
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Analysis of the Scalability of
Siamese Neural Network for

Performing Quality Inspection of the
Welding Nuts

Priyadarshini Krishna Shobha

Course of Study: Information Technology

Examiner: Prof. Dr. Marco Aiello

Supervisor: Prof. Dr. Marco Aiello,
Daniel Díez Álvarez

Commenced: November 8, 2021

Completed: May 8, 2022

Acknowledgement

I would like to thank my supervisors Prof. Dr. Marco Aiello and Daniel Díez Álvarez, my colleague
Felix Euteneuer and the entire team of Dr. -Ing. Matthias Reichenbach at Mercedes-Benz AG for
all of the insightful discussions throughout the course of writing this thesis and their continued
support which has greatly motivated me while working on this project.

3

Abstract

Fabrication is a common process in the manufacturing industry. It is important to inspect the nuts
before welding in order to maintain product quality and avoid the need for rework. Nowadays,
artificial intelligence based visual validation have demonstrated that machines can efficiently
perform quality inspection. This thesis provides a siamese neural network based solution to identify
incorrectly placed nuts before welding process. The network classifies incorrect nuts, missing nuts
and flipped nuts as invalid cases. The network is designed in such a way that the model trained
to perform quality analysis of one task can be scaled to a new task by using six or ten training
images and one minute of training duration. The decision to use siamese network is made because
of its ability to learn from semantic similarity. To validate the adaptability of the solution, we have
focused on three use cases in two different environments. First case consists of test nuts which are
different in size, shape and position. The second use case validates the model on different orientation
of test nuts. In third case, the test nuts are captured in different environment conditions. We have
proposed two different approaches, one with custom convolutional neural network and the other with
EffecientNet-B0 as feature extractor. The model with custom convolutional feature extractor has
better performance and scales to all the three use cases. The model with EfficientNet-B0 as feature
extractor has exceptional performance in third use case which consists of data captured in factory
environment. We evaluate the proposed solutions by recording the accuracy and confusion matrix
of different use cases and architectures. However this approach is limited in terms of production
efficiency and needs more validation in factory lighting conditions.

4

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Contribution . 16
1.3 Thesis Outline . 16

2 Background 19
2.1 Machine Learning . 19
2.2 Deep Learning . 20

2.2.1 Artificial Neural Networks . 20
2.2.2 Activation Functions . 21
2.2.3 Gradient Descent and Back Propagation 22
2.2.4 Overfitting and Underfitting . 24
2.2.5 Regularization . 24

2.3 Convolutional Neural Networks . 27
2.3.1 Convolutional Layers . 28
2.3.2 Pooling Layers . 29
2.3.3 Fully Connected Layers . 30

2.4 Siamese Neural Networks . 30
2.4.1 Architecture . 31
2.4.2 Special Loss Functions . 32

3 Related Work 35

4 Methodology 39
4.1 Solution Realization . 39
4.2 Architecture-1 . 39
4.3 Architecture-2 . 42
4.4 Solution Approach - Divide and Conquer . 43
4.5 Scalability Method . 44
4.6 Proof of Scalability . 45

4.6.1 Use Case 1: . 46
4.6.2 Use Case 2: . 46
4.6.3 Use Case 3: . 46

5 Experiments and Results 49
5.1 Camera Specifications . 49
5.2 Dataset Acquisition . 49
5.3 Dataset Details . 50
5.4 Architecture and Training Details . 51

5.4.1 Data Augmentation . 51

5

5.4.2 Training Details for Baseline Models 52
5.4.3 Architecture-1 and Use Case 1 . 52
5.4.4 Architecture-1 and Use Case 2 . 54
5.4.5 Architecture-1 and Use Case 3 . 54
5.4.6 Experiments on Feature Extractor of Architecture-1 55
5.4.7 Architecture-2 and Use Case 1 . 59
5.4.8 Architecture-2 and Use Case 2 . 59
5.4.9 Architecture-2 and Use Case 3 . 59

6 Evaluation of Solution 61
6.1 Architecture-1 . 61
6.2 Architecture-2 . 62

7 Conclusions and Future Works 65
7.1 Conclusion . 65
7.2 Limitations . 65
7.3 Future Works . 65

Bibliography 67

6

List of Figures

2.1 Neural network with a input layer, two hidden layers and a output layer [31]. . . . 20
2.2 Mathematical model of a single neuron. The dot product is computed between

weights and inputs to which a bias term is added and is followed by a non-linear
activation function [41]. 21

2.3 Illustration of different activation functions. (a): ReLU activation function. (b):
Leaky ReLU activation function with negative slope of 0.1. (c): Sigmoid activation
function . 22

2.4 A simple neural network with hidden layers to illustrate back propagation. x and
y indicate the network input and expected output respectively. The activation of
(! − =)Cℎ layer is indicated by 0 (!−=) . Weights and biases of the respective layers
are represented by F (!−=) and 1 (!−=) . 23

2.5 Example of a binary classifier with different generalizability. (a) Classifier which
is not capable of learning training data and exhibiting underfitting. (b) Optimal
classifier with good generalization. (c) Classifier memorizing the training data
which is suffering from overfitting [29]. 25

2.6 Dropout illustration in the dense neural network. Left: Standard neural network
with two hidden layers. Right: Dropout applied to the left network resulting in
thinned network. The crossed neurons indicates the dropped neurons. [40]. . . . 26

2.7 Left: A neuron which is present with a probability p during training and connected
with weight w with neurons in the next layer. Right: A neuron which is always
present during testing and connected to the neurons in the next layers with probability
p multiplied to the weights. [40]. 26

2.8 : Illustration of early stopping. As the loss or error on the validation dataset
increases the training is stopped to avoid overfitting [10]. 27

2.9 Left: Illustration of different data augmentations applied to the original image [1]. 28
2.10 Illustration of a convolutional neural network with multiple layers [44]. 28
2.11 Convolution operation between input image and filter. The filter is convoled with

the input image to produce corresponding value in the output channel. 29
2.12 Example of max-pooling with filter of size (2x2) and stride of 2. 30
2.13 A simple siamese neural network with two hidden layers for binary classification.

The twin network have same structure at top and bottom with shared weights [24]. 31
2.14 Representation of ranking loss. Left: Contrastive Loss which pushes positive pair

closer and negative pair apart. Right: Triplet loss which pushes anchor and positive
samples closer and anchor and negative samples away [11]. 33

4.1 Flow chart of the proposed solution. The architecture is composed of four main sub
modules namely input layer, feature extractor, distance metric and classifier. . . . 39

7

4.2 Valid Pair: (a) Reference image compared with correctly placed nut. Invalid
Pairs: (b) Reference nut and incorrect nut. (c) Reference nut and flipped nut. (d)
Reference nut and missing nut. 40

4.3 The proposed architecture-1 with four sub modules namely input layer, feature
extractor, distance metric and classifier. The test image is an invalid image as the
nut is missing. Therefore the network is expected to classify the test image as invalid 41

4.4 Detailed explanation of feature extractor used in architecture-1 41
4.5 (a): Input image whose activation maps are visualized in CNN layers. (b):

Activation map of the first convolutional layer (c): Activation map of the last
convolutional layer. 42

4.6 EffecientNet-B0 architecture. MBConv block indicate mobile inverted bottleneck
convolution [45]. 43

4.7 Architecture details where each stage 8 with !̂8 layers having �̂8×,̂8 input dimension
and output channel �̂8 . �̂8 indicate height and ,̂8 indicate width [47]. 43

4.8 Left: Image of the entire part. Right: Image cropped around each nut resulting in
7 images . 44

4.9 A step by step flow chart to illustrate the proposed solution. The process highlighted
with the yellow background is used to train the baseline model and the one with
green background is used to scale the trained baseline to new task. 45

4.10 Two different parts which needs quality analysis before fabrication process. Left:
Part 1 with two types of nuts which is completely used in training. Right: Part 2
with one category of nut in training and rest of the nuts in testing 46

4.11 Left: Part 3 with six nuts. ID:2 and ID:3 is similar to ID:5 to ID:7 in part 1 shown
in Figure 4.10 and ID:1, ID:4, ID:5 and ID:6 are unique nuts. Right: Part 1 with
dark lighting conditions in the factory . 47

5.1 Graphical user interface of IDS vision cockpit used to set the exposure time and
trigger mode. 50

5.2 Learning curve for training the baseline model of architecture-1 and use case 1.
Left: Loss curve of training and validation plotted against number of epochs.
Right: Accuracy curve of training and validation plotted against number of epochs. 53

5.3 Learning curve for retraining the baseline model with 6 images of each test nut for
use case 1. Left: Loss curve of training and validation. Right: Accuracy curve of
training and validation. 53

5.4 Learning curve for use case 1 by adding ID:12 and ID:14 in training. Left: Loss
curve of training and validation. Right: Accuracy curve of training and validation. 53

5.5 Learning curve for use case 1 by adding all the nuts from part 1 and part 2 except
ID:8 in training. Left: Loss curve of training and validation. Right: Accuracy
curve of training and validation. 54

5.6 Learning curve for retraining the baseline model trained on use case 1 with 10
images from each test nut of use case 2. Left: Loss curve of training and validation.
Right: Accuracy curve of training and validation. 55

5.7 Learning curve for retraining the baseline model trained on training nuts from
factory dataset with 10 images from each test nut of use case 3. Left: Loss curve of
training and validation. Right: Accuracy curve of training and validation 55

5.8 Feature extractor with less number of trainable parameters compared to feature
extractor proposed in architecture-1 . 56

8

5.9 Learning curve for network architecture where feature extractor has less parameters
in comparison to architecture-1. Left: Loss curve of training and validation. Right:
Accuracy curve of training and validation . 56

5.10 Feature extractor with more number of trainable parameters compared to feature
extractor proposed in architecture-1 . 57

5.11 Learning curve for network architecture where feature extractor has more number
of channels at deeper layers and is more complex in comparison to architecture-1.
Left: Loss curve of training and validation. Right: Accuracy curve of training and
validation . 57

5.12 Feature extractor with different layer ordering compared to architecture-1 where
two convolutional layer is followed by subsampling layer 58

5.13 Feature extractor with different layer order compared to architecture-1. Left: Loss
curve of training and validation. Right: Accuracy curve of training and validation 58

5.14 Learning curve of architecture-2 baseline model for use case 1. Left: Loss curve of
training and validation. Right: Accuracy curve of training and validation 58

5.15 Learning curve of architecture-2 for retraining the baseline model on use case 2.
Left: Loss curve of training and validation. Right: Accuracy curve of training and
validation . 59

5.16 Learning curve for retraining architecture-2 with test nuts of use case 3 in factory
condition. Left: Loss curve of training and validation. Right: Accuracy curve of
training and validation . 60

9

List of Tables

6.1 Accuracy of architecture-1 for three different use cases. For use case 2 and use case
3 training the model with 10 images results in better accuracy than with 6 images. 61

6.2 Confusion matrix of retraining the baseline model of architecture-1 for use case 1
with 6 images of each test nut. 62

6.3 Confusion matrix of retraining the baseline model of architecture-1 for use case 2
with 10 scale images. 62

6.4 Confusion matrix of retraining the baseline model of architecture-1 for use case 3
with 10 scale images. 63

6.5 Accuracy of architecture-2 for use case 3. Average accuracy and test loss is reported
for both 6 scale images and ten scale images. 63

6.6 Confusion matrix of retraining the baseline model of architecture-2 for use case 3
with 6 scale images. 64

11

List of Algorithms

4.1 Divide and conquer approach . 44

13

1 Introduction

1.1 Motivation

Quality inspection plays a vital role in manufacturing industries. It ensures the products are defect
free and meet the company requirements. Improper quality analysis will harm the customer safety
and lead to huge financial compensations. Takata airbag recall due to defective airbags is one of the
biggest recall in automotive industries which resulted in recall of more than 55 million vehicles
around the world [3].

