive visualisation analyses (Hart), 2006} [Bogue), [2008). Moreover, there
exists a gap between the environment as observed and its digital represent-
ation in the user selected time frame for temporal data interactive analysis.
Visualisation of meteorological and pollution data history and context plays
an essential role in visual data mining, especially in exploring the large and
complex datasets and environmental conditions. Including the context and
historical information in the visualisation could improve user understand-
ing of the environmental dataset exploration process and enhancing the
re-usability of mining and managing techniques and parameters analysis
to achieve the required insight. Moreover, traditional approaches cannot
fully support the visual exploration of future trends in complex multivariate
time series datasets such as weather, and healthcare, mainly due to their
lack of consideration of inter-variable relationships (e.g., if PM, increases,
NO,; decreases). Exploring these relationships through “what if” questions
(e.g., what if PM increases?) could help the user to better judge the future
environmental conditions than blindly trusting computational models that
lack contextual information.

Thus, there is still a gap the user likely needs to bridge for comprehend-
ing the situation. The developed work overcomes these dissociations by
proposing an Air Quality Temporal Analyser (AQTA), an interactive system-
user interface for visual prediction of multivariate time series through
deep learning models as well as interactive visualisation techniques for air
quality parameters. Following are the contributions of the current work,

1. interactive temporal visualisation of historical, present and future
data through various charts, to support the user in the interpret-
ation of the data that may be useful for further stages of the
mining process such as cluster identifications, important feature
and pattern detection,

2. predicting the air quality standards for the desired temporal frame
(dynamic) with five designed deep learning models, thereby high-
lighting the respective model’s success and failure for inference
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Figure 5.2: AQTA workflow maintains an interactive dialogue between
user and the system for visual prediction and in depth analysis including
correlation.

data along with supporting the arguments with easy graphical
support and suggesting best option to choose,

3. visual preservation of context and historical information in all
these user interactions.

These contributions combine together to form three phases (1-3 shown
in Figure of interactive AQTA with back-and-forth dialogues between
user and AQTA. This interactive dialogue between the AQTA and the user
continues until the user finds sufficient information to come to a conclu-
sion. This would infer smart decisions for air quality planning, which in
turn would help in proficient management and development of the city’s
resources. AQTA is validated for Stuttgart, Germany as a used case study.
The remaining sections are organised as follows: system and datasets used
and developed approaches are discussed in|subsection 5.1.1| and [subsect
respectively, [subsection 5.1.3|and [subsection 5.1.4] discuss the
results, followed by conclusion in [subsection 5.1.5|

Data Used

The temporal air quality datasets that are used and analysed in this
study ("luftdaten selber messen" (Luftdata-se-Stuttgart] [2020)) provide
city sensors measurements at several locations in Stuttgart. Historical
datasets from 2016 to 2020 are measured at total 8 city centre locations
with the wind (speed and directions), temperature, pressure and humidity
along with NO, NO,, O3, PM;,, with temporal information attached in a
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Figure 5.3: Predictive models analysis flowchart.
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Figure 5.4: Various classes designed ranges.

30 minute time interval (Stadtklima-Stuttgart, 2021). The dataset of each
location was separated into individual years for each parameter, using time
information with past data first, followed by current data. This helps to
perform an in depth study of air parameters. AQTA is implemented as a
web based application using D3.js, Streamlit, Keras library (Chollet] 2017)
with TensorFlow in the backend in Python and executed on Intel® Core
™ j7-4770 CPU @3.40 GHz having four cores. Each designed air quality
predictor (ML) model was executed separately for selected time series data
for predicting the (dominating) class magnitudes and analysing air nature.
The following |subsection 5.1.2| explains the designed system architecture
comprising models, graphs and database at the system side and inter-
active visualisation interface at the user side. Result in [subsection 5.1.3
analyses and validates the outcome of sensor located at Stuttgart’s city
centre, and similar results were obtained for the other sensors as well.
AQTA web deployment along with detailed figures are available in GitHub
|//www.github.com/shharbola/EnvirVis_AQTAL
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5.1 Overview: Air Quality Temporal Analyser

5.1.2 Approach

The designed work combines different visual analysis of air quality paramet-
ers, integrated into AQTA platform. Figure provides an overview of the
workflow and highlights the motivation behind the comparative analysis of
different models. Here, the time series air quality datasets comprise pollut-
ants i.e., PM;o, NO, NO,, and O3 and meteorological parameters like wind
(speed and direction), pressure, temperature and humidity, with temporal
resolution 7" and 7,, (w — 1 to m) denotes value of the selected parameter
(above mentioned) at time w, where 1 and m are the first and last values in
the dataset, respectively.

Air Quality Predictor

Multiple samples are designed using the dataset for training and testing
the developed prediction algorithms. A sample consists of a feature vector
as an input with a corresponding output class. Realy, (a scalar) consecutive
values of considered parameter, from 7, to T, Realy, form a feature vector
of dimension Realy, x 1 which is the input of the sample. Realvf (a scalar)
successive values of selected parameter after the last value in the input
v.e., Tyt Realy, , Qe used to define the sample’s output class. Mean (u), and
standard deviation (o) of the parameter of the entire dataset are calculated.
Various class boundaries are designed using ; and ¢ as shown in Figure |5.4

Among Realy,, count of values occurring in each class in Figure is
noted, and the class that has a maximum count :.e., dominant, is assigned
to the sample. Similarly, multiple samples based on the selected parameter
are created by taking Realy, values in the corresponding input from 7, to
yn Realy, by varying w from 1 to m - Realvf, at an increment of 1. The outputs
of these samples are designed as discussed above. Likewise, samples based
on other parameters (each independently) are created for each dynamically
selected parameter as discussed above. Thus, at this stage, for Realy, values
in the input from 7, to Tw+RealVb, there would be nine sets of samples,
based on PM;3, NO, NO,, O3z and wind (speed and direction), pressure,
temperature, and humidity. Here, in this analysis the size of Realy, and
Realy, are kept equal with four user options,

1. 12 representing 6 hours as temporal resolution of considered
dataset is 30 minutes,

2. 24 representing 12 hours,
3. 36 representing 18 hours, and

4. 48 representing 24 hours
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. These conditions ensured comprehensive and accurate analysis of the
data with respect to independent and different user selections.

The first developed air quality predictor ML model is Multi-Convolutional
Neural Network (MCNN) that has five single CNN, say (CNN;, CNN,,
CNN;, CNN,, CNNs). Each of these CNN; (i — 1 to 5) has its own input
layer, three consecutive 1D convolutional layers and last convolutional layer
of each CNN connects to a common fully connected layer which is followed
by another fully connected layer and an output layer. The architecture is
explained in detail in[subsection 3.1.1] [subsection 3.2.1l MCNN and 1DM
are the same architectures. The output layer is a softmax layer (Su et al.
2015), with the number of neurons same as the number of the classes.
There are five classes in the present study as shown in Figure The
MCNN is trained and tested separately for the prediction of dominant tem-
poral nature of the selected parameter (PM;o, NO, NO,, O3, wind, pressure,
temperature and humidity). Therefore, for an inference sample, the MCNN
could predict the air quality parameters classes separately and visually
highlight time series data recurring motif.

The developed Long Short Term Memory (LSTM) model (second) is
a special kind of Recurrent Neural Networks (RNN) capable of learning
long term dependencies with a chain like structure. This has an input
layer, four neural layers (NL1, NL2, NL3, NL4), i.e., three sigmoid layers
supported with two tanh layers and an output layer. The architecture is
explained in detail in [subsection 3.2.1} [subsection 3.1.1] The input layer is
One Dimensional (1D) of the size of Realy,. The output layer is a softmax
layer, having the number of neurons the same as the number of the classes
i.e., five.

