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Abstract

The Grant Negotiation and Authorization Protocol (GNAP) is a protocol under development by the
IETF that allows delegating permissions to third parties. With these permissions, the third party can,
for example, access protected APIs or obtain information directly from the issuer of the permissions.
The scope of the permissions can be negotiated between the third party and the issuer.

Since this allows the third party to access the resources of the issuer, the security of the protocol is
of key importance. For example, only the approved permissions should be delegated to only the
authorized third party.

To analyze the security of GNAP, we model the protocol within the Web Infrastructure Model,
including various interaction modes of GNAP. We define several security properties regarding the
authorization of access via the protocol and prove them within our model.

In the course of this work, several attacks and vulnerabilities of GNAP were discovered, which we
reported to the editors of GNAP. Together with the editors, we worked out mitigations and security
considerations regarding these issues, which were added to the protocol. To be able to prove the
security of GNAP, we also implemented them in our model.
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Kurzfassung

Das Grant Negotiation and Authorization Protocol (GNAP) ist ein sich in Arbeit befindliches
Protokoll der IETF, das es erlaubt, Berechtigungen an eine dritte Partei zu delegieren. Mit diesen
Berechtigungen kann die dritte Partei etwa auf geschützte APIs zugreifen oder direkt Informationen
vom Aussteller der Berechtigungen erhalten. Der Umfang der Berechtigungen kann dabei zwischen
der dritten Partei und dem Aussteller ausgehandelt werden.

Da dies einem Dritten den Zugang zu den Ressourcen des Ausstellers ermöglicht, ist die Sicherheit
des Protokolls von zentraler Bedeutung. So sollten etwa nur die genehmigten Berechtigungen an
ausschließlich die autorisierte dritte Partei delegiert werden.

Um die Sicherheit von GNAP zu untersuchen, modellieren wir das Protokoll innerhalb des Web
Infrastructure Model und inkludieren dabei verschiedene Interaktionsmodi von GNAP. Wir stellen
mehrere Sicherheitseigenschaften bezüglich der Autorisierung von Zugriffen durch das Protokoll
auf und beweisen diese innerhalb unseres Modells.

Im Rahmen der Arbeit wurden dabei verschiedene Angriffe und Schwachstellen von GNAP
entdeckt, die wir den Editoren von GNAP gemeldet haben. Zusammen mit den Editoren haben
wir Gegenmaßnahmen und Sicherheitserwägungen bezüglich dieser Probleme erarbeitet, die zum
Protokoll hinzugefügt wurden. Um die Sicherheit von GNAP beweisen zu können, haben wir diese
auch in unserem Modell umgesetzt.
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1 Introduction

The Grant Negotiation and Authorization Protocol (GNAP) [26, 27] enables delegated authorization
in HTTP-based systems. The delegation can be conveyed to a piece of software, which can thereby
obtain user information as well as access to Application Programming Interfaces (APIs). The
negotiation in the name of the protocol stems from the fact that during the protocol flow, the
requested access rights and information can be repeatedly adjusted until an agreement is reached.

The basic idea behind GNAP works as follows: A user (called end user by GNAP) of a software
(called client instance) wants to use the software to access protected resources located at a Resource
Server (RS). To obtain this access, the client instance sends a request to an Authorization Server
(AS) that manages access to these resources. The AS has the task of assessing the request and
determining whether the client instance is granted access or not. In most cases, the AS cannot
decide this on its own, but another entity, the Resource Owner (RO), handles this on behalf of the
AS. The RO is the subject entity that is authorized to grant access to the requested resources at the
RS. In practice, the RO and the end user are often the same natural person. To accept the request,
the RO must first authenticate itself to the AS and can then authorize the request. Once the request
has been authorized, the AS creates an access token and transmits it to the client instance. The
client instance now includes the access token in requests to the RS, which grants access to the
requested protected resources, given that the access token is valid. In addition to access tokens, the
client instances can also request information about the RO from the AS (such as the RO’s e-mail
address or telephone number), which is returned directly from the AS to the client instance if the
request is granted.

The main advantage of such a delegation process is that the RO does not have to entrust any login
credentials to the client instance, but the client instance can still access the RO’s protected resources
using an access token. In this regard, GNAP fulfills many of the use cases of OAuth 2.0 [12] but is
not compatible with it. Rather, GNAP attempts to be a replacement for OAuth 2.0 and many of
its extensions while also enabling additional use cases by supporting various so-called interaction
modes [26].

At the time of writing, GNAP is an Internet Engineering Task Force (IETF) Internet-Draft that is
still in progress. The protocol is divided into two documents, with the core document (called Grant
Negotiation and Authorization Protocol [26]) describing the interaction between client instances
and ASs, while another document (called Grant Negotiation and Authorization Protocol Resource
Server Connections [27]) focuses on the interaction between ASs and RSs. This thesis is based on
version 08 of Grant Negotiation and Authorization Protocol and version 01 of Grant Negotiation
and Authorization Protocol Resource Server Connections.
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1 Introduction

Contributions of this Thesis In this thesis, we present the first formal model of GNAP and
perform its first formal security analysis. Our model is based on the Web Infrastructure Model
(WIM), which has been used in the past to analyze similar protocols such as OAuth 2.0 [7] and the
OpenID Financial-grade API [5], leading to the detection of various attacks.

As part of this work, it was found that two attacks on similar protocols, the cuckoo token attack, and
the 307 redirect attack, can also be applied to GNAP. In addition, we contributed to the security
considerations regarding another attack called the client instance mix-up attack in this work. Details
can be found in Chapter 3.

We have also informed the editors of GNAP about a security issue with the derivation of so-called
downstream tokens by an RS at an AS. Security considerations to fix this issue were still being
discussed under this GitHub issue [25] at the time of completion of this work.

Several GitHub pull requests and issues were also created for both the core document and the
GNAP Resource Server Connections document as part of this work. These are mostly about fixing
inconsistencies and ambiguities in the documents. All pull requests and issues created by the
author of this thesis regarding the core document can be found under [15]. Pull requests and issues
concerning GNAP Resource Server Connections can be found under [16].

Structure of this Thesis Chapter 2 provides an overview of GNAP and illustrates its workings
with two sample flows. Chapter 3 discusses the attacks on GNAP that were found during this work
and how they were addressed. Related work can be found in Chapter 4. We conclude in Chapter 5.
The appendix consists of the complete formal model of GNAP in Appendix A, the definitions used
in the analysis in Appendix B, the definitions of the proven security properties in Appendix C, and
their proofs in Appendix D.
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2 The Grant Negotiation and Authorization
Protocol

In this chapter, we first consider the different roles of the parties involved in a GNAP flow
(Section 2.1). This is followed in Section 2.2 by a description of the different types of messages that
are exchanged between the individual participants. Section 2.3 introduces the different interaction
modes. These are used when the RO needs to authorize a request. The various interaction modes
enable different usage scenarios of GNAP, such as when the client instance cannot perform redirects
to arbitrary URIs or when the RO cannot be redirected back to the client instance after its interaction
with the AS. Section 2.4 then explains the overall flow of GNAP using two examples in which
different interaction modes are used.

2.1 Roles

The parties participating in a flow assume different roles in GNAP, which are presented below
based on [26]. A human or an implementation can take on multiple roles. For example, the end
user can also be the RO, while RS and AS can be the same piece of software.

Authorization Server (AS) Server that can grant a client instance access to protected resources
at an RS by issuing an access token. Can also transmit information about an RO to a client
instance. Interacts with ROs, if necessary, to decide whether to grant a request.

Client Instance Application used by an end user to access resources at one or more RSs that
requires permission from one or more ASs to do so. Client instances are identified by the
ASs and the RSs through their unique keys. GNAP differentiates between the terms client
instance and client software. A client instance is a concrete instance of a client software.
Thus, multiple client instances can exist for one client software.

Resource Server (RS) Server where protected resources can be accessed, requiring a valid access
token issued by an AS. Depending on the structure of the access token, the RS may need to
communicate with the AS that issued the access token to verify its validity. This is called
token introspection.

Resource Owner (RO) Subject entity that interacts with the AS to grant or deny access to
resources that it has authority upon. This does not always have to be a natural person that
has to grant a request manually. Depending on the implementation, an AS can also grant a
request without human interaction based on organizational rules, for example, if only access
to certain resources that are not strongly protected is requested and the client instance is
already known to the AS.
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2 The Grant Negotiation and Authorization Protocol

End user Natural person operating a client instance. This person can be the RO but does not have
to be.

2.2 Message Types

This section describes the different message types used in the interaction between ASs and client
instances. In general, all messages in GNAP must be secured using Transport Layer Security (TLS).
The client instance must also sign all its requests, whether they are sent to the AS or the RS. The key
for checking the signature can either already be known to the AS through a previous registration
of the client instance with the AS, or the AS also allows requests from client instances unknown
to it and takes the public key from the first request of the client instance. The latter is primarily
intended for scenarios in which the client instance only exists temporarily, for example in the case
of a Single-Page Application (SPA). Client instance registrations are out of scope for GNAP.

2.2.1 Grant Request

Each GNAP flow starts with a client instance sending a grant request to an AS. This can either be
triggered by the end user of the client instance or the client instance does this on its own behalf
without any user being involved. The AS to be used by the client instance is either preconfigured or
the client instance must determine this based on the requested resources and/or information. For
example, the AS to be used can be discovered via the RS on which resources are to be accessed.

A grant request may contain the following fields in its body [cf. 26]:

access_token Optional. If the client instance wants to receive an access token, it must specify in
this field the rights and properties to be associated with the access token. The client instance
can also request multiple access tokens at once, all of which are specified within this field.
For each access token, the client instance can optionally include a bearer flag. If the request
is granted, the AS issues a bearer access token when the bearer flag is used. When using a
normal access token with an RS, the request must be signed with a key to which the access
token is bound. This is normally the key used by the client instance to sign the grant request.
When using a bearer access token, the request to the RS does not have to be signed. The
inclusion of the bearer access token alone is sufficient to access the resources.

subject Optional. If the client instance wants to request information about the RO from the AS,
the requested information must be specified in this field. Both subject identifier subject
types as specified in the Subject Identifiers for Security Event Tokens draft [3] and assertion
formats can be requested. Possible assertion formats are OpenID Connect ID Tokens [28]
and Security Assertion Markup Language (SAML) 2 assertions.

client Required. This field is used by the client instance to identify itself to the AS. The client
instance must specify its public key or a key reference. A key reference is a reference to
a key that is already known to the AS, for example through a previous registration of the
client instance with the AS. When specifying a key, the key proofing method used by the
client instance to prove possession of that key must always be specified as well. Currently,
GNAP supports the use of HTTP Message Signatures [2], OAuth-mTLS [4], and JSON Web
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2.2 Message Types

Signatures (JWS) [19] for this purpose. If a key reference is used, it can also refer to a
symmetric key, so that message authentication codes are used as key proofs. Optionally, the
client instance can also specify additional information, such as a string identifying the client
software used by the client instance. This information can be used by the AS when interacting
with the RO to inform the RO about the requesting client instance. Alternatively, if the client
instance is already known to the AS, the client instance can specify only an instance identifier
(see Section 2.2.2).

user Optional. If the client instance already knows identifiers or assertions of its end user (for
example from a previous run), it can specify them in this field. The subject identifiers
specified in [3] can be used as identifiers. These identifiers can be used by the AS to identify
the RO to be contacted. For example, when interacting with the RO, the AS can directly start
a login process for this user, so that the RO does not have to enter its username. The AS must
not assume, based on a given subject identifier, that a particular RO is present at the client
instance. OpenID Connect ID tokens [28] or SAML 2 assertions can be used as assertions.
Valid assertions may be used by the AS to skip the interaction with the RO.

interact Optional. This field specifies the interaction modes that the client instance supports.
Interaction modes are used when the RO must interact with the AS to grant a request. GNAP
distinguishes between interaction start modes and interaction finish modes. Interaction start
modes specify how the client instance can start the interaction, while interaction finish modes
specify how the client instance can determine that the interaction with the AS is complete.
See Section 2.3 for a description of the different interaction modes. Omitting this field signals
to the AS that the client instance does not support any interaction modes for this request,
which is the case, for example, when software-only authorization is used.

2.2.2 Grant Response

A grant response is sent from an AS to a client instance in response to a grant request or a
continuation request (see Section 2.2.3). It can contain the following fields [cf. 26]:

continue Optional. If the AS allows the client to continue the request through a continuation
request, the information required by the client instance for this is specified in this field. The
AS must specify a URI to which the client instance must send the continuation request. This
can be a stable URI or a different one for each request. The AS must also include an access
token that is bound to the key used by the client instance in the grant request. This access
token must be presented by the client instance in the continuation request and must not be
usable with resources outside the AS. It is recommended to specify a time in seconds that
indicates how long the client instance should wait before calling the specified URI.

access_token Optional. This field returns requested access tokens granted to the client instance.
In addition to the value of the access token, a management URI can optionally be specified
for each access token, which the client instance can use to rotate or revoke the token. If an
access token is a bearer access token, the AS must set a bearer flag for this access token. The
AS may also set a durable flag indicating that the access token is still valid after a rotation or
after a modification of the underlying request through a continuation request. If an access
token is not a bearer access token, the AS can also bind the access token to a different key
than the one used by the client in its grant request. In this case, the AS must specify the
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2 The Grant Negotiation and Authorization Protocol

key to which the access token is bound. The client instance must be able to dereference or
process this key to sign the associated request when using the access token. For example, the
AS could generate a new key pair for use with this access token and then include the public
and the private key in the grant response. If the client instance has requested multiple access
tokens, the AS can issue any subset of them and reject all others.

interact Optional. If the client instance has specified supported interaction modes in its grant
request, the AS hereby responds to all interaction modes that it also supports. See Section 2.3
for the exact flow of the different interaction modes.

subject Optional. If the client instance requested subject information about the RO from the AS
and the request was granted, the AS returns this information in this field. The AS must only
return this information if it is certain that the RO and the end user are the same party, for
example by interacting with the RO.

instance_id Optional. An instance identifier is an unguessable string that a client instance can
specify instead of the concrete information in the client field of a grant request. This prevents
the client instance from having to transmit its full public key and other information in each
grant request. The instance_id field allows the AS to assign such an instance identifier to
the client instance, which can then use it in future grant requests. Alternatively, an instance
identifier can be assigned during pre-registration, as with key references. An instance
identifier must be protected as a secret by the client instance.

error Optional. Contains an error message to the client instance. This may indicate, for example,
that the RO has rejected the request, or (in the case of a continuation request) the referenced
request is not known to the AS.

2.2.3 Continuation Request

A continuation request can be sent from a client instance to an AS if the continue field was used in
the last grant response that the client instance received from the AS. If the previous request from the
client instance (either a grant request or a continuation request) required interaction with the RO,
the AS can only respond to a (further) continuation request once this interaction has been finished.
The URI and the access token to be used for the continuation request can be obtained by the client
instance from the continue field of the previous grant response. An AS responds to a continuation
request with a new grant response.

Continuation requests can be used in the following scenarios:

• If the previous request of the client instance required interaction with the RO and an interaction
finish mode was used, the client instance receives a so-called interaction reference through
the interaction finish mode (see Section 2.3.2). By using the finish mode, the client instance
is signaled when the interaction with the RO is complete. The client instance then sends
a continuation request including the interaction reference to the AS to get the result of the
interaction. The subsequent grant response may then contain, for example, the requested
access token or an error message stating that the RO has rejected the request. Such a
continuation request is a POST request.
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2.3 Interaction Modes

• If the previous request from the client instance requires interaction with the RO, but no
interaction finish mode is used (perhaps because the client instance does not support one),
the client instance sends a continuation request with an empty body to the AS to inquire
whether the interaction has already finished. The time interval for this can be specified by
the AS in the grant response. If the interaction is not yet completed, the AS responds with
an error message and the client instance must try again periodically until the interaction is
finished. Once the interaction is finished, the grant response of the AS is again dependent on
the decision of the RO. Such a continuation request is also a POST request.

• A continuation request can also be used by the client instance to adjust the previous request.
This can happen, for example, if the previous request was rejected and the client instance
wants to restrict the requested rights and/or information. It is also possible that the client
instance has already received an access token in the course of this flow, but now wants to
extend the rights associated with it. If this extension is granted, the AS creates a new access
token and may revoke the old one unless the durable flag has been set for it. Extending the
requested rights and/or information may require a (further) interaction with the RO. To adjust
the previous request the client instance sends a PATCH request. In the body of the request,
the client instance can specify all fields of a grant request except the client field, which cannot
be altered. If a field is specified, its value replaces the previous value. The values of all
unspecified fields remain the same. The client instance may also need to specify an interaction
reference if the last request involved an interaction with the RO using an interaction finish
mode.

• A client instance can cancel an ongoing grant request by sending a DELETE request to the
continuation URI. The AS should revoke all associated access tokens in this case.

2.3 Interaction Modes

The interaction modes are used when an interaction with the RO is required to authorize a grant
request. There are interaction start modes and interaction finish modes. Interaction start modes
specify how the interaction with the RO is initiated, while interaction finish modes describe callback
mechanisms to inform the client instance about the completion of the interaction. A client instance
specifies the interaction start modes and interaction finish modes it supports in the grant request.
When interaction is required, the AS selects from the interaction modes offered by the client instance
those that it also supports and includes them along with the required information in the grant
response.

2.3.1 Interaction Start Modes

A client instance can indicate support for the following interaction start modes in a grant request:

redirect The redirect mode can be used if the client instance can point the end user to any URL.
The AS sends a URL in its grant response to the client instance, where the end user can then
interact with the AS via their browser. GNAP does not specify how exactly this URL should
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2 The Grant Negotiation and Authorization Protocol

be accessed. Possible options include a browser redirect, starting the user’s browser with this
URL, or displaying the URL as a QR code that can be scanned by the user. The AS must be
able to uniquely associate the URL with the grant request.

user_code The user code mode is intended for scenarios where the client instance cannot easily
communicate an arbitrary URL to the end user. In this mode, the AS transmits a short,
human-readable code associated with the grant request to the client instance. The client
instance in turn communicates this code to the end user. Using a secondary device, the end
user then navigates to a static URL where they can interact with the AS. There the end user
enters the user code so that the AS can associate the interaction with the grant request. Since
the URL is static, it can be recorded in the documentation of the AS and/or preconfigured
in the client instance so that it can display the URL to the user in addition to the user code.
Nevertheless, it is recommended that the AS also includes the URL in the grant response in
addition to the user code.

app The app mode works similarly to the redirect mode. Here, too, the AS sends a URL to the
client instance, which it can uniquely associate with the grant request. However, this URL is
then used to start an application on the end user’s system, which the end user can then use to
interact with the AS. How this application is started and how it interacts with the AS is out of
scope for GNAP.

If interaction with the RO is required, but there is no interaction start mode supported by both
client instance and AS the AS may have the ability to contact the RO asynchronously and ask for
authorization of the request. Possible procedures for this are out of scope for GNAP. If the AS
cannot contact the RO asynchronously either, the AS must reject the request.

2.3.2 Interaction Finish Modes

Through the interaction finish modes, the client instance specifies how it can be notified by the AS
of the completion of the interaction with the RO. GNAP defines two different callback mechanisms
for this, one of which the client instance can specify in its grant request:

redirect In this mode, the end user is usually also the RO. The client instance specifies a URI
in its grant request to which the RO should be redirected after the interaction is complete.
Furthermore, the client instance specifies a nonce (number once) in the grant request. If an
interaction is required and the AS supports this interaction finish mode, the AS specifies
its own nonce within the interact field in its grant response. The AS also generates an
unguessable interaction reference that is one-time-use. Then the AS calculates a hash value
over the client instance’s nonce from the grant request, its own nonce from the grant response,
the interaction reference, and the grant endpoint URL that the client instance used for its
initial request. Once the interaction between the RO and the AS is complete, the AS redirects
the RO to the client instance using the URI specified by the client instance in the grant request.
The AS adds the interaction reference and the hash value as query parameters. How exactly
the redirect is done is up to the implementation. Besides a browser redirect, it is also possible
to start the user’s browser with this URI. The client instance validates the hash value and, if
the validation is successful, sends a continuation request to the AS, including the interaction
reference.
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push Using the push interaction finish mode, the client instance also specifies a URI and a nonce
in the grant request, and the AS responds with its own nonce if it supports this mode and
allows it for this request. Here, however, the AS sends a POST request to the URI specified
by the client instance after the interaction is completed. Interaction reference and hash value
are generated by the AS as in redirect interaction finish mode and transmitted to the client
instance in the body of the POST request. If the hash value is validated successfully, the
client also sends a continuation request to the AS, including the interaction reference.

If the client instance does not specify an interaction finish mode or if the specified finish mode is
not supported by the AS, the client instance must actively poll the status of the interaction using
continuation requests. Since in this case no hash value is generated by the AS that can be checked
by the client instance, this is less secure than using an interaction finish mode. The protocol points
this out and recommends using an interaction finish mode whenever possible [26].

2.4 Example Flows

This section illustrates how GNAP works using two examples. The first example uses the redirect
interaction start mode and the redirect interaction finish mode. The second example shows the user
code interaction start mode and the push interaction finish mode. In both examples, all requests
sent from the client instance to the AS are secured by a key proofing method. For simplicity, the
values contained in the requests for this purpose are not shown in the examples.

2.4.1 Interaction using Redirects

In this example, the redirect interaction start mode and the redirect interaction finish mode are used.
The end user is also the RO. This scenario is similar to the OAuth 2.0 Authorization Code grant
type. The flow is illustrated in Figure 2.1. The data depicted in the second lines of the arrow labels
is either transferred in URI parameters, HTTP headers, or POST bodies.

25



2 The Grant Negotiation and Authorization Protocol

Browser Client Instance AS

1 POST /start
as

2 POST /grant-request
finish_uri, ci_nonce

3 Response
interact_uri, as_nonce, continue_uri, continue_access_token

4 Response
Redirect to AS interact_uri

5 GET interact_uri

6 Response
authEP

7 POST authEP
username, password

8 Response
Redirect to Client Instance finish_uri with interact_ref, hash

9 GET finish_uri
interact_ref, hash

10 POST continue_uri
interact_ref, continue_access_token

11 Response
access_token

Figure 2.1: GNAP flow using redirect interaction start mode and redirect interaction finish mode.

This flow is triggered by the end user, who e.g. clicks on a button on a web page of the client
instance to select a specific AS. In our modeling, a POST request 1 is sent to the client instance for
this purpose, in which the selected AS is specified.
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The client instance then sends a grant request 2 to the selected AS (if the client instance is configured
to use this AS), in which the client instance specifies the URI to which the AS should redirect
the end user after the interaction is complete (finish_uri). In addition, the AS includes a freshly
generated nonce that will be needed later to calculate a hash value (ci_nonce).

In the grant response 3 , the AS transmits the interact_uri to which the client instance should redirect
the end user for interaction with the AS. In addition, the AS sends its own nonce (the as_nonce),
which is also used in the calculation of the hash value, and the continue_uri, to which the client
instance must later send the continuation request. In the continuation request, the client instance must
specify an access token, which the AS sends to the client instance in 3 (continue_access_token).

The client instance then redirects the end user/RO to the interact_uri of the AS 4 (redirect interaction
start mode). There, the RO must authenticate itself to the AS and authorize the grant request of
the client instance. In our model, the GET request resulting from the redirect 5 is answered with
a script 6 that transfers the username and password of the RO to a login endpoint authEP of the
AS 7 .

After successful login, the RO is redirected to the finish_uri of the client instance in 8 and 9

(redirect interaction finish mode). Thereby, the AS inserts two parameters into the finish_uri: the
interact_ref and the previously mentioned hash value hash. The interact_ref is a value generated
by the AS that it can use to map the client instance’s subsequent continuation request to the current
interaction. The hash value covers the nonce of the client instance from 2 (ci_nonce), the nonce
of the AS from 3 (as_nonce), the interact_ref, and the endpoint that the client instance used for
the grant request 2 . The client instance also calculates this hash value and checks if it matches
the hash value from 9 . If the values match, the continuation request to complete the flow is sent
to the continue_uri from 3 . This continuation request contains the access token from 3 and the
interact_ref from 9 . The AS checks these values and, if successful, sends one or more access
tokens to the client instance, which the client instance can now use to access resources of the RO at
the corresponding RSs.

2.4.2 Secondary Device Interaction

In this example, the user code interaction start mode and the push interaction finish mode are used.
The flow is illustrated in Figure 2.2. The data depicted in the second lines of the arrow labels is
either transferred in URI parameters, HTTP headers, or POST bodies.
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2 The Grant Negotiation and Authorization Protocol

Browser Client Instance AS

1 POST /start
as

2 POST /grant-request
finish_uri, ci_nonce

3 Response
user_code, as_nonce, continue_uri, continue_access_token

4 Response
user_code, user_code_uri

5 GET user_code_uri

6 Response
authEP

7 POST authEP
user_code, username, password

Response

8 POST finish_uri
interact_ref, hash

Response

9 POST continue_uri
interact_ref, continue_access_token

10 Response
access_token

Figure 2.2: GNAP flow using user code interaction start mode and push interaction finish mode.
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In our modeling of the user code interaction start mode, steps 1 and 2 proceed as in Section 2.4.1.
In the grant response 3 , however, the AS does not specify a URI where the RO can log in, but the
user_code that the RO must enter on a dedicated user code interaction page of the AS. Since this
page must be static, the AS does not need to transmit its URI to the client instance. Instead, client
instances may have this static URI stored for each AS used and display it to the end user, or the end
user may learn the URI elsewhere, such as from the client instance’s documentation.

In 4 , the client instance now transmits the user_code and the user code interaction URI
(user_code_uri) to the browser. The RO must now navigate to the user_code_uri and enter
the user_code there. In our modeling, this is done by opening the user_code_uri in a new window 5 .
In 6 , a script is then returned that receives the user_code as input. This script then simulates
the input of the user_code and the login credentials by transmitting them to the AS in a POST
request 7 .

The AS can associate the login with the pending grant request via the user code. If the login is
successful, it sends a new interaction reference and the hash value known from Section 2.4.1 via a
POST request to the client instance 8 (push interaction finish mode). The client instance checks
the hash value and can receive the requested access token(s) 10 via a continuation request 9 as in
Section 2.4.1.
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3 Attacks

In Section 3.1 and Section 3.2 of this chapter, we explain two attacks on GNAP that we found
during the work on this thesis and what was done to mitigate them. Both attacks were reported
to the editors of GNAP via email on October 26, 2021, and were confirmed by them to be valid.
The attacks were subsequently discussed by the GNAP working group at the IETF 112 meeting on
November 11, 2021 [22]. While working on this thesis, another attack was discovered, which we
describe in Section 3.3 and for which we have also incorporated mitigations into our model.

3.1 307 Redirect Attack

This attack on OAuth 2.0 was found by Fett et al. [7]. The following assumptions are required for
the attack to apply to GNAP:

• An honest RO logs in to an honest AS when interacting with it, and in doing so, the RO’s
credentials are transmitted to the AS in a POST request.

• After logging in by submitting this POST request, the AS redirects the RO directly back to
the client instance due to the use of the redirect interaction finish mode.

• For this redirect the AS uses the HTTP 307 redirect status code.

The problem now is that when using the 307 redirect status code, the RO’s user-agent retains the
HTTP method used as well as the body of the request. Thus the same POST request including the
body is sent to the client instance through the redirect. Since the POST request contains the RO’s
credentials in the body, this leaks the credentials to the client instance. If the client instance is
controlled by an attacker, the attacker can now abuse the credentials, e.g., to impersonate the honest
RO at the honest AS.

To prevent this attack, the author of this thesis has proposed a security consideration [13] based on
the OAuth 2.0 Security Best Current Practice [21]. This security consideration was merged into the
protocol on December 2, 2021, and states that ASs should use the HTTP 303 status code for redirects
of requests that potentially contain sensitive data, as only this redirect status code unambiguously
requires that the request is rewritten into a GET request and the body is thus dropped.

3.2 Cuckoo Token Attack

This attack on the OpenID Financial-grade API was found by Fett et al. [5]. Under the following
assumptions, it can also be applied to GNAP:
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3 Attacks

• An honest client instance is configured to use multiple ASs, one of which is controlled by the
attacker.

• The honest client instance uses the same key and key proofing method for the AS controlled
by the attacker as well as at least one of the honest ASs the client instance is configured to use.

• The attacker obtained a leaked access token issued by one of the ASs for which the honest
client instance uses the same key and key proofing method as for the AS controlled by the
attacker. This access token can be used to access the resources of an honest RO at an honest
RS, and it is bound to the key and key proofing method of the honest client instance.

If these assumptions are given, the attacker can now use the attack to bypass the token binding of
the access token he obtained, as shown in Figure 3.1.

Attacker (End User) Client Instance Attacker (AS)

1 POST /start
attacker-as

2 POST /grant-request

3 Response
access_token

RS

4 GET /resource
access_token

5 Response
resource

6 Response
resource

Figure 3.1: Cuckoo Token Attack.

In the role of an end user, the attacker starts a flow with the honest client instance for which the
access token obtained by the attacker was issued 1 . Thereby, the attacker lets the client instance
use the AS it controls. The client instance then sends a grant request to the attacker-controlled AS
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requesting an access token 2 . The attacker responds to this grant request with a grant response that
contains the leaked access token obtained by the attacker 3 . The attacker also binds the returned
access token to the key and key proofing method used by the client instance (instead of binding the
access token to a newly generated key). The client instance now thinks that this access token is a
new access token issued to it since access tokens are opaque to client instances in GNAP. If the
client instance now requests resources from an honest RS 4 , the RS will return the resources of the
honest RO for whom the access token was actually issued 5 . The access token can be used at the
RS both in the session of the client instance with the honest RO and in the session with the attacker
since the access token was bound to the key and the key proofing method of the client instance in
both sessions and the client instance uses the same key and the same key proofing method with
both ASs. Thus, the attacker now has access to the honest RO’s resources via the honest client
instance 6 .

To prevent this attack, the editors of GNAP added a new security consideration to the protocol
that proposed two different approaches to mitigate the attack [24]. This security consideration was
merged into the protocol on December 23, 2021. The first mitigation is that the client instance uses
a different key for each AS it is configured to use. This invalidates the second assumption. The RS
will reject the request for the resource 4 because the client instance will use the key it uses for the
AS controlled by the attacker, but the access token is bound to the key for the honest AS. The second
mitigation is that the client instance maintains a strong association between the RS and a particular
AS that is allowed to issue access tokens for that RS. Thus, the attacker cannot access the honest
RO’s resources because there is no RS that the client instance accesses with both access tokens it
received from the honest AS and access tokens it received from the attacker-controlled AS.

3.3 Client Instance Mix-Up Attack

In December 2021, it was discovered that a known attack on the cross-device flow of the Self-Issued
OpenID Provider (SIOP) protocol can also be applied to GNAP under certain conditions. The
attack on SIOP was presented and discussed at the OAuth Security Workshop 2021 [20].

In the following, we explain how the attack on GNAP works when the user code interaction start
mode and the push interaction finish mode are used. More details and an explanation of why the
attack does not work when the redirect interaction start mode and the redirect interaction finish
mode are used can be found in [14].
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3 Attacks

Browser Attacker Client Instance AS

1 POST /start
as

2 POST /start
as

3 POST /grant-request
finish_uri, ci_nonce

4 Response
user_code, as_nonce, continue_uri, continue_access_token

5 Response
user_code, user_code_uri

6 Response
user_code, user_code_uri

7 GET user_code_uri
user_code

8 Response
authEP, user_code

9 POST authEP
user_code, username, password

Response

10 POST finish_uri
interact_ref, hash

Response

11 POST continue_uri
interact_ref, continue_access_token

12 Response
access_token

Figure 3.2: Client Instance Mix-Up Attack.
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The attack is illustrated in Figure 3.2. In this attack, the attacker takes on two different roles. In
the communication with the end user/browser, the attacker assumes the role of a client instance
while acting as an end user/browser towards an honest client instance. The attack begins with an
honest browser starting a GNAP flow with the attacker as the client instance 1 . The attacker replays
this request (in the role of a browser) by also starting a GNAP flow with an honest client instance,
specifying the same AS as the honest browser 2 . The client instance then sends a grant request
to the chosen honest AS 3 and receives a user code 4 due to the use of the user code interaction
start mode, which it then transmits to the attacker 5 . The attacker passes this user code back to
the honest browser 6 . The honest browser then navigates to the user code interaction URI of the
AS 7 and transmits the user code to the AS 9 . Since the honest browser interacts with the AS
selected by itself in 1 , the browser cannot detect the attack at this point. In theory, the honest end
user can detect the attack based on the information about the client instance provided by the AS,
since the AS interacted with a different client instance than the end user. However, this requires
corresponding knowledge on the part of the end user, which the end user often does not have in
practice. If the end user authorizes the grant request of the honest client instance due to this lack of
knowledge, the flow between the honest client instance and the AS is completed normally ( 10 - 12 ),
and the attacker can access the resources of the honest end user with the privileges of the honest
client instance after the access token has been transmitted to the honest client instance 12 .