Production system involves welding process to join different materials. Welding of screws and
nuts to body parts is a widely used process. There are wide range of approaches which inspects
body parts before fabrication process. The manual inspection approach where people carefully
assess the quality of each part is time consuming. Computer vision is an alternate approach where
machines can inspect large quantity of products reliably and repeatedly. On the other hand, the
conventional computer vision (CV) approaches uses feature descriptors like speeded up robust
features (SURF) and scale-invariant feature transform (SIFT) combined with machine learning
algorithms like support vector machines and and k-nearest neighbors for image classification. The
developed CV algorithms requires expert analysis, high fine tuning and are domain specific [33].
The quality analysis performed on the image captured by sensors and processed using OpenCV
libraries are specific to image characteristics like size, shape and colour [2].

Artificial intelligence (AI) has mobilized several industries, including the automotive sector. It is
one of the key components of the visionary concept of Industry 4.0 [48]. In particular, deep learning
has outperformed several state-of-the-art techniques in the field of computer vision. AI combined
with machine vision can build applications which checks the quality to the finest details. Deep
learning is well suited to handle complex patterns which vary in subtle but tolerable ways [21].

Several convolutional neural network architectures have been developed to solve real world problems.
These standard architectures like EffecientNet-B7 trained on ImageNet [37] which attains top-1
accuracy of 84.3% with 66M trainable parameters [47] cannot be directly used to perform quality
analysis on industrial applications due to variation in the datasets. Retraining of the pretrained
network requires large amount of data. The developed neural networks are highly case specific and
are not scalable to new applications.

Manufacturing industries have several processes which needs to be automated in order to increase
the production efficiency. Whenever a new quality inspection problem has to be solved, the whole
process of collecting and preprocessing the image data and training the neural network has to be
repeated. This promotes the need for an engineer to be always present in the production loop.

15

1 Introduction

1.2 Contribution

As mentioned in the previous section, provided the availability of a large amount of data, traditional
deep neural networks attain good performance in classification tasks. However, with the increase in
the number of classes in classification or the quality inspection of different use cases, the networks
need redesigning, retraining and fails to adapt. The authors in [30] and [23] have proposed solutions
to perform quality analysis in industrial applications using siamese twin networks. But these
solutions does not concentrate on adapting the developed model to different inspection tasks. In
this thesis, we propose a siamese neural network that addresses the problems of conventional deep
learning networks and scales to unseen data with less effort and time.

The proposed model maps the images to embedding space and is trained to learn the semantic
difference and similarity between the image pairs instead of the image characteristics required to
recognize the image. In embedding space, similar images are mapped close to one another whereas
dissimilar images are mapped far apart. Therefore, distance metrics which calculates the distance
between the images is used to detect if the given images are similar or not. This behaviour helps
the model to classify the images of unseen distribution. The classifier network is independent of
the number of classes and hence the network needs no redesigning with increase in the prediction
classes. The network detect flipped nuts, incorrect nuts and missing nuts as invalid nuts so that
required changes can be done before welding. A baseline model is trained to perform quality
analysis of a particular part in the industry. When a new quality inspection task needs to be solved,
this model is loaded and retrained with 6 or 10 images of new use case with training duration of
approximately one minute. The scalability of the solution is tested on its ability to generalize to
nuts with varying shape, size, position, orientation and also the nuts in different environmental
conditions. A detailed analysis is performed regarding the number of images and training duration
required to adapt the model to new use case. Number of categories of nuts needed in training in
order to test the model on a complete different nut is also evaluated. The model is designed so that
a factory worker could use the developed system to switch the analysis to different task without the
involvement of an engineer in the process.

1.3 Thesis Outline

The thesis structure consists of seven chapters which are organised as follows:

Chapter 2 provides brief introduction to fundamental concepts of deep learning starting with
neural networks, learning algorithm, regularization techniques, architecture of convolutional neural
networks and twin networks called siamese neural networks.

Chapter 3 discusses the existing state-of-the-art technologies and methodologies in similarity
learning and their applications in various domains. Detailed numerical explanation is also provided
for two papers which apply siamese neural network to perform industrial quality inspection.

Chapter 4 provides the architectural details of the proposed solution. The focus is on two main
architectures with different feature extractors. A step by step procedure of the scalability approach
is highlighted along with the choice of dataset to prove the hypothesis.

16

1.3 Thesis Outline

Chapter 5 illustrates the collection of image data and it’s preprocessing. Experiments on two main
architectures for the selected use cases with learning curves are also included.

Chapter 6 numerical proof for the suggested approaches are provided in this section. Accuracy of
the proposed architectures along with confusion matrix are recorded.

Chapter 7 concludes the result of the thesis by indicating the potential future works and limitations
of the project.

17

2 Background

In the field of computer science, artificial intelligence is defined as the science and engineering of
making intelligent machines [27]. AI is being adapted in different sectors such as health care, finance,
automotive industry, gaming and many more. Machine learning, natural language processing,
computer vision, robotics, and other areas of AI have gained a lot of attention recently. This chapter
briefly introduces the fundamental concepts of AI discussed in the thesis.

2.1 Machine Learning

Machine learning is a branch of artificial intelligence that analyses the patterns in the underlying data
and performs predictive analysis. It imitates humans’ ability to learn and improve their performance
gradually. Machine learning is specifically important for understanding structured data where
human intelligence fails to recognize the pattern. Depending on whether the machine learns with the
knowledge of ground truth or not, the machine learning algorithms can be categorized as follows:

• Supervised Learning: In this method, each sample of training data is annotated with the
expected solution, called ground truth. The algorithms will learn to map the input to output
labels. Supervised learning can be further classified as:

– Classification: Given the input with n features, model classifies it to one of the m
classes i.e. 5 : R= → {1, .., <}. For example, classifying a message as ham or spam.

– Regression: The model will predict a numerical value given the input, thus mapping n
dimensional feature vector to a single value i.e. 5 : R= → R. For example, predicting
the price of a car given it’s features.

• Unsupervised Learning: The data used for training is unlabeled. The model learns the
hidden intrinsic patterns in the input data and performs decision making without any ground
truth of the data samples.

• Reinforcement Learning: The learners, called agents, will observe the environment and
perform actions for which they are given a positive or negative reward. It is similar to children
learning things through observations. The agents must learn the best strategy, called policy,
to maximize the reward.

19

2 Background

2.2 Deep Learning

Deep learning is a sub section of machine learning which teaches the computer what comes
intuitively to human beings. For years computers have outperformed human beings in tasks which
are structured and can be represented by mathematical rules. Whereas human beings are more
efficient in unstructured data like recognizing the voice, object identification etc. Given a set of
features like location, height and area a machine learning model can predict the given mountain.
But for example with images it is extremely complex to extract the features, the image might
vary because of the lighting conditions, shadow and many other factors. With the advent of deep
learning, machines are able to intelligently learn complex features by combining simple features,
like recognizing the house in an image by learning edges and contours.

2.2.1 Artificial Neural Networks

The human brain is made up of billions of neurons which transmit signals from one part of the body
to another using biochemical reactions. Inspired by this, Artificial Neural Networks (ANN) have
been developed whose basic processing elements are called neurons. ANNs provide mathematical
modelling of the human nervous system. Neural networks can be multiple layered whose architecture
include input, hidden and output layers as shown in Figure 2.1. The goal of the neural network is
to learn a mapping function f from input x to output y which can a be a classifier or a regressor.
The neural network learns the parameter \ defined by the forward function H = 5 (G; \) to best
approximate the output [12]. The linear models are extended to non linear functions of x by
activation functions. The detailed mathematical modelling of a neuron is depicted in Figure 2.2 .

Figure 2.1: Neural network with a input layer, two hidden layers and a output layer [31].

As shown in the Figure 2.2 the inputs G8 from all the neurons in the previous layer will be multiplied
with weight parameters

∑
8 F8G8 and a bias term b will be added, which is then passed through the

activation function and it is propagated to other nodes. During forward pass, this input is passed
through several nodes of multiple hidden layers and arrives at the final layer. The prediction Ĥ
made by the network is the approximation of the given ground truth y. The difference between
the prediction and ground truth is called the loss function and is as represented in the equation

20

2.2 Deep Learning

Figure 2.2: Mathematical model of a single neuron. The dot product is computed between weights
and inputs to which a bias term is added and is followed by a non-linear activation
function [41].

2.1. Higher loss values indicates erroneous model prediction, therefore the model will be trained
to reduce the loss function and make the prediction as close to the ground truth as possible. The
average loss of all the training samples is called cost function and is given by the equation 2.2. The
gradient of cost function is calculated with respect to learnable parameters and the parameters are
updated from output layer to input layer. This process is called gradient decent and backpropagation
(explained in detailed in next section). The model is trained to learn optimized set of parameters and
to reduce the cost function to zero, so that the prediction is close to ground truth (equation 2.3).

! (5 (G8; \), H8) = | | 5 (G8; \) − H8 | |2 (2.1)

� (\) = 1
#

#∑
8

| | Ĥ8 − H8 | |2 (2.2)

∇� = 0 (2.3)

2.2.2 Activation Functions

As explained in the previous section, neurons calculate the weighted sum of the inputs and will also
add a bias term. But the neurons do not have the ability to choose a firing pattern [32]. The activation
function decides if the neuron needs to be activated or not and introduces non-linearity in the
network, thus enabling the neural network to learn complex patterns. There are numerous activation
functions in the deep learning domain but this section focuses on three important activation functions
required for the proposed algorithm.

ReLU: Rectified Linear Unit (ReLU) is one of the most commonly used activation functions in
convolutional neural networks. As it it can be observed in equation 2.4 The function returns zero if
the input is negative and behaves linear if the input is positive. The behaviour of ReLU is exemplified
in the Figure 2.3 (a).

21

2 Background

5 (G) = <0G(0, G) (2.4)

LeakyReLU: It is based on ReLU activation function. Instead of having flat slope for negative
values, it has a small slope. The coefficient of slope is not dynamically learnt but will be set before
training (equation 2.5). The coefficient chosen in Figure 2.3 (b) is 0.1.

5 (G) = <0G(0, G) + =460C8E4_B;>?4 × <8=(0, G) (2.5)

Sigmoid: The activation curve looks like a S curve and restricts the output between 0 and 1. As it
can be seen in Figure 2.3 (c) the output saturates at 0 and 1 and the functions keeps increasing for
the values in between (equation 2.6). As the probability is always between 0 and 1, sigmoid is the
most used activation function for models whose output is a probability.

5 (G) = 1
1 + 4−G (2.6)

Figure 2.3: Illustration of different activation functions. (a): ReLU activation function. (b): Leaky
ReLU activation function with negative slope of 0.1. (c): Sigmoid activation function

2.2.3 Gradient Descent and Back Propagation

As highlighted in the previous section, the output of an untrained network will mostly deviate from
the actual value. Gradient decent is an algorithm which focuses on minimizing the cost function by
adjusting the network parameters. In calculus, gradient of a function is a vector which points in
the direction where function increases and negated gradient points in the direction where function
decreases. This property can be applied to find the updated parameters where the current parameters
are updated with -∇� with learning rate [shown in equation 2.7

F8+1 = F8 − [∇� (F8) (2.7)

22

2.2 Deep Learning

Backpropagation [36] is an important element in training a neural network. During backpropagation,
gradient of the cost function is computed with respect to the learnable parameters (weights and
biases) of the network. As explained in the equation 2.7 before, to avoid large changes in the
parameters, gradient vector along with learning rate is used to update the parameters. To further
understand this, let us consider a simple network with one input layer, two hidden layers and one
output layer with sigmoid activation as shown in the Figure 2.4. The learnable parameters are
F (!−2) , 1 (!−2) , F (!−1) , 1 (!−1) , F (!) and 1 (!) where F represents weight, 1 represents biases of
different layers ! − =. The activation of the last layer and last but one layer is 0 (!) and 0 (!−1)

respectively. The desired output of the network is denoted by H and the given input is G.

Figure 2.4: A simple neural network with hidden layers to illustrate back propagation. x and y
indicate the network input and expected output respectively. The activation of (! −=)Cℎ
layer is indicated by 0 (!−=) . Weights and biases of the respective layers are represented
by F (!−=) and 1 (!−=) .

The I (!) is dependent on the parameters and activation of the previous layer 0 (!−1) (equation 2.8)
which is in turn dependent on the activations of the previous layers. Sigmoid activation function f
is applied on I (!) to obtain the network output, 0 (!) and is shown in the equation 2.9. Equation
2.10 indicates the cost function of one sample.