The third designed time series prediction model uses K-Nearest Neigh-
bors (KNN) which is a supervised classification algorithm. KNN based
method makes predictions on the fly by calculating the similarity between
an input observation and values in the dataset, with respect to time. Here
K value is decided empirically and kept fixed in all parameter analysis.
The designed SVM based predictive fourth model classifies the data by
finding the best hyper-plane that separates all data points of one class from
those of the other class. The best hyper-plane signifies the one with the
largest margin between the classes. Similarly the last designed Random
Forest (RF) based model uses a decision tree as a decision support tool
for classification. When the RF is given a training sample, it formulates
a set of rules which are used to perform predictions. Moreover, RF uses
sufficient decision trees, to ensure the classifier does not over-fit the model.
The advantage of the RF as a classifier is that it can handle missing val-
ues, and the classifier could be modeled for categorical values. Therefore
LSTM, MCNN, SVM, K-NN and RF (five ML models) are used to predict
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meteorological and pollution parameters separately.

During training, the sample’s feature vector of dimension RealV} x 1,
forms the input of the designed models, while the sample’s output class
forms the output of these models. The objective behind using a variety of
supervised prediction models is to provide a possible option of selecting
models based on best (compare) accuracy with respect to the various date,
time, and parameters conditions. The previous paragraphs discuss the vari-
ous developed models of temporal air quality prediction. Besides prediction,
the detailed analysis of historical air quality parameters are also performed
in this work. Temporal filtering using Pearson correlation method help to
derive the relationships along with highlighting interconnections between
the meteorological and air pollutants. The user could select the parameters
over the desired time frame and compare the patterns interactively in
AQTA, thus, making the analysis more diverse and refined.

Visual Interaction Design

AQTA besides being air quality predictor, also provides tooltiping, brush-
ing and linking for maintaining the transparency and combining different
visualisation methods between user-computer dialogue efficiently and pre-
serving the working memory of the user during interactions (Shneiderman)
1996} [Horvitz, [1999). Figure provides an overview of AQTA workflow
(phases 1-3), with highlighting the system-user interfaces of visual pre-
dictions comparative analysis. System: consists of historical air quality
temporal database, trained ML models, structure of various graphs and
charts, and accepts user queries. User: interacts with this system in vari-
ous ways. The user selects, inspects and views the states of the parameters
with past present and future (predictions) information. The user could
also choose among different ML models with analysing the performance of
each selected model (MCNN, LSTM, RF, K-NN and SVM) in terms of total
accuracy and difference metrics incorporated with the interactive display
through various graphs and charts. The user could change the time step
allowing for a different prediction duration, and compare the results with
the time series dataset and the outcome of each model. This allows the user
to decide which prediction algorithms are the best and provides sufficient
information to make a decision.

The system works as per user desires with additional information of
revelling the correlation among the selected parameters and answering
“what if” questions of nine parameters dependency with each other within
selected time frame. Furthermore, detailed analysis of the patterns in the
dataset in the three phases of AQTA are carried out using additional charts,
heat-map, time histogram, that are explained below.
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Figure 5.5: Data inspection (a part of Phase 1) week-wise over the years
for selected parameter.

Inspecting Data History Visualisation (Phase 1) The phase 1 visualisa-
tion of AQTA uses time series stack chart with calendar heat-map to provide
interaction with the air quality datasets visually. The inspecting overview
shows the overall patterns for multiple parameters of interest selected
from air quality parameters list available in the interface (Figure [5.5). The
time dataset overview design contains horizon graphs. The effective dis-
crimination option in horizon graphs makes it more desirable
[2010). This is accompanied with stacked chart to provide a detailed time
series data inspection of parameters magnitudes with calendar heat-map
view option in order to compare the trends among air quality parameters
based on the months during a year. The user could select each year and
then even explore in detail for each day with 30 minutes (here the sensors’
data temporal resolution) for air quality parameters temporal analyses.
This phase provides a detailed understanding of the air quality data history
and preset with highlighting the patterns which are actually present and
measured by the sensors (here no smoothing or data cleaning is performed
1.e., real original datasets).

Prediction Visualisation (Phase 2) The phase 2 visualisation consists of
square-time charts, and temporal circle mark chart coupled with histogram
highlighting the predicted value (Figure [5.6). Predicted outcome with
respect to time frame (6hr, 12hr, 18hr, 24hr) choices are displayed with the
help of square-time chart with tooltip highlighting the class assigned and
color encoding makes it easy to distinguish in detail the classes with respect
to each predicted value in the time frame. Each class is assigned dynamic
color encoding according to predicted class range. The comparison and
performing the analysis of predicted versus the actual values is shown
with the help of time series square-time graph with the color encoding
representing the difference of actual and predicted (Figure (a)), that
occur in the range i.e., (-4, -3, -2, -1, 0, 1, 2, 3, 4) calculated by assigning
1 = calm, 2 = light, 3 = mild, 4 = strong, 5 = strongest as in Figure |5.4]
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Figure 5.6: Phase 2 inference, comparing actual versus predicted output.

Tooltiping is also added to this representation to make it easier for user
to understand the actual and predicted values along with their respective
difference in the time frame.

In order to provide a detailed comparison and more easy interaction by
double encoding, mark circle with integrated histogram graph is designed
(Figure [5.6] (b)). Here the circle radius is governed by the class ranges
and color according to the assigned class with respect to time. The histo-
gram shows the count of the records estimated or predicted each day and
binned according to the assigned class patterns. Both actual (Figure [5.6|
(b) left) and predicted (Figure @ (b) right) values are compared in this
interface with clearly highlighting the pattern of meteorological and pol-
lution parameters in time frame, which helps user to make advance and
comparative estimation of the environment and its pattern with model’s
success information.

Correlation Visualisation (Phase 3) The phase 3 visualisation of AQTA
is implemented as an air quality parameters’ correlation structure detailed
analyses. The time series exploratory analysis of meteorological and pollu-
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Figure 5.7: Temporal visual correlation analysis using correlation heat-map
(left) linked with 2D histogram (right).

tion parameters also requires supporting, identifying the correlation and
how these parameters are controlling and effecting each other’s nature
interaction. Pearson correlation method is used for analysing these relation-
ships among the parameters. The correlation graph (Figure explores
the correlation structure of the meteorological and pollution parameters
dataset using two connected subplots: an interactive correlation heat-map
(Figure left image) and a 2D histogram showing the density of values
(Figure |5.7, right image).

Clicking on a cell in the correlation heat-map shows correlation coeffi-
cient value for that particular cell, (shown in pink highlight in Figure
left image), where parameterl (on X-axis) and parameter2 (on Y-axis) rep-
resent associated air quality parameters of the selected cell on X-axis and
Y-axis. Selection linked binning on the fly is performed for the selected
cell generating a 2D histogram (detailed bins) between parameterl and
parameter2, with the advantage of highlighting overlapping values leading
to a higher density of values (frequency) in the darker color bins, making
it clear to the observer that there are more similar range values in the
selection. Thus, the correlation heat-map shows the parameters and value
ranges (all) associated with that particular cell and the corresponding data
in the 2D histogram. This enables user to quickly see the pattern in correl-
ations using the heat-map, and allows to zoom in on the dataset underlying
those correlations in the 2D histogram. All the graphs and subsections
integrated with visual predictions help the user to provide a more clarity of
the time series and environmental conditions. AQTA (1-3 phases) tries to
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bring all the information together that could be derived from air quality
parameters condition in the considered city (Stuttgart, Germany) in order
to derive the time series patterns and correlations.