The possible scenarios in which the combination of interaction start mode and interaction
finish mode enables this attack were addressed by the editors of GNAP in this pull re-
quest [23], which has been merged into the protocol. A section has been added to this pull
request by the author of this thesis explaining the attack in more detail. The associated com-
mit is available at https://github.com/ietf-wg-gnap/gnap-core-protocol/pull/390/commits/
b028a1e363e90ad1c2711bd8244ea76e3957f935.

Appendix A.3 describes how we dealt with this attack in our model.
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4 Related Work

We focus on other security analyses of GNAP as well as other WIM-based formal security analyses
of comparable standards such as OAuth 2.0.

Fett et al. [7] performed the first extensive formal analysis of the OAuth 2.0 standard using the WIM.
They were able to find four attacks for which they proposed fixes to prove the security properties
they had defined. One of these attacks is the 307 redirect attack, for which we found, as detailed in
Section 3.1, that it can also be applied to GNAP. Fett et al. [5] performed an analysis of the OpenID
Financial-grade API, which found, among other vulnerabilities, the cuckoo token attack, which
can also be applied to GNAP, as seen in Section 3.2. Furthermore, Fett et al. [10] conducted a
WIM-based analysis of the OpenID Connect standard, which is built on OAuth 2.0.

Axeland and Oueidat [1] performed a security analysis of attack surfaces on GNAP. In doing so, they
looked at legacy attacks on OAuth 2.0 and evaluated whether they could be applied to GNAP as well.
They applied the IdP mix-up attack found by Fett et al. [7] to GNAP and found that GNAP is also
vulnerable to it. This attack has since been fixed in GNAP when using an interaction finish mode,
but the attack can still be carried out when not using an interaction finish mode [26]. They also
tested common attacks such as redirect attacks and Cross-Site Request Forgery (CSRF), whereby
they did not find any vulnerability. Compared to this work, they have only evaluated specific known
attacks in the context of GNAP, but have not subjected GNAP to a formal analysis through proving
security properties. They have also focused on interaction using the redirect interaction modes, as
these are closest to OAuth 2.0, while this work also considers the user code interaction start mode
and the push interaction finish mode.
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5 Conclusion and Outlook

In this thesis, we have modeled and analyzed the Grant Negotiation and Authorization Protocol in
the Web Infrastructure Model. Our model covers all roles involved, namely the client instance, the
authorization server, the resource server, and the end user/resource owner. Furthermore, our model
allows arbitrary combinations of the redirect interaction start mode and the user code interaction
start mode with the redirect interaction finish mode and the push interaction finish mode. In addition,
we have covered token introspection, requesting subject identifiers, and software-only authorization
in our model.

For modeling the user code interaction start mode, we extended the browser model of the Web
Infrastructure Model by simulating entering a user code at an authorization server.

As part of our work, we found that two attacks on similar protocols, the 307 redirect attack, and the
cuckoo token attack, can also be applied to GNAP. For those attacks, as well as the client instance
mix-up attack which was discovered during the work on this thesis, we have worked out security
considerations together with the editors of GNAP to address and prevent these attacks. In addition,
we pointed out to the working group a security problem in deriving so-called downstream tokens
and several insufficiently specified particulars, such as the use of symmetric keys together with
token introspection.

In our analysis, we proved that if the aforementioned security considerations are taken into
account, our authorization property for end user-owned resources and our authorization property
for software-only authorization hold.

Outlook

In addition to the authorization property we have shown for end user-owned resources, the question
arises whether session integrity also applies to authorization. Since GNAP can also be used as
an identity protocol, it should also be examined whether authentication and session integrity for
authentication are fulfilled when a user logs in to a client instance using GNAP. As our model
already contains such a login functionality, it can be used as a starting point for such an analysis.

Once the security problem regarding the derivation of downstream tokens is solved and this feature
is further detailed, it would be worthwhile to extend our model with this functionality and investigate
whether it results in new attacks. The transmission of assertions between client instances and
authorization servers, which we have left out of our model, could be another interesting extension.
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A Formal Model of GNAP

This appendix contains our formal model of GNAP, which is used to prove the security properties
defined in Appendix C. Appendix A.1 will explain what adjustments were made to the WIM for
modeling GNAP. Appendix A.2 provides an outline of the model, while Appendix A.3 provides
decisions and notes as well as limitations regarding our modeling. The assignment of addresses
and domain names to processes is explained in Appendix A.4. Appendix A.5 explains which
nonces are used in the model. Appendix A.6 describes how identities of resource owners are
modeled. Corruption of processes is discussed in Appendix A.7. Network attackers and browsers
are then covered in Appendix A.8 and Appendix A.9, respectively. Appendix A.10 defines helper
functions that are used in the modeling of the servers. Modeled as servers are client instances,
authorization servers, and resource servers which are defined in Appendix A.11, Appendix A.12
and Appendix A.13, respectively.

A.1 Adjustments to the Web Infrastructure Model

A.1.1 Headers

GNAP uses several headers for signing and authorizing requests. Since only certain headers with
certain values are defined in the WIM, we have to redefine the Authorization header and add three
more headers for modeling GNAP.

In our modeling of GNAP, the Authorization header is a term of the form

⟨Authorization, ⟨scheme, 𝑛⟩⟩

with 𝑛 ∈ N and scheme ∈ {GNAP, Bearer}. The nonce 𝑛 models an access token and scheme is
the used HTTP Authentication scheme. This header is used in continuation requests from client
instances to ASs and in resource requests from client instances to RSs. For continuation requests,
the scheme is always GNAP, while for resource requests it can be either GNAP or Bearer, depending
on whether the specified access token is a bound access token or a bearer token.

In addition, we use the following headers for signing requests:

• ⟨Digest, 𝑡⟩ with 𝑡 ∈ TN . In this header, 𝑡 is the hash value of the body of the request 𝑚,
with which this header is sent, i.e., hash(𝑚.body). This header is used together with the
Signature-Input header and the Signature header to simulate HTTP Message Signature key
proofs.

• ⟨Signature-Input, 𝑡⟩ with 𝑡 ∈ TN . In this header, 𝑡 is a sequence that denotes the input to
the signature algorithm, i.e., everything that is signed by the signature. This includes the
value of the Digest header, meaning that the body of the request is also signed.
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• ⟨Signature, 𝑡⟩ with 𝑡 ∈ TN . In this header, 𝑡 is the signature value resulting from the
execution of the signature algorithm. If a symmetric key is used by the signer, this value can
also be a Message Authentication Code (MAC).

A.1.2 Browser Model

To use the user code interaction start mode we have adapted the browser model of the WIM [9].
These adaptations simulate that an end user receives a user code, remembers it and then enters it as
part of the login process on the user code interaction page of the AS. For this we have made the
following changes.

To Definition 32 of the WIM, we add two more types of references for requests. ⟨START, nonce⟩ is
used when a browser prompts a client instance to send a grant request to an AS, where nonce is a
window reference. ⟨UCL, nonce⟩ is used when a browser wants to perform a login using a received
user code, where nonce is also a window reference.

To the definition of the set of states 𝑍webbrowser of a web browser atomic Dolev-Yao (DY) process in
Definition 33 of the WIM, we add the following new subterms:

• pendingInteractions ∈
[
N × URLs

]
is used to store received user codes and the corresponding

URLs of the user code interaction pages

• usedCIs ∈
[
N × Doms

]
is used to store the domains of the client instances through which a

user code was obtained

In the upcoming code sections, old code taken from the WIM is shown in this color, while new or
changed code is shown in black.

To RUNSCRIPT (Algorithm A.1) we have added a new command ⟨STARTGRANT, url, as⟩. This is
used by the index page of the client instances to send a request to the client instance at the URL url,
which then sends a grant request to the AS at the domain as (if the client instance is configured to
use this AS). Thereby the new START reference type is used.

Algorithm A.1 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, 𝑠′)
...

18: switch command do
19: case ⟨STARTGRANT, url, as⟩
20: let reference := ⟨START, 𝑠′.w.nonce⟩
21: let req := ⟨HTTPReq, 𝜈4, POST, 𝑢𝑟𝑙.host, 𝑢𝑟𝑙.path, 𝑢𝑟𝑙.parameters, ⟨⟩, as⟩
22: let 𝑠′ := CANCELNAV(reference, 𝑠′)
23: call HTTP_SEND(reference, req, url, docorigin, referrer, referrerPolicy, 𝑠′)
24: case ⟨HREF, url, hrefwindow, noreferrer⟩

...
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In PROCESSRESPONSE (Algorithm A.2) we change the reference type of a START type request
to REQ (Line 28) when handling redirects, since the redirect interaction start mode is used when
receiving a redirect, but we only need the START type for user code interactions. Since the interaction
start mode used is not known to the browser when sending the request, we always use the START
type for the request and then change the type if the redirect interaction start mode is used.

If the user code interaction start mode is used, the browser stores the user code together with the
URL of the user code interaction page in pendingInteractions (Line 38), and the user code together
with the domain of the client instance used for the request in usedCIs (Line 39).

47



A Formal Model of GNAP

Algorithm A.2 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response, reference, request, requestUrl, key, 𝑓 , 𝑠′)

...

26: let referrerPolicy := response.headers[ReferrerPolicy]
27: if 𝜋1 (reference) ≡ START then
28: let reference := ⟨REQ, 𝜋2 (reference)⟩ → Redirect interaction start mode is used
29: call HTTP_SEND(reference, req, url, origin, referrer, referrerPolicy, 𝑠′)

else
30: stop ⟨⟩, 𝑠′

31: switch 𝜋1 (reference) do
32: case START
33: if userCode ∉ response ∨ userCodeUrl ∉ response then
34: stop ⟨⟩, 𝑠′ → The response must contain a user code and the URI of the user

code interaction page
35: let userCode := response[userCode]
36: let userCodeUrl := response[userCodeUrl]
37: let domainCI := requestUrl.host
38: let 𝑠′.pendingInteractions := 𝑠′.pendingInteractions

↩→ +⟨⟩ ⟨userCode, userCodeUrl⟩
39: let 𝑠′.usedCIs := 𝑠′.usedCIs +⟨⟩ ⟨userCode, domainCI⟩
40: case UCL
41: let w← Subwindows(𝑠′) such that 𝑠′.w.nonce ≡ 𝜋2 (reference) if possible;

↩→ otherwise stop
42: if response.body ≁ ⟨∗, ∗⟩ then
43: stop ⟨⟩, 𝑠′

44: let script := 𝜋1 (response.body)
45: let domainCI := 𝜋2 (response.body)
46: let userCode := requestUrl.parameters[user-code]
47: let domainUsedCI := 𝑠′.usedCIs[userCode]
48: if domainCI ≡ domainUsedCI then
49: let scriptinputs := [userCode:userCode]
50: else
51: let scriptinputs := ⟨⟩
52: let 𝑠′.pendingInteractions := 𝑠′.pendingInteractions − userCode
53: let 𝑠′.usedCIs := 𝑠′.usedCIs − userCode
54: let 𝑑 := ⟨𝜈7, requestUrl, response.headers, referrer, script, ⟨⟩, scriptinputs, ⟨⟩,⊤⟩
55: if 𝑠′.w.documents ≡ ⟨⟩ then
56: let 𝑠′.w.documents := ⟨𝑑⟩
57: else
58: let i← N such that 𝑠′.w.documents.i.active ≡ ⊤
59: let 𝑠′.w.documents.i.active := ⊥
60: remove 𝑠′.w.documents.(i + 1) and all following documents

↩→ from 𝑠′.w.documents
61: let 𝑠′.w.documents := 𝑠′.w.documents +⟨⟩ 𝑑
62: stop ⟨⟩, 𝑠′

63: case REQ
...
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The stored user codes are then used in the main algorithm of the browser (Algorithm A.3). To
simulate a login, we have added the login case to the possible actions a browser can perform
when triggered. When login is chosen in Line 8 and there is an entry in pendingInteractions, the
browser sends a GET request to the user code interaction page from the entry. In the request, the
browser includes the user code as a parameter. The UCL reference type is used for this request. The
AS uses the user code to identify the domain of the client instance that sent the corresponding grant
request to the AS and transmits this domain to the browser in the response. This is done to prevent
the client instance mix-up attack (see Section 3.3). For details on how we handle this attack in our
model, see Appendix A.3.

In the main algorithm, we also set the two new subterms pendingInteractions and usedCIs to ⟨⟩ if
the browser is closed (Lines 60f.).

In PROCESSRESPONSE (Algorithm A.2), when a response is received to a request with reference
type UCL, the user code used is obtained from the parameters in requestUrl. The user code can then
be used to obtain the domain of the client instance used by the browser from usedCIs. The browser
takes the domain of the client instance that sent the grant request to the AS from the body of the
response. If the two domains match, the script selected by the AS receives the used user code as
input via scriptinputs. Otherwise, scriptinputs remains empty (Lines 48ff.). In Lines 52f. the used
entries from pendingInteractions and usedCIs are removed so that they are not used again.
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Algorithm A.3 Web Browser Model: Main algorithm.
Input: ⟨𝑎, 𝑓 , 𝑚⟩, 𝑠

...

7: if 𝑚 ≡ TRIGGER then
8: let switch← {script, login, urlbar, reload, forward, back}
9: if switch ≡ script then

...

12: call RUNSCRIPT(w, d, 𝑠′)
13: else if switch ≡ login then → Perform login using user code
14: if 𝑠′.pendingInteractions ≡ ⟨⟩ then
15: stop → No user code has been received yet or all received user codes have been used
16: let newwindow← {⊤,⊥}
17: if newwindow ≡ ⊤ then → Create a new window
18: let windownonce := 𝜈1
19: let 𝑤′ := ⟨windownonce, ⟨⟩,⊥⟩
20: let 𝑠′.windows := 𝑠′.windows +⟨⟩ 𝑤′
21: else → Use existing top-level window
22: let windownonce := 𝑠′.tlw.𝑛𝑜𝑛𝑐𝑒
23: let ⟨userCode, userCodeUrl⟩ ← 𝑠′.pendingInteractions
24: let req := ⟨HTTPReq, 𝜈2, GET, userCodeUrl.host, userCodeUrl.path,

↩→ [user-code:userCode], ⟨⟩, ⟨⟩⟩
25: call HTTP_SEND(⟨UCL,windownonce⟩, req, url,⊥,⊥,⊥, 𝑠′)
26: else if switch ≡ urlbar then

...

59: else if 𝑚 ≡ CLOSECORRUPT then
60: let 𝑠′.pendingInteractions := ⟨⟩
61: let 𝑠′.usedCIs := ⟨⟩
62: let 𝑠′.secrets := ⟨⟩

...

A.1.3 Definition of stored in and initially stored in

We additionally introduce the following formulation that is used to describe the states of processes:

Definition 1
We say that a term 𝑡 is stored in an atomic DY process 𝑝 in a state 𝑆 if 𝑡 is a subterm of 𝑆(𝑝). If
𝑆 = 𝑠0, we say that 𝑡 is initially stored in 𝑝.

In addition to stored in and initially stored in, we will also use the formulation appears only as a
public key from Definition 50 in [9] to describe states.

A.2 Outline

We model GNAP as a web system in the WIM as defined in [9].
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A.3 Modeling Remarks and Limitations

We call a web system GWS = (W , S , script, 𝐸0) a GNAP web system if it is of the form described in
this and the following sections.

Similar to Fett et al. [8], the system W = Hon ∪ Net consists of a network attacker process (in
Net), a finite set B of web browsers, a finite set CI of web servers for client instances, a finite set
AS of web servers for authorization servers, and a finite set RS of web servers for resource servers
with Hon = B ∪ CI ∪ AS ∪ RS. More details on the processes in W are provided below. We do
not model Domain Name System (DNS) servers, as they are subsumed by the network attacker.
Table A.1 shows the set of scripts Scripts and their respective string representations that are defined
by the mapping script. The set 𝐸0 contains only trigger events.

𝑠 ∈ S script(𝑠)
𝑅att att_script
script_ci_index script_ci_index
script_as_login script_as_login

Table A.1: List of scripts in S and their respective string representations.

A.3 Modeling Remarks and Limitations

This section contains comments on our overall modeling of GNAP and its limitations. See
the descriptions of the algorithms in Appendix A.11, Appendix A.12, and Appendix A.13 for
role-specific modeling remarks.

Modeling of Mutual TLS (MTLS) GNAP uses MTLS as one of its key proofing methods. MTLS
has already been modeled within the WIM by Fett et al. [6], which is why we adopt the modeling
provided there.

Unique URLs In GNAP, unique URLs are used in various places to associate a request with a
particular flow. The examples in the protocol use random values within the path. However, since
GNAP does not prohibit using the query string for this purpose, we use a parameter whose value
contains a nonce to uniquely associate a URL.

Empty HTTP Responses and Error Messages Using the push interaction finish mode results
in two empty HTTP responses that do not convey any information except that the associated request
was successful. In Figure 2.2, these can be seen between steps 7 and 8 and steps 8 and 9 . The
model does not include these responses because an attacker cannot extract any information from
them. We do not model error messages.
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Cross Domain Referrer Header Leakage If the redirect interaction start mode is used, the
RO may click on a link on the AS’s interaction page after being redirected to the AS. This can
leak information found in the URL to an attacker through the HTTP Referer header. To prevent
this, GNAP recommends redirecting the RO to an internal interstitial page without any identifying
or sensitive information in the URL before the actual redirect is performed. This way, after the
second redirect, no part of the original interaction URL will be found in the Referer header [cf.
26]. For simplicity, we prevent such a leak not by using interstitial pages, but by using the HTTP
Referrer-Policy header with the origin directive, which also prevents the described problem.

Key References and Instance Identifiers In GNAP both key references and instance identifiers
are used. A key reference refers to a specific key, as the name implies, while an instance identifier
can also have additional information associated. This information can be displayed to the RO when
authorizing a request, for example. Since modeling this information in the WIM would not be
meaningful, we do not model it so that an instance identifier encompasses the same information as a
key reference. Therefore, we do not explicitly model key references, but instead sometimes use
instance identifiers as key references.

Keys Used for MTLS As recommended by GNAP in response to the cuckoo token attack
described in Section 3.2, we use each key with only one AS. Therefore, for MTLS, we do not use the
TLS keys that a server following the WIM’s generic HTTPS server model has, but keys specifically
intended for key proofing methods. This models the use of self-signed certificates for MTLS as
allowed by GNAP. It may not be possible to use the TLS keys for MTLS, since the number of
domains of a client instance may be smaller than the number of ASs the client instance is configured
to use.

Modeled Interaction Start Modes Of the interaction start modes existing at the time of this
work, we only model the redirect mode and the user code mode, but not the app mode, which we
consider out of scope for this work.

Resource Access Rights For simplicity, we do not model a particular resource access model
(of which GNAP also does not prescribe a particular one). Therefore, the grant requests in our
model do not describe which resources and rights should be associated with a requested access
token. Instead, an access token is always associated with the RO for which the access token is issued,
and an access token can always be used to access all resources of the associated RO. Introspection
responses thus only specify which RO’s resources can be accessed with an access token. If the RO
is an end user, it is identified by its identity (see Appendix A.6). A client instance is identified by its
instance identifier at the respective AS.

Since all resources of the RO can always be accessed with an access token, we do not model the
possibilities of access token splitting and requesting multiple access tokens using a single grant
request. This also means that a client instance cannot extend or restrict the requested rights or
resources through a continuation request. However, in our model, a continuation request can be
used to request different values than before, for example, a bearer token instead of a key-bound
access token or the request is extended to include a subject identifier of the RO.
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Authorization During Interaction with the RO Since we do not model a particular resource
access model, the RO does not need to be informed during the interaction with the AS which resources
the client instance wants to access. Therefore, in our model, there is no explicit authorization of
grant requests by the RO. Instead, a login by the RO at the AS also means that the grant request of
the client instance is authorized.

Since there is no possibility to extend the requested rights/resources through a continuation request,
in our model the interaction with the resource owner is always only required for the first grant
request of a flow, all subsequent continuation requests are automatically accepted by the AS.

Not Using an Interaction Finish Mode As mentioned in Section 2.3.2, using active polling
instead of an interaction finish mode is insecure, since in this case, an AS mix-up attack is possible.
Therefore, GNAP recommends using an interaction finish mode whenever possible, which is why
we have not included the possibility of polling in our model.

Token Management In our model, once issued, access tokens are valid forever since in a secure
protocol an attacker should never succeed in using an access token not issued to him. Therefore, we
do not model the token management functions offered by GNAP, such as rotating and revoking
access tokens. We therefore also do not model the durable flag, since our modeling behaves as if
the durable flag is always set.

Relation between End User and RO In our modeling, the end user always corresponds to the
RO. Thus, we do not model a scenario where an AS determines that a particular RO is needed
to authorize a grant request and contacts it, for example, via asynchronous authorization. This is
also because a concrete implementation of asynchronous authorization is out of scope for GNAP.
Consequently, there is no scenario in our modeling where multiple ROs have to approve a grant
request.

Note that this does not mean that an RO is always an end user since in the case of software-only
authorization an RO can also be a client instance.

Access Token Formats GNAP allows both the use of nonces as access tokens in combination
with token introspection and the use of structured access tokens, both of which have their advantages
and disadvantages. We chose to use nonces as access tokens in our modeling because it allows us to
model token introspection as well, while GNAP does not specify a particular format for structured
access tokens, which would make it more difficult to model them.

Assertions We do not model the ability to transmit assertions from an AS to a client instance or
vice versa, as this optional GNAP feature is beyond the scope of this thesis.

Downstream Tokens We did not include the possibility of deriving downstream tokens in our
model because, at the time of this work, it was not yet fully specified and still subject to the security
problem mentioned in Chapter 1.
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Transfer of Subject Identifiers from Client Instance to AS GNAP allows a client instance
to transfer a subject identifier of its current end user within a grant request to the AS if the client
instance knows such a subject identifier (e.g. from a previous grant response of the same AS). The
AS can use this subject identifier, for example, to reject a login of the end user during the interaction
if the end user logs in with a different subject identifier than the one submitted by the client instance
in the grant request. In our model, if a client instance receives a request to start a grant request
from a browser and this request includes a session ID for which the client instance has already
received a subject ID from the used AS in the past, the client instance will send the subject ID to
the AS in the grant request and the AS will reject the login if the end user logs in with a different
subject ID. We decided to reject the login in this case because an end user cannot usually log in to
an AS with different identities within a single session at the client instance. Instead, we modeled a
logout endpoint that allows an end user to logout from the client instance so that a new session ID is
assigned to the browser, preventing the client instance from associating an old subject identifier
with a new request from that browser and thus allowing the end user to log in to the AS under a
different identity.

Handling the Client Instance Mix-Up Attack The following describes how we dealt with the
client instance mix-up attack presented in Section 3.3 in our model.

When using the redirect interaction finish mode, the attack cannot be performed in our model
because the AS would redirect the browser to the honest client instance after the interaction. The
honest client instance would then detect the attack because the browser would not transmit a
session identifier to the client instance, since the browser has previously talked to the client instance
controlled by the attacker and the attacker cannot set a session identifier for the honest client instance
because it uses a different domain.

If the redirect interaction start mode is used together with the push interaction finish mode, the
attack is detected by the AS after the redirect by the attacker-controlled client instance. In our model,
the AS checks the Referer header after the redirect. If the domain specified in the header does not
match the domain of the client instance that sent the grant request to the AS, the AS rejects the
interaction with the browser. Note that this fix is only possible if redirects are used in the redirect
interaction start mode (which, contrary to the name of this mode, is not necessarily the case). For
example, if only a browser with the interaction URL is started from a client instance installed locally
on the end user’s device, no Referer header is sent, so this fix is not applicable in this case.

If the user code interaction start mode is used together with the push interaction finish mode, the
attack is prevented by our adjustments to the browser model described in Appendix A.1.2. These
simulate that the end user detects the attack due to the information provided by the AS during the
interaction and therefore does not enter the user code so that the grant request is not authorized. For
this purpose, the browser remembers the domain of the client instance used by the browser and the
AS transmits the domain of the client instance that sent the grant request. Only if these two domains
match, the script sent by the AS receives the user code as input via the scriptinputs. If the domains
do not match, the AS does not receive any user code, so the grant request cannot get authorized.
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A.4 Addresses and Domain Names

We will now define the atomic Dolev-Yao processes in GWS and their addresses, domain names,
keys and secrets in more detail.

Similar to [8], the set IPs contains for the network attacker in Net, every client instance in CI, every
authorization server in AS, every resource server in RS, and every browser in B a finite set of
addresses each. The set Doms contains a finite set of domains for every client instance in CI, every
authorization server in AS, every resource server in RS, and the network attacker in Net. Browsers
(in B) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms,
respectively.

A.5 Keys and Secrets

Also similar to [8], the set N of nonces is partitioned into six sets, the infinite sequence 𝑁 and
finite sets 𝐾TLS, 𝐾KP, KeyIDs, Passwords, and ProtectedResources. We thus have

N = 𝑁︸︷︷︸
infinite sequence

¤∪ 𝐾TLS︸︷︷︸
finite

¤∪ 𝐾KP︸︷︷︸
finite

¤∪KeyIDs︸  ︷︷  ︸
finite

¤∪Passwords︸       ︷︷       ︸
finite

¤∪ProtectedResources︸                     ︷︷                     ︸
finite

.

These sets are used as follows:

• The set 𝑁 contains the nonces that are available for each DY process in W (it can be used to
create a run of W ).

• The set 𝐾TLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→
𝐾TLS be an injective mapping that assigns a (different) private key to every domain. For an
atomic DY process 𝑝 we define tlskeys𝑝 = ⟨{⟨𝑑, tlskey(𝑑)⟩ | 𝑑 ∈ dom(𝑝)}⟩.

• The set 𝐾KP contains the keys that will be used for the key proofing methods.

• The set KeyIDs contains identifiers that will be used by the client instances, the ASs, and the
RSs to identify keys used by the client instances and the RSs to sign their requests.

• The set Passwords is the set of passwords (secrets) the browsers share with the ASs. These
are the passwords the ROs use to log in at the ASs (if the RO is not a client instance).

• The set ProtectedResources contains a secret for each combination of AS, RO, and RS.
These are thought of as protected resources that only the RO should be able to access. An RO
can thus access exactly one resource at a given RS using a given AS. This resource subsumes
all possible resources for which the RO may request access using GNAP since, as mentioned
above, we do not model a specific resource access model. Note that in our model, an RO can
be not only an end user but also a client instance accessing resources using software-only
authorization.
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A.6 Identities and Passwords

As in [8], we use identities to model an RO logging in at an AS. Identities consist, similar to email
addresses, of a username and a domain part. They are defined as follows:

Definition 2
An identity 𝑖 is a term of the form ⟨name, domain⟩ with name ∈ S and domain ∈ Doms.

Let ID be the set of identities. By ID𝑦 we denote the set {⟨name, domain⟩ ∈ ID | domain ∈ dom(𝑦)}.

We say that an ID is governed by the DY process to which the domain of the ID belongs. Formally,
we define the mapping governor : ID→W , ⟨name, domain⟩ ↦→ dom−1(domain).

The governor of an ID will usually be an AS, but could also be the attacker. Besides governor, we
define the following mappings:

• By secretOfID : ID→ Passwords we denote the bĳective mapping that assigns secrets to all
identities.

• Let ownerOfSecret : Passwords → B denote the mapping that assigns to each secret
a browser that owns this secret. Now, we define the mapping ownerOfID : ID → B,
𝑖 ↦→ ownerOfSecret(secretOfID(𝑖)), which assigns to each identity the browser that owns
this identity (we say that the identity belongs to the browser).

Identities will also be used when an AS returns subject identifiers requested by a client instance.
In this case, the AS returns the identity of the RO that logged in to the AS, which subsumes the
different types of subject identifiers specified in [3].

A.7 Corruption

Similar to [8], client instances, ASs, and RSs can become corrupted: If they receive the message
CORRUPT, they start collecting all incoming messages in their state and (upon triggering) send out
messages that are non-deterministically chosen from the set of all messages that are derivable from
their state and collected input messages, just like the attacker process. We say that an AS, a client
instance, or an RS is honest if the according part of their state (𝑠.corrupt) is ⊥, and that they are
corrupted otherwise.

A.8 Network Attackers

As mentioned, the network attacker na is modeled to be a network attacker as specified in [9]. As
in [8], we allow it to listen to/spoof all available IP addresses, and hence, define 𝐼na = IPs. The
initial state is 𝑠na

0 = ⟨attdoms, tlskeys, keyproofkeys⟩, where attdoms is a sequence of all domains
along with the corresponding private keys owned by the attacker na, tlskeys is a sequence of all
domains and the corresponding public keys, and keyproofkeys is a sequence containing the public
keys of all private keys in 𝐾KP (i.e., all keys used for signatures or MTLS, but not the keys used for
MACs, see Appendix A.11).
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A.9 Browsers

Each 𝑏 ∈ B is a web browser as defined in [9], with 𝐼𝑏 := addr(𝑏) being its addresses.

We define the initial state similar to [11]. First let ID𝑏 := ownerOfID−1(𝑏) be the set of all IDs of 𝑏.
The set of passwords that a browser 𝑏 gives to an origin 𝑜 is defined as follows: If the origin belongs
to an AS, then the user’s passwords of this AS are contained in the set. To define this mapping in
the initial state, we first define for some process 𝑝

Secrets𝑏,𝑝 =

{
𝑠

��� 𝑏 = ownerOfSecret(𝑠)∧ (∃ 𝑖 : 𝑠 = secretOfID(𝑖) ∧ 𝑖 ∈ ID𝑝)
}
.

Then, the initial state 𝑠𝑏0 is defined as follows: keyMapping maps every domain to its public (TLS)
key, according to the mapping tlskey; DNSaddress is an address of the network attacker; the list of
secrets secrets contains an entry ⟨⟨𝑑, S⟩, ⟨Secrets𝑏,𝑝⟩⟩ for each 𝑝 ∈ AS and 𝑑 ∈ dom(𝑝); ids is
⟨ID𝑏⟩; sts, pendingInteractions, and usedCIs are empty.

A.10 Helper Functions

In our modeling, the following key proof related helper functions are used, which can be used by all
servers.

A.10.1 SIGN_AND_SEND

This algorithm inserts the headers used for key proofs into an HTTP request and then sends this
request via the HTTPS_SIMPLE_SEND algorithm of the generic HTTPS server model from [9].
The algorithm simulates the HTTP Message Signature (httpsig) key proofing method [2]. We
do not model the JWS-based methods (jwsd and jws) that are currently also supported by GNAP,
because they differ primarily syntactically at the abstraction level of the WIM and the few semantic
differences do not affect the security properties. 𝜈𝑛3 and 𝜈𝑛4 denote placeholders for nonces that are
not used elsewhere by any of the processes that use this algorithm.

The input parameters are used as follows: HTTPMethod is the HTTP method that will be used to
send the request. url is the URL to which the request will be sent. If keyProof ≡ sign, key is used
to sign the message. If keyProof . sign (e.g. mac), key is used to create a MAC for the message.
keyID models the kid property of JSON Web Keys [18]. body is the body of the HTTP request.
Through authHeader an Authorization header can be included in the request. If no Authorization

header is to be used, authHeader must be ⊥. reference, 𝑠′, and 𝑎 are required as input parameters
for HTTPS_SIMPLE_SEND.
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Algorithm A.4 Helper Functions: Signing and sending requests.
1: function SIGN_AND_SEND(HTTPMethod, url, keyID, key, keyProof , authHeader, body,

↩→ reference, 𝑠′, 𝑎)
2: let sigInput := [method:HTTPMethod, targetURI:url]
3: let sigParams := [covered:⟨method, targetURI⟩, keyID:keyID, nonce:𝜈𝑛3]
4: if body . ⟨⟩ then → If the message contains a body, its digest must be signed
5: let sigInput[contentDigest] := hash(body)
6: let sigParams[covered] := sigParams[covered] +⟨⟩ contentDigest
7: if authHeader . ⊥ then → If present, the AuthZ header must be covered by the signature
8: let sigInput := sigInput +⟨⟩ authHeader
9: let sigParams[covered] := sigParams[covered] +⟨⟩ authorization

10: let sigInput[sigParams] := sigParams
11: if keyProof ≡ sign then
12: let signature := sig(siginput, key)
13: else
14: let signature := mac(siginput, key)
15: let headers := [Signature-Input:sigParams, Signature:signature]
16: if body . ⟨⟩ then
17: let headers[Digest] := hash(body)
18: if authHeader . ⊥ then
19: let headers := headers +⟨⟩ authHeader
20: let req := ⟨HTTPReq, 𝜈𝑛4,HTTPMethod, url.host, url.path, ⟨⟩, headers, body⟩
21: call HTTPS_SIMPLE_SEND(reference, req, 𝑠′, 𝑎)

A.10.2 VALIDATE_KEY_PROOF

This algorithm can be used to validate key proofs. If the key proof is invalid, the algorithm stops,
otherwise it returns.