I (!) = F (!) · 0 (!−1) + 1 (!) (2.8)

0 (!) = f · I (!) (2.9)

� (F, 1) = (0 (!) − H)2 (2.10)

To understand how the cost function can be minimized by tweaking the learnable parameters let us
consider the following equations. The cost function � (F, 1) is not directly dependent on weights
and biases as explained in the previous equations. Therefore to evaluate the partial derivatives, let
us consider the chain rule (equation 2.11). Each of the individual partial derivatives is shown in
equations 2.12, 2.13 and 2.14. The partial derivative of the sigmoid activation function is f′.

m� (F, 1)
mF (!)

=
m� (F, 1) (!)

m0 (!)
· m0

(!)

mI!
· mI

(!)

mF!
(2.11)

23

2 Background

m� (F, 1) (!)

m0 (!)
= 2(0 (!) − H) (2.12)

m0 (!)

mI!
= f′(I (!)) (2.13)

mI (!)

mF!
= 0 (!−1) (2.14)

The derivative of the cost function with respect to bias is also calculated in a similar way. The
cost function can be calculated on several training samples by taking their average. As shown in
equation 2.14, the partial derivative of the current layer’s output is dependent on the activation of
the previous layer (0(! − 1)), which is in turn dependent on the parameters of the ! − 1 layer. By
using the chain rule, the cost function can be propagated backwards from the last layer to the first
layer. According to the equation 2.7, the parameters are updated in each layer with the computed
gradient. For simplicity, the illustration of backpropagation in this section is done using a single
neuron. But the same principle can be extended to train dense neural networks.

2.2.4 Overfitting and Underfitting

The actual data on which model is trained is called training data. The learnable parameters \ will
be optimized to best predict the training data. The model performance will be frequently evaluated
on the validation data or development data. It is used to fine tune the model hyperparameters but it
will never learn from it. Once the model is completely trained on train data, it is tested on test data
which provide the unbiased evaluation of the final trained model. The test data is curated in such a
way that it covers real world situation.

The primary causes of poor performance of the model, affecting its generalizability, are overfitting
and underfitting. Overfitting occurs when a model fails to perform well on unseen test data
despite its good prediction on training data. That means, instead of improving its ability to solve
problems, the model simply learns some random regularity in the training data [19]. Overfitting is
characterized by low bias and high variance estimators. Underfitting is the opposite of overfitting,
where a model becomes incapable of capturing the variability of training data, resulting in poor
performance of both training data and test data. For example, trying to fit a linear classifier
for non-linear data distribution. For example, trying to fit a linear classifier for non-linear data
distribution. An illustration of model generalizability is shown in the Figure 2.5.

2.2.5 Regularization

Major concern in developing a machine learning model is do design an algorithm which not only
has good performance on training data but also on the unseen data distribution. The adapted
methodologies to decrease the test error could some time lead to increase in the training error.
These strategies are collectively called as regularization [12]. This section will discuss about the
popular regularization techniques used to reduce overfitting.

24

2.2 Deep Learning

Figure 2.5: Example of a binary classifier with different generalizability. (a) Classifier which is
not capable of learning training data and exhibiting underfitting. (b) Optimal classifier
with good generalization. (c) Classifier memorizing the training data which is suffering
from overfitting [29].

L1 and L2 Regularization: These regularizations methods reduce the variance by decreasing the
parameter values. L1 regularization is called Lasso Regression and L2 regularization is called Ridge
Regression. L1 regularization adds absolute value of model parameters to original loss function as
penalty term (equation 2.15). Whereas, L2 regularization will add squared parameters to the penalty
term (equation 2.16). The value of _ decides the amount of regularization. High _ value will add
more weight to penalty term which leads to underfitting. Having said, _ value should be carefully
chosen and can be tuned as an hyperparameter. As lasso regression can push the parameters to
lower values, it can perform automatic feature selection.

�>BC�D=2C8>= = !>BB�D=2C8>= + _
#∑
8

|\8 | (2.15)

�>BC�D=2C8>= = !>BB�D=2C8>= + _
#∑
8

\2
8 (2.16)

Dropout: It is a regularization technique that aims to reduce overfitting by randomly dropping a
few neurons along with their inputs and outputs. The dropout applied to a dense neural network is
depicted in the Figure 2.6. There are 5 neurons in the input layer and 5 neurons in the hidden layers,
and some of the neurons are randomly dropped, thus reducing the training computation. Dropout
creates a thin network from a deep neural network and prevents the neurons from co-adapting. The
rate parameter decides what fraction of neurons should be dropped during training and can vary
between 0 and 1. The dropout layer has different performance in the test phase compared to the
training phase. A simple probabilistic method is used to evaluate the model on test data where the
probability p with which the neuron is retained during training is multiplied by the weights of that
neuron as shown in Figure 2.7. This method makes sure the predicted output is similar to the actual
output during training.

25

2 Background

Figure 2.6: Dropout illustration in the dense neural network. Left: Standard neural network with
two hidden layers. Right: Dropout applied to the left network resulting in thinned
network. The crossed neurons indicates the dropped neurons. [40].

Figure 2.7: Left: A neuron which is present with a probability p during training and connected
with weight w with neurons in the next layer. Right: A neuron which is always
present during testing and connected to the neurons in the next layers with probability
p multiplied to the weights. [40].

Early Stopping: It is one of the most commonly used regularization methods. Early stopping
prevents overfitting by restricting the optimization to a small area of parameter space. The number
of training epochs plays an important role in training a neural network. Higher training epochs will
result in the model overfitting to the training data, whereas lower values will lead to underfitting.
With the validation set, it is possible to monitor the learning and generalizability of the model. With
increasing epochs, training loss decreases and so does validation loss. But after some epochs, it can
be observed in Figure 2.8 that the training loss keeps decreasing but the validation loss increases,
resulting in the model overfitting on training data. The parameters can be stored and updated during
every epoch. When the update does not result in the reduction of validation loss or error, the training
can be stopped and the previously stored parameters can be used for evaluation.

26

2.3 Convolutional Neural Networks

Figure 2.8: : Illustration of early stopping. As the loss or error on the validation dataset increases
the training is stopped to avoid overfitting [10].

Data Augmentation: In the field of computer vision, data augmentation is a powerful regularization
strategy. With increase in training epochs, the model memorizes parts of the images. To overcome
this problem, random and logical transformations can be applied to the original dataset, which
results in slightly different images from the original images. Transformations could be vertically
or horizontally flipping the images, rotating the images by X degrees, adding noise to images and
adjusting contrast, saturation or image brightness. If the model is trained on MNIST [9] dataset to
recognize the digits, vertical flipping of 6 would result in 9 and thus affecting the model performance.
Therefore set of transformations should be carefully chosen. Few examples of image augmentation
is shown in the Figure 2.9.

2.3 Convolutional Neural Networks

Convolutional Neural Networks simply known as CNNs are part of artificial neural networks that
explore the principle of linear algebra like matrix multiplication to deliver superior performance
in computer vision and natural language applications. The major advantage of CNNs over ANNs
are their reduced number of learnable parameters. The problems solved by CNNs are spatially
independent. For example, the detection of car in an image is important, irrespective of it’s position
in the image. The three important layers in CNNs are convolutional layers, pooling layers and
fully connected layers which are stacked on one another. With each layer the learning complexity
increases enabling it to obtain abstract features. An example convolutional neural network with
multiple layers is shown in Figure 2.10

27

2 Background

Figure 2.9: Left: Illustration of different data augmentations applied to the original image [1].

Figure 2.10: Illustration of a convolutional neural network with multiple layers [44].

2.3.1 Convolutional Layers

Convolutional layer is a computationally heavy layer which is also the core building block of
CNNs. The learnable parameters of the convolutional layers are called filters or kernels. The size
of the filter determine the receptive field of the input. Though the filter size is small spatially, it
is convolved through the entire width, height and depth of the input image producing activation
maps. The convolution operation between kernels and input image is shown in equation 2.17 and is
represented in the Figure 2.11. The initial layers learn lower level features like edges and corners,
while the middle layers learn to identify the objects in the image, for example, the eyes and nose of
a dog. The final layer learns to recognize an entire object in different shapes and positions, like
recognizing the animal in the given image is a dog. Number of filters, stride and zero-padding are
the three main hyperparameters which determines the size of the output and must be defined before

28

2.3 Convolutional Neural Networks

training the CNNs [17]. The depth of the output is determined by number of filters. Stride is the
number of pixels kernels move during the convolution, larger stride will result in smaller output.
Zero-padding sets the elements outside the input matrix to zero if the kernels does not fit the matrix.
Valid padding drops the last convolution in case of dimension mismatch. Same padding is used
to produce the output layer which has same size as the input layer. Full padding add zeros to the
border of input matrix resulting in the size of the layer output larger than input. The size of the
output of the convolutional layer is as shown in equation 2.18. The output of the convolutional
layers is passed through activation functions like ReLU to introduce non linearity in the network.

$ (8, 9 , 2) = (� ∗) (8, 9 , 2) =
∑
<

∑
=

∑
>

� (8 + <, 9 + =, 2 + >) (<, =, >) (2.17)

$DC?DC(8I4 = ([�=?DC(8I4 − 4A=4;(8I4 + 2 ∗ %0338=6]/(CA834) + 1 (2.18)

Figure 2.11: Convolution operation between input image and filter. The filter is convoled with the
input image to produce corresponding value in the output channel.

2.3.2 Pooling Layers

Pooling layers or downsampling layers reduce the number of parameters in the input by performing
dimensionality reduction. The operation of the pooling layer is similar to that of the convolutional
layer where a filter is swept across the input to produce an output array, but the weights of this filter
are not learnable; they only perform aggregation function in the receptive field. Max pooling is the
most used pooling operation where it selects the maximum pixel value as it slides across the input
and pass it to the output array. Figure 2.12 shows max-pooling operation with 2x2 filter and stride
of 2. Average pooling, on the other hand, selects the average value of the receptive field to send it
to the output array. Pooling operation looses a lot of information but helps reducing overfitting and
increase the model performance.

29

2 Background

Figure 2.12: Example of max-pooling with filter of size (2x2) and stride of 2.

2.3.3 Fully Connected Layers

The output of convolutional layer or pooling layer is flattened and fed to fully connected (FC) layer.
Unlinke convolutional layers, the nodes in the output layer is connected directly with the nodes in
the previous layer. These layers forms the last few layers and are placed before the output layer. FC
layer can be termed as classification layer as it performs classification on the features extracted from
the previous layers. The general structure of a CNN architecture [41] is as follows:

Input–> Convolution–> Activation Function–> Pooling–> Fully Connected

Let us consider a 3D image of size 32x32x3 is passed thorough the network shown in the Figure
2.10. The output of the first convolutional layer with padding and stride as 1 and 10 filters of size
3x3x3 is 32x32x10. This output is passed through ReLU activation function and fed to pooling
layer which performs dimensionality reduction and produce downsampled output. Depending on
the network architecture, these feature maps are passed through stacked convolution layers, ReLU
and pooling layers to extract more abstract features of the input image. These feature maps are
finally flattend and fed to FC layers to compute the output of the CNN model.

2.4 Siamese Neural Networks

Humans have the inherent ability to learn and recognize new patterns, as well as to expand that
knowledge to recognize variants on previously taught notions. People can use this ability to not
only recognize taught features when presented with stimuli, but also to distinguish across unrelated
categories. For example, different breeds of dogs are classified as dogs, while cats are classified as
non-dogs. There have been extensive research in the field of computer science to mathematically
and semantically compare two list of elements. Cosine distance, Manhattan distance or Euclidean
distance could be a good choice to compare two elements statistically, whereas to compare the
correlation between two elements, Pearson correlation coefficient, Kendall g distance or Spearman’s
d rank coefficient can be a better choice. These approaches work well when two elements in
comparison have same meanings and data types and fails when the list contains elements having

30

2.4 Siamese Neural Networks

different meanings or data types [5]. An example for the latter use case is forgery recognition.
Bromley and LeCun introduced Siamese neural network in the early 1990s as a solution for signature
verification problem [4]. The following sections will describe the architecture and loss functions
used in training Siamese neural networks.