Results: Use Case

AQTA has been evaluated using Stuttgart (Germany) city air pollutants, ..,
PM;yp, NO, NO,, O3 and meteorological parameters like pressure, temperat-
ure, wind and humidity. The initial findings are presented that corroborate
the city’s COVID lockdown (year 2020) conditions and sudden changes in
patterns, highlighting the improvements in the pollutants concentrations.
AQTA was used for visual analysis of Stuttgart’s COVID lockdown air quality
situation (in year 2020) to facilitate visual exploration of prediction models
outcome and reality conditions that occurred during this sudden pandemic.
AQTA results were compared with real world measurements to support
analyser inference outcomes and interaction in subsection followed
by subsection for discussion.

Inference

Several samples, each having input and corresponding output, were created
as described in section[5.1.2] Values of k; and &, (Figure were empiric-
ally taken as 0.80 and 0.50 respectively (same for all parameters), so that
a sufficient number of samples occur in each class. Moreover, Synthetic
Minority Oversampling Technique (SMOTE) was used to do up-sampling of
the classes having less number of samples. Total samples for a given year
were randomly split into training and testing with 35% of the total samples
as the testing samples. The designed models were trained and tested on
these samples. When samples were prepared for the inference (validation)
for year (2020), the samples were created similar to model training and
testing phase (as mentioned in subsection [5.1.2). The models had never
seen the dataset which were used in inference therefore the pattern and
class predicted dynamically, were predicted based on the designed models
achieved accuracy. The obtained accuracies for five designed models are ap-
proximately between 90% to 95% (see |subsection 3.1.1} |subsection 3.2.1).

These classification outputs are shown in the supplemental material on
Github. These outcomes represent AQTA phase 2 of Figure[5.2] The classes
square chart uses diverse color coding to highlight the model’s predicted
classes assigned with respect to selected time frame of (6hrs, 12hrs, 18hrs
and 24hrs) future prediction. Class specific color coding provides more
distinguish representation irrespective of the selected time frame (small or
large), that helps in quick user understanding and assessment of a lot of
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predicted information at one go. The graphs (Figure |5.6) comparing the
actual and predicted results difference, highlight the success and failure
of the selected predicted models in the selected time frame (as shown in
Figure (c)). The difference (actual - predicted) of the selected model
classification outcome is shown with square chart (Figure (a)), here
sequential single-hue schemes (blues) encoding shows the difference values
i.e., (-4 (light blue), < 0 = model success, < 4 (dark blue)) attached with
tooltip information. Another graph, circle mark charts, represents actual
and predicted classes separately (Figure (b)). In these circle mark
charts, the radius encodes the ranges of the assigned classes (calm <
light < mild < strong < strongest). Integrated histograms at the bottom
of these graphs denote each day’s (overall) predicted and actual record of
classification outcome, with colors and conditional selection are linked with
the above circle mark charts. The together build selection between circle
mark charts and corresponding histograms, gives the user option to filter
the outcome as per the requirements. This helps in detailed analysis of the
actual and predicted classification outcomes and model’s success-failure
overview, in each selected time frame and arriving at a conclusion to pick
the best model.

Interactions

The data inspection i.e., phase 1 is used to provide user the freedom to
visually analyse all the historical data (available in database) with graphs by
temporal queries. The options available for user are either to compare all
the years with respect to month, day for the desired parameter or to explore
in depth each year independently with querying based on week (Figure[5.5),
date and time with overall option palette available to change, update
the selection, process new one, save the results and return. Therefore,
users can use controls, which provide zooming, selection, tooltiping and
saving outcome (image format) options, to view the models classification
distributions at different time frame. The user can use several available
options on the screen, to get back to the default views, change the selection,
reset the main phase view, the phase details views, or all the views.

The output of phase 3 (Figure is the temporal correlation analysis
of meteorological and pollution parameters with yearly selection option
available to user. Creating one cohesive interactive plot using correlation
heat-map linked with 2D histogram (showing the density of values), helps
to answer queries related to parameters interrelationships and how their
dependency fluctuates in time with comparison option. Binning on the fly,
with user parameters selections and displaying the correlation (heat-map
with yellow green blue sequential multi-hue schemes) and frequency (2D
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histogram with oranges sequential single-hue schemes) allow to have de-
tails of an individual correlation as shown in Figure [5.7] The interactive
chart enables to quickly distinguish pattern in correlations using the heat-
map, and allows to zoom in on the meteorological and air pollution data
underlying those correlations in the 2D histogram. This indicates that the
correlation leans heavily on the tail of the data and vice versa. Visual cor-
relation analysis queries would help to understand the data and temporal
dependencies more clearly with interactive charts that make understand-
ing very easy and less time taking, making environmental planning more
comprehensive and interesting.

Discussion

ML based prediction algorithms used in AQTA are described in detail in
[subsection 3.1.1} [subsection 3.2.1}] |[section 2.3| These approaches with
good prediction results are applied in phase 2 of AQTA to achieve an
interactive visual prediction, and pattern analysis platform. This aids user
to understand easily the insight of data, complexity of the parameters,
trends and details, and air quality impact. AQTA focuses on integrating and
linking the simple charts representation to discover complex air quality
parameters interactively in various time frames, with options to have a
visual data overview (history and present in phase 1), predicting future with
model success, failure comparison (phase 2), and a correlation structure of
their interrelationships (phase 3).

The designed framework is successfully implemented for the Stuttgart
city central location. However, it could be applied to any number of sensors
for any given location (area) with some ML tuning and training of the re-
spective datasets. The air pollution from predominantly non-traffic-related
pollutants (e.g., dust deposits) has decreased significantly in recent years.
The traffic-related pollutants (e.g., NO, NO,, PMo, O3) remain at a high
level in the city (Stadtentwicklung.berlin.de| [2021). The city’s air quality
is controlled and not deteriorating further, due to the strong monitoring
and control measures by the state governments, city’s policymakers and
increased environmental awareness among people. But still the AQTA ana-
lysis shows that during summer and autumn of the year 2019, PM,, trends
are alike as in the previous years 2017 to 2018 with a few reductions.
Furthermore, there is depletion in PM;, concentrations during the summer
and autumn of the year 2020 probably due to the strict lockdown and
movements restrictions. However, the decrease in the concentration of
one parameter and increase in others does not ensure that the overall
air quality is improved e.g., PM, is observed reduced in Oct 2020, while
O3 concentration is higher. The reasons behind these relationships and
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trends are more evident with the correlation structure integrated with this
analysis, highlighting that PM,, is positively correlated with NO and NO,,
while negatively correlated with O3. Similarly, NO and NO, are negatively
correlated with O3z. Thus AQTA allows the actual data to convey itself and
used to upgrade the user’s hypothesis with the best understanding.

PM;, concentrations were predicted for 22-29 March 2020 when there
were strict COVID lockdown restrictions during these days. The ML models
predicted the air quality parameters with good accuracy during these con-
ditions. Thus, the developed AQTA framework has good potential for visual
analytics along with prediction in different conditions. While analysing
parameters from 20 April 2020 to 1 May 2020 and taking 6 hours time
in future, LSTM model predicted the NO and NO, concentration to be
strongest on days 22, 28, and 29 April 2020. It was between calm and mild
for rest of the days. The comparison of predicted values with the real data
showed approximately 95% accuracy of the model. When the relaxation
in the lockdown was given one month later, at that time also, the model
gave good results. Further, the model also predicted the pressure range
from calm to mild on 21 April, strongest class on 23 April, and calm on
28 April. The predicted and actual values matched for 23, 28 April but
there was a mismatch for 21 April. As pressure and PM, are positively
correlated their spikes and patterns show similarities with their effects
over the days which also cross validates the correlation with reference
to data range trends. PM;, concentrations were observed to be higher
specially on Fridays (apart from other weekdays) in February of year 2020,
as well as on Fridays and Saturdays in April and on Saturdays in May of
2020. Similar trends were observed for NO and NO, concentrations during
the same time frames (correlation discussed above). Usually these trends
were also similar to previous years, weeks, and days patterns, with only
fluctuation in concentrations ranges (calm to strongest). These patterns
could be because people might be using public transports and shared cabs
on working days. Transportation emits more than half of NO and NO, in
the air. During the weekend, people travel to their homes, have family out-
ings besides other important travel plans, thereby contributing to higher
pollutants concentrations. PM;(¢ concentrations predicted using LSTM for
new year eve’s on 31.12.2020 to 01.01.2021 from 12:00 pm to 12:00 pm
were between mild to strong, then to strongest (12:00 am to 2:00 am) and
then mild ranges which matches with the published report of Stadtklima
Stuttgart on 01.01.2021 on PM;, concentrations in Stuttgart on New Year’s
Eve 2020-2021 (Stadtklima-News| [2021).