The input parameters are used as follows: 𝑚 is the HTTP request for which the key proof should
be validated. method is the key proofing method. If method ≡ sign, this algorithm simulates the
validation of an HTTP Message Signature key proof using the public key key. If method ≡ mac, this
algorithm simulates the validation of an HTTP Message Signature key proof with a symmetric key
key. In these two cases, keyID models the kid property of JSON Web Keys [18]. If method ≡ mtls,
this algorithm finishes an MTLS key proof by verifying the MTLS nonce sent by the requester1

and checking that the key used matches key. keyID is ignored in this case. When validating
signatures or MACs, the state 𝑠′ is used to store nonces that are used as replay protection. This is
because the security considerations of GNAP recommend using some form of replay protection for
signatures/MACs [26].

1See [6] for an explanation of how MTLS is modeled within the WIM.
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Algorithm A.5 Helper Functions: Validating key proofs.
1: function VALIDATE_KEY_PROOF(method, 𝑚, keyID, key, 𝑠′)
2: if method ≡ sign ∨ method ≡ mac then → HTTP Message Signature
3: if 𝑚.body . ⟨⟩ then
4: let digest := 𝑚.headers[Digest]
5: if digest . hash(𝑚.body) then
6: stop
7: let sigParams := 𝑚.headers[Signature-Input]
8: let signature := 𝑚.headers[Signature]
9: if keyID . sigParams[keyID] then

10: stop
11: let covered := sigParams[covered]
12: if method ̸∈⟨⟩ covered ∨ targetURI ̸∈⟨⟩ covered

↩→ ∨ (𝑚.body . ⟨⟩ ∧ contentDigest ̸∈⟨⟩ covered)
↩→ ∨ (Authorization ∈ 𝑚.headers ∧ authorization ̸∈⟨⟩ covered) then

13: stop → The signature does not cover all required parts of the message
14: if nonce ∉ sigParams ∨ sigParams[nonce] ∈⟨⟩ 𝑠′.sigNonces then
15: stop → Replay protection
16: let controlURL := ⟨URL, S, 𝑚.host, 𝑚.path, 𝑚.parameters, ⟨⟩⟩
17: let controlInput := [method:𝑚.method, targetURI:controlURL]
18: if 𝑚.body . ⟨⟩ then
19: let controlInput[contentDigest] := hash(𝑚.body)
20: if Authorization ∈ 𝑚.headers then
21: let controlInput := controlInput +⟨⟩ ⟨Authorization, 𝑚.headers[Authorization]⟩
22: let controlInput[sigParams] := sigParams
23: if controlInput . extractmsg(signature) then
24: stop → The signature was not created for the correct input
25: if method ≡ sign then
26: if checksig(signature, key) . ⊤ then
27: stop → Invalid signature
28: else → method ≡ mac
29: if checkmac(signature, key) . ⊤ then
30: stop → Invalid MAC
31: let 𝑠′.sigNonces := 𝑠′.sigNonces +⟨⟩ sigParams[nonce]
32: else if method ≡ mtls then
33: let mtlsNonce := 𝑚.body[mtlsNonce]
34: let mtlsInfo such that mtlsInfo ∈⟨⟩ 𝑠′.mtlsRequests

↩→ ∧mtlsInfo.1 ≡ mtlsNonce if possible; otherwise stop
35: let 𝑠′.mtlsRequests := 𝑠′.mtlsRequests − mtlsInfo.1
36: if mtlsInfo.2 . key then
37: stop → Key used for MTLS does not match the key of the sender
38: else
39: stop → Unsupported method
40: return 𝑠′
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A.11 Client Instances

A client instance 𝑐 ∈ CI is a web server modeled as an atomic DY process (𝐼𝑐, 𝑍𝑐, 𝑅𝑐, 𝑠𝑐0) with the
addresses 𝐼𝑐 B addr(𝑐).

In the client instance state, key records are used to store information about the keys required by the
client instance for key proofs.

Definition 3
A key record is a term of one of the following forms

• ⟨sign, keyID, key, instanceID⟩

• ⟨mac, keyID, key, instanceID, rs⟩

• ⟨mtls, key, instanceID⟩

with keyID ∈ KeyIDs, key ∈ 𝐾KP, instanceID ∈ S ∪ {⊥}, and rs ∈ Doms.

For a key record 𝑟 we use 𝑟.method as notation for 𝑟.1. If instanceID . ⊥, instanceID is the
instance identifier with which the client instance is registered with an AS using the key key and (if
applicable) the key ID keyID. Otherwise, this key is used without an existing registration, i.e. the key
is not known to the AS in advance. If 𝑟.method ≡ mac, instanceID must not be ⊥. This is because
key is a symmetric key in this case and GNAP requires that symmetric keys can be dereferenced
by the AS. Thus, to use a symmetric key, a client instance must already be registered with the AS.
If symmetric keys are used, rs is the domain of the RS with which this key is additionally shared
(besides the AS). We only allow client instances to use symmetric keys in combination with a
specific AS and a specific RS, since using them with multiple RSs carries a high risk, since any of
the RSs used could impersonate the client instance at the AS or other RSs.

Next, we define the set 𝑍𝑐 of states of 𝑐 and the initial state 𝑠𝑐0 of 𝑐.

Definition 4
A state 𝑠 ∈ 𝑍𝑐 of client instance 𝑐 is a term of the form ⟨DNSaddress, pendingDNS, corrupt,
pendingRequests, keyMapping, tlskeys, keyRecords, authServers, resourceServers, sessions,
grants, receivedValues, browserRequests⟩ with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
,

corrupt ∈ TN , pendingRequests ∈
[
N × TN

]
, keyMapping ∈

[
Doms × TN

]
, tlskeys ∈

[Doms × 𝐾TLS], keyRecords ∈
[
Doms × TN

]
, authServers ∈ TN , resourceServers ∈ TN ,

sessions ∈
[
N × TN

]
, grants ∈

[
N ×

[
S × TN

] ]
, receivedValues ∈

[
N ×

[
S × TN

] ]
, and

browserRequests ∈
[
N ×

[
S × TN

] ]
,

An initial state 𝑠𝑐0 of 𝑐 is a state of 𝑐 with 𝑠𝑐0 .pendingDNS ≡ ⟨⟩, 𝑠𝑐0 .corrupt ≡ ⊥,
𝑠𝑐0 .pendingRequests ≡ ⟨⟩, 𝑠

𝑐
0 .keyMapping being the same as the keymapping for browsers,

𝑠𝑐0 .tlskeys ≡ tlskeys𝑐, 𝑠𝑐0 .sessions ≡ ⟨⟩, 𝑠
𝑐
0 .grants ≡ ⟨⟩, 𝑠

𝑐
0 .receivedValues ≡ ⟨⟩, and

𝑠𝑐0 .browserRequests ≡ ⟨⟩.

sessions will contain a dictionary that maps from session identifiers to information about that
session. The session identifiers are nonces that are stored in the browser via the Set-Cookie header
so that a particular browser session can be recognized in a further request by the same browser.
sessions is used to store the subject identifiers received from the different ASs for the different
browser instances that started grants using 𝑐. A subject identifier stored for a particular browser
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instance can be included in a new grant request to the same AS within the user field of the grant
request. sessions is also used to store at which AS the browser instance is currently logged in with
which identity. A corresponding service session ID is also stored in sessions.

grants will store various information about ongoing grants. The different grants are distinguished
by a nonce called grantID, which acts as a key for the outer dictionary.

receivedValues will store the access tokens and subject identifiers received by 𝑐. The key for the
outer dictionary is the grantID of the grant process in which the values were received. The values
of the outer dictionary are dictionaries in which the access tokens and subject identifiers are stored
under the keys accessToken and subjectID. An access token contains both the actual value of
the access token in the form of a nonce and information needed to use the access token, such as
which key the access token bound to, if any. Received access tokens can be used by 𝑐 at any time
when a trigger message is received.

browserRequests stores requests from browsers in order to be able to answer them at a later time.
The key for the outer dictionary is the grantID of the grant process in which the requests were
sent. The strings startRequest and finishRequest are used as keys for the inner dictionaries.
The values under startRequest contain requests sent by browsers to start a grant request and the
values under finishRequest contain requests sent after the RO has finished its interaction with
the AS.

𝑠𝑐0 .authServers is a non-empty sequence of domains representing the authorization servers 𝑐
is configured to use. For all domains 𝑑 ∈⟨⟩ 𝑠𝑐0 .authServers there must be an AS as ∈ AS with
𝑑 ∈ dom(as).

𝑠𝑐0 .resourceServers is a non-empty sequence of domains representing the resource servers 𝑐 is
configured to use. For all domains 𝑑 ∈⟨⟩ 𝑠𝑐0 .resourceServers there must be an RS rs ∈ RS with
𝑑 ∈ dom(rs).

𝑠𝑐0 .keyRecords is a non-empty dictionary mapping domains of ASs to sequences of key records.
For all domains 𝑑 ∈ 𝑠𝑐0 .keyRecords it must hold that 𝑑 ∈⟨⟩ 𝑠𝑐0 .authServers. The sequence
𝑠𝑐0 .keyRecords[𝑑] then contains the key records 𝑐 will use when interacting with the AS as =

dom−1(𝑑) when using the domain 𝑑. The values of 𝑠𝑐0 .keyRecords must be non-empty, so
there must be at least one key record for each domain. 𝑠𝑐0 .keyRecords must contain a value for
each 𝑑 ∈⟨⟩ 𝑠𝑐0 .authServers. Let 𝑅 B

〈⋃
𝑑∈𝑠𝑐0 .keyRecords

⋃
𝑟∈ ⟨⟩𝑠𝑐0 .keyRecords[𝑑 ]

𝑟

〉
be a sequence

containing all key records in 𝑠𝑐0 .keyRecords. For any two distinct key records 𝑟, 𝑟 ′ ∈⟨⟩ 𝑅 it
must hold that 𝑟.key . 𝑟 ′.key. If 𝑟.method ∈ {sign, mac} ∧ 𝑟 ′.method ∈ {sign, mac}, it must
hold that 𝑟.keyID . 𝑟 ′.keyID. For all key records 𝑟 ∈⟨⟩ 𝑅 with 𝑟.method ≡ mac it must hold
that 𝑟.rs ∈⟨⟩ 𝑠𝑐0 .resourceServers. Given a domain 𝑑 ∈ 𝑠𝑐0 .keyRecords, it must hold for
any two distinct key records 𝑟, 𝑟 ′ ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] that 𝑟.instanceID . 𝑟 ′.instanceID.
For two distinct domains 𝑑, 𝑑′ ∈ 𝑠𝑐0 .keyRecords, which both belong to the same AS as (i.e.,
𝑑 ∈ dom(as) ∧ 𝑑′ ∈ dom(as)), it must hold for all key records 𝑟 ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] and all
key records 𝑟 ′ ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑

′] that 𝑟.instanceID . 𝑟 ′.instanceID. For all processes
𝑝 ≠ 𝑐 it must hold that the key 𝑟.key of each key record 𝑟 ∈⟨⟩ 𝑅 with 𝑟.method ∈ {sign, mtls}
appears only as a public key in 𝑠𝑝0 . If 𝑟.method ≡ mac, 𝑟.key must only be initially stored in 𝑐,
dom−1(𝑟.rs), and the AS as that has the domain 𝑑 in dom(as) for which 𝑟 ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑].
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We now specify the relation 𝑅𝑐: This relation is based on the generic HTTPS server model defined
in [9]. Hence, we only need to specify algorithms that differ from or do not exist in the generic
server model. These algorithms are defined in Algorithms A.6–A.11. Note that in several places
throughout these algorithms we use placeholders to generate “fresh” nonces. Table A.2 shows a list
of all placeholders used.

Placeholder Usage
𝜈1 new grant ID
𝜈2 new nonce to generate a unique interaction finish URL
𝜈3 new nonce for the calculation of the interaction finish hash
𝜈4 new session identifier for the browser
𝜈5 new HTTP request nonce
𝜈6 new HTTP request nonce
𝜈7 new grant ID
𝜈8 new HTTP request nonce
𝜈9 new HTTP request nonce
𝜈10 new HTTP request nonce
𝜈11 new service session identifier

Table A.2: List of placeholders used in the client instance algorithms.

The script that is used by the client instance is described in Algorithm A.12. In this script, to
extract the current URL of a document, the function GETURL(tree, docnonce) is used which is
also defined in [9].

The following algorithms are used for modeling the client instances:

• Algorithm A.6 processes requests to the client instance. A browser can obtain the index
page of 𝑐 by sending a GET request 𝑚 to 𝑐 with 𝑚.path ≡ /. The index page contains a
script that sends a request to the /startGrantRequest path, which causes 𝑐 to send a grant
request to an AS chosen by the browser if 𝑐 is configured to use this AS. Furthermore, the
algorithm accepts requests sent as part of the interaction finish modes. These originate from
a browser when using the redirect interaction finish mode (/finish) or from an AS when
using the push interaction finish mode (/push). 𝑐 can also accept a request for data from a
browser (/getData). This is used for the push interaction finish mode. While in the redirect
interaction finish mode the browser receives the resource and/or the service session ID as a
response to the redirect by the AS, this is not possible when using the push interaction finish
mode, since here the AS informs the client instance about the completion of the interaction
and not the browser. Therefore, in the push interaction finish mode, we let the AS redirect
the browser to the /getData endpoint to return the data received from the AS in response
to this redirect. For this, we use the nonce from the interaction finish URL so that 𝑐 can
uniquely associate the request with the associated grant. A request to /logout allows a
browser instance to log out from the client instance. For this, 𝑐 creates a new session identifier
and returns it as a cookie. If data was stored for an old session identifier, it will be deleted.
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• Algorithm A.7 processes responses to the client instance. These can be grant responses
from ASs or resource responses from RSs. Additionally, responses from ASs or RSs can
be processed for the purpose of modeling MTLS. If a grant response contains a subject
identifier, this is stored in 𝑠′.sessions under the corresponding session ID and the domain
of the AS used, so that it can be specified in the user field in further grant requests in the
same browser session and to the same AS. If a grant response contains an access token, it
is stored in 𝑠′.receivedValues so that it can be used later in requests to resource servers.
We do not use received access tokens directly, because continuation requests can also be
sent to the AS in response to a grant response, so we would possibly have to emit both a
resource request to an RS and a continuation request to an AS in one processing step. This
would unnecessarily complicate the algorithms used for sending these requests, such as
SIGN_AND_SEND. Moreover, this modeling is closer to reality, since an access token can
be used at any time (as long as it has not been revoked).

• Algorithm A.8 non-deterministically does one of two things. Either it is used to enable a client
instance to send a grant request to an AS without the presence of an end user (software-only
authorization), or the client instance uses a received access token to request a resource. In
the first case, the client instance sends a grant request to a non-deterministically chosen AS
with which it is registered. Since no interaction can take place without an end user, neither
an interaction entry nor a finish entry is transmitted in the grantRequest dictionaries
for these grant requests. In our modeling, we only allow client instances that are already
registered with the AS to use software-only authorization, since otherwise client instances
unknown to the AS could also request access to resources protected by the AS. Thus, arbitrary
client instances could access resources, which makes these resources irrelevant for a security
analysis. In the second case, the client instance non-deterministically chooses one of the
received access tokens and one of the RSs from the resourceServers subterm. Then it sends
a resource request to the chosen resource server using the chosen access token. If the access
token is bound to a symmetric key, the RS is not chosen non-deterministically, but the RS
specified in the key record of that key is used. If only a subject identifier and no access token
was requested, the associated service session identifier is returned to the browser directly,
since a resource does not have to be requested from an RS first.

• Algorithm A.9 is used to non-deterministically select the information requested by the client
instance from an AS. A client instance can request an access token and/or a subject identifier.
A subject identifier can only be requested when an end user is present, i.e., not when a grant
request has been triggered by a trigger message to the client instance and thus software-only
authorization is used. If an access token is requested, it can be either a bearer access token
or a key-bound access token. We do not allow a client instance to request neither an access
token nor a subject identifier, since in this case the client instance would have no reason to
send the grant request.

• Algorithm A.10 comes into play after the interaction with the RO is completed by one of
the interaction finish modes. First, the transmitted hash value is checked. If successful, a
continuation request is sent to the AS including the interaction reference. The client instance
may decide to change the values requested from the AS. If this is the case, the continuation
request is an HTTP PATCH request and Algorithm A.9 is called again, otherwise it is an
HTTP POST request. The key proofing method used corresponds to that of the corresponding
grant request.
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• Algorithm A.11 is used to answer the browser’s request after the interaction is finished. If an
access token was requested with the grant request, a resource received from an RS is returned
in the body of the response. If a subject identifier was requested with the grant request, this
subject identifier is used as the subject identifier under which the browser instance is currently
logged in and the associated service session ID is returned within the Set-Cookie header.
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Algorithm A.6 Relation of a Client Instance 𝑅𝑐: Processing HTTPS requests.
1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′) → Process an incoming HTTPS request.
𝑚 is the incoming message, 𝑘 is the encryption key for the response, 𝑎 is the receiver, 𝑓 the sender of the
message. 𝑠′ is the current state of the atomic DY process 𝑐.

2: if 𝑚.path ≡ / ∧ 𝑚.method ≡ GET then → Serve index page
3: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, ⟨script_ci_index, ⟨⟩⟩⟩, 𝑘)

→ Send script_ci_index in HTTP response.
4: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
5: else if 𝑚.path ≡ /startGrantRequest ∧ 𝑚.method ≡ POST then → Start a new grant request
6: let domainAS := 𝑚.body → Domain of the AS to send the grant request to
7: if domainAS ̸∈⟨⟩ 𝑠′.authServers then
8: stop → 𝑐 is not configured to use this AS
9: let endpoint := ⟨URL, S, domainAS, /requestGrant, ⟨⟩⟩ → Endpoint for the grant request

10: let grantID := 𝜈1 → Identifier for this grant request
11: let inquiredValues := GENERATE_INQUIRED_VALUES(⊤)
12: let finishMode← {redirect, push} → Non-det. select the used interaction finish mode
13: if finishMode ≡ redirect then
14: let finishURL := ⟨URL, S, 𝑚.host, /finish, [request:𝜈2]⟩
15: else
16: let finishURL := ⟨URL, S, 𝑚.host, /push, [request:𝜈2]⟩
17: let finish := [finishMode:finishMode, finishURL:finishURL, nonce:𝜈3]
18: let grantRequest := [inquiredValues:inquiredValues, finish:finish, interaction:⊤]

→ interaction:⊤ signals the AS that interaction with the RO is possible
19: let 𝑠′.browserRequests[grantID] [startRequest] := ⟨𝑘, 𝑎, 𝑓 , 𝑚.nonce⟩
20: if ⟨__Host, sessionID⟩ ∈ 𝑚.headers[Cookie] then → The browser sent a session ID
21: let sessionID := 𝑚.headers[Cookie] [⟨__Host, sessionID⟩]
22: if domainAS ∈ 𝑠′.sessions[sessionID] then → Check if a subject identifier is stored

for this session ID and this AS
23: let grantRequest[user] := 𝑠′.sessions[sessionID] [domainAS]

→ Include previously received subject identifier in grant request
24: else
25: let sessionID := 𝜈4
26: let keyRecord← 𝑠′.keyRecords[domainAS] → Non-det. select key record for this AS
27: let 𝑠′.grants[grantID] := [AS:domainAS, sessionID:sessionID, keyRecord:keyRecord,

↩→ finishURLnonce:𝜈2, CIfinishNonce:𝜈3, requested:inquiredValues]
28: if keyRecord.instanceID . ⊥ then → key is registered at the AS used
29: let grantRequest[instanceID] := keyRecord.instanceID
30: let 𝑠′.grants[grantID] [request] := grantRequest
31: if keyRecord.method . mtls then
32: let reference := [responseTo:grantResponse, grantID:grantID]
33: call SIGN_AND_SEND(POST, endpoint, keyRecord.keyID, keyRecord.key,

↩→ keyRecord.method,⊥, grantRequest, reference, 𝑠′, 𝑎)
34: else
35: let body := [instanceID:keyRecord.instanceID]
36: let message := ⟨HTTPReq, 𝜈5, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
37: let reference := [responseTo:MTLS_GR, grantID:grantID]
38: call HTTPS_SIMPLE_SEND(reference,message, 𝑠′, 𝑎)
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39: else → 𝑐 is not registered with the AS used
40: let key := keyRecord.key
41: if keyRecord.method ≡ sign then
42: let keyID := keyRecord.keyID
43: let grantRequest[client] := [keyID:keyID, key:pub(key), method:sign]
44: let 𝑠′.grants[grantID] [request] := grantRequest
45: let reference := [responseTo:grantResponse, grantID:grantID]
46: call SIGN_AND_SEND(POST, endpoint, keyID, key, sign,⊥, grantRequest,

↩→ reference, 𝑠′, 𝑎)
47: else →MTLS is used as key proofing method
48: let grantRequest[client] := [key:pub(key), method:mtls]
49: let 𝑠′.grants[grantID] [request] := grantRequest
50: let body := [publicKey:pub(key)]
51: let message := ⟨HTTPReq, 𝜈5, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
52: let reference := [responseTo:MTLS_GR, grantID:grantID]
53: call HTTPS_SIMPLE_SEND(reference,message, 𝑠′, 𝑎)
54: else if 𝑚.path ≡ /finish ∧ 𝑚.method ≡ GET then → Redirect interaction finish mode
55: let finishURLnonce := 𝑚.parameters[request]
56: let grantID such that 𝑠′.grants[grantID] [finishURLnonce] ≡ finishURLnonce

↩→ if possible; otherwise stop
57: if 𝑠′.grants[grantID] [request] [finish] [finishMode] . redirect then
58: stop →Wrong interaction finish mode was used
59: if 𝑚.headers[Cookie] [⟨__Host, sessionID⟩]

↩→ . 𝑠′.grants[grantID] [sessionID] then
60: stop → Browsers session identifier does not match the one from the grant request
61: let 𝑠′.browserRequests[grantID] [finishRequest] := ⟨𝑘, 𝑎, 𝑓 , 𝑚.nonce⟩
62: let interactRef := 𝑚.parameters[interactRef]
63: let hash := 𝑚.parameters[hash]
64: call SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠′, 𝑎)
65: else if 𝑚.path ≡ /push ∧ 𝑚.method ≡ POST then → Push interaction finish mode
66: let finishURLnonce := 𝑚.parameters[request]
67: let grantID such that 𝑠′.grants[grantID] [finishURLnonce] ≡ finishURLnonce

↩→ if possible; otherwise stop
68: if 𝑠′.grants[grantID] [request] [finish] [finishMode] . push then
69: stop →Wrong interaction finish mode was used
70: let interactRef := 𝑚.body[interactRef]
71: let hash := 𝑚.body[hash]
72: call SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠′, 𝑎)
73: else if 𝑚.path ≡ /getData ∧ 𝑚.method ≡ GET then
74: let finishURLnonce := 𝑚.parameters[request]
75: let grantID such that 𝑠′.grants[grantID] [finishURLnonce] ≡ finishURLnonce

↩→ if possible; otherwise stop
76: if 𝑠′.grants[grantID] [request] [finish] [finishMode] . push then
77: stop → This endpoint is only used when the push interaction finish mode is used
78: if 𝑚.headers[Cookie] [⟨__Host, sessionID⟩]

↩→ . 𝑠′.grants[grantID] [sessionID] then
79: stop → Browsers session identifier does not match the one from the grant request
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80: let 𝑠′.browserRequests[grantID] [finishRequest] := ⟨𝑘, 𝑎, 𝑓 , 𝑚.nonce⟩
81: if domainFirstRS ∈ 𝑠′.grants[grantID] ∧ 𝑠′.grants[grantID] [domainFirstRS] ∈

↩→ 𝑠′.grants[grantID] [resources] then → Resource has already been received
from the RS

82: call SEND_RESPONSE_TO_BROWSER(grantID, 𝑠′)
83: else
84: stop ⟨⟩, 𝑠′

85: else if 𝑚.path ≡ /logout ∧ 𝑚.method ≡ POST then
→ Set a new session ID so that the browser instance can log in with a

different identity at already used ASs
86: if ⟨__Host, sessionID⟩ ∈ 𝑚.headers[Cookie] then → The browser sent a session ID
87: let oldSessionID := 𝑚.headers[Cookie] [⟨__Host, sessionID⟩]
88: if oldSessionID ∈ 𝑠′.sessions then
89: let 𝑠′.sessions := 𝑠′.sessions − oldSessionID → Delete data of the old session
90: let headers := [Set-Cookie:⟨⟨⟨__Host, sessionID⟩, ⟨𝜈4,⊤,⊤,⊤⟩⟩⟩]
91: let 𝑚′ := encs (HTTPResp, 𝑚.nonce, 200, headers, ⟨script_ci_index, ⟨⟩⟩, 𝑘)
92: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
93: else
94: stop → Unsupported operation

Algorithm A.7 Relation of a Client Instance 𝑅𝑐: Processing HTTPS responses.
1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠′)
2: let grantID := reference[grantID]
3: let grantRequest := 𝑠′.grants[grantID]
4: let domainAS := grantRequest[AS]
5: let sessionID := grantRequest[sessionID]
6: let keyRecord := grantRequest[keyRecord]
7: if reference[responseTo] ≡ grantResponse then
8: let grantResponse := 𝑚.body
9: if instanceID ∈ grantResponse then → The AS has registered 𝑐

10: if keyRecord.instanceID ≡ ⊥ then → 𝑐 was not already registered
11: let 𝑖← N such that 𝑠′.keyRecords[domainAS] .𝑖 ≡ keyRecord
12: let 𝑠′.keyRecords[domainAS] .𝑖.instanceID := grantResponse[instanceID]
13: if subjectID ∈ grantResponse then
14: if subjectID ̸∈⟨⟩ grantRequest[requested] then
15: stop → AS returned subject identifier that was not requested
16: let subjectID := grantResponse[subjectID]
17: let s′.sessions[sessionID] [domainAS] := subjectID → Store subject identifier of this

end user at this AS
18: let 𝑠′.receivedValues[grantID] [subjectID] := subjectID
19: if accessToken ∈ grantResponse then
20: if accessToken ̸∈⟨⟩ grantRequest[requested]

↩→ ∨ bearerToken ̸∈⟨⟩ grantRequest[requested] then
21: stop → No (bearer) access token was requested
22: if accessToken ∈⟨⟩ grantRequest[requested]

↩→ ∧ grantResponse[accessToken] [flags] ≡ bearer then
23: stop → Access token was requested, but bearer token was issued
24: if bearerToken ∈⟨⟩ grantRequest[requested]

↩→ ∧ grantResponse[accessToken] [flags] . bearer then
25: stop → Bearer token was requested, but access token was issued
26: let 𝑠′.receivedValues[grantID] [accessToken] := grantResponse[accessToken]
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27: if interact ∈ grantResponse then → Interaction is required
28: if finishedInteraction ∈ grantRequest then
29: stop → Interaction has already been completed
30: if interaction ∉ grantRequest[request] then
31: stop → Interaction is required, but 𝑐 did not indicate support for interaction
32: if continue ∉ grantResponse then
33: stop → 𝑐 needs to be allowed to continue once the interaction is finished
34: let 𝑠′.grants[grantID] [continueAT] := grantResponse[continue] [accessToken]
35: let 𝑠′.grants[grantID] [continueURL] := grantResponse[continue] [url]
36: let 𝑠′.grants[grantID] [ASfinishNonce] := grantResponse[interact] [finish]
37: let ⟨key, receiver, sender, nonce⟩ := 𝑠′.browserRequests[grantID] [startRequest]
38: let cookies := ⟨⟨⟨__Host, sessionID⟩, ⟨sessionID,⊤,⊤,⊤⟩⟩⟩
39: let startMode← {redirect, userCode}
40: if startMode ≡ redirect then
41: let redirectURL := grantResponse[interact] [redirect]
42: let 𝑠′.grants[grantID] [redirectNonce] := redirectURL.parameters[request]
43: let 𝑚′ := encs (⟨HTTPResp, nonce, 303,

↩→ [Location:redirectURL, Set-Cookie:cookies], ⟨⟩⟩, key)
44: stop ⟨⟨sender, receiver, 𝑚′⟩⟩, 𝑠′
45: else → user code interaction start mode
46: let url := ⟨URL, S, domainAS, /interactUC, ⟨⟩⟩
47: let userCode := grantResponse[interact] [userCode]
48: let 𝑠′.grants[grantID] [userCode] := userCode
49: let 𝑚′ := encs (⟨HTTPResp, nonce, 200, [Set-Cookie:cookies],

↩→ [userCodeUrl:url, userCode:userCode]⟩, key)
50: stop ⟨⟨sender, receiver, 𝑚′⟩⟩, 𝑠′
51: else if continue ∈ grantResponse then → 𝑐 can continue and no interaction is required
52: let continue← {⊤,⊥} → Non-det. decide whether to continue
53: if continue ≡ ⊤ then → Request values again using a PATCH request
54: if interaction ∈ grantRequest[request] then
55: let inquiredValues := GENERATE_INQUIRED_VALUES(⊤)
56: else
57: let inquiredValues := GENERATE_INQUIRED_VALUES(⊥)
58: let 𝑠′.grants[grantID] [requested] := inquiredValues
59: let continueAT := grantResponse[continue] [accessToken]
60: let continueURL := grantResponse[continue] [url]
61: let authHeader := ⟨Authorization, ⟨GNAP, continueAT⟩⟩
62: let body := [inquiredValues:inquiredValues]
63: if keyRecord.method . mtls then
64: let ref := [responseTo:grantResponse, grantID:grantID]
65: call SIGN_AND_SEND(PATCH, continueURL, keyRecord.keyID, keyRecord.key,

↩→ keyRecord.method, authHeader, body, ref , 𝑠′, 𝑎)
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66: else →MTLS is used as key proofing method
67: let 𝑠′.grants[grantID] [patchRequest] := ⟨authHeader,

↩→ body, continueURL⟩
68: if keyRecord.instanceID . ⊥ then
69: let body := [instanceID:keyRecord.instanceID]
70: else
71: let body := [publicKey:pub(keyRecord.key)]
72: let message := ⟨HTTPReq, 𝜈6, POST, continueURL.host, /MTLS-prepare, ⟨⟩,

↩→ ⟨⟩, body⟩
73: let ref := [responseTo:MTLS_PR, grantID:grantID]
74: call HTTPS_SIMPLE_SEND(ref ,message, 𝑠′, 𝑎)
75: else
76: stop → AS rejected request without possibility to continue or grant response is invalid
77: else if reference[responseTo] ≡ resourceResponse then
78: let domainRS := reference[domainRS]
79: let 𝑠′.grants[grantID] [resources] [domainRS] := 𝑚.body
80: if finishRequest ∈ 𝑠′.browserRequests[grantID] ∧ domainRS ≡

↩→ 𝑠′.grants[grantID] [domainFirstRS] then
→ Browser awaits response and the resource of the first used RS was obtained

81: call SEND_RESPONSE_TO_BROWSER(grantID, 𝑠′)
82: else
83: stop ⟨⟩, 𝑠′

84: else if reference[responseTo] ≡ MTLS_GR then → A new grant request is to be sent
85: let 𝑚dec := deca (𝑚.body, keyRecord.key)
86: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡ 𝑚dec if possible; otherwise stop
87: if pubKey ≡ 𝑠′.keyMapping[request.host] then
88: let body := grantRequest[request]
89: let body[mtlsNonce] := mtlsNonce
90: let req := ⟨HTTPReq, 𝜈6, POST, domainAS, /requestGrant, ⟨⟩, ⟨⟩, body⟩
91: let ref := [responseTo:grantResponse, grantID:grantID]
92: call HTTPS_SIMPLE_SEND(ref , req, 𝑠′, 𝑎)
93: else
94: stop → Send nonce only to the process that created it
95: else if reference[responseTo] ≡ MTLS_CR then → A new continuation request is to be sent
96: let 𝑚dec := deca (𝑚.body, keyRecord.key)
97: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡ 𝑚dec if possible; otherwise stop
98: if pubKey ≡ 𝑠′.keyMapping[request.host] then
99: let authHeader := ⟨Authorization, ⟨GNAP, 𝑠′.grants[grantID] [continueAT]⟩⟩
100: let interactRef := 𝑠′.grants[grantID] [interactRef]
101: let url := 𝑠′.grants[grantID] [continueURL]
102: let ref := [responseTo:grantResponse, grantID:grantID]
103: if adjustedInquiredValues ∉ 𝑠′.grants[grantID] then
104: let body := [interactRef:interactRef , mtlsNonce:mtlsNonce]
105: let req := ⟨HTTPReq, 𝜈6, POST, url.host, url.path, ⟨⟩, ⟨authHeader⟩, body⟩
106: else
107: let inquiredValues := 𝑠′.grants[grantID] [requested]
108: let body := [interactRef:interactRef , inquiredValues:inquiredValues,