2.4.1 Architecture

Siamese neural network consists of twin networks which are joined together at the end by energy
function [24]. The weights of the neural networks are tied together, meaning that both the networks
in the twin structure have the same weights. The weight tying ensures that if the two similar images
are passed through the same network, their vectors in the feature space will not be mapped at
different locations as the networks compute the same function. Different energy functions can be
used based on the network architecture. The authors in [6] use contrastive energy function which
decrease the energy between like pairs and increase the energy between unlike pairs. However the
authors in [24] employ weighted L1 distance combined with sigmoid activation function between
two feature vectors produced by twin networks. The output is mapped between the interval [0,1]
where 0 indicates the images are dissimilar and 1 indicates similar images. The architecture of the
siamese neural network with twin structure and distance layer with logistic prediction p for binary
classification is as shown in the Figure 2.13.

Figure 2.13: A simple siamese neural network with two hidden layers for binary classification. The
twin network have same structure at top and bottom with shared weights [24].

31

2 Background

2.4.2 Special Loss Functions

Special loss functions called ranking loss are used in training siamese nets. The objective of these
loss functions are not to predict the label or a value but to determine the relative distance between
two given inputs which is often termed as metric learning. Contrastive loss is used to train the
network on pairs of data and triplet loss is used on triplets of training data. The feature embeddings
of the input image is obtained using feature extractors and a metric function like Euclidean distance
is employed to calculate the distance between pairs or triples of embeddings [11]. The Feature
extractors, in this case, the twin networks, are trained to produce representation close to each
other if the input images are similar and far apart if the input images are dissimilar. To train a
contrastive loss, positive and negative samples of the training data points are used as input. Positive
pair includes anchor sample and positive sample and negative pair is composed by anchor sample
and negative sample. The objective of the loss function is to bring the positive pairs as close as
possible and separate them from the negative pairs with a margin of <. Let A0 and A1 indicate the
representation of image pairs and with H being a binary label with value as 1 for positive pair and 0
for negative pair, the loss function is given by the equation 2.19. Triplet loss on the other hand is
trained on anchor sample, positive sample and negative sample whose representations are denoted
as A0, A? and A= respectively. The network is optimized in such a way that the distance between
anchor-positive sample and anchor-negative sample is m. The equation for triplet loss is given by
the equation 2.20. Figure 2.14 shows input samples and optimization approach for contrastive loss
and triplet loss.

! (A0, A1, H) = H | |A0 − A1 | | + (1 − H)<0G(0, < − ||A0 − A1 | |) (2.19)

! (A0, A?, A=) = <0G(0, < + 3 (A0, A?) − 3 (A0, A=)) (2.20)

32

2.4 Siamese Neural Networks

Figure 2.14: Representation of ranking loss. Left: Contrastive Loss which pushes positive pair
closer and negative pair apart. Right: Triplet loss which pushes anchor and positive
samples closer and anchor and negative samples away [11].

33

3 Related Work

Bromley and LeCun [4] first introduced siamese neural network to develop a signature verification
system as image matching problem. Authors used 5990 Signature Capture Devices to collect the
signature data. The proposed algorithm uses two separate sub network which extracts features from
given pair of signatures and one output which indicates the similarity between two inputs. The
distance between two feature vectors is calculated by cosine of the angle between them. During
verification, features extracted from test signature is compared with stored feature vector of the
signer. If the difference between them is greater than a threshold, then the signature is classified as
forgery. This paper supports that siamese network are capable of classifying unseen signatures by
comparing them with a reference image. As a result, in our implementation, we compare the test
image with a positive reference image.

The authors in [24] have developed a siamese neural network for character recognition using
Omniglot dataset [25]. The dataset consist of 50 different alphabets by 20 drawers. The features
extracted by siamese convolutional neural networks are flattened and passed through a fully
connected layer to obtain the representation of images in embedding space. L1 distance is computed
between the images and passed through fully connected layer followed by sigmoid activation
function which provides the similarity scores. 40 alphabets from 12 drawers are used in training
to enable the model to learn discriminative feature. The verification task is performed on the
remaining 10 alphabets drawn by 4 drawers from the evaluation set. The authors conclude that
the proposed metric learning approach can produce human-level accuracy and can be extended to
one-shot learning tasks in various image classification domains.

A special siamese convolutional neural network called Fusioning Convolutional Siamese Neural
Network (FCSNN) is developed in [30] which identifies the defect types of new object classes
without retraining. The proposed architecture uses VGG16 [37] as feature extractor. A pair of
images are passed through feature extractors and a fully connected layer to obtain the feature vectors.
The authors also perform fusion of feature vectors using fully connected layers to which the L1
distance between the vectors and concatenation of two vectors are fed as input. The similarity score
is provided by the sigmoid layer where high score indicate the defects from identical attributes. The
network is trained to recognize 8 defects from 21 types of traffic signs and a few defective samples
from the casting dataset [8] and is evaluated on 25 different types of traffic signs and the remaining
casting data. The performed evaluation is a 20-way one shot testing where the network has to pick
the right pair of the test image given 20 support images. Through these tests, the authors prove that
the proposed architecture has better performance on untrained object types. Following this work,
we have experimented training the siamese network with pretrained model as feature extractor.

Siamese neural network with few shot learning is used to classify the steel surface defects in
[23]. The North Eastern University surface defect dataset, which consists of 9 defects, is used for
experiments. Twin CNN layers extract the features from the pair of images. Contrastive loss with
a margin 1 which calculates the distance between the feature vectors is used to train the neural

35

3 Related Work

network. In use case 1, the model is trained on 5 images from each class and tested on the remaining
images. Whereas in use case 2, the model is trained on 5 images from only 8 classes and tested on
one unseen class. An analysis is performed on how the accuracy of the model changes with different
number of training images per class and total number of classes. The test results indicate siamese
neural network not only require less images for training but also can predict the defect of unknown
class distribution. The ability of the network to learn from few shots of training data has inspired
our approach to scale the pretrained network to unseen data distribution using 6 or 10 images.

The authors in [50] use siamese neural network for retrieval of family members. Experiments have
been conducted with different backbone architectures, loss functions and similarity computation.
Resnet50 [15] and SENet50[16] are chosen as backbone and are trained with focal loss and BCE
loss resulting in four types of models. The feature vectors from the backbone is extracted either
through max pooling layer or average pooling layer. The feature 5000 pairs of family members
are used as positive samples and 5000 pairs without kinship are used as negative samples. The
similarity of features vectors are calculated by fully connected (FC similarity) layers or cosine
similarity. The features vectors of the image pairs (G and H) in FC similarity are combined with two
different operation as shown in equation 3.1 and equation 3.2 where ⊕ indicate concatenation.

(G2 − H2) ⊕ (G − H)2 (3.1)

(G2 − H2) ⊕ (G − H)2 ⊕ (G · H) (3.2)

The combined feature vectors are passed through fully connected layers to produce a scalar value in
the range 0 and 1. The authors conclude that cosine similarity performed on the features extracted
with max pooling and trained on binary cross-entropy (BCE) loss outperforms other experimental
conditions. As discussed in this paper, we have used BCE loss to train our neural network.

[39] achieves state-of-the-art face recognition performance using embeddings 5 (G) which maps
the images to Euclidean space such that the squared distance between pairs of images of similar
identities is small and dissimilar identities are large. The authors experiment with two different
architectures, one based on ZeilerFergus [51] network and other is Inception [43] type network
as core architectures. The network is fed with triplet images where image, G0

8
(anchor) of a

person is pulled closer to all the other images of the same person, G?
8

(positive), and images
of any other person, G=

8
(negative) are separated with a margin. The network is trained with

triplet loss which minimizes the distance between anchor and positive samples and maximizes the
distance between anchor and negative samples. To ensure faster convergence, the authors generate
triplets online which picks all anchor-positive pair and selects only hard anchor-negative samples
(0A6<8=G=

8
| | 5 (G0

8
) − 5 (G=

8
) | |22) in a mini-batch. The model’s performance on various embedding

dimensionalities was also investigated, with 128 and 256 dimensional vectors outperforming others.
Based on this proof, the dimensionality of the vector in embedding space in our work is set to
256.

All of the works discussed in this section demonstrate that the siamese network can scale to unknown
data distribution. But, very little research has been conducted on implementing siamese network
based solutions for quality inspection in industrial applications. The model FCSNN [30] is trained
to identify the casting defect in metal casting process. The model tested on the casting defects which
are similar to training data has an accuracy of 99.50%. With 10 images in few-shot learning, the

36

proposed approach [23] classifies 2 classes of steel surface defects with an accuracy of 99.1%. These
two papers prove that siamese network clasifiers will result in high test accuracies on industrial
dataset. We propose to evaluate the test nuts of different parts by retraining the model trained to
perform quality analysis of one part with 6 or 10 images. Our approach is more stable as we are
scaling a trained baseline model to new test cases. As a result, the model is capable of classifying
unseen nuts from different parts.

37

4 Methodology

4.1 Solution Realization

As mentioned in the previous sections, to design a system which can be used to perform quality
analysis on various use cases, we have chosen siamese neural network based artificial intelligence
solution. The proposed solution can be divided into four main modules, which are the input layer,
feature extractor, distance metric and classifier as shown in Figure 4.1. Two main implementation
approaches have been designed to develop a stable solution. In this section, we are going to focus
on detailed architecture and internal details of the four sub systems in these two implementations.

Figure 4.1: Flow chart of the proposed solution. The architecture is composed of four main sub
modules namely input layer, feature extractor, distance metric and classifier.

4.2 Architecture-1

Input Layer

Unlike conventional CNNs, siamese networks take either pair of images or triplet images as input.
The main principle behind this method is that the network is capable to learn the semantic similarity
or differences between the images. This implementation is realized by training the network with
pair of images. So, for a given nut, the correctly placed nut is taken as a reference nut. The image
pair is considered valid or positive if reference image is compared with correctly placed nut and
invalid or negative if it is compared with either incorrect nut or if the nut is flipped or if the nut is
missing. The network is trained to predict 1 for valid case and 0 for invalid case. An example of the
valid and invalid image pairs is shown in the Figure 4.2.

Feature Extractor

Custom CNN architecture is designed to extract features from the images. The pair of images are
passed through twin networks to obtain the embedding space representation of the images. Grayscale
image (single channel) of size 224x224 is fed to feature extractors. The image is passed through
alternating layers of convolutions and sub sampling. As the layer deepens, the depth of the feature
maps increases and spatial dimension decreases. The detailed network architecture is illustrated in

39

4 Methodology

Figure 4.2: Valid Pair: (a) Reference image compared with correctly placed nut. Invalid Pairs:
(b) Reference nut and incorrect nut. (c) Reference nut and flipped nut. (d) Reference
nut and missing nut.

the Figure 4.3 and feature extractor in Figure 4.4. The Stanford course on ’Convolutional Neural
Network for Visual Recognition’ highlights the fact that ReLU activation functions are fragile and
can die during training [42]. Therefore to mitigate the problem of ’dying ReLU’, Leaky ReLU is
used as activation function. Following [20] and [28], batch norm [18] is performed after activation
function for better results. An interesting observation here is, instead of flatten layer, global average
pooling layer is used in the final layer which produces 256 feature vectors. The global pooling
reduces the overfitting of the model to training data and increases the model’s generalizability.
Output activation maps of first convolution and last convolution layer is plotted in Figure 4.5. It can
be seen that the activation map closer to the input learn general features like corner, edges and all
the related fine details. But as the network deepens, the model learns more abstract features and it is
not possible to identify the nut in the last layer. This is because the model learns general details that
is used in classification at deeper layers.

Distance Metric

Distance metric is used to calculate the similarity between the data points. Following the work of
[52], we have experimented with cosine distance, L1 distance and Euclidean distance to calculate
the distance between feature vectors in embedding space. In this architecture, the 256 feature
vectors are split into 8 vectors. Therefore, both reference image and test image (valid or invalid)
will produce 8 vectors each and the distance between them is calculated using Euclidean distance.
Let 0 and the 1 be two vectors such that, 0 = (G1, G2, ..., G=) and 1 = (H1, H2, ..., H=) and Euclidean
distance between two vectors is given by equation 4.1. The computed distance is fed to classifier to
classify if the given pair of images are valid or invalid.