The day wise analysis of wind speed was also performed for February
2020. It was observed that on Thursday the magnitude of wind speed
occurred mainly between strong and strongest classes. This trend was also
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noticed for the previous years as well. Similarly for temperature on Monday
(strongest), Saturday (strong), Sunday (strong), and Friday (mild) classes
patterns occurred within the selected time frames. Such analysis helps in
proper utilisation and planning of renewable sources like wind. Moreover,
wind speed, pressure and temperature are positively correlated to each
other, while wind direction and speed are in positive interrelationship with
O3. Therefore, it was also observed that the local winds could often develop
that do not cause high magnitude winds, but play an essential role in local
ventilation of the city areas and determine the spread of air pollutants (as
found from correlations insight discussed above). The Stuttgart region is
one of the areas with the lowest rainfall in Germany, mainly due to the lee
location (Black Forest, Swabian Alb) and precipitation conditions playing
a significant role in cleaning the atmosphere through the wet deposition.
Moreover, the humidity of an area is highly controlled by the wind directions
as they are positively correlated. In the year 2020 April, May and August
months, the measured humidity is lower (on average) in comparison to the
same months in 2019. These trends also matches with the changing wind
directions occurred during the same year and months patterns. Due to
the high temperatures trends in recent years, combined with the existing
humidity patterns, Stuttgart is one of the areas with increased heat load
(approximately 30 days), with occasional cold fillips and this infer seems
coherent with the state climate published annual report (Stadtklima-News),
[2021). Hence, AQTA provides an add-on to the existing literature in terms
of air quality multiple time series datasets dynamic visual predictions along
with its detailed analyses, comparisons and validation with reality.

Conclusion

This work presents Air Quality Temporal Analyser (AQTA), an interactive
system to support visual analyses of air quality data with time. This in-
teractive AQTA allows the seamless integration of predictive models and
detailed patterns analyses. While the previous approaches lack predictive
air quality options, this interface provides back-and-forth dialogue with
the designed multiple Machine Learning (ML) models and comparisons
for better visual predictive assessments. These models can be dynamically
selected in real-time, and the user could visually compare the results in dif-
ferent time conditions for the chosen parameters. Moreover, AQTA provides
data selection, display, visualisation of past, present, future (prediction)
and correlation structure among air parameters, highlighting the predictive
models effectiveness. AQTA has been evaluated using Stuttgart (Germany)
city air pollutants, i.e., PM;o, NO, NO,, O3 and meteorological parameters
like pressure, temperature, wind and humidity. The initial findings are
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presented that corroborate the city’s COVID lockdown (year 2020) condi-
tions and sudden changes in patterns, highlighting the improvements in
the pollutants concentrations. AQTA, thus, successfully discovers temporal
relationships among complex air quality data, interactively in different
time frames, by harnessing the user’s knowledge of factors influencing the
past, present and future behavior, with the aid of ML models. Further, this
study also reveals that the decrease in the concentration of one pollutant
does not ensure that the surrounding air quality would improve as other
factors are interrelated. The AQTA can be further advanced by highlighting
the locations of different sensors with an add-on to the sensor nature’s
monitoring and, this motivates the following technique.

Overview: Geospatial Data Visual Assessments

The cities generate and store a lot of spatio-temporal data along with
environmental parameters, constantly using various environmental monit-
oring sensors. Moreover, keeping track of the surroundings, and managing
spatial data includes cities, rivers, roads, and countries with increasing
demand for environmental monitoring, smart cities planning and resource
management. The development and industrial advancement for uplifting
human standards have contributed to a comfortable life on one hand while
consequences of environmental changes, and pollution on another. Chim-
neys’ discharge, waste from industries, vehicle smokes, and construction
sites release consist of tiny air pollutants that upon inhalation, cause res-
piratory problems, lung and heart diseases. Therefore, meteorological
parameters i.c., humidity, wind (speed and direction) along with air pol-
lutants like PM, 5 and PM( require regular monitoring. The surrounding
air quality and well being fluctuate with these parameters atmospheric
concentrations (Chen and Zhao| [2011). The increased levels of pollution
parameters are due to regional transportation and local emission sources in
the developed areas (Chen and Zhao|, 2011} [Jasen et al.| [2013). One of the
primary sources of particular matters is regional transportation comprising
diesel vehicles that contribute significantly to pollution (Wallace and Hobbs)
[1977). Moreover, sensors’ (spatial and temporal) data is a combination of
the georeferenced geographical entity presented by the attribute, location,
and time as continuous, more extensive size data. Data Visualisation (Vis)
is the practice of translating information into a visual context. Moreover,
Visual Analytics (VA) is a sub-field of Vis which integrates data analyses
with highly interactive visualisations. Furthermore, in the scientific do-
main, a visualisation setting would help bring the geospatial data clarity
by displaying the patterns and variations that mostly remain undiscovered
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in the theoretical or text data (Sun et al, 2013} [Sun and Li, [2016). Some

existing studies have been performed to infer the seasonality and patterns
insight for meteorological and pollution parameters independently (see
lsubsection 4.1.1). Integrating interactive Vis techniques help in represent-
ing the geospatial data and attached environmental information together
in one frame. In this a more dedicated version using interactive charts,
maps, and graphs to deliver the relationship trends between the paramet-
ers are presented, which are usually missing in traditional static charts,
spreadsheets, and files (Horvitz, 2007} [Aigner] [2013}; [Liu et al.] [2017).
However, VA is a combination of interactive Vis and automated analyses
techniques. This supports the easy interpretation of spatio-temporal data
and provides a better understanding of making choice potential by splitting
a city environmental data into multiple parts ranging over time, space and
several spatial scales (Kurkcu et al.] 2017} [Stratigea et al., [2017). Data
filtering and smoothing methods are applied to the data in most of the
above considered pieces of literature. These adjustments modify the most
temporal dataset originality. Interactively visualising the sensors and their
data measurements concerning the time frame helps monitor these para-
meters. A thorough study of the meteorological parameters, their trends,
including their impact on PM(.; 5 understanding, could be helpful.

The above research suggests that several questions remain to be ad-
dressed, such as temporal wind variations, PM;,., 5 concentration fluctu-
ations and in connection with user desired time frame, without modifying
the authenticity of the original temporal dataset. An interactive system,
AQTA, is developed, supporting the visual analyses of air quality data with
time (see |subsection 5.1.2). It discovers temporal relationships among com-
plex air quality data, interactively in different time frames, by harnessing
the user’s knowledge of factors influencing the behaviour with the aid of
ML models, but on a small scale, focusing on each sensor (individually)
while missing the attached spatial knowledge. A more refined understand-
ing of volatile sensor’s measurements temporally which would increase
the user interaction with recorded measurements and spatio-temporal
information, is still required. This motivates the current research. The
climate fluctuation and meteorological data monitoring concerns increased
the demand for such a web interface to study the measured data history
interactively along with the sensors’ nature monitoring for the future. This
idea is implemented and expanded as a case study for Stuttgart (Germany).