↩→ mtlsNonce:mtlsNonce]
109: let req := ⟨HTTPReq, 𝜈6, PATCH, url.host, url.path, ⟨⟩, ⟨authHeader⟩, body⟩
110: call HTTPS_SIMPLE_SEND(ref , req, 𝑠′, 𝑎)

69



A Formal Model of GNAP

111: else
112: stop → Send nonce only to the process that created it
113: else if reference[responseTo] ≡ MTLS_PR then → 𝑐 modifies its grant request
114: let 𝑚dec := deca (𝑚.body, keyRecord.key)
115: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡ 𝑚dec if possible; otherwise stop
116: if pubKey ≡ 𝑠′.keyMapping[request.host] then
117: let ⟨authHeader, body, url⟩ := 𝑠′.grants[grantID] [patchRequest]
118: let body[mtlsNonce] := mtlsNonce
119: let req := ⟨HTTPReq, 𝜈6, PATCH, url.host, url.path, ⟨⟩, ⟨authHeader⟩, body⟩
120: let ref := [responseTo:grantResponse, grantID:grantID]
121: call HTTPS_SIMPLE_SEND(ref , req, 𝑠′, 𝑎)
122: else
123: stop → Send nonce only to the process that created it
124: else if reference[responseTo] ≡ MTLS_RR then → A new resource request is to be sent
125: if key ∈ reference then → Access token is bound to its own key
126: let 𝑚dec := deca (𝑚.body, reference[key])
127: else → Access token is bound to key from key record
128: let 𝑚dec := deca (𝑚.body, keyRecord.key)
129: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡ 𝑚dec if possible; otherwise stop
130: if pubKey ≡ 𝑠′.keyMapping[request.host] then
131: let ref := reference[reference]
132: let req := reference[request]
133: let req.body := [mtlsNonce:mtlsNonce]
134: call HTTPS_SIMPLE_SEND(ref , req, 𝑠′, 𝑎)
135: else
136: stop → Send nonce only to the process that created it

Algorithm A.8 Relation of a Client Instance 𝑅𝑐: Processing trigger messages.
1: function PROCESS_TRIGGER(𝑠′)
2: let startGrantRequest← {⊤,⊥}
3: if startGrantRequest ≡ ⊤ then → Start software-only authorization
4: let domainAS, 𝑖 such that 𝑠′.keyRecords[domainAS] .𝑖.instanceID . ⊥

↩→ if possible; otherwise stop
5: let keyRecord := 𝑠′.keyRecords[domainAS] .𝑖
6: let inquiredValues := GENERATE_INQUIRED_VALUES(⊥)
7: let grantID := 𝜈7 → Identifier for this grant request
8: let instanceID := keyRecord.instanceID
9: let grantRequest := [inquiredValues:inquiredValues, instanceID:instanceID]

10: let 𝑠′.grants[grantID] := [request:grantRequest, AS:domainAS,
↩→ keyRecord:keyRecord, requested:inquiredValues]

11: if keyRecord.method . mtls then
12: let endpoint := ⟨URL, S, domainAS, /requestGrant, ⟨⟩⟩
13: let reference := [responseTo:grantResponse, grantID:grantID]
14: call SIGN_AND_SEND(POST, endpoint, keyRecord.keyID, keyRecord.key,

↩→ keyRecord.method,⊥, grantRequest, reference, 𝑠′, 𝑎)
15: else
16: let body := [instanceID:instanceID]
17: let message := ⟨HTTPReq, 𝜈8, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
18: let reference := [responseTo:MTLS_GR, grantID:grantID]
19: call HTTPS_SIMPLE_SEND(reference,message, 𝑠′, 𝑎)
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20: else → Use received access token and/or subject identifier
21: let grantID such that grantID ∈ 𝑠′.receivedValues if possible; otherwise stop
22: let originallyInqValues := 𝑠′.grants[grantID] [request] [inquiredValues]
23: if accessToken ̸∈⟨⟩ originallyInqValues ∧ bearerToken ̸∈⟨⟩ originallyInqValues

↩→ ∧ finishRequest ∈ 𝑠′.browserRequests[grantID] then
→ Originally only a subject identifier was requested and browser is not yet logged in

24: call SEND_RESPONSE_TO_BROWSER(grantID, 𝑠′)
25: else → An access token was requested. If applicable, the response

to the browser is sent once the resource is received.
26: let domainRS← 𝑠′.resourceServers → Non-det. choose an RS
27: if (accessToken ∈⟨⟩ originallyInqValues ∨ bearerToken ∈⟨⟩ originallyInqValues)

↩→ ∧ domainFirstRS ∉ 𝑠′.grants[grantID] then
28: let 𝑠′.grants[grantID] [domainFirstRS] := domainRS

→ Store domain of the first RS used in this flow to be able to return the resource
stored on this RS to the browser later on

29: let accessToken := 𝑠′.receivedValues[grantID] [accessToken]
30: let value := accessToken[value]
31: let reference := [responseTo:resourceResponse, grantID:grantID,

↩→ domainRS:domainRS]
32: if accessToken[flags] ≡ bearer then → Access token is a bearer token
33: let 𝑠′.grants[grantID] [bearerRSs] := 𝑠′.grants[grantID] [bearerRSs]+⟨⟩

↩→ domainRS → Store the RSs to which bearer tokens were sent
34: let authHeader := ⟨Authorization, ⟨Bearer, value⟩⟩
35: let request := ⟨HTTPReq, 𝜈8, GET, domainRS, /resource, ⟨⟩, ⟨authHeader⟩, ⟨⟩⟩
36: call HTTPS_SIMPLE_SEND(reference, request, 𝑠′, 𝑎)
37: else → Access token is key-bound
38: let url := ⟨URL, S, domainRS, /resource, ⟨⟩⟩
39: let authHeader := ⟨Authorization, ⟨GNAP, value⟩⟩
40: if key ∈ accessToken then → Access token is bound to its own key
41: let keyData := accessToken[key]
42: let method := keyData[method]
43: let privateKey := keyData[privateKey]
44: if method ≡ sign then
45: let keyID := keyData[keyID]
46: call SIGN_AND_SEND(GET, url, keyID, privateKey, sign, authHeader, ⟨⟩,

↩→ reference, 𝑠′, 𝑎)
47: else if method ≡ mtls then
48: let request := ⟨HTTPReq, 𝜈8, GET, domainRS, /resource, ⟨⟩, ⟨authHeader⟩, ⟨⟩⟩
49: let body := [publicKey:pub(privateKey)]
50: let message := ⟨HTTPReq, 𝜈9, POST, domainRS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
51: let ref := [responseTo:MTLS_RR, grantID:grantID, key:privateKey,

↩→ reference:reference, request:request]
→ Store privateKey in reference since it is not from a key record

52: call HTTPS_SIMPLE_SEND(ref ,message, 𝑠′, 𝑎)
53: else
54: stop → Unsupported method
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55: else → Access token is bound to client instances key
56: let keyRecord := 𝑠′.grants[grantID] [keyRecord]
57: let key := keyRecord.key
58: if keyRecord.method ≡ sign then
59: let keyID := keyRecord.keyID
60: call SIGN_AND_SEND(GET, url, keyID, key, sign, authHeader, ⟨⟩,

↩→ reference, 𝑠′, 𝑎)
61: else if keyRecord.method ≡ mac then
62: let keyID := keyRecord.keyID
63: let url′ := ⟨URL, S, keyRecord.rs, /resource, ⟨⟩⟩

→We have to use the RS with which this symmetric key is shared
64: call SIGN_AND_SEND(GET, url′, keyID, key, mac, authHeader, ⟨⟩,

↩→ reference, 𝑠′, 𝑎)
65: else → keyRecord.method ≡ mtls
66: let request := ⟨HTTPReq, 𝜈8, GET, domainRS, /resource, ⟨⟩, ⟨authHeader⟩, ⟨⟩⟩
67: let body := [publicKey:pub(key)]
68: let message := ⟨HTTPReq, 𝜈9, POST, domainRS, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
69: let ref := [responseTo:MTLS_RR, grantID:grantID,

↩→ reference:reference, request:request]
70: call HTTPS_SIMPLE_SEND(ref ,message, 𝑠′, 𝑎)

Algorithm A.9 Relation of a Client Instance 𝑅𝑐: Generating inquired values.
1: function GENERATE_INQUIRED_VALUES(ROpresent)
2: let inquiredValues := ⟨⟩
3: let requestAccessToken← {⊤,⊥}
4: if requestAccessToken ≡ ⊤ ∨ ROpresent ≡ ⊥ then
5: let setBearerFlag← {⊤,⊥}
6: if setBearerFlag ≡ ⊤ then
7: let inquiredValues := inquiredValues +⟨⟩ bearerToken

→ Requested access token is a bearer token
8: else
9: let inquiredValues := inquiredValues +⟨⟩ accessToken

→ Requested access token is bound to a key
10: if ROpresent ≡ ⊤ then

→A subject identifier can only be requested when an RO is present, as otherwise we use
software-only authorization and client instances have no subject identifiers

11: let requestSubjectID← {⊤,⊥}
12: if requestSubjectID ≡ ⊤ ∨ requestAccessToken ≡ ⊥ then
13: let inquiredValues := inquiredValues +⟨⟩ subjectID
14: return inquiredValues
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Algorithm A.10 Relation of a Client Instance 𝑅𝑐: Sending a continuation request to finish
interaction.
1: function SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠′, 𝑎)
2: let CIfinishNonce := 𝑠′.grants[grantID] [CIfinishNonce]
3: let ASfinishNonce := 𝑠′.grants[grantID] [ASfinishNonce]
4: let domainAS := 𝑠′.grants[grantID] [AS]
5: let grantEndpoint := ⟨URL, S, domainAS, /requestGrant, ⟨⟩⟩
6: let controlHash := hash(⟨CIfinishNonce,ASfinishNonce, interactRef , grantEndpoint⟩)
7: if hash . controlHash then
8: stop
9: let continueURL := 𝑠′.grants[grantID] [continueURL]

10: let 𝑠′.grants[grantID] [finishedInteraction] := ⊤
→ Save the information that the interaction is complete

11: let adjustInquiredValues← {⊤,⊥}
12: if adjustInquiredValues ≡ ⊤ then
13: let inquiredValues := GENERATE_INQUIRED_VALUES(⊤)
14: let 𝑠′.grants[grantID] [requested] := inquiredValues
15: let keyRecord := 𝑠′.grants[grantID] [keyRecord]
16: if keyRecord.method . mtls then
17: let authHeader := ⟨Authorization, ⟨GNAP, 𝑠′.grants[grantID] [continueAT]⟩⟩
18: let reference := [responseTo:grantResponse, grantID:grantID]
19: if adjustInquiredValues ≡ ⊥ then
20: let body := [interactRef:interactRef ]
21: call SIGN_AND_SEND(POST, continueURL, keyRecord.keyID, keyRecord.key,

↩→ keyRecord.method, authHeader, body, reference, 𝑠′, 𝑎)
22: else
23: let body := [interactRef:interactRef , inquiredValues:inquiredValues]
24: call SIGN_AND_SEND(PATCH, continueURL, keyRecord.keyID, keyRecord.key,

↩→ keyRecord.method, authHeader, body, reference, 𝑠′, 𝑎)
25: else →MTLS was used for grant request
26: let 𝑠′.grants[grantID] [interactRef] := interactRef
27: if adjustInquiredValues ≡ ⊤ then
28: let 𝑠′.grants[grantID] [adjustedInquiredValues] := ⊤
29: if keyRecord.instanceID . ⊥ then
30: let body := [instanceID:keyRecord.instanceID]
31: else
32: let body := [publicKey:pub(keyRecord.key)]
33: let message := ⟨HTTPReq, 𝜈10, POST, continueURL.host, /MTLS-prepare, ⟨⟩, ⟨⟩, body⟩
34: let reference := [responseTo:MTLS_CR, grantID:grantID]
35: call HTTPS_SIMPLE_SEND(reference,message, 𝑠′, 𝑎)
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Algorithm A.11 Relation of a Client Instance 𝑅𝑐: Returning resources and service session
identifiers to browsers.
1: function SEND_RESPONSE_TO_BROWSER(grantID, 𝑠′)
2: if subjectID ∈ 𝑠′.receivedValues[grantID] then
3: let subjectID := 𝑠′.receivedValues[grantID] [subjectID]
4: let sessionID := 𝑠′.grants[grantID] [sessionID]
5: let domainAS := 𝑠′.grants[grantID] [AS]
6: let 𝑠′.sessions[sessionID] [loggedInAs] := ⟨domainAS, subjectID⟩
7: let 𝑠′.sessions[sessionID] [serviceSessionID] := 𝜈11
8: let headers := ⟨Set-Cookie, ⟨⟨⟨__Host, serviceSessionID⟩, ⟨𝜈11,⊤,⊤,⊤⟩⟩⟩⟩
9: else

10: let headers := ⟨⟩
11: if domainFirstRS ∈ 𝑠′.grants[grantID] then
12: let domainFirstRS := 𝑠′.grants[grantID] [domainFirstRS]
13: let body := 𝑠′.grants[grantID] [resources] [domainFirstRS]
14: else
15: let body := ok
16: let ⟨key, receiver, sender, nonce⟩ := 𝑠′.browserRequests[grantID] [finishRequest]
17: let 𝑚′ := encs (⟨HTTPResp, nonce, 200, headers, body⟩, key)
18: let 𝑠′.browserRequests[grantID] := 𝑠′.browserRequests[grantID] − finishRequest

→ Remove browser request to avoid sending another response in case of
another grant response in response to a continuation request

19: stop ⟨⟨sender, receiver, 𝑚′⟩⟩, 𝑠′

Algorithm A.12 Relation of script_ci_index.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩

→ Script that models the index page of a client instance
1: let switch← {start, logout, link} → Non-deterministically decide whether to start a

grant request or to follow some link
2: if switch ≡ start then → Start grant request
3: let url := GETURL(tree, docnonce)
4: let ⟨username, domain⟩ ← ids → Non-det. select identity to specify its domain as AS
5: let url′ := ⟨URL, S, url.host, /startGrantRequest, ⟨⟩⟩
6: let command := ⟨STARTGRANT, url′, domain⟩
7: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
8: else if switch ≡ logout then → Log out from the client instance to get a new session ID
9: let url := GETURL(tree, docnonce)

10: let url′ := ⟨URL, S, url.host, /logout, ⟨⟩⟩
11: let command := ⟨FORM, url′, POST, ⟨⟩,⊥⟩
12: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
13: else → Follow link
14: let protocol← {P, S} → Non-det. select protocol (HTTP or HTTPS)
15: let host← Doms → Non-det. select host
16: let path← S → Non-det. select path
17: let fragment← S → Non-det. select fragment part
18: let parameters← [S × S] → Non-det. select parameters
19: let url := ⟨URL, protocol, host, path, parameters, fragment⟩ → Assemble URL
20: let command := ⟨HREF, url,⊥,⊥⟩ → Follow link to the selected URL
21: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
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A.12 Authorization Servers

An authorization server as ∈ AS is a web server modeled as an atomic DY process (𝐼as, 𝑍as, 𝑅as, 𝑠as
0 )

with the addresses 𝐼as B addr(as).

In our modeling, ASs store data about registered client instances in client registration records and
data about their users in user records:

Definition 5
A client registration record is a term of one of the following forms

• ⟨instanceID, ⟨sign, keyID, publicKey⟩⟩

• ⟨instanceID, ⟨mac, keyID, key⟩⟩

• ⟨instanceID, ⟨mtls, publicKey⟩⟩

with instanceID ∈ S, keyID ∈ KeyIDs, key ∈ 𝐾KP, and publicKey ∈ TN .

instanceID is the instance identifier that the registered client instance will use. keyID is the key ID
that will be used by the client instance if signatures or MACs are used. If the client instance uses
signatures or MTLS key proofs, publicKey is the public key that as will use to verify them. If MACs
are used, key is the symmetric key that will be used to verify them. For a client registration record 𝑟
we will use 𝑟.keyData as notation for 𝑟.2. We will use 𝑟.keyData.method as notation for 𝑟.2.1.

Definition 6
A user record is a term of the form

⟨identity, password⟩

with identity ∈ ID and password ∈ Passwords, where password ≡ secretOfID(identity).

User records are used to store the credentials of the ROs that own resources protected by as.

Next, we define the set 𝑍as of states of as and the initial state 𝑠as
0 of as.

Definition 7
A state 𝑠 ∈ 𝑍as of AS as is a term of the form ⟨DNSaddress, pendingDNS, corrupt, pendingRequests,
keyMapping, tlskeys, registrations, users, mtlsRequests, sigNonces, grantRequests, tokenBindings⟩
with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, corrupt ∈ TN , pendingRequests ∈

[
N × TN

]
,

keyMapping ∈
[
Doms × TN

]
, tlskeys ∈ [Doms × 𝐾TLS], registrations ∈

[
S × TN

]
, users ∈[

ID ×N
]
, mtlsRequests ∈

[
N ×N

]
, sigNonces ∈ TN , grantRequests ∈

[
N ×

[
S × TN

] ]
, and

tokenBindings ∈
[
N ×

[
S × TN

] ]
.

An initial state 𝑠as
0 of as is a state of as with 𝑠as

0 .pendingDNS ≡ ⟨⟩, 𝑠
as
0 .corrupt ≡ ⊥,

𝑠as
0 .pendingRequests ≡ ⟨⟩, 𝑠

as
0 .keyMapping being the same as the keymapping for browsers,

𝑠as
0 .tlskeys ≡ tlskeysas, and 𝑠as

0 .mtlsRequests ≡ 𝑠as
0 .sigNonces ≡ 𝑠as

0 .grantRequests ≡
𝑠as

0 .tokenBindings ≡ ⟨⟩.

mtlsRequests is a dictionary that maps MTLS nonces to the keys used for MTLS. It is used to store
the information required for validating MTLS key proofs.
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sigNonces stores all nonces obtained from received valid signatures or MACs, thus enabling the
replay protection required by GNAP’s security considerations.

grantRequests works like the grants dictionary of the client instances, except that here information
required by the AS is stored. As key for the outer dictionary again a nonce called grantID is
used. Note that the grant IDs used for grantRequests are only used by as to internally distinguish
grant requests. They are not equivalent (w.r.t. the equational theory) to the grant IDs of any client
instances. Generally, grant IDs are not sent from any honest process to any other process.

tokenBindings maps from the values of issued access tokens (nonces) to dictionaries containing the
information required by as for token introspection, such as the key proofing method to which the
access token is bound or whether it is a bearer token.

𝑠as
0 .registrations is a dictionary containing client registration records, with the instance identifiers

of the client registration records functioning as keys. For any two distinct client registration records
𝑟, 𝑟 ′ ∈⟨⟩ 𝑠as

0 .registrations it must hold that 𝑟.instanceID . 𝑟 ′.instanceID. For each
client registration record 𝑟 ∈⟨⟩ 𝑠as

0 .registrations there must be exactly one client instance
𝑐 ∈ CI such that for a domain 𝑑 ∈ dom(as) there is a key record 𝑟 ′ ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] with
𝑟 ′.instanceID ≡ 𝑟.instanceID. If 𝑟.keyData.method ≡ sign it must hold that

𝑟 ′.method ≡ sign
∧ 𝑟.keyData.keyID ≡ 𝑟 ′.keyID
∧ 𝑟.keyData.publicKey ≡ pub(𝑟 ′.key) .

If 𝑟.keyData.method ≡ mac it must hold that

𝑟 ′.method ≡ mac
∧ 𝑟.keyData.keyID ≡ 𝑟 ′.keyID
∧ 𝑟.keyData.key ≡ 𝑟 ′.key .

If 𝑟.keyData.method ≡ mtls it must hold that

𝑟 ′.method ≡ mtls
∧ 𝑟.keyData.publicKey ≡ pub(𝑟 ′.key) .

For each domain 𝑑 ∈ dom(as) and each key record 𝑟 ′ ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] of any client instance
𝑐 ∈ CI, there must be a client registration record 𝑟 ∈⟨⟩ 𝑠as

0 .registrations such that the conditions
defined above are fulfilled.

𝑠as
0 .users is a dictionary containing user records. For each user record 𝑢 ∈⟨⟩ 𝑠as

0 .users it
must hold that 𝑢.identity.domain ∈ dom(as). We also require that ∀𝑢, 𝑢′ ∈⟨⟩ 𝑠as

0 .users, 𝑢 ≠

𝑢′ : 𝑢.identity . 𝑢′.identity.

For each 𝑏 ∈ B, 𝑖 ∈⟨⟩ 𝑠𝑏0 .ids there must be an AS as that contains a user record 𝑢 ∈⟨⟩ 𝑠as
0 .users

such that 𝑖 ≡ 𝑢.identity and vice versa. secretOfID(𝑖) must initially be stored only in 𝑏 and as.

To allow us to examine whether GNAP satisfies our security properties even when key-bound access
tokens leak, we have the ASs send them not only to the client instance whose key the access token
is bound to, but also to another randomly chosen IP address. For this we use an arbitrary IP address
leak ∈ IPs as in [6]. We leak all continuation access tokens, because they are always bound to the
client instances key, as well as all access tokens for accessing resources that are not bearer tokens.
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We now specify the relation 𝑅as: This relation is again based on the generic HTTPS server model
defined in [9]. Table A.3 shows a list of all placeholders used in the algorithms.

Placeholder Usage
𝜈1 new grant ID
𝜈2 new continuation access token
𝜈3 new nonce to generate a unique redirect URL
𝜈4 new user code
𝜈5 new nonce for the calculation of the interaction finish hash
𝜈6 new nonce for MTLS
𝜈7 new interaction reference
𝜈8 new HTTP request nonce
𝜈9 new key for the pendingDNS dictionary
𝜈10 new access token
𝜈11 new private key
𝜈12 new key ID
𝜈13 new continuation access token

Table A.3: List of placeholders used in the AS algorithms.

The script that is used by the authorization server is described in Algorithm A.19. It is used when
the RO logs in to the AS after a redirect or using a user code.

The following algorithms are used for modeling the authorization servers:

• Algorithm A.13 processes HTTPS requests to AS originating either from a client instance or,
in the case of introspection requests, from an RS.

For the AS, each flow starts with the reception of a grant request. How a grant request is
handled depends on the information in it. If neither an access token nor a subject identifier is
requested, the request can be answered directly, since no values are returned. If an access
token for an RO or a subject identifier of an RO is requested, the AS initiates the interaction
with the RO. In case the client instance uses software-only authorization, the AS returns
the requested values directly if the client instance is registered and the key proof has been
validated successfully.

Continuation requests can be either HTTP POST requests or HTTP PATCH requests. A
POST request finishes an interaction, while a PATCH request adjusts the values requested by
the client instance. A PATCH request can also be used to finish the interaction along with
the adjustment of the grant request. In this case, the correct interaction reference must be
included in the PATCH request, as it is the case with a POST request. Continuation requests
must always contain the continuation access token in the Authorization header.

At the /interact path, the AS accepts redirects that are sent as part of the redirect interaction
start mode. The login process is then simulated by the script script_as_login. We do not
model a specific authorization process for grant requests, since such a process is out of scope
for GNAP. Instead, in our model, the RO automatically authorizes the request by successfully
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logging in. The nonce with which the AS can associate the login process with the grant
request is passed to script_as_login via the scriptstate. The script then sends the login data
to the /redirectLogin path and includes that nonce in the body of the login request.

The /interactUC path enables logins using user codes. The user code is modeled similarly
to the nonce used to uniquely identify the request when using the redirect interaction start
mode since the user code essentially has the same function. The user code is passed to
script_as_login via the scriptinputs and then included in the body when logging in via the
/userCodeLogin path.

For requests to the introspection endpoint (/introspect), the key proof of the requesting
RS is validated first. If successful, the access token is taken from the request body and the
values stored in the tokenBindings subterm for this access token are returned to the RS.

• Algorithm A.14 performs key proofing methods using VALIDATE_KEY_PROOF to validate
that a request received by as was actually sent by the owner of the key specified in the
corresponding grant request. In order to call VALIDATE_KEY_PROOF, in the case of a grant
request, the algorithm extracts the key information contained in the request and stores it in
the grantRequests subterm. In the case of a continuation request, the algorithm then reloads
the previously stored key information from grantRequests using the grant ID.

• Algorithm A.15 checks the RO’s login credentials and, if successful, performs the interaction
finish mode specified by the client instance in the grant request. For this purpose, the
algorithm creates a new interaction reference in the form of a nonce and uses it to calculate
the hash value that is used by the client instance for verification of the interaction finish.

• Algorithm A.16 is used when the AS needs to send a grant response to a client instance after
completing the interaction with the RO.

• Algorithm A.17 creates grant responses depending on the values requested in the grant
request. If an access token is generated, the algorithm stores the values required for token
introspection in the tokenBindings subterm. If a subject identifier is requested, the identity
with which the RO has logged in to as is included in the grant response. If the client instance
requests a key-bound access token, a non-deterministic decision is made whether to bind it to
the client instance’s key and key proofing method or to bind the access token to its own newly
generated key. If the access token is bound to its own key, it is decided non-deterministically
whether MTLS or signatures are used as the key proofing method. We do not allow the use of
MACs here, since the newly generated symmetric key would then have to be transmitted to
the resource servers for MAC validation. Since symmetric keys cannot be transmitted via
token introspection, it is unclear at the time of this work how this could be implemented. The
author of this work has created a GitHub issue regarding this that was still being discussed at
the time this work was completed [17].

• Algorithm A.18 emits grant responses and leaks access tokens in doing so. If the grant
response contains a continuation access token, it is leaked. If it contains a key-bound access
token for resources, this is also leaked. The receiver address of the events with which access
tokens are leaked is leak.
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Algorithm A.13 Relation of an AS 𝑅as: Processing HTTPS requests.
1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if 𝑚.path ≡ /requestGrant ∧ 𝑚.method ≡ POST then → New grant request
3: let grantID := 𝜈1
4: let 𝑠′ := PERFORM_KEY_PROOF(𝑚, grantID, 𝑠′)
5: let grantRequest := 𝑚.body
6: let grantResponse := []
7: let continueAT := 𝜈2
8: let continueURL := ⟨URL, S, 𝑚.host, /continue, ⟨⟩⟩
9: let 𝑠′.grantRequests[grantID] := [inquiredValues:grantRequest[inquiredValues]]

10: if grantRequest[inquiredValues] ≡ ⟨⟩ then → Client instance requested nothing
11: let allowContinuation← {⊤,⊥}
12: if allowContinuation ≡ ⊤ then
13: let grantResponse[continue] := [accessToken:continueAT , url:continueURL]
14: let 𝑠′.grantRequests[grantID] [continueAT] := continueAT
15: else if grantRequest[interaction] ≡ ⊤ then → Interaction with RO is possible
16: let grantResponse[continue] := [accessToken:continueAT , url:continueURL]
17: let redirectURL := ⟨URL, S, 𝑚.host, /interact, [request:𝜈3]⟩
18: let grantResponse[interact] := [redirect:redirectURL, userCode:𝜈4, finish:𝜈5]
19: let 𝑠′.grantRequests[grantID] [continueAT] := continueAT
20: let 𝑠′.grantRequests[grantID] [redirectNonce] := 𝜈3
21: let 𝑠′.grantRequests[grantID] [userCode] := 𝜈4
22: let 𝑠′.grantRequests[grantID] [ASfinishNonce] := 𝜈5
23: let 𝑠′.grantRequests[grantID] [CIfinishNonce] := grantRequest[finish] [nonce]
24: let 𝑠′.grantRequests[grantID] [finishMode] := grantRequest[finish] [finishMode]
25: let 𝑠′.grantRequests[grantID] [finishURL] := grantRequest[finish] [finishURL]
26: let 𝑠′.grantRequests[grantID] [grantEndpoint] := ⟨URL, S, 𝑚.host, 𝑚.path, ⟨⟩⟩
27: if user ∈ grantRequest then → Client instance included subject identifier
28: let 𝑠′.grantRequests[grantID] [user] := grantRequest[user]
29: else → No end user is present at the client instance
30: if instanceID ∉ grantRequest then
31: stop → Only a registered client instance can get an access token for its resources
32: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, CI,

↩→ grantRequest[inquiredValues],⊥, 𝑚.host, 𝑠′)
33: if client ∈ grantRequest then → Client instance is not registered
34: let registerCI← {⊤,⊥} → Non-det. decide whether to register the client instance
35: if registerCI ≡ ⊤ then
36: let instanceID← S such that instanceID ∉ 𝑠′.registrations
37: if grantRequest[client] [method] ≡ sign then
38: let keyID := grantRequest[client] [keyID]
39: let publicKey := grantRequest[client] [key]
40: let 𝑠′.registrations[instanceID] := ⟨sign, keyID, publicKey⟩
41: else → grantRequest[client] [method] ≡ mtls
42: let publicKey := grantRequest[client] [key]
43: let 𝑠′.registrations[instanceID] := ⟨mtls, publicKey⟩
44: let grantResponse[instanceID] := instanceID
45: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, grantResponse⟩, 𝑘)
46: call STOP_WITH_LEAKS( 𝑓 , 𝑎, 𝑚′, grantResponse, 𝑠′)
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47: else if 𝑚.path ≡ /continue ∧ 𝑚.method ≡ POST then
→ Continuation request after interaction completed

48: if 𝑚.headers[Authorization] .1 . GNAP then
49: stop →Wrong Authentication scheme was used
50: let continueAT := 𝑚.headers[Authorization] .2
51: if continueAT ≡ ⟨⟩ then
52: stop → Access token for continuation must be a nonce
53: let grantID such that 𝑠′.grantRequests[grantID] [continueAT] ≡ continueAT

↩→ if possible; otherwise stop
54: call PERFORM_KEY_PROOF(𝑚, grantID, 𝑠′)
55: if interactRef ∉ 𝑠′.grantRequests[grantID] then
56: stop → An interaction reference must exist when using this endpoint
57: if interactRef ∉ 𝑚.body then
58: stop → The client instance must specify an interaction reference
59: let interactRef := 𝑚.body[interactRef]
60: let inquiredValues := 𝑠′.grantRequests[grantID] [inquiredValues]
61: call SEND_GRANT_RESPONSE(grantID, interactRef , inquiredValues, 𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
62: else if 𝑚.path ≡ /continue ∧ 𝑚.method ≡ PATCH then → Grant request modification
63: if 𝑚.headers[Authorization] .1 . GNAP then
64: stop →Wrong Authentication scheme was used
65: let continueAT := 𝑚.headers[Authorization] .2
66: if continueAT ≡ ⟨⟩ then
67: stop → Access token for continuation must be a nonce
68: let grantID such that 𝑠′.grantRequests[grantID] [continueAT] ≡ continueAT

↩→ if possible; otherwise stop
69: call PERFORM_KEY_PROOF(𝑚, grantID, 𝑠′)
70: let inquiredValues := 𝑚.body[inquiredValues]
71: if interactRef ∈ 𝑠′.grantRequests[grantID] then → Interaction is not yet complete
72: if interactRef ∉ 𝑚.body then
73: stop → The interaction reference is required to finish the interaction
74: let interactRef := 𝑚.body[interactRef]
75: call SEND_GRANT_RESPONSE(grantID, interactRef , inquiredValues, 𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
76: else → Interaction has already been completed or software-only authorization
77: if interactRef ∈ 𝑚.body then
78: stop → Request is not allowed to contain an interaction reference
79: let 𝑠′.grantRequests[grantID] := 𝑠′.grantRequests[grantID] − continueAT
80: if finishMode ∈ 𝑠′.grantRequests[grantID] then → End user is present
81: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, endUser,

↩→ inquiredValues, continueAT , 𝑚.host, 𝑠′)
82: else → Software-only authorization
83: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, CI,

↩→ inquiredValues, continueAT , 𝑚.host, 𝑠′)
84: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, grantResponse⟩, 𝑘)
85: call STOP_WITH_LEAKS( 𝑓 , 𝑎, 𝑚′, grantResponse, 𝑠′)
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86: else if 𝑚.path ≡ /interact ∧ 𝑚.method ≡ GET then → Interaction using redirect
87: if request ∈ 𝑚.parameters then
88: let headers := [ReferrerPolicy:origin]
89: let request := 𝑚.parameters[request]
90: let referrer := 𝑚.headers[Referer]
91: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, headers,

↩→ ⟨script_as_login, [request:request, referrer:referrer]⟩⟩, 𝑘)
92: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
93: else
94: stop → The parameters need to contain a request identifier
95: else if 𝑚.path ≡ /interactUC ∧ 𝑚.method ≡ GET then → Interaction using user code
96: if user-code ∉ 𝑚.parameters then
97: stop → The parameters need to contain a user code
98: let headers := [ReferrerPolicy:origin]
99: let userCode := 𝑚.parameters[user-code]
100: let grantID such that 𝑠′.grantRequests[grantID] [userCode] ≡ userCode

↩→ if possible; otherwise stop
101: let domainCI := 𝑠′.grantRequests[grantID] [finishURL] .host
102: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, headers,

↩→ ⟨script_as_login, domainCI⟩⟩, 𝑘)
103: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
104: else if 𝑚.path ≡ /redirectLogin ∧ 𝑚.method ≡ POST