3 (0, 1) =
√
(G1 − H1)2 + (G2 − H2)2 + · · · + (G= − H=)2 (4.1)

Classifier

Fully connected layer (FCL) is used to detect if the nuts are misplaced or not. The classifier consists
of two hidden layers with 8 neurons and 16 neurons respectively. The 8 Euclidean distance values
computed between input image and reference image are passed as input to classifier. The final
activation function of the last layer is sigmoid. Therefor the classifier produces a value bounded

40

4.2 Architecture-1

Figure 4.3: The proposed architecture-1 with four sub modules namely input layer, feature extractor,
distance metric and classifier. The test image is an invalid image as the nut is missing.
Therefore the network is expected to classify the test image as invalid

Figure 4.4: Detailed explanation of feature extractor used in architecture-1

41

4 Methodology

Figure 4.5: (a): Input image whose activation maps are visualized in CNN layers. (b): Activation
map of the first convolutional layer (c): Activation map of the last convolutional layer.

between the interval [0,1]. The threshold is set to 0.5, if the classifier predicts a value greater than
0.5, the given pair of images are classified as valid. If the classifier prediction is less than 0.5, the
input pair is classified as invalid pair.

4.3 Architecture-2

This implementation has architectural details similar to the previous implementation except for
feature extractor module. Transfer learning is the method to reuse the pretrained model. It enhances
the performance of learners on one domain by transferring the information from a related domain
[49]. Transfer learning plays an important role when there is a limited amount of training data,
which may be due to data being rare, inaccessible, or expensive. Andrew Ng, chief scientist at
Baidu and professor at Stanford, said during NIPS 2016 tutorial [34] that transfer learning will be an
important factor in the success of machine learning in industries [35]. This sections highlights the
advantages of Effecientnet-B0 [47] as pretrained model and it’s implementation as feature extractor
in our proposed solution.

Feature Extractor

The authors in [47] have proposed a novel scaling approach by studying the impact of scaling width,
depth and resolution of the model. The method aims to scale all the three dimensions with fixed set
of scaling coefficients [45]. The relationship between scaling coefficients of different dimensions
is computed by grid search of the baseline network. The baseline architecture is then scaled to
required target size by applying these coefficients. The validity of the model scaling depends
on the baseline network. The baseline architecture, EffecientNet-B0 is designed by performing
neural architecture search using AutoML MNAS framework and has mobile inverted bottleneck
convolution (MBConv), similar to MnasNet [46] and MobileNetV2 [38]. The model is light with
5.3M parameters and Top-1 accuracy of 76.3% and Top-5 accuracy of 93.2% on Imagenet [37]. As
the architecture has good performance with less trainable parameters, tranfer learning is adapted
and EffecientNet-B0 pretrained on ImageNet is used as feature extractor. The detailed architecture

42

4.4 Solution Approach - Divide and Conquer

is shown in the Figure 4.6. As shown in Figure 4.7, the output of feature extractor is 7x7x1280
which is passed through global average pooling layer resulting in 1280 feature vectors which is
further sent to distance metric module explained in the previous architecture.

Figure 4.6: EffecientNet-B0 architecture. MBConv block indicate mobile inverted bottleneck
convolution [45].

Figure 4.7: Architecture details where each stage 8 with !̂8 layers having �̂8 × ,̂8 input dimension
and output channel �̂8 . �̂8 indicate height and ,̂8 indicate width [47].

4.4 Solution Approach - Divide and Conquer

Divide and conquer is a popular problem solving strategy in computer science. The approach
focuses on solving a complex problem by breaking it into smaller chunks. And by solving the
smaller problems and combining their solutions together, the original complex problem is solved.
Algorithm 4.1 [7] shows the step wise procedure for divide and conquer approach.

The same technique is followed in our implementation. To detect if the given body part has defective
nuts, instead of inputting the entire image of the body part to neural network, each nut is considered
as a separate problem. Individual nut is cropped from the image and is analysed if it is positioned
correctly. For example as in Figure 4.8, if a part has 7 different nuts which needs to be checked
before welding, single image of the part is taken and is cropped around each nut to produce 7
different images which is then tested. The problem is solved as a binary classification case where
the output is 1 if the nut is valid and 0 if the nut is invalid.

43

4 Methodology

Algorithm 4.1 Divide and conquer approach
Input: Problem to be solved X
Output: Combined solution of the problem
procedure DAC(X)

if X is small enough then
return Solution of X

else
Divide larger problem X into n smaller problems -1,-2,....,-=
DAC(-8)
return combined solution (DAC(-1),(DAC(-2),..,DAC(-=))

end if
end procedure

Figure 4.8: Left: Image of the entire part. Right: Image cropped around each nut resulting in 7
images

4.5 Scalability Method

Manufacturing industries have data redundancy, i.e. the same nut can be used in engine mount and
seat tracks but can be produced in totally different production units. Therefore, we have proposed a
solution which takes advantage of this fact and have designed a neural network which transfers the
previously learned knowledge of the nuts to new use case with less training duration and image
data. A baseline model is trained with commonly used nuts to perform quality analysis of one part.
When the same model is used to detect incorrectly placed nuts in different part of the car, the model
performance will decrease as the nut to be tested can be placed in different position and angle from
the camera or the nut may differ in size or the part may contain few different nuts which model has
never seen during training. The authors in [22] have proved that siamese network can learn with
few shots of training data. So, when the requirement is to perform quality analysis of a new part,
the baseline model is retrained with 6 (3 valid + 3 invalid) or 10 images (5 valid + 5 invalid), for a
duration of less than one minute and the scaled model can be used to classify correct and incorrect
nuts of a new part. These 6 or 10 images are addressed as scale images in the following sections. A
flow chart indicating the step by step procedure of the proposed method is shown in the Figure 4.9

44

4.6 Proof of Scalability

Figure 4.9: A step by step flow chart to illustrate the proposed solution. The process highlighted
with the yellow background is used to train the baseline model and the one with green
background is used to scale the trained baseline to new task.

4.6 Proof of Scalability

To test the scalability of the model, the test cases are chosen such that the nuts differ in shape and
size compared to the nuts the baseline model is trained on. The test body part also contains a few
nuts on which the model is trained, but these nuts are placed in different positions and orientations
from the camera. As it was tedious to collect all the data from the production unit, we have designed
a similar setup in the office environment to replicate the production process in the factory. So our
dataset includes data from two lighting conditions (office and factory). Three use cases are used to
determine the validity of the proposed solution, and this section highlights the details of the use
cases.

45

4 Methodology

4.6.1 Use Case 1:

In this case, the baseline model is trained on all the nuts (ID:1-ID:7) from part1 and only two
nuts (ID:10 and ID:11) from part2. As we can see in Figure 4.10, the training data include three
main types of nuts (ID:1, ID:5 and ID:10). The test data include completely different nuts (ID:8
and Id:13) and same nuts as training but in different position (ID:9, ID:12 and ID:14). the data
from both the parts are collected in office lighting conditions. Few images of part1 from factory
conditions are also included in training.

Figure 4.10: Two different parts which needs quality analysis before fabrication process. Left: Part
1 with two types of nuts which is completely used in training. Right: Part 2 with one
category of nut in training and rest of the nuts in testing

4.6.2 Use Case 2:

The focus of this use case is to validate the scalability of the siamese neural network on a new body
part (Part3). The two nuts (ID:2 and ID:3) in the Figure 4.11 are the same nuts on which the model
is trained. It is important to note that ID:5 and ID:6 are not just different nuts with bigger sizes like
ID:1 and ID:4 but, the orientation at which the nuts are inspected is vertical, unlike the other nuts,
which are placed horizontally. This test case evaluates the adaptability of the proposed model to
varied orientations and sizes of the nut. The images of part 3 are collected in office environment.

4.6.3 Use Case 3:

As the brightness has large variations in factory and office use case, a separate baseline is trained
for factory data. In this case, we have collected the data from part 1 in factory lighting conditions.
As it can be seen in Figure 4.11, the image is too dark when compared to part 1 positioned in office
lighting condition. This use case validates if the network is capable to predict with confidence if the

46

4.6 Proof of Scalability

lighting condition changes. Due to the limitations of the availability of different parts in factory
conditions, the scalability is evaluated on only one part. All the nuts except ID:2 and ID:7 are used
in training to develop a baseline model which is later scaled to the test nuts ID:2 and ID:7.

Figure 4.11: Left: Part 3 with six nuts. ID:2 and ID:3 is similar to ID:5 to ID:7 in part 1 shown in
Figure 4.10 and ID:1, ID:4, ID:5 and ID:6 are unique nuts. Right: Part 1 with dark
lighting conditions in the factory

47

5 Experiments and Results

5.1 Camera Specifications

Hardware and Firmware Details

GV-5280CP-M-GL (AB02020) industrial cameras with uEye+ standard from IDS Imaging Devel-
opment Systems GmbH is used to capture image data. The GV code indicate that cameras are
connected with Gigabit Ethernet.The firmware is supported with compact 2/3"global IMX264
shutter CMOS sensor from Sony and delivers almost noise-free images with high resolution [14].
The cameras are fast and reliable with extensive pixel pre-processing. Power over Ethernet (PoE)
functionality enables single-cable operation upto 100 meters with GigE speed data transmission.
The camera dimensions is 29x29x29 mm. The compact camera size makes it suitable for space
critical applications like multi camera systems or on robot arms. The camera can be used in wide
range of fields like automation, medical technologies, automotive, logistics and transport [13]. The
camera is setup at 70 cm height from the body part and the aperture is set to F8.

Software Details

IDS peak is the free IDS camera software that is compatible with uEye+ industrial cameras. As a
software development kit, it offers various software tools and programming interfaces required for
programming the cameras. It offers programming interfaces in multiple languages like C, C++, C#
with .NET and Python. We are using the Python interface to access the device and to adjust image
acquisition settings. IDS Vision Cockpit tool is used to configure the standard camera parameters
with a modern and interactive graphical user interface. It is used to control the brightness by
adjusting the exposure time and to select the trigger mode in our application. The exposure time
details for various use cases are explained in next section. To capture the images with software
interface, the trigger mode is set to ’SW Trigger’ mode. Figure 5.1 is the GUI of IDS vision
cockpit.

5.2 Dataset Acquisition

All the images are monochrome or gray scale images. The camera is powered and transfers the
data over ethernet. The camera is interfaced with an automated python script which runs on the PC
and captures the images and stores the data in a local directory. During the acquisition, the valid
images and invalid images are stored in a separate directory. The captured image is processed using
OpenCV to crop each nut from the whole body part. Both the valid and invalid data folders contain
a separate JSON file with details such as nut ID, width and height of the crop, x and y coordinates

49

5 Experiments and Results

Figure 5.1: Graphical user interface of IDS vision cockpit used to set the exposure time and trigger
mode.

of the crop center and label as 1 for valid cases and 0 for invalid cases. A python script loads the
data from JSON file and crops each nuts from the image and stores each nut in a separate folder. As
a result, both valid and invalid folders will further contain sub folders of each nut.

5.3 Dataset Details

We are using custom dataset for our experiments. As described earlier, we are focusing on three
main use cases to prove the scalabilty of the designed siamese neural network. Use case 1 contains
data from part 1 and part 2 (Figure 4.10) in office conditions. A 224x224 crop of each nut is used in
training and testing the model. Total number of images in training dataset is 11837 in which 6028
are valid samples and 5809 are invalid samples. The test dataset contains 6288 samples with 3330
valid samples and 2958 invalid samples. Both training and test data are almost balanced between
the number of valid and invalid samples, but the number of images from each nut is not the same.
Among the 11837 training images, 2100 images of part 1 are captured in the factory environment
and all other images are captured in office environment. In office conditions, the brightness is varied
between +3000 and -3000 `s of the normal exposure conditions whereas in factory condition the

50

5.4 Architecture and Training Details

brightness varies between +20000 to -20000 `s of the normal exposure conditions. An additional 6
images of the test nuts is used to retrain the pretrained model. The scale images contain 3 valid and
3 invalid samples.