Thus, unsupervised Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) based clustering algorithm and ML model using
Transformers Network are designed for sensors nature monitoring and
highlight the dominating sensors locations working on the original tem-
poral datasets by taking into consideration the above listed gaps, and
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Figure 5.8: Sensors visual comparative analyses flowchart.

provide solutions of these gaps. These frameworks combine together to
form (shown in Figure Environmental Sensors Visual Prediction As-
sessment (ESVPA) an interactive visualisation platform with user choice
of parameters selection, delivering temporal variations of spatio-temporal
information. Therefore, the current study proposes HDBSCAN clustering
and sensors nature monitoring queries with the following contributions:

1. interactive temporal visualisation of unsupervised cluster identi-
fications to support the user in the interpretation of the meteoro-
logical and pollution parameters,

2. predicting sensor nature using Transformers Network, supported
with visualisation of designed model dynamic training, testing
and accuracy metrics assessments. This helps in highlighting the
respective model’s success and failure for inference data,

3. visual preservation of spatial, non-spatial context and historical
dataset information on user selected temporal frame, and

4. unboxing the complexities of ML design with visualisation thus,
making the concept understanding more explainable and straight-
forward.

This interactive visualisation platform would help to infer smart decisions
for surrounding quality planning, which would increase the ability to devise
more green ideas for city’s resources, innovative development and man-
agement. The remaining contents are organised as follows: section|5.2.1

[5.2.5][5.2.6] and [5.2.8| present methodology, datasets, results, discussion
and conclusion, respectively.
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Table 5.1: Various classes designed ranges.

Class Lower Range Upper Range

1 min(selected,arameter) W — kio

2 H— klO' n+ k’QU

3 i+ koo mazx(selectedparameter)
Approach

The developed interactive web interface provides a platform to view and
analyse in detail several sensors and their measurements in Stuttgart
city along with spatial and temporal information. Each of the sensors are
measuring parameters like PM, s and PM;,, humidity, wind (speed and
direction). The section [5.2.2| explains the developed system architecture
comprising unsupervised HDBSCAN clustering, sensors nature prediction
using Transformers Network is discussed in and interactive visual-
isation platform insight is described in[5.2.4]

Unsupervised HDBSCAN Clustering

All sensors time series measurements (for each sensor location) are studied
using unsupervised clustering and sensors’ location queries. Each para-
meter’s values are normalised, and then temporal filtering is applied. The
standard deviation and mean of the parameter’s values are computed. The
normalised values are calculated by subtracting the parameter’s values
from the mean, and the resultant values are then divided by the standard
deviation. In the present work, temporal filtering is applied based on the
user’s choice. These user selection temporal query division helps in de-
tailed analysis of the considered parameters as per user desires. HDBSCAN
is applied in this study on sensors’ measurements with noise which is an
extension of Density-Based Spatial Clustering (DBSCAN) by converting it
into a hierarchical clustering algorithm. It performs DBSCAN over varying
epsilon (eps) values (i.e., eps-neighborhood of point X, defining the radius
of neighborhood around a point X) and integrates the results to find a
clustering that gives the best stability over eps (Campello et al.| [2013). This
allows HDBSCAN to find clusters of varying densities (unlike DBSCAN).
Therefore, for historical data HDBSCAN returns good clusters with little
parameter tuning. The minimum cluster size parameter is intuitive and
decided empirically in this study. Values of k; and k£, (Table were em-
pirically taken as 0.75 and 0.35 respectively (same for all the parameters),
so that a sufficient number of samples occur in each class (as shown in

Table [5.1)).

123



5 Air Quality Temporal Analyser & Geospatial Data Visual Assessments

O
O

08-:52-07am — 16:44:36pm

Figure 5.9: PM,, concentrations measured by the sensors on map with web
interface.

Figure 5.10: Wind speed measured by the sensors on map with web inter-
face having 3D surrounding information.
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Thus, HDBSCAN is one of the better clustering option with these ad-
vantages, and it is applied on the temporal measurements of sensors and
produces interactive filtering output. The hierarchical clustering gener-
ates a distance matrix that assists in discovering the clusters similarities
and hierarchically merging the similar clusters until the required number
of clusters are formed (McInnes and Healy| [2017). This is achieved by
minimising the within cluster variance using the error sum of squares
as an objective function. Thus, for this work three clusters (classes) (i.c.,
three: Low, Mild and High) are taken and, starting from respective cluster
formation the error sum of squares is kept minimised while deciding their
similarities together (Paul and Murphyj, [2009).

Transformers Network

In order to provide more detailed comparison and trends analysis, each
sensor’s nature monitoring using ML approach called Transformers Net-
work predictor model was designed (Wu et al.|] 2020). The model takes
successive time values in terms of parameters as input with sensor’s loc-
ations and predicts the future dominant (high measurements) value and
location with time as the output. The Transformers Network can be rep-
resented as an encoder and decoder architecture. This comprises some
encoding layers set that process iteratively the input data through each
layer one after another in order to generate valuable encodings, followed
by a decoder that combines some decoding layers that take the output
of the encoder and process further the intermediate output iteratively
using their comprehended contextual information to generate an output
sequence (Vaswani et al.| [2017). The decoding layers also have an ad-
ditional attention mechanism that draws information from the previous
decoding layer output before the following decoding layer draws data from
the encodings. Moreover, the feed forward Neural Networks (NN) are used
between the sets of encoding and decoding layers in the architecture to
perform normalisation steps, and additional outcome processing
2018).

The used dataset comprises wind direction, humidity, wind speed, PM; 5
and PM;,, with temporal resolution epoch and epoch; (j — 1 to n) denotes
wind direction, humidity, wind speed, PM, 5 and PM,, at the time j, here
1 represents the first value and n the last value in the dataset. The de-
veloped algorithms are trained and tested over the multiple samples that
are constructed using the dataset. Moreover, an input with a corresponding
three output classes forms a feature vector of a sample. Window, (a scalar)
consecutive values of humidity, wind direction, wind speed, PM; 5 and PM;,
from epoch; to epoch;iwindow, @ feature vector of dimension Window, x 1 is
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formed which is the input of the sample for each parameter. Window;y is a
scalar which takes considered five parameters successive values after the
last value in the input i.e., epoch; window, t0 epoch; window i and is used to
define the sample’s output class. Standard deviation (c) and mean (i), of
humidity, wind direction, wind speed, PM, 5 and PM,, of the entire dataset
are calculated. The multiple class boundaries are constructed using the o
and . as denoted in Table Among Windowy, for each class in Table
the count of values is noted, and the dominant class :.e., the class having
the maximum count, is assigned to the sample. Similarly, different samples
based on each of the parameters are created by taking Window, values
in the corresponding input from epoch; to epoch; window, by varying j from
1 to n - Windowy, at an increment of 1. The outputs of these samples are
designed as discussed above. Therefore, for Window, values in the input at
this stage from epoch; to epoch;window,, there would be five samples sets,
based on humidity, wind direction, wind speed, PM, 5 and PM,. Here in this
analysis the size of Window, and Window; are kept equal with user option
to predict the next 6 hours. These conditions ensured comprehensive and
accurate analysis of the data with respect to independent and different
parameter selections.