↩→ ∧𝑚.headers[Origin] ≡ ⟨𝑚.host, S⟩ then
105: let redirectNonce := 𝑚.body[request]
106: let grantID such that 𝑠′.grantRequests[grantID] [redirectNonce] ≡ redirectNonce

↩→ if possible; otherwise stop
107: if 𝑠′.grantRequests[grantID] [finishMode] ≡ push

↩→ ∧𝑚.body[referrer] .host . 𝑠′.grantRequests[grantID] [finishURL] .host then
108: stop → If the push interaction finish mode is used, we verify that the browser

was redirected by the client instance that sent the grant request to prevent
the client instance mix-up attack

109: call FINISH_INTERACTION(grantID, 𝑚, 𝑘, 𝑎, 𝑓 , 𝑠′)
110: else if 𝑚.path ≡ /userCodeLogin ∧ 𝑚.method ≡ POST

↩→ ∧𝑚.headers[Origin] ≡ ⟨𝑚.host, S⟩ then
111: let userCode := 𝑚.body[userCode]
112: let grantID such that 𝑠′.grantRequests[grantID] [userCode] ≡ userCode

↩→ if possible; otherwise stop
113: call FINISH_INTERACTION(grantID, 𝑚, 𝑘, 𝑎, 𝑓 , 𝑠′)
114: else if 𝑚.path ≡ /introspect ∧ 𝑚.method ≡ POST then → Token introspection
115: let method := 𝑚.body[RS] [method]
116: let key := 𝑚.body[RS] [key]
117: if method ≡ sign then
118: let keyID := 𝑚.body[RS] [keyID]
119: let 𝑠′ := VALIDATE_KEY_PROOF(method, 𝑚, keyID, key, 𝑠′)
120: else if method ≡ mtls then
121: let 𝑠′ := VALIDATE_KEY_PROOF(method, 𝑚,⊥, key, 𝑠′)
122: else
123: stop → Unsupported method
124: let accessToken := 𝑚.body[accessToken]
125: if accessToken ∉ 𝑠′.tokenBindings then
126: let body := [active:⊥] → Unknown access token
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127: else
128: let body := [active:⊤]
129: let binding := 𝑠′.tokenBindings[accessToken]
130: let type := binding[type]
131: let grantID := binding[grantID]
132: let grantRequest := 𝑠′.grantRequests[grantID]
133: if type ≡ newSign then
134: let body[key] := [keyID:binding[keyID], key:binding[publicKey], method:sign]
135: else if type ≡ newMTLS then
136: let body[key] := [key:binding[publicKey], method:mtls]
137: else if type ≡ CIKey then
138: let method := grantRequest[method]
139: if method ≡ sign then
140: let body[key] := [keyID:grantRequest[keyID], key:grantRequest[publicKey],

↩→ method:sign]
141: else if method ≡ mac then → RS must already know the key since

a symmetric key is used
142: let body[instanceID] := grantRequest[instanceID]
143: else → method ≡ mtls
144: let body[key] := [key:grantRequest[clientKey], method:mtls]
145: else → type ≡ bearer
146: let body[flags] := bearer
147: if binding[for] ≡ endUser then →Access token is used to access resources of

an end user
148: let body[access] := [identity:grantRequest[subjectID]]
149: else → Access token is used to access resources of a client instance
150: let body[access] := [instanceID:grantRequest[instanceID]]
151: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, body⟩, 𝑘)
152: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
153: else if 𝑚.path ≡ /MTLS-prepare ∧ 𝑚.method ≡ POST then
154: let mtlsNonce := 𝜈6
155: if instanceID ∈ 𝑚.body then → Client instance is registered
156: let instanceID := 𝑚.body[instanceID]
157: if instanceID ∉ 𝑠′.registrations then
158: stop → as does not know this instance identifier
159: if 𝑠′.registrations[instanceID] .method . mtls then
160: stop → This client instance does not use MTLS
161: let clientKey := 𝑠′.registrations[instanceID] .publicKey
162: else if publicKey ∈ 𝑚.body then → Client instance is not registered
163: let clientKey := 𝑚.body[publicKey]
164: else
165: stop → Information to determine clientKey is missing
166: let 𝑠′.mtlsRequests := 𝑠′.mtlsRequests +⟨⟩ ⟨mtlsNonce, clientKey⟩
167: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩,

↩→ enca (⟨mtlsNonce, 𝑠′.keyMapping[𝑚.host]⟩, clientKey)⟩, 𝑘)
168: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
169: else
170: stop → Unsupported operation
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Algorithm A.14 Relation of an AS 𝑅as: Check signature or MTLS nonce.
1: function PERFORM_KEY_PROOF(𝑚, grantID, 𝑠′)
2: if 𝑠′.grantRequests[grantID] ≡ ⟨⟩ then → New grant request
3: let grantRequest := 𝑚.body
4: if instanceID ∈ grantRequest ∧ client ∉ grantRequest then
5: let instanceID := grantRequest[instanceID]
6: if instanceID ∉ 𝑠′.registrations then
7: stop → Instance identifier is unknown to as
8: let 𝑠′.grantRequests[grantID] [instanceID] := instanceID
9: let keyData := 𝑠′.registrations[instanceID]

10: let method := keyData.method
11: if method ≡ sign then
12: let keyID := keyData.keyID
13: let publicKey := keyData.publicKey
14: else if method ≡ mac then
15: let keyID := keyData.keyID
16: let key := keyData.key
17: else →MTLS
18: let clientKey := keyData.publicKey
19: else if instanceID ∉ grantRequest ∧ client ∈ grantRequest then
20: let method := grantRequest[client] [method]
21: if method ≡ sign then
22: let keyID := grantRequest[client] [keyID]
23: let publicKey := grantRequest[client] [key]
24: else if method ≡ mtls then
25: let clientKey := grantRequest[client] [key]
26: else
27: stop → Invalid method or no method specified
28: else
29: stop → client or instanceID must be specified, but not both
30: let 𝑠′.grantRequests[grantID] [method] := method
31: if method ≡ sign then
32: let 𝑠′.grantRequests[grantID] [keyID] := keyID
33: let 𝑠′.grantRequests[grantID] [publicKey] := publicKey
34: else if method ≡ mac then
35: let 𝑠′.grantRequests[grantID] [keyID] := keyID
36: let 𝑠′.grantRequests[grantID] [key] := key
37: else →MTLS
38: let 𝑠′.grantRequests[grantID] [clientKey] := clientKey
39: else → Continuation request
40: let method := 𝑠′.grantRequests[grantID] [method]
41: if method ≡ sign then
42: let keyID := 𝑠′.grantRequests[grantID] [keyID]
43: let publicKey := 𝑠′.grantRequests[grantID] [publicKey]
44: else if method ≡ mac then
45: let keyID := 𝑠′.grantRequests[grantID] [keyID]
46: let key := 𝑠′.grantRequests[grantID] [key]
47: else →MTLS
48: let clientKey := 𝑠′.grantRequests[grantID] [clientKey]
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49: if method ≡ sign then
50: return VALIDATE_KEY_PROOF(method, 𝑚, keyID, publicKey, 𝑠′)
51: else if method ≡ mac then
52: return VALIDATE_KEY_PROOF(method, 𝑚, keyID, key, 𝑠′)
53: else →MTLS
54: return VALIDATE_KEY_PROOF(method, 𝑚,⊥, clientKey, 𝑠′)

Algorithm A.15 Relation of an AS 𝑅as: Check login and perform interaction finish mode.
1: function FINISH_INTERACTION(grantID, 𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if subjectID ∈ 𝑠′.grantRequests[grantID] then
3: stop → Interaction has already been completed for this request
4: let identity := 𝑚.body[identity]
5: let password := 𝑚.body[password]
6: if identity ∉ 𝑠′.users then
7: stop → Identity is not registered at this AS
8: if user ∈ 𝑠′.grantRequests[grantID] then
9: if identity . 𝑠′.grantRequests[grantID] [user] then

10: stop → Identity that logged in does not match identity specified in grant request
11: if password . 𝑠′.users[identity] then
12: stop → Incorrect password was provided
13: let interactRef := 𝜈7
14: let CIfinishNonce := 𝑠′.grantRequests[grantID] [CIfinishNonce]
15: let ASfinishNonce := 𝑠′.grantRequests[grantID] [ASfinishNonce]
16: let finishMode := 𝑠′.grantRequests[grantID] [finishMode]
17: let finishURL := 𝑠′.grantRequests[grantID] [finishURL]
18: let grantEndpoint := 𝑠′.grantRequests[grantID] [grantEndpoint]
19: let hash := hash(⟨CIfinishNonce,ASfinishNonce, interactRef , grantEndpoint⟩)
20: let 𝑠′.grantRequests[grantID] [interactRef] := interactRef
21: let 𝑠′.grantRequests[grantID] [subjectID] := identity
22: if finishMode ≡ redirect then
23: let finishURL.parameters[interactRef] := interactRef
24: let finishURL.parameters[hash] := hash
25: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 303, [Location:finishURL], ⟨⟩⟩, 𝑘)
26: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
27: else if finishMode ≡ push then
28: let body := [interactRef:interactRef , hash:hash]
29: let message := ⟨HTTPReq, 𝜈8, POST, finishURL.host, finishURL.path,

↩→ finishURL.parameters, ⟨⟩, body⟩
30: let 𝑠′.pendingDNS[𝜈9] := ⟨⊥,message⟩

→ Simulate HTTPS_SIMPLE_SEND because we have to emit two events
31: let dataURL := ⟨URL, S, finishURL.host, /getData, finishURL.parameters⟩
32: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 303, [Location:dataURL], ⟨⟩⟩, 𝑘)

→ Redirect browser to client instance in order to be able to send data to browser
33: stop ⟨⟨𝑠′.DNSaddress, 𝑎, ⟨DNSResolve,message.host, 𝜈9⟩⟩, ⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
34: else
35: stop → Invalid interaction finish mode
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Algorithm A.16 Relation of an AS 𝑅as: Send grant response after interaction has finished.
1: function SEND_GRANT_RESPONSE(grantID, interactRef , inquiredValues, 𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if interactRef . 𝑠′.grantRequests[grantID] [interactRef] then
3: stop → Received interaction reference does not match the stored one
4: let ⟨grantResponse, s′⟩ := CREATE_GRANT_RESPONSE(grantID, endUser, inquiredValues,

↩→ 𝑠′.grantRequests[grantID] [continueAT], 𝑚.host, 𝑠′)
5: let 𝑠′.grantRequests[grantID] := 𝑠′.grantRequests[grantID] − continueAT
6: let 𝑠′.grantRequests[grantID] := 𝑠′.grantRequests[grantID] − interactRef

→ Prevent reuse
7: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩, grantResponse⟩, 𝑘)
8: call STOP_WITH_LEAKS( 𝑓 , 𝑎, 𝑚′, grantResponse, 𝑠′)
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Algorithm A.17 Relation of an AS 𝑅as: Creating a grant response.
1: function CREATE_GRANT_RESPONSE(grantID, for, inquiredValues, oldContinueAT , host, 𝑠′)
2: if subjectID ∈⟨⟩ inquiredValues ∧ for ≡ CI then
3: stop → Subject identifiers cannot be requested when using software-only authorization
4: let grantResponse := []
5: if accessToken ∈⟨⟩ inquiredValues then
6: let accessToken := 𝜈10
7: let grantResponse[accessToken] := [value:accessToken]
8: let bindToNewKey← {⊤,⊥}
9: if bindToNewKey ≡ ⊤ then → Access token is bound to its own key

10: let privateKey := 𝜈11
11: let method← {sign, mtls} → Non-det. select key proofing method
12: if method ≡ sign then
13: let keyID := 𝜈12
14: let 𝑠′.tokenBindings[accessToken] := [grantID:grantID, for:for, type:newSign,

↩→ keyID:keyID, publicKey:pub(privateKey)]
15: let grantResponse[accessToken] [key] := [method:sign, keyID:keyID,

↩→ privateKey:privateKey]
16: else
17: let 𝑠′.tokenBindings[accessToken] := [grantID:grantID, for:for, type:newMTLS,

↩→ publicKey:pub(privateKey)]
18: let grantResponse[accessToken] [key] := [method:mtls, privateKey:privateKey]
19: else → Access token is bound to client instances key
20: let 𝑠′.tokenBindings[accessToken] := [grantID:grantID, for:for, type:CIKey]
21: else if bearerToken ∈⟨⟩ inquiredValues then
22: let bearerToken := 𝜈10
23: let 𝑠′.tokenBindings[bearerToken] := [grantID:grantID, for:for, type:bearer]
24: let grantResponse[accessToken] := [value:bearerToken, flags:bearer]
25: if subjectID ∈⟨⟩ inquiredValues then
26: let grantResponse[subjectID] := 𝑠′.grantRequests[grantID] [subjectID]
27: let allowContinuation← {⊤,⊥}
28: if allowContinuation ≡ ⊤ then
29: let keepOldAT ← {⊤,⊥}
30: if keepOldAT ≡ ⊤ ∧ oldContinueAT . ⊥ then
31: let continueAT := oldContinueAT → Continue access token does not change
32: else
33: let continueAT := 𝜈13
34: let continueURL := ⟨URL, S, host, /continue, ⟨⟩⟩
35: let grantResponse[continue] := [accessToken:continueAT , url:continueURL]
36: let 𝑠′.grantRequests[grantID] [continueAT] := continueAT
37: return ⟨grantResponse, s′⟩
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Algorithm A.18 Relation of an AS 𝑅as: Leaking access tokens.
1: function STOP_WITH_LEAKS( 𝑓 , 𝑎, 𝑚′, grantResponse, 𝑠′)
2: let events := ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩
3: if continue ∈ grantResponse then → Leakage of continuation access token
4: let events := events +⟨⟩ ⟨leak, 𝑎, ⟨LEAK, grantResponse[continue] [accessToken]⟩⟩
5: if accessToken ∈ grantResponse ∧ grantResponse[accessToken] [type] . bearer then

→ Leakage of key-bound access token
6: let events := events +⟨⟩ ⟨leak, 𝑎, ⟨LEAK, grantResponse[accessToken] [value]⟩⟩
7: stop events, 𝑠′

Algorithm A.19 Relation of script_as_login.
Input: ⟨tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets⟩

→ Script that models the login page of an AS
1: let switch← {login, link} → Non-deterministically decide whether to log in or to follow some

link
2: if switch ≡ login then → Log in to the AS
3: let url := GETURL(tree, docnonce)
4: if request ∈ scriptstate then → redirect interaction finish mode is used
5: let url′ := ⟨URL, S, url.host, /redirectLogin, ⟨⟩⟩
6: let formData := scriptstate → Contains redirect request identifier + referrer
7: else → user code interaction start mode is used
8: let url′ := ⟨URL, S, url.host, /userCodeLogin, ⟨⟩⟩
9: let formData := scriptinputs → Contains user code if client instance domain matched

10: let identity← ids
11: let secret← secrets
12: let formData[identity] := identity
13: let formData[password] := secret
14: let command := ⟨FORM, url′, POST, formData,⊥⟩
15: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩
16: else → Follow link
17: let protocol← {P, S} → Non-det. select protocol (HTTP or HTTPS)
18: let host← Doms → Non-det. select host
19: let path← S → Non-det. select path
20: let fragment← S → Non-det. select fragment part
21: let parameters← [S × S] → Non-det. select parameters
22: let url := ⟨URL, protocol, host, path, parameters, fragment⟩ → Assemble URL
23: let command := ⟨HREF, url,⊥,⊥⟩ → Follow link to the selected URL
24: stop ⟨scriptstate, cookies, localStorage, sessionStorage, command⟩

A.13 Resource Servers

A resource server rs ∈ RS is a web server modeled as an atomic DY process (𝐼rs, 𝑍rs, 𝑅rs, 𝑠rs
0 ) with

the addresses 𝐼rs B addr(rs).

To verify MACs created by client instances, the RSs store symmetric key records:
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Definition 8
A symmetric key record is a term of the form

⟨instanceID, ⟨keyID, key⟩⟩

with instanceID ∈ S, keyID ∈ KeyIDs, and key ∈ 𝐾KP.

Symmetric key records are used to store the symmetric keys of the client instances registered with
the various ASs that rs is configured to use.

Next, we define the set 𝑍rs of states of rs and the initial state 𝑠rs
0 of rs.

Definition 9
A state 𝑠 ∈ 𝑍rs of RS rs is a term of the form ⟨DNSaddress, pendingDNS, corrupt, pendingRequests,
keyMapping, tlskeys, authServers, symKeys, signingKeyID, signingKey, mtlsKey, identities,
instanceIDs, userResources, clientResources, resourceRequests, mtlsRequests, sigNonces⟩ with
DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, corrupt ∈ TN , pendingRequests ∈

[
N × TN

]
,

keyMapping ∈
[
Doms × TN

]
, tlskeys ∈ [Doms × 𝐾TLS], authServers ∈ TN , symKeys ∈[

Doms ×
[
S × TN

] ]
, signingKeyID ∈ N , signingKey ∈ N , mtlsKey ∈ N , identities ∈[

Doms × TN
]
, instanceIDs ∈

[
Doms × TN

]
, userResources ∈

[
ID ×N

]
, clientResources ∈[

Doms ×
[
S ×N

] ]
, resourceRequests ∈

[
N ×

[
S × TN

] ]
, mtlsRequests ∈

[
N ×N

]
, and

sigNonces ∈ TN .

An initial state 𝑠rs
0 of rs is a state of rs with 𝑠rs

0 .pendingDNS ≡ ⟨⟩, 𝑠
rs
0 .corrupt ≡ ⊥,

𝑠rs
0 .pendingRequests ≡ ⟨⟩, 𝑠

rs
0 .keyMapping being the same as the keymapping for browsers,

𝑠rs
0 .tlskeys ≡ tlskeysrs, and 𝑠rs

0 .resourceRequests ≡ 𝑠
rs
0 .mtlsRequests ≡ 𝑠

rs
0 .sigNonces ≡

⟨⟩.

resourceRequests will store various information about ongoing requests. The different requests are
distinguished by a nonce called requestID, which acts as a key for the outer dictionary.

mtlsRequests and sigNonces work the same way as for the authorization servers in Appendix A.12.

𝑠rs
0 .authServers is a sequence of domains representing the ASs that rs is configured to use. rs thus

manages resources for the ASs in 𝑠rs
0 .authServers and sends introspection requests to them. For all

domains 𝑑 ∈⟨⟩ 𝑠rs
0 .authServers there must be an AS as ∈ AS with 𝑑 ∈ dom(as). To simplify the

following notations and algorithms, we assume that each RS uses each AS under only one domain,
i.e., for all domains 𝑑, 𝑑′ ∈⟨⟩ 𝑠rs

0 .authServers, 𝑑 . 𝑑
′ it holds that dom−1(𝑑) ≠ dom−1(𝑑′).

𝑠rs
0 .symKeys is used to store the symmetric keys of the client instances registered with the ASs

in 𝑠rs
0 .authServers. GNAP only requires that an RS must be able to dereference key references

(subsumed with instance identifiers in our model) provided by the client instances. However, the
protocol does not specify how this dereferencing should work. Since symmetric keys cannot be
transmitted from an AS to an RS as part of token introspection (because GNAP allows arbitrary
servers to use the token introspection endpoint and thus the symmetric keys could otherwise
be leaked to arbitrary servers via token introspection), we store the keys in 𝑠rs

0 .symKeys using
symmetric key records. The keys of the outer dictionary are the domains of the various ASs that rs
is configured to use. For each domain 𝑑 ∈ 𝑠rs

0 .symKeys it must hold that 𝑑 ∈⟨⟩ 𝑠rs
0 .authServers.

The inner dictionaries, which are the values of the outer dictionary, consist of symmetric key
records.
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For each client instance 𝑐 ∈ CI, each domain 𝑑 ∈⟨⟩ 𝑠c
0.authServers, and each key record

𝑟 ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑] with 𝑟.method ≡ mac ∧ 𝑟.rs ∈ dom(rs) there must be exactly one
symmetric key record 𝑟 ′ ∈⟨⟩ 𝑠rs

0 .symKeys[𝑑
′] for the 𝑑′ ∈⟨⟩ 𝑠rs

0 .authServers which is in
dom(dom−1(𝑑)) (if such a 𝑑′ exists) such that

𝑟 ′.instanceID ≡ 𝑟.instanceID
∧ 𝑟 ′.2.keyID ≡ 𝑟.keyID
∧ 𝑟 ′.2.key ≡ 𝑟.key .

For all domains 𝑑 ∈ 𝑠rs
0 .symKeys, there should be no symmetric key records in 𝑠rs

0 .symKeys[𝑑]
other than those mentioned above.

𝑠rs
0 .signingKeyID ∈ keyIDs represents the key ID for 𝑠rs

0 .signingKey.

𝑠rs
0 .signingKey is a key in 𝐾KP that must initially be stored in rs only. It will be used by rs to sign

its introspection requests to the ASs, if MTLS is not used.

𝑠rs
0 .mtlsKey is a key in 𝐾KP that must initially be stored in rs only. It will be used by rs for MTLS

key proofs for its introspection requests to the ASs, if signatures are not used.

In 𝑠rs
0 .identities rs stores the identities for which it stores resources. The keys are do-

mains of the ASs rs is configured to use. The values are sequences of identities. For each
domain 𝑑 ∈ 𝑠rs

0 .identities it must hold that 𝑑 ∈⟨⟩ 𝑠rs
0 .authServers. For each identity

𝑖 ∈⟨⟩ 𝑠rs
0 .identities[𝑑] it must hold that there is a user record 𝑟 ∈⟨⟩ 𝑠dom−1 (𝑑)

0 .users such that
𝑖 ≡ 𝑟.identity.

𝑠rs
0 .instanceIDs stores the instance identifiers of the client instances for which rs stores resources.

The keys are domains of the ASs that rs is configured to use. The values are sequences of instance iden-
tifiers used by the AS that belongs to the domain used as key. For each domain 𝑑 ∈ 𝑠rs

0 .instanceIDs

it must hold that 𝑑 ∈⟨⟩ 𝑠rs
0 .authServers. For each instance identifier 𝑖 ∈⟨⟩ 𝑠rs

0 .instanceIDs[𝑑]
it must hold that there is a client registration record 𝑟 ∈⟨⟩ 𝑠dom−1 (𝑑)

0 .registrations such that
𝑖 ≡ 𝑟.instanceID. If 𝑟.keyData.method ≡ mac it must additionally hold that 𝑖 ∈ 𝑠rs

0 .symKeys[𝑑].
This is because when using symmetric keys, only the RS with which the client instance shares its
symmetric key can manage resources for that client instance (when using 𝑖 as instance ID), since
the other RSs do not know the client instance’s symmetric key and thus cannot validate key proofs
of that client instance.

𝑠rs
0 .userResources contains the nonces representing the resources rs manages for specific iden-

tities. 𝑠rs
0 .userResources maps identities to nonces in ProtectedResources. All nonces in

ProtectedResources that are subterms of 𝑠rs
0 .userResources must only be stored in rs ini-

tially. For each 𝑑 ∈ 𝑠rs
0 .identities and each 𝑖 ∈⟨⟩ 𝑠rs

0 .identities[𝑑] there must be a nonce
𝑛 ∈ ProtectedResources such that 𝑠rs

0 .userResources[𝑖] ≡ 𝑛. For each 𝑖 ∈ 𝑠rs
0 .userResources

there must be a domain 𝑑 ∈ 𝑠rs
0 .identities such that 𝑖 ∈⟨⟩ 𝑠rs

0 .identities[𝑑]. For all 𝑖, 𝑖′ ∈
𝑠rs

0 .userResources, 𝑖 . 𝑖
′ we require that 𝑠rs

0 .userResources[𝑖] . 𝑠
rs
0 .userResources[𝑖

′].

𝑠rs
0 .clientResources contains the nonces representing the resources rs manages for the client

instances that are registered at the ASs that rs is configured to use. 𝑠rs
0 .clientResources

maps domains representing ASs to dictionaries that map the instance identifiers used by the
AS to nonces in ProtectedResources. All nonces in ProtectedResources that are subterms
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of 𝑠rs
0 .clientResources must only be stored in rs initially. For each 𝑑 ∈ 𝑠rs

0 .instanceIDs

and each 𝑖 ∈⟨⟩ 𝑠rs
0 .instanceIDs[𝑑] there must be a nonce 𝑛 ∈ ProtectedResources such

that 𝑠rs
0 .clientResources[𝑑] [𝑖] ≡ 𝑛. For each 𝑑 ∈ 𝑠rs

0 .clientResources and each
𝑖 ∈ 𝑠rs

0 .clientResources[𝑑] it must hold that 𝑖 ∈⟨⟩ 𝑠rs
0 .instanceIDs[𝑑]. For each client

instance to have its own resource, the following must apply: For all 𝑑 ∈ 𝑠rs
0 .clientResources

and all 𝑖, 𝑖′ ∈ 𝑠rs
0 .clientResources[𝑑], 𝑖 . 𝑖

′ we require that 𝑠rs
0 .clientResources[𝑑] [𝑖] .

𝑠rs
0 .clientResources[𝑑] [𝑖

′]. Furthermore, for all 𝑑, 𝑑′ ∈ 𝑠rs
0 .clientResources, 𝑑 . 𝑑′,

all 𝑖 ∈ 𝑠rs
0 .clientResources[𝑑], and all 𝑖′ ∈ 𝑠rs

0 .clientResources[𝑑
′] it must hold that

𝑠rs
0 .clientResources[𝑑] [𝑖] . 𝑠

rs
0 .clientResources[𝑑

′] [𝑖′].

There must not be a nonce 𝑛 ∈ ProtectedResources that is a subterm of both 𝑠rs
0 .userResources

and 𝑠rs
0 .clientResources.

Since we allow rs to use multiple ASs in our modeling, rs must be able to determine which of the
ASs in 𝑠rs

0 .authServers to use for token introspection for a given access token. Since determining
this is out of scope for GNAP, we define the function is_issuer to determine the issuer of an access
token in a state 𝑆 of a configuration (𝑆, 𝐸, 𝑁) of a run as follows:

Definition 10
Given a nonce 𝑛 and a domain 𝑑,

is_issuer(𝑛, 𝑑) ≡ ⊤ ⇔ 𝑛 ∈ 𝑆(dom−1(𝑑)).tokenBindings .

is_issuer can be used by all processes and is the only such function in our model.

We now specify the relation 𝑅rs: This relation is again based on the generic HTTPS server model
defined in [9]. Table A.4 shows a list of all placeholders used in the algorithms.

Placeholder Usage
𝜈1 new request identifier used as key for the resourceRequests subterm
𝜈2 new HTTP request nonce
𝜈3 new nonce for MTLS
𝜈4 new protected resource for a client instance
𝜈5 new HTTP request nonce

Table A.4: List of placeholders used in the RS algorithms.

The following algorithms are used for modeling the resource servers:

• Algorithm A.20 accepts requests to rs. If rs receives a request for a resource, rs first uses
is_issuer to determine to which of the ASs in the authServers subterm it must send the
introspection request to. Then it sends the introspection request to this AS, where it is
non-deterministically decided whether a signature or MTLS is used as key proofing method.
MACs are not modeled here, since rs would have to be registered with the AS in order
for them to have shared symmetric keys. However, GNAP also allows arbitrary RSs to
send introspection requests, so we do not model RSs that are pre-registered at an AS. The
information required to process the response to the introspection request is stored in the
resourceRequests subterm.
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• Algorithm A.21 processes responses received by rs. If rs receives an introspection response,
it checks that the authentication scheme used by the client instance in its resource request is
correct, and if dealing with a key-bound access token, it validates the key proof. If the key
proof was validated successfully or a valid bearer token was used, the associated resource is
returned from either the userResources subterm or the clientResources subterm, depending
on whether software-only authorization was used.

Algorithm A.20 Relation of an RS 𝑅rs: Processing HTTPS requests.
1: function PROCESS_HTTPS_REQUEST(𝑚, 𝑘 , 𝑎, 𝑓 , 𝑠′)
2: if 𝑚.path ≡ /resource ∧ 𝑚.method ≡ GET then → Client instance wants to receive a resource
3: let type, accessToken such that ⟨type, accessToken⟩ ≡ 𝑚.headers[Authorization]

↩→ if possible; otherwise stop
4: let requestID := 𝜈1
5: let domainAS← 𝑠′.authServers such that is_issuer(accessToken, domainAS) ≡ ⊤

↩→ if possible; otherwise stop
6: let introspectionEndpoint := ⟨URL, S, domainAS, /introspect, ⟨⟩,⊥⟩
7: let 𝑠′.resourceRequests[requestID] := [request:𝑚, key:𝑘, receiver:𝑎,

↩→ sender: 𝑓 , type:type, AS:domainAS]
8: let method← {sign, mtls} → Key proofing method for introspection request
9: if method ≡ sign then

10: let keyEntry := [keyID:𝑠′.signingKeyID, key:pub(𝑠′.signingKey), method:sign]
11: let body := [accessToken:accessToken, RS:keyEntry]
12: let reference := [responseTo:introspection, requestID:requestID]
13: call SIGN_AND_SEND(POST, introspectionEndpoint, 𝑠′.signingKeyID,

↩→ 𝑠′.signingKey,⊥,⊥, body, reference, 𝑠′, 𝑎)
14: else
15: let keyEntry := [key:pub(𝑠′.mtlsKey), method:mtls]
16: let body := [accessToken:accessToken, RS:keyEntry]
17: let 𝑠′.resourceRequests[requestID] [body] := body
18: let request := ⟨HTTPReq, 𝜈2, POST, domainAS, /MTLS-prepare, ⟨⟩, ⟨⟩,

↩→ [publicKey:pub(𝑠′.mtlsKey)]⟩
19: let reference := [responseTo:MTLS, requestID:requestID]
20: call HTTPS_SIMPLE_SEND(reference, request, 𝑠′, 𝑎)
21: else if 𝑚.path ≡ /MTLS-prepare ∧ 𝑚.method ≡ POST then
22: let mtlsNonce := 𝜈3
23: if publicKey ∈ 𝑚.body then
24: let clientKey := 𝑚.body[publicKey]
25: else
26: stop → clientKey is missing
27: let 𝑠′.mtlsRequests := 𝑠′.mtlsRequests +⟨⟩ ⟨mtlsNonce, clientKey⟩
28: let 𝑚′ := encs (⟨HTTPResp, 𝑚.nonce, 200, ⟨⟩,

↩→ enca (⟨mtlsNonce, 𝑠′.keyMapping[𝑚.host]⟩, clientKey)⟩, 𝑘)
29: stop ⟨⟨ 𝑓 , 𝑎, 𝑚′⟩⟩, 𝑠′
30: else
31: stop → Unsupported operation
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Algorithm A.21 Relation of an RS 𝑅rs: Processing HTTPS responses.
1: function PROCESS_HTTPS_RESPONSE(𝑚, reference, request, 𝑎, 𝑓 , 𝑠′)
2: let requestID := reference[requestID]
3: if reference[responseTo] ≡ introspection then
4: let response := 𝑚.body
5: if response[active] ≡ ⊥ then
6: stop → Access token is invalid
7: else
8: let resourceReq := 𝑠′.resourceRequests[requestID] [request]
9: let type := 𝑠′.resourceRequests[requestID] [type]

10: let domainAS := 𝑠′.resourceRequests[requestID] [AS]
11: if response[flags] . bearer then → Access token is bound to a specific key
12: if type . GNAP then
13: stop →Wrong authentication scheme was used
14: if instanceID ∈ response then → A MAC must be validated
15: if response[instanceID] ∈ 𝑠′.symKeys[domainAS] then
16: let ⟨keyID, key⟩ := 𝑠′.symKeys[domainAS] [response[instanceID]]
17: let 𝑠′ := VALIDATE_KEY_PROOF(mac, resourceReq, keyID, key, 𝑠′)
18: else
19: stop → rs does not know the symmetric key
20: else
21: let method := response[key] [method]
22: let key := response[key] [key]
23: if method ≡ sign then
24: let keyID := response[key] [keyID]
25: let 𝑠′ := VALIDATE_KEY_PROOF(sign, resourceReq, keyID, key, 𝑠′)
26: else if method ≡ mtls then
27: let 𝑠′ := VALIDATE_KEY_PROOF(mtls, resourceReq,⊥, key, 𝑠′)
28: else
29: stop → Unsupported method
30: else → Access token is a bearer token
31: if type . Bearer then
32: stop →Wrong Authentication scheme was used
33: if key ∈ response then
34: stop → For a bearer token no key may be included
35: if identity ∈ response[access] then
36: let identity := response[access] [identity] → Identity of the RO
37: if identity ̸∈⟨⟩ 𝑠′.identities[domainAS] then
38: stop → rs does not store resources for this RO or identity is not managed by this AS
39: let resource := 𝑠′.userResources[identity]
40: else if instanceID ∈ response[access] then
41: let instanceID := response[access] [instanceID]
42: if instanceID ̸∈⟨⟩ 𝑠′.instanceIDs[domainAS] then → rs does not yet store resources

for this client instance
43: let resource := 𝜈4
44: let 𝑠′.instanceIDs[domainAS] := 𝑠′.instanceIDs[domainAS] +⟨⟩ instanceID
45: let 𝑠′.clientResources[domainAS] [instanceID] := resource
46: else → rs already stores a resource for this client instance
47: let resource := 𝑠′.clientResources[domainAS] [instanceID]
48: else
49: stop → Invalid response
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50: let responseKey := 𝑠′.resourceRequests[requestID] [key]
51: let sender := 𝑠′.resourceRequests[requestID] [sender]
52: let receiver := 𝑠′.resourceRequests[requestID] [receiver]
53: let 𝑚′ := encs (⟨HTTPResp, resourceReq.nonce, 200, ⟨⟩, resource⟩, responseKey)
54: stop ⟨⟨sender, receiver, 𝑚′⟩⟩, 𝑠′
55: else if reference[responseTo] ≡ MTLS then
56: let 𝑚dec := deca (𝑚.body, 𝑠′.mtlsKey)
57: let mtlsNonce, pubKey such that ⟨mtlsNonce, pubKey⟩ ≡ 𝑚dec if possible; otherwise stop
58: if pubKey ≡ 𝑠′.keyMapping[request.host] then → Send nonce only to the process that

created it
59: let domainAS := 𝑠′.resourceRequests[requestID] [AS]
60: let body := 𝑠′.resourceRequests[requestID] [body]
61: let body[mtlsNonce] := mtlsNonce
62: let introspectionRequest := ⟨HTTPReq, 𝜈5, POST, domainAS, /introspect, ⟨⟩, ⟨⟩, body⟩
63: let ref := [responseTo:introspection, requestID:requestID]
64: call HTTPS_SIMPLE_SEND(ref , introspectionRequest, 𝑠′, 𝑎)
65: else
66: stop
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B Definitions

This appendix contains definitions that we will use to define our security properties in Appendix C
and for our proofs in Appendix D. In addition to the definitions listed here, we also adopt the
definitions of the formulations “emitting events” from Definition 44, “leaking a term” from
Definition 46, and “knowing a term” from Definition 49 of the WIM [9].