Use case 2 mainly aims to test whether the model used to solve use case 1 will be able to classify
the nuts in a completely new part (part 3 in Figure 4.11) after scaling to use case 2. Therefore, all
the acquired image for this use case are test images. The total number of test images are 2500. It
contains 970 valid images and 1530 invalid images. 10 images of the nuts with 5 valid images and 5
invalid images are used in pretraining the model to scale the baseline model to use case 2. The size
of the nuts ID:1, ID:4, ID:5 and ID:6 are too large and they do not fit in 224x224 crop. Therefore,
400x400 crop of these nuts are obtained which are resized to 224x224 crop during training and
inference. In order to balance the size between all the nuts, ID:2 and ID:3 are cropped at 256x256
and are further resized to 224x224 for training and inference. All the images of part 3 are captured
in the office environment with +10000 and -10000 `s of the normal exposure.

Use case 3 includes the images of part 1 in factory condition as shown in Figure 4.11. All the nuts
are cropped at 224x224 pixels. The dataset contains 22052 training samples and 4358 test samples.
The training dataset is imbalanced with 17480 valid images and 4572 invalid images whereas as test
dataset contain 2561 valid images and 2011 invalid images. 10 images of the test nuts are used to
scale the baseline model to use case 3 with 5 valid and 5 invalid images. The images in factory are
captured with +20000 and -20000 `s of the normal exposure.

5.4 Architecture and Training Details

As mentioned in Section 4.1, we have two main architectures proposed in our solution. This section
first discusses the data augmentation and training details common for training the baseline models in
both the architectures, followed by the training details required to retrain architecture-1 on three use
cases along with their learning curves. Different feature extractor networks have been experimented
with before arriving at the proposed network in architecture 1. As a proof to show that architecture-1
is the best performing for our dataset, the learning curves of the experimental networks for use case 1
are also included here. This is followed by training details and learning curves for architecture-2.

5.4.1 Data Augmentation

To reduce the model overfitting and increase it’s performance on validation and test dataset, data
augmentation is used. Irrespective of the architecture and use case, same augmentation method is
used in all our experiments. Data augmentation is performed in such a way that same augmentation
is applied for both test image and reference image. The augmentation methods used are rotating
a nut by +/−5◦, +/−10◦, +/−12◦ and +/−15◦, flipping the nut horizontally and vertically. One
augmentation is chosen from the above methods and is applied for the image pairs.

51

5 Experiments and Results

5.4.2 Training Details for Baseline Models

Two baseline models, one for office lighting conditions and the other for factory lighting conditions,
are trained for both architecture-1 and architecture-2. When the model needs retraining to scale to
new test nuts, the baseline model is retrained with 6 or 10 images of test nuts. The training details
of the baseline model is same for both the architecture and different use cases. AdamW [26] with
weight decay of 0.01 is used as optimizer. The batch size is set to 32 and learning rate of 5 × 10−5

is used in training. The model is trained for 50 epochs. Since the train and test data belong to
different distribution, 20% of the test data is used as validation data. As a data preprocess method,
the images are standardized to mean and standard deviation of the training images. The test data is
also standardized on training images to avoid any knowledge leak of the test data during training.
For both valid and invalid nuts, a randomly chosen valid nut of the same nut is used as reference.
When the model is inputted with an invalid pair, it is trained to predict a value close to 0 and for
valid pair a value close to 1. The problem is a binary classification as the model needs to predict if
the nut is valid or invalid. Therefore the model is trained with binary cross-entropy loss.

5.4.3 Architecture-1 and Use Case 1

The baseline model is trained on training images of the use case 1. The model consist of 354k
trainable parameters. The model is trained for 50 epochs and the parameters are saved at every
epoch. After analysing the model performance on the validation data, the parameters at the epoch
where the validation loss is the lowest are considered as the optimal model parameters. The learning
curve for use case 1 is plotted in the Figure 5.2. The deviation between training curve and validation
curve is mainly because of the difference between training and test data. At epoch 40, it can be
seen that the validation loss is lowest and accuracy is highest. When the baseline model is tested
on the unseen test nuts at this epoch, the accuracy is 97.51%. To improve this performance, we
scale the model to test images. This is done by loading the baseline model with weights at epoch 40
and scaling to identify incorrectly placed nuts of part 2 by retraining the model with 6 images (3
valid and 3 invalid) of each test nuts for 50 epochs (less than 1 minute). The model is retrained in
a similar approach with the same hyperparameters as baseline model. Since the data size of the
scale images is 30 (6 images from 5 test nuts), only the batch size is changed to 8 instead of 32. To
prove that the results are statistically significant an average of three runs with different seed values
are reported. Figure 5.3 represents the learning curves of three average runs. The solid line is the
mean of the three runs and the shaded region is the min and max range on which aggregation is
performed. As the baseline model itself has high accuracy on the test data, pretraining of the model
on test data will have low starting validation loss and and high validation accuracy.

To analyse the model’s performance on different training nuts, we have experimented by adding the
nuts reserved for testing in training, and testing the model on the remaining test nuts. Initially ID:12
and ID:14 of part 2 in Figure 4.10 is moved from testing to training and the trained model is scaled
to ID:8, ID:9 and ID:13 with 6 scale images each. The loss curve and accuracy curve for scaling the
baseline to test nuts is shown in Figure 5.4. The model classifies valid and invalid nuts of test data
with 99.47% with loss 0.0646.

In the next stage, all the nuts from part 1 and part 2 are included in training but only ID:8 of part 2 is
in testing. This test is conducted to validate how many different types of nuts should be included in
the training so that the model can be tested on a completely different nut. The learning curve of this

52

5.4 Architecture and Training Details

Figure 5.2: Learning curve for training the baseline model of architecture-1 and use case 1. Left:
Loss curve of training and validation plotted against number of epochs. Right: Accuracy
curve of training and validation plotted against number of epochs.

42

Figure 5.3: Learning curve for retraining the baseline model with 6 images of each test nut for use
case 1. Left: Loss curve of training and validation. Right: Accuracy curve of training
and validation.

Figure 5.4: Learning curve for use case 1 by adding ID:12 and ID:14 in training. Left: Loss curve
of training and validation. Right: Accuracy curve of training and validation.

53

5 Experiments and Results

Figure 5.5: Learning curve for use case 1 by adding all the nuts from part 1 and part 2 except ID:8
in training. Left: Loss curve of training and validation. Right: Accuracy curve of
training and validation.

experiment in shown in the Figure 5.5. As it can be observed in the accuracy plot, the validation
accuracy at 46Cℎ epoch is 99.81%. This experiment proves that with different categories of training
nuts, the model classifies the unseen test nut even without retraining the pretrained model with 6
images of test nut. The test accuracy of ID:8 is 99.86% with loss of 0.05618.

5.4.4 Architecture-1 and Use Case 2

The baseline model trained for use case 1 is pretrained on 10 images from each nut (5 valid and 5
invalid) with a batch size of 8, training duration of approximately 1 minute and with hyperparameters
of the baseline model. The mean accuracy and loss curve of three runs is shown as a solid line in
Figure 5.6 and the shaded region indicate the min and max range of the runs on which mean is
calculated. The main difference from the previous use case is, during retraining the network, the
images are standardaized to their mean and standard deviation values instead of mean and standard
deviation of the scaling images as the brightness of the dataset varies greatly. It can be seen that train
loss and validation loss decrease together which indicate the model is not overfitting on the training
data. In contrast to use case 1, the images in this case have large variations in test nuts compared to
training. Therefore, the loss at which retraining starts is higher and accuracy is lower.

5.4.5 Architecture-1 and Use Case 3

The aim of this use case is to validate if the proposed solution holds with the change in environment
conditions. As the dataset had large variation in the lighting condition, a separate baseline model
is trained for use case 3. The model trained to solve use case 1 is loaded as initial weight and is
retrained with 22052 training images. The baseline model is trained on 5 nuts of part 1 and tested
on the 2 unseen nuts. To improve the performance on the unseen nuts, 10 images with 5 valid and 5
invalid samples are used to retrain the model for training duration of less than 1 minute. To retrain
the model with 20 scale images (10 images from each nut) a batch size of 4 is used and all other
hyperparameters remains the same as the baseline model. As in the previous use cases, the learning
curve of three runs with different seed is plotted in the Figure 5.7 for retraining the model with
scale images.

54

5.4 Architecture and Training Details

Figure 5.6: Learning curve for retraining the baseline model trained on use case 1 with 10 images
from each test nut of use case 2. Left: Loss curve of training and validation. Right:
Accuracy curve of training and validation.

Figure 5.7: Learning curve for retraining the baseline model trained on training nuts from factory
dataset with 10 images from each test nut of use case 3. Left: Loss curve of training
and validation. Right: Accuracy curve of training and validation

5.4.6 Experiments on Feature Extractor of Architecture-1

The feature extractor in architecture-1 is developed from scratch and is not based on any standard
architecture. Before concluding the proposed architecture is the best performing feature extractor,
experiments have been conducted on different number of CNN layers, number of filters and ordering
of the layers. In this section, three results are provided: one with a lower number of learnable
parameters, one with a higher number of learnable parameters, and the last one with a different
layer ordering than the proposed solution.

Lesser Complex Feature Extractor

The experimentation started with this extractor in twin network. As it can be seen in the Figure 5.8,
in contrast to architecture-1, this feature extractor not only has only three convolutional layers, but
number of filters (depth of CNN) is also less. Thus the total number of learnable parameters of
the model is reduced to 25081. An important observation from the learning curve in Figure 5.9
is, There is very little deviation between training and validation curve, thus implying there is no
overfitting in the model. But another significant information is that the learning saturates around

55

5 Experiments and Results

Figure 5.8: Feature extractor with less number of trainable parameters compared to feature extractor
proposed in architecture-1

Figure 5.9: Learning curve for network architecture where feature extractor has less parameters
in comparison to architecture-1. Left: Loss curve of training and validation. Right:
Accuracy curve of training and validation

90%. This indicates the model is underfitting and does not have enough capacity to learn all the
important features required to differentiate between valid and invalid nuts. This promoted to design
a model with higher complexity.

More Complex Feature Extractor

Due to underfitting problem of feature extractor in Figure 5.8, the network in architecture-1 with
increased number of filters and convolutional layers was designed. As the performance on test data
increased with increase in number of learnable parameters, the network was further improved to
check if further increase in model complexity would result in better performance than architecture-1.
The network shown in Figure 5.10, have more number of filters compared to the proposed network.
The learnable parameter is increased to 1.26M. The loss and accuracy curve of this model is plotted
in the Figure 5.11. The training loss is decreased to an almost zero and accuracy reaches nearly
100% with increase in number of epochs. Therefore there is clearly no problem of underfitting as in
architecture 5.8. But the network faces generalizabilty problem due memorization of the training
data. In contrast to architecture-1 whose validation loss is less than 0.15 and accuracy is higher than

56

5.4 Architecture and Training Details

Figure 5.10: Feature extractor with more number of trainable parameters compared to feature
extractor proposed in architecture-1

Figure 5.11: Learning curve for network architecture where feature extractor has more number
of channels at deeper layers and is more complex in comparison to architecture-1.
Left: Loss curve of training and validation. Right: Accuracy curve of training and
validation

96%, the loss in this model is higher than 0.3 and accuracy is below 90%. This results indicated that
architecture-1 had better performance on the unseen data compared to network with either lesser or
more complex feature extractor.

Feature Extractor with Different Order of the Layers

According to Stanford course materials [41], stacking two convolutional layers and then performing
max pool could result in better performance as the convolutional layers learn more complex
features before pooling operation. Hence, feature extractor as described in Figure 5.12, is designed
and trained to validate if this ordering could result in performance better than architecture-1.
Unfortunately, for our use case, since the feature extractor is not very deep, this architecture did
not improve the test accuracy compared to performance of architecture-1. The learning curves are
shown in Figure 5.13. The total trainable parameters are 354k which is similar to architecture-1.
This model also resulted in overfitting of the training data as the subsampling is reduced.