Visualisation Platform

The developed sensor nature monitoring platform provides clarity of the
meteorological and pollution parameters trends, along with spatial visuality
in the user selected time frame. This platform is called as Environmental
Sensors Visual Prediction Assessment (ESVPA) for sensors nature monitor-
ing. ESVPA also provides tooltiping, brushing and linking for maintaining
the transparency and combining different visualisation methods between
user-computer efficient interactions (Shneiderman), [1996}; [Horvitz], [1999).
Figure provides an overview of ESVPA workflow, along with highlight-
ing the system-user interfaces of visual sensors prediction and analyses.
The System combines historical meteorological and pollution parameters
temporal database, unsupervised clustering outputs, sensor nature monit-
oring Transformers Network, structure of various graphs and charts, and
accepts user queries. The User raise queries, selects, inspects and views
the states of the parameters interactively.

ESVPA uses a time series dynamic stack chart with a calendar selection
to visually interact with the parameters as well as the attached spatial
information with the help of the interactive map. This is accompanied with
a map to provide a detailed time series data inspection of parameters
magnitudes with line chart, calendar chart and heat map view option in
order to compare the trends among sensors’ parameters based on the
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months during a year, week, and day wise. Figure 5.9, and Figure |5.10
provide a glimpse of the designed web interface where the selected sensors
are visualised with spatial and non-spatial information over the map in
the specified temporal frame. Over the desire time frame, the user can
select the parameters interactively and compare the patterns (as shown
in Figure Figure and Figure [5.12). The interactive platform
provides the clustering output visualisation along with sensors nature
monitoring. Figure and Figure show the data overview and
clustering results visualisation of designed ESVPA, respectively. Here wind
speed and direction parameters are selected to analyse with the help of
a stacked chart and rose plots in a chosen time frame. The output from
sensors nature monitoring using Transformers Network predictions are
represented using Two-Dimensional (2D) map, bar chart, and heat map as
shown in Figure This work delivers a comprehensive understanding
of spatio-temporal sensors data and their measurements. Also, it helps in
exploring the relationship between the humidity, wind direction and wind
speed t.e., meteorological parameters and pollution parameters like PM, 5
and PMl().

Data Used

The temporal datasets of meteorological and pollution parameters are
used and analysed in this study. The luftdaten selber messen (Luftdata-se
[Stuttgart, [2020) provides city sensors measurements at several locations in
Stuttgart, Germany. Moreover, the historical data from 2016 to 2020 from
Hauptstaetter Strasse 70173 Stuttgart corner station sensor is also con-
sidered (Stadtklima-Stuttgart] [2021)). These datasets contain total eleven
city centre sensors locations with wind (speed and directions), humidity
along with PM¢; 5, measured in a 30-minute time interval (Figure
shows selected sensors on map). The considered area sensors dataset were
organised separately into individual years for each parameter with spatial
information attached, using the temporal information with data from the
past first, followed by the recent data. This helps to analyse the spatio-
temporal trends of meteorological parameters temporal datasets along
with sensor’s nature monitoring in depth.

Results

The designed algorithms and platform help to perform in depth study of
sensors measurements, and also to estimate their nature monitoring for
6hrs in future. This ESVPA is implemented as web-based application using
Altair, D3.js, kepler.gl, Streamlit, Keras library (Chollet, 2017) with Tensor-
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Figure 5.15: Randomly selected date for model validation: Transformers

Network visual prediction accuracy analyses, presenting model success-
failure (red rows).
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Figure 5.16: (left) Training interactive selection interface, and (right) model
accuracy analyses visualisation.
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Figure 5.17: (right) Testing interactive selection interface, and (left) com-
parative network success-failures test visualisation.

Flow in backend in Python and executed on Intel® Core ™ i7- 4770 CPU
@3.40 GHz having four cores. The below results and discussion subsec-
tions, analysed and validates the outcome of the developed framework. In
order to provide a more detailed comparison of the selected parameters,
the visualisation of historical measurements along with spatio-temporal
information was explored using the available interactive option of data
overview in the designed platform. Figure |5.9| and Figure |5.10, show the
historical data visualisation for the user selected time frame of PM,;,, and
wind flow on the map with the help of line charts, which help to connect
spatio-temporal information with the respective sensors measurements
visually. In these figures, the radii of the circles denote the magnitude of
the selected parameter with time (more the magnitude larger the radius),
and the colour of the circles represents the selected parameter. The plat-
form was also used to visualise the output of the HDBSCAN clustering (as
shown in Figure and Figure [5.12). The HDBSCAN an unsupervised
hierarchical clustering approach, helped towards inferring the trends and
inner structure of the meteorological and pollution parameters dynamically.
Figure [5.11] shows the clustering outcome and its visualisation on wind
speed as a selected parameter over the considered time frame. Similar
steps were carried out to perform the analyses on the rest of the other
considered parameters. Here the class value ranges of each assigned class
were also displayed and compared. Moreover, the performed clustering
with visualisation helped the user unboxed the complexities of datasets and
their available trends in the best possible way.

Furthermore, the obtained wind rose plot helped visualise wind speed
and direction in a circular format in the same graph. The length of each
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spoke around the circle indicates the number of times (count) that the
wind blows from the indicated direction. Colors along the spokes indicate
classes of wind speed. Figure shows the generated wind rose plot
on the selected temporal frame. Besides, each different color denote the
wind speed divided into value range boundaries at the differences (within
the class assigned maximum and minimum value) with varying spoke
length and direction highlighting the wind blows count from the indicated
directions in this study. Figure shows the output of sensors nature
monitoring using Transformers Network predictions. These options were
integrated together with the selection of the desired user query. Here, the
map highlights the location of the respective selected sensor, with day wise
sensors’ measurements visualised with the bar chart. The heat map and
bar chart are linked together with the map selection in the visualisation
interface. Moreover, the linked heat map represents the magnitude of the
selected parameter values on 30 minute time resolution (z.e., query the data
after every 30 minute values) which is denoted by the color density ranging
from green (lower value) to red (higher value). The selected parameter
can be any out of i.e., PM; 5, wind speed, PM;, and humidity, where higher
values (range) over time had been assigned an intense hue tone of the
respective color (mentioned as above) in the heat map. The attached bar
chart represents the magnitude of the selected parameter values on days in
the week time resolution (query the data in each day values in a week). In
Figure PM;, is considered as a parameter to predict the sensor nature
with map, bar chart and heat map visualisation. Furthermore, the available
option of the interactive time frame selected by the user including desire
parameters selection, would help the user to compare and visualise the
trends in a more detailed manner.

Figure and Figure [5.17 show the designed network’s achieved
accuracy with the selection of the desired user query. Here, precision and
recall values for predicting dominant speed for various classes for January
month (of Stuttgart) are represented in Figure |5.16, with values reaching
above 61% for all the classes and achieved total accuracy was 96.33%.
Figure [5.15| shows the randomly selected date for model validation and
highlights the obtained Transformers Network visual prediction accuracy
analyses with the models’ success-failure (red table’s rows). Furthermore,
this has supported sensitivity analyses for calculating the success and
failure of the model highlighted with color and dynamic interaction. Here
network’s success was represented by yellow color and failure with red.
These color combinations were used to deliver more insights thereby mak-
ing the understanding for the user more straightforward and unboxing the
complexities of ML. Thus, this platform (all together) helped to discover all
the possible changes by enhancing the ability to dig in detail insight of the
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data with accuracy for each of the considered meteorological and pollution
parameters as per the user choice visually.