In addition, we define the following formulation:

Definition 11 (Sending Requests)
We say that a DY process 𝑝 sent a request 𝑟 ∈ HTTPRequests (at some point) in a run if 𝑝 emitted
an event ⟨𝑥, 𝑦, enca (⟨𝑟, 𝑘⟩, 𝑘 ′)⟩ in some processing step for some addresses 𝑥, 𝑦, some 𝑘 ∈ N , and
some 𝑘 ′ ∈ TN .

We will use the function ownerOfResource to determine the owner of a protected resource stored
at an honest resource server.

Definition 12 (ownerOfResource)
Given a GNAP web system GWS = (W , S , script, 𝐸0), a run 𝜌 of GWS , a configuration (𝑆, 𝐸, 𝑁)
in 𝜌, an RS rs ∈ RS that is honest in 𝑆, and a nonce 𝑛 ∈ N that is either a subterm of
𝑆(rs).clientResources or a subterm of 𝑆(rs).userResources, ownerOfResource : N → W
is defined as follows:

• If 𝑛 ≡ 𝑆(rs).clientResources[𝑑] [𝑖] for a domain 𝑑 and an instance identifier 𝑖,
then ownerOfResource(𝑛) depends on whether 𝑖 ∈ 𝑠rs

0 .clientResources[𝑑]. If
𝑖 ∈ 𝑠rs

0 .clientResources[𝑑], ownerOfResource(𝑛) is defined to be the client in-
stance 𝑐 for which there is a key record 𝑟 ∈⟨⟩ 𝑠𝑐0 .keyRecords[𝑑

′] for some 𝑑′ ∈
dom(dom−1(𝑑)) such that 𝑟.instanceID ≡ 𝑖. Otherwise, 𝑛 must have been stored
in 𝑆(rs).clientResources[𝑑] [𝑖] in Line 45 of Algorithm A.21. In this case,
ownerOfResource(𝑛) is the process to which rs returned the newly created 𝑛 in Line 54 of
Algorithm A.21, i.e., ownerOfResource(𝑛) = addr−1(sender) for the address sender from
that line.

• If 𝑛 ≡ 𝑆(rs).userResources[𝑢] for an identity 𝑢, ownerOfResource(𝑛) is defined to be
ownerOfID(𝑢).

The following definition describes the process of an RO authenticating to an AS and the resulting
authorization of a grant request.
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Definition 13 (End user authenticated at an AS)
For a run 𝜌 of a GNAP web system GWS we say that the end user of the browser 𝑏 authenticated to
an authorization server as using an identity 𝑢 in a GNAP flow identified by a nonce gid at the client
instance 𝑐 if there is a processing step 𝑄 in 𝜌 with

𝑄 = (𝑆, 𝐸, 𝑁) → (𝑆′, 𝐸 ′, 𝑁 ′)

(for some 𝑆, 𝑆′, 𝐸, 𝐸 ′, 𝑁, 𝑁 ′) in which the browser 𝑏 was triggered, selected a document loaded from
an origin of as, executed the script script_as_login in that document, and in that script, in Line 10 of
Algorithm A.19, selected the identity 𝑢. If the scriptstate of that document, when triggered, contained
the key request, let 𝑠 ≡ scriptstate[request]. Otherwise, let 𝑠′ ≡ scriptinputs[userCode]. With
grantID as the grant ID of as, for which 𝑆(as).grantRequests[grantID] [redirectNonce] ≡ 𝑠
respectively 𝑆(as).grantRequests[grantID] [userCode] ≡ 𝑠′, 𝑐 is the client instance that sent
the request 𝑚 that led to the creation of grantID in Line 3 of Algorithm A.13. gid is the grant ID of
𝑐 that was created in Line 10 of Algorithm A.6 in the processing step in which 𝑚 was sent by 𝑐. We
then write authenticated𝑄

𝜌 (𝑏, 𝑐, 𝑢, as, gid).

96



C Formal Security Properties

In this appendix, we formally define our security properties for GNAP, which focus on authorization.
Intuitively, authorization for GWS means that an attacker should not be able to obtain a protected
resource that is stored at an honest RS, is protected by an honest AS, and is owned by an honest end
user or an honest client instance. If the resource is owned by an honest end user, this property cannot
be satisfied if the end user has granted access to its resources to a corrupted client instance.

Definition 14 (Authorization Property for Software-only Authorization)
Let GWS be a GNAP web system. We say that GWS fulfills the authorization property for software-only
authorization iff for every run 𝜌 of GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every RS rs ∈ RS that
is honest in 𝑆, every domain dmnAS ∈ 𝑆(rs).clientResources, and every instance identifier 𝑖 ∈
𝑆(rs).clientResources[dmnAS] it holds true that if 𝑛 ≡ 𝑆(rs).clientResources[dmnAS] [𝑖]
is derivable from the attacker’s knowledge in 𝑆 (i.e., 𝑛 ∈ 𝑑∅ (𝑆(na))), it follows that

(1) dom−1(dmnAS) (the responsible AS) is corrupted in 𝑆, or

(2) the client instance 𝑐 = ownerOfResource(𝑛) that owns this resource is corrupted in 𝑆, or

(3) there exists a key record 𝑘 in 𝑠𝑐0 .keyRecords[dmnAS′] (for some domain dmnAS′ ∈
dom(dom−1(dmnAS))) such that 𝑘.method ≡ mac and dom−1(𝑘.rs) is corrupted in 𝑆

(𝑐 shares a symmetric key with the responsible AS and a corrupted RS), or

(4) there exist a grant ID gid and a domain 𝑦 ∈⟨⟩ 𝑆(𝑐).grants[gid] [bearerRSs] such that
sessionID ∉ 𝑆(𝑐).grants[gid] (software-only authorization was used) and dom−1(𝑦) is
corrupted in 𝑆 (a bearer token was sent to a corrupted resource server).

Definition 15 (Authorization Property for End Users)
Let GWS be a GNAP web system. We say that GWS fulfills the authorization property for end users iff
for every run 𝜌 of GWS , every configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every RS rs ∈ RS that is honest in 𝑆 𝑗 ,
and every identity 𝑢 ∈ 𝑆 𝑗 (rs).userResources it holds true that if 𝑛 ≡ 𝑆 𝑗 (rs).userResources[𝑢]
is derivable from the attacker’s knowledge in 𝑆 𝑗 (i.e., 𝑛 ∈ 𝑑∅ (𝑆 𝑗 (na))), it follows that

(1) governor(𝑢) (the responsible AS) is corrupted in 𝑆 𝑗 , or

(2) the browser 𝑏 = ownerOfResource(𝑛) that owns this resource is fully corrupted in 𝑆 𝑗 , or

(3) there exist a client instance 𝑐 that is honest in 𝑆 𝑗 and a key record 𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS]
(for some domain dmnAS ∈ dom(governor(𝑢))) such that 𝑘.method ≡ mac and dom−1(𝑘.rs)
is corrupted in 𝑆 𝑗 (an honest client instance shares a symmetric key with governor(𝑢) and a
corrupted RS), or

(4) there exist a client instance 𝑐, a grant ID gid, and a processing step 𝑄 = (𝑆𝑖 , 𝐸 𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸 𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), gid),
and
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(a) 𝑐 is corrupted in 𝑆 𝑗 (a grant request from a corrupted client instance was granted), or

(b) there exists a domain 𝑦 ∈⟨⟩ 𝑆 𝑗 (𝑐).grants[gid] [bearerRSs] such that dom−1(𝑦) is
corrupted in 𝑆 𝑗 (an authorized client instance sent a bearer token to a corrupted RS).

Definition 16 (Authorization Property)
Let GWS be a GNAP web system. We say that GWS is secure w.r.t. authorization iff GWS fulfills the
authorization property for software-only authorization and the authorization property for end users.
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D Proofs

This appendix contains the proofs of the security properties we formulated, for which we will prove
various lemmas. The overall goal is to prove the authorization property.

In the proofs, we argue at various points that certain statements hold because HTTPS is used to send
requests and responses between two DY processes. In doing so, we refer to the HTTPS lemmas
for the browser model and the WIM’s generic HTTPS server model from [9]. The lemma for
the browser model is applicable because our adjustments to the browser model for the user code
interaction start mode do not affect the proof of the lemma or the lemma itself. The HTTPS lemma
for the WIM’s generic HTTPS server model is applicable because all of our server instances (client
instances, ASs, and RSs) satisfy the preconditions of the lemma. The exact properties satisfied by
the WIM’s modeling of HTTPS, as well as their proofs, can be found in [9].

D.1 General Properties

The following lemma was adapted from [6].

Lemma 1 (Host of HTTP Request). For any run 𝜌 of a GNAP web system GWS , every configuration
(𝑆, 𝐸, 𝑁) in 𝜌, and every process 𝑝 ∈ CI ∪ AS ∪ RS that is honest in 𝑆 it holds true that if the
generic HTTPS server calls PROCESS_HTTPS_REQUEST(𝑚dec, 𝑘, 𝑎, 𝑓 , 𝑠

′) in Algorithm 18 of
the WIM [9], then 𝑚dec.host ∈ dom(𝑝), for all values of 𝑘 , 𝑎, 𝑓 , and 𝑠′.

Proof. For the proof we refer to [6] as it is the same. ■

Lemma 2 (Private Keys of Client Instances do not leak). For any run 𝜌 of a GNAP web system
GWS = (W , S , script, 𝐸0), every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every 𝑐 ∈ CI that is honest in
𝑆, every domain dmn ∈ 𝑆(𝑐).keyRecords, every key record 𝑟 ∈⟨⟩ 𝑆(𝑐).keyRecords[dmn]
with 𝑟.method ≡ sign ∨ 𝑟.method ≡ mtls, and every process 𝑝 ∈ W \ {𝑐} it holds true that
𝑟.key ∉ 𝑑∅ (𝑆(𝑝)).

Proof. There is no code section in which the value of 𝑟.method or the value of 𝑟.key could change.
Thus, it must hold that these values are unchanged since the initial state. By the definitions of
the initial states of the processes, it must hold that for all processes 𝑝 ∈ W \ {𝑐} the nonce 𝑟.key
appears only as a public key in 𝑠𝑝0 . As the equational theory does not allow the extraction of a
private key 𝑥 from a public key pub(𝑥), it must hold that 𝑟.key ∉ 𝑑∅ (𝑠𝑝0 ) for all 𝑝 ∈ W \ {𝑐}. Thus,
for 𝑝 to know 𝑟.key in 𝑆, there must have been a processing step in which 𝑐 leaked 𝑟.key to another
process. Whenever 𝑟.key is a subterm of a message emitted by 𝑐, the public key to that private
key, i.e. pub(𝑟.key) is sent since there is no code section in which an honest client instance sends a
private key. However, since pub(𝑟.key) cannot be used to derive 𝑟.key, 𝑟.key ∉ 𝑑∅ (𝑆(𝑝)) must
hold for all 𝑝 ∈ W \ {𝑐}. ■
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Lemma 3 (Private Keys of Resource Servers do not leak). For any run 𝜌 of a GNAP web system
GWS = (W , S , script, 𝐸0), every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every rs ∈ RS that is honest in 𝑆, and
every process 𝑝 ∈ W \ {rs} it holds true that 𝑆(rs).signingKey ∉ 𝑑∅ (𝑆(𝑝)) ∧ 𝑆(rs).mtlsKey ∉
𝑑∅ (𝑆(𝑝)).

Proof. There is no code section in which the value of 𝑠rs
0 .signingKey or the value of 𝑠rs

0 .mtlsKey
could change. Thus, it must hold that these keys are unchanged since the initial state (i.e.
𝑠rs

0 .signingKey ≡ 𝑆(rs).signingKey ∧ 𝑠
rs
0 .mtlsKey ≡ 𝑆(rs).mtlsKey). By the definitions of

the initial states of the processes, the nonces 𝑠rs
0 .signingKey and 𝑠rs

0 .mtlsKey are initially only
stored in rs, which means it holds true that 𝑠rs

0 .signingKey ∉ 𝑑∅ (𝑠𝑝0 ) ∧ 𝑠
rs
0 .mtlsKey ∉ 𝑑∅ (𝑠𝑝0 )

for all 𝑝 ∈ W \ {rs}. Thus, for 𝑝 to know 𝑠rs
0 .signingKey or 𝑠rs

0 .mtlsKey in 𝑆, there must have
been a processing step in which rs leaked 𝑠rs

0 .signingKey or 𝑠rs
0 .mtlsKey to another process. rs

only includes 𝑠rs
0 .signingKey as a subterm of an emitted event in Line 10 of Algorithm A.20

and 𝑠rs
0 .mtlsKey in Line 15 of Algorithm A.20. However, in both lines only the corresponding

public key is included (pub(𝑠rs
0 .signingKey) and pub(𝑠rs

0 .mtlsKey)). The public keys cannot be
used to derive the private keys 𝑠rs

0 .signingKey and 𝑠rs
0 .mtlsKey because the equational theory

does not allow the extraction of a private key 𝑥 from a public key pub(𝑥). So it must hold that
𝑆(rs).signingKey ∉ 𝑑∅ (𝑆(𝑝)) ∧ 𝑆(rs).mtlsKey ∉ 𝑑∅ (𝑆(𝑝)) for all 𝑝 ∈ W \ {rs}. ■

Lemma 4 (Symmetric Keys do not leak). For any run 𝜌 of a GNAP web system GWS =

(W , S , script, 𝐸0), every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every 𝑐 ∈ CI that is honest in 𝑆, every domain
dmn ∈ 𝑆(𝑐).keyRecords, every key record 𝑟 ∈⟨⟩ 𝑆(𝑐).keyRecords[dmn] with 𝑟.method ≡ mac,
and every process 𝑝 ∈ W it holds true that if as = dom−1(dmn) is honest in 𝑆, rs = dom−1(𝑟.rs)
is honest in 𝑆, and 𝑝 ∉ {𝑐, as, rs}, then 𝑟.key ∉ 𝑑∅ (𝑆(𝑝)).

Proof. Let i be an integer (used as a pointer) such that 𝑆(𝑐).keyRecords[dmn] .i ≡ 𝑟 . Since keys
stored in key records never change, it must hold that 𝑟.key ≡ 𝑆(𝑐).keyRecords[dmn] .i.key ≡
𝑠𝑐0 .keyRecords[dmn] .i.key. By definition, 𝑠𝑐0 .keyRecords[dmn] .i.key is only stored in 𝑐, as,
and rs initially. This means it must hold that 𝑠𝑐0 .keyRecords[dmn] .i.key ∉ 𝑑∅ (𝑠𝑝0 ) for all
𝑝 ∉ {𝑐, as, rs}. Thus, for 𝑝 to know 𝑟.key in 𝑆, there must have been a processing step in
which 𝑐, as, or rs leaked 𝑟.key to another process. However, this is not possible because
symmetric keys are used by client instances only to generate MACs, while they are used by honest
authorization servers and honest resource servers only to validate these MACs. Therefore, there
is no code section in which 𝑐 emits 𝑆(𝑐).keyRecords[dmn] .i.key, no code section in which as
emits 𝑆(as).registrations[𝑆(𝑐).keyRecords[dmn] .i.instanceID] .key, and no code section
in which rs emits 𝑆(rs).symKeys[dmn′] [𝑆(𝑐).keyRecords[dmn] .i.instanceID] .key (for some
dmn′) as a subterm of an event. Thus, 𝑟.key cannot be leaked to another process in any processing
step, so it must hold that 𝑟.key ∉ 𝑑∅ (𝑆(𝑝)). ■

Lemma 5 (Keys generated for Access Tokens do not leak). For any run 𝜌 of a GNAP web sys-
tem GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every client instance 𝑐 ∈ CI that is honest
in 𝑆, every grant ID grantID for which grantID ∈ 𝑆(𝑐).receivedValues, every private key
𝑘 ≡ 𝑆(𝑐).receivedValues[grantID] [accessToken] [key] [privateKey] that has been stored
by 𝑐 in Line 26 of Algorithm A.7 in a previous state 𝑆′ in response to a request sent to an AS
as ∈ AS that was honest in 𝑆′, and every process 𝑝 ≠ 𝑐 it holds true that 𝑘 ∉ 𝑑∅ (𝑆(𝑝)).

100



D.1 General Properties

Proof. When the honest client instance 𝑐 stores the nonce 𝑘 (a received private key) un-
der 𝑆′(𝑐).receivedValues[grantID] [accessToken] [key] [privateKey] in Line 26 of Al-
gorithm A.7, this value is equal to grantResponse[accessToken] [key] [privateKey] ≡
𝑚.body[accessToken] [key] [privateKey] (Line 8). 𝑚 is the response to the request sent
by 𝑐 to as, which must have been an HTTPS request (since all honest processes only use HTTPS
requests). Since as is honest in 𝑆′, it must have included 𝑘 in the response in Line 15 or Line 18 of
Algorithm A.17 since only in these lines keys for an access token are returned. In both cases the
value for the dictionary key privateKey is privateKey ≡ 𝜈11 (Line 10). Since 𝜈11 is a placeholder
for a new nonce that is 𝑘 , 𝑘 cannot be derived by any other process than as at this point. Notice
that as only stores pub(privateKey) in Line 14 or Line 17 but not the private key itself. So after
as returns privateKey ≡ 𝑘 to 𝑐, as cannot derive it anymore. Since 𝑐 used HTTPS for its request,
only 𝑐 is able to decrypt the response 𝑚 from as containing 𝑘 . Thus, it holds that 𝑘 ∉ 𝑑∅ (𝑆′(𝑝))
for all 𝑝 ≠ 𝑐. 𝑆′(𝑐).receivedValues[grantID] [accessToken] [key] [privateKey] can only be
included as a subterm in an event emitted by 𝑐 in Line 49 of Algorithm A.8. However, in this line
the associated public key pub(privateKey) ≡ pub(𝑘) is included, from which the private key 𝑘
cannot be derived due to the equational theory. Thus, there cannot be a processing step in which 𝑐
leaks 𝑘 , so 𝑘 ∉ 𝑑∅ (𝑆(𝑝)) holds. ■

Lemma 6 (Public Key stored during Registration belongs to Client Instance). For any run 𝜌 of a
GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every client instance 𝑐 ∈ CI
that is honest in 𝑆, every AS as ∈ AS that is honest in 𝑆, and every instance identifier
instanceID that has been stored in 𝑆′(𝑐).keyRecords[domainAS] .i in Line 12 of Algorithm A.7
for some previous state 𝑆′, a domain domainAS ∈ dom(as), and some i ∈ N, it holds true that
pub(𝑆(𝑐).keyRecords[domainAS] .i.key) ≡ 𝑆(as).registrations[instanceID] .publicKey.

Proof. If an instance identifier is stored in Line 12 of Algorithm A.7, it must hold thatinstanceID ∈
𝑚.body (due to Line 9 and Line 8). 𝑚 is a response to an HTTP request sent to domainAS, since
domainAS ≡ 𝑆′(𝑐).grants[grantID] [AS] (Lines 3 and 4), all grant requests are sent to the domain
stored in this value, and this value never changes once it is set. Thus (and due to the use of HTTPS),
the grant response processed by 𝑐 must originate from as.

as only uses the instanceID key in a response in Line 44 of Algorithm A.13. Under the returned
instanceID, as stores the value publicKey in the registrations subterm (Line 40 resp. Line 43),
which is why it must hold that

𝑆′(as).registrations[instanceID] .publicKey
≡ publicKey (L. 40/43)
≡ grantRequest[client] [key] (L. 39/42)
≡ 𝑚.body[client] [key] (Line 5)

Note that Line 36 of Algorithm A.13 prevents the stored client registration record from being overwrit-
ten (this is the only code section where the client registration records are written to), so it must hold
that 𝑆′(as).registrations[instanceID] ≡ 𝑆(as).registrations[instanceID]. This means that
𝑆(as).registrations[instanceID] .publicKey must be the value 𝑚.body[client] [key] from
the HTTP request 𝑚 sent by 𝑐 to domainAS (using HTTPS). The only lines where 𝑐 sends such a
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message (a grant request containing a client entry) are Line 43 and Line 48 of Algorithm A.6. In
both cases, the public key

pub(key)
≡ pub(keyRecord.key) (Line 40)
≡ pub(𝑆′′(𝑐).keyRecords[domainAS] .i.key) (Line 26)

(for a previous state 𝑆′′ and some i ∈ N) is transmitted in the grant request. The key record
used in Line 26 is stored in 𝑆′′(𝑐).grants[grantID] [keyRecord] in Line 27 and this value
cannot change. grantID thereby is the grant ID which is used under the grantID key in the
reference for the request (in Line 45 of Algorithm A.6 resp. in Line 52 of Algorithm A.6 and
then again in Line 91 of Algorithm A.7). Thus, the key record read when processing the response
from as in Line 6 of Algorithm A.7 is the key record chosen in Line 26 of Algorithm A.6
(𝑆′′(𝑐).keyRecords[domainAS] .i), since

keyRecord
≡ grantRequest[keyRecord] (Line 6)
≡ 𝑆′(𝑐).grants[grantID] .keyRecord (Line 3)
≡ 𝑆′(𝑐).grants[reference[grantID]] .keyRecord (Line 2)

Thus, in Line 12 of Algorithm A.7, the instanceID returned by as is stored in the key
record whose public key was stored at as when 𝑐 was registered. Due to the check in
Line 10, this key record cannot change anymore (this is the only code section where key
records are written). Thus, it holds that 𝑆(as).registrations[instanceID] .publicKey ≡
pub(𝑆′(𝑐).keyRecords[domainAS] .i.key) ≡ pub(𝑆(𝑐).keyRecords[domainAS] .i.key). ■

The following lemma and its proof are based on Lemma 7 from [6].

Lemma 7 (MTLS Nonces do not leak to Third Parties). For any run 𝜌 of a GNAP web system GWS ,
every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every process p ∈ AS ∪ RS that is honest in 𝑆, every process
𝑐 ∈ CI ∪ RS that is honest in 𝑆, every mtlsNonce created in Line 154 of Algorithm A.13 resp.
Line 22 of Algorithm A.20 in consequence of a request 𝑚 received at the /MTLS-prepare path of 𝑝
that was sent by 𝑐, and every process 𝑝′ with 𝑝 ≠ 𝑝′ ≠ 𝑐 it holds true that mtlsNonce ∉ 𝑑∅ (𝑆(𝑝′)).

Proof. We start by showing that the mtlsNonce is sent by 𝑝 only asymmetrically encrypted and
only 𝑐 knows the corresponding private key. In doing so, we distinguish whether 𝑝 is an AS or an
RS.

If 𝑝 is an authorization server, it sends an mtlsNonce created in Line 154 of Algorithm A.13 only in
Line 168, where it is asymmetrically encrypted with either the public key

clientKey
≡ 𝑆(𝑝).registrations[instanceID] .publicKey (Line 161)
≡ 𝑆(𝑝).registrations[𝑚.body[instanceID]] .publicKey (Line 156)

or the public key 𝑚.body[publicKey] (Line 163).

First, we look at the latter case. There are various code sections where the honest process 𝑐 can
send a message to the /MTLS-prepare path that contains the public key under the key publicKey
in its body. Thereby the following values are sent:
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1. In Line 50 of Algorithm A.6:

pub(key)
≡ pub(keyRecord.key) (Line 40)
≡ pub(𝑆′(𝑐).keyRecords[domainAS] .i.key) (Line 26)

for a previous state 𝑆′, a domain domainAS ∈ Doms, and an i ∈ N.

2. In Line 71 of Algorithm A.7:

pub(keyRecord.key)
≡ pub(grantRequest[keyRecord] .key) (Line 6)
≡ pub(𝑆′(𝑐).grants[grantID] [keyRecord] .key) (Line 3)

for a previous state 𝑆′ and a grant ID grantID ∈ N . The keyRecord entry of
𝑆′(𝑐).grants[grantID] must have been stored in Line 27 of Algorithm A.6 or Line 10
of Algorithm A.8. In both cases the stored value keyRecord is a key record from
𝑆′′(𝑐).keyRecords[domainAS] for a previous state 𝑆′′ and a domain domainAS ∈ Doms
(Line 26 of Algorithm A.6 resp. Line 5 of Algorithm A.8).

3. In Line 67 of Algorithm A.8:

pub(key)
≡ pub(keyRecord.key) (Line 57)
≡ pub(𝑆′(𝑐).grants[grantID] [keyRecord] .key) (Line 56)

for a previous state 𝑆′ and a grant ID grantID ∈ N . Using the same reasoning
as for the previous point, the stored key record must again have been taken from
𝑆′′(𝑐).keyRecords[domainAS].

4. In Line 32 of Algorithm A.10:

pub(keyRecord.key)
≡ pub(𝑆′(𝑐).grants[grantID] [keyRecord] .key) (Line 15)

for a previous state 𝑆′ and a grant ID grantID ∈ N . Using the same reasoning as for the second
point, the stored key record must again have been taken from 𝑆′′(𝑐).keyRecords[domainAS].

5. In Line 49 of Algorithm A.8:

pub(privateKey)
≡ pub(keyData[privateKey]) (Line 43)
≡ pub(accessToken[key] [privateKey]) (Line 41)
≡ pub(𝑆′ (𝑐).receivedValues[grantID] [accessToken] [key] [privateKey]) (Line 29)

for a previous state 𝑆′ and a grant ID grantID ∈ N .

6. In Line 18 of Algorithm A.20: pub(𝑆′(𝑐).mtlsKey) for a previous state 𝑆′.
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In cases 1 to 4, 𝑚.body[publicKey] equals the public key of a private key from a key record
in 𝑆′(𝑐).keyRecords[domainAS] for a previous state 𝑆′ and a domain domainAS ∈ Doms. By
Lemma 2, this private key can only be known to the honest process 𝑐. In case 5, due to Lemma 5,
only 𝑐 can know the private key associated with the public key. In case 6, the private key is the key
used for MTLS by the RS 𝑐, which can only be known to 𝑐 due to Lemma 3.

Now let’s look at the former case. There are two code sections where the honest process 𝑐 can
send a message to the /MTLS-prepare path of 𝑝 that contains the instanceID key. Thereby the
following instance identifiers are sent:

1. In Line 35 of Algorithm A.6:

keyRecord.instanceID

≡ 𝑆′(𝑐).keyRecords[domainAS] .i.instanceID (Line 26)

for a previous state 𝑆′, a domain domainAS ∈ Doms, and an integer i ∈ N.

2. In Line 16 of Algorithm A.8:

instanceID
≡ keyRecord.instanceID (Line 8)
≡ 𝑆′(𝑐).keyRecords[domainAS] .i.instanceID (Line 5)

for a previous state 𝑆′, a domain domainAS ∈ Doms, and an integer i ∈ N.

Thus, in both cases, the instance identifier sent by 𝑐 is an instance identifier from a key record
𝑟 ∈⟨⟩ 𝑆′(𝑐).keyRecords[domainAS]. Since domainAS is used as the host of 𝑐’s request in both
cases, it must hold that domainAS ∈ dom(𝑝).

If 𝑟 ∈⟨⟩ 𝑠𝑐0 .keyRecords[domainAS] (𝑐 was pre-registered at 𝑝), it must hold by definition that

𝑆(𝑝).registrations[𝑚.body[instanceID]] .publicKey
≡ 𝑆(𝑝).registrations[𝑟.instanceID] .publicKey
≡ pub(𝑟.key)

𝑟.key can only be known to 𝑐 due to Lemma 2.

If 𝑟 ̸∈⟨⟩ 𝑠𝑐0 .keyRecords[domainAS], the instance identifier 𝑟.instanceID must have been set in
Line 12 of Algorithm A.7. Since domainAS ∈ dom(𝑝) and because of Lemma 6, it must hold
that 𝑆(𝑝).registrations[𝑚.body[instanceID]] .publicKey ≡ pub(𝑟.key). Again, 𝑟.key can
only be known to 𝑐 due to Lemma 2.

If 𝑝 is a resource server, it sends an mtlsNonce created in Line 22 of Algorithm A.20 only in Line 29,
where it is asymmetrically encrypted with the public key 𝑚.body[publicKey] (Line 24). Thus,
using the same reasoning as in the case where 𝑝 is an AS, it must hold that the private key to this
public key is known only to 𝑐 in 𝑆.

We have now shown for all possible cases that the mtlsNonce sent by 𝑝 can only be decrypted by 𝑐
since only 𝑐 can know the required private key. Now we show that 𝑐 sends the received mtlsNonce
back to 𝑝 only. For this we show that after decrypting the mtlsNonce it is always sent to the same
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domain to which the request to the /MTLS-prepare path was sent that led to the receipt of the
mtlsNonce. Thus, due to the use of HTTPS for all requests, the mtlsNonce can only be sent back to
𝑝.

The received mtlsNonce can be decrypted only in one of the following sections:

1. Line 84 of Algorithm A.7:

In this section, the mtlsNonce is sent to domainAS ≡ 𝑆′(𝑐).grants[grantID] [AS] (for a state
𝑆′ and a grant ID grantID that is taken from the reference). The MTLS_GR reference type is
used only in the Lines 52 and 37 of Algorithm A.6 and Line 18 of Algorithm A.8.

In Line 52 and 37 of Algorithm A.6, the request goes to domainAS, which is stored in Line 27
in 𝑆′′(𝑐).grants[grantID] [AS]. Here, 𝑆′′ is a state before 𝑆′ and grantID is the grant ID
from the reference.

In Line 18 of Algorithm A.8, the request goes to domainAS, which in Line 10 is also stored
in 𝑆′′(𝑐).grants[grantID] [AS]. 𝑆′′ is again a state before 𝑆′ and grantID is the grant ID
from the reference.

It must hold that 𝑆′′(𝑐).grants[grantID] [AS] ≡ 𝑆′(𝑐).grants[grantID] [AS], since this
value is not overwritten anywhere. Thus, the mtlsNonce is sent to the same domain as the
request to the /MTLS-prepare path.

2. Line 95 of Algorithm A.7:

Here, the mtlsNonce is sent to url.host ≡ 𝑆′(𝑐).grants[grantID] [continueURL] .host
(for a state 𝑆′ and a grant ID grantID that is taken from the reference). The MTLS_CR
reference type is used only in Line 34 of Algorithm A.10. In this section, the request goes
to continueURL.host ≡ 𝑆′′(𝑐).grants[grantID] [continueURL] .host. Here, 𝑆′′ is a state
before 𝑆′ and grantID is the grant ID used in the reference.

It must hold true that the URL 𝑆′′(𝑐).grants[grantID] [continueURL] is equivalent to
𝑆′(𝑐).grants[grantID] [continueURL] since this value is never overwritten after its initial-
ization in Line 35 of Algorithm A.7. Thus, the mtlsNonce is sent to the same domain as the
request to the /MTLS-prepare path.