57

5 Experiments and Results

Figure 5.12: Feature extractor with different layer ordering compared to architecture-1 where two
convolutional layer is followed by subsampling layer

Figure 5.13: Feature extractor with different layer order compared to architecture-1. Left: Loss
curve of training and validation. Right: Accuracy curve of training and validation

Figure 5.14: Learning curve of architecture-2 baseline model for use case 1. Left: Loss curve of
training and validation. Right: Accuracy curve of training and validation

58

5.4 Architecture and Training Details

Figure 5.15: Learning curve of architecture-2 for retraining the baseline model on use case 2.
Left: Loss curve of training and validation. Right: Accuracy curve of training and
validation

5.4.7 Architecture-2 and Use Case 1

The baseline model is trained on training nuts of use case 1 similar to architecture-1. The feature
extractor EfficientNet-B0 has 5.3M trainable parameters. Due to increased model complexity,
the architecture-2 exhibits large overfitting to the training data of use case 1 resulting in poor
performance on validation data. The learning curve plotted in Figure 5.14, proves that model
overfits greatly to training data right from first epoch.

5.4.8 Architecture-2 and Use Case 2

The baseline model of use case 1 is loaded and retrained on the test nuts of use case 2 to validate
the model performance on different size of the nuts and different orientation of the nut. As the
architecture-2 based model trained on use case 1 was overfitting to training data, retraining this
model on test nuts of use case 2 did not improve the performance and can be noticed in the learning
curve plotted in the Figure 5.15

5.4.9 Architecture-2 and Use Case 3

The EffecientNet-B0 pretrained on Imagenet is used as feature extractor. The baseline model is
obtained by retraining the EffecientNet-B0 on training images (22052) of use case 3. Architecture-1
requires 10 images (5 valid + 5 invalid) of the new test nuts to result in accuracy higher than 99%.
But architecture-2 attains better results only with scale 6 images (3 valid + 3 invalid) of test nuts.
There are two test nuts - Id:2 and ID:7 (Figure 4.11 Right), so six images from each nut resulted in
12 scale images in total. Due to this reason, the retraining of the model is done with batch size of
4. Learning curve for model retraining is shown in the Figure 5.16. When the baseline model is
tested on the test nuts without retraining, accuracy obtained is 98.5% with a test loss of 0.0526.
But to further improve the prediction accuracy over 99% retraining is done. An interesting fact
to be noticed is the variation in the training curve. As the batch size is small, even one incorrect
prediction will lead to large fluctuation in the accuracy and loss. For example, if only one sample is

59

5 Experiments and Results

Figure 5.16: Learning curve for retraining architecture-2 with test nuts of use case 3 in factory
condition. Left: Loss curve of training and validation. Right: Accuracy curve of
training and validation

classified incorrectly, the accuracy is reduced to 3/4 = 75%. The retraining of the baseline model
which already had better accuracy resulted in a model which predicted the incorrect nuts with
production grade results which is discussed in the next section.

60

6 Evaluation of Solution

As discussed in the earlier sections, to support our proposition that Siamese neural network have
the ability to classify unseen data and can be used to perform quality analysis of different tasks with
less efforts, we have divided our test cases into three major ones. In the previous chapter, we have
plotted the learning curves and examined the generalizability of the model on these three use cases.
This section will focus on providing numerical proof to our thesis proposition. Most commonly
used metric for classification model is accuracy and is defined as number of correct predictions
divided by total number of samples. But, the dataset used in our experiments is not balanced in
all the three use cases. Therefore we are reporting accuracy and confusion matrix to evaluate if
the model is capable to predict samples from both the classes. For statistical evaluation, we have
reported the average values of three runs with different seeds.

6.1 Architecture-1

Use Case 1

The test dataset is a balanced dataset i.e. it contains approximately 50% of valid images and 50% of
invalid images. Therefore accuracy can be considered as a reliable metric to evaluate the model
which is reported in the Table 6.1. The accuracy is the performance of the model retrained on 6
images (3 valid and 3 invalid) of each test nuts for less than one minute. As it can be seen, the loss
is 0.0452 which tells the model is confident in classifying the valid and invalid images with the a
high accuracy of 99.47%. Confusion matrix indicating the number of correct predictions (valid and
predicted valid + invalid and predicted invalid) and incorrect predictions (valid but detected invalid
+ invalid but detected valid) is recorded in the Table 6.2. The model predicts only 2 valid nuts as
invalid and 30 invalid nuts as valid. But is successful is classifying more than 99% of the samples
correctly.

Use Case 2

Use Case Number of Images Accuracy Loss
1 6 99.47% 0.0452

2 6 97.61% 0.0843
10 99.16% 0.0498

3 6 98.68% 0.0394
10 99.08% 0.0308

Table 6.1: Accuracy of architecture-1 for three different use cases. For use case 2 and use case 3
training the model with 10 images results in better accuracy than with 6 images.

61

6 Evaluation of Solution

Actual
Predicted Valid Invalid

Valid 2699 2
Invalid 30 2323

Table 6.2: Confusion matrix of retraining the baseline model of architecture-1 for use case 1 with 6
images of each test nut.

Actual
Predicted Valid Invalid

Valid 787 15
Invalid 0 1206

Table 6.3: Confusion matrix of retraining the baseline model of architecture-1 for use case 2 with
10 scale images.

The average accuracy of the model on the test data is shown in the Table 6.1. The retraining of the
baseline model is done with 6 images and 10 images of the test nuts. The model retrained on 10
images has higher performance compared to the other. As the difference between train nuts from
part 1 and part 2 and test nuts from part 3 is huge, the model requires more images to classify the
nuts with high accuracy. The test dataset is not balanced therefore a careful analysis of confusion
matrix Table 6.3 is conducted. None of the invalid images are predicted as valid but 15 valid
samples are predicted as invalid. The high accuracy on the test set supports our proposition that the
designed model is capable to perform quality analysis of a new part with nuts of different size and
orientation with very less training images and training duration.

Use Case 3

The average accuracy and test loss of three runs are recorded in the Table 6.1. As it can be seen,
unlike use case 1 which has high accuracy only with 6 images, this case also requires 10 images to
have a comparable performance. The baseline model retrained with 6 images of test nuts have an
average accuracy of 98.68%. In order to improve the accuracy above 99%, retraining is done with
10 images. Due to extreme lighting conditions in the factory, the model requires more images to
classify the nuts correctly. Table 6.4 shows the confusion matrix for use case 3. Though the model
classifies 16 valid images as invalid and 20 invalid images as valid, it is successful in classifying
most of the images to right class.

6.2 Architecture-2

As discussed in the previous chapter, architecture-2 does not generalize to test data in use case 1 and
use case 2. With EffecientNet-B0 as feature extractor, which has 5.3M learnable parameters, the
model learns more specific features to classify a nut. Therefore the feature vectors in the embedding
space are very specific to each nut rather than generic features which are required to differentiate

62

6.2 Architecture-2

Actual
Predicted Valid Invalid

Valid 2046 16
Invalid 20 1403

Table 6.4: Confusion matrix of retraining the baseline model of architecture-1 for use case 3 with
10 scale images.

Use Case Number of Images Accuracy Loss

3 6 99.68% 0.0129
10 99.84% 0.0099

Table 6.5: Accuracy of architecture-2 for use case 3. Average accuracy and test loss is reported for
both 6 scale images and ten scale images.

between the test image and the reference image. This results in the model overfitting to the training
data. As the test nuts in use case 1 and use case 2 vastly differ from training data, the model has
poor performance on the test nuts.

Use Case 3

As observed in the previous section, architecture-1 requires 10 scale images for use case 3 in order to
classify the nuts with higher confidence and accuracy. Architecture-2 has exceptional performance
on use case 3. With 6 scale images, the model classifies most of the images to correct class with
high confidence. The average accuracy of the architecture-2 with 6 scale images is reported in
the Table 6.5. A comparison is also made with the model trained with 10 scale images. With 10
images the prediction accuracy is even more higher and the model is also more confident as the test
loss in the order of 10−3. Confusion matrix for the model trained with 6 scale images is reported
in the Table 6.6. As it can be observed, there are 16 valid images which are predicted as invalid
and all the other images are classified to the right class. The number of training samples used to
train the baseline model of use case 3 is double compared to the previous two use cases. This
results in less overfitting to the training data. The test nuts contain the same nuts as training but are
positioned at different places compared to the nuts in training. The accuracy and confusion matrix
prove that, architecture-2 is very efficient in classifying the test nuts of use case 3 with extreme
lighting conditions and data distribution similar to train.

63

6 Evaluation of Solution

Actual
Predicted Valid Invalid

Valid 2042 16
Invalid 0 1426

Table 6.6: Confusion matrix of retraining the baseline model of architecture-2 for use case 3 with 6
scale images.

64

7 Conclusions and Future Works

7.1 Conclusion

In this thesis, we have proposed a solution which significantly reduces the efforts of retraining a
model to perform quality analysis of new parts. We have adressed the scalability issues of the
connventional CNNs by designing a siamese neural network classifier. Two approaches have been
proposed to scale a baseline model trained to detect the misplaced welding nuts of one part to
different parts with unseen nuts. When compared to the model with EffecientNet-B0 as feature
extractor, we have proved that the model with a custom convolutional feature extractor scales to
nuts of different shapes, sizes, orientations, and lighting conditions more efficiently. The training of
the baseline model in factory lighting requires more data to learn to distinguish between valid and
invalid samples than the model trained in office environment. When the test nuts differ significantly
compared to the nuts the baseline model is trained on, the rescaling requires 10 images. Otherwise,
retraining the model with 6 images will result in test accuracy over 99%. In detecting invalid cases,
model predicts few false positives (invalid but predicted valid) in classifying incorrect nuts and
flipped nuts but will successfully identify the missing nuts in all the use cases as incorrect sample. In
use case 3, we have trained the baseline on imbalanced training data with 80% of valid samples and
20% invalid samples. The test accuracy of 99.08% of architecture-1 and 99.68% of architecture-2
proves that the system can handle class imbalance. The architecture needed no redesigning with
change in number of test nuts in different use cases.

7.2 Limitations

The model is evaluated on only one part in factory lighting condition. In order to deploy the
model in production, more validation needs to be performed in terms of it’s adaptability to factory
environment and possible errors during manufacturing. The user who captures the scale images
to retrain the baseline model should have the knowledge of what invalid cases can occur in the
production system. Our approach compares the test image with a reference image in order to classify
a nut as valid or invalid. Since the position at which the image of the part is captured for inference
keep drifting in the production line, the reference image needs to be updated frequently.

7.3 Future Works

Manufacturing industries will have some common nuts used in production. We have demonstrated
that with different categories of nuts in training, the proposed model can scale to completely
different nut even without retraining. A dataset should be collected with regularly used nuts and

65

7 Conclusions and Future Works

with possible lighting conditions. Instead of training the baseline with few nuts, it should be trained
on this dataset. As a result, the system would be more dynamic as the baseline will have the
knowledge of commonly used nuts and their possible errors. More evaluation needs to be conducted
if the exceptional performance of architecture-2 on use case 3 is only due to similarity of the data
distribution between train and test compared to other use cases or if the extreme lighting condition
in factory needs more parameters to learn the variance in the data.

66

Bibliography

[1] Albumentations. What is image augmentation and how it can improve the performance
of deep neural networks. url: https://albumentations.ai/docs/introduction/image_
augmentation/ (cit. on p. 28).

[2] N. M. Alie, M. S. Karis, G.-J. Wong, M. B. Bahar, M. Sulaiman, M. M. Ibrahim, A. F. Z. Abidin.
“Quality checking and inspection based on machine vision technique to determine tolerance-
value using single ceramic cup”. In: ARPN Journal of Engineering and Applied Sciences
12.8 (2017), pp. 2737–2742 (cit. on p. 15).

[3] AutoVersed. The Biggest Automotive Recalls Of The Past Decade. url: https://autoversed.
com/the-biggest-automotive-recalls-of-the-past-decade/ (cit. on p. 15).

[4] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah. “Signature verification using a
‘siamese’ time delay neural network”. In: Advances in neural information processing systems
6 (1993) (cit. on pp. 31, 35).

[5] D. Chicco. “Siamese neural networks: An overview”. In: Artificial Neural Networks (2021),
pp. 73–94 (cit. on p. 31).

[6] S. Chopra, R. Hadsell, Y. LeCun. “Learning a similarity metric discriminatively, with
application to face verification”. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). Vol. 1. IEEE. 2005, pp. 539–546 (cit. on p. 31).