Discussion

The meteorological and pollution parameters hierarchical clustering high-
lighted the trends for a selected parameter which is analysed in the clus-
tering diagram, with each class assigned lower and upper value ranges.
HDBSCAN performed exploratory data analysis as it is a fast and robust al-
gorithm that helped to work over the unsmoothed temporal meteorological
and pollution parameters to return meaningful clusters. For the rose plot
colored scale map, a sequential scale color brewer was used to represent
the classes (low, mild and high) with the color frequency differentiating the
class of low value range from the class of high values. Moreover, using the
multi hue progression of blending supported by choosing from the least to
the most opaque shades concerning value ranges occurring in the clusters
represent low to high values. The 2D map view of all the selected sensors
on the map, along with time based data filtering query with tool tipping
helps to easily interact and visualise all the information together in one
platform as shown in Figure [5.13| The values in the dataset of each year for
the selected parameter over the considered time frame that joined together
earlier in the clustering are more similar than those joined together later.
The within total cluster variance is minimised during clustering. The paired
clusters with a minimum in between cluster distance at each step are
merged. Therefore, in the result it is observed that in February, a higher
magnitude of wind flow occurs over 2016 to 2020.

On the other hand, the Transformers Network helped to estimate
sensors nature interactively. The input sample consisted of Windowy con-
secutive values from the data with five features of PM, 5, PM;,, humidity,
and wind (speed and direction) providing temporal information and Trans-
formers Network operations are able to detect trends and features. During
the sample designing phase, the output classes were decided statistically
using 1 and o of the total values particular to a year’s data set of respective
parameter (i.e., anyone out of five), thereby representing the dataset better.
Moreover, the total samples for a given year were divided into training
and testing samples with a ratio of 7 : 3 (i.e., 70% of the total samples for
training and rest for testing). The dynamic network metrics analyses (total
accuracy, precision and recall) of the Transformers Network supported with
interactive visualisation with several options help the user verify and under-
stand these metrics for the selected parameter. Visual exploration has also
been incorporated to make ML more easily understandable and explain-
able in the sense that network insights can be explainable. Moreover, the
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developed ESVPA for sensors nature monitoring is utilised to provide the
interactive selections for the considered environmental data for temporar-
ily analysing the concurred pattern in the dataset. ESVPA is also compared
with existing literature that are near to the developed framework. AQTA
(see subsection 5.1.2), has provided visual analyses platform of air quality
data with time but lacks sensors nature monitoring. It discovers temporal
relationships among complex air quality data, on a small scale for each
sensor (individually) while missing the spatial information. However, the
developed ESVPA connects temporal, spatial and non-spatial information
together visually. Further, the time series analyses were enhanced using
the unsupervised HDBSCAN clustering on a series of (above mentioned)
parameters. Therefore, ML approach based on Transformers Network is
integrated with the in depth sensors nature understanding and trends, that
take successive time values of parameters as input with sensors’ locations
and predict the future dominant (highly measured) values with the location
in time as the output. This makes ESVPA a work extension that provides
a big picture of sensors’ nature monitoring and temporal data measure-
ment analyses. This helped in making the data trends analyses and sensors
nature monitoring accessible and comparable in the time domain with user
involvement.

Conclusion

In this work, ESVPA, an interactive web visualisation is successfully de-
signed and demonstrated for time series meteorological and pollution
parameters. The temporal datasets are analysed using the unsupervised
HDBSCAN clustering on a series of these parameters. Furthermore, for
sensors nature understanding and trends, Machine Learning (ML) approach
called the Transformers Network predictor is also integrated, which takes
successive time values of parameters as input with sensors’ locations and
predicts the future dominant (highly measured) values with location in time
as the output. The interactive platform for meteorological and pollution
parameters would help to plan the future with more renewable resources
awareness and understanding. The designed visualisation platform (a small
demonstration version) in this work could be further improved with the en-
semble of advanced visualisation approaches. The selected environmental
data variations are compared and analysed in the spatio-temporal frame to
provide detailed estimates on change in the average conditions in a region
over the years.
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5.3 Chapter Summary

This chapter presents the machine learning models visual assessments
to provide the user with the clarity of what machine learning is doing,
integrating successfully on real world temporal datasets (meteorological
and pollution parameters) with the designed model failure and success
analyses interactively.

AQTA is an interactive system to support visual analyses of air quality
data with time. This interactive AQTA allows the seamless integration of
predictive models and detailed patterns analyses. The initial findings are
presented that corroborate the city’s COVID lockdown (the year 2020) con-
ditions and sudden changes in patterns, highlighting the improvements in
the pollutants concentrations. AQTA, thus, successfully discovers temporal
relationships among complex air quality data, interactively in different
time frames, by harnessing the user’s knowledge of factors influencing the
past, present and future behaviour, with the aid of ML models. Further, this
study also reveals that the decrease in the concentration of one pollutant
does not ensure that the surrounding air quality would improve as other
factors are interrelated. The second approach, ESVPA is an advancement
of adding more sensors and visually analysing them all together. The time
series are analysed using the unsupervised HDBSCAN clustering on a
series of (above mentioned) parameters. Furthermore, ML approach based
on Transformers Network is integrated with the in depth sensors nature
understanding and trends, that takes successive time values of parameters
as input with sensors’ locations and predicts the future dominant (highly
measured) values with the location in time as the output. The selected
parameters variations are compared and analysed in the spatio-temporal
frame to provide detailed estimations on how average conditions would
change in a region over time. This work would help to get a better insight
into the spatio-temporal data. Moreover, based on the explanations of XAI
(section [2.4), this work has developed the following XAI techniques:

1. The user could choose among different ML models by analysing
the performance of each selected model (MCNN, LSTM, RF, K-
NN and SVM) in terms of total accuracy and difference metrics
incorporated with the interactive display through various graphs
and charts such as square-time charts with tooltip, temporal circle
mark chart coupled with a histogram.

2. The user could change the future time frame allowing for a differ-
ent prediction duration, and compare the results of different time
frames and the outcome of each model to decide which prediction

135



5 Air Quality Temporal Analyser & Geospatial Data Visual Assessments

algorithms are better and provides sufficient information to make
a decision.

3. The respective parameters (meteorological and pollution para-
meters) can be selected and compared where both predicted and
actual results are visualised in the interactive graphs.

4. The clusters formed in the temporal environmental data can be
learnt by ML algorithms and then predict the future trends with
respective sensor location.
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6.1

Conclusion & Future Work

The beginning of the thesis presented the overall research
objectives. The research aimed to develop ML interpretability methods for
the environmental data that accommodates a robust web framework com-
prising ML architectures for time series prediction and interactive visualisa-
tion methods using VA concepts wrapped over ML models. This developed
interactive visualisation system for environmental data assimilates ML
architectures visual prediction, sensors’ spatial locations, measurements of
the parameters, detailed pattern analyses, and change in conditions over
time. The experiments were conducted using various meteorological and
pollution datasets to ascertain the performance of the developed system.
The subsequent paragraphs highlight the contributions of multiple methods
developed in this research.

Conclusions

Chapter @ developed six ML algorithms viz, 1DLSTM, 1DRF, 1DSVM,
1DS, 1DM, and MCLT, for predicting and analysing the environmental data.
The contributions of these algorithms were:

1. they have not applied any smoothening and noise removal tech-
niques and are based on a classification approach,

2. more number of classes are integrated into the architectures for
in depth analyses,

3. 1DS and 1DM are enhanced versions of 1DLSTM, 1DRF, 1DSVM
in terms of incorporating multiple features and more number of
classes,
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4. 1DS and 1DM architectures have been missing the goodness of
memory units to retain the features learnt by neurons from the
previous training iterations and hence advanced by MCLT archi-
tecture,

5. multiple features were manually designed in the input layers
of these ML algorithms, whereas the intermediate layers in de-
veloped deep learning architectures (1DS, 1DM, MCLT) learnt
their respective features automatically during training,

6. MCLT architecture was advanced with the goodness of both mul-
tiple CNN and LSTM,

7. presence of densely connected convolutional layers helped to learn
features of other convolutional layers as well, and

8. the objective behind using more number of classes with a close dif-
ference range helped to identify more details, and results behaved
very close to regression with the best accuracy,

The above aspects provided more information and enhanced the perform-
ance of the techniques. The experiments with meteorological and pollution
parameters, as well as their findings, showed good accuracies. At the time
of developing these methods, using LSTM, CNN, MCLT (ensemble archi-
tecture) integrated with multiple designed features for classification of
environmental datasets, the methods were unique in prediction literature
for environmental data. However, in the above discussed ML based meth-
ods for prediction, there was a lack of visualisation as required in VA. Thus,
Chapter [4] and Chapter 5| were necessary that helped in the visualisation of
different patterns in the dataset for different time frames interactively.