3. Line 113 of Algorithm A.7:

The mtlsNonce is sent to url.host ≡ 𝑆′(𝑐).grants[grantID] [patchRequest] .3.host (for a
state 𝑆′ and a grant ID grantID that is taken from the reference). The MTLS_PR reference type is
used only in Line 73 of Algorithm A.7. In this section, the request goes to continueURL.host,
where continueURL is stored in 𝑆′′(𝑐).grants[grantID] [patchRequest] .3 in Line 67.
Here, 𝑆′′ is a state before 𝑆′ and grantID is the grant ID used in the reference.

It must hold true that the URL 𝑆′′(𝑐).grants[grantID] [patchRequest] is equivalent to
𝑆′(𝑐).grants[grantID] [patchRequest] since this value can only be overwritten by a new
PATCH request, but 𝑐 can send a new patch request only after it received a grant response for
the previous PATCH request. Thus, the mtlsNonce is sent to the same domain as the request
to the /MTLS-prepare path.
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4. Line 124 of Algorithm A.7:

In this code section, the request into which the mtlsNonce is inserted is loaded from the
reference in Line 132. The request must have been inserted into the reference in Line 51 of
Algorithm A.8 or in Line 69 of Algorithm A.8. In both cases, the host of the inserted request
is domainRS (Line 48 resp. Line 66 of Algorithm A.8), which is also used as the host for the
request to the /MTLS-prepare path in Line 50 resp. Line 68. Thus, the mtlsNonce is sent to
the same domain as the request to the /MTLS-prepare path.

5. Line 55 of Algorithm A.21:

The mtlsNonce here is sent to domainAS ≡ 𝑆′(𝑐).resourceRequests[requestID] [AS] (for
a state 𝑆′ and a request ID requestID that is taken from the reference). The MTLS reference
type is used only in Line 19 of Algorithm A.20. In this section, the request goes to domainAS,
which is stored in Line 7 in 𝑆′′(𝑐).resourceRequests[requestID] [AS]. Here, 𝑆′′ is a state
before 𝑆′ and requestID is the request ID from the reference.

It must hold true that the URL 𝑆′′(𝑐).resourceRequests[requestID] [AS] is equivalent to
𝑆′(𝑐).resourceRequests[requestID] [AS] since this value cannot be overwritten. Thus,
the mtlsNonce is sent to the same domain as the request to the /MTLS-prepare path.

We have now shown for all cases that 𝑐 sends the mtlsNonce only to the same domain of 𝑝 to which
it sent the request to the /MTLS-prepare path (using HTTPS for both requests). Since 𝑝 is honest in
𝑆, 𝑝 uses the received mtlsNonce only to validate the key proof and does not emit it as a subterm in
any further events. So, in summary, the mtlsNonce is leaked by its creator 𝑝 only to 𝑐 and by 𝑐 only
to 𝑝. Thus, for all processes 𝑝′ for which 𝑝 ≠ 𝑝′ ≠ 𝑐, it must hold that mtlsNonce ∉ 𝑑∅ (𝑆(𝑝′)). ■

Lemma 8 (Key Proofs authenticate the Signer and guarantee Integrity). For any run 𝜌 of a GNAP
web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, and every process 𝑝 ∈ AS∪RS that is honest in 𝑆
it holds true that if 𝑝 calls VALIDATE_KEY_PROOF(method, 𝑚, keyID, key, 𝑠′) for some method ∈
{sign, mac, mtls}, an HTTP request 𝑚 ∈ HTTPRequests, some keyID ∈ N , some state 𝑠′, and
some key with key ≡ pub(𝑆(𝑐).keyRecords[domainAS] .i.key) (if method ∈ {sign, mtls}) or
key ≡ 𝑆(𝑐).keyRecords[domainAS] .i.key (if method ≡ mac) for some process 𝑐 ∈ CI that is
honest in 𝑆, some domainAS ∈ Doms, and some i ∈ N, and VALIDATE_KEY_PROOF returns (i.e.
it does not stop), then 𝑐 previously sent an HTTP request 𝑚′ (using HTTPS_SIMPLE_SEND) with

1. 𝑚′.method ≡ 𝑚.method,

2. 𝑚′.body ≡ 𝑚.body,

3. 𝑚′.host ≡ 𝑚.host,

4. 𝑚′.path ≡ 𝑚.path,

5. 𝑚′.parameters ≡ 𝑚.parameters, and

6. 𝑚′.headers[Authorization] ≡ 𝑚.headers[Authorization] (if Authorization ∈
𝑚.headers).

If method ≡ mac we additionally require that the AS as = dom−1(domainAS) and the RS
rs = dom−1(𝑆(𝑐).keyRecords[domainAS] .i.rs) are honest in 𝑆 (this is already given for as or rs
if 𝑝 = as respectively 𝑝 = rs).
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Proof. VALIDATE_KEY_PROOF (Algorithm A.5) only returns in Line 40. Line 40 is reached
due to Line 39 only if method ≡ mtls (Line 32) or if method ∈ {sign, mac} (Line 2).

For the algorithm to return in the former case, it must hold that there exists an mtlsInfo ∈⟨⟩
𝑆(𝑝).mtlsRequests such that mtlsInfo.1 ≡ 𝑚.body[mtlsNonce] ∧ mtlsInfo.2 ≡ key. This
mtlsInfo must have been stored in Line 166 of Algorithm A.13 (in case of an AS) or in Line 27 of Al-
gorithm A.20 (in case of an RS). In both cases, the mtlsNonce ≡ mtlsInfo.1 ≡ 𝑚.body[mtlsNonce]
is sent only encrypted with the clientKey ≡ mtlsInfo.2 ≡ key. Thus, due to Lemma 2,
only 𝑐 can decrypt the mtlsNonce, since only 𝑐 can know the matching private key. Since
mtlsNonce ≡ 𝑚.body[mtlsNonce], it must hold for the sender 𝑝′ of𝑚 that mtlsNonce ∈ 𝑑∅ (𝑆(𝑝′)).
Thus, due to Lemma 7, 𝑝′ must be 𝑐 or as. Since the honest AS as does not send HTTP requests,
𝑝′ = 𝑐 must hold. Thus, the message 𝑚 must have been sent by 𝑐, which means that in the context
of this lemma, the stronger statement that 𝑚 ≡ 𝑚′ holds for the MTLS case.

In the case that method ∈ {sign, mac}, it must hold that checksig(𝑚.headers[signature], key) ≡
⊤ (if method ≡ sign) or that checkmac(𝑚.headers[signature], key) ≡ ⊤ (if method ≡ mac).
It also must hold that controlInput ≡ extractmsg(𝑚.headers[signature]). If we have that
checksig(𝑚.headers[signature], key) ≡ ⊤, the signature must have been created by 𝑐 due to
Lemma 2. If checkmac(𝑚.headers[signature], key) ≡ ⊤, the MAC must have been created by
𝑐 due to Lemma 4 and the assumption that as and rs are honest, since according to the lemma only
𝑐, as, and rs can know the symmetric key, but as and rs do not use it to generate MACs. Since the
signature or MAC must have been created by 𝑐 and 𝑐 only creates signatures or MACs when calling
Algorithm A.4 (SIGN_AND_SEND) and controlInput ≡ extractmsg(𝑚.headers[signature]),
𝑐 must have sent an HTTP request 𝑚′ using SIGN_AND_SEND for which the following holds true:

1. 𝑚′.method ≡ 𝑚.method, since the HTTP method is always covered by the controlInput
(Line 17 of Algorithm A.5),

2. 𝑚′.body ≡ 𝑚.body, since if𝑚.body . ⟨⟩ the body is covered by the controlInput using a hash
of it (Line 19 of Algorithm A.5) and if𝑚.body ≡ ⟨⟩ it must hold that𝑚′.body ≡ ⟨⟩ as otherwise
𝑐 would have included the hash of the body in the signature in Line 5 of Algorithm A.4 and
thus controlInput would not be equivalent to extractmsg(𝑚.headers[signature]),

3. 𝑚′.host ≡ 𝑚.host, since the host is always covered by the controlInput via the controlURL
(Line 16 of Algorithm A.5),

4. 𝑚′.path ≡ 𝑚.path, since the path is always covered by the controlInput via the controlURL
(Line 16 of Algorithm A.5),

5. 𝑚′.parameters ≡ 𝑚.parameters, since the parameters are always covered by the
controlinput via the controlURL (Line 16 of Algorithm A.5), and

6. if Authorization ∈ 𝑚.headers, it must hold that 𝑚′.headers[Authorization] ≡
𝑚.headers[Authorization] since when using the Authorization header, the header is
covered by the controlInput (Line 8 of Algorithm A.5).

Therefore, all equivalences required by the lemma must hold in this case as well, which proves the
lemma. ■
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Lemma 9 (Continuation Request must stem from the same Client Instance). For any run 𝜌 of a
GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, and every AS as ∈ AS that is
honest in 𝑆, it holds true that if as calls PERFORM_KEY_PROOF(𝑚, grantID, 𝑠′) (for some 𝑚,
grantID, 𝑠′) in Line 54 of Algorithm A.13 or in Line 69 of Algorithm A.13 (i.e. when as receives a
continuation request) and this call returns, then the request 𝑚 must have been sent by the client
instance 𝑐 that sent the grant request that led to the creation of the grant ID grantID in Line 3
of Algorithm A.13 as long as 𝑐 is an honest client instance in 𝑆. If 𝑐 used a key record 𝑟 with
𝑟.method ≡ mac for this grant request, we additionally require that rs = dom−1(𝑟.rs) is honest in
𝑆.

Proof. If as calls PERFORM_KEY_PROOF (Algorithm A.14) in one of these lines, it must hold,
based on the checks in Line 53 and Line 68 respectively, that grantID ∈ 𝑆(as).grantRequests.
grantID must have been stored in 𝑆′(as).grantRequests in Line 9 of Algorithm A.13 for a previous
state 𝑆′, because only in this code section new grant IDs are assigned by an AS. This can only have
happened if the call to PERFORM_KEY_PROOF in Line 4 returned, so if the key proof for the grant
request was successfully validated. During this call to PERFORM_KEY_PROOF, it must have
held in Line 2 of Algorithm A.14 that 𝑆′(as).grantRequests[grantID] ≡ ⟨⟩, since as just created
the grantID in Line 3 of Algorithm A.13. Thus, in this call, the key proofing method and the key
used by 𝑐 are stored in Lines 30-38 of Algorithm A.14 in 𝑆′(as).grantRequests[grantID]. Since
this is the only code section where these subterms are written to and this write operation implies
that the condition 𝑆(as).grantRequests[grantID] ≡ ⟨⟩ now no longer holds, this information
cannot be overwritten. This means that in 𝑆 it must hold that the key proofing method and the key
stored in 𝑆(as).grantRequests[grantID] are still the same.

In the calls to PERFORM_KEY_PROOF in Line 54 of Algorithm A.13 and in Line 69 of Algo-
rithm A.13 it thus must still hold that 𝑆(as).grantRequests[grantID] . ⟨⟩, so now the previously
stored key proofing method and the used key are loaded again from 𝑆(as).grantRequests[grantID]
in Lines 40-48 of Algorithm A.14. So PERFORM_KEY_PROOF calls VALIDATE_KEY_PROOF
in Lines 50-54 with the same method and key as when handling the grant request. Since
PERFORM_KEY_PROOF returns only if VALIDATE_KEY_PROOF returns and 𝑐, as, and possi-
bly rs are honest by precondition, it must thus hold according to Lemma 8 that 𝑚 was sent by 𝑐.1
It is also not possible that 𝑚 is a continuation request replayed by the attacker, since replays are
detected within VALIDATE_KEY_PROOF (Algorithm A.5) as follows. If MTLS is used, a replay
is not possible because a new mtlsNonce is used by the AS for each request. If signatures or MACs
are used, a replay of the request is detected in Line 15, since the replayed request must contain the
same nonce in sigParams as the original request, this nonce was already stored in Line 31 in the
sigNonces subterm of the state of as when the original request was validated, and there is no code
section where nonces are removed from sigNonces. ■

Lemma 10 (Bearer Tokens do not leak). For any run 𝜌 of a GNAP web system GWS , every config-
uration (𝑆, 𝐸, 𝑁) in 𝜌, every AS as ∈ AS that is honest in 𝑆, and every access token accessToken ∈
𝑆(as).tokenBindings with 𝑆(as).tokenBindings[accessToken] [type] ≡ bearer it holds true
that accessToken ∉ 𝑑∅ (𝑆(𝑝)) for any process 𝑝 as long as the following conditions hold true:

1Regarding headers, according to Lemma 8, only the Authorization header must be equivalent, others can potentially
differ. However, since as only accesses the Authorization header here, this is sufficient.
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(1) the client instance 𝑐 that sent the grant request that led to the creation of the grant ID
grantID ≡ 𝑆(as).tokenBindings[accessToken] [grantID] in Line 3 of Algorithm A.13 is
honest in 𝑆,

(2) if 𝑐 used a key record 𝑟 with 𝑟.method ≡ mac for this grant request, it holds true that
dom−1(𝑟.rs) is honest in 𝑆,

(3) all RSs rs ∈ {rs ∈ RS | ∃dmnRS ∈⟨⟩ 𝑆(𝑐).grants[grantID] [bearerRSs] : dmnRS ∈
dom(rs)} are honest in 𝑆, and

(4) 𝑝 ∉ {as, 𝑐} ∪ {rs ∈ RS | ∃dmnRS ∈⟨⟩ 𝑆(𝑐).grants[grantID] [bearerRSs] : dmnRS ∈
dom(rs)}.

Proof. We first show that an access token created by as is sent by as only to 𝑐. New access tokens
are created only in Line 6 of Algorithm A.17 (CREATE_GRANT_RESPONSE). The generated
grant response is returned by Algorithm A.17 in Line 37 and then sent by as in one of the following
lines of Algorithm A.13 (since only in these sections CREATE_GRANT_RESPONSE is called):

1. Line 46: grant response in response to a continuation request

2. Line 85: adjustment of the requested values via a PATCH request

3. Line 75 (CREATE_GRANT_RESPONSE is called via Algorithm A.16): adjustment of the
requested values via a PATCH request including interaction finish

4. Line 61 (CREATE_GRANT_RESPONSE is called via Algorithm A.16): completion of
interaction via a POST request

In the first case, it is obvious that the grant response is returned to 𝑐, since this response is sent
directly in response to the grant request from 𝑐. In cases 2, 3, and 4, the grant response is sent in
response to a continuation request, which by Lemma 9 must have been sent by 𝑐. Thus, as sends the
accessToken back to 𝑐 in all cases. Due to the use of HTTPS it must hold true in all cases that only
𝑐 can decrypt the response containing the accessToken. Thus, as does not leak the accessToken to
any process other than 𝑐.

Since 𝑐 is honest by precondition, 𝑐 sends the obtained accessToken only when executing Algo-
rithm A.8. Since 𝑆(as).tokenBindings[accessToken] [type] ≡ bearer, as must have set the
value of grantResponse[accessToken] [flags] to bearer in Line 24 of Algorithm A.17 (since
𝑆(as).tokenBindings[accessToken] [type] cannot change). Thus, when executing Algorithm A.8,
if accessToken is chosen in Line 30, it must hold that the if statement in Line 32 is true, so the
accessToken can only be sent by 𝑐 in Line 36. In this case, accessToken is sent to domainRS, which
is added to 𝑆′(𝑐).grants[grantID] [bearerRSs] in Line 33 for some state 𝑆′. Since a domain can
never be removed from 𝑆′(𝑐).grants[grantID] [bearerRSs], it must hold that 𝑐 sends accessToken
only to RSs in

{
rs ∈ RS

�� ∃dmnRS ∈⟨⟩ 𝑆(𝑐).grants[grantID] [bearerRSs] : dmnRS ∈ dom(rs)
}

(using HTTPS).

Since all RSs in this set are honest by precondition, they send the accessToken after receiving the
request from 𝑐 only to the domainAS for which it holds that is_issuer(accessToken, domainAS) ≡ ⊤
(due to Line 5 of Algorithm A.20). However, since only honest RSs, as, and 𝑐 are able to derive
the accessToken, it must hold that domainAS ∈ dom(as), as by definition is_issuer(accessToken,
domainAS) ≡ ⊤ ⇔ accessToken ∈ 𝑆(dom−1(domainAS)).tokenBindings and domainAS must
be a domain of an AS, since domainAS is chosen from the authServers subterm (Line 5 of
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Algorithm A.20). Thus, the accessToken is sent only to as by all resource servers that received the
access token from 𝑐, also using HTTPS. as uses an access token received via token introspection
only to determine the associated entry of the tokenBindings subterm in Line 129 of Algorithm A.13
and then discards it.

Thus, in total, only processes in{
rs ∈ RS

��� ∃dmnRS ∈⟨⟩ 𝑆(𝑐).grants[grantID] [bearerRSs] : dmnRS ∈ dom(rs)
}
∪ {as, 𝑐}

are able to derive accessToken in 𝑆, so for all processes 𝑝 not in that set it must hold that
accessToken ∉ 𝑑∅ (𝑆(𝑝)) as long as the first three conditions from the lemma are given as well. ■

D.2 Authorization Property for Software-only Authorization

Lemma 11 (Client Resources are returned only to owning Client Instance). For any run 𝜌 of a
GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every RS rs ∈ RS that is honest in 𝑆,
every dmn ∈ 𝑆(rs).clientResources, and every instanceID ∈ 𝑆(rs).clientResources[dmn]
it holds true that if 𝑆(rs).clientResources[dmn] [instanceID] is included as resource in the
response 𝑚′ in Line 53 of Algorithm A.21 by rs, then 𝑚′ is a response to an HTTP request 𝑚 sent
by 𝑐 = ownerOfResource(resource) as long as

(1) 𝑐 is honest in 𝑆,

(2) the AS as = dom−1(dmn) is honest in 𝑆,

(3) for all domains dmnAS ∈ dom(as) with dmnAS ∈ 𝑠𝑐0 .keyRecords and all key records
𝑟 ∈ 𝑠𝑐0 .keyRecords[dmnAS] with 𝑟.method ≡ mac it holds true that dom−1(𝑟.rs) is honest
in 𝑆, and

(4) for every grant ID gid in 𝑆(𝑐).grants for which it holds that sessionID ∉ 𝑆(𝑐).grants[gid]
(software-only authorization is used) and that 𝑆(𝑐).grants[gid] [AS] ∈ dom(dom−1(dmn)),
and every dmnRS ∈ 𝑆(𝑐).grants[gid] [bearerRSs] it holds true that dom−1(dmnRS) is
honest in 𝑆.

Proof. If resource ≡ 𝑆(rs).clientResources[dmn] [instanceID] in Line 53 of Algorithm A.21,
then dmn is the domain of the AS as to which rs sent the token introspection request in response to
the resource request 𝑚. instanceID is the instance identifier returned by as in the response to the
token introspection request under [access] [instanceID] (Line 41). If Line 53 of Algorithm A.21
is executed, it must hold that in the introspection response the bearer flag has been set (Line 30)
or as has returned information about the key to which the used access token is bound and rs has
successfully validated the key proof against it (i.e. the call to VALIDATE_KEY_PROOF in Line 17,
25 or 27 has returned).

The introspection response that rs received in response to its introspection request must have been
sent by as since only HTTPS is used for introspection requests (as for all requests). The introspection
request contains the access token accessToken that rs received from the Authorization header of
the resource request 𝑚 (Line 11 resp. Line 16 of Algorithm A.20).
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First, we consider the case that the resource request 𝑚 was authorized using a bearer token. Since as
is honest by precondition, as must have set the bearer flag in the introspection response in Line 146
of Algorithm A.13. This only happens if 𝑆′(as).tokenBindings[accessToken] [type] ≡ bearer
for some previous state 𝑆′ (in Line 145 bearer is the only remaining type used). The
sender of 𝑚 must know the bearer token accessToken in 𝑆, otherwise it could not have in-
cluded it inside the Authorization header. By Lemma 10, only as, certain honest RSs, and
the client instance that sent the grant request that led to the creation of the grant ID in
𝑆′(as).tokenBindings[accessToken] [grantID] are able to derive this bearer token. Thus, 𝑚
must also have been sent by this client instance, since honest RSs and honest ASs do not send resource
requests. During token introspection, this grant ID is loaded by as in Line 131 of Algorithm A.13
and then used in Line 132 to load the grant request. The stored instance identifier is then loaded from
the grant request in Line 150, which is then sent to rs under [access] [instanceID], so this is the
instanceID used by rs. This instance identifier must have been stored in Line 8 of Algorithm A.14
(PERFORM_KEY_PROOF) when the grant request was processed by as (since this is the only
place where this happens). So instanceID must be the instance identifier of the client instance
that sent the grant request to as and this client instance must have sent 𝑚 (headers other than the
Authorization header may differ, but are irrelevant). Together this means that the sender of 𝑚 must
also be ownerOfResource(resource).

Now we consider the case that the resource request 𝑚 was authorized using a key-bound access
token. In this case, VALIDATE_KEY_PROOF must have returned in on one of the following lines
of Algorithm A.21:

• Line 17: In this line, VALIDATE_KEY_PROOF validates a MAC. The key for this key proof
is loaded by rs in Line 16 from the symKeys subterm. The instance identifier used was
returned by as in the introspection response in the [instanceID] entry (using HTTPS). This
must be the same instance identifier that was returned by as under [access] [instanceID]
(instanceID), since as uses grantRequest[instanceID] for both (Line 142 and Line 150 of
Algorithm A.13). Thus, the instance identifier for whose key the key proof is validated is the
instance identifier whose resource is returned. Since VALIDATE_KEY_PROOF must have
returned, it thus holds, using Lemma 8, that 𝑚 was sent by ownerOfResource(resource)
(headers other than the Authorization header may differ, but are irrelevant).

• Line 25: In this line, VALIDATE_KEY_PROOF validates a signature. The key for this key
proof is returned by as in the introspection response under [key] [key] (Line 22). This can
be either the key used by the client instance in the grant request (returned by as in Line 140
of Algorithm A.13 whereby the returned value was stored in Line 33 of Algorithm A.14)
or a key generated by AS only for binding to this access token (returned in Line 134 of
Algorithm A.13). If the key is the key from the grant request, this must be the key associated
with instanceID, and since VALIDATE_KEY_PROOF returned using this key, it must hold
according to Lemma 8 that 𝑚 was sent by ownerOfResource(resource) (again, headers other
than the Authorization header may differ, but are irrelevant). If the key is one generated
by as for this access token, it must have been loaded in Line 134 of Algorithm A.13 from
𝑆′(as).tokenBindings[accessToken] [publicKey] for a previous state 𝑆′. By Lemma 5,
only the client instance to which as sent the associated private key after generating it knows
that private key. Since VALIDATE_KEY_PROOF returned, the signature validation in Line 26
of the algorithm must have been successful. As seen in the proof of Lemma 8, 𝑚 must thus
have been sent by this client instance (again, headers other than the Authorization header may
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differ, but are irrelevant). This client instance must be ownerOfResource(resource), since
the grant response in which the client instance received the private key from as is sent by as
only after calling VALIDATE_KEY_PROOF with the client instance’s public key associated
with instanceID (since, as with the bearer tokens, instanceID was stored during the call to
PERFORM_KEY_PROOF when the grant request was processed and exactly this instance
identifier is returned to rs in the introspection response under [access] [instanceID]).

• Line 27: In this line, VALIDATE_KEY_PROOF validates an MTLS key proof, which in this
context behaves like a key proof for a signature (see the previous point), since public keys are
used in both cases and the lemmas used for the proof are independent of whether the key
proof is based on MTLS or signatures.

Overall, the lemma must apply to both bearer tokens and key-bound access tokens, and thus all
forms of access tokens. ■

Lemma 12 (Authorization Property for Software-only Authorization). Let GWS be a GNAP web
system. We say that GWS fulfills the authorization property for software-only authorization
iff for every run 𝜌 of GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every RS rs ∈ RS that is
honest in 𝑆, every domain dmnAS ∈ 𝑆(rs).clientResources, and every instance identifier 𝑖 ∈
𝑆(rs).clientResources[dmnAS] it holds true that if 𝑛 ≡ 𝑆(rs).clientResources[dmnAS] [𝑖]
is derivable from the attacker’s knowledge in 𝑆 (i.e., 𝑛 ∈ 𝑑∅ (𝑆(na))), it follows that

(1) dom−1(dmnAS) (the responsible AS) is corrupted in 𝑆, or

(2) the client instance 𝑐 = ownerOfResource(𝑛) that owns this resource is corrupted in 𝑆, or

(3) there exists a key record 𝑘 in 𝑠𝑐0 .keyRecords[dmnAS′] (for some domain dmnAS′ ∈
dom(dom−1(dmnAS))) such that 𝑘.method ≡ mac and dom−1(𝑘.rs) is corrupted in 𝑆

(𝑐 shares a symmetric key with the responsible AS and a corrupted RS), or

(4) there exist a grant ID gid and a domain 𝑦 ∈⟨⟩ 𝑆(𝑐).grants[gid] [bearerRSs] such that
sessionID ∉ 𝑆(𝑐).grants[gid] (software-only authorization was used) and dom−1(𝑦) is
corrupted in 𝑆 (a bearer token was sent to a corrupted resource server).

Proof. We prove this lemma using proof by contradiction. We assume that 𝑛 ∈ 𝑑∅ (𝑆(na)) and that

(1) dom−1(dmnAS) is honest in 𝑆,

(2) 𝑐 = ownerOfResource(𝑛) is honest in 𝑆,

(3) for all domains dmnAS′ ∈ dom(dom−1(dmnAS)) with dmnAS′ ∈ 𝑠𝑐0 .keyRecords and all key
records 𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS′] with 𝑘.method ≡ mac it holds true that dom−1(𝑘.rs)
is honest in 𝑆, and

(4) there does not exist a grant ID gid and a domain 𝑦 ∈⟨⟩ 𝑆(𝑐).grants[gid] [bearerRSs] such
that sessionID ∉ 𝑆(𝑐).grants[gid] and dom−1(𝑦) is corrupted in 𝑆.

By the definitions of the initial states, 𝑛 must be initially stored in rs only, or it was created before
𝑆 in Line 43 of Algorithm A.21 and then stored in the state of rs in Line 45 (and therefore not
contained in any of the initial states). In any case, there must have been a state before 𝑆 in which 𝑛
was stored in rs only. Since rs is honest by precondition, it sends 𝑛 only in responses to resource
requests in Line 53 of Algorithm A.21. Since all the conditions for Lemma 11 are satisfied, it
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must hold that rs thereby sends 𝑛 only in response to a request from 𝑐. Because HTTPS is used for
this response, only 𝑐 is able to decrypt the response, so rs leaks 𝑛 only to 𝑐, but no other process.
As 𝑐 is honest and does not emit events containing received resources when using software-only
authorization, it is also not possible for 𝑐 to leak 𝑛 to any other process. Thus, in 𝑆, 𝑛 can only
be derivable for the two honest processes 𝑐 and rs, which means that, contrary to our assumption,
𝑛 ∉ 𝑑∅ (𝑆(na)) must hold. ■

D.3 Authorization Property for End Users

Lemma 13 (Passwords do not leak). For any run 𝜌 of a GNAP web system GWS , every configuration
(𝑆, 𝐸, 𝑁) in 𝜌, every AS as ∈ AS that is honest in 𝑆, every identity 𝑢 ∈ IDas, and every process
𝑝 ∉ {as, ownerOfID(𝑢)} it holds true that secretOfID(𝑢) ∉ 𝑑∅ (𝑆(𝑝)) as long as ownerOfID(𝑢) is
not fully corrupted in 𝑆.

Proof. This proof is loosely based on the proof of Lemma 4 from [8]. Let 𝑧 = secretOfID(𝑢).
According to the definitions of the initial states, 𝑧 is initially stored only in ownerOfID(𝑢) and as.
as uses the passwords of its users only in Line 11 of Algorithm A.15 to check whether a submitted
password matches the password of the provided identity. Since 𝑧 is not used elsewhere by as, 𝑧
cannot be leaked by as to another process during this process.

In our browser model, only scripts loaded from the origin ⟨dmnAS, S⟩ for a domain dmnAS ∈ dom(as)
can access 𝑧. Since as is honest, only script_as_login is eligible for this. Also, since ownerOfID(𝑢)
is not fully corrupted, it does not use or leak 𝑧 in any other way.

If script_as_login was loaded and has access to 𝑧, it must have been loaded from an origin
⟨dmnAS, S⟩ for a domain dmnAS of as. The script sends 𝑧 to dmnAS in an HTTPS POST request. If
ownerOfID(𝑢) sends this request, as is the only party able to decrypt it due to the use of HTTPS. as
uses the received password only for the aforementioned comparison in Line 11 of Algorithm A.15
and then discards it. ownerOfID(𝑢) is then redirected to the client instance by as in Line 25 or
Line 32. Since the 303 redirect status code is used in both cases, ownerOfID(𝑢) drops the body of
the POST request in the resulting request to the client instance and rewrites it to a GET request, so 𝑧
is not leaked to the client instance with this redirect.

Thus, there is no way 𝑧 could be leaked to a process 𝑝 ∉ {as, ownerOfID(𝑢)}, which proves the
lemma. ■

Lemma 14 (User Resource is returned only if Request contains matching Access Token). For any
run 𝜌 of a GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, every RS rs ∈ RS that is honest
in 𝑆, and every identity 𝑢 ∈ 𝑆(rs).userResources it holds true that if 𝑆(rs).userResources[𝑢]
is included as resource in the response 𝑚′ in Line 53 of Algorithm A.21 by rs, then 𝑚′ is a
response to an HTTP request 𝑚 for which the following holds true: with as = governor(𝑢)
and gid ≡ 𝑆(as).tokenBindings[𝑚.headers[Authorization] .2] [grantID] we have that
𝑆(as).grantRequests[gid] [subjectID] ≡ 𝑢 as long as as is honest in 𝑆.

Proof. If 𝑆(rs).userResources[𝑢] is included as resource in the response 𝑚′ in Line 53 of
Algorithm A.21 by rs, it must hold that resource was loaded in Line 39, since this is the
only line where rs loads a user resource. The identity 𝑢 used in this line is retrieved from
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response[access] [identity] (Line 36), where response is the introspection response received
by rs. The corresponding introspection request must have been sent by rs in Line 13 of Al-
gorithm A.20 or Line 64 of Algorithm A.21, since these are the only lines where introspec-
tion requests are sent. This introspection request must have been sent to as, otherwise the
check in Line 37 of Algorithm A.21 would have been successful (the identities subterm cannot
change) and therefore Line 39 would not have been executed. Since as is honest by precondi-
tion, as must have included the identity 𝑢 in the introspection response in Line 148 of Algo-
rithm A.13. The value used here for 𝑢 is 𝑆′(as).grantRequests[grantID] [subjectID], where
grantID ≡ 𝑆′(as).tokenBindings[accessToken] [grantID] (Line 131) for some previous state 𝑆′
and the accessToken that was transmitted to as by rs. As seen in Line 11 resp. Line 16 and Line 3 of Al-
gorithm A.20, this access token passed from rs to as is taken from 𝑚.headers[Authorization] .2.
This proves the lemma, since the values of 𝑆′(as).grantRequests[grantID] [subjectID] and
𝑆′(as).tokenBindings[accessToken] [grantID] cannot be overwritten and thus must still be the
same in 𝑆. ■

Lemma 15 (User Resources are returned only to authorized Client Instances). For any run 𝜌 of a
GNAP web system GWS , every configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every RS rs ∈ RS that is honest in
𝑆 𝑗 , and every identity 𝑢 ∈ 𝑆 𝑗 (rs).userResources it holds true that if 𝑆 𝑗 (rs).userResources[𝑢]
is included as resource in the response 𝑚′ in Line 53 of Algorithm A.21 by rs, then 𝑚′ is
a response to an HTTP request 𝑚 sent by a client instance 𝑐 for which it holds true that
there exists a processing step 𝑄 = (𝑆𝑖 , 𝐸 𝑖 , 𝑁 𝑖) → (𝑆𝑖+1, 𝐸 𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 and
authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), gid) (with gid being the grant ID of the grant in
whose context 𝑐 sent 𝑚) as long as

(1) governor(𝑢) is honest in 𝑆 𝑗 ,

(2) ownerOfResource(resource) is not fully corrupted in 𝑆 𝑗 ,

(3) for all client instances 𝑐′ that are honest in 𝑆 𝑗 and all key records 𝑘 ∈ 𝑠𝑐′0 .keyRecords[dmnAS]
(for any dmnAS ∈ dom(governor(𝑢))) it holds true that 𝑘.method . mac or dom−1(𝑘.rs)
is honest in 𝑆 𝑗 , and

(4) there do not exist 𝑐′, gid′, and 𝑄′ = (𝑆𝑖′ , 𝐸 𝑖′ , 𝑁 𝑖′) → (𝑆𝑖′+1, 𝐸 𝑖′+1, 𝑁 𝑖′+1), such that 𝑖′ < 𝑗 ,
authenticated𝑄′

𝜌 (ownerOfID(𝑢), 𝑐′, 𝑢, governor(𝑢), gid′), and

(a) 𝑐′ is corrupted in 𝑆 𝑗 , or

(b) there exists a domain 𝑦 ∈⟨⟩ 𝑆 𝑗 (𝑐′).grants[gid′] [bearerRSs] such that dom−1(𝑦) is
corrupted in 𝑆 𝑗 .