[7] CodeCrucks. Divide and Conquer Strategy for Problem Solving. url: https://codecrucks.
com/divide-and-conquer/ (cit. on p. 43).

[8] R. DABHI. Casting product image data for quality inspection. url: https://www.kaggle.
com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product (cit. on
p. 35).

[9] L. Deng. “The mnist database of handwritten digit images for machine learning research
[best of the web]”. In: IEEE signal processing magazine 29.6 (2012), pp. 141–142 (cit. on
p. 27).

[10] R. Gencay, M. Qi. “Pricing and hedging derivative securities with neural networks: Bayesian
regularization, early stopping, and bagging”. In: IEEE Transactions on Neural Networks 12.4
(2001), pp. 726–734. doi: 10.1109/72.935086 (cit. on p. 27).

[11] R. Gómez. Understanding Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, Hinge
Loss and all those confusing names. url: https://gombru.github.io/2019/04/03/ranking_
loss/ (cit. on pp. 32, 33).

[12] I. Goodfellow, Y. Bengio, A. Courville. Deep learning. MIT press, 2016 (cit. on pp. 20, 24).
[13] GV-5280CP-CAMERA FAMILY. url: https://en.ids-imaging.com/store/gv-5280cp.html

(cit. on p. 49).

67

https://albumentations.ai/docs/introduction/image_augmentation/
https://albumentations.ai/docs/introduction/image_augmentation/
https://autoversed.com/the-biggest-automotive-recalls-of-the-past-decade/
https://autoversed.com/the-biggest-automotive-recalls-of-the-past-decade/
https://codecrucks.com/divide-and-conquer/
https://codecrucks.com/divide-and-conquer/
https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product
https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product
https://doi.org/10.1109/72.935086
https://gombru.github.io/2019/04/03/ranking_loss/
https://gombru.github.io/2019/04/03/ranking_loss/
https://en.ids-imaging.com/store/gv-5280cp.html

Bibliography

[14] GV-5280CP-OVERVIEW. url: https://en.ids-imaging.com/store/gv-5280cp.html (cit. on
p. 49).

[15] K. He, X. Zhang, S. Ren, J. Sun. “Deep Residual Learning for Image Recognition”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2016 (cit. on p. 36).

[16] J. Hu, L. Shen, G. Sun. “Squeeze-and-excitation networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 7132–7141 (cit. on p. 36).

[17] IBMCloudEducation. Convolutional Neural Networks. url: https://www.ibm.com/cloud/
learn/convolutional-neural-networks/ (cit. on p. 29).

[18] S. Ioffe, C. Szegedy. “Batch normalization: Accelerating deep network training by reducing
internal covariate shift”. In: International conference on machine learning. PMLR. 2015,
pp. 448–456 (cit. on p. 40).

[19] H. Jabbar, R. Z. Khan. “Methods to avoid over-fitting and under-fitting in supervised machine
learning (comparative study)”. In: Computer Science, Communication and Instrumentation
Devices 70 (2015) (cit. on p. 24).

[20] A. Kathuria. Intro to Optimization in Deep Learning: Busting the Myth About Batch
Normalization. url: https://blog.paperspace.com/busting-the-myths-about-batch-
normalization/ (cit. on p. 40).

[21] J. Khan. Everything you need to know about Visual Inspection with AI. 2021. url: https:
//nanonets.com/blog/ai-visual-inspection/ (cit. on p. 15).

[22] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, D. Krishnan.
“Supervised contrastive learning”. In: arXiv preprint arXiv:2004.11362 (2020) (cit. on p. 44).

[23] M. S. Kim, T. Park, P. Park. “Classification of Steel Surface Defect Using Convolutional
Neural Network with Few Images”. In: 2019 12th Asian Control Conference (ASCC). 2019,
pp. 1398–1401 (cit. on pp. 16, 35, 37).

[24] G. Koch, R. Zemel, R. Salakhutdinov, et al. “Siamese neural networks for one-shot image
recognition”. In: ICML deep learning workshop. Vol. 2. Lille. 2015 (cit. on pp. 31, 35).

[25] B. Lake, R. Salakhutdinov, J. Gross, J. Tenenbaum. “One shot learning of simple visual
concepts”. In: Proceedings of the annual meeting of the cognitive science society. Vol. 33.
33. 2011 (cit. on p. 35).

[26] I. Loshchilov, F. Hutter. “Decoupled weight decay regularization”. In: arXiv preprint
arXiv:1711.05101 (2017) (cit. on p. 52).

[27] J. McCarthy. “What is artificial intelligence?” In: (1998) (cit. on p. 19).
[28] D. Mishkin. caffenet-benchmark. url: https : / / github . com / ducha - aiki / caffenet -

benchmark/blob/master/batchnorm.md (cit. on p. 40).
[29] D. Monica. Understanding Overfitting and Underfitting In Layman Terms. url: https:

//medium.com/mlearning-ai/understanding-overfitting-and-underfitting-in-layman-

terms-e4c82a28e2d2 (cit. on p. 25).
[30] A. M. Nagy, L. Czúni. “Detecting Object Defects with Fusioning Convolutional Siamese

Neural Networks.” In: 2021 (cit. on pp. 16, 35, 36).
[31] M. A. Nielsen. Neural networks and deep learning. Vol. 25. Determination press San

Francisco, CA, 2015 (cit. on p. 20).

68

https://en.ids-imaging.com/store/gv-5280cp.html
https://www.ibm.com/cloud/learn/convolutional-neural-networks/
https://www.ibm.com/cloud/learn/convolutional-neural-networks/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://blog.paperspace.com/busting-the-myths-about-batch-normalization/
https://nanonets.com/blog/ai-visual-inspection/
https://nanonets.com/blog/ai-visual-inspection/
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md
https://medium.com/mlearning-ai/understanding-overfitting-and-underfitting-in-layman-terms-e4c82a28e2d2
https://medium.com/mlearning-ai/understanding-overfitting-and-underfitting-in-layman-terms-e4c82a28e2d2
https://medium.com/mlearning-ai/understanding-overfitting-and-underfitting-in-layman-terms-e4c82a28e2d2

Bibliography

[32] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall. “Activation functions: Comparison
of trends in practice and research for deep learning”. In: arXiv preprint arXiv:1811.03378
(2018) (cit. on p. 21).

[33] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L. Krpalkova,
D. Riordan, J. Walsh. “Deep learning vs. traditional computer vision”. In: Science and
Information Conference. Springer. 2019, pp. 128–144 (cit. on p. 15).

[34] S. Ruder. Highlights of NIPS 2016: Adversarial learning, Meta-learning, and more. url: ht
tps://ruder.io/highlights-nips-2016/index.html#thenutsandboltsofmachinelearning

(cit. on p. 42).
[35] S. Ruder. Transfer Learning - Machine Learning’s Next Frontier. url: https://ruder.io/

transfer-learning/index.html#whatistransferlearning (cit. on p. 42).
[36] D. E. Rumelhart, G. E. Hinton, R. J. Williams. “Learning representations by back-propagating

errors”. In: nature 323.6088 (1986), pp. 533–536 (cit. on p. 23).
[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, et al. “Imagenet large scale visual recognition challenge”. In:
International journal of computer vision 115.3 (2015), pp. 211–252 (cit. on pp. 15, 35, 42).

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen. “Mobilenetv2: Inverted residuals
and linear bottlenecks”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 4510–4520 (cit. on p. 42).

[39] F. Schroff, D. Kalenichenko, J. Philbin. “Facenet: A unified embedding for face recognition
and clustering”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 815–823 (cit. on p. 36).

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. “Dropout: a simple
way to prevent neural networks from overfitting”. In: The journal of machine learning
research 15.1 (2014), pp. 1929–1958 (cit. on p. 26).

[41] Stanford. CS231n Convolutional Neural Networks for Visual Recognition. url: https:

//cs231n.github.io/convolutional-networks/ (cit. on pp. 21, 30, 57).
[42] Stanford. CS231n Convolutional Neural Networks for Visual Recognition. url: https:

//cs231n.github.io/neural-networks-1/ (cit. on p. 40).
[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

A. Rabinovich. “Going deeper with convolutions”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 1–9 (cit. on p. 36).

[44] I. Tabian, H. Fu, Z. Sharif Khodaei. “A convolutional neural network for impact detection
and characterization of complex composite structures”. In: Sensors 19.22 (2019), p. 4933
(cit. on p. 28).

[45] M. Tan. EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling.
url: https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
(cit. on pp. 42, 43).

[46] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le. “Mnasnet:
Platform-aware neural architecture search for mobile”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 2820–2828 (cit. on
p. 42).

69

https://ruder.io/highlights-nips-2016/index.html#thenutsandboltsofmachinelearning
https://ruder.io/highlights-nips-2016/index.html#thenutsandboltsofmachinelearning
https://ruder.io/transfer-learning/index.html#whatistransferlearning
https://ruder.io/transfer-learning/index.html#whatistransferlearning
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

Bibliography

[47] M. Tan, Q. Le. “Efficientnet: Rethinking model scaling for convolutional neural networks”.
In: International Conference on Machine Learning. PMLR. 2019, pp. 6105–6114 (cit. on
pp. 15, 42, 43).

[48] S. Tay, L. Te Chuan, A. Aziati, A. N. A. Ahmad. “An Overview of Industry 4.0: Definition,
Components, and Government Initiatives”. In: Journal of Advanced Research in Dynamical
and Control Systems 10 (Dec. 2018), p. 14 (cit. on p. 15).

[49] K. Weiss, T. M. Khoshgoftaar, D. Wang. “A survey of transfer learning”. In: Journal of Big
data 3.1 (2016), pp. 1–40 (cit. on p. 42).

[50] J. Yu, G. Xie, M. Li, X. Hao. “Retrieval of family members using siamese neural network”.
In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition
(FG 2020). IEEE. 2020, pp. 882–886 (cit. on p. 36).

[51] M. D. Zeiler, R. Fergus. “Visualizing and understanding convolutional networks”. In:
European conference on computer vision. Springer. 2014, pp. 818–833 (cit. on p. 36).

[52] D. Zhang, G. Lu. “Evaluation of similarity measurement for image retrieval”. In: International
Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.
Vol. 2. IEEE. 2003, pp. 928–931 (cit. on p. 40).

All links were last followed on May 07, 2022.

70

Bibliography

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

71

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Outline

	2 Background
	2.1 Machine Learning
	2.2 Deep Learning
	2.2.1 Artificial Neural Networks
	2.2.2 Activation Functions
	2.2.3 Gradient Descent and Back Propagation
	2.2.4 Overfitting and Underfitting
	2.2.5 Regularization

	2.3 Convolutional Neural Networks
	2.3.1 Convolutional Layers
	2.3.2 Pooling Layers
	2.3.3 Fully Connected Layers

	2.4 Siamese Neural Networks
	2.4.1 Architecture
	2.4.2 Special Loss Functions

	3 Related Work
	4 Methodology
	4.1 Solution Realization
	4.2 Architecture-1
	4.3 Architecture-2
	4.4 Solution Approach - Divide and Conquer
	4.5 Scalability Method
	4.6 Proof of Scalability
	4.6.1 Use Case 1:
	4.6.2 Use Case 2:
	4.6.3 Use Case 3:

	5 Experiments and Results
	5.1 Camera Specifications
	5.2 Dataset Acquisition
	5.3 Dataset Details
	5.4 Architecture and Training Details
	5.4.1 Data Augmentation
	5.4.2 Training Details for Baseline Models
	5.4.3 Architecture-1 and Use Case 1
	5.4.4 Architecture-1 and Use Case 2
	5.4.5 Architecture-1 and Use Case 3
	5.4.6 Experiments on Feature Extractor of Architecture-1
	5.4.7 Architecture-2 and Use Case 1
	5.4.8 Architecture-2 and Use Case 2
	5.4.9 Architecture-2 and Use Case 3

	6 Evaluation of Solution
	6.1 Architecture-1
	6.2 Architecture-2

	7 Conclusions and Future Works
	7.1 Conclusion
	7.2 Limitations
	7.3 Future Works

	Bibliography