Chapter @ emphasised on the seasonality deduction for the pollution
parameters in relationship with the meteorological parameters. The contri-
butions of these techniques were:

1. provide interactive selections of considered meteorological and
pollution parameters to analyse the concurred temporal patterns
in the dataset, for each quarter (Qq, Q;, Q3, and Q,) over the years,

2. hierarchical cluster analyses to highlight the trends of any given
pair of quarters (over the years),

3. each quarter was further analysed using the initial 15 days and
last 15 days that helped in making the seasonality analyses tests
easy, user interactive and comparable in the same quarter,
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Figure 6.1: The clustering output for PM,, for all seasonal quarters Q; - Q4
over 2015 to 2019.

4. used a sequential scale of color brewer blues scale color map to
show several classes with the color frequency differentiating low
values class from high values class.

5. findings such as:

a) NO and NO, concentrations were high in Q3 autumn, and Q,
winter over 2015 to 2019 respectively. Both are strongly correlated
to each other with similar trends over the years,

b) Figure summarises the clustering output for PM;, for all
seasonal quarters Q; - Q4 over 2015 to 2019. Similar analyses exist
for other parameters too.

6. provided foreknowledge of meteorological parameters nature in
relation to pollution parameters of an area.

At the time of proposing these seasonality deductions, the contributions
were unique in terms of no available detailed analyses for cities meteorolo-
gical and pollution parameters together. Moreover, an improved approach
was required that combines more environmental data, correlation analysis,
a temporal heat map and a better interactive visualisation integrating
with the above developed ML architectures visual predictors for multiple
parameters in depth analysis for various time frames in a robust web
platform.

Chapter @ provided an enhanced visualisation platform, integrated with
time series data visual predictive assessments and sensors nature analyses.
AQTA platform deliverables were:
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1. it allowed the seamless integration of predictive models and de-
tailed patterns analyses visualisation,

2. back-and-forth dialogue with the designed multiple ML models and
comparisons for better visual predictive assessments in different
time conditions for chosen parameters,

3. it provided data selection, display, visualisation of past, present,
future and correlation structure among air parameters through
various interactive charts, highlighting the predictive models ef-
fectiveness,

4. it was revealed (supported with detailed analyses) that the de-
crease in the concentration of one pollutant does not ensure that
the surrounding air quality has been improved as other factors are
interrelated,

5. focused on integrating and linking the simple charts representa-
tion to discover complex air quality parameters interactively in
various time frames, with options to have,

a) a visual data overview (history and present),

b) future prediction along with model success, failure comparison,
and

c) a correlation structure of their interrelationships.

6. analysis showed that during summer and autumn of the year 2019,
PM,, trends were alike as in the previous years 2017 to 2018
with a few reductions. Furthermore, there is depletion in PM;,
concentrations during the summer and autumn of the year 2020
probably due to the strict lockdown and movements restrictions,

7. it was observed that the local wind could often develop that does
not cause high magnitude winds, but plays an essential role in
local ventilation of the city areas and determines the spread of air
pollutants,

AQTA provided an add-on to the existing literature in terms of air quality
multiple time series datasets, dynamic visual predictions along with its
detailed analyses, comparisons and validation with reality. The AQTA used
for in depth analyses of one sensor (or any sensor analyses) was further
advanced by including the information about different sensors locations
and correlation with each other in ESVPA. The ESVPA is supported with an
add-on to the sensor nature’s monitoring, which motivated the geospatial
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data visual assessments web interface. Following were the contributions of
the ESVPA:

1. ML Transformers network was trained for modelling the future
dominant (high measurements) sensor locations with time as the
output.

2. the Transformers network analyses using total accuracy, precision
and recall supported with interactive visualisation helped the user
understand the outcomes. The user can also interact with training
and testing phases of the network modelling.

3. the platform provided comparison and analyses in the spatio-
temporal frame along with detailed estimates on changes in met-
eorological and pollution parameters.

4. these techniques also form a part of XAl

Varieties of environmental datasets having temporal values for more than
30 years, have been used for conducting several experiments to evaluate
the effectiveness of the developed techniques, and the main findings have
been given above. The results obtained from these experiments show that
the developed techniques are able to discover the temporal relationships
among complex environmental data interactively in different time frames.
Furthermore, with the present combinations of neurons and features maps,
the accuracies achieved by the ML architectures have been significant.
ML frameworks have shown their potential to resolve highly volatile envir-
onmental data with detailed analyses, and understanding. The achieved
accuracies can be further improved with more advanced ML architec-
tures, more variety of environmental datasets, a higher number of feature
maps, and neurons. Moreover, these require better hardware resources
and system support.

A mixture of both unsupervised and supervised clustering techniques
have been used for environmental data. This work has also provided and
demonstrated a comprehensive outlook of the possible analyses that could
be conducted on meteorological and pollution parameters utilising the
advantages of these two domains in parallel intelligently. Many cities are
providing open environmental data, but the online analysis capabilities in
their open data platforms are usually weak or non-existent. Moreover, the
following motive of integrating the ML and VA together to enhance the
online analyses capabilities of the open environmental data have also been
accomplished in these designed techniques. This research work also devises
the initiative to fill this gap for missing detailed online environmental
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data analyses capabilities. The designed framework is implemented for
Stuttgart and Netherlands sensors locations. However, it can be applied to
any number of sensors for any given location (area) with some ML tuning
and training of the respective datasets.

Future Work

The future work would involve improving the current techniques for better
web based visualisation and implementation in different environmental
application areas. Integrating with more advanced VA techniques, focusing
more on the visual exploration and interactive visualisation components
with end-user analysis and feedback supported in the loop interactively,
would make the techniques more user friendly and more understandable.
City planner and experts involvement and suggestions in order to advance
this work as a real time product implementation and enhancement would
be highly valuable for smartly planning of the cities.

Furthermore, deep learning architectures perform better when a vari-
ety of training samples are used. This would require integration of more
sensor data. The impact of data accuracy, time frame, volatility of met-
eorological and pollution parameters further needs to be explored using
these approaches, as it would give a better idea of the usefulness of the
methods with environmental sensors data. With the use of better hard-
ware resources like GPUs, deep networks consisting of more convolutional
and fully connected layers along with higher number of feature maps and
neurons could be implemented for higher environmental data predictive
accuracies. Although the time taken in training and testing the algorithms
is hardware dependent, still for the same hardware, the time taken by the
current approaches could be compared with other approaches. Moreover,
the automation potential of the methods for real time purposes can be
studied. The algorithms developed in this thesis can be used for the real
time inference of the spatio-temporal environmental data, enabling the
interactive exploration processes. Scalability in terms of larger number of
spatial sensors, storage and fast retrieval and display of the data, can be
explored. The integration of high-end web services for supporting smooth
and fast processing of both frontend and the backend would help the user
make quick decisions and further devising detailed environmental data
analyses for respective problem solutions. Also, an Augmented Reality (AR)
mobile supported Application (App) for the above developed techniques
would conveniently support the analyses. This work could be extended by
making a sort of grid covering the territory under study, and constructing
a sort of network of neurons influencing each other at the vicinity.
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