Proof. To prove this lemma, we will show several things:

(I) ownerOfID(𝑢) must have loaded a document from an origin of governor(𝑢), executed the
script script_as_login in that document, and in that script, in Line 10 of Algorithm A.19,
selected the identity 𝑢,

(II) 𝑐 is a client instance that sent a grant request to governor(𝑢) in a flow in which (I) occurred,
and

(III) 𝑚 is sent in the same flow as that grant request.
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(I) and (II) together imply that authenticated𝑄
𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), gid) holds for

some previous processing step 𝑄 and some grant ID gid. (III) ensures that gid is the grant ID of
the grant in whose context 𝑐 sent 𝑚.2 If authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), gid)
holds, this also means that 𝑐 is honest in 𝑆 𝑗 due to precondition (4). This in turn implies, due to
precondition (3), that 𝑐 does not share any of the symmetric keys it shares with governor(𝑢) with a
corrupted RS.

Let as = governor(𝑢).

We start with showing (I). By Lemma 14, 𝑚 must have contained an access token accessToken
in the Authorization header, such that 𝑆 𝑗 (as).grantRequests[grantID] [subjectID] ≡ 𝑢 with
grantID ≡ 𝑆 𝑗 (as).tokenBindings[accessToken] [grantID]. The [subjectID] entry must have
been written in Line 21 of Algorithm A.15 since this is the only line where this entry is written. Since
𝑢 is written in Line 21, it must have hold in Line 11 that password ≡ 𝑠𝑐0 .users[𝑢] ≡ secretOfID(𝑢)
(the entries of the users subterm of an honest AS never change). The value of password is taken
from the parameter 𝑚 (Line 5). 𝑚 must be a request received by as at the /redirectLogin path or
at the /userCodeLogin path, since only in these sections Algorithm A.15 is called. According
to Lemma 13, only ownerOfID(𝑢) and as are able to derive secretOfID(𝑢) in 𝑆 𝑗 . Since as does
not send requests, 𝑚 must thus have been sent by ownerOfID(𝑢). Because secretOfID(𝑢) was
contained in 𝑚, based on our browser model, ownerOfID(𝑢) must have loaded a document from an
origin of as, executed the script contained in it, and then this script must have sent secretOfID(𝑢) to
the /redirectLogin path or the /userCodeLogin path. This script must be script_as_login as
this is the only script used by as and HTTPS is used. Furthermore, since 𝑢 was written in Line 21
of Algorithm A.15, and 𝑢 was taken from the [identity] subterm of 𝑚 (Line 4), it must hold that
ownerOfID(𝑢) selected 𝑢 in Line 10 of Algorithm A.19 (script_as_login), proving (I).

We will show (II) by showing that since 𝑐 is able to use an access token that must
have been created in a flow in which (I) occurred, 𝑐 must also have sent the grant re-
quest to governor(𝑢) in that flow. Using Lemma 14, we know that the request 𝑚

must contain an access token accessToken in the Authorization header, such that for
the grant ID grantID ≡ 𝑆 𝑗 (as).tokenBindings[accessToken] [grantID], it holds true that
𝑆 𝑗 (as).grantRequests[grantID] [subjectID] ≡ 𝑢. Therefore, as seen in the previous para-
graph, (I) must hold for the flow in which this access token was created. As in the proof for
Lemma 11, the access token can be either a bearer access token or a key-bound access token.

First, let’s consider the case of a bearer access token. If the access token is a bearer token, it must
have been stored in Line 23 of Algorithm A.17 in 𝑆𝑖′ (as).tokenBindings for some previous state
𝑆𝑖
′ . Since the entries for an access token in the tokenBindings subterm cannot change, it must hold

that 𝑆 𝑗 (as).tokenBindings[accessToken] [type] ≡ bearer. By Lemma 10 it must thus hold
that the bearer token is derivable in 𝑆 𝑗 only for as, the client instance that sent the grant request
to as, and some RSs that must be honest according to precondition (4). The sender of 𝑚, 𝑐, must
obviously be able to derive the bearer token in 𝑆 𝑗 . Since as, being an honest AS, does not send
requests and honest RSs only send introspection requests (but 𝑚 is a resource request), 𝑐 must be
the client instance that sent the grant request to as = governor(𝑢).

2This is required to rule out cuckoos token attack, for example.
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Now we consider the case that the resource request 𝑚 was authorized using a key-bound access
token. In this case, VALIDATE_KEY_PROOF must have returned in one of the following lines of
Algorithm A.21:

• Line 17: In this line, VALIDATE_KEY_PROOF validates a MAC. The key for this key proof is
loaded by rs in Line 16 from the symKeys subterm. The instance identifier used was returned
by as in the introspection response in the [instanceID] entry (using HTTPS). as must have
selected the value returned under [instanceID] in Line 142 of Algorithm A.13 as this is
the only line where this entry is written. The value chosen is the instance identifier specified
in the grant request of this run, which must have been stored in Line 8 of Algorithm A.14
when as processed the grant request. So when rs loads the symmetric key from the symKeys
subterm in Line 16 of Algorithm A.21, it must be the key of the client instance that sent
the grant request to as, since the values in the symKeys subterm cannot change. Since
VALIDATE_KEY_PROOF must have returned, according to Lemma 8, 𝑚 must have been sent
by the client instance that sent the grant request to as (headers other than the Authorization

header may differ, but are irrelevant). Lemma 8 can be applied in this proof because by
precondition (4) ownerOfID(𝑢) authorizes only honest client instances, and by precondition
(3) honest client instances do not use symmetric keys shared with as and a corrupted RS.

• Line 25: In this line, VALIDATE_KEY_PROOF validates a signature. The key for this key
proof is returned by as in the introspection response under [key] [key] (Line 22). This can
be either the key used by the client instance in the grant request (returned by as in Line 140 of
Algorithm A.13 whereby the returned value was stored in Line 33 of Algorithm A.14) or a key
generated by AS only for binding to this access token (returned in Line 134 of Algorithm A.13).
If the key is the key from the grant request, it must hold by Lemma 8 that𝑚was sent by the client
instance that sent the grant request since VALIDATE_KEY_PROOF returned using the key
from the grant request (again, headers other than the Authorization header may differ, but are
irrelevant). If the key is one generated by as for this access token, it must have been loaded in
Line 134 of Algorithm A.13 from 𝑆𝑖

′ (as).tokenBindings[accessToken] [publicKey] for a
previous state 𝑆𝑖′ . By Lemma 5, only the client instance to which as sent the associated private
key after generating it can be able to derive that private key. Since VALIDATE_KEY_PROOF
returned, the signature validation in Line 26 of the algorithm must have been successful. As
seen in the proof of Lemma 8, 𝑚 must thus have been sent by this client instance (again,
headers other than the Authorization header may differ, but are irrelevant). We will now
show that the client instance to which the private key was sent after its generation must
also be the client instance that sent the grant request to as. New private keys for access
tokens are generated in Line 10 of Algorithm A.17 (CREATE_GRANT_RESPONSE). When
CREATE_GRANT_RESPONSE was called, the second parameter must have been endUser
in this case, since a resource of an end user is returned. CREATE_GRANT_RESPONSE is
called only as a result of a request to the /continue path of as with the endUser parameter.
According to Lemma 9, it must hold that this request was sent by the same client instance as
the request that led to the creation of the grant ID, i.e. the grant request. The client instance
that sent 𝑚 must therefore also be the client instance that sent the grant request.

• Line 27: In this line, VALIDATE_KEY_PROOF validates an MTLS key proof, which in this
context behaves like a key proof for a signature (see the previous point), since public keys are
used in both cases and the lemmas used for the proof are independent of whether the key
proof is based on MTLS or signatures.
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Thus, (II) must apply to both bearer tokens and key-bound access tokens.

Finally, we will prove (III). In principle, 𝑐 as an honest client instance uses an access token received
from an AS only in the flow in which 𝑐 also received the access token. This is ensured in the code
by storing a received access token in Line 26 of Algorithm A.7 under the used grant ID in the
receivedValues subterm, so that when the access token is used in Algorithm A.8, it can be uniquely
associated with the flow in which the access token was received. However, this does not mean
that the access token received from the AS was also issued for this flow, which is exploited in the
cuckoo token attack, for example. If 𝑐 received the access token contained in 𝑚 directly from as in
the flow in which 𝑐 sent 𝑚, it must have been issued for this flow as well, since an honest AS always
returns only newly created access tokens (Line 6 resp. Line 22 of Algorithm A.17). If 𝑐 received an
access token issued by as from a corrupted AS in this flow, we must again distinguish by the type of
access token. In the following, we will therefore show for each type of access token that it cannot
happen that rs sends 𝑚′ in response to 𝑚 if the access token contained in 𝑚 was issued by as but
was transmitted to 𝑐 by a corrupted AS in a flow other than the flow in which the access token was
issued by as.

Due to Lemma 10, a corrupted AS cannot send a bearer token created by as to 𝑐, so we only have to
look at key-bound access tokens.

We assume that 𝑐 received an access token that was issued by as from a corrupted AS and included
this access token in the Authorization header of 𝑚. If the access token is bound to a new key
generated by as, the corrupted AS from which 𝑐 received the access token is unable to transmit
the associated private key to 𝑐 due to Lemma 5. However, since 𝑐, when using the access token
in Line 43 of Algorithm A.8, uses the private key received with the access token, which is stored
in Line 26 of Algorithm A.7, 𝑐 will not use the private key bound to the access token to create
the signature in Line 46 of Algorithm A.8. Nevertheless, in the token introspection as will return
the public key of the private key it created for the access token since the introspection request is
sent to the AS for which the is_issuer function returns ⊤ (Line 5 of Algorithm A.20). is_issuer
will only return ⊤ when given a domain of as as input, since corrupted ASs do not store leaked
access tokens in the tokenBindings subterm. Thus, when rs validates the signature in Line 25 of
Algorithm A.21 the signature validation must fail, since the public key used by rs to validate the
signature cannot be the public key of the private key that was used by 𝑐 to create the signature.
Therefore, VALIDATE_KEY_PROOF will not return in this line and rs will not send 𝑚′.

A similar situation occurs when the access token in 𝑚 is bound to the key that 𝑐 used for the grant
request. In the introspection response, as will return the public key 𝑐 used in its grant request to
as in the flow in which the access token was issued (or the instance ID of 𝑐 if symmetric keys are
used). This holds since the public key resp. the instance ID are loaded from the grant request in
Line 140 resp. Line 142 of Algorithm A.13. Thus, rs will use a key for validating the signature resp.
MAC that 𝑐 uses only for as, since an honest client instance by definition uses a specific key only
for one single AS. At the same time, however, 𝑐 will use the key it used in the grant request to the
corrupted AS from which it received the access token when creating the signature. This key must
therefore be different from the key 𝑐 uses for as, so VALIDATE_KEY_PROOF will not return in
Line 17 or Line 25 of Algorithm A.21 and rs will not send 𝑚′. The same reasoning can be applied
to the use of MTLS and Line 27 of Algorithm A.21.

Thus, (III) must hold for all types of access tokens, and so must Lemma 15. ■
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Lemma 16 (Same End User must be present after Interaction). For any run 𝜌 of a GNAP web
system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, and every client instance 𝑐 ∈ CI that is honest in
𝑆 it holds true that if in Line 61 or Line 80 of Algorithm A.6 𝑐 stores ⟨𝑘, 𝑎, 𝑓 , 𝑚.nonce⟩ under
𝑆(𝑐).browserRequests[grantID] [finishRequest] (for some grantID, 𝑘 , 𝑎, 𝑓 , 𝑚), then the
request 𝑚 must have been sent by the browser 𝑏 that sent the request to the /startGrantRequest
path of 𝑐 that led to the creation of grantID in Line 10 of Algorithm A.6 as long as 𝑏 is not fully
corrupted in 𝑆.

Proof. If 𝑐 executes Line 61 or Line 80 of Algorithm A.6, it must hold that

𝑚.headers[Cookie] [⟨__Host, sessionID⟩] ≡ 𝑆(𝑐).grants[grantID] [sessionID]

due to the check in Line 59 resp. Line 78. So the session ID transferred by 𝑏 to 𝑐 in the headers of𝑚 is
sent in a cookie with the __Host prefix set. Since the __Host prefix is set, this cookie must have been
transmitted by 𝑐 to 𝑏 using HTTPS and with the secure attribute set. The ⟨__Host, sessionID⟩
cookie is set by honest client instances only when answering a browsers request to start a grant
in Line 38 of Algorithm A.7 and in case of a logout in Line 90 of Algorithm A.6. In both cases
the secure attribute, the session attribute and the httpOnly attribute are set. Thus, only 𝑏 is able
to decrypt a session ID when it is transmitted within the Set-Cookie header from 𝑐 to 𝑏. Since
𝑏 is not fully corrupted by precondition, 𝑏 again only transmits the session ID to 𝑐 and does so
using HTTPS. In case of a close corruption of 𝑏, the session ID cannot get leaked to the attacker
because the session attribute is set. Furthermore, honest client instances transmit session IDs only
to the browser for which they were issued and only using the ⟨__Host, sessionID⟩ cookie. Thus,
a session ID created by 𝑐 for 𝑏 can only be derivable for 𝑐 and 𝑏 in 𝑆 under the assumed conditions.

The value to which the session ID transferred by 𝑏 is compared, 𝑆(𝑐).grants[grantID] [sessionID],
must have been stored during a call to the /startGrantRequest path of 𝑐 in Line 27 of Algo-
rithm A.6, since this is the only line where this entry is written to. Since grant IDs do not change,
this must also have been the call to the /startGrantRequest path in which grantID was created
in Line 10 of Algorithm A.6. The value stored in Line 27 of Algorithm A.6 is either a session ID
that was transferred by the process that called the /startGrantRequest path (Line 21) or a new
session ID generated by 𝑐 for this session (Line 25) that is later transferred to the browser in Line 38
of Algorithm A.7. So in any case, it must be a session ID that was transferred to the caller in a
⟨__Host, sessionID⟩ cookie. As seen, only 𝑏 and 𝑐 are able to derive this value in 𝑆, so if Line 61
or Line 80 of Algorithm A.6 is executed by 𝑐, it must hold that 𝑚 was sent by the browser that sent
the request to the /startGrantRequest path that led to the creation of grantID, otherwise the
corresponding session ID could not have been included in the headers of 𝑚. ■

Lemma 17 (Granted Grant Request must have been started by RO). For any run 𝜌 of a GNAP
web system GWS , every configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every client instance 𝑐 ∈ CI that
is honest in 𝑆 𝑗 , every grant ID grantID ∈ 𝑆 𝑗 (𝑐).grants, and every identity 𝑢 ∈ ID
it holds true that if authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), grantID) (for some pre-
vious processing step 𝑄 = (𝑆𝑖 , 𝐸 𝑖 , 𝑁 𝑖) → (𝑆𝑖+1, 𝐸 𝑖+1, 𝑁 𝑖+1) and some integer 𝑖 < 𝑗)
and 𝑐 calls SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠′, 𝑎) (for some
interactRef , hash, 𝑠′, 𝑎) in the processing step (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) → (𝑆 𝑗+1, 𝐸 𝑗+1, 𝑁 𝑗+1), then
ownerOfID(𝑢) must have sent the request to the /startGrantRequest path of 𝑐 that led to
the creation of grantID in Line 10 of Algorithm A.6 as long as ownerOfID(𝑢) is not fully corrupted
in 𝑆 𝑗 and governor(𝑢) is honest in 𝑆 𝑗 .
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Proof. For this proof, we need to distinguish the different interaction modes that can get used.

Redirect Interaction Start Mode + Redirect Interaction Finish Mode We have given that
authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), grantID) and 𝑐 has thereupon called
SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠′, 𝑎). Since the redirect
interaction finish mode is used, the call to SEND_CONTINUATION_REQUEST must have
occurred in Line 64 of Algorithm A.6. So there must have been a call to the /finish path
of 𝑐 (Line 54). We will now show that this call must have been made by ownerOfID(𝑢).
In Line 56, the grantID is determined using the finishURLnonce from the parameters of
the request. The finishURLnonce is created by 𝑐 in Line 14 of Algorithm A.6 and then
transferred to the AS within the grant request using HTTPS. Since the AS governor(𝑢)
is honest by precondition, governor(𝑢) must have forwarded ownerOfID(𝑢) to the finish
URL with the finishURLnonce of 𝑐 immediately after the authentication in processing step
𝑄, which happens in Line 25 of Algorithm A.15. Since 𝑐 and governor(𝑢) are honest and
the finishURLnonce is not otherwise used or sent, the call to the /finish path must thus
have been made by ownerOfID(𝑢), otherwise it could not contain the finishURLnonce in the
parameters.

If SEND_CONTINUATION_REQUEST is called in Line 64 of Algorithm A.6, Line 61 must
also have been executed. Thus, by Lemma 16, the call to the /finish path must have been
made by the same browser that sent the associated grant request to the /startGrantRequest
path, which, as seen, must be ownerOfID(𝑢).

Redirect Interaction Start Mode + Push Interaction Finish Mode Since the push interaction
finish mode is used, the call to SEND_CONTINUATION_REQUEST must have occurred in
Line 72 of Algorithm A.6. So there must have been a call to the /push path of 𝑐 (Line 65).
This call must come from the AS to which 𝑐 sent the grant request with the grant ID grantID,
since only this AS can know the finishURLnonce, which is used in Line 67 to determine
the grant ID, since 𝑐 created this nonce (in Line 14 of Algorithm A.6) and only transmits it
within the grant request. This AS must be governor(𝑢), since ownerOfID(𝑢) would otherwise
not have authenticated to the AS in processing step 𝑄 due to our browser model. The
request to the /push path made by governor(𝑢), which is honest by precondition, is sent
in Line 29 of Algorithm A.15 (FINISH_INTERACTION). FINISH_INTERACTION must
have been called in Line 109 of Algorithm A.13 due to the use of the redirect interaction
start mode, i.e., as a result of a request to the /redirectLogin path of governor(𝑢).
Since authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), grantID) holds, this request to the
/redirectLogin path of governor(𝑢) must have been sent by ownerOfID(𝑢) in processing
step 𝑄. When a request to the /redirectLogin path is received, Line 107 ensures that
ownerOfID(𝑢) was redirected from the client instance that sent the grant request by verifying
that the host of the Referer header matches the host of the finish URL from the grant request
(the value of the Referer header is transmitted in the body of the request by script_as_login
after being passed to script_as_login via the scriptstate in Line 91 of Algorithm A.13). The
host of the finish URL must be a domain of the client instance that sent the grant request,
which follows from Line 14 of Algorithm A.6 using Lemma 1. Thus, ownerOfID(𝑢) must
have been forwarded by 𝑐 in the context of this grant (which is uniquely identified by the
redirectNonce in Line 106 of Algorithm A.13).
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This redirect happens in Line 44 of Algorithm A.7. The recipient of the response that receives
the redirect is thereby loaded in Line 37 from the startRequest entry. This entry must have
been written in Line 19 of Algorithm A.6, as this is the only line where this happens. This is
done when processing the request to the /startGrantRequest path of 𝑐 which led to the
creation of grantID in Line 10. Thus, the browser forwarded to governor(𝑢) must thus have
sent this request. Since the forwarded browser is ownerOfID(𝑢), ownerOfID(𝑢) must have
sent the request to the /startGrantRequest path of 𝑐 that led to the creation of grantID in
Line 10.

User Code Interaction Start Mode In the case of the user code interaction start mode, the proof
is independent of the chosen interaction finish mode. Since authenticated𝑄

𝜌 (ownerOfID(𝑢),
𝑐, 𝑢, governor(𝑢), grantID) and SEND_CONTINUATION_REQUEST is called by 𝑐, the
interaction for the grant with grant ID grantID must have finished successfully. Since the
user code interaction start mode is used, a user code uc must have been included in the
scriptinputs under the userCode key during authentication when script_as_login was run.
The user code is read in Line 9 of Algorithm A.19 (script_as_login) and then transferred
inside formData in the request to the /userCodeLogin path of governor(𝑢) (Line 14).
governor(𝑢) retrieves the user code uc from the request to the /userCodeLogin path in
Line 111 of Algorithm A.13. Since the interaction completed successfully, uc must be the
user code that governor(𝑢) generated in Line 21 of Algorithm A.13 upon receiving the grant
request. Otherwise, Algorithm A.13 would have stopped in Line 112 and the interaction
would not have been finished.

The user code must have been included in the scriptinputs in Line 49 of Algorithm A.2
since only in this line such an entry can be added to the scriptinputs. Due to Line 48 this
happens only if domainCI ≡ domainUsedCI. domainCI is the domain of the client instance
that sent the grant request associated with uc to governor(𝑢). This value was returned by
governor(𝑢) along with script_as_login in Line 102 of Algorithm A.13. domainUsedCI
is the domain of the client instance to which ownerOfID(𝑢) sent the request to start a grant
request (to the /startGrantRequest path) that resulted in receiving the user code uc. This
domain is stored in Line 39 of Algorithm A.2 in the usedCIs subterm under the key uc. Since
domainCI must be equivalent to domainUsedCI, the client instance to which ownerOfID(𝑢)
sent the request to the /startGrantRequest path must be the client instance that sent the
grant request associated with uc to governor(𝑢), which is 𝑐. Because 𝑐 is honest, it leaks
the user code uc only to the browser that sent the request to the /startGrantRequest path
(in Line 49 of Algorithm A.7 and using HTTPS). This holds true because the sender of the
grant request is stored in Line 19 of Algorithm A.6 in the browserRequests subterm, and the
recipient of the response in which uc is returned by 𝑐 is loaded in Line 37 of Algorithm A.7
from this browserRequests entry, which cannot be overwritten. Since ownerOfID(𝑢) has
received uc, ownerOfID(𝑢) thus must have sent the request to the /startGrantRequest
path of 𝑐. Hence, ownerOfID(𝑢) must be responsible for the creation of grantID in Line 10
of Algorithm A.6.

The lemma could be shown for all possible combinations of interaction start modes and interaction
finish modes covered by our model, so it must hold regardless of the interaction modes used. ■

120



D.3 Authorization Property for End Users

Lemma 18 (Receipt of a User Resource implies that the RO was present). For any run 𝜌 of a
GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, and every client instance
𝑐 ∈ CI that is honest in 𝑆 it holds true that if the client instance 𝑐 stores 𝑚.body under
𝑆(𝑐).grants[grantID] [resources] [domainRS] in Line 79 of Algorithm A.7 (for some 𝑚,
grantID, domainRS) and thereby 𝑚.body ≡ 𝑠rs

0 .userResources[𝑢] for rs = dom−1(domainRS)
and some identity 𝑢, then ownerOfResource(𝑚.body) must have sent the request to the
/startGrantRequest path of 𝑐 that led to the creation of grantID in Line 10 of Algorithm A.6 as
long as

(1) rs is honest in 𝑆,

(2) ownerOfResource(𝑚.body) (= ownerOfID(𝑢)) is not fully corrupted in 𝑆,

(3) governor(𝑢) is honest in 𝑆, and

(4) for all client instances 𝑐′ that are honest in 𝑆 and all key records 𝑘 ∈ 𝑠𝑐′0 .keyRecords[dmnAS]
(for any dmnAS ∈ dom(governor(𝑢))) it holds true that 𝑘.method . mac or dom−1(𝑘.rs)
is honest in 𝑆.

Proof. In Line 79 of Algorithm A.7, domainRS is the domain of rs to which 𝑐 sent the re-
source request that was answered by 𝑚, which must hold since domainRS was taken from
the reference of the request in Line 78. Thus, due to the use of HTTPS, 𝑚.body must have
been obtained from the honest RS rs. rs must have sent 𝑚 in Line 54 of Algorithm A.21,
since only in this line matching responses are sent by an honest RS. Since 𝑚 contains
𝑠rs

0 .userResources[𝑢], according to Lemma 15, it must hold that there is a processing step
𝑄 such that authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), grantID).3

𝑐 can only store a resource in 𝑆(𝑐).grants[grantID] [resources] [domainRS] in Line 79 of
Algorithm A.7 if 𝑐 has sent a resource request in Algorithm A.8. This in turn can only happen
if the grant identified by grantID has been authorized and 𝑐 has received an access token from
governor(𝑢). 𝑐 will only receive an access token from governor(𝑢) after the interaction is finished,
so it must hold that 𝑐 called SEND_CONTINUATION_REQUEST(grantID, interactRef , hash, 𝑠′,
𝑎) (for some interactRef , hash, 𝑠′, 𝑎) in a processing step after 𝑄 in order to finish the interaction.
Using Lemma 17, it must thus hold that ownerOfID(𝑢) sent the request to the /startGrantRequest
path of 𝑐 that led to the creation of grantID in Line 10 of Algorithm A.6. Since by definition
ownerOfResource(𝑚.body) = ownerOfID(𝑢), the lemma is shown. ■

Lemma 19 (Honest Client Instances return Resources only to the Resource Owner). For any run 𝜌
of a GNAP web system GWS , every configuration (𝑆, 𝐸, 𝑁) in 𝜌, and every client instance 𝑐 ∈ CI
that is honest in 𝑆 it holds true that if 𝑐 emits an event in Line 19 of Algorithm A.11 in the processing
step (𝑆, 𝐸 , 𝑁 ) → (𝑆′, 𝐸 ′, 𝑁 ′) (for some configuration (𝑆′, 𝐸 ′, 𝑁 ′)) that contains an HTTP response
𝑚′ whose body contains a nonce 𝑛 (as a subterm) for which it holds that 𝑏 = ownerOfResource(𝑛)
for some browser 𝑏, then 𝑚′ must be a response to an HTTP request 𝑚 sent by 𝑏 as long as

(1) 𝑏 is not fully corrupted in 𝑆,

3Since 𝑐 is honest in 𝑆, we can ignore precondition (4) of Lemma 15, since an honest client instance will not use leaked
bearer tokens or the keys of other corrupted client instances.
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(2) the RS rs = dom−1(𝑆(𝑐).grants[grantID] [domainFirstRS]) (with grantID being the
grantID that was passed to Algorithm A.11) from which 𝑐 received 𝑛 is honest in 𝑆,

(3) with 𝑢 being the identity for which 𝑠rs
0 .userResources[𝑢] ≡ 𝑛, it holds true that governor(𝑢)

is honest in 𝑆, and

(4) for all client instances 𝑐′ that are honest in 𝑆 and all key records 𝑘 ∈ 𝑠𝑐′0 .keyRecords[dmnAS]
(for any dmnAS ∈ dom(governor(𝑢))) it holds true that 𝑘.method . mac or dom−1(𝑘.rs)
is honest in 𝑆.

Proof. In Line 19 of Algorithm A.11 we have that sender and receiver as well as the key and the
nonce used in 𝑚′ have been loaded from 𝑆(𝑐).browserRequests[grantID] [finishRequests]
(Line 16). The finishRequest entry is written only in Line 61 and Line 80 of Algorithm A.6.
Since these are the only sections where the value of this entry is written, Lemma 16 implies that 𝑚
must have been sent by the same process that sent the request to the /startGrantRequest path of
𝑐 that led to the creation of grantID in Line 10 of Algorithm A.6.

The resource 𝑛 is loaded from 𝑆(𝑐).grants[grantID] [resources] [domainFirstRS] in Line 13 of
Algorithm A.11 (with domainFirstRS = 𝑆(𝑐).grants[grantID] [domainFirstRS]). This value
can only have been stored in Line 79 of Algorithm A.7. Thus, by Lemma 18, it must hold that the
request to the /startGrantRequest path of 𝑐 that led to the creation of grantID in Line 10 of
Algorithm A.6 must have been sent by ownerOfResource(𝑛) = 𝑏.

Together this means that 𝑚 must have been sent by 𝑏. ■

Lemma 20 (Authorization Property for End Users). Let GWS be a GNAP web system. We say
that GWS fulfills the authorization property for end users iff for every run 𝜌 of GWS , every
configuration (𝑆 𝑗 , 𝐸 𝑗 , 𝑁 𝑗) in 𝜌, every RS rs ∈ RS that is honest in 𝑆 𝑗 , and every identity
𝑢 ∈ 𝑆 𝑗 (rs).userResources it holds true that if 𝑛 ≡ 𝑆 𝑗 (rs).userResources[𝑢] is derivable from
the attacker’s knowledge in 𝑆 𝑗 (i.e., 𝑛 ∈ 𝑑∅ (𝑆 𝑗 (na))), it follows that

(1) governor(𝑢) (the responsible AS) is corrupted in 𝑆 𝑗 , or

(2) the browser 𝑏 = ownerOfResource(𝑛) that owns this resource is fully corrupted in 𝑆 𝑗 , or

(3) there exist a client instance 𝑐 that is honest in 𝑆 𝑗 and a key record 𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS]
(for some domain dmnAS ∈ dom(governor(𝑢))) such that 𝑘.method ≡ mac and dom−1(𝑘.rs)
is corrupted in 𝑆 𝑗 (an honest client instance shares a symmetric key with governor(𝑢) and a
corrupted RS), or

(4) there exist a client instance 𝑐, a grant ID gid, and a processing step 𝑄 = (𝑆𝑖 , 𝐸 𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸 𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), gid),
and

(a) 𝑐 is corrupted in 𝑆 𝑗 (a grant request from a corrupted client instance was granted), or

(b) there exists a domain 𝑦 ∈⟨⟩ 𝑆 𝑗 (𝑐).grants[gid] [bearerRSs] such that dom−1(𝑦) is
corrupted in 𝑆 𝑗 (an authorized client instance sent a bearer token to a corrupted RS).

Proof. We prove this lemma using proof by contradiction. We assume that 𝑛 ∈ 𝑑∅ (𝑆 𝑗 (na)) and
that

122



(1) governor(𝑢) is honest in 𝑆 𝑗 ,

(2) 𝑏 is not fully corrupted in 𝑆 𝑗 ,

(3) for all client instances 𝑐 that are honest in 𝑆 𝑗 and all key records 𝑘 ∈ 𝑠𝑐0 .keyRecords[dmnAS]
(for any dmnAS ∈ dom(governor(𝑢))) it holds true that 𝑘.method . mac or dom−1(𝑘.rs)
is honest in 𝑆 𝑗 , and

(4) there do not exist a client instance 𝑐, a grant ID gid, and a processing step𝑄 = (𝑆𝑖 , 𝐸 𝑖 , 𝑁 𝑖) →
(𝑆𝑖+1, 𝐸 𝑖+1, 𝑁 𝑖+1), such that 𝑖 < 𝑗 , authenticated𝑄

𝜌 (ownerOfID(𝑢), 𝑐, 𝑢, governor(𝑢), gid),
and

(a) 𝑐 is corrupted in 𝑆 𝑗 , or

(b) there exists a domain 𝑦 ∈⟨⟩ 𝑆 𝑗 (𝑐).grants[gid] [bearerRSs] such that dom−1(𝑦) is
corrupted in 𝑆 𝑗 .

Since, by definition, 𝑛 is initially stored in rs only, it must hold for all processes 𝑝 ≠ rs that
𝑛 ∉ 𝑑∅ (𝑠𝑝0 ). Since rs is honest by precondition, it emits 𝑛 only in responses to resource requests in
Line 53 of Algorithm A.21. As all conditions for Lemma 15 are given, it must hold that rs sends 𝑛
only to client instances 𝑐 for which authenticated𝑄′

𝜌 (𝑏, 𝑐, 𝑢, governor(𝑢), gid) holds for some grant
ID gid and some previous processing step 𝑄′. Due to assumption (4), it must hold for these client
instances to be honest in 𝑆 𝑗 . Due to the use of HTTPS, only these client instances can decrypt the
resource responses sent by rs, so 𝑛 is not leaked to any other process when 𝑛 is transferred from
rs to client instances. Honest client instances emit events that may contain user resources only in
Line 19 of Algorithm A.11. By Lemma 19, it must therefore hold that all possible client instances 𝑐
that may have received 𝑛 from rs emit 𝑛 only in a response to 𝑏 using HTTPS. Since 𝑏 is not fully
corrupted in 𝑆 𝑗 and HTTPS is used, only 𝑏 can decrypt the response, so all 𝑐 can leak 𝑛 only to
𝑏. A browser that is not fully corrupted does not process received resources any further and, in
particular, does not resend them. Thus, in 𝑆 𝑗 , 𝑛 can only be derivable for 𝑏, rs, and some honest
client instances, which means that, contrary to our assumption, 𝑛 ∉ 𝑑∅ (𝑆 𝑗 (na)) must hold. ■

D.4 Authorization Property

Theorem 1 (Authorization Property). Let GWS be a GNAP web system. We say that GWS is secure
w.r.t. authorization iff GWS fulfills the authorization property for software-only authorization and
the authorization property for end users.

Proof. This directly follows from Lemma 12 and Lemma 20. ■
